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e PREFACE

W%
In writing this book we have attempted to produce a textbook -

of practical quantum mechanics for the chemist, the experi-
mental physicist, and the beginning student of theoretical
physics. The book is not intended to provide a critical discus-
sion of quantum mechanics, nor even to present a thorough
survey of the subject. We hope that it does give a lucid and
easily understandable introduction to a limited portion of
quantum-mechanical theory; namely, that portion usually
suggested by the name “wave mechanics,” consisting of the
discussion of the Schrodinger wave equation and the problems
which can be treated by means of it. The effort has been made
to provide for the reader a means of equipping himself with a

practical grasp of this subject, so that he can apply quantum
mechanics to most of the chemical and physical problems which

may confront him.

The book is particularly designed for study by men without
extensive previous experience with advanced mathematics, such
as chemists interested in the subject because of its chemical
applications. We have assumed on the part of the reader, in
addition to elementary mathematics through the calculus, only
some knowledge of complex quantities, ordinary differential
equations, and the technique of partial differentiation. It
may be desirable that a book written for the reader not adept
at mathematics be richer in equations than one intended for
the mathematician; for the mathematician can follow a sketchy
derivation with ease, whereas if the less adept reader is to be
led safely through the usually straightforward but sometimes
rather complicated derivations of quantum mechanics a firm
guiding hand must be kept on him. Quantum mechanics is
essentially mathematical in character, and an understanding
of the subject without a thorough knowledge of the mathematical
methods involved and the results of their application cannot be
obtained. The student not thoroughly trained in the theory
of partial differential equations and orthogonal functions must

i

o .,



v PREFACE

learn something of these subjects as he studies quantum mechan-
ics. In order that he may do so, and that he may follow the
discussions given without danger of being deflected from the
course of the argument by inability to carry through some minor
step, we have avoided the temptation to condense the various
discussions into shorter and perhaps more elegant forms.

After introductory chapters on eclassical mechanics and the
old quantum theory, we have introduced the Schrédinger wave
equation and its physical interpretation on a postulatory basis,
and have then given in great detail the solution of the wave
equation for important systems (harmonic oscillator, hydrogen
atom) and the discussion of the wave functions and their proper-
ties, omitting none of the mathematical steps except the most
elementary. A similarly detailed treatment has been given
in the discussion of perturbation theory, the variation method,
the structure of simple molecules, and, in general, in every
important section of the book.

In order to limit the size of the book, we have omitted from
discussion such advanced topics as transformation theory and
general quantum mechanies (aside from brief mention in the
last chapter), the Dirac theory of the electron, quantization
of the electromagnetic field, etc. We have also omitted several
subjects which are ordinarily considered as part of elementary
quantum mechanlcs but which are of minor importance to the
chemist, such”as the Zeeman effect and magnetic interactions in
general, the dispersion of light and allied phenomena, and
most of the theory of aperiodic processes.

The authors are severally indebted to Professor A. Sommerfeld
and Professors E. U. Condon and H. P. Robertson for their
own introduction to quantum mechanics. The constant advice
of Professor R. C. Tolman is gratefully acknowledged, as well
as the aid of Professor P. M. Morse, Dr. L. E. Suttcn, Dr.
G. W. Wheland, Dr. L. O. Brockway, Dr. J. Sherman, Dr. S.
Weinbaum, Mrs. Emily Buckingham Wilson, and Mrs. Ava
Helen Pauling. '

Linus Pavrineg.

E. Bricar WiLson, Jr.
Pasapena, Caurr,,
CAMBRIDGE, Mass.,
July, 1935.



INTRODUCTION TO QUANTUM
MECHANICS

CHAPTER 1
SURVEY OF CLASSICAL MECHANICS

The subject of quantum mechanies constitutes the most recent
step in the very old search for the general laws governing the
motion of matter. For a long time investigators confined their
efforts to studying the dynamics of bodies of macroscopic dimen-
sions, and while the science of mechanics remained in that
stage it was properly considered a branch of physies. Since
the development of atomic theory there has been a change of
emphasis. It was recognized that the older laws are not correct
when applied to atoms and electrons, without considerable
modification. -Moreover, the success which has been obtained
in making the necessary modifications of the older laws has also
had the result of depriving physics of sole claim upon them, since
it is now realized that the combining power of atoms and, in
fact, all the chemical properties of atoms and molecules are
explicable in terms of the laws governing the motions of the
electrons and nuclei composing them.

Although it is the modern theory of quantum mechanics in
which we are primarily interested because of its applications to
chemical problems, it is desirable for us first to discuss briefly
the background of classical mechanics from which it was devel-
oped. By so doing we not only follow to a certain extent the
historical development, but we also introduce in a more familiar
form many concepts which are retained in the later theory. We
shall also treat certain problems in the first few chapters by the
methods of the older theories in preparation for their later treat-
ment by quantum mechanics. It is for this reason that the
student is advised to consider the exercises of the first few
chapters carefully and to retain for later reference the results

which are secured.
1
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2 SURVEY OF CLASSICAL MECHANICS [T-1

In the first chapter no attempt will be made to give any partg
of classical dynamics but those which are useful in the treatment
of atomic and molecular problems. With this restriction, we
have felt justified in omitting discussion of the dynamics of rigid
bodies, non-conservative systems, non-holonomic systems, sys-
tems involving impact, ete. Moreover, no use is made of
Hamilton’s principle or of the Hamilton-Jacobi partial differentia]
equation. By thus limiting the subjects to be discussed, it ig
possible to give in 5 short chapter a thorough treatment of
Newtonian systems of point particles,

1. NEWTON’S EQUATIONS OF MOTION IN THE LAGRANGIAN
FORM

The earliest formulation of dynamical laws of wide application
is that of Sir Isaac Newton. If we adopt the notation T, Ui, 25
for the three Cartesian coordinates of the sth particle with'
mass m;, Newton’s equations for n point particles are

miE; = X,
m,—gj,- = Y,', i = 1, 2, o, (1—1)
miE; = 7,

where X, Y, Z; are the three tomponents of the force acting on

the 7th particle. There is a set of such equations for each

particle. Dots refer to differentiation with respect to time, so
that

i, = dzi”'.

Yode

By introducing certajn familiar definitions we change Equation

1-1 into a form which wil] be more useful later. We define as
the kinetic energy T (for Cartesian coordinates) the quantity

(1-2)

T=ldémGi+gr ey 4. .. o Fema(Et A g2 4 s
=28 3 mia + g2 + ), (1-3)

1=1

If we limit ourselves to a certain class of Systems, called conseryg.-
tive systems, it is possible to define another quantity, the potentiqy
energy V, which is g function of the coordinates Tiyi2g - - -
TnYx2n of all the particles, such that the force components acting
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on each particle are equal to partial derivatives of the potential
energy with respect to the coordinates of the particle (with
negative sign); that is,

aV

X = ~on!
av .

Y,; = _5—:1/1, 1 = 1, 2, , N, (1‘4)
oV

Zi = ~5o

It is possible to find a function V which will express in this manner
forces of the types usually designated as mechanical, electrostatic,
and gravitational. Since other types of forces (such as electro-
magnetic) for which such a potential-energy function cannot
be set up are not important in chemical applications, we shall
not consider them in detail.

With these definitions, Newton’s equations become

doT oV _

a 52}: + %: = 0, e (1-5(2)
d aT | oV
d aT | av

3

There are three such equations for every particle, as before.
These results are definitely restricted to Cartesian coordinates;
but by introducing a new function, the Lagrangian function L,
defined for Newtonian systems as the difference of the kinetic
and potential energy,

L =L(.’C1, Y, 21, * * * y Tny Yny Zny Ty, * * - ;én) =
T -V, (1-6)

we can throw the equations of motion into a form which we shall
later prove to be valid in any system of coordinates (See. 1c).
In Cartesian coordinates 7 is a function of the velocities
£y, - -+, 2, only, and for the systems to which our treatment
is restricted V is a function of the coordinates only; hence the
equations of motion given in Equation 1-5 on introduction of
the function L assume the form

)
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i oL _ oL 0
dt oz; oz,
d oL aL .
BET% - éy, = O, 1= 1, 2, ; n.‘ (1—7)
i % _ oL 0
dt 0z, 9z,

In the following paragraphs a simple dynamical system is
discussed by the use of these equations.

la. The Three-dimensional Isotropic Harmonic Oscillator.
As an illustration of the use of the equations of motion in this
form, we choose a system which Ras played a very important
part in the development of quantum theory. This is the
harmonic oscillator, a particle bound to an equilibrium position by
a force which increases in magnitude linearly with its distance
r from the point. In the three-dimensional isotropic harmonic
oscillator this corresponds to a potential function L4kr?, represent-
ing a force of magnitude kr acting in a negative direction; ie.,
from the position of the particle to the origin. k is called the
Jorce constant or Hooke’s-law constant. Using Cartesian coordi-
nates we have

L= 1gm(e 4§ + &) — 1gh(x? 442 +20),  (1-8)
whence
d%(mx) + kx = mi + kx = 0,
my + ky = 0, (1-9)
mé + kz = 0.

Multiplication of the first member of Equation 1-9 by & gives

dz dx
or
1 d@)?® _ 1 d@?) _
2" dr T Tt g (1-11)

which integrates directly to
Yomi? = —15ka? 4 constant. (1-12)

The constant of integration is conveniently expressed as lgkx2.

i \ M T

!

A

ERREN
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Hence

dx k .

2 Eai— o, (1-13)

or, on introducing the expression 4x*myv in place of the force
constant k,
dz
27!'1/0(” = Mr
which on integration becomes

2rvot 4 5, = sin—1 %

Zo
or -
T = x, sin (%Vot + 51); (1_14)
and similarly
Y = yosin (2wt + 4,), -
Z = 2y s8in (21!'1/0t -+ 62)} (1 15)

In these expressions To, Yo, 2oy 0z, 8y, and 6, are constants of
integration, the values of which determine the motion in any
given case. The quantity v is related to the constant of the
restoring force by the equation

4rimyv} = k, (1-16)
8o that the potential energy may be written as
V = 2rmytre, . 1-17

As shown by the equations for z, y, and z, v, is the frequency of
the motion. Tt is seen that the particle may be described as
carrying out independent harmonic oscillations along the z, Y,
and z axes, with different amplitudes zo, yo, and 2z, and different,
phase angles 5., 4y, and é., respectively.

The energy of the system is the sum of the kinetic energy and
the potential energy, and is thus equal to

Bem(E + g2+ 2 4 2emad(e + 0+ 29),

On evaluation, it is found to be independent of the time, with the
value 2m2myd(x? + 42 + 2§) determined by the amplitudes of
oscillation. 4

The one-dimensional harmonic oscillator, restricted to-motion
along the z axis in accordance with the potential function
V = Lka? = 2r’mya?, is seen to carry out harmonic oscillations
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along this axis as described by Equation 1-14. Its tota] energy
is given by the expression 2mmylz?.

1b. Generalized Coordinates.—Instead of Cartesian coordi-
nates ri, yi, 21, - - -, Zuy Yny Zn, 1t is frequently more convenient,
to use some other set of coordinates to specify the configuration
of the system. For example, the isotropic spatial harmonic
oscillator already discussed might equally well be described using
polar coordinates; again, the treatment of a system composed of
two attracting particles in space, which will be considered
later, would be very cumbersome if it were necessary to use
rectangular coordinates.

If we choose any set of 3n coordinates, which we shall always
assume to be independent and at the same time sufficient in
number to specify completely the positions of the particles of
the system, then there will in general exist 3n equations, called
the equations of transformation, relating the new coordinates
g to the set of Cartesian coordinates Ty, Yi, 2,

T =filgy g3 - 0, qun),
Vi = 9i(qy 2 * + -, gsn), (1-18)
Z; = hi(Ql, g2, * * , Qan).

There is such a set of three equations for each particle 1. The
functions f;, g,, h; may be functions of any or all of the 3n new
coordinates ¢, so that these new variables do not necessarily
split into sets which belong to particular particles. For example,
in the case of two particles the six new coordinates may be the
three Cartesian coordinates of the center of mass together
with the polar coordinates of one particle referred to the other
particle as origin,

As is known from the theory of partial differentiation, it is
possible to transform derivatives from one set of independent
variables to another, an example of this process being

é{; axi d(]] 6x1- d_(]g .. ~(9.2,; dQ3n

dt " oqdt Tag d T dgs dt - (17190)
This same equation can be put in the much more compact form
3n 1
. 9z,
F = Tq}qj (1-195)
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This gives the relation between any Cartesian component of
velocity and the time derivatives of the new coordinates. Similar
relations, of course, hold for y: and Z; for any particle. The
quantities ¢,, by analogy with Z;, are called generalized velocities,
even though they do not necessarily have the dimensions of
length divided by time (for example, g; may be an angle).

Since partial derivatives transform in just the same manner,
we have

L9V _ _oVan,

9 911dq; 9y dg; 3z, g;
n

- OVor: | aVoy.  oVom\ _ , ..
- 2(61‘7; (')q]‘ + ayi aq]' + az,- 6q,> - Ql' (1 20)

3V dy oV oz,

i=1

Since @; is given by an expression in terms of V and ¢; which is

analogous to that for the force X, in terms of V and z,, it is called

a generalized force. § V. ..o o e,
In exactly similar fashion, we have .-

n

oT aT az; aT 9y aT 02,
g 2<3i¢ 9G; + 3y; 9g; + 02, GQj> (1-21)
i=1

1c. The Invariance of the Equations of Motion in the Lagran-
gian Form.—We are now in a position to show that when New-
ton’s equations are written in the form given by Equation 1-7
they are valid for any choice of coordinate system. For this
proof we shall apply a transformation of coordinates to Equa-
tions 1--5, using the methods of the previous section. Multiplica-

tion of Equation 1-5a by (—9&'; of 1-5b by %; ete., gives
aq; ag;

oz, d 9T | 3V 8z,

og, @t a5 T 8 ag, = O
922 d OT | OV dzy _
dq; dt 92y ' dze8q; O’ (1-22)
ox, d a7 iV Q&. -0

8q; dt 9%, T 0z, 0q;

with similar equations in y and 2. Adding all of these together
gives

—

i\
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2{%107+ayigaj+azig8_2}+ﬁfZO, (1-23)

aq]' dt 6xi 0q7 dt ay, aq, dt 621‘ aq,

i=1

where the result of Equation 1-20 has been used. In order to
reduce the first sum, we note the following identity, obtained by
differentiating a product

d9z; df(dT d gaxi oT d ax, (1-24)
q; di\ox;) T di\ 97 aq; ax; di\ dq;
From Equation 1-19b we obtain directly
(91'5,; _ axi_
dg;  dg;
Furthermore, because the order of differentiation is immaterial,
we see that

3n

ax; G = 77(797 ail .

: dt aq, Ean aq; 3¢\ g L
S k=1

1

.0 ox.\. i
ST —@EQ%)% - (1-26)

"'& k=1

(1-25)

By introducing Equations 1-26 and 1-25 in 1-24 and using the
result in Equation i-23, we get

QS 43T 0k | 9T oys | aT 0i\ _ (0T 33 , a7 ays
E di\ 9&; ag; 0y 9¢; 9z; 9¢; 3% dg; dy: dq;

AT 0% v
o)t =0 a2

which, in view of the results of the last section, reduces to

doT 8T | oV

=z — > + — = 0. 1-28

dtag; g + ag; (1-28)
Finally, the introduction of the Lagrangian function L = 7 — v,
with V a function of the coordinates only, gives the more compact

form
== =0, j=1,23 -, 3n (1-29)
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(It is important to note that L must be expressed as a function
of the coordinates and their first time-derivatives.)

Since the above derivation could be carried out for any value
of j, there are 3n such equations, one for each coordinate q;.
They are called the equations of motion in the Lagrangian form
and are of great importance. The method by which They were
derived shows that they are independent of the coordinate
system. T ' o

We have so far rather limited the types of systems considered,
but Lagrange’s equations are much more general than we have
indicated and by a proper choice of the function L L nearly all dynami-
cal problems can be treated with their use. These equations are
therefore frequently chosen as the fundamental postulates of
classical mechanics instead of Newton’s laws.

1d. An Example: The Isotropic Harmonic Oscillator in Polar
Coordinates.—The example which we have treated in Section la
can equally well be solved by the use of polar coordinates T,
3, and ¢ (Fig. 1-1). The equations of transformation correspond-
ing to Equation 1-18 are

T = rsind cos ¢,
y = rsindsin ¢, (1-30)
2 = rcosd.

With the use of these we find for the kinetic and potential energies
of the isotropic harmonic oscillator the following expressions:

_1 =2 -2 2y — T oo 292 2 @in 2 -2
T—Qm(x + 7 +z)—2(r + 29?4 r?sin? ¢ ¢2), (1-31)
V = 2rtmulrt,

and

L=T-V = ’—g(ﬂ + 7232 4 r2sin? 9% — 2mtmadrt.  (1-32)

The equations of motion are

Edt% - gl—; = %(mrz sin? 9¢) = 0, (1-33)
c%% - gTI; = (%(mrzz‘}‘) — mr? sin ¢ cos d¢? = 0, (1-34)
(%g