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The author develops the main principles of classical
dynamics in a clear and logical manner and illustrates the
wide range of physical situations to which the principles
may be applied. The first chapter contains a detailed
account of vector algebra with applications to geometry.
The topics discussed include forces and moments, the
motion of a particle moving frames of reference, central
orbits, systems of particles, the two-dimensional motion of
a rigid body, and impulsive motion.
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Preface

THE purpose of this book is to give a systematic account of
the basis of classical dynamics, a real appreciation of which
is most desirable for students of science and engineering as
8 background to further studies in their own particular
fields. Some of these further developments are treated in
other books of this series (e.g. D. S. Jones, Electrical and
Mechanical Oscillations; R. F. Chisnell, Vibrating Systems;
D. R. Bland, Vibrating Strings).

The first chapter is devoted to a comprehensive account
of vector algebra, with illustrations from geometry. The
remainder of the book deals with the theory of dynamics in
three dimensions, full use being made of vector methods
where appropriate. My aim has been to keep the logical
thread of the argument well to the fore, so that the reader
may see clearly exactly what is being assumed, to what extent
new dynamical concepts are deductions from what has gone
before, and which principles are universal and which apply
only in a limited range of situations.

No previous knowledge of dynamics is assumed, although
no doubt most readers will have studied the subject to some
extent. I advise such readers to follow the arguments with
particular care, since it is often less easy to improve a super-
ficial and possibly inaccurate idea than to grasp a fresh one.

M. B. GLAUERT
The University,
Manchester
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CHAPTER ONE
Vector Algebra

1.1. DEFINITION OF A VECTOR

The value of a physical quantity can often be specified
by a single number, giving the magnitude of the quantity in
terms of the units we are using. Such a quantity is called a
scalar, and familiar examples are mass, temperature, electric
charge and kinetic energy. But sometimes the quantity has
direction as well as magnitude, as in the cases of displace-
ment, velocity and force. These are called vector quantities.

Ordinary algebra is quite capable of dealing with the
analysis of vector quantities, but the formulae and equations
are apt to become lengthy and obscure, and it is much more
satisfactory to develop a suitable vector algebra for the pur-
pose. This first chapter will be devoted to a full treatment of
the subject. We shall start from a mathematical definition
of a vector, and shall proceed to work out the algebraic
consequences of this definition with full regard for mathe-
matical exactness, for though some properties of vectors are
closely similar to those of scalars, others are strikingly dif-
ferent. T'o ascertain whether the analysis is applicable to
any particular physical quantity it will then merely be neces-
sary to check whether the quantity satisfies our definition.
A serious student of physical science will do well to familiar-
ize himself with vector algebra to such an extent that he
can think in vectors, so that he can appreciate a vector
equation directly without having to translate it back into its
equivalent non-vector form. He will find this ability invalu-
able in gaining a real understanding of the basic principles
of many physical subjects, including dynamics.

We shall denote vectors by letters in bold type, e.g. &, b,

B 1




i VECTOR ALGEBRA

quantity a will be said to be a vector if it ob

parts of the following definition. -
Condition 1: a has a magnitude and a direction.

Condition 2: the sum of a and b i: ]
parallelogram law. / is a vector a-+-b, given by the

Figure 1

The parallelogram law is illustrated in Fig. 1. Pictorially
the vector a is most readily shown by a line of length equsi
to the_ magnitude of a, in suitable units, and in the same
direction as a. The parallelogram law may be written as

0A+0B=0D

where we introduce the notation that OA denotes the vector
represented_):_n mag_}nitude and direction by the line OA4.
Note that O and BD are both equal t OB
i et qual to a, and OB and ab
The truth of the parallelogram law is evident for several
well-known physical quantities of a vector nature. If a and
b are displacements in Euclidean space, successive dis-
placements a and b produce a displacement such as that
gom OtoD mergill. If a and b are forces, the resultant
force, as given by the parallelogram of f i i
daionted B/ Fig 1 |1 511 Lo e e e g
_ It might be thought that Condition 2 is superfluous. This
is not so, for two reasons. Mathematically, without Condi-
tion 2 we could not show that a+b was a vector at all, and
2
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so our vector algebra would never get started. And physic-
ally, we can find examples in which Condition 1 is obeyed
but Condition 2 is not. Consider the displacements a, 1000
miles north, and b, 1000 miles east, on the surface of the
earth. Having magnitude and direction, these satisfy Con-
dition 1. However, the displacement a followed by b does
not bring one to the same point as does b followed by a, for
the longitude change produced by b depends upon the
latitude. The difference is most clear for a starting point
near the south pole. Condition 2 requires a-+b=b-a,
since the parallelogram of Fig. 1 is the same in each case,
and hence displacement over the surface of the earth is
not a vector according to our definition. Another example is
provided by the rotation of a rigid body pivoted at a fixed
point. The angle turned and the axis of rotation specify
magnitude and direction, but it can be verified that the
order in which two rotations are performed affects the final
position of the body. For neither of these examples is vector
algebra applicable. We shall call quantities which have
magnitude and direction vector quantities. Only when we
have shown that they obey Condition 2 may we call them
vectors.

Many authors make a distinction between what they term
free vectors and localized vectors, the latter having a speci-
fied point or line of application, as when a force is applied

PR

at a particular point. Thus in Fig. 1 OA and BD would be
different, considered as localized vectors, while according to
our definition they are identical. In this book we shall not
use the concept of a localized vector. It is true that for the
calculation of the moment of a force its line of action must
be known; but similarly the location of a mass is required
for the calculation of the centre of mass, yet we do not
normally refer to mass as a localized scalar or seek to estab-
lish the algebra of localized scalars. To us, then, a vector is
given by Conditions 1 and 2. Of course this does not in any
way imply that the vector giving the magnitude and direc-

3




VECTOR ALGEBRA
tion of a physical quantity is the only information we pos-
sess or need to possess about the quantity in question.

It may be noted that we have nowhere stated that a vec-
tor is in three dimensions. Although in the applications of
this book, vectors in two and three dimensions are all that
are required, Conditions 1 and 2 are equally suitable for
defining vectors in any greater number of dimensions.

1.2. PROPERTIES OF A VECTOR

To discuss vectors we require symbols to denote magni-
tude and direction separately. We shall write the magnitude
or modulus of a as a, or sometimes |a|, and we shall specify
the direction by &, a vector in the same direction as a and
with modulus unity; such a vector is called a unit vector.

Without proof, we must not assume that vectors obey the
usual laws of algebra. The commutative law of addition
! a--b=b-a
is satisfied since the parallelogram of Fig. 1 is the same in
each case. The associative law of addition
: . a+(b+e)=(a+b)+c
is also true, as is seen from Fig. 2. From Condition 2 both

Figure 3

sides of this equation are equal to (_)-E‘, since b+c=zﬁ and

n+b=55. Thus the brackets are unnecessary, a+b-+¢
4
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being uniquely defined. By repeated applications of these
laws we see that a-+b-+ . . . --n is a vector with a unique
meaning, not depending on the order in which the individual
vectors are written.

The vector a--a has modulus 2a and direction &; we
write this vector as 2a. Similarly it is natural to write as
ka the vector of modulus ka and direction &, where % is any
positive number, not necessarily an integer. Then it is easy
to see that

ka--la=(k+1)a, k(la)=kla=I(ka),

and in particular
a=ai. (1
Also, from Fig. 3,
ka-+kb=Fk(a-+b).

! > f

0 a A o ka A
Figure 3

The triangles OAD, O’A'D’ are similar and hﬂce e

O'D’'=kOD and O’'D’ is parallel to OD, i.e. O'D'=kOD.

Thus the usual laws apply for scalar multiplication.

We have so far required k to be positive. Now if a-+b=0,
so that in Fig. 1 the point D coincides with O, it is natural
to write b= — a. The vector —a has modulus @ and direc-
t.i_o)‘n — 4, for tEE modulus of a vector is never negative. If
OA=a, then AO= — a. Using this definition, it is easy tc
see that the general laws proved above are equally true
whether & and / are positive or negative.

5
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In three dimensions, we can express any vector a as a
sum of vectors in three given non-coplanar directions. Con-
sider the parallelepiped shown in Fig. 4, with edges in the

given directions and diagonal 04 =a, which we can always
construct uniquely. By the parallelogram law,

1=

B

Figure 4

- = = -3  —>
a=0A4=0B+BG+GA=0B+00+-0D=b-+c+d
where b, ¢, d are in the three given directions.

_ The most important application of this result is when the
given directions are mutually perpendicular, so that b, e, d
are in the direction of the axes of the rectangular co-ordinates
X, 3, 2. We introduce unit vectors i, J, k in the co-ordinate
directions, Then if az, ay, a; are the lengths of OB, OC, OD
measured in these directions, 6%=axi, ?C—-—aui, ab:agk
and hence

a=azi-+tayj+ak. (2)
This equation shows the connection with the analysis of
vector quaptlties by non-vectorial means, for az, ay, a, are
the Cartesian co-ordinates of 4 with respect to the rect-
angular axes at O. We call a5, ay, a, the components of a.
3 By Pythagoras’ theorem OA*=O0B*+4-0C*+0D? and

ence
a’=az’+ays+ﬂ;’.
6
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In applications of vector algebra to problems in geometry
a useful concept is the position vector of a point, the position

vector _of A_b:ing OA=a, where O is some origin. Then
AB=0B—-0A=b-a.

Example 1. If a=8i—4j+k, find a and &.
8.

1 4, 1
a*=64-+416+41=81, and so a=9. ﬁ_—-;a=§1_-§]+§k,

Example 2. Find the position vector of P which divides AB
in the ratio k: 1.

k b
AP=p A= b-a),

la-4-kb
-

Example 3. Find the equation of the straight line through
A and B.

This follows from Example 2, on replacing P by a variable
point R on 4B, so that the value of %/l takes an arbitrary
value. The equation of the line is

r=a-+ A(b—a)=(1—2A)a+ Ab,
where A is a variable parameter. Another form for the line is
r=a-- At
where t is a vector in the direction of the line. The compon-
ents of this equation give the line in Cartesian co-ordinates as
x=a3+ Atz, y=ay+ )lty, 3=ag+ )ltg,
if r=axi-}yj-+sk. (If two vectors are equal theircorrespond-
ing components must be equal, since Fig. 4 is the same in
each case.)
We may equate the expressions for A given by these
equations, and write the equation of the line in the form
W=y Y= ay_z—al
fs THERT "
7
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VECTOR ALGEBRA
Example 4. Show that the medi, ]
: - e medians of the triangle ABC are
By Example 2, the midpoint D of BC has positi
#(b+-c¢). The point X on AD such that 5}){8 ;l;}gcl::;
position vector $a--3{}(b+-c)} =4(a+b-+c).

By symmetry, X also lies on the other two medians of the
triangle.

1.3. THE SCALAR PRODUCT

So far all our results have come from adding vectors by
means of the parallelogram law. But there are other ways in
which combinations of vectors occur in physical applica-
tions. Consider the work done by a force F in a displacement
given by the vector s. As will be shown in section 2.3, the
work done is the product of the magnitude of F and the
component of 8 in the direction of F. This combination of
vectors is a product, since it involves the product of the
moduli of F and s, and it is a scalar quantity. Consequently
we introduce the following definition.

. The scalar product of two vectors a and b, whose direc-
tions are inclined at an angle 0, is

] a . b=ab cos 0. &)
This scalar product is read as ‘a dot 4'. To avoid possible
confusion in complicated expressions, it is very desirable to

be meticulous in inserting the dot whenever a scalar product
1s written.

THE SCALAR PRODUCT

It is immaterial whether the angle between the vectors
is taken to be the angle 8 in Fig. 5 or the angle 27— 6 mea-
sured in the opposite sense, for the cosine is unaltered, but
it is essential that the angle shall be measured in a plane
containing the directions of a and b. Since a . b=b . a the
commutative law is obeyed by scalar products.

From equation (3), the scalar product is the modulus of
one vector multiplied by the projection on it of the other
vector. The work done by the force F in a displacement s
is therefore F . 8. Also the component of a in the direction
of bis

a cos 0=%a «b=a.b. (4)

The equation a « b=0 does not imply that either a or b
must be zero. An alternative possibility is cos =0, which is
true if a and b are perpendicular to each other. In fact
a . b=0 is most usefully thought of as the condition that
two non-zero vectors a and b shall be perpendicular. If a
and b are in the same direction a + b=ab, and if they have
opposite directions a « b= — a@b. In particular a . a, which
is written as &%, the square of the vector a, is given by

a'=a.a=a" (5)
When applied to the unit vectors in the co-ordinate direc-
tions, these results show that
i.=j’=k‘#1, i . j=j . k=k . iSO.
The distributive law for scalar products
a.(b+ec)=a.b+ta.c
is true since the projection of b+-c on a is equal to the sum
of the projections of b and ¢. Thus in Fig. 2, if we let D’
and E’ be the feet of the perpendiculars from D and E to the
line 04, AE'=AD'+D'E" and
a.(b+c)=04.AE'=0A4.AD'+0OA.D'E'=a . b+a.c.
No associative law is possible. It would say that a .+ (b« c)
was equal to (a « b) « ¢, yet neither of these expressions has a
meaning. The bracketed terms are scalars, and so cannot be
9
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used in a product of vectors. An expression that has a mean-
ing is (a . b)e, this being a vector parallel to ¢ of modulus
(&« b)c (the sign being that required to make the modulus
positive).

Multiplying terms in a product by a scalar 2>0 does not
affect the angle 0, and therefore

a « (kb)=kab cos 0=Fk(a . b)=(ka) . b.

If 2<0 the modulus of kb is — kb, but since kb is in the
opposite direction to b the angle between a and kb is 746,
From (3) the above equation is hence true for all values of &,
positive or negative.

These results show that the scalar product of a and b in
terms of their components is given by

8 « b=(azi+ayj+a.k) « (boi+byj+bk)

=azbz+ﬂgby+azbz. (6)
Withb=a, (6) gives Pythagoras’ theorem in three dimensions
at=a,?-}- a,*+-as, (7)

expressing the modulus of a in terms of its components.
This shows that a can only be zero if all its components are
zero.
If the direction of a makes angles «, B, y with the axes of
%, y, & then from Fig. 4, OB=0A4 cos « or az=a cos &, and
similarly ay=a cos B, a.=a cos y.
Equation (2) may be written as
a=a(cos ai+-cos B j-4-cos y k) (8)
and hence by equation (1)
A==cos ai-}-cos Bj+ cos y k,
which gives the direction of a in terms of cos @, cos B,
cos y, the direction cosines of OA. These directions are not
independent of one another; from (7) and (8)
cos® a--cos® B4 cos? y=1.
If b has direction cosines cos A, cos , cos v then from
(3) and (6) the angle 6 between a and b is given by
cos f=cos & cos A+-cos B cos u+cos y cos v,
10
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Example 1. Find the angle between a=2i-+j+2k and
b=4i— 3.
a.b=8-31+0=5; a®*=4-}1+44=9, a=3;
B=16-+49=25, b=5.
Hence cos 6=(a . b)/ab=4%, §=70° 32'.

Example 2. Show that the altitudes of a triangle ABC are

concurrent.
Let H be the intersection of the altitudes from 4 and B.

Use position vectors. Since AH, BH are perpendicular to
BC, CA, .
~a)+(c=b)=0, h.(c—b)=a.c—-a.b,
gﬂ— b) . (a—c)=0, b . (a— c)=b . a—h + C.
Adding these results, h. (a~b)=a.c-b.c=(a—b).c
and ;c%ice (h—c).(a—bh) (=0. This shows that H is also on
the altitude from C.

Example 3. Find the equation of the sphere centre A and

radius c.
Let R be a point on the sphere. AR has length ¢. Hence

|r—a|=¢, |r—a|*=(r—a))=r*—2a . r+a*=c"
This is the required equation. In terms of components, it is
82492422 — 2azx— 2ayy — 2a:3+-a52+-ayt +at— 2 =0.

Example 4. Find the equation of a plane. g
Let P be the foot of the perpendicular from the origin O
on to the plane, and let fi be the unit normal perpendicular

—_—
to the plane. The point R is on the plane if PR is perpen-
dicular to 4, i.e. if (r—p).Ai=0, r. A=p.fi. Now p is
parallel to A, and so the equation takes the form

T ﬁ=?
where p is the distance from O to the plane, in thg direction
in which A is measured. If AA has direction cosines cos a,
11
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cos B, cos y this equation can be written, using (8), as

x cos a-+y cos B2 cos y=p.

1.4. THER VECTOR PRODUCT

There is another combination of two vectors which is
of importance. The area of the parallelogram formed by
the displacement vectors a and b in Fig. 1 or Fig. 5 is
S=ab sin 0. This quantity is a product, since it depends on
the product of the moduli of a and b, and we may also assign
to it a direction, that of the normal to the plane of the
parallelogram, We therefore make the following definition.

The vector product of two vectors a and b is

aAb=absin 0 A (9)

where 0 is the angle between the direction of a and the
direction of b, and fi is a unit vector perpendicular to the
plane of a and b. This vector product is read as ‘a cross 4’
or ‘a vec &', Many authors do in fact denote a vector pro-
duct by a cross sign, but when written this is liable to be
confused with x, and the caret sign calls attention to the
special properties of the vector product. Being defined as a
scalar multiplied by a vector, a A b is a vector. Its modulus
is the magnitude of one vector multiplied by the component
perpendicular to it of the other.

There are still two possible directions for fi. If in Fig. 5,
a and b are considered to be in the plane of the paper, fi
may be either up or down perpendicular to the paper. We
must arbitrarily select one of these possibilities, and the
convention universally adopted is that fi is given by the
direction of advance of a right-handed screw turning from
a to b in the sense in which 6 is measured.

Thus in Fig. 5, fi is upwards. It would be possible tc
measure from a to b in the opposite sense, with @ replaced
by 27— 8; then both sin § and & would change sign,
leaving equation (9) unaltered.

12
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1t follows from this definition that
aab=—-baa (10)

and thus the usual commutative law is not obeyed by vector
products. oAl had

If a and b are parallel, possibly with opposite directions,
then sin #=0 and so a A b=0. This then is the condition
for two non-zero vectors to be parallel. In particular
a Aa=0. For unit vectors in the co-ordinate directions
forming a right-handed system (so that, for example, a
right-handed screw turning from the x-direction to the
y-direction advances in the z-direction) we have the fol-
lowing relations:

ini=jaj=kak=0,
jak=i= —-kajkai=j= —iakirj=k=-jai
The distributive law for vector products
aA(bic)=aabitaanc

may be proved as follows. Let b’, ¢’ be the projections of
b, ¢ on to a plane perpendicular to a. Then we see from
Fig. 6 that b’+c' is the projection of b-+c. Since only

Figure 6

components perpendicular to a affect vector products
with a,
aab=aab,aanc=anac’,aa(btc)=aa(b'+c’).
13
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Now a A b’ is perpendicular to a and b’ and has modulus
ab’, i.e. it is obtained from b’ by rotation through an angle
4= about the direction of a, and magnification by the fac-
tor a. Applying this result also to a A ¢’ and a A (b’-|-¢’),
we see that these three products form a triangle similar to
F'G'H’, and so by the parallelogram law
aa(b'+c)=aab'+aac,

from which the distributive law follows.

The associative law, which would assert the equality of
aA(bac) and (aab)ac, is false as we shall see in
section 1.5, even though these expressions properly define
vectors. Scalar multiplication is permissible. By the same
arguments as for the scalar product,

a A (kb)=Fkab sin 0 A=Fk(a A b)=(ka) A b.
From these results the vector product of a and b in terms
of their components is
a A b=(azi+ayj+ak) A (bzi+byj+b.k)
=(ayb:— azby)i+(azbz— azb:)j+(azby— aybz)k. (11)
This may be written in a symmetrical form as a determinant

aab= | i j k
Az 4ay ag -
bz by 6'

Example 1. Find a unit vector perpendicular to
a=2i+3j— 4k and b=i-2j.
a A b=(0+48)i+(— 440)j+(4— 3)k=8i- 4j+k,
|a A b|2=64+16-+4-1=81, |a A b|=9. The required vector is
(a A b)/|a A b|=§(8i- 4j-+k).

Example 2. Find the area of the triangle ABC.

The area is half that of the parallelogram given by 4B
and AC. Use positi(_)_g vec_t_ois.

Area of triangle=34B A AC=%(b—2a) A (c—a)
=4(bAac-aarnc—-baajaaa)
=4baAact+caatanb)

14
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Example 3. Show that the sum of the vector areas, taken out~
wards, of the faces of the tetrahedron OABC is zero.

c

Figure 7

The area of the face ABC is as found in Example 2, if O
is considered to be below the plane of ABC in Fig. 7. The
three terms of the final expression are the areas of the
faces OBC, OCA, OAB measured inwards. Hence the re-
sult, which confirms that vector areas may be added by the
vector law, satisfying Condition 2.

1.5. TRIPLE PRODUCTS

Since a . b is a scalar, no further vector operations can
be applied to it. But a A b is a vector, and we may consider
its scalar or vector product with another vector c.

The triple scalar product (a Ab) . € is a scalar quantity,
being the scalar product of a A b and ¢. To demonstrate its
significance, consider the parallelepiped shown in Fig. 8.
The modulus of a A b is the area S of the face OAFB, and
its direction i is normal to the face. Then

(a Ab).c=cS cos 0=V,

where 6 is the angle between ¢ and fi. Since ¢ cos 6 is the

perpendicular height, V is the volume of the parallelepiped,

as may be shown by the same type of argument as is used
15
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to derive the area of a parallelogram. In terms of com-
ponents, from (11),
(aab).c

=aybeCz— asbycat+abacy— azbecy+azbycs— ayboc, (12)
= Az 4ay ag
bz by b: |
€z Cy Cg
By observing that the volume of the same parallelepiped
is represented, or by verifying that the same six terms in

(12) are obtained, we see that (bAc).a and (cAaa).b
are equal to (a Ab).c. The vectors in a scalar product

0 G
i o] 57
]
e AV

Figure 8

may be interchanged, hence (aAb).c=c.(aab), but
an interchange in a vector product causes a change of sign,
and hence (a Ab).c= — (b Aa).c. Combining all these
results, we can relate the twelve possible arrangements of
the triple product as follows:
V=a.(bac)=(bac).a=-a.(cab)=—(cab).a
=b.(caa)=(cara).b=—-b.(arac)=~-(anrc).b
=c.(aab)=(aab).c=—-c.(baa)=--(baa).c.
(13)
We see that the value does not depend on the positions
of the dot and caret signs. In the positive terms a, b, ¢
occur in cyclic order, while in the negative terms they are
16
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in non-cyclic order. The triple scalar product may con-
veniently be written as [a, b, e]. This is sufficient, as it
gives the three vectors and their cyclic order. Thus, for
example,

[a, b, e]=[b, ¢, a]= —[a, ¢, b].

An important property of the triple scalar product is that
it is zero if the vectors are coplanar, for then the volume
V'=0. In particular it is zero if two of the vectors are equal,
as is seen immediately on writing [a, a, ¢]=(a A a) . ¢=0.

The triple vector product (a A b) A c=v is a vector per-
pendicular to both ¢ and a A b. It hence lies in the plane of
a and b, and we can write v=/a-+mb. The values of / and
m may be found by using (11) twice to obtain

v= {(agbz—‘ azb z)Cz— (azby - aybz)fy}i

+ %(azby— aybz)f:z— (ayb; - ﬂgbv)ﬂg}j

+ (aybz = azby)Cy — (agbx — axbg)fx k

= — (azi+ayj+a:k)(becs+bycy+bacz)
+(bzi+byj+b k) (azcz-+-ayey+azce).

Hence /= —b.c, m=a.c, and we have
(aab)ac=(a.c)b —(b.c)a. (14)

Now (a Ab) A c= — c A (a A b) by (10), and on permuting
a, b, ¢ we obtain from equation (14)

aa(bac)=(a.c)b-(a.b)c. (15)

From (14) and (15) we see at once that the bracket in the
triple vector product cannot be omitted without causing
ambiguity. As an aid to remembering these expressions,
note that there is no component in the direction of the un-
bracketed vector, and that the first scalar product, with a
positive sign, is formed from the outer pair of vectors.

It is sometimes useful to express a vector a as the sum
of two component vectors, one parallel and one perpen-
dicular to another vector b. From (4) the component
parallel to b is (a.b)b=(1/6%)(a.b)b, and so the per-
pendicular component is
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1 1 1
a—jza. b)b=ﬁ{b*a— (a.bb}=3;ba(an b).

Hence
a=;—z{(a «b)b+b A (2 A b)}. (16)

Products of more than three vectors can readily be writ-
ten down, and can be manipulated by use of the formulae
already established, but the results are hardly worth
remembering.

Examplel.[a, b, c]Jd=[d, b, c]a+[a, d, c]b+[a, b, d]e.
Considering first (a Ab) and then (c A d) as a single
vector, we have
(aab)a(ead)=[a,b,dlc-[a,b, cld
=[a, ¢, d]b— [b, ¢, d]a,
from which the result follows. This useful formula ex-
presses d as the sum of three vectors in the directions of
a, b, ¢ and shows that this is always possible provided
[a, b, €]#0, i.e. provided a, b, ¢ are non-zero and not co-
planar

Example 2. Find the equation of the plane through O, A, B.

Use position vectors from O. If R is a point in the plane,
r, a, b are coplanar and hence [r, a, b]=0. This is the re-
quired equation since it may be written as r + (a A b)=0,
and this represents a plane as shown in Example 4 of
section 1.3. An alternative form of equation for the plane is
r=2Aa-pub, where A and p are variable parameters, since
r may be resolved into components parallel to a and b.

Example 3. Find the condition for the lines r=a+ Ab and
r=c-+pud to intersect.

At the point of intersection ¢~ a=Ab— pd. Hence c—a
lies in the plane containing b and d, and the required con-
dition is [e— a, b, d]=0. ’

1
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Example 4. Solve for x the equation x A a=b.

The equation requires b to be perpendicular to a; if this
is not so no solution exists. Now a, b, a A b are mutually
perpendicular. Expressing x in terms of components in
these directions, and noting that x is perpendicular to b, we
write X=2Aa+pu(a A b). Substituting into the equation we
find b=x A a=p(a A b) A a=pa®b, since a . b=0, and so
p=1/a* and x=2Aa--(1/a*)a A b.

Now {Aa-(1/a%)a A b} A a=Db for any value of A, and
hence this expression for x is the general solution of the
equation.

1.6. DIFFERENTIATION AND INTEGRATION

In many physical applications the vector quantities in
which we are interested will not be constant but will vary
with time. We are thus led to consider the properties of a
vector a which is a continuously varying function of a
scalar variable #. The differential coefficient of a(#) with
respect to £ may be defined by precisely the same procedure
as that used to define the differential coefficient of a scalar
quantity. Consider the ratio

a(t+5t)—a(t) da
ot Tot’
The ratio is a vector, if 8 is any non-zero change in 2 If
8a/dt tends to a limit as 8¢—0, we define this limit as
da/dt or &, the differential coefficient of a(t) with respect
to z. It is clearly a vector.

Consider the motion of a point P which travels along a

curve and is at 4 at time # and at A" at time £--3¢, as shown

A —p

in_Fig. 9. Then OA=a(s) OA'=a(t+5t) and hence
AA'==8a. The magnitude of 8a/dt is AA4'[3t. The limit &
is called the wvelocity of P. Its modulus is the speed (the rate
of change of position of P, a scalar quantity) and its direc-
tion is that of the tangent to the curve on which P moves.
In fact if a point has position vector r we have shown that
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its velocity is a vector v=#. Repeating the argument, we
sce that the rate of change of the velocity is a vector, the
acceleration f=v=f.

Figure 9

Formulae for the differentiation of sums and products of
vectors are deduced in just the same way as for scalar func-
tions, and have the expected forms. Care is needed to pre-
serve the order where vector products are concerned. We
may note the following results:

d da db
Za TP =gtz
d dk da
aika)=grat+ka,

d da db

a}-(a - h)=5 . b+a . d_t,
d d db
Et{a A !;)=d,—a Ab+a A

¢
d da db de
Et[a’ b, c]=|:5| b, c] "‘I"[a’ dat € +[ai b, EE]'
As an illustration, consider a A b. Its value at #+8¢ is

Ela+ﬁa) A (b--8b)=a A b+8a A b+a A 8b-}-8a A 8b and
ence
(aab)(t+3t)—(aab)(t) 3da b da
3¢ —§Ab+an§}-+3?58b.

Taking the limit as 80, we obtain the required formula.
20
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In terms of components, a(t)=ax(t)i+ay(t)j+a.(t)k and
hence
da da,, day, da
GF=at it (17)
since 1, j, k are constant vectors,
A result of particular interest is

d d da
;ﬁa’='~‘ﬁ(a . B)=23 . "ﬁ .

Since a®=aq* we see that
da da
a. E=aa. (1 8)

If a has constant modulus, da/di=0. We cannot deduce
that da/dt is zero, only that it is perpendicular to a. Thus in
Fig. 9, P could move over a sphere with centre O, its speed
being given by |da/dt|. It is important to note that |da/dt|
is not in general equal to da/dt, as this example shows.

The process of integrating a vector with respect to a
scalar is equally straightforward. If da/di=b(t), we may
write

a(t)= f :ob('r)d'r+c,

where ¢ is a constant vector of integration giving the value
of a when 2=1#,. In terms of components,

ast)=, belr)ir-tes, a)=, brrir-+an
ait)= f :obz(-r)a'-r 2,

which are just the usual formulae for the integrals of scalar
functions. In particular if v is the velocity of a point, its

t
position vector r is given by r(t):J‘t v(7)dr 1, where 1,
0

is the position vector at time #=#,.
The following example illustrates a variety of the vector
21
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properties we have been studying. The result can also be
proved in a straightforward manner by expressing the vec-
tors in terms of their components. The details are left to
the reader.

Example 1. The acceleration ¥ of a charged particle moving
tn a uniform magnetic field is given by ¥=a A £, where a is
constant. If at time t=0 the velocily is perpendicular to a,
prove that the particle moves in a circle with constant speed.

The scalar product with # gives ¥.#=[a, #, #]=0.
Integrating with respect to the time, #*=constant, and
hence the speed |#| is constant.

Integrating the original equation, #=a A r--b, where b
is constant. At =0, ¥ and a A r are perpendicular to a,
hence b is perpendicular to a and we can write b=a A ¢,
for some e. Thus ¥=a A (r+4-c¢).

The scalar product of this equation with r-¢ gives
(r+e¢) .« #=0, and therefore (r-c)?=constant; the scalar
product with a gives a.#=0, and therefore a . r=con-
stant. These results show that the particle moves on a sphere
and on a plane. Hence it must move on their intersection,
which is a circle.

1.7. RELATIVE VELOCITY, ANGULAR VELOCITY

All the vector algebra which we require has now been
developed, and we may turn to the consideration of mech-
anics. Before embarking on our systematic study of dynamics
in the next chapter, we first shall consider a few direct
applications of vector algebra.

The relative displacement b—a of B relative to A4 is a

vector, where 5:&-—-3, 6}.3=b, and O is some origin. From

section 1.6, the relative velocity b— a of B relative to 4 is

also a vector. Relative displacement and relative velocity

are independent of the position and movement of the

origin O, which as we shall see is of fundamental impor-
22
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tance, for the idea of a ‘fixed’ origin is hardly a realistic one.
Relative velocity is of practical use in many problems, of
which the following is a simple example.

Example 1. To a cyclist travelling due north along a straight
road ait’ 10 m.p.h., the wind appears to come from the east.
When he increases his speed to 15 m.p.h. the wind appears to
come from the direction N.67°E. Find the strength and direc-

tion of the wind over the ground.

A

8 D
C

Figure 10

—_ =

In Fig. 10, DA gives th_g,_ true s wind velocity, B4, CA the

cyclist’s velocities, and DB, DC the wind relative to the

cyclist. BD==>5 tan 67°=11-78, the angle BAD=tan™* 1-!78

=49° 40’, AD=10 sec 49° 40'=15-81. Hence }he wind
speed is 15-81 m.p.h. from the direction 5.49° 40’E.
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Consider a rigid body pivoted at O and rotating about
the axis OC, a line fixed in space. We can specify the motion
by the vector w, with direction that of OC and magnitude
the angular speed of the body in radians per second, in the
sense of a right-handed screw ; we say that the body rotates
with angular velocity w. The velocity of the point R of the
body has magnitude wp, where p is the length of the per-
pendicular RN from R to OC, and is in a direction perpen-
dicular to the plane ROC;; i.e. the velocity is

V=wATr. (19)

Before we can say that angular velocity is a vector we
must prove that angular velocities can be added by the
parallelogram law. Suppose that the body has an additional

angular velocity given by the vector w’, about the axis OC".
Since velocity is a vector the total velocity of R is

OArt+o Ar=(otow’)Ar (20)
by the distributive law for vector products. The combined
motion is that due to the angular velocity given by w-a’,
the vector sum of w and w’, and hence angular velocity is
indeed a vector, satisfying Condition 2.

As remarked in section 1.1, angular displacement is not a
vector, though it may be represented by a vector quantity a
giving the angle turned and the axis of rotation. The dis-
placement of the point R is not a A r, and it cannot be
proved, as from equation (20), that the effect of two angular
displacements a and a’ is given by their vector sum.

It may be thought to be intuitively obvious that the most
general motion of a rigid body pivoted at O is an angular
velocity about some axis through O. The following example
provides mathematical confirmation of this.

Example 2. If A, B are points of a rigid body pivoted at O,
the body rotates with angular velocity w=(a A b)/(a . b).
Since the body is rigid, 04, OB and the angle between
them are constant, hence a2 b? and a . b are constant, and
a. ﬁ=0, b= b=0, a. b+a . b=00
24
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If the motion of 4 and B is due to an angular velocity wL#
and b must be perpendicular to w, and hence @=A(a A b),
giving as the velocity of B

wAb=Xaab)ab=2)a.b)b.

The velocity of B is given correctly as b if A=1/(a . b).
Th

- aa b_b Ad

a'_é» .b _b . a’

from the relation proved above. By symmetry, tht;.‘ velocity
of A due to w is given correctly as &. A rigid body’s motion
is completely determined by the motion of three of its
points, and so the actual motion of the body is indeed just
this angular velocity.

1.8. FORCES AND MOMENTS

That forces are vectors is a consequence of Newton’s
laws of motion, as will be discussed in sectipn 2.2, He_nce
forces may be added by the vector law, which in this applica-
tion is known as the parallelogram of forces. If we have a set
of forces Fy, F,, . . ., Fy their sum

F=F,+F,+...+Fs (21)

is called the resultant force. For forces applied to a dynamical
system, the rate of change of momentum is equal to F, as
shown in section 3.1. If the system is to be in e_qu1hbr1um,
it is necessary that F=0. In this case the displacement
vectors representing Fy, F,, ..., F, must form a closed
polygon. When there are just three forces involved, the
polygon reduces to the well-known triangle of forces.

The condition F=0 is not in itself sufficient to ensure that
equilibrium is possible. As shown in section 3.2, the rate of
change of angular momentum, about a suitable point O,
of the system to which the forces are applied is

G=r, AF; 41 AF; .. .41y AF,, (22)
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wh_ere Iy, Ty, . . ., Tp are the position vectors from O of the
points of applications of the forces Fy, F,, ..., Fn. We
call r; A F; the moment of the force F, about O. Equation
(22) shows that moment of a force is a vector since G, the
resultant moment, is the vector sum of the individual mo-
ments. For equilibrium, G=0 is another necessary con-
dition. It will be shown in section 3.2 that for a rigid body
F=0 and G=0 are together sufficient to ensure that equili-
brium is possible. For forces applied at a single point r,

G=r A (F1+F2+- . .+Fn)'—"'-r A F.

In this case F=0 implies that G=0. For extended systems
a sItudy of G is essential.
n terms of components, suppose that r; =x,i j+=2.k
Fm XAt Ytz Then PP 1=X1+) )42k,
Gy =(3121— % Y)i+(3. X, - ,.Z)j+(x, Y, ~- 3, X k. (23)
For a two-dimensional force (X}, Y;) acting at (xy, y,) the
z-component of (23) gives the counter-clockwise moment
al.)out p. as defined in elementary treatments of two-
dimensional statics. But this is more satisfactorily inter-
preted as the moment of the force about a line, the z-axis,
taken as usual in the right-handed screw sense. Neither 2,
nor Z, affect the moment about the z-axis. Furthermore,
there is no special significance in the choice of the direction
of the axes, so we can say that the component of G, in any
direction is equal to the moment of the force F, about a line
through O in that direction. The moment about a line in
the direction fi through O is accordingly defined as

ﬂ. - (1'1 A F1)=[ﬁ’ 1'1, Fl]'

The line through the point r, parallel to F, is given b
r=r,-}AF,, where A is a variaI;le parameter. 1Nov%v1 !
and thus the moment is unaltered if F, acts at any point on
this line, which is called the /ine of act:'on of the lege F,.

Consider the moments of the forces F;, F,, ..., Fy
26
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about a new centre O’, where 5)‘0'=a. The sum of the
moments is
G'=(r;—a) AF,+(r;—a) AF,+. . A(ta—2a) AFn
=1, AF, 41, AF;+. . .+ra AF,
- 3 A (F1+Fs+o . -+Fﬂ)
=G-aaF. (24)
1f F=0 we say that the system reduces to a couple G, which
we sec is independent of the centre of moments. This
couple may be produced by two forces, F,atr, and — F;
at r,, such that (r;—r;) AF;=G. If F#0 the system is
equivalent to a force F at O and a couple G, or a force
F at O’ and a couple G".
Taking the scalar product with F, we obtain from (24)
F . '(:;"I =F . G.
Unless F.G=0, there can be no point O’ such that
G'=0, and so the system cannot be reduced to a single
force. Thus the concept of a resultant with a definite line of
action which is useful in two dimensions (where the condi-
tion F« G=0 is always satisfied) has little value in three
dimensions. We may, however, look for a point O’ at which
G’ is parallel to F. If this is so F A G'=0 and hence from
(24)
F A G- F*a(F . a)F=0.
Thus we certainly must have
a=(F A G)[F*-AF (25)
where A is a scalar. In this case
G'=G- {(F A G)/F*+ AF} A F=(F . G/F*)F,
and hence G’ is parallel to F for any a on the line given by
(25), with A a variable parameter. This line is called the
central axis. We see that the system of forces is equivalent
to a force F acting along the central axis, together with a
parallel couple (F « G/F*)F, this constituting what is called
a wrench.

Example 1. The force F=2i—4j—3k acts at the point
27
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r=i—2j--3k. Find the moment of F about O, and also its
moment about the line through O in the direction of the vector
i+j+k.

The moment about O is r A F=(6+412)i-}(643)j
+(— 4+4)k=18i+9j. The moment about the given line
is

(1/v3)(i+j+Kk) » (18i-+95) =(18+9)/v3=9v3.

Example 2. Find the central axis and the equivalent wrench
of the forces F1=3i-2j—k at r;=i- 2j and F,=i- 2j+k
at ry=j- k.
F=F,+F,=4i, F=4,
G=r1 A F1+rg A F==(2i+j+8k)+(—' i'—'j— k)=i+7k.
FAG= -28j, F.G=4,

The central axis is r=\i— ;_]
The wrench has force 4i, couple i.

EXERCISES ON CHAPTER ONE

1. If a=8i~- 2j+4k and b=2i+k, find the moduli and the direction
cosines of a— b and a A b, and the angle between the directions of a and b.
2. Prove by vector methods that
(i) the diagonals of a parallelogram bisect one another,
(ii) the perpendicular bisectors of the sides of a triangle are con-

current.

3. Find the equation of the plane through the points with position
vectors a, band c.

4. Find two vectors a, b which are of equal magnitude, are mutually
gje-}r?;-i‘dicular, each have x-component 5, and are each perpendicular to
5 08 AB)« (e A d)=(a+ )b + )= (a+ d)(b

i)(@aAb)e(cAd)=(ae«c)b. )= (a«d)(b.c),

(ii; [aAb, bAc, cAal=[a,b,c]

r x the equation x+x A a=b.

7. A ship steaming north at 12 knots passes a fixed buoy at noon. A
second ship steaming east at 16 knots passes the same buoy at 12.50 p.m.
At what times are the ships closest together, and what is then their dis-
tance apart? [1 knot=1 sea mile per hour.]

_ 8. Find the moment about the point 3i+j and the moment about the
line r=(3— 4A)i-+j+ 3 Ak of the force 7i— j+2k acting at the point 6j= k.
28
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—
9. Prove that the three forces at O represented by 04, OB and OC

are equivalent to the force 36& at O, where G is the centroid of the
triangle ABC. o ;

10. A rigid body is acted on by the force F,=i~- 3j— 2k at the point
— 2i+9j and by Fy=2i+j~ 3k at — i+3j— k. For what value of y could
the body be in equilibrium under the action of Fy, F, and a third force
Fy? Find F; and its line of action in this case.
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CHAPTER TWO

Dynamics of a Particle

2.1. THE NATURE OF DYNAMICS

Dynamics is the study of the motion of bodies. Like any
other branch of applied mathematics it is essentially an
experimental science, its purpose being to gain an under-
standing of phenomena in the physical world. The procedure
is as follows. On the basis of preliminary observations cer-
tain basic laws, such as Newton’s laws of motion, are stated
in mathematical form. By standard mathematical techniques
the consequences of these laws are then worked out, and in
particular the behaviour is predicted in as wide as possible
a range of specific physical situations which may be ob-
served experimentally. If the results of the experiments
agree with the predictions, this gives encouragement to
continue the mathematical study of the equations, and con-
fidence in applying the theoretical results, If the results
disagree, the basic laws must be modified. In this way we
may hope to increase progressively our understanding of
the relationship between the various parts of physical ex-
perience.

The value of a law thus depends on the number of
physically useful deductions which can be made from it.
The ‘truth’ of the law is irrelevant; indeed the expression
is meaningless from the scientific point of view. All experi-
ments contain some inaccuracies of measurement, and effects
other than those allowed for in the calculations cannot be
totally excluded, so perfect agreement cannot be looked for.
Nor does it matter if in certain circumstances a law ceases
to apply, provided that we appreciate its limitations. At
speeds comparable with the speed of light, Newton’s laws
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of motion are no longer accurate and have to be replaced by
relativistic laws. However, at lower speeds to include the
relativistic terms in the equations is a positive disadvantage,
since it greatly complicates the mathematics without giving
any further useful information. On a more mundane level,
to find the trajectory of a thrown cricket ball a simple cal-
culation as in Example 3 of section 2.2 is often sufficient.
For a better approximation we may allow for air resistance,
assuming a plausible resistance law. But still other effects
could be included, such as the rotation of the earth, the
spin of the ball, and the variation of the wind in time and
space. The whole problem would then be extremely com-
plicated, and the final answer, if one was ever obtained,
would probably be no more useful than the earlier ones.
The recognition of what agencies are important and what
are not is essential in any piece of applied mathematics.

The aim of the remainder of this book is to develop
dynamics in a precise and logical way, making it clear at
each stage what assumptions are being made and to what
extent new results are just mathematical deductions from
previous ones. Examples will be given to illustrate the
dynamical principles, and to call attention to the wide range
of physical situations which may be studied, though for
reasons of space many interesting problems must be left
unmentioned.

2.2. NEWTON’S LAWS

Newton’s laws of motion may be stated as follows:

1. A particle continues in a state of rest, or of uniform
motion in a straight line, unless acted on by a force.

2. The acceleration of a particle produced by a force is
proportional to the force and in the direction of the force.

3. If two particles interact, the action and reaction are
equal and opposite.

We shall not have time here to discuss the processes by
which Newton was led to formulate these laws. Although
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so widely used, acceptance of the laws does of course rest
solely on the experimental verification of their consequences.

The meaning to be attached to the word particle in the
laws must be studied first. A particle is often said to be a
peint mass with no spatial extent. Atomic nuclei and elec-
trons might be thought to be particles of this type. But
Newton’s laws are not intended to apply to such small-
scale phenomena; usually quantum mechanics must be used
instead. In classical mechanics the smallest pieces of matter
we need to consider contain enormous numbers of atoms,
and on this scale we can ignore the atomic structure and
think of matter as continuous.

Accordingly, we define a particle to be a material body
whose dimensions, though not zero, are sufficiently small
for the internal structure of the body to be unimportant.
The actual size permissible depends on the particular physi-
cal problem. Thus the earth may be treated as a single par-
ticle for the discussion of its movement round the sun, but
a grain of sand cannot be treated as one in a study of the
formation of a sand dune. For our calculations, the essential
feature of a particle is that its position is sufficiently des-
cribed by a single vector r, the position vector from some
origin,

This concept of a particle in Newton’s laws will not be
self-consistent unless we can prove that a number of par-
ticles, fixed together and of small extent, behave like a
single particle, for we do not want to have to specify exactly
how small our particles must be. The required proofs are
obtained in section 3.1 and section 3.3.

The laws of motion for a particle would be of limited
use if we could not deduce from them the laws applicable
to larger bodies and to systems of several bodies. Our
definition of a particle enables us to deal with extended sys-
tems by considering them as assemblages of suitably inter-
connected smaller bodies, all sufficiently small to be treated
as single particles.

Newton’s second law, of which the first is a special case,
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says that the acceleration ¥ is proportional to the applied

force F, or
F =k, (26)

The constant of proportionality m is called the mass of the
particle. Now ¥ is a vector since r is, from section 1.6, and
hence F is a vector, being equal to the product of a scalar
and a vector. Thus Newton’s second law implies that force
is a vector, and from this the laws for the combination of
forces follow as discussed in section 1.8. Equation (26)
enables us not only to define, but also to measure, forces and
masses. If we apply a given force F (say by attaching a
spring stretched by a definite amount) successively to each
of a series of particles of masses my, m,, . . ., and measure
the accelerations #,, £,, . . ., then since the accelerations are
given to be inversely proportional to the masses, we can
assign numbers to specify the masses, having arbitrarily
chosen one of the particles to have unit mass. And if we
apply forces in turn to the standard particle, of unit mass,
the forces are equal to the accelerations produced.

This definition of mass makes no reference whatever to
the weight of a particle, which is the magnitude of the gravi-
tational force which acts upon it. It is an additional piece
of observational experience that, in the absence of air resis-
tance and other disturbing forces, all particles fall under
gravity with the same constant acceleration g. The weight
of a particle of mass m is hence mg, from (26), and a compari-
son of weights therefore also gives a comparison of masses.
It is important to realize that Newton’s laws of motion
would provide a completely satisfactory basis for dynamics
if the gravitational force were not proportional to the mass,
or indeed did not exist at all. Weight varies significantly
even between one point on the earth’s surface and another,
while mass is constant (except at speeds comparable with
the speed of light). It is mass which should always be
thought of as the fundamental property of matter for
dynamical purposes.
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In the British system the units of length, mass and time
are the foot, pound and second, all chosen quite arbitrarily.
The unit of force, the poundal, gives a mass of 1 Ib. an
acceleration of 1 ft./sec.?, Since at the earth’s surface gis
approximately 32-2 ft./sec.?, the weight of a mass of 1 Ib.
is 32-2 poundals; this force is sometimes called 1 pound
weight. In the c.g.s. system the units of length, mass and
time are the centimetre, gram and second, and the cor-
responding unit of force is the dyne. Since £ is approxi-
:lnately 981 cm./sec.?, a force of 1 gm.wt. is equal to 981

ynes.

Many simple problems concerned with the motion of a
particle can be solved by a direct application of Newton’s
second law,

Example 1. 4 body moves along the x-axis with constant
acceleration a, starting at x=0 at time t=0 with speed u.
Fbxdtkespeedvintermofxand:htenmoft, and find x in
terms of t.
The acceleration f=dv/dt=a. Integrating with respect
to ?
’ v=at-{-constant=u-}-at.
Now v=dx/dt, and integrating again with respect to ¢,
x=ut-|iat?
No constant appears since x=0 when #=0. To find v as a
function of x, we may eliminate # between the last two
equations. Alternatively, we may write
_dv_do dx_ do
==& &=
This formula is frequently in use, and should be remem-
bered. Hence v dv/dx=a, and integrating with respect to x,

$v*=ax-}-constant, v®=u2+}2ax.
All the required formulae have now been found. It must be

emphasized that they hold only for motion with constant
acceleration,
34
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Example 2. 4 body falls from rest under the influence of
gravitypaud air resistance proportional to the square of its
speed. Find how the speed of the body depends on the distance
fallen. (This resistance law is in good agreement with experi-

mf.gt x be the distance measured downwards from the

starting point. Equation (26) gives
mf=mg— ke?, _ .
where m is the mass of the body, f its acceleration, v its
speed and £ is a constant. If o® <mg/k, f>0 and the body
accelerates; if ©*>mg/k, f<0 and the body decelerates. In
either case the speed approaches V=§mg/k)*, which is
known as the terminal speed. We may write the equation as
mf=k(V?— v*). -
We wish to find v as a function of x, and hence we write
=v do/dx. .
Integrating the equation, we then have

k vdo % log V"
= V,_v.—-—-klog(V‘ %) -log V,

since v=0 when x=0. Taking the exponential of this, we
obtain

—-2kz/m —2kz|m
v’=V‘{1—e ]=%£[I—e ]

his gives the speed of the body throughout the fall.
ki If gt;le body F;s projected upwards, the resistance acts
downwards initially, and so the equation which governs the
motion until the speed falls to zero is mf=mg--ke?, in the
same co-ordinates as before. The upward and downward
parts of the motion must therefore be treated separately.

Example 3. Find the path of a projectile which starts from
the origin with velocity u at time t=0, neglecting air resistance.
The equation of motion is
#= - gk,
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where k is a unit vector in the z-direction, vertically up-
wards. Integrating twice, we have first
f=u- gik,
since f=u when #=0, and then
r=ul— o'k,
since r=0 when #=0. If the direction of projection is at an

elevation « above the horizontal in the x2-plan
) -plane, th -
ponents of this equation give R i

x=ut cos o, y=0, 2=ut sin a— 3g*.
To find the path, we eliminate ¢ and obtain

2u®

This is a parabola, with its axis vertical. Other i

] , Wit . ropert
of the motion are readily deduced. Thus the ll:orii;onm
range, found by putting =0 with x30, is (#2[g) sin 2a;
this range has its greatest value #%/g when a=4. ’

Z=x tan a—

seca.

Example 4. Find the extent of the regi 1

4.F gion which can be reached

by the projectile of Example 3, if u is kept

angle of prqfegtr’on is van'eg. J WE e b e
The equation for the path can be written as

2u? 2utz
tan®a— —t ( — =
| o o an o-- 1+gﬂ)"0'
since sec’x=1+-tan’x. The roots, if any, of this quadrati
equation for tan « give paths which pass th h(t1 i
(%, 2). There are real roots only if 2 i
ul 2uz i
L W gat
o gsx,?, +gx2, or zszg Ly
n the case of equality, the point (x, 2) lies on a parabol
:;1;1; its Sx;s vertical and vertex upperm)ost, the pafab:!aoo;
ety. Only points on and below thi
reached by the projectile. R .
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2.3. MOMENTUM, ANGULAR MOMENTUM, ENERGY

If we define a new vector, the momentum M=mi=mv,
where v is the particle’s velocity, equation (26) can be
written as

dM

and thus the force applied is equal to the rate of change of
the momentum. In particular if F=0 throughout the mo-
tion, M=constant. This is the principle of the conserva-
tion of momentum for a particle. Even if F is not zero, one
of its components may be. In this case the corresponding
component of M remains constant. Thus in Example 3 of
section 2.2, M;=1mu cos « is constant.

We may also take the vector product of (26) with r,
obtaining r A F=r A mf. Now r A F=G, the moment of
F about O as defined in section 1.8. We introduce another
new vector, the angular momentum H=r A mi=r A mv,
which we see is equal to the moment about O of the
momentum. Since m is constant, dH/dt=r A m¥ - A mf,
and the last term is zero. Hence our equation may be writ-
ten as

dH

o (28)

Thus the moment about O of the applied force is equal to
the rate of change of the angular momentum about O. If
G=0, H=constant, this being the principle of the con-
servation of angular momentum.

Just as for the moment of a force, discussed in section
1.8, we may define the component of H in any direction to
be the angular momentum about a line through O in that
direction, in agreement with the usual definition in two-
dimensional dynamics.

These laws of momentum and angular momentum are
direct consequences of Newton’s second law. We shall see
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in Chapter Three that the concepts of
: pts of momentum and angu-
s;rs g:ln:;n;:f:i :lr; .of great use in studying the motion of a
If we multiply (26) scalarly by #, we obtain
daT
F. f=?t' (29)

where T'=4mi*=3me® is a scalar quantity, t neti
energy. Now F . 3t is the work doneq(in titr]:r::.ﬂ: 8}:;: bk;mt}t::
force F in the displacement Sr, as discussed in section 1.3

and hence the rate of working of F is F . #. This is equal o
the magnitude of F multiplied by the component of the
velocity in the direction of F. Equation (29) shows that the
rate of working of the applied force on a particle is equal to
th% rate oma;:ge of the kinetic energy. 4

or special forms of F there are advantages in usi

rather than the original equation (26). Inges man;rl ﬁgs(i:%
glltuatxops the force F is a function of position only (not

epending on the particle’s velocity or the time), and does
no net work when its point of application moves ’round an;
closed curve. Such a force is said to be conservative. ¥

We can show that in this case the work done in a dis-

placement depends only on the initial and final positions
and not on the path traversed. Consider the two paths'
ABP, ACP from A to P shown in Fig. 12. The work for
the closed path 4ABPCA4 is known to be zero, and thus the
sum of the amount of work done on 4BP and PCA is zero.

P

Figure 12
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But the work on PCA4 is minus the work on ACP, since F
depends only on position and for each element 3r of the
path the sign is changed. This shows that the work done on
ABP is equal to the work done on ACP, and since these
paths are quite general ones from 4 to P the result follows.

We may now define the potential energy V(r) of the con-
servative force F(r) as the work done by F when its point
of application is moved to a standard position 4, no speci-
fication of the path being necessary. This is equal to minus
the work done in a displacement from A4 to the present
position. In a small displacement 3r, the change in V' is
8V = —F . dr, since this is the extra amount of work done
by F in returning to its starting position, and thence to 4.
Dividing by the time 8¢ in which the displacement takes
place and taking the limit as 8¢—0, we see that
dV|dt=—TF . ¥, and hence from (29)

dT dv
ata ="
and on integration
T+ V=constant. (30)

This is the energy equation. The fact that V" and T appear
on an equal footing in this equation justifies our calling
them both by the name of energy.

The point A used in defining the potential energy may
be chosen arbitrarily. If the point 4’ is used instead of 4,
V(r) is changed by a constant amount, equal to the work
done by F in a displacement from 4 to A’, and the only
effect of this is to alter the value of the constant in equation
(30).
An advantage of using the energy equation when available
is that it is an integrated form of the equation of motion,
involving only the velocity # and not the acceleration f.
However, it is only a single equation, while the components
of the vector equation for the momentum (or the angular
momentum) provide three equations to determine the
dependence on time of the three components of r. Unless
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the motion can be specified by a single co-ordinate, the
energy equation alone is insufficient and suitable other
equations must also be taken into account.

Example 1. The position vector at time t of a ]
e 1 ! _ article o
mass m is £=a cos nti+b sin ntj. Show that Iffe ar:gula{

momentum about O is constant, and
o s and find the force and moment
We have
= -ausirtut i+bn cos nt j,
r= — an® cos nt i— bn® si j=-
e nt i— bn® sin nt j=— n?r,
H=ra mi-=mabn(cos’nt+sin’rzt)k=mabnk,
and so is constant. Also
L F=mi= — mn’r, G=r a F=0,
which 18 as required for the proved ti
s e, proved conservation of the

displacement in the z-direction, anﬂ hgn::};e S
This’is the gra‘{i/t-a:ti&'arl(;owt&dga!:ga; mass m near the
ea?fl'l ; iui-fa(f/.rgil‘le ﬁ;iihitszd;(—)o mayl bebchosen arbitrarily,
ponent of djspla;éncnt, and g:;:::n vk o
P o e e s

Example 3. 4 particle of mass m m 1
y _ oves along the x-axis
controlled by a light elastic spring which proa'::ﬁs' a restan'né
ﬁrdcem—; mk;uz f;::d thf.’ potential energy stored in the spring
ate the position of the parti ; i it 1s re-
leased from rest at x=a at ﬁme tf::ag A ol
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The potential energy V= — [(— kx)dx=3%kx® The energy
equation for the motion is

$mit4-ka®=constant=4ka?,
since initially ¥=a, %=0. Hence

el o] (8o

since x=a when ¢=0. The required position is thus given

by

x=a cos{(k/m)t}.
This type of motion, known as simple harmonic motion, is of
very frequent occurrence. The whole motion is periodic in
time, with period 2#(m/k).

The energy equation could have been arrived at by
integrating (after multiplication by #) the equation of
motion m¥= — kx, or

&+ (kfm)x=0.
This may be considered as the basic form of equation for
simple harmonic motion, with (k/m) any positive constant.

2.4, ACCELERATING FRAMES OF REFERENCE

We have as yet taken no particular account of the frame
of reference (i.e. the origin and the direction of the axes)
used to describe the motion. The position vector r, the
velocity # and the acceleration ¥ which we measure will be
affected by motion of the origin, but the forces will not be,
and so Newton’s second law cannot possibly hold in all
frames of reference, unless we postulate the presence of
fictitious forces to make up any discrepancy. The idea of
fictitious forces is not to be immediately dismissed, as we
shall see below.

At one time the idea of absolute motion was thought to
have validity, but now it is generally accepted that all
motion is relative, and there is no question of our being able
to say categorically that any point is at rest, or even moving
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with uniform velocity. In any case we often wish to take as
origin a point on the surface of the earth, which is obviously
moving. Such a point rotates about the earth’s axis once in
?nd.g. trtahw:;f rougdththe sltm in a year, and follows the sun
in its pa rough the , all at speeds far i

those we wish to be ableg:oanxﬁzasure. g e
. Thoughit may seem illogical to start from laws expressed
in a form which appears to require that absolute motion
exists, our best course is to postulate that we have a basic
Nes’otoman JSframe of reference, with origin O, in which New-
ton’s laws apply. Then we can consider the equations of
motion in frames of reference which move relative to the
basic frame, and can estimate the effects of such movements.
Eventually‘w.e may hope to put the laws into such a form
that the original frame of reference no longer appears ex-
gl;cxtly. Results of this nature will be obtained in section

Let us supposﬂhat instead of O, we take as origin the
point O’, where OO’ =a as shown in Fig. 13. Relative to O’

Figure 13

the position vector of a particle at R is r'=r—
tion of motion (26) shows that r— a. The equa-

F=mi=mi'+-mi,
' — mi' =F — mi., (31)
Comparing this with equation (26) we see that in the new
42
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frame of reference there is a new apparent force — & per
unit mass, an #nertial force acting in the opposite direction
to the acceleration of O’. If 4=0, i.e. a=constant, no extra
force arises, and thus all frames of reference which have
constant velocity relative to a Newtonian frame are them-
selves Newtonian frames.

A familiar example of this inertial force is seen in a lift
accelerating upwards, when an occupant is conscious of an
extra downward force, though he remains at rest relative to
his surroundings. On the assumption that inertial and gravi-
tational masses are equal, the observed terrestrial force of
gravity could be reproduced exactly in empty space by
giving the frame of reference an acceleration —g. Einstein’s
general theory of relativity postulates that accelerations and
gravitational forces are essentially equivalent; on this basis
a gravitational force can equally well be thought of as an
inertial force, and hence weight must be proportional to
mass and does not require any separate assumption.

Example 1. 4 train is moving along a straight horizontal
track with uniform acceleration f. Calculate the motion rela-
tive to the train of a parcel dropped by a passenger.

The parcel is subject to its weight mg downwards and to
an inertial force — mf in the direction of the train’s motion;
hence the total force is of magnitude m(g2--f*)* and inclined
at an angle tan-'(f/g) to the vertical. Since the force is
constant, the motion is exactly as treated in Example 1 of
section 2.2. The parcel falls in a straight line making an
angle tan~!(f/g) with the vertical, its speed and distance
travelled being given by the formulae of Example 1 of
section 2.2 with a replaced by (g*+f*)?} and with #=0 in
this particular problem.

2.5. ROTATING FRAMES OF REFERENCE

Suppose that the origin O is fixed in a Newtonian frame,
but that the axes with respect to which position and dis-
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placement are measured rotate. At time ¢, let any vector

quantity a(?) be given in terms of its components by
a=azi+a,j--a.k,

where i, j, k are unit vectors in the co-ordinate directions.

If the axes rotate, we can consider that these unit vectors

are embedded in a rigid body which rotates about O with

angular velocity w. From equation (19), the rates of change
with respect to fixed axes are

difdt=w A i, djjldt=w A}, dk[dt=w A k,
and hence, by the rules for vector differentiation, the rate
of change of a(z) is

da_das,  day, das . di, dj, dk
@it adt Etfk"'“"‘?ic'['a”d_f'_a’d_t
=atwAa. (32)

Here 2a/2t is written for the rate of change of a(?) in the
moving frame, with the motion of the axes ignored. If the
components of a remain constant, so that a is represented
by a position vector carried round with the axes, da/dt=0.
Equation (32) is of fundamental importance, and has many
applications.

In the case in which a=r, the position vector, we shall
write dr/dt=f, the ‘apparent’ velocity in the moving frame,
and shall write dr/dt=v, the ‘true’ velocity in the basic
Newtonian frame. Then

v=ftwAr. (33)
Likewise, the ‘true’ acceleration f is given by
f=dv|dt
=ov[ot+w AV
=f4+dAr{+20Af+wA(wAr), (34)

from (33). For a particle of mass m acted on by a force F,
the observed acceleration ¥ in the moving frame is given by
(26) and (34) in the form

mi=F—md Ar—2mw A¥—mw A (wAr). (35)
44

ROTATING FRAMES OF REFERENCE

Written in this way, the last three terms may be considered
as apparent forces which arise owing to the rotation of the
axes. The term — ma A r is an inertial force, exactly analo-
gous to that found in (31), and is proportional to the angular
acceleration of the axes. In the last term, w A r has magni-
tude wp, where p is the distance of the particle from the
axis of rotation, and is perpendicular to both @ and r;
consequently —mw A (w A r) acts directly away from the
axis and has magnitude mw?®p. It is the familiar centrifugal
force. The remaining term —2me A £ arises only when the
particle is in motion relative to the moving axes, and gives
what is called the Coriolis force. It acts in a direction per-
pendicular to both @ and the apparent velocity #. If the
axes have a translational motion as well as rotation, the
inertial force of equation (31) will be observed in addition.
We can now examine the effect of the rotation of the earth
on the dynamics of motion near its surface. Choose an
origin O on the axis of rotation of the earth near its centre,
and use axes fixed in the earth. Consider a particle of mass m
with position vector r, acted on by an applied force F’ as
well as by the gravitational force mg’. Since the angular
velocity 2 of the earth is constant, (35) gives
mE=F"+4m{g'— Q A (2 Ax)}—2mQ A £ (36)
The reason for grouping together the gravitational and
centrifugal terms is that both are functions of position only;
indeed in their dynamical effects they are inseparable. We
customarily define g to be the acceleration of a body falling
freely from rest, as measured in axes fixed in the earth. In
this case F'=0, #=0, =g, and hence from (36)
g=g'~ QA (2 A1), (37)
The difference between the observed gravity g and the true
gravity g’ is quite appreciable, as the following example
shows.

Example 1. Calculate the difference between g and g' at a
point on the equator. [The radius of the earth is 3,960 miles.]
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If the earth rotated on its axis once in twenty-four hours,
we should have Q=27/(24x 60 X 60)=0-0000727 radians/
sec. Since the earth goes round the sun once in a year, it in
fact rotates approximately 366 times in 365 days, and hence
£2=0-0000727 X 366/365=0-0000729 radians/sec. _ :

On the equator QA (QAr)= — Q“r'by (15) since r is
perpendicular to 2, and so g and g’ are parazllel and
&' —g=(0-0000729)* X 3,960 X 5,280=0-111 ft./sec.®.

This is of the same order of magnitude as the variation
of g’ between the equator and the poles due to the earth
being an oblate spheroid and not a perfect sphere.

Equation (36) may now be written as
mi=F"+4-mg— 2m8Q A £. (38)
This equation is unaffected if we transfer the origin to O’
on the earth’s surface, a fixed point relative to the rotating

-n-\_.‘x 0

Figure 14
axes. Thus the only extra force which need be considered
for the motion near a point on the earth’s surface is the
Coriolis force. This force has a governing influence on the
winds over the earth, and it also has directly observable
dynamical effects, as the following example shows.

Example 2. 4 shell is fired with a horizontal velocity of
2,000 ft.[sec. Estimate the deflection due to the Coriolis force at
46

POLAR CO-ORDINATES
a range of 10 miles in latitude 50° N., neglecting air resistance.

It is the direction of g which defines the vertical (and
not the direction of g’ or the radius from O’ to the centre
of the earth) and so g has no horizontal component. Take
horizontal axes x in the direction of firing and y perpendicu-
lar to it. Since #=ai+yj, only the vertical component
Qsin A of Q (where A is the latitude, shown in Fig, 14,
equal to the complement of the angle between the vertical
and the earth’s axis) affects the equations for the horizontal
motion, which from (38) are

#=2Qysin A, j= - 2Qs sin A,

These equations show that in the northern hemisphere,
where sin A>0, the deflection due to the Coriolis force is
to the right, while in the southern hemisphere, where
sin A<<0, it is to the left. The reason for this is most easily
understood physically for a shell fired to the north. In the
northern hemisphere the shell passes into regions where the
ground’s speed to the east due to the earth’s rotation is less,
and so the shell deviates to the east. In the southern hemi-
sphere the converse holds, and the shell deviates to the west.

Our equations may be integrated to give

#—u=2Qysin A, = —2Qxsin A,
where  is the horizontal velocity of projection, provided
that the change in latitude is insignificant. The Coriolis
force is relatively small, so from the first equation x=ut,
approximately, and using this we can integrate the second
equation to obtain y= — Qu#?sin ).

In the present example 2=0-0000729 radians/sec.,
the time of flight #=52800/2000 sec.,, u=2000 ft./sec.,
sin A=0-7660. Inserting these values we obtain y=78 ft.
This is of amply sufficient size to have to be allowed for in

accurate gunnery.,

2.6. POLAR CO-ORDINATES

We may use (33) and (34) to derive the components of
velocity and acceleration in plane polar co-ordinates (r, 6).
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Let the axes rotate so that i is always in the direction of the
radius vector and j perpendicular to it in the plane of motion,
as shown in Fig. 15. Then r=ri, #=7i, ¥=#i. The axes
rotate about the normal to the plane of motion through
the origin with angular velocity w=0k, and therefore
o A r=70j. Equations (33) and (34) now show that

Figure 15

v=Fi+rlj, f=(F— r02)i-+(rd-270)j. (39)
The coefficients of i and j give the radial and transverse
components respectively.

We can also deduce the components of acceleration for
plane motion in terms of inirinsic co-ordinates, i.e. the
distance s along the path and the angle  which the direc-
tion of motion makes with a fixed direction. Take unit
vectors i and j parallel and perpendicular to the direction
of motion as shown in Fig. 16. Then v=vi and

A
R

\d

Figure 16
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B b v
where p=ds/dy} is the radius of curvature of the path.
From (32)

f=v+ o A v=2i+(2/p)j. (40)
Thus the acceleration components are ¥ parallel to the path
and v%/p perpendicular to it.

Example 1. 4 particle of mass m hangs by a light string of
length | from a fixed point O. Examine the motion in a vertical
plane through O.

Let the string make an angle 6 with the downward ver-
tical, as shown in Fig. 17, and let the tension in the string
be 7. From (39) the equations of motion in the radial and
transverse directions are

0

a\l
T

I mg

Figure 17

mg cos 0— 1'= — mlf?, — mg sin O=mld.
Multiplying the second equation by # and integrating, we
obtain .
$ml0*=img cos 0+-constant.

We could have written down this equation directly as the
energy equation, since the tension in the string does no
work. If the speed v=I0 is equal to » when 0=0, this
becomes

E 49



DYNAMICS OF A PARTICLE
v?*=u?— 2lg(1- cos 0),
and hence, from our first equation,
T=mu®[l+4mg(3 cos 60— 2).

If the particle starts from §=0 its swing will continue
until either v=0, which requires cos 0=1-u*/2lg, or
T=0 (when the string becomes slack), which requires
cos §=2%(1—u?/2lg). Since initially cos §=1 the first of these
possibilities will occur first if #* <2lg, and the particle will
come to rest with § <}= and 7'>0; it will then swing back
along its previous path, performing periodic oscillations. If
2[g <u®<5lg the second possibility will occur first, for a
value of @ in the range 37 <0 <= and with ©>0. The par-
ticle will then commence a free trajectory with the string
slack. If #2>5lg neither 7' nor v ever vanishes (since
cos 62> —1 for all #) and so the particle performs a succes-
sion of vertical circles, without change of direction. There
are thus three fundamentally different types of motion
which may occur.

If u is very small, 6 remains small thoughout the motion
and the energy equation can be written approximately as

P=P0=u- [g6".
By comparison with Example 3 of section 2.3, this is the
equation for simple harmonic motion of period 2(l/g)t.

It is worth noting that exactly the same analysis applies
if the particle moves on the inside of a smooth spherical
bowl of centre O and radius /. At a smooth surface the
reaction is perpendicular to the surface, and so acts towards
O in this case. Tangential or frictional forces occur only if
the surfaces in contact are rough.

2.7. MOTION UNDER A CENTRAL FORCE

The motion of a particle under the influence of a force
directed towards a fixed point O, and of magnitude depend-
ing solely on the particle’s distance from O, has many
physical applications. In particular it enables us to discuss
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the orbits of planets and comets under the gravitational
attraction of the sun.
Suppose that the force on a particle of mass m is
=mf(7)#, so that the force is radial and of magnitude f(7)
per unit mass. The moment of this force about O is zero,
and hence by (28) the angular momentum

H=r A mi=constant. (41)

Throughout the motion r and # must be perpendicular to
H, and thus the motion lies entirely in the plane through O
perpendicular to H.

The potential energy per unit mass is V(r)= — [f(r)dr,
as in section 2.3, and hence the energy equation is

412+ V(r)=constant. (42)
The lower limit in the integral for V(r) may be chosen
arbitrarily; it merely modifies the value of the constant in
(42).

It is usually convenient to use polar co-ordinates in the
plane of motion. Then r=ri, #=7i--r0j as shown in (39)
and H=mr*k. Equations (41) and (42) become

r20=h, (43)

R4V () =E, (44)

where % and E are constants, being respectively the angular

momentum per unit mass about the normal at O to the plane

of motion, and the total energy per unit mass. We may use
(43) to write (44) as

302 r - V(r)=E. (45)

In principle the motion is now fully determined. Equation

(45) enables us to write d¢/dr as a function of r, and we may

integrate to find ¢ as a function of r. Then (43) may be

solved to obtain @ as a function of 7 or ¢. Alternatively we
may calculate the orbit directly, using the equation

(@) =52l 157} (46)
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The ease with which the actual integrations can be carried
out depends, of course, on the particular form of f(r).

In the case of gravity, Newton’s law of gravitation states
that the force of attraction between two particles of masses
m and m’ at a distance r apart has magnitude ymm’/[r?,
where y is the universal gravitational constant. As will be
shown in Example 4 of section 3.1, if m’ is much greater
than 7 we may treat m’ as fixed at O and write p=ym’, so

that
fr)= —ulr, V)= —p/r.

The integration of equation (46) is facilitated by the sub-
stitution r=1/u. The equation becomes

du\®* 2E 2uu_ 2E p* r\e
(d—e) L T (“-}zi) '

and on taking the square root and integrating the resulting
equation for d0/du we obtain

8=sin‘1['(;_EL{$)§]+iﬂ,

»N
choosing the arbitrary constant in 6 conveniently, or
lfr=1-ecos @ (47)
where
I=h*p, E=1+42ER*|p2. (48)

Equation (47) is the standard form in polar co-ordinates of
a conic with semi-latus rectum /, eccentricity e, and the
origin as one focus. The conic is an ellipse for e<1, a
parabola for ¢=1, and a hyperbola for e>1. From (48)
these three cases correspond to E<0, E=0 and E>0
respectively. The energy equation (44) may be written as
30— pfr=E, (49)
so the three cases also correspond to v*<, = or > 2u/r.
The nature of the orbit thus depends solely on the speed at

a given position, and not on the direction of motion. For an
ellipse the semi-major axis « is given by /=a(1- ¢%), and

MOTION UNDER A CENTRAL FORCE

use of (48) shows that equation (49) may be written as
v*=p(2/r—1/a). When r=a (constant), *=p/a, confirm-
ing that for motion in a circle the centrifugal force mv*/a
balances the gravitational force pm/a®. For a hyperbola
I=a(e*—1), and hence v*=p(2/r-1/a). These forms are
often convenient.

Example 1. Show that h is equal to twice the rate at which
the radius vector sweeps out area.

In small time 8¢, with changes 87 and 80 in r and 0, the
area of the triangle formed by the initial and final radii is
approximately 37 . 780. The rate at which area is swept out
is therefore 4720=1%h.

Example 2. A particle moves under a central atiractive
force varying inversely as the square of the distance. The
particle approaches from a large distance with speed u, and if
undeflected would pass at a distance d from the centre of force.
Calculate the angle between the particle’s initial and final
directions of motion.

At great distance H=r A mi=mduk, and hence h=du.
Also E=1}u?, since V=0 at infinity. Equation (48) now gives
@=1-+41d*/p?. From (47), when r=c0, sec #=e and hence
tan 0=(e— 1){=+u?d/p.

Figure 18

From Fig. 18, the total deflection is
a=a—2 tan“(u“d/;;)=2 tan (p/ud).
5
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If it is known that a particle is moving under a central
force a knowledge of its path enables us to calculate the law
of force, since dr[df can be expressed as a function of 7,
and then V(r) found from (46). Differentiation with respect
to r then gives f(7), depending only on the parameter A.

Example 3. Find the law of force if the path is log r=k6.
Here dr/d0=Fkr, and (46) gives V(r)=E— 3h*[r*— 3k2h/r*.
Differentiating, since dV/dr= — f(r), we have

()= - (1+-R)2/r.
Thus the motion is governed by an inverse cube law of
force, directed towards O.

EXERCISES ON CHAPTER TWO

1. A body falling freely under gravity takes  sec. to fall a window
of height 9 ft. If the body started from rest, find the height from which
it fell. [Take g=32 ft.[sec.?]

2. A ball is thrown vertically upwards with speed U, If air resistance
is proportional to the square of the speed and the terminal speed is ¥,
find the speed of the ball when it returns to its starting point.

. Find the angular momentum about O of a particle of mass 3 at the
point i—4j+6k moving with velocity 3i~2k. Find also the angular
momentum about the line OP, where P is the point 2i— j— 2k.

4. Calculate the maximum range of a projectile fired with speed u up
a plane inclined at an angle £ to the horizontal, and the elevation of the
gun above the horizontal in this case, ignoring air resistance.

5. An explosion at a point on level ground hurls debris in all directions
with speed 8o ft./sec. Prove that a man 100 ft. away is in er of being
struck at two instants 5/4/2 sec. apart. [Take g=32 ft./sec.? and ignore
air resistance.]

6. A particle is slightly disturbed, from rest at the uppermost point of
a smooth fixed sphere of radius b. Find the height through which the
particle descends before leaving the surface of the sphere.

7. A _ﬁ:.rﬁcle of mass m hangs from a fixed point by a light elastic
string. The tension in the string is proportional to its extension, which
in the equilibrium position is L If the particle makes oscillations in a
vertical line, find its greatest speed if the string is not to become slack.

8. An aeroplane of mass 100 tons flies north along a parallel of longi-
tude at 500 m.p.h. Calculate the transverse force needed to keep the
aeroplane on course when in latitude 50°N.

9. A particle P of mass m moves under the action of a force of magni-
tude mkr directed towards a fixed point O, where r is the distance OP,
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If the particle is projected at r=>b with speed V' ndicular to OP,
show that it describes an orbit between r=>b and r=V/y/k.

10. A particle moves in an ellipse under a central attractive force vary-
ing inversely as the square of the distance, If the particle’s greatest speed
is # times its least speed, find the eccentricity of the orbit.
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CHAPTER THREE

Dynamics of a System

3.1. MOMENTUM

Our definition of a particle was formulated with special
regard to the possibility of treating larger bodies as assem-
blages or systems of particles. We must now consider how
dynamical laws for a system may be deduced from the laws
for a single particle. The extra complication is that each
particle is subject to internal forces of interaction with other
particles of the system in addition to any externally applied
force, and usually we neither know nor particularly wish to
know the magnitudes of these internal forces. It is therefore
vital to see how much information about the motion we can
obtain without any detailed knowledge of them.

Let the typical particle of the system have mass m; and
be at the point with position vector ry. For a system of N
particles, z takes the values 1, 2, ..., N. Newton’s second
law of motion (26) for the i particle can be written in the

form
mif=Fi{=F+ ZFy;. (50)

Here F; is the total force on the # particle, F; is the ex-
ternal force, and Fy; is the force due to the j* particle. The
summation is over all values of j from 1 to N, and Fy=0
since a particle can have no influence on itself. Newton’s
third law, which we have not used previously, states that

Fu= —Fy (51)

for all values of 7 and j. If we add together the set of equa-

tions (50) corresponding to all values of 7 from 1 to N, the

internal forces therefore all cancel in pairs, and we have
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Imity=SFi=ZF, (52)
each summation running from 7=1 to i=N.

We now define Zmiti= ZM;=M as the momentum of
the system, being the sum of the momenta of the individual
particles. Then
%= Zmy¥= ZF;=F. (53)
Thus the rate of change of momentum of the system is
equal to F, the sum of the external forces. To avoid possible
confusion with angular momentum, M is often referred to
as the linear momentum of the system. If F=0, M=constant,
which is the principle of the conservation of momentum
for a system.

Still further simplification is possible. We define the
centre of mass ¥ by the equation

Z'mm:( .ng)i‘:mf (54)
where m is the total mass of the system. Differentiating with
respect to the time, we have

Zmgi=M=nmi, (55)
and so the momentum of the system is equal to that of the

total mass, moving with velocity of the centre of mass.
Equation (53) may be written

mi=F., (56)

This supports the self-consistency of our concept of a
particle as far as the momentum is concerned, for we see by
comparison with (26) that the system behaves just like a
single particle of mass m at ¥, acted on by the external
forces applied to the system.

It must be emphasized that there is no restriction at all
on the types of internal forces which may be present, since
it is well confirmed that all forces met with in practice do
obey (51). Frictional, viscous and explosive forces are all
permitted. For example, if a cat is swung and released so
that its parabolic path as a projectile would take it into a
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bath of water—an experiment which the reader will of
course not attempt to reproduce—no contortions by the cat
can prevent it from landing in the bath (though it may
manage to do so feet first).

Example 1. 4 rod of mass kx per unit length extends from
x=0 to x=1. Calculate the position of its centre of mass. Deduce
the momentum of the rod when it rotates with constant angular
wvelocity w about a vertical axis perpendicular to its length
through the end x=0, and the horizontal force at the axis
required to maintain the motion.

For a continuous body the summations in our formulae
become integrals. At x, the particle of length dx has mass

1
kx dx. The total mass m=f kx de=3k[®. From (54),
0

!
mi:f ka*dx=2%k[. Hence =3I The centre of mass has

0

speed X, and the magnitude of the momentum is
M=mwx=4%kPw. From (56) and (39) the force at the axis
is radial and of magnitude mw*x=3kBw?

Example 2. 4 rocket of mass m(t) emits mass backwards
at a speed u relative to the rocket at a constant rate
k(=- dm/dt). Ignoring gravity and air resistance, calculate
the force on the rocket and its speed v at time t, if at time t=0
its speed is vy and its mass mg.

In time 8¢ the rocket’s speed increases by 8v. Since there
are no external forces, there is no change in the momentum
of the material which made up the rocket at time #, and
hence (m— kdf)dv—ukdt=0. Letting 8t—0, we have
dv|dt=uk|m=uk|(my— kt). Integrating,

v= —u log (my— kt)-}-constant=v,+u log (my/m).
The force required to accelerate the mass m— kSt is
(m— két) dv/dt. Letting 8t—0, we see that
F=m dv|dt=uk.
Note that the rate of change of momentum of the rocket,
58
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d dv dm
Ei(mv) =my +v g =(u—o)k,

is mot equal to the force on the rocket, since the mass
emitted carries momentum away with it.

Example 3. 4 jet of water of cross-section A, density p and
speed v, strikes a wall at right angles and spreads out smoothly
over it. Calculate the force on the wall.

Figure 19

In time 8¢ a volume Avdt and hence a mass pAv3t of
fluid passes the point X in Fig. 19, carrying momentum
pAw28t perpendicular to the wall. There is no change in
the total momentum in this direction between X and the
wall, and so there must be a force — pA7* on the fluid to
produce a counterbalancing loss of momentum. The re-
action on the wall is therefore p 472, parallel to the jet.

Example 4. Two particles A and A’ of masses m and m’
move under their mutual gravitational attraction. Prove that
the motion of A relative to A’ is the same as if A" were fixed
but had mass m-}-m’'.

The centre of mass X of the system may be considered as
fixed in a Newtonian frame, since there are no external

—> —> —
forces. Suppose A'A=r, XA=s, A’X=s". Then r=s'+s,
ms=m's’, and hence (m-m')s=m'r., The particle 4 is
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subject to the force — (ymm'[r*)# and its equation of motion
is

g _ymm’ it
ms= 3 S nop=—

y(m+4-m") P

R Dt

This is precisely the equation for motion under the attrac-
tion of a fixed mass m--m’ at the origin. When m is much
smaller than m’, as for the motion of the earth round the
sun or of the moon round the earth, the difference between
m' and m-}-m’ is not important and also the distance 4'X is
relatively small. We are therefore justified in treating the
larger mass as fixed, and in applying the analysis of section
7.

3.2. ANGULAR MOMENTUM

We now study the angular momentum of a system of
particles. Suppose that the origin and centre of moments O
is fixed in a Newtonian frame of reference. For the
particle, take the vector product with r¢ of the equation of
motion (50). Then

ri Amty=ri AFi=r( AF;+1i A %' Fy;. (57)

Add the equations (57) for i=1, 2, ..., N corresponding
to the N particles of the system. The contribution from
the interactions between the p* and ¢* particles is

f, AF, 1, AF,=(r,- 1) AF, (58)
by (51), Newton's third law. From the law as we have
stated it, there is no reason to suppose that this expression
vanishes. It is only zero either if r,=r,, or if r,—r, is
parallel to F,,, i.e. if F,, acts along the line joining the par-
ticles. One of these conditions is satisfied for all the usual
types of internal force. Gravitational, electrostatic and
elastic forces act along the lines joining the particles, and
for pressure and frictional forces between particles in con-
tact we may consider r, to be equal to r,. We shall assume

here that all internal forces are such as to give no net con-
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tribution to the sum of equation (57). If at any time a type
of interaction is found which does not obey this, the
angular momentum laws which we now derive will not be
applicable.

Define H, the angular momentum of the system about O,
to be the sum of the angular momenta of the individual
particles. Then

H=2Z2 Hi= Z'r; A md'f,

%= Zry A mifyt Z b A maky,
and each of the terms in the last sum is zero. The summation
of equations (57) hence leads to

dd—l;l= ZriAF=G, (59)
where G is the sum of the moments about O of the external
forces. Neither this equation for the rate of change of
angular momentum nor equation (53) for the linear momen-
tum requires any knowledge of the internal forces; it is for
this reason that momentum and angular momentum are
useful concepts for the discussion of the motion of extended
bodies. If G=0, H=constant, which is the principle of the
conservation of angular momentum for a system.

The position vector of the #* particle may be written as

ry=F+sq, (60)
so that s is the position vector relative to the centre of mass.
Multiplying by m and summing over the N particles of the
system, we obtain

Zmpy=(2 m)T+ 2 mys.

Hence, from equation (54), and by differentiating,

2 msi=0, 2 m$=0, 2 m$;=0. (61)
Now :

H=Zr;A m;ig:-—— Z (F+s0) A mi(T+38¢)
= A (E m;)i--[—_).',' st AmiSi+T A (2 miSq)
-|—( o m;s;) AT.
Here the constant factors have been taken outside the sum-
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mations, and where convenient we have changed the posi-
tion of m; with relation to the vector product sign. From
(61) the last two terms are zero, and the result may be
written as

H=7 A mi--H, (62)
where H= X' s; A m$;. Thus the angular momentum of a
system is equal to the angular momentum of the whole

mass moving at the centre of mass, plus the angular mo-
mentum about the centre of mass of the motion of the sys-

tem relative to the centre of mass. When calculating H
we may, if we wish, use the velocities of the particles rela-
tive to the origin O rather than relative to the centre of
mass, since by (61) 3

Zs¢ Amiy= Jsq A my(E+8¢)=( Zmis) A £+ Zs; A my$=H.

Angular momentum is particularly suitable for dealing
with a rigid body. As shown in section 1.7, the motion of a
rigid body may be completely specified by two vectors, the
velocity v of a given point of the body and the angular
velocity w. Equations (53) and (59) for the momentum and
the angular momentum provide two vector equations, and
are sufficient to determine the whole motion. These equa-
tions show the importance of equivalent systems of forces
and couples, discussed in section 1.8, for if a number of
forces are applied to a rigid body, it is the resultant force
and couple which completely determine the motion.

If F=G=0, (53) and (59) are satisfied if v=w=0, since
then M=H=0. Also if v=w=0 for all time, M=H=0,
and hence F=G=0. Thus F=G=0 is a necessary and
sufficient condition for equilibrium to be possible for a
rigid body.

The analysis of the general motion of three-dimensional
bodies involves complications which we shall not be able
to embark on here, but if the body and its motion effectively
lie in a plane the problem is relatively straightforward.
Consider a body in the xy-plane (a lamina), rotating about
a fixed point O with angular velocity w=wk, where k is
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a unit vector in the z-direction. The element of mass m
with position vector r¢ has velocity of magnitude wry per-
pendicular to r;, and hence the angular momentum of the
body about O is
H=Z mjordk=Iuk,

where I=Z mr¢ is called the moment of inertia of the
lamina about O, and depends only on its geometrical pro-
perties. More precisely, I is the moment of inertia about an
axis through O in the z-direction.

The calculation of moments of inertia, like the calculation
of centres of mass, is much studied in books on the integral
calculus. For continuous bodies the summation in the defini-
tion of I becomes an integral. A useful result may be
deduced from (62) when the body rotates about O as con-
sidered above. The equation gives

Twk=mwi*k+Iwk,

where I= 2 ms¢® is the moment of inertia about the mass
centre, and therefore

I=I+mi?. (63)
This is known as the theorem of parallel axes. It states that
the moment inertia about any axis is equal to the moment
of inertia about a parallel axis through the centre of mass,
plus the total mass multiplied by the square of the distance
between the two axes. The theorem can be proved directly
from equations (60) and (61), as the reader may verify. It
shows that the moment of inertia about any point of a
lamina is known once I and the position of the centre of
mass have been determined.

Since moment of inertia has the dimensions of (mass) X
(length)?, it is sometimes convenient to write J=mk?, where
k is the radius of gyration. Equation (63) becomes

k’=kz+f'-

The motion of a lamina rotating about O in the xy-plane
is given by the z-component of the angular momentum
equation (59). If @ is the angle which a given line in the
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lamina makes with a fixed direction in the plane, w=6 and
(59) gives
Io=I10=G,. (64)
For a three-dimensional rigid body rotating with angular
velocity wk about a fixed axis, the z-axis, the same analysis
applies provided that in the definition of I, 74 is replaced by
pi=(x*-+y:°)}, the distance of the mass m; from the axis
of rotation. The reader may verify that H,=Iw, and so (64)
again applies. For this type of motion the z-components
have no effect and so may be ignored, reducing the body
once more to a lamina in the xy-plane.

Example 1. Show that a constant force ¢ per unit mass on
a system of particles is equivalent to a force me through the
centre of mass.

The total force is F= 2 mic=(Z m;)c=me.

The sum of the moments of the forces about the centre of
mass is

G=Zs; A mc=(2 mis;) A c=0,

by (61). This proves the result, which enables us to identify
the centre of mass of a body with its centre of gravity.

Example 2. Calculate the moments of inertia about their
centres of a uniform rod of mass m and length 2a, a uniform
circular disc of mass m and radius a, and a uniform rectangular
plate of mass m and sides 2a, 2b.

In each case integrals replace the sums in the formulae,
For the rod, the mass per unit length is m/2a, and so the
element of mass is (m/2a)dx and

i
i f | Pesdv=ima,

For the disc, the elementary area 277 dr between the
rac(liu r and r+-dr has mass (m/wa®) . 2nr dr=(2mr|a®)dr,
an

a
I=f 2 e dr—ymat.
0
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For the plate, divide the area into strips of length 22 and
breadth dx, with centres at a distance x from O, the centre
of the plate. The moment of inertia of such a strip about its
centre is $(mdx/2b)a?, and about O is (mdx[2b)(3a*+%%), by
(63). Hence

) _
j 2 f " b%(}a’—l—x’)dxr-—im(a’—}-bﬁ).

Example 3. A skater of mass 152 Ib. is rotating about a
vertical axis with his arms outstretched at 100 revolutions per
minute on smooth ice. He then folds his arms. If the radius of
gyration of his arms (each of mass 6 Ib.) is 20 in. when ex-
tended and 5 in. when folded, and if the remainder of his
body has radius of gyration 4 in., calculate his new rate of
rotation.

Since there are no external moments about the axis, the
angular momentum is unchanged. The skater’s original
moment of inertia was 140 X 4212 X 20*=22404-4800=
7040 1b. in.2, and his new moment of inertia is 140 X 4*+-
12 % 52=2240-}-300=2540 lb. in.2, Hence his new rate of
rotation is 100 X 7040--2540=277 r.p.m.

So far we have assumed that the origin and centre of
moments O is fixed in a Newtonian frame of reference.
We should like to be able to take moments about a moving
point also, for two distinct reasons. First, as discussed in
section 2.4, we have no reliable means of knowing what
points may be considered to be at rest; and second, there
are sometimes advantages in using a moving centre of
moments even when the frame of reference is not in ques-
tion, as for a wheel rolling down a slope for which it is
convenient to take moments about the point of contact of
the wheel with the slope.

Consider the second case first. Suppose that we have a

o
moving origin O, so that 0O’=a as in Fig. 13. The angular
momentum about the moving origin O is
F
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H'=2riAmi=2 (ri—a) Amgi=H-aaM (65)
and
dH' dH dM
—d'?'mz— aahA —Ei-- anM
=2riAFi- aAn ZF;-aaM

by equations (53) and (59). Note that there is no need to
reconsider the effects of the internal forces. The sum of the
moments of the external forces about O’ is
G=2riaFi=2(ri—a)AFi=2riAFi-aa ZFq,
and hence
dH’ :
7=G'- AAM=G'-2a amnmr. (66)

This equation only reduces to the previous form (59) in
special cases. It does so if 4=0, so that O’ is fixed relative

to O, and also if & is parallel to #, which is true in particular
if a=F, so that O’ is the centre of mass. This is an important
case and leads to

da -
—d-t-=G (67)

where G= Z s; A Fy is the sum of the moments of the ex-
ternal forces about the centre of mass. The fact that in
general the rate of change of angular momentum about a
moving origin is not equal to the sum of the moments of the
applied forces will be illustrated in Example 1 of section 3.3.

In (65) the velocity used to form the angular momentum
was the velocity relative to the fixed origin O. We can also
define the angular momentum relative to the moving origin O’

as
H''=Z'r{ A miti, (68)

which involves the velocity #; relative to O’. Since all quan-
tities are now measured in the moving frame, the total
dynamical effect is an inertial force — mé through the centre
of mass, as is seen from Example 1 and from section 2.4,
and the angular momentum equation is
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WzG'—f' A md, (69)
Again there is an extra term which vanishes in special cases
only, the most important of which is where #'=0, i.e. 0" i
the centre of mass. The equation then reduces to (59) once
more. The reader may establish equation (69) directly by
expressing H'’ in terms of H, as in the previous paragraph.

The practical moral to be drawn from this investigation
of moving origins is that in dynamical problems it is safest
to take as origin a fixed point, or the centre of mass.

Since H= 2 s; A mi§; and G= Z s; A F, all the distances
and velocities in equation (67) are measured from the centre
of mass, and do not depend at all on the basic co-ordinate
system. We have thus achieved the aim expressed in sec-
tion 2.4, of finding a form of equation which does not involve
the particular Newtonian frame of reference in which we
stated the laws of motion. To sum up, the motion of the
centre of mass of a system is given by (56) and the motion
relative to the centre of mass is described by (67), neither
equation requiring any knowledge of the internal forces on

the system.

Example 4. Two particles A, B of masses m,, mg and posi-
tion vectors 1, Ty are free to move under their mutual gravita-
tional attraction. Prove that the angular momentum of B
relative to A is constant.

The force on B acts towards 4, so G'=0, but 4 is neither
the centre of mass of the system nor a fixed point, so the
required result is not yet established. However, the accelera-
tion of A is towards the centre of mass, so in (69) & is
parallel to # and # A mé=0. The result now follows.

We may conclude this discussion of angular momentum
with a further glance at the unfortunate cat of page 57. Do
our laws imply that, without the possibility of obtaining any
reaction from the air, the cat could not turn so as to land
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feet first? Equation (67) shows that the cat’s angular mo-
mentum about its centre of mass if initially zero must remain
zero, and so, considered as a rigid body, the cat cannot
acquire angular velocity. However, rotation is still possible
by means of suitable flexing movements. An example more
easily visualized is a man standing on a sheet of perfectly
smooth ice who wishes to turn round. Starting with his
arms close to his side he extends them both to his right.
Then he swings them round horizontally in a half-circle
until they are extended to his left. During this motion his
body turns to the right, to keep his angular momentum zero.
Then he drops his arms again. Moving his arms close to his
body from his left side to his right causes only a slight rota-
tion of his body to the left, since the moment of inertia of
his arms is now much reduced. Thus he returns to his
starting position facing more to the right, still with no
angular velocity.

Finally we may use equations (50), (56) and (60) to write
the equation of motion of the #** particle, relative to the
centre of mass, in the form

my=myFs~ mE=Fi— (mi/m)F.
Like (67), this is entirely independent of the translational

motion (though not rotation) of the particular frame of
reference in which displacements are measured.

3.3. ENERGY
The kinetic energy of a system is defined to be the sum
of the kinetic energies of the individual particles.
T'=3%Z mig. (70)
As for angular momentum in equation (62), there are often
advantages in introducing the centre of mass #. Then
T=3%Zm(F+8P=H Zm)B+F o (Zmidi)+4 ZmidP
=imi*4-T, (71)
where T=3 Zm$¢, from (61). This shows that the kinetic
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energy of a system of particles is equal to the kinetic energy
of the total mass moving at the centre of mass, plus the
kinetic energy of the particles’ motion relative to the centre
of mass.

For a rigid lamina rotating in its own plane about a point
O, as considered in section 3.2,

T'=32 mi(wri)?=3Iuw?

Once again the moment of inertia I is involved.

From (50) the energy equation for the #*# particle is

d
a(&‘mii’i‘ =F{.=F;. 5} }}:FU « By (72)

When we sum the NV equations (72) corresponding to the
N particles of the system, the contribution from the inter-
action between the p* and ¢* particles is F,, « (£,—,), on
making use of (51). This is the magnitude of the force mul-
tiplied by the component of the relative velocity of the two
particles in the direction of the force, and is equal to the
rate of working of the interaction.

In general, internal work is done in the deformation of an
elastic body, in the motion of a system of charged or gravi-
tating particles, and by frictional forces. But there is a wide
class of interactions which do no work, including the reaction
at a smooth surface on a sliding body, the reaction between
bodies which roll on one another, the tension in an inex-
tensible string, and the reaction at a smooth joint or pivot.
In particular the interaction between any two particles of
a rigid body does no work when, as we have assumed, it acts
along the line joining the particles, for then F,,= A(r,~ r,)
and

d d
Fn . (i'ﬂ_ f¢)=ih'&}(fp_ rq)’='}‘\‘ﬁ|rp" l'ql’

by equation (5), and this is zero since |r,— r,| is constant.
If all the internal interactions are workless, the energy
equation becomes
dT

'd—t= EF{ . i'(, (73)
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and when the external forces are conservative
Z Fy« £y=dV|dt, and hence

T+ V=constant, (74)
where V is the potential energy.

Equations (71) and (62) give further support to the con-
sistency of our definition of a particle. They show that when
a body is sufficiently small for 7" and H to be negligible
compared with the kinetic energy and angular momentum
of the overall motion, the body may be treated as a single
particle of mass m at the point . Furthermore, equations
(73) and (59) show that only the external forces on the body
affect the motion.

The following examples illustrate some of the results we
have obtained. To improve his understanding of the prin-
ciples of dynamics the reader should study worked examples

with care, and should above all practise solving problems
for himself.

Example 1. 4 uniform disc of mass m, centre C and radius a
has a particle of mass m fixed at a point P on its rim. The
disc can roll in a vertical plane along a horizontal surface, and
is slightly disturbed from rest with P vertically above C. Find
tkecaugular wvelocity of the disc when P is at the same height

Let PC make an angle 6 with the upward vertical. The
angular velocity of the disc is 6. If the horizontal velocity

ENERGY

of C is u, the velocity of the point of contact D is u— 6. This
must be zero since there is no slipping; hence u=af and the
kinetic energy of the disc is 3ma’6*+3 ma’ﬂ’-—:}ma’ﬂ’ by
(71), since the disc’s moment of inertia about its centre is
3ma®. The particle’s velocity relative to C is af perpen-
dicular to CP, so the components of its total velocity are
af(14-cos 6) and af sin 0, and its kinetic energy is
$ma*0*{(1+-cos 0)*--sin®6} =ma’8’(1 +cos ). Thus for the
system the kinetic energy is
T=ma*0*(%+-cos 06).

The gravitational potential energy measured from C is
V=mga cos 0, and no other forces on the system do work,
The energy_equation is therefore

ma*0*(3+cos 0)-+mga cos 6=constant=mga
since when 6=0, =0. When P is at the level of C, §=3%=
and this equation shows that the disc’s angular velocity is
then §=(4g/7a)t.

An alternative method of finding T is to observe that the
system is instantaneously rotating with angular velocity 6
about the disc’s point of contact D. By (63), the disc’s
moment of inertia about D is §ma®. Also DP=2a cos 6.
The same value for 7' is obtained.

Note that care would be needed in using angular momen-
tum about D, since this point is neither fixed nor the centre
of mass of the system. About D the angular momentum is
H=%ma*0+4ma*0 cos?}0, and the moment of the external
forces is G=mga sin 0. The reader may verify that dH/dt
is not equal to G, by comparing with the result of differen-
tiating the energy equation found above. He should check
that the discrepancy is as given by the last term of equation
(66), which in this example has the value — ma®6?sin 6.

Example 2. 4 uniform rod AB of mass m and length 2a is
balanced on its end A on a smooth horizontal table, and then
slightly disturbed. Calculate the reaction R of the table when
the rod makes an angle 0 with the vertical.
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Therg are no horizontal forces on the rod, so its centre O
moves in a vertical line, by (56). The height of O above
the plane is @ cos § and_so its speed is a0 sin § down-
wards. Hence T'=3}ma®0®sin®0+3ma*(?, by (71). Also
V'=mga cos 6 since the reaction at A does no work, and
the energy equation is

a6?(1+-3 sin®0)+6g cos =6g
since =0 when 6=0. For the motion of the centre of
mass O, (56) gives
mg — R=m(d|dt)(a0 sin 6)=mal sin 0-+mab* cos 6.
Eiﬁ'erentiating the energy equation and dividing by 26, we
ave
ali(1+-3 sin?6)+3a6? sin 0 cos 0— 3g sin 6=0.
Using this equation and the energy equation to express
§ and 6 in terms of 6, we obtain after some manipulation
4— 6 cos 043 cos®f

o (1+3 sin %6)

Example 3. Discuss the motion of a compound pendulum,
consisting of a lamina of mass m free to rotate in a vertical
plane about a fixed point O at a distance d from the centre of
mass A, tf the moment of inertia of the lamina about O is mk2.

Figure 21
72
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Let OA make an angle 8 with the downward vertical, as

shown in Fig. 21. The energy equation is

ymk20* — mgd cos @=constant
since the reaction at O does no work. This is identical with
the energy equation for a simple pendulum of length I=k*/d,
as found in Example 1 of section 2.6. Thus small oscillations
are simple harmonic with period 27 v/(k*/dg).

The length I of the equivalent simple pendulum varies
with the position of the point of support O. By the theorem
of parallel axes k=FK*+d? and therefore the minimum
value of / is 2k when d=Fk, as the reader may verify.

Since there is no restriction as to the direction of the
reaction at O there are only two fundamental types of
motion for a compound pendulum, depending on whether
or not the angular velocity falls to zero before 4 is vertically
above O. If the pendulum starts from =0 with angular
velocity wy, the energy equation is

3mhk26% — mgd cos 0=3mkPwe?— mgd.
The pendulum comes to rest with 0<0 < if we? <4gd|R?,
and periodic oscillations then ensue. If wg®>d4gd[k the
pendulum describes a succession of vertical circles.

The reaction on the lamina at O may be found by con-
sidering the momentum of the lamina. Let R, S be the com-
ponents of the reaction parallel and perpendicular to 0A,
as shown in Fig. 21. Then from (39) and (56)

mg cos 06— R= —md0?, S—mg sin 0 =md®.
Differentiating the energy equation obtained above gives
mkf+mgd sin =0 (this could have been written down as
the equation for angular momentum about O) and hence

R=mg cos +mdwy*— 2n;,f;—ﬂm(l — cos 6), S=%(k’-— d*)sin 0.

3.4, IMPULSIVE MOTION

When solid bodies collide, there are very large forces of
interaction which last only for a very short time. These
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forces produce finite changes of velocity and momentum,
but the changes in the position of the system in the short
time interval can be ignored. The laws governing the
dynamics of impacts can be deduced from the laws we have
developed here.

Suppose that we integrate the momentum equation (53)
for a system from #=#, to ¢=t,, the duration of the impact.
We obtain

t
1= 2 L=[M],'=M,- M, (75)
where I4=J.:1F¢(t)dt is the émpulse of the exteinal force
0

t
Fy(t) on the #* particle, I=I . F(t)dt, and the suffixes 0 and 1
0

denote values before and after the impact. By section 1.6,
I; and I are vectors. Equation (75) shows that the change
of momentum of a system is equal to the sum of the external
impulses. Note that there is no need to reconsider the in-
ternal forces on the system, since (53) applies at each
instant.

If the force F; is constant during the time interval,
Xi=(t,— t,)F, but there is no theoretical reason for Fy to
have constant magnitude or even constant direction. Since
t,— 1, is small, ordinary forces such as gravity can produce
no significant contribution to I; and so can be ignored dur-
ing the impact.

In the integration of the angular momentum equation
(59), the positions ry of the particles may be treated as
constants. Hence

’1 ‘1
f‘ Gdi= 2(!‘{ Af‘ F{dt)-‘_'- Zraly,
0 0

and we obtain

t
J=2Zrna I(=[.H]‘:=H1— H,, (76)
where J is the sum of the moments of the external impulses.
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As in section 3.2, this equation holds when the origin is
fixed or is at the centre of mass of the system.

These laws are simpler to deal with than the equations
for non-impulsive motion, since they are not differential
equations but relate directly the velocities before and after
the impact.

Example 1. 4 uniform rod AB of length 2a and mass m is
rotating about its centre with angular velocity w, when the
end A is suddenly fixed. Calculate the new angular velocity of
the rod and the impulsive reaction at A.

A = B
IA_ j

Figure 22

Let the impulse on the road at 4 be I, as shown in Fig.
22. If the rod has angular velocity w, about A after the
impact, its centre has speed aw, perpendicular to AB and
(75) gives

I=mawlt
Relative to the centre of mass, (76) gives
- a=§msw1— Mwu.
Solving these equations, we obtain w,=%wy, I=3maw,.

In general, kinetic energy is lost in an impact. The reader
may verify that in Example 1 only one-quarter of the kinetic
energy remains. An instructive case to consider is the direct
impact of two particles of masses m, m’ moving along the
x-axis with velocities v, ’. The kinetic energy of the motion
relative to the centre of mass is

Tim(o- -+ (0 - P =he(o- ) (77
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as the reader may readily verify. In the collision this kinetic
energy will be unchanged only if v, v;= (v~ ;). The
positive sign implies no change in velocity of either particle
and hence no impact. The negative sign implies that the
relative velocity is reversed, with unchanged magnitude.
This is known as a perfectly elastic collision.

{&n experimental law due to Newton, which is satisfac-
torily obeyed in collisions between hard bodies, is

Uy~ 0= — &(Vp— ¥) (78)
where the constant e is the coefficient of restitution. For a
perfectly elastic collision e=1, and for a completely in-
elastic collision with no rebound e=0. For ordinary
materials e lies between these two limits. It follows from
(77) that the collision reduces the kinetic energy relative to
the centre of mass by a factor e
The kinetic energy associated with the motion of the centre
of mass of the system is, of course, unaltered. Equation (75)
indicates that the internal impulses caused by the impact
can have no effect on the velocity of the centre of mass.

In collisions between smooth rigid bodies in three-
dimensional motion, experiment shows that it is reasonable
to assume that the velocity components in the direction of
the normal at the point of contact satisfy (78), and that
perpendicular velocity components are unaffected.

Example 2. 4 smooth sphere of mass m strikes a second sphere
of mass 2m at rest. After the collision their directions of motion
areL at rt;'fkt :Ing!es. Find e.

et the velocity components along and perpendicular to
the line of impact be u, v for the magss m arx)ldrr:t', v’ for the
mass 2m. Then v,=9, and v;=v,=0. Also by (78),
Uy — wy=— eu, and by (75), mu, + 2muj=mu, since there are
no external impulses. Solving these equations, we obtain
3uy=(1- 2e)ug, 3u;=(1-4-€)uy. Since v;=0, the velocities
will be perpendicular if #,=0, which requires e=%.
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Example 3. 4 uniform rod of mass m and length 2a is hanging
freely from one end O when it is struck at a distance b from O
by a bullet of mass m’ moving horizontally with speed v. The
bullet becomes embedded in the rod, which swings through an
angle o. Express v in terms of the other quantities.

First consider the impact. Let w be the angular velocity
of the rod just after the bullet has become embedded. There
is an impulsive reaction at O, but angular momentum
about O is conserved and hence

m'vb=($ma*+m'b*)w.
In the ensuing motion energy is conserved (although energy
was lost in the impact) and hence
3($ma*+m'b*)w?=(ma+m'b)(1— cos a)g.
Eliminating », we obtain
m"*b*0* =2g($ma®-+m'b*)(ma-+m'b)(1— cos ),
which is the required equation.

This type of apparatus is known as a ballistic pendulum,
and has been of much practical use in the development of
artillery.

EXERCISES ON CHAPTER THREE

1. A man standing on a sheet of smooth ice sets himself in motion by
throwing successively his two boots, each of mass m, in the same hori-
zontal direction with speed v relative to himself. Find the man’s final
speed if his mass without his boots is m".

2. A uniform circular disc of mass m, centre 4 and radius a is free to
rotate in a vertical plane about a fixed point O, on its circumference. If
the disc is disturbed from rest with A vertically above O, calculate the
components of the reaction at O when OA is horizontal.

3. A truck of mass m moving with speed 3v collides with a second truck
of mass 2m moving with speed v in the same direction. The two move on
together. Calculate the impulsive reaction and the loss of kinetic energy
in the collision.

The letter T is formed by rigidly joining together two uniform rods
u& of mass m and length 2a. It is hung freely from the foot of the T,
and allowed to make small oscillations under gravity in its own plane.
Calculate the length of the equivalent simple pendulum.

5. Show that the moment of inertia of a uniform solid sphere of mass m
and radius a about an axis through its centre is ma®. [Consider the sphere
as a st of circular discs ofthicknes; dz and radius (a®~ a®)t.]
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6. A uniform sphere of mass m and radius a rolls down & rough plane
inclined at an angle « to the horizontal. Show that the acceleration of the
centre of the sphere is uniform and find its magnitude. Calculate the
frictional force exerted on the sphere by the plane.

7. A uniform rod 4B of length 2! and mass m is freely pivoted at O,
where OA=4l. Find at what point X a blow perpendicular to the rod will
cause no impulsive reaction at O. [X is known as the centre of percussion.]

8. Three particles A, B, C, each of mass m, lie in order on a straight
line. B and C are initially at rest and A4 has s U directly towards B.
If the coefficient of restitution at each impact is o°2, and there are no ex-
ternal forces, show that there will be just three impacts and find the final
speed of each particle.

9. A uniform circular disc of mass 6m and radius a is free to turn in
a horizontal plane about a fixed vertical axis through its centre. A mouse
of mass m (which may be treated as a particle) is standing on the disc at
its rim, the whole system being at rest. Suddenly the mouse starts to run
round the rim with uniform speed v relative to the disc. Find the time
after which the mouse returns to its starting point in space.

10. Find the time in the preceding question if the disc, instead of being
pivoted, rests on a perfectly smooth table,

Answers to Exercises

Chapter I

1. 7: 5, = 3 2V5; —1/V/5, ©, 2/4/5. 12° 36",
3. rs(bAct+cAataAb)=[ab,c]

ok - DLk
&t .i‘)"ai—big&};(xﬂn.

L o222k, < 1aals.
10. glglj-!-z:.}-i-sk. :ffi 3Ai+ (2A+ 10)j+(sA= 3)k.

Chapter IT
1. 16 fff zn}_bove the top of the window.

2 e
vV (Vi+
30 lﬁ+&j[{;)36k’ - 28.
u? m,
;’ 1+sinf) 4 a
.B, 1/7(3? ;b wt. towards the west.
10. (n=1)/(n+1).

Chapter III
- m(ﬁ-{-m,;zm).

2. :m horizontally, $mg vertically upwards.
4 4

3. gmu, ymo.

4 17a9.

6. ;gsin?, smg sin « up the plane.

7. AX=3l -

8. o0'304U, 0-336U, 036U,

9. 8mal3v.

10. 18mafyv.
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Triple scalar product, 15
Triple vector product, 17
Unit vector, 4
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