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PREFACE
[TO THE FIRST EDITION]

HERE is a certain well-defined range in Electromagnetic Theory, which

every student of physics may be expected to have covered, with more
or less of thoroughness, before proceeding to the study of special branches
of developments of the subject. The present book is intended to give the
mathematical theory of this range of electromagnetism, together with the
mathematical analysis required in its treatment.

The range is very approximately that of Maxwell’s original Treatise, but
the present book is in many respects more elementary than that of Maxwell.
Maxwell's Treatise was written for the fully-equipped mathematician: the
present book is written more especially for the student, and for the physicist
of limited mathematical attainments.

The questions of mathematical analysis which are treated in the text buve
been inserted in the places where they are first needed for the devclopment
of the physical theory, in the belief that, in many cases, the mathematical and
physical theories illuminate one another by being studied simultaneously.
For example, brief sketches of the theories of spherical, zonal and ellipsoidal
harmonics are given in the chapter on Special Problems in Electrostatics,
interwoven with the study of harmonic potentials and electrical applications:
Stokes’ Theorem is similarly given in connection with the magnetic vector-
potential, and so on. One result of this arrangement is to destroy, at least in
appearance, the balance of the amounts of space allotted to the different parts
of the subject. For instance, more than half the book appears to be devoted
to Electrostatics, but this space will, perhaps, not seem excessive when it is
noticed how many of the pages in the Electrostatic part of the book are devoted
to non-electrical subjects in applied mathematics (potential-theory, theory of
stress, etc.), or in pure mathematics (Green’s Theorgm, harmonic analysis,
complex variable, Fourier's scries, conjugate functions, eurvilinear coordinates,
etc.).

A number of examples, taken mainly from the usual Cambridge examina-
tion papers, are inserted. These may provide problems for the mathematical
student, but it is hoped that they may also form a sort of compendium of results
for the physicist, shewing what types of problem admit of exact mathematical
solution.

It is again a pleasure to record my thanks to the officials of the University
Press for their unfailing vigilance and help during the printing of the book.

J. H. JEANS,
PRrINCETON,
December, 1907,



vi Preface

[TO THE SECOND EDITION]

The second Edition will be found to differ only very slightly from the first
in all except the last few chapters. The chapter on Electromagnetic Theory
of Light has, however, been largely rewritten and considerably amplified, and
two new chapters appear in the present edition, on the Motion of Electrons
and on the General Equations of the Electromagnetic Field. These last chapters
attempt to give an introduction to the more recent developments of the subject.
They do not aim at anything like completeness of treatment, even in the small
parts of the subjects with which they deal, but it is hoped they will form a
useful introduction to more complete and specialised works and monographs.

J. H. JEANS,

CAMBRIDGE,
August, 1911,

[TO THE THIRD EDITION]

In preparing a third Edition I have made only a few changes in the latter
chapters, which were necessary to bring the book up to date.

J. H. JEANS.

Loxpox,
November, 1914,

[TO THE FOURTH EDITION]

It will be found that the main changes in the fourth Edition consist in a
rearrangement of the later chapters and the addition of a wholly new chapter
on the Theory of Relativity. It need hardly be said that no attempt is made
to give a full account of the Theory; I have tried to present its broad outlines
in the simplest possible way, and in striving after simplicity I have intentionally
omitted all elaboration and detail. It is hoped that the new chapter will pro-
vide a suitable introduction to the Theory of Relativity for the student who
approaches the subject for the first time, equipped with such knowledge of
general electrical theory as can be gained from the rest of the book.

J. H. JEANS.
Dorkixg,
December, 1919,
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INTRODUCTION

THE THREE DIVISIONS OF ELECTROMAGNETISM

1. THE fact that a piece of amber, on being rubbed, attracted to itself
other small bodies, was known to the Greeks, the discovery of this fact being
attributed to Thales of Miletus (640-548 B.c.). A second fact, namely, that
a certain mineral ore (lodestone) possessed the property of attracting irom,
is mentioned by Lucretius. These two facts have formed the basis from
which the modern science of Electromagnetism has grown. It has been
found that the two phenomena are not isolated, but are insignificant units in
a vast and intricate series of phenomena. To study, and as far as possible
interpret, these phenomena is the province of Electromaguetism. And the
mathematical development of the subject must aim at bringing as large
a number of the phenomena as possible within the power of exact mathe-
matical treatment

2. The first great branch of the science of Electromagnetism is known
as Electrostatics. The second branch is commonly spoken of as Magnetism,
but is more accurately described as Magnetostatics,. ~We may say that
Electrostatics has been developed from the single property of amber already
mentioned, and that Magnetostatics has been developed from the single
property of the lodestone. These two branches of Electromagnetism deal
solely with states of rest, not with motion or changes of state, and are
therefore concerned only with phenowena which can be described as statical.
The developments of the two statical branches of Electromagnetisin, namely
Electrostatics and Magnetostatics, are entirely independent of one another.
The science of Electrostatics could have been developed if the properties of
the lodestone had never been discovered, and similarly the science of
Magnetostatics could have been developed without any knowledge of the
properties of amber.

The third branch of Electromagnetism, namely, Electrodynamics, deals
with the motion of electricity and magnetism, and it is in the development
of this branch that we first find that the two groups of phenomena of
electricity and magnetism are related to one another. The relation is
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a reciprocal relation: it is found that magnets in motion produce the same
effects as electricity at rest, while electricity in motion produces the same
effects as magnets at rest. The third division of Electromagnetism, then,
connects the two former divisions of Electrostatics and Magnetostatics, and
is in a sense symmetrically placed with regard to them. Perhaps we may
compare the whole structure of Electromagnetism to an arch made of three
stones. The two side stones can be placed in position independently, neither
in any way resting on the other, but the third cannot be placed in position
until the two side stones are securely fixed. The third stone rests equally
on the two other stones and forms a connection between them.

3. In the present book these three divisions will be developed in the
order in which thev have been mentioned, namely Electrostatics, Magneto-
statics, Electrodynamics. The carlier chapters will give an explanation of
the physical 1deas adopted by Maxwell in his Treatise on Electricity and
Magnetism side by side with a purely mathematical theory. Maxwell’s treat-
ment of Electrical Science was differcntiated from that of other writers by
his insistence on Faraday’s conception of clectric and magnetic cnergy as
residing in the medinm. According to this view, the forces acting on electrified
or magnetised bodics did not form the whole system of forces in action, but
served only to reveal the presence of a vastly more intricate system of forces,
which acted throughout the ether by which the material bodies were supposed
to be surrounded. It was ouly through the presence of matter that the sup-
posed system of forces became perceptible to human observation, so that it
was necessary to try to reconstruct the whole system of forces from no data
except those given by the resultant effect of the forces on matter, where
matter was present. As might be expected, these data proved insufficient to
give full and definite knowledge of the system of ethereal forces; it was found
that a great number of systems of ethereal forces could be constructed, each §
of which wou’d produce the same effects on matter as are observed. Of these
systems, however, a single one seemed so very much more probable than any
of the others, that it was unhesitatingly adopted both by Maxwell and by
Faraday.

As soon as the step had been taken of attributing the mechanical forces
acting on matter to a system of forces acting throughout the whole ether,
a further physical development was made not only possible but also necessary.
A stress in the ether might be supposed to represent either an electric or a
magnetic force, but could not be both. Faraday supposed a stress in the ether
to be identical with clectrostatic force. There was no longer any possibility,
in this scheme of the universe, of regarding magnetostatic forces as evidence
of simple stresses in the ether.
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It has, however, been said that magnetostatic forces are found to be
produced by the motion of electric charges. Now if electric charges at rest
produce simple stresses in the ether, the motion of electric charges must
obviously be accompanied by changes in the stresses in the ether. It accord-
ingly became possible to identify magnetostatic force with change in the
system of stresses in the ether. This interpretation of magnetic force formed
an essential part of Maxwell’s theory. Comparing the ether to an elastic
material medium, we may say that the electric forces were interpreted as the
statical pressures and strains which accompanied the compression, dilatation
or displacement of the medium, while magnetic forces were interpreted as the
pressures and strains in the medium caused by its motion and momentum.
Thus electrostatic energy was regarded as the potential encrgy of the medium,
while magnetic energy was regarded as its kinetic energy. Maxwell shewed
that the whole series of known electrostatic and magnetostatic phenomena
might be consistently interpreted as phenomena produced by the stresses
and motion of a medium, this motion being in conformity with the laws of
dynamics. This hypothesis is examined in the earlier chapters of the book,
although, as will be seen later, recent developments call for at least a drastic
modification, and more probably for the complete abandonment of the whole
hypothesis.

4. The observational fact that magnetostatic forces were produced by the
motion of electric charges inevitably raised the question of the interpretation
of general magnetic phenomena in electrical terms. A solution of the problem
suggested by Ampére and Weber needs but little modification to represent
the answer to which modern investigations have led. Recent experimental
researches shew that all matter must be supposed to consist solely of electrically
charged particles, and it seems highly probable that all magnetic phenomena
can be explained by the motion of these charges. If the motion of the charges
is governed by a regularity of a certain kind, the body as a whole will shew
magnetic properties. If this regularity does not obtain, the magnetic forces
produced by the motions of the individual charges will on the whole neutralise
one another, and the body will appear to be non-magnetic. On this view the
electricity and magnetisin which at first sight appeared to exist independently
in the universe, are resolved into electricity alone—electricity and magnetism
become electricity at rest and electricity in motion.

This discovery of the ultimate identity of electricity and magnetism is by
no means the last word of the science of Electromagnetism. As far back as
the time of Maxwell and Faraday, it was recognised that the forces at work
in chemical phenomena must be regarded largely, if not entirely, as electrical
forces. Later, Maxwell shewed light to be an electromagnetic phenomenon,
8o that the whole science of Optics became a branch of Electromagnetism.
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Gradually the conviction grew that all physical forces, with the possible
exception of Gravitation, would prove to be ultimately of Electromagnetic
origin, 8o that by the end of the nineteenth century most scientists believed
that the science of Electromagnetism would advance along the road opened
out by Maxwell until the whole physical universe had been explained in the
terms of electromagnetic theory. Recently this belief has experienced two
very severe checks.

If, as Maxwell believed, the ultimate seat of electromagnetic and optical
phenomena is the ether, it ought to be possible to find out something about
the ether by electromagnetic and optical means. It ought, for instance, at
least to be possible to determine the velocity with which we move through the
cther. A series of experiments devised to this end have one and all failed to
disclose this velocity. To every experimental enquiry, Nature seems to give
the answer either that there is no ether or that natural phenomena go on
exactly as if there were no ether. If this view is finally established, and at
present there seems only a very meagre chance of any alternative, Maxwell’s
theory of the electromagnetic ether must necessarily fall out of science; it will
have served its purpose as a scaffolding which will have enabled the structure
of electromagnetic theory to have been built in perfect form, but it will not
be part of that structure. Nevertheless the time for finally deciding how
much of Maxwell's theory is scaffolding and how much is part of the essential
structure has hardly yet come, so that in the present book we shall first
develop the theory along the general lines initiated by Maxwell, and then
shall devote a chapuer to the development of a more modern theory and to a
discussion of how far the existence of an ether is essential to electromagnetic
theory.

The second check to Maxwell's theory has originated from the study of
radiation and the ultimate electrical structure of matter; phenomena of
primary importance have been found not to be reconcileable with Maxwell’s
original theory. 1. a sense the new facts hardly cut at the roots of the theory;
they must rather be thought of as restricting the spread of the branches,
There is no question that the electrical phenomena of everyday life, thunder-
storms, telephones and dynamos, are all governed by Maxwell’s laws; it is
only when we pass to the phenomena arising from the most intimate electrical
structure of matter that Maxwell’s laws appear to be inadequate. Our final
chapter will contain an explanation of the failure of Maxwell’s Electrodynamics
to deal with these problems, and a very brief introduction to the new theory
which has taken its place.



CHAPTER I
PHYSICAL PRINCIPLES

Tae FuNDAMENTAL CONCEPTIONS OF ELECTROSTATICS

L State of Electrification of a Body.

5. WE proceed to a discussion of the fundamental conceptions which
form the basis of Electrostatics. The first of these is that of a state of
electrification of a body. When a piece of amber has been rubbed so that it
attracts small bodies to itself, we say that it is in a state of electrification—
or, more shortly, that it is electrified.

Other bodies besides amber possess the power of attracting small bodies
after being rubbed, and are therefore susceptible of electrification. Indeed
it is found that all bodies possess this property, although it is less easily
recognised in the case of most bodies, than in the case of amber. For
instance a brass rod with a glass handle, if rubbed on a piece of silk or cloth,
will shew the power to a marked degree. The electrification here resides in
the brass; as will be explained immediately, the interposition of glass or
some similar substance between the brass and the hand is necessary in order
that the brass may retain its power for a sufficient time to enable us to
observe it. If we hold the instrument by the brass rod and rub the glass
handle we find that the same power is acquired by the glass.

IL  Conductors and Insulators.

8. Let us now suppose that we hold the electrified brass rod in one hand
by its glass handle, and that we touch it with the other hand. We find that
after touching it its power of attracting small bodies will have completely
disappeared, If we immerse it in a stream of water or pass it through a
flame we find the same result. If on the other hand we touch it with
a piece of silk or a rod of glass, or stand it in a current of air, we find
that its power of attracting small bodies remains unimpaired, at any rate
for & time. It appears therefore that the human body, & flame or water
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have the power of destroying the electrification of the brass rod when placed
in contact with it, while silk and glass and air do not possess this property.
It is for this reason that in handling the clectrified brass rod, the substance
in direct contact with the brass has been supposed to be glass and not the
hand.

In this way we arrive at the idea of dividing all substances into two
classes according as they do or do not remove the electrification when touch-
ing the electrified body. The class which remove the electrification are
called conductors, for as we shall see later, they conduct the electrification
away from the electrified body rather than destroy it altogether; the class
which allow the electrified body to retain its electrification are called non-
conductors or insulators. The classification of bodies into conductors and
insulators appears to have been first discovered by Stephen Gray (1696-
1736).

At the same time it must be explained that the difference between
insulators and conductors is one of degree only. If our electrified brass rod
were left standing for a week in contact only with the air surrounding it and
the glass of its handle, we should find it hard to detect traces of electrifica-
tion after this time—the eclectrification would have been conducted away by
the air and the glass. So also if we had been able to immerse the rod in a
flame for a billionth of a second only, we might have found that it retained
considerable traces of electrification. It is therefore more logical to speak of
good conductors and bad conductors than to speak of conductors and insula-
tors. Nevertheless the difference between a good and a bad conductor is so
cnormous, that for our present purpose we need hardly take into account the
feeble conducting power of a bad conductor, and may without serious incon-
sistency, speak of a bad conductor as an insulator. There is, of course, nothing
to prevent us imagining an ideal substance which has no conducting power
at all. It will often simplify the argument to imagine such a substance,
although we caunot realise it in nature.

It may be wentioned here that of all substances the metals are by very
much the best conductors. Next come solutions of salts and acids, and lastly
as very bad conductors (and therefore as good insulators) come oils, waxes,
silk, glass and such substances as sealing wax, shellac, indiarubber. Gases
under ordinary conditions are good insulators. Indeed it is worth noticing
that if this had not been so, we should probably never have become acquainted
with electric phenomena at all, for all electricity would be carried away by
conduction through the air as soon as it was generated. Flames, however,
conduct well, and, for reasons which will be explained later, all gases become
good conductors when in the presence of radium or of so-called radio-active
substances. Distilled water is an almost perfect insulator, but any other
sample of water will contain impurities which generally cause it to conduct
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tolerably well, and hence a wet body is generally a bad insulator. So also an
electrified body suspended in air loses its electrification much more rapidly in
damp weather than in dry, owing to conduction by water-particles in the air.

When the body is in contact with insulators only, it is said to be
“insulated.” The insulation is said to be good when the electrified body
retains its electrification for a long interval of time, and is said to be poor
when the electrification disappears rapidly. Good insulation will enable a
body to retain most of its electrification for some days, while with poor insula-
tion the electrification will last only for a few minutes or seconds.

IIT.  Quantity of Electricity.

7. We pass next to the conception of a definite quantity of clectricity,
this quantity measuring the degree of electrification of the body with which
it is associated. It is found that the quantity of electricity associated with
any body remains constant except in so far as it is conducted away by con-
ductors. To illustrate, and to some extent to prove this law, we may use
an instrument known as the gold-leaf electroscope. This consists of a glass
vessel, through the top of which a metal rod is passed, supporting at its lower
end two gold-leaves which under normal conditions hang flat side by side,
touching one another throughout their length. When an electrified body
touches or is brought near to the brass rod, the two gold-leaves are seen to
separate, for reasons which will become clear later (§ 21), so that the instru-
ment can be used to examine whether or not a body is electrified.

Let us fix a metal vessel on the top of the Lrass rod, the vessel being
closed but having a lid through which bodies can be in- ;
serted. The lid must be supplied with an insulating
handle for its manipulation. Suppose that we have
electrified some piece of matter—to make the picture
definite, suppose that we have electrified a small brass
rod by rubbing it on silk—and let us suspend this body
inside the vessel by an insulating thread in such a
manner that it does not touch the sides of the vessel.
Let us close the lid of the vessel, so that the vessel
entirely surrounds the electrified body, and note the
amount of separation of the gold-leaves of the electro-
scope. Let us try the experiment any number of times,
placing the electrified body in different positions inside
the closed vessel, taking care only that it does not come
into contact with the sides of the vessel or with any
other conductors. We shall find that in every case the separation of the
gold-leaves is exactly the same.
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In this way then, we get the idea of a definite quantity of electrification
associated with the brass rod, this quantity being independent of the position
of the rod inside the closed vessel of the electroscope. We find, further, that
the divergence of the gold-leaves is not only independent of the position of
the rod inside the vessel, but is independent of any changes of state which
the rod may have experienced between successive insertions in the vessel,
provided only that it has mot been touched by conducting bodies. We
might for instance heat the rod, or, if it was sufficiently thin, we might
bend it into a different shape, and on replacing it inside the vessel we
should find that it produced exactly the same deviation of the gold-leaves
as before. We may, then, regard the electrical properties of the rod as being
due to a quantity of electricity associated with the rod, this quantity remaining
permanently the same, except in so far as the original charge is lessened by
contact with conductors, or increased by a fresh supply.

8. We can regard the electroscope as giving an indication of the magni-
tude of a quantity of electricity, two charges being equal when they produce
the same divergence of the leaves of the electroscope.

In the same way we can regard a spring-balance as giving an indication
of the magnitude of a weight, two weights being equal when they produce
the same extension of the spring.

The question of the actual quantitative measurement of a quantity of
electricity as a multiple of a specified unit has not yet been touched. We
can, however, easily devise means for the exact quantitative measurement
of electricity in terms of a unit. We can charge a brass rod to any degree
we please, and agree that the charge on this rod is to be taken to be the
standard unit charge. By rubbing a number of rods until each produces
exactly the same divergence of the electroscope as the standard charge, we
can prepare & number of unit charges, and we can now say that a charge is
equal to n units, if it produces the same deviation of the electroscope as
would be produced by n units all inserted in the vessel of the electroscope
at once. This meshud of measuring an electric charge is of course not one
that any rational being would apply in practice, but the object of the
present explanation is to elucidate the fundamental principles, and not to
give an account of practical methods.

9. Positive and Negative Electricity. Let us suppose that we insert in
the vessel of the electroscope the piece of silk on which one of the brass
rods has been supposed to have been rubbed in order to produce its unit
charge. We shall find that the silk produces a divergence of the leaves of
the electroscope, and further that this divergence is exactly equal to that
which is produced by inserting the brass rod alone into the vessel of the
electroscope. If, however, we insert the brass rod and the silk together into
the electroscope, no deviation of the leaves can be detected.
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Again, let us suppose that we charge a brass rod A with a charge which
the divergence of the leaves shews to be n units. Let us rub a second brass
rod B with a piece of silk C until it has a charge, as indicated by the electro-
scope, of m units, m being smaller than n. If we insert the two brass rods
together, the electroscope will, as already explained, give a divergence corre-
sponding to n+ m units. If, however, we insert the rod 4 and the silk C
together, the deviation will be found to correspond to n — m units.

In this way it is found that a charge of electricity must be supposed to
have sign as well as magnitude. As a matter of convention, we agree to
speak of the m units of charge on the silk as m positive units, or more briefly
as a charge + m, while we speak of the charge on the brass as m negative
units, or a charge — m.

10. Generation of Electricity. It is found to be a general law that, on
rubbing two bodies which are initially uncharged, equal quantities of positive
and negative electricity are produced on the two bodies, so that the total
charge generated, measured algebraically, is nil.

We have seen that the electroscope does not determine the sign of the
charge placed inside the closed vessel, but only its magnitude. We can,
however, determine both the sign and magnitude by two observations. Let
us first insert the charged body alone into the vessel. Then if the divergence
of the leaves corresponds to m units, we know that the charge is either + m
or —m, and if we now insert the body in company with another charged body,
of which the charge is known to be +n, then the charge we are attempting
to measure will be +m or —m according as the divergence of the leaves
indicates n+m or n ~m units. With more elaborate instruments to be
described later (electrometers) it is possible to determine both the magnitude
and sign of a charge by one observation.

11. If we had rubbed a rod of glass, instead of one of brass, on the silk,
we should have found that the silk had a negative charge, and the glass of
course an equsl positive charge. It therefore appears that the sign of the
charge produced on a body by friction depends not only on the nature of the
body itself, but also on the nature of the body with which it has been
rubbed.

The following is found to be a general law: If rubbing a substance 4 on
a second substance B charges A positively and B negatively, and if rubbing
the substance B on a third substance C charges B positively and C negatively,
then rubbing the substance 4 on the substance C will charge 4 positively
and C negatively.

It is therefore possible to arrange any number of substances in a list such
that a substance is charged with positive or negative electricity when rubbed
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with a second substance, according as the first substance stands above or
below the second substance on the list. The following is a list of this kind,
which includes some of the most important substances:

Cat's skin, Glass, Tvory, Silk, Rock crystal, The Hand, Wood, Sulphur,
Flannel, Cotton, Shellac, Caoutchouc, Resins, Guttapercha, Metals, Guncotton.

A substance is said to be electropositive or electronegative to a second
substance according as it stands above or below it on a list of this kind.
Thus of any pair of substances one is always electropositive to the other, the
other being electronegative to the first. Two substances, although chemically
the same, must be regarded as distinct for the purposes of a list such as the
above, if their physical conditions are different; for instance, it is found that
a hot body must be placed lower on the list than a cold body of the same
chemical composition.

IV. Attraction and Repulsion of Electric Charges.

12. A small ball of pith, or some similarly light substance, coated with
gold-leaf and suspended by an insulating thread, forms a convenient instru-
ment for investigating the forces, if any, which are brought into play by the
presence of electric charges. Let us electrify a pith ball of this kind positively
and suspend it from a fixed point. We shall find that when we bring 4
second small body charged with positive electricity near to this first body
the two bodies tend to repel one another, whereas if we bring a negatively
charged body near to it, the two bodies tend to attract one another. From
this and similar experiments it is found that two small bodies charged with
electricity of the same sign repel one another, and that two small bodies
charged with electricity of different signs attract one another.

This law can be well illustrated by tying together a few light silk threads
by their ends, so that they form a tassel, and allowing the threads to hang
vertically. Jf we now stroke the threads with the hand, or brush them with
a brush of any kind, the threads all become positively electrified, and there-
fore repel one another. They consequently no longer hang vertically but
spread themselves out into a cone. A similar phenomenon can often be
noticed on brushing the hair in dry weather. The hairs become positively
electrified and so tend to stand out from the head.

13. On shaking up a mixture of powdered red lead and yellow sulphur,
the particles of red lead will become positively electrified, and those of the
sulphur will become negatively electrified, as the result of the friction which
has occurred between the two sets of particles in the shaking. If some of
this powder is now dusted on to a positively electrified bod y, the particles of
sulphur will be attracted and those of red lead repelled. The red lead will
therefore fall off, or be easily removed by a breath of air, while the sulphur

Ty
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particles will be retained. The positively electrified body will therefore
assume a yellow colour on being dusted with the powder, and similarly a
negatively electrified body would become red. It may sometimes be con-
venient to use this method of determining whether the electrification of a
body is positive or negative.

14. The attraction and repulsion of two charged bodies is in many
respects different from the force between one charged and one uncharged
body. The latter force, as we have explained, was known to the Greeks: it
must be attributed, as we shall see, to what is known as “electric induction,”
and is invariably aftractive. The forces between two bodies both of which
are charged, forces which may be either attractive or repulsive, seem hardly
to have been noticed until the eighteenth century.

The observations of Robert Symmer (1759) on the attractions and
repulsions of charged bodics ave at least amusing He was in the habit
of wearing two pairs of stockings simultaneously, a worsted pair for comfort
and a silk pair for appearance. In pulling off his stockings he noticed that
they gave u crackling noise, and sometimes that they even emitted sparks
when taken off in the dark. On taking the two stockings off together from
the foot and then drawing the one from inside the other, he found that both
became inflated so as to reproduce the shape of the foot, and exhibited
attractions and repulsions at a distance of as much as a foot and a half.

“When this experiment is performed with two black stockings in one
hand, and two white in the other, it exhibits a very curious spectacle; the
repulsion of those of the same colour, and the attraction of those of different
colours, throws them into an agitation that is not unentertaining, and
makes them catch each at that of its opposite colour, and at a greater
distance than one would expect. When allowed to come together they all
unite in one mass. When separated, they resume their former appearance.
and admit of the repetition of the experiment as often as you please, till
their electricity, gradually wasting, stands in need of being recruited.”

The Law of Force between charged Particles.

16. The Torsion Bulance. Coulomb (1785) devised an instrument known
as the Torsion Balance, which enabled him not only to verify the laws of
attraction and repulsion qualitatively, but also to form an estimate of the
actual magnitude of these forces.

The apparatus consists essentially of two light balls 4, C, fixed at the two
ends of a rod which is suspended at its middle point B by a very fine thread
of silver, quartz or other material. The upper end of the thread is fastened
to a movable head D, so that the thread and the rod can be made to
rotate by screwing the head. If the rod is acted on only by its weight, the
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condition for equilibrium is obviously that there sh'all be no torsion in
the thread. If, however, we fix a third small ball £ in the same plane as
the other two, and if the three balls are elec-

trified, the forces between the fixed ball and

the movable ones will exert a couple on the

moving rod, and the condition for equilibrium

is that this couple shall exactly balance that

due to the torsion. Coulomb found that the

couple exerted by the torsion of the thread

was exactly proportional to the angle through

which one end of the thread had been turned

}h relatively to the other, and in this way was
s enabled to measure his electric forces. In
Coulomb’s experiments one only of the two

! T movable balls was electrified, the second serv-
21 R - ing merely as a counterpoise, and the fixed
4 ; - ball was at the same distance from the torsion

thread as the two movable balls.

Suppose that the head of the thread is
turned to such a position that the balls when uncharged rest in equilibrium,
just touching one another without pressure. Let the balls receive charges
¢, ¢, and let the repulsion between them result in the bar turning through
an angle 6. The couple exerted on the bar by the torsion of the thread
is proportional to 6, and may therefore be taken to be x8. If a is the
radius of the circle described by the movable ball, we may regard the couple
acting on the rod from the electric forces as made up of a force F, equal
to the force of repulsion between the two balls, multiplied by a cos }6,
the arm of the moment. The condition for equilibrium is accordingly

aF cos §0 = 6.

Let us now suppose that the torsion head is turned through an angle ¢
in such a d'reciion as to make the two charged balls approach each other;
after the turning has ceased, let us suppose that the balls are allowed to
come to rest. In the new position of equilibrium, let us suppose that the
two charged balls subtend an angle 6’ at the centre, instead of the former
angle 6. The couple exerted by the torsion thread is now « (8 + ¢), so that
if F’ is the new force of repulsion we must have

aF cos 3¢’ = x (0' + ¢).

By observing the value of ¢ required to give definite values to & we can
calculate values of F’ corresponding to any series of values of ¢. From a
series of experiments of this kind it is found that so long as the charges on
the two balls remain the same, F is proportional to cosec® }¢, from which
it is easily seen to follow that the force of repulsion varies inversely as the

Fio. 2.
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square of the distance. And when the charges on the two balls are varied
it is found that the force varies as the product of the two charges, so long as
their distance apart remains the same. As the result of & series of experi-
ments conducted in this way Coulomb was able to enunciate the law:

The force between two small charged bodies 18 proportional to the product
of their charges, and 1s inversely proportional to the square of their distance
apart, the force being one of repulsion or atiraction according as the two
charges are of the same or of opposite kinds.

16. In mathematical language we may say that thereis a force of repul-
sion of amount

where ¢, ¢ are the charges, » their distance apart, and ¢ is a positive
constant.

If ¢, ¢ are of opposite signs the product e’ is negative, and a negative
repulsion must be interpreted as an attraction.

Although this law was first published by Coulomb, it subsequently
appeared that it had been discovered at an earlier date by Cavendish,
whose experiments were much more refined than those of Coulomb. Caven-
dish was able to satisfy himself that the law was certainly intermediate
between the inverse 2+ and 2 — J5th power of the distance (see below,
§§ 46—48). Unfortunately his researches remained unknown urtil his
manuscripts were published in 1879 by Clerk Maxwell.

The experiments of Coulomb and Cavendish, it need hardly be said,
were very rough compared with those which are rendered possible by modern
refinements of theory and practice, so that these experiments are no longer
the justification for using the law expressed by formula (1) as the basis of
the Mathematical Theory of Electricity. More delicate experiments with the
apparatus used by Cavendish, which will be explained later, have, however,
been found to give a complete confirmation of Coulomb’s Law, so long as
the charged bodies may both be regarded as infinitely small compared with
their distance apart. Any deviation from the law of Coulomb must accord-
ingly be attributed to the finite sizes of the bodies which carry the charges.
As it is only in the case of infinitely small bodies that the symbol r of
formula (1) has had any meaning assigned to it, we may regard the law (1)
as absolutely true, at any rate so long as r is large enough to be a measurable
quantity.
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The Unit of Electricity.

17. The law of Coulomb supplies us with a convenient unit in which
to measure electric charges.

The unit of mass, the pound or gramme, is a purelx arbitr‘ary unit, ar.nd
all quantities of mass are measured simply by comparison with this unit.
The same is true of the unit of space. If it were possible to kgep a charge
of electricity unimpaired through all time we might take an a.rl.ntrary. charge
of electricity as standard, and measure all.charges by- comparison .wnth this
one standard charge, in the way suggested in § 8. As it is not possible to flo
this, we find it convenient to measure electricity with reference to the units
of mass, length and time of which we are already in possession, and Coulomb’s
Law enables us to do this. We define as the unit charge a charge such that
when two unit charges are placed one on each of two small particles at
a distance of a centimetre apart, the force of repulsion between the particles
is one dyne With this definition it is clear that the quantity ¢ in t,.he
formula (1) becomes equal to unity, so long as the c.a.s. system of units
18 used.

In a similar way, if the mass of a body did not remain constant, we might
have to define the unit of mass with reference to those of time and length
by saying that a mass is a unit mass provided that two such masses, placed
at a unit distance apart, produce in each other by their mutual gravitational
atiraction an acceleration of a centimetre per second per second. In this
case we should have the gravitational acceleration f given by an equation
of the form

and this equation would determine the unit of mass.

18. Physval dumensions. If the unit of mass were determined by
equation (2), m vunld appear to have the dimensions of an acceleration
multiplied by the square of a distance, and therefore dimensions

LT
As a matter of fact, however, we know that mass is something entirely apart

from length and time, except in so far as it is connected with them through
the law of gravitation. The complete gravitational acceleration is given by

m
f=v5,
where « is the so-called “ gravitation constant.”

By our proposed definition of unit mass we should have made the value
of iy numerically equal to unity ; but its physical dimensions are not those of
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a mere number, so that we cannot neglect the factor o when equating
physical dimensions on the two sides of the equation.

So also in the formula
F= 9;03 .................................... (3

we can and do choose our unit of charge in such a way that the numerical
value of ¢ 18 unwy, so that the numerical equation becomes

’
e¢
F = '1";' .................................... (4‘).

but we must remember that the factor ¢ still retains its physical dimensions.
Electricity 1s something entirely apart from mass, length and time, and it
follows that we ought to treat the dimensions of equation (3), by introducing
a new umt of electricity £ and saying that ¢ is of the dimensions of a force
divided by &*/r* and therefore of dimensions

MIE-1-,

If, however, we compare dimensions in equation (4), neglecting to take
account of the physical dnnensions of the suppressed factor c, it appears as
though a charge of electricity can be expressed in terms of the units of
mass, length and time, just as it might appear from equation (2) as though
a mass could be expressed in terms of the units of length and time. The
apparent dimensions of a charge of electricity are now

MALAT . ttesssesesrirriersesenienaras (5).

It will be readily understood that these dimensions are merely apparent
and not in any way real, when it is stated that other systems of units are
also in use, and that the apparent physical dimensions of a charge of
electricity are found to be difterent in the different systems of units. The
system which we have just described, in which the unit is defined as
the charge which makes ¢ numerically equal to unity in equation (3), is
known as the Electrostatic system of units.

There will be different electrostatic systems of units corresponding to
different units of length, mass and time. In the €.6.s. system these units
are taken to be the centimetre, gramme and second. In passing from one
system of units to another the unit of electricity will change as if it were
a physical quantity having dimensions M¥LET-3, g0 long as we hold to the
agreement that equation (4) is to be numerically true, .. so long as the
units remain electrostatic. This gives a certain importance to the apparent
dimensions of the unit of electricity, as expressed in formula (5).
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V. Electrification by Induction.

19. Let us suspend a metal rod by insulating supports. Suppose that
the rod is originally uncharged, and that we bring a small body charged
with electricity near to one end of the rod, without allowing the two bodies
to touch. We shall find on sprinkling the rod with electrified powder of the
kind previously described (§ 13), that the rod is now electrified, the signs of
the charges at the two ends being different. This electrification is known as
electrification by induction. We speak of the electricity on the rod as an
induced charge, and that on the originally electrified body as the inducing or
exciting charge. We find that the induced charge at the end of the rod
nearest to the inducing charge is of sign opposite to that of the inducing
charge, that at the further end of the rod being of the same sign as the
inducing charge. If the inducing charge is removed to a great distance
from the rod, we find that the induced charges disappear completely, the rod
resuming its original unelectrified state.

If the rod is arranged so that it can be divided into two parts, we can
separate the two parts before removing the inducing charge, and in this way
can retain the two parts of the induced charge for further examination.

If we insert the two induced charges into the vessel of the electroscope,
we find that the total electrification is nil: in generating electricity by
induction, as in generating it by friction, we can only generate equal
quantities of positive and negative electricity; we cannot alter the algebraic
total charge. Thus the generation of electricity by induction is in no way
a violation of the law that the total charge on a body remains unaltered
except in so far as it is removed by conduction

20. If the inducing charge is placed on a sufficiently light conductor, we
notice a violent attraction between it and the rod which carries the induced
charge. This, hcvover, as we shall now shew, is only in accordance with
Coulomb’s Law. Let us, for the sake of argument, suppose that the
inducing charge is a positive charge e. Let us divide up that part of the

ABC C'B'A’
! [ D)

Fio. 8.

rod which is negatively charged into small parts AB, BC, ..., beginning from
the end A which is nearest to the inducing charge 7, in such a way that each
part contains the same small charge —e¢, of negative electricity. Let us
similarly divide up the part of the rod which is positively charged into
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sections A'B’, B’C’, ..., beginning from the further end, and such that each of
these parts contains a charge +e of positive electricity. Since the total
induced charge is zero, the number of positively charged sections 4'B’,
B’C’, ... must be exactly equal to the number of negatively charged sections
AB, BC,.... The whole series of sections can therefore be divided into a
series of pairs
ABand A’'B’; BC and B'C’; cte.

such that the two sections of any pair contain equal and opposite charges.
The charge on A’B’ being of the same sign as the inducing charge e, repels
the body I which carrics this charge, while the charge on AB, being of a
different sign from the charge on I, attracts I. Since 4B is neaver to I than
A'B', it follows from Coulomb’s Law that the attractive force ee/r? between
AR and I is numerically greater than the repulsive force ee/r? between A’B’
and I, so that the resultant action of the pair of sections AB, 4'B’ upon
I is an attraction. Obviously a similar result is true for every other pair
of sections, so that we arrive at the result that the whole force between the
two bodies is attractive,

This result fully accounts for the fundamental property of a charged body
to attract small bodies to which no charge has been given. The proximity of
the charged body induces charges of different signs on those parts of the body
which are nearer to, and further away from, the inducing charge, and although
the total induced charge is zero, yet the attractions will always outweigh the
repulsions, so that the resultant force is always one of attraction.

21. The same conceptions explain the divergence of the gold-leaves of
the electroscope which occurs when a charged body is brought near to the
plate of the electroscope or introduced into a closed vessel standing on this
plate. All the conducting parts of the electroscope—gold-leaves, rod, plate
and vesscl if any—may be regarded as a single conductor, and of this the
gold-leaves form the part furthest removed from the charged body. The
leaves accordingly become charged by induction with electricity of the same
sign as that of the charged body, and as the charges on the two gold-leaves
are of similar sign, they repel one another.

22. On separating the two parts of a conductor while an induced charge
is on it, and then removing both from the influence of the induced charge,
we gain two charges of electricity without any diminution of the inducing
charge. We can store or utilise these charges in any way and on replacing
the two parts of the conductor in position, we shall again obtain an induced
charge. This again may be utilised or stored, and so on indefinitely. There
is therefore no limit to the magnitude of the charges which can be obtained
from a small initial charge by repeating the process of induction.

This principle underlies the action of the Electrophorus. A cake of resin
is electrified by friction, and for convenience is placed with its electrified
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surface uppermost on a horizontal table. A metal disc i?; held by an in.sula,ting
handle parallel to the cake of resin and at a slight distance above it. The
opcrator then touches the upper surface of the disc with his finger. When
the process has reached this stage, the metal disc, the body of the operator
and the earth itself form one conductor. The negative electricity on the resin
induces a positive charge on the nearer parts of this conductor—primarily
on the metal disc—and a negative charge on the more remote parts of the
conductor—the further region of the earth. When the operator removes
his finger, the disc is left insulated and in possession of a positive charge.
As already explained, this charge may be used and the process repeated
indefinitely.

In all its essentials, the principle utilised in the generation of electricity
by the “ influence machines” ot Voss, Holtz, Wimshurst and others is identical
with that of the electrophorus. The machines are arranged so that by the
turning of a handle, the various stages of the process are repeated cyclically
time after time.

23. Electric Equilibrium. Returning to the apparatus illustrated in
fig. 3, p. 16, it is found that if we remove the inducing charge without
allowing the conducting rod to come into contact with other conductors,
the charge on the rod disappears gradually as the inducing charge recedes,
positive and negative electricity combining in equal quantities and neutral-
ising one another. This shews that the inducing charge must be supposed
to act upon the electricity of the induced charge, rather than upon the
matter of the conductor. Upon the same principle, the various parts of the
induced charge must be supposed to act directly upon one another. Moreover,
in a conductor charged with electricity at rest, there is no reaction between
matter and electricity tending to prevent the passage of electricity through
the conductor. For if there were, it would be possible for parts of the induced
charge to be retained, after the inducing charge had been removed, the parts
of the induced cha:ge being retained in position by their reaction with the
matter of the conductor, Nothing of this kind is observed to occur. We
conclude ‘then that the elements of electrical charge on a conductor are each
in equilibrium under the influence solely of the forces excrted by the remaining
elements of charge.

24. An exception occurs when the electricity is actually at the surface
of the conductor. Here there is an obvious reaction between matter and
electricity—the reaction which prevents the electricity from leaving the
surface of the conductor. Clearly this reaction will be normal to the surface,
so that the forces acting upon the electricity in dircctions which lie in the
tangent plane to the surface must be entirely forces from other charges of
electricity, and these must be in equilibrium. To balance the action of the
matter on the electricity there must be an equal and opposite reaction of
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electricity on matter. This, then, will act normally outwards at the surface of
the conductor. Experimentally it is best put in evidence by the electrification
of soap-bubbles. A soap-bubble when electrified is observed to expand, the
normal reaction between electricity and matter at its surface driving the
surface outwards until equilibrium is reestablished (see below, § 94).

25. Also when two conductors of different material are placed in con-
tact, electric phenomena are found to occur which have been explained by
Helmbholtz as the result of the operation of reactions between clectricity and
matter at the surfaces of the conductors Thus, althouzh electricity can pass
quite freely over the diffcrent parts of the same conductor, it is not strictly
true to say that electricity can pass freely from one conductor to another of
different material with which it is in contact. Compared, however, with the
forces with which we shall in general be dealing in clectrostatics, it will be
legitimate to disregard entirely any forces of the kind just described. We
shall therefore neglect the difference between the materials of different con-
ductors, so that any number of conductors placed in contact may be regarded
as a single conductor.

THEORIES TO EXPLAIN ELECTRICAL PHENOMENA.

26. One-fluid Theory. Franklin, as far back as 1751, tried to include
all the electrical phenomena with which he was acquainted in one simple
explanation. He suggested that all these phenomena could be explained by
supposing the existence of an indestructible “electric fluid,” which could be
associated with matter in different degrees. Corresponding to the normal
state of matter, in which no electrical properties are exhibited, there is
a definite normal amount of “electric fluid.” When a body was charged
with positive electricity, Franklin cxplained that there was an excess of
“ glectric fluid” above the normal amount, and similarly a charge of negative
electricity represented a deficiency of electric tuid. The generation of equal
quantities of positive and negative electricity was now explained: for instance,
in rubbing two bodies together we simply transfer “ electric fluid ” from one
to the other. To explain the attractions and repulsions of electrified bodies,
Franklin supposed that the particles of ordinary matter repelled one another,
while attracting the “electric fluid.” In the normal state of matter the
quantities of “electric fluid ” and ordinary matter were just balanced, so that
there was neither attraction nor repulsion between bodies in the normal state.
According toa later moditfication of the theory the attractions just out-balanced
the repulsions in the normal state, the residual force accounting for gravitation.

27. Two-fluid Theory. A further attempt to explain electric phenomena
was made by the two-tluid theory. In this there were three things concerned,
ordinary matter and two electric fluids—positive and negative. The degree
of clectrification was supposed to be the measure of the excess of positive
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electricity over negative, or of negative over positive, according to the sign
of the electrification. The two kinds of electricity attracted and 1:epelled,
electricities of the same kind repelling, and of opposite kind.s attracting, and
in this way the observed attractions and repulsions of electrified bodies were
explained without having recourse to systems of forces betwe.en electricity
and ordinary matter. It is, however, obvious that the two-fluid theory was
too elaborate for the facts. On this theory ordinary matter devoid of both
kinds of electricity would be physically d?ﬁ'erent from matter p.ossessing
equal quantities of the two kinds of electricity, alth.ough bo.th bodies wc‘)ul.d
equally shew an absence of electrification. There is no evidence that it is
possible to establish any physical difference of this kind between totally
unelectrified bodies, so that the two-fluid theory must be dismissed as
explaining more than there is to be explained.

28. Modern view of Electricity. The two theories which have just been
mentioned rested on no experimental evidence except such as is required
to establish the phenomena with which they are directly concerned. The
modern view of electricity, on the other hand, is based on an enormous mass
of experimental evidence, to which contributions are made, not only by the
phenomena of electrostatics, but also by the phenomena of almost every
branch of physics and chemistry. The modern explanation of electricity is
found to bear a very close resemblance to the older explanation of the one-
fluid theory—so much so that it will be convenient to explain the modern
view of electricity simply by making the appropriate modifications of the
one-fluid theory.

We suppose the “electric-fluid” of the one-fluid theory replaced by a
crowd of small particles—* electrons,” it will be convenient to call them—all
exactly similar, and each having exactly the same charge of negative electricity
permanently attached to it. Acco-ding to the best recent determinations, the

amount of this charge is 4:803 x 10~ electrostatic units, while the mass of
each electron i« 972 x 10~ grammes. These determinations, which are due
to Millikan and Fu-herer, are probably accurate to about one part in a thou-
sand. To a lower degree of accuracy the radius of the electron is probably
about 2 x 10~ cms. We can form some conception of the intense concentra-
tion of mass and electrification in the electron by noticing that a gramme of
electrons, crammed together in cubical piling, would occupy only 7 x 10-1
cubic centimetres, while two grammes of electrons placed at a distance of a
metre apart would repel one another with a force equal to the weight of
3 x 10" tons. The electric force of repulsion outweighs the gravitational force
of attraction in the ratio of 42 ¥ 10¢ to one.

A piece of ordinary matter in its unelectrified state contains a certain
number of electrons of this kind, and this number is just such that two
pieces of matter each in this state exert no electrical forces on one another—
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’his condition in fact defines the unelectrified state. A piece of matter appears
;0 be charged with negative or positive electricity according as the number of
regatively-charged electrons it possesses is in excess or defect of the number
t would possess in its unelectrified state.

From this it follows that we cannot go on dividing a charge of electricity
indefinitely—a natural limit is imposed by the charge of one electron, just as
in chemistry we suppose a natural limit to be imposed on the divisibility of
matter by the mass of an atom. The modern view of electricity may then be
ustly described as an “atomic” view. And of all the experimental evidence
which supports this view none is more striking than the circumstance that
hese “atoms” continually reappear in experiments of the most varied kinds, and
that the atomic charge of electricity appears always to be precisely the same.

It also follows that in charging a body with electricity we either add to
or subtract from its mass according as we charge it with negative electricity
te., add to it a number of electrons), or charge it with positive electricity
1.e,, remove from it a number of electrons). Since the mass of an electron is
so minute in comparison with the charge it carries, it will readily be seen
that the change in its mass is very much too small to be perceptible by any
nethods of measurement which are at our dispo~al. Maxwell mentions, as
an example of a budy possessing an electric charge large compared with its
mass, the case of a gramme of gold, which may be beaten into a gold-leaf one
square metre in area, and can, in this state, hold a charge of 60,000 electro-
static units of negative electricity. The mass of the number of negatively
lectrified electrons necessary to carry this charge will be found, as the result
of a brief calculation from the data already given, to be about 10~ gramnmes.
The change of weight by electrification is therefore one which it is far beyond
the power of the most sensitive balance to detect.

On this view of electricity, the electrons must repel one another, and
must be attracted by matter which is devoid of electrons, or in which there is
1 deficiency of electrons. The electrons move about freely through conductors,
but not through insulators. The reactions which, as we have seen, must be
pposed to occur at the surface of charged conductors between “matter” and
‘electricity,” can now be interpreted simply as systems of forces between the
slectrons and the remainder of the matter. Up to a certain extent these
orces will restrain the electrons from leaving the conductor, but if the electric
‘orces acting on the electrons exceed a certain limit, they will overcome the
forces acting between the electrons and the remainder of the conductor, and
an electric discharge takes place from the surface of the conductor.

Thus an essential feature of the modern view of electricity is that it
regards the flow of electricity as a material flow of charged electrons. Good
sonductors and good insulators are now seen to mean simply substances in
which the electrons move with extreme ease and extreme ditficulty respectively.
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The law that equal quantities of positive and negative electricity are generated
simultaneously means that electrons may flow about, but cannot be created
or annihilated.

The modern view enables us also to give a simple physical interpretation
to the phenomenon of induction. A positive charge placed near a conductor
will attract the electrons in the conductor, and these will flow through the
conductor towards the charge until electrical equilibrium is established.
There will be then an excess of negative electrons in the regions near the
positive charge, and this excess will appear as an induced negative charge.
The deficiency of electrons in the more remote parts of the conductor will
appear as an induced positive charge. If the inducing charge is negative,
the flow of electrons will be in the opposite direction, so that the signs of the
induced charges will be reversed. In an insulator, no flow of electrons can take
place, so that the plienomenon of electrification by induction does not oceur.

On this view of electricity, negative electricity is essentially different in
its nature from positive electricity: the difference is something more funda-
mental than a mere difference of sign. Experimental proof of this diffcrence
is not wanting, e.g., a sharply pointed conductor can hold a greater charge of
positive than of negative electricity before reaching the limit at which a
discharge begins to take place from its surface. But until we come to those
parts of electric theory in which the flow of electricity has to be definitely
regarded as a flow of electrons, this essential difference between positive and
negative electricity will not appear, and the difference between the two will
be adeqnately represented by a difference of sign.

In the last chapter of the book, it will be explained how recent experi-
mental work has traced thic essential difference between positive and negative
electricity down to its source. We shall see that the positive electricity
occurs only in the central cores or “nuclei” of the atom of which matter is
constituted, while the outer regions of these atoms consist of negatively-
charged particles, the “electrons” alréady described. For this reason the
negative electr:zity can run about from one atom to another, and even from
one conductor to another, but the positive electricity necessarily remains per-
manently associated with the same atoms of matter.

SUMMARY.

29. It will be useful to conclude the chapter by a summary of the results
which are arrived at by experiment, independently of all hypotheses as to the
nature of electricity.

These have been stated by Maxwell in the form of laws, as follows:

Law I. The total electrification of a body, or system of bodies,
remains always the same, except in so far as it receives electrification
from or gives electrification to other bodies.
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Law II. When one body electrifies another by conduction, the
total electrification of the two bodies remains the same; that is, the
one loses as much positive or gains as much negative electrification as
the other gains of positive or loses of negative electrification.

Law ITI. When electrification is produced by friction, or by any
other known method, equal quantities of positive and negative elcetrifi-
cation are produced.

Definition. The electrostatic unit of electricity is that quantity of
positive electricity which, when placed at umt distance from an equal
quantity, repels it with unit of force.

Law IV. The repulsion between two small bodies charged respect-
ively with ¢ and ¢ units of clectricity is numerically equal to the
product of the charges divided by the square of the distance.

These are the forms in which the laws are given by Maxwell. Law I, it
vill be seen, includes IT and III. As regards the Definition and Law IV,
t is necessary to specify the medium in which the small hodies are placed,
iince, as we shall see later, the force is different when the bodies are in air,
r in a vacuum, or surrounded by other non-conducting media. It is usual
0 assume, for purposes of the Definition and Law IV, that the bodies are in
vr.  For strict scientific exactness, we ought further to specify the density,
he temperature, and the exact chemical composition of the air. Also we
1ave seen that when the electricity is not insulated on small bodies, but is
ree to move on conductors, the forces of Law 1V must be regarded as acting
n the charges of electricity themselves. When the electricity is not free to
nove, there is an action and reaction between the electricity and matter, so
hat the forces which really act on the elcctricity nppear to act on the bodies
hemselves which carry the charges.



CHAPTER 1I

THE ELECTROSTATIC FIELD OF FORCE

CONCEPTIONS USED IN THE SURVEY OF A FIeLD oF Force

I The Intensity at a point.

30. THE space in the neighbourhood of charges of electricity, considered
with reference to the electric phenomena occurring in this space, is spoken of
a8 the electric field.

A new charge of electricity, placed at any point O in an electric field,
will egperience attractions or repulsions from all the charges in the field.
The introduction of a new charge will in general disturb the arrangement
of the charges on all the conductors in the field by a process of induction.
If, however, the new charge is supposed to be infinitesimal, the effects of
induction will be negligible, so that thie forces acting on the new charge may
be supposed to arise from the charges of the original field.

Let us suppose that we introduce an infinitesimal charge ¢ on an infinitely
small conductor. Any charge e, in the field at a distance 7, from the point 0
will repel the charge with a force eg/r’. The charge e will experience a
similar repulsion froru every charge in the field, so that each repulsion will be
proportional to e.

The resultant of these forces, obtained by the usual rules for the com-
position of forces, will be & force proportional to e—say & force Re in some
direction OP. We define the electric intensity at O to be a force of which
the magnitude is R, and the direction is OP, Thus

The electric intensity at any point s given, in magnitude and direction, by
the force per unit charge which would act on a charged particle placed at this
potnt, the charge on the particle being supposed so small that the distribution
of electricity on the conductors in the field 18 not affected by its presence.

The electric intensity at 0, defined in this way, depends only on the
permanent field of force, and has nothing to do with the charge, or the size,
or even the existence of the small conductor which has been used to explain
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the meaning of the electric intensity. There will be a definite intensity at
every point of the electric field, quite independently of the presence of small
charged bodies.

A small charged body might, however, conveniently be used for exploring
the electric field and determining experimentally the direction of the electric
intensity at any point in the field. For if we suppose the body carrying a
charge e to be held by an insulating thread, both the body and thread being
so light that their weights may be neglected, then clearly all the forces
acting on the charged body may be reduced to two:—

(i) A force Re in the direction of the electric intensity at the point
occupied by e,
(ii) the tension of the thread acting along the thread.

For equilibrium these two forces must be equal and opposite. Hence the
direction of the intensity at the point occupied by the small charged body is
obtained at once by producing the direction of the thread through the charged
body. And if we tie the other end of the thread to a delicate spring balance,
we can measure the tension of the spring, and since this is numerically equal
to Re, we should be able to determine R if ¢ were known. We might in
this way determine the magnitude and direction of the electric intensity at
any point in the field.

1n a similar way, a float at the end of a fishing-line might be used to determine the
strength and direction of the current at any point on a small lake. And, just as with the
electric intensity, we should only get the true direction of the current by supposing the
float to be of infinitesimal size. We could not imagine the direction of the current
obtained by anchoring a battleship in the lake, because the presence of the ship would
disturb the whole system of currents.

II. Lines of Force.

31. Let us start at any point O in the electric field, and move a short
distance OP in the direction of the electric intensity at O. Starting from P
let us move a short distance PQ in the direction of the intensity at P,

Q R

(o]
Fro. 4.

and so on. In this way we obtain a broken path OPQR..., formed of
a number of small rectilinear elements. Let us now pass to the limiting
case in which each of the elements OP, PQ, QR, ... is infinitely small
The broken path becomes a continuous curve, and it has the property that
at every point on it the electric intensity is in the direction of the tangent
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to the curve at that point. Such a curve is called a Line of Force. We
may therefore define a line of force as follows:—

A line of force is a curve in the electric field, such that the tangent at every
potnt is in the direction of the electric intensity at that point.

If we suppose the motion of a charged particle to be so much retarded by frictional
resistance that it cannot acquire any appreciable momentum, then a charged particle set
free in the electric field would trace out a line of force. In the same way, we should have
lines of current on the surface of a lake, such that the tangent to a line of current at any
point coincided with the direction of the currcnt, and a small float set free on the lake
would describe a current-line.

32. The resultant of a number of known forces has a definite direction,
so that there is a single direction for the electric intensity at every point of
the field. It follows that two lines of force can never intersect; for if they
did there would be two directions for the electric intensity at the point of
intersection (namely, the two tangents to the lines of force at this point) so
that the resultant of a number of known forces would be acting in two
directions at once. An exception occurs, as we shall see, when the resultant
intensity vanishes at any point.

The intensity R may be regarded as compounded of three components
X, Y, Z, parallel to three rectangular axes Oz, Oy, Oe.

The magnitude of the electric intensity is then given by
R==Xz+ Yl+ Zn’
and the direction cosines of its direction are

I ¥ Z
R’ R R
These, therefore, are also the direction cosines of the tangent at z, y, 2

to the line of force through the point. The differential equation of the
system of lines of forc- is accordingly

do_dy ds

III. The Potential.

33. In moving the small test-charge e about in the field, we may either
have to do work against electric forces, or we may find that these forces
will do work for us. A small charged particle which has been placed at a
point O in the electric field may be regarded as a store of emergy, this
energy being equal to the work (positive or negative) which has been done
in taking the charge to O in opposition to the repulsions and attractions of
the field. The energy can be reclaimed by allowing the particle to retrace
its path. Assume the charge on the moving particle to be so small that
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the distribution of electricity on the conductors in the field is not affected
by it. Then the work done in bringing the charge e to a point O is pro-
portional to e, and may be taken to be Ve. The amount of work done will
of course depend on the position from which the charged particle started.
It is convenient, in measuring Ve, to suppose that the particle started at a
point outside the field altogether, 4.e. from a point so far removed from all
the charges of the field that their effect at this point is inappreciable—for
brevity, we may say the point at infinity. We now define ¥ to be the
potential at the point O. Thus

The potential at any point in the field is the work per unit charge which
has to be done on a charged particle to bring it to that point, the charge on the
particle being supposed so small that the distribution of electiicity on the
conductors in the field 18 not affected by its presence.

In moving the small charge ¢ from =, y, z to z +dz, y + dy, 2 + dz, we
shall have to perform an amount of work

— (Xdz + Ydy + Zdz) ,

so that in bringing the charge e into position at z, ¥, z from outside the field
altogether, we do an amount of work

—c f (Xde + Ydy + Zds),

where the integral is taken along the path followed by e,
Denoting the work done on the charge ¢ in bringing it to any point
#, y, z in the electric field by Ve, we clearly have
V- f P (Xdo + Yy + 2d5) coveereerrenan. (6),

giving a mathematical expression for the potential at the point , y, =.

The same result can be put in a different form. If ds is any element of
the path, and if the intensity R at the extremity of this element makes an
angle @ with ds, then the component of the force acting on € when moving
along ds, resolved in the direction of motion of ¢, is Recosd. The work
done in moving e along the element ds is accordingly .

— Re cos fds,
so that the whole work in bringing e from infinity to #, y, £ is

z,¥ 2z
—e["" R oos 6a,
and since this is equal, by definition, to Ve, we must have

V= —f”""R 008 8 vevrerrereraseerarerans .
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We see at once that the two expressions (6) and (7) just obtained for V'
are identical, on noticing that @ is the angle between two lines of which the
direction cosines are respectively

X Y Z de dy ds
BREEMG & &

Xdz Ydy Zds

We therefore have 0050=R3§+R3§+Rd_§'

so that : R cos 8ds = Xda + Ydy + Zdz,
and the identity of the two expressions becomes obvious.

If the Theorem of the Conservation of Energy is true in the Electro-
static Field, the work done in bringing a small charge e from infinity to any
point P must be the same whatever path to P we choose. For if the
amounts of work were different on two different paths, let these amounts
be Vpe and Vp'e, and let the former be the greater. Then by taking the
charge from P to infinity by the former path and bringing it back by the
latter, we should gain an amount of work (Vs — V3')e, which would be
contrary to the Conservation of Energy. Thus V» and V3’ must be equal,
and the potential at P is the same, no matter by what path we reach P.
The potential at P will accordingly depend only on the coordinates =, y, 2

of P.

As soon as we introduce the special law of the inverse square, we shall
find that the potential must be a single-valued function of z, y, 2, as a
consequence of this law (§ 39), and hence shall be able to prove that the
Theorem of Conservation of Energy is true in an Electrostatic field. For
the moment, however, we assume this.

34. Let us denote by W the work done in moving a charge e from P
to @ In bringing the charge from infinity to P, we do an amount of work

/»F/Ta

—r
Fra. 6.

which by definition is equal to Ve where T denotes the value of ¥V at the
point P. Hence in taking it from intinity to Q, we do a total amount of
work Vpe+ W. This, however, is also equal by definition to Vae. Hence
we have

Vee+ W="T,e,
or W= (Fa=To)€uuuueeiieaniieaananan, (8).
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86. DEFINITION. A surface in the electric field such that at every point
on it the potential has the same value, 18 called an Equipotential Surface.

In discussing the phenomena of the electrostatic field, it is convenient to think of the
whole field as mapped out by systems of equipotential surfaces and lines of force, just as
in geography we think of the earth’s surface as divided up by parallels of latitude and of
longitude. A more exact parallel is obtained if we think of the earth’s surface as mapped
out by “contour-lines” of equal height above sea-level, and by lines of greatest slope.
These reproduce all the properties of equipotentials and lines of force, for in point of fact
they are actual equipotentials and lines of force for the gravitational field of force.

THEOREM. Equipotential surfuces cut lines of force at right angles.

Let P be any point in the electric field, and let @ be an adjacent point
on the same equipotential as P. Then, by definition, Vp = ¥, so that by
equation (8) W =0, W being the amount of work done in moving a charge e
from P to @ If R is the intensity at Q, and 6 the angle which its direction
makes with QP, the amount of this work must be — Re cos § x PQ, so that

Recos 6 =0,

Hence cos =0, so that the line of force cuts the equipotential at right
angles. As in a former theorem, an exception has to be made in favour of
the case in which R=0.

36. Instead of P, @ being on the same equipotential, let them now be
on a line parallel to the axis of z, their coordinates being z, y, z and z + dx,
y, 2 respectively. In moving the charge ¢ from P to @ the work done is
— Xedz, and by equation (8) it is also (Vo—Vp)e. Hence

—Xdz=Vo— Vp.
Since @ and P are adjacent, we have, from the definition of a differential

coefficient,

0 _Yo-Vo__ .

& -
hence we have the relations

oV 14 oV

X=_—3;I Y=_'é§» Z=_'a—z' s00esrsscncocnrnen (9),

results which are of course obvious on differentiating equation (6) with
respect to z, y and z respectively.

Similarly, if we imagine P, Q to be two points on the same line of force
we obtain

14
R=-%,

where aa_s denotes differentiation along a line of force. Since R is necessarily

positive, it follows that %tf is negative, 1.6, V decreases as s increases, or the
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intensity is in the direction of V decreasing. Thus the lines of force run
from higher to lower values of V, and, as we have already seen, cut all
equipotentials at right angles.

37. At a point which is occupied by conducting material, the electric
charges, as has already been said, must be in equilibrium under the action of
the forces from all the other charges in the field. The resultant force from
all these charges on any element of charge e is however Re, so that we must
have R=0.  Hence X = ¥ =2Z=0, so that

oz oy 0z

In other words, ¥V must be constant throughout a conductor for electro-

static equilibrium to bc possible. And in particular the surface of a

conductor must be an equipotential surface, or part of one. The equi-

potential of which the surface of a conductor is part has the peculiarity

of being three-dimensional instead of two-dimensional, for it occupies the
whole interior as well as the surface of the conductor.

In the same way, in considering the analogous arrangement of contour-lines and lines
of greatest slope on a ruap of the earth’s surface, we find that the edge of a lake or sea
must be a contour-line, but that in strictness this particular contour must be regarded as
two-dimensional rather than one-dimensional, since it coincides with the whole surface of
the lake or sea.

If V is not constant in any conductor, the intensity is in the direction of
V decreasing. Hence positive electricity tends to flow in the direction of V°
decreasing, and negative electricity in the direction of V increasing. If two
conductors in which the potential 'has different values are joined by a third
conductor, the intensity in the third conductor will be in direction from
the conductor at higher potential to that at lower potential. Electricity will
flow through this con''z:tor, and will continue to flow until the redistribution
of potential caused by the transfer of this electricity is such that the potential
is the same at all points of the conductors, which may now be regarded as
forming one single conductor.

Thus although the potential has been defined only with reference to
single points it is possible to speak of the potential of a whole conductor.
In fact, the mathematical expression of the condition that equilibrium shall
be possible for a given system of chargcs is simply that the potential shall
be constant throughout each conductor. And when electric contact is
established between two conductors, either by joining them by a wire or by
other means, the new condition for equilibrium which is made necessary by

the new physical condition introduced, is simply that the potentials of the
two conductors shall be equal.
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The earth is a conductor, and is therefore at the same potential through-
out. In all practical applications of electrostatics, it will be legitimate to
regard the potential of the earth as zero, a distant point on the earth’s
surface replacing the imaginary point at infinity, with reference to which
potentials have so far been measured. Thus any conductor can be reduced
to potential zero by joining it by a metallic wire to the earth.

MATHEMATICAL, EXPRESSIONS OF THE LAW OF THE INVERSE SQUARE.

L Vulues of Potential and Intensity.

88. We now discuss the values of the potential and components of
electric intensity when the space between the conductors is air, so that
the electric forces are determined by Coulomb’s Law.

If we have a single point charge ¢, at a point P, the value of R, the
resultant intensity at any point O, is

Fio. 6.

00, the line joining O to an adjacent point 0, the work done in moving a
charge ¢ from O to O’

=eRcos8.00
=e¢R(OP-0'P)
= - cRdr,

where OP=r, O'P=r +dr. Hence the work done against the repulsion
of the charge ¢, in bringing ¢ from infinity to O’ by any path is

=0'P =0P

—ef' Rdr ==-e'/r 4 dr =54,
ram r=mm r n

where r, = O’'P,

If there are other charges &, ¢, ... the work done against all the
repulsions in bringing a charge ¢ to 0’ will be the sum of terms such as the

above, say
e(ﬁ+e—'+g'+...),
GO T |
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where 7y, 7y, ... are the distances from 0’ to ¢, e,, ..., so that by definition

= .
L R (10)
39. Tt is now clear that the potential at any point depends only on the
coordinates of the point, so that the work done in bringing a small charge
from infinity to a point P is always the same, no matter what path we
choose, the result assumed in § 33.
It follows that we cannot alter the amount of energy in the field by

moving charges about in such a way that the final state of the field is the
same as the original state. In other words, the Conservation of Energy is

true of the Electrostatic Field.

40. Analytically, let us suppose that the charge ¢, is at a;, 9, 2,; ¢, at
,, Y, 2,; and so on. The repulsion on a small charge ¢ at @, g, 2 resulting
from the presence of ¢ ab @, y;, 5 is
€€
@=z)+ Y-l +@E—z"
and the direction-cosines of the direction in which this force acts on the
charge ¢, are

- =4 ete.
[(@=ay+@—p)+@E=-2)1 [(@—a)+@—y)+ @ -a)r]}

Hence the component parallel to the axis of z is

ee{r —x)
[(@— @)+ (g =y + (2 — )

By adding all such components, we obtain as the component of the
electric intensity at =, v, z,

X=3 efeza) (1),
[(x—xx)’+(y—.'/x)*+(Z—Zx)’]% @y

and there are similar equations for ¥ and Z,

We have as the value of V at z, ¥, 2, by equation (6),
Ve-o f"”" (Xda + Ydy + Zdz)

_ —j‘.r.v.z Se {(@—z) do+(y~y)dy + (2 - z,)dz}
- (@ =20+ (y— ) + (s — 2t

=3 ' v
(@ =@ +(y~ gy + (2 —2,) 8
giving the same result as equation (10).
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41. If the electric distribution is not confined to points, we can imagine
it divided into small elements which may be treated as point charges. For
instance if the electricity is spread throughout a volume, let the charge on
any element of volume da’dy’ dz’ be pda’dy’'ds’ so that p may be spoken of as
the “ density ” of electricity at &', 9, #. Then in formula (11) we can replace
e, by pda’dy’de’, and =y, y,, 7, by 2, 3, . Instead of summing the charges
&, ... we of course integrate pda dy’'ds’ through all those parts of the space
which contain electrical charges. In this way we obtain

X = f p(x—a')dz'dy de ’
-y +@-yr+a—orp*

_ pda’'dy’ds
nd (] frmr i 1

These equations are one form of mathematical expression of the law of
the inverse square of the distance. An attempt to perform the integration,
in even a few simple cases, will speedily convince the student that the form
is not one which lends itself to rapid progress. A second form of mathe-
matical expression of the law of the inverse square is supplied by a Theorem
of Gauss which we shall now prove, and it is this expression of the law which
will form the basis of our development of electrostatical theory.

II. Gauss’ Theorem.

42. THEOREM. If any closed surface 18 taken in the electric field, and
tf N denotes the component of the electric intensity at any point of this surface
in the direction of the outward normal, then

[[wds = 4,
where the integration extends over the whole of the surface, and E 1s the total

charge enclosed by the surface.

Let us suppose the charges in the field, both inside and outside the closed
surface, to be ¢, at K, ¢ at B, and so on. The intensity at any point is
the resultant of the intensities due to the charges separately, so that at any
point of the surface, we may write

N=N+No+iee civevenanns crerrecenns veee(12),
where N,, N,, ... are the normal components of intensity due to e, ¢, ...
separately.

Instead of attempting to calculate [ deS directly, we shall calculate

separately the values of ffN,dS, _UN,dS, «ees  The value of [deS will,
by equation (12), be the sum of these integrals.
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Let us take any small element dS of the closed surface in the neighbour-
hood of a point Q on the surface and join each point of its boundary to the
point B. Let the small cone so formed cut off an element of area do from

Fre. 7.

a sphere drawn through Q with F as centre, and an element of area dw from
a sphere of unit radius drawn about R as centre. Let the normal to the
closed surface at @ in the direction away from B make an angle 6 with BQ.

The intensity at @ due to the charge e, at R is ¢,/RQ® in the direction
BQ, so that the component of the intensity along the normal to the surface
in the direction away from R is

€
—_cos @

R
The contribution to f N,dS from the element of surface is accordingly

2!
h "‘R—QzCOS odS,

the + or — sign being taken according as the normal at @ in the direction
away from R is the outward or inward normal to the surface.

Now cos 8 dS is cqua! to da, the projection of dS on the sphere through @
having R as centre, for the two normals to dS and do are inclined at an
angle 6. Also do =RQ'dw. For do, dw are the areas cut off by the same
cone on spheres of radii £Q and unity respectively. Hence

008 648 = ”—I‘,%:-_-e.dm.

If R is inside the closed surface, a line from R to any point on the unit
sphere surrounding R may either cut the closed surface only once as at
Q (fig. 8)—in which case the normal to the surface at Q in the direction
away from A is the outward normal to the surface—or it may cut three
times, as at ', Q”, Q”—in which case two of the normals away from B (those
at @, Q" in fig. 8) are outward normals to the surface, while the third normal
away from R (that at @” in the figure) is an inward normal—or it may
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cut five, seven, or any odd number of times. Thus a cone through a small
element of area dw on a unit sphere about B may cut the closed surface any
odd number of times. However many times it cuts, the first small area cut

off will contribute ¢,dw to f fN,ds, the second and third small areas if they

>

L :;
occur will contribute —e,dw and + e, dw respectively, the fourth and fifth if
they occur will contribute —e,dw and +e,dw respectively, and so on. The
total contribution from the cone surrounding dw is, in every case, + ¢dw.

/

//

Fio. 8.

Fia. 9.

Summing over all cones which can be drawn in this way through B we obtain
the whole value of f f N,dS, which is thus seen to be simply ¢, multiplied by

the total surface area of the unit sphere round R. and therefore 4=e,.
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On the other hand if B is outside the closed surface, as in fig. 9, the
cone through any element of area de on the unit sphere may either not cut
the closed surface at all, or may cut twice, or four, six or any even number
of times. If the cone through dw intersects the surface at all, the first pair
of elements of surface which are cut off by the cone contribute — e dw and

+¢,dw respectively to f f N,dS. The second pair, if they occur, make a similar

contribution and so on. In every case the total contribution from any small
cone through B is nil. By summing over all such cones we shall include
the contributions from all parts of the closed surface, so that if A is outside

the surface f J‘N,dS is equal to zero.

We have now seen that [ ledS is equal to 4mre, when the charge e, is

inside the closed surface, and is equal to zero when the charge ¢, is outside
the closed surface. Hence

[[was = [[was + [[w.as+..

= 47 x (the sum of all the charges inside the surface)
=47k,
which proves the theorem.

Obviously the theorem is true also when there is a continuous distribution
of electricity in addition to a number of point charges. For clearly we can
divide up the continuous distribution into a number of small elements and

treat each as a point charge.

Since N, the normal component of intensity, is equal by § 86 to —g—:,

where a—z denotes differentiation along the outward normal, it appears that

we can also express Gauss' Theorem in the form
[ as=- 4.
on

Gauss’ theorem forms the most convenient method at our disposal, of
expressing the law of the inverse square.

We can obtain a preliminary conception of the physical meaning under-
lying the theorem by noticing that if the surface contains no charge at all,
the theorem expresses that the average normal intensity is nil. If there is
a negative charge inside the surface, the theorem shews that the average
normal intensity is negative, 8o that a positively charged particle placed at
a point on the imaginary surface will be likely to experience an attraction to
the interior of the surface rather than a repulsion away from it, and vice
versd if the surface contains a positive charge.
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Corollaries to Gauss’ Theorem.

43. THEOREM. If a closed surface be drawn, such that every point on it
is occupred by conducting material, the total charge inside it vs nil.

We have seen that at any point occupied by conducting material, the
electric intensity must vanish. Hence at every point of the closed surface,

N =0, so that f f NdS =0, and therefore, by Gauss’ Theorem, the total charge

inside the closed surface must vanish.

The two following special cases of this theorem are of the greatest
importance.

44. TarEOREM. There is no charge at any point which 8 occupied by con-
ducting material, unless this point is on the surface of a conductor.

For if the point is not on the surface, it will be possible to surround the
point by & small sphere, such that every point of this sphere is inside the
conductor. By the preceding theorem the charge inside this sphere is nil,
hence there is no charge at the point in question.

This theorem is often stated by saying :—
The charge of a conductor resides on its surface.

46. THEOREM. If we have a hollow closed conductor, and place any
number of charged bodies inside it, the charge on its inner surface will be equal
in magnituds but opposite i sign, to the total charge on the bodies tnside.

For we can draw a closed surface entirely inside the material of the
conductor, and by the thcorem of § 43, the whole charge inside this surface
must be nil. This whole charge is, however, the sum of (i) the charge on the
inner surface of the conductor, and (ii) the charges on the bodies inside the
conductor. Hence these two must be equal and opposite,

This result explains the property of the clectroscope which led us to the
conception of a definite quantity of electricity. The vessel placed on the
plate of the electroscope formed a hollow clesed conductor. The charge on
the inner surface of this conductor, we now see, must be equal and opposite
to the total charge inside, and since the total charge on this conductor is nil,
the charge on its outer surface must be equal and opposite to that on the
inner surface, and therefore exactly equal to the sum of the charges placed
inside, independently of the position of these charges.

The Cavendish Proof of the Law of the Inverse Square.

46. We have deduced from the law of the inverse square, that the
charge inside & closed conductor is zero. We shall now shew that the
converse theorem is also true. Hence, in the known fact, revealed by the
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observations of Cavendish and Maxwell, that the charge inside a closed
conductor is zero, we have experimental proof of the law of the inverse
square which admits of much greater accuracy than the experimental proof
of Coulomb.

The theorem that if there is no charge inside a spherical conductor the
law of force must be that of the inverse square is due to Laplace. We need
consider this converse theorem only in its application to a spherical conductor,
this being the actual form of conductor used by Cavendish. The apparatus
illustrated in fig. 10 is not that used by Cavendish, but is an improved
form designed by Maxwell, who repeated Cavendish’s experiment in a more
delicate form.

Two spherical shells are fixed by a ring of ebonite so as to be concentric

with one another, and insulated from one another.
&~ Elcctrical contact can be cstablished between the two
by letting down the small trap-door B through which
a wire passes, the wire being of such a length as just
to establish contact when the trap-door is closed. The
a experiment is conducted by electrifying the outer
shell, opening the trap-door by an insulating thread
without discharging the conductor, afterwards dis-
charging the outer conductor and testing whether any
charge is to be found on the inner shell by placing it
in clectrical contact with a delicate electroscope by
means of a condueting wire inserted through the trap-
door. It is found that there are no traces of a charge

on the inner sphere,

¥16. 10. 47. Suppose we start to find the law of electric

force such that there shall be no charge on the inner
sphere. Let us assume a law of force such that the repulsion between two
charggs e, ¢ at distance r apart is e¢’¢:(r). The potential, calculated as
explaincd in § 38, is

Se fm¢ (PP ereeeeeeeeseeeeerersnerans as),

where the summation extends over all the charges in the field.

Let us calculate the potential at a point inside the sphere due to a charge
E spread entirely over the surface of the sphere. If the sphere is of radius g,
the area of its surface is 47a?, so that the amount of charge per unit area is
E/4ma?, and the expression for the potential becomes

v=[L ( j°¢ (r)dr) a*sin 6d0dp....cornnn.r..(14),

the summation of expression (13) being now replaced by an integration which
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extends over the whole spherc. In this expression r is the distance from the
point at which the potential is evaluated, to the element a*sin 6dfd¢ of
spherical surface.

If we agree to evaluate the potential at a point situated on the axis =0
at a distance ¢ from the centre, we may write

7 = g? + ¢? — 2ac cos 0.

Since ¢ is a constant, we obtain as the relation between dr and d6, by
differentiation of this last equation,

rdr=acsinfdf.......cccocuveniiiiiinninnne (15).

If we integrate expression (14) with respect to ¢, the limits being of
course ¢ =0 and ¢ =2, we obtain

Q=m %
V=1}Ef (f ¢(r)dr) sin 048,
6=0 r
or, on changing the variable from 6 to r, by the help of relation (15)

V=3E f ( f $(rar)
r=a~c
If we introduce a new function f(r), defined by

f(r)=JUr ¢o(r)dr) rdr,

we obtain as the value of V,

-——-{f(w+c)~f(a—c)}

2ac

rd r

If the inner and outer spheres are in electrical contact, their potentials
are the same ; and if, as experiment shews to be the case, there is no charge
on the inner sphere, then the whole potential must be that just found. This
expression must, accordingly, have the same value whether ¢ represents the
radius of the outer sphere or that of the inner. Since this is true whatever
the radius of the inner sphere may be, the expression must be the same for
all values of c. We must accordingly have

2V _ f(a+ ) =Fla—o)

where V is the same for all values of ¢. Differentiating this equation twice
with respect to ¢, we obtain

0=f"(a+c)—f"(a—c).

Since by definition, f(r) depends only on the law of force, and not on a or ¢
it follows from the relation

’ Ja+e)=f"(a-c),
that £ (r) must be a constant, say C.



40 Electrostatics—Field of Force [on. 1
Hence f(r)=4 + Br+30r,
and by definition JS(r)= f ([:4’ (r) dr) rdr,
so that on ;quating the two values of ' (r),
B+ Cr=rf:¢(r)dr.

Therefore . f¢(r)dr=0+g,
r

or ¢(r =—£,
so that the law of force is that of the inverse square.

48. Maxwell has examined what charge would be produced on the inner
sphere if, instead of the law of force being accurately B/r? it were of the
form B[ri*4, where ¢ is some small quantity. In this way he found that if ¢
were even 80 great as yrjgy, the charge on the inner sphere would have been
too great to escape observation. As we have seen, the limit which Cavendish
was able to assign to g was ¢.

It may be urged that the form B/r**? is not a sufficiently general
law of force to assume. To this Maxwell has replied that it is the most
general law under which conductors which are of different sizes but geometri-
cally similar can be electrified similarly, while experiment shews that in point
of fact geometrically similar conductors are electrified similarly. We may
say then with confidence that the error in the law of the inverse square, if
any, is extremely small. It should, however, be clearly understood that
experiment has only proved the law B/r® for values of r which are great
enough to admit of observation. The law of force between two electric
charges which are at very small distances from one another still remains
entirely unknown to us.

III. The Equations of Poisson and Laplace.

49. There is still a third way of expressing the law of the inverse
square, and this can be deduced most readily from
Gauss’ Theorem.

Let us examine the small rectangular parallel-
epiped, of volume dzdyds, which is bounded by

i I the six plane faces
. e=ftide, y=ntidy, z={(+dde

We shall suppose that this element does not con-

# tain any point charges of electricity, or part of
Fuo. 11, any charged surface, but for the sake of generality
we shall suppose that the whole space is charged

e



47-49] Equations of Laplace and Poisson 41

with a continuous distribution of electricity, the volume-density of electrifi-
cation in the neighbourhood of the small element under consideration being
p- The whole charge contained by the element of volume is accordingly
pdadyds, so that Gauss’ Theorem assumes the form

fdeS=4qrpdzdydz SO ¢ 1))

The surface integral is the sum of six contributions, one from each face of
the parallelepiped. The contribution from that face which lies in the plane
w=F —}dz is equal to dydz, the area of the face, multiplied by the mean
value of N over this face. To a sufficient approximation, this may be
supposed to be the value of N at the centre of the face, s.6. at the point
E—4da, 5, {, and this again may be written

(%)
0 Jg_yde,n,¢’
80 that the contribution to [ f NdS from this face is
oV
dydz (a )
£-3dz,m ¢

Similarly the contribution from the opposite face is
oV
~dydz (8x ) ,

E+3de,n,

the sign being different because the outward normal is now the positive axis
of z, whereas formerly it was the negative axis. The sum of the contributions
from the two faces perpendicular to the axis of « is therefore

—dyds {(%"’K)uw. T (%95- - r} ............ an

The expression inside curled brackets is the increment in the function %E

. , . o oV
when # undergoes a small increment de. This we know is dma-—w (-37) , 80
that expression (17) can be put in the form

a.v da:dydz.

The whole value of [ [as is accordingly
8'V B’V oV
( ay’ o

and equation (16) now assumes the form

oV oV >V
.a-;;’_+-5?+§z-;=—41rp vecssrancsnsssasennasss(18)

) dadyds,
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This is known as Poisson’s Equation; clearly if we know the value of the
potential at every point, it enables us to find the charges by which this
potential is produced.

60. In free space, where there are no electric charges, the equation
assumes the form

g%—}fﬁ%:o ................... ceeenn(19),
and this is known as Laplace’s Equation. We shall denote the operator
A
% T ot o
by V3, so that Laplace’s equation may be written in the abbreviated form
VIV = 0uieeeeeeeereeserenese e (20).

Equations (18) and (20) express the same fact as Gauss’ Theorem, but
express it in the form of a differential equation. Equation (20) shews that
in a region in which no charges exist, the potential satisfies a differential
equation which is independent of the charges outside this region by which
the potential is produced. It will easily be verified by direct differentiation
that the value of V given in equation (10) is a solution of equation (20).

We can obtain an idea of the physical meaning of this differential
equation as follows,

‘Let us take any point O and construct a sphere of radius » about this
point. The mean value of V averaged over the surface of the sphere is

w 1
V-ij{VdS
1 .
=i NV sin .Gdﬁdd;,

wht?re 7, 6, ¢ are poiar woordinates, having O as origin. If we change the
radius of this sphere from r to r + dr, the rate of change of Vis

v 1 rrav .
a—r-—z;rffé;smedﬁdcﬁ
1 [[av
=T )] 5798

=0, by Gauss’ Theorem,

shewing that_? is independent of the radius r of the sphere. Taking r=0,
the value of ¥ is seen to be equal to the potential at the origin 0.

This gives the following interpretation of the differential equation :

V varies from point to point in such & way that the average value of V
taken over any sphere surrounding any point O is equal to the value of V at O.
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DepucTioNs FROM LAW OF INVERSE SQUARE.

61. THEOREM. The potential cannot have a mamimum or a minimum
value at any point in space which s not occupied by an electric charge.

For if the potential is to be a maximum at any point O, the potential at
every point on a sphere of small radius » surrounding O must be less than
that at 0. Hence the average value of the potential on a small sphere
surrounding O must be less than the value at O, a result in opposition to
that of the last section.

A similar proof shews that the value of V cannot be a minimum.

52. A second proof of this theorem is obtained at once from Laplace’s

equation. Regarding V simply as a function of , y, 2, a necessary condition

for V' to have a maximum value at any point is that %{Z %,;,7 8’V shall

each be negative at the point in question, a condition which is mconmstent

with Laplace’s equation
a’V *V oV

o oy o
So also for V to be a minimum, the three differential coefficients would
have to be all positive, and this again would be inconsistent with Laplace's
equation,

=0.

63. If V is a maximum at any point O, which as we have just seen

must be occupied by an electric charge, then the value of %‘; must be

negative as we cross a sphere of small radius ». Thus f f %I—:dS is negative

where the integration is taken over a small sphere surrounding O, and by
Gauss’ Theorem the value of the surface integral is — 4are, where ¢ is the
total charge inside the sphere. Thus e must be positive, and similarly if V'
is & minimum, e must be negative. Thus:

If V is a mazimum at any point, the point must be ocaupied by a positive
charge, and +f V is a minimum at any point, the point must be occupied by a
negative charge.

54 We have seen (§ 36) that in moving along a line of force we are
moving, at every point, from higher to lower potential, so that the potential
continually decreases as we move along a line of force. Hence a line of
force can end only at a point at which the potential is & minimum, and
similarly by tracing a line of force backwards, we see that it can begin only
at a point of which the potential is a maximum. Combining this result
with that of the previous theorcm, it follows that:

Lines of force can begin only on positive charges, and can end only on
negative charges.
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It is of conrse possible for a line of force to begin on a positive charge,.
and go to infinity, the potential decreasing all the way, in which case the
line of force has, strictly speaking, no end at all. So also, a line of force may
come from infinity, and end on a negative charge.

Obviously a line of force cannot begin and end on the same conductor,
for if it did so, the potential at its two ends would be the same. Hence there
can be no lines of force in the interior of a hollow conductor which contains
no charges; consequently there can be no charges on its inner surface.

Tubes of Force.

55. Let us select any small area dS in the field, and let us draw the
lines of force through every point of the boundary of this small area. If
dS is taken sufficiently small, we can suppose the electric intensity to be the
same in magnitude and direction at every point of dS, so that the directions
of the lines of force at all the points on the boundary will be approximately
all parallel. By drawing the lines of force, then, we shall obtain a “ tubular”
surface—i.e., a surface such that in the neighbourhood of any point the
surface may be regarded as cylindrical. The surface obtained in this way
is called a “ tube of force.” A noinal cross-section of a “ tube of force” is a
section which cuts all the lines of force through its boundary at right angles.
It therefore forms part of an equipotential surface,

66. THEOREM. If w,, w, be the areas of two normal cross-sections of the
same tube of force, and R,, R, the intensities at these sections, then

Riw, = R,w,.
Consider the closed surface formed by the two cross-sections of areas

w,, @, and of the part of the tube of force
e Joining them. There is no charge inside this

=L 2 surface, so that by Gauss’ theorem, f NdS=0.

==
If the direction of the lines of force is from
h ®, 10 w,, then the outward normal intensity

Tro. 12. over w, is R,, so that the contribution from this

area to the surface integral is Ry0,. So also

over o, the outward normal intensity is — R,, so that w, gives a contribution
— R 0,. Over the rest of the surface, the outward normal is perpendicular to
the electric intensity, so that N =0, and this part of the surtace contributes

nothing to f f NdS. The whole value of this integral, then, is
R,w, - R, w,

and since this, as we have seen, must vanish, the theorem is proved.
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57. CouLomp's Law. If R is the outward intensity at a point just
outside a conductor, then R = dmwa, where o is the surface density of electrs-
fication on the conductor.

We have already seen that the whole electrification of a conductor must
reside on the surface. Therefore we no longer deal with a volume density
of electrification p, such that the charge in the element of volume dzdydz is
p dzdydz, but with a surface-density of electrification o such that the charge
on an element dS of the surface of the conductor is odS.

The surface of the conductor, as we have seen, is an equipotential, so that
by the theorem of p. 29, the intensity is in a direction normal to the
surface. Let us draw perpendiculars to the surface at every
point on the boundary of a small element of area dS, these per-
pendiculars each extending a small distance into the conductor {
in one direction and a small distance away from the conductor
in the other direction. We can close the cylindrical surface so
formed, by two small plane areas, each equal and parallel to the
original element of area dS. Let us now apply Gauss’ Theorem
to this closed surface. The normal intensity is zero over every
part of this surface except over the cap of area dS which is \
outside the conductor. Over this cap the outward normal in- g, 13
tensity is R, so that the value of the surface integral of normal
intensity taken over the closed surface, consists of the single term RdS.
The total charge inside the surface is o dS, so that by Gauss’ Theorem,

RdS =4mwadS ....... ceeserrer e (21),
and Coulomb’s Law follows on dividing by dS.

68. Let us draw the complete tube of force which is formed by the
lines of force starting from points on the boundary of the element dS of the
surface of the conductor. Let us suppose that the surface density on this
element is positive, so that the area dS forms the normal cross-section at

Fro. 14.

the positive end, or beginning, of the tube of force. Let us suppose that at
the negative end of the tube of force, the normal cross-section is d.S’, that
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the surface density of electrification is o', o’ being of course negative, m?d
that the intensity in the direction of the lines of force is B’ Then, as in

i 21),
equation ( ) RdAS = — 4wa’ds’,

since the outward intensity is now — I

Since R, R’ are the intensities at two points in the same tube of force
at which the normal cross-sections are dS, dY’, it follows from the theorem

of § 56, that

' RdS =R'dS’
and hence, on comparing the values just found for RdS and R'dS’, that
odS=—o'dS"

Since odS and ¢’dS’ are respectively the charges of electricity from which
the tube begins and on which it terminates, we see that:

The negative charge of electricity on which a tube of force terminates is
numerically equal to the positive charge from which it starts.

If we close the ends of the tube of force by two small caps inside the
conductors, as in fig. 14, we have a closed surface such that the normal
intensity vanishes at every poirt. Thus, by Gauss’ Theorem, the total
charge inside must vanish, giving the result at once.

89. The numerical value of either of the charges at the ends of a
tube of force may conveniently be spoken of as the stremngth of the tube. A
tube of unit strength is spoken of by many writers as & unit tube of force.

The strength of a tube of force is ¢dS in the notation already used, and
this, by Coulomb’s Law, is equal to 4177 RdS where R is the intensity at the

end dS of the tube. By the theorem of § 56, RdS is equal to R,w, where
Ry, o, are the intensity and cross-section at any point of the tube. Hence
R,w, = 4ar times the str :ugth of the tube. It follows that:

The intensity at any point is equal to dar times the aggregate strength per
unit area of the tubes which cross a plane drawn at right angles to the
direction of the intensity.

In terms of unit tubes of force, we may say that the intensity is 4ar
times the number of unit tubes per unit area which cross a plane drawn at,
right angles to the intensity.

The conception of tubes of force js due to Faraday: indeed it formed
almost his only instrument for picturing to himself the phenomena of the
Electric Field. It will be found that a number of theorems connected with
the electric field become almost cbvious when interpreted with the help of
the conception of tubes of force, For instance we proved on p- 37 that
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when a number of charged bodies are placed inside a hollow conductor, they
induce on its inner surface a charge equal and opposite to the sum of all
their charges. This may now be regarded as a special case of the obvious
theorem that the total charge associated with the beginnings and termi-
nations of any number of tubes of force, none of which pass to infinity, must
be nil.

ExampLEs OF FIELDS OF FoRCE.

60. It will be of advantage to study a few particular fields of electric
force by means of drawing their lines of force and equipotential surfaces.

I Two Equal Point Charges.

61. Let 4, B be two equal point charges, say at the points 2=—a, +a.
The equations of the lines of force which are in the plane of z, y are
easily found to be

oy_Y Yy
% X TPB P @)
(PB"’ + PA‘)
where P is the point z, y.
This equation admits of integration in the form
%,%(‘l + %a SCOMS.  tereir cvrieiiers ceenee (23).

From this equation the lines of force can be drawn, and will be found to lie
as in fig. 15.

62. There are, however, only a few cases in which the differential
equations of the lines of force can be integrated, and it is frequently simplest
to obtain the properties of the lines of force directly from the differential
equation. The following treatment illustrates the method of treating lines
of force without integrating the differential equation.

From equation (22) we see that obvious lines of force are

i y=0 g%=0, giving the axis AB;

(ii) 2=0, PA=PB, %/_=oo, giving the line which bisects AB at

right angles.
These lines intersect at C, the middle point of AB. At this point, then,
Qz has two values, and since EZZ _:Y’ it follows that we must have X =0,
Y =0. In other words, the pomt, C is a point of equilibrium, as is otherwise
obvious.
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The same result can be seen in another way. If we start from 4 and
draw a small tube surrounding the line 4B, it is clear that the cross-section
of the tube, no matter how small it was initially, will have become infinite
by the time it reaches the plane which bisects AB at right angles—in fact
the cross-section is identical with the infinite plane. Since the product of
the cross-section and the normal intensity is constant throughout a tube, it
follows that at the point C, the intensity must vanish.

Fio. 15.

At a great distance R from the points 4 and B, the fraction
PP - P>
PB + PA®
vanishes to the orde: of 1/R, so that

except for terms of the order of 1/R%. Thus at infinity the lines of force
become asymptotic to straight lines passing through the origin.

Let us suppose that a line of force starts from A making an angle 8 with
BA produced, and is asymptotic at infinity to a line through C which makes
an angle ¢ with BA produced. By rotating this line of force about the
axis AB we obtain a surface which may be regarded as the boundary of
a bundle of tubes of force. This surface cuts off an area

27w (1 —cos @)t
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from a small sphere of radius » drawn about 4, and at every point of
this sphere the intensity is e/r* normal to the sphere. The surface again
cuts off an area
2 (1 ~cos ¢) R?

from a sphere of very great radius R drawn about C, and at every point
of this sphere the intensity is 2¢/R:. Hence, applying Gauss’ Theorem
to the part of the field enclosed by the two spheres of radii ~ and R,
and the surface formed by the revolution of the line of force about 4B,

we obtain

21r(1-—cosﬂ)r’x’%—%r(l—-coscp)R’xIga—i=0,

from which follows the relation

sin § @ = 4/28in § .
In particular, the line of force which leaves 4 in a direction perpendicular
to AB is bent through an angle of 30° before it reaches its asymptote at
infinity.

The sections of the equipotentials made by the plane of zy for this case
are shewn in fig. 16 which is drawn on the same scale as fig. 15. The equa-
tions of these curves are of course

1 1
P4 + PB = COns,,
curves of the sixth degree. The equipotential which passes through C is
of interest, a8 it intersects itself at the point C. This is a necessary conse-

T \
b
L ———— -

quence of the fact that C is a point of equilibrium. Indeed the conditions
for a point of equilibrium, namely

oV oV oV

-a; = 0, -37 = 0, —a-z— = 0,
mny be interpreted as the condition that the equipotential (¥ = constant)
through the point should have a double tangent plane or a tangent cone at

the point.
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II. Point charges +e, —e.

63. Let charges +e be at the points #= 1 a (4, B) respectively. The
differential equations of the lines of force are found to be

y_Y_ v
oz X~ PB 1 PA%’
zta (FB'-PA')
and the integral of this is

z+a x—a

P4 PE O
The lines of force are shewn in fig. 17.

IIT  Electric Doublet.

64. An important case occurs when we have two large charges + ¢, —e,
equal and opposite 1n sign, at a small distance apart. Taking Cartesian
coordinates, let us suppose we have the charge +e at a, 0, 0 and the charge
~¢ at —a, 0, 0, so that the distance of the charges is 2a.

The potential is

e _ e
NVg—ap+y+22 V@+a)+y +20
and when @ is very small, so that squares and higher powers of @ may be
neglected, this becomes

_ 2eam

(@ +y+ 2
If a .is made to vanish, while ¢ becomes infinite, in such a way that
2ea retains the finite value u, the system is described as an electric
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doublet of strength u having for its direction the positive axis of @ Its
potential is

N

(@+y + z’)Q ’

,_—\

"

i

/

\

e
—_—

Fie. 18.

or, if we turn to polar coordinates and write z =7cos f, ia

pcos f
i ~(24).
The lines of force are shewn in fig. 18. Obviously the lines at the
centre of this figure become identical with those shewn in fig. 17, if the
latter are shrunk indefinitely in size.
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IV. Point charges + 4¢, —e.

65. Fig. 19 represents the distribution of the lines of force when the
electric field is produced by two point charges, + deat A and —eat B.

At infinity the resultant force will be 3e/r*, where r is the distance from
a point near to 4 and B. The direction of this force is outwards, Thus no
lines of force can arrive ab B from infinity, so that all the lines of force
which enter B must come from 4. The remaining lines of force from 4 go
to infinity, The tubes of force from A to B form a bundle of aggregate

strength e, while those from 4 to infinity have aggregate strength 3s. The
two bundles of tubes of force are separated by the lines of force through C.
At C the direction of the resultant force is clearly indeterminate, so that C
is a point of equilibrium. As the condition that C is a point of equilibrium
we have
de

A0 BCS
So that AB=BC. At C the two lines of force from A4 coalesce and then
separate out into two distinct lines of force, one from C to B, and the other
from C to infinity in the direction opposite to CB.

The equipotentials in this field, the system of curves

4 1
P4 PB=cons,

are represented in fig. 20, which is drawn on the same scale as fig. 19.

=0.
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Since C is a point of equilibrium the equipotential through the point C
must of course cut itself at C. . At C the potential

do e _ ¢

C4A~CB 4B’
since CA =2CB. From the loop of this equipotential which surrounds B,
the potential must fall continuously to — w0 as we approach B, since, by the
theorem of § 51, there can be no maxima or minima of potential between

this loop and the point B. Also no equipotential can intersect itself since
there are obviously no points of equilibrium except C. One of the inter-

mediate equipotentials is of special interest, namely that over which the
potential is zero. This is the locus of the point P given by

LU

PA PB
and is therefore a sphere. This is represented by the outer of the two
closed curves which surround B in the figure.

0,

In the same way we see that the other loop of the equipotential through
C must be occupied by equipotentials for which the potential rises steadily
to the value +w at 4. So also outside the equipotential through C, the
potential falls steadily to the value zero at infinity. Thus the zero equi-
potential consists of two spheres—the sphere at infinity and the sphere
surrounding B which has already been mentioned.
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V. Three equal charges at the corners of an equilateral triangle,

66. As a further example we may examine the disposition of equi-\
potentials when the field is produced by three point charges at the corners
of an equilateral triangle. The intersection of these by the plane in which
the charges lie is represented in fig. 21, in which 4, B, C are the points at
which the charges are placed, and D is the centre of the triangle 4 RC.

It will be found that there are three points of equilibrium, one on each
of the lines 4D, bD, CD. Taking 4D =a, the distance of each point of
equilibrium from D is just less than }a. The same equipotential pass:
through all three points of equilibrium. If the charge at each of the points

e e T T T T e

Fiu. 21.

4, B, C is taken to be unity, this equipotential has a potential 22-4 . The

equipotential has three loops surrounding the points 4, B, 0. In each of
these loops the equipotentials are closed curves, which finally reduce to
small circles surrounding the points 4, B, C. Those drawn correspond to

the potentials 3—‘%, ?Ls. :i-'z_5_' and é
a a a a

Outside the equipotential 3—;0—4. the equipotentials are closed curves



66] Charges +e, +e¢, +e¢ 55

surrounding the former equipotential, and finally reducing to circles at in-
2 225 25 275

finity. The curves drawn correspond to potentials e a and et

There remains the region between the point D and the equipotential -3—.3—4.
At D the potential is §%Q, so that the potential falls as we recede from the

Q(;\}lipoténtial ?%4-'- and reaches its minimum value at D. The potential at

D ',is of course not a minimum for all directions in spwcg: for the potential
wureases as we move away from D in directions which are in the plane
ABC, but obviously decreases as we move away from D in a direction per-

ke, 22,

pendicular to this plane. Taking D as origin, and the plane A BC as plane
of @y, it will be found that near D the potential is
3,3
V=E+EE‘({E’+¢—2Z').

Thus the equipotential through D is shaped like a right circular cone in
the immediate neighbourhood of the point D. From the equation just
jound, it is obvious that near D the sections of the equipotentials by the
plane ABC will be circles surrounding D.
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From a study of the section of the equipotentials as shewn in fig. 21, it is
easy to construct the complete surfaces. We see that each equipotential for
which V has a very high value consists of three small spheres surrounding the
points A, B, C. For smaller values of ¥, which must, however, be greater
than E-gi, each equipotential still consists of three closed surfaces surround-
ing 4, B, C, but these surfaces are no longer spherical, each one bulging ou*
towards the point D. As V decreases, the surfaces continue to swell ov
until, when V=%9—*, the surfaces touch one another simultaneously, mtl;
way which will readily be understood on examining the section of this equ
potential as shewn in fig. 21. It will be seen that this equipotentialits
shaped like a flower of three petals from which the centre has been cut awa

As V decreases further the surfaces continue to swell, and when V = :2; , tL

space at the centre becomes filled up. For still smaller values of V the
equipotentials are closed singly-connected surfaces, which finally become
spheres at infinity corresponding to the potential V= 0.

The sections of the equipotentials by a plane through DA perpendicular
to the plane 4 BC are shewn in fig. 22.

SPECIAL PROPERTIES OF EQUIPOTENTIALS AND LiNES OF FORCE
The Equipotentials and Lines of Force at infinity,
67. In§ 40, we obtained the general equation
€
[ =) +(y— .y + (s - 2]

If r denotes the distrnce of , y, # from the origin, and r, the distance of
@, Y, £, from the origin, we may write this in the form

=2 .
[ - 2 (am + yy + 22) + r,’?
At o great distance from the origin this may be expanded in descending
powers of the distance, in the form

V=2§{1+wzz+yy.+zz1+g(wn+y3/x+zzx)’___1_[{ }
r r! LT di ]

™ bR

Thetermoforder%is 27-‘9'.

1.1
The term of order A8 3 S, (z, + yy, + 28,).
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If the origin is taken at the centroid of ¢, at @,, g, £,, ¢, at z,, ¥,, 2, etc.,
lwe have
Zez, =0, 2y, =0, Zez=0.

Thus by taking the origin at this centroid, the term of order -t wxl.l
"ixsappea.r
" The term of order ;—i i8

D 3 3 Ze, (zz, + yy, + u,)'— 1 Ee,r,‘.

3 Let A, B, O, be the moments of inertia about the axes, of ¢, at ,, yl, £,
and let 7 be the moment of inertia about the line joining the origin to
{;‘/, z; then
Ser? =4(4+B+0),
Ze, (azy + yy + 22,0 = r* (Sgrt = I),

and the terms of order %, become

4A+B+C-3I
273 :
Thus taking the centroid of the charges as origin, the potential at a great
distance from the origin can be expanded in the form
A +B+0C-381
V= - "__2’."'_'_" + scen

Thus except when the total charge Ze vanishes, the field at infinity is
the same as if the total charge Z¢ were collected at the centroid of the
charges. Thus the equipotentials approximate to spheres having this point
as centre, and the asymptotes to the lines of force are radii drawn through
the centroid. These results are illustrated in the special fields of force
considered in §§ 61—66.

The Lines of Force from collinear charges,

68. When the field is produced solely by charges all in the same straight
line, the equipotentials are obviously surfaces of revolution about this line,
while the lines of force lie entirely in planes through this line. In this
important case, the equation of the lines of force admits of direct integration.

Let R, B, B,... be the positions of the charges ¢, &, 6,.... Let @, ¢’
be any two adjacent points on a line of force. Let N be the foot of the
perpendicular from Q to the axis RR, ..., and let a circle be drawn perpen-
dicular to this axis with centre N and radius QN. This circle subtends
at B a solid angle

27 (1 —cos 6,),
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where 6, is the angle QRN. Thus the surface integral of normal force
arising from e, taken over the circle QN, is

2are, (1— cos 6y)
and the total surface integral of normal force taken over this surface is

27 3¢, (1 — cos 6,).

If we draw the similar circle through @, we obtain a closed surface
bounded by these two circles and by the surface formed by the revolution

Firo. 28.

of Q@. This contains no electric charge, so that the surface integral of
normal force taken over it must be nil. Hence the integral of force over
the circle QN must be the same as that over the similar circle drawn
through @'. This gives the equations of the lines of force in the form

(integral of normal force through circle such as QN) = constant,
which as we have seen, becomes
S, cos 0, = constant.
Analytically, let tte point R have coordinates a,, 0, 0, let B have
coordinates a,, 0, 0, etc. and let @ be the point «, y, 2. Then
& -z,
NE—ay i pER

and the equation of the surfaces formed by the revolution of the lines of
force is

00301‘

_ o (z—a)
Viz—oy+y+e
It will easily be verified by differentiation that this is an integral of the
differential equation

: constant,.

oy Y
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Egquipotentials which tntersect themselves

69. We have seen that, in general, the equipotential through any point
of equilibrium must intersect itself at the point of equilibrium.

Let @, y, z be a point of equilibrium, and let the potential at this point be
denoted by ¥;. Let the potential at an adjacent point z+§, y+ 7, 2+ ¢, be
denoted by V; ., ¢. By Taylor's Theorem, if f(2, y, #) is any function of
@, ¥, 2 we have

f(w+t‘.y+n,l+§)=f(w,y.z)+Eg—£ +n§'—§+ g%+ 3 (e-g%neq g’i + )

where the differential coefficients of f are evaluated at @, y, 2. Taking
f(=, y, £) to be the potential at =, y, 2, this of course being a function of the
variables #, ¥, £, the foregoing equation becomes

LN A P 4
Vinc=Rit b a5+t 43 (0 + 2k g +) . (28)

If 2, y, £ i8 a point of equilibrium,

W _av_v_,
@ oy e

v .y
g0 that VE,.,,;=K+§(£’%+2&5%/+...).

Referred to o, y, z as origin, the coordinates of the point #+§, y+ 1,
£+ ¢ become £, 7, £, and the equation of the equipotential ¥ = C becomes

AL
O- %= (b 55 + 280 gy + o)

In the neighbourhood of the point of equilibrium, the values of £, 9, { are
small, so that in general the terms containing powers of §, 5, { higher than
squares may be neglected, and the equation of the equipotential V'=C
becomes oV ooV

f’%“*“”m‘y* e =2(C=T).
In particular the equipotential ¥'= ¥, becomes identical, in the neighbourhood
of the point of equilibrium, with the cone

1]
& %—;+ 2&n %+ eee =0,
Let this cone, referred to its principal axes, become
Gt + byt 4+ ot =0 .o rereresnneenneens(26),
then, since the sum of the coefficients of the squares of the variables is an
invariant,

*V oV oV
a+b+o=-57&;+-5?+32;-0.
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Now a+b+¢=0 is the condition that the cone shall have three per-
pendicular generators. Hence we see that at the point at which an
equipotential cuts itself, we can always find three perpendicular tangents to
the equipotential. Moreover we can find these perpendicular tangents in an
infinite number of ways.

In the particular case in which the cone is one of revolution (e.g., if the
whole field is symmetrical about an axis, as in figures 16 and 20), the
equation of the cone must become

g4 -2 =0,
where the axis of ¢’ is the axis of symmetry. The section of the equipotential
made by any plane through the axis, say that of £'{’, must now become
gr-2t=0
in the neighbourhood of the point of equilibrium, and this shews that the
tangents to the equipotentials each make a constant angle tan= 4/2 (= 54° 44/)
with the axis of symmetry.
In the more general cases in which there is not symmetry about an axis,

the two branches of the surface will in general intersect in a line, and the
cone reduces to two planes, the equation being

af" + by'* =0,
where the axis of ¢’ is the line of intersection. We now have a +b=0, so
that the tangent planes to the equipotential intersect at right angles.

An analogous theorem can be proved when n sheets of an equipotential
intersect at a point. The theorem states that the n sheets make equal
angles 7r/n with one another. (Rankin’s Theorem, see Maxwell’s Electricity
and Magnetism, § 115, or Thomson and Tait's Natural Philosophy, § 780.)

70. A conductor is always an equipotential, and can be constructed so as
to cut itself at any argle we please. It will be seen that the foregoing
theorems can fail either through the a, b and ¢ of equation (24) all vanishing,
or through their all becoming infinite. In the former case the potential near
a point at which the conductor cuts itself, is of the form (cf. equation (25)),

s (024 g 2V
'Vt,n.{ Io+%(£‘ a‘z‘+3f’ﬂa-w‘,a—"y+---)p
so that the components of intensity are of the forms
oV >V >V
a_f_—*(f’.a?-’- 251]‘3—‘;2@"- ...)
2 oV av
=}a—w(\f'-§;’-+2€1}aw—ay+...).

The intensity near the point of equilibrium is therefore a small quantity of
the second order, and since by Coulomb’s Law R = 4mna, it follows that the
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surface density is zero along the line of intersection, and is proportional to
the square of the distance from the line of intersection at adjacent pointe.

If, however, a, b and ¢ are all infinite, we have the electric intensity also
infinite, and therefore the surface density is infinite along the line of inter-
section,

It is clear that the surface density will vanish when the conducting
surface cuts itself in such a way that the angle less than two right angles
is external to the conductor; and that the surface density will become
infinite when the angle greater than two right angles is external to the
conductor. This becomes obvious on examining the arrangement of the
lines of force in the neighbourhood of the angle.

Fra. 24. Angle less than two right angles external to conductor.

~

Fia, 25. Angle greater than two right angles external to conductor.

71. The arrangement shewn in fig. 25 is such as will be found at the
point of a lightning conductor. The object of the lightning conductor is
to ensure that the intensity shall be greater at its point than on any part
of the buildings it is designed to protect. The discharge will therefore take
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place from the point of the lightning conductor sooner than from any part of
the building, and by putting the conductor in good electrical communication
with the earth, it is possible to ensure that no harm shall be done to the
main buildings by the electrical discharge.

An application of the same principle will explain the danger to a human
being or animal of standing in the open air in the presence of a thunder cloud,
or of standing under an isolated tree. The upward point, whether the head
of man or animal, or the summit of the tree, tends to collect the lines of force
which pass from the cloud to the ground, so that a discharge of electricity
will take place from the head or tree rather than from the ground.

e e

\rx]f\[___[/ S

|| |

Fre. 26.

72. The property of lines of force of clustering together in this way is
utilised also in the manufacture of electrical instruments. A cage of wire is

W) W)\

!
\ K
N =T
N 7
' i

Fra. 27.

placed round the instrument and almost all the lines of force from any
charges which there may be outside the instrument will cluster together on
the convex surfaces of the wire. Very few lines of force escape through this
cage, so that the instrument inside the cage is hardly affected at all by any
electric phenomena which may take place outside it. Fig. 27 shews the
way in which lines of force are absorbed by a wire grating. It is drawn to
represent the lines of force of a uniform field meeting a plane grating placed
at right angles to the field of force.

|

|
j
|
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The protection of a wire cage is not adequate for the most sensitive in-
struments, and it is usual to enclose them entirely in a metal case, except
only for one small window through which readings can be taken. When this
arrangement is adopted, no lines of force at all can pass from external charges
to the instrument inside the metal case except for an infinitesimal number
passing through the window. Lines of force which encounter the case termi-
nate on it without in any way affecting the electric field inside, and the in-
strument is almost perfectly screened from any external electric field. (Cf § 114
below.)

EXAMPLES.

1. Two particles each of mass m and charged with ¢ units of electricity of the same
sign are suspended by strings each of length a from the same point; prove that the
inclination @ of each string to the vertical is given by the equation

4mga?sin® §=e? cos 6.

2. Charges +4c, —e are placed at the points 4, B, and C is the point of equilibrium.
Prove that the line of force which passes through C meets 4B at an angle of 60° at 4 and
at right angles at C.

3. Find the angle at 4 (question 2) between 4 B and the line of force which leaves B
at right angles to 458.

4. Two positive charges ¢ and e; are placed at the points ¥ and B respectively.
Shew that the tangent at infinity to the line of force which starts from ¢; making an angle
a with B4 produced, makes an angle

—_—
€
a+e
with BA, and passes through the point € in 4B such that
AC : CB=eq: 6.

5. Point charges +¢, —eare placed at the points 4, B. The line of force which leaves
4 making an angle a with 48 meets the plane which bisects 4B at right angles, in P,
Shew that
. a 5 . PAB
sin §=J2 sin =g=.
8. TIf any closed surface be drawn not enclosing a charged body or any part of one,
shew that at every point of a certain closed line on the surface it intersects the equi-
potential surface through the point at right angles. ,

7. The potential is given at four points near each other and not all in one plane.
Obtain an approximate construction for the direction of the field in their neighbourhood.



64 Electrostatics—Field of Force [on. m

8. The potentials at the four corners of a small tetrahedron 4, B, C, D are V;, Vj,
Vs, V, respectively. G is the centre of gravity of masses M, at 4, X/, at B, ¥, at O,
M, at D. Shew that the potential at & is

MVi+ M Vot My Vst M,V

T M+ i+ M M,

9. Charges 3¢, —e, —e are placed at 4, B, C' respectively, where B is the middle
point of AC. Draw a rough diagram of the lines of force; shew that a line of force which
starts from 4 making an angle a with 4B>cos~3(~3}) will not reach B or C, and shew
that the asymptute of the line of force for which a=cos=!(~§) is at right angles to 4C.

10. If there are three electrified points 4, B, C in a straight line, such that AC=f,
nc ==9-’, and the charges are ¢, ‘__}i‘! and Va respectively, shew that there is always a

spherical equipotential surface, and discuss the position of the points of equilibrium on
f

the line A BC when V=e G{%a—' and when Vee U.——ai);.

a)

11. A4 and C are spherical conductors with charges e+¢ and —¢ respectively. Shew

that there is either a point or a line of equilibrium, depending on the relative size and

positions of the spheres, and on ¢'/e. Draw a diagram for each case giving the lines of
force and the sections of the equipotentials by a plane through the centres.

12. An electrified body is placed in the vicinity of a conductor in the form of a
surface of anticlastic curvature. Shew that at that point of any line of force passing from
the body to the conductor, at which the force is & minimum, the principal curvatures of
the equipotential surface are equal and opposite.

13. Shew that it is not possible for every family of non-intersecting surfaces in free
space to be a family of equipotentials, and that the condition that the family of surfaces
& 2y 2)=0
shall be capable of being equipotentials is that
O\ O\ M
Wttt

BROED)

14 In the last question, if the condition is satisfied find the potential

shall be a function of X only.

15. Shew that the confocal ellipsoids

22 P 2
a4+ +b‘-’-r)\-+c'3+).-l

can form a system of equipotentials, and express the potential as a function of .
16. If two charged concentric shells be connected by a wire, the inner one is wholly
discharged. If the law of force were r,lﬂ,, prove that there would be a charge B on the

inner shell such that if 4 were the charge on the outer shell, and #, g the sum and differ-
ence of the radii, ’

29B= - Ap {(f-g)log (f+9) ~flog f+g1
approximataly. 9)log (f+g) ~flog f+glog g}
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17. Three infinite parallel wires out a plane perpendicular to them in the angular
points 4, B, C of an equilateral triangle, and have charges ¢, ¢, —¢ per unit length
respectively, Prove t.hat the extreme lines of force which pass from 4 to ¢ make at

snd 24 0 with 4, provided that 3%

18. A negative point charge —~e; lies between two positive point charges ¢ and e on
the line joining them and at distances o, 8 from them respectively. Shew that, if the
magnitudes of the charges are given by

G _6_ ¢ A g _[a+B

5™ 4 +ﬁ,and1f1<7t<< ﬂ)’
there is a circle at every point of which the force vanishes. Determine the general form
of the equipotential surface on which this circle lies.

19, Charges of electricity ¢,, —e,, €5, (¢s>¢,) are placed in a straight line, the
negative charge being midway between the other two, Shew that, if 4e; lie between

(e} e,§)3 and (c.§+e,§)’, the number of unit tubes of force that pass from ¢ to ¢; is

b +eg=e)+ 4%/‘5 (et - o) (o - 2est ).



CHAPTER III
CONDUCTORS AND CONDENSERS

73. By a conductor, as previously explained, is meant any body or
system of bodies, such that electricity can flow freely over the whole. When
electricity is at rest on such a conductor, we have seen (§ 44) that the charge
will reside entirely on the outer surface, and (§ 87) that the potential will
be constant over this surface.

A conductor may be used for the storage of electricity, but it is found
that a much more efficient arrangement is obtained by taking two or more
conductors—generally thin plates of metal—and arranging them in a certain
way. This arrangement for storing electricity is spoken of as a “con-
denser.” In the present Chapter we shall discuss the theory of single
conductors and of condensers, working out in full the theory of some of the
simpler cases.

CONDUCTORS.

A Spherical Conductor.

74 The simplest example of a conductor is supplied by a sphere, it
being supposed that the sphere is so far removed from all other bodies that
their influence may be ncglected. In this case it is obvious from symmetry
that the charge will spread itself uniformly over the surface. Thus if e is
the charge, and a the radius, the surface density o is given by

_ total charge e
"~ total area of surface  47u?”

The electric intensity at the surface being, as we have seen, equal to
4mo, 18 efar

From symmetry the direction of the intensity at any point outside the
sphere must be in a direction passing through the centre. To find the
amount of this intensity at a distance r from the centre, let us draw a sphere
of radius r, concentric with the conductor. At every point of this sphere
the amount of the outward electric intensity is by symmetry the same, say R,
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and its direction as we have seen is normal to the surface. Applying Gauss’
Theorem to this sphere, we find that the surface integral of normal intensity

f f NdS becomes simply R multiplied by the area of the surface 473, so that
47 R = 4re,
=2
or =

This becomes e/a* at the surface, agreeing with the value previously
obtained.

Thus the electric force at any point is the same as if the charged sphere
were replaced by a point charge e, at the centre of the sphere. And, just
as in the case of a single point charge ¢, the potential at a point outside the
sphere, distant r from its centre, is

Te e
V= f R dr= o)
so that at the surface of the sphere the potential is %.

Inside the sphere, as has been proved in § 37, the potential is constant,
and therefore equal to e/a, its value at the surface, while the elcctric intensity
vanishes.

As we gradually charge up the conductor, it appears that the potential
at the surface is always proportional to the charge of the conductor.

It is customary to specak of the potential at the surface of a conductor as
“the potential of the conductor,” and the ratio of the charge to this potential
is defined to be the “capacity ” of the conductor. From a general theorem,
which we shall soon arrive at, it will be seen that the ratio of charge to
potential remains the same throughout the process of charging any conductor
or condenser, so that in every case the capacity depends only on the shape
and size of the conductor or condenser in question. For a sphere, as we
have scen,
charge

P = potential

e
e =%
a

so that the capacity of a sphere is equal to its radius.

A Cylindrical Conductor.

75. Let us next consider the distribution of electricity on a cireular
cylinder, the eylinder either extending to infinity, or elsc having its cnds so
far away from the parts under considcration that their influence may be
neglected.

As in the case of the sphere, the charge distributes itself symmetrically,
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so that if @ is the radius of the cylinder, ard if it has a charge e per unit
length, we have

O =g

2mra

To find the intensity at any point outside the conductor, construct a Gauss'
surface by first drawing a cylinder of radius r, coaxal with the original
cylinder, and then cutting off a unit length by two parallel planes at
unit distance apart, perpendicular to the axis. From sym-
metry the force at every point is perpendicular to the axis
of the cylinder, so that the normal intensity vanishes at
every point of the plane ends of this Gauss’ surface. The
surface integral of normal intensity will therefore consist

entirely of the contributions from the curved part of the w
surface, and this curved part consists of a circular band, of e
unit width and radius r»—hence of area 27wr. If R is the ,/’

———— T

outward intensity at every point of this curved surface,
Gauss’ Theorem supplies the relation

27wrR = 4re,

so that R= 2;5 . Fio. 28.

This, we notice, is independent of a, so that the intensity is the same as
it would be if a were very small, .¢., as if we had a fine wire electrified with
a charge e per unit length.

In the foregoing, we must suppose = to be so small, that at a distance
from the cylinder the influence of the ends is still negligible in comparison
with that of the nearer parts of the cylinder, so that the investigation does
not hold for large values of . It follows that we cannot find the potential
by integrating the intensity from infinity, as has been done in the cases of
the point charge and of the sphere, We have, however, the general

differential equation
oV

w= B

so that in the present case, so long as 7 remains sufficiently small
oV 2
o T

giving upon integration
VeC—2elogr,
The constant of integration C' cannot be determined without a knowledge
of the conditions at the ends of the cylinder. Thus for a long cylinder, the
intensity at points near the cylinder is independent of the conditions at the

ends, but the potential and capacity depend on these conditions, and are
therefore not investigated here.
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An Infinite Plane,

76. Suppose we have a plane extending to infinity in all directions, and
electrified with a charge o per unit area. From symmetry it is obvious that
the lines of force will be perpendicular to the plane at every point, so that
the tubes of force will be of uniform cross-section. Let us take as Gauss’
surface the tube of force which has as cross-section any element w of area
of the charged plane, this tube being closed by two cross-sections each of
area o at distance = from the plane. If R is the intensity over either of
these cross-sections the contribution of each cross-section to Gauss’ integral
is Rw, so that Gauss’ Theorem gives at once

2Rw = 4mrow,
whence R =2mwo.

The intensity is therefore the same at all distances from the plane.

The result that at the surface of the plane the intensity is 27 o, may at
first seem to be in opposition to Coulomb’s Theorem (§ 57) which states that
the intensity at the surface of a conductor is 4wo. It will, however, be seen
from the proof of this theorem, that it deals only with conductors in
which the conducting matter is of finite thickness; if we wish to regard
the electrified plane as a conductor of this kind we must regard the
total electrification as being divided between the two faces, the surface
density being 3o on each, and Coulomb’s Theorem then gives the correct
result.

If the plane is not actually infinite, the result obtained for an infinite
plane will hold within a region which is sufficiently near to the plane for the
edges to have no influence. As in the former case of the cylinder, we can
obtain the potential within this region by integration. If r measures the
perpendicular distance from the plane

- %—:—, = R =270,
8o that V=0C~-2wor,

and, as before, the constant of integration cannot be determined without
a knowledge of the conditions at the edges.

77. It is instructive to compare the three expressions which have been
obtained for the electric intensity at points outside a charged sphere, cylinder
and plane respectively. Taking r to be the distance from the centre of the
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sphere, from the axis of the cylinder, and from the plane, respectively, we
have found that

. . 1
outside the sphere, R is proportional to 3,

outside the cylinder, R is proportional to ’1-',

outside the plane, R is constant.

From the point of view of tubes of force, these results are obvious enough
deductions from the theorem that the intensity varies inversely as the cross-
section of a tube of force. The lines of force from a sphere meet in a point,
the centre of the sphere, so that the tubes of force are cones, with cross-
scction proportional to the square of the distance from the vertex. The
lines of force from a cylinder all meet a line, the axis of the cylinder, at right
angles, so that the tubes of force are wedges, with cross-section proportional
to the distance from the edge. And the lines of force from a plane all meet
the plane at right angles, so that the tubes of force are prisms, of which the
cross-section is constant.

78. We may also examine the results from the point of view which
regards the electric intensity as the resultant of the attractions or repulsions
from different elements of the charged surface.

Let us first consider the charged plane. Let P, P’ be two points at
distances 7, ' from the plane, and let @ be the
foot of the perpendicular from either on to the
plane. If P is near to @, it will be seen that
almost the whole of the intensity at P is due
to the charges in the immediate neighbourhood
of @ The more distant parts contribute forces
which make angles with (P nearly equal to a
right angle, and after being resolved along QP
these forces hardly contribute anything to the
resultant intensity at P.

Owing to the greater distance of the point 17,
the forces from given elements of the plane are
smaller at P’ than at P, but have to be resolved
through a smaller angle. The forces from the
regions near @ are greatly diminished from the
former cause and are hardly affected by the latter.
The forces from remote regions are hardly affected
by the former circumstance, but their effect is
greatly increased by the latter. Thus on moving Fio. 29,
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from P to P’ the forces exerted by regions near Q decrease in efficiency,
while those exerted by more remote regions gain. The result that the
total resultant intensity is the same at P’ as at P, shews that the
decrease of the one just balances the gain of the other.

If we replace the infinite plane by a sphere, we find that the force at
a near point P is as before contributed
almost entirely by the charges in the
neighbourhood of Q. On moving from P
to P, these forces are diminished just as
before, but the number of distant elements
of area which now add contributions to
the intensity at P’ is much less than
before. Thus the gain in the contributions Fia. 80.
from these elements does not suffice to
balance the diminution in the contributions from the regions near @, so that
the resultant intensity falls off on withdrawing from P to P’

The case of a cylinder is ot course intermediate between that of a plane
and that of a sphere,

CONDENSERS,

Spherical Condenser.

79. Suppose that we enclose the spherical conductor of radius a dis-
cussed in § 74, inside a second spherical conductor of internal radius b, the
two conductors being placed so as to be concentric and insulated from one
another.

It again appears from symmetry that the intensity at every point must
be in a direction passing through the common centre of the two spheres, and
must be the same in amount at every point of any sphere concentric with
the two conducting spheres. Let us imagine a concentrie sphere of radius r
drawn between the two conductors, and when the charge on the inner sphere
is ¢, let the intensity at every point of the imaginary sphere of radius » be
R. Then, as before, Gauss’ Theorem, applied to the sphere of radius r, gives
the relation

4R = 4dmre,
s0 thab R= :—, .

This only holds for values of r intermediate betwcen a and b, so that to
obtain the potential we cannot integrate from infinity, but must use the
differential equation. This is

oV e

_$=R=",
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which upon integration gives
V=a+; ........... reeresseereeerenenes @n.

We can determine the constant of integration as soon as we know the

potential of either of the spheres. Suppose for instance that the outer
sphere is put to earth so that V=0 over the sphere r =, then we obtain at

once from equation (27)

é
0 = 0 + E »
so that €' = — ¢/b, and equation (27) becomes

e o
V—‘—-— ; -— -5 .
On taking r = a, we find that the potential of the inner sphere is ¢ (-l— - %) ,

and its charge is ¢, 80 that the capacity of the condenser is

or ab
b—-a’

Qs
| -
St

80. In the more general case in which the outer sphere is not put to
earth, let us suppose that V,, V; are the potentials of the two spheres of
radii ¢ and b, so that, from equation (27)

G=0+2,
a

Vi=C+3.
Then we have on subtraction

11

Ta-W=e(3-7),

e

-V

The lines of force which start from the inner sphere must all end on the
inner surface of the outer sphere, and each line of force has equal and
opposite charges at its two ends. Thus if the charge on the inner sphere is
¢, that on the inner surface of the outer sphere must be —e. We can there-
fore regard the capacity of the condenser as being the charge on either of
the two spheres divided by the difference of potential, the fraction being
taken always positive. On this view, however, we leave out of account any
charge which there may be on the outer surface of the outer sphere: this
is not regarded as part of the charge of the condenser.

so that the capacity is
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An examination of the expression for the capacity,

ab

b—u

B

will shew that it can be made as large as we please by making b-a
sufficiently small. This explains why a condenser is so much more
efficient for the storage of electricity than a single conductor.

81. By taking more than two spheres we can form more complicated
condensers. Suppose, for instance, we take concentric spheres of radii
a, b, ¢ in ascending order of magnitude, and connect both the spheres of
radii @ and ¢ to earth, that of radius b remaining insulated. Let V be the
potential of the middle sphere, and let ¢, and e, be the total charges on its
inner and outer surfaces. Regarding the inner surface of the middle sphere
and the surface of the innermost sphere as forming a single spherical
condenser, we have
Vab
b—a

6= »

and again regarding the outer surface of the middle sphere and the outermost
sphere as forming a second spherical condenser, we have

Hence the total charge E of the middle sheet is given by
E=e +e

-7 (5% +:27)

so that regarded as a single condenser, the system of three spheres has a
capacity
ab be
F=atep
which is equal to the sum of the capacities of the two constituent condensers
into which we have resolved the system. This is a special case of a general
theorem to be given later (§ 85).

Couzal Cylinders.

82. A conducting circular cylinder of radius a surrounded by a second
coaxal cylinder of internal radius b will form a condenser. If e is the charge
on the inner cylinder per unit length, and if V is the potential at any point
between the two cylinders at a distance r from their common axis, we have,
asin § 75, :

V=C-2elogr,
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and it is now possible to determine the constant C as soon as the potential of
either cylinder is known.
Let V;, ¥; be the potentials of the inner and outer cylinders, so that
¥, =C - 2¢log a,
V= C — 2¢log b.

By subtraction V=V, =2¢log (g) ,
1

21og ()’

Parallel Plate Condenser.

83. This condenser consists of two parallel plates facing one another,
say at distance d apart. Lines of force will pass from the inner face of one
to the inner face of the other, and in regions sufficiently far removed from
the edges of the plate these lines of force will be perpendicular to the plate
throughout their length., If ¢ is the surface density of electrification of one
plate, that of the other will be —o. Since the cross-section of a tube
remains the same throughout its length, and since the electric intensity
varies as the cross-section, it follows that the intensity must be the same
throughout the whole length of a tube, and this, by Coulomb’s Theorem,
will be 4o, its value ab the surface of either plate. Hence the difference of
potential between the two plates, obtained by integrating the intensity 4o
along a line of force, will be

80 that the capacity is

per unit length.

4rad,

The capacity per unit area is equal to the charge per unit area o
divided by this difference of potential, and is therefore

1
4nd’
The capacity of a condenser formed of two parallel plates, each of area A4,
is therefore

A4

4rd’
except for a correction required by the irregularities in the lines of force
near the edges of the plates.

Inductive Capacity.

84. It was found by Cavendish, and afterwards independently by
Faraday, that the capacity of a condenser depends not only on the shape
and si'ze of the conducting plates but also on the nature of the insulating
material, or dielectric to use Faraday’s word, by which they are separated.
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1t is further found that on replacing air by some other dielectric, the
capacity of a condenser is altered in a ratio which is independent of the
shape and size of the condenser, and which depends only on the dielectric
jtself. This constant ratio is called the specific inductive capacity of the
dielectrie, the inductive capacity of air being taken to be unity.

We shall discuss the theory of dielectrics in a later Chapter. At present
it will be enough to know that if C is the capacity of a condenser when its
plates are separated by air, then its capacity, when the plates are separated
by any dielectric, will be KC, where K is the inductive capacity of the
particular dielectric used. The capacities calculated in this Chapter have all
been calculated on the supposition that there is air between the plates, so
that when the dielectric is different from air each capacity must be multi-
plied by K.

The following table will give some idea of the values of K actually observed for
different dielectrics. For a great many substances the value of K is found to vary widely
for diflerent specimens of the material and for different, physical conditions.

Sulphur 36 to 4-3. Methyl Alcohol at 13:4°C. 354
Mica 67 to 7°0. Water at 17° C. 81
Glass 5 to 10. Ice at —2°C. 939
Paraffin wax 20 to 2-3. lee at —200° C. 243

The values of A" for some gases arc given on p. 132.

CoMproUND CONDENSERS.
Condensers in Parallel.

85. Lect us suppose that we take any number of condensers of capacities
Cy, Ci, ... and connect all their high potential plates together by a conducting

S

[ .IJ’
t

\,
Fro. 81

wire, and all their low potential plates together in the same way. This is
known as connecting the condensers in parallel.

The high potential plates have now all the same potential, say ¥,, while
the low potential plates have all the same potential, say V,. If ¢, 6, ... are
the charges on the separate high potential plates, we have

e=C(Vi- V),
e, =C; (V,— V), ete,,
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and the total charge E is given by
E=6+6+...
=(C,+Cy+..)(V,=T,).
Thus the system of condensers behaves like a single condenser of capacity
Ci+ G+ Cy+ ...,

It will be noticed that the compound condenser discussed in § 81 con-
sisted virtually of two simple spherical condensers connected in parallel.

Condensers in Cascade.

86. We might, however, connect the low potential plate of the first to
the high potential plate of the second, the low potential plate of the second
to the high potential plate of the third, and so on. This is known as
arranging the condensers sn cascade.

,Jfl}/, ~,,.H

Fre. 32.

Suppose that thekhigh potential plate of the first has a charge e. This
induces a charge —e on the low potential plate, and since this plate together
with the high potential plate of the second condenser now form a single
insulated conductor, there must be a charge + ¢ on the high potential plate
of the second condenser. This induces a charge — e on the low potential
plate of this condenser, and so on indefinitely; each high potential plate will
have a charge + ¢, each low potential plate a charge — 6.

Thus the difference of potential of the two plates of the first condenser
will be ¢/C,, that of the second condenser will be ¢/C;, and so on, so that the
total fall of potential from the high potential plate of the first to the low
potential plate of the last will be

(Lol

We see that the arrangement acts like a single condenser of capacity

1
1 1
a*l*a-i—...
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Pracricar. CONDENSERS.

Practical Units.

87. As will be explained more fully later, the practical units of
electricians are entirely different from the theoretical units in which we
have so far supposed measurements to be made. The practical unit of
capacity is called the farad, and is equal, very approximately, to 9 x 10" times
the theoretical c.a.s. electrostatic unit, ie., is equal to the actual capacity
of a sphere of radius 9 x 10" cms. This unit is too large for most purposes,
so that it is convenient to introduce a subsidiary unit—the microfarad—
equal to a millionth of the farad, and therefore to 9 x 10° c..5. electrostatic
units. Standard condensers can be obtained of which the capacity is equal
to a given fraction, frequently one-third or onc-fifth, of the microfurad.

The Leyden Jar.

88. For experimental purposes the commonest form of condenser is the
Leyden Jar. This consists essentially of a glass vessel, bottle-shaped, of
which the greater part of the surface is coated
inside and outside with tinfoil. The two coatings
form the two plates of the condenser, contact with
the inner coating being established by a brass
rod which comes through the neck of the bottle,
the lower end having attached to it a chain
which rests on the inner coating of tinfoil.

To form a rough numericul cstimate of the
capacity of a Leyden Jar, let us suppose that the
thickness of the glass is } cm.,, that its specific
inductive capacity is 7, and that the area covered
with tinfoil is 400 sq. ems. Neglecting corrections required by the irregu-
larities in the lines of force at the edges and at the sharp angles at the
bottom of the jar, and regarding the whole system as a single parallel plate
condenser, we obtain as an approximate value for the capacity

I—{-;:! electrostatic units,

in which we must put K=7, 4 =400 and d =%. On substituting these
values the capacity is found to be approximately 450 electrostatic units,
or about yglyp microfarad.

Parallel Plates.

89. A more convenient condenser for some purposes is a modification of
the parallel plate condenser. Let us suppose that we arrange n plates, each
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of area A, parallel to one another, the distance between any two adjac?nt
plates being d. If alternate plates are joined together so as to be in electrical
contact the space between each adjacent pair of plates may be regarded as

Fiy. 34.

.. KA .
forming a single parallel plate condenser of capacity 7— . so that the capacity

of the compound condenser is (n—1) K4 /4wd. By making n large and d
small, we can make this capacity large without causing the apparatus to
occupy an unduly large amount of space. For this reason standard con-
densers are usually made of this pattern.

90. Guard Ring. In both the condensers described the capacity can
only be calculated approximately. Lord Kelvin has devised a modification
of the parallel plate condenser in which the error caused by the irregularities
of the lines of force near the edges is dispensed with, so that it is possible
accurately to calculate the capacity from measurements of the plates.

Fia. 35.

The principle consists in making one plate B of the condenser larger than
the second plate A4, the remninder of the space opposite B being occupied by
a “guard ring” C which fits 4 so closcly as almost to touch, and is in the
same plane with it. The guard ring €' and the plate 4, if at the same
potential, may without serious error be regarded as forming a single plate of
a parallel plate condenser of which the other plate is B. The irregularities
in the tubes of force now occur at the outer edge of the guard ring C, while
the lines of force from A to B are perfectly straight and uniform. Thus if 4
is the area of the plate 4 its capacity may be supposed, with great accuracy,
to be

y: |
m >
where d is the distance between the plates 4 and B.
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Submarine Cables.

91. Unfortunately for practical electricians, a submarine cable forms
a condcnser, of which the capacity is frequently very considerable. The
effect of this upon the transmission of signals will be discussed later. A cable
consists generally of a core of strands of copper wire surrounded by a layer of
insulating material, the whole being enclosed in a sheathing of iron wire.
This arrangement acts as a condenser of the type of the coaxal cylinders
investigated in § 82, the core forming the inner cylinder whilst the iron
sheathing and the sea outside forin the outer cylinder.

In the capacity formula obtained in § 82, namely
K

e )

let us suppose that b = 2a, and that K = 32, this being about the value for
the insulating material generally used. Using the value log, 2 = -69315, we
find a capacity of 2:31 electrostatic units per unit length. Thus a cable
2000 miles in length has a capacity equal to that of a sphere of radius
2000 x 231 miles, t.e., of a sphere greater than the earth. In practical units,
the capacity of such a cable would be about 827 microfarads.

MecHANICAL FoRCE oN A CONDUCTING SURFACE.

92. Let Q be any point on the surface of a conductor, and let the
surface-density at the point @ be o. Let us draw any small area dS

—

Fio. 36.

enclosing Q. By taking dS sufficiently small, we may regard the area as
perfectly plane, and the charge on the area will be odS. The electricity on
the remainder of the conductor will exert forces of attraction or repulsion on
the charge odS, and these forces will shew themselves as a mechanical force
acting on the element of arca dS of the conductor. We require to find the
amount of this mechanical force.
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The electric intensity at 8 point near Qand just outside the oznductor Is
daro, by Coulomb’s Law, and its direction 18 normall_y away from the surface.
Of this intensity, part arises from the charge on d.§ itself, and part from t.;he
charges on the remainder of the conductor. As regards the first part, which
arises from the charge on di itself, we may notice that when we are con-
sidering a point sufficiently close to the surface, the element dS may be
treated as an infinite electrified plane, the electrification being of uniform
density o. The intensity arising from the electrification of dS at such a
point is accordingly an intensity 2o normally away from the surface. Since
the total intensity is 4o normally away from the surface, it follows that the
intensity arising {rom the electrification of the parts of the conductor other
than dS must also be 2w normally away from the surface. It is the forces
composing this intensity which produce the mechanical action on dS.
The charge on dS being odS, the total force will be 27wo?dS normally away
from the surface. Thus per unit area there is a force 27ra* tending to repcl
the charge normally away from the surface. The charge is prevented from
leaving the surface of the conductor by the action between electricity and
matter which has alrcady been explained. Action and reaction being equal
and opposite, it follows that there is a mechanical force 27o* per unit area
acting normally outwards on the material surface of the conductor.

Remembering that R = 4w, we find that the mechanical force can also

be expresced as g—r per unit area.

93. Let us try to form some estimate of the magnitude of this mechanical
force as compared with other mechanical forces with which we are more
familiar. We have already mentioned Maxwell’s estimate that a gramme of
gold, beaten into a gold-leaf one square metre in area, can hold a charge of
60,000 electrostatic units. This gives 3 units per square centimetre as the
charge on each face, giving for the intensity at the surface,

R = 4mwo = 38 C.G.s. units,

and for the mechanical force
R?
2mat = 8= 56 dynes per sq. cma,

Lord Kelvin, however, found that air was capable of sustaining a
tension of 9600 grains wt. per sq. foot, or about 700 dynes per sq. cm.
This gives R =130, o = 10.

Taking R=100 as a large value of R, we find 8—R1—:_=400 dynes per

sq. cm. The pressure of a normal atmosphere is
1,013,570 dynes per sq. cm.,
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s that the force on the conducting surface would be only about ygpy of an
atmosphere: say ‘3 mm. of mercury.

If a gold-leaf is beaten so thin that 1 gm. occupies 1 sq. metre of area,
the weight of this is ‘0981 dyne per sq. cm. In order that 2wc® may be
equal to "0981, we must have o ='1249. Thus a small piece of gold-leaf
would be lifted up from a charged surface on which it rested as soon as the
surface acquired a charge of about } of a unit per sq. cmn.

Electrified Soap-Bubble.

94. As has already been said, this mechanical force shews itself well on
electrifying a soap-bubble.

Let us first suppose a closed soap-bubble blown, of radius a. If the
atmospheric pressure is I1, the pressure inside will be somewhat greater than
I, the resulting outward force being just balanced by the tension of the
surface of the bubble. If, however, the bubble is electrified there will be an
additional force acting normally outwards on the surface of the bubble, namely
the force of amount 27o® per unit area just investigated, and the bubble will
expand until equilibrium 1s reached between this and the other forces acting
on the surface.

As the electrification and consequently the radius change, the pressure
inside will vary inversely as the volume, and therefore inversely as a® Let

——-
P

Fia. 87.

us, then, suppose the pressure to be x/a>. Consider the equilibrium of the
small element of surface cut off by a circular cone through the centre, of small
semi-vertical angle 6. This element is a circle of radius af, and therefore

of area ma*¢®. The forces acting are:
(i) The atmospheric pressure Il7a*6® normally inwards.

(ii) The internal pressure —'f, wa*6® normally outwards.
w
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(iii) The mechanical force due to electrification, 27a? x wa6® normally

outwards.

(iv) The system of tensions acting in the surface of the bubble across

the boundary of the element.

If T is the tension per unit length, the tension across any element of
length ds of the small circle will be 7'ds acting at an angle 6 with the tangent
plane at P,'the centre of the circle. This may be resolved into T'dscos § in
the tangent plane, and T'dssin @ along PO. Combining the forces all round
the small circle of circumference 27af, we find that the components in the
tangent plane destroy one another, while those along PO combine into a
resultant 27ad x T'sin . To a sufficient approximation this may be written
a8 2mral*T.

The equation of equilibrium of the element of area is accordingly

Hraid® — 5’ 7a*®? - 2watna*@ + 2mab? T = 0,

2T

or, simplifying, - (fﬁ— matt = L (28).

Let a, be the radius when the bubble is uncharged, and let the radius be
@, when the bubble has a charge e, so that

- ¢
o= 47a2’
Then n-%ﬂ’ =0,
Q' Uy
« e 2T

m- a_{‘ - 811'_-6!,‘ + Z =0,
We can without serious error assume 7' to be the same in the two cases.
If we eliminate 7 from these two equations, we obtain
1 1 e
@ =00 = (33 23) =g
giving the charge in terms of the radii in the charged and uncharged states.

95. We have seen (§ 93) that the maximum pressure on the surface
which electrification can produce is only about ;7 atmosphere: thus it is
not possible for electrification to change the pressure inside by more than
about ggyy atmosphere, so that the increase in the size of the bubble is
necessarily very slight.

If, however, the bubble is blown on a tube which is open to the air,
equation (28) becomes
1’

=",
a



94-97) Energy 83

As a rough approximation, we may still regard the bubble as & uniformly
charged sphere, so that if V' is its potential,

o = Vidmra,
and the relation is V2=16ma T,

giving V in terms of the radius of the bubble, if the tension T'is known. In
this case the electrification can be made to produce a large change in the
radius, by using films for which T is very small

Energy of Discharge.

96. On discharging a conductor or condenser, a certain amount of
cnergy is set free. This may shew itself in various ways, e.g. as a spark or
sound (as in lightning and thunder), the heating of a wire, or the piercing
of a hole through a solid dielectric. The energy thus liberated has been
previously stored up in charging the conductor or condenser.

To calculate the amount of this cnergy, let us suppose that one plate of
a condenser is to earth, and that the other plate has a charge e and is at
potential V, so that if C is the capacity of the condenser,

€=CV oot (29).

If we bring up an additional charge de trom infinity, the work to be
done is, in accordance with the definition of potential, Vde. This is equal
to dW, where W denotes the total work done in charging the condenser up
to this stage, so that

dW = Vde

—C— by equation (29).
On integration we obtain
2
W=15 e, veerrerneaes (30),

no constant of integration being added since W must vanish when ¢=0.
This expression gives the work done in charging a condenser, and therefore
gives also the energy of discharge, which may be used in creating a spark,
in heating a wire, etc.

Clearly an exactly similar investigation will apply to a single conductor,
so that expression (30) gives the energy cither of a condenser or of a single

conductor. Using the relation e = C'V, the energy may be expressed in any
one of the forms

W=}g=§el'=§01’* ........................ (31).

97. As an example of the use of this formula, let us suppose that we
have a parallel plate condenser, the area of each plate being A, and the
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distance of the plates being d, so that C=A4/4wd, by §83. Let o be the
surface density of the high potential plate, so that e=cd. Let the low
potential plate be at zero potential, then the potential of the high potential
plate is

V=03,=4md¢r,

and the electrical energy is
W =3}eV =2wda'4.

Now let us pull the plates apart, so that & is increased to d’. The
electrical energy is now 2mwd'¢®4, so that there has been an increase of
electrical energy of amount

2nwo’d (d — d).

It is easy to sce that this exactly represents the work done in separating
the two plates. The mechanical force on either plate is 27r0® per unit area,
8o that the total mechanical force on a plate is 2mo®4. Obviously, then,
the above is the work done in separating the plates through a distance
d —d.

It appears from this that a parallel plate condenser affords a ready means
of obtaining electrical energy at the expense of mechanical. A more valuable
property of such a condenser is that it enables us to increase an initial
difference of potential. The initial difference of potential

4mdo
is increased, by the separation, to
dard'o.

By taking d small and d’ large, an initial small difference of potential
may be multiplied almost indefinitely, and a potential difference which is
too small to observe may be increased until it is sufficiently great to affect
an instrument. By waking use of this principle, Volta first succeeded in
detecting the difference ot electrustatic potential between the two terminals
of an electric battery.

There are practical difficulties which restrict the application of the prineiple.
Forif the initial distance d is made too small the condenser may discharge itself
by a spark passing directly between the plates, while if d’ is made large com-
pared with the size of the plates the formulae we have used are no longer true,

EXAMPLES.

1. The two plates of a parallel plate condenser are each of area A, and the distance
between them is d, this distunce being small compared with the size of the plates. Find
the attraction between them when charged to potential difference V, neglecting the
irregularities cansed by the edges of the plates. Find also the energy set free when the
plates are connected by a wire.
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2. A sheet of metal of thickness ¢ is introduced between the two plates of a parallel
plate condenser which are at a distance d apart, and is placed so as to be parallel to the
plates. Shew that the capacity of the condenser is increased by an amount

t
4dnd (d—12)

per unit area. Examine the case in which ¢ is very nearly equal to d.

8. A high-pressure main consists first of a central conductor, which is a copper tube
of inner and outer diameters of y% and }§ inches. The outer conductor is a second copper
tube coaxal with the first, from which it is separated by insulating material, and of
diameters 13} and 1}§ inches. Outside this is more insulating material, and enclosing
the whole is an iron tube of internal diameter 2% inches. The capacity of the conductor
is found to be ‘367 microfarad per mile : calculate the inductive capacity of the insulating
material

4 An infinite plane is charged to surface density o, and P is a point distant half an
inch from the plane. Shew that of the total intensity 2xo at P, half is due to the charges
at points which are within one inch of P, and half to the charges beyond.

B. A disc of vulcanite (non-conducting) of radius 6 inches, is charged to a uniform
surface density ¢ by friction. Find the electric intensities at points on the axis of the
disc distant respectively 1, 3, 5, 7 inches from the surface.

6. A condenser consists of a sphere of radius a surrounded by a eoncentric spherical
shell of radius . The inner sphere is put to earth, and the outer shell is insulated.

Shew that the capacity of the condenser so formed is I—)bf—.

7. Four equal large conducting plates 4, B, C, D are fixed parallel to one another.
4 and D are connected to earth, B has u charge £ per unit area, and C a charge £’ per
unit area. The distance between 4 and B is a, between B and C'is b, and between C and
Disec. Find the potentials of B and C.

8. A circular gold-leaf of radius b is laid on the surface of a charged conducting
sphere of radius a, a being large compared to b. Prove that the loss of electrical energy
in removing the leaf from the conductor—assuming that it carries away its whole charge—
is approximately } b2£?/a®, where £ is the charge of the conductor, and the capacity of the
leaf is comparable to b.

9. Two condensers of capacities ¢ and Cj, and possessing initially charges @; and @,
are connected in paraliel. Shew that there is a loss of energy of amount

(G —C1 Q)2
20,0, (Cx +Cy)’

10. Two Leyden Jars 4, B have capacities C, C; respectively. 4 is charged and a
spark taken: it is then charged as before and a spark passed between the knobs of
A and B. 4 and B are then separated and are each discharged by a spark. Shew that
the energies of the four sparks are in the ratio

(C)'I- Cg)z H (C1+03) 09 H 01’ : C.G',.

11. Assuming an adequate number of condensers of equal capacity C, shew how a
compound condenser can be formed of equivalent capacity 6C, where 6 is any rational
number,
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12. Three insulated concentric spherical conductors, whose radii in ascending order
of magnitude are a, b, ¢, have charges ¢, ¢;, es respectively, find their potentials and shew
that if the innermost sphere be connected to earth the potential of the outermost is

diminished by
2(a, % i’)
c<a+b+c :

13. A conducting sphere of radius @ is surrounded by two thin concentric spherical
conducting shells of radii & and ¢, the intervening spaces being filled with dielectrics of
inductive capacities A and L respectively. If the shell b receives a charge E, the other
two being uncharged, determine the loss of energy and the potential at any point when
the spheres 4 and C are connected by a wire.

14. Three thin conducting sheets are in the form of concentric spheres of radii
a+d, a, a=c respectively. The dielectric between the outer and middle sheet is of
inductive capacity X, that between the middle and inner sheet is air. At first the outer
sbeet is uninsulated. the inner sheet is uncharged and msulated, the middle sheet is
charged to potential V and insulated. The inner sheet is now uninsulated without
connection with the middle sheet. Prove that the potential of the middle sheet fulls to

KVec(a+d)
Ke(a+d)+d(a=c)”

15. Two insulated conductors 4 and B are geometrically similar, the ratio of their
linear dimensions being as Z to L. The conductors are placed so as to be out of each
other’s field of induction. The potential of 4 is V and 1ts charge 1 &, the potential
of B is V' and its charge is . The conductors are then connected by a thin wire.
Prove that, after electrostatic equilibrium bhas been restored, the loss of electrostatic
energy is
YA

16. If two surfaces be taken in any family of equipotentials in free space, and two
metal conductors formed so as to occupy their positions, then the capacity of the

condenser thus formed is C—,gl%, , where (i, O, are the capacities of the external and
1=y

3 (EL - E'LY(V-V")

internal conductors when existing alone in an infinite ficld.

17. A conductor (B) with one iuternal cavity of radius b is kept at potential U, A
conducting sphere (d4), of radius a, at great height alove B contains in a cavity water
which leaks down a very ti.in wire passing without contact into the cavity of B through
a hcle in the top of L. At the end of the wire spherical drops are formed, concentric
with the cavity ; and, when of radius d, they full passing without contact through a small
hole in the bottom of B, and are reccived in a cavity of u third conductor (C) of capacity ¢
at a great distance below B, Initially, before leaking commences, the conductors 4 and €
are uncharged. Prove that after the rth drop has fallen the potential of C is

{ Ea'(b‘—”——d)r -112yp,;
(ab+dd=ady } ¢’
where the disturbing effect of the wire and hole on the capacities is neglected.

18. An insulated spherical conductor, formed of two hemispherical shells in contact,
whose inner md' outer radii are b and ¥, has within it a concentric spherical conductor of
radius @, and without it another spherical conductor of which the internal radius is [
These two conductors are earth-connected and the middle one receives a charge. Shew
that the two shells will not separate if

2ac>be+ba.
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19. Outside a spherical charged conductor there is & concentric insulated but un-
charged conducting spherical shell, which consists of two segments. Prove that the two
segments will not separate if the distance of the separating plane from the centre is less
than

%
@+’
where a, b are the internal and external radii of the shell,

20. A soap-bubble of radius « is formed by a film of tension 7', the external
atmospheric pressure being . The bubble is touched by a wire from a large conductor
at potential V, and the film is an electrical conductor. Prove that its radius increases to
r, given by

n(ﬂ-an)+2r(r=-aﬂ)=%'.

21. If the radius and tension of a spherical soap-bubble be a and 7' respectively,
shew that the charge of electricity required to expand the bubble to twice its linear
dimensions would be

4 \/7d¥(6T+71a),
Il being the atmospheric pressure.

22. A thin spherical conducting envelope, of tension 7' for all magnitudes of its
radius, and with no air inside or outside, is insulated and charged with a quantity @ of
electricity. Prove that the total gain in mechanical energy mnvolved in bringing a charge
¢ from an infinite distance and placing it on the envelope, which both initially and finally
is in mechanical equilibrium, is

2@ (Q+9)t- ¢,

23. A spherical soap-bubble is blown inside another concentric with it, and the
former has a charge E of electricity, the latter being originally uncharged. The latter
now has a small charge given to it. Shew that if @ and 2« were the original radii, the
new radii will be approximately a4z, 2a+y, where

101 7E?
12y (o + T)=x(24ﬂa+7 T+m>,
where I is the atmospheric pressure, and 7' is the surface-tension of each bubble.

24 Shew that the electric capacity of & conductor is less than that of any other
conductor which can completely surround it.

25. If the inner sphere of a concentric spherical condenser is moved slightly out of
position, so that the two spheres are no longer concentric, shew that the capacity is

increased,



CHAPTER IV

SYSTEMS OF CONDUCTORS

98. IN the present Chapter we discuss the general theory of an electro-
static field in which there are any number of conductors. The charge on
each conductor will of course influence the distribution of charges en the other
conductors by induction, and the problem is to investigate the distributions
of electricity which are to be expected after allowing for this mutual
induction,

We have seen that in an electrostatic field the potential cannot be a
maximum or a minimum except at points where electric charges occur. It
follows that the highest potential in the field must oceur on a conductor, or
else at infinity, the latter case occurring only when the potential of every
conductor is negative. Excluding this case for the moment, there must be
one conductor of which the potential is higher than that anywhere else in
the field. Since lines of force run only from higher to lower potential (§ 36),
it follows that no lines of force can enter this conductor, there being no
higher potential from which they can come, so that lines of force must leave
it at every point of its surface. In other words, its electrification must be
positive at every point.

So also, except w'.en the potential of every conductor is positive, there
must be one conductor of which the potential is lower than that anywhere
else in the field, and the electrification at every point of this conductor must
be negative.

If the total charge on a conductor is nil, the total strength of the tubes
of force which enter it must be exactly equal to the total strength of the
tubes which leave it. There must therefore be both tubes which enter and
tubes which leave its surface, so that its potential must be intermediate
between the highest and lowest potentials in the field. For if its potential
were the highest in the field, no tubes could enter it, and vice versd. On
any such conductor the regions of positive electrification are separated from
regions of negative electrification by “lines of no electrification,” these lines
being loci along which 0=0. In general the resultant intensity at any
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point of & conductor is 4wc. At any point of a line of no electrification,
this intensity vanishes, so that every point of a “line of no electrification”
is also a point of equilibrium.

At a point of equilibrium we have already seen that the equipotential
through the point cuts itself. A line of no electrification, however, lies
entirely on a single equipotential, so that this equipotential must cut itself
along the line of no electrification. Moreover, by § 69, it must cut itself at
right angles, except when it consists of more than two sheets.

99. We can prove the two following propositions:

1. If the potential of every conductor in the field is given, there 13 only
one distribution of electric charges which will produce this distribution of
potential.

II. If the total charge of every conductor in the field EA given, there is
only one way in which these charges cun distribute themselves so as to be in
equilibrium.

If proposition I. is not true, let us suppose that there are two different
distributions of electricity which will produce the required potentials. Let
o denote the surface density at any point in the first distribution, and ¢’ in
the second. Consider an imaginary distribution of electricity such that the
surface density at any point is ¢ —o’. The potential of this distribution

at any point P is
e o5

where the integration extends over the surfaces of all the conductors, and
r is the distance from P to the element dS. If P isa point on the surface

of any conductor,
ff —dS and ff —dS
r r

are by hypothesis equal, each being equal to the given potential of the
conductor on which P lies. Thus

B 50505,

so that the supposed distribution of density o — ¢’ is such that the potential
vanishes over all the surfaces of the conductors. There can therefore be no
lines of force, so that there can be no charges, 7.e., 0 — ¢’ = 0 everywhere, so
that the two distributions are the same.

And again, if proposition IL is not true, let us suppose that there are
two different distributions ¢ and ¢’ such that the total charge on each
conductor has the assigned value. A distribution o~ ¢’ now gives zero
as the total charge on each conductor. It follows, as in § 98, that the
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potential of every conductor must be intermediate between the highest and
lowest potentials in the field, a conclusion which is obviously absurd, as
it prevents every conductor from having either the highest or the lowest
potential. It follows that the potentials of all the conductors must be equal,
so that again there can be no lines of force and no charges at any point,
1.6, o =0 everywhere.

It is clear from this that the distribution of electricity in the field is fully
specified when we know either

(i) the total charge on each conductor,

or (ii) the potential of each conductor.

SUPERPOSITION OF EFFECTS.

100. Suppose we have two equilibrium distributions:

(i) A distribution of which the surface density is o at any point,
giving total charges E,, L,, ... on the different conductors, and potentials
.Vll K) tooe

(ii) A distribution of surface density o', giving total charges Ey', Ey, ...
and potentials V', V', ....

Consider a distribution of surface density o+ ¢’. Clearly the total
charges on the conductors will be E, + E/, E, + E,, ..., and if V, is the
potential at any point P,

V= J’ J' o+ o ds,

r

where the notation is the same as before. If P is on the first conductor,
however, we know that

* Jfzos-.
[z

80 that V. =¥ + ¥’; and similarly when P is on any other conductor. Thus
the imaginary distribution of surface density is an equilibrium distribution,
since it makes the surface of each conductor an equipotential, and the

potentials are ,
“ V+V, V+V, ... )

The total charges, as we have seen, are E, + E/, E,+E/ ..., and from
the Proposition previously proved, it follows that the distribution of surface-
density o + o’ is the only distribution corresponding to these charges.

We have accordingly arrived at the following proposition :

If charges E,, E,, ... give rise to potentials V,, V,, ..., and if charges
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E/, B/, ... give rise to potentials V', V/, ..., then charges E, + E/, E,+ E;, ..
will give rise to potentials Vi + V,, V,+ ¥, ....

In words: if we superpose two systems of charges, the potentials produced
can be obtained by adding together the potentials corresponding to the two
component systems,

Clearly the proposition can be extended so as to apply to the superposition
" of any number of systems.

We can obviously deduce the following :

If charges E,, E,, ... give rise to potentials ¥, V., ..., then charges
KE,, KE,, ... give rise to potentials KV,, KV, ....

101. Suppose now that we have n conductors fixed in position and
uncharged. Let us refer to these conductors as conductor (1), conductor (2),
etc. Suppose that the result of placing unit charge on conductor (1) and
leaving the others uncharged is to produce potentials

Pu, Py - Piny

on the » conductors respectively, then the result of placing E, on (1) and
leaving the others uncharged is to produce potentials

ann PuEh '--PmEx-

Similarly, if placing unit charge on (2) and leaving the others uncharged
gives potentials

Pas Pas «oo Pony
then placing E, on (2) and leaving the others uncharged gives potentials

PnEz, stEz: ---PmEs-

In the same way we can calculate the result of p]aciqﬁ E; on (3), E, on
(4), and so on.

If we now superpose the solutions we have obtained, we find that the
effect of simultaneous charges £,, E,, ... K, is to give potentials ¥, ¥, ... ¥,
where

V=puEi+pnE, +p, L+ ... \L
Vi=puli4 puEs + PB4+ oo b veviienenennnan(82).
ete.

These equations give the potentials in terms of the charges. The
coefficients py,, pu, ... do not depend on either the potentials or charges,
being purely geometrical quantities, which depend on the size, shape and
position of the different conductors.
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Green’s Reciprocation Theorem.

102. Let us suppose that charges e, €q, ... on elements of conducting
surfaces at P, Q, ... produce potentials V5, ¥, ... at P, @, ..., and that
similarly charges e;, eg, ... produce potentials V', ¥y, .... Then Green’s
Theorem states that

Se Wy =2ep' Vs,

the summation extending in each case over all the charges in the field.

To prove the theorem, we need only notice that

e
VP =3 TQQ' ’
the summation extending over all charges except ep, so that in Ze,'V, the

coefficient of 7%« is ep'eq from the term ep'Vp, and epey from the term
eq'Vo. Thus
Se, V, = S3 %% T ep

PQ

= Ze,Vy, from symmetry.

103. The following theorem follows at once:

If total charges E,, K, on the separate conductors of a system produce
potentials V,, V,, ..., and if charges E,, E/, ... produce potentials V',
V') eee, then

SEV =SE'V ceueiieinncinivcerenniinnnn (33),
the summation eatending in each case over all the conductors.

To see the truth of this, we need only divide up the charges E,, E,, ...
into small charges ep, €g, ... on the different small elements of the surfaces
of the corductors, and the proposition becomes identical with that just
proved.

104 Let us now cousider the special case in which
E, =1 E,=E=E=..=0,

so that Vi=py, V.=p, ete;

and E'=0, E/=1, E/=E/=...=0.

so that V' =pn, V. =pa, etc

Then XEV" =p, and SE'V = p,,, so that the theorem just proved becomes
P12 = Pa.

In words: the potential to which (1) is raised by putting unit charge on
(2), all the other conductors being uncharged, is equal to the potential to
which (2) is raised by putting unit charge on (1), all the other conductors
being uncharged.
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As a special case, let us reduce conductor (2) to a point P, and suppose
that the system contains in addition only one other conductor (1). Then

The potential to which the conductor 18 raised by placing a umit charge
at P, the conductor itself being uncharged, is equal to the potential at P when
unit charge 18 placed on the conductor.

For instance, let the conductor be a sphere, and let the point P be at a
distance r from its centre. Unit charge on the sphere produces potential

;‘; at P, so that unit charge at P raises the sphere to potential %; .

Coefficients of Potential, Capacity and Induction.

105. The relations p,;=py, ete. reduce the number of the coefficients
Pns Piss --- Pun, Which occur in equations (32), to 4n(n+1). These coeffi-
cients are called the coefficients of potential of the n conductors. Knowing
the values of these coefficients, equations (31) give the potentials in terms
of the charges.

If we know the potentials ¥, ¥, ..., we can obtain the values of the
charges by solving equations (82). We obtain a system of equations of

the form
El=9nK+q~nK+ v '
E =q,V.+ quV.+... } ceresassssunesitarsinnas (34).
etc.

The values of the ¢'s obtained by actual solution of the equations (32), are

In - — G _}_
p”p”“'pm Pmpn---Pm —A
PnPs .- P PusPs - P RPN (85),
P Psn - Prn P Psn -+« Pan
where A=| pupPu-. P |+
P3P -« P2
PunPan oo Pan

Thus g, is the co-factor of p,, in A, divided by A.
The relation Grs = Qor

follows as an algebraical consequence of the relation p,, = p,,, or is at once
obvious from the relation

SEV' =3XE'V,
and equations (34), on taking the same sets of values as in § 104.
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There are n coefficients of the type gy, ¢n, -.- ¢na. These are known as
coefficients of capacity. There are n(n — 1) coefficients of the type g,,, and
these are known as coefficients of induction,

From equations (34), it is clear that g, is the value of E, when
V=1, V,=V;=...=0. This leads to an extended definition of the
capacity of a conductor, in which account is taken of the influence of the
other conductors in the field. We define the capacity of the conductor 1,
when in the presence of conductors 2, 3, 4, ..., to be g,,, namely, the charge
required to raise conductor 1 to unit potential, all the other conductors being
put to earth.

ENERGY OF A SYSTEM OF CHARGED CONDUCTORS.

106. Suppose we require to find the energy of a system of conductors,
their charges being E,, £, ... E,, so that their potentials are V, ¥, ... V5
given by equations (32).

Let W denote the energy when the charges are kE,, kE,, ... kE,.
Corresponding to these charges, the potentials will be &V, k¥, ... kV,. It
we bring up an additional small charge dk. K, from infinity to conductor 1,
the work to be done will be dkE, . k¥,; if we bring up dkE, to conductor 2
the work will be dkE,;kV, and so on. Let us now bring charges dkZ, to 1,
dkE; to 2, dkE, to 3, ... dkE, to n. The total work done is

kdk (BV,+ EV;+ oo + E\V,) covvenncnnnninnnnnnn. (36),
and the final charges are
(k+dk) E,, (k+ dk)E,, ... (k+ dk) E,.

The energy in this state is the same function of & + dk as W is of k, and may
therefore be expressed as

ow
Expression (36), the increase in energy, is therefore equal to %II{ dk, whence

O = k(B + EX+ ...+ BV,
so that on integration
W = ékz (E{K"‘ EQK"‘ ose + Enm)'
No constant of integration is added, since W must vanish when % =0.

Taking k=1, we obtain the energy corresponding to the final charges
E, E,, ... E,, in the form
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If we substitute for the Vs their values in terms of the charges as given by
equations (32), we obtain

W=i’<an|'+ 2anlE’ +paE"+ ---) ------ secneness (38),
and similarly from equations (34),
W= % (qlx‘[{2 + 2qrgm + q;aw + ...) .................. (39),

107. If W is expressed as a function of the E’s, we obtain by differ-
entiation of (38),
‘gf —PnE +P12E9 + ..+ pinEy
=¥, by equations (32).

This result is clear from other considerations. If we increase the charge
on conductor 1 by dE,, the increase of energy is 82‘7 dE,, and is also VdE,

since this is the work done on bringing up a new charge dE, to potential ¥;.
Thus on dividing by dF,, we get

52,: e /A TP veeeen (40)
So also %1%,7 =i aeserncaanees 41)
1

as is at once obvious on differentiation of (39).

108. In changing the charges from E,, E,, ... to K/, E/, ... let us suppose
that the potentials change from V), ¥,,... to ¥, ¥, .... The work done,
W' — W, is given by

W —-W=}3(E'V'- EV).
Since, however, by § 103, ZEV’ = ZE"V, this expression for the work done
can either be written in the form

}S{E'V - EV—-(EV'-E'V)),
which leads at once to
W —W=33(E —EY(V' + V) cirrceernennneee(42);
or in the form Z{E'V' - EV+(EV' -E'V)},
which leads to W —W=4Z(V=V)E +E).ccruuuceunnun.... (43).
109. If the changes in the charges are only small, we may replace £’ by
E + dE, and find that equation (42) reduces to
dW = SVdE,
from which equation (40) is obvious, while equation (43) reduces to
dW =ZEdV,
leading at once to (41).
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110. It is worth noticing that the coefficients of potential, capacity and
induction can be expressed as differential coefficients of the energy; thus

oW
bu= ‘5‘2:;;
*ew
Pn=5Fr‘a—E,
4

(In=m’

and so on.
The last two equations give independent proofs of the relations

Prs = Psrs  918= Qare

PROPERTIES OF THE COEFFICIENTS.

111. A certain number of properties can be deduced at once from the
fact that the energy must always be positive. For instance since the value
of W given by equation (38) is positive for all values of E,, K,, ... Ly, it
follows at once that

Du» Doy Pasy .- BTE positive,
that pypx — pu’ 18 positive, that
Pu P Prs
PuPaPs | 18 positive
P Pu P
and so on. Similarly from equation (39), it follows that
gn, Gz (s, ... BTE Positive,
and there are other relations similar to those above.

112. More valuable properties can, however, be obtained from a con-
sideration of the distribution of the lines of forcc in the field.

Let us first consider the field when
Ei=1 E,=E,=...=0.
The potentials are Vi=pu, V.=pp, etc.

Since conductors 2, 3, ... are uncharged, their potentials must be inter-
mediate between the highest and lowest potentials in the field. Thus the
potential of 1 must be either the highest or the lowest in the field, the other
extreme potential being at infinity. It is impossible for the potential of 1
to be the lowest in the field; for if it were, lines of force would enter in at
every point, and its charge would be negative. Thus the highest potential
in the field must be that of conductor 1, and the other potentials must all



110-114] Properties of the Cogpicienis o7

be intermediate between this potential and the potential at infinity, and
must therefore all be positive. Thus py, Pig, Pus, -+« Pan are all positive and
the first {s the greatest.

Next let us put V=1 V=V=..=0,
so that the charges are g, Qs Gy +o- Gine
The highest potential in the ficld is that of conductor 1. Thus lines of
force leave but do not enter conductor 1. The lines may either go to the
other conductors or to infinity. No lines can leave the other conductors.
Thus the charge on 1 must be positive, and the charges on 2, 3, ... all negative,
1.6., qu is positive and gy, ¢us, ... are all negative. Moreover the total strength
of the tubes arriving at infinity is gy + ¢i+ qu+ ... + Qia, 80 that this must
be pusitive.
113. To sum up, we have seen that
(i)  All the coefficients of potential (py, Py, -..) are positive,
(ii) All the coefficients of capacity (qu, g, -..) are positive,
(iii) All the coefficients of induction (g;s, gus, -..) are negative,
and we have obtained the relations
(Pn — Pue) 18 positive,
(gu+ qu+ ... + (un) is positive,
In limiting cases it is of course possible for any of the quantities which
have been described as always positive or always negative, to vanish.

VaLuEs oF THE COEFFICIENTS IN SPECIAL CASES.

Electric Screening.

114, The first case in which we shall consider the values of the
cocfficients is that in which one conductor, say 1, is completely surrounded

by a second conductor 2.
N

Y,

Fia. 88,

1f E, =0, the conductor 2 becomes a closed conductor with no charge
inside, so that the potential in its interior is constant, and therefore ¥, =¥,
Putting E,=0, the relation ¥/ =V, gives the equation

(Pru—pw) s+ (Pra— D) Es+ ... =0,
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This being true for all values of £, E,, ... we must have
pn =Pm; Pu =P’3' ete.

Next let us put unit charge on 1, leaving the other conductors uncharged.
The energy is $py. If we join 1 and 2 by a wire, the conductors 1 and 2
form a single conductor, so that the electricity will all flow to the outer
surface. This wire may now be removed, and the energy in the system is 4 py,.
Energy must, however, have been lost in the flow of electricity, so that p,

must be less than py.

Since we have already seen that p,,=p. and p, —p,, cannot be negative,
it is clear that p, cannot be greater than p,. The foregoing argument,
however, goes further and enables us to prove that p, — px is actually
positive.

Let us next suppose that conductor 2 is put to earth, so that ¥,=0.
Then if E,=0, it follows that ¥/=0. Hence from the equations

El = QHI{*’ qn.V’+ eee ¥ q"‘.Vn ..................... (44)
we obtain in this special case that
un;+ QMV."" et QmV:;= 0.
This is true, whatever the values of ¥;, ¥, ..., so that
Qu=qu=-.. =9m=0-

Suppese that conductor 1 is raised to unit potential while all the other
conductors are put to earth. The aggregate strength of the tubes of force
which go to infinity, namely gu + qia + ... + ¢in (§ 112), is in this case zero, so
that g, =—gqu.

The system of equations (44) now reduces, when ¥V,=0, to

Ei=quVl oo (45),
Li=quV+ @Vi+ @Vt oo eeiiviiiiennnnnnn. (46),
E,= q»ﬂ+ (1,41’:+ .o
E4=9uva+7uv:+ .

Equations (47) shew that the relations between charges and potential
outside 2 are quite independent of the electrical conditions which obtain
inside 2. So also the conditions inside 2 are not affected by those outside 2,
as is obvious from equation (45). These results become obvious when we
consider that no lines of force can ¢ross conductor 2, and that there is no way

except by crossing conductor 2 for a line of force to pass from the conductors
outside 2 to those inside 2.

An electric system which is completely surrounded by a conductor at
potential zero is said to be “elcctrically screened ” from all electric systems
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outside this conductor; for charges outside this “screen” cannot affect the
screened system. The principle of electric screening is utilised in electro-
static instruments, in order that the instrument may not be affected by
external electric actions other than those which it is required to observe. As
a complete conductor would prevent observation of the working of the
instrument, a cage of wire is frequently used as a screen, this being very
nearly as efficient as a completely closed conductor (see § 72). In more
delicate instruments the screening may be complete except for a small
window to admit of observation of the interior.

Spherical Condenser.

115. Let us apply the methods of this Chapter to the spherical con-
denser described in § 79. Let the inner sphere of radius a be taken to be
conductor 1, and the outer sphere of radius b be tuken to be conductor 2.

The equations connecting potentials and charges are

V=puE\ +pyE,

Vz =p:2Ex +p:2E2~
A unit charge placed on 2 raises both 1 and 2 to potential 1/b, so that on
putting £, =0, E,=1, we must have ¥ =V, =1/b. Hence it follows that

1
Pu=pa=g-.
If we leave 2 uncharged and place unit charge on 1, the field of force is that
investigated in § 79, so that ¥ =1/a, V;=1/b. Hence
1 1
Pu= a’ Pu= b

These results exemplify
(i) the general relation p,, = py,
(ii) the relation peculiar to electric screening, p,, =psy.

The equations now become

E, E,
V= E +3
_E _E
E=3+73
Solving for E, and E, in terms of ¥} and V,, we obtain
(I;
B gV
ab b2
E°=_b_—-_d Vi+ f— V.,
ab ab 1?

so that Q=
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We notice that g, =gy, that the value of each is negative, and that
gn=—qy, in accordance with § 114. The value of ¢, is the capacity of
sphere 1 when 2 is to earth, and is in agreement with the result of § 79.

. b .
The capacity of 2 when 1 is to earth, g, is seen to be —a This can

also be seen by regarding the system as composed of two condensers, the
inner sphere and the inner surface of the outer sphere form a single spherical

condenser of capacity 5—%—_1’-& , while the outer surface of the outer sphere has

capacity b. The total capacity accordingly
ab b

b—-a+b==7;_—-—¢_z'

Two spheres at a great distance apart.

116. Suppose we have two spheres, radii a, b, placed with their centres
at a great distance ¢ apart. Let us first place unit charge on the former, the

)

Fre. 89,

charge being placed so that the surface density is constant. This will not
produce uniform potential over 2; at a point distant r from the centre of 1
it will produce potential 1/r. We can, however, adjust this potential to the
uniform value 1/¢ by placing on the surface of 2 a distribution of electricity

such that it produces a potential %-— ; over this surface.

Take B, the centre of the second sphere, as origin, and 4B as axis of z.
Then we may write

- P 1
;—;—-—-cfr-—-—&-z, as 1ar as Z;.

Let o be the surface density required to produce this potential, then
clearly o is an odd function of @, and therefore the total charge, the value of
o integrated over the sphere, vanishes. Thus the potential of 2 can be
adjusted to the uniform value 1/¢c without altering the total charge on 2
from zero, neglecting 1/c*. The new surface density being of the order of
1/e%, the additional potential produced on 1 by it will be at most of order 1/¢*,
so that if we neglect 1/c* we have found an equilibrium arrangement which
makes

El=11 E2=0; K=%: Kr‘%’



116-117] Cocffficients for two distant Spnreres 101

Substituting these values in the equations
Vi=puE, + puE,,
Vi=pukE, + pnE,,

we find at once that Pu =¢lz neglecting %,,
=1 L
Pu=Z &’

and similarly we can see that

1 .1
Pa=7 neglecting e
Solving the equations
K = 'Ea_'l + g’, »
E,
v; = -‘f—‘ + f.
we find that, neglecting %—.,

a

I =""—"75
1-3
ab ab 1
QA:=921=“——'—“5"=—’°— as far 8.5‘-}-’,
6(1 — 7)
¢
g b
£ -

We notice that the capacity of either sphere is greater than it would be if
the other were removed. This, as we shall see later, is a particular case of a
general theorem.

Two conductors wn contact.

117. If two conductors are placed in contact, their potentials must be
equal. Let the two conductors be conductors 1 and 2, then the equation
¥; = ¥, becomes

(pu -Pn) E + (pu—])n) E+..=0,

or, say, afl, + BE, + yEs+ ...=0,
If we know the total charge £ on 1 and 2, we have
E‘ + Eg = E,

and on solving these two equations we can obtain E, and E,. We find that

§3_6E+7E.+8E.+...
E, aF + 4B, +3E, + ...]
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giving the ratio in which the charge E will distribute itse.lf between the
two conductors 1 and 2. If the conductors 3, 4, ... are either absent or
uncharged,

E, T a Pu— P ’
which is independent of E and always positive. It is to be noticed that X,
vanishes only if p, = py, te., if 2 entirely surrounds 1.

MrecuHANICAL FOrRCEs oN CONDUCTORS.

118. We have already seen that the mechanical force on a conductor is
the resultant of a system of tensions over its surface of amount 27o? per unit
area. The results of the present Chapter enable us to find the resultant
force on any conductor in terms of the electrical coefticients of the system.

Suppose that the positions of the conductors are specified by any co-

ordinates &, &, ..., 8o that p,,, P, .-+, ¢, G, -.., and consequently also W,
are functions of the £'s. If £, is increased to £, + d§,, without the charges on

the conductors being altered, the increase in electrical energy is % d§,, and
1

this increase must represent mechanical work done in moving the conductors.
The force tending to increase £, is accordingly
-
23

Since the charges on the conductors are to be kept constant, it will of
course be most convenient to use the form of W given by equation (88), and
the force is obtained in the form

- QP’! 2 _a_]_’E
3 (a.f, B+ 2 EE+) T 1)}

It is however possible, by joining the conductors to the terminals of
electric batteries, to keep their potentials constant. In this case, however,
we must not use the expression (39) for W, and so obtain for the force

—3 (% sy g U0
‘ (651 Vi+2 52NN+ ) ....... (49),

for the batteries are now capable of supplying encrgy, and an increase of
electrical energy does not necessarily mean an equal expenditure of mechanical
energy, for we must not neglect the work done by the batteries. Since the
resultant mechanical force on any conductor may be regarded as the resultant
of tensions 27¢? per unit area acting over its surface, it is clear that this
resultant force in any position depends solely on the charges in this position.
It is therefore the same whether the charges or potentials are kept constant,
and expression (48) will give this force whether the conductors are connected
to batteries or not.
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119. As an illustration, we may consider the force between the two
charged spheres discussed in § 116.

The force tending to increase ¢, namely — 8_;; , 18
~1(Z2 B+ 2 P nm+ Bo ),

and substituting the values

1 . 1
p,,=a+terms m&;,

1
Pr= Y + » »
1
Pa=73 + )
it is found that this force is
B, .1
¢ ¢’

Thus, except for terms in ¢, the force is the same as though the charges
were collected at the centres of the spheres. Indeed, it is easy to go a stage
further and prove that the result is true as far as ¢~ We shall, however,
reserve a full discussion of the question for a later Chapter.

120. Let us write
Y(ou B2+ 2B B +..)=W,,
(W + 2.V +..)=W,.
Then 1V, and W, are each equal to the electrical energy S EV, so that
W+ W, —SEV=0 ...covuvrrrnnn. ceverranes (50).

In whatever way we change the values of
E]) E’zy AL} K- 1’.’) ey Elv Ezy seey
equation (50) remains true. We may accordingly differentiate it, treating the
expression on the left as a function of all the £’s, V’s and §’s. Denoting the
function on the left-hand of equation (50) by ¢, the result of differentiation
will be

a¢ 8E,+V ¢8V+Ea¢ 8¢, =

BE
Now o6 W _ ¥, = 0, by equation (40)
ok, B, "T e '
od aW,_ _
'5‘1{ ’5‘71 El"o’ (4’1)'

go that we are left with 2 g;; 88, :: 0,
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and since this equation is true for all displacements and thferefore for all
values of 8, 8E,, ..., it follows that each coefficient must vanish separately.

Thus % =0, or

06
LCLLL S S vereennn(51).
FIE
As we have seen, — %1;; is the mechanical force tending to increase £,
1
ow,

and this has now been shewn to be equal to -5—" , which is expression (49)
1

with the sign reversed. Thus the mechanical force, whether the charges or
the potentials are kept constant, is

%gu (/T 07S S RN 52
*(a& w+2a£lVlV,+...) ............ (52),

a form which is convenient when we know the potentials, but not the
charges, of the system.

In making a small displacement of the system such that £ is changed
into £ + d§,, the mechanical work done is Q-E—V‘df,. If the potentials are
1

[
kept constant the increase in electrical energy is a-a—.?'df,, The difference of
1
these expressions, namely
("’_WV - @) d

ok, o&/ 7V
represents energy supplied by the batteries. From equation (51), it appears
that this expression is equal to 2 %‘—?’ dE,, so that the batteries supply energy

1

equal to twice the increase in the electrical energy of the system, and of this
energy half goes to an increase of the final electrical energy, while half is
expended as mechanicil work in the motion of the conductors.

Introduction of a new conductor into the field.

121. When a new conductor is introduced into the field, the coefficients
Pus Pisy +-+» qus Qu, --. are naturally altercd.

Let us suppose the new conductor introduced in infinitesimal pieces,
which are brought into the field uncharged and placed in position so that
they are in every way in their final places except that electric communication
is not established between the different pieces. So far no work has been
done and the electrical energy of the field remains unaltered.

Now let electric communication be established between the different
pieces, so that the whole structure becomes a single conductor. The separate
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pieces, originally at different potentials, are now brought to the same
potential by the flow of electricity over the surface of the conductor.
Electricity can only flow from places of higher to places of lower potential,
so that electrical energy is lost in this flow. Thus the introduction of the
new conductor has diminished the electric energy of the field.

If we now put the new conductor to earth there is in general a further
flow of electricity, so that the energy is still further diminished.

Thus the electric energy of any field is diminished by the introduction of
a new conductor, whether insulated or not.

Consider the case in which the new conductor remains insulated. Let
the energy of the field before the introduction of the new conductor be

F(PuEr+ 2pnE B+ oo 4 PanEn?) cocvvniiiinnnnnns (53).
After introduction, the energy may be taken to be
(P ER+2p BByt oo + Dud E)Y) e, (54),

where py’, etc., are the new coefficients of potential. Further coefficients of
the type Pun+1> Pond1s -++» Prir, i are of course brought into existence, but do
not enter into the expression for the energy, since by hypothesis Ep4, = 0.

Since expression (54) is less than expression (53), it follows that
(Pu=pu) Ef+2(pre—pi) B\ By + ...

is positive for all values of E,, £,, .... Hence p,, — py' is positive, and other
relations may be obtained, as in § 111.

ELECTROMETERS.
1. The Attracted Disc Electrometer.

Fic. 40.

122. This instrument is, as regards its essential principle, a balance in
which the beam has a weight fixed at one end and a disc suspended from
the other. Under normal conditions the fixed weight is sufficiently heavy
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to outweigh the disc. In using the instrument the disc is made to become
one plate of a parallel plate condenser, of which the second plate is adjusted
until the electric attraction between the two plates of the condenser is just
sufficient to restore the balance.

The inequalities in the distribution of the lines of force which would
otherwise occur at the edges of the disc are avoided by the use of a guard-
ring (§ 90), so arranged that when the beam of the balance is horizontal
the guard-ring and disc are exactly in one plane, and fit as closely as is
practicable,

Let us suppose that the disc is of area 4 and that the disc and guard-
ring are raised to potential V. Let the second plate of the condenser be
placed parallel to the disc at a distance 4 from it, and put to earth. Then
the intensity between the disc and lower plate is uniform and equal to V/&,
80 that the surface density on the lower face of the disc is o= V/4wh. The
mechanical force acting on the disc is therefore a force 2mwo’4 or V24 /8wh?
acting vertically downwards through the centre of the disc. If this just
suffices to keep the beam horizontal, it must be exactly equal to the weight,
say W, which would have to be placed on this disc to maintain equilibrium
if it were uncharged. This weight is a constant of the instrument, so that
the equation

V4

Smh? ~
enables us to determine V in terms of known quantities by observing .
The instrument is arranged so that the lower plate can be moved parallel
to itself by a micrometer screw, the reading of which gives A with great
accuracy, We can accordingly determine ¥V in absolute units, from the
equation
S

If we wish to determine a difference of potential we can raise the upper
plate to one potential V. and the lower plate to the second potential ¥,

and we then have
S W
V-V,=h J —’—;—.

A more accurate method of determining a difference of potential is to keep
the disc at a constant potential v, and raise the lower plate successively to
potentials ¥ and V.. If h, and A, are the values of A which bring the disc to
its standard position when the potentials of the lower plate are ¥ and ¥, we
have

V=h

v—V=h, /8’;.11"

V- Vz'=]’8.\/ §£Z:
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»o that V- V= (h, - hy) §1;l’.

It is now only necessary to measure b, — k,, the distance through which
the lower plate is moved forward, and this can be determined with great
accuracy, as it depends solely on the motion of the micrometer screw.

II. The Quadrant Electrometer,

123. Measurement of Potential Difference. This instrument is more
delicate than the disc electrometer just described, but enmables us only to
compare two potentials, or potential differ-
ences; we cannot measure a single potential
i terms of known units.

The principal part of the instrument
consists of a metal cylinder of height small
compared with its radius, divided into four
quadrants 4, B, C, D by two diameters at
right angles. These quadrants are insulated
separately, and then oppcsite quadrants
are connected in pairs, two by wires joined
to a point £ and two by wires joined to
some other point F.

The inside of the cylinder is hollow and
inside this a metal disc or “needle” is free
to move, being suspended by a delicate
fibre, so that it can rotate without touching
the quadrants. Before using the instrument
the needle is charged to a high potential,
say v, either by means of the fibre, if this
is a conductor, or by a small conducting
wire hanging from the necedle which passes through the bottom of the
cylinder. The fibre is adjusted so that when the quadrants are at the same
potential the needle rests, as shewn in the figure, in a symmetrical position
with respect to the guadrants. In this state either surface of the needle
and the opposite faces of the quadrants may be regarded as forming a parallel
plate condenser.

If, however, the potential of the two quadrants joined to E is different
from that of the two quadrants joined to ¥, there is an electrical force
tending to drag the needle under that pair of quadrants of which the potential
differs most from ». The needle will accordingly move in this direction until
the electric forces are in equilibrium with the torsion of the fibre, and
an observation of the angle through which the ncedle turns will give an
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indication of the difference of potential between the two pairs of quadrants.
This angle is most easily observed by attaching a small mirror to the fibre
just above the point at which it emerges from the quadrants.

Let us suppose that when the needle has turned through an angle 6,
the total area A of the needle is placed so that an area S is inside the pair
of quadrants at potential ¥, aud an area 4 — 8 inside the pair at potential
V.. Let h be the perpendicular distance from either face of the needle to
the faces of the quadrants. Then the system may be regarded as two
parallel plate condensers of area S, distance h, and difference of potential
v—V,, and two parallel plate condensers for which these quantities have the
values 4 =S, h, v—V.. There are two condensers of each kind because
there are two faces, upper and lower, to the needle. The electrical energy
of this system is accordingly

@-Vrs, (@-Vyr-8)
darh drh ’
The energy here appears as a quadratic function of the three potentials

concerned : it is expressed in the same form as the W, of § 120. The
mechanicul force tending to increase 6, 1., the moment of the couple tending

to turn the needle in the direction of @ increasing, is therefore %";'—' . Now

in W the only term in the coefficients of the potentials which varies with ¢
is S, so that on differentiation we obtain

W, _(-V)p-(v-V)yos

o0 4mh 00"

If » is the radius of the needle—measured from its centre, which is under

the line of division of the quadrants—we clearly have ?—g =1, 80 that we can

write the equation just obtained in the form
W _@-V-WV-T ,

o 4l

‘In equilibrium this couple is balanced by the torsion couple of the fibre,
which tends to decrease 6. This couple may be taken to be kf, where & is a
constant, so that the equation of equilibrivmn is
g B -V -V -T)r

A e (55).

For small displacements of the necdle. 7* may be replaced by a?, the
ra:dlus of the needle at its centre line. Also v is generally large compared
with ¥ and ¥,.  The last equation accordingly assumes the simpler form

1y 2
k= 5o (K =V

ki
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shewing that @ is, for small displacements of the needle, approximately
proportional to the difference of potential of the two pairs of quadrants.
The instrument can be made extraordinarily sensitive owing to the possibility
of obtaining quartz-fibres for which the value of k is very small.

If the difference of potential to be measured is large, we may charge the
ncedle simply by joining it to one of the pairs of quadrants, say the pair at
potential ¥;. We then have v=7V,, and equation (55) becomes

so that 8 is now proportional to the square of the potential difference to be
measured.

2
Writing ¢ =C,s0 that C is a constant of the instrument, we have,
2wlke

when v is large

O=Co (V=) eoreoreerereieirecnereann (56),
when v=V,,

=10 Vi= V) ceeeeereeereeereeann (57).

124. Measurement of charge. Lct us speak of the pairs of quadrants
at potentials ¥, ¥, as conductors 1, 2 respectively, and let the needle be
conductor 3. When the quadrants are to earth and the needle is at
potential ¥;, the charge £ induced on the first pair of quadrants by the
charge on the needle will be given by

E=q.7,
where ¢, is the coefficient of induction. This coefficient is a function of the
angle 8 which defined the position of the needle. If the instrument is

adjusted so that §=0 when both pairs of quadrants are to earth, we must
use the value of ¢,; corresponding to 8 =0, say (q.s),, 8o that

E=(0 WV oo et (58).

Now suppose that the first pair of quadrants is insulated and receives
an additional charge @, the sccond pair being still to earth. Let the needle
be deflected through an angle 6 in consequence. Since the charge on the
first pair of quadrants is now £+ @, we have

E+Q=(gu)Vi+ () V.
On subtracting equation (58) from this we obtain

Q= (‘Iu)on + [(%a)o - (q::)o] Y.

If 6 is small this may be written

Q = qll.Vl""%gel’ 61’81
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where ¢y;, aa g e supposed calculated for =0. Since ¥,=0, we have from
uation (56),

™ ©0) 0=CVYV,

80 that 0= (%+% By,

shewing that for small values of 6, Q is dxrectly proportional to 6.

Let us suppose that we join the first pau' of quadrants (conductor 1)
to a condenser of known capacity I' which is entirely outside the electro-
meter. Since the needle (3) is entirely screened by the quadrants the value
of ¢, remains unaltered, while ¢, will become ¢,+I. If ¢ is now the
deflection of the needle, we have

qn+P 9‘],1 ) ’
Q=% 3 ¥)e
so that, by combination with the last equation, we have
11y T
oo ow

If @” is the deflection obtained by joining the pairs of quadrants to the
terminals of a battery of known potential difference D, we have from
equation (56), -

CV; = ']j ’
and on substituting this value for C'¥,, our equation becomes

r

g 9

giving @ in terms of the known quantities I', D and the three readings
6, ¢ and ¢".

An ordinary quadrant electrometer will measure differences of potential
down to about 5}y electrostatic units. Thus in spite of its somewhat high
capacity of about 50 electrostatic units, it forms an extremely efficient instru-
ment for the measurement or detection of small electric charges.

An improved form of the instrument has recently been introduced by
Dolazalek, in which the electrostatic capacity is very small. This is capable
of measuring potential differences down to ygyy electrostatic units, and is
correspondingly more sensitive for the measurement of charges.

=
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EXAMPLES.

1. If the algebraic sum of the charges on a system of conductora be positive, then on
one at least the surface density is everywhere positive.

2. There are a number of insulated conductors in given fixed positions. The
capacities of any two of them in their given positions are C; and Cy, and their mutual
cocfficient of induction is B. Prove that if these conductors be joined by a thin wire, the
capacity of the combined conductor is

01+Cg+28.

3. A system of insulated conductors having bLeen clhiarged in any manner, charges are
transferred from one conductor to another till they are all brought to the same potential V.
Shew that

V=E[(s;+28),
where s;, &, are the algebraic sums of the coefficients of capacity and induction respectively,
and E is the sum of the charges.

4. Prove that the cffect of the operation described in the last question is a decrease
of the electrostatic energy equal to what would be the energy of the system if each of the
original potentials were diminished by V'

5. Two equal similar condensers, each consisting of two spherical shells, radii «, b,
are insulated and placed at a great distance » apart. Charges e, ¢ are given to the inner
shells. If the outer surfaces are now joined by a wire, shew that the loss of energy is

approximately
te-er (-1
b )’

6. A condenser is formed of two thin concentric spherical shells, radii @, 5. A small
hole exists in the outer sheet throngh which an insulated wire passes connecting the
inper sheet with a third conductor of capacity ¢, at a great distance » from the condenser.
The outer sheet of the condenser is put to earth, and the charge on the two connected
conductors is £. Prove that approximately the force on the third conductor is

ac’*’E’/( ab +c zr’.

a=b

7. Two closed equipotentials V}, V, are such that V; contains V;, and Vp is the
potential at any point P between them. If now a charge £ be put at P, and both
equipotentials be replaced by conducting shells and earth-connected, then the charges
E,, E, induced on the two surfaces are given by

E, E, E
Vo= Vo Va= Vi~ =T

8. A conductor is charged from an electrophorus by repeated contacts with a plate,
which after each contact is recharged with a quantity & of electricity from the electro-
phorus. Prove that if ¢ is the churge of the conductor after the first operation, the

ultimate charge is
Ee

E-e
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9. Four equal uucharged insulated conductors are placed symmetrically at the corners
of a regular tetrahedron, and are touched in turn by a moving spherical conductor at the
points nearest to the centre of the tetrahedron, receiving charges e, €3, es, &- Shew that
the charges are in geometrical progression.

10. In question 9 repluce “tetrahedron” by “square,” and prove that
(e1—e2) (e1e3— &%) =€) (€265 — €r64).

11 Shew that if the distance z between two conductors is so great as compared with
the linear dimeunsions of either, that the square of the ratio of these linear dimensions to
z may be neglected, then the coefficient of induction between them is — CC"/z, where C, C'
are the capacities of the conductors when isolated.

12. Two insulated fixed condensers are at given potentials when alone in the electric
tield and charged with quantities Ky, Hp of electricity. Their coefficients of potential are
Pu» Pigy Pzz-  But if they are surrounded by a spherical conductor of very large radius &
at potential zero with its centre near them, the two conductors require charges Ey', &' to

produce the given potentials. Prove, neglecting -11{—2, that

E'-E _ pu-pu
EY-E, pu-pn

13. Shew that the locus of the positions, in which a unit charge will induce a given
charge on a given umnsulated conducter, is an equipotential surface of that conductor
supposed freely electritied.

14 Prove (i) that if a conductor, insulated in free space and raised to unit potential,
produces at any external point P a potential denoted by (/’), then a unit charge placed
at P in the presence of this conductor uninsulated will induce on it a charge — (P);

(ii) that if the potential at u point @ due to the induced charge be denoted by (£@),
then (P¢) is a symuetrical function of the positions of P and ¢.

15. Two small uninsulated spheres are placed near together between two large
parallel planes, one of which is charged, and ihe other conuected to earth. Shew by
tigures the nature of the disturbance so produced m the uniform field, when the line of
centres is (i) perpendicular, (ii) parallel to the planes

16. A hollow conductor .1 '3 at zero potential, and contains in its cavity two other
insulated conductors, B and C, which are mutually external : B has a positive charge, and
Cis uucharged. Analyse the diflerent types of lines of force within the cavity which are
possible, classifying with respect to the conductor from which the line starts, and the
conductor at which it ends, and proving the impossibility of the geometrically possible
types which are rejected.

Hence prove that B and C are at positive potentials, the potential of € being less than
that of L.

17. A portion P of a conductor, the capacity of which is C, can be separated from the
conductor. The cupacity of this portion, when at a long distance from other budies, is e.
The conductor 18 insulated, and the part 2 when at a considerable distance from the
remainder is charged with a quantity e and allowed to move under the mutusl attraction
up to 1t} describe and explain the changes which take place in the electrical energy of the
system.
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18. A conductor having a charge @, is surrounded by a second conductor with charge
@:. The inner is connected by a wire to a very distant uncharged conductor. It is then
disconnected, and the outer conductor connected. Shew that the charges @y, @5, are now

Q (. le _"'Qi Q’I-(m + n) Qﬂ +71an1'
' mtntma? m+n ’

where C, C'(14m) are the coefficients of capacity of the near conductors, and Cn is the
capacity of the distant one.

19. If one conductor contains all the others, and there are n+1 in all, shew that
there are n+1 relations between either the coeflicients of potential or the coeflicients of
induction, and if the potential of the largest be V;, and that of the others Vy, V3, ... V,,
then the most general expression for the encrgy is 4 C'V,? increased by a quadratic function
of Vi-V,, Vo=V, ... Vo= Vp; where C is a definite constant for all positions of the
inner conductors.

20. The inner sphere of a spherical condenser (radii a, b) has a constant charge %,
and the outer conductor is at potential zero. Under the internal forces the outer
conductor contracts from radius b to radius ;. Prove that the work done by the
electric forces is

b-b,
L v

21. If, in the last question, the inner conductor has a constant potential V, its charge
being variable, shew that the work done is
3 Via2 (b-b,)
(by=a)(b-a)’
and investigate the quantity of energy supplied by the battery.

22. With the usual notation, prove that
Pu+pa>putps
Pupn>purpi.
23. Shew that if P, Prs, Py be three coefficients before the introduction of a new
conductor, and ppy Pry, P4 the same coefficients afterwards, then
(PrrPu—Pr' Pas') & (Pra—Prs P

24. A system consists of p+¢+2 conductors, 4,, 4., ... 4,, By, By,... By, C, D. Prove
that when the charges on the 4’s and on C, and the potentials of the B’s and of C are
known, there cannot be more than one possible distribution in equilibrium, unless C is
electrically screened from JD.

25. 4, B, C, D are four conductors, of which B surrounds 4 and D surrounds C.
Given the coefficients of capacity and induction
(1) of 4 and B when C and D are removed,
(ii) of C and D when 4 and B are removed,
(iii) of B and D when 4 and C are removed,
determine those for the complete system of four conductors.

26. Two equal and similar conductors 4 and B are charged and placed symmetrically
with regard to each other; a third moveable conductor € is carried so as to occupy
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successively two positions, one practically wholly within 4, the other within B, the
positions being similar and such that the coefficients of potential of € in either position
are p, ¢, r in ascending order of magnitude. In each position € is in turn connected with
the conductor surrounding it, put to earth, and then insulated. Determine the charges
on the conductors after any number of cycles of such operations, and shew that they
ultimately lead to the ratios
1:-8:p-1,
where 8 is the positive root of
ref—gr4+p-r=0

27. Two conductors are of capacities ¢y and C,, when each is alone in the field.
They are both in the field at potentials V; and V, respectively, at & great distance r
apart. Prove that the repulsion between the conductors is

GOy (r = O V) (r Yy~ O V)
[CRIAIAS :

As far as what power of 1; is this result accurate ?

28. Two equal and similar insulated conductors are placed symmetrically with regard
to each other, one of them being uncharged. Another insulated conductor is made to
touch them alternately in a symmetrical manner, beginning with the one which has a
charge. If ¢, ¢, be their charges when it has touched each once, shew that their charges,
when it has touched each r ties, are respectively

_ot [ (=)™ apg &l [y (aze)”
261'-01{1.'-( ¢ > J and 261'-82{1 ( ¢ }.

29. Thres conductors 4,, 45 and 1; are such that Agis practically inside 45. 4, is
alternately connected with 4, and A4 by means of a fine wire, the first contact being with
4;. 4, has & charge E initially, 4, and 4, being uncharged. Prove that the charge on
4, after it has been connected # times with 4, is

LYWL .
a+pB Bla+y)\a+7, ’
where a, B, y stand for pyy - p13, Py —p1; and pgs - p1g respectively.

30. Two spheres, radii @, &, have their centres at & distance ¢ apart. Shew that
neglecting (a/o)® and (b/c)®,
1 B 1 1 o
Pu=g- g5 Pu=gi Pu=p— 4



CHAPTER V
DIELECTRICS AND INDUCTIVE CAPACITY

125. MeNTION has already been made (§ 84) of the fact, discovered
originally by Cavendish, and afterwards rediscovered by Faraday, that the
capacity of a conductor depends on the nature of the dielectric substance
between its plates.

Let us imagine that we have two parallel plate condensers, similar in all
respects except that one has nothing but air between its plates while in the
other this space is filled with a diclectric of inductive capacity K. Let us
suppose that the two high-potential plates are connected by a wire, and also
the two low-potential plates. Let the condensers be charged, the potential
of the high-potential plates being ¥, and that of the low-potential plates
being T,.

Then it is found that the charges possessed by the two condensers are not
equal. The capacity per unit area of the air-condenser is 1/4wd; that of the
other condenser is found to be K/4wd. Hence
the charges per unit area of the two condensers
are respectively

h-T V-7
—}@;f and K et

The work done in taking unit charge from the
low-potential plate to the high-potential plate is
the same in either condenser, namely V-1, so
that the intensity between the plates in either
condenser is the same, namely

K - K Fie. 42,
-

In the air-condenser this intensity may be regarded as the resultant of the
attraction of the negatively charged plate and the repulsion of the positively

charged plate, the law of attraction or repulsion being Coulomb’s law ;5.
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It is, however, obvious that if we were to calculate the intensity in the

second condenser from this law, then the value obtained would be K times
V- .

that in the first condenser, and would therefore be K —EK In point of

fact, the actual value of the intensity is known to be — K- 3 K

Thus Faraday's discovery shews that Coulomb’s law of force is mot of
universal validity : the law has only been proved experimentally for air, and
it is now found not to be true for dielectrics of which the inductive capacity
is different from unity.

This discovery has far-reaching effects on the development of the mathe-
matical theory of electricity. In the present book, Coulomb’s law was
introduced in § 38, and formed the basis of all subsequent investigations.
Thus every theorem which has been proved in the present book from § 38
onwards requires reconsideration.

126. We shall follow Faraday in treating the whole subject from the
point of view of lines of force. The conceptions of potential, of intensity, and
of lines of force are entirely independent of Coulomb’s law, and in the present
book have been discussed (§§ 30—37) before the law was introduced. The

mconception of a tube of force follows at once from that of a line of force,
on imagining lines of force drawn through the different points on a small
closed curve. Let us extend to dielectrics one form of the definition of the
strength of a tube of force which has already been used for a tube in air, and
agree that the strength of a tube is to be measured by the charge enclosed
by its positive end, whether in air or dielectric.

In the dielectric condenser, the surface density on the positive plate is
K—— ' d , and this, by definition, is also the aggregate strength of the

tubes per unit area of cross-section. The intensity in the dielectric is

Z—d’Y’ so that in the dielectric the intensity is no longer, as in air, equal

to 4ar times the aggregate strength of tubes per unit area, but is equal to
4m/K times this amount.

Thus if P is the aggregate strength of the tubes per unit area of cross-
section, the intensity R is related to P by the equation

in the dielectric, instead of by the equation

R=4mP ...cccccvviriiirennnnnnennnnss.(60)
which was found to hold in air.
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127. Equation (59) has been proved to be the appropriate generalisation
of equation (60) only in a very special case. Faraday, however, believed the
relation expressed by equation (59) to be universally true, and the results
obtained on this supposition are found to be in complete agreement with
experiment. Hence equation (59), or some equation of the same significance,
is universally taken as the basis of the mathematical theory of dielectrics.
We accordingly proceed by assuming the universal truth of equation (59),
an assumption for which a justification will be found when we come to study
the molecular constitution of dielectrics.

It is convenient to have a single word to express the aggregate strength
of tubes per unit area of cross-section, the quantity which has been denoted
by P. We shall speak of this quantity as the “ polarisation,” a term due to
Faraday. Maxwell’s explanation of the meaning of the term “ polarisation ”
is that “an elementary portion of a body may be said to be polarised when
it acquires equal and opposite properties on two opposite sides.” Faraday
explained the properties of dielectrics by means of his conception that the
molecules of the dielectric were in a polarised state, and the quantity P
is found to measure the amount of the polarisation at any point in the
dielectric. We shall come to this physical interpretation of the quantity P
at a later stage: for the present we simply use the termz “polarisation” as
a name for the mathematical quantity P.

This same quantity is called the “displacement ” by Maxwell, and under-
lying the use of this term also, there is a physical interpretation which we
shall come upon later.

128, We now have as the basis of our mathematical theory the
following :

DernNITION.  The strength of a tube of force is defined to be the charge
enclosed by the positive end of the tube.

DEFINITION. The polarisation at any point is defined to be the aggregate
strength of tubes of force per umit area of cross-section.

ExXPERIMENTAL LaAw. The intensity at any point 18 4w[K times the
polarisation, where K is the inductive capacity of the dielectric at the point.

In this last relation, we measure the intensity along a line of force, while
the polarisation is measured by considering the flux of tubes of force across
a small area puipendicular to the lines of force. Suppose, however, that we
take some direction 00’ making an angle 6 with that of the lines of force.
The aggregate strength of the tubes of force which cross an area dS
perpendicular to 00’ will be P cos 8dS, for these tubes are exactly those
which cross an area dScosd perpendicular to the lines of force. Thus,
consistently with the definition of polarisation, we may say that the polari-
sation in the direction 00’ is equal to Pcosf. Since the polarisation in
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any direction is equal to P multiplied by the cosine of the angle between
this direction and that of the lines of force, it is clear that the polarisation
may be regarded as a vector, of which the direction is that of the lines of
force, and of which the magnitude is P.

The polarisation having been seen to be a vector, we may speak of its
components f, g, k. Clearly f is the number of tubes per unit area which
cross a plane perpendicular to the axis of «, and so on.

The result just obtained may be expressed analytically by the equations

K K K

129. The polarisation P being measured by the aggregate strength of
tubes per unit area of cross-section, it follows that if @ is the cross-section
at any point of a tube of strength ¢, we have e=wP. Now we have defined
the strength of a tube of force as being equal to the charge at its positive
end, so that by definition the strength e of a tube does not vary from point
to point of the tube. Thus the product wP is constant along a tube, or
oKR is constant along a tube, replacing the result that wR is constant
in air (§ 56).

The value of the product wP at any point O of a tube, being equal to
u—!gr'—R, depends only on the physical conditions prevailing at the point O.
It is, however, known to be equal to the charge at the positive end of the
tube. Hence it must also, from symmetry, be equal to minus the charge at
the negative end of the tube. Thus the charges at the two ends of a tube,
whether in the same or in different dielectrics, will be equal and oppusite,
and the numerical value of either is the strength of the tube.

Gavuss’ THEOREM.

130. Let 8 be any closed surface, and let ¢ be the angle between the
direction of the outward normal to any element of surface dS and the direction
of the lines of force at the element. The aggregate strength of the tubes of
force which cross the element of area dS is £ cos edS, and the integral

choseds,

which may be called the surface integral of normal polarisation, will measure
the aggregate strength of all the tubes which cross the surface S, the strength
of a tube being estimated as positive when it crosses the surface from inside
to outside, and as negative when it crosses in the reverse direction.

A tube which enters the surface from outside, and which, after crossing
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the space enclosed by the surface, leaves it again, will add no contribution to
f f PcosedS, its strength being counted negatively where it enters the

surface, and positively where it emerges. A tube which starts from or ends
on a charge e inside the surface 8 will, however, supply a contribution to

f PcosedS on crossing the surface. If e is positive, the strength of the

tube is e; and, as it crosses from inside to outside, it is counted positively,
and the contribution to the integral ise. Again, if e is negative, the strength
of the tube is —e¢, and this is counted negatively, so that the contribution is
again e,

Thus on summing for all tubes,
f PcosedS=E,

where E is the total charge inside the surface. The left-hand member is
simply the algebraical sum of the strengths of the tubes which begin or end
inside the surface; the right-hand member is the algebraical sum of the
charges on which these tubes begin or end. Putting
K
P=7 R
the equation becomes f KRcosedS =4k,

The quantity R cose is, however, the component of intensity along the
outward normal, the quantity which has been previously denoted by N, so
that we arrive at the equation

When the dielectric was air, Gauss’ theorem was obtained in the form
[[was = anE.
Equation (61) is therefore the generalised form of Gauss’ Theorem which
must be used when the inductive capacity is differcnt from unity. Since

N=-— %::, the equation may be wntten in the form

ffK-—dS-—-

1381. The form of this equation shews at once that a great many results
which have been shewn to be true for air are true also for dielectrics other
than air. :

It is obvious, for instance, that ¥ cannot be a maximum or a minimum
at a point in a dielectric which is not occupied by an electric charge: as
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a consequence all lines of force must begin and end on charged bodies,
a result which was tacitly assumed in defining the strength of a tube of
force.

A number of theorems were obtained in the discussion of the electrostatic
field in air, by taking a Gauss’ Surface, partly in air and partly in a con-
ductor. Gauss' Theorem was used in the form

f NdS=4nE,

but we now see that if the inductive capacity of the conductor were not
equal to unity, this equation ought to be replaced by equation (61). It is,
however, clear that the difference cannot affect the final result; N is zero
inside a conductor, so that it does not matter whether N is multiplied by K
or not.

Thus results obtained for systems of conductors in air upon the assumption
that Coulomb’s law of force holds throughout the field are seen to be true
whether the inductive capacity inside the conductors is equal to unity or not.

The Equations of Poisson and Laplace.

132. 1In § 49, we applied Gauss’ theorem to a surface which was formed
by a small rectangular parallelepiped, of edges dz, dy, dz, parallel to the
axes of coordinates. If we apply the theorem expressed by equation (61) to
the same element of volume, we obtain

2 ovy . 9 ovy, @ o
E@(K%)+59(K5§)+5—Z(K§)=_4"P ......... (62),
where p is the volume density of electrification. This, then, is the generalised

form of Poisson’s equation: the generalised form of Laplace’s equation is
obtained at once on nutting p=0.

In terms of the cemponents of polarisation, equation (62) may be written

of , % oh _
+ E +a =P cerervecnienes cecssans veer(63),
while if the dielectric is uncharged,
of L og a_h =
+ 24+ —=0 .ireeueee vesssevans NP ()

Electric Charges in an infinite homogeneous Dielectric.

133. Consider a charge ¢ placed by itself in an infinite dielectrie. If
the dielectric is homogeneous, it follows from considerations of symmetry
that the lines of force must be radial, as they would be in air. By application
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of equation (61) to a sphere of radius r, having the point charge as centre, it
is found that the intensity at a distance r from the charge is
e
K
The force between two point charges g, ¢, at distance = apart in a homo-
geneous unbounded dielectric is therefore

and the potential of any number of charges, obtained by integration of this
expression, is

Coulomb’s Equation.

134. The strength of a tube being measured by the charge at its end, it
follows that at a point just outside a conductor, P, the aggregate strength
of the tubes per unit of cross-section, becomes numerically equal to o, the
surface density. We have also the general relation

r=4"p,
8
and on replacing P by o, we arrive at the generalised form of Coulomb’s
equation, .
moT
R=7{— eereesessannennianne Cereenreaa,
in which X is the inductive capacity at the point under consideration.

CONDITIONS TO BE SATISFIED AT THE BOUNDARY OF A DIELECTRIC.

136. Let us examine the conditions which will obtain at a boundary at
which the inductive capacity changes abruptly from K, to K;.

The potential must be continuous in crossing the boundary, for if P, @,
are two infinitely near points on opposite sides of the boundary, the work done
in bringing a small charge to P must be the same as that done in bringing
it to Q. As a consequence of the potential being continuous, it follows that
the tangential components of the intensity must also be continuous. For if
P, Q are two very near points on different sides of the boundary, and P, '
a similar pair of points at a small distance away, we have V.=V, and
VP’ = VQ’, so that

V-V _Vo-V4
PP QU
The expressions on the two sides of this equation are, however, the two
intensities in the direction PF’, on the two sides of the boundary, which
establishes the result.
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Also, if there is no charge on the boundary, the aggregate strength of
the tubes which meet the boundary in any small area on this boundary is
the same whether estimated in the one dielectric or the other, for the tubes
do not alter their strength in crossing the boundary, and none can begin or
end in the boundary. Thus the normal component of the polarisation is
continuous.

136. If R, is the intensity in the first medium of inductive capacity K,
measured at a point close to the boundary, and if ¢ is the angle which the
lines of force make with the normal to the boundary at this point, then the
normal polarisation in the first medium is

K,

I-;TI R, cos e.
Similarly, that in the second medium is

K,

74;: R,cos e,

so that KR cose,=K,R,C08€ veveurrreenrerarnanannn. (68).

Since, in the notation already used,
A
R,cOSe1=N,=—5ﬁ‘,
the equation just obtained may be put in either of the forms
KN, =K.Ny .coovviiiiniiiiriinnnnne. (69),

. v,
RS O (70).

In these equations, it is a matter of indifference whether the normal is
drawn from the first medium to the second or in the reverse direction; it is
only necessary that the same normal should be taken on both sides of the
equation. Relation (70) is obtained at once on applying the generalised
form of Gauss’ theorem t~ « small cylinder having parallel ends at infinitesimal
distance apart, one in each medium.

137. To sum up, we have found that in passing from one dielectric to
another, the surface of separation being uncharged :

(i) the tangential components of intensity have the same values on the
two sides of the boundury,

(ii) the normal components of polarisation have the same values.

Or, in terms of the potential,
(1) V 1s continuous,

Gy K aa—Zis continuous,
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Refraction of the lines of force.
138. From the continuity of the tangential components of intensity, it
follows::

(i) that the directions of R, and R,, the intensities on the two sides of
the boundary, must lie in a plane containing the normal, and

(ii) that R,sine = R,sine,.
Combining the last relation with equation (68), we obtain
Kicot ;= K,C0b €3 veunveennrncanvcrosenense(T1)

From this relation,it appears that if K, is greater than K, then ¢, is greater
than e, and vice versa. Thus in passing from a smaller value of K to a
greater value of K, the lines are bent away from the normal. In illustration
of this, fig. 43 shews the arrangement of lines of force when a point charge
is placed in front of an infinite slab of dielectric (£ =T7).

¥1a. 48.
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A small charged particle placed at any point of this field will experience
a force of which the direction is along the tangent to the line of force through
the point. The force is produced by the point charge, but its direction will
not in general pass through the point charge. Thus we conclude that in
a field in which the inductive capacity is not uniform the force between two
point charges does not in general act along the line joining them.

139. Asan example of the action of a dielectric let us imagine a parallel
plate condenser in which a slab of dielectric of thickness ¢ is placed between
the plates, its two faces being parallel to the plates and
at distances «, b from them, so that a+b +¢=d, where
d is the distance between the plates.

It is obvious from symmetry that the lines of force
are straight throughout their path, equation (71) being
satisfied by ¢, = ¢, =0.

Let o be the charge per unit area, so that the polari-
sation is equal to o everywhere. The intensity, by
equation (67), is

R=4n0o in air,

Fia. 44.

and R= %—r o in dielectric.
Hence the difference of potential between the plates, or the work done in

taking unit charge from one plate to the other in opposition to the electric
intensity,

=47ro'.a,+%—;=ra'.t+41ra'.b

=4ﬂr¢rid—(1 --lj?)t},

and the capacity per unit area is

%id—(l—%)t}.

Thus the introduction of the slab of dielectric has the same effect as

moving the plates a distahce (l - Il()t nearer together,

Suppose now that the slab is partly outside the condenser and partly
between the plates. Of the total area A of the condenser, let an area B be
occupied by the slab of dielectric, an area 4 — B having only air between
the plates.
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The lines of force will be straight, except for those which pass near to the
edge of the dielectric slab. Neglecting a small correction required by the
curvature of these lines, the capacity C of the condenser is given by

B A-B

e P A
4, B(l—%)t

dmd de{d—(l——}{)t}

a quantity which increases as B increases. If V is the potential difference
and £ the charge, the electrical energy

qov 32

If we keep the charge constant, the electrical energy increases as the
slab is withdrawn. There must therefore be a mechanical force tending to
resist withdrawal: the slab of dielectric will be sucked in between the plates
of the condenser. This, as will be seen later, is a particular case of a general
theorem that any piece of dielectric is acted on by forces which tend to
drag it from the weaker to the stronger parts of an electric ficld of force.

Charge on the Surface of a Dielectric.

140. Let dS be any small area of a surface which separates two media
of inductive capacities K,, K,, and let this bounding surface have a charge of
electricity, the surface density over dS being o. If we apply

Gauss’ Theorem to a ama.ll cylinder circumscribing dS we obtain ’
14
K, Bu, + K, 9_. 2= dwe e (72),

where ;; in either medium denotes differentiation with respect

to the normal drawn away from dS into the dielectric.

141. As we have seen, the surface of a dielectric may be
charged by friction. A more interesting way is by utilising

the conducting powers of a flame. Fio. 46.

*

Let us place a charge e in front of a slab of dielectric as in fig. 43.
A flame issuing from a metal lamp held in the hand may be regarded as
a conductor at potential zero. On allowing the flame to play over the
surface of the dielectric, this surface is reduced to potential zero, and the
distribution of the lines of force is now exactly the same as if the face of
the dielectric were replaced by a conducting plane at potential zero. The
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lines of force from the point charge terminate on this plane, so that there
must be a total charge — ¢ spread over it. If the plane were actually a
conductor this would be simply an induced charge. If, however, the plane
is the boundary of a dielectric, the charge differs from an induced charge on
a conductor in that it cannot disappear if the original charge e is removed.
For this reason, Faraday described it as a “bound ” charge. The charge has
of course come to the dielectric through the conducting flame.

MOLECULAR ACTION IN A DIELECTRIC.

142. From the observed intluence of the structure of a dielectric upon
the electric phenomena occurring in a field in which it was placed, Faraday
was led to suppose that the particles of the dielectric themsclves took part
in this electric action. After describing his researches on the electric
action—* induction ” to use his own term—in a space occupicd by dielectric
he says*:

“Thus induction appears to be essentially an action of contiguous parti-
cles, through the intermediation of which the electric force, originating or
appearing at a certain place, is propagated to or sustained at a distance....”

“Induction appears to consist in a certain polarised state of the particles,
into which they are thrown by the clectrified body sustaining the action, the
particles assuming positive and negative points or parts....”

“ With respeet to the term polarity..., I mean at present...a disposition
of force by which the same molecule acquires opposite powers on different
parts.”

And again, latert,

“I do not consider the powers when developed by the polarisation as
limited to two distinct peints or spots on the surface of each particle to be
considered as the poles of an axis, but as resident on large portions of that
surface, as they are upon the surface of a conductor of scnsible size when it
is thrown into a polar state.”

“In such solid bodies as glass, lac, sulphur, etc., the particles appear to
be able to become polarised in all directions, for a mass when experimented
upon so as to ascertain its inductive capacity in three or more directions,
gives no indication of a difference. Now, as the particles are fixed in the
mass, and as the direction of the induction through them must change with
its charge relative to the mass, the constant effect indicates that they can
be polarised electrically in any direction.”

* Ezxperimental Researches, 1295, 1298, 1304. (Nov. 1837.)
t Ezperunental Researches, 1686, 1688, 1679. (June, 1838.)
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“The particles of an insulating dielectric whilst under induction may be
compared...to a series of small insulated conductors. If the space round
a charged globe were filled with a mixture of an insulating dielectric and
small globular conductors, the latter being at a little distance from each
other, so as to be insulated, then these would in their condition and action
exactly resemble what I consider to be the condition and action of the
particles of the insulating dielectric itself. If the globe were charged, these
little conductors would all be polar; if the globe were discharged, they would
all return to their normal state, to be polarised again upon the recharging
of the globe....”

As regards the question of what actually the particles are which undergo
this polarisation, Faraday says*:

“An important inquiry regarding the electric polarity of the particles of
an insulating dielectric, is, whether it be the molecules of the particular
substance acted on, or the component or ultimate particles, which thus act
the part of insulated conducting polarising portions.”

“The conclusion I have arrived at is, that it is the molecules of the
substance which polarise as wholes; and that however complicated the
composition of a body may be, all those particles or atoms which are held
together by chemical affinity to form one molecule of the resulting body
act as one conducting mass or particle when inductive phenomena and
polarisation are produced in the substance of which it is a part.”

143. A mathematical discussion of the action of a dielectric constructed
as imagined by Faraday, has been given by Mossotti, who utilised a mnathe-
matical method which had been developed by Poisson for the examination of
a similar question in magnetism. For this discussion the molecules are
represented provisionally as conductors of electricity.

To obtain a first idea of the effect of an electric field on a dielectric of
the kind pictured by Faraday, let us consider a parallel plate condenser,

e ) s—
N
 — ) W

e

Fio. 46,
® Ezperimental Researches, 1699, 1700.
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having a number of insulated uncharged conducting molecules in the space
between the plates. Imagine a tube of strength ¢ meeting a molecule. At
the point where this occurs, the tube terminates by meeting a conductor, so
that there must be a charge —e on the surface of the molecule. Since the
total charge on the molecule is nil there must be a corresponding charge on
the opposite surface, and this charge may be rcgarded as a point of restarting
of the tube. The tube then may be supposed to be continually stopped and
restarted by molecules as it crosses from one plate of the condenser to the
other. At each encounter with a molecule there are induced charges —¢, +¢
on the surface of the molecule. Any such pair of charges, being at only a
small distance apart, may be regarded as forming a small doublet, of the kind
of which the field of force was investigated in § 64.

144, We have now replaced the dielectric by a series of conductors, the
medium between which may be supposed to be air or ether. In the space
between these conductors the law of force will be that of the inverse square.
In calculating the intensity at any point from this law we have to reckon
the forees from the doublets as well as the forces from the original charges
on the condenser-plates. A glance at fig. 46 will shew that the forces from
the doublets act in opposition to the original forces. Thus for given charges
on the condenser-plates the intensity at any point between the plates is
lessened by the presence of conducting molecules.

This general result can be seen at once from the theorem of § 121. The
introduction of new conductors (the molecules) lessens the energy cor-
responding to given charges on the plates, 1.e. increases the capacity of the
condenser, and so lessens the intensity between the plates.

145. In calculoting that part of the intemsity which arises from the
doublets, it will be convenient to divide the dielectric into concentric spherical
shells having as centre the point at which the intensity is required. The
volume of the shell of radii r and r + dr is 4wr*dr, so that the number of
doublets included in it waili contain r*dr as a factor. The potential produced
ucos

rﬁ

will contain a factor %, Thus the intensity arising from all the doublets in

the shell of radii #, v+ dr will depend on r through the factor %.r’dr
dr

or —
r

by any doublet at a point distant r from it is , 80 that the intensity

The importance of the diffcrent shells is accordingly the same, as regards
comparative orders of magnitude, as that of the corresponding contributions

to the integral f 515 . The value of this integral is log r + a constant, and this
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is infinite when =0 and when r=oc. Thus the important contributions
come from very small and very large values of r. It can however be seen
that the contributions from large values of » neutralise one another, for the
term cos @ in the potentials of the different doublets will be just as often
positive as negative.

Hence it is necessary only to consider the contributions from shells for
which r is very small, so that the whole field at any point may be regarded
as arising entirely from the doublets in the immediate neighbourhood of the
point. The force will obviously vary as we move in and out amongst the
molecules, depending largely on the nearness and position of the nearest
molecules. If, however, we average this force throughout a small volume, we
shall obtain an average intensity of the field produced by the doublets, and
this will depend only on the strength and number of the doublets in and
near to this element of volume. Obviously this average intensity near any
point will be exactly proportional to the average strength of the doublets
pear the point, and this again will be exactly proportional to the strength of
the inducing field by which the doublets are produced, so that at any point
we may say that the average field of the doublets stands to the total field in
a ratio which depends only on the structure of the medium at the point.

146. Now suppose that our measurements are not sufficiently refined to
enable us to take account of the rapid changes of intensity of the electric
field which must occur within small distances of molecular order of magnitude.
Let us suppose, as we legitimately may, that the forces which we measure
are forces averaged through a distance which contains a great number of
molecnles. Then the force which we measure will consist of the sum of the
average force produced by the doublets, and of the force produced by the
external field. The field which we observe may accordingly be regarded as
the superposition of two fields, or what amounts to the same thing, the
observed intensity £ may be regarded as the resultant of two intensities
R,, R,, where

R, is the average intensity arising from the neighbouring doublets,

R, is the intensity due to the charges outside the dielectric, and to
the distant doublets in the dielectric.

These forces, as we have seen, must be proportional to one another, so
that each must be proportional to the polarisation P. It follows that P is
proportional to R, the ratio depending only on the structure of the medium
at the point. If we take the relation to be

then K is the inductive capacity at the point, and the relation between R
and P is exactly the relation upon which our whole theory has been based.
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147. The theory could accordingly be based on Mossotti’s theory, instead
of on Faraday’s assumption, and from the hypothesis of molecular polarisa-
tion we should be able to deduce all the results of the theory, by first
deducing equation (73) from Mossotti’s hypothesis, and then the required
results from equation (73) in the way in which they have been deduced in
the present chapter.

Thus the influence of the conducting molecules produces physically the
same result as if the properties of the medium were altered in the way
suggested by Faraday, and mathematically the properties of the medium are
in either casc represented by the presence of the factor K in equation (73).

Relation between Inductive Capucity and Structure of Mediun.

148. The elcctrostatic unit of force was defined in such a way that the
inductive capacity of air was taken as unity. It is now obvious that it would
have been more scientific to take empty space as stundard medium, so that
the inductive capacity of every medium would have been greater than unity.
Unfortunately, the practice of referring all inductive capacities to air as
standard has become too firinly established for this to be possible. The
difference between the two standards is very slight, the inductive capacity
of normal air in terms of empty space being 100059, Thus the inductive
capacity of a vacuum may be taken to be 99941 referred to air,

So long as the molecules are at distances apart which are great compared
with their linear dimensions, we may ncglect the interaction of the charges
induced on the different molecules, and treat their effects as additive. It
follows that in a gas K — K,, where K, is the inductive capacity of free ether,
ought to be proportional to the density of the gas. This law is found to be
in exact agreement with experiment®,

149 It is, however, possible to go further and calculate the actual valne
of the ratio of K~ £, to the density. We have seen that this will be
a constant for a given substance, so that we shall detcrmine its value in the
simplest case: we shall consider a thin slab of the diclectric placed in a
parallel plate condenser, as described in § 139.  Let this slab be of thickness e,
and let it coincide with the plane of yz. Let the diclectric contain # mole-
cules per unit volume.

The element dydz will contain nedydz molecules. If each of these is
a doublet of strength u, the element dydz will have a ficld which will be
cquivalent at all distant points to that of a single doublet of strength
nuedydz. This is exactly the ficld which would be produced if the two
faces of the slab were charged with electricivy of surface density * nu.

* Boltumann, Wicner Sutzungsber. 69, p. 812,
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We can accordingly at once find the field produced by these doublets—it
is the same as that of a parallel plate condenser, in which the plates are at
distance e apart and are charged to surface density + nu. There is no
intensity except between the plates, and here the intensity of the field is
darnp.

Thus if R is the total intensity outside the slab, that inside will be
R —4anp. If K is the inductive capacity of the material of the slab, and
K, that of the free ether outside the slab, we have
K,R= K (R ~4mny),

K- K, _dmnp

so that )iy PRRRIE Ceeasassreseeranians (74).

It remains to determine the ratio u/R. The potential of a doublet is
% while that of the field R may be taken to be — Rz + C. Thus the total

potential of a single doublet and the external field is
Bz
-1—_,; — Rz + 0,

and this makes the surface r=a an equipotential if :S=R. Thus the

surfaces of the molecules will be equipotentials if we imagine the molecules
to be spheres of radius a, and the centres of the doublets to coincide with
the centres of the spheres, the strength of each doublet being Ra?,

Putting p = Ra®, equation (74) becomes*

£ ~,K° = 4d7rna®,
K

Now in unit volume of dielectric, the space occupied by the » molecules
is %_r na®, Calling this quantity 6, we have K———}—'f]—{l’= 30, or, since our calcu-

lations only hold on the hypothesis that 6 is swall,

K 1480 ., SRR ¢ 7)1
Lo

If the lines of force went straight across frown one plate of the condenser

* Clausius (Mech. Wirmetheorie, 2, p. 94) has obtained the relation
by considering the field inside a sphere of diclectric. The value of K must of course be inde-
pendent of the shape of the piece of the diclectric considered. The apparent discrepancy in the
two values of K obtained, is removed as soon as we reflect that both proceed on the assumption
that K - I is small, for the results agree as far as first powers of K~ K,. Paglioni (decad. dei
Lincei, 2, p. 48) finds that in point of fact the cquation

K~Kp _ s
E =4mna

agrees bottor with experiment than the formula of Clausius.
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to the other, the proportion of the length of each which would be inside a
conductor would, on the average, be 6. Since there is no fall of a potential
inside a conductor, the total fall of potential from one plate to the other
would be only 1 — @ times what it would be if the molecules were absent,
and the ratio K/K, would be 1/1 —6) or, if # is small, 1+86. Since,
however, the lines of force tend to run through conductors wherever possible,
there is more shortening of lines of force than is shewn by this simple
calculation. Equation (75) shews that when the molecules are spherical the
effect is three times that given by this simple calculation. For other shapes
of molecules the multiplying factor might of course be different.

Equation (75) gives at once a method of determining @ for substances
for which 6 is small, namely gases, but, owing to the unwarranted assumption
that the molecules are spherical, the results will be true as regards order of
magnitude only. If the dielectric is a gas at atmospheric pressure, the
value of n is known, being about 2685 x 10®, and this enables us to calculate
the value of a.

160. The following table gives series of values of E: for gases at atmo-
0

spheric pressure:

Gas l\£'0 observed Ar'::;.(.) . «z\c{z:)l\c: »Itné::: a('i::];::;. t((;;i
Theory) Gases)t

Helium .| He | 1000074 | 4 || -508x10-%| 1:09x10-®
Hydrogen e | 1L 1-000264 1 019%x10-8| 1:36x 10-8
Oxygen ... .| Op | 1000343 | 3 || 117x10-8 | 1:81x10-8
Argon .. .| Ar 1-000566 3 1'18x10-8 | 183x 108
Air e | — 1-000586 2 1'19x 108 | 1-87x10-8
Nitrogen v | Ny 1:000594 3 1-20x 108 | 1-49x 10-8
Carbon Monoxide | CO 1-000695 2 1-27x10-% | 189x10-8
Carbon Dioxide CO, 1'000985 2 142x10~% | 2:33x 10-8
Nitrous Oxide ... | N3O 100099 2 143x 10-8 | 2:33%10-8
Ethylene oo | Golly)  1°00146 2 1'63x 108 | 277 x 10-8

* Authoritics:—1. Boltzmann, 1875,
2. Klemendid, 1885,
8. Culeulated from refractive index for Sodium Light,
4, Hockheim, 1908,

+ Jeans, Introduction to the Kinetic Theory of Gases, p. 183,
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The last two columns give respectively the values of a calculated from
equation (75), and the value of a given by the Theory of Gases. Thec two
sets of values do not agree exactly—this could not be expected when we
remember the magnitude of the errors introduced in treating the molecules
as spherical. But what agreement there is supplies very significant evidence
as to the truth of the theory of molecular polarisation.

161. It still remains to explain what physical property of the molecule
justifies us in treating its surface as a perfect conductor. It has already
been explained that all matter contains a number of negatively charged par-
ticles or electrons. These form the outer layers of the atoms and molecules :nd
it is by their motion that the conduction of clectricity is effected. In a dielectric
there is no conduction, so that each electron must remain permanently
associated with the same molecule. There is, however, plenty of evidence
that the electrons are not rigidly fixed to the molecules but are free to move
within certain limits. The molecule may be regarded as consisting partially
or wholly of a cluster of electrons, normally at rest in positions of equilibrium
under the various attractions and repulsions present, but capable of vibrating
about these positions. Under the influence of an external field of force,
the electrons will move slightly from their equilibrium positions—we may
imagine that a kind of tidal motion of electrons takes place in the molecule.
Obviously, by the time that equilibrium is attained, the outer surface of the
molecule must be an equipotential. This, however, is exactly what is required
for Mossotti’s hypothesis. We may accordingly abandon the eonception of
conducting spheres, which was only required to make the surface of the
molecule an equipotential, and may, without impairing the power of Mossotti’s
explanation, replace these conducting spheres by shells of electrons. If in
some way we can further replace these shells by rings of electrons in rapid
orbital motion, the modified hypothesis will be in very close agreement with
modern beliefs as to the structure of matter.

On this view, the quantity @ tabulated in the sixth column of the table
on p. 132, will measure the radius of the outermost shell of electrons. Even
outside this outermost shell, however, there will be an appreciable field of
force, so that when two molecules of a gas collide there will in general be a
considerable distance between their outermost layers of electrons. Thus if
the collisions of molecules in a gas are to be regarded as the collisions of
elastic spheres, the radius of these spheres must be supposed to be con-
siderably greater than a. Now it is the radius of these imaginary elastic
spheres which we calculate in the Kinetic Theory of Gases: there is therefore
no difficulty in understanding the differences between the two sets of values
for a given in the table of p. 182.

It is known that molecules are not in general spherical in shape, but, as

we shall see below, there is no difficulty in extending Mossotti’s theory to
cover the case of non-spherical molecules.
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AN1soTROPIC MEDIA.

162. There are some dielectrics, generally of crystalline structure, in
which Faraday’s relation between polarisation and intensity is found not
to be true. The polarisation in such dielectrics is not, in general, in the
same direction as the intcnsity, and the angle between the polarisation and
intensity and also the ratio of these quantities are found to depend on the
direction of the ficld relatively to the axes of the crystal. We shall find that
the conception of molecular action accounts for these peculiarities of crystalline
dielectrics.

Lot us consider an extreme case in which the spherical molecules of
fig. 46 are replaced by a number of very elongated or needle-shaped bodies.
The lines of force will have their effective lengths shortened by an amount
which depends on whether much or little of them falls within the material of
the needle-shaped molecules, and, as in § 149, there will be an equation of
the form

x_ 1+36,

0
where 6 is the aggregate volume of the number of molecules which occur in
a unit volume of the gas, and s is a numerical multiplier. But it is at once
clear that the value of s will depend not only on the shape but also on the
oricntation of the molecules. Clearly the value of s will be greatest when
the needles are placed so that their greatest length lies in the direction of

——— “——_+\l
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Fia. 46a. Fio. 46, Fic. 46¢.

the lines of force, as in fig. 46 a, and will be least when the needles lie at
right angles to this position, as in fig. 46b. Or to put the matter in another
way, a piece of dielectric in which the molecules are needle-shaped and
parallel will exhibit different values of K according as the field of force is
porallel or at right angles to the lengths of the needles.
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This extreme case illustrates the fundamental property of crystalline
dielectrics, but it ought to be understood that in actual substances the values
of K do not differ so much for different directions as this extreme case might
be supposed to suggest. For instance for quartz, one of the substances in
which the difference is most marked, Curie finds the extreme values of K to
be 4'55 and 4-49.

Before attempting to construct a mathematical theory of the behaviour
of a crystalline dielectric we may examine the case of a dielectric having
needle-shaped molecules placed parallel to one another, but so as to make
any angle 6 with the direction of the lines of force, as in fig. 46 c.

It is at once clear that not only are the effective lengths of the lines of
force shortened by the presence of the molecules, but also the directions of
the lines of force are twisted. It follows that the polarisation, regarded as a
vector as in § 128, must in general have a direction different from that of the
average intensity R of the field.

To analyse such a case we shall, as in § 146, regard the ficld near any
point as the superposition of two fields:

(i) the field which arises from the doublets on the neighbouring
molecules, say a field of components of intensity X;, ¥, Z;

(i1) the field caused by the doublets arising from the distant molecules
and from the charges outside the dielectric, say a field of components of
intensity X,, Y,, Z,.

Clearly in the case we are now considering, the intensities E,, R, of
these fields will not be in the same direction.

The components of intensity of the whole field are given by

X=X+ X, etc.

To discuss the first part of the field, let us regard the whole field as
the superposition of three fields, having respectively components (X, 0, 0),
(0, ¥, 0) and (0, 0, Z). If the molecules are spherical, or if, not being
spherical, their orientations in space are distributed at random, then clearly
the field of components (X, 0, 0) will induce doublets which will produce
simply a ficld of components (X'X, 0, 0) where KX’ is a constant. But if the
molecules are neither spherical in shape nor arranged at random as regards
their orientations in space, it will be necessary to assume that the induced
doublets give rise to a field of components

K, X, K',X, K' X,
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On superposing the doublets induced by the three fields (X, 0, 0),
0, ¥, 0) and (0, 0, Z), we obtain
X,=K,X+K'y Y+K',,Z1
Vi=Ko X+ K'nY+K'nZ | ovvirecsnennnnenens (T6),
Z1=K’,,X+K’,,Y+K’.,ZJ

Thus we have relations of the form
drf =K X+ KoY+ KuZ
dng=K X+ K, Y4+ KoZ | covvnrnninnnnnnneans 7),
drh=K X+ K Y+ KuZ

expressing the relations between polarisation and intensity.

These are the general equations for crystalline media. We shall shortly
prove (§ 170) that
Km:Ku, I(”'—'Kag, K'1=Ku .................. (78),

8o that there are not nine, but only six, independent constants,

NON-SPHERICAL MOLECULES.

1524, A medium in which the molecules are not spherical but are oriented
at random can be discussed in a similar way. The whole field (X, ¥, Z) may
be regarded as the superposition of three fields (X, 0, 0), (0, ¥, 0) and (0, 0, Z).
The induced doublets produced by the first field will produce a field of com-
ponents

(K'X, 0,0),
the components along Oy and 0z necessarily vanishing on account of the
random orientation of the molecules. The other fields similarly produce
induced fields
(v, K'Y, 0) and (0,0, K'Z),
whence we readily obtain equations of the form
drnf=KX, dwg=KY, 4mh=KZ.

Thus Mossotti’s theory can readily be extended to non-spherical molecules,
but the difficulty remains that according to modern views, a molecule does
not consist of layers of electrons at rest, but of systems of electrons in orbital
motion. It will not be possible to make the appropriate modification in the
theory until the exact nature of this orbital motion is known,
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EXAMPLES.

1. A spherical condenser, radii a, b, has air in the space between the spheres. The
inner sphere receives a coat of paint of uniform thickness ¢ and of a material of which
the inductive capacity is K. Find the change produced in the capacity of the condenser.

2 A conductor has a charge ¢, and V;, V; are the potentials of two equipotential
surfaces completely surrounding it (V;> V). The space between these two surfaces is
now filled with a dielectric of inductive capacity X. Shew that the change in the
energy of the system is

$o(Vi= Vo) (E-1)K.

3. The surfaces of an air-condenser are concentric spheres. If half the space between
the spheres be filled with solid dielectric of specific inductive capacity K, the dividing
surface between the solid and the air being a plane through the centre of the spheres,
shew that the capacity will be the same as though the whole dielectric were of uniform
specific inductive capacity § (1 + &)

4. The radii of the inner and outer shells of two equal spherical condensers, remote
from each other and immersed in an iofinite dielectric of inductive capacity K, are
respectively ¢ and b, and the inductive capacities of the dielectric inside the condensers
are K;, K;. Both surfaces of the first condenser are insulated and charged, the second
being uncharged. The inner surface of the second condenser is now connected to earth,
and the outer surface is connected to the outer surface of the first condenser by a wire
of negligible capacity. Shew that the loss of energy is

Q*{2(b—a) K +aky}
26b{(b—a) K+ahy}’

where @ is the quantity of electricity which flows along the wire.

5. The outer coating of a long cylindrical condenser is a thin shell of radius a, and
the dielectric between the cylinders has inductive capacity A on one side of a plane
through the axis, and X' on the other side. Shew that when the inner cylinder is
connected to earth, and the outer has a charge ¢ per unit length, the resultant force on
the outer cylinder is

sq? (K = K)
wa(L+A'):
per unit length.

8. A heterogeneous dielectric is formed of n concentric spherical layers of specific
inductive capacities K;, K3, ... K, starting from the innermost dielectric, which forms a
solid sphere; also the outermost dielectric extends to infinity. The radii of the spherical
boundary surfaces are @, @3, ... @a~; respectively. Prove that the potential due to a
quantity @ of electricity at the centre of the spheres at a point distant = from the centre

in the dielectric X, is
l_l) @ (1_ 1 ) Q 1
( Aul Uy g4y, *e +Tu,‘ 1
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7. A condenser is formed by two rectangular parallel conducting plates of breadth
b and area 4 at distance d from each other, Also a parallel slab of a dielectric of thickneas
t and of the same area is between the plates. This slab is pulled along its length from
between the plates, so that only a length 2 is between the plates. Prove that the electrio
force sucking the slab back to its original position is
2 E2dbt’ (d—1¢')
A d-t)+zbr)2’
where ¢'=t (K - 1)/K, K is the specific inductive capacity of the slab, £ is the charge, and
the disturbances produced by the edges are neglected.

8. Three closed surfaces 1, 2, 3 are equipotentials in an electric field. If the space
between 1 and 2 is filled with a dielectric K, and that between 2 and 3 is filled with &
dielectric K, shew that the capacity of a condenser having 1 and 3 for faces is C, given by

1.1 1
e=axt Br
where 4, B are the capacities of air-condensers having as faces the surfaces 1, 2 and 2, 3
respectively.

9. The surface separating two dielectrics (K, K,) has an actual charge o per unit
area. The electric forces on the two sides of the boundary are F), F; at angles ¢;, ¢; with
the common normal. Shew how to determine 73, and prove that

4o
t ¢;= A, cot R
Kgcot ea= K, cot e, (l £ F‘cusc,)'

10. The space between two concentric spheres radii a, b which are kept at potentials
A, B, is filled with a heterogeneous dielectric of which the inductive capacity varies as
the nth power of the distance from their common centre. Shew that the potential at any
point between the surfaces is

Aén-&l-an-&l antlpn+l A-B
PR 5 T ST WPTEY Wy T

11. A condenser is formed of two parallel plates, distant 4 apart, one of which is
at zero potential. The space between the plates is filled with a dielectric whose inductive
capacity increases uniformly from one plate to the other. Shew that the capacity per unit
area is

_Ey-K,

dnhlog Ky Ky?
where K; and Kj are the values of the inductive capacity at the surfaces of the plate. The
inequalities of distribution at the edges of the plates are neglected,

12. A spherical conductor of radius @ is surrounded by a concentric spherical
couducting shell whose internal radius is b, and the intervening space is occupied by a

dielectric whose specific inductive capacity at a distance 7 from the centre is '-’%'1 If the
inner sphere is insulated and has a charge E, the shell being connected with the earth,

rove that the potential in the dielectric at a distan is Z 100 2(0+7)
P! P ielectric at a dis: cerfromthecentremclogm.
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13. A spherical conductor of radius a is surrounded by a concentric spherical shell of
radius b, and the space between them is filled with a dielectric of which the inductive
capacity at distance # from the centre is e~ p=3 where p=rfa. Prove that the capacity

of the condenser so formed is ”

Qua (eai—¢)=1,

14. If the specific inductive capacity varies as ¢~ @, where r is the distance from &
fized point in the medium, verify that a solution of the differential equation satisfied by

the potential is
r
(gy [eﬁ S f—] cos 6,
r a 2

and hence determine the potential at any point of a sphere, whose inductive capacity is
the above function of the distance from the centre, when placed in a uniform field of
force.

15. Shew that the capacity of a condenser consisting of the conducting spheres r=a,
r=b, and a heterogeneous dielectric of inductive capacity K=7(6, ¢), is

o (b ) ff(ﬂ ¢)sin 8 d6 de.

16. In an imaginary crystalline medium the molecules are discs placed so as to be
all parallel to the plane of zy. Shew that the components of intensity and polarisation
are connected by equations of the form

4ﬂf‘K|1X+KmY; 41l'y=K)sX+ K”Y; 41rll=K,3Z.



CHAPTER VI
THE STATE OF THE MEDIUM IN THE ELECTROSTATIC FIELD

168. THE whole electrostatic theory has so far been based simply upon
Coulomb’s Law of the inverse square of the distance. We have supposed
that one charge of electricity exerts certain forces upon a second distant
charge, but nothing has been said as to the mechanism by which this action
takes place. In handling this question there are two possibilities open. We
may either assume “action at a distance” as an ultimate explanation—.e.
simply assert that two bodies act on one another across the intervening
space, without attempting to go any further towards an explanation of how
such action is brought about—or we may tentatively assume that some
medium connects the one body with the other, and examine whether it is
possible to ascribe properties to this medium, such that the observed action
will be transmitted by the medium. Faraday and Maxwell followed the latter
course. They refused to admit “action at a distance” as an ultimate explana-
tion of electric phenomena, finding such action unthinkable unless transmitted
by an intervening medium.

154 It is worth enquiring whether there is any valid @& priori argument which
compels us to resort to action through a medium. Some writers have attempted to use
the phenomenon of Inductive Capacity to prove that the energy of a condeuser must
reside in the space between the charged plates, rather than on the plates themselves—for,
they say, change the medium between the plates, keeping the plates in the same condition,
and the energy is changed. A study of Faraday’s molecular explanation of the action in
a dielectric will shew that this argument proves nothing as to the real question at issue.
It goes so far as to prove that when there are molecules placed between electric charges,
these molecules themselves acquire charges, and so may be suid to be new stores of energy,
but it leaves untouched the question of whether the energy resides in the charges on the
molecules or in the ether between them.

Again, the phenomenon of induction is sometimes quoted against action at a distance—
a small conductor placed at & point P in an electrostatic field shews phenomena which
depend on the electric intensity at P. This is taken to shew that the state of the ether
at the point P before the introduction of the conductor was in some way different from
what it would have been if there hud not been electric charges in the neighbourhood. But
all that is proved is that the state of the point P after the introduction of the conductor
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will be different from what it would have been if there had not been electric charges in
the neighbourhood, and this can be explained equally well either by action at a distance or
action through a medium. The new conductor is a collection of positive and negative
charges : the phenomena under question are produced by these charges being acted upon
by the other charges in the field, but whether this action is action at a distance or action
through a medium cannot be told.

Indeed, it will be seen that, viewed in the light of the electron-theory and of Faraday’s
theory of dielectric polarisation, electrical action stands on just the same level as
gravitational action. In each case the system of forces to be explained may be regarded
as a system of forces between indestructible centres, whether of electricity or of matter,
and the law of force is the law of the inverse square, independently of the state of the
space between the centres. Now no scientist would clam that there is any @ priors proof
that gravitation is transmitted through a medium—indeed the trend of opnion at present
is quite in the opposite direction—and this fact in itself suffices to shew that there is no
& priori means of establishing that electrical action is transmitted through a medium.

Failing an @ priori argument, an attempt may be made to disprove action at a distance,
or rather to make it improbable, by an appeal to experience. It may be argued that as
all the forces of which we have experience in every-day life are forces between substances
in contact, therefore it follows by analogy that forces of gravitation, electricity and
magnetism, must ultimately reduce to forces between substances in contact—i.e. must be
transmitted through a medium. Upon analysis, however, it will be seen that this argument
divides all forces into two classes :

(a) Forces of gravitation, electricity and magnetism, which appear to act at a
distance.

(8 TForces of pressure and impact between solid bodies, hydrostatic pressure, etc.
which appear to act through a medium.

The argument is now seen to be that because class (8) appear to act through a medium,
therefore class (a) must ¢n reality act through a medium. The argument could, with equal
logical force, be used in the exactly opposite direction : indeed it has been so used by the
followers of Boscovitch. The Newtonian discovery of gravitation, and of apparent action
at a distance, so occupied the attention of scientists at the time of Boscovitch that it
seemed natural to regard action at a distance as the ultimate basis of force, and to
try to interpret action through a medium in terms of action at a distance. The reversion
from this view came, as has been said, with Faraday.

Hertz’s subsequent discovery of the finite velocity of propagation of clectric action,
which had previously been predicted by Maxwell’s theory, came to the support of Faraday’s
view. To see exactly what is meant by this finite velocity of propagation, let us imagine
that we place two uncharged conductors 4, B at a distance 7 from one another. By
charging 4, and so performing work at 4, we can induce charges on conductor B, and
when this has been done, there will be an attraction between conductors 4 and B. We
can suppose that conductor 4 is held fast, and that conductor B is allowed to move
towards 4, work being performed by the attraction from conductor 4. We are now
recovering from B work which was originally performed at 4. The experiments of Hertz
shew that a finite time is required before any of the work spent at A becomes available
at B. A natural explanation is to suppose that work spent on 4 assumes the form of
energy which spreads itsclf out through the whole of space, and that the finite time
observed before energy becomes available at B is the time required for the first part of
the advancing energy to travel from 4 to B. This explanation involves regarding energy
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as a definite physical entity, capable of being localised in space. It ought to.be noticed
that our senses give us no knowledge of energy as a physical entity : we experience forf:e,
not energy. And the fact that energy appears to Lo propagated tl.xrough‘ space with finite
velocity does not justify us in concluding that it has a real physical existence, for,' a8 we
shall see, the potential appears to be propagated in the same way, and the potential can
only be regarded as a convenient mathematical fiction.

155. Although no sufficient reason has been found compelling us to
ascribe electric action to the presence of an intervening medium, we are still
free to assume, as a hypothesis, that such a medium exists and that electric
action is transmitted through this medium. As various electric and electro-
magnetic phenomena are discussed we shall examine what properties would
have to be attributed to the medium to account for these properties. If it is
found that contradictory propertics would have to be ascribed to the medium,
then the hypothesis of action through an intervening medium will have to be
abandoned. If the properties are found to be consistent, then the hypotheses
of action at a distance and action through a medium are still both in the
field, but the latter becomes more or less probable just in proportion as the
properties of the hypothetical medium seem probable or improbable. We shall
return to the general question of the existence of a medium in Chapter XX.

156. Since electric action takes place even across the most complete
vacuum obtainable, we conclude that if this action is transmitted by a
medium, this medium must be the ether. Assuming that the action is
transmitted by the ether, we must suppose that at any point in the electro-
static field there will be an action and reaction between the two parts of the
ether at opposite sides of the point. The ether, in other words, is in a state
of stress at every point in the electrostatic field. Before discussing the
particular system of stresses appropriate to an electrostatic ficld, we shall
investigate the general theory of stresses in a medium at rest.

GENERAL TLECRY OF STRESSES IN A MEDIUM AT REST.

1567. Let us take a small area dS in the medium perpendicular to the
axis of z. Let us speak of that part of the medium near to dS for which
is greater than its value over dS as «,, and that for which z is less than this
value as a_, so that the area dS separates the two regions «, and a_.
Those parts of the medium by which these two regions arc occupied excrt
forces upon one another across dS, and this system of forces is spoken of as
the stress across dS. Obviously this stress will consist of an action and
reaction, the two being equal and opposite. Also it is clear that the amount
of this stress will be proportional to dS.

Let us assume that the force exerted by #, on 2_ has components
E.dS, R,dS, R,dS.
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then the force exerted by z_ on z, will have components
—-PB,dS, -B,dS, —R.dS.

The quantities P.. By, B, are spoken of as the components of stress
perpendicular to Oz. Similarly there will be components of stress B, By,
B, perpendicular to Oy, and components of stress Bs, Ey. B, perpendicular
to Oz

Let us next take a small parallelepiped in the
medium, bounded by planes

c=§ w=E+dr;

y=n y=n+dy; % ﬁ]
z=t z=C(+dz Y A

The stress acting upon the parallelepiped /
across the face of area dydz in the plane z=§ ° z
. Fia. 47.
will have components

— (Ba)amt Yy dz, —(By)s-s dyds, - (Ro)e-tdyda,
while the stress acting upon the parallclepiped across the opposite face will
have components
(P m)z-£+dzd3/ dez, (By)z-e+udy dz, (Pu),_e +dzdyd1~

Compounding these two stresses, we tind that the resultant of the stresses
acting upon the parallelepiped across the pair of faces parallel to the plane
of yz, has components

ok, oR, ok,
s dzdydz, —-a-—x' dzdydz, S dzdydz.

Similarly from the other pairs of faces, we get resultant forces of com-
ponents
o8,

ok
B dzdydsz, 3

dodyds, 0 dedyds,
oy

ok

0z

For generality, let us suppose that in addition to the action of these

strosses the medium is acted upon by forces acting from a distance, of

amount =, H, Z per unit volume. The components of the forces acting on

the parallelepiped of volume dzdydz will be
Edzdydz, Hdxdyde, Zdzdydz.

Compounding a1l the forces which have been obtained, we obtain as equations
of equilibrium

oR, B
drdydz, -52-’ dzdydz, —é—;f dzdyda.

and

0B, @R OF:

A+ or Oy 0z

and two similar equations.
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158. These three equations ensure that the medinm shall have no
motion of translation, but for equilibrium it is also necessary that there
should be no rotation. To a first approximation, the stress across any face
may be supposed to act at the centre of the face, and the force B, H, Z at
the centre of the parallelepiped. Taking moments about a line through the
centre parallel to the axis of Oz, we obtain as the equation of equilibrium

This and the two similar equations obtained by taking moments about
lines parallel to Oy, Oz ensure that there shall be no rotation of the medium.
Thus the necessary and sufficient condition for the equilibrium of the medium
is expressed by three equations of the form of (79), and three equations of the
form of (80).

169. Suppose next that we tuke a small area dS anywhere in the
medium. Let the direction cosines of the normal
to dS be I, +m, +n Let the parts of the
medium close to dS and on the two sides of it be
spoken of as S, and S_, these being named so
that a line drawn from dS with dircetion cosines
+1 +m, +n will be drawn into S,, and one
with direction cosines ~ I, — m, —n will be drawn Y
into S_. Let the force exerted by S, on S_
across the area dS have components

FdS, GdS, HdS, * Fia. 48.
then the force exerted by S_ on S, will have

components
—FdS, ~@dS, - HdS.

The quantities F, G, H are spoken of as the components of stress across
a plane of direction cosines / m, n.

To find the values of F, G, H, let us draw a small tetrahedron having
three faces parallel to the coordinate planes and a fourth having direction
cosines [, m, n. If dS is the area of the last face, the areas of the other
faces are IdS, mdS, ndS and the volume of the tetrahedron is 3v2Imn (dSHL.
Resolving parallel to Oz, we have, since the medium inside this tetrahedron
is in equilibrium,

$V2Imn (d8)% B — ldSR, — mdSE,— ndSE, + FdS =0,
giving, since dS is supposed vanishingly small,
F=lpu+mpy¢+ngzuu ........ ...............(81)

and there are two similar equations to determine @ and H,
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160. Assuming that equation (80) and the two similar equations are
satisfied, the normal component of stress across the plane of which the
direction cosines are !, m, n is

IF+mG+nH=PF+m*By+ 1B, + 2mn B, + 2nl B, + 2lm B,

The quadric
@ Be+ By + 2B, + 2yz B, + 2:0B, + 22y By =1 .........(82)

is called the stress-quadric. If r is the length of its radius vector drawn in
the direction !, m, n, we have

72 ((Pgs + 0*Pyy + 03Py, + 200 Py, + 20l Py + 2lmPp) = 1.

It is now clear that the normal stress across any plane [, m, n is measured
by the reciprocal of the square of the radius vector of which the direction
cosines are [, m, n. Moreover the direction of the stress across any plane
{, m, n is that of the normal to the stress-quadric at the extremity of this
radius vector. For r being the length of this radius vector, the coordinates
of its extremity will be rl, rm, rn. The direction cosines of the normal at
this point are in the ratio

By +rmBy+ By By + rmBy+ R, : vl +rmE, + rnE,
or F:G: H, which proves the result.

The stress-quadric has three principal axes, and the directions of these
are spoken of as the axes of the stress. Thus the stress at any point has
three axes, and these are always at right angles to one another. If a small
area be taken perpendicular to a stress axis at any point, the stress across
this area will be normal to the area. If the amounts of these stresses are
B, B, R, then the equation of the stress-quadric referred to its principal
axes will be

RE+ By +BO=1

Clearly a positive principal stress is a simple tension, and a negative
principal stress is a simple pressure.

As simple illustrations of this theory, it may be noticed that
(i) For a simple hydrostatic pressure P, the stress-quadric becomes an imaginary

sphere

P@+r+()=-1
The pressure is the same in all directions, and the pressure across any plane is at right
angles to the plane (for the tangent plane to s sphere is at right angles to the radius
vector).

(ii) For a simple pull, as in a rope, the stress-quadric degenerates into two parallel

planes
Pgr=1,
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THE STRESSES IN AN KLecTRosTATIC FIELD.

161. If an infinitesimal charged particle is introduced into the clectric
field at any point, the phenomena exhibited by it must, on the present view
of electric action, depend solely on the state of stress at the point. The
phenomena must thercfore be deducible from a knowledge of the stress-
quadric at the point. The only phenomenon observed is a mechanical force
tending to drag the particle in a certain direction—namely, in the direction
of the line of force through the point. Thus from inspection of the stress-
quadric, it inust be possible to single out this one direction. We conclude
that the stress-quadric must be a surface of revolution, having this direction
for its axis. The cquation of the stress-quadric at any point, referred to
its principal axes, must accordingly be

PE+D(nP+8)=1...... ceserresarerineneas (83),

where the axis of £ coincides with the line of force through the point. Thus
the system of stresses must consist of a tension B along the lines of force,
and a tension B perpendicular to the lines of force—and if either of the
quantities B or B is found to be negative, the tension must be interpreted
as a pressure.

Since the electrical phenomena at any point depend only on the stress-
quadrie, it follows that /2 must be deducible from a knowledge of B and R.
Moreover, the only phenomena known are those which depend on the
magnitude of I, so that it is reasonable to suppose that the only quantity
which can be deduced from a knowledge of B and R is the quantity R—
in other words, that R and B are functions of R only. We shall for the
present assume this as a provisional hypothesis, to be rejected if it is found
to be incapable of explaining the facts.

162. The expression of R as a function of R can be obtained at once
by considering the forces asting on a charged conductor. Any element dS

. . IR Lo
of surface experiences a force 8_-;rdS urging it normally away from the con-

ductor. On the present view of the origin of the forces in the electric field,
we must interpret this force as the resultant of the ether-stresses on its two
sides. Thus, resolving normally to the conductor, we must have

B as=zas-(mas,

where (B)g, (), denote the valucs of P when the intensity is R and 0
respectively.  Inside the conductor there is no intensity, so that the
st:ress-'quadrics become spheres, for there is nothing to differentiate one
direction from another. Any value which (7}), may have accordingly arises
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simply from a hydrostatic pressure or tension throughout the medium, and
this cannot influence the forces on conductors. Leaving any such bydrostatic
pressure out of account, we may take (R), =0, and so obtain (B), in the
form

2= rrerrerervenerenrereerens(84).

163. We can most casily arrive at the function of R which must be
taken to express the value of £, by considering a special case.

Consider a spherical condenser formed of spheres of radii a, b. If this
condenser is cut into two equal halves by a plane through its centre, the
two halves will repel one another. This action must now be ascribed to the
stresses in the medium across the plane of section. Since the lines of force
are radial these stresses are perpendicular to the lines of force, and we sce
at once that the stress perpendicular to the lines of force is a pressure. To
calculate the function of B which expresses this pressure, we may suppose
b~ equal to some very small quantity c, so that B way be regarded as
constant along the length of a line of force. The arca over which this
pressure acts is =« (b® — a?), and since the pressure per unit area in the
medium perpendicular to a line of furce is — B, the total repulsion
between the two halves of the condenser will be — Bar(b* — a?).

The whole force on either half of the condenser is however a force 27¢?
per unit area over each hemisphere, normal to its surface. The resultant of
all the forces acting on the inner hemisphere is wa?® x 2703, or putting
2nates = E, so that £ is the charge on either hemisphere, this force is £%/2a%
Similarly, the force on the hemisphere of radius b is £?/2b%. Thus the re-
sultant repulsion on the complete half of the condenser is 4 £ CI"' - z—,) . Since

this has been seen to be also equal to — Bar (b*— a?), we have

¥ R’

- = 2.0
arab 8

B=-

on taking @ =b in the limit.

Thus 1 order that the observed actions may be accounted for, it is
neccssary that we have
R s
fl’ = g‘TT ’ E = S;T.
Moreover, if these stresses exist, they will account for all the observed
mechanical action on conductors, for the stresses result in a mechanical force

27ra* per unit area on the surface of every conductor.

164. It remains to examine whether these stresses are such as can be
transmitted by an ether at rest.
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As a preliminary we must find the values of the stress-components 2,
2, ... referred to fixed axes Oz, Oy, Or.
The stress-quadric at any point in the ether, referred to its principal axes,
is seen on comparison with equation (83) to be

B s -
& B = =0)=1 ccverecrcericcesncrasecse(85)

.Here the axis of § is in the direction of the line of force at the point.
Let the direction-cosines of this direction be };, m,, n,. Then on transforming
to axes Oz, Oy, Oz we may replace £ by Lz + my + n,s.

Equation (85) may be replaced by
R

and on transforming axes £ + %*+ {?* transforms into a*+ 3"+ 2. Thus the
transformed equation of the stress-quadric is

g—: Us+my+nzP —(@®+ i+ )] =1
Comparing with equation (82), we obtain
R
Pu = g;‘r (2l;|’ - 1) sessssncee XYY YTY TP PYYPTRN (86),

R
PW = '8—7‘_(2l177h) -"-.o-nou.u-ono-oc-o.nu(87),

and similar values for the remaining components of stress.
Or again, since X=4LR, Y=mR, Z=nR,
these equations may be expressed in the form

Re= L (xi-vi-29,
xy

T4

In this system of stress-components, the relations B, = B, are satisfied,
as of course they must be since the system of stresses has been derived by
assuming the existence of a stress-quadric. Thus the stresses do not set up
rotations in the ether (cf. equation (80)).

By

In order that there may be also no tendency to translation, the stress-
components must satisfy equations of the type
0B, A OF, 0B,
e +—5~37 + ¥ =0 civirierncntenircncacenee..(88),

expressing that no forces beyond these stresses are required to keep the
ether at rest (cf. equation (79)).
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On substituting the values of the stress-components, we have

oP, 9By 9P
—a;+—8_y-+8:

_1_ {E’_ (X' Y-_zs)+%(2xr)+ 3(2xz)}

& o () oy (BT (T ).

oy ¢z oy
On putting
b 14 r--2,  z--%,
z oy’ os

we find at once that
X 9Y oV oV

%y ow oxoy Bway
X oZ ooV oV

9z "% 3wz oz
oX oY oZ 2V oV vV
a;’fa-y*s:"(w’fa—ya‘fv)‘“

shewing that equation (88) is satisfied.

185. Thus, to recapitulate, we have found that a system of stresses
consisting of

(i) a tension g—: per unit area in the direction of the lines of force,

(ii) a pressure SE" per unit area perpendicular to the lines of force,

is one which can be transmitted by the medium, in that it does not tend to
set up motions in the ether, and is one which will explain the observed
forces in the electrostatic field. Moreover it is the only system of stresses
capable of doing this, which is such that the stress at a point depends only
on the electric intensity at that point.

Ezamples of Stress.

166. Assuming this system of stresses to exist, it is of value to try to
picture the actual stresses in the field in a few simple cases.

Consider first the field surrounding a point charge. The tubes of force
are cones. Let us conmsider the equilibrium of the ether enclosed by a
frustum of one of these cones which is bounded by two ends p, q. If
wy, wg are the areas of these ends, we find that there are tensions of
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amounts o, oo Since R,w, : Bywq, the former is the greater.

so that the forces on the two ends have as
resultant a force tending to move the ether

inwards towards the charge. This tendency //(q
is of course balanced by the pressures acting
on the curved surface, each of which has a ? P
component tending to press the ether inside e -
the frustum away from the charge.

Fic 49.

167. A more complex example is afforded
by two ecqual point charges, of which the lines of force are shewn in

fig. 50,

\

Fio. 50,

The lines of force on cither charge fall thickest on the side furthest
removed from the other charge, so that their resultant action on the charges
amounts to a traction on the surface of each tending to drag it away from
the other, and this traction appears to us as a repulsion between the bodies.

We can examine the matter in a different way by considering the action
and reaction across the two sides of the plane which bisects the line joining
the two charges. No lines of force cross this plane, which is accordingly
made up entirely of the side walls of tubes of force. Thus there is a pressure

2

81?1? per unit area acting across this plane at every point. The resultant of
all these pressures, after transmission by the ether from the plane to the
charges immersed in the ether, appears as a force of repulsion exerted by
the charges on one another.
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ENERGY IN THE MEDIUM.

168. In setting up the system of stresses in a medium originally un-
stressed, work must be done, analogous to the work done in compressing
a gas. This work must represent the energy of the stressed medium, and
this in turn must represent the energy of the electrostatic field. Clearly,
from the form of the stresses, the energy per unit volume of the medium
at any point must be a function of R only. To determine the form of this

function, we may examine the simple case of a parallel plate condenser,
2

and we find at once that the function must be g’;
<

We have now to examine whether the energy of any electrostatic ficld

2
can be regarded as made up of a contribution of amount {;; per unit volume
from every part of the field.

In fig. 51, let PQ be a tube of force of strength e, passing from P at
potential V. to @ at potential ¥,. The ether inside this tube of force

being supposed to pussess energy 8137: per unit volume,

the total energy enclosed by the tube will be —IITee
QR T
, g7 @

where o is the cross section at any point, and the

integration is along the tube. Since llw = dre,

this expression

Fi. B1.

= se(V,= V)

This, however, is exactly the contribution made by the charges +e at
P, Q to the expression 4 SeV. Thus on summing over all tubes of force, we
find that the total energy of the field § SeV may be obtained exactly, by

N3
assigning energy to the ether at the rate of é_‘; per unit volume.

Energy in a Dielectric.

169. By imagining the parallel plate condenser of § 168 filled with
dielectric of inductive capacity K, and calculating the energy when charged,

we find that the energy, if spread through the dielectric, must be —Ig;—m

per unit volume.
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Let us now examine whether the total energy of any field can be regarded
as arising from a contribution of this amount per unit volume. The energy
contained in a single tube of force, with the notation already used, will be

f‘?K zwdc,

p 87

or, since KR P, where P is the polarisation, this energy

4r 0
=] *RP@dS
P

q
“be f Rds
P
= % e (VP - ‘VQ)V
so that the total energy is § SeV, as before. Thus a distribution of energy c:

amount EB? per unit volume will account for the energy of any field,

Crystalline dielectrics.

170. We have seen (§ 152) that in a crystalline dielectric, the com-
ponents of polarisation and of electric intensity will be connected by equations
of the form

g = I X + K, Y + KpZ

dnh = K, X + K.Y + K2

The energy of any distribution of electricity, no matter what the dielectric
may be, will be 4 ZEV. If ¥, V] are the potentials at the two ends of
a unit tube, the part of this sum which is contributed by the charges at the
ends of this tube will be § (V; - ¥,). If 9/ds denote differentiation along the
tube, this may be written —} [ ds, or again - § | %7 Po ds,where P is the

polarisation, and  the cross section of the tube. Thus the energy may be

dnf =Ko X + Ku¥V + K02 }

supposed to be distributed at the rate of — } %?P per unit volume. If ¢ is the
angle between the direction of the polarisation and that of the electric

. . 14 .
intensity, we have — %; = Rcose 8o that the energy per unit volume

=} RPcose=} (fX+ gV +A2) weverrerrrerern(90).

In a slight increase to the electric charges, the change in the energy of
the system is, by § 109, equal to 3 V3E, so that the change in the energy per
unit volume of the medium is

W =X38 + Y89 + Z&h.

oW oW A
Thus "2:7=X’ -@--Y, —37‘-==Z .......... seesnenraes(91).
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From formulae (89) and (90), we must have
W=}(fX+g9Y +hZ)

= 8%. (BuX2+(Ku+ K,) XY +...},
from which
ow 1

X T 4m
‘We must also have

oW _2W of oW 39 aW oh
oX of oX " o9 0X T oh 0X

1 -
= yp {KnX + K,V + Kllz}'

{KnX + %‘ K+ Ky) Y + &(Kn + Ky) Z}-

Comparing these expressions, we see that we must have
Ku= Ku» Ku = Kn; Ky = Kn-

The energy per unit volume is now

W m o (K X0 4 2KuX Y 4 oe) covrernsenrnss( 920

MaxweLL'S DiSPLACEMENT THEORY.

171. Maxwell attempted to construct a picture of the phenomena
occurring in the electric field by means of his conception of “electric dis-
placement.” Electric intensity, according to Maxwell, acting in any medium—
whether this medium be a conductor, an insulator, or free ether—produces
a motion of electricity through the medium. It is clear that Maxwell's
conception of electricity, as here used, must be wider than that which we
have up to the present been using, for electricity, as we have so far under-
stood it, is incapable of moving through insulators or free ether. Maxwell’s
motion of electricity in conductors is that with which we are already familiar.
As we have seen, the motion will continue sc long as the electric intensity
continues to exist. According to Maxwell, there is also a motion in an
insulator or in free ether, but with the difference that the electricity cannot
travel indefinitely through these media, but is simply displaced a small
distance within the medium in the direction of the electric intensity, the
extent of the displacement in isotropic media being exactly proportional
to the intensity, and in the same direction.

The conception will perhaps be understood more clearly on comparing a conductor to
a liquid and an insulator to an elastic solid. A small particle immersed in a liquid will
continue to move through the liquid 8o long as there is a force acting on it, but a particle
immersed in an elastio solid will be merely “displaced” by & force acting on it. The
amount of this displacement will be proportional to the force acting, and when the force
is removed, the particle will return to its original positivn.
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Thus at any point in any medium the displacement has magnitude and
direction. The displacement, then, is a vector, and its component in any
direction may be measured by the total quantity of electricity per unit area
which has crossed a small area perpendicular to this direction, the quantity
being measured from a time at which no electric intensity was acting.

172. Suppose, now, that an electric field is gradually brought into
existence, the field at any instant being exactly similar to the final field
except that the intensity at each point is less than the final intensity in
some definite ratio x. Let the displacement be ¢ times the intensity, so
that when the intensity at any point is xR, the displacement is cxR. The
direction of this displacement is along the lines of force, so that the
electricity may be regarded as moving through the tubes of force: the lines
of force become identical now with the current-lines of a stream, to which
they have already been compared.

Let us consider a small element of volume cut off by two adjacent
equipotentials and a tube of force. Let the cross section of the tube of
force be w, and the normal distance between the equipotentials where they
meet the tube of force be ds, sc that the element under
consideration is of volume wds. On increasing the intensity
from «R to (x + dx) R, there is an increase of displacement | ds-
from ccR to ¢(x +dx) R, and therefore an additional dis-
placement of electricity of amount cRde per unit area.

i)

Thus of the electricity originally inside the small element
of volume, a quantity cRwdx flows out across one of the
bounding equipotentials, whilst an equal quantity flows n Tro. 5L
across the other. Let ¥, ¥, be the potentials of these
surfaces, then the whole work done in displacing the electricity originally
inside the element cf volume wds, is exactly the work of transferring a
quantity cRdx of eleciricity from potential ¥ to potential ¥. It is
therefore ¢Rw (V,— ¥])dk and, since ¥,— ¥, =xRds, this may be written as
cR*owdskde. Thus as the intensity is increased from O to R, the total work
spent in displacing the electricity in the element of volume wds

1
-.:fo cR*(wds) kde = }cR?. wds.

This work, on Maxwell’s theory, is simply the energy stored up in the
3

element of volume wds of the medium, and is therefore equal to ER;wds.

Thus ¢ must be taken equal to 4-—1;, and the displacement at any point is

measured by
R

4—1;.
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If the element of volume is taken in a dielectric of inductive capacity X,

the energy is %f—f—’, 8o that ¢= gr , and the displacement is

KR

4 *

173. It is now evident that Maxwell's “displacement” is identical in
magnitude and direction with Faraday's “polarisation” introduced in

Chap. v.
Denoting either quantity by P, we had the relation

expressing that the normal component of P integrated over any closed
surface is equal to the total charge inside. On Maxwell’s interpretation of

the quantity P, the surface integral f f PcosedS simply measurcs the total

quantity of electricity which has crossed the surface from inside to outside.
Thus equation (93) expresses that the total outward displacement across any
closed surfuce 1s equal to the total charge inside.

If we now follow Maxwell in supposing that clectricity is of two kinds,

(1) the kind which appears as a charge on an electrified body,
(i1) the kind which Maxwell imagines to occupy the whole of space, and to
undergo displacement when electric action takes place,
then it appears that any increase of electricity of kind (i) inside any closed
surface 1s accompanied by an exactly equal decrease of clectricity of kind (ii).
In other words the sum total of the two kinds of electricity inside any closed
surface remains constant.

174. Tt will be understood that Maxwell’s theory of electrical displace-
ment attempts to give a physical picture of the processes of the electric field,
but that the truth of the picture is by no means essential to the mathematical
theory of electricity. The displacement theory is historically important because
it led Maxwell to the hypothesis of displacement currents which form the
foundation of his electromagnetic theory of light (Chap. xvir). But we shall
see later that the general electromagnetic theory can be developed without
the preliminary displacement theory. The displacement theory has served as
part of the scaffolding by which the electromagnetic theory was constructed;
whether the scatfolding ought now to be discarded remains an open question.



CHAPTER VII

GENERAL ANALYTICAL THEOREMS

GREEN’S THEOREM.

176. A THEOREM, first given by Green, and commonly called after him,
enables us to express an integral taken over the surfaces of a number of
bodies as an integral taken through the space between them. This theorem
naturally has many applications to Electrostatic Theory. It supplies a means
of handling analytically the problems which Faraday treated geometrically
with the help of his conception of tubes of force.

176. TuroREM. If u, v, w are continuous functions of the Cartesian
coordinates w, y, 2, then

3 f f (lu+ my+ nw) dS = f f f g: g; g:') dzdyds ...... (94).

Here % denotes that the surface integrals are summed over any number of
closed surfaces, which may include as special cases either

(1) one of finite size which encloses all the others, or
(i) =an imaginary sphere of infinite radius,

and I, m, n are the direction-cosines of the normal drawn in every case from
the element dS inte the upace between the surfaces. The volume integral is
taken throughout the space between the surfaces.

Consider frst the value of [[ 2% dadyds. Take any small prism with ita

axis parallel to that of z, and of cross section dyds. Let it meet the surfaces
at P,Q, R, 8, T, U, ... (fig. 58), cutting off areas dS;, dS;, dSg, ....

The contribution of this prism to f f f 2 dodyds is dyds [ 2 gz, where the
integral is taken over those parts of the prism which are between the surfaces,
Thus dz f % Jo+ j % A vne
oz

=—Upt Ug—Ug +Uug—
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where %p, ug, %p,... are the values of u at P, Q, B,.... Also, since the Ppro-

jection of each of the areas dSp, dSy,... on the plane of yz is dydz, we have
dyde =1lpdSp=—1lydSg=lzdS=...,

where I, lg, lp,... are the values of ! at P, @, R,.... The signs in front of

lp, lg, lp,... are alternately positive and negative, because, as we proceed

along PQR..., the normal drawn info the space between the surfaces makes

angles which are alternately acute and obtuse with the positive axis of .

—a—  — [TAW
N

F1a. 58.

Thus

dydz Qu

da:: dyde (—up+ug—ug+...)
= — lLpupdSp— lqugdSq — lpupdSp = es  teereess(95),
and on adding the similar equations obtained for all the prisms we obtain

[ Y L — (96),

the terms on the right-hand sides of equations of the type (95) combining so
as exactly to give the term on the right-hand side of (96).

We can treat the functions » and w similarly, and so obtain altogether
fﬂ. ou av aw dzdydza-—E/f(lu+mv+nw)dS

proving the theorem.

177. If u, v, w are the three components of any vector F, then the
expression
ou av aw
wtyte
is denoted, for reasons which will become clear later, by div . If N is the
component of the vector in the direction of the normal (I, m, n) to dS: then

N =lu+mv+nw.
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Thus Green’s Theorem assumes the form

jffdiv!‘dzdydz- - szNds rereeeeeererene (O7),

A vector F which is such that divF =0 at every point within a certain
regwn is said to be “solenoidal” within that region. If F is solenoidal
"within any region, Green’s Theorem shews that

f NdS=0,

where the integral is taken over any closed surface inside the region within
which F is solenoidal. Two instances of a solenoidal vector have so far
occurred in this book—the electric intensity in free space, and the polarisa-
tion in an uncharged dielectric

178. Integration through space external to closed surfaces. Let the
outer surface be a sphere at infinity, say a sphere of radius 7, where r is
to be made infinite in the limit. The value of

f (lu + mv + nw) dS

taken over this sphere will vanish if %, », and w vanish more rapidly at

infinity than 1}5 Thus, if this condition is satisfied, we have that

ov aw
.Ufaw 3_/ oz dwdydz‘—sz(lu+mv+nw)ds

where the volume integration is taken through all space external to certain
closed surfaces, and the surface integration is taken over these surfaces,
l, m, n being the direction-cosines of the outward normal.

179. Integration ti-rugh the interior of a closed surface. Let the inner
surfaces in fig. 53 ail disappear then we have

[ff ax az/ d“dydz~—ff(lu+mv+nw)d8

where the volume integration is throughout the space inside a closed surface,
and the surface integration is over this arca, ¢, m, n being the direction-
cosines of the inward normal to the surface.

180. Integration through a reqion in which u, v, w are discontinuous.
The only case of discontinuity of u, v, w which possesses any physxw,l 1mport.-
ance is that in which u, », w c])angc discontinuously in value in crossing
certain surfaces, these being finte in number. To treat this case, we enclose

each surface of dlsconcmumy inside a surfuce drawn so as to fit it closely on
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both sides. In the space left, after the interiors of such closed surfaces have
been excluded, the functions u, v, w are continuous. We may accordingly
apply Green’s Theorem, and obtain

ﬁf@; g’; g‘w)dxdydz -Eff(lu+mv+nw)d8

.Y f [+ mo+nupds........ 98),

where T denotes summation over the closed surfaces by which the original
space was limited, and X’ denotes summation over the new clused surfaces
which surround surfaces of discontinuity of u, v, w. Now
corresponding to any element of arca di ou a surface of dis-
continuity there will be two elements of area of the enclosing
surface. Let the direction-cosines of the two normals to dS be
L, my, n, and I, my, n,, so that §,=-—1, my=—my, and
n,=—ny. Let these direction-cosincs be those of normals = ny
drawn from dS to the two sides of the surface, which we shall
denote by 1 and 2, and let the values of w, », w on the two
sides of the surface of discontinuity at the element dS be
%, v, w, and wu, v, w,. Then clearly the two elements of
the enclosing surface, which fit against the element dS of gy, 54
the original surface of discontinuity, will contribute to

E’ff(lu + mv + nw) dS

an amount dS [(Lauy + mywy + maw,) + (Lo, + mgv, + nyw,)]
or {lx (U — uy) + my (v, — ) + g (W, — 'wa)} ds.

Thus the whole value of X’ ff(lu + mv + nw) dS may be expressed in
the form

2 [t = )+, = )+ 00— )} S,

where the integration is now over the actual surfaces of discontinuity. Thus
Green’s Theorem becomes

311 aw
f f f az ot o dwdyda

- ff(lu + mv + nw) dS

2”] {l (= ) + 1y (0, — v3) + 1 (w0, — wy)} S ........(99).



160 General Analytical Theorems [cn. v

Special Form of Green's Theorem.

181, An important case of the theorem occurs when u, v, w have the
special values
u=%>o 'a—-,

o
v=0 57,
3‘1’
where ® and ¥ are any functions of z, y and 2. The value of (lu + mv + nw)

is now

or d?a—n,

where Z% denotes differentiation along the normal, of which the direction-

cosines are I, m, n.

We also have
u ov ow 0 v 0 or) . 90 o
e m O E Ty e )

a<I> oV oboVY K odov (B"I' o B"I’)

"% ox oy oy T dzez T %—+W+5}7'

Thus the theorem becomes

]ﬂ{&vw%‘f?’ a(g)%‘:+a-;£aa‘f}d dyas=~3 [[0 % 48...c100)

This theorem is true for all values of ® and V¥, so that we may inter-
change ® and ¥, and the equation remains true. Subtracting the equation
so obtained from equation (100), we get

[[J@ve - vv) dsayas =~ = [[( 0 F] - ¥ T2) as......t00).

APPLICATIONS OF GREEN'S THEOREM.

182. In equation (101), put ®=1 and ¥ =V, where V denotes the
electrostatic potential. We obtain

[[[7:7 dedyde = - = f f T T 1)
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Let us divide the sum on the right into I,, the integral over a single
closed surface enclosing any number of conductors, and I, the integrals over
the surfaces of the conductors. Thus

ra-f[--ds

where 8% denotes differentiation along the normal drawn tnto the surface.

Thus — g is equal to the component of intensity along this normal, and

therefore to — N, where N is the component along the outward normal.
Hence
,=-[[Nas.

At the surface of a conductor ?aln, = — 4o, 80 that

Iy=4n3 [ f adS over conductors

=4 x total charge on conductors,

If there is any volume electrification, V*V'= — 4mrp, so that

f f ViV dadydz = — 47r[ f f pddyds,

and the integral on the right represents the total volume electrification.
Thus equation (102) becomes

f f NdS = 4m x (total charge on conductors + total volume electrification),

so that the theorem reduces to Gauss’ Theorem.
183. Next put ® and ¥ each equal to V. Then equation (100) becomes
. oV \2 <BV
ff VVVdzdydz +ffj{( ) ( az) dzdydz
+3 f v Vis=0

Take the surfaces now to be the surfaces of conductors, and a sphere of

radius r at infinity. At infinity ¥V is of order l, 8o that al: is of order
:, , and hence V— , integrated over the sphere at infinity, vanishes (§ 178).

The equation becomes

~tn [[[pVasayds + [[[ Rrdadyas - m [[Voas=o.
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The first and last terms together give — 4w x ZeV, where ¢ is any
element of charge, either of volume-electrification or surface-electrification.

Thus the whole equation becomes

N R d
i_eV=_Uf8; dzdydz,
shewing that the energy may be regarded as distributed through the space

. R .
outside the conductors, to the amount & Per unit volume—the result

already obtained in § 168.
184. In Green's Theorem, take

u=>o (K %‘I_') ,

£

'v=<I>(KiJ

ar
w=<> (K b;) .

Here K is ultimately to be taken to be the inductive capacity, which
may vary discontinuously on crossing the boundary between two dielectrics.
We accordingly suppose u, #, w to be discontinuous, and use Green’s I'heorem
in the form given in § 180. We have then

PG T X LT A
_/:U 10z ox * oy oy +-a_z— 6;} dadydz

"'ﬁfq’ {ax aaj (% %\Z)‘faaz (K )} dadyds
_— ﬂch(z—+ aa\5+ %‘:’)ds

—2"[]{ (K022 - i 0+ }dS

=_zjfm-- 48

f K, 20 Ly B, a;z L T— eeverenn(103),
where aa rm have the meanings assigned to them in § 140.
(4} vy

If we put @ =1, ¥ =V, in this equation, it reduces, as in § 1380, to
] j K %%ds = — 4 x total charge inside surface,

so that the result is that of the extension of Gauss’ Theorem, Again, it we
put ® =¥ =V, the equation becomes

i -
22 dadyds =3 SeV,
f f 3 dadydz =} %eV,
and the result is that of § 169.
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Green's Reciprocation Theorem.

185. In equation (101), put ®=V, ¥ =7V’ where V is the potential
of one distribution of electricity, and V" is that of a second and independent
distribution. The equation becomes

ff (pV'-p'V)d,zddezf (V' —a'V)dS=0,

which is simply the theorem of § 102, namely
eV =2€V cceiiiiiiiriniriiiiniinnnnen, (104).

If we assign the same values to ®, ¥ in equation (103), we again obtain
equation (104), which is now seen to be applicable when dielectrics are
present.

UNIQUENESS OF SOLUTION.

186. We can use Green’s Theorem to obtain analytical proofs of the
theorems already given in § 99.

THEOREM. If the value of the potential V is known at every point on
a number of closed surfaces by which a space s bounded internally and
externally, there is only one value for V at every point of this intervening
space, which satisfies the condition that V*V either vanishes or has an assigned
value, at every point of this space.

For, if possible, let ¥, V” denote two values of the potential, both of which
satisfy the requisite conditions. Then V’'— V=0 at every point of the

surfaces, and V2(V’ — V) =0 at every point of the space. Putting ® and ¥
each equal to ¥’ — V in equation (100), we obtain

JET () + (Va ) asavae-o

and this integral, bemg a sum of squares, can only vanish through the
vanishing of each term. We must therefore have

0 Oy _ v O oy
aTc(V‘V)=;¥/(V‘V)—ETz(V-V)=O ............ (105),

or V' —V equal to a constant. And since V' — V vanishes at the surfaces,
this constant must be zero, so that V =V’ everywhere, 1.e. the two solutions
V and V' are identical : there is only one solution.

187. THEOREM. Given the value of %nlf at every point of a number of

closed surfaces, there is only one possible value for V (except for additive
constants), at each point of the intervening space, subject to the condition that
V3V = 0 throughout this space, or has an assigned value at each point.
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The proof is almost identical with that of the last theorem, the only
difference being that at every point of the surfaces we have

D o
instead of the former condition V' — ¥V =0. We still have
'’ a 4
zﬁ(v -2 (-Vyas=o,

so that equation (105) is true, and the result follows as before, except that
V and V' may now differ by a constant.

188. Theorems exactly similar to these last two theorems are easily
seen to be true when the dielectric is different from air.
For, let V, ¥’ be two solutions, such that
3 (, 2 L2 RIERP N
%{K%(V—V)}+a-;{lx 5—y(V—V)}+5;{Ka—z(V—V)} 0
at all points of the space, and at the surface either V— V' =0, or

F .
m(V=V)=0.

By Green’s Theorem

T

i (e 2 e 27
+2 {K 2w- V’)}] dodyds

N (P C p—

+..ff1((v V)< (V= V)as

= 0 by hypothesis.

Equation (105) now follows as before, so that the result is proved.

COMPARISONS OF DIFFERENT FIELDS,

189. THEOREM. If any number of surfuces are fized in position, and a
gtven churge s pluced on each surfuce, then the energy 18 a minimum when
the charges are placed so that every surface is an equipotential.

Let V' be the actual potential at any point of the field, and V
the potential when the electricity is arranged so that each surface is
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an equipotential. Calling the corresponding energies W’ and W, we

" W-W= 87Jﬂ{(w ( ) ...}dxdydz
- Swff[{(aaz' 4 ...}dzdyd:

+a e (5 - 50) 3o+ - dwava

If we put ®=V, ¥=V'—~V, in equation (100), we find that the last

integral becomes
257 G- )

or, since V is by hypothesis constant over each conductor,
Efo(c'—o-)dS,
and this vanishes since each total charge [ [ o’dS is the same as the corre-

sponding total charge [ f odS. Thus

W__-fm v _ ...}dxdydz.

This integral is essentially positive, so that W' is greater than W, which
proves the theorem.

If any distribution is suddenly set free and allowed to flow so that the
surface of each conductor becomes an equipotential, the loss of energy
W’ — W is seen to be equal to the energy of a field of potential V'~V at
any point.

190. THEOREM. The introduction of a new conductor lessens the energy
of the field.

Let accented symbols refer to the field after a new conductor S has been
introduced, insulated and uncharged. Then

W-W= 8%1' f f f R*dzdydz through the field before S is introduced
- gl;r f f R*dzdyds through the field after S is introduced
= 8%;; f f f R*dzdyds through the space ultimately occupied by S

+ ‘8'1;. f f f (R*~— R”) through the field after S is introduced.
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= s [[[{(5e) - (5 - e

and this, as in the last. theorem, is equal to

//f{w 3’: ...}dwdyd;
+-—-“V’f[av 6V>

where %, denotes summation over all conductors, including 8.

The last integral

This last sum of surface integrals vanishes, so that

W—-W= glgf//R’dwdydz through S

or ox
S has been introduced.

_1_ [ JR(&V BV’) } dzdydz through the field after

Thus W — W’ is essentially positive, which proves the theorem.

On putting the new conductor to the earth, it follows from the preceding
theorem that the energy is still further lessened.

191. THEOREM. Any increase in the inductive capacity of the dielectric
between conductors lessens the energy of the field.

Let the conductors of the field be supposed fixed in position and in-
sulated, so that their total charge remains unaltered. Let the inductive
capacity at any point change from K to K + 8K, and as a consequence let
the potential change from V to V4V, and the total energy of the feld
from W to W+8W.

If E,, E,,... denote the total charges of the conductors, W, V,... their
potentials, and p the voiume density at any point,

W=33EV +4 [[[ oV dudyds,
so that, since the £’s and p remain unaltercd by changes in K, we have

SW=3SESV + }fUpSdedydz .......... eerr (106),
We also have ~

Wil % {< + () + (30} dedyas,
~s=[[[{GE) + )+ (L))o vy

A/U({ajaav Va8V avasv
ox oz " oy ay 0z

so that

} dzdydz ...(107).
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By Green’s Theorem, the last line

== J[fov i (£ 50) 55 (k%5) + 2 (52 s

—z g [[or {1k 5+ mi 5+ ur 3} as,
oy )
the summation of surface integrals being over the surfaces of all the

conductors,

= [[[psvdadyds + 3 [[s8Vas

_f-Hp'o‘dedydz+EE8V

=28W
by equation (106). Thus equation (107) becomes

5W =g [[[ReoK dudydz + 28,

so that SW=—g- f f f RS dwdyds.

Thus 8 W is necessarily negative if 8K is positive, proving the theorem.

It is worth noticing that, on the molecular theory of dielectrics, the increase in the
inductive capacity of the dielectric at any point will be most readily accomplished by
introducing new molecules. If, as in Chap. v, these molecules are regarded as uncharged
conductors. the theorem just proved becomes identical with that of § 190.

EARNSHAW'S THEOREM.

192. THEOREM. A charged body placed wn an electric field of force
cannot rest in stable equilibrium under the influence of the electric forces
alone.

Let us suppose the charged body 4 to be in any position, in the field
of force produced by other bodies B, B’,.... First suppose all the elec-
tricity on 4, B, B’, ... to be fixed in position on these conductors. Let
V' denote the potential, at any point of the field, of the electricity on
B, B,.... Letua,y,2be the courdinates of any definite point in 4, say its
centre of gravity, and let z+a, y+ b, z+ ¢ be the coordinates of any other
point. The potential energy of any elewent of charge e at z+a, y+b, z2+¢
is eV, where V is evaluated at x+a, y + b, 2+c¢. Denoting eV by w, we
clearly have

tw  o'w 0w

5—;,'+-a?+§=0.

since V is a solution of Laplace’s equation.
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Let W be the total energy of the body A in the field of force from
B, B, .... Then W=23w, and therefore

oW oW oW

=ty a0
te. the sum W =Zw satisfies Laplace’s equation, because this equation is
satisfied by the terms of the sum separately. It follows from this equation,
ag in § 52, that W cannot be a true maximum or a true minimum for any
values of z,y, 2. Thus, whatever the position of the body A, it will always
be possible to find a displacement—i.e. a change in the values of z, y, &#—for
which W decreases. If, after this displacement, the electricity on the con-
ductors 4, B, B, ... is set frce, so that cach surface becomes an equipotential,
it follows from § 189 that the encrgy of the field is still further lessened.
Thus a displacement of the body A4 has been found which lessens the energy
of the field, and therefore the body A cannot rest in stable equilibrium.

Oune physical application of Earnshaw’s Theorem is of extreme importance. The
theorem shews that an electron cannot rest in stable equilibrium under the forces of
attraction and repulsion from other charges, so long as these forces are supposed to obey
the law of the inverse square of the distance. Thus, if a molecule is to be regarded as a
cluster of electrons and positive charges, as in § 151, then the law of force must be some-
thing different from that of the inverse square.

There seems to be no ditficulty about the supposition that at very small distances the
law of force is different from the inverse square. On the cuntrary, there would be a very
real difficulty in supposing that the law 1/r2 held down to zero values of 7. For the force
Letween two charges at zero distance would be infinite ; we should have charges of oppo-
site sign continually rushing together and, when once together, no force would be adequate
to separate them. Thus the universe would in time consist only of doublets, each
consisting of permanently interlocked positive and negative charges. If the law 1/
held down to zero values of r, the distance apart of the charges would be zero, so that
the strength of each doublet would be nil, and there would be no way of detecting its
presence. Thus the matter in the universe would tend to shrink into nothing or to
diminish indefinitely in size. The observed permanence of matter precludes any such
hypdthesis.

Earnshaw’s Theorem: accordingly limits us to two alternatives. Either the molecule
does not consist of a cluster of electrons in relative rest, or else the law of the inverse
square fails at molecular distances.

Recent experimental investigations decide very definitely against the second alternative
and in favour of the first. Recent experiments on the deflection of the positively charged
a-particles by matter indicate that the law of the inverse square holds down to distances
of the order of 10~!! oms., a distance which is less than a thousandth part of the radius of
the hydrogen atom, and a lurge mass of other evidence suggests, with a probability
approximating to certainty, that the electrons in an atom or molecule must be in rapid
orbital motion. Thus the problem of the structure of the molecule is removed from the
province of Earnshaw’s Theoremn.
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STRESSES IN THE MEDIUM.

193. Let us take any surface S in the medium, enclosing any number
of charges at points and on surfaces S,, §;, ..

Let !, m, n be the direction-cosines of the normal at any point of
S;, 8y, ... or S, the normal being supposed drawn, as in Green’s Theorem,
into the space between the surfaces.

The total mechanical force acting on all the matter inside this surface
is compounded of a force eR in the direction of the intensity acting on every
point charge or element of volume-charge e, and a force 2mwo® or 4oR per
unit area on each element of conducting surface. If X, Y, Z are the com-
ponents parallel to the axes of the total mechanical force,

x=seX+sz;ade

-ﬂ’prdzdydz+ E‘UiaXdS.

where the surface integral is taken over all conductors S;, S, ... inside the
surface S, and the volume integral throughout the space between S and these
surfaces. Substituting for p and o,

L[ 22

4“2 f f:}( o W %—Z) %I-;ds ......... (108).

By Green’s Theorem,

[ e 4[] s

——x[[1 () as-3 [f ()

ff ?;:gydwd do = ff %;%(%Z)d.cd de

szm?)VE)VdS ff BVBV

ff % 5 (o) dodvae= ([t 2 (50) dadyas

_..szu(%; ds-ffy(%‘;’)'ds
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so that the last equation becomes 3 ra V} .

//aVanxdydz= 2//4*’ ) ™ %

oV ov
* ff‘%l(ay) ™o 3y}ds'
and there is a similar value for

ff aa:’, gvdxdydt

Substituting these values, equatlon (108) becomes

x= o= [ffu[ G+ (G)]-m B o - 5 s

oV 14 oV ov BV 8V oV
——Tr [{“[('a';)‘(ﬁi)'(ﬁz’)]* oz Qy " o az}ds
Since we have at every point of the surface of a conductor
oV oV oV
% _7y o

m vernerencsnsssnsensenann(109),

it follows that the integral over each conductor vanishes, leaving only the
integral with respect to dS, which gives

x=-ﬁ(l&,+m >+ nBy)dS,

where Bu= g (X' Y- 27,
Py=g- T,
B.= Z‘—xz.
m
If we write also
1
By =g (=2 X,
Bz,:sl_”(zi_xa_ Y’),
B.= V7,

the resultant force parallel to the axis of ¥ will be
Y= -[f(ug,, +mBy+nB,) dS,

and there is a similar value for Z. The action is therefore the same (cf.
§ 159) as if there was a system of stresses of components

. Pzz» Pw: BZ }yz; P&Gr Poy:
given by the above equations: i.e. these may be regarded as the stresses of
the medium.
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194. It remains to investigate the couples on the system inside S. If
L, M, N are the moments of the resultant couple about the azes of , y, 2,

we have

|.=fffp (yZ —2¥) dwdydz+a}2ffo(yZ-—sY)dS

i ||| + 5+ 5 (15 2%y ) dedvs
+s—ﬁff’a—w+"‘@+"%?)(yg"%)“
ff?atcz(-’/% av)da:dydz

- (% - W)d“d-'/d'

so that -fot W db U ( e )ds,

8V3 oV aV\ oVao, oV oV
"“w[ff{az 52\ Bz~z5§-)+ﬁé;—y(y5?—z-87)

—e 2 fJ S m G ) (v -5y ) as
- ﬂ(z‘%"+ g;’+ %Z)(y%’—z%)ds ceevesverssens(110).

The first term in this expression
-__ ﬂ' (3V2’_‘f+?.l’.?°_‘i+i‘_’9’_v)

or 0zdz = 0y dydz 0z 0*
(Q’ﬂ+ﬂ"'ﬂ’+?}’ oV

~%\oz ozdy = Oy Oy* @ 0z dyoz

oR_ ok
-— ff )dszdz

- a3 ff(ynR' —emB?)dS + o [f(ynR' _emRYdS.......... a1,

)} dzdyds

The second term in expression (110) for L may, in virtue of the relations
(109), be expressed in the form

_ S_f”. s f [ynBr - emBry s,

which is exactly cancelled by the first term in expression (111).
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We are accordingly left with
. . oV, OV 3V\( OV _ oV
L——-”{(ynR—sz) 2( ay+ )( e :ay)}ds
- f f (y (1B + B+ nBy) = £ (1By + mBy + nBy)} dS,

verifying that the couples are also accounted for by the supposed system of
ether-stresses.

195. Thus the stresses in the ether are identical with those already
found in Chapter VI, and these, as we have seen, may be supposed to

2
consist of a tension —1-2— per unit area across the lines of force, and a

2
pressure g— R - per unit area in directions perpendicular to the lines of force.

MEecHANICAL FORCES ON DIELECTRICS IN THE FIELD.

196. Let us begin by considering a field in which there are no surface
charges, and no discontinuities in the structure of the dielectrics. We shall
afterwards be able to treat surface-charges and discontinuities as limiting
cases.

Let us suppose that the mechanical forces on material bodies are 2, H, Z
per unit volume at any typical point «, g, 2 of this field,

Let us displace the material bodies in the field in such a way that the
point @, y, z comes to the point @+ 8z, y+ 8y, 2+82. The work done in
the whole field will be

- f | f(aax + Hoy + Z82) dodyds vveeeennn. (112),

and this must shew its2lf in an equal increase in the electric energy. The
electric energy W can »o put in either of the forms

W=m':‘—.1}ff/dewdydz,

f f K{ ) +(aal:)}dwdydz

When the dlspla,cement takes place, bhere will be a slight variation in
the distribution of electricity and a slight alteration of the potential.
There is also a slight change in the value of A at any point owing to
the motion of the dielectrics in the field. Thus we can put

BW = gW; = (8W;)p + (SWA) 4]
SW = BW, = (8W3)‘+ (3W;)n
where (8W;), denotes the change produced in the function W, by the varia-
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tion of electrical density alone, (8W)), that produced by the variation of
potential alone, and so on.

We have

@), =+ [[[psVazdyds
= & [ (T T i,

By Green’s Theorem, the last expression transforms into

o= & [ (K L)+ § (4 2) £ ()

- f f fpSVda:dydz,

80 that 2 (3W)y =(6W2)y.
We accordingly have
OW = 28W, — oW, =2 (3W,), — (SW.)g,
the variation produced by alterations in ¥ no longer appearing.

Now (W,=1 [[[spVdedyas,

(W= & f f f SK{ (a‘;) +(av)}d:cdyds,
s0 that sw=|] f{vap--s;ax} oYz vverreerseenenn. 113).

The change in p is due to two causes. In the first place, the electrifica-
tion at @, y, 2 was originally at @ — 8z, y — &y, 2 — 8z, so that 8p has as part
of its value

- a” sy 8 ..... rteeeeeetereneenns (114).

Again, the element of volume dedydz becomes changed by displacement
into an element

{da: + 585 (8z) dw} {dy + ~a— 8y) dy} {dz + 2 (Sz) dz} ,

or dedydz (1 + = 082‘ 88‘/ 88:)

w oy T
so that, even if there were no motion of translation, an original charge
pdzdydz would after displacement occupy the volume given by expression
(115), and this would give an increase in p of amount

(B :: + 0% 38_1/ + aaiz)
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Combining the two parts of 8p given by expressions (114) and (115),
we find

[ 2
o= {2 80+ 2 (o3 + 2 o2}

The change in K is also due to two causes. In the first place the point
which in the displaced position is at #, y, # was originally at @ — 8z, y — 8y,
£-08z. Hence as part of the value in 8K we have

oK. oK. oK
~% g =5,

Also, with the displacement, the density of the medium is changed, so
that its molecular structure is changed, and there is a corresponding change
in K. If we denote the density of the medium by 7, and the increase in =
produced by the displacement by &r, the increase in K due to this cause

will be

aK 81',

and we know, as in equation (116), that
_ 06z 38?/ 08z
dr=-— (aw toy Y 0z )
We 20w have, as the total valqe of 8K,

oK, oK, oK
0K == a5 by~ be

aK 2)8.1: 08y 082
Tow\aw Ty T az)
and hence, on substituting in equatlon (113) for 3p and 8K,

= [If y[2(pd2)  2(pdy) , 3(pd2))
3= f] {a;'*a,*’ —5) dedyds

/f (BK aK 8 + ai( 8:) dzdydz

R oK 38.'1: 381/ 008z
5% ( rm +) dodyds.

Integrating by parts, this becomes

SW= M(awpsua p8y+a pSz)dwdydz
ﬁf&r (G se+ X s +aK82)dxdyd:

"M{am(f; aalf) +ai,(§z,, %‘,‘)m: (g, aa )Sz}dwdydz
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or, rearranging the terms,

W,Uf{[ (LA s "2 (B g’f)]s +[ ]8y+[...]82}dxdydz,

Comparing with expression (112), we obtain

_p W _ROK 3 (= %)
Pox  Broxw ' oxr\8x " or

etc., giving the body forces acting on the matter of the diclectrio.

m

197. This may be written in the form
_R.'Z.E?E.,.(' / R? aK)
8w & dx \81:' or

Thus in addition to the force of components (pX, p¥, pZ) acting on the
charges of the dielectric, there is an additional force of components

_ koK aN ROK
8rox’ ~8may’  8wos

E=p

arising from variations in K, and also a force of components
P

?.(EI,QK) 9.(:"’1,%) 2(!_"1 %'.)
oz\8r  or )’ Oy\8r or)’ 22\8x or)’
which occurs when either the intensity of the field or the structure of the
dielectric varies from point to point.
~

STRESSES IN DIELECTRIC MEDIA.

198. Replacing p by its value, as given by Laplace’s equation, we obtain
equation (1 17) in the form

== {2?@’[ (K?;) a(’*’av) (5 %))
o )+ G+ )] & (52

=51;{“a1[ (( =)+ G+ ()
25 g (K 5) vk 5 ()
+250 2 (kW) i 2 (00
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=i [K ((‘“%J—,Z)’+ &)+ G)]
(2 (@) eg (kB H)EEET)
)
0

+-3%(R’1'—7r]{)}.

If we put
K (oVn  1aV\s R BK
Pfg;{(a-z) -G - (az)} T e (118),
K VoV
By= 0 g gy 0 oo N veeene(119),
this becomes E-aP“+a£ +aa—j:’!.

Let us suppose that a medium is subjected to a system of internal
stresses B,, B,, etc.; and let it be found that a system of body forces
of components Z', H', Z’ is just sufficient to keep the medium at rest
when under the action of these stresses. Then from equation (79) we
must have

B, oBR, OoF

== 1z .cy xz
= ( oz T oy + 0z )

Thus if B, R,, etc. have the values given by equations (118) and (119),
we have

E'=-Z, eto

This shews that the mechanical force =, 1I, Z reversed would just be
in equilibrium with the system of stresses B,, B, etc. given by equations
(118) and (119). In other words, the mechanical forces which have been
found to act on a dielectric can exactly be accounted for by a system of

stresses in the medimn, these stresses being given by equations (118) and
(119).

199. The system of stresses given by equations (118) and (119) can be
regarded as the superposition of two systems:

I. A system in which

Ra=§1;""‘_(X"'Y2-Z2), 2, KXY

47 ete.;
IL. A system in which
R oKk
=hv= R
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The first system is exactly K times the system which has been found to
occur in free ether, while the second system represents a hydrostatic pressure
of amount

R oK
T8r T or

(In general %1-5 will be positive, so that this pressure will be negative, and
must be interpreted as a tension.)

Hence, as in § 165, the system of stresses may be supposed to consist of :

(i) = tension I_g_._:i_’ per unit area in the direction of the lines of force;

2
(il) a pressure % per unit area perpendicular to the lines of force;

(iii) a hydrostatic pressure of amount — £ -rai{ in all directions.

8r or

The system of stresses we have obtained was first given by Helmholtz. The system

differs from that given by Maxwell by including the pressure —g T %1;(. The neglect of

this pressure by Maxwell, and by other writers who have followed him, does not appear to
be defensible. Helmholtz has shewn that still further terms are required if the dielectric
is such that the value of K changes when the medium is subjected to distortion without
change of volume.

200. This system of stresses has not been proved to be the only system
of stresses by which the mechanical forces can be replaced, and, as we have
seen, it is not certain that the mechanical forces must be regarded as arising
from a system of stresses at all, rather than from action at a distance.

It may be noticed, however, that whether or not these stresses actually
exist, the resultant force on any piece of dielectric must be exactly the
same as it would be if the stresses actually existed. For the resultant
force on any piece of dielectric has a component X parallel to the axis

x = [[[Edzdyas
g/ AN

- f j(u;, +mB, +nBy)dS

of «, given by

by Green's Theorem, and this shews that the actual force is identical with
what it would be if these stresses existed (cf. § 193).
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Force on a charged conductor.

201, The mechanical force on the surface of a charged eonductor
immersed in a dielectric can be obtained at once by regarding it as
produced by the stresses in the ether. There will be no stresses in the
interior of the conductor, so that the force on its surface may be regarded
as due to the tensions of the tubes of force in the dielectric. The tension

is accordingly of amount
KR* R* 2K

B T8r
per unit area, an expression which can be written in the simpler form

R0
g 57 KT

ZTorce at boundary of a dielectric.

202. Let us consider the equilibrium of a dielectric at a surface of
discontinuity, at which the lines of force undergo refraction on passing
from one medium of inductive capacity K, to a second of inductive
capacity K.

Let axes be taken so that the boundary is the plane of xy, while the
lines of force at the point under consideration lie
in the plane of zz. Let the components of
intensity in the first medium be (X, 0, Z,), while
the corresponding quantities in the second medium
are (X,, 0, Z,). The boundary conditions ob- 0
tained in § 137 require that

X1=X21 KAZI = KQZZ=4’"h;
where h is the normal cumponent of polarisation.

1T

In view of a later physical interpretation of Fro. 55.

the forces, it will be convenient to regard these forces as divided up into
the two systems mentioned in § 199, and to consider the contributions from
these systems separately.

As regards the contribution from the first system, the force per unit area
acting on the dielectric from the first medium has components

X K, , .
;;T: Xz, 0, 'g;; (&P — A&y,
while that from the second medium has components

A/ K
XoZy, O, .8—11-: (23— X2).
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Since K, X,Z, = K,X,Z,, it follows that the resultant force on the
boundary is parallel to Oz—i.e. is normal to the surface. Its amount,
measured as a tension dragging the surface in the direction from medium 1
to medium 2

K bl .
—S:T?(Za”‘X*!)" I(Z2 A:’)
which after simplification can be shewn to be equal to
/X 2wh\ , _
G+ i) (K

This is always positive if K, > X,. Thus this force invariably tends to
drag the surface from the medium in which K is greater, to that in which
K is less—i.e. to increase the region in which K is large at the expense of
the region in which K is small. This normal force is cxactly similar to the
normal force on the surface of a conductor, which tends to increase the
volume of the region enclosed by the conducting surface.

On Maxwell’s Theory, the forces which have now been considered are the only ones in
existence, so that according to this theory the total mechanical force is that just found,
and the boundary forces ought always to tend to increase the region in which K is large.
This theory, as we have said, is incomplete, 8o that it is not surprising that the result just
stated is not confirmed by experiment.

We now proceed to consider the action of the second system of forces—
the system of negative hydrostatic pressures. There are pressures per unit
area of amounts

R® 0K, R} 0K,

8w " on 87 " ory
acting respectively on the two sides of the boundary. There is accordingly
a resultant tension of amount

1 oK, K,
—g;(R’ —-—.R,“ Ts Oy

per unit arca, tending to drag the boundary surface from region 1 to region 2.

Thus the total tension per unit area, dragging the surface into region 1, is

t o
(f + g (- K,)-——(Ref, - R,

In § 189, in considering a parallel plate condenser with a movable
dielectric slab, we discovered the existence of a mecchanical force tending
to drag the dielectric in between the plates. This force is identical with the
mechanical force just discussed. But we have now arrived at a mechanical
interpretation of this force, for we can regard the pull on the dielectric as
the resultant of the pulls of the tubes of force at the different parts of the
surface of the dielectric.
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Let us attempt to assign physical interpretations to the terms of ex-
pression (120) by considering their significance in this particular instance.
Consider first a region in the condenser so far removed from the edges of
the condenser and of the slab of dielectric, that the field may be treated

as absolutely uniform (cf. fig. 44, p. 124). We put K;=1, X, =0, R, = Arh

1
in expression (120) and obtain

Ki-1_m aK') cerveresssennnennne(121)

2‘)‘1"11a (—-——1{1 had E', '5;‘-' YY)
as the force per unit area on either face of the dielectric, acting normally
outwards.

The forces will of course act in such a direction that they tend to
decrease the electrostatic energy of the field. Now this energy is made up

o . . he .
of contributions 2mA* per unit volume from air, and 2t per unit volume

K,

from the dielectric. From the conditions of the problem % must remain
unaltered. Thus the total energy can be decreased in either of two ways—
by increasing the volume occupicd by dielectric and decreasing that occupied
by air, or by increasing the value of I in the dielectric. There will therefore
be a tendency for the boundary of the dielectric to move in such a direction
as to increase the volume occupied by dielectric, and also a tendency for this
boundary to move so that K will be increased by the consequent change
of density. These two tendencies are represented by the two terms of
expression (121).

oK
or
volume occupied by the dielectric, and will also increase the value of K
inside the dielectri.. In this case, then, both tendencies act towards an
expansion of the fielectric, and we accordingly find that both terms in
expression (121) are positive.

If is negative, an expansion of the dielectric will both increase the

If %I-—f is positive, the tendency to expansion, represented by the first

(positive) term of expression (121) is checked by a tendency to contraction
(to increase 7, and therefore K) represented by the second (now negative)

term of expression (121). If aai_f is not only positive, but is numerically

large, expression (121) may be negative and the dielectric will contract. In
this case the decrease in energy resulting on the increase of X produced by
contraction will more than outweigh the gain resulting from the diminution
of the volume occupied by dieclectric.
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These oconsiderations enable us to see the physical significance of all the
2
terms in expression (120), except the first term ‘g—; (K, —1). To interpret

this term we must examine the conditions near the edge of the dielectric
slab, for it is only here that X, has a value different from zero. We see at
once that this term represents a pull at and near the edge of the dielectric,
tending to suck the dielectric further between the plates—in fact this force
alone gives rise to the tendency to motion of the slab as a whole, which was
discovered in § 139.

Returning to the general systems of forces of § 199, we may say that
the first system (which as we have seen always tends to drag the surface
of the dielectric into the region in which K has the greater value) represents
the tendency for the system to decrease its energy by increasing the volume
occupied by dielectrics of large inductive capacity, whilst the sccond system
(which tends to compress or expand the dielectric in such a way as to increase
its inductive capacity) represents the tendency of the system to decrease its
energy by increasing the inductive capacity of its dielectrics. That any
increase in the inductive capacity is invariably accompanied by a decrease
of energy has already been proved in § 191.

Electrostriction.

203. It will now be clear that the action of the various tractions on the
surface of a dielectric must always be accompanied not only by a tendency
for the dielectric to move as a whole, but also by a slight change in shape
and dimensions of the dielectric as this yields to the forces acting on it.
This latter phenomenon is known as electrostriction. It has been observed
experimentally by Quincke and others. A convenient way of shewing its
existence is to fill the bulb of a thermometer-tube with liquid, and place
the whole in an electric field. The pulls on the surface of the glass result
in an increase in the volume of the bulb, and the liquid is observed to
fall in the tube. From what has already been said it will be clear that
a dielectric may either expand or contract under the influence of electric
forces.

The stresses in the interior of a dielectric, as given in § 199, may also
be accompanied by mechanical deformation. Thus it has been observed by
Kerr and others, that a piece of non-crystalline glass acquires crystalline
properties when placed in an electric field. Such a piece of glass reflects
light like a uniaxal crystal of which the optic axis is in the direction of the
lines of force.
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GREEN'S EQUIVALENT STRATUM.

204. Let S be any closed surface enclosing a number of electric charges,
and let P be any point outside it. The potential at P due to the charges

inside S is
Vo =fff$dxdydz,

Fia. 56.

where r i the distance from P to the element dzdydz, and the integration
extends throughout 8. By Green’s Theorem (equation (101))

. . o oV _,oU
ff (UVV =¥V U)dwdydz-ﬁ(Uan ve-)ds,
where the normal is now drawn outwards from the surface S.
In this equation, put U =;1'-, then, since V!V =—4sp, we have as the
value of the first term,
f f UVSV dadyds = — 4nVp.

And since ViU =0, the second term vanishes. The equation accordingly

becomes
bV [ f {.lr. (%g)-vaﬁn (.lr.)} S eorrerernnnn (122).
205. Suppose, first, that the surface S is an equipotential. Then
[[va@)as=7 [z @)as
-7 [ @)

=0,
so that equation (122) becomes

H»J/(_‘Ilf’%) >
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Thus the potential of any system of charges is the same at every point
outside any selected equipotential which surrounds all the charges, as that
of a charge of electricity spread over this equipotential, and having surface

density _%%Lr: Obviously, in fact, if the equipotential is replaced by a

conductor, this will be the density on its outer surface.

208. If the surface is not an equipotential, the term f f Va% G) ds

will not vanish. Since, however, p.a% (%) is the potential of a doublet of

strength u and direction that of the outward normal, it follows that
f f Va% (-:‘;) dS is the potential of a system of doublets arranged over the

surface S, the direction at every point being that of the outward normal, and
the total strength of doublets per unit area at any point being V.

Thus the potential V» may be regarded as due to the presence on the
surface S of

10V,

(i) a surface density of electricity — et

(ii) a distribution of electric doublets, of strength ‘12_- per unit area,
and dircction that of the outward normal.

207. Equation (122) expresses the potential at any point in the space
outside 8 in terms of the values of V and %—l—: over the boundary of this space.
We have seen, however, that the value of the potential is uniquely determined
by the values either of V or of aa_: over the boundary of the space. In actual

electrostatic problems, the boundaries are generally conductors, and therefore
equipotentials. In this case equation (123) ecxpresses the values of the

C V o .
potential in terms of %‘ only, amounting in fact simply to

V,,=ff§ds.

What is generally required is a knowledge of the value of Vp in terms of the
values of V over the boundaries, and this the present method is unable to
give. For special shapes of boundary, solutions have been obtained by
various special methods, and these it 1s proposed to discuss in the next
chapter.
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EXAMPLES.

1. If the electricity in the field is confined to a given system of conductors at given
potentials, and the inductive capacity of the dielectric is slightly altered according to any
law such that at no point is it diminished, and such that the differential coefficients of the
increment are also small at all points, prove that the energy of the field is increased.

9. A slab of dielectric of inductive capacity K and of thickness £ is placed inside a
parallel plate condenser so as to be parallel to the plates. Shew that the surface of the

slab experiences a tension
2mad l--»l -a:—d- ~l—)
K “dz\K/)|'

8. For a gas K=1+6p, where p i the density and @ is small. A conductor is
immersed in the gas: shew that if 8% is neglected the mechanical force on the conductor
i8 2o? per unit area.  Give a physical interpretation of this result,



CHAPTER VIII

METHODS FOR THE SOLUTION OF SPECIAL PROBLEMS

Tae MerHOD OF IMAGES.

Charge induced on an infinite uninsulated plane,
208. THE potential at P of charges ¢ at a point A and —¢ at another

point 4’ is

and this vanishes if P is on the plane which bisects A4’ at right angles.
Call this piane the plane S. Then the above value of V gives V=0 over
the plane S, V=0 at infinity, and satisfies Laplace’s equation in the region
to the right of &, except at the point 4, at which it gives a point charge &,

Seo
~-

™

-

:5) N

Fro. §7.

These conditions, however, are exactly those which would have to be satisfied
by the potential on the right of S if 8 were a conducting plane at zero
potential under the'influence of a charge 6 at 4. These conditions amount
to a knowledge of the value of the potential at every point on the boundary
of a certain region—namely, that to the right of the plane S—and of the
charges inside this region. There is, as we know, only one value of the
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potential inside this region which satisfies these conditions (cf. § 186), so that
this value must be that given by equation (124).

To the right of S the potential is the same, whether we have the
charge — e at 4’ or the charge on the conducting plane 8. To the left of S
in the latter case there is no electric field. Hence the lines of force, when
the plane 8 is a conductor, are entirely to the right of S, and are the same
as in the original field in which the two point-charges were present. The
lines end on the plane S, terminating of course on the charge induced on 8.

We can find the amount of this induced charge at any part of the plane
by Coulomb’s Law. Taking the plane to be the plane of yz, and the point 4
to be the point (a, 0, 0) on the axis of #, we have

dro=R=- o
oz
Y

0z Ww—ay+y+2 V@+ay+y+2)
where the last line has to be calculated at the point on the plane S at which
we require the density. We must therefore put =0 after differentiation,
and so obtain for the density at the point 0, ¥, z on the plane S,

2ae
(@ +y+ 8
or, if a®+ '+ 22 =17, 80 that = is the distance of the point on the plane S
from the point 4,

4o = —

Thus the surface density falls off inversely as the cube of the distance
from the point 4. The distribution of electricity on the
plane is represented graphically in fig. 58, in which the
thickness of the shaded part is proportional to the surface
deusity of electricity,. The negative electricity is, so to
speak, heaped up near the point A under the influence
of the attraction of the charge at 4. The field produced
by this distribution of electricity on the plane S at any
point to the right of S is, as we know, exactly the same as
would be produced by the point charge — e at 4’

209. This problem affords the simplest illustration of a
general method for the solution of electrostatic problems,
which is known as the “method of images.” The principle
underlying this method is that of finding a system of electric
charges such that a certain surface, ultimately to be made
into a conductor, is caused to coincide with the equipotential V=0. We
then replace the charges inside this equipotential by the Green’s equivalent
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stratum on its surface (cf. § 204). As this surface is an equipotential, we
can imagine it to be replaced by a conductor and the charges on it will be
in equilibrium. These charges now become charges induced on a conductor
at potential zero by charges outside this conductor.

From the analogy with optical images in a mirror, the system of point
charges which have to be combined with the original charges to produce zero
potential over a conductor are spoken of as the “electrical images” of the
original charges. For instance, in the example already discussed, the field is
produced partly by the charge at A, partly by the charge induced on the
infinite plane: the method of images cnables us to replace the whole charge
induced on the plane by a single point charge at A’. So also, if 4 were a
candle placed in front of an infinite plane mirror, the illumination in front of
the mirror would be produced partly by the candle at 4, partly by the light
reflected from the infinite mirror; the method of optical images enables us to
replace the whole of this reflected light by the light from a single source at 4”.

210. In an electrostatic field produced by any number of point charges,
we can, as we have seen, select any equipotential and replace it by a con-
ductor. The charges on either side of this equipotential are then the
“images” of those on the other side.

Thus if we can write the equation of any surface in the form

LA L N vevseene(125),
T r r

i

where 7 is the distance from a point outside the surface, and #, 7", ... are the
distances from points inside the surface, then we may say that charges
¢, ¢’ ... at these latter points are the images of a charge e at the former
point.

The method of images may be applied in a similar way to two-dimensional
problems. Suppose that the equation of a cylindrical surface can be expressed
in the form

c—2elogr —2¢ logr —2¢" log r" —...=0,
where r is the perpendicular distance from a fixed line on one side of the
surface, and ', 7, ... are perpendicular distances from fixed lines on the other
side. Then line-charges of line-densities ¢, ¢”, ... at these latter lines may be
taken to be the image of a line-charge of line-density e at the former line.

Illustrations of the use of images in three dimensions are given in
§§ 211—219. An illustration of the use of a two-dimensional image will

be found in § 220.
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Charges induced on Intersscting planes.

211. It will be found that charges
e at =z y 0
—6 at -2 y, O,
—e at «, -y O, - epmeenenns E—
e at —z, —y, 0
give zero potential over the planes z =0, y=0.
The potential of these charges is therefore the
same, in the quadrant in which z, y are both (2
positive, as if the boundary of this quadrant
were a conductor put to earth under the in-
fluence of a charge ¢ at the point a, g, 0.
It will be found that a conductor consisting
of three planes intersecting at right angles can ~ ° -¢
be treated in the same way. Fre. 59.

212. The method of images also supplies a solution when the conductor

consists of two planes intersecting at any angle of the form E, where n is

Fie. 60.
any positive integer. If we take polar coordinates, so that the two planes

are =0, 0= :—r, and suppose the charge to be a charge ¢ at the point r, 8,
we shall find that charges
(r. 0+4l), cens
n

e at (r, 0), (r, 0+27:5).
~e at (r,—0), (r,-—(0+?h7—r)), (r,—(0+47")),...,
give zero potential over the planes
8=0, 6=7.
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Charge induced on a sphere.

213. The most obvious case, other than the infinite plane, of a surface
whose equation can be expressed in the form (125), is a sphere.

Fia. 61,

If R, Q are any two inverse points in the sphere, and P any point on the
surface, we have

RP : PQ=0C: 0Q,

0Q 0C
so that '——P Q - PR 0.
. . oc
Thus the image of a charge ¢ at @ is a charge — 00 at R, or the

image of any point at a distance f from the centre of a sphere of radius «

is a charge — ?r at the inverse point, t.e. at a point on the same radius

2
distant -‘-} from the centre.

Let us take polar coordinates, having the centre of the sphere for origin
and the line OQ as =0. Our result is that at any point S outside the
sphere, the potential due to a charge ¢ at @ and the charge induced on the
surface of the sphere, supposed put to earth, is

I

e
V=rn—

X
73

ea

at 2 ’
f,\/r'+ﬁ—-2%roos0

T WP = 2frcos 0

where 7, 6 are the coordinates of S.
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214. We can now find the surface-density of the induced charge. For
at any point on the sphere

in which we have to put r = a after differentiation. Clearly

ea (r— .Ef: cos 0)

oV _  e(r—fcosf)
T (o 2freos )} w a i
f(r’+}.——-—27rc059)

Putting r = a we obtain
a—fcosf @ f*—a'fcos @ }

=2 -
M {(aﬂ +f* = 2fa cos O)} (@*f* + a* — 2a* f cos 6)}

S S T
47 (a2 + f* ~ 2fa cos )3

Thus the surface-density varies inversely as SQ, so that it is greatest at
C and falls off continually as we recede frome the radius OC. The total

charge on the sphere is — ‘fff’, as can be seen at once by considering that the

total strength of the tubes of force which end on it is just the same as would

F1e. 62.
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be the total strength of the tubes ending on the image at R if the conductor
were not present.

Figure 62 shews the lines of force when the strength of the image is a
quarter of that of the original charge, so that f=4a. It is obtained from
fig. 19 by replacing the spherical equipotential by a conductor, and annihi-
lating the field inside.

Superposition of Fields.

215. We have seen that by adding the potentials of two separate fields
at every point, we obtain the potential produced by charges equal to the total
charges in the two ficlds. In this way we can arrive at the field produced
by any number of point charges and uninsulated conductors of the kind we
have described. The potential of each conductor is zero in the final solution
because it is zero for each separate field.

There is also another type of field which may be added to that
obtained by the method of images, namely the field produced by raising the
conductor or conductors to given potentials, without other charges being
present. By superposing a ficld of this kind we can find the effect of point
charges when the conductors are at any potential.

216. For instance, suppose that, as in fig. 62, we have a point charge e
and the conductor at potential 0. Let us superpose on to the field of force
already found, the field which is obtained by raising the conductor to potential

V when the point charge is absent. The charge on the sphere in the second
field is aV, so that the total charge is

ea
aV-=.

f

By giving different values to V, we can obtain the total field, when the
sphere has any given charge or potential,

If the sphere is to be uncharged, we must have V= }, go that a point
charge placed at a distance f from the centre of an uncharged sphere raises

f., & result which is also obvious from the theorem of § 104.

it to potential 7
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Sphere in a uniform field of force.

217. A uniform field of force of which the lines are parallel to the axis
of z may be regarded as due to an infinite charge K at 2= R, and a charge
—~ E at ¢ =— R, when in the limit & and R both become infinite. The
intensity at any point is

2F
R
parallel to the axis of z, so that to produce a uniform field in which the
intensity is F' parallel to the axis of z, we must suppose £ and R to
become infinite in such a way that

Since, in this case, F = —%,’ the potential of such a field will clearly

)
be — Fz + C.
Suppose that a sphere is placed in a uniform field of force of this kind,
its centre being at the origin. We can suppose the charge E at @ =R to
have an image of strength

—EL‘! at x = a;’
~R “r
while the other charge has an image
El at z=— @
R TR
These two images may be regarded as a doublet (cf. § 64) of strength
-ERg' X -2-1(%2, and of direction parallel to the negative axis of #. The strength
2a*E
= —Iff‘- = - Fa‘.

Thus we may say that the image of a uniform field of force of strength F
is a doublet of strength Fu® and of direction parallel to that of the intensity
of the uniform field.

The potential of this doublet is

Fa? cos 9
’4 ’
and that of the field of original field of force is
~Fz+C,

or, in polar coordinates, —Freos6+0,
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so that the potential of the whole field

=-—Fcos€(r—% +0 erereeninenn (126).

=135

_— T
~”

1 L I —

As it ought, this gives a constant potential C over the surface of the
sphere.

The lines of force of the uniform field F disturbed by the presence of a
doublet of strength Fo® are shewn in fig. 63. On obliterating all the lines
of force inside a sphere of radius a, we obtain fig. 64, which accordingly
shews the lines of force when a sphere of radius a is placed in a field of
intensity F. These figures are taken from Thomson’s Reprint of Papers on
Electrostatics and Magnetism (pp. 488, 489)*.

* I am indebted to Lord Kelvin for permission to use these figures.
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218. Line of no electrification. The theory of lines of no electrification
has already been briefly given in § 98. We have seen that on any conductor
on which the total charge is zero, and which is not entirely screened from
an electric field, there must be some points at which the surface-density o
is positive, and some points at which it is negative. The regions in which &
is positive and those in which ¢ is negative must be separated by a line or
system of lines on the conductor, at every point of which o =0. These lines
are known as lines of mo electrification.

If R is the resultant intcnsity, we have at any point on a line of no

electrification,
R=4m0=0,

so that every point of a line of no electrification is a point of equilibrinm.
At such a point the equipotential intersects itself, and there are two or more
lines of force.

If the conductor possesses a single tangent plane at a point on a line of

no electrification, then one sheet of the equipotential through this point will
be the conductor itself: by the theorem of § 69, the second sheet must

intersect the conductor at right angles.

These results are illustrated in the ficld of fie. 64. Clearly the line of no
electrification on the sphere is the great circle in a plane perpendicular to
the direction of the field. The equipotential which intersects itself along
the line of no electrification (¥ =C) consists of the sphere itself and the
plane containing the line of no electrification. Indeed, from formula (126),

it is obvious that the potential is equal to C, either when 0-—-7—;, or

when r=a.

The intersection of the lines of force along the line of no electrification
is shewn clearly in fig. 64.

Plane face with hemispherical boss.

219. If we regard the whole equipotential V' = C as a conductor, we
obtain the distribution of electricity on a plane conductor on which there
is a hemispherical boss of radius a. If we take the plane to be a =0, we
have, by formula (126),

V_C—_——Fcose(r—%:’)=—F$(1‘(I,IT:)-

At a point on the plane,
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The whole charge on the hemisphere is found on integration to be

0=
f (E 3cos 0) 2mra? sin 6 df = § Fa?,

om0 \47
while, if the hemisphere were not present, the charge on the part of the
plane now covered by the base of the hemisphere would be

r war =} Fud,
(47r)

Thus the presence of the boss results in there being three times as much
electricity on this part of the plane as there would otherwise be: this is
compensated by the diminution of surface-density on those parts of the plane
which immediately surround the boss.

Cupacity of a telegraph-wire.

220. An important practical application of the method of images is the
determination of the capacity of a long straight wire placed parallel to an
infinite plane at potential zero, at a distance k from the plane. This may be
supposed to represent a telegraph-wire at height h above the surface of the
earth.

Let us suppose that the wire has a charge e per unit length. To find
the field of force we imagine an image charged with a charge —e per unit
length at a distance h below the earth’s surface. The potential at a point at
distances r, r’ from the wire and image respectively is, by §§ 75 and 100,

C—2elogr+2elogr,
and for this to vanish at the earth’s surface we must take C=0. Thus the
potential is
7
2e log ; .

At a small distance a from the line-charge which represents the telegraph-
wire, we may put 7’ = 2h, so that the potential is
2h
2¢ log =
from which it appears that a cylinder of small radius e surrounding the
wire is an equipotential. We may now suppose the wire to have a finite
radius a, and to coincide with this equipotentinl. Thus the capacity of the

wire per unit length is
1
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Infinite series of Images.
221. Suppose we have two spheres, centres 4, B and radii a, b, of which
the centres are at distance ¢ apart, and that we require to find the field when

Fro. 85.
both are charged. We can obtain this field by superposing an infinite series
of separate fields (cf. § 116).

Suppose first that 4 is at potential ¥ while B is at potential zero. Asa
first field we can take that of a charge Va at A. This gives a uniform
potential ¥ over 4, but does not give zero potential over B. We can reduce
the potential over B to zero by superposing a second field arising from

the image of the original charge in sphere B, namely a charge — _V?a_b at B

where BB = %’ This new field has, however, disturbed the potential over
4. To reduce this to its original value we superpose s new field arising

2 D at 4’,

6 — —

from the image of the charge at B"in 4, namely a charge Kz—é .

where A4’ = -%,-. This field in turn disturbs the potential over B, and so

C— —
c

we superpuse another field, and so on indefinitely. The strengths of the
various fields, however, continually diminish, so that although we get an
infinite series to express the potential, this series is convergent. As we shall
see, this series can be summed as a definite integral, or it may be that a good
approximation will be obtained by taking only a finite number of terms.

The total charge on A4 is clearly the sum of the original charge Va plus
the strengths of the images A’, A”, ... etc, for this sum measures the
aggregate strength of the tubes of force which end on 4. Similarly the
charge on B is the sum of the strengths of the images at B, B”, ....

To obtain the field corresponding to given potentials of both 4 and B we
superpose on to the ficld already found, the similar field obtained by raising
B to the required potential while that of A remains zero,
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If gu, g, qus aTe the coefficients of capacity and induction, the total charge
on A when B is to earth and V' =1 is g, ; similarly that on B is g,,. In this
way we can find the coefficients gu, gu from the series of images already
obtained. The result is found to be

ah a*h?
o’-—b’+(c’—b’)'-u’c'
a ath?
e G R
and from symmetry
qu= b+

qu=a+ +...,

ba ba?
FoaTG—wp—bat

As far as cl—,, these results clearly agree with those of § 116.

222. The series for g1, q1s, ¢23 have been put in & more manageable form by Poisson
and Kirchhoff,

Let 4, denote the position of the sth of the series of points 4’, 4", ..., and B, the sth
of the series B, B", ... ; then 4, is the image of B, in the sphere of radius a, and similarly
B, is the image of 4,_, in the sphere of radius 8, Let a,=A44,, b,=15D,, and let the
charges at 4,, B, be ¢,, ¢, respectively.

Then a,(¢c—b,)=a? since 4, is the image of B,,

b(c~a,.y)=b ,, B, » ”» Ay
Further, by comparing the strengths of a charge and its image,

=2 LA
L o=5,°" €s may
ab
8o that ¢.=m 775 SN 'ouuol.ooooaonntocoo(lm
o , ab

aod simiarly R e

e, _ab c_z_.b,=a,c-a3
We have therefore Pl s Y =27 T

& (o~ Bi41) (e—a) _clc-a) 4
snd €41 ab a’
By addition we eliminate a,, and obtain

I T el
6-1 G4l b’
. 1
or, if we put o=t
(]
—at-
Yar - zb LW S resvecsresssnnrseess(128),
and from symmetry it is obvious that the same difference equation must be satisfed by a
quantity u’.-;,l-.
]
The solution of the difference equation (128) may be taken to be
u,= Aa* 4 B,
where a, 8 are the roots of -
p-=2 b, o

ab
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The product of these roots is unity, so that if a is the root which is less than unity, we
can suppose

u,=Aa'+g,
o
8o that €= A-—;,".—IB,
. a’
and mmlarly 4 == Z’?""TE"
@ a'
We now have 911““+°1+92+-"=a+§m7

L
quiz= ¢1+e€st+... = f THTE"

To determine 4, B, we have

1
O=FIBT®
__a ___a’b
L Py Ry
A B 1
8o that :?,- 1=aa-8y
b
where £-—~9+ @
a® (1
Thus "—?‘i—(zfaf:)'
1 a?
and qu=a(1-£) {T:E_2+itz’;’+l:_§?+"'}'
To determine 4’, B’, we have
=l = -2
VYCAEYTD e’
2 3,
= a a’ht

ASFTET Te@-a-by’
from which, in the same way,

ab 1 a a?
Tu=-7 (1-d%) {l—ag+ i—a —a‘+ 1-——_a‘+.--}.

The value of g2 can of course be written down by symmetry from that of gy,.

The coefficients each depend on a sum of the type = — i E" 5%+ This series has been

expressed in terms of definite integrals by Poisson.
From the known formula
® sin pt =} +1 1
0 € 1 -1 "%

we obtain, on putting p=1log £2a*,
L o =}at a a'sm(logE’a")t
154.m log £2a® ° o
From this follows

g 1 _s a’ —2 '2a‘sin(2log£+2aloga)td‘
1-8u¥ 2(1-a) 2log£+2sloga ° et ]
Y e ® sin (2t log £) — asin (2¢ log £/a)

dt - 2

1
== ), I=aE o (@~ T)[1 ~ 2a cos (2 Tog a) + a¥] -
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The series has alzo been expressed in finite terms by E. W. Barnes (Quart. Journ. Math.
138 (1803), p. 155) in terms of Double Gamma Functions, but neither of these forms is

convenient for numerical computation.
A. Russell (Proc. Phys. Soc. 23 (1911), p. 352) has shewn how the original series can be
rearranged in & rapidly convergent form. If z is an integer, to be chosen subsequently,
= 8 s=n-1 ) (p:m o lm)
— = [ 8 2
IEO 1 "éza" afo 1- g‘“a‘ + a=21u “ pfn é “

a=n -1 a® 2 ( gﬂn)ip

oy il poo 1 —a®+

l=0
The larger % is chosen to be the more rapxdly the second series converges, although of
course large values for » require the computation of a large number (n) of terms in the
original series. As an example, given by Russell, suppose that a=7r, b=r, c=10r; it is
sufficient to take n=1 and the series are found to be
qu="Tr+ #r {1 +0°0089509 + 0-0000929 + 0 0000009 + ...} = 7576597
— G12=0"Tr + of5r {14 0-0003580 400000001 + ...} =0-8143266r,
gr=11601124r,
As a sccond example Russell takes a=98r, b=108r, and ¢=a+b+02r, so that the
spheres are almost in contact; the values of the coefficients are obtained to seven figures
on taking n=4 and computing seven terms of the second series

223. Having calculated the coefficients, we can obtain the relations
between the charges and potentials, and can find also the mechanical force
between the spheres. If this force is a force of repulsion F, we have

Feo ()“/.' %aPuE ap"' L‘ F — ﬁ 9!_))_9 r"’

or again F= aWV 1}3911 e aq., Y+ 1} aqh

The following table, applicable to two spheres of equal radius, taken to be unity, is
compiled from materials given by Lord Kelvin®.

I .
P Ratio of
= = dp 11 Bpgg) e | | 01 | harees for
¢ |pn(=pp)| P |qu(=q2)| s ' 155 A Fm Y5 c eqnirl%brium
20 721 721 © - ® © ® © © 1
21 ‘915 509 1-684 ~ ‘R84 ‘154 453 1138 2349 -391
22 ‘939 475 1-431 ~ 724 ‘U826 305 529 1127 204
25 068 406 | 1-253 - 52 0300 ‘181 174 113 ‘169
30 986 335 1°146 —38) 0101 ‘1156 066 186 -089
35 ‘993 *286 1-099 -317 ‘00437 ‘0826 ‘0344 ‘114 ‘053
40 ‘996 250 1-072 -~ 269 00218 0628 0207 079 034
50 ‘998 200 1:044 - 209 00065 ‘0401 ‘0096 048 016
60 ‘999 167 | 1-030 ~-172 00026 0278 | ‘0053 | 031 009
@ 10 0 10 0 0 (V] 0 0 0

* Papers on Electrostatics and Magnetism, p. 96, § 142,
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Images in dielectrics.

224, The method of images can also be applied to find the field
produced by point charges when half of the field is occupied by dielectric,
the boundary of the dielectric being an infinite plane.

We begin by considering the field produced by a single charge ¢ at P, it
being possible to obtain the most general field by the superposition of simple
fields of this kind.

We shall shew that the field in air is the same as that due to a charge
¢ at P and a certain charge ¢’ at P, the image of P, while the field in the
dielectric is the same as that due to a certain charge ¢” at P, if the whole
field were oocupied by air.

AN

Fre. 66,

Let PP’ be taken for axis of z, the origin O being in the boundary
of the dielectric, and let OP =a. Then we have to shew that the potential
¥, in air is

e + [
NE+a)P+y+2 's/(z—a)’+y’+z"
while that in the dielectric is

V‘=

v

Vz+ay+y+2

These potentials, we notice, satisfy Laplace’s equation in each medium,
everywhere except at the point P, and they arise from a distribution of
charges which consists of a single point charge ¢ at P. The potential in air
at the point 0, , £ on the boundary is
e+e

Vi= —
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while that in the dielectric at the same point is

&
o= \/_(l;—-f—-:;’—:—z?.
Thus the condition that the potential shall be continuous at each point
of the boundary can be satisfied by taking
¢'=e+6 .oiiirennnne. ceeerane cerraees (129).
The remaining condition to be satisfied is that at every point of the
boundary, %; in air shall be equal to K g in the dielectric; .. that

F)
%%3=%%, when 2 =0.

Now, when z=0,

g W___ Kea
ow (a’ + ?/’ + ze)'§ ?
oV, ea da

— I —

+
2 (@rypt+od @+pr+)t
so that this last condition is satisfied by taking
Ke'=¢—6 ccocvrrnirniannnnan ceeneenes.(180).

Thus the conditions of the problem are completely satisfied by giv'r.g
¢, ¢” values such as will satisfy relations (129) and (130); s.e. by taking

s’

= ——e |
1+ K

.(1381

, K-1 (131).

BTy

225. The pull on the dielectric is that due to the tensions of the lines
of force which cross its boundary. In air these lines of force are the same
as if we had charges e, ¢’ at P, P’ entirely in air, so that the whole tension
in the direction P'P of the lines of force in air is

ee’
- PPy

& (E=1)

4o (K +1)°
This system of tensions shews itself as an attraction between the
dielectric and the point charge. If the dielectric is free to move and
the point charge fixed, the dielectric will be drawn towards the point
charge by this force, and conversely if the dielectric is fixed the point
charge will be attracted towards the dielectric by this force.
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INVERSION.

2268. The geometrical method of inversion may sometimes be used to
deduce the solution of one problem from that of another problem of which

the solution is already known.

GQeometrical Theory.
227. Let O be any point which we shall call the centre of inversion, and

let AB be a sphere drawn about O with a radius X which we shall call the
radius of inversion.

Corresponding to any point P we can find a second point P, the inverse
to P in the sphere. These two points are on the same radius at distances
from O such that OP.OP = K>,

As P der ribes any surface PQ..., P’ will describe some other surface
PQ'..., each point @ on the second surface being the inverse of some point
Q on the original surface. This second surface is said to be the tnverse
of the original surface, and the process of deducing the second surface from
the first is described as inverting the first surface.

It is clear that if P'Q'... is the inverse of PQ..., then the inverse of
PQ... will be PQ....

If the polar equation of a surface referred to the centre of inversion
as origin be f(r, 6, $)=0, then the equation of its inverse will be

f (Z?, 6, ¢)=0. For the polar equation of the inverse surface is by
definition f (', 6, ¢$)=0, where ' = K* for all values of 8 and ¢.
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Inverse of a sphere. Let chords PP, QQ, ... of a sphere meet in O
(fig. 68). Then
OP.OP =0Q.0@ =...=1,
where ¢ is the length of the tangent from O to the sphere. Thus, if ¢ is the
radius of inversion, the surface PQ... is the inverse of F'Q'..., i.e. the sphere

0

ig its own inverse. With some other radius of inversion K, let P"Q"... be
the inverse of PQ ..., then

OP.OP"=0Q.0Q ' =...= K3
o’ 0 K
so that W-—-—O—v—...—};

and the locus of P”, @”, ... is seen to be a sphere. Thus the inverse of a
sphere is always another sphere.

A special investigation is needed p
when the sphere passes through O. Let -
0S8 be the diameter through O, and let

7
S’ be the point inverse to S. Then, if p
P’ is the inverse of any point P on the
circle,
OP.0OP =08.08, o e

or oF_ 08

o8 op”
so that POS, 8’OF’ are similar triangles.

Since OPS is a right angle, it follows

that OS'P’ is a right angle, so that the

locus of P’ is a plane through 8’ perpen-

dicular to OS’. Thus the inverse of a 10, 69.
sphere which passes through the centre

of inversion is a plane, and, conversely, the inverse of any plane is a sphere
which passes through the centre of inversion.
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228. If P, Q are adjacent points on a surface, and P, @ are the corre-
sponding points on its inverse, then OPQ,
OQ'FP are similar triangles, so that PQ, P
P'Q’ make equal angles with OPP. By
making P(Q coincide, we find that the
tangent plane at P to the surface PQ
and the tangent plane at P’ to the sur- — Q
face P'Q) make equal angles with OPP", .
Hence, if we invert two surfaces which Fro. 70,
intersect in P, we find that the angle
between the two inverse surfaces at P’ is equal to the angle between the
original surfaces at P, i.c. an angle of intersection is not altered by tnversion.
Also, if a small cone through O cuts off areas dS, dS’ from the surface
PQ... and its inverse I'Q'..., it follows that
s _op
a5 = 0P+

Electrical Applications,

229. Let PP, QQ be two pairs of inverse points (fig. 70). Let a charge
e at @ produce potential ¥p at P, and let a charge ¢ at @ produce potential
V' at P, so that

e , e
v}:mn VP =I)’_Q"
VW ¢ PQ ¢ OP

then Vi< PQTe 00
¢ _K 0o
Take T=00T K
Vy_OP K
then V. =K = o0P"

Now let @ be a point of a conducting surface, and replace ¢ by odS,
the charge on the elcment of surface dS at Q. Let % denote the potential
of the whole surface at P, and let %' denote the potential at P’ due to &
charge ¢ on each element dS’ of the inverse surface, such that

£ 0y
edd K '
Then, since Vo' = ¥ —GK—P—, for each element of charge, we have by addition
Wen
Thus charges ¢ on dS’, etc. produce a potential

%—P]g at P,
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Now suppose that P is a point on the conducting surface @, so that
V» becomes simply the potential of this surface, say V. The charges ¢ on
dS’, etc. now produce a potential

(—)KP,I{ at P,

so that if with these charges we combine a charge — VK at O, the potential
produced at P’ is zero. Thus the given system of charges spread over the
surface P'Q ..., together with a charge — VK at the origin, make the
surface P'Q ... an equipotential of potential zero. In other words, from a
knowledge of the distribution which raises Q... to potential V, we can
find the distribution on the inverse surface P’Q’ ... when it is put to earth
under the influence of a charge — VK at the centre of inversion.

If e, ¢’ are the charges on corresponding elements dS, dS’ at Q, ¢, we
have seen that

¢ JdS' K _0Q /O

3= oay ~op~ K =V 0Q°
. dsS’ 0071
while 5= U%‘“ .
0" . OQI -— 3 _ 1{,
Hence ; = (6(—2-) = W cessescsssacesrcsnaiaes (132),

giving the ratio of the surface densities on the two conductors.
Conversely, if we know the distribution induced on a conductor PQ... at

potential zero by a unit charge at a point O, then by inversion about O we
obtain the distribution on the inverse conductor P’Q’... when raised to

otential —1— As before, the ratio of the densities is given by equation (132).
p R given by eq )

Ezamples of Inversion.

230. Sphere. The simplest clectrical problem of which we know the
solution is that of a sphere raised to a given potential. Let us examine
what this solution becomes on inversion.

If we invert with respect to & point P outside the sphere, we obtain the
distribution on another sphere when put to earth under the influence of a
point charge P. This distribution has already been obtained in § 214 by
the method of images. The result there obtained, that the surface-density
varies inversely as the cube of the distance from P, can now be seen at once
from equation (182).

So also, if P is inside the sphere, we obtain the distribution on an
uninsulated sphere produced by a point charge inside it, a result which can
again be obtained by the method of images.

When P is on the sphere, we obtain the distribution on an uninsulated
plane, alrcady obtained iu § 208,
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231. Intersecting Planes. As a more complicated example of inversion,
let us invert the results obtained in § 212. We there shewed how to find

Fro. 71,

the distribution on two planes cutting at an angle %, when put to ecarth

under the influence of a point charge anywhere in the acute angle between
them. If we invert the solution we obtain the distribution on two spheres,
cutting at an angle m/n, raised to a given potential. By a suitable choice
of the radius and origin of inversion, we can give any radii we like to the
two spheres.

If we take the radius of one to be infinite, we get the distribution on a
plane with an excrescence in the form of a piece of a sphere: in the par-
ticular case of n =2, this excrescence is hemispherical, and we obtain the
distribution of electricity on a plane face with a hemispherical boss. This
can, however, be obtained more directly by the method of § 219.

SpaERICAL HARMONICS,

232. The problem of finding the solution of any electrostatic prublem is

equivalent to that of finding a solution of Laplace’s equation

V:V =0
throughout the space not occupied by conductors, such as shall satisfy certain
conditions at the boundaries of this space—i.e. at infinity and on the surfaces
of conductors. The theory of spherical harmonics attempts to provide a
general solution of the equation V:F =0.

This is no convenient general solution in finite terms: we therefore
examine solutions expressed as an infinite series. If each term of such
a series is a solution of the equation, the sum of the series is necessarily
a eolution.
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233. Let us take spherical polar coordinates r, 6, ¢, and search for
solutions of the form
V=DRy,
where R is a function of 7 only, and Sis a function of 4 and ¢ only.

Laplace’s equation, expressed in spherical polars, can be obtained analyti-
cally from the equation
B‘V eV oV
TR o toE
by changing variables from z, ¥, ¢ to =, 8, ¢, but is most easily obtained by
applying Gauss’ Theorem to the small element of volume bounded by the
spheres 7 and 7 + dr, the cones 6 and 6 + df, and the diametral planes ¢ and
¢ + d¢. The cquation is found to be
19/, 0V 1 9 oV 1 oV
F»a?(’“‘a?) MY (“"‘ 0 ) ey ¥ reia
Substituting the value V= RS, we obtain
g?.( B_R>+____R ?.(s]ue?_f?)...__li._ g’_—s_o
ror\ or/ 1sin600 96/ " rsin*@op*

=0

or, simplifying,

10 /,0R 1 o oS 1 o8
ﬁﬁ;( )+Ssm036(sme ) * S dap =0.

The first term is a function of r only, while the last two terms are inde-
pendent of r,  Thus the equation can only be satisfied by taking

10 on
T (w —) I (133),
1 0 o8 1 &S
S—S-i—!;—eag(smﬂ )+SSID288_¢.’_—K ............ (134),

where K is a constant. Equation (133), regarded as a differential equation
for R, can be solved, the solution being

Bedrma D (185),

i+l
where A, B are arbitrary constants, and n (n + 1) = K. After simplification
equation (134) becomes

o (00%5) + oy
sin 00 90) " sin® @ 0¢*

Any solution of this equation will be denoted by S,, the solution being a
function of = as well as of 6 and ¢. The solution of Laplace’s equation we

have obtained is now

+n(n+1)S=0......... (136).

V=RI=(4rn+ ).,

and by the addition of such solutions, the most general solution of Laplace's
equation may be reached.
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Thus the number of coefficients which may be regurded as independent in
the original function, subject to the condition of its being a harmonic, is

3n+1)(n+2)—3n(n-1),
or 2n + 1. This, then, is the number of independent rational harmonics of
degree n.
For instance, when n =1 the most general harmonic is
Az + By + Cs,
possessing three independent arbitrary constants, and so representing three
independent harmonics which may conveniently be taken to be #, y and z.

When n =2, the most general harmonic is
az® + by® + c2* + dyz + ez + foy,

where a, b, ¢ are subject to ¢ + b +¢=0. The five independent harmonics
may conveniently be taken to be

yz, zr, 2y, x*—y, at-2,

When =0, 2n+ 1 =1. Thus there is only one harmonic of degree zero,
and this may be taken to be V' =1.

Corresponding to a rational integral harmonic ¥, of positive degree n,

there is the harmonic 7—1?';1 of degree — (n+1). These harmonics of degree
—(n+1) are accordingly 2» + 1 in number. Thus the only harmonic of

this kind and of degree — 1 is .

Consider now the various expressions of the type
At IS |
p (£ [E— asm),

These, as we know, are harmonics of degree —(n+ 1), and from § 235

where s+t+u=n.

it is obvious that they must be of the form r—%" where V, 1s a rational
integral harmonic of degree m. Since :'—' is harmonic, V? G_)= 0, so that
0 /1 2 o\ /1
55 () == (ot a/-,) () [E—— (138).
The most general harmonic obtained by combining the harmonics of
type (137) is
ao+t+u 1
X Ao g (;) ........................ (189),

but by equation (138) this can be reduced at once to the form

£ S iy (3) + Zr 52 1)
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where p+g=n—1 and p’+¢ =n. This again may be replaced by

0 p=p-1 o 1\, ?z*,,, o 1

5 2y Braway ()t 2, B gy 3
so that there are 2n+ 1 arbitrary constants in all, and it is obvious
on examination that the harmonics, multiplied by all the coefficients

9

B,, ... By, ... are independent. Thus, by differentiating % n times, we have

arrived at 2n + 1 independent rational integral harmonics, and it is known
that this is as many as there are.

Eaxpansion in Rutional Integral Harmonics.

240. THEOREM*. The walue of any finite single-valued fumction of
position on a spherical surfuce can be expressed, at every point of the
surface at which the function s continuous, as a series of rational integral
harmonics, provided the function has only a finite number of lines and points
of discontinuity and of maazima and minima on the surfuce.

Let F be the arbitrary function of position on the sphere, and let the
sphere be supposcd of radius a. Let P be any point outside the sphere at a
distance f from its centre O, and let Q be any point on the surface of
the sphere.

Fre. 72

Let ’Q be equal to R, so that
Rz = f* + a* — 2af cos POQ.
We have the identity
fioaras _a
4"“ k ‘R:’ '_f '''''''' seesscsasvene
where the integration is taken over the surface of the sphere, a result
which it is easy to prove by integration.
fi-a?
3

A point charge e placed at P induces surface density — 71%2 i on the surface of

the sphere (§ 214), and the total induced charge is —39.-. The identity is therefore
obvious from electrostatic principles.

.(140),

* The proof of this theorem is stated in the form which seems best suited to the requirements
of the student of electricily and makes no pretence at absolute mathematical rigour.
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Now introduce a quantity u defined by
- [[FiS

M=T— corecssen ....-....--.......(141),

so that u is a function of the position of P. If P is very close to the
sphere, f* — a? is small, and the important contributions to the integral arise
from those terms for which R is very small: 4.e. from elements near to P.

If the value of F does not change abruptly near to the point P, or
oscillate with infinite frequency, we can suppose that as P approaches the
sphere, all elements on the sphere from which the contribution to the
integral (141) are of importance, have the same F. This value of F will of
course be the value at the point at which P ultimately touches the sphere,
say Fp. Thus in the limit we have

_(f*—a) Fp [[dS
u= ——-—m——-f e ............-.-:........(142),

= Ii}% by equation (140),
= Fp,

when in the limit f becomes equal to a.

If the value of F oscillates with infinite frequency near to the point P, we obviously
may not' take F outside the sign of integration in passing from equation (141) to
equation (142).

If the value of F is discontinuous at the point P of the sphere with which P
ultimately coincides, we again cannot take ¥ outside the sign of integration. Suppose,
however, that we take coordinates p, 9 to express the position of a point P” on the surface
of the sphere very near to #, the coordinate p being the distance P, and $ being the
angle which P’ makes with any line through 7 in the tangent plane at 7. Then F
may be regarded as a function of p, 9, and the fact that #'is discontinuous at P is expressed
by saying that as we approach the limit p=0, the limiting value of F' (assuming such a
limit to exist) i & function of 9—i.e. depends on the path by which P is approached.
Let F (9) denote this limit, Then

I / F(9) pdpd$
dma R

L2 o[ fe] s

.._.‘.‘?2/ ()[_jflt-" a9
-_f ) f"“’/ fg d9
- f F(9) ?) 49, by equation (140)

On passing to the limit and putting a=f, we find that
v f FS)dS e, (149),
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i.e. u is the average value of F taken on a small circle of infinitesimal radius surrounding
P. 1o particular, if F' changes abruptly on crossing a certain line through P, having a
value F} on one side, and a value Fj on the other, then the limiting value of  is

u=y (Fi 4 Fy).

If we take @ to denote the angle I’0Q,
5= (= 2af cos 6.+ @)~

1 a*—2af cos 6\ - ¢
O
11, _,a—2afcosf a'—2afcos b\ °
[1-s et (-,
or, arranging in descending powers of f
R f[l+l?f f‘ f‘+"'] ceversrennienes (144),

in which B, B, B... are functions of §, being obviously rational integral
functions of cos §. When 6 =0,

and when 6=,

11 1g a.e )
R—' +f—f( f+f’ LITN K'Y
so that when 8 =0,
R=R=..=1,
and when 8=,
-R=R=—-R=..=1

It is clear, therefore, that the series (144) is convergent for 8 =0 and
0 =1, and a consideration of the geometrical interpretation of this series
will shew that it must be convergent for all intermediate values™®.

Differentiating equation (144) with respect to f, we get

1
d(s
acosf—f ( R) 1 a a
B =_.f.,.’—2}3}|; 3137—-... eenees(145).
If we multiply this equation by 2f, and add corresponding sides to
equation (144), we obtain

“’I’E,f' =—2(2n +1)B 2

fn+:'
Multiplying this equation by — Ifr'_ti' and integrating over the surface of the
sphere, we obtain

%-Ef FdS :2n+l_UFE'fn+l

® Being a power series in cos § it can only have & single radius of convergence, and this
cannot be between cos #=1 and cos f= ~1.
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or, by equation (141),
w1 SCa y[[Fn (i;)'mds.

awal
If the function F is continuous and non-oscillatory at the point P, then
on passing to the limit and putting f=a, we obtain
1 2 [ f
F—m;(2n+l). FB;dS eecvvctacteccennes (146).
If Fis discontinuous and non-oscillatory, then the value of the series on the right is
not F, but is the function defined in equation (143).

Now it is known that 1/r is a spherical harmonic, so that we have

" (3)-o.

where the diffcrentiation is with respect to the coordinates of Q. Hence 1/R
must be of the form (cf. § 233)

3= (dmm+ ,—Ii—) S eereererereeresranes (147),

where 8, is a surface harmonic of order n. Comparing with equation (144),
and remembering that a in this equation is the same as the r of equation
(147), we see that B, regarded as a function of the position of @, is a surface
harmonic of order n, and we have already seen that it is a series of powers

of cos 6, or of ;, the highest power being the nth, so that »*F, is a rational

integral harmonic of order n. It follows that
[[rmras,

being the sum of a number of terms each of the form #"E,, is also a rational
integral harmonic of order n, say ¥,. On the surface of the sphere

Vo=ar / j FEdS,
so that equation (146) becomes .
F=-1 §2n+1
dara? o a®
which establishes the result in question,

241. TaEOREM. The expansion of an arbitrary function of position on the
surface of a sphere ar a series of rational integral harmonics 18 unique.

For if possible let the same function F' be expanded in two ways, say

F=SW, evereererereernernivennes (149),
FoSW oeeeeeeeveineaeeeas ...(150),

’

where W,, W,’ are rational integral harmonics of order n. Then the function

u=X(%- W)
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is & spherical harmonic, which vanishes at eve:y point of the sphere. Since
Viu=0 at every point inside the sphere it is impossible for u to have either
a maximum or a minimum value inside the sphere (cf. § 52), so that % =0
at every point inside the sphere. Since W, — W, is a harmonic of order n,
it must be of the form »S,, where S, is a surface harmonic, so that

u=3r8,=0.

Thus u is a power series in r which vanishes for all values of # from r=0
to r=a. Thus S,=0 for all values of n. Hence W,=W,’, and the two
expansions (149) and (150) are seen to be identical.

242. It is clear that in electrostatics we shall in general only be
concerned with functions which are finite and single-valued at every point,
and of which the discontinuities are finite in number. Thus the only classes
of harmonics which are of importance are rational integral harmonics, and in
future we confine our attention to these. We have found that

(i) The rational integral harmonics of degree n are (2n + 1) in number,

and may all be derived from the harmonic -}. by differentiation.

(11) Any function of position on a spherical surface, which satisfies the
conditions which obtain in a physical problem, can be
expanded as a series of rational integral harmonics, PP P’
and this can be done only in one way.

243. Before considering these harmonics in detail,
we may try to form some idea of the physical concep-
tions which lead to them most directly.

The function %— is the potential of a unit charge

at the origin. If, as in § 64, we consider two charges
+ e at points (, 0” at cqual small distances a, —a
from the origin along the axis of z, we obtain as the
potential at P,

V=i90 -
“OP 0P 0P 0P
. el a 1
—e.rr g (2).
If we take —e.P'P" =1, we have a doublet of strength —1 parallel to the

axis of , and the potential at P is (%) In fact this potential is exactly

the same as —; already found in § 64.
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Thus the three harmonics of order —2 obtained by dividing the rational
integral harmonics of order 1 by 7, namely 3% (}_). a%(%)’ %G).
simply the potentials of three doublets each of unit strength, parallel to
the negative axes of 2, y, # respectively.

If in fig. 73 we replace the charge ¢ at (' by a doublet of strength e
parallel to the negative axis of z, and the charge —e at 0” by a doublet
of strength — e parallel to the negative axis of z, we obtain a potential

o /1
()
If instead of the doublets being parallel to the axis of @, we take them
parallel to the axis of y, we obtain a potential

w5 )

So we can go on indefinitely, for on differentiating the potential of
a system with respect to # we get the potential of a system obtained
by replacing each unit charge of the original system by a doublet of unit
strength parallel to the axis of z. Thus all harmonics of type

ao+t+u 1
aTa*y"a‘z« (;)
(cf. § 236) can be regarded as potentials of systems of doublets at the origin,
and, as we have seen (§ 239), it is these potentials which give rise to the
rational integral harmonics.

244. For instance in finding a system to give potential aa; (;), we may replace the

charge O in fig. 73 by achargezlaa.tdist&nce 2a from O and —%Mz 0. The charge at O
may be similarly treated, so that the whole system is seen to consist of charges

E -2E E,
at the points £= — b, 0, b where b =2a, and E’s-b!,.

A system of this kind placed along each axis gives a charge —6X at the origin and
a charge E at each corner of a regular octabedron having the origin as centre. The

potentin @1\ 21\ 9l
-5 () () G)
-O,
8o that such a system sends out no lines of force,
246. The most important class of rational integral harmonics is formed

by harmonies which are symmetrical about an axis, say that of #. There is
one harmonic of each degree n, namely that derived from the function

ol
K (T-) '
These harmonics we proceed to investigate,



248-247] Spherical Harmonics 217

LEGENDRE'S COEFFICIENTS.

246. The function
1

Va*—2ar cos 0 + 13"
can, as we have already seen (cf. equation (144)), be expanded in a convergent
series in the form

1 1 r r
Ve taromdir ot HatBg
if a is greater than ». Here the coefficients R, R, ... are functions of cos 6,

and are known as Legendre’s coefficients. When we wish to specify the
particular value of cos 6, we write B, as F, (cos 6).

...... weesecsnsesnesneen:(151)

~”
+...+R.E;I‘+... ...(152)

Interchanging » and @ in equation (152) we find that, if r > a,
1 1 a a?
- — =~ —+B =+ ceeeennns 153).
va* — 2ar cos § + r* rrRathS (163)
We have already seen that the functions R, R, ... are surface harmonics,
each term of the equations (152) and (153) separately satisfying Laplace's
equation. The equation satisfied by the general surface harmonic S, of
degree n, namely equation (136), is
9 . 08, 0'Sa
. i 030 (29 36) + g+ (++ D Sa =0
In the present case J, is independent of ¢, so that the differential equation
satisfied by £, is

3 /.
¢in 030 (’"‘ 0

or, if we write u for cos 6,

) . OB
> {(1 - ) 5;} FRAATYB=0 eerrerrenenn(154).

%lg,) +n(n+1)5 =0,

This equation is known as Legendre's equation.

247. By actual expansion of expression (151)
-4 1 rw_r™ 1.8/ ru ’ }
(a*-2arp + %) i==a{1+*(2 -a--a—.) +§T"1\2 ;——E‘:) + .ty
so that on picking out the coefficient of 1, we obtain

1.8...2n-1 1.8...2n-38 1.83...2n-5
A= nl wh = 2.(7.-2)'“1"‘“"'2.4.(n-4)‘1"H“"

Thus B, is an even or odd function of x aecording as n is even or odd. It
will readily be verified that expression (165) is a solution in series of
equation (154).
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Let us take axes Oz, Oy, Oz, the axis Oz to coincide with the line § =0,
then ur=rcos# == Then it appears that B,»" is a rational integral function
of z, y, and z of degree n, and, being a solution of Laplace’s equation, it must
be a rational integral harmonic of degree n. We have seen that there can
only be one harmonic of this type which is also symmetrical about an axis;
this, then, must be Br".

248. If we write
- (a® = 2aru + )~ ¥ = £ (a)

we have, by Maclaurin’s Theorem,

f@)=f(0)+a {af (“)} o+§i’,{?f§—‘f“)} +oo e (156).

If P is the point whose polar coordinates are a, 0 and Q
@ is the point 7, 6, then f (a)=-1-,ITJ. The Cartesian co-
ordinates of P may be taken to be a,0,0; let those of @ be
1
s S ¥ Th = ————— SO tth tv
92 en f(a) Vo—aripis at as regards
differentiation of f(a),

>

_a_—__a.. Fia. 74.

(@) o [0 f (@) 20" f(0)
Thus éj; ,,a }”o=(—) {_a_ﬁi"_ }a_o=( di..
1

W

o (1
P a):
80 that equatior (156) becomes

n a"
=(~) 5

f(a)=%‘“5a;(l) ;:aa;(b -

and on comparison with expansion (153), we see that
B= 'rn+x( mer (l>

nl 0"

giving the form for B, which we have already found to exist in § 245.

249. A more convenient form for B, can be obtained as follows.

Let 1-hy=(1=2hu+M¥ i 57),

so that y=p+ hl’—;—l ........................... (158).
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From this relation we can expand y by Lagrange’s Theorem (cf. Edwards,
Differential Caloulus, §5l7) in the form

_ 21 I» 7 9 \n ut = 1\
Yy F+h +...+'n—'l(5;) (—2—) +
Differentiating with respect to u,

oy _ 1 /h

5= 1+ (p, 1)+...+n_(2) ( ) (W =1+ ....
From equation (157), however, we find

?-—(1 Shu+ i) =14 B4 4 BB+ ..
Equating the coemclents of k™ in the two expansions, we find

B= 2,_17“(3) (B = 1) ceevrereeenenennn, (159).

250. This last formula supplies the easiest way of calculating actual
values of B, The values of B, R, ... B are found to be

R(pw)=n,

B(w)=3%@Bw-1),

R(w)=14 (50— 3p),

E(w) = §(35u — 30p° + 3),

E () =§(63u* = T0u* + 15p),

R(p) =75 (231 — 315u4 + 10542 - 5),

B (p) = {5 (42947 — 693u° + 315u® — 35p).

251. The equation (u*—1)* =0 has 2n real roots, of which n may be
regarded as coinciding at 4 =1,and nat u=~1. Bya well-known theorem,
the first derived equation,

_1)‘”=0.

will have 2n—1 real roots separating those of the original equation.
Passing to the nth derived equation, we find that the equation

an N
a—#,;(lb"‘l) =0

has n real roots, and that these must all lie between p=—=1 and p=+1.
The roots are all separate, for two roots could only be coincident if the
original equation (u*=1)*=0 had n+1 coincident roots.

Thus the n roots of the equation B, (u)=0 are all real and separate and
lie between p=—1and g =+ 1
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262. Putting p=1, we obtain
1 +Rh+Rh‘+"'=ﬁ/—l——:-_2h-—-l-__—h-’
=1+h+R+...,
80 that B=PB=...=1. Similarly, when p=—1, we find (cf §240) that
_R=+R=—R= Xy =—1.

We can now shew that throughout the range from p=—1 to p=+1,
the numerical value of B, is never greater than unity. We have

(1 — 2 cos 8+ ki)~ ¥ = (1 — hei®)"¥ (1 — he=i0)~F

( he“+1 ihsech, )

; .
x (l +-‘! ha“‘+———2. |h’e""+ ),
so that on picking out coefficients of A",

1.83...2n-1 11.8...2n-3
R‘-m sn9+2 é——z—-—“—‘2005(ﬂ 2)0"" sene

Every coefficient is positive, so that B, is numerically greatesb when each
cosine is equal to unity, i.e. when @=0. Thus £ is never greater than
unity.

Fig. 75 shews the graphs of R, R, B, R, from p=—1 to u=+1, the

value of 6 being taken as abscissa.
kid

L3 "
y= +0|-0 3 b=2 o=3 O=n
‘
.
T ' Pe
d
0 5
: '
D '
' i
'
' : P'
! |
' ' Py
y=~1 . H
pwl “‘l o] - 1 p= =1
N 2

Fre. 75.
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Relations between coefficients of different orders.
253. We have
(Q=2hu+m)"t =1+ %h-},’......................(160).
Differentiating with regard to &,

(u—h)(1—2hu + 49~ = %.nh""‘l-?. erereeesennenns(161),
8o that (u=h)(1+ SkrB) = (1 — 2hp + h3) ?nh""l{.
1

Equating coefficients of i", we obtain

(m+ DB+ nBy=2n+ 1)ph..ciannnnennnen (162)
This is the difference equation satisfied by three successive coefficients,
Again, if we differentiate equation (160) with respect to u.

h(1 = 2hp +h)" i-zhnap

so that, by combining with (161),
< np _ - na_j"
fnh B, = (u—h)Zh T

Equating coefficients of i,

nBo=p oF, _oR4

a,u. o
Differentiating (162), we obtain
31‘3.+: naf;‘,_;

reeenesrenesneaseneness(168)

(n+l)

==(2n+1)( a%).

Eliminating p—aii‘ from this and (163),

(2n+1)R, "—aﬁ—‘ T[l_ ...... beeeresennennes (164).
By integration of this we obtain
B -
[Rudu=Ball=Bal) .....q65,

whilst by the addition of successive equations of the type of (164), we
obtain

5% B=0n-1)By+@n=5)B gt aeenn. ..(166).
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254 We have had the general theorem (§ 237)
] 8, 8 do =0,
from which the theorem

[P0 Rty dw =0

follows as a special case. Or since
do =sin 8d0d¢ = — dpde,

f:B,(p)B,.(p)dp=0 .......... cevrerasnesen (167,
To find f : B2 (u) du, let us square the equation
Q-2 +h)~t= %mg,
multiply by du, and integrate from u=—1 to p=+1,
e f (Eirr) au
= Eh"‘},’.’dy,

-1 0

The result is

all products of the form B, R, vanishing on integration, by equation (167).
ot
Thus [ Rrdju is the cosffcient of i in
-

+1 d‘,,
al=2hu+h’
.. l 1-h
te in —plg
and this coefficient is easily seen to be .—— ] + i
We accordingly have
2
{P i B (168).

255. We can obtain this tbeorem in another way, and in a more general form, by
using the expansion of § 240, namely

Fp-—l—..g(%+l)ffFP,(cos 8)ds,
4nrat [
where 8 is the angle between the point P and the element dS on the sphere. This
expansion is true for any function # subject to certain restrictions. Taking F to be a
surface harmonio S, of order #, we obtain
#=00 C i
(s.),-ﬁld, TR ’ / 8.2, (cos 6) dS

2n4l
4ma?

f f.s,. P, (cos 8) dS,
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all other integrals vanishing by the theorem of § 237. Thus
[[8uPat =g Sy

or j ]s Po () da=3 +1(S")"" eerenereritias verennes(168).

This is the general theorem, of which equation (168) expresses a purticular case. To
pass to this particular case, we replace S, by 7, (u) and obtain, iustead of equation (168),

. 4
f f (Pa (01 it 00 = o7 P 1),
or, after integrating with respect to ¢,

2
2 I —e——
J R
agreeing with equation (168).

Expansions in Legendre's Coefficients.

266. THEOREM. The value of any function of 6, which 18 finite and
single-valued from 0=0 to 6 =1, and which has only a finite number of
discontinuities and of mazima and minima within this range, can be
expressed, for every value of 0 within this range for which the fumction is
continuous, as a series of Leyendre's Coefficients.

This is simply a particular case of the theorem of § 240. It is therefore
unnecessary to give a separate proof of the theorem.

The expansion is easily found. Assume it to be
fW) =0+ @R+ @B+ cc. + QB+ e evvernnanes (170),

then on multiplying by B (u)du, and integrating from u=~1 to p=+1,
we obtain

+1 8= +1
[CRwswdn="S o [ B Rw au

- 2u,
2n+1’
every integral vanishing, except that for whiech s=n, Thus
2n+1
o= J‘_r B)f(B)dp ceereeieennes ),

giving the coefficients in the expansion.
If f(n) has a discontinuity when u =g, the value assumed by the
series (168) on putting w = u, is, as in § 240, equal to

3 {AAG) +La(a)] coeevrereemvnieirnnnannnns (172),
where f; (), fi(m) are the values of f(u) on the two sides of the discon-
tinuity,
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HaRMONIC POTENTIALS.

287. We are now in a position to apply the results obtained to problems
of electrostatics.

Consider first a sphere having a surface density of electricity Sa. The
potential at any internal point P 1s

S,.dS S.dS
Vo= f ff«/a’—2arcos€+r’

-ff%(l+£l{'(cos¢9)+£l§(cos0)+ ) ds

- E?% @ 1. (Su)eons-1, by the theorems of §§ 287 and 255,

4 ™8,
b ey = SRR R crerneraanns .

this expression being evaluated at P.

Similarly the potential at any external point P is

4o 8,

P 2nt e

These potentials are obviously solutions of Laplace’s equation, and it is
easy to verify that they correspond to the given surface density, for

(a-?._a"'v) outside B (%.;V)inlide = 4’"’8"

This gives us the fundamental property of harmonics, on which their
application to potential-problems depends: A distribution of surface density
S. on a sphere gives rise to a potential which at every point is proportional
to S,.

268. The density of the most general surface distribution can, by the
theorem of § 240, be expressed as a sum of surface harmonics, say
c=84+S+8,+...,

in which 8, is of course simply a constant. The potential, by the results of
the last section, is

V=4mwa {S, ,S’, (a) ?f(r)’.'-'"} at an internal point ...(1;4),

a

V=4ma {S. (g) + % (g)‘ + %—’G) + } at an external point ...(175).
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EXAMPLES OF THE USE OF HARMONIC POTENTIALS,

L Potential of spherical cap and circular ring.

259. As a first example, let us find the potential of a spherical cap
of angle a—t.e. the surface cut from a sphere by
a right circular cone of semivertical angle a—
electrified to a uniform surface density o.
We can regard this as a complete sphere
electrified to surface density o, where
g=o, from =0 to 0=aq,
o0=0 from f§=a to =
The value of o being symmetrical about the

axis =0, let us assume for the value of o«
expanded in harmonics Fie. 76.

o =a,+a,B(cos ) + a, B(cos 8) + ...,
then, by equation (171),

2n+1
2

Om|
- &g—'—l- T f oB. (cos 8) d (cos 6)
f=a

= } 0, {F—; (cos a) — B4, (cos a)}
by equation (165), except when n =0. For this case we have

6=0
gy = ga.fmd (o8 6) = } oy (1 — co8 @),

f:-o a R, (cos 8)d (cos )

Thus
7 =%
o=}a, [(l—cosa)+ 5 {B._,(cosa)- ..+.(oosa)}f,’.(coa0)].
n=1
It 15 of interest to notice that when @ma, the value of o given by
this series is o= }0,, a8 it ought to be (cf expression (172)).

The potential at an external point may now be written down in the

form
V = 2mac, [(1 — cos ) (g\ +"5° Ba(cosa)— Ry (cosa) (g)nhg (o0s 0)]

el 2n+1
..... ve(176),

and that at an internal point is

- *5® B (cos @) = Ry (cos a) (r\*
V= 2mas, [(1 ~c0sa) +. E; l 2n+1 (E) R (cos 0)]
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On differentiating with respect to a, we obtain the potential of & ring of
line density g,ade. At a point at which r>a, we differentiate expression
(176), and obtain

V =27ras,da [sm a ( ) +' %R o (cosa)sina (g)n "B (cos 9)] ’

nml

or, putting as,da =t and simplifying,
V=2mrr = ...Q B, (cosa)sina (a)"“ E (cosf).....cu..... (178).
=0

Obvmusly the potentlal at a point at which r<a can be obtained on
a n+1 r\®
replacing (;) by (5) .

260. These last results can be obtained more directly by considering
that at any point on the axis 6 =0 the potential is

27ar sin a
= ==
N2+ a? — 2ar cos a

V= 2marsina "=°° P (cos a)( )"

T n-o

or,if r>a,

and expression (178) is the only expansion in Lagrange’s coefficients wi.".h
satisfies Laplace’s equation and agrees with this expression when 6 =0.

II. Uninsulated sphere in field of force.

261. The method of harmonics enables us to find the field of force
produced when a conducting sphere is introduced into any permanent field
of force. Let us suppose first that the sphere is uninsulated.

Fro. 77.
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Let the sphere be of radius a. Round the centre of the field describe
a slightly larger sphere of radius a', so small as not to enclose any of the
fixed charges by which the permanent field of force is produced. Between
these two spheres the potential of the field will be capable of expression in
a series of rational integral harmonics, say

V=FK+V+V+... ceeuen. verrersenaeanens (179).

The problem is to superpose on this a potential, produced by the
induced electrification on the sphere, which shall give a total potential
equal to zero over the sphere r=a. Clearly the only form possible for
this new potential is

V- V(g) -I{(%)'-V,(‘;‘)’—. ................. (180),

Thus the total potential between the spheres r=ga and r=d’is

K{l —g-} +I{{1 - (g).}+V, {1- (gﬂ +... +I{.{1 - (g)m+l}+....

Putting ¥, =778, the surface density of electrification on the sphere is,
by Coulomb’s Law,

1 0 . 0 [a"h
~5 25 {00 -5 ()
-—417;2“".‘(2"1 +1)Sn
1
-—m2(2n+1)1{..

This result is indeed obvious from § 258, on considering that the
surface electrification must give rise to the potential (180),

If n is different from zero,
f 80SadS =0,
where the integration is over any sphere, so that
f 8,dS=0  (ng0),
and f BudS =0  (BFO0)ermmeererererreerenen. (181).
Thus the total charge on the sphere

=ffads

1
g-mz(znu)fms

-—74:—'_-&1{.41ra’=—na,

and ¥, was the potential of the original field at the centre of the sphere.
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262. Incidentally we may notice, a8 & consequence of (181), that the
mean value of a potential averaged over the surface of any sphere which
does not include any electric charge is equal to the potential at the
centre (cf § 50).

If the sphere is introduced insulated, we superpose on to the field
already given, the field of a charge £ spread uniformly over the surface of

the sphere, and the potential of this field is 2. We obtain the particular
case of an uncharged sphere by taking E =¥a, and the potential of this

field, namely V,(g) , just annihilates the first term in expression (180), to
which it has to be added.

It will easily be verified that, on taking the potential of the original
field to be ¥ = Fiz, we arrive at the results already obtained in § 217.

III. Diclectric sphere in a field of force.

263. An analogous treatment will give the solution when a homo-
geneous dielectric sphere is placed in a permanent field of force. The
treatment will, perhaps, be sufficiently exemplified by considering the case
of the simple field of potential

K" F: Eerp
Let us assume for the potential ¥; outside the sphere

aS,

K=rsl+—r73

Y 4 <
L N——""__
/
X L
Fia. 78,

and for the potential ¥ inside the sphere
Vi=prS,
no term of the form -f—} being included in V;, as it would give infinite
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potential at the origin. The constants a, 8 are to be determined from
the conditions
V=¥
KQK - @K} at r=aq.

or or
These give a+ ai; =fa,
1-2_ kg,
whence aa—i}':;aﬂ B=K§-2’
so that V,=Fz {1 - g—lé (:"-.-).},
V= o Fe.
Thus the lines of force inside the dielectric are all parallel to those of

The

the original field, but the intensity is diminished in the ratio Kiz.

field is shewn in fig. 78.

IV. Nearly spherical surfaces.

264. If r=a, the surface r =a + x, where x is a function of 8 and ¢, will
represent & surface which is nearly spherical if x is small. In this case x
may be regarded as a function of position on the surface of the sphere r=a,
and expanded in a series of rational integral harmonics in the form

x=So+S|+S|+ sae
in which §,, S;, ... are all small.
The volume enclosed by this surface is

foo‘dw

=1 [[(@+ 30 do

--4-'%9:+a'f xdw

-4—7;?—, +4ma* S,.

If 8, =0, the volume is that of the original sphere r=a.
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The following special cases are of importance :

r=a+cP;. To obtain the form of this surface, we pass a distance e cos 8
along the radius at each point of the sphere r=a. It is easily seen that
when e is small the locus of the points so obtained is a sphere of radius a,
of which the centre is at a distance e from the origin.

r=a+2,8,. The most general form for a,8, is lz+my+nz, and this
may be expressed as aecos 6, where  is now measured from the line of
which the direction cosines are in the ratio l:m:n. Thus the surface is
the same as before.

r=a+8S, Since r is nearly equal to @, this may be written
rP=a’+ 2GS’

=a*+ g 28,

or @+ 3* + 2°=a’+ an expression of the second degree.

Thus the surface is an ellipsoid of which the centre is at the origin. It will

easily be found that r=a + €& represents a spheroid of semi-axes a + ¢, a — %,

and therefore of ellipticity 3_;'

266. We can treat these nearly spherical surfaces in the same way in
which spherical surfaces have been treated, neglecting the squares of the
small harmonics as they occur.

266. As an example, suppose the surface 7=a+ S, to be a conductor,
raised to unit potential. We assume an external potential

PR

where 4 and B have to be found from the condition that V=1 when
r=a+ 8, Neglecting squares of Sy, this gives

_A Sn
1-—;( —;)'I'BS",
so that A=a, B=l,
a
a a®
and V=;+—”“S,..

By applying Gauss' Theorem to a sphere of radius greater than a we
readily find that the total charge is @, the coefficient of é Thus the
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capacity of the conductor is different from that of the sphere only by
terms in S,? but the surface distribution is different, for

oV oV
41ra=—a—n == ‘if we neglect S,?

='+("+1)rn+'

-5(-%) (5 s

=2t S

the surface density becoming uniform, as it ought, when n =1, i.e. when the
conductor is still spherical.

267. As a second example, let us examine the field inside a spherical
condenser when the two spheres are not quite concentric. Taking the centre
of the inner as origin, let the equations of the two spheres be

r=a,
r=b+eR.

We have to find a potential which shall have, say, unit value over r=a,
and shall vanish over »=b +eR. Assume

v=2+52, 01D,

when B and D are small, then we must have

1-2.2prcsnan,
O-T(I-ER)+T,—+C+DbR.

These equations must be true all over the spheres, so that the coefficients
of R and the terms which do not involve X must vanish separately. Thus

%+0’—1=0; 1—9+Da=0;

%+0=o, ‘ﬁ +B + Db =0,
From the first two equations
ab
A=—ry
b—ua

and this being the coefficient of % in the potential, is the capacity of the

condenser. Thus to a first approximation, the capacity of the condenser
remains unaltered, but since B and D do not vanish, the surface distribution
is altered.
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V. Collection of Electric Charges.

267a. If a collection of electric charges are arranged in any way
whatever subject only to the condition that none of them lie outside the
sphere r = a, then the potential at any point outside the sphere must be

e 8 8
Vﬂ;-l--r;'l-;; +eeey

where. ¢ is the total charge inside the sphere (cf. § 266) and S,, §,,... are
surface harmonics which depend on the arrangement of the charges inside
the sphere,

If the total charge is not zero, the potential can also be treated as in
§ 67, and on comparing the two expressions obtained for the potential, we
can identify the harmonics 8, S,,.... We find that

B, =3¢ (w.§+ylg+z;§).

Sy=Ze {§ (“’1%: +.'/1g+31;)." *(“'x"".’/}""‘l’)}’

and it will be easily verified by differentiation that the expressions on the
right are harmonics.

This example is of some interest in connection with the electron-theory of matter, for
s collection of positive and negative charges all collected within a distance a of a centre
may give some representation of the structure of a molecule. The total charge on a
molecule is zero, 8o that we must take =0, and the potential becomes

7-§;+§?+

The most general form for §) is (cf. § 239) }(A.r+By+C's), or p cos 4, where 4 is the
angle between the lines from the origin to the point , g, s and that to the point 4, B, 0

and p is (424 B34-09),

Thus the term which is important in the potential when r is large is £ c::'o
that at & sufficient distance themolecule has the same field of force as a certain doublet of
strength p. Clearly when p has any value different from zero, the molecule is “polarised®
(of. § 142) in Faraday’s sense. If u=0,the potential becomes

Sy 8
Vo ;+;‘—+...,

, shewing

shewing that the force now falls off as the inverse fourth power of the distance.

Tt is worth noticing that the average force at any distance r is always zero, so that to
obtain forces which are, on the average, repulsive, we have to assume the presence of
terms in the potential which do not satisfy Laplace’s equation, and which socordingly
are not derivable from forces obeying the simple law e¢/r® (cf. § 183).
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FUrTHER ANALYTICAL THEORY OF HARMONICS,
@Qeneral Theory of Zonal Harmondics.

268. The general equation satisfied by a surface harmonic of order n,
which is symmetrical about an axis, has already been seen to be

One solution is known to be B, so that we can find the other by
a known method. Assume S,= Bu as a solution, where u is a function

of w. The equation becomes
oB, o oR, Ou
1- ""a { +B.a"} 2,“{3,‘“'*'&3 }+n(n+l)Ru=0 ...(183),

and, since F, is itself a solution,
oB, oR,
(1— ')a:”'(al") 2"' a'u'
Multiplying this by u and subtracting from (183), we are left with

oR, du ou
(1-,.'){ e +B.a } 2R3 =0,

or, multiplying by P, and rearranging,
oA (]
(- B - ) 2 -y e 2 (24 -0,

+n(n+1)B =0.

om.
. 9

oragsin (1= R G+ (- RY 5 (55) =0.
On integration this becomes

A-pd B.’gi = constant,

We may therefore take

u=A4+B f ———P-l) >

in which the limits may be any we please. If we write
Qn=an (——_I)—E‘- ..... vess ..............(184),

the complete solution of equation (182) is
Sp=RBu=ARE, + BQ,.
269. The two solutions F, and @, can be obtained directly by solving
the original equation (182) in a series of powers of p.

Assume a solution
Sp = boﬂv"‘" b+t 4+ b’,"ﬂ +..0
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substitute in equation (182), and equate to zero the coefficients of the
different powers of w. The first coefficient is found to be byr (r— 1), so
that if this is to vanish we must have »=0 or r=1. The value r =0 leads
to the solution

_q_n(r+1) n=-2)n(n+1)(n+8) ,
h=l-—y5— w4+ 1.2.3.4 B
while the value r =1 leads to the solution

(n—1)(n+2)

- - 4
w=p- LA F"_i_(n H(n—-1)(n+2)(n+4)

-
1.2.3.4.5 B
The complete solution of the equation is therefore
Uy + B,

If n is integral one of the two series terminates, while the other does
pot. If n is even the series u, terminates, while if n is odd the terminating
geries is u,. But we have already found one terminating series which is
a solution of the original equation, namely B. Hence in either case the
terminating series must be proportional to F,, and therefore the infinite
series must be proportional to @a.

270. We can obtain a more useful form for @, from expression (184).
The roots of B (u)=0 are, as we have seen, n in number, all real and
separate, and lying between —1 and + 1. Let us take these roots to be
@, &, ... @. Then

1 1
WD {Pa(@] G-DE+D (- a) (b —af.. (u—a)
a b ] dl
=”_1+,‘+1+2(ﬂf¢.+(ﬂ_a’),) ......... (185),

on resolving into partial fractions. Putting =+ 1 and — 1, we find at once
that a =4, b=—14.

In the general fraction
1_ 1
D™ (z-—a)(x—as)..."
let us suppose all the factors in the denominator to be distinct, so that we

may write

On putting «# =a,, we obtain at once
B 1
T@m-a)(@-a)(@m-a)..’
- 1
4= ) G- a) (@ —a)...

G

eta,
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Now let a, and a, become very nearly equal, say ay= a, + da,, then

1
%= "4 (a,—a) (2, — ay) ...’
. 1

while %= da, @ = a)(@m—a) ..’

The fractions L S I

z—a, z—ay
now combine into (o) &:(;‘S;' = %) ,
and on putting this equal to
o’ ¢

oo @l
it is clear that the value of ¢,” must be taken to be ¢;+¢,. Now

1 1 1
R aFl {(a!_al) ((L_,— a‘) cee _(a'l_ aa) (a,-—a.) ooo}

= E% {é?;: ((x ay) (:: —a,) .--)z-a. da,,}

-5

and this remains true however many of the roots a,, g, ..., coincide among
themselves, so long as they do not coincide with the root a,. Thus, in
expression (185), the value of ¢, is

0 { (p— o) }
Tou (T =) (B (W) pmes
Putting ;’5_%7)‘ =R(u),
we find that

-} { ____1____} =2 {_____’:__._}
*Top (=) {B ()" ymey 020 (1 — ) {B (an)l*
Since (1 — &,) R (1) is a solution of equation (182), we find that

Zla-mEpwre-wiY]|+nerve-wz=o
On putting p— a,, this reduces to
o (1~ o) B (@)} + (1 - ) 2
giving, on multiplication by R (),
o (1 =) (R @)1 =0.

oR (a,)

Hence ¢, = 0.
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Equation (185) now becomes

1 _ 1 1 d,
E=nEer-t G e
so that, on integration,
du p, +1 d,
L ECD R Pt R Ty

On multiplying by A, (p), we obtain ﬁ‘om equation (184),
QW =A[ = 1B g h T+ Fons .....186),

where W,_, is a rational integral function of x of degree n-1,

It is now clear that @y () is finite and continuous from p=—1to u=+1,
but becomes infinite at the actual values = + 1.

To find the value of W,_, we substitute expression (186) in Legendre’s
equation, of which it is known to be a solution, and obtain

{(1- ’)aW""'}+n(n+ )W,
= - {1 - (1B log £} - nr+ DERWIog
oR
=_9%
op
==2{2M=-DE 4+ @n=8) R+ .. ], (187).

Since W, is a rational integral algebraic function of u of degree n —1, it
can be expanded in the foria

Wos=a, B, +aB o+ ...,
so that

= {a-m%=

+a(n+1)W,,

9

=—3a, [a aE‘"

{(1 - } +n(m+) p,,_,]
=-3g,{n(n+1)— (n—s) (n—s+ 1)} R,
Comparing with (187), we find that @, =0 when s is odd, and is equal to

2(2n— 25+ 1)
§(2n—s8+1)
when ¢ is even.

Thus
2n-1 20 -5 -9
W‘"""“LT i Yres ) R Y e R
+1 2n -1 -5
and %‘Bt(“‘) logp' l.n Hl—l - 3(“— l)Pn-s_ ese
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271. When we are dealing with complete spheres it is impossible for
the solution @, to occur. If the space is limited in such a way that the
infinities of the @, harmonic are excluded, it may be necessary to take
into account both the B, and @, harmonics. An instance of such a case
occurs in considering the potential at points outside a conductor of which
the shape is that of a complete cone.

Tesseral Harmontcs.

272. The equation satisfied by the general surface harmonic 8, is
. 08 1 28,
ainz—ao (‘ 0 a_en) + 0 9

As a solution, let us examine

S, =00,
where ® is a function of 8 only, and ® is a function of ¢ only. On
substituting this value in the equation, and dividing by ®®/sin® §, we obtain
sinfd/. ,00\ 1p®
"o (im0 %) a5
We must therefore have

+7i(n+1)Sy=0,

+n(n+1)sin*@=0,

12®
o ©

The solution of the former equation is single valued only when « is of the
form —m?, where m is an integer. In this case

P = C, cos mp + Dy sin mep,
and @ is given by

1 9/(. ,00
ma—o(am 0 a—oy)+{n(n+l)—-——} ®=0,
or, in terms of x,
9 0
5,2{(1"")3 } {n(n+1)-«~—}®= ......... (188),
an equation which reduces to Legendre’s equation when m =0,

278. To obtain the general solution of equation (188), consider the
differential equation

0z
1-u) o +2nus=0........... crasreneranas (189),

of which the solution is readily seen to be

2=C(1 =P ririinriiennninienien . (190).
If we differentiate equation (189) s times we obtain

otz 'z o
A-Wgmm+2m—ap +e@n—s+ 1)a-r,_ﬁ-o «.(191),
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If in this we put s=mn, and again differentiate with respect to u, we

obtain o

[ s 2\ _

a,-l-‘{(l ) a”( )} e+ D)(52)=0 e 192),
which is Legendre’s equation with g:;,,_i as variable. Thus a solution of this

equation is seen to be s

"z KA

o or C (a#) - p),
giving at once the form for B, already obtained in § 249. The general
solution of equation (192) we know to be

oz
e AR, + BQy,

If we now differentiate (192) m times, the result is the same as that of
differentiating (189) m +n+ 1 times, and is therefore obtained by putting
s=m+n+1in (191). This gives

am+ﬂ+32 am+n+lz am+nz
a —n’)w-2(m+1)#3,;'r+a41+(m+"+1)(""")5,‘—m+—»=°'

m
or, multiplying by (1 -2,

= a _am+n+l
1 —p?)? I m+n+s —“2m+1)pQd- ’)’ m+n+f

+(m+n+1)(n—m)(1 - ’)’

20 e (193).

Let - ’)2 #W. =v.
Then %=( - ')33:,,.::, mp (1 — ,),-13%%’
wmd 2 {u-w ) =0 - T - m s - et
—m{a-wF - mea - i)

=y {(m+ n+l)y(n—m)+m — I@E,} » by equation (193),
m? #
=— v{n(n+l)— 1—:—",}
Thus v satisfies
o= Ee rn—romo
and this is the same as equation (188), which is satisfied by ©.
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274, The solution of equation (188) has now been seen to be

omtng
0= (1- ’)23#",.“;:
where oz _ APB, + BQ
o ne
Hence O=4(1- ’)235+B(1- u)? a"'Q"
The functions 1 —-w)? %}f: , (1= z).. Qn

are known as the associated Legendrian functlons of the first and second
kinds, and are generally denoted by P7(u), @n (u). As regards the former
we may replace B, from equation (159), by

1 aﬂ
Tl 3a (u* = 1)%
and obtain the function in the form

m omin
P"‘ (F') 2" ] (1 F‘Q)z 3,4,””'" (f'l', - 1)” --oo:oo-nn(194)u

It is clear from this form that the function vanishes if m+n> 2n, re. if
m >n. It is also clear that it is a rational integral function of sin § and
cos 6. From the form of @, (x), which is not a rational integral function of s,
it is clear that QT (u) cannot be a rational integral function of sin @ and
cos 8.

Thus of the solution we have obtained for S, only the part
P (w) (Cpmcos m¢p + Dy sin me)

gives rise to rational integral harmonics. The terms PJ(u)cosm¢ and
P (w)sin m¢ are known as tesseral harmonics.

Clearly there are (2n + 1) tesseral harmonics of degree n, namely
B (u), cos¢ Pi(u), sin¢ PL(u), ... cosng Pi(u), sinng Pi(u).
These may be regarded as the (2z + 1) independent rational integral har-
monics of degree # of which the existence has already been proved in § 239,

Using the formula
3"'P (u)

Pp (p)=sin™§ —
and substituting the value obtained in § 247 for B, (u) (cf. equation (155)),
we obtain P (u) in the form
- (‘7n)lsm"‘0 n— _(n -m)(n-m-=1)
PR = o ) {°°s "0 g@n=1) ="

n—-m)(n-m-=1)(n-—m—=2)(n=m-3) .
e 2.4 (2n—1) (20 —3) cog™ ™"~ § }
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The values of the tesseral harmonics of the first four orders are given in
the following table.

Order 1. cos §, sinfcos¢, sinfsin¢.

Order 2. }(3cos*6—1), 8sinfcosfcosep, 3sinfcosbsing,
3 sin? f cos 2¢p, 3 sin® fsin 2¢.

Order 3. $(5cos* @ —3cosf), §sinb(5cos®d—1)cosd,
§sin (5 cos*d—1)sinp, 15sin? @ cos 6 cos 24,
15 sin® 6 cos O sin 2¢5, 15 sin? 6 cos 3¢, 15 sin® fsin 3¢b.

Order 4. (85 cost 60— 30 cos*d +3), §sin@ (7 cos®d —3 cos f)cos ¢,
§8in 6(7 cos*§ — 8 cos f) sin ¢, 1fEsin’ G (7 cos? 6 — 1) cos 2¢p,
45 5in® 6 (7 cos® § — 1) sin 2¢, 105 sin® @ cos 6 cos 3¢,
105 8in® § cos @ sin 8¢, 105 sin* @ cos 4¢, 105 sin* 6 sin 4¢p.

276. We have now found that the most general rational integral surface
harmonic is of the form

S, = %P,",‘ (1) (A cos m¢ + B,, sin mep),

in which Pp(u) is to be interpreted to mean B, (u), when m =0,

Let us denote any tesseral harmonics of the type
P2 () (4 cosme + Bsinme) by S»

Then by § 237, ﬂS,",‘S,",‘.dwsO
ifngn. Ifn=n/ then

[z 82 =[] P2 P2 () (Ameos m + Busin me

(4 cosm’ ¢ + B, sinm’ ¢) do,
and this vanisk.es except when m = m’,

When n=n’' and m=m’' the value of f f S 8% dw clearly depends on

+1
that of / . {Pp (w)}* du, and this we now proceed to obtain,
We have

[zepan=[" a-om(EE) a
-l SR

fﬂa;_faﬂ(l #’)”‘a P}

du  ...(195).
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Since g%; = F, is a solution of equation (191), we obtain, on taking s=m +n
in this equation, and multiplying throughout by (1 — w?*y™3,

A= 1 - T8

+(@+m)(n—m+1) (1 - p)™ —
which, again, may be written

)
P 'um-n

B,

3‘% {(1 — )™ aa:f} =—(n+tm)(n—-m+1)(1- “a)m-; S

In equation (195) the first term on the right-hand vanishes, so that

f {Pr(wPdp=m+m)(n—m+ 1)[ a- #’)""‘(a—,:;,rl:) du

=@ +myn-m+1) [ (Pr (P du,
a reduction formula from which we readily obtain

+ (n +m)!
[Cwrepan=3En [T R wrd
2 (n+m)!
“on+1 n=—m)1"
These results enable us to find any integral of the type f 8,8’y dw.

Biazal Harmonics.

276. It is often convenient to be able to express zonal harmonics
referred to one axis in terms of harmonics referred to other axes—i.e to
be able to change the axes of reference of zonal harmonics.

Let B, be a harmonic having OP as axis. At Q the value of this is
E, (cos -y), where o is the angle PQ, and our problem is to express this
harmonic of order n as a sum of zonal and tesseral harmonics referred to
other axes. With reference to these axes, let the coordinates of @ be 6, ¢,
let those of P be ®, ®, and let us assume a series of the type

B (cos ) =.§:: P= (cos 8) (A, cos 8 + B, sin s).

Let us multiply by P4 (cos §)cos s¢ and integrate over the surface of a unit
sphere. We obtain

f fa. (cos ) { P4 (cos 6) cos s} dw = 4, f f (P4 (co8 B)}* cost s dv.
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By equation (189),
/ B, (cos y) [P (008 6) cos s} dov = 5——7 1 (P4 (cos 6) c08 6 }ymo

=3 +lP‘(cosB)coss<I>

and f / [P (cos G)} cost s dov = [ P dp f:’ cos* sb dep

2w (n+s)!
To:m¥1(n—s)!
Thus

4, —25:_4_?,1’,‘.(005 ®) cos 5D,

and similarly

(n—-s)!
B, = 2(n+ )lP‘ (cos ®) sin sP.

This analysis needs modification when s = 0, but it is readily found that
Ay=DF,(cos®), B,=0,
so that

F, (cos ry) = F, (cos 6) B, (cos ®)+“ 2 (n ;'P' (cos 6) Py (cos ®) cos s (¢ — P)

GENERAL THEORY OF CURVILINEAR COORDINATES,

277. Let us write
¢ (""r Y )=
"’ (E, Y,z )= Py
x (2,9 2)=v,
where ¢, ¥, y denote any functions of z, y, 2z Then we may suppose a point
in space specificd by the values of A, u, v at the point, t.e. by a knowledge of
those members of the three families of surfaces

¢ (2, y,2)=cons.; V¥(2, ¥, 2)=cons.; x(a, ¥, z)=cons
which pass through it.

The values of A, p, v are called “curvilinear coordinates” of the point.
A great simplification is introduced into the analysis connected with
curvilinear coordinates, if the three families of surfaces are chosen in such
& way that they cut orthogonally at every point. In what follows we shall
suppose this to be the case—the coordinates will be “orthogonal curvilinear
coordinates.”

The points A, g, » and A +d\, u, » will be adjacent points, and the
distance between them will be equal to dA multiplied by a function of
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. v L. .
A, p, and y—let us assume 1t equal to e Similarly, let the distance
from N, g, v to N, p+dp, v be %, and let the distance from A, u, » to

A\, 4, v+dv be d—-

Then the distance ds from A, u, v to A+ dA, u+dp, v+dv will be
given by

(dsy* = (d)\)’ (dﬁ‘)’ (dv)?

T TR
this being the diagonal of a rectangular paralleleplped of edges
D du g d
b’ h by

Laplace’s equation in curvilinear coordinates is obtained most readily by
applying Gauss’ Theorem to the small rectangular parallelepiped of which
the edges are the eight points

Atddr, ptidu, viide
In this way we obtain the relation

ffaa—:d5=o .............................. (197)
N I, I
ﬁ(ﬁ,ﬁ)*ﬁ(ﬁﬁ)*ﬁ(ﬂ,%)’o ...... (198),

and as we have already seen that equation (197) is exactly equivalent to
Laplace’s equation V2V =0, it appears that equation (198) must represent
Laplace’s equation transformed into curvilinear coordinates.

In any particular system of curvilincar coordinates the method of pro-
cedure is to express h,, s, h; in terms of A, u and », and then try to obtain
solutions of equation (198), giving V as a function of A, ¢ and »

SPHERICAL PoLAR COORDINATES.

278. The system of surfaces » = cons., 6 = cons., ¢ =cons. in spherical
polar coordinates gives a system of orthogonal curvilinear coordinates. In
these coordinates equation (198) assumes the form

9 [ oV 1 9/. ,0V 1 oV
5;("5)%?“(;97(“‘“”5?)%1-11—-7;@?-"'

already obtained in § 233, which has been found to lead to the theory of
spherical harmonics.
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CONFOCAL COORDINATES.

279. After spherical polar coordinates, the system of curvilinear coordi-
nates which comes next in order of simplicity and importance is that in
which the surfaces are confocal ellipsoids and hyperboloids of one and two
sheets. This system will now be examined.

Taking the ellipsoid
$’ 2 32
| g fb’.,+ AT NR— )
as a standard, the conicoid
L v 2*
e +b’+ ] +c’+9=l PPN (1 1) ]

will be confocal with the standard ellipsoid whatever value 6 may have, and
all confocal conicoids are represented in turn by this equation as @ passes
from — o0 to + 0.

If the values of @, g, z are given, equation (200) is a cubic equation in 6.
It can be shewn that the three roots in @ are all real, so that three confocals
pass through any point in space, and it can further be shewn that at every
point these three confocals are orthogonal. It can also be shewn that of
these confocals one is an ellipsoid, one a hyperboloid of one sheet, and one
a hyperboloid of two sheets.

Let A, pu, » be the three values of 8 which satisfy equation (200) at any
point, and let A, p, v refer respectively to the ellipsoid, hyperboloid of one
sheet, and hyperboloid of two sheets. Then A, p, » may be taken to be
orthogonal curvilinear coordinates, the families of surfaces A = cons., u = cons.,
v=cons. being respectively the system of ellipsoids, hyperboloids of one
sheet, and hyperboloids of two sheets, which are confocal with the standard
ellipsoid (199).

280. Tie first problem, as already explained, is to find the quantities
which have been denoted in § 277 by Ay, ky, h,. As a step towards this, we
begin by expressing , y, # as functions of the curvilinear coordinates A, g, ».

The expression

, , EC A
(@+6)( +e)(¢+o)[a,+0+m+c,+0-1
is clearly a rational integral function of 6 of degree 3, the coefficient of 8°
being —1. It vanishes when 6 is equal to A, u or », these being the curvi-
linear coordinates of the point z, y, z. Hence the expression must be equal,
identically, to
sl CERSICEINICEON
Putting 6 = — a* in the identity obtained in this way, we get the relation
@ (0 — a®) (¢ — @®) = (¢* + A) (a® + ) (a* + »),
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so that @, y, £ are given as functions of A, 4, v by the relations

3 4+ 2\)(a? 2
o (@ -Zb’)(z')t:)_(:,)*' L (201).

281. To examine changes as we move along the normal to the surface
A =cons, we must keep 4 and » constant. Thus we have, on logarithmic
differentiation of equation (201),

de__dr
z @+\’

and there are of course similar equations giving dy and dz. Thus for the
length ds of an element of the normal to A = constant, we have

(dsy = (dz) + (dy) + (dsy
~13(555) @

(@ + p) (a*+v)
=@ 2 TN - =)

A=p)(A=»)
=} (dA) @

+XM) B+ N) (¢ +0)’
The quantity ds is, howerer, identical with. the quantity called % i
§ 277, so that we have
4(@+N) (B +N) (S + )
’ = t0000 e
h = =) rererenane (202);

and clearly &, and &, can be obtained by cyclic interchange of the letters
A\, 4 and ».

282. If for brevity we write
Av=V(@+ 1) (PN (+2),

we find that

_h‘_ = O (u—
Wk 28,8,
8o that by substitution in equation (198), Laplace’s equation in the present
coordinates is seen to be

Y {(" ”)A A, ax {(" “Mza; AAAA %Z} Py {(" ")AAA aam 0

On multiplying throughout by A,A,A,, this equation becomes

n-v)AAah(A,\a:)+(v-x)A,5-<A,.%V) a-mal ( ,aaV) 0

veere . (204).

v) Vo,



246 Methods for the Solution of Special Problems [cH. viu

Let us now introduce new variables a, 8, ¥, given by

o= f* dr
p-["% de
v=[ Z- ,
then we have -aa:= A, %;
and equation (204) becomes
(y-u)%g+(v-x)g’—;:+(x—p)%‘f=o ......... (205).

Distribution of Electricity on a freely-charged Ellipsoid.

283. Before discussing the general solution of Laplace’s equation, it will
be advantageous to examine a few special problems.
In the first place, it is clear that a particular solution of equation (205) is

where 4, B are arbitrary constants. The equipotentials are the surfaces
a = constant, and are therefore confocal ellipsoids. Thus we can, from this
solution, obtain the field when an ellipsoidal conductor is freely electrified.

For instance, if the ellipsoid

is raised to unit potential, the potential at any external point will be given
by equation (206) provided we choose 4 and B so as to have V' =1 when
A=0, and V=0 when A=o. In this way we obtain
-
A
V== T e (207).
o A
The surface density at any point on the ellipsoid is given by
oV _ oVoa oV

Rt e W L F Y

1
_h (&).es
® d\

o Ba
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Thus the surface density at different points of the ellipsoid is proportional
to hy.

284. The quantity h, admits of a simple geometrical interpretation.
Let I, m, n be the direction-cosines of the tangent plane to the ellipsoid at

any point A, g, v, and let p be the perpendicular from the origin on to this
tangent plane. Then from the geometry of the ellipsoid we have
P=(@+NP+D+ M) m+ (F+ A0 . (209).
Moving along the normal, we shall come to the point A + dA, g, ». The
tangent plane at this point has the same direction-cosines I, m, n as before,

but the perpendicular from the origin will be p +dp, where d =‘—ih%. To

obtain dp we differentiate equation (209), allowing A alone to vary, and so
have
2pdp =d\ (P + m? + n?) =dA.
Comparing this with dp = %é , we sce that h, = 2p.
1

Thus the surface density at any point is proportional to the perpendicular
from the centre on to the tangent plane at the point.

In fig. 79, the thickness of the shading at any point is proportional to
the perpendicular from the centre on to the tangent plane, so that the
shading represents the distribution of electricity on a freely electrified
ellipsoid.

It will be easily verified that the outer boundary of this shading must
be an ellipsoid, similar to and concentric with the original ellipsoid.

285. Replacing &, by 2p in equation (208), we find for the total charge £

on the ellipsoid,
1 / ’
—= | | PdS.
2mrabe f dr j

[ A

E= [adS=

Since f fpdS is three times the volume of the ellipsoid, and therefore

equal to 4mabc, this reduces to
2

E=ai_

L&
0 &a°
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Since the ellipsoid is supposed to be raised to unit potential, this quantity
E gives the capacity of an ellipsoidal conductor electrified in free space,

The capacity can however be obtained more readily by examining the
form of the potential at infinity. At points which are at a distance ¢
from the centre of the ellipsoid so great that @, b, ¢ may be neglected in

comparison with r, A becomes equal to 13, 80 that A, =132, and
=d\n 2

A Ay
Thus at infinity the limiting form assumed by equation (207) is
2

[

Jo Ax

and since the value of V at infinity must be %' the value of E follows at
once,

V-

4 freely-charged spheroid.

286. The integral f - i—)‘ is integrable if any two of the semi-axes
[} A
become equal to one another.
If b=, the ellipsoid is a prolate spheroid, and its capacity is found to be
2 2ae

© da 1+e\’
lo
/o Frn@rnt F (1 - 0)
where e is the eccentricity.
If a =, the ellipsoid is an oblate spheroid, and its capacity is found to be

E=

E 2 ae
e A Tante
o (@+N) (¢ +2)b

Elliptic Disc.
287. In the preceding analysis, let @ become vanishingly small, then
the conductor becomes an elliptic disc of semi-axes b and ¢.
The perpendicular from the origin on to the tangent-plane is given, as in
the ellipsoid, by

p’:.—___
2
+ +E‘

818
IS -
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and when a is made very small in the limit, this becomes

a!
@,y
at b o
so that the surface density at any point @, y in the disc is proportional to

(1 --'i'—i')-* ...... eeeeeeeeesesersanes (210).

Circular Disc.

288. On further simplifying by putting b= ¢, we arrive at the case of a
circular dise. The density of electrification is seen at once from expression

(210) to be proportional to
(1 _r -¥
c’) '

and therefore varies inversely as the shortest chord which can be drawn
through the point.
Moreover, when a = 0 and b= ¢, we have A, = (¢*+A) ¥X, g0 that
©d\n 2 ( c ) ©d\
and

Cr Ztan [ — =2=Z,
A Aa Gt‘m %Y oAA=0

Thus the capacity of a circular disc is 2;6 , and when the disc is raised to

potential unity, the potential at any external point is
e (35)
- tan —=},

. VA
where A is the positive root of
z ¢+r_1
NS

289. Lord Kelvin® quotes some interesting experiments by Coulomb on the density
at different points on a circular plate of radius 5 inches. The results are given in the
following table :

I

D“‘;{;ﬁ"g‘;‘;’e the | G} cerved Densities | Calculated Densities

5 ins. 1 1

4 1-001 1-020
3 1-005 1090
2 117 1250
1 1'52 1667
05 207 2294
0 2:90 ]

® Papers on Elect. and Mag. p. 179.
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Much more remarkable is Cavendish’s expeﬁmental determination of the capacity of a

circular disc. Cavendish found this to be Tb—’r times that of a sphere of equal radius,

while theory shews the true value of the denominator to be ; or 157081

290. By inverting the distribution of electricity on a circular dise, taking
the origin of inversion to be a point in the plane of the disc, Kelvin® has
obtained the distribution of electricity on a disc influenced by a point charge,
in its plane, a problem previously solved by another method by Green. The
general Green'’s function for a circular disc has been obtained by Hobsont.

Spherical Bowl.

291, Lord Kelvin has also, by inversion, obtained the solution for a
spherical bowl of any angle freely electrified. Let the bowl be a pieee of
a sphere of diameter f. Let the digtance from the
middle point of the bowl to any point of the bowl
be r, and let the greatest value of r, 1.e. the dis- ’
tance from a point on the edge to the middle point
of the bowl, be a. Then Kelvin finds for the elec- f.'/« ‘
tric densities inside and outside the bowl:

=37 | \/ iECRJN AL, _;}

p°=p‘-+27f‘.

Fie 80.

Some numerical results calculated from these formulsm are of interest. The sixlﬁalues
in the following tables refer to the middle point and the five points dividiug the arc from
the middle point to the edge into six equal parts.

Plane dise Curved diso are 10° Curved disc arc 20°

Po Mean I Po Mean I Po Mean

1-00 100 1-:0000 91 1:08 10000 ‘86 114 1-0000
1-01 101 10142 ‘85 108 10141 ‘88 115 10010
1-06 108 10607 99 113 10605 ‘92 120 1-0369
118 1’15 1-1647 109 1-22 1:1642 102 1-29 1'1106
134 134 1:3416 1:27 141 1-3407 1-29 1:66 1-2606
181 1-81 1-8091 174 1-88 1-8071 167 194 16474

* Pupers on Elect. and Mag. p. 188.
+ Trans. Camb. Phil. Soc. xvur. p. 277.
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Bowl arc 270° Bowl arc 340°
»

A Po Mean Py P Mean
013 1-986 10000 *0001 19999 10000
‘014 1-987 1°0009 0002 1-9999 1'0000
018 1-991 10041 0002 20000 1-0001
025 1-998 10118 0004 20001 1-0002
046 2018 1-0316 ‘0009 2:0006 1-0007
120 2:093 1 1060 ‘0042 2 (040 1:0041

Discussing these results, Lord Kelvin says: “It is remarkable how slight an amount
of curvature produces a very sensible excess of density on the convesx side in the first two
cases (10° and 20°), yet how nearly the mean of the densities on the convex and concave
sides at any point agrees with that at the correspondjng point on a plane disc shewn in
the first column. The results for bowls of 270° aud 340° illustrate the tendency of the
whole charge to the convex surface, as the case of a thin spherical conducting surface with
an infinitely small aperture is approached.”

ELLiPsoiDAL HARMONICS.

292. We now return to the general equations (205), namely

oV oV oV
(p—v)—a:,—+(v—k)é-l§;+(7\-y)5?==0 ....... .(211),
and examine the nature of the general solutions of this equation.

Let us assume a tentative solution
V=LMN,

in which L is a function of A only, M a function of s only, and N a function
of v only. Substituting this solution the equation reduces to

1oL 1 M 1N
(I"" ")I Ja? +(V—x)ﬂ 3 +(k"'")—N" W=o'
. . . 1L . .
Since a is a function of A only, 3w 58 function of X only, and the equa-

tion may be written in the form
=) fANV+E-VFp)+A-p)®@)=0,
where f, F and & are functions whose form we have to determine.

This functional equation must hold for all values of A, p, . Putting p=v
we find that F(v) = & (v), and since this is true for all values of », F’ and @
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must be the same function. By a similar procedure, it follows that f must
also be the same function, so that the equation can be written
(W=2)f) + @ =N (W) +A=p)f()=0.
To find the form of the function f we put A =0 and obtain
W =f©) _f@)=f10)
b v

Thus a function of 4 is equal to the same function of », so that each must

be a constant. Calling this B, and writing 4 for f(0), we find that

F)=4+ B

293. Restoring its value to f(A) we see that we must have

%% SR\ Y A (212),

and similar equations, with the same constants 4 and B, must be satisfied
by M and N.

Equation (212), on substituting for a in terms of A, becomes

0 oL
Bam (AA éi) “(A+BNL e, (213),
a differential equation of the second order in A, while M and N satisfy
equations which are identical except that u and v are the variables,

The soiution of equation (213) is known as a Lamé’s function, or ellip-
soidal harmonic. The function is commonly written as £%(A), where p, n
are new arbitrary constants, connected with the constants 4 and B by the
relations

n(n+1)=B, and (BP+c)p=—4.
Thus E% (M) is & solution of

T e+ DA -p B+ )L,

and a solution of equation (211) is
V=3SSEE\) EE(W) BE (V) evoreveeernne... (214).
N

294. Equation (213) being of the second order, must have two inde-
pendent solutions. Denoting one by L, let the other be supposed to be Lu.
Then we must have L

5;; = (A + B)&) L,
o (Lu)
da®

=(4 + B\) Lu;
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so that on multiplying the former equation by u, and subtracting from the
latter, Pu | 0L

u 4
L a—;; + 2 a—a 'a— =0,
Thus “'[ﬁ’fL’AA

and the complete solution is seen to be
da
CL+ DL [Fx-,
where C and D are arbitrary constants.

Accordingly, the complete solution of equation (211) can be written as

V= 22 (O,., EZ(\)+ Dy BZ(N) f {E»(x) A )

(0o’ 21 + Doy B2o) i)
(Cop" B2(3)+ Duy” B209) [ e E.,(v)},A)

This corresponds exactly to the general solution in rational integral
spherical harmonics, namely

V = 53 (Clp?™ + Dy tt)
) B
(Coy'e'? + D,'e~ip%)
(Cog’ P2(c086) + Dy P3(c086).

Ellipsoid tn uniform field of forcs.

295. As an illustration of the use of confocal coordinates, let us examine

the field produced by placing an uninsulated ellipsoid in a uniform field of
force.

The potential of the undisturbed field of force may be taken to be V = Fuz,
or in confocal coordinates (cf. equation (201))

_ (@ +A)(a®+p) (@ +v)
L = Y
V=CLMN,
where C is the constant F (b*— at)~¥ (= a*) "%, and L, M, N are functions of
A only, 4 only and v only, respectively, namely L = ¥a® + X, ete.

Since ¥V'= LMN is a solution of Laplace’s equation, there must, as in § 294,
be a second solution V= Lu. MN where

This is of the form

JmA f SN
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The upper limit of integration is arbitrary: if we take it to be infinite,
both w and Lu will vanish at infinity, while M and NV are in any case finite
at infinity. Thus Lu.MN is a potential which vanishes at infinity and is
proportional (since u is a function of A only) at every point of any one of the
surfaces A = cons., to the potential of the original field. Thus the solution

V=CLMN + DLu. MN ..o (215)

can be made to give zero potential over any one of the surfaces A = cons,, by
a suitable choice of the constant D.

For instance if the conductor is A = 0, we have, on the conductor,

- f =
Y=, @ VA
Thus on the conductor we have

VLN (0+ Df: M—%)

The condition for this to vanish gives the value of D, and on substituting
this value of D, equation (215) becomes

u
V=C’LMN(1 -F-T-)
o @+N)A,

['._‘”:___
Ix (@40 A,
=Fz l—j,m PN
o (@®+2)A,
[ dr
Rl (EEN B, (216).

f" dx
0 (a’ + X) Aa

This gives the field when the original field is parallel to the major axis
of the ellipsoid. If the original field is in any other direction we can resolve
it into three fields parallel to the three axes of the ellipsoid, and the final
field is then found by the superposition of three fields of the type of that
given by equation (216).

SpPHEROIDAL HARMONICS.

298. When any two semi-axes of the standard ellipsoid become equal
the method of confocal coordinates breaks down. For the equation

2 g

2
m+b—’:}~0+m=l S (217)
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reduces to a quadratic, and has therefore only two roots, say A, u. The
surfaces A = cons. and u = cons. are now confocal ellipsoids and hyperboloids
of revolution, but obviously a third family of surfaces is required before the
position of a point can be fixed. Such a family of surfaces, orthogonal to
the two present families, is supplied by the system of diametral planes
through the axis of revolutien of the standard ellipsoid.

The two cases in which the standard ellipsoid is a prolate spheroid and
an oblate spheroid require separate examination.

Prolate Spheroids.
297. Let the standard surface be the prolate spheroid

a? oyt 42t
P

=1,

in which @ > b. If we write
y=wcosp, z=wsing,

then the curvilinear coordinates may be taken to be A, u, ¢, where X, u are
the roots of

z* w?
m + 5‘;:—0"# 1 ............. eseveescans (218).

In this equation, put a®—b*=¢* and a*+ 0 =¢'0", then the equation
becomes
7 o’
o S @ -T) "
If £, n* are the roots of this equation in ", we readily find that 2= Fpc’,
so that we may take

1

&=CEn e everrereesnnnens eeeenn(219),
T=cVN(AL=E)(P=1) ceeerirreiecencaneen (220)

in which 7 is taken to be the greater of the two roots.

The surfaces £ = cons., = cons. are identical with the surfaces 6 = cons.,
and are accordingly confocal ellipsoids and hyperboloids. The coordinates
£ m, ¢ may now be taken to be orthogonal curvilinear coordinates.

It is easily found that
LIV4-SL S Yy W WSS S
h] ¢ n,_f,a hl—; 7]"'6” h) C\/(l—f’)(ﬂ"l)‘
from which Laplace’s equation is obtained in the form

d(. V). D 14 —p 2V
g8 'a'e} o {“” -b 55} Y TTEH =T =
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298. Let us search for solutions of the form
V=EHO?,

where E, H, ® are solutions solely of £ » and ¢ respectively. On substituting
this tentative solution and simplifying, we obtain
A=0)0D12 (0] L2 (o p2H)] 120
" — & = oF a E)af +Ha‘r] (7 1)317 +$3¢’=0'
As in the theory of spherical harmonics, the only possible solution results
from taking
100
P odp*
where —m? is a constant, and m must be an integer if the solution is to be
single valued. The solution is

—ms,

P =Ccosmep+Dsinme .....cocucvenen..... (221).
‘We must now have
1o (1 _endEl 10 (o yOH| _mn—§)
2 {-O% rag oD o A-EYr-1)
m? m?

- 1—_—5-, + 5‘,‘_—‘1 ’
and this can only be satisfied by taking

0 w05 mE
5_5{(1_5)3-5-}_ i—__—E,+SE =0 ..... cereneen(222),
together with s u
0 m'H
hdt i m -
R Y - (223).

Equations (222) and (223) are identical with the equation already dis-
cussed in §§ 273, 274. The solutions are known to be
E =APp(§) +BQr(§),
H=A"P3(n)+ B2 (n),
where s=n(n+1) and P}, @ are the associated Legendrian functions
already investigated. Combining the values just obtained for B, H with
the value for ® given by equation (221), we obtain the general solution

V=332He®
=32 (4P2(E) + BQR(E)} (4 P2(n) + B Qi ()} {Ccos m + D sin m),

At infinity it is easily found that
z

n=0. b= e o,
while at the origin n=1 §£=0.

Thus in the space outside any spheroid, the solution Pr(£) Q(7) is finite
everywhere, while, in the space inside, the finite solution is Pp(g) P™(n).
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Oblate Spheroids.

299. For an oblate spheroid, a*— b* is negative, 80 that in equation (218)
we replace 3*— a* by «*, so that « = ic, and obtain, in place of equations (219)
and (220),
& = xkin,
= = V(T B (T
Replacing i by {, we may take £, ¢ and ¢ as real orthogonal curvilinear
coordinates, connected with Cartesian coordinates by the relations
= «Ef,
we= kN1 =E) (1 + ).
We proceed to search for solutions of the type
V=EZd,
and find that B, ® must satisfy the same equations as before, while Z must
satisfy
9 0Z m*
-—5&{(1 + ;‘)a—;} - i:—;’z +n(n+1)Z=0,
The solution of this is
2=A4'PR i)+ BQR(iL),
and the most general solution may now be written down as before.

PROBLEMS IN TWO DIMENSIONS.

800. Often when a solution of a three-dimensional problem cannot be
obtained, it is found possible to solve a similar but simpler two-dimensional
problem, and to infer the main physical features of the three-dimensional
problem from those of the two-dimensional problem. We are accordingly
led to examine methods for the solution of electrostatic problems in two
dimensions.

At the outset we notice that the unit is no longer the point-charge, but
the uniform line-charge, & line-charge of line-density o having a potential
(cf. § 75)

0—20logr

Method of Images.

801. The method of images is available in two dimensions, but presents
no special features. An example of its use has already been given in § 220.
17
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Method of Inversion.

302. In two dimensions the inversion is of course about a line. Let this
be represented by the point O in fig. 81.

Let PP, QQ be two pairs of inverse points. Let & line-charge e at @
produce potential Vp at P, and let a
line-charge ¢’ at Q produce potential Vp
at P, so that

Vp=C-2elog PQ;
Vo =C'—2¢'log I'Q.

If we take e = ¢, we obtain

, PQ
L4 —-— r,= 'c— —
Vo= Vo =C"~2clog o

Let P be a point on an equipotential when there are charges e at @,
e, ot Q,, etc., and let V denote the potential of this equipotential. Let 14
denote the potential at ' under the influence of charges e, e,, ... at the
inverse points of @, @y, .... Then, by smnmation of equations such as (224),
V- V=-3(2log OP) + = (2¢log 0Q) + constants,
or ¥V = constants — 2 (Se) log OP .....ccvvvnnnnenns (225).

The potential at I of charges e, ¢, ... ab the inverse points of @, @, -..

plus a charge — Se at O is

V4 C+2(Se)log OP,
and this by equation (225) is a constant. This result gives the method of
inversion in two dimensions:

If a surjucs S is an equipotential under the influence of line-charges
¢, € ... at Qi, @, ..., then the surface which is the inverse of S about
a line O will be an cqmpotentwl under the influence of line-charges e, €, ...
on the lines tnverse to Q,, @, ... together with a charge — Ze at the line O.

Two-dimenstonal Harmonics.

303. A solution of Laplace’s equation can be obtained which is the
analogue in two dimensions of the three-dimensional solution in spherical
harmonics.

In two dimensions we have two coordinates, 7, 8, these becoming
identical with ordinary two-dimensional polar coordinates. Laplace’s equa-

tion becomes
10/ 0V oV
?a’?( _) =0
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and on assuming the form

V= RO,
in which R is a function of # only, and ® a function of 6 only, we obtain the
solution in the form

now
-\31 (AT" ) (C cosnf + D sin n).
nw

Thus the “harmonic-functions ” in two dimensions are the familiar sine
and cosine functions. The functions which correspond to rational integral
harmonics are the functions

r*sin nf, " cos nf.

In z, y coordinates these are obviously rational integral functions of z
and y of degree n.

Corresponding to the theorem of § 240, that any function of position
on the surface of a sphere can (subject to certain restrictions) be expanded
in a series of rational integral harmonics, we have the famous theorem of
Fourier, that any function of position on the circumference of a circle can
(subject to certain restrictions) be expanded in a series of sines and cosines.
In the proof which follows (as also in the proof of § 240), no attempt is made
at absolute mathematical rigour: as before, the form of proof given is that
which seems best suited to the needs of the student of electrical theory.

Fourier’'s Theorem.

304. The value of any function F of position on the circumference of a
circle can be expressed, at every point of the circumference at which the
JSunction is continuous, as a series of sines and cosines, provided the function is
single-valued, and has only a finite number of discontinuities and of mazima
and minima on the circumference of the circle.

Let P (f, a) be any point outside the circle, then if R is the distance

from P to the element ds of the circle P(f, @)
(a, 0) /

(a, 8) we have
2 _ o
Lo 7)\
This result can easlly be obtained by inte-

gration, or can be seen at once from physical
considerations, for the integrand is the charge
induced on a conducting cylinder by unit line-
charge at P,

Fia. 832.
17—2
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Let us now introduce a function u defined by

L) 1]
-1 5 f o — cerenenerenes (226).

Then, subject to the conditions stated for F we find, as in § 240, that on
the circumference of the circle, the function u becomes identical with F,
Also we have

1_ 1
R fr4 a"—2afcos (6 — a)

1
= (F=ad®a) (f—ae )
10— { a f }

it F=ad e " g ffe-a

e

=}.—’-—%—‘; {1+2‘ (7) cosn(a-a)}.

Hence =%ma f F {1+ (7) cos 7 (6 ~ a)}
.=§17_r - z(f) :::'Fcosn(o-a)do,

and on passing to the limit and puttmg a=f, this becomes
(2] 0=2;
Feoo [T Fa0+ —2 " P08 .8~ ) 46 ereen221),

expressing F as a series of sines and cosines of multiples of a.
We can put this result in the form

F=F+ %(a,,cosna+b,.sinna),

where a,.=-1- ] %F cosné do,
KU ]
b,,slf"ﬁ'sinnedo,
mJo
1 2z
and F"%L Fdb,

so that F is the mean value of F.

If F has a discontinuity at any point 8 = 8 of the circle, and if F,, K, are
the values of F at the discontinuity, then obviously at the point § =28 on
the circle, equation (226) becomes

u=3}(E+E),
so that the value of the series (227) at a discontinuity is the arithmetic
mean of the two values of F at the discontinuity (cf. § 256).
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808. We could go on to develop the theory of ellipsoidal harmonics etc.
in two dimensions, but all such theories are simply particular cases of a very
general theory which will now be explained.

CoNJUGATE FUNCTIONS.

General Theory.

806. In two-dimensional problems, the equation to be satisfied by the
potential is

6V vV .
+8y’ =0 ceiicinnieiennnnienennnend(228)

and this has a general solution in finite terms, namely
Vef(@+iy)+F(@—1y) coooeennns cerarresnes (229),

where f and F are arbitrary functions, in which the coefficients may of
course involve the imaginary 1.

For V to be wholly real, ' must be the function obtained from f on
changing ¢ into — ¢. Let f (2 +14y) be equal to u+4v where u and v are
real, then F(z+14y) must be equal to u — 1w, so that we must have V = 2u.
If we introduce a second function U equal to — 2v, we have

U+2V==20+2u
= 2i(u + )
=2 f(z +1y)
=d@+1y) ..o eernnvensaseces(230),
where ¢ (= + ty) 18 a completely general function of the single variable z +1y.

Thus the most general form of the potential which is wholly real, can be
derived from the most general arbitrary function of the single variable @ + iy,
on taking the potential to be the imaginary part of this function.

807. If ¢ (x+1y) is a function of z+ 1y, then ¢ (¢ + 1y) will also be
& function, and the imaginary part of this function will also give a possible
potential. We have, however, from equation (230),

P (@+iy)=1(U+1V)
== V410,
shewing that U is a possible potential.

Thus when we have a relation of the type expressed by equation (230),
either U or V will be a possible potential.
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308. Taking V to be the potential, we have by differentiation of
equation (230),

oU .oV .
5;+té;=¢ (z +1y),
ouU .oV

£ +i'3—37 =1i¢' (@ +1y),

.U  .oV\ _oU .oV
and hence 1(52+‘$)=—6?+'@'
Equating real and imaginary parts in the above equation, we obtain
oU_ov
oz oy’
ou_ oV
oy~ oz’
oUaVv oUav
s0 that 3 37 + Ey 53’/ =0. .(231).

This however is the condition that the families of curves U = cons,
V = cons,, should cut orthogonally at every point. Thus the curves
U =cons. are the orthogonal trajectories of the equipotentials—i.e. are
the lines of force.

Representation of complex quantities.
809. If we write
z=z+1y
so that z is a complex quantity, we can suppose
the position of the point P indicated by the value
of the single complex variable z. If z is expressed
in Demoivre’s form
2=r¢®=r(cost + ¢sin ),

- (]
then we find that r=#a*+? and 6 = t:m"g . The Fro. 8.

quantity 7 is known as the modulus of 2 and is denoted by |z |, while 6 is
known as the argument of z and is denoted by arg 2. The representation of
a complex quantity in a plane in this way is known as an Argand diagram,

810. Addition of complex quantities. Iet P be 2= + 1y, and let P’ be
2’=a'+1y. The value of 2+ 2" is (z + 2') + i(y + y"), so that if @ represents
the value 2+ ¢ it is clear that OPQP’ will be a parallelogram. Thus to
add together the complex quantities z and 2° we complete the parallelogram
OPPF’, and the fourth point of this parallelogram will represent z + 2’.
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The matter may be put more simply by supposing the complex quantity
z =g + 1y represented by the direction and length of a line, such that its
projections on two rectangular axes are @, y. For instance in fig. 83, the
value of z will be represented equally by either OP or I”Q. We now have
the following rule for the addition of complex quantities.

To find 2 + 2/, describe a path from the origin representing z in magnitude
and direction, and from the extremity of this describe a path representing 2'.
The line joining the origin to the extremity of this second path will repre-
sent 2+ ¢

311. Multiplication of complex quantities. If

z=x 4+t =7 (cosf +1isinf),
and Z=a'+ 1y =1"(cos &+ isin §),
then, by multiplication

22 =1rr' {cos (0 + 6) + isin (6 + 0')},

so that 22" |=rr'=|2]| |7,

arg (22) =0+ 6 =argz + arg 7,
and clearly we can extend this result to any number of factors. Thus we
have the important rules:

The modulus of a product is the product of the moduli of the factors.

The arqument of a product is the sum of the arguments of the fuctors.

There is a geometrical interpretation of multiplication.

In fig. 84,let 0A =1, OP =2, OP' =2 and 0Q = 27.

Then the angles QOA, POA being equal to # + ¢ and &' respectively,
the angle QOP’ must be equal to 6, and thercfore to POA.

Moreover

09 _op

OF 04’
each ratio being equal to 7, so that the triangles
QOP and POA are similar. Thus to multiply
the vector OI” by the vector OP, we simply
construct on OP’ a triangle similar to AOP.

The same result can be more shortly ex-
pressed by saying that to multiply 2/ (= OP') by
z(= OP), we multiply the length OF by |z|and
turn it through an angle arg 2.

So also to divide by s, we divide the length
of the line representing the dividend by |z| and
turn through an angle —arg 2. In either case an angle is positive when
the turning is in the direction which brings us from the axis z to that
of y after an angle =/2.

Fro. 84.
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Conformal Representation.

812. We can now consider more fully the meaning of the relation
U+1iV=¢(z+1y)
Let us write ¢=a+1y, and W=U+1V, ¢ and W being complex

imaginaries, which we must now suppose in accordance with equation (230)
to be connected by the relation

We can represent values of ¢ in one Argand diagram, and values of W in
another. The plane in which values of z are represented will be called the
s-plane, the other will be called the W-plane. Any point P in the £-plane
corresponds to a definite value of z and this, by equation (232), may give one
or more values of W, according as ¢ is or is not a single-valued function.
If Q is a point in the W-plane which represents one of these valucs of W,
the points P and  are said to correspond.

As P describes any curve S in the z-plane, the point @ in the W-plane
which corresponds to P will describe some curve 7' in the W-plane, and the
curve T is said to correspond to the curve S. In particular, corresponding
to any infinitesimal linear path PP’ in the z-plane, there will correspond
a small linear element Q@' in the W-plane. If OP, OF represent the values
2, £ + de respectively, then the element PP’ will represent ds. Similarly the

element Q@' will represent d W or ‘fl—? dz.

Hence we can get the element QQ’ from the element PP’ on multiplying
it by &7, ie. by 2 6 (s), or by ¢(s-+iy). This multiplier depends solely
on the position of the point P in the z-plane, and not on the length or

direction of ths element dz. If we express %V or ¢’ (z+1y) in the form

aw _ . .
2o =¥ (@+iy)=p(cosy +isiny),
we find that the element dW can be obtained from the corresponding

element dz by multiplying its length by p or %2—7 , and turning it through

an angle y, or arg (%) . It follows that any element of area in the z-plane

is represented in the W-plane by an element of area of which the shape
is exactly similar to that of the original element, the linear dimensions are
p times as great, and the orientation is obtained by turning the original
element through an angle y.
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From the circumstance that the shapes of two corresponding elements
in the two planes are the same, the process of passing from one plane to
the other is known as conformal representation.

813. Let us examine the value of the quantity p which, as we have
seen, measures the linear magnification produced in a small area on passing
from the z-plane to the W-plane.

We have p(cosx+isinx)=‘-i1=¢'(z+iy)
T,
aa: Ba:
aV v
+ az
)4 J
so that p='5§ ,

The quantity p, or

%vzr E is called the “modulus of transformation.”
We now see that if V is the potential, this modulus measures the electric
intensity R, or \/ (%—L—’).+ (%5')’ Since R =4ra, this circumstance pro-
vides a simple means of finding o, the surface-density of electricity at
any point of & conducting surface.

314. If a% denote differentiation along the surface of a conductor, on
which the potential ¥V is constant, we have

aw|_ou

jdz | 0s’

1 10U
so that U=GR=G‘$.

The total charge on a strip of unit width between any two points P, Q of
the conductor is accordingly

1
a-dS— fQ o ds= %(UQ- Up) vereereerenans (233).

315. If, on equating real and imaginary parts of any transformation of

the form
U4iV=0@+5) correrrrerrerrenrencns (234),

it is found that the curve f(z, y)=0 corresponds to the constant value
V = C, then clearly the general value of V obtaincd from equation (234)
will be a solution of Laplace’s equation subject to the condition of having
the constant value ¥ = C over the boundary f(z, y)=0. It will therefore
be the potential in an electrostatic field in which the curve f(z, y) = 0 may
be taken to be & conductor raised to potential C.



266 Methods for the Solution of Special Problems [cH. vil

816. From a given transformation it is obviously always possible to
deduce the corresponding electrostatic field, but on being given the con-
ductors and potentials in the field, it is by no means always possible to
deduce the required transformation. We shall begin by the examination of
a few fields which are given by simple known transformations.

SPECIAL TRANSFORMATIONS,
IL W=
317. Considering the transformation W = 2" we have
U+1iV = (x+1ty)*=1r"(cos nb + i sin nb),

so that V=r*sinnf. Thus any one of the surfaces r"sinnf = constant
may be supposed to be an equipotential, including as a special case

rsinnf =0,

in which the equipotential consists of two planes cutting at an angle ;7:

This transformation can be further discussed by assigning particular
values to n.
n=1. This gives simply V =y, a uniform field of force.

n=2. This gives V =2xy, so that the equipotentials are rectangular
hyperbolic cylinders, including as a special case two planes intersecting
at right angles (fig. 85).
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This transformation gives the field in the immediate neighbourhood of
two conducting planes meeting at right angles in any field of force. It also
gives the field between two coaxal rectangular hyperbolas,

. \\ b -
|
{ .
Fro.
n=1% This gives @ + ¢y = (U + iV}, so that
e=U0-V3, y=2UP,
and on eliminating U we obtain

g =4Vi(z+ V).

Thus the equipotentials are contocal and coaxal parabolic cylinders, in-
cluding as a special case (V = 0) a semi-infinite plane bounded by the line
of foci.

This transformation clearly gives the field in the immediate neighbour-
hood of a conducting sharp straight edge in any field of force (fig. 86).

n=-1. This gives
U+iV =1 (cos 8- isine),
and the equipotentials are

rV=sind or &*+y—¥=0.

Thus the equipotentials are a series of circular cylinders, all touching
the plane y=0 along the axis =0, y=0 (fig. 87).
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991, As » second example of this method, le¢ us consider the ellipse
L
& + i 1.
The coordinates of a point on the ellipse may be expressed in the form
@=acos¢, y=bsing,

and the transformation is seen to be

g=acos W+ibsin W,

Fia. 89.

We can take a =ccosh a, b = c¢sinh a, where ¢*=a*— b*, and the trans-
formation becomes

g=ccos(W+ia)=ccos {U+1(V +a))}.
The same transformation may be expressed in the better known form

z=ccosh W.

The equipotentials are the confocal ellipses

La
Fon el
while the lines of force are confocal hyperbolic cylinders. On taking V
as the potential, we get a field in which the equipotentials are confocal
hyperbolic cylinders.
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IL  Schwarzs Transformation.

822. Schwarz has shewn how to obtain a transformation in which one
equipotential can be any linear polygon.

At any angle of a polygon it is clear that the property that small elements
remain unchanged in shape can no longer hold. The reason is easily seen to
be that the modulus of transformation is either infinite or zero (cf. figs. 24
and 25, p. 61). Thus, at the angles of any polygon,

aw_ 0 or
dz '

The same result is evident from electrostatic considerations. At an angle of a
conductor, the surface-density o is either infinite or zero (§ 70), while we have the

relation (§ 313),
R 1 dw

T TIn
Let us suppose that the polygon in the z-plane is to correspond to the
line V"= 0 in the W-plane, and let the angular points correspond to
U=w, U=u, ete
Then, when W=u, W=u, ete,
g—zu—, must either vanish or become infinite. We must accordingly have

d
E%' =F (W=t (W= UM eervreanrrnnnennss(236),

where A, A;, ... are numbers which may be positive or negative, while F
denotes a function, at present unknown, of W.

Suppose that, as we move along the polygon, the values of U at the
angular points occur in the order u,, us, .... Then, on passing along the
side of the polygon which joins the two angles U = u,, U = u,, we pass along
a range for which V=0, and u, < U< 4, Thus, along this side of the
polygon, W —w,, W — u,, W — u,, etc. are real quantities, positive or negative,
which retain the same sign along the whole of this edge. It follows that, as

we pass along this edge, the change in the value of arg ((7@;7)’ as given
by equation (236), is equal to the change in arg F, the arguments of the

factors
(W—u)s (W —wup)e...

undergoing no change.
Now arg (;gﬁ—,) measures the inclination of the axis V=0 to the edge of

the polygon at any point, so that if the polygon is to be rectilinear, this
must remain constant as we pass along any edge. It follows that there must
be no change in arg F as we pass along any side of the polygon.
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This condition can be satisfied by supposing F to be a pure numerical
constant. Taking it to be real, we have, from equation (236),

arg (g%)=7harg(W—u,)+h,m‘g(W—-u.)+ ......... (23).

On passing through the angular point at which W = u,, the quantities
W —wu, W—u, etc. remain of the same sign, while the single quantity
W — u, changes sign. Thus arg (W —u,) increases by ar, whence, by equa-

tion (237), arg (g%) increases by Ar.
The axis V=0 does not turn in the W-plane on passing through the
value W =u,, while arg (;‘;7) measures the inclination of the element of

the polygon in the s-plane to the corresponding element of the axis V=0 in
the W-plane.

Hence, on passing through the value W =u,, the perimeter of the
polygon in the z-plane must turn through an angle equal to the increase in

arg (:W) namely Agmr, the direction of turning being from Oz to Oy. Thus

7T, A, ... must be the exterior angles of the polygon, these being positive
when the polygon is convex to the axis Oz. Or, if a, a;, ... are the interior
angles, reckoned positive when the polygon is concave to the axis of z, we
must have

4 _
M - 1, ete.

Thus the transformation required for a polygon having internal angles
&, ... i8

éd{v=0(w'“)' 2 LA (238),

where u,, 4, ... are real quantities, which give the values of U at the angular
points.

323. As an illustration of the use of Schwarz’s transformation, suppose
the conducting system to consist of a semi-infinite plane placed parallel to an
infinite plane.

In fig. 90, let the conductor be supposed to be a polygon ABCDE, which
is described by following the dotted line in the direction of the arrows. The
points 4, B, C, E are all supposed to be at infinity, the points B and C
coinciding. Let us take A to be W=—o, Bor C to be W=0, D to be
W=1and Etobe W=+ . The angles of the polygon are zero at (BC
and 27 at D. Thus the transformat.mn is

dz =C W-1
aw w
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giving upon integration
g=C0{W—=log W+ D} .ccooeeerirniinnnnnnn (239),
where C, D are constants of integration which may be obtained from the
Dy Wt
W=H] "o
A eerenen eememe o emeemmeenenmeeem ey e B
W= -
Fra. 90.

condition that the two planes are to be, say, y=0 and y=h. From these

conditions we obtain C = g , D = 1, so that the transformation is

z=£_{W—log Waim} e (240).
On replacing z, W by —z, — W, the transformation assumes the simpler form

UL L 4 J—— (241).

III.  Successive Transformations.

824, If £= ¢ (2), W=,({) are any two transformations, then by elimi-

nation of ¢, a relation
W=F(2) veeeerrrnerrnnenninnns vereenni(242)

is obtained, which may be regarded as a new transformation.

We may regard the relation ¢ = ¢ (z) as expressing a transformation from
the z-plane into & {-plane, while the second relation W=f({) expresses a
further transformation from the {-plane into a W-plane. Thus the final
transformation (242) may be regarded as the result of two successive trans-
formations.

Two uses of successive transformations are of particular importance.

825. Conductor influenced by line-charge. The transformation

{-a
W= lOg -;—a, N
gives, as we have seen (§ 318) the solution when & line-charge is placed at
¢=a in front of the plane represented by the real axis of {. Let the further
transformation { = f(#) transform the real axis of { into a surface S, and the

point {=a into the point ¢ = 2, 8o that a = f (s). Then the transformation

F(& = f(2)

“V = log j- (Z) +f(’°)
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gives the solution when & line-charge is placed at z=2, in the presence of
the surface 8. In this transformation it must be remembered that U, and
not V, is the potential (cf § 318).

326. Conductors at different potentials. Let us suppose that the trans-
formation {e=¢ (2) transforms a conductor into the real axis of & The
further transformation W =C + D log ¢ (§ 318) will give the solution when
the two parts of this plane on different sides of the origin are raised to
different potentials C and C + =D,

Thus the transformation obtained by elimination of ¢, namely
W =C+ Dlog ¢(z),

will transform two parts of the same conductor into two parallel planes,
and so will give the solution of a problem in which two parts of the same
conductor are raised to different potentials.

EXAMPLES OF THE USE OF CONJUGATE FUNCTIONS.

327. Two examples of practical importance will now be given to illus-
trate the use of the methods of conjugate functions,

Ezample I. Parallel Plate Condenser.
328. The transformation

2= 2 (e~ log r+ im)

has been found to transform the two plates in fig. 90 into the positive and
negative parts of the real axis of { The further transformation W =log ¢
gives the solution when these two parts of the real axis of ¢ are at potentials
0 and = respectively (§ 326).

Thus the transformation obtained by the elimination of ¢, namely
2= 1—}: (CLE A L (243),

will transform the two planes of fig. 90—one infinite and one semi-infinite—
into two infinite parallel planes. Thus equation (243) gives the trans-
formation suitable to the case of a semi-infinite plane at distance h from
o parallel infinite plane, the potential difference being .

By the principle of images it is obvious that the distribution on the
upper plate is the same as it would be if the lower plate were a semi-
infinite plane at distance 2/ instead of an infinite plane at distance . The
equipotentials and lines of force for either problem are shewn in fig. 91.
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Separating real and imaginary parts in equation (243),
w=£(e”cosV—U'),
y=2(@Uein¥ -V +m,

Thus the equipotential ¥ =0 is the line y =A, the equipotential ¥ = is
the line y=0,

[

NI
[

Fia. 91,
On the former equipotential, the relation between z and U is
==V =U) .revrrrrriiraniarnennnn. (244)
When U=—o, 2=+ o; as U increases, # decreases until it reaches a

minimum value #=~h/w when U=0; and as U further increases through
positive values # again increases, reaching #=co when U=+, Thus as
U varies while V' =0, the path described is the path PQR in fig. 91.

The intensity at any point is
r=l2¥I il
T Tdz Ch[e" -1
At a point on the equipotential ¥V =0, the surface-density is

_R 1
S ™l VY Ly § S
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At P,U=~, 80 that c=4lh; as we approach @, o increases and finally

becomes infinite at Q, while after passing @ and moving along QR, the upper
side of the plate, o decreases, and ultimately vanishes to the order of -7,

The total charge within any range U,, U, is, by equation (238),
1
3 (U= 1)
It therefore appears that the total charge on the upper part of the plate QR
is infinite.

Let us, however, consider the charges on the two sides of a strip of the
plate of width I from @), .6. the strip between @ =h/mw and #=1I1+h/wr. The
two values of U corresponding to the points in the upper and lower faces at
which this strip terminates, are from equation (244) the two real roots of

h o h
bt 2= 2 (07 = U) rrererrssmeennennnns (245).

Of these roots we know that one, say U,, is negative and the other (U,)
is positive. If I is large, we find that the negative root U, is, to a first
approximation, equal to

()

™
and this is its actual value when I is very large. Thus the charge on the
lower plate within a large distance ! of the edge is

he, K
s(+7):
and therefore the disturbance in the distribution of electricity as we approach

Q results in an increase on the charge of the lower plate equal to what would
be the charge on a strip of width h/m in the undisturbed state.

If | is large the positive root of equation (245) is
U.SIOg (1 + !i':),

8o that the total charge on a strip of width I of the upper plate approximates,
when 1 is large, to

Lia(+5).

Thus although the charge on the upper plate is infinite, it vanishes in
comparison with that on the lower plate,
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Ezample II. " Bend of a Leyden Jar.

829. The method of conjugate functions enables us to approximate to
"the correction required in the formula for the capacity of a Leyden Jar, on
sccount of the presence of the sharp bend in the plates.

A F
!""m §‘=qo
P
R -
E D
§=b (.n t=0
=g S

Fi1a. 92.

As a preliminary, let us find the capacity of a two-dimensional condenser
formed of two conductors, each of which consists of an infinite plate, bent
into an L-shape, the two L's being fitted into one another as in fig. 92.

Let us assume the five points A, B, (CD), E, F to be {=—o, —a, 0,
+b, + respectively, and let us for convenience suppose the potential
difference which occurs on passing through the value {=0 to be 7. Then
the transformation is

S Ag+a i - oh
where W =log { (cf. § 326).
To integrate, we put w=({+ a,)"i - b)*, and obtain

- gJ;‘—b= b +au®
z Af( tTa Afudlog(l_u,)
-—2A\/§tan",\/§u+Alo 1—~+—'-‘+6' (246)
a b Eizu " ) ’
where C is a constant of integration.

To make C vanish, we must have s=0 when u=0, i.¢. at the point E.
We shall accordingly take E as origin, so that C'=0.
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At B, we now have {=—a, u=o, and therefore
=+ WA;\/-b—j;ivrA.
a
Thus the distances between the pairs of arms are w«/g 4 and »4

respectively.
Let P be any point in EF which is at a distance from £ great compared

with EB. Let the value of { at P be {p, so that { is positive and greater
than' b.

We have W=U+1¢V =log {, so that along the conductor FED, V =(
and U =log ¢.

The total charge per unit width on the strip EP is, by formula (233),
P 1 1
LadS= 4= (Un=Up) = 5= (10g £o=10gB) .vvvver. (247).

If P is far removed from K, the value of {; is very great, and since

_ aut+b

R T e (248),

the value of «* will be nearly equal to unity at P.
From equation (246),

£=—24 «/g tan—! ,\/%u+ 24 log (1 +u)— A log (1 —ub),

so that log(1-u)=2log (1+u)—2 \/-3 tan™ \/%' u— i— ..... (249),
in which the terms log (1 —u?), — z/A4, are large at P in comparison with the
others. Again, from equation (248), we have

log { =log (auw+b) - log (1 —w?) ..... ceereenns (250),

in which log §, log (1 —u?) are large at P, in comparison with the term
log (au* + b). Combining equations (249) and (250),

log§=log(au’+b)—2log(1+u)+2\/gtan",\/%u+—:;

in which the terms log ¢ and ;—;— are large at I in comparison with the other

terms. At P we may put u =1 in all terms except log ¢ and z/4, and obtain
as an approximation )
log ;‘,.=log(a+b)—2log2+2\/£tan"' %+‘—A-’.
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The value of £, is of course @p+1yp, or £P. Thus, from the equation
just obtained, equation (247) may be thrown into the form

4 1
]'ade =-—- (log L —log b)

{log (1+%)-210g2+2 ,\/ tan=1 f‘ } .(259).

If the hnes of force were not disturbed by the bend, we should have
EP
f ods= 471-( 4 ) ‘

« Equation (252) shews that f E”ds is greater than this, by an amount

1 a b a
= {log (1 + —5) —2log2+2 \/ 2 tan™ «/ ‘g} ......... (253).

Let us denote the distances between the plates, namely 74 \/ g and w4,

by h and % respectively, so that /\/ b i—f . Expression (253) now becomes

1 B+ Lk
Z';;‘ {log 4,'? + 2 k tan lh}
so that the charge on the plate EP is the same as it would be in a parallel
plate condenser in which the breadth of the strip was greater than EP by

1 R+ ko Lk

) {Ic log e + 2k tan 7‘:}.
When A =k, this becomes

h

- (7—; — log, 2) or 279A.

MULTIPLE-VALUED POTENTIALS.

330. There are many problems to which mathematical analysis yields
more than one solution, although it may be found that only one of these
solutions will ultimately satisfy the actual data of the problem. In such
a case it will often be of intcrcst to examine what interpretation has to
be given to the rejected solutions.

The problem of determining the potential when the boundary conditions
are given is not of this class, for it has already been shewn (§§ 186—188)
that, subject to specificd boundary conditions, the termination of the poten-
tial is absolutely unique. But it may happen that, in searching for the
required solution, we come upon a multiple-valued solution of Laplace’s
equation. Only one value can satisfy the boundary conditions, but the
interpretation of the other values is of interest, and in this way we arrive
at the study of multiple-valued potentials.
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may be represented by a region on one of the other sheets of the Riemann's
surface.

To take the simplest possible illustration, suppose that in the {-plane we
have a line-charge ¢ along the line represented by the point P, in front of

¢-plane z—surfacc
Pe,, Pe (upper shect)
8
A (o] 2] o A
Pe-c P (lower sheet)
Fro. 94.

the uninsulated conducting plane represented by the real axis AB. The
solution, as we know, is obtained by placing a charge —e at the point P,
which is the image of P in AOB. The value of the potential (U) is given,
as in § 318, by
U+iV=A4log {-tp
=t

Let us now transform this solution by means of the transformation

The conducting plane 4OB transforms into a semi-infinite plane OB, which
may be taken to coincide with the branch-line of the Riemann’s surface.
The charge ¢ at P becomes a charge at a point P on the upper sheet of the
surface, while the image at P’ becomes a charge at a point P’ on the lower
sheet. Thus we can replace the semi-infinite conductor OB in the z-plane
by an image at a point ” on the lower sheet of a Riemann'’s surface, and we
obtain the field due to a line-charge and a semi-infinite conductor in an
ordinary two-dimensional space.

From the transformation used, the potential is found to be given by
. Vz-Wa
U zV = A. 10 STy
+ 8 vz W= a
in which U is the potential, z=a is the point (a, a) on the upper sheet, and
z=— a is the image on the lower sheet.

In calculating a potential on a Riemann’s surface, we must not assume
the potential of a line-charge e at the point (a, a) to be

C—=2elog R ..ccovvvenniinniinnnnnnns e (257),

where R is the distance from the point (@, ). In fact, this potential would
obviously have an infinity both at the point (a, @) on the upper sheet, and
also at the point (a, @) on the lower sheet, and O would be the potential of
two line-charges, one at the point (u, a) on each sheet.
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The appropriate potential-function for a single charge can easily be
found.

As in the problem just discussed, it is clear that the potential due to the
single line-charge at (@, a) on the upper sheet is the value of U given by

U+iV=C+ 4 log (Vg — Va)
e L@
=C+4 ]og(rte” —a’ e?)
=C+ 4 log {(«/;cosg—\/;cos%) +i<~/;sing—~/&'sin%)},
so that

U=C+1}Alog{(~/;cosg—-'\/(—icosg

=C+ } A log {r—2~arcos } (6 - a) +al,

and if this is to be the potential due to a line-charge e, it is clear, on
examining the value of U near the point (a, &), that the value of A must be
— 2¢.  Thus the potential function must be

)2 + (*/; sin g —Wasin %)2}

C—elog {r—2Vurcos (8 —a)+a}eeeeeeennenn.. (258),
instead of that given by expression (257), namely,
C—elog [1?" —2urcos (6 — &) + @} eevrerrnnnnnn.. (259).

It will be noticed that both expressions are single-valued for given values
of (r, ), but that for a given value of z, expression (258) has two values,
corresponding to two values of ¢ differing by 27, while expression (259) has
only one value. Or, to state the same thing in other words, the expression
(259) is periodic in @ with a period 2, while expression (258) is periodic
with a period 4.

Potential in a Riemann’s Spuce.

334. Sommerfeld* has extended these ideas so as to provide the solution
of probiems in three-dimensional space.

His method rests on the determinution of a multiple-valued potential
function, the function being capable of representation as a single-valued

function of position in a “ Riemann’s space,” this space being an imaginary
space which bears the same relation to real three-dimensional space as a

Riemann’s surface bears to a plane.

835. The best introduction to this method will be found in a study of
the simplest possible cxample, and this will be obtained by considering the
three-dimensional problem analogous to the two-dimensional problem already
discussed in § 333.

* «Ueber verzweigte Potentiale im Raum,” Proc. Lond. Math. Soc. 28, p. 895, and 80, p. 161,
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We suppose that we have a single point-charge in the presence of an
uninsulated conducting semi-infinite plane bounded by a straight edge. Let
us take cylindrical coordinates r, 8, z, taking the edge of the plane to be
=0, the plane itself to be 6 = 0, and the plane through the charge at right
angles to the edge of the conductor to be z=0. Let the coordinates of the
point-charge be a, a, 0.

The Riemann’s space is to be the exact analogue of the Riemann's
surface described in § 832. That is to say, it is to be such that one revolu-
tion round the line r =0 takes us from one “sheet” to the other of the
space, while two revolutions bring us back to the starting-point. Thus, for
a function to be a single-valued function of position in this space, it must be
a periodic function of @ of period 4.

Let us denote by f(r, 6, 2, a, «, 0) a function of =, 4, and z which is to
satisfy the following conditions:

(i) it must be a solution of Laplace’s equation ;

(ii) it must be a continuous and single-valued function of position in
the Riemann’s space;

(il) it must have one and only one infinity, this being at the point
a, @, 0 on the first “sheet” of the space, and the function

approximating near the point to the function Ili’ where R is

the distance from this point;
(iv) it must vanish when r=oo.

It can be shewn, by a method exactly similar to that used in § 186, that
there can be only one function satisfying these conditions. Hence the func-
tion f(r, 6, z, a, a, 0) can be uniquely determined, and when found it will be
the potential in the Riemann’s space of a point-charge of unit strength at the
point a, a, 0.

Consider now the function

f(r,6,2,a,a,0)— f(r,0,2,a,—a,0) .....c...use... (260),
which is of course the potential of equal and opposite point-charges at the
point @, a, 0, and at its image in the plane 6 =0, namely, the point
a, —a, 0,

This function, by conditions (i) and (iv), satisfies Laplace’s equation and
vanishes at infinity. On the first sheet of the surface, on which a varies
from 0 to 27 (or from 44 to 6m, etc.), it has only one infinity, namely, at

a, o, 0, at which it assumes the value %
From the conditions which it satisfies, the function f(r, 6,z a,a, 0) must

clearly involve 6 and a only through 6 — a, and must moreover be an even
function of @ — a, It follows that, when 8 =0, expression (260) vanishes.
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Again, since the function f is periodic in 8 with a period 2w, it follows

that, when 6 = — 21, expression (260) may be written in the form

f(r,2m, 20,0 0)~f(r, - 27, 2 a —a,0),
and this clearly vanishes. Thus expression (260) vanishes when #=0 and
when @ =2w. That is to say, it vanishes on both sides of the semi-infinite
conducting plane.

It is now clear that expression (260) satisfies all the conditions which
have to be satisfied by the potential. The problem is accordingly reduced
to that of the determination of the function £ (r, 6, 2, a, a, 0).

336. Let us write i

r=e, a=4¢e,
then the distance R from r, 6, z to a, a, 0 is given by
R?=1*— 2ar cos (6 — a) + a* + 2*
= 2ar {cos ¢ (p — p’) — cos (6 — a)} + 2
Take new functions R’ and f(u) given by
R’ =2ar {cos i (p — p') — cos (8 — u)} + 4,
26'%
f(u)=e‘“-—e‘:'
The function f(x) has infinities when u=a, a + 2, a + 4, ..., its residue

being unity at each infinity, Also, when u =a, the value of R’ becomes R.
Hence the integral

where the integral is taken round any closed contour in the u-plane which
surrounds the value u = a, but no other of the infinities of f(u), will have as

its value 2im x lli We accordingly have

1 111 e
=3 f L. TO——— (262).

The integral just found gives a form for the potential function in ordinary
space which, as we shall now see, can easily be modified so as to give the
potential function in the Riemann’s space which we are now considering.

‘We notice first that —11?, , regarded as a function of r, 6, and 2, is a solution
of Laplace’s equation, whatever value v may have. Hence the integral (261)

will be a solution of Laplace’s equation for all values of f(u), for each term
of the integrand will satisfy the equation separately.
If we take
]
e

1 e
f(“)-§ e
T_e;
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we see that the infinities of f(u) occur when u=a, a t 4, a t 8, ete., and
the residue at each is unity. Hence, if we take the integral round one
infinity only, say w=a, the value of

1 (1
%.{R-,f(u)du eevereesessseneneesseeeees(263)

will become identical with % at the point at which R'=0. Moreover,

expressfon (263) is, as we have seen, a solution of Laplace’s equation: it
is seen on inspection to be a single-valued function of position on the
Riemann’s surface, and to be periodic in 6 with period 4w. Hence it is the
potential-function of which we are in search. Thus

1 e? du
f('r,o, z,a’a’o)r-zq;f—!ll——

3 ,,‘%l V13— 2arcos (0 —u) +a*+2*

The details of the integration can be found in Sommerfeld’s paper. The
value of the integral is found to be

-l—gt.a.n-l ot
R Vo7
where r=cos}(p—a), o=cos}(p—p).

Other systems of coordinates can be treated in the same way ; details will
be found in the papers to which reference has already been made.

337. The present chapter has attempted to give an account of the
principal methods available for the solution of electrostatic problems. A few
examples have been given of each method, but no attempt has been made to
enumerate all the problems which can be solved. The reader who wishes to
study particular problems more fully may be referred to the following works:

Sir W. TromsoN (Lord KELVIN). Papers on Electricity and Magnetism.

In particular a number of examples of images and inversion will be found here, with
numerical calculations.

MaxwELL, FBlectricity and Magnetism. Vol. 1. (3rd Edn.).

In Chap. 1x. the theory of spherical harmonies is developed, and the problem of the
distribution of electricity on a nearly spherical conductor free in space, as also that on a
nearly spherical conductor enclosed in a nearly spherical and nearly concentric conduct-
ing vessel, are solved in detail. The coefficients of capacity and induction of two spherical
conductors are investigated by spherical harmonics. Chapter xI. contains examples of the
method of images and inversion. Chapter x11. contains a number of examples of conjugate
functions, some being of special importance in the theory of electrostatic instruments.

J. J. THOMBON. Recent Researches tn Electricity and Magnetism.
Chapter I11. contains important examples of conjugate function transformations. In
particular problems are solved which enable us to estimate the effect on the capacity of a

condenser produced by the slit between a guard ring and the moveable plate of the con-
denser. Transformations are given which solve the problems of (i) a condenser formed by
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two parallel and equal plates of finite breadth ; (ii) a condenser formed by two parallel and
equal strips placed in the same plane; (iii) a pile of plates; (iv) a system of 2x plates
arranged radially at angles =/z with one another, alternate plates being at the same potential.
KIRCHBOFF. Gesammelte abhandlungen.
A formula is given for the capacity of two circular plates of an uniform thickness placed
conxially at any distance apart.

EXAMPLES.

1. An infinite conducting plane at zero potential is under the influence of a charge of
electricity at a point 0. Shew that the charge on any area of the plane is proportional to
the angle it subtends at O.

2. A charged particle is placed in the space between two uninsulated planes which
intersect at right angles. Sketch the sections of the equipotentials made by an imaginary
plane through the charged particle, at right angles to the planes.

3. 1n question 2, let the particle have a charge ¢, aud be equidistant from the planes.
Shew that the total charge on a strip, of which one edge is the line of intersection of the
planes, and of which the width is equal to the distance of the particle from this line of
interscction, is — }e

4. In question 3, the strip is insulated from the remainder of the planes, these being
still to earth, and the particle is removed. Find the potential at the point formerly
occupied by the particle, produced by raising the strip to potential V.

5. If two infinite plane umnsulated conductors meet at an angle of 60°, and there is &
charge ¢ at a point equidistant from each, and distant r from the line of intersection, find
the electrification at any point of the planes. Shew that at a point in a principal plane
through the charged point at a distance r4/3 from the line of intersection, the surface
density is

- (ﬁ + L)
dmri\4 " TJ7)°

6. Two small pith balls, each of mass m, are connected by a light insulating rod.
The rod is supported by parallel threads, and hangs in a horizontal position in front of an
infinite vertical plane at potential zero. If the balls when charged with e units of
electricity are at a distance a from the plate, equal to half the length of the rod, shew
that the inclination 6 of the strings to the vertical is given by

tanf=— {1 + -—1-—}
4mgat 272"

7. What is the least positive charge that must be given to a spherical conductor,
wsulated and influenced by an extcrnal point-charge e at distance r from its centre, in
order that the surface density may be everywhere positive?

8. An uninsulated conducting sphere is under the influence of an external electric
charge; find the ratio in which the induced charge is divided between the part of its
surface in direct view of the external charge and the remaining part.

9. A point-charge e is brought near to a spherical conductor of radius a having a
charge E. Shew that the particle will be repelled by the sphere, unless its distance from

the nearest point of its surface is less than a -’E,, approximately,
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10. A hollow conductor has the form of a quarter of a sphere bounded by two
perpendicular diametral planes. Find the image of a charge placed at amy point
inside,

11. A conducting surface consists of two infinite planes which meet at right angles,
and a quarter of a sphere of radius a fitted into the right angle. If the conductor is at zero
potential, and a point-charge e is symmetrically placed with regard to the planes and the
spherical surface at & great distance f from the centre, shew that the charge induced on
the spherical portion is approximately — 5ea’/xf%.

12. ' A point-charge is placed in front of an infinite slab of dielectrie, bounded by a
plane face. The angle between a line of force in the dielectric and the normal to the face
of the slab is a; the angle between the same two lines in the immediate neighbourhood of
the charge is 8. Prove that a, 8 are connected by the relation

sinS - :“:Zsinf
2 14« 2°

13. An electrified particle is placed in front of an infinitely thick plate of dieleotric.
Shew that the particle is urged towards the plate by a force
Lol
x+1 442

where d is the distance of the point from the plate.

14. Two dielectrics of inductive capacities x; aud k3 are separated by an infinite plane
face. Charges e, e; are placed at pomnts on & line at right angles to the plane, each at &
distance a from the plane. Find the forces on the two charges, and explain why they are
unequal.

156. Two conductors of capacities ¢, ¢; in air are on the same normal to the plane
boundary between two dielectrics «y, k2, at great distances @, b from the boundary. They
are connected by a thin wire and charged. Prove that the charge is distributed between
them approximately in the ratio

+ Ky —=Kg 2&]
e~ 2b(a+xa) (+e)@+8) "2 le” 2a(ki+rg)  (x1+re) (a—m}

16. A thin plane conducting lamina of any shape and size is under the influence of a
fixed electrical distribution on one side of it. If oy be the density of the induced charge
at a point P on the side of the lamina facing the fixed distribution, and oy that at the
corresponding point on the other side, prove that o, ~ g2=0,, Where o, is the density at P
of the distribution induced on an infinite plane conductor coinciding with the lamina.

17. An infinite plate with & hemispherical boss of radius a is at zero potential under
the influence of a point-charge e on the axis of the boss distant f from the plate. Find the
surface density at any point of the plate, and shew that the charge is attracted towards

the plate with a force
T dedaif?

18. A conductor is formed by the outer surfaces of two equal spheres, the angle
between their radii at a point of intersection being 2x/3. Shew that the capacity of the
conductor so formed is

5./3-4
W
where a is the radius of either sphere,
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19. Within a spherical hollow in a conductor connected to earth, equal point-charges
e are placed at equal distances f from the centre, on the same diameter. Shew that each
is acted on by a force equal to
,[ 4a3f3 1 ]

“La=rrr)

20. A hollow sphere of sulphur (of inductive capacity 3) whose inner radius is half its
outer is introduced into a uniform field of electric force. Prove that the intensity of the
field in the hollow will be less than that of the original field in the ratio 27 : 34.

21. A conducting spherical shell of radius a is placed, insulated and without charge,
in a uniform field of electric force of intensity F. Shew that if the sphere be cut into two
hemispheres by a plane perpendicular to the field, these hemispheres tend to separate and
require forces equal to yya*F'? to keep them together.

22. An uncharged insulated conductor formed of two equal spheres of radius a
cutting one another at right angles, is placed in a uniform field of force of intensity 7,
with the line joining the centres parallel to the lines of forca. Prove that the charges
induced on the two spheres are 11 Fa* and —3t Fa?

23. A conducting plane has a hemispherical boss of radius a, and at a distance f from
the centre of the boss and along its axis there is a point-charge e. If the plane and the
boss be kept at zero potential, prove that the charge induced on the boss is

{1 f2ogt
-e == Fe

J NS 2+r-t~’}
24 A conductor is bounded by the larger portions of two equal spheres of radius a

cutting at an angle $w, and of a third sphere of radius o cutting the two former
orthogonally. Shew that the capacity of the conductor is

c+a(t-§ V3 —aof2 (@+o) I-2(ar+3) " d4(a+4en) " Y

25. A spherical conductor of internal radius b, which is uncharged and insulated,
surrounds a spherical conductor of radius @, the distance between their centres being c,
which is small. The charge on the inner conductor is Z. Find the potential function
for points between the conductors, and shew that the surface density at a point P on the

inner conductor is
E (1 3ccosé

T\ B TS )
where 6§ is the angle that the radius through P makes with the line of centres, and terma
in c® are ncglected.

26 If a particle charged with a quantity e of electricity be placed at the middle point
of the line joining the centres of two equal spherical conductors kept at zero potential,
shew that the charge induced on each sphere is

- 2em (1 ~ m +m? - 3m3 + 4mt),
neglecting higher powers of m, which is the ratio of the radius to the distance between the
centres of the spheres.

27. Two insulated conducting spheres of radii a, b, the distance ¢ of whose centres
is large compared with @ and b, bave charges Ly, By respectively. Shew that the potential
energy is approximately

N w2 4 e 1 3\ .
*{(z-%)ﬁl“l'%bnbﬁ'(5‘%)1"3’}-

19
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10. A hollow conductor has the form of a quarter of a sphere bounded by two
perpendicular diametral planes. Find the image of a charge placed at any point
inside.

11. A conducting surface consists of two infinite planes which meet at right angles,
and a quarter of a sphere of radius a fitted into the right angle. If the conductor is at zero
potential, and a point-charge e is symmetrically placed with regard to the planes and the
spherical surface at a great distance f from the centre, shew that the charge induced on
the spherical portion is approximately — bea®/sf3.

12. A point-charge is placed in front of an infinite slab of dielectric, bounded by a
plane face. The angle between a line of force in the dielectric and the normal to the face
of the slab is a; the angle between the same two lines in the immediate neighbourhood of
the charge is 8. Prove that a, 8 are connected by the relation

siné—,\/—gf—sin‘—'.
2 14+« 2

13. An electrified particle is placed in front of an infinitely thick plate of dielectric.
Shew that the particle is urged towards the plate by a force
k-1 €8
c+14d
where d is the distance of the point from the plate.

14. Two dielectrics of inductive capacities x; aud xg arc separated by an infinite plane
face. Charges e, e; are placed at ponts on a line at right angles to the plane, each at a
distance a from the plane. Find the forces on the two charges, and explain why they are
unequal.

15. Two conductors of capacities ¢;, ¢; in air are on the same normal to the plane
boundary between two dielectrics «y, 3, at great distances @, b from the boundary. They
are connected by a thin wire and charged. Prove that the clarge is distributed between
them approximately in the ratio

. {l_ Ki—Kg 2ks } {_];_'_ Ky—Kkg 2y }
o " Blmtes)  (ted) @48 2 \e; ™ 2alkitxy) ~ (mas xo) (@+b)

18. A thin plane conducting lamina of any shape and size is under the influence of a
fixed electrical distribution on one side of it. If oy be the density of the induced charge
at a point P on the side of the lamina facing the fixed distribution, and oy that at the
corresponding point on the other side, prove that ¢y ~03=0,, Where g, is the density at P
of the distribution induced on an infinite plane conductor coinciding with the lamina.

17. An infinite plate with a hemispherical boss of radius a is at zero potential under
the influence of a point-charge ¢ on the axis of the boss distant f from the plate. Find the
surface density at any point of the plate, and shew that the charge is attracted towards

the plate with a force
° 4elalf3

18. A conductor is formed by the outer surfaces of two equal spheres, the angle
between their radii at a point of intersection being 2n/3. Shew that the capacity of the
conductor so formed is

5./3~4
W
where a is the radius of either sphere.
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19, Within a spherical hollow in a conductor connected to earth, equal point-charges
¢ are placed at equal distances f from the centre, on the same diameter. Shew that each

is acted on by a force equal to
4a3f3 1 ]

L@t
20. A hollow sphere of sulphur (of inductive capacity 3) whose inner radius is half its

outer is introduced into a uniform field of electric force. Prove that the intensity of the
field in the hollow will be less than that of the original field in the ratio 27 : 34.

21. A conducting spherical shell of radius a is placed, insulated and without charge,
in a uniform field of electric force of intensity #. Shew that if the sphere be cut into two
hemispheres by a plane perpendicular to the field, these hemispheres tend to separate and
require forces equal to yia?#" to keep them together.

22. An uncharged insulated conductor formed of two equal spheres of radius a
cutting one another at right angles, is placed in a uniform field of force of intensity F,
with the line joining the centres parallel to the lines of foros. Prove that the charges
induced on the two spheres are 131 Fu? and —I3} Fa?

23. A conducting plane has a hemispherical boss of radius a, and at a distance f from
the centre of the boss and along its axis there is a point-charge . If the plane and the
boss be kept at zero potential, prove that the charge induced on the boss is

f2—at }
-l = ——e=_t,
U
24. A conductor is bounded by the larger portions of two equal spheres of radius a
cutting at an angle §m, and of a third sphere of radius ¢ outting the two former
orthogonally. Shew that the capacity of the conductor 1s
ct+a(t—§ V3)—ao{2 (at+e) " B-2(a2+38) " h4(at4+ 4y~ Hy.

25. A spherical conductor of internal radius 4, which is uncharged and insulated,
surrounds & spherical conductor of radius @, the distance between their centres being ¢,
which is small. The charge on the inner conductor is Z. Find the potential function
for points between the conductors, and shew that the surface density at a point P on the

inner conductor is
3c cos 8
'i s

where 9 is the angle that the radius through P makes with the line of centres, and terms
in ¢? are ncglected.

26 If a particle charged with a quantity e of electricity be placed at the middle point
of the line joining the centres of two equal spherical conductors kept at zero potential,
shew that the charge induced on each sphere is

- 2em (1 = m+m2 - 3m3+4mt),

neglecting higher powers of m, which is the ratio of the radius to the distance between the
centres of the spherea.

27. Two insulated conducting spheres of radii a, b, the distance e of whose centres
is large compared with a and b, have charges Iy, By respectively. Shew that the potential
energy is approximately

HG-5) a0+ D ane (3-5) 6
19
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28. Shew that the force between two insulated spherical conductors of radius a placed
in an electric field of uniform intensity F perpendicular to their line of centres is

5
s (1 o= o ),

¢ being the distance between their centres.

29. Two uncharged insulated spheres, radii a, b, are placed in & uniform field of force
80 that their line of centres is parallel to the lines of force, the distance ¢ between their
centres being great compared with @ and . Prove that the surface density at the point
at which the line of centres cuts the first sphere (@) is approximately

F{ 6b" 15ab3+28agb3 57a“b"’+m}_

w3t Eta st

30. A conducting sphere of radius a is embedded in a diclectric (£) whose outer
boundary is a concentric sphere of radius 2a. Shew that if the system be placed in
a uniform field of force F, equal quantities of positive and negative electricity are
separated of amount

oFwK
SK+7°

31. A sphere of glass of radius a is held in air with its centre at a distance ¢ from a

point at which there is a positive charge e. Prove that the resultant attraction is

a® (148 2t c a\B %z"‘ﬂdx
iﬂ”;‘ {c—“—a""(—cl—a?)’-ﬁ(l'm)(E) /o_"“l_‘”g }.
where B=(K -1)/(K+1).

32. A conducting spherical shell of radius a is placed, insulated and without charge,
in a uniform field of force of intensity F. Shew that if the sphere be cut into two
hemispheres by a plane perpendicular to the field, a force % a®F is required to prevent
the hemispheres from separating.

33. A spherical shell, of radii @, b and inductive capacity K, is placed in a uniform
field of force . Shew that the force inside the shell is uniform and equal to

9KF
-3 (E-1F (B -1

34. The surface of & conductor being one of revolution whose equation is

4 1 7
A T

where 7, # are the distances of any point from two fixed points at distance 8 apart, find
the electric density at either vertex when the conductor has a given charge.

35. The curve

1 9a a+z a—z 1
1716 it i} =ar
(#*+y%) {(z+al+35)"  {(@—a)*+y%
when rotated round the axis of 2 generates a single closed surface, which is made the

bounding surface of a conductor. Shew that its capacity will be a, and that the surface
density at the end of the axis will be ¢/3ra? where ¢ is the total charge.

36. Two equal spheres each of radius @ are in contact. Shew that the capacity of the
conductor so formed is 2a log, 2.
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87. Two spheres of radii @, b are in contact, @ being large compared with b. Shew
that if the conductor so formed is rs.ised to potential V, the charges on the two spheres are

Va( T b),) ond Va (,—w—'%—)

38. A conducting sphere of radius @ is in contact with an infinite condueting plane,
Shew that if a unit point-charge be placed beyond the sphere and on the diameter through
the point of contact at distance ¢ from that point, the charges induced on the plane and
sphere are

-’-;—acot and——cot———l

39. Prove that if the centres of two equal uninsulated spherical conductors of radius
a be at a distance 2¢ apart, the charge induced on each by & unit charge at a point
midway between them 1s

§ (= 1)*sech na,

1
where ¢c=a cosh a.

40. Shew that the capacity of a spherical conductor of radius @, with its centre at &
distance ¢ from an intinite conducting plane, is

asinba § cosech na,

1
where c¢=a cosh a.

41. An insulated conducting sphere of radius @ is placed midway between two

parallel infinite uninsulated planes at a great distance 2¢c apart Neglecting ( ) shew
that the capacity of the sphere is approximately

a{l +zlog2}.

42. Two spheres of radii r;, ry touch each other, and their capacities in this position
are ¢, ¢g. Shew that

c=ry {f’z +f“ +f"‘ .+ }
where J== " +r,
43. A conducting sphere of radius a is placed in air, with its centre at a distance ¢

from the plane face of an infinite dielectric. Shew that its capacity is

K-1\~-1

< (!
asinha ([x’+l) cosech na,
where cosha=c/a.

44 A point-charge ¢ is placed between two parallel uninsulated infinite conducting
planes, at distances a and b from them respectively. Shew that the potential at a poiut
beitween the planes which is at a distance s from the charge and is on the line through the
charge perpendicular to the planes is

2a-¢ 204z 24 2h -2
{ Iv(2a+2b) r(?ﬁ‘-?fb) r'(,a+2b) r’( 2u.+2b)

2 (a+b) ga—2z ( 2b+2 2a+26—:
(2a+2b) (2a+26 2a,+2(:) (2a+26
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45. A spherical conductor of radius @ is surrounded by & uniform dielectric X, which
is bounded by a sphere of radius b having its centre at a small distance y from the centre
of the conductor. Prove that if the potential of the conductor is ¥V, and there are no
other conductors in the field, the surface density at & point where the radius makes an
angle 6 with the line of centres is

KVb {l+ 6 (K—1)yal%cos
Tma(E-Da+b SE-Da+E+2)8)

48. A shell of glass of inductive capacity K, which is bounded by concentric spherical
surfaces of radii a, b (a<b), surrounds an electrified particle with charge £ which is at a
point: @ at a small distance ¢ from O, the centre of the spheres. Shew that the potential
at & point P outside the shell at a distance r from @ is approximately

E 2Ec (b®—a) (K —1)? cos 8
7 S ECT B (B2 GE+D) A
where 8 is the angle which @P makes with 0@ produced.

47. If the centres of the two shells of a spherical condenser be separated by a small
distance d, prove that the capacity is approximately

ab abd?
i (1 s -

48. A condenser is formed of two spherical conducting sheets, one of radius &
surrounding the other of radius a. The distance between the centres is ¢, this being so
small that (¢/a)? may be neglected. The surface densities on the inner conductor at the
extremities of the axis of symmetry of the instrument are oy, o3, and the mean surface
density over the inner conductor is 3. Prove that

oy~oy_ 6Bea®
o =3

49. The equation of the surface of a conductor is r=a (1+¢P,), where ¢ is very small,
and the conductor is placed in & uniform field of force F parallel to the axis of harmonics,
Shew that the surface density of the induced charge at any point is greater than it would
be if the surface were perfectly spherical, by the amount

3neF
@ s {(n+1) Pyyy+(n—2) Pa_y}

50. A oconductor at potential V' whose surface is of the form rea (1+4¢f,) is sur-
rounded by a dielectric (X') whose boundary is the surface =5 (1+nP,), and outside this
the dielectric is air. Shew that the potential in the air at a distance r from the origin is

KabV 1 (2n+1)earb®+14 (K ~1) nb* {nbt+14 (n+1)a?+1} P,
(K-1a+d|r A+n+nk) 1+ (K-1)(n+1)a™*1 P
where squares and higher powers of ¢ and » are neglected.

51. The surface of a conductor is nearly spherical, its equation being
r=a(l+4eS,),
where e is small. Shew that if the conductor is uninsulated, the charge induced on
it by & unit charge at a distance f from the origin and of angular coordinates 6, ¢ is

oximately
3o+ e
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62. A uniform circular wire of radius @ charged with electricity of line density e
surrounds an uninsulated concentric spherical conductor of radius ¢; prove that the
electrical density at any point of the surface of the conductor is

1.3¢ 1.3.5¢
"(1 °2aﬂP’+92 il By ggamlet- )

83. A dielectric sphere is surrounded by a thin circular wire of larger radius &
carrying & charge E. Prove that the potential within the sphere is

E 1+4n  1.3.5..2n-1 (r\™
3 {‘“"‘( D {Fen(i+K) 2.4.6..20 (5) P’"}'
64. If within a conductor formed by a cone of semi-vertical angle cos=1 o and two

spherical surfaces r=a, r=5 with centres at the vertex of the cone, a charge ¢ on the axis
at distance ¢’ from the vertex gives potential V, and if we write

2 a
r=ae~d, V=Ue? N=logy,
U=S54nein T2 P (), V=S BuPa(s)

mn L3

the summation with respect to m extending to all positive integers, and that with respect
to = to all numbers integral or fractional for which Py, (uo) =0, determine 4,,,. Effecting
the summation with respect to m, shew that when » < v,

2n 41 ymat ar, dp,
B»=29('"‘“%'WT)( ,a+1>/(ah“ 1/1"”)[(1 ud) 2 = T pon?

and that when r > ¢/,
2n+ 1 pn+1 .
Bumtg (= - %57 (7= ) flamt - oo [ -y G2 2P

55. A spherical shell of radius a with a little hole in it is freely electrified to potential
V. Prove that the charge on its inner surface is less than V.S/8xa, where S is the area of
the hole.

56. A thin spherical conducting shell from which any portions have been removed is
freely electrified. Prove that the difference of denaities inside and outside at any point is
constant.

.
npy

67. Electricity is induced on en uninsulated spherical conductor of radius @, by a
uniform surface distribution, density o, over an external concentric non-conducting
spherical segment of radius ¢. Prove that the surface dcnsity at the point 4 of the
conductor at the nearer end of the axis of the segment is

_1.cleta) AD
i s (1 Al))
where B is the point of the segment on its axis, and D is any point on its edge.

58. Two conducting discs of radii @, o’ are fixed at right angles to the line which
joins their centres, the length of this line being r, large compared with a. If the first
have potential ¥ and the second is uninsulated, prove that the charge on the first is

ZanrV
nird—4aa’’

59. A sphenc&l conductor of diameter a is kept at zero potential in the presence of a
fine uniform wire, in the form of a circle of radius ¢ in & tangent plane to the sphere with



294 Methods for the Solution of Special Problems [cH. vill

its centre at the point of contact, which has a charge E of electricity; prove that the
electrical density induced on the sphere at a point whose direction from the centre of the
ring makes an angle ¥ with the normal to the plane is

- Mﬁ'(a9+e’sec’sp—2actampoos o)~ *as.

4nia

60. Prove that the capacity of a hemispherical shell of radius a is

l(%"l-l’

81. 'Prove that the capacity of an elliptic plate of small eccentricity ¢ and area 4 is

approximately
74\ 2 d b
\/ (?F) ( teatea)

62. A circular disc of radius a is under the influence of a charge ¢ at a point in its
plane at distance b from the centre of the disc. Shew that the density of the induced
distribution at a point on the disc is

02— a?
2ntR? ey L
where », 12 are the distances of the point from the centre of the disc and the charge.

63. An ellipsoidal conductor differs but little fromn & sphere. Its volume is equal to
that of a sphere of radius r, its axes are 2r (1+a), 2r(1+8), 27 (1+5). Shew that neg-
lecting cubes of a, B, v, its capacity is

P {4 (aT+ 82},

64 A prolate conducting spheroid, semi-axes a, b, has a charge £ of electricity. Shew
that repulsion between the two halves into which it is divided by its diametral plane is
Ei log z,
4(a2-02) °b
Determine the value of the force in the case of a sphere.

65. One face of a condenser is a circular plate of radius a: the other is a segment of
a sphere of radius R, R being so large that tbe plate is almost flat. Shew that the
capacity is § KR log 4/t where ¢, ?, are the thickness of diclectric at the middle and edge
of the condenscr, Determine also the distribution of the charge.

66. A thin circular disc of radius a is electrified with charge £ and smrounded by a
spheroidal conductor with charge £;, placed so that the edge of the disc is the locus of the
focus S of the generating ellipse. Shew that the energy of the system is

1 E2 1 (E+ £,

B being an extremity of the polar axis of the spheroxd, and C the centre.

sfo,

67. If the two surfaces of a condenser are concentric and coaxial oblate spheroids of
small ellipticities ¢ and ¢ and polar axes 2¢ and 2¢, prove that the capacity is
e (¢ —¢)=2{c' —c+§ (ec’ - €o)},
neglecting squares of the ellipticities; and find the distribution of electricity on each
surface to the same order of approximation.
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68. An accumulator is formed of two confocal prolate spheroids, and the specific
inductive capacity of the dielectric is X?/=w, where w is the distance of any point from the
axis. Prove that the capacity of the accumulator is

= Klflog (‘-‘-'—'tg-) ,

where @, b and a,, b, are the semi-axes of the generating ellipses.
69. A thin spherical bowl is formed by f.he portion of the sphere z2+32+23=cz
bounded by and lying within the cone ""’ b 2= a.ud is put in connection with the earth

by a fine wire. O is the origin, and 0, dxa.metncally opposite to O, is the vertex of the
bowl; @ is any point on the rim, and P is any point on the great circle arc Q. Shew
that the surface density induced at P by a charge E placed at O is
__Ee cQ
4mabl OP% (0P~ 0@’
where I= / - .
0 (a? sin® 8+ b cost )}

70. Three long thin wires, equally electrificd, are placed parallel to each other so that
they are cut by a plane perpendicular to them in the angular points of an equilateral
triangle of side 4/3¢; shew that the polar equation of an equipotential curve drawn on the
plane is

784¢8~ 2r3c3 cos 30 = constant,
the pole being at the centre of the triangle and the initial line passing through one of the
wires.

71. A flat piece of corrugated metal (y=asin mz) is charged with electricity. Find
the surface density at any point, and shew that it exceeds the average density approxi-
mately in the ratio my : 1.

72. A long hollow cylindrical conductor is divided into two parts by a plane through
the axis, and the parts are separated by a small interval. If the two parts are kept at
potentials V; and V,, the potential at any point within the cylinder is

V1+YE+ vV, - L’ta. -y 2arcosd
2 L

where r is the distance from the axis, and 4 is the angle between the plane joining the
point to the axis and the plane through the axis normal to the plane of separation.

73. Shew that the capacity per unit length of a telegraph wire of radius a at height A
above the surface of the earth is
h—al=1
-1 iy
4 tanh i +a] .

74. An electrified line with charge e per unit length is parallel to a circular cylinder
of radius e and inductive capacity X, the distance of the wirc from the centre of the
cylinder being ¢. Shew that the force on the wire per unit length is

K-1 da%?

K¥1c(cd—ad)"

75. A cylindrical conductor of infinite length, whose cross-section is the outer
boundary of three equal orthogonal circles of radius a, has a charge e per unit length.
Prove that the electric density at distance » from the axis is

e (3ri+a?) (3r2— a2 —~Bar) (38— a=+~/€ar)
6ra 2 (974 — 3atri+ af)
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76. If the cylinder 24+ y*=at be freely charged, shew that in free space the resultant
force varies as
o\ ~1
(r‘ +2at cos 40+;,—) ,
where z=1r 0086, y=rsin §; and that its direction makes with the axis of x an angle
- 3
jtan-1 (:+::tan 2)".
71, If ¢p+iy=f(z+1y), and the curves for which ¢=constant be closed, shew that
the capacity C of a condenser with boundary surfaces ¢=y, $=cho is
Ay]
4 (1—o)
per unit length, where [y] is the increment of y» on passing once round a ¢-curve.

78, Using the transformation z+iy=ccot 4 (U+1V), shew that the capacity C per
unit length of a condenser formed by two right circular cylinders (radii a, ), one inside
the other, with parallel axes at a distance d apart, is given by

‘ad 2 o
1/C=2 cosh~1 (‘i%— .

79. A plane infinite electric grating is made of equal and equidistant parallel thin
metal plates, the distance between their successive central lines being =, and the breadth

of each plate 2sin-? ('llf) Shew that when the grating is electrified to constant
potential, the potential and charge functions V, U in the surrounding space are giveu
by the equation

8in (U4t V)=Ksin (z+1y).
Deduce that, when the grating is to earth and is placed in a uniform field of force of unit
intensity at right angles to its plane, the charge and potential functions of the portion of
the field which penetrates through the grating are expressed by

T+iV = (z+1y),
and expand the potential in the latter problem in a Fourier Series.

80 A cylinder whose cross-section is one branch of a rectangular hyperbola is
maintained at zero potential under the influence of & line-charge parallel to its axis
and on the concave side. Prove that the image consists of three such line charges, and
hence find the density of the induced distribution.

8l. A ocylindrical space is bounded by two coaxial and confocal parabolic cylinders,
whose latera recta are 4a and 4b, and a uniformly electrified line which is parallel to the
generators of the cylinder intersects the axes which pass through the foci in pownts distant
¢ from them (@a>c¢>b). Shew that the potential throughout the space is

3 oos ( dain 8-
f wr? cos m(rising-c )l

‘lcosh a*—b{ cos T
Alog ’
3 cos ¢ inin£+c§— 3t
{ wri cos g 'r(r 3 « )"

o

U R at-p? )

where r, d are polar coordinates of a section, the focus being the pole. Determine 4 in
terms of the electrification per unit length of the line.
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82. An infinitely long elliptic cylinder of inductive capacity XK, given by &=a where
&4 ty=ocosh (£+1y), is in & uniform field P parallel to the major axis of any section.
Shew that the potential at any point inside the cylinder is

14cotha
¥ K+4cotha’
83. Two insulated uncharged circular cylinders outside each other, given by n=a and

n=~f3 where 2 +ty=ctan § (£-+1p), are placed in a uniform field of force of poteutial Fz.
Shew that the potential due to the distribution on the cylinders 1s

M- -n(n+8)
sinhnB+e sinh na sin né.
sinh 2 (a+B)

-~ Pz

—2Fc2 (-ps

84& Two circular oylmders outside each other, given by n=a and n= — 3 where
a+iymotan} (E+in),

are put to earth under the influence of a line-charge £ on the line x=0, y =0. Shew that
the potential of the induced charge outside the cylinders is

1e ™ ginhn(y +8)+e ™ sinhn (a—n)
-4£32 n sinh » (a+8)

the summation being taken for all odd positive integral values of z.

cos nf{ 4 constant,

85. The cross-sections of two infinitely long metallic cylinders are the curves
(23+y2+c2)? - 4c*z?=at and (2%+ y?+c%)? —dciris= b,
where b>a>oc. If they are kept at potentials ¥, and ¥, respectively, the intervening

space being filled with air, prove that the surface demsities per umit length of the
electricity on the opposed surfaces are

Vs a3 ¥y® and —-—5 Nad+ys
472 lo,

dra® log
respectively.
86. What problems are solved by the transformation
d . e(r-1 i
‘{(C-ft (x+ty)- P
a+ t

(r¥+it)=log ;5
where a>11
87. What problem in Electrostatics is solved by the transformation

z4iy=cnh (P +ip),
where - is taken as the potential function, ¢ being the function conjugate to it ?

88. One half of a hyperbolic cylinder is given by y= *n,, where |n; | <§, and £, n are

given in terms of the Cartesian coordinates z, y of a principal section by the trans-
formation

241y =c cosh (£ +1in).
The half-cylinder is uninsulated and under the influence of & charge of density £ per unit
length placed along the line of internal foci. Prove that the surface density at any point
of the cylinder is

—E/Jﬁcq,mh;—;Jeossﬂé—wlﬂq;-
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89. Verify that, if r, s be real positive constants, z=2+1y, a-po", %=%+%, the
neld of force outside the conductors 23+ y?+ 2szm0, 23+ y?—2rz=0 due to a doublet at
the point z=a, outside both the circles, of strength p and inclination a to the axis, is
given by putting

e - 1 1 —i(a~ 1 1
U+tV=%;:{a“‘ ) oot o ;—E)—e 1@=2) oot om (;—a)},

where s=aj is the inverse point to z=a with regard to either of the circles.

90. A very thin indefinitely great conducting plane is bounded by a straight edge of
indefinite length, and is connected with the earth. A unit charge is placed at a point P.
Prove that the potential at any point ¢ due to the charge at P and the electricity induced
on the conducting plane is

11 1 ¢-¢ 11 ( 1 ¢+¢')
e 008" —2cos PPV Leos-i| -2
o8 ( 7% g ) l"erm 0% g )
where P’ is the image of P in the plane, the cylindrical coordinates of @ and P are
(r, 9, 2), (7, @, &), the straight edge is the axis of z, the angles ¢, ¢’ lie between 0 and 2,

@=0 on the conductor,
(r 477+ (z—2W %
EAE I
and those values of the inverse functions are taken which lie between §= and .

9l. A semi-infinite conducting plane is at zero potential under the influence of an
electric charge ¢ at a point @ outside it. Shew that the potential at any point P is
given by
‘cosh 49+ cos § (- 6,)
cosh $n~cos § (6~ 6;)

- - ~ban-1 [eoshinroos(6:+6))
{oosh n—cos (8+6,)} ~#tan \/coshiv-oot!i Gron)
where r, 8, s are the cylindrical coordinates of the point P, (ry, 6;, 0) of the point @, #=0
is the equation of the conducting plane, and
2rry coshn=7r"+r 3422

T | fooshn—oon (06 ~Htan™

Hence obtain the potential at any point due to a spherical bowl at constant potential,
and shew that the capacity of the bowl is

a w—a
r {1+sina}'

where a is the radius of the aperture, and a is the angle subtended by this radius at the
centre of the sphere of which the bowl is a part.

92. A thin circular conducting disc is connected to earth and is under the influcnce
of a charge g of electricity at an external point P. The position of any point @ is denoted
by the peri-polar coordinates p, 8, ¢, where p is the logarithm of the ratio of the distances
from @ to the two points R, § in which a plane @RS through the axis of the disc cuts its
rim, 8 is the angle RS, and ¢ is the angle the plane QRS makes with a fixed plane
through the axis of the disc, the coordinate 4 having values between — 7 and +m, and
changing from + to — = in passing through the disc. Prove or verify that the potential
of the charge induced on the disc at any point @ (p, 6, ¢) is

- &[5 Luin1{oon (0~ 8 ssoh o} | - s+ sin=1 {—con } 6+ i) sech ],
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where po, 6o, ¢ are the coordinates of P, 6 being positive, the point P’ is the optical
image of P in the disc, a is given by the equation
cos a=cosh p cosh py - sinh p sinh p, cos (¢~ ¢y),

and the smallest values of the inverse functions are to be taken.

Prove that the total charge on the disc is - géy/.

Explain how to adapt the formula for the potential to the case in which the circular
disc is replaced by a spherical bowl with the same rim.

93. Shew that the potential at any point P of a circular bow), electrified to potential

C,is
¢ sin'l—4§< +Qilsin~1 0P 4B
™ AP+BP " Or 04" AP+ BP))’
where O is the centre of the bowl, and 4, B are the points in which a plane through P
and the axis of the bow] cuts the circular rim.

Find the density of electricity at a point on either side of the bowl and shew that the
capacity is

a .
o (a+sin a),
where a is the radius of the sphere, and 2a is the angle subtended at the centre.

94. Two spheres are charged to potentials Vand V;. The ratio of the distances of

any point from the two limiting points of the spheres being denoted by ¢” and the angle
between them by &, prove that the potential at the point ¢, 7 is
g 8inh (n+3) (8+n)

Vo /{2 (cosh y—cos 5)}§sinh (n+4)(B+a)

® ginh (n+$) (a—7p) ~(n+d)8
+V,J{2(cosh,,-cosg)}%m!’.(cwé)a e

where p=a, y= ~ 3 are the equations of the spheres, Hence find the charge on efther
sphere,

P, (cos §) g rtie



CHAPTER IX
STEADY CURRENTS IN LINEAR CONDUCTORS

PrYsIcAL PRINCIPLES.

338. Ir two conductors charged with electricity to different potentials
are connected by a conducting wire, we know that a flow of electricity will
take place along the wire. This flow will tend to equalise the potentials
of the two conductors, and when these potentials become equal the flow of
electricity will cease. If we had some means by which the charges on the
conductors could be replenished as quickly as they were carricd away by
conduction through the wire, then the current would never cease. The con-
ductors would remain permanently at different potentials, and there would
be a steady flow of electricity from one to the other. Means are known by
which two conductors can be kept permanently at different potentials, so that
a steady flow of electricity takes place through any conductor or conductors
joining them. We accordingly have to discuss the mathematical theory of
such currents of electricity.

We shall begin by the consideration of the flow of electricity in linear
conductors, by a linear conductor being meant one which has a definite
cross-section at every point. The commonest instance of a linear conductor
is a wire.

339. DeriNiTION, The strength of a current at any point in a wire or
other linear conductor, 18 measured by the number of units of electricity which
Slow across any cross-section of the conductor per unit time.

If the units of electricity are measured in Electrostatic Units, then the
current also will be measured in Electrostatic Units. These, however, as will
be explained later, are not the units in which currents are usually measured
in practice.

Let P, Q be two cross-sections of a linear conductor in which a steady
current is flowing, and let us suppose that no other conductors touch this
conductor between P and Q. Then, since the current is, by hypothesis,
steady, there must be no accumulation of electricity in the region of the



838-341] Physical Principles 301

conductor between P and Q. Hence the rate of flow into the section of the
conductor across P must be exactly equal to the rate of flow out of this
section across Q. Or, the currents at P and Q must be equal. Hence we
speak of the current in a conductor, rather than of the current at a point in
a conductor. For, as we pass along a conductor, the current cannot change
except at points at which the conductor is touched by other conductors.

Okm’s Law.

840. In a linear conductor in which a current is flowing, we have
electricity in motion at every point, and hence must have a continuous
variation in potential as we pass along the conductor. This is not in
opposition to the result previously obtained in Electrostatics, for in the
previous analysis it had to be assumed that the electricity was at rest.
In the present instance, the electricity is not at rest, being in fact kept
in motion by the difference of potential under discussion.

The analogy between potential and height of water will perhaps help. A lake in
which the water is at rest is analogous to & conductor in which electricity is in equi-
librium. The theorem that the potential is constant over a conductor in which electricity
is in equilibrium, is analogous to the hydrostatic theorem that the surface of still water
must all be at the same level. A conductor through which a current of electricity is
flowing finds its analogue in a stream of running water. Here the level is not the same at
all points of the river—it is the diffcrence of level which causes the water to flow. The
water will flow more rapidly in a river in which the gradient is large than in one in
which it is small. The electrical analogy to this is expressed by Ohm’s Law.

OnM's Law. The difference of potential between any two points of a wire
or other linear conductor in which a current is flowing, stands to the current
flowing through the conductor in a constant ratio, which is called the resistance
between the two points.

It is here assumed that there is no junction with other conductors
between these two points, so that the current through the conductor is
a definite quantity.

341. Thus if C is the current flowing between two points P, @ at which
the potentials are V;, ¥, we have

Ve V= CR v enn e (264),

where R is the resistance between the points P and @. Very delicate
experiments have failed to detect any variation in the ratio

(fall of potential)/(current),

as the current is varied, and this justifies us in speaking of the resistance as
a definite quantity associated with the conductor. The resistance depends
naturally on the positions of the two points by which the current enters and
leaves the conductor, but when once these two points are fixed the resistance
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is independent of the amount of current. In general, however, the resistance
of a conductor varies with the temperature, and for some substances, of which
selenium is a notable example, it varies with the amount of light falling on
the conductor,

The Voltars Cell.

842. The simplest arrangement by which a steady flow of electricity can
be produced is that known as a Veltaic Cell. This is represented diagram-
matically in Fig. 85. A voltaic cell consists essentially of two conductors

Fie. 95.

4, B of different materials, placed in a liquid which acts chemieally on at
least one of them. On establishing electrical contact between the two ends
of the conductors which are out of the liquid, it is found that a continuous
current flows round the circuit which is formed by the two conductors and
the liquid, the enmergy which is required to maintain the current being
derived from chemical action in the cell.

To explain the action of the cell, it will be necessary to touch on a subject
of which a full account would be out of place in the present book. As an
experimental fact it is found that two conductors of dissimilar material, when
placed in contact, have different potentials when there is no flow of electricity
from one to the other®, although of course the potential over the whole of
either conductor must be constant. In the light of this experimental fact,
let us consider the conditions prevailing in the voltaic cell before the two
ends a, b of the conductors are joined.

So long as the two conductors 4, B and the liquid C do not form a closed
circuit, there can be no flow of electricity. Thus there is electric equilibrium,

® For a long time there has been a divergence of opinion as to whether this difference of
potential is not due to the chemical chauge at the surfaces of the conductors, and therefore
dependent on the p of a layer of air or other third substance between the conductors, It
seems now to be almost certain that this is the case, but the question is not one of vital
importance as regards the mathematical theory of electric currents.
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and the three conductors have definite potentials ¥, ¥, V5. The difference
of potential between the two “ terminals” a, b is V, — Vp, but the peculiarity
of the voltaic cell is that this difference of potential is not equal to the
difference of potential between the two conductors when they are placed
in contact and are in electrical equilibrium without the presence of the
liquid C. Thus on clectrically joining the points a, b in the voltaic cell
electrical equilibrium is an impossibility, and a current is established in the
circuit which will continue until the physical conditions become changed or
the supply of chemical energy is exhausted.

Electromotive Force.

343. Let A4, B, C be any three conductors arranged so as to form a closed
circuit. Let V5, be the contact difference of potential between A and B when
there is electric equilibrium, and let ¥, V., have similar meanings.

If the three substances can be placed in a closed circuit without any
current flowing, then we can have cquilibrium in which the three conductors
will have potentials V,, V,, V., such that

Vi—Vi=Vip; Vo= Vo=Vie; Vi Vy=Vou.
Thus we must have
Vig+ Vac+ Voy =0,
a result known as Volta’'s Law.

If, however, the three conductors form a voltaic cell, the expression on
the left-hand of the above equation does not vanish, and its value is called
the electromotive force of the cell. Denoting the electromotive force by E,
we have

Vig+ Vet Vea=E  ovvniiniiiiininann (265).

We accordingly have the following definition :

DeFINITION. The Klectromotive Force of a cell is the algebraic sum of the
discontinuities of potential encountered in passing in order through the series
of conductors of which the cell is composed.

Clearly an electromotive force has direction as well as magnitude. It
is usual to speak of the two conductors which pass into the liquid as the
high-potential terminal and the low-potential terminal, or sometimes as the
positive and negative terminals. Knowing which is the positive or high-
potential terminal, we shall of course know the direction of the electromotive
force.

844. If the conductors C, 4 of a voltaic cell ABC are separated, and
then joined by a fourth conductor D, such that there is no chemical action
between D and the conductors C or 4, it will easily be seen that the sum of
the discontinuities in the new circuit is the same as in the old.
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For by hypothesis CDA can form a closed circuit in which no chemical
action can occur, and therefore in which there can be electrie equilibrium.
Hence we must have

Voot Vou+ Vag=0 ceceunnnee ceennene ceneress(266).

Moreover the sum of all the discontinuities in the circuit is

Via+ Vac+ Voo + Vou

= Va5 + Voc— Vic, by equation (266)

=Viz+ Vie+ Veu

= E, by equation (265),
proving the result. A similar proof shews that we may introduce any series
of conductors between the two terminals of a cell, and so long as there is no
chemical action in which these new conductors are involved, the sum of all the
discontinuities in the circuit will be constant, and equal to the electromotive
force of the cell.

Let ABC... MN be any series of conductors, including a voltaic cell,
and let the material of N be the same as that of A. If V and 4 are joined
we obtain a closed circuit of electromotive force E, such that

K3+V;O+"'+KIN+ ‘V);u:E.
Moreover Wy, =0, since the material of N and A4 is the same. Thus the
relation may be rewritten as

Vis+ Vet oo+ Viy=F  cevvveevrvvvennnnn, (267).

In the open series of conductors ABC ... MN, there can be no current, so
that each conductor must be at a definite uniform potential. If we denote
the potentials by V;, Vg, ... Vy, V., we have

Z—VJ=I;Bu

Vi— Vo = Vigg.
Hence equation (267) becomes
V.-Vy=E.

We now see that the electromotive force of a cell 18 the difference of
potential between the ends of the cell when the cell forms an open eircuit,
and the materials of the two ends are the same.

A series of cells, joined in series so that the high-potential terminal of
one is in electrical contact with the low-potential terminal of the next, and
80 on, is called a battery of cells, or an “ electric battery ” arranged in serics.

It will be clear from what bas just been proved, that the electromotive
force of such a battery of cells is equal to the sum of the electromotive forces
of the separate cells of the series.
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Units.

345. On the electrostatic system, a unit current has been defined to be
a current such that an electrostatic unit of electricity crosses any selected
cross-section of a conductor in unit time. For practical purposes, a different
unit, known as the ampére, is in use. The ampére is equal very approximately
to 8 x 10° elcctrostatic units of current (see below, § 587).

To form some idea of the actual magnitude of this unit, it may be stated that the

amount of current required to ring an electric bell ig about half an ampére. About the
same amount is required to light a 200 c.p. 240-volt gas-filled lamp.

As an electromotive force is of the same physical nature as a difference
of potential, the elestrostatic unit of electromotive force is taken to be the
same as that of potential. The practical unit is about gd5 of the electrostatic
unit, and is known as the volt (see below, § 587).

It may be mentioned that the electromotive force of a single voltaic cell is generally
intermediate between one and two volts; the electromotive force which produces a
perceptible shock in the human body is about 30 volts, while an electromotive force
of 500 volts or more is dangerous to life. Both of these latter quantities, however, vary
enormously with the coundition of the body, and particularly with the state of dryness
or moisture of the skin. The electromotive force used to work an electric bell is
commonly 6 or 8 volts, while an electric light installation will generally have a voltage
of about 240 volts.

The unit of resistance, in all systems of units, is taken to be a resistance
such that unit difference of potential between its extremities produces unit
current through the conductor. We then have, by Ohm’s Law,

current = difference of potn.antial at extremities (268).

resistance

In the practical system of units, the unit of resistance is called the ohm.
From what has already been said, it follows that when two puints having a
potential-difference of one volt are connected by a resistance of one ohm, the
currert flowing through this resistance will be one ampere. In this case the
difference of potential is 3}y electrostatic units, and the current is 8 x 10°
elecirostatic units, so that by relation (268), it follows that one ohm must be

equal to 0“ electrostatic units of resistance (see below, § 587).

Some idea of the amount of this unit may be gathered from the statement that
the resistance of a mile of ordinary telegraph wire is about 10 ohms. The resistance
of a good telegraph insulator may be billions of ohins.
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PrYsicAL THEORIES OF CONDUCTION.

Electron-theory of conduction.

345a. As has been already explained (§ 28), the modern view of
electricity regards a current of electricity as a material flow of electric
charges. In all conductors except a small class known as electrolytic
conductors (see below, § 345 b), these charged bodies are believed to be
identical with the clectrons.

In a solid some of the clectrons are supposed to be permanently bound to
particular atoms or molecules, whilst others, spoken of as “free” electrons,
move about in the interstices of the solid, continually baving their courses
changed by collisions with the molecules. Both kinds of electrons will be
influenced by the presence of an clectric field. It is probable that the
restricted motions of the “bound” electrons account for the phenomenon of
inductive capacity (§151) whilst the unrestricted motion of the free electrons
explains the phenomenon of electric conductivity.

Even when no electric forces are applied, the free electrons move about
through a solid, but they move at random in all directions, so that as many
electrons move from righy to left as from left to right and the resultant
current is nel.  1f an electric force is applied to the conductor, each electron
has superposed on to its random motion a motion impressed on it by the
electric force, and the electrons as a whole are driven through the conductor
by the continued action of the clectric force. If it were not for their collisions
with the molecules of the conductor, the electrons would gain indefinitely in
momentum under the action of the impressed clectric force, but the effect of
collisions is continually to check this growth of momentum.

Let us suppose that there are NV electrons per unit length of the
conductor, and that at any moment these have an average forward velocity
u through the material of the conductor. If m is the mass of each electron,
the total momentum of the moving electrons will be Nmu. The rate at
which this total momentum is checked by collisions will be proportional to
N and to u, and may be taken to be Nyw. The rate at which the momentum
is increased by the electric forces acting is NXe, where X is the electric
intensity and e is the charge, measured positively, of each electron. Thus
we have the equation

g—t(Nmu)= NXe— Nyt veveeceniennnaearanenns (a).

In unit time the number of electrons which pass any fixed point in the
conductor is Nu, so that the total flow of electricity per unit time past any
point is New. This is by definition equal to the current in the conductor, so
that if we call this ¢, we have

Neu=1i...... crerrerans N ()%
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This enables us to reduce equation (a) to the form
di Ne
3w (X~
The equation shews that if a steady electric force is applied, such that
the intensity at any point is X, the current will not increase indefinitely
but will remain stationary after it has reached a value ¢ given by
Ne?

1="—X.

If V is the potential at any point of a conducting wire, and if s is a

. . - 14
coordinate measured along the wire, we have X = — %E , 80 that
oV v

- i

35 Ne

Integrating between any two points P and @ of the conductor, we have
¢
V.- I{,:-—zfp :l;,y?ds.

This is the electron-theory interpretation of equation (264), and explains
how the truth of Ohm's Law is involved in the modern conception of the
nature of an electric current. It will be noticed that on this view of the
matter, Ohm’s Law is only true for steady currents.

We notice that the resistance of the conductor, on this theory, is y/Ne?
per unit length. Thus, generally speaking, bodies in which there are many
free electrons ought to be good conductors, and conversely.

The charge on the electron being 4-803x 10~10 electrostatic units, we may notice
that a current of one ampere (3x 10° electrostatic units of current) is one in which
6'3 % 1018 electrons pass any given point of the conductor every second. Consider a
conductor in which the number of electrons per cubie centimetre is 102 (cf. § 615, below).
Then in a wire of 1 square mm. cross-section there are 10 electrons per unit length, so
that the average velocity of these when the wire is conveying a current of 1 ampére is of
the order of one cm. per sec. This average velocity is superposed on to a random velocity
which is known to be of the order of magnitude of 107 cms. per scc., so that the additional
velocity produced by even a strong current is only very slight in comparison with the
norwal velocity of agitation of the electruns,

Electrolytic conduction.

346 b. Besides the type of electric conduction just explained, there is a
second, and entirely different type, known as Electrolytic conduction, the
distinguishing characteristic of which is that the passage of a current is
accompanied by chemical change in the conductor.

For instance, if a current is passed through a solution of potassium
chloride in water, it will be found that some of the salt is divided up by the
passage of the current into its chemical constituents, and that the potassium
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appears solely at the point at which the current leaves the liquid, while the
chlorine similarly appears at the point at which the current enters. It thus
appears that during the passage of an electric current, there is an actual
transport of matter through the liquid, chlorine moving in one direction and
potassium in the other. It is morcover found by experiment that the total
amount, whether of potassium or chlorine, which is liberated by any current
is exactly proportional to the amount of electricity which has flowed through
the electrolyte.

These and other facts suggested to Faraday the explanation, now
universally accepted, that the carriers of the current are identical with the
matter which is transported through the electrolyte. For instance, in the
foregoing illustration, cach atom of potassium carries a positive charge to the
point where the current leaves the liquid, while each atom of chlorine,
moving in the direction opposite to that of the current, carries a negative
charge. The process is perhaps explained more clearly by regarding the total
current as made up of two parts, first a positive current and second a negative
current flowing in the reverse direction. Then the atoms of chlorine are the
carricrs of the negative current, and the atoms of potassium are the carriers
of the positive current.

Electrolytes may be solid, liquid, or gaseous, but in most cases of
importance they are liquids, being solutions of salts or acids. The two parts
into which the molecule of the electrolyte is divided are called the ions
({wv), that which carries the positive current being called the positive ion,
and the other being called the negative ion. The point at which the current
enters the electrolyte is called the anode, the point at which it leaves is
called the cathode. The two ions are also called the anion or cation
according us they give up their charges at the anode or cathode respectively.
Thus we have

The auion carries — charge against current, and delivers it at the
anode,

The cation carries + charge with current, and delivers it at the
cathode.

When potassium chloride is the electrolyte, the potassium atom is the
cation, and the chlorine atom is the anion. If experiments are performed
with different chlorides (say of potassium, sodium, and lithiwn), it will be
found that the amount of chlorine liberated by a given current is in every
case the same, while the amounts of potassium, sodium, or lithium, being
exactly those required to combine with this fixed amount of chlorine, are
necessarily proportional to their atomic weights. This suggests that each
atom of chlorine, no matter what the electrolyte may be in which it occurs,
always carries the same negative charge, say — e, while each atom of potassium,
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sodium, or lithium carries the same positive charge, say + E. Moreover £
and e must be equal, or else each undissociated molecule of the electrolyte
would have to be supposed to carry a charge E —e, whereas its charge is
known to be nil.

It is found to be a general rule that every anion which is chemically
monovalent carries the same charge —e, while every monovalent cation
carries a charge +e. Moreover divalent ions carry charges + 2e, trivalent
ions carry charges # 3¢, and so on.

As regards the actual charges carried, it is found that onme ampére of
current flowing for one second through a salt of silver liberates 0001118
grammes of silver. Silver is monovalent and its atomic weight is 107'88
(referred to O = 16), so that the amount of any other monovalent element of
atomic weight m deposited by the same current will be 000001036 x m
grammes. It follows'that the passage of one electrostatic unit of electricity
000001036 x m

Ix100

will result in the liberation of , or 345 x 107 x m grammes

of the substance.

We can calculate from these data how many ions are deposited by one unit
of current, and hence the amount of charge carried by each ion. It is found
that, to within the limits of expcrimental crror, the negative charge carried
by each monovalent anion is exactly equal to the charge carried by the electron.
It follows that each monovalent anion has associated with it one electron
in excess of the number required to give it zero charge, while each monovalent
cation has a deficiency of one electron; divalent ions have an excess or
deficiency of two electrons, and so on.

345¢c. Ohw's Law appears, in general, to be strictly true for the resist-
ance of electrolytes. In the light of the explanation of Ohm’s Law given in
§ 845 a, this will be seen to suggest that the ions are free to move as soon as
an electric intensity, no matter how small, begins to act on them. They
must therefore be already in a state of dissociation; no part of the electric
intensity is required to effect the separation of the molecule into ions.

Other facts confirm this conclusion, such as for instance the fact that various physical
properties—electric conductivity, colour, optical rotatory power, etc.—are additive in the
sense that the amount possessed by the whole electrolyte is the sum of the amounts
known to be possessed by the separate ions.

* We may therefore suppose that as soon as an electric force begins to act,
all the positive ions begin to move in the direction of the electric force, while
all the negative ions begin to move in the opposite direction. Let us suppose
the average velocities of the positive and negative ions to be u, v respectively,
and let us suppose that there are N of each per unit length of the electrolyte
measured along the path of the current. Then across any cross-section of the
electrolyte there pass in unit time Nu positive ions each carrying a charge s¢
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in the direction in which the current is measured, and Nv negative ions each
carrying a charge — se in the reverse direction, s being the valency of each
ion. It follows that the total current is given by

t=Nse(U+D) .vvrrriurinnrannnnns cevennee(d).

Each unit of time Nu positive ions cross a cross-section close to the
anode, having started from positions between this cross-section and the
anode. Thus each unit of time Nu molecules are separated in the neigh-
bourhood of the anode, and similarly Nv molecules are separated in the
neighbourhood of the cathode. The concentration of the salt is accordingly
weakened both at the anode and at the cathode, and the ratio of the amounts
of these weakenings is that of «:v. This provides a method of determining
the ratio of u: v.

Also equation (d) provides a method of determining w+ v, for ¢ can be
readily measured, and Nse is the total charge which inust be passed through
the electrolyte to liberate the ions in unit length, and this can be easily
determined.

Knowing u + v and the ratio w:w, it is possible to determine u and wv.
The following table gives results of the experiments of Kohlrausch on three
chlorides of alkali metals, for different concentrations, the current in each
case being such as to give a potential fall of 1 volt per centimetre.

Concentration Potassium chloride Sodium chloride Lithium chloride

u v u v u v

] 660 690 450 690 360 690
0001 654 681 448 681 356 681
001 643 670 440 670 343 670

01 619 644 415 644 318 644

‘03 597 621 390 623 298 619

‘1 564 589 360 592 259 594

[The unit in every case is a velocity of 10-% cms. per second.]

We notice that when the solution is weak, the velocity of the chlorine
ion is the same, no matter which electrolyte it has originated in. This
gives, perhaps, the best evidence possible that the conductivity of the
electrolyte is the sum of the conductivities of the chlorine and of the metal
separately.

By arranging for the ions to produce discoloration of the electrolyte as
they move through it, Lodge, Whetham and others have been able to observe
the velocity of motion of the ions directly, and in all cases the observed
velocities have agreed, within the limits of experimental error, with the
theoretically determined valucs.
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Conduction through gases.

846d. In a gas in its normal state, an electric current cannot be carried
in either of the ways which are possible in a solid or a liquid, and it is
consequently found that a gas under ordinary conditions conducts electricity
only in a very feeble degree. If however Rontgen rays are passed through
the gas, or ultra-violet light of very short wave-length, or a stream of the
rays from radium or one of the radio-active metals, then it is found that the
gas acquires considerable conducting powers, for a time at least. For this
kind of conduction it is found that Ohm’s Law is not obeyed, the relation
between the current and the potential-gradient being an extremely complex
one.

The complicated phenomena of conduction through gases can all be
explained on the hypothesis that the gas is conducting only when “ionised,”
and the function of the Rontgen rays, ultra-violet light, etc. is supposed to
be that of dividing up some of the molecules into their component ions,
The subject of conduction through gases is too extensive to be treated here.
In what follows it is assumed that the conductors under discussion are not
gases, so that Ohm’s Law will be assumed to be obeyed throughout.

KIrcHHOFF'S LAws,

346. Problems occur in which the flow of electricity is not through
a single continuous series of conductors: there may be junctions of three or
more conductors at which the current of electricity is free to distribute itself
between diffcrent paths, and it may be important to determine how the
electricity will pass through a network of conductors containing junctions.

The first principle to be used is that, since the currents are supposed
steady, there can be no accumulation of electricity at any point, so that the
sum of all the currents which enter any junction must be equal to the sum
of all the currents which leave it. Or, if we introduce the convention that
currents flowing into a junction are to be counted as positive, while those
leaving it are to be reckoned negative, then we may state the principle in
the form:

The algebraic sum of the currents at any junction must be zero.

From this law it follows that any network of currents, no matter how
complicated, can be regarded as made up of a number of closed currents, each
of uniform strength throughout its length. In some conductors, two or more
of these currents may of course be superposed.

Let the various junctions be denoted by 4, B, C, ..., and let their
potentials be V,, ¥, ¥, .... Let R,; be the resistance of any single con-
ductor connecting two junctions 4 and B, and let C,p be the current flowing
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through it from 4 to B. Let us select any path through the network of
conductors, such as to start from a junction and bring us back to the starting
point, say ABC...NA. Then on applying Ohm’s Law to the separate con-
ductors of which this path is formed, we obtain (§ 341)

]{4 - % = CABRAIH
12- - '5 = CDC'RBOI

i Vo= Vi=CysRy,. .
By addition we obtain ZOR=0...ccceueriiaicivncranann eeeen(269),

where the summation is taken over all the conductors which form the closed
circuit.

In this investigation it has been assumed that there are no discontinuities
of potential, and therefore no batteries, in the selected circuit. If dis-
continuities occur, a slight modification will have to be made. We shall
treat points at which discontinuities occur as junctions,and if 4 is a junction
of this kind, the potentials at 4 on the two sides of the surface of separation
between the two congductors will be denoted by V, and ¥,". Then, by Qhm’s
Law, we obtain for the falls of potential in the different conductors of the
circuit, .

K’ -V= CAB AB>
Vo' = Vo= Cpc Ry, cten,
and by addition of these equations

S (V/-V,)=32CR.

The left-hand member is simply the sum of all the discontinuities of
potential met in passing round the circuit, each being measured with its
proper sign., It is therefore equal to the sum of the electromotive forces of
all the batteries in the circuit, these also being measured with their proper
signs.

Thus we may write SCR=2E ..cccovvvuuerennn. . (270),

where the summation in each term is taken round any closed circuit of
conductors, and this equation, together with

5C=0 v TR (1),

in which the summation now refers to all the currents cntering or leaving a
single junction, suffices to determine the current in each conductor of the
network.

Equation (271) expresses what is known as Kirchhoff’s First Law, while
equation (270) expresses the Second Law.

o

)
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Conductors in Series.

847. When all the conductors form a single closed ecircuit, the current

through each conductor is the same, say C, so that equation (270) becomes
OiR =3E,

The sum 2R is spoken of as the “resistance of the circuit,” so that the
current in the circuit is equal to the total electromotive force divided by the
total resistance. Conductors arranged in such a way that the whole current
passes through each of them,in succession are said to be arranged “in
series,” .

Conductors in Parallel.

848. It is possible o connect any two points 4, B by a number of
conductors in such a way that the current divides itself between all these

,AQES >BE

Fio. 96.

conductors on its journey from A to B, no part of it passing through more
than one conductor. Conductors placed in this way are said to be arranged
“in parallel.”

Let us suppose that the two points A, B are connected by a number of
conductors arranged in parallel. Let R,, R,, ... be the resistances of the
conductors, and C,, C,, ... the currents flowing through them. Then if ¥}, V;
are the potentials at 4 and B, we have, by Ohin’s Law,

Vi-Va=C Lk, =CR,=....

The total current which enters at 4 is C,+C,+..., say C. Thus we
have

% E E+E+...

The arrangement of conductors in parsllel is therefore seen to offer the
same resistance to the current as a single conductor of resistanoe

1

.—1— + ._1_- + )
TRt

The reciprocal of the resistance of a conductor is called the “ conductivity *
of the conductor. The conductivity of the system of conductors arranged

in parallel is -1_1?-;+ £+ ..., and is therefore equal to the sum of the
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conductivities of the separate conductors. Also we have seen that the
current divides itself between the different conductors in the ratio of their
conductivities

MEASUREMENTS,

The Measurement of Current.

849. The instrument used for measuring the current passing in a circuit
at any given instant is called a galvanometer. The theory of this instrument
will be given in a later chapter (Chap. x111).

For measuring the total quantity of electricity passing within a given
time an instrument called a voltameter is sometimes used. The current,
in passing through the voltameter, encounters a number of discontinuities
of potential in crossing which electrical energy becomes transformed into
chemical energy. Thus a voltameter is practically a voltaic cell run back-
wards. On measuring the amount of chemical energy which has been stored
in the voltameter, we obtain a measure of the total quantity of electricity
which has passed through the instrument.

The Measurement of Resistance.

350. The Resistance Box. A resistance box is a piece of apparatus
which consists essentially of a collection of coils of wire of known resistances,
arranged so that any combination of these coils can be arranged in series.
The most usual arrangement is one in which the two extremities of each
coil are brought to the upper surface of the box, and are there connected
to a thick band of copper which runs over the surface of the box. This

Fia. 97.

band of copper 18 continuous, except between the two terminals of each coil,
and in these places the copper is cut away in such a way that a copper plug
can be made to fit exactly-into the gap, and so put the twe sides of the gap
in electrical contact through the plug. The arrangement is shewn diagram-
matically in fig. 97. When the plug is inserted in any gap DE, the plug
and the coil beneath the gap DE form two conductors in parallel connecting
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the points D and B, Denoting the resistances of the coil and plug by R,, R,,

the resistance between D and £ will be
1
1.0
R. " R,
and since R, is very small, this may be neglected. When the plug is
removed, the resistance from D to £ may be taken to be the resistance of
the coil. Thus the resistance of the whole box will be the sum of the

resistances of all the coils of which the plugs have been removed.

351. The Wheatstone Bridge. This is an arrangement by which it is
possible to compare the resistances of conductors, and so determine an
unknown resistance in terms of known resistances.

The “bridge” is represented diagrammatically in fig. 98, The currenv
enters it at A and leaves it at D, these points being connected by the lines

Fia. 98,

ABD, ACD arranged in parallel. The line 4D is composed of two con-
ductors 4B, BD of resistances R,, R,, and the line ACD is similarly composed
of two conductors 4C, CD of resistances R,, R,.

If current is allowed to flow through this arrangement of conductors, it
will not in general happen that the points B and C will be at the same
potential, so that if B and C are connected by a new conductor, there will
usually be a current flowing through BC. The method of using the
Wheatstone bridge consists in varying the resistances of one or more of the
conductors R,, R,, R,, R, until no current flows through the conductor BC.

When the bridge is adjusted in this way, the points B, C must be at the
same potential, say v. Let V,, ¥, denote the potentials at 4 and D, and
let the current through 4 BD be C. Then, by Ohio’s Law,

Vi-—v=CR, v-V,=CR,

R, _Va—v
so that B -7
From a similar consideration of the flow in 4CD, we obtain
By_Vi-s
.R‘ - v - VD’

so that we must have B TS cerererecsasrensentcasssensans
R, R,
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as the condition to be satisfied between the resistances when there is no
current in BC.

Clearly by adjusting the bridge in this way we can determine an unknown
resistance R, in terms of known resistances R,, R,, B,. In the simplest
form of Wheatstone’s bridge, the line ACD is a single uniform wire, and the
position of the point C' can be varied by moving a “sliding contact” along
the wire. The ratio of the resistances R, : R, is in this case simply the ratio
of the two lengths AC, CD of the wire, so that the ratio R, : R, can be found
by sliding the contact C along the wire 4CD until there is observed to be
no current in BC, and then reading the lengths 4C and CD.

ExampLEs OF CURRENTS IN A NETWORK.
L. Wheatstone’s Bridge not in adjustment.

8562. The condition that there shall be no current in the “bridge” BC
in fig. 98 has been seen to be that given by equation (272).

Fia. 99.

Suppose that this condition is not satisfied, and let us examine the flow
of currents which then takes place in the network of conductors. Let the
conductors A B, BD, AC, CD as before be of resistances R,, R, R,, R,, and
let the currents flowing through them be denoted by z,, @, @, z,. Let the
bridge BC be of resistance R, and let the current flowing through it from
B to O be .

From Kirchhoff’s Laws, we obtain the following equations:

(Law I, point B) @ =Xy =Zp =0  evrrerrnrinannn. (278),
(Law 1, point C) B—Z+Zp =0 reriirinnnnnnn. (274),
(Law II, circuit 4BC) oR +ayRy —Be=0 cvvvenninnn... (275),
(Law II, circuit BOD) 2Ry + @By — 2,Ro=0 ..oovveeen.... (276).

These four equations enable us to determine the ratios of the five currents
&, &, &, &, @y. We may begin by eliminating z, and z, from equations
(278), (274) and (276), and obtain
z, (B, + R, + B) + z,R, — 2, R, = 0,
and from this and equation (275),

Ty _ oy - &,
R\, ~R.R,” R,(R; + R,+ R) + R,R, R,(R,+ B, + R) + RiR,
ceereeennno(2TT).
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The ratios of the other currents can be written down from symmetry.

If the total current entering at A is denoted by X, we have X =z, + z,.
Thus if each of the fractions of equations (277) is denoted by 6,

X=0{(R +R,)(R,+ R)+ Ry (R, + R, + By + R)].....(278),

and this gives 8, and hence the actual values of the currents, in terms of the
total current entering at 4.

The fall of potential from 4 to D is given by
]Ci" I’D=Rla'1+szu
and from equations (277) this is found to reduce to

V; - I{D = xel
where

A= RxR: (Ra + Rc) + R9R4 (Ra =+ Rl) + Rb (RnRa + R-Rc + R: R4 + RzRa),

so that A is the sum of the products of the five resistances taken three at
a time, omitting the two products of the three resistances which meet at the

points B and C.

There is now a current X flowing through the network, and having a
fall of potential ¥V, — V5. Hence the equivalent resistance of the network
L-%
A
X
Y

X
A

TRAYRYR,+ R+ R, (B ¥ F,+ B+ RY
by equation (278).

IL  Telegraph wire with faults.

353. As a more complex example of the flow of electricity in a system
of linear conductors, we may exainine the case of a telegraph wire, in which
there are a number of connexions through which the current can leak to
earth, Such leaks are technically known as “faults.”

A F) Fo ) Fu-1 Fa

" [ Ty T

R, R, R: Ry R, Tr+1

Fia. 100.

Let AB be the wire, and let K, E, ... K, F, be the points on it at
which faults occur, the resistances through these faults being R,, R,,..
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Ra_., R,, and the resistances of the sections AFK, KE,... K, F, and F,B
being 7,, 7y, ... T, Tnya. Let the end B be supposed put to earth, and let the
current be supposed to be generated by a battery of which one terminal is
connected to A while the other end is to earth.

The equivalent resistance of the whole network of conductors from 4 to
earth can be found in a very simple way. Current arriving at F, from the
section K, ,F, passes to earth through two conductors arranged in parallel,
of which the resistances are R, and r,4,. Hence the resistance from F, to
earth ‘is

1
1,1’
Rn Tn41
and the resistance from F,_, to earth, through F,, is

rn+ -l—l—i— ........................... (279).
B Tun
Current reaching F,_, can, however, pass to earth by two paths, either
through the fault at F,_,, or past F,. These paths may be regarded as
arranged in parallel, their resistances being R,-, and expression (279)
respectively. Thus the equivalent resistance from F,_, is

1

1 1 :
EoT 1
L |
Rt

or, written as a continued fraction,
11 11
R +r+ B 4 rpy

We can continue in this way, until finally we find as the whole resistance

from A to earth,
e 1 L 1 1 1
VTRT 4+ B+ e+ B b e

If the currents or potentials are required, it will be found best to attack
the problem in a different manner.

Let V4, Vi, ¥, ... be the potentials at the points 4, F, E, ..., then, by
Obm’s Law,
I’;—x - I':

‘. ’
Vim Vo

Ta4r

» » ”» -I': through the fault = E .
R,

the current from F,_, to F,=

w n a HtoFy="—"47=
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Hence, by Kirchhoff’s first law,

'Vl— —K_.V'-I{+I_E=0’

Ty T+ R,
or VerPen = V(B 4+ 07 4+ 1) + Vit =0,

and from this and the system of similar equations, the potentials may be
found.

If all the R's are the same, and also all the »'s are the same, the equation
reduces to a difference equation with constant coefficients. These conditions
might arise approximately if the line were supported by a series of similar
imperfect insulators at equal distances apart. The difference equation is in
this case seen to be

K“—V.(‘-’+I%)+VH=0.

and if we put 1+ ;—R = cosh &,

the solution is known to be
Vi=Acoshsa+ Bsinhsa ......cooennnennnnnn. (280),

in which 4 and B are constants which must be determined from the
conditions at the ends of the line. For instance to express that the end B
is to earth, we have V,,, = 0, and therefore

d=~Btanh(n+1)a

III. Submarine cable imperfectly insulated.

354. If we pass to the limiting case of an infinite number of faults, we
have the analysis appropriate to a line from which there is leakage at every
point. The conditions now contemplated may be supposed to be realised in
a submarine cable in which, owing to the imperfection of the insulating
sheath, the current leaks through to the sea at every point.

The problem in this form can also be attacked by the methods of the
infinitesimal calculus. Let V be the potential at a distance & along the
cable, V' now being regarded as a continuous function of z. Let the
resistance of the cable be supposed to be R per unit length, then the re-
sistance from  to  + dz will be Rdz. The resistance of the insulation from
z to z + dw, being inversely proportional to dz, may be supposed to be a—i .

Let C be the current in the cable at the point «, so that the leak from
the cable between the points  and z + dz is — %——gda This leak is a current
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J

which flows through a resistance S with a fall of potential ¥. Hence by

dz
Ohm’s Law,
dac S
V=' - -&; dx ((—{_-Z-') Py

dC |4
or ?1;=—B; .............. ....u......uo---.(?gl).

Also, the full of potential along the cable from z to z +dz is — %’dz, the

current..is C, and the resistance is Rdz. Hence by Ohm’s Law,

v .
=T = Bl i (282),

l Eliminating C from equations (281) and (282), we find as the differential
equation satisfied by V,
4 (l .14 )= 14
dz\Rdz) 8~
If R and S have the same values at all points of the cable, the solution

of this equation is — —
V=4 coqh\/ﬁ-’v+ Bsinh\/{‘z-’”
5 S bv ¢

which is easily seen to be the limiting form assumed by equation (280).

GENERATION OF HEAT IN CONDUCTORS.
The Joule Effect.

38565. Let P, Q be any two points in a linear conduetor, let Vi, 17, be
the potentials at these points, B the resistance between them, and z the
current flowing from P to Q. Then, by Ohm’s Law,

Ve—=Vo=Rr.ovrveeeeniniriciannens ..(283).

In moving a sirgle unit of electricity from @ to P an amount of work is
done agninst the electric field equal to Vp— V3. Hence when a unit of
electricity passes from P to @, there is work done on it by the electric field
of amount V»—V;,. The energy represented by the work shews itself in
a heating of the conductor.

The electron theory gives a simple explanation of the mechanism of this transforma-
tion of energy. The electric forces do work on the electrons in driving them through the
field. The total kinetic energy of the electrons can, as we have seen (§ 345 a), be regarded
as made up of two parts, the energy of random motion and the encrgy of forward motion.
The work done by the electric field goes directly towards increasing this second part of
the kinetic energy of the electrons. But after a number of collisions the direction of the
velocity of forward motion is completely changed, and the energy of this motion has
become indistinguishable from the energy of the random motion of the electrons. Thus
the collisions are continually transforming forward motion into random motion, or what
is the same thing, into heat.
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We are supposing that # units of electricity pass per unit time from
P to Q. Hence the work done by the electric field per unit time within the
region PQ is z(Vp ~ V), and this again, by equation (283), is equal to Rz

Thus in unit time, the heat generated in the section PQ of the con-
ductor represents Rz* units of mechanical energy. Each unit of energy is

equal to %.units of heat, where J is the “mechanical equivalent of heat.”

Thus the number of heat-units developed in unit time in the conductor PQ
will be

It is important to notice that in this formula # and £ are measured in
electrostatic units. If the values of the resistance and current are given in
practical units, we must transform to electrostatic units before using formula
(284) .

Let the resistance of a conductor be R’ ohms, and let the current flowing through it

be # ampéres. Then, in electrostatic units, the values of the resistance £ and the current
Z are giveu by

RI
R=§;—10ﬁ and r=3x 10°7.

Thus the number of heat-units produced per unit time is
Rz (3x10%° _,
T ~gxiom, g B
and on substituting for J its value 4'2 x 107 in c.6.8.-centigrade units, this becomes
024 RS,

Generation of Heat a minimum.

856. In general the solution of any physical problem is arrived at by the
solution of a system of equations, the number of these equations being equal
to the number of unknown quantities in the problem. The condition that
any function in which these unknown quantities enter as variables shall be a
maximum or a minimum, is also arrived at by the solution of an equal
number of equations. If it is possible to discover a function of the unknown
quantities such that the two systems of equations become identical,—i.e. if
the equations which express that the function is a maximum or a minimurd
are the same as those which contain the solution of the physical problem—
then we may say that the solution of the problem is contained in the single
statement that the function in question is a maximum or a minimum,

Examples of functions which serve this purpose are not hard to find. In
§ 189, we proved that when an electrostatic systcm is in equilibrium, its
potential energy is a minimum. Thus the solution of any electrostatic
problem is contained in the single statement that the function which
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expresses the potential energy is a minimum. Again, the solution of any
dynamical problem is contained in the statement that the “action” is a
minimum, while in thermodynamics the equilibrium state of any system
can be expressed by the condition that the “entropy ” shall be a maximum.
It will now be shewn that the function which expresses the total rate of
generation of heat plays a similar r0le in the theory of steady electric
currents.

867. THEOREM. When a steady current flows through a network of
conductors in which no discontinuities of potential occur (and which, therefore,
contains no batteries), the currents are distributed tn such a way that the rate of
generation of heat in the network is a minimum, subject only to the conditions
imposed by Kirchhoff's first law; and conversely.

To prove this, let us select any closed circuit PQR ... P in the network,
and let the currents and resistances in the sections PQ, QR, ... be =z, «,, ...
and R,, R,,.... Let the currents and resistances in those sections of the net-
work which are not included in this closed circuit be denoted by a4, s, ...
and R,, Ry, .... Then the total rate of production of heat is

SRz2+ ZRZI eveeninninninieneeennen. (285).

A different arrangement of currents, and one moreover which does not
violate Kirchhoff’s first law, can be obtained in imagination by supposing all
the currents in the circuit PQR ... P increased by the same amount e. The
total rate of production of heat is now

2R, + 2R, (2, + €},

and this exceeds the actual rate of production of heat, as given by expression
(285), by
SR 2T+ €) .ivruniennnnnnn ceerennens (286).

Now if the original distribution of currents is that which actually occurs
in nature, then
2Rz =0,
by Kirchhoff’s second law. Thus the rate of production of heat, under the
new imaginary distribution of currents, exceeds that in the actual distribu-
tion by €'2R,, an essentially positive quantity.

The most general alteration which can be supposed made to the original
system of currents, consistently with Kirchhoff’s first law remaining satisfied,
will consist in superposing upon this system & number of currents flowing
in closed circuits in the network. One such current is typified by the
current ¢, already discussed. If we have any number of such currents, the
resulting increase in the rate of heat-production

=3R,(ty+ e+ +€'+... )~ 2Rz},
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where ¢, ¢, ¢, ... arc the additional currents flowing through the resistance
R,. As before this expression

=25Rz (e+ €+ +..)+ZR(e+€+e +... 0

=3R (e+€+e +...)
by Kirchhoff’s second law. This is an essentially positive quantity, so that
any alteration in the distribution of the currents increases the rate of heat-
production. In other words, the original distribution was that in which the
rate was a minimum,

To prove the converse it is sufficient to notice that if the rate of heat-
production is given to be a minimum, then expression (286) must vanish as
far as the first power of ¢, so that we have

SRz, =0,
and of course similar equations for all other possible closed circuits. These,

however, are known to be the equations which determine the actual dis-
tribution.

3568. THEOREM. When a system of steady currents flows through a net-
work of conductors of resistances R,, R,, ..., containing batteries of electromotive
forces E,, E,, ..., the currents &,, a,, ... are distributed in such a way that the
Jfunction

SRz~ 28E% ovieriiiiniiiinn cernen (287)
is @ minsmum, subject to the conditions tmposed by Kivchhoff’s first law; and
conversely.

As before, we can imagine the most general variation possible to consist
of the superposition of small currents ¢, €, ¢”, ... flowing in closed circuits.
The increase in the function (287) produced by this variation is

SR(x+e+€+..0—a] - 2ZE[(z+e+€+..)—a]
=2¢.(ZRzx - 2E)+ 26 (..) + ...
+EZR(e+€ + i (288).
1f the system of currents =, &, ... is the natural system, then the first line
of this expression vanishes by Kirchhoff's second law (cf. equations (270)),
and the increase in heat-production is the essentially positive quantity
SR(e+€+...)%,
shewing that the original value of function (287) must have been a minimum.
Conversely, if the original value of function (287) was given to be a

minimum, then expression (288) must vanish as far as first powers of ¢, ¢, ...,

so that we must have
SRx=E, etec,

shewing that the currents , ', ... must be the natural system of currents.



824 Steady Currents in Linear Conductors [cn. 1x

889. THEOREM. If two points A, B are connected by a network of con-
ductors, a decrease in the resistance of any one of these conductors will decrease
(or, in special cases, leave unaltered) the equivalent resistance from A to B.

Let # be the current flowing from A4 to B, R the equivalent resistance of
the network, and ¥V, — V; the fall of potential. The generation of heat per
unit time represents the energy set free by « units moving through a
potential-difference ¥, — V;,. Thus the rate of generation of heat is

: z (Vo= Vo),
or. since V, — V; = Rz, the rate of generation of heat will be Ra*

Let the resistance of any single conductor in the network be supposed
decreased from R, to R,, and let z, be the current originally flowing through
the network. If we imagine the currents to remain unaltered in spite of the
change in the resistance of this conductor, then there will be a decrease in
the rate of heat-production equal to (R, — R,) 2% The currents now flowing
are not the natural currents, but if we allow the current entering the network
to distribute itsclf in the natural way, there is, by § 857, a further decrease
in the rate of heat-production. Thus a decrease in the resistance of the
single conductor has resulted in a decrease in the natural rate of heat-
production.

If R, R’ are the equivalent résistances before and after the change, the
two rates of heat-production are Ra* and Rz We have proved that
R'a?< Ra?, so that R'< R, proving the theorem.

GENERAL THEORY OF A NETWORK,

360. In addition to depending on the resistances of the conductors, the
flow of currents through a network depends on the order in which the con-
ductors are connected together, but not on the geometrical shapes, positions
or distances of the conductors. Thus we can obtain the most general case of
flow through any network by considering a number of points 1, 2, ... n, con-
nected in pairs by conductors of general resistances which may be denoted by
Ry, Ry, .... If, in any special problem, any two points P, @ are not joined
by a conductor, we must simply suppose Rpq to be infinite. Discontinuities
of potential must not be excluded, so we shall suppose that in passing through
the conductor PQ, we pass over discontinuities of algebraic sum Epg. This
is the same as supposing that there are batteries in the arm PQ of total
electromotive force Epg. We shall suppose that the current flowing in PQ
from P to @ is «p, and shall denote the potentials at the points 1, 2, ... by
V.V, ..

The total fall of potential from P to Q is Vz— Vg, but of this an amount
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— Epq is contributed by discontinuities, so that the aggregate fall from P to
@ which arises from the steady potential gradient in conductors will be

Vo=Vo+ Epq
Hence, by Ohm’s Law,
Ka" .Pa + EPQ- quxm.

If we introduce a symbol Kpy to denote the conductivity RL , we have
e

the current given by
zP0=KPQ (K—.VQ + qu) --------------------- (289).

Suppose that currents X,, X, ... enter the system from outside at the
points 1, 2, ..., then we must have

Xi=zp+an+o+...,
since there is to be no accumulation of electricity at the point 1, and so on
for the points 2, 3, .... Substituting from equations (289) into the right
hand of this equation,
X, =K,(N-V.+ Eu) + K, (K“ Vi+ Ey) +...
=N (Eu+Kp+...)
~(KuVi+ KVt .. )+ K+ KB+ ooe crvvenennne. (290).

The symbol K, has so far had no meaning assigned to it. Let us use it
to denote — (K p; + Kps+ Kps+...); then equation (290) may be written in
the more concise form

Xi=— (KW, + KpVot o)+ KB+ KBy +... ... (291).

There are n equations of this type, but it is easily seen that they are not
all independent. For if we add corresponding members we obtain

X+ Xyt oot Xy=m %K(K,, + K+ oo+ Ki) + S8 (K poEpg + K op Eop).

The first term on the right vanishes on account of the meaning which has been
assigned to Ky, etc.; while the second term vanishes because Epg= — Lyp,
while Kpg= Kyp. Thus the equation reduces to

X+ X, +...+ X, =0,

which simply expresses that the total flow into the network is equal to the
total flow out of it, a condition which must be satisfied by X,, X,, ... X,, at
the outset. Thus we arrive at the conclusion that the equations of system
(291) are not independent.

This is as it should be, for if the equations were independent, we should have
n equations from which it would be possible to determine the values of ¥V, V,, ... in
terms of X;, X;, ...; whereas clearly from a knowledge of the currents entering the
network, we must be able to determine differences of potential only, and not absolute
values.
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To the right-hand side of equation (291), let us add the expression
(Bu+Kyu+... + Kin) Va,
of which the value is zero by the definition of K. The equation becomes
Ky (Vx"" Kz) + Kn(z‘ K) +oet Kl.u-l (Vn—u - n)
= - Xl + KnEu + KuEu"' vee + K]'Elﬂn
There are n equations of this type in all. Of these the first (n — 1) may
be regarded as a system of equations determining
‘ .Vl" Vf.l: K_v;u ceey Vn—:"K-

That these equations are independent will be seen & posteriors from the fact
that they enable us to determine the values of the n—1 independent

quantities
V=V V.-V ooty V= Vo

Solving these equations, we have

V-%
—Xl +KnEu +... +K1»E1m th Ku» veey Kl,n-l i
-X, +K,E, + .. + Ko By, Ko, K., cees K:.w—x

"Xn-1+Kn—1,1 nett oo+ Knyn n~1,m> Kn—!,sy Kn—),h ey Kn—l,n-l
Ku, KHr K:s, ey Kl n—1

Kn: Kmr Kﬁ: eeey Kﬁ,n—l

...................................................

Kn—l,h ](n—l,h Kn-),h ey Kn—!,n—x

The current flowing in conductor 1z follows at once from equation (289),
and the currents in the other conductors can be written down from
symmetry.

If we denote the determinant in the denominator of the foregoing

equation by A, and the minor of the term Kpg by Apq, we find that the
value of ¥,— ¥, can be expressed in the form

U-Tom (= Xi+ KBt oot KinB) 32

(= Xt BBt oot B B) 32 1o v (202),

361. Suppose first that the whole system of currents in the network is
produced by a current X entering at P and leaving at @, there being no
batteries in the network. Then all the E’s vanish, and all the X's vanish
except Xp and X, these being given by

XP-_—"—.quX-
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Equation (292) now becomes
V-Vi=—- x,4 PR X

K (Aql - API)»
so that V-V=(V-V)-F-%)
X
= = (Aq: - Aq’ API + Apg) ...... seseccscananae (293).

Replacing 1, 2 by P, @ and P, Q by 1, 2, we find that if a current X
enters the network at 1 and leaves it at 2, the fall of potential from P
to Q is

Vo= Vo= (Bap = Bgg— Dyp + Ayg)  verereeneene.(294),

and since A,, = A, it is clear that the right-hand members of equations
(293) and (294) are identical.

From this we have the theorem :

The potential-fall from A to B when unit current traverses the network
Jrom C to D dis the same as the potential-full from C to D when unit current
traverses the network from A to B.

362. Let it now be supposed that the whole How of current in the
network is produced by a battery of electromotive force £ placed in the
conductor PQ. We now take all the X’s equal to zero in equation (292)
and all the E’s equal to zero except £p, which we put equal to E, and
kg which we put equal to — E. We then have

V-V.= K,QEPQ +KQPL'QP

K ,.QI'J(APl _Ag).
Hence V-¥V= Erok F(A,., —~Ap— A +A8g) ceriniennnn. (295),
and, by equation (289), the current flowing in the arm 12 is
T = K"—‘!‘A:"—“E(Am — A= A+ Ao, (296).

This expression remains unaltered if we replace 1,2 by P, Q and I, () by
1, 2. From this we deduce the theorem:

The current which flows from A to B when an electromotive force E is
introduced tnto the urm CD of the network, is equal to the current which fows
from C to D when the same electromotive force is introduced into the
arm AB.



328 Steady Currents in Linear Conductors [oH. 1x

Conjugate Conductors.
863. The same expression occurs as a factor in the right-hand members
of each of the equations (293), (294), (295), and (296), namely,
Ap+Agp—Ag—Ap .(297).
If this expression vanishes, the two conductors 12 and PQ are said to be
“ conjugate.”
By -examining the form assumed by equations (298) to (296), when
expression (297) vanishes, we obtain the following theorems.
TueorREM 1. If the conductors AB and CD are conjugate, a current
entering at A and leaving at B will produce no current in CD. Similarly,
a current entering at C and leaving at D will produce no current in AB.

TrEOREM II. If the conductors AB and CD are comjugate, a baitery
tntroduced into the arm AB produces no current in CD. Similarly, a battery
sntroduced into the arm CD produces no current in AB.

As an illustration of two conductors which are conjugate, it may be
noticed that when the Wheatstone’s Bridge (§ 352) is in adjustment, the
conductors 4D and BC are conjugate.

Equations expressed in Symmetrical Form.
364. The determinant A is not in form a symmetric function of the
n points 1, 2, ..., n, so that equations and conditions which must necessarily
involve these n points symmetrically have not yet been expressed in
symmetrical form.
We have, for instance,
Anﬂ== i I{m» Ka: Ku, Ifa. eeey Ks.n—l ’
I;lh A’lﬂr Il'u, K‘h esey Kl,’l—l
I(n—x,n Kn—l.h Kn—x.u Kn—x,n, eeny I{ﬂ—l,w—l
m which the points which enter unsymmetrically are not only 1 and 8, but
also n. Similarly, we have
Ay=~' K, Kn, Ka, Koy, ey Kym |[s
Kt‘h Kz:n Ka: ](ﬂh AR Kl,ﬂ-l
Kw—l,h Kn-—l,h Kﬂ-ﬂ,b Kw—l,h erey Kl—l,ﬁ-l
8o that, on subtraction,
Au"‘Aug Kn, K', K-'.' Ku. K’. LYY Ifg‘u_]
th Kn. I(n"‘Ku» Kﬂb wesy Kt,ﬂ-—l

..................................................... saessssnsressne

K._j,n Kg..l'.- Kn_l,l'.' Kn-l,u I(w—l,l: seey I{ﬂ-l.l—l
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From the relation
KM+KH+000+KP.W—I+KP,1!=O ----- eesesennss (298),
it follows that the sum of all the terms in the first row of the above deter-
minant is equal to — K, ,, the sum of all the terms in the second row is equal
to — K, 4, and 80 on. Thus the equation may be replaced by
Au-Au"(" 1)" Km Ka: Ku, eeey Ks,»—u Kn.
K,, Ky, K., ceey K:.n—n Ka,s

I‘-’»—-l,h Kﬁ—l,m I(n—x,;, eesy K”-.‘."_‘, Kn—l.’l
and similarly,
An"‘Au"(— l)ﬂ.1 K, Ky, I, veey Kx,n
Kllv Ka:y Ku. veey K,'n

Kn—m; Kn—x.u Kn—i.u sery Kn—-:,u

These two determinants differ only in their first row, so that on sub-
traction,
(Au"Au)“(An"Au)
=(-1)*| K+ Ky, Ko+ Ky, Ky+ Ky o) Bint+Kyn
K, Iy, K, ver, Kyn

.................................................................
.
Kn—l,h I(ﬂ—l,” -Iln—l.a, eeey I(n—l.n

bl I(n, Kn; Kﬂ: caey Ka,u

Koy, Kaayss Kprsy ooy Kpsin
Kn,h I(n.s: I(n.n ey K!I,ﬂ
the last transformation being effected by the use of relation (298).
The relation which has now been obtained is in a symmetrical shape. If
D is a symmetrical determinant given by
.D = l I(", K", I(u, weo, I"l,ﬂ
Ifn» KH» Kﬂ; sesy Ka,u

I(n,n Kn,a' Kn,;, asey If,.',,
then the determinant on the right-hand of equation (299) is obtained from
D by striking out the lines and columns which contain the terms K, and K,..
Thus equation (299) may be written in the form

Au+Au-As-Au=af%;-
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Again the determinant A given by
A=| K,, K, K, veey K:.n-l
Kﬁl: Kn: K‘ur seey Ks.n—x

Kn—l,!’ Kn—).:. K‘n—l,h eeey Kﬂ—-l n—r
may be written in the form

.(800)

oD
0K, n'

This is not of symmetrical form, for the point n enters unsymmetrically.
We can, however, easily shew that the value of A is symmetrical, although its
form is unsymmetrical.

A=

By application of relation (298), we can transform equation (300) into
A= "Kn,h -Kn,m "‘Kn,s, coey _Kn,n—l
K., Ko, K, . ]\’2‘,,_,
Kn-:,n I(n—x.'n ]"n—x.a, seey Kn—-),n-l
(-1 Kn, Koy, Ky, vory Kon

................................................

- . - -
131»—1,1, An—x,:-; Iln—l,s: veey ]\n—l.n-x

K»,x; -I(n,z’ ](n,s» weey Ifn,n—-x

>
= Kn: Kn, “eey ](2.71-1; I".'n

I\’n-l,m ]"'Il,—l,Sy seey ](ﬂ—l,ﬂ-h ](n—ln
Ensy  Kng oo Knneis Koa
_0oD
0K,
Thus A 1s she differential coefficient of D with respect to either K, or
K, », or of course with respect to any other one of the terms in the leading
diagonal of D. Thus, if K denote any term in the leading diagonal of D,

we have
oD

R

and this virtually expresses A in a symuetrical form.

A=

We can now express in symmetrical form the relations which have been
obtained in § 360 to 362, as follows:

I (§362.) The conducturs 1,2 and P, Q will be conjugate if

_@#
SR oK,
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II. (Equation 293.) If the conductors 1, 2 and P, Q are not conjugate,
a current X entering at P and leaving at Q produces in 1, 2 a fall of
potential given by
>#D

V-V=—X ?_Iﬁ%'%ﬂa,
oK
III. (Equation 295.) If the conductors 1, 2 and P, Q are not conjugate,
a battery of electromotive force E placed in the arm PQ produces in 1,2 a fall

of potential given by
D

- K=quEa"T"2)K*-9.

oK
and a current from 1 to 2 given by
K Ko, 0D
PP K, 20K,
&g = E . -9 -
oD
oK
All these results and formulse obtain illustration in the results already

obtained for the Wheatstone's Bridge in §§ 351 and 852.

SLOWLY-VARYING CURRENTS.

865. All the analysis of the present chapter has proceeded upon the
assumption that the currents are absolutely steady, shewing no variation
with the time. Changes in the strength of electric currents are in general
accompanied by a series of phenomena, which may be spoken of as
“induction phenomena,” of which the discussion is beyond the scope of the
present chapter. If, however, the rate of change of the strength of the
currents is very small, the importance of the induction phenomena also
becomes very small, so that if the variation of the currents is slow, the
analysis of the present chapter will give a elose approximation to the truth.
This method of dealing with slowly-varying currents will be illustrated by
two examples.

L Discharge of a Condenser through a high Resistance.

366. Let the two plates 4, B of a condenser of capacity C be connected
by a conductor of high resistance R, and let the condenser be discharged by
leakage through this conductor. At any instant let the potentials of the two
plates be V,, V3, so that the charges on these plates will be + C(V, - F3).
Let ¢ be the current in the conductor, measured in the direction from 4 to B.
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Then, by Ohm’s Law,
Vi—Vp=Ri,
whence we find that the charges on plates 4 and B are respectively + CR:
and — CRi. Since 4 units leave plate 4 per unit time, we must have

d . .
7; (OB =~1,

a differential equation of which the solution is
' -t
{=ie CR,
where 1, is the current at time ¢=0. The condition that the strength of

"the current shall only vary slowly is now seen d posteriori to be that CR
shall be large.

At time ¢ the charge on the plate 4 is CRs or

12
CRije” CR,
This may be written as
t
Qﬂe-ﬁz )
where @, is the charge at time ¢=0. Thus both the charge and the current

are seen to full off exponentially with the time, both having the same modulus
of decay CR.

Later (§ 516) we shall examine the same problem but without the limita-
tion that the current only varies slowly.

II. Transmission of Signals along a Cable.

867. It has already been mentioned that a cable acts as an clectrostatic
condenser of considerable capacity. This fact retards the transmission of
signals, and in a cable of high-capacity, the rate of transmission may be so
slow that the analysis of the present chapter can be used without serious
error.

Let = be a coordinate which measures distances along the cable, let V, ¢
be the potential at z and the current in the direction of z-increasing, and let
K and R be the capacity and resistance of the cable per unit length, these
latter quantities being supposed independent of z.

The section of the cable between points A4 and B at distances z and
& +d« is a condenser of capacity Kdz, and is at the same time a conductor
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of resistance Rdz. The potential of the condenser is ¥; 5o that its charge is
VKdz. The fall of potential in the conductor is

Vi-Tp=-2 de,
so that by Ohm’s Law,

The current enters the section 4B at a rate ¢ units per unit time, and
leaves at a rate of 7+ g:—) dz units per unit time. Hence the charge in this

section decreases at a rate g—;dz per unit time, so that we must have

2 o
3% (VKdz) = — % /R (302).
Eliminating ¢ from equations (301) and (302), we obtain
oV oV
—a:c? = I(R ﬁ- .............................. (303).

368. This equation, being & partial differential equation of the second
order, must have two arbitrary functions in its complete solution. We shall
shew, however, that there is a particular solution in which ¥ is a function of
the single variable «/+/¢, and this solution will be found to give us all the
information we require.

Let us introduce the new variable u, given by u =z/v/t, and let us assume
provisionally that there is a solution V" of equation (803) which is a function
of w only. For this solution we must have

oV _1av
%
oV _dVou z dV
BT T
so that equation (303) becomes

av v dV
@ KR (-4 5 5)
S < LA, (304).

The fact that this equation involves V' and u only, shews that there is an
integral of the original equation for which V is a function of « only. This
integral is easily obtained, for equation (304) can be put in the form

d av
1 (10855 ) =~ 4K Ry,

whence %Z = (e~ tER&
w

in which C is a constant of integration.



384 Steady Currents in Linear Conductors [on. 1x

Integrating this, we find that the solution for V is
V=Cfue'*KR"’du,

in which the lower limit to the integral is a second constant of integration.
Introducing a new variable y such that y*= }KRu’ and changing the
constants of integration, we may write the solution in the form

y= iz ~ER]t
V-V+0 f 6Py o, (305).

369. We must remember that this is not the general solution of equa-
tion (303), but is simply one particular solution. Thus the solution cannot
be adjusted to satisfy any initial and boundary conditions we please, but will
represent only the solution corresponding to one definite set of initial and
boundary conditions. We now proceed to examine what these conditions are.

At time £=0, the value of z/4/¢ is infinite except at the pomnt z=0.
Thus except at this point, we have V=TV, when t=0. At this point the
value of z/y/t is indeterminate at the actual instant ¢ =0, but immediately
after this instant assumes the value zero, which it retains through all time.
Thus at =0, the potential has the constant value

V=V+ 0'f°e'y”dg,

or, say, V="V, where ' ="/,

At z=o0, the value of V' is V=TV, through all time.

Thus equation (305) expresses the solution for a line of infinite length
which is initially at potential V' =¥, and of which the end 2= % remains at
this potential all the time, while the end #=0 is raised to potential ¥ by
being suddenly connected to a battery-terminal at the instant ¢ =0.

The current at a.ny instant is given by

T=— R 5— , from equation (301),
1 KRaz2
- —% -12- _l_(ile 4t , from equation (805),
T _Ene
= (K— m ,\/me T (306)

We see that the current vanishes only when 6=0 and when {=
Thus even within an infinitesimal time of making contact, there will,
according to equation (306), be a current at all points along the wire. It
must, however, be remembered that equation (306) is only an approxima-
tion, holding solely for slowly-varying currents, so that we must not apply
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the solution at the instant ¢t =0 at which the currents, as given by equation
(306), vary with infinite rapidity. For larger values of ¢, however, we may
suppose the current given by equation (306).

The maximum current at any point is found, on differentiating equation
(306), to occur at the instant given by
t=3KRE cccevrrrierereneenreaennns(307),

so that the further along thc wire we go, the longer it takes for the current
to attain its maximum value. The maximum value of this current, when it

occurs, 1s
2 -
(V—— K)\/me i .....................--.(308),
1

and so is proportional to 7 Thus the further we go from the end #=0, the

smaller the maximum current will be.

We notice that K occurs in expression (807) but not in (808). Thus the
electrostatic capacity of a cable will not interfere with the strength of signals
sent along a cable, but will interfere with the rapidity of their transmission.

Equation (307) expresses what is commonly called the “A R law”—the
retarding effect is proportional to the product of K and R. The theory just
developed is commonly spoken of as the Electrostatic Theory of propagation
of signals. It was first given by Lord Kelvin in 1855 in a paper® which is
notable as having established the theoretical feasibility of an Atlantic cable.

We shall discuss in a later chapter the more general problem of the trans-
mission of signals along a wire of any kind. It will then be possible to
estimate the degree of error involved in the simple assumptions of the
Electrostatic Theory.

EXAMPLES.

1. A length 4a of uniform wire is bent into the form of a square, and the opposite
angular points are joined with straight pieces of the same wire, which are in contact
at their intersection. A given current enters at the intersection of the diagonals and
leaves at an angular point : find the current strength in the various parts of the network,
and shew that its whole resistance is equal to that of a length

a2
W2 +1

of the wire.

2. A petwork is formed of uniform wire in the shape of a rectangle of sides 2a, 3a,
with parallel wires arranged o as to divide the internal space into six squares of siles a,
the contact at points of intersection being perfeot. Shew that if a ourrent enter the
framework by one corner and leave it by the opposite, the resistance is equivaleat to that
of a length 121a/69 of the wire.

* «On the Theory of the Eleotric Telegraph,” Proc. Roy. Soc. 1855,
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8. A fanlt of given earth-resistance develops in a telegraph line. Prove that the
current at the receiving end, generated by an assigned battery at the signalling end, is
least when the fault is at the middle of the line.

4. The resistances of three wires BC, C4, AB, of the same uniform section and
material, are a, b, ¢ respectivcly. Aunother wire from 4 of constant resistance d can make
a sliding contact with BC. If a current enter at 4 and leave at the point of contact
with BC, shew that the maximum resistance of the network is

(a+b+c)d
a+b+e+dd’

and determine the least resistance.

5. A certain kind of cell has a resistance of 10 ohms and an clectromotive force of
-85 of a volt. Shew that the greatest current which can be produced in a wire whose
resistance is 225 ohws, by a battery of five such cells arranged in a single series, of
which any element is either one cell or a set of cells in parallel, is exactly ‘06 of an
ampere.

8. Six points 4, 4', B, B', C, C" are connected to one another by copper wire whose
lengths in yards are as follows: Ad'=16, BC=B'C=1, BC'=B'C"=2, AB=A'B'=6,
AC'=A4'C"=8. Also B and B’ are joined by wires, each a yard in length, to the terminals
of a battery whose internal resistance is equal to that of r yards of the wire, and all the
wires are of the same thickness. Shew that the current in the wire 44’ is equal to that
which the battery would mawtain in & simple circuit consisting of 31r+104 yards of
the wire.

7. Two places 4, B are connected by a telegraph line of which the end at 4 is
connected to one terminal of a battery, and the end at B to one terminal of a receiver,
the other terminals of the battery and receiver being connected to earth. At a point
of the line a fault is developed, of which the resistance is 7. If the resistances of AC, CB
be p, g respectively, shew that the current in the receiver is diminished in the ratio

r(p+q) : gr+rp+py
the resistances of the battery, receiver and earth circuit being neglected.

8. Two cells of electromotive forces e,, ¢, and resistances ry, r, are connected in
parallel to the ends of a wire of resistance R. Shew that the current in the wire is
ers+ ey
flﬂ +"gli +ryg '
and find the rates at which the cells are working.

9. A network of conductors is in the form of a tetrahedron PQRS; there is a battery
of electromotive force £ in P@, and the resistance of P@, including the battery, is &,
If the resistances in @12, RP are each equal to r, and the resistances in PS, 22§ are each
equal to 3, and that in @S=§r, find the current in each branch.

10. 4, B, C, D are the four junction points of & Wheatstone’s Bridge, and the
resistances ¢, 8, b, y in AB, BD, AC, CD respectively are such that the battery sends no
current through the galvanometer in BC. If now a new battery of electromotive force £
be introduced into the galvanometer circuit, and so raise the total resistance in that
circuit to @, find the current that will flow through the galvanometer.

11. A cable 4B, 50 miles in length, is known to have one fault, and it is necessary to
localise it. If the end A is attached to a battery, and has its potential maintained
at 200 volts, while the other end B is insulated, it is found that the potential of B when
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steady is 40 volts. Similarly when 4 is insulated the potential to which B must be raised
to give 4 a steady potential of 40 volts is 300 volts. Shew that the distance of the fault
from 4 is 19°05 milea.

12. A wire is interpolated in a circuit of given resistance and electromotive force.
Find tho resistance of the iuterpolated wire in order that the rate of generation of heat
may be a maximum,

13. The resistances of the opposite sides of a Wheatstone’s Bridge are a, a’ and b, &’
respectively, Shew that when the two diagonals which contain the battery and galvauo-

meter are interchanged,
E_E_@-a)0-¥)(@-B)
c T ad = bb'
where € and € are the currents through the galvanometer in the two cases, @ and R aro
the resistances of the galvanometer and battery conductors, and X the electromotive force

of the battery.

14 A current C is introduced into a network of linear conductors at A4, and taken
out at B, the heat generated being Z,;. If the network be closed by joining 4, B by a
resistance r in which an electromotive force £ is inserted, the heat gemerated is 4/;.
Prove that

H] 1‘”2
oxt I

15. A number N of incandescent lamps, each of resistance r, are fed by a machine of
resistance R (including the leads). If the light emitted by any lamp is proportional to
the square of the heat produced, prove that the most economical way of arranging the
lamps is to place them in parallel arc, each arc containing » lamps, where n is the integer
nearest to A/ 2\7(7;.

16. A bLattery of electromotive force £ and of resistance B is connected with the two
terminals of two wires arranged in parallel. The first wire includes a voltameter which
contains discontinuities of potential such that a unit current passing through it for a
unit time does p units of work. The resistance of the first wire, including the voltameter,
is R: that of the second is r. Shew that if £ is greater than p (B+r)/r, the current
through the battery is

=L

LZ(R+r)~-pr
¥ B+

17. A system of 30 conductors of equal resistance are connected in the same way as
the edgoes of a dodecahedron. Shew that the resistance of the network between a pair of
opposite corners is § of the resistance of a single conductor.

18. In a network P4, PB, PC. PD, AB, BC, (D, DA, the resistances are a, 8, v, 8,
y+3, 8+4a,a+B, B+y respectively. Shew that, if 4D contains a battery of electromotive

force E, the current in BC is Pla8iyd). B
aB+y0).
et

where P=a+B+y+3, @=By+yataB+ad+pd+yd
19. A wire forms a regular hexagon and the angular points are joined to the centre
by wires each of which has & resistance ;l-' of the resistance of a side of the hexagon,
Shew that the resistance to a current entering at one angular paint of the hexagon and
leaving it by the opposite point is 2(n43)
(n+1)(n+4)
times the resistance of a side of the hexagon.
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20. Two long equal parallel wires 4B, A'B’, of length [, have their ends B, B’ joined
by a wire of negligible resistance, while 4, A’ are joined to the poles of & cell whose
resistance is equal to that of a length 7 of the wire. A similar cell is placed as a bridge
across the wires at a distance # from 4, 4. Shew that the effect of the second cell is to
increase the current in BB’ in the ratio

2 (2+r) (z+1)/{r (4 +7)+ 22 (20 —r) - 42%).

21. There are # points 1, 2,... 2, joined in pairs by linear conductors. On introducing
a current C at electrode 1 and taking it out at 2, the potentials of these are V;, V,, ... V,.
If 214 is the actual current in the direction 12, and 2,4’ any other that merely satisfies the
conditions of introduction at 1 and abstraction at 2, shew that

2 (reziazi) = (V1= Vo) C=2 (rpmg?),
and interpret the result physically.
If z typify the actual current when the current enters at 1 and leaves at 2, and y
typify the actual current when the current enters at 3 and leaves at 4, shew that
2 (remieing) =(X3— Xy C=(Y,- ¥y) (|

where the X’s are potentials corrcsponding to currents z, and the Y’s are potentials
corresponding to currents y.

22. A, B, C are three stations on the same telegraph wire. An operator at 4 knows
that there is a fault between 4 and B, and observes that the current at 4 when he uses a
given battery is i, ¢ or ¢, according as B is insulated and C to earth, B to earth, or B
and C both insulated. Shew that the distance of the fault from 4 is

{ka — Kb+ (b - a)t (ka - ¥b)} (k- k),

nd i
T =
‘_‘II, 1’-1‘"‘

where AB=a, BC=b-a, k=

23. 8ix conductors join four points 4, B, C, D in pairs, and have resistances
a, a, b, B, ¢, v, where a, a refer to BC, AD respectively, and so on. If this network
be used as a resistance coil, with 4, B as electrodes, shew that the resistance cuunot
lie outside the limits

[§+ﬁz+ﬁf3]_l - B” {(§+%)~*+ G+ %),}],

24. Two equal straight picces of wire dodya, ByB, are each divided into « equal parts
at the points 4, ... 44—, and B;... B,_; respectively, the resistance of each part and
that of 4,8, being R. The corresponding points of each wire from 1 to = inclusive
are joined by cross wires, and a battery is placed in 4¢B,. Shew that, if the current
through each cross wire is the same, the resistance of the cross wire 4,8, is

{(n-8)+(n-8)+1} R.

25. If n points are joined two and two by wires of equal resistance r, and two of
them are connected to the electrodes of a battery of electromotive force & and resistance
R, shew that the current in the wire joining the two points is

2E
U +nR’

26. Six points 4, B, C, D, P, @ are joined by nine conductors 4B, AP, BC, B9, P,
QC, PD, DC, AD. An electromotive force is inserted in the conductor 4D, and a
galvanometer in PQ. Denoting the resistance of any conductor X¥ by ryy, shew that
if no current passes through the galvanometer,

(rBo+7Bg+70q) (TaBTDP ~T4PTDO)+"B0 (TBQTDP — T 4pTcq) =0h
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27. A network is made by joining the five points 1, 2, 3, 4, 5 by conductors in every
possible way. Shew that the condition that conductors 23 and 14 are conjugate is
(Krs+ K5 + Kas+ Kys) (K128 — K13 K 24)
=Ko (KssBrg~ Ky K1) + K3 (K pu Ky — Ksalira),

where &, is conductivity of conductor rs.

28. Two endless wires are each divided into mn equal parts by the successive
terminals of mn connecting wires, the resistance of each part being R. There is an
identically similar battery in every mth counecting wire, the total resistance of each
being the same, and the resistance of each of the other mn—n connecting wires is A.
Prove that the current through a connecting wire which is the rth from the nearest
battery is

4C (1 - tan a) (tan® a4 tan™ =" a)/(tan « — tan™ a),
where C is the current through each battery, and sin 2a=2%/(k+R).

29. A long line of telegraph wire 4.1;d,... 4,4, is supported by n equidistant
insulators at 4,, 4,,... 4,. The end 4 is connected to one pole of a battery of electro-
motive force & and resistance B, and the other pole of this battery is put to earth, as
also the other end A,,, of the wire. The resistance of each portion Ad;, d,ds, ...
Apdpyq is the same, B In wet weather there is a leakage to carth at cach insulator,
whose resistance may be taken equal to 7. Shew that the current strength in d,4,, is

Ecosh(2n—2p+1)a
Bcosh (2n+1)a+4/Ttr sinh (2n42) a’

where 2sinh a=+/Z]r.

30. A regular polygon 4,4,... 4, is formed of n pieces of uniform wire, each of
resistance o, and the centre O is joined to each angular point by a straight piece of the
same wire. Shew that, if the point O is maintained at zero potential, and the point 4,
at potential ¥, the current that flows in the conductor 4,4, ,, is

2Vsinh asinh(n~2r41)a
o cosh na

b
where a is given by the equation

cosh 2a=1+sin ’:' .

81. A resistance network is constructed of 2n rectangular meshes forming a truncated
cylinder of 2n faces, with two ends each in the form of a regular polygon of 2n sides.
Each of these sides is of resistance r, and the other edges of resistance K. If the
electrodes be two opposite corners, then the resistance is

tanh 8
vy R

inh2e=
where sinh?4 3B

32. A network is formed by a system of conductors joining every pair of a set of
n points, the resistances of the conductors being all equal, and there is an electromotive
force in the conductor joining the points 4,, 4. Shew that there is no current in any
couductor except those which pass through 4, or 4., and find the current in these
conductors.
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33. Each member of the series of # points 4;, 4, ... 4, i8 united to its successor
by a wire of resistance p, and similarly for the series of n points B,, By,... B,. Each
pair of points corrcsponding in the two series, such as 4, and B,, is united by a wire
of resistance B A steady cwirent ¢ enters the network at 4; and leaves it at B,. Shew
that the current at 4, divides itself between 4,45 and 4,B, in the ratio

sinh a+4sinh (n 1) a+sioh (n—2) a : sinh a+8inh (# ~1)a-sivh (n~2) q,

whero cosh a-li;f .
(7

84, An underground cable of length a is badly insulated so that it has faults
throughout its length indefinitcly near to one another and uniformly distributed. The
conductivity of the faults is 1/p’ per unit length of cable, and the resistance of the
cable is p per unit length, One pole of & battery is connected to one end of a cable
and the other pole is earthed. Prove that the current at the farther end is the same
as if the cable were free from faults and of total resistance

ps' sinh (a \/ g,)

35. Two parallel conducting wires at unit distance are connected by n+1 cross pieces
of the same wire, 80 a8 to form n squares. A current enters by an outer corner of the
first square, and leaves by the diagonally opposite corner of the last. Shew that, if
the resistance is that of a length §n+ay of the wire,
ot}

ﬂbt|=0‘+2'

36. 4, B are the ends of a long tclegraph wire with a number of faults, and C is
an intermediate point on the wire. The resistance to a current sent from 4 is R when
C is earth connected, but if C is not earth connected the resistance is § or 7' according
a3 the end B is to earth or insulated. If R', §’, 7" denote the resistances under similar
circumstances when & current is sent from B towards 4, shew that

7' (R-8)=R'(&-T).

37. The inner plates of two condensers of capacities C, (" are joined by wires of
resistances R, R’ to a point P, and their outer plates by wires of negligible resistance
to & point @. If the inner plates be also connected through a galvanometer, shew that
the needle will sufier no sudden deflection on joining P, @ to the poles of a battery,
if Ck=C'R",

38. An infinite cable of capacity and resistance K and R per unit length is at zero
potential. At the instant =0 one end is suddenly connected to a battery for an
infinitesimal interval and then insulated. Shew that, except for very small values of ¢,
the potential at any instani at a distance z from this end of the cable will be pro-

portional to
1 _KRa

:/;“T.



CHAPTER X
STEADY CURRENTS IN CONTINUOUS MEDIA

Components of Current.

370. 1IN the present chapter we shall consider steady currents of elec-
tricity floving through continuous two- and three-dimensional conductors
instead of through systems of linear conductors.

We can find the direction of flow at any point P in a conductor by
imagining that we take a small plane of area d§ and turn it about at the
point P until we find the position in which the amount of electricity crossing
it per unit time is a maximum. The normal to the plane when in this
position will give the direction of the current at P, and if the total amount
of electricity crossing this plane per unit time when in this position is Cd¥,
then C may be defined to be the strength of the current at P.

If I, m, n are the dircction-cosines of the direction of the current at P,
then the current C' may be treated as the superposition of three currents
IC, mC, nC parallel to the axes. To prove this we nced only notice that the
flow across an arca dS of which the normal makes an angle 8 with the dirce-
tion of the current, and has direction-cosines ¥, m/, #’, must be CUS cous 8, or

CdS (U + mm’ 4 an’).
The first term of this expression may be regarded as the contribution from

a current [C parallel to the axis Oz, and so on. The quantities {C, mC, n('
are called the components of the current at the point 2.

Lines and Tubes of Flow.

871. DEFINITION. 4 line of flow is a line drawn in a conductor such
that ut every point its tangent is tn the direction of the current at the point.

DerINiTION. 4 tube of flow s a tubular region of infinitesimal cross-
section, bounded by lines of fluw.
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It is clear that at every point on the surface of a tube of flow, the current
is tangential to the surface. Thus no current crosses the boundary of a tube
of flow, from which it follows that the aggregate current flowing across all
cross-sections of a tube of flow will be the same.

The amount of this current will be called the strength of the tube.

Thus if € is the current at any point of a tube of flow, and if & is the
cross-section of the tube at that point, then Cw is constant throughout the
length of the tube, and is equal to the strength of the tube.

There is an obvious analogy between tubes of flow in current electricity and tubes
of force in statical electricity, the current C corresponding to the polarisation P.
In current electricity, Cw is constant and cqual to the strength of the tube of flow,
" while in statical elcctricity Pw is constant and equal to the strength of the tube of force
(§ 129).

Specific Resistance.

372. The specific resistance of a substance is defined to be the resistance
of a cube of unit edge of the substance, the current entering by a perfectly
conducting electrode which extends over the whole of one face, and leaving
by a similar electrode on the opposite face.

The specific resistances of some sulistances of which conductors and insulators are

frequently made are given in the following table. The units are the centimetre and
the ohm.

Silver at 18°C. ... s 166 x 10~¢, Graphite 0-003.

Copper at 18°C. ... 178 x 1076, Guttapercha ... 2x 109,
Iron (pure) at 50°C. ... 115x1078. Glass (soda-lime) ... 5x 101,
Steel at 18°C. ... 199 x 108, » (pyrex) ... 104,
Mercury at 0°C. ... e 94°07x 1078, Parafin wax ... .. .. 3x108,

If = is the specific resistance of any substance, the resistance of a wire

of length ! and cross-section 8 will clearly be l‘;

Ohm’s Law.

373. In a conductor in which a current is flowing, different points
will, in general, be at different potcntials, Thus there will be a system
of equipotentials and of lines of force inside a conductor similar to those
in an electrostatic field. It is found, as an experimental fact, that in a
homogeneous conductor, the lines of tlow coincide with the lines of force—
or, in other words, the elcctricity at every point moves in the direction of
the forces acting on it.

In considering the motion of material particles in general it is not usually true that the
motion of the particles is in the direction of the forces acting upon them. The velocity
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of a particle at the end of any small interval of time is compounded of the velocity at
the beginning of the interval together with the velocity generated during the interval
The latter velocity is in the direction of the forces acting on the particle, but is generally
insignificant in comparison with the original velocity of the particle. In the particular
case in which the original velocity of the particle was very small, the direction of motion
at the end of a small interval will be that of the furce acting on the particle. If the
purticle moves in a resisting medium, it may be that the velocity of the particle is kept
permanently very small by the resistance of the medium: n this case the direction of
motion of the particle at every jnstant, relatively to the medium, may be that of the
forees acting on it.

On the modern view of electricity, a current of clectricity is composed of electrons
which are driven through a conductor by the electric forces acting on them, and in
their motion experience frequent collisions with the inolecules of the conductor. The
eflect of these collisions is coutinually to check the forward velocity of the electrons, so
that this forward velocity is kept smull just as if they were moving through a resisting
medium of the ordinary kind, and so it comes about that the direction of flow of current
is in the direction of the electric intensity (cf. § 345 «).

374. Let us sclect any tube of force of small cross-section inside a
conductor, and let P, Q be any two points on this tube of force, at which
the potentials are ¥V, and V¥, the former being the greater. Let these
puints be so near together that throughout the range PQ the cross-section
of the tube of force may be supposed to have a constant value w, while the
specific resistance of the material of the conductor may be supposed to
have a constant value 7.

From what has been said in § 373, it follows that the tube of force under
consideration is also a tube of flow. If C denotes the current, then the
current flowing through this tube of flow in the direction from P to @
will be Cw. This current may, within the range P(), be regarded as flowing
through a conductor of cross-section @ and of spccific resistance . The

PQ.r

resistance of this conductor from P to @ is accordingly o while the fall

of potential is ¥, — ¥,. Thus by Ohm’s Law
PQ.r

r 1
Vo= Vo = x Co,

V-V,

so that “T0 =Cr.

If 6% denotes differentiation along the tube of force, the fraction on the
left of the foregoing equation reduces, when P and Q are made to coincide,

to — %—l—: , 50 that the equation assumes the form

_%L o (309).

8
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Let I, m, n be the direction-cosines of the line of flow at P, and let , v, w
be the components of the current at P, 8o that =10, etc. Then

oV _ oV
5‘;=l—a—8— ""ZOT-—W, etc..
and we see that equation (309) is equivalent to the three equations
_lav
T oz
19V
A S N .«(310).
v T 0y (310)
w=—12
T roz

These equations express Ohm’s Law in a form appropriate to flow through
a solid conductor,

Lyuation of Continuity,

375. Since we are supposing the currents to be steady, the amount of
current which flows into any closed region must be exactly equal to the
amount which flows out. This can be expressed by saying that the integral
algebraic flow into any closed region must be nil.

Let any closcd surface S be taken entirely inside a conductor. Let I, m, n
be the dircction-cosines of the inward normal to any element dS of this
surface, and let u, v, w be the components of current at this point. Then
the normal component of flow across the elcment dS is lu + mv + nw, and the -
condition that the integral algebraic flow across the surface S shall be nil is
expressed by the equation

f (Tu+ mv + nw) dS =0,

By Green’s Theorem (§ 176), this equation may be transformed into

[ 3;’ %) dedyds =0,

and since this integral has to vanish, whatever the region through which it is
taken, each integrand must vanish separately. Hence at every point inside
the conductor, we must have

8u ow
a—; a?/ + 5z =0 iererirniiieiicienee (311).
This is the so-called “equation of continuity,” expressing that no elec-
tricity is created or destroyed or allowed to accumulate during the passage
of a steady current through a conductor.
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The same equation can be obtained at once on considering the current-
flow across the different faces of a small rectangular parallelepiped of edges
da, dy, de (cf. § 49).

Equation (811) of course expresses that the vector © of which the
components are u, v, w, must be solenoidal. The equation of continuity
can accordingly be expymssed in the form

dive =0,

Equation satisfied by the Potential.

378. On substituting in equation (811) the values for u, v, w given by
equations (310), we obtain
9 13V 9 /12V\ @ /131
‘a'i(;—a-z')+@(;'5"}-)+5;<;-a?)=o ............ (312).
The potential must accordingly be a solution of this differential equation.
The equation is the same as would be satisfied by the potential in an
uncharged dielectric in an electrostatic field, provided the inductive capacity

at every point is proportional to % If the specific resistance of the con-

ductor is the same throughout, the differential equation to be satisfied by
the potential reduces to
ViV =0.

377. We may for convenience suppose that the current enters and leaves
by perfectly conducting electrodes, and that the conductor through which the
current flows is bounded, except at the electrodes, by perfect insulators. Then,
over the surface of contact between the conductor and the electrodes, the
potential will be constant. Over the remaining boundaries of the conductor,
the condition to be satisfied is that there shall be no flow of current, and this

is expressed mathematically by the condition that %%7 shall vanish,

Thus the problem of determining the current-flow in a conductor amounts
machematically to determining a function ¥ such that equation (312) is satis-

fied throughout the volume of the conductor, while either %:L—’ =0, or else V has

a specified value, at each point on the boundary. By the method uscd in § 188,
it is easily shewn that the solution of this problem is unique.

It is only in a very few simple cases that an exact solution of the problem
can be obtained. There are, however, various artifices by which approxima-
tions can be reached, and various ways of regarding the problem from which it
may be possible to form some ideas of the physical processes which defermine
the nature of the flow in a conductor. Some of these will be discussed later
(§ 386—394). At present we consider general characteristics of the flow of
currents through conductors.
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CONDITIONS TO BE SATISFIED AT THE BOUNDARY OF TWO
CoxpucriNg MEDIA.
378. The conditions to be satisticd at a boundary at which the current
flows from one conductor to another are as follows:
(i) Since there must be no accumulation of electricity at the boundary,
the normal flow across the boundary must be the sainec whether calculated in

the first medium or the sccond. In other words
' 10V .
— -—- must be continuous,
T Ol

where a% denotes differentiation along the normal to the boundary.

(ii) The tangentia force must be continuous, or else the potential would
not be continuous. Thus

oV .
7 must be continuous,

where (% denotes differentiation along any line in the boundary.

These boundary conditions are just the samne as would be satisfied in an
electrostatical problem at the boundary between two dielectrics of inductive

capacities equal to the two values of % Thus the equipotentials in this

electrostatic problem coincide with the equipotentials in the actual current
problem, and the lines of force in the clectrostatic problem correspond with
the lines of flow in the current problem.

Clearly these results could be deduced at ouce from the differential equation (312) on
passing to the limit and making r become discontinuous on crossing & boundary.

Refraction of Lines of Flow.

379. Let any line of flow cross the boundary between two different
conducting mnedia of specific resistances 7, 1., making angles ¢, ¢ with the
normal at the point at which it mccts the boundary in the two media
respectively.  The lines of flow satisty the same conditions as would be
satisfied by elcctrostatic lines of force crossing the boundary between two

diclectrics of inductive capacities ;1 , ;1- so that we must have (cf. equa-

1 2
tion (71))
-l cot e, = —1 cot 6.
Y T,
Hence 7 tan € = 7. tan &,

cxpressing the law of refraction of lines of flow.
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380. As an example of refraction of lines of current flow, we may
consider the case of a steady uniform current in a conductor being dis-
turbed by the presence of a sphere of different metal inside the conductor.
The lines shewn in fig. 78 will represent the lines of flow if the specific
resistance of the sphere is less than that of the main conductor. The lines
of flow tend to crowd into the sphere, this being the better conductor—in
the language of popular science, the current tends to take the path of least
resistance.

Charge on a Surface of Discontinuity.

381. If u is the normal component of current flowing across the
boundary between two different conductors, we have by Ohm’s Law,

1 __ 1ok
T mon T on’
where 8% denotes differentiation along the normal which is drawn in the

dirvection in which u is measured (say from (1) to (2)), and V;, V; are the
potentials in the two conductors.

If there is no charge on the boundary between the two conductors we
must, from equation (70), have the relation
v _ N
Bg=H7,
where K,, K, are the inductive capacities of the two conductors. This
condition will, however, in general be inconsistent with the condition which,
as we have just seen, is made necessary by the continuity of . Thus there
will in general be a surface charge on the boundary between two conductors
of different materials.

The amount of this charge is given at once by equation (72), p.125. If o
denotes the surface density at any point, we have

0K W
'1‘7ra'-—K,5-7; —KQ(;}—'Z
= (K — KT U ceeevnevaceninnnen, (313).

This surface charge is very small compared with the charges which occur in statical
electricity. For instance, if we have current of 100 ampéres per 8q. cm, passing from one
metallic conductor to another, we take in formula (313),

=100 ampdres =3 x 10" electrostatic units,

10-¢

v=10"8% ohms =5xioi s ”

K=1,
the last two being true as regarde order of magnitude only, The value of 4mo is of the
order of magnitude of Kru, or }x10~9 in electrostatic units. As has been said, the value
of 4mo at the surface of a couductor charged as highly as possible in air is of the order
of 100.



348 Steady Currents in continuous Media [on. x

382. As an example of the distribution of a surface charge, we may
notice that the surface-density of the charge on the surface of the sphere

considered in § 380 will be proportional to either value of %71&-’, and therefore

to cos 6, where 8 is the angle between the radius through the point and the
direction of flow of the undisturbed current.

GENERATION OF HEAT.

383. Consider any small element of & tube of flow, length ds, cross-

section w. The current per unit area is, by equations (310), —%%g, 80

that the current flowing through the tube is —%%},m. The resistance of

the element of the tube under consideration is 1:_3 Hence, as in § 855, the

amount of heat generated per unit time in this element is
(1 oV )’ Tds 1 (BVY
=x—w) — or -| =) wds.
@ T \08

T 0s

" Thus the heat generated per unit time per unit volume is %(aal‘-,)’, and

the total generation of heat per unit time will be

fﬁ %(%g)'dzdydz.

or ﬂ‘f% {(%—Z—)' + (%1;')’ + (%—Iz{-)’} dzdydz ............ (314).

Thus the heat generated per unit time is 8w times the energy of the
whole field in the analogous electrostatic problem (§ 169).

Rate of generation of heat a mintmum.

384. It can be shewn that for a given current flowing through a con-
ductor, the rate of heat generation is a minimum when the current distributes
itself as directed by Ohm’s Law. To do this we have to compare the rate of
heat generation just obtained with the rate of heat generation when the
current distributes itself in some other way.

Let us suppose that the components of current at any point have no

longer the values
1oV 12 19V

i Triy i
assigned to them by Ohm’s Law, but that they have different values
13V 10V 19V

-== - tw

e T _;.53—/-+v' T 08
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