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PREFACE.

" Tue design of this work is to furnish a simple and trust-
worthy manual for those who are beginning the study of
Natural Philosophy; and it ventures to claim a distinct
position among the numerous publications which have
appeared with somewhat similar aims. On the one hand
great pains have been taken to render the book intelligible
to early students; the amount of mathematical knowledge
assumed is merely a familiarity with the elements of Arith-
metic. On the other hand the subject is presented, it may
be hoped, with adequate fulness; so that a persen who
has mastered the work will have gained considerable
acquaintanece with the principles of Natural Philosophy.

* Moreover a collection of Examples for exercise is supplied.
The present volume consists of four parts. The first
part extends to Chapter III. inclusive; this is of a pre-
liminary character, recalling to the student’s attention
some things with which he i8 already familiar, indicating
the various branches of knowledge, and giving an outline
of that with which we are here concerned. The second
part extends to Chapter XXIV, inclusive; this treats of
the mechanical properties of solid bodies. The third part
extends to Chapter L. inclusive; this treats of the me-
chanical properties of fluid bodies, The fourth part ex-
tends to the end of the volume; this consists of various
Chapters which illustrate and apply the principles already
established. Thus the present volume is devoted to the
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Mechanical properties of solid and fluid bodies ; the second
volume, completing the work, will treat on what Dr Whewell
has called the Secondary Mechanical Sciences, namely those
relating to Sound, Light, and Heat; this volume is al-
ready written and will soon be-sent to press.

As in former elementary works the plan is adopted of
‘breaking up the subject into numerous short Chapters
which are to a great extent independent of each other;

thus the attention of the stadent is required for only a
" moderate portion at one time, and if he finds a difficulty in
thoroughly mastering a particular Chapter he may pass on
to the following Chapters, and afterwards recur to the
"passages not understood at first.

The Eszamples, which are above 500 in number, form
an important part of the work; many of them are original,
while the rest have been selected from the Examination
papers published by the Universities and other Examining
budies. These Examples will be found, itis believed, not
too difficult for the use of an early student; while they will
afford real exercises te test his knowledge und his power
of application. Both the text and the Examples have been
arranged with the view of meeting fairly all the difficulties
that may occur in the cousse of study; it is quite possible
to give to a work a fallacious appearance of simplicity by
omitting every point that requires elose attention, and by
comstructing examples which all resemble a few familiar
types, and so may be solved almost without thought. The
student however who wishes to master any science, or to
pass an examination in it, must be willing to make the
exertion which is necessary in order to comprehend the
whole of it, and not merely easy selections from it; and he
must be prep.u'ed to encounter a wxde variety of examples
and problcnms
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An introduction to Natural Philosophy may be used by
different classes of readers; some- may intend hereafter to
devote themselves to the earnest study of the subject
either on its theoretical or its experimental side; some
may be looking forward to professional occupation with
the numerous practical applications of science; while
others may seek for such knowledge as will give them
an intelligent interest in the phenomena of the world,
and in the discoveries and inventions which proceed from
the regular cultivators of the subject. To all these
classes it is important that the notions at first acquired
should be accurate; and I venture to repeat with respect
to the present work the hope expressed ten years since
with respect to another, namely that the beginner will
here find a satisfactory foundation for his future studies,
8o that afterwards he will only have to increase his
knowledge, without rcjecting what he originally acquired.
An elementary writer may well propose to himself as
oue of his main objects that those who use his work
should have nothing afterwards to unlearn; and this has
been recently explicitly recognized by more than one
cminent authority.

1. TODHUNTER.
JANUARY, 1877,
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I INTRODUCTION.

1. TaE late Dr Whewell, congratulating a friend famous
for his knowledge and ability on the birth of a son, said,
“Young as he is he will learn more than you in the next
twelve months,” The remark may appear simple but it is
striking from its truth; for it is curious to notice how soon
a child placed under reasonably favourable circumstances
gains the rudiments of all the science which the wisest men .
can teach. At a very early age the child begins to arrange
and classify; he sees that some of the objects around him
can move themselves, and that others cannot, suggestin,
the broad distinction between things which have life an
things which have not life. Again, further subdivisions soon
become clear; thus for example among living things he
learns to bring together in his thoughts all such as Ay, and
to call them by the name of birds. Even if he does not use
a common name for a class of things which in some respects
are like each other, he can hardly fail to notice the fact of
likeness. Thus the water in which he is bathed, the milk
he drinks, the ink he is forbidden to touch, must seem to
him in some respects like each other, and different from
the ehairs and tables and toys of his nursery; though he
h:l.s_ dI;Ot learned to call the former Auids and the latter
solids.

T. P.
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. 2. One of the most important words to be found in
our language is Zaw. The original sense of the word is
that of a rule or command which must be obeyed. Thus it
is the duty of all people to obey the Law of the land; and
it is the duty of children to obey the Law of their parents.
In another sense the word Law is used to denote the un-
wavering constancy with which certain results will follow
when the circumstances are the game. Thus, for example,
we say it is a law that a stone will fall down again if it be
thrown up into the air; by this we mean that from repeated
observation we are certain this result will happen. There
are many such facts, which are called Laws of Nature; -
and from our infancy we begin to learn these laws, and to
shape our conduct according to them. These are the Laws
with which we shall be occupied in the present work ; Laws
not in the sense of duties but of facts.

3. That Laws in the sense here adopted extend
throughout his little world soon becomes obvious to a
child. He discovers and remembers that if he falls against
a hard body he burts himself, that if he pulls his toy cart
with a string it follows him. He observes too the prevalence
of Law in one of the most important fields of his early
education, namely language; and at first he even ex-
aggerates the range of this principle, and assumes that
there are no exceptions to it. Thus he learns by habit
that the J)ast time of an English verb is usually made by
adding & or ed to the present; and accordingly he con-
structs such forms for himself. For example a child says,
*he fighted me”; thus conjugating the verb according to
the general law, before he has learned by experience that
}o Jight is an irregular verb, the past time of which is

ought,

4, Those who wish to have a profound knowledge of
Natural Philosophy must acquire considerable familiarity
with Mathematics; but it will be possible to understand
the elementary principles of the subject with the aid of a
little skill in the operations of Arithmetic, and some ac-
quaintance with the figures of Geometry, 1t will be con-
venient to mention the most important particulars which

" we shall assume to be known,

.

A
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5. There are certain signs which are used as very con-
venient abbreviations in Arithmetic; among these are = for
equal to, + for added to, and — for diminished by. The
use of these signs is exemplified by such statements as
12—5=T=4+3. We may say that = is the sign of equality,
+ the sign of addition and — the sign of subtraction.

6. The sign x denotes multiplication; thus 6 x 7=42,

7. If a number be multiplied by itself the product is
called the square of the number; thus 6 x 6=236, so that
36 is the square of 6. The product of the square of a
number into the number is ca.lﬁad the cube of the number ;
thus 36 x 6 =216, 80 that 216 is the cube of 6.

8. A fraction means a part or parts of some whole or
unit. Thus § is a fraction; it means that some whole or
unit is to be divided into eight equal parts and five of them
taken. If the whole or unit is a weight of one pound, that
is of sixteen ounces, an eighth part is two ounces, and five
such parts are ten ounces. If the whole or unit is a shilling,
that is twenty-four halfpence, an eighth part is three half-
pence, and five such parts are sevenpence-halfpenny. In
the fraction § the 5 is called the numerator, and the 8 the
denominator. ’

9. The product of two fractions is obtained by multi-
plying the two numerators for a new numerator, and the
two denominators for a new denominator, Thus § x §=}§.
1t is explained in books on Arithmetic that the term
product is conveniently and naturally used in this case,
although the meaning of the term may seem somewhat
different from that which it has in the multiplication of
whole numbers. Thus 2 x 3=6, that is 6 is the product of
2 and 3; so that the product is greater than either of the
Jactors 2 and 3. But §x }=3, that is } is the product of
4 and }; and in this case the product is less than either of
the sactors % and 3.

10. The notion of proportion is one of the most im-
portant of those which are illustrated in Arithmetic.
Suppose that a man walks four miles in one hour, and we

“have to find how far he can walk in two hours and a *-'¢
1-
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The answer can be obtained without any explicit reference
to proportion, but the most instructive mode of regarding
the question is as an example of proportion: ten miles bear
the same proportion to four miles as two hours and a half
bear to one hour. The notion of proportion is suggested
by innumerable circumstances of ordinary life, as well as
by the questions proposed in books on Arithmetic. For
example take a map of England ; the distance between
London and Cambridge on the map bears the same pro-
portion to the distance between London and Manchester
on the map, as the real distance between London and
Cambridge bears to the real distance between London and
Manchester. Similarly in the plan of a building the lengths
of the strai htlﬁn;:h:nfthlf plan will %16 in the slz:mhe;l proE
portion as the len, of the corresponding straight lines o

the building, poncing

11. 'We pass now to some of the rudiments of Geometry.
The meaning of most of the common terms is probably
known to the reader, but we will draw attention to them.

12. An angle is the inclination of two straight lines to
one another which meet together, but are not in the same
straight line.

Thus the two straight lines
A0, BO, which meet at O form B
an anﬁle there. The angle is D
not altered by altering the
lengths of the straight lines
which form it; thus CO and DO
form the same angle as 4O and O c A
BO. The angle may be denoted :
in various wags, as the angle A0B, or the angle 40D,
or tlhe angle COB, or the angle COD: all mean the same
angle.

13. When one straight line is upright to another the
angle which the straight lines form is called a right angle,
and each straight line is said to be perpendicular to the
other. This is put into a more precise form in the followin
manner: when a straight line standing on another straight
line makes the adjacent angles equal to one another, each
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of the angles is called a right angle, and the straight line
which stands on the other is called a perpendicular to it.

. A
Thus in the figure if the angle
ABC is equal to the angle 4BD each
of them is a right angle, and 43 is
perpendicular to DC. ! ¢

14. Parallel straight lines are such
as are in the same plane, and which
being produced ever so far both ways
do not meet.

15. A triangle is a figure formed by three straight
lines. If one of the angles of the triangle is a right angle,
the triangle is called a right-angled triangle, and the side
opposite to the right angle is called the Aypotenuse.

16. A parallelogram is a four-sided figure which has

its opposite sides parallel
hus AB and CD are B

parallel, and AC and BD
are parallel in the parallel-
ogram ABDC.

It is & property of such a be D
figure which may be verified - )
lj measurement that the opposite sides are equal; thus

B is equal to CD, and AC is equal to BD. .

A straight line joining two opposite corners of a parallel-
ogram is called a diagonal. Thus if 4D and BC are drawn
each of them is a diagonal.

17. A rectangle is a parallel-
ogram with all its angles right
angles,

18. A square is a rectangle with
all its sides equal.
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19. A circle is a plane fignre
bounded by one line which is called
the circumference, and is such that
all straight lines drawn from a cer-
tain point within the figure to the
circumference are equal to one an-
other: this point is called the centre
of the circle. A radius of a circle is"
a straight line drawn from the centre
to the circamference. A diameter of a circle is a straight
line drawn through the centre and terminated both ways
by the circumference. An arc of a circle is any part of the
circumference.

20, In Arts. 15...19 we have spoken of certain plane
figures which present themselves very frequently to our
notice. We are now about to mention some solid figures
which are also of great importance,

21. A cube is a solid bounded by six equal squares of
which every opposite two are in parallel planes. A cube is
not an object which comes often under our observation;
but an idea of it may be readily obtained. A common
brick is usually 84 inches long, 4 inches broad, and 2} inches
thick; now it i8 easy to #magine a brick in which the
length, the breadth, and the depth should all be equal: the
brick would then be a cube,

22. A sphere is a solid having every point of its surface
equally distant from a certain point called the centre of the
sphere. A radius of a sphere is a straight line drawn from
the centre to the surface. A diameter of a sphere is a
straight line drawn through the centre and terminated
both ways by the surface. A sphere is sometimes called a
globe: marbles and billiard balls are familiar examples of
spheres. .

23. A right circular cylinder is an upright column
standing on a circular base; it is frequently called briefly a
cylinder. An uncut lead pencil is an example of this sofid.
The straight line which joins the centres of the circular
ends is called the awis of the cylinder. This is the geo-
metrical axis of the cylinder; in practice the word oiten
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‘means not a straight line, but a slender cylinder having the
same geometrical axis as the other, but projecting beyond
it at the ends.

24. A amid is a solid bounded by three or more
triangles which meet at a point, and by another rectilineal
figure. The lpoim; is called the vertez of the pyramid,
and the rectilineal figure opposite to the vertex is called
the bass of the pyramid. hen three triangles meet at
the vertex the base of the pyramid is a triangle ; when four
triangles meet at the vertex the base is a four-sided figure;
and 8o on. The bases of the famous pyramids of Egypt are
squares,

25. A right circular cone is a solid having a circle for
its base, and its vertex on a straight line at right angles to
the base through the centre: for a strict definition the
reader should consult the Elsments of Euclid, or the
Mensuration. It is frequently called briefly a cone. The
straight line which joins the vertex to the centre of the
base is called the a.ris of the cone.

28. The centre of a circle or of a sphere is a well known
point in connexion with them. It is found convenient to
extend the use of the word centre. In some plane figures.
a point can be found such that every straight line drawn
through it and terminated by the figure is bisected at that
point. Thus for a parallelogram the intersection of the
diagonals is such a point; and it may be called the centre
of the figure. Likewise a cube and a cylinder have each a
centre in such a sense. .

27. A vast body of important knowledge has been
formed in the course of more than two thousand years out
of these and a few other definitions and notions. We shall
refer the reader for an elementary account of them to the
Mensuration, and for fuller information to the Elements of
Euclid. Here it will be sufficient to notice a few facts,

28. We often require to find the length of the circum-
ference of a circle when the length of the diameter is
known ; and this we can do, though not with perfect ac-
curacy, yet with sufficient exactness for any practical pur-



8 ' INTRODUCTION.

pose. The following Rule may be used : multiply the
diameter by 3}. This Rule makes the circumference a
little greater than it ought to be, about a foot too great in
a circumference of half a mile. Another Rule which is
more accurate is the following: multiply the diameter by
3:1416. This Rule also makes the circumference a little

ter than it ought to.be; but the error is very small,

ing less than a foot in a circumference of 75 miles.

29. To find the area of a circle we must take half the
product of the radius of the circle into the circumference,
or we may multiply the square of the radius by 3:1416.

. 30. The reader is supi)osed to be familiar with the
general principle which applies to every measurable thing;
namely that it must be measured by a unit of its own
kind, For example when we wish to measure lengths we
fix on some length for a standard or unit; thus we may
take a foot as the unit, and then any length is measured by
finding how many times it contains the unit. So also when
we wish to measure the dareas or sizes of plane figures we
fix on some area as the standard or unit; thus we may take
a square of which the side is one inch as the unit; such an
area is called a square inch. Or we may take a square
Joot, that is a square of which the side is one foot. In like
manner when we wish to measure the bulk of solid figures
we fix on some solid as the standard or unit; thus we may
take a cubic inch, that is a cube of which the edge is one
inch long; or we may take a cubic foot, that is a cube of
which the edge is one foot long. .

31. The following are the rules for finding the bulk or
volume in the case of some solid bodies.

Cylinder. Multiply the area of the base by the per-
pendicular distance between the two ends.

Pyramid or Cone. Multiply the area of the base by
one third of the perpendicular from the vertex on the base.

Sphere. Multiply the cube of the diameter by *5236.

32. The following proposition in Geometry is proba.bly'
the most important fact in the whole range of human
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science; tradition says that it was discovered by Pythagoras
about 2500 years ago, and that he offered 100 oxen in sacri-
fice to shew his gratitude: In any right-angled triangle
the square described on the hypotenuse ts equal to the sum
of the squares described on the sides.

33. In the Mensuration it is explained how the truth
of the preceding statement is rendered visibly self-evident.
It is also shewn that when we know the lengths of the two
sides we can deduce that of the hypotenuse ; and that when
we know the lengths of the hypotenuse and of one side, we
‘can deduce that of the other side. It is obvious that the
hypotenuse is longer than either of the sides; because the
square on the hypotenuse is greater than the square on
either side.

84. The important notion of proportion makes its ap- -
pearance in Geometry. Thus, to take a single example, let
there be two triangles 4BC and DEF, such that the angle
4 is equal to the angle D, the angle B equal to the angle
E, and the angle C equal to the angle ¥'; then the corre-
sponding sides are in proportion.

A B D
That is to say, whatever may be the proportion of DE to
A B, the proportion of EF to BC is the same, and 8o is the

proportion of FID to CA.. Thus, for example, if DE is
twice A.B then EF is twice BC, and FD is twice CA.-

X

' T

35. Asa good example of proportion we may take the
case of the relation between the heights of two objects and
the lengths of their shadows in sunlight. 1t will be plain
to a reader who has a little acquaintance with Optics that
the two heights are in the same proportion as the two cor-
responding lengths. . S
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36. The two triangles in Art. 34 are said to be similar.
And in general two plane figures are said to be similar
when one is exactly a copy of the other on a larger or
smaller scale. It is an important property of similar figures
that their areas are in the same proportion as the squares
of the numbers which denote corresponding lengths. For
instance if EF is 2 times BC then the area of the triangle
DFE is to that of the triangle 4 BC in the same proportion
as the square of 2 to the square of 1, that is in the propor-
tion of 4 to 1,

37. In like manner when one solid is exactly a co%y of
another on a larger or smaller scale the solids are said to
be similar. 1t is an important property of similar solids
that their volumes are in the same proportion as the cubes
of the numbers which denote corresponding lengths. Thus
if & brick were made 4} inches long, 2 inches broad, and
1} inches thick, it would be similar to the ordinary brick of
Art.21. And as the length of an edge of the ordinary brick
is 2 times the corresponding length on the smaller brick,
the volume of the ordinary brick is to the volume of the
smaller in the same proportion as the cube of 2 to the cube
of 1, that is in the proportion of 8 to 1. -

38. We can always draw straight lines the lengths of
which shall be in any proportion we please, and thus by
the means of straight lines we may often conveniently bring
such a pro(i)ortion before the eye. Take for example 14

ounds and 112 pounds; the latter is eight times the
ormer, and so the proportion may be represented to the
eye if we draw one straight line of any length we please
and another straight line eight times as long.

89. Philosophers have occasionallmlated on the
possibility of constructing some unive language which
should serve as a medium of intercourse between all man-
kind, Up to the present time the signs and diagrams of
mathematics seem the nearest approach to the realization
of such a scheme; for by their aid, almost without any
vocabulary, truths may be rendered intelligible to nations of
the most different languages. And even a still wider range
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has been suggested for the prevalence of this mode of com-
munication.. “ We can conceive occurrences which would
give us evidence that the Moon, as well as the Earth, con-
tains geometers. If we were to see, on the face of the full
moon, a figure gradually becoming visible, representing a
right-angled triangle with a square constructed on each of
its three sides as a base; we should reﬁa.rd it as the work
of intelligent creatures there, who might be thus making a
signal to the inhabitants of the earth, that they Eossessed
such knowledge, and were desirous of making known to
their nearest neighbours in the solar system, their exist-
ence and their speculations.” Pluraiity of Worlds,
Chapter IV.

40. In asking the beginner to give his attention to the
work on Natural Philosophy now put into his hands, it will
be well to remind him that the knowledge which he gains
from the book should be confirmed and extended by care-
fully watching the phenomena which sgontaneously offer
themselves to his observation, and also by attending good
experimental lectures if such be within his reach. Some
attempt might be made to supersede the advantage of ex-
ternal observation and experiment by elaborate drawings,
but it is difficult to make these easi{y intelligible without
familiarity with the objects they represent, and after such
familian;g they become superfluous. While it may be
readily admitted that books on Natural Philosophy alone
do not make a suflicient impression on the mind and
memory, it is equally certain that a book in which the
principles are recorded and explained, is a necessary ac-
companiment to the oral and visible teaching of the lecture
room. It must not be forgotten that in the course of life
books are always and everywhere accessible, but lectures
by no means 8o certainly ; hence too much stress cannot be
laid on the importance of early :w(%uiring the babit of
learning from books. In these days of diffused knowled
it is curious to observe how many persons of respectable
education are practically unable to read; though they
may be fluent in conversation and quick to appreciate what
is made audible or tangible, they have never accustomed
themselves to apply with close attention to the silent and
unobtrusive teacﬁm g of the printed page.
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41. It has been the singular honour of some elementary
books intended mainly for youth that they have fallen under
the notice of persons of maturer power, and have thus in-
directly influenced the history of science. Thus it has been
stated that Mrs Marcet’s Conversations on Chemistry “first
opened out to Faraday’s mind that field of acience in which
he became so illustrious, and at the height of his fame he
always mentioned Mrs Marcet with deep reverence.” (Mrs
Somerville’s Personal Recollections...,page114,) The same
book had the honour of Dr Whewell's attention; he read it
and made a short analysis of it in 1817. A sentenee in
Mrs Somerville’s Connection of the Physical Sciences in-
cited a living astronomer to undertake the laborious in-
vestigation which finally enmabled him to ascertain the
existence of the planet Neptune, then unknown.

- II. VARIOUS BRANCHES OF KNOWLEDGE.

42, Many eminent philosophers have turned their at-
tention to the subject of the classification .of the various
branches of knowledge, and though no solution of the diffi-
cult problem has been obtained which is entirely satis-
factory, yet the attempts have been interesting and in-
structive. We shall not give here any elaborate discussion
of the subject, but a few remarks wiﬁ be advantageous, as
the’i:. will furnish a general idea of the range of the present
wor

43. Tt will be sufficient for our Furpose to consider
that there are five main branches o knowled%; these
ﬁaytl;f called Mathematical, I hysical, Chemical, Vital and

ental.

44. The Mathematical sciences relate to number and
to figure. They have as their foundation Arithmetic and
(teometry. They are sometimes called abstract sciences,
being to a great extent independent of all that takes place
in the world around us, and derived by the human mind
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from its own resources. These sciences have been culti-
vated from the days of the ancient Greeks to our own, and
a8, from their nature, whatever has been once established
in them remains as a permanent truth, an enormous mass
of striking and valuable results has been accumulated by
the labour of successive generations. As we have already
said, the amount of mathematical knowledge assumed for
the purposes of the present work is very slight,

45. The Physical sciences are often called Natural
Philosophy. Such sciences might have originally included
the knowledge of everything which the world of Nature
contains; but at present the term is somewhat restricted
in its application. Natural Philosophy now may be said
to include a group of sciences which has grown up round
Astronomy, the oldest and most perfect of them all
Astronomy at first involved only observations of the situa-
tions of the heavenly bodies, and predictions of their future
course from the records of the past; but Newton by his
theory of gravity extended the subject and deduced the
motions of the moon and the planets from one general law.
Then the whole science of Mechanice in its widest sense
was gradually formed ; this treats of the counexion between
Jorce and the motion which it produces or changes or
arrests, and it has different names according as it relates
mainly to motion or to rest, to solid or to fluid bodies,
With Astronomy is naturally connected the science which
treats on ZLight, the medium by which so much of our
knowledge of the skies is obtained; and Navigation which
is closely connected with Astronomy introduces Magnetism
in virtue of the Mariner's Compass. Light may be said to
draw with it the kindred subject of Heat, and Magnetism
all the train of sciences which in modern times have sprung
from this and Electricity. The progress of every science
and of every part of a science resembles that of Astronomy ;
it is traced back to more simple and more general principles
a8 its origin, and carried forward to more numerous and
more varied applications and extensions,

46. The Chemical sciences take their rise from the fact
that there is more than ons kind of substance in nature,
. Had there been only one¢ kind, what is called Chemistry
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would have been absorbed in Natural Philosophy. But
there are more than sixty different kinds of substance, as
gold, silver, charcoal, sulphur, and others, which, at least
according to present knowledge, are believed to be quite
distinct,. Now all the Laws of Natural Philosophy hold
with regard to each of these kinds of substance separately,
80 that no new science is introduced as yet. Moreover -
observation and record of the special properties of each
kind of substance would be included in what is popularly
known as Natural History. Bat it is found that when two
or more of these different kinds of substance are brought
together under certain circumstances, then special pheno-
mena are seen. Thus, for example, fine sand and powdered
soda exposed to heat and melted together become glass,
which differs from each of its components as to its dis-
tinctive properties. Again, the metal sodium is poisonous,
if swallowed, and the gas chlorine if breathed; if these are
brought together they explode and burst into a flame, and
the result of the combustion is common salt, which is very
wholesome. Chemistry then treats of all the phenomena
which are connected with the combination of two or more
kinds of substance to form a new body, or with the separa-
tion of any body into the simple kinds of substance of which
it may consist. The science had its origin in the attempts
made by enthusiasts to convert the more common metals
into gold the most valuable: these men received the name
of alchemists.

47. Next we have to consider the sciences which in-
volve the idea of Life. The bodies of men and of animals,
and the vegetable structures, consist of various remarkable
collections of tubes and cavities, in which fluids circulate
and produce constant change. In addition to the laws
which prevail and the forces which act in Natural Philo-
sophy and Chemistry, others of a peculiar kind here present
themselves ; instead of the permanence which belongs more
or less to the objects of the two former divisions of know-
ledge, we have here the changes involved in birth, growth,
and decay.

48. In the last place we have sciences which relate to
the mind itself, as Logic and Metaphysics. These have
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been cultivated from the origin of civilization, and though
they have passed through various fluctuations of influence
have never lost their charm. “Even in ages the most de-
voted to material interests, some portion of the current of
thought has been reflected inwards, and the desire to com-
gl:;hend that by which all else is comprehended has only

m baffled in order to be renewed.” In this division we
may place various studies which bear, at least indirectly,
on the mind—as that of Languages which has long been
held of great value as a training, History which teaches by
example the lessons of duty and prudence, and Moral Phi-
losophy which gathers these lessons into a system, and
seeks to enforce them by adequate sanctions.

49. It is easy to see that the rough division which we
have given of the branches of Human Knowledge is open
to the objection of a failure in distinctness; some sciences
may claim to appear under more than one of the five
classes. Thus we make Mathematics a distinct class, and
yet it must be allowed that this science enters largely into
all the elaborate works on Natural Philosophy. The aid of
Mathematics is absolutely necessary in order to develop
fully the principles which are discovered in operation
throughout nature; and not unfrequently the wish to pene-
trate further into the constitution of the earth and the
heavens has led men to the construction of new methods
in Mathematics. The sciences which we include under the
title Natural Philosophy have sometimes been called Mized
Mathematics, while the title Pure Mathematics has been
adopted as more strictly appropriate to the first of our five
classes. Up to the present time Chemistry has not been
annexed to Mathematics; but eminent men, among whom
Faraday may be named, have pointed with satisfaction to
that as the destiny of their science.

50. Again, some of the subjects which we have in-
cluded under Natural Philosophy are closely connected with
Chemistry. Thus, many of the changes which Chemistry -
investigates are produced by the agency of Heat; so that
this subject belongs both to the third and to the second
class of our arrangement. A similar remark holds with
fespect to Electricity and the kindred sciences. Again,
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Photography claims the attention of the Natural Philo-
sopher as falling under the head of Light, and is at the
same time of great interest to the Chemist by reason of the
sensitive materials on which the impressions of the sun’s
rays are received.

51. Some sciences may appear to be without a place
in our classes. Thus for instance, Geology and Mineralogy
are not very halppily put under Chemistry, though this
seems to be the least unsuitable station for them. More-
over subjects which in many respects it would be very
convenient to associate become se ted by our arrange-
ment. Thus all the components which make up the tole-
rably well defined aggregate called Natural History are
broken up and distributed over the third and fourth classes.
The arrangement in five classes does however agree reason-
ably well with the schemes proposed by some philosophers
who have paid special attention to the classification of
knowledge. The late Dr Whewell, whose great and varied
attainments rendered him specially qualified to deal with
such a matter, gives implicitly in his Philosophy of the
Inductive Sciences a scheme of classification. The subjects

. which are included in our first three classes are arranged by
him in the following manner: Pure Sciences; Mechanical
Sciences; Secondary Mechanical Sciences, namely, Sound,
Light, and Heat; Mechanico-Chemical Sciences, namely,
Magnetism and Electricity; and Chemistry. Besides these
betxl treats of the Natural History sciences under various
titles,

52. With the Sciences are connected Arts in which the
lessons of theory are applied to purposes of utility and
ornament. Thus Engineering, Architecture, and Naviga-
tion are all Arts connected with the Sciences of Natural
Philosophy. Dr Whewell was fond of calling 4r¢ the lovely
mother, and Science the daughter of far loftier and serener
beauty ; there is no doubt that in the main this is histori-
cally correct. Some simple processes of engineering must
have preceded the science of mechanics, and some rough
comparisons of size and figure must have been made before
the truths of geometry were arranged in a system. Not
only the ruder arts relating to food and clothing which
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sustain our lives, but even those of a more refined character
such as music, painting, and sculpture, which adorn them,
must have made some progress before the sciences arose to
explain the principles on which such arts depend. Still in
recent times science has more than repaid all that she ever
borrowed from art; such important applications as the
steam-engine, photography, and the electric telegraph were,
we know, derived almost exclusively from science. S

53. Controversy has been often maintained with respect
to the subjects which are most valuable for the education
of youth, and to the order in which they should be presented
for study. The older theory in England was that the lan-
guages of Greece and Rome were the best instruments for
cultivating the powers of the mind, and that the literature
preserved in these languages was the most valuable trea-
sury that could be found of history and poetry and mental
science. In one University Mathematics have long been
highly valued as a discipline for maturer years, and recently
they have gained some position in the course of school in-
straction. Other studies however in the present day urge
their claims to attention; modern languages are cultivated
principally on the ground that they give access to rich
stores of information; Chemistry and the Natural Sciences
demand and receive considerable regard, en account of
their important practical applications. Perhaps the acqui-
gition of knowledge is appreciated more highly now than in
former days, and the mere training of the powers of the
mind less exclusively considered. However we must not
forget that many able and enthusiastic men attribute as
much merit to the favourite modern studies as our fore-
fathers assumed to belong to the Classical Languages and
Mathematics. Thus Dr Arnott says, “Reverting to the im-

ortance of Natural Philosophy as a general study, it ma;
ge remarked that there is no occupation which so muc
strengthens and quickens the judgment. This praise has
often been awarded to the Mathematics, although a know-
ledge of abstract Mathematics existed with all the absurd-
ities of the dark ages; but a familiarity with Natural Philo-
sophy, which includes fundamental Mathematics, and gives
tangible and pleasing illustrations of the abstract truths,
seems incompatible with the admission of any gross ab-
surdity.” . .

T. P. ) 2
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III. NATURAL PHILOSOPHY.

54, It is the design of the present work to consider an
important part of the second of the five classes into which
we have divided knowledge in Art, 43; and it will be con-
venient here to offer a few preliminary remarks which will
bring the more important facts into view. The reader will
probably not fully comprehend at first all that this Chapter
contains, but he can ly fail to obtain from it some
general notions which will {)e of assistance to him as he
E;oceeds through the rest of the work. The advance in

owledge which an individual student obtains by the de-
votion of time and attention to a science is similar in
character to the progress which the science itself makes in
the course of ages; the student can trace his way back-
wards to a clearer view of the first Xrinciples, and forwards
to more extensive developments and applications,

55. In such a sketch as we are now about to give, the
reader enters into possession of knowledge which has been
accumulated by ceuturies of thought and labour. The
tendency of this long series of investigations has been to
produce a firm couviction that order and law prevail
throughout nature; and that often apparently contradictory
phenomena result from the operation of one general prin-
ciple. ‘Thus, for instance, most things fall to the ground
when unsupported, while a few, like smoke, or bubbles, or
balloons rise. Hence it might seem that there is a difference
in the structure of bodies or in the substance of which the
consist, in virtue of which some will descend and some will
ascend, when set free. The notion is embodied in the well
known witticism respecting a man who gained an eminent
position by a discreet sobriety of manner, and then lost
respect by his want of official decorum: “contrary to the
laws of physics he rose by gravity and sank by levity.” But
we know now that all the bodies with which we are con-
cerncd are really heavy, though some are much heavier,
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bulk for bulk, than others; so that if some bodies rise when
they are set free, it is not because they have no weight, but
because other bodies have more weight, and 8o sink below
them and force them up.

56. Nature then is really an exhibition of the regular
and constant operation of Laws. These by their combina-
tion or bg their conflict give rise to countless phenomena;
it is the business of Natural Philosophy to seek for thelaws
amidst the endless variety of the phenomena. There are
two great agents of investigation, namely sense and thought.
By sense, such as that of our eyes and ears, we note what
goes on around us; we in fact employ observation and
experiment. By thought we conjecture explanations of
what has been presented to us by sense; that is, we sug-
gest laws and theories, and by the aid of mathematical
calculation we trace the consequences of these suggestions :
then by a new appeal to observation and experiment we
determine how far these consequences really correspond to
truth in nature. It is by the combination of theory on the
one hand with experiment and observation on the other
that the present stock of knowledge has been acquired and
is daily augmented. The J)erpetual striving after prin-
ciples which will connect and interpret what we see around
us is at the same time one of the most necessary tasks and
one of the highest pleasures of the human intellect. For
so vast and bewildering is the range of phenomena pre-
sented to us, that the memory could not retain them and
the mind could not apprehend them unless they were con-
nected and illustra ’l))y tracing them up to the operation
of a few invariable laws. And no ﬁ‘mtiﬁcation 18 more
intense than that of the fgl;iloaopher when he has succeeded
in uniting a group of facts hitherto apparently isolated,
and shewing that they are all consequences of some prin-
ciple which he has himself discovered: while even to un-
derstand that which it has been the privilege of another to
reveal is in some measure to share in his satisfaction.

57. The elementary statements of Astronomy are re-
ceived by the world at large with a confidence which may
be called remarkable, when we reflect that the direct
cvidence for them is very slight. This confidence is an

2—2
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unconscious tribute to the surpassing genius of Newton,
and to the mathematical powers of the great astronomers
who, following in his steps, have demonstrated the results
now universally believed. The earth is known to be at a
distance from the sun of about 90,000,000 miles, and to go
round the sun once in the course of a year, tracing out a
th which does not differ much from a circle; the earth
18 retained in this perpetual journey by the attractive
power of the sun. The earth is nearly a sphere in form,
and turns once round on its axis in a day; this rotation
does not require the operation of any external power to
keep it up when once it has been started. The moon goes
round the earth once in the course of about 29 days,
being always at the distanee of about 240,000 miles from
t‘:}le earth, and turns once round on its axis in the same
me.

58. With a few apparent exceptions, which will be
explained hereafter, all bodies when set free are observed
to fall to the ground ; and so long as we keep near to the
same place on the earth’s surface the directions of falling
bodies are all parallel straight lines. The word vertical
is used to denote the common direction, and a strict defi-
nition is easily given. Suppose a pond or small lake in
which the water is at rest: then the plane surface of the
water is called a Ahorizontal plane, and the vertical direc-
tion is that which is perpendicular to the horizontal plane.
The floors of our rooms are horizontal planes, and the
surfaces of the walls are vertical planes. e straight line
which is formed where the surfaces of two walls meet is
a vertical straight line. Bricklayers who have often to
determine accurately the vertical direction make use of
a string held at one end and having a weight at the other
end; this is called a plumb-{ine, and it hangs when at rest
in a vertical direction.

59. We proceed to notice some of the general proper-
ties which we observe in the bodies around us, or which °
we gather by reflexion from what we directly see.

60. Take any substance whatever, and we find that we
can by mechanical or chemical action divide it into ex-
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tremely minute pieces. Thus, to draw our examples from
solid bodies, a lump of marble may be crushed into powder,
a piece of gold may be beaten into leaves of extreme fine-
ness, sugar may be crumbled or it may be dissolved in
water; in the last case we know that the sugar becomes
diffused through the whole of the water, because the pecu-
liar taste is present throughout. Hence we learn that
gatter possesses the property of déivisibility in an extreme
egree,

61. Illustrations of the extreme divisibility of matter
are given by various authors. Thus we read “ Goldbeaters,
by hammering, reduce gold to leaves so thin, that 360,000
must be laid upon one another to produce the thickness of
an inch. Eighteen hundred of them occupy only the space
of a single leaf of common paper; yet they are so perfect
or free from holes, that one of them laid on any surface, as
in gilding, gives the appearance of solid gold.” Let us
suppose, a8 we may without extravagance, that by photo-
graphy, or in some other way, visible impressions can be

e on gold leaf; then it might be possible to have a
copy of a folio page taken off on a duodecimo page, and
et easily legible by the aid of a small magnifying glass.
{‘hus the contents of a thousand large volumes might be
reproduced in the bulk of the little work now in the
reader’s hands; and therefore all the treasures of a na- .
tional library packed into a moderate book-case.

62. As further illustrations of the same subject we
read that: “ A grain of blue vitriol, or carmine, will tinge
a gallon of water, so that in every drop the colour may be
perceived. A grain of musk will scent a room for twenty
years, and will have lost but little of its weight.”

63. Notwithstanding the extreme divisibility of matter
hilosophers have come to the conclusion that there is a
ﬁmit to the l;’)roperl:y. Thus, taking a simple substance, as
gold, they believe that it consists of excessively minute
particles which cannot be further divided ; and these they
call atoms. In the case of a compound substance they
consider that it consists also of excessively minute particles
which they call molecule?: each molecule contains a defi-
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nite number of the afoms of the simple substances which
form the compound. Thus a molecule of sand is supposed
to consist of one atom of silicon and two atoms of oxygen.
These doctrines have long been received with more or less
favour, but they have probably never been held so firmly
as at the present time. Some calculations have been made
as to the size of the atoms of a substance, and the distance
between two neighbouring atoms.

64. It is supposed that the afoms cannot be hurt or
destroyed; and moreover it is usually held that they pos-
sess extension and impenetrability. These are terms
which involve some difficulty, but as they are of frequent
occurrence they must be noticed.

65. By extension is meant definite #iz¢, and therefore
definite figure. Thus the afom of Natural Philosophy is
not the same as the point of Geometry; for the latter has
1o extension.

66. Most works on Natural Philosophy devote some
space to what they call the Impenetrability of Maiter.
Thus we are told that when we attempt to push one ball of
wood or metal into another we cannot accomplish it ; that
if we drive a nail into wood the nail certainly pushes aside
the fibres of the wood, but we do not get the wood and
the nail into the same place. But the illustrations are not
very decisive; there are cases in which two gases or two
fluids are mixed t?ether where they seem to blend so
intimately that the doctrine of the impenetrability of mat-
ter is not confirmed even if it is not somewhat shaken.

67. But the impenetrability of maiter is not quite the
same thing as the impenetrability of the atome of which
we believe that simple substances consist. The latter doc-
trine can scarcely admit of any direct experimental evi-
dence; though it may be conceived to follow from our
.notion of an atom. Sir J. Herschel, alluding to the exten-
sion and impenetrability of matter, says, “ at least in the
sense in which those terms have been hitherto used by
metaphysicians . . . probably few will be found disposed to
maintain either the one or the other.”
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68. Weight is a proi)erty which belongs to all bodies
with which we are familiar; that is to say, although in

ular lantiuage we speak of heavy bodies and light

ies, yet the difference is one of degree and not of kind.
All bodies have weight, although some have much more
than others, bulk for bulk. Whether weight is an essential
property of bodies, as according to some persons extension
and impenetrability are, i8 uncertain; most writers hold
that it 18 not; the late Dr Whewell held that it is, and he
wrote a paper the object of which was to demonstrate that
all matter is heavy.

69. That bodies differ in weight, bulk for bulk, is a
matter of common experience: we all know that a piece of
lead is very much heavier than a piece of cork of the same
size. Now tables have been drawn up which tell us the

rtion of the weights of quantities of the same size of
different substances. It is usual to take pure water as the
standard ; and then in such a table we may find against
latinum the number 22, and against gold the number 19,
’I"lns' means that & quantity of gold is 19 times as heavy as .
a quantity of water of the same size, and that a quantity
of platinum is 22 times as heavy as a quantity of water of
the same size.

70. The words aétract and atiraction are of frequent
occurrence in Natural Philosophy, and it is important to
notice the various cases in which they are employed. Every

n has observed what takes place when a piece of iron
18 sut near a magnet; the iron moves towards the magnet,
and the magnet is said to attract or draw the iron. We
cannot explain how this is done; we merely see that an
effect is produced something like that which occurs when
a8 man or an animal draws a burden along. This may be
called magnetic attraction.

71. Newton discovered that the earth attracts the
moon and that the sun attracts the earth, in a way appa-
rently resembling that in which a magnet attracts iron.
The process is mysterious and inexplicable; we see no
bands connecting the earth and the moon, and we cannot
make any reasonable conjecture as to the agency by which
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the result is produced, but we cannot doubt the fact that
the earth does draw the moon. It is found also that this
attraction is universally a property of matter; that the
moon also attracts the earth, and that the earth and the
moon .attract the sun. The earth’s attraction moreover
gives rise to the weight of a body which is supported, and
to the fall of an unsupported body: these two results are
in a slight degree modified by the earth’s rotation on its
axis, but in the main they depend on the earth’s attrac-
tion. This attraction, which, as far as we can see, prevails
throughout the universe, is called atiraction of gravita-
tion, or simply gravitation.

72. Another kind of attraction is that which exists
between the particles of a solid body. We know that if
we want to break up a solid body we must make an effort
to separate the parts, and it may happen that a very con-
giderable effort is necessary; hence we are led to ascribe
the union of the parts to the existence of some mutual
attraction between them. This is called the attraction of
cohesion, or simply cohesion.

73. If the surfaces of two bodies are made smooth, and
pressed together with a moderate force, they will some-
times stick very closely. For example, let two cylinders of
lead have their ends scraped very smooth, and let the ends
be pressed and turned against each other until they are in
close contact; then it will require some effort to separate
the cylinders. Glass plates can be made so even that when
once in contact they cannot be separated without breaking.
Contact is frequently ensured by putting some soft sub-
stance between the surfaces to be joined; when this dries
it is in close contact with both surfaces, and much effort is
required to effect a separation. This kind of attraction is
called adhesion; and in accordance with this and the
definition of the preceding Article we may say that par-
ticles of the same body cohere, and that particles of differ-
ent bodies in suitable circumstances adhere.

74. Again in Chemistry we often find that if two
substances of different kinds are brought together under
favourable conditions they will unite and form a new sub-.
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stance. This is spoken of .a8 chemical attraction, or some-
times as chemical afinity. A large part of chemistry
consists of illustrations of this kind of attraction. For an
example: “Sulphuric acid will unite with copper and
water, and form a beautiful translucent blue salt; and if
a piece of iron be thrown into a solution of the copper

t, the acid will immedia.t,el{l let fall the copper, and take
up or dissolve the iron. Sulphuric acid will not unite with
or dissolve gold at all.”

75. Capillary attraction is the name given to the
action between fluids contained in slender glass-tubes and
those tubes themselves; the term has been extended to
include some other cases of action between fluids and
solids, as we shall see hereafter. :

76. [Electrical attraction is the name given to some
cases resembling magnetic attraction, in which electricity
is the agent. .

77. Of the various kinds of attraction which we have
mentioned that called gravitation is the one which has.
been most carefully studied, and of which we know the
most. Here we have that very imghorta.nt rinciple or law
called the law of gravitation, which tells us how the
amount of the attraction changes when the distance of the
attracting bodies changes. Sufupose we have a sphere
com of one substance, as lead or iron; and suppose
we have also another sphere comyosed of one substance,
which may be the same as that of the first sphere or dif-
ferent. Fach sphere may be of any size we please. By
the distance between the spheres let us understand the
distance between their centres. Put the spheres at any
distances apart; then there is a certain attraction exerted
between them, so that unless the spheres were in some way
kept apart they would move towards each other. Now
suppose that the spheres are put at double the former
distance, then the attraction will be only a guarter of what
it was at first; suppose the distance is made three times
a8 great as at first, then the attraction will be enly § of
what it was at first; suppose the distance is made four
times as great as at first, then the attraction will be onlv
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% of what it was at first; and so on. This principle or
Lw is easgily nnderstood for all cases; it is technically ex-
pressed by saying that the attraction varies inversely as
the square of the distance: thus, if the distance is made
" ten times as great, since the square of 10 is 100, the attrac-
tion will be only 137 of what it was before,

78. The law stated in the preceding Article is true of
the spheres whatever be the size and the substance of
each.. It is not strictly true of other bodies ; but there are
cases in which it may be extended to bodies not spherical.
Thus, if the bodies are excessively small it will be true
without regard to the shape of them; and therefore it is
frequently given as the law of attraction of particles. 1f
the bodies are not particles, still, if the distance between
them is very great compared with the size of the bodies,
the law will be practically true.

79. As to the kind of attraction called cokesion we do
not know accurately in what way the change of distance is
connected with the change in the amount of the attraction.
The attraction appears to be very intense between par-
ticles that are very close together, and to become feeble as
soon a8 the distance between the particles is large enough
to be practically sensible. It is possible that science may
hereafter shew that cobesion and gravitation are really
attractions of the same kind; the law being that estab-
lished by Newton when the particles are at a sensible dis-
tance, and taking some other form when the particles are
extremely close.

80. Many sabstances which occur in nature present
themselves under three forms, namely, the solid, the liguid,
and the aeriform. Thus it is one and the same substance
with which we are familiar under the names of ice, water,
and steam. Mercurgealso, which is usually a liquid, can
be frozen, and can turned into a vapour. There are
grounds for believing that every substance can take these
three forms, and that the change from the solid state to
the liquid state is uced by the application of heat, and
the change from the liquid state to the aeriform state by
the further application of heat.
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81, In solids the cohesion is strong, aud keeps the
particles in contact; in liqluid.s the cohesion is very weak,
and indeed scarcely sensible, so that the particles may be -
separated by the slightest effort; in aeriform bodies there
is no cohesion whatever, but on the contrary the particles
repel each other, and some external force 18 required in
order to keep them near each other, The distinction be-
tween the three forms of matter is sometimes expressed
with technical precision as follows. Solid bodies have an
independent volume and an indegndent shape. Their
parts de not move easily among themselves; it requires
always more or less effort to disturb them or to separate
them. When once separated they do not unite by being
merely placed again in contact. Liquids have an inde-
pendent volume, but not an indeﬁendent shape. They
take the shape of the vessel in which they are placed.
The least effort can move or separate the parts; but after
separation the parts unite again when placed in contact.
Aeriform bodies have neither an independent volume, nor
an independent shape; they spread themselves through
:;g t:glace open to them, until restrained by some external

e.

82. It is, as we have said, by the application of heat
that the cohesion of solid bodies is destroyed and the
liquid state assumed; and by a further application of heat
the cohesion is changed into repulsion and the aeriform
state assumed. Hence some writers have been inclined to
consider heat mainly as a repulsive power opposite in
character to that attractive power of which we havo
already spoken.

After this general notiee of our subject, of its connection
with other parts of science, and of the necessary preliminary
mathematical knowledge, we proceed in this volume to treat
in detail of the various mechanical properties of solid and
fluid bodies; that is of groperties which belong to all such
bodies, connected with the operation of force.
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IV. MOTION. FALLING BODIES.

83. Objects in motion present themselves readily to
our notice as we look around us; and moreover we soon
learn that motion is a thing which may be measured. Thus
we are told that a man whom we know walks four miles
an hour, that a certain horse trots nine miles an hour
and that a railway train in which we made a journey moved
through thirty miles in an hour. In these cases we under-
stand that the motion is uniform, that is the motion is -
kept up steadily, not becoming sometimes faster and some-
times slower. It will then be an easy question in arith-
metic to find the distance moved throu%h by any of these
bodies in whatever interval of time may be mentioned ; as,
for instance, to find the distance moved through by the
railway train in one second. In 30 miles there are 30
times 5280 feet, that is 158,400 feet; and in an hour there
are 60 times 60 seconds, that is 3600 seconds. Divide
158,400 by 3600; the quotient is 44: so that the railway
train moved through 44 feet in one second.

84. There are two words much used when we k
and write about motion, of which the meaning is perhaps
familiar, but for clearness should be mentioned; these
words are space and describe. The word space is used as
equivalent to length or distance; thus we talk about a
space of 44 feet, meaning a length or distance of 44 feet.

'he word describe is used in the sense of moving through ;
thus we say a body. describes a space of 44 feet, meaning
that it moves through a space or distance of 44 feet.
Sometimes we omit the word space and say that a body
describes 44 feet.

85. When a body describes 44 feet in a second we say
that its rate of motion is 44 feet a second ; or we may say
that its zelocity is 44 feet a second: it is very customary to
employ a Latin preposition and say 44 feet per second.
‘We see that velocity is a thing which admits of exact mea~
surement. Thus, if a child can walk at the rate of one
mile in an hour, and his father at the rate of four miles in
an hour, the velocity of the father is four times that of the
child, If a railway train goes 45 miles in an hour, and a
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steamer 15 miles in an hour, the velocity of the railway
train is three times that of the steamer.

86. Uniform motion is the simplest kind of motion,
and that with which we first become familiar; but we soon
find that it is not the only kind of motion, Thus, if an
arrow be shot straight upwards the eye can easily see that
as the arrow gets nearer to the highest point which it
reaches it moves more slowly than when it first left the
bowstring; and if a ericket-ball be driven a long way over
the ground by a stroke from a bat it moves more slowly at
last than at first. Such motion is called variable motion.

87. One of the simplest cases of variable motion, and
at the same time one of the most important, is that of
Jalling bodies. The fact, that bodies if not supported will
fall to the ground; must have been known from the earliest
ages, but what we call the laws of falling bodies were not
discovered by any person before Galileo, a famous Italian
philosopher who lived from 1564 to 1642. We proceed to
state these laws.

. 88. The motion of a falling body is not uniform; the
longer a body falls the more quickly it moves at the end of
the time. In the followingq'l‘able the first column gives
the number of seconds since the beginning of the motion,
and the second column gives the space through which the
body has fallen since the beginning of the motion:

In one second............... 16 feet;

in two seconds ............ 2 x 2 x 16 feet;

in three seconds ........-..3 x 3 x 16 feet;

in four seconds ............ 4 x4 %16 feet;
and so on,

Thus we have an easy Rule for finding the number of feet
fallen through since the beginning of the motion: take the
number of seconds, multiply that number by itself, and the
product by 16, If we remember the meaning of the word
square in Arithmetic, as stated in Art. 7, we may put the
‘Rule more briefly thus: multiply the square of the number
of seconds by 16. For example, to find the number of feet
fallen through in 10 seconds: the square of 10 is 100, and
100 x 16 =1600,
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89. A reader of a cautious turn of mind may perhaps
think that no person can ever have dropped a stone down
1600 feet and observed the time of motion to be 10 seconds;
and thus he may suppose that we are here saying more
than we strictly know to be true. And indeed it must be
confessed that this precise experiment never has been
made and probably never will be made: but still we may
feel contident that if it could be made the result would be
Jjust what has been stated: the grounds of this confidence
will become to some extent known as we proceed. We
may say briefly here that by observation and experiment
we gain the conviction that there are laws of nature, and
that these laws are permanent and universal; then when
by long investigation we have discovered such a law, we
believe that it will hold even in circumstances which do
not admit of obvious trial by experiment.

90. The Rule given in Art. 88 will also apply if we
wish to find the space fallen through in a time which is not
a whole number of seconds. For example, required the
space fallen through in two seconds and a half. We have
23 =2 the square of 9=3x2=25; and?®x16=100; thus

=gi thesq g=g%g T g Mg X =1005
the space fallen through is 100 feet.

91. The Rule will also enable us to determine the
space fallen through in any time which may be specified,
even when not beginning with the beginning of the motion.
For example, suﬁpose we want to know the space fallen
through during the fourtk second of the motion. In four
seconds the space fallen through is 4 x 4 x 16 feet, that is
256 feet; in three seconds the space fallen through is
3 x 3 x16 feet, that is 144 feet. Hence, to find the space
fallen through in the fourth second we must subtract 144
feet from 256 feet; the result is 112 feet. Again, suppose
it required to find the s fallen through in one-tenth of
a second, occurring at the end of three seconds after the

beginning of the motion. We have 3,&;:?1 the square

io}
31 _31_ 31 961 961 .
of 10=10 *10=100° and l—a)xls:lts%&. Thus in three

o
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seconds and one-tenth the space fallen through is 153 1%
feet; and we know that the space fallen through in three
seconds is 144.feet; subtract 144 feet from 15312 feet, and
the remainder is 93§ feet. This is therefore the space
fallen through in one-tenth of a second occnrring at the
end of three seconds after the beginning of the motien.

92. Thus we can determine the space through which

a body falls in any time which may be gpecified ; we shall
now determine tge velocity of the falling body at any
iustant which may be specified ; or in other words the rate
at which the body is then moving. In the following Table
the first column gives the number of seconds since the
beginning of the motion, and the second column gives the
velocity at that instant.

At the end of 1 second......32 feet per second;

at the end of 2 seconds......2 x 32 feet per second ;

at the end of 3 seconds......3 x 32 feet per second ;

at the end of 4 seconds......4 x 32 feet per second;

‘ and so on.

Thus we have an easy Rule for finding the velocitarex-
pressed in feet per second, at the end of any number of
seconds since the beginning of the motion: multiply the
number of seconds by 32. For example, required the
velocity at the end of seven seconds; 7x32=224; thus
the falling body at the end of seven seconds is moving at
the rate of 224 feet per second. Again, required the
velocity at the end of two seconds and a half; we have

2;:%; and gx32=80; thus the falling body at the end

of two seconds and a half is moving at the rate of 80 feet
per second.

93. It will be seen that the number 32 which occurs
in the Table and Rule of the preceding Article is double
the number 16 which occurs in the Table and Rule of Art. 88,

94. The case of falling bodies offers a very simple
example of variable motion; the velocity, that is the rate
of motion, increases just as fast as the time increases, so
that, for example, at the end of five seconds the velocity is
five times as great as at the end of one second.
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95. But here a very important point requires to be
explained. As the velocity of a falling body is continually
changing, how can we speak of the velocity at any specified
instant! When we say that at the end of three seconds
the velocity is 96 feet per second, we mean that if no
change of motion took p afterwards the motion would
be uniform, and at the rate of 96 feet per second. This is
the ezact meaning of the statement; and we may illustrate
it by putting it in another form which is perhaps easier for
a begigner, though not quite so exact. Suppose we ask
what space is really fallen through in a very short time
directly after the end of the first three seconds, say in one-
tonth of a second. If the motion were uniform and at the
rate of 96 foet per second, the space fallen through in one-

tenth of a second would be %) x 96 feet, that is 9-&; feet,

that is 91§ foet. We found in Art. 91 that the space
through which the body really falls in this tenth of a second
is 9?# foot, which is somewhat greater than the result
obtalned on the su;:;)osition of uniform motion at the rate
of 96 foot per second. In this way we are led to another
answor to the question, what is meant by saying that the
volocity of a falling body at the end of three seconds is
96 feot dper sccond: we may say that for a very short time
the body without scnsible error may be considered to be
moving uniformly at the rate of 96 feet per second.

96. The beginner should illustrate the important state--
ment at the end of the preceding Article by other nume-
rical examples. For instance, take a shorter interval of
time than one-tenth of a second, say one-twentieth of a
second, or one-bundredth of a second ; then calculate b
the method of Art. 91 the space actually fallen throug|
in this interval directly after the end of the first three
peconds: it will be found to differ but very slightly from
the space which would have been described in the interval
by a body moving uniformly at the rate of 96 feet per
second. The smaller we take the interval the more closely
will the two results agree. Similarly we can illustrate the
statement that at the end of four seconds the velocity of a
falling body is 128 feet per second ; and so on.
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97. We have now stated the laws which hold with
respect to the motion of falling bodies, but, as will often
happen in the course of treatises on Natural Philosophy, we
must next indicate some slight modifications and correc-
tions of the general statements which have been made. It
will be seen that the matters to which we proceed, though
of considerable interest as to theory, do not sensibly impair
the practical accuracy of what has gone before.

98. We have taken 16 feet as the space through which
a body-falls during the first second of its motion; but the
number is really rather different for different places, and
at London .it is about 16 feet and 1 inch. It increases as
the distance from the equator increases, and is about an
inch greater at the poles than at the equator. So also the
velocity at the end of the first second, which we denoted
by 32 in Art. 93, is really different in different places, being
for any place whatever double the number which denotes
at thgf place the space fallen through during the first
secon

99. Again, we have spoken of falling bodies, without
any distinction, as if the motion were precisely the same
for all bodies whatever; but strictly speaking this is not
true. The air which surrounds the earth resists the motion
of falling bodies, and the resistance is more influential for
light bodies, like cork or paper, than for heavy bodies, like
stone or lead: the reason of this will be explained here-
after. But it is found by experiment that, if the air be
removed, what is called a heavy body and what is called a
light body fall down e%ual spaces in the same time. This
can be shewn by the aid of the air-pump, an jnstrument to
be described hereafter ; the experiment 18 very impressive,
and has been ascribed to Newton. But even without an
air-pump it is easy to shew that the difference in the
motions of falling bodies is not due to the kind of sub-
stance of which the body is composed. For gold, which in .
the case of a sovereign falls as fast as anything which we
have commonly in view, may be beaten out to a thin leaf
which almost floats on the air; and on the other hand a-
sheet of paper when open falls very slowly, but when rolled
up into a tight ball falls like wood or stone. 1t must b-

T. P 3
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observed that the resistance of the air increases very
greatly as the velocity of the moving body increases; and
thus the laws which we have given as those of falling
bodies would require some practical correction if they were
to be applied to cases of bodies falling during long times.

100. Finally, the laws which we have stated apply to
falling bodies near the surface of the earth. If we had
the power of ascending to a distance of hundreds of miles
from the earth, and drogping a body from such a point,
the motion would be of a different kind: this will be
noticed hereafter.

101. As an example of the laws of falling bodies it is
sometimes proposed to find the depth below the ground of
the surface of the water in a well. Suppose, for instance,
that a stone is dropped into a well, and that in two
seconds it is heard to strike the water. Since in two
seconds a body falls through 64 feet, we may take this for
the required depth. This is really a trifle too great, be-
cause it takes some time, though very little, for the sound
of the splash to yeach the ear; and thus the real fime of
the motion of the stone to the water is somewhat less than
two seconds. But it need scarcely be said that dropping
stones into a well is a practice to be avoided for fear of
choking the well. There can, however, be no objection to
pouring back into the well some of the water drawn from
it; and this is sometimes done for the amusement of
visitors in the case of wells which are famous for their
depth. But when the well is very deep the resistance of
the air on the drops of falling water will be so great as to
render the experiment worthless with regard to any nu-
merical result. In the fortress of Konigstein, in Saxony,
there is a well which is known to be 640 feet deep, so that
the splash, if there were no resistance of the air, would
reach the ear in about seven seconds after the water
is poured back; but practically the time is about fifteen
seconds.

102. The direction in which a body falls is that which
is called the vertical direction, which is perpendicular to
a horizontal plane; and thus it is different at different
places on the earth; but the difference is not sensible to
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common observation so long as we keep within a few miles
of the same spot. Sece Art. 58.

103. We have hitherto spoken of falling bodies as
phenomena which are observed, without referring to the
cause of the phenomena. We will now briefly allude to
this point. The earth in fact draws bodies to itself, some-
what in the same way as a magnet draws a piece of iron
towards itself. This attraction of the earth, as it is called,
gives rise to the weight of a body which is supported, and
makes a body fall which is unsupported. The effect of
the attraction is slightl{adiminish by the rotation of the
earth on its axis; so that, for instance, if there were no
rotation a body at the equator would fall in the first
second through about two-thirds of an inch more than it
actually does. The word gravity is used to denote this °
power which the earth gssesses, as shewn in the weight
and the fall of bodies; the effects are said to be produced
by the force of grazity, or simply by gravity.

V. RELATIVE MOTION. COMPOUND MOTION.

104. We know from Astronomy that the earth is not
at rest, but really possesses two different motions at the
same time; it moves nearly in a circle about the sun once
in a year, and it turns round its axis once in a day.
Speaking roughly, we may say that in consequence of the
motion about the sun the earth moves through somewhat
more than one and a half millions of miles in a day; or we
may say that it moves through a space about equal to two
hundred times its own diameter. In the former mode of
statement the velocity seems almost inconceivably great;
in the latter it seems more moderate. In consequence of
the earth’s turning round its axis a place on the equator
describes in one day a circle of which the circumference is
about twenty-five thousand miles. Now all pet:{)le and
things on the earth have these two motions, and hence

3—2
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when in eommon language we say that an object is at rest,
we _mean that it is at rest so far as the earth is concerned,
and not that it is really at rest. Or we may express our
meaning by saying that the object is relatively at rest,
and not absolutely at rest.

105. In like manner when bodies fall the motion which
we observe does not constitute the «hole motion, but ounly
the motion 7elative to the earth. The notions of relative
rest and motion as different respectivelty from absolute rest
and motion are very important. The fact that we may be
in motion and scarcely conscious of it, can be established
by a common observation. Let there be, as is frequentl
the case, two railway trains side by side at a station, an
let one of them move gently. A person sitting in either of
them can see that there is a motion of one of them ; but if
he merely looks at the other train without noticing the
objects beyond it, he may be puzzled to decide which of
the trains is really moving. He in fact sees that there is
relative motion, but is uncertain whether his own train or
the other is at rest with respect to the station.

106. The consideration of relative motion leads na-
turally to that of compound motion. Suppose a steamer
going uniformly through very smooth water; then persons
on the deck find that they can perform’ all such actions
a8 involve motion in the same manner as if the steamer
were at rest. Thus a ball can be thrown up and caught
again in the hand in the same manner as by the same
person on land. Also if a stone is dro%ped from the top of
the mast of the steamer it falls at the foot of the mast,
Jjust a8 it would do if the steamer were at rest. A railway
carriage in motion would give the means of observing
the same class of facts if the space within the carriage
were rather larger. As it is any person may see that the
movements of a fly inside such a carriage seem precisely
the same as those of a fly in a room; and some observers
have noticed that insects keep up with a railway carriage,
alternately flying out and in at the windows, in the same
wa¥ as if the train had been at rest. The general prin-
ciple in all these cases is that when a vehicle is in motion
persons and things in the vehicle all have that motion.
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Neglect of this principle has sometimes led to strange
blunders ; thus a person proposed to reach America in a
balloon by ascending in the air, waiting there until the
earth’s rotation brought America beneath him, and then
descending ; he forgot that his balloon on starting from
the grounn§ had, like all other terrestrial objects, the motion
of rotation which the earth has.

107. Return to the case of the steamer. Suppose the
steamer moving directly towards the North ; let a marble
be shot from a point on one side of the steamer towards
the corresponding point on the other side, say towards the
East. Then the marble goes with the ship towards the
North, and goes towards the East in virtueof the special
motion which is given to it. Its motion on the whole is
said to be compounded of the two motions, namely, that
of the ship towards the North, and the special motion
towards the East.

108. The following is the exact statement of the prin-
ciple of the composition of motions.

Let 4B represent in magnitude
and direction one velocity given to
a body, and let AC represent in
magnitude and direetion another
velocity given to the same body at
the same time. Complete the pa-
rallel of which 4B and AC %
are adjacent sides, and draw the
diagonal AD; then AD will represent the whole velocity
in magnitude and direction, The velocities represented
by .AB and AC are called component velocities, and the
velocity represented by 4D is called the resultant velocity.
The principle is for brevity called the Parallelogram of
Velocities.

109. For an example return to the case of the steamer.
Suppose it moving at the rate of 30 feet per second
towards the North, and let 4C denote this velocity. Also
suppose we give to the marble a velocity of 40 feet per
second towards the East, and let 4 B denote this velocity.
Then AC and 4B must be in the proportion of 30 to 40;
80 that if AC is 30-tenths of an inch 4B will be 40-tenths

o D
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of an inch. Also the angle CAB will be a right angle,
since that is the angle between the Northern and Eastern
directions at any place. Thus 4D will represent the whole
velocity; and it will represent 50 feet per second. The
length of 4D follows from the proposition of Art. 32; for
it is a property of the figure, since CA B is a right angle,
that 4 BD is a right angle; and the square of 50, which is
2500, i8 equal to the sum of the squares of 30 and 40, that
is to the sum of 900 and 1600. Also the angles CAD and
BAD are the angles which the resultant velocity makes
with the Northern and Eastern directions respectively.

110. By measuring the lengths on a scale, and drawing
the figure carefully, we can by the principle of Art. 108
always find the resultant velocity when the component velo-
cities are known, assuming that the principle is true. That
the principle is true will be seen by reflecting on the ex-
perimental fact stated in Art. 106, that the motions on the
deck of the steamer proceed as if the steamer were at rest.
It is a property of the parallelogram ABDC that BD is
equal and parallel to AC. Now when we say that 43
represents one velocity given to the body, we mean that if
this were the only velocity the body would move from the
point denoted by 4 to the point denoted by B, along the
direction denoted by the straight line 4B, in the unit of
time; and when we say that AC represents another velo-
city given to the same body at the same time, we mean
that if this were the only velocity the body would move
from the point denoted by 4 to the point denoted .by C,
along the direction denoted by the straight line AC, in the
unit of time. Then in virtue of both velocities we say
that 4D represents the whole velocity, meaning that the
body will really move from the point denoted by 4 to the
point denoted by D, along the direction denoted by the
straight line 4D, in the unit of time. The position of the
body at D is the same as if it had first moved from 4 to
B, and then from B to D; and as BD is équal and parallel
to AC, we see that the final position is the same whether
we suppose the two component velocities simultanevus or
successive,
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VI. MOTION CAUSED BY FORCE.

111, When by our own strength we put a body in
motion, or change or sbolg the motion which a body already
has, we feel that we make some effor?, that we exert force.
We soon learn that we can assist the power of our own
bodies by the aid of tools or machines, as of a bat to strike
a ball, or of a bow to discharge an arrow. Again, we
avail ourselves of the stores which nature presents to us
in the services of animals to draw our burdens, and we
have no difficulty in believing that the force which they
put forth in their tasks resembles that which we ourselves
are conscious of exerting in similar circumstances. Next we
emm the resources of inanimate nature, as of the wind
to our ships or of the falling waters of a stream to
turn our mills. Finally, there are more subtle agencies,
not presented by nature of her own accord, but gained
from her by the inventive skill of man ; such as the ex-
plosive force of gunpowder and the expansive force of
steam.

112. It is the nature of man to seek for the causes of
the efects which he experiences, and though in many cases
his search leads to little direct result yet he gains much
indirectly; for the effects become better known by the
attempt to trace them to their causes, and sometimes we
may ascertain many of the laws according to which a cause
acts though the cause itself may remain unknown.

113. We cannot explain how the earth has the remark-
able property of attracting bodies, though we are sure of
the fact; see Art. 71. Indeed so familiar are we with the
fact that we cease to wonder at it ; and yet there is some-~
thing very strange in the communication of motion by one
lifeless mass, as the earth, to others, as stones and logs.
The marvel will be increased when we learn from Astro-
nomy that this power of attraction belongs apparently to
all the bodies of the universe, and that it reaches through
the long distances which separate the earth from the sun
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and the planets. A very able man, the late Professor
Vince of Cambridge, held that this wonderful power of
attraction could be explained in no other way than by
ascribing it to the immediate and ever present action of
the Deity.

114. Although forces differ as to their origin, yet they
all agree as to the way in which they produce or change
motion. There are certain Zaws which hold with respect
to the connection between force and motion, which are
called briefly Laws of Motion. These Laws are not.pre-
sented in quite the same form and number by all writers,
although there is in general substantial ment among
those who have carefully discussed the subject. We shall
follow Newton in making three Laws of Motion, and also
in the mode of stating them.,

115. First Law of Motion. Every body continues in
a state of rest, or of uniform motion in a straight line,
except in 8o far as it may be compelled to change that
state by force acting on it.

The law may be said to assert that every body-is of
itself passive and inert, and cannot of itself either begin to
move or change its motion if it has any. The body is of
course to be understood as inanimate; nothing is said as
to the complex operation of the will and the muscles by
which a man moves himself, or of the instinct and the
muscles in the case of an animal.

116. We must now consider what evidence we have
of the truth of the Law. That a body at rest will con-
tinue in that state unless force acts on it may be held to
be obvious from observation and trial. But that a body
in motion, if left to itself, will continue to move uniformly
in a straight line seems not so obvious. For we cannot
devise any means of preserving a body which is in motion
from the action of force, and so we cannot obtain that

raeverance in uniform rectilinear motion of which the

w speaks. If a stone is made to slide along the ground
it is soon reduced to rest; but we can easily admit that
this destruction of motion is due to the roughness of the
ground. Accordingly we find that if the same stone is
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started in the same manner to slide on a smooth sheet of
ice it will go much further before it is reduced to rest.
And we may imagine that if we could remove all obstacles
arising from the roughness of the surface on which the
stone slides, and from the resistance of the air, the motion
might go on for ever unchanged.

117. 8till it would be wrong to suppose that the Law
can be readily accepted by the beginner on the ground of
such rude experiments as he may make or imagine. The
history of science shews distinctly that the Law is not one
of those truths which present t¥1emselves obviously and
are easily believed. The ancient Greeks, who made great
progress in some branches of knowledge, never reached
the simple Laws of Motion; and the honour of laying the
}'ounéd:ltiilon of this part of Natural Philosophy was reserved
or eo.

118. Observation will however supply facts which are
quite consistent with the Law, Thus, for instance, if a
railway train in motion is suddenly stopped a enger
seated on the back seat of a carriage finds himself tArown
Jorwards ; this arises from the fact that he continues in
his state of motion after the iage itself is stopped. 8o
also if a man is riding rapidly on horseback and the horse
stumbles the man is thrown over the horse’s head.

119. But since the direct evidence which can be pro-
duced in favour of the first Law of Motion is slight, it
may be asked how can we be confident of its truth. The
answer is complete and decisive. The oldest and most
eminent of human sciences is Astronomy; and the theory
of Astronomy rests on the three Laws of Motion as a
foundation. By the aid of this theory astronomers are
able to predict years beforehand the occurrence of striki
phenomena in the heavens, such as eclipses of the sun an
moon, and the return of a comet after an unseen journey
of three quarters of a century; and these predictions are
found to be fulfilled with minute accuracy. Thus, for
example, it was predicted long in advance, that on Decem-
ber 9th, 1874, there would be the remarkable appearance
called a transit of the planet Venus over the Sun’s disc;
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accordingly all the civilized nations of the world sent
observers at great expense and trouble to various places
to watch the appearance: and it occurred at the appointed
day and hour, Now it is impossible to suppose that the
three Laws of Motion can be false when astronomers have
deduced from them numerous and various results which
are found to be accurately trne; and thus we may say
briefly that the unfailing certainty with which the predic-
tions of Astronomy are always verified supplies abundant
evidence of the truth of the Laws of Motion. We need
not repeat this remark in connection with the second and
third Laws,

120. Second Law of Motion. Change of motion is
proportional to the acting force, and takes place in the
direction of the straight line in which the force acts.

This Law re%uires to be explained before the beginner
will receive all that its statement includes; at present we
will take only a portion of it. Suppose then that a body
is moving in a straight line, and that a force acts on the
body in the same direction; then the Law says that the
change of motion is proportional to the acting force. This
implies that the change of motion does not depend on the
velocity which the body already has. Now this may be
very well exemplified by the case of falling bodies which
we considered in Chapter IV, Thus, for instance, accord-
ing to our statement in Art. 92, the velocity of a falling
body at the end of three seconds is 96 feet per second;
80 that if gravity were suddenly to cease the ly would
fall through 96 feet in the next second. But gravity con-
tinues to act, and according to the second Law of Motion
it will affect the motion in the same way as if the body,
instead of starting with the velocity of 96 feet per second
started from rest. Thus throughout the fourth secon
fresh velocity is constantly communicated to the falling
body, just as it was during the first second; so that by
virtue of this action 16 feet are fallen through, besides the
96 feet fallen through by virtue of the velocity at the be-
ginning of the fourth second. Hence on the whole 112 feet
are fallen through in the fourth second. This agrees with
the result obtained in Art. 91.
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121. The facts to which we have called attention in
Arts. 106 and 107 are in agreement with the second Law of
Motion. The steamer and every thing on it move from South
to North ; then the motion or change of motion which is pro-
duced in any thing on the steamer by the action of force is
the same as that force would produce if the steamer were
at rest. Newton himself deduces from the second Law of
Motion the principle called the Parallslogram of Velo-
cities which we have stated in Art. 108,

122, 8o long as we consider only the same body, change
of motion is measured by change of velocity; then the
second Law of Motion asserts that any force will com-
municate velocity in the direction in which the force acts,
and it is implied that the amount of the velocity so com-
municated not depend on the amount of the velocity
which the body already has. When we consider different
bodies the Law implies something more than this, as we
shall see hereafter ; we defer the discussion of this, and of
the third Law of Motion until we have explained what is
meant by Mass,

123. The beginner must not expect to become at once
familiar with the full meaning of the Laws of Motion;
by watching the application made of them in trustworthy
books, and by reflexion, he will gradually gain a firm hold
of them, and learn to use them with confidence to explain
what he sees around him, One caution is necessary with
respect to the kind of motion which we have in view. We
mean such motion as that of a falling body, or of a body
carried by a railway train; motion in which one point of
the body moves just like any other point which may be on
the side of it, or in the front of it, or behind it. We mean
in fact to leave out of consideration the motion of rotation,
such as that of the sails of a windmill, or of a child’s top.
The motion of rotation may exist together with the other
kind of motion, as we know from the case of the earth as
stated in Art. 104; and a more obvious example is fur-
nished by the wheels of a carriage which turn round while
at the same time they move forward with the body of the
carriage. The motion of rotation is more difficult to treat
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than that to which we here confine ourselves. The caution
a8 to the kind of motion we are considering is expressed by
some writers by speaking in the Laws of Motion of particles
instead of bodies.

124, A few more remarks relating to falling bodies
will be useful in further illustration of the second Law of
Motion. Suppose a body to fall from a certain height to
the ground; then if the body be sent straight upward
starting with a velocity equal o that with which it reahed
the ground, it will just reach the height from which it fell,
taking the same time in the ascent as it did in the fall.
This may be easily seen from a particular instance. Suppose
that the time of the fall is four seconds; then by Art. 92
the body reaches the ground with the velocity of 128 feet
per second. Start the body straight umrds with this
velocity ; then if gravity did not act the body would move
through 128 feet in one second, and still retain at the end
of the second the velocity with which it started : this follows
from the first Law of Motion. But during this second
gravity acts, and in the direction just contrary to the
motion ; and in virtue of this a downward velocity of 32
feet per second is given to the body, and also the y is
drawn down through 16 feet. In consequence of this the
body really ascends upwards through 112 feet, and has at
the end of the second an upward velocity of 96 feet per
second. That is the body has ascended through just the
space which a body would fall through during the jfourth
second of its motion, and it has a velocity upwards just
equal to the downward velocity of a body at the end of the
third second of its fall. In precisely the same manner we
can shew that in the next second the body will ascend
through 80 feet, and will have at the end of the second an
upward velocity of 64 feet per second ; that is it will as-
cend through just the space which a body would fall through
during the third second of its fall, and it has a velocity
ulll)wa.rds Jjust equal to the downward velocity of a body at
the end of the second second of its fall. Proceeding in this
way we find that the body just reaches in four seconds the
height from which it fell, and it has then no velocity, so
that it goes no higher. .
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125. In the same way as the example of the preceding
Article was treated we may treat any similar example. It
will be observed that the following proposition becomes
evident from the course of the discussion. Suppose a body
to fall from a certain point to the ground and to be started
upwards with a velocity equal to that with which it reached

e ground, then the velocity on reaching to any height is
equal to that of the falling body at the same height, though
in the oRposite direction. We may also shew that the fol-
lowing Rule will give us the height which the body will
reach in any assigned time: Calculate the space through
which a body would have moved uniformly in that time
and from it subtract the space through which a body
would have fallen from rest in that time; the remainder
gives the height required. For instance, returning to the
Exggxfle of Art. 124, find the height reached in two seconds.
A y moving uniformly with the velocity of 128 feet

r second, will in two seconds describe 128 x 2 feet, that
18 256 feet. And in two seconds a body would fall through
16 x 2 x 2 feet, that is through 64 feet. Now 256—64=192;
and 192=112+ 80, that is 192 feet is the height of the body
at the end of two seconds by Art. 124, It must be remem-
bered that in this and the preceding Article we neglect the
influence of the resistance of the air.

126, While a body is falling the only force acting on it
is gravity, and so also while a body is rising the only force
acting is gravity, which acts in the direction contrary to
motion. It is quite true that in the latter case some force
must have acte ljiutsi: at the beginning of the ascent to start
the body, but still during the ascent the only force acting
is gravity. This may appear a simple remark, but it is
necessary to draw attention to it, use some popular
books are very erroneous as to the matter.

127. If we know how long-a body has been falling we
can immediately determine the space through which it has
fallen, by Art. 88; and we can determine the velocity which
it has at the end of that time by Art. 92. From the Rules

iven in these two Articles various others can be deduced
processes which do not require more than common
Arithmetic. Thus from Art. 88 we may deduce the following,
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Rule for finding the number of seconds occupied in the
fall: Divide the number of feet fallen through by 16 and
exiract the square root of the result. Then if we multiply
the result thus obtained by 32 we obtain the velocity at
the end of the time. Or we may obtain this velocity by
the following Rule which will be found on trial to

with the former: Multiply the number of feet fallen
through by 64, and extract the square root of the product.
The last Rule is important and often wanted in practice.

VII. MASS AND MOMENTUM.

128. Buppose we take two bodies of the same size and
shape, say a cricket ball and an iron ball just as big; we
find that the iron ball ﬁlresses more strongly than the
cricket ball on the hand which holds them: in fact the iron
ball weighs more than the cricket ball. Now we use the
word matter to express the substance, material, or stuff of
which bodies are composed ; and we use the word mass as
an abbreviation for guantity of matter. We also take it
for granted that at the same place on the earth’s surface
the mass of bodies is proportional to their weight.

129. The reader will naturally be led to think that as
mass is proportional to weight it is unnecessary to intro-
duce the word mass. But as we proceed it will be found
very convenient to have this word expressing something
which belongs to the body, and remains unchanged when
the body is taken from one place to another. We have
said that at the same place on the earth’s surface the mass
is proportional to the weight, and it is important to bear
in mind this condition, for the weight of a body is not the
same at all places. ~ If we use a pair of scales to weigh a
body in the ordinary manner, we shall find no difference in
the number of pounds and ounces which we call the weight
of the body when we take the scales to various places. A
foolish person being told that bodies weighed less when
taken to a height above the earth’s surface than they did
at the surface, declared that the statement was untrue, for
he had weighed a body most carefully in the cellar and in
the attic of his house, and found no difference in the two

cases, He had misunderstood what he had been told, and
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which we may explain as follows. Suppose a string just
strong enough to at London without breaking a cer-
tain piece of lead fastened to the end of it; then at the
equator it would bear a rather larger piece without break-
ing, while at the pole it would not bear quite so much. If
& string could bear at the pole the weight of 200 coins all
exactly alike, then at the equator it would bear the weight
of about 201 of them; or in-other words the weight of any
body is diminished by about 335 in passing from the pole
to the equator. The diminution is another consequence of
the same cause as that which operates in Art. 98; where
the result is & diminution of about 1 inch in 16 feet with
respect to the fall of a heavy body in a second. Instead of
weighing a body in soales we may make use of one of the
contrivances by which the result 1s ascertained by notici
how far the body will bend a spring; then it will be fot?nlE
if we employ a very delicate spring, that the weight is less
in places which are nearer to the equator than in those
which are further from it.

130. In examining questions about motion we soon
learn that we have to pay attention to two things, the
mass in motion, and the velocity with which it is movi ‘5‘
Thus the mischief and destruction which a cannon ball
produces increase both as the mass of the cannon ball
increases and as the velocity with which it moves increases;
and a similar remark holds with respect to the disaster of
a collision between ships, or between railway trains. An
iceberg, though moving with very small velocity, may pre-
duce a til'eal; effect by its vast mass, Accordingly we are
led to the important idea which we express by the word
momentum ; this means the product of the mass into the
velocity. Thus if one body has a mass-which we denote
by 2, and s,velocitg which we denote by 3, the momentum
is 2 x 3, that is 6; hence another body which has a mass 3
and a velocity 2 will have the same momentum; and a
third body which has a mass 4 and velocity 6 will have a
momentum 24, which is four times as great as in the
former cases. The word momentum is one of those which
unscientific people employ in various senses, so that the
- reader must bear in mind the strict meaning which we
give to it. .
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131. We will now repeat the second Law of Motion.
Change of motion is proportional to the acting force, and
takes place in the direction of the straight line in which
the force acts. By motion here we are to understand
motion as measured by momentum; and with this expla-
nation we need not restrict ourselves to the case of one
body and one force, but may if we please take more com-
plex cases in which different bodies and different forces
occur.

132. The effect of force then is to give velocity to
bodies, and we measure the effect by the momentum pro-
duced. Hence if we have a certain force at our disposal
we can produce only a certain amount of momentum; if
we operate on a heavier body we produce a less velocit;
than if we operate on a lighter bod‘;'. Thus if a blow wi
give a certain velocity to a ball, the same blow applied to
a ball of double weight will give half the former velocity,
Now it will be seen that the force of gravity differs remark-
ably in one respect from the forces of men, of animals, of
wind, of water, and of steam with which we are familiar.
In all the latter cases we are accustomed to see a less
velocity produced according as the body in which it is
produced is greater. But when bodies fall to the ground,
whether they are large or small they.acquire equal velo-
cities in falling for the same time. The fact is that the
force of gravity is not of a fized amount for all bodies, but
varies in proportion to the mass moved. -If a double mass
has to be moved the force of gravity puts forth as it were
a double energfv; or in other words the force of gravity
acts on each of the two equal halves of the double mass
Jjust as if the other half did not exist.

133. We can now give some explanation of the fact
noticed in Art. 99, that the resistance of the air interferes
more with the motion of light bodies than with the motion
of heavy bodies. Let us su a hollow ball made of
very thin iron, and a solid ball of the same size also made
of iIron. As we have just remarked, the force of gravity
will give the same velocity to one ball as to the other in
the same time, 8o that, setting aside the resistance of the
air, the two balls would fall through equal gpaces in the_
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same time. Now consider the resistance of the air; this
cannot depend in any way on the nature of the inside of
the balls, and so must be the same on two balls of the
same size, shape, and texture of surface, if they move with
the same velocity. But by Art. 132 this force would pro-
duce less velocity in the solid ball than in the hollow ball;
and so in the actual case we may readily suppose that it
will take away much less of the downward velocity of the
solid ball than of the hollow ball,

134, An example will illustrate the difference of the
influence of the resistance of the air on bodies differing
only in size. Suppose, for example, two cannon balls, one
4 inches in diameter and the other 5, but formed of the
same material. The masses of the balls are in the same
proportion as the cubes of the diameters, that is in the
proportion of 64 to 125, It appears by experiment and
theory that the resistances of the air are in the same pro-
portion as the squares of the diameters, that is in the pro-
portion of 16 to 25, that is in the proportion of 80 to 125.
Hence we see that the resistance on the smaller ball bears
to that on the larger ball a greater proportion than the
mass of the smaller ball bears to that of the larger; and so
the resistance exercises more influence on the smaller than
on the larger ball, supposing the velocities equal.

135. We bave not given a very full account of the in-
fluence of the resistance of the air because we have not
attended to the way in which the resistance depends on the
velocity of the moving body. In reality the resistance
increases very rapidly as the velocity of the moving body
increases. For an example, it has been found that under
certain circumstances the range of a cannon ball would be
23000 feet if there were no such resistance, while it was in
fact about 6400 feet. Another exam’lg:e is furnished by an
experiment with a railway engine. The engine was started
down an inclined plane with a velocity of 45 miles an hour;
the velocity gradually diminished until it became 32 miles
an hour and remained at that. Thus the resistance of the
air together with that caused by the want of perfect
smoothness in the wheels and iron rails just balanced the
influence of the force of gravity in urging the engine down
the plane and maintained uniform velocity.

T. P. ’ 4
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VIIL THIRD LAW OF MOTION.,

136. Third Law of Motion. To every action there is
always an. equal and contrary reaction: or the mutual
actions of any two bodies are always equal and oppositely
directed in the same straight line.

Newton gives three illustrations of this Law :

If any one presses a stone with his finger, his finger is
also Fressed by the stone.

If a horse draws a stone fastened to a rope, the horse
is drawn backwards, so to speak, equally towards the stone.

If one body impinges on another body and changes the
motion of the other body, its own motion experiences an
equal change in the opposite direction.

In the third illustration motion is to be measured by
momentum as in all cases. We shall return to the discus-
sion of this illustration hereafter.

137. One of the most important examples of this Law
is furnished by the attraction of bodies. The earth, for
instance, attracts a body, and that body attracts the earth
again with equal power. Thus when the earth produces
velocity in a falling body that falling body also produces
velocity in the earth, although the latter velocity is so
small as to be imperceptible. For, according to the third
Law of Motion, the stone gives to the earth as much
momentum as the earth gives to the stone, and as the
mass of the earth is incomparably greater than that of the
stone the welocity given to the earth is incomparably less
than that given to the stone. In the science of Astronomy
the mutual attraction of bodies is a principle of supreme
importance; the earth, for instance, attracts the moon, and
the moon attracts the earth again with equal power.

138. The fact that not merely the earth as a whole
attracts, but that distinct portions of the earth also do so,
has been made obvious by noticing the action of moun-
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tains on plumb-lines hanging at places near them. It is
thus discovered that the weight at the end of a plumb-line
is drawn a little towards a neighbouring mountain; so that
the plumb-line does not hang quite in the direction in
which it would hang if there were no mountain. In very
accurate surveys of the earth made for the purpose of de-
termining its exact size and shape, it is necessary to pay
great attention to the deviation which the action of moun-
tains produces in the direction of the plumb-line.

139. A very interesting example of motion
is furnished by a contrivance of which the
essential is indicated by the diagram. Two
heavy bodies are connected by a string which A
passes over a smooth peg. Here the force of i
gravity tends to draw each body doton, while I
the force exerted by the string tends to draw
each body up. The force exerted by the string l
is the same on the two bedies in agreement
with the third Law of Metion, which makes the
action of one body on the other equal to the
reaction of the latter on the former. Experiment will
shew that if the twe bodies are of unequal weight and are
left to themselves the heavier will descend; so that the
" force exerted by the string is less than the weight of the
heavier body, but greater than the weight of the lighter
body. When the case is examined by the aid of a little
mathematics it is found that the motion is just like what
would take place if a force equal to the difference of the
two weights were employed to move a mass equal fo the
sum of the two masses. Thus if one body weighs 13 %(;unds,
and the other weighs 12 pounds, the motion will be j
like that of a body which weighs 25 pounds acted on by a
force of 1 pound. Therefore the motion will be like tl{at
of a falling body but much slower, namely, at the rate of
1 foot for every 25 feet of the body falling freely.

. 140. The preceding example is one of those which
Jjustify our confidence in the truth of the laws of falling
bodies: see Art. 89, We have here a case of motion which
by the aid of sound theory we can shew to be of the same
kind as that of falling bodies; while the motion is 8o much

4—2
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less rapid that it can be easily observed. A machine is
made, named after its inventor, Atwood, which is far-
nished with appliances for performing the experiment
easily, but which in principle is the contrivance of the pre-
ceding Article. The results are very satisfactory, and the
student will be pleased when he has the opportunity of
seeing them exhigited in a lecture-room. .

141. It is usual to call the force exerted by a string,
as in Art. 139, the tension of the string. There is nothing
special in the nature of the force exerted in this way, but
it is convenient to give it a name.

142. The solution of the problem of motion noticed in
Art, 139 involves more mathematics than we assume in the
reader; but it may be instructive to verify by an example
the result which is asserted to hold, at least so far as to
shew that it is reasonable and consistent with itself. It
will be seen that botk bodies move, and that by the nature
of tho contrivance the weights of the two bodies are set in
opposition as it were; 8o that the motion may naturally be
that which would be produced in the sum of the masses by
the difference of the weights. Now in the example we say
that the heavier body will descend at 'y of the rate of a
body falling freely; thus in fact 4 of the weight of the
body is taken away by the tension of the string. Again,
the lighter body rises at 3lx of the rate of a body falling
freely ; thus in fact the weight of the body is taken awa
by the tension of the string and besides a force equal to
of the weight exerted upwards. Thus the tension of the
string must be §¥ of the weight of the heavier body, and
must also be §§ of the weight of the lighter body; so that
our statement will not be consistent unless these two re-
sults are equal: it is easily found by trial that they are
equa, each of them being 124% pounds,
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IX. COMPOSITION OF FORCES AT A POINT.

143, In Chapters IV. to VIII. we have discussed the
motion of falling bodies, and also the Laws which relate to
the connexion between force and the motion produced by
it; we must now devote some Chapters to the considera-
tion of forces not producing motion but checking the action
of other forces. 1t is a matter of observation that forces
may act on a body without putting it in motion. A man
may try to lift a body and find it too heavy for him: in
this case the body is acted on by the force of gavity
downwards, by the resistance of the ground on which it is
placed which acts upwards, and by the effort of the man
which also acts upwards; and the body remains at rest.
‘When a body remains at rest thongh acted on by forces, it
is said to be in equilibrium; and the forces are said to
counteract each other or to balance each other.

144. There are three things to consider with respect
to a force acting on a body; the point of. application, that
is_the point of the body at which the force is applied; the
direction of the force; and the magnitude of the force.
It is necessary for simplicity to confine ourselves for some
time to. the case of a very small body, which we call a
particle. In this case the forces which we have to con-
sider all act at one point, namely that at which the particle
is situated. The direction of any force is the straight line
along which it tends to move the particle. We have seen
in Art. 123 that a similar restriction as to the size of the
bgd:e:l we consider is advantageous in treating the subject
of motion.

145. The magnitudes of forces are conveniently mea-
sured by the weights which they will support. Thus we
speak of a force of 5 pounds; by this we mean a force
which will just support a weight of 5 pounds, that is a
force which will just counteract the force exerted by gravity
on a body weighing 5 pounds.

146. Forces may be conveniently represented by ‘
straight lines. For we may take a point to denote the

A |
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E:int of application of the force, and may draw a straight

ine from that point in the direction of the force, and of a
}ength profortxonal to the magnitude of the force. Thus,
or example, suppose a par-

ticleacte«i)on by three forces B

in three different directiouns;

and {;t these ({:rees be of 13,

4, and 2 pounds respectively, °
Draw straight lines 0A4, 05,

OC in the directions of these

forces, and take the lengths of

these straight lines propor- 0
tional to the forces; that is .
take OB in the same proportion to OA4 as 4 is to 3, and
take OC in the same proportion to O4 as 2 is to 3: then
04, OB, and OC respectively completelty represent the
forces. In saying that OA represents the force we suppose
that the force acts frrom O fowards A; if the force acts

Jrom A towards O we shall say that 40 represents it.

A

147. Now suppose we have two or more forces acting
at once on a particle, we may ask if we can find a single
force which will produce the same effect as the two or
‘more do jointly. For simplicity we will suppose ¢wo forces
to be acting at once, and consider various cases.

148. Suppose two forces to act in the same direct’on;
then they are equivalent to a single force in this direction
represonted by their sum. Thus if a weight of 8 pounds
be hung at the eud of a string, and also a weight of
10 pounds, the effect is the same as if a single weight of
18 pounds were hung at the end. Again, suppose two
forces to act in opposite directions; then they are equiva-
lent to a single force in the direction of the greater repre-
sented by their difference. Thus if a force of 10 pounds
act in one direction, and a force of 8 pounds in the oppo-
site direction, the effect is the same as if a force of 2 pouuds
acted singly in the former direction.

. 149. When two or more forces are equivalent to a
single force that single force is called the resultant of the
others, and they are called components.



AT A POINT. " b5

150. The method of finding the resultant of ¢w0 forces
acting on a particle, not in the same straight line, is given
by the following proposition. If two forces acting on a
particle be represented in magnitude and direction by
straight lines drawn from the particle, and a parallelo-
gram be constructed having these straight lines as adja-
cent sides, then the resultant of the two forces is repre-
sented tn magnitude and direction by that diagonal q? the
parallelogram which passes through the particle. This
proposition is called the Parallelogram of Forces; it is
one of the most important in our subject, and we shall
shew how it may be verified by experiment.

151. Let 4 and B be smooth horizontal pegs fixed in
a vertical wall. Let three strings be knotted together; let
O represent the knot. Let one string pass over the peg 4.
and have a weight P attached to its end; let another
string pass over the peg B and have a weight @ attached
to its end; and let a weight 2 be hung from O. Let the
system be allowed to adjust itself so as to be at rest.

The effects of the weights £ and @ are not changed as
to magnitude by the passing of the strings which support
them over the smooth pegs 4 and B. We have thus three

B
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forces acting on the knot O, and keeping it in equilibrium;
go that the effect of P along OA4 and of @ along OB are
together just counteracted by the effect of R acting verti-
cally downwards at O. Therefore the resultant of P along
04 and of @ along OB must be equal to a force R acting
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upwards at 0. Now on OA take Op to contain as many
inches as P contains pounds; and on OB take Og to con-
tain as many inches as @ contains pounds; and complete
the parallelogram Ogrp. Then it will be found by trial
that Or contains as many inches as the weight R contains
pounds, and that Or i8 a vertical straight line. We may
change the positions of the pegs and the magnitudes of
the weights employed in order to give due variety to the
experiment; an 510 general results will afford sufficient
evidence of the truth of the Parallelogram of Forces.

152. Besides the experimental verification, modes of
establishing the proposition by mathematical reasoning
have been given; but these are unsuitable for the present
work. As we have already said in Art. 121, Newton de-
duces from his Laws of Motion a principle called the
Parallelogram of Velocities; and from this he considers
the Parallelogram of Forces to follow immediately.

153. The case in which the directions of the two forces
include a right angle deserves especial
- notice. Here the magnituds of the € D
resultant force can be found by Arith-
metic when the magnitudes of the
components are known. Thus, if 4C
re%resents a force of 3 pounds, and
AB a force of 4 pounds, and the angle A B
BAC is a right angle, then 4D, the
resultant, w1ﬁ represent a force of 5 pounds. For the
square of 5 is equal to the sum of the squares of 3 and 4:
see Art. 32,

154. If more than two forces act together on a par-
ticle we can find their resultant by repeated use of the
Parallelogram of Forces. For instance, suppose there are
three forces. Find the resultant of two of them by the
Parallelogram of Forces; then the two may be removed
and their resultant placed instead of them. Again, take
this resultant and the third force, and find their resultant
by the Parallelogram of Forces; we thus obtain finally &
single force equivalent to the three which act together,
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155. The proposition called the Parallelogram of
Forces may be put in another form which expresses sub-
stantially the same fact; in this form it is called the 7¥4-
angle of Forces. We may state it thus: [f three forces
acting on a particle L in equilibrium and a triangle
be drawn having its sides parallel to the lines of action of
the forces, the sides of the triangle will be proportional to
the forces which are respectively parallel to them. Thus,
for instance, in Art. 151 we have the triangle Org; now
Or is in the line of action of R, and Og is in the line of
action of @, and rg is parallel to Op, which is in the line of
action of . And since g is equal to Op, by Art. 16
it follows that the triangle Org has its sides proportional
to the three forces R, P, and @, which act on the knot at
O and keep it in eguilibrium. Any other triangle drawn
80 a8 to have its sides parallel to those of Org would be
gimilar to Org, and so its sides would be in the same
proportion: see Art. 34

156. As we may substitute for two or more forces a
single resultant, 8o on the other hand we may replace a
single force by two or more forces which are equivalent to
it. We shall not have much occasion to use this process of
resolving a force into components, as it is called, but it is
of great importance and value in the higher treatises on
mechanics. The most common case is that illustrated b
the diagram of Art. 153; instead of any force represen
by AD we may substitute the two forces represented by
AC and 4B, the angle BAC being a right angle.

167. It is found by experiment that a force actin%lgn
8 body may be supposed applied at any point of its line
of action. As a simple case s;ﬁpose} a heavy body hune§
up by a string to a support. e string may be fasten

to the body on the side nearest to the support. Suppose a
hole bored through the body exactly in the direction of the
string, and instead of being fastened at the point of the
hole nearest the support let the string be put through the
hole and fastened to the point furthest from the sngport.
The tension of the string, that is the force exerted by the
string, will be found the same in the two cases: it is in
fact just equal to the weight of the body. This principle
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of the transmissibility of a force to any point in its line of
action is frequently of great use,

158. If three forces keep a body in equilibrium and
the directions of two of them meet at a point the direction
of the third must pass through that point. For, consider
the two forces of which the directions meet at a point;
then by Art. 167 they may be. supposed to act at that
point : consequently they will have a resultant acting at
that point, and they may be replaced by that resultant.
Now it is obvious tKat this cannot be counteracted by the
third force unless the direction of this force is exactly
opposite that of the resultant. Hence the direction of the
third force must pass through the point at which the direc-
tions of the other two meet. The proposition is important
as affording a notion of the way in which results obtained
with respect to particles are extended to the case of
bodies: see Art. 144.

159.. If more than two forces act on a body we may
find the resultant of all the forces by the aid of the prin-
ciples explained. Suppose, for example, that thres forces
act on a body. Take two of the forces; they may be sup-
posed by Art. 157 to act at the point where their directions
meet : ﬁynd-the resultant of these two forces by Art. 150,
and substitute the resultant in the place of the two. Then
produce the direction of this resultant to meet that of the
third force, and find the resultant of these two by Art. 156.
Thus we obtain a single force which is equivalent to the
original three forces.

X. PARALLEL FORCES. CENTRE OF GRAVITY.

160. In the preceding Chapter we spoke of forces
acting on a particle, that is on a body so small that the
forces might be supposed to be applied at the same point.
But it is obvious that forces may be applied at various
points of a body which is too large to be considered as a
particle, and we may want to know if we can find a single
force equivalent to them. The question in its widest form
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wo shall not attempt to discuss; we have just alluded to it

in Art. 159, and shall now confine ourselves to the case in

which the forces act in parallel directions and towards the

:ame part: this case leads to some very important applica-
ions.

161. We must explain what we mean by acting towards
the same part. A body, for example, may be acted on by
two forces in parallel directions which both tend to urge it
from the South towards the North; in this case the forces
are said to act towards the same %art They may be called
briefly like parallel forces. Or a body may be acted on by
two forces in parallel directions, one of which tends to urge
it from the South towards the North, and the other from
the North towards the South; in this case the forces are
said to act towards opposite parts. They may be called
briefly unlike parallel forces. %e shall be concerned with
like parallel forces.

162. We in with the simplest case. Let there be
two equal and like parallel forces; their effect will be
the same as that of a single force equal to the sum of
the two, acting in the straight line which ts parallel to the
directions of the two and equidistant from them. This
seems very reasonable, and
may be easily verified by ex-
periment. IFor instance, let
A B represent a rod, and sup-
pose that at 4 and B forces

A
act which are equal, like, and C’
parallel. Let be the mid-
dle point of AB; it will be
found that a force equal to

the sum of the two at 4 and

B, acting at C parallel to

these, but towards the opposite }art will just counteract
their effect. Thus the forces at 4 and B are equivalent to -
a force at C, equal to their sum and el to their direc-
tion, and towards the same part; thus we may call the
force at C the resultant of those at 4 and B. It must be
observed that if the direction of the forces at 4 and B is
changed, yet 8o long as the forces are parailel the point €
remains the same.
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163. Next let there be any number of equal like
parallel forces equidistant from each other; then their
resultant will be equal to their sum, and will be midway
between the two extreme forces. For example, let there
be four forces, and let them act at points 4, B, C, D of a
straight rod, such that 4.8, BC,CD are all equal: let each
force be a force of one pound. The resultant of the forces
at 4 and D will be a force of two pounds parallel to them at
the goint midway between 4 and D, which we will denote
by G; the resultant of the forces at B and C will be a
force of two pounds parallel to them at the point midway
between B and C, which is the point already denoted by
G : hence the resultant of the four forces at 4, B, C, D is
a force parallel to them of four pounds acting at G.
Again, let there be five forces, and let them act at points

. 4,B,0, D, E of a straight rod, such that 4B, BC,CD, DE
are all equal: let each force be a force of one pound. The
resultant of the forces at 4 and £ will be a force of two
pounds parallel to them at the point midway between .4
and E, that is at the point C; similarly the resultant of the
forces at B and D will be a force of two pounds parallel to
them at C; and by supposition there is also at C a force
of one pound: hence the resultant of the five forces at
4, B, C, D, E is a force of five pounds acting at C.

164. The two examples of the preceding Article will
lead us to a general result of]ﬁreat importance. Take the
first example, in which equal forces act at 4, B, C, D.
Consider the three forces at A4, B, C; by the method of
the preceding Article these are equivalent to a single
force of three pounds acting at B. Hence the system of
forces is equivalent to a force of tAree pounds at B, and
a force of one t‘Eonmi at D; and therefore the resultant of
the forces of three pounds at B, and of one pound at D,
must be a force of four pounds at the point denoted by G.
Suppose that 4B, BC, CD are each two inches in length;
then GB is one inch, and GD is three inches. Thus the
resultant of the forces of three pounds at B and of one
pound at D is a force of four pounds acting at a point G
such that G'B bears the same proportion to GD as the
Jorce at D bears to the force at B. “‘ifain, take the
second example in Art. 163, in which equal forces act at
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A, B, C, D, E. The three forces at 4, B, C are equivalent
to a force of ¢three pounds at B; the two forces at D and
E are equivalent to a force of {wo pounds at a point mid-
way between .D and E, which we will denote by A. Thus
the resultant of the forces of three pounds at B and of two
pounds at H is a force of five pounds at C. Suppose that
AB, BC, CD, DE sare each two inches in length; then
CB 18 two inches and CH isthree inches. Thus the resultant
of the forces of three pounds at B and of two pounds at A
is a force of five pounds acting at a point C such that CB
bears the same én'oportion to CH as the force at H bears
to the force at B.

165. In the way of the preceding Article we arrive at
the following general principle: let P and @ denots two
like parallel forces, which act at the points A and B
respectively ; then their resultant is the sum of P and Q
and it acts parallel to P and Q, at a point G on the
straight line AB, such that GA bears the same propor-
tion to GB as the force at B bears to the force at A.
This is a very important mosition which must be care-
fully remembered by the er. The way in which it is
obtained deserves especial notice. The case in which the
forces are equal may be taken as obvious, or may be founded
on experiment; and then the more difficult case in which the
forces are of any relative magnitude is deduced by sima}e
reasoning alone. The point & is called the centrs of the
parallel forces P and @ acting at 4 and B respectively.

166. Next suppose we have three like parallel forces
of any magnitudes and acting at three points not neces-
sarily in a straight line; we can determine the resultant of -
the three, For, take any two of them, find their resultant,
and put this resultant instead of them; then take this
resultant and the third force and find ¢tAeir resultant: this
will be the resultant of the original #%r¢e¢ parallel forces.
The resultant will be equal to the sum of the three parallel
forces, will be el to them, and will act at a point
which lr?maina 0 l?:me ho;(vaell; the direction oi;;hi the
parallel forces ma chang proceeding in this way
we arrive at the following general gesult: if any number of
like parallel forces act on a body their resultant is a single
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force equal to their sum and parallel to them in direction,
acting at a definite point which can be found when we
know the points at which the forces act; this point remains
tllxle same howg:d?r tl,:xe gli{ections of the 1forc;als maytbe
changed, provi they remain parallel: the point is
called the centre of the parallel forces.

167. We shall not have to pay much attention to un-
like parallel forces, but we will just explain how the result-
ant of two such forces, supposed unequal, can be found.
1t appears from Art. 165 that /ike parallel forces P and @,
acting at 4 and B respectively, can be balanced by a
parallel force P+ @, acting in the contrary direction at a
certain point C. Hence it follows that the unliks parallel
forces P and P + @ are balanced by a force @ parallel to
them and like P; and therefore the resultant of the unlike
parallel forces P and P+ @ is a force @ parallel to them
and like P+@, acting at a certain point. Thus the re-
sultant of two unlike parallel forces is equal to their differ-
ence, parallel to them, and like the greater force; its posi-
tion is such that the greater force is between the less force
and the resultant, and its distance from the latter bears
the same proportion to its distance from the former as the
less force bears to the difference of the two.

168. The result obtained in Art. 166 is immediately
applicable to the case of a body under the action of gravity.
Eve?e body may be suppose(i to be made up of a large
number of particles, and the force of gravity acts on each
particle, producing what we call its weight. Thus the
weights of all the particles form a set of parallel forces the
resultant of which is equal to their sum, and acts vertically
downwards through a definite point of the body, however
the body may be turned about. This point is called the
centre of gravity of the body.

169. The centre of gravity of a body then is a fixed
point at which the whole weight of the body may be sup-
posed to act. It is very remarkable that there should be
such a point, and moreover that for many pu the
effect of the weight of the body is the same as if we sup-
posed all the weight collected at the centre of gravity: this
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is the case in all questions relating to the equilibrinm of
bodies. This affords another illustration of the way in
which investigations with respect to the action of forces on
particles may be applied to forces on bodies: see Art.158.

170. The position of the centre of gravity of a body
may be found by experiment. Fasten a string to any
point of the body, and hang the other end of the string to
a fixed point; let the body be allowed to come to rest, as
it will do in a very short time. The forces which act on it
are the tension of the string upwards, and its weight down-
wards. Now this weight may be sup to be collected
at the centre of gravity of the body; and thus it will
happen that when the body is at rest the centre of gravity
must be on the straight line which we shall get if we su
pose the direction of the string produced through the
body. Thus if we make a mark on the body directly below
the point at which the string is fastened to the body we
know that the centre of gravity must lie on the straight
line which joins the point with the mark. In this way we
determine the position of a straight line in the body which

through its centre of gravity. Remove the strin
rom the point of the body at which it is fastened, an
fasten it to another point, and complete the process as
before; thus we determine the position of another straight
line in the body which passes through its centre of gravity.
Hence the centre of gravity will be at the point of inter-
section of the straight lines. It may happen that the body
is of a certain symmetrical shape so that the situation of
one straight line passing through the centre of gravity is
obvious; thus the centre of gravity of a poker must be
somewhere on a certain straight line which we may call the
axis of the poker. In such a case it will be sufficient by
one suspension of the body to determine the situation of
another straight line passing through its centre of gravity.

171. We will now indicate the position of the centre
of gravity for various bodies; these may be obtained by
reasoning, but the beginner may take them as verified by
experiment. We suppose each body made up entirely of
the same substance, or, to use formal language, we suppose
each body to be of the same density throughout. ¥or a

-
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sphere or globe the centre of gravity is the centre of the
sphere. For a cube the centre of gravity is at the point
which we may call the centre of the figure, namely the
ﬁmt where straight lines joining opposite corners meet.
[he same rule gives the centre of gravity of a body shaped
like a brick, which in geometry is called a rectangular
parallelepiped, or more briefly a right solid. The centre of
gravity of a cylinder is midway between the centres of the
circular ends.

172. 'We have hitherto spoken of the centre of gravity
of bodies, but we may also speak of the centre of gravity of
plane figures, although strictly these are not bodies inas-
much as they have no thickness. Thus we may say that
the centre of gravity of a circle is at its centre. This is a
short expression of which the full meaning may be easily
supplied. Suppose we have a circle cut out of very thin
metal ; then we may fix our attention on either of the two
faces, and, ing roughly, we may say that the centre
of gravity of the body is at the centre. - The exact truth
is that each circular face has its own centre, and that the
centre of gravity of the body is midway between the two
geometrical centres. This is strictly true whatever be the
thickness of the metal; in fact the body is really a cylinder,
and the centre of gravity is found by the rule of Art. 171,
In like manner we may speak of the centre of gravity of a
triangle, and the following is the rule for determining its
position. Draw a straight line from an angle of the tri-
angle to the middle point of the opposite side; the centre
of gravity of the triangle is in this straight line. Draw a
straight line from another angle to the middle point of the
opposite side; the centre of gravity is also in this straight
line. It is therefore at the point of intersection of the two
straight lines. It can be proved by geometry, and verified
by measurement, that the distance of this point from any

le of the triangle is twice the distance from the middle
point of the opposite side. The interpretation of the phrase
centre of gravity of a triangle is like that we have given
respecting a circle. Suppose a triangle to be cut out of
metal or wood ; if the material is very thin we may take
practically for the centre of gravity of the body the point
on either face determined by the preceding rule. But if
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we wish to be quite exact we may suppose two points found,
one on each face, by the preceding rule, and the centre of
gravity of the body is midway between the two points. In
like manner we may understand what is meant by the
centre of gravity of any plane figure. As another example
we may say that the centre of gravity of a straight line is
at its middle point. We mean that if we take a straight
slender rod which is of the same thickness throughout, as
for instance a straight piece of wire, then the centre of
gravity of the body may be said to be practically at its
middle point If we wish to be quite exact we must
observe that the rod is really a cylinder, and the centre of
gravity is found by the rule of Art. 171.

173. The centre of gravity of a cone or pyramid is
found by the following rule: join the vertex with the centre
of gravity of the base, and measure off three quarters of
the length of this straight line from the vertex; the point
80 obtained is the centre of gravity.

174. The centre of gravity of a body may be at a
point where no particle of the body is situated. For ex-
ample, suppose we have a spherical shell, everywhere of
the same thickness, which may be called a hollow sphere;
then the centre of gravity of it will be at the centre of the
sphere. Also the centre of gravity of a ring is at the
centre of the ring. Likewise for a wooden bowl, or for a
drum, the centre of gravity will fall at some point of a
certain straight line which may be called the azis of the
body, but will not be coincident with any particle of the
body. In fact this will be the case for innumerable bodies
which we see around us. Take for instance a chair; it
may by chance happen that the weights of the different
parts are so adjusted as to bring the centre of gravity to
some point of the seat: but probably this will not be the

case, and the centre of gravity may very likely be below
the seat.

175. The reader must notice that whether the centre
of gravity of a body does or does not coincide with some
particle of it, what we have stated in Art. 169 holds,
namely that we may for most purposes suppose that the

T. P : 5
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weight of the body is collected at this point. Thus, taking
the example of the chair just given, if we hang the chair
up by a string attached anywhere to it, the line of direc-
tion of the string when the chair is at rest will always pass
through a certain point which, although not coincident
with any particle of the bod{l,aha.s a fixed position with
respect to the body: thus in whatever way we hang “ﬁ the
chair the position which it takes is the same as if all the
weight were collected at that certain point. Another mode
of bringing the nature of the centre of gravity before the
mind is sometimes given: suppose this point to be con-
nected with various parts of the body by strong rods with-
out weight, then let the point be supported and the body
allowed to turn round the point in any way; it will be
found that the body will remain at rest in-any position in
which it may be left. If the supposition of strong rods
without weight appears difficult or extravagant to any
reader, we may take another which will answer our pur-
se a8 well. Suppose the weights of these strong rods to
e so adjusted that the centre of gravity of the whole of
them shall just fall at the same point as the centre of
gravity of the body: then, as before, the body will remain
ay rest in any position in which it may be left.

XI. PROPERTIES OF THE CENTRE OF
GRAYVITY,

176. Onme of the most important facts relating to the
centre of gravity is thus stated: When a body is placed
on a horizontal plane it will stand or fall according as
the wertical straight line through ite centre of gravity
passes within or without the base. :

Let G be the centre of gravity of the body. Let the
vertical line through G cut the horizontal plane on which
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the body stands at /. Let any horizontal straight line be
drawn through H, and let 4B be that portion of it which
is within the base of the body.

A I B A B I

First suppose H to be between A and B. No motion can
take place round 4. For the weight of the body acts
vertically downwards at @, and therefore any motion of
turning round 4 which this weight might produce would
tend to make G' move in the direction GK; and such
motion is prevented by the resistance of the horizontal
plane. Similarly no motion can take place round B. Next
suppose H to be on 4B produced through B. Then, as
before, no motion can take place round 4. But motion
will take place round .B; for the weight of the body would
tend to make G move reund in the direction GK, and
there is nothing to prevent this, The body then would fall
over round B.

177. In order to understand the preceding proposition
we must pay careful attention to the meaning of the word
base there used. It may happen that the portions of sur-
face common to the body and the ground on which it is
placed form one undivided area, and then the bage is this
area; for instance, when a brick is placed on the ground
the base is the area of the face of the brick which is in
contact with the ground. Or it may happen that the por-
tions of surface common to the body ans the ground form
various separate areas; this is the case with a chair, where
there are four separate areas corresponding to the four
feet. Here we may suppose a string stretched round the
four feet close to the ground, so as to include the four
separate areas; then the figure bounded by the string is
what we mean by the base of the chair. .

5—2
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178. If the vertical straight line drawn through the
centre of gravity passes within the base the body will
stand, but if the vertical passes extremely rear the bound-
ary of the base the body will not stand very secarely; for
then a small push or shake may bring the vertical beyond
the boundary of the base, and the body will tumble over.
Sappose, for example, that one leg of a chair is bruken off;
then the base of the chair is reduced to the figure formed
by stretching a string round the other three legs close to
the ground. The vertical through the centre of gravity of
the chair may within the base, and so the chair stand
on three legs, but the vertical will be extremely near to
that portion of the string which passes diagonally from
front to back, and thus the chair falls over very easily in
the direction of the absent leg. An experiment may be
easgily tried, which is the same in principle, without waiting
nntilyaccident supplies a chair. Take a common
chair and put three pieces of wood of the same thickness
under three of the legs; it will most likely be found im-
possible to keep the fourth leg off the ground, if it be one
of the back legs: but if the weight of the back of the chair
is considerable the centre of gravity will be decided],
nearer to the two back legs than to the two front legs, an

- it will be possible by putting the pieces of wood under two
back }f‘gs and one front leg to keep the fourth leg off the
groun

179. It is easily seen by a little reflection on the dia-
fmm of Art. 176 that if the base remains unchanged, the
ower the centre of gravity of a body is the more securely
the body stands. If the centre of gravity in the left-hand
case instead of being at G were between G' and H, the
body would have to be tuined through a large angle about
A or B before the vertical through the centre of gravit;
would pass beyond the base. Thus if a waggon is load
with stones or coals the centre of gravity of the whole is
about half way between the top and the bottom of the
load; and if the waggon is by any accident tilted up a
little to the right hand or to the left hand, still it does not
fall over. But suppose that instead of stones or coals the
waggon is loaded with an equal weight of hay; then the
hay is piled up to a great height, and the centre of gravity
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comes to a point much above its former position: thus the
same amount of angular tilting as before may bring the
vertical through the centre of gravity outside the base, and
80 lead to an upset. Siwmilarly if persons in a small boat
stand up the centre of gravity of the system is raised so
high that a very little disturbance of the boat may over-
turn it

180. The fact that in some positions a body may stand
more securely than in others is well illustrated by the case
of a body sﬁaped like a brick. It stands most securely
when one of its two largest faces is plased on the ground;
the base is then greater, and the centre of gravity is lower
than for any other position. The body stands least securely
when one of its two smallest faces is placed on the ground;
the base is then smaller, and the centre of gravity is higher
than for any other position in which the body can be made
to rest.

181. An example on this subject which is frequently
given in popular works requires a little notice. There is a
famous tower at Pisa which is called the Leaning Tower
of Pisa because it is very much out of the perpendicular.
It is sometimes said that the tower remains safe in that
})osition because the vertical through the centre of gravity
alls within the base; but this is rather a misleading remark.
For the tower is not placed on the ground but thrust into
the ground, by reason of the foundation; and the main
thing to be regarded is whether the parts of the mass are
fastened strongly enough together by mortar and other
means. 1f they are the tower will remain in its position
even if the vertical through the centre of gravity falls
without the base. It is well known that a stick thrust a
little way into the ground will stop where it is placed
whether in an oblique or an upright position. So also trees
may be seen so much bent from the perpendicular that the
centre of gravity must be beyond the base; but they are
held fast by the roots in the ground.

182. A body at rest when acted on by forces is said to
be in equilibrium; see Art. 143. Now there are different
kinds of equilibrium. Suppose that a body in equilibrium
is slightly disturbed by some new force, and then left to
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the action of the old forces. The body may move back
towards its original position, or it may move farther away
from it; in the former case the equilibrium is said to be
stable and in the latter case unstable.

183. A very good example of stable equilibrium is fur-
nished by a weight hanging from a fixed point by a string.
If we draw the weight a little aside from its position of
rest, and then leave it, the weight moves backwards to-
wards its original position. Again, suppose we have a hole
bored through a body, so that the body can turn round
a rod passed. throfigh this hole, and held fast in a hori-
zontal position. As in the former case the body is in stable
equilibrium when the centre of gravity is vertically below
the rod.. The body may however be turned round and
placed so as to have its centre of gravity vertically abore
the rod; and then also it will be in equilibrium. But the
equilibrium is now unstable; for if the body be moved a
little way from this position and left to itself, it does not .
fall back towards its original position, but further away
from it. If the hole happens to pass through the centre of
gravity of the body, then the body rests in any position in
which it may be placed; if it is disturbed and then left to
itself it neither goes back to the former position nor fur-
ther away from it: the equilibrium in this case is said to
be neutral. This case is comparatively rare in practice;
equilibrium is in general either stable or unstable. A
common grindstone furnishes an example of neutral equi-
librinm. A cone standing on its own base is in stable equi-
librium; it might be balanced on its point and then would
be in unstable equilibrium; it might rest on its slant side,
and then the equilibrinm would be neutral.

184, We may say then that in general a body is in
stable equilibrium when it rests with the centre of gravity
in its lowest possible position. For the weight of a body
is a force tending downwards; and if the centre of gravity
is originally in its lowest possible position, any slight dis-
placement of it must bring it to a higher point, and then
the weight of the body will bring the centre of gravit,
down again, that is turn the body back towards its original
position. In like manner when the body rests with the
centre of gravity in its highest possible position the equili-
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brium is unstable; for then any displacement of the centre
of gravity must bring it to a lower point, and the weight of
the body urges the centre of gravity downwards, that is
turns the body further away from its original position,

185. Suppose a sphere of wood placed on a table. The
centre of gravity of the sphere is at its centre; and if the
sphere is moved about on the table the centre of gravity is
always at the same height above the table. The sphere
rests alwags where it is placed, and the equilibrium is
neutral. But if the sphere is loaded by having a piece of
lead introduced inside it the centre of gravity will in
general be no longer at the centre of the sphere. Then the
sphere will be in stable equilibrium when the loaded part
is as low as possible, and in unstable equilibrium when 1t is
a8 high as possible; for in the former case the centre of
gravity of the whole is as low as possible, and in the latter
case as hizh as possible, and in both cases the centre of
gravity comes vertically over the point of contact of the
sphere and the table, that is over the base.

186. A common toy furnishes a very good example of
stable equilibrium,

Take a hemisphere, as for
example half a round bullet. 4
Put 1t on a table with the
flat part upwards; displace it 0
slightly, and leave it to itself: NG
then it goes back to its firat a
position. Let 4DB represent "
a section of the hemisphere . - B
madebyavertical plane through D
the centre of the base; let O N M
the centre of the base, and D
the point which is in contact with the table when the flat
part is horizontal. Then the centre of gravity will be some-
where on the straight line 0D; suppose it to be at G.
Let the hemisphere be tilted in the vertical plane 4 DB,
80 that M is now the point of contact with the table.
From G draw GN perpendicular to the table; then it may
be shewn by measurement that GD is less than GV, so the
centre of gravity is now higher than it was at first. Hence
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when the body is left to itself its weight will bring G down,
so0 that the body will move back towards its first position.
The toy is constructed by fastening the figure of a man
carved out of very light wood upright on the flat part of
the hemisphere ; and thus he appears to raise himself again
whenever he is depressed. A child’s rocking-horse when
considered by itself without any rider involves the same
principle; when a child is placed on the horse the centre
of gravity of the whole shifts about a little as the child
bends, so that it does not remain at a point which is fixed
with respect to the whole system.

187. We say in the preceding Article that measure-
ment will shew GV to be greater than GD ; but the same
result can be obtained by very simple.reasoning. Draw
OM; then by the nature of the circle this is perpendicular
to the table. Draw GHA parallel to V3 ; then the angle
OHG is a right angle. Now by the nature of the circle,-
OG and GD together are equal to OH and HAM together;
but OG is greater than OH by Art. 33, and therefore HM
is greater than GD. But HM is equal to GIV by Art. 16;
and therefore GV is greater than GD. Simple as this
example is it illustrates well the use of ‘Mathematics in
questions of Natural Philosophy.

188. When a man stands, the base, in the sense of
Art. 176, is the figure which would be formed by a string
passing round his feet close to the ground. We may see
that when he turns out his toes a little he enlarges the
breadth of his base without much diminishing the length
of it. The attitudes which persons take under various cir-
cumstances all depend on the principle that the vertical
straight line through the centre of gravit{ must fall within
the base. Thus a porter with a heavy load on his back
leans forwards; a nurse carrying a baby in her arms draws
her head and shoulders back., A person carrying a pail of
water in one hand often holds the other arm and hand
outwards, so as to keep the centre of gravity of the system
from deviating too much towards the side where the pail is,
‘When two pails are carried, one on each side, by means of
a yoke over the shoulders, the centre of gravity of the
whole system remains easily in a suitable position. If a
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person stands on stilts the base is very small, consisting
only of the narrow slip which would be formed on the
ground by a string passing round the stilts; hence it is
very difficult to remain at rest under such circumstances.
But the person on stilts usually carries a pole in his hand
which has one end on the ground ; and then the base is the
figure which would be formed on the ground by a string
passing round the stick and the stilts; and this is large
enough to render it very easy to remain at rest.

189. In walking the centre of gravity of the person is
brought. alternately over the right and left foot. Like
many other bodily acts we learn to perform this in an
unconscious manner; but that.it is at tirst somewhat diffi-
cult we know by observing the time it takes for an infant
to acquire the habit, and the many failures which ac-
company the early attempt.

190. The diagram of Art. 186 will supply matter for
further interesting study. The path which the point G
traces out if the body is rocked without sliding is found to
be an arc of a curve, resembling an arc of a circle, having
its lowest point at the place which G occupies when the
body is at rest. Again, we have supposed the body to be
a hemisphere, but it might be a larger portion of a there;
still the centre of gravity will be between O and D, and
the equilibrium will be stable. Suppose however the body
to be a sphere or a portion of a sphere in form, but to be
denser in some parts than in others, for instance to be
loaded by having a dense piece of metal embodied in it;
then the centre of gravity may be beyond O, instead of
being between D and O. In this case the equilibrium will
be unstable; the path which the point G traces out if the
body is rocked without sliding is then found to be an arc,
of a curve, having its kighest point at the place which G
occupies when the body is at rest.
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XII. THE LEVER.

191. Machines are instruments which men use for
communicating motion to bodies, for changing the motion
of bodies, or for preventing the motion of bodies. They
are not origins of force; they merely transmit the force
exerted upon them. In all cases our object is to obtain
some useful result by the aid of them. Thus a locomotive
engine on a railway is a machine for giving motion to
loaded carriages, so that we may move people and things
from one place to another. A windmill is a machine for
':.luming round some large stones which grind corn into

our,

192. There are certain very simple machines which are
called the Mechanical Powers; by combinations of these
all the more complex machines can be constructed. It is
usual to consider these Mechanical Powers to be seven in
number; namely the Lever, the Wheel and Axle, the
Toothed Wheel, the Pully, the Inclined Plane, the Wedge,
and the Screw. This division is not a very satisfactory one,
as there are not really seven distinct principles involved
in these Mechanical Powers, but it has been -commonly
adopted, and so we will retain it.

193. We shall state what are called the conditions of
equilibrium for these simple machines, that is we shall
suppose them to be used to prevent motion; in practice
they are more commonly used to communicate motion,
but they are more intelligible by being considered first in
a state of equilibrium. We shall in every case have fwo
forces which balance each other by means of the machine,
and fox distinctness one is called the Power and the other
the Weight; the former being the force we apply, and the
latter the resistance we wish to balance. In every case in
order that there may be equilibrium, the Power must be in
a certain proportion to the Weight; this proportion de-
pending on the nature of the machine. In the present
Chapter we shall consider the Lever.
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194. The Lever is a rod or bar which can turn in one
plane about a point in the rod called the fulcrum. The
plane in which the Lever can move is called the plane of
the Lever, and the forces which act on the Lever are
sup) to act in this plane. A force acting at any point
of the Lever, tgrovided. the direction of the force does not

through the fulcrum, would turn the Lever round the
ulcrum in one direction. If two forces act and tend to
tarn the Lever round in contrary directions the forces may
be 80 adjusted as just to balance each other, and thus keep
the Lever at rest: and this is the case we have to consider.
The rod or bar may be straight, and then the machine is
oialeled a Straight Lever; in other cases it is called a Bent

cer. :

195. One of the most familiar examples of a Lever is
sn%plied by the common balance; the fulcrum is at the
middle point of the beam; the two forces acting are both
weights, namely that of the substance to be weighed in one
scale, and that of the counterpoise in the other scale. The
forces act on opposite sides of the fulcrum, and tend to
turn the beam of the balance in contrary directions; when
the forces are equal the balance is in equilibrium. The
two parts into which the beam is divided by the fulcrum
are called arms of the balance; and the term is sometimes
used with respect to other examples of the Lever.

196. Levers are sometimes divided into three classes,
according to the position of the points of agplication of the
Power and the Weight with respect to the fulcrum. In
the first class the Power and the Weight act on opposite
sides of the fulcrum. In the second class the Power and
the Weight act on the same side of the fulerum, the Weight
being the nearer to the fulcrum. In the third class the
Power and the Weight act on the same side of the fulcrum,
the Power being the nearer to the fulecrum. Hence we may
say briefly that the three classes of Levers have respectively
the Fulcrum, the Weight, and the Power in the middle
position.

197. The balance is an example of a Lever of the first
class. Another example is furnished by a crowbar used
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for raising a heavy body; one end of the crowbar is placed
under the body, and near this end a piece of stone or wood
or iron put under the crowbar serves for a fulcrum; the
gower is exerted by the man who uses the crowbar pressing
own the other end of it. A see-saw will supply another
example; this resembles a balance, except that if the
children who use it are of unequal weights the arms will
be unequal, the lighter child being at the end of the longer
arm. For our present purpose the see-saw should be con-
sidered not as in motion, but as remaining in equilibrium.
Other examples are a poker used to raise coals in a grate,
and the handle of a common pump. A pair of scissors may
be regarded as a double Lever of the first class; the Weight
here is the substance cut through by the blades of the
scissors, the fulcrum is the point where the two blades are
connected, and the Power is the pressure exerted by the
fingers at the loops. If we have to cut with scissors a very
thick and strong piece of paper, we bring the paper as near
to the fulcrum as possible; the reason for this will be seen
- when we explain the proportion which must hold between
the Power and the Weight on a Lever. .

198. The oar of a boat furnishes an example of a Lever
of the second class. The fulcrum is at the blade of the
oar in the water; the Power is applied by the hand; the
Weight is applied at the rowlock. The crowbar may be
used in such a manner as to become a Lever of the second
class, For suppose that a large round bOdi is to be pushed
along the ground; the end of the crowbar rests on the
ground under the body, and this forms the fulcrum; the
crowbar is pressed against the body, so that the resistance
of the body at the point of contact constitutes the Weight ;
and the Power is applied by the man who uses the crow-
bar %:shing the other end of it. A pair of nutcrackers
may be regarded as a double Lever of the second class; the
fulerum is at the hinge, the Weight is the resistance of the
nutshell which is to be cracked, and the Power is the
pressure applied by the hand.

199. An example of a Lever of the third class is
furnished by the familiar process of raising a ladder. The
bottom of the ladder rests on the ground as a fulcrum; the
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Power is applied by the hands of a man who stands on the
ound aud pulls at one of the rounds of the ladder; the
eight is the weight of the ladder which may be supposed

to act at the centre of gravity of the ladder. The treddle
of a turning-lathe or of a knife-grinder’s wheel is another
example ; the fulerum is at the ground, the Power is
applied by the pressure of the foot, and the Weight is the
resistance at the crank of the wheel. A pair of tongs used
to hold a coal may be regarded as a double Lever of the
third class; the fulcrum is at the hinge, the Weight is the
resistance of the coal at the end of the tongs, the Power is
the pressure exerted by the hand. '

200. We have now to consider the conditions of equi-
librium of a Lever. The Power and the Weight must tend
to turn the Lever in contrary directions: this is so evident
that it is usually rather understood than expressed, and
the Principle of the Lever means the statement of the
proportion which the Power must bear to the Weight.
To this we proceed.

201. Take a straight lever of the first class.
Suppose C the fulcrum,
A the point at which the B g
Power acts, and B the point -
at which the Weight acts.
Suppose the plane of the
inper to be the plane of the W~
ever. Denote the Power by P, and the Weight by W;
and let them both act in directions at right angles to the
Lever. Then in order that there may be equilibrium P
must be to W in the same proportion as BC is to AC.
For instance if BC is one quarter of 4C, then P must be
one quarter of W,

202. The preceding statement is merely a fact which
we have y noticed presented under a slightly different
aspect. For the forces which we denote by P and W are
parallel forces, and therefore by Art. 162 they are equi-
valent to a single force acting at the point C, such that
BCis to AC in the same proportion as Pis to W. Then
since this resultant force acts at the fulcrum it does not
tend to turn the Lever round, but only presses it against

<
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the fulerum; so that there is equilibrinm. In this way the
reader may see that our statement with respect to the
Lever really coincides with one which we have already
demonstrated with respect to parallel forces; so that we
have thus demonstrated the truth of the Principle of the
Lever in one important case. The truth may be verified
by experiment to any required extent.

203. Nextsuppose

that Pand # donotact A
at right angles to the v
scgra.ight Levgr. lDraw 7

'M perpendicular to 7
the Lin.of sction of 22 o

P, and CN perpendi-
cular to thg 'l.il;ee of
action of W. Then in
order that these may
be in equilibrium P

same proportion as
CN s to CM.

204. This case may be deduced from the former by
appealing to considerations which seem nearly self-evident.
irst the effect of the force P will not be altered if instead
of acting at 4 it acts at the point M retaining the same
direction as before ; and similarly the effect of the force W~
will not be altered if instead ofy acting at B it acts at the
point V retaining the same direction as before: see Art.,
157. Hence instead of forces acting at 4 and B on the
straight Lever ACB we may suppose that we have the
same forces respectively acting at M and NV on the bent
Lever formed of rods CA and CN. Next produce NC to
L so that CL is equal to OM, and suppose that NCL is a
lever. Then we may admit that P acting at M at right
angles to CM produces the same effect as if it acted at Z
at right an%les to CL. Thus we have again a straight
Lever, namely VCL, and forces acting at right angles to
it; so that, by Art. 201, in order that there may be equi-
librium £ must be to W in the same proportion as CXV is
to CL, that is as OV is to CM.
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205. We may combine the cases of Art. 201 and Art.
203 into one statement thus: P must be to W in the same
proportion as the distance of W from the fulerum is to
the distance of P from the fulcrum. Here the distance
of W frrom the fulcrum means the length of the perpendi-
cular from the fulcrum on the line of action o ; and
the distance of P from the fulcrum is to be understood in
a similar way. The same statement will hold with respect
lt)?an ttl.le equilibrium of a Lever, whether it be straight or

206. What we have thus obtained with respect to
Levers of the first class holds also for Levers of the second
and third classes, straight or bent. Thus, universally, in
order that there may be equilibrium on a Lever, P and W
must tend to turn the Lerer in contrary directions, and P
must be to W in the same proportion as the distance of W
Jrom the fulcrum is to the distance of P from the fulcrum.

207. There is no difference in theory between Levers
of the second class and Levers of the third class, but there
is considerable difference in practice. For it follows from
the statement of Art. 206 that in Levers of the second class
the Power is lees than the Weight, and that in Levers of
the third class the Power is greater than the Weight.
Thus we may say that there is a mechanical gain by using
a Lever of the second class, and a mechanical /oss by using
a Lever of the third class. The advantage of a machine
may be defined as the proportion of the Weight to the
Power when there is equilibrium.

208. It follows from the statement of Art. 206 that a
very small Power might be made to balance a very great
Weight by using a suitable Lever, that is by making the
distance of the Power from the fulcrum very large, and the
distance of the Weight from the fulcrum very small. But
machines are in general used rather to produce motion
than to prevent it; and this leads to a very important
remark. Suppose in the diagram of Art. 201 that BC is
one-third of 4C, then when there is equilibrium the Power
is one-third of the Weight. It is true then that a force
Jjust exceeding one-third of the Weight will be sufficient to
move the Weight; but on the other hand it will be found
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that if the Weight is to be raised through one inch the
Power end of the Lever must descend through tkree inches.
Thus although by the aid of a Lever we can move any
Weight by a force much less than that Weight, yet the
force must be exerted through a distance which is greater
in a corresponding degree. This important principle is
found to apply to the other Mechanical Powers, and to
combinations of them, and it is usually stated briefly thus:
what i8 gained in power is lost in speed.

209. The Principle of the Lever which we have ex-
plained was first demonstrated by Archimedes, the greatest
mathematical philosopher among the ancients, and probably
inferior to Newton :Sone among the moderns. Tradition
has recorded in a well-known sentence attributed to him
the high opinion which he had formed of the importance of
his result: shew me where I may stand and I will more
the world. A more tolerable form of the boast would be,
I will support the world; for in order to move the world
through an appreciable distance, the mfhilo:sopher by the
principle of Art. 208 would have had himself to move
through an enormously greater distance. We now know
that if a motion of the earth through an infinitesimal space
is all that is required we may dispense with the Lever
which Archimedes proposed to use, for the motion is pro-
duced every time a man jumps from the ground: he really
pushes the earth from beneath him by his spring, and then
draws it towards him by his weight. See Chapter VIIL.

210. It is unadvisable to introduce more technical
terms than are absolutely necessary into an elementary
work of the present kind; but one such term may be
noticed by the aid of which the Principle of the Lever can
be briefly stated. The Moment of a force with respect to a

int is the product of the force into the perpendicular
g-%m the point on the line of action of the force. This
supposes the force to be expressed in pounds, or ounces, or
in any other convenient terms; and the perpendicular to
be expressed in inches, or feet, or any other convenient
‘terms. But having once chosen the unit of force, and the
unit of length, we must keep to these units throughout the
investigation on which we may be engaged. With the aid

N
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of the term moment we may express the relation which
must hold between the Power and the Weight for equi-
librium on the Lever thus: the moments of the Power and
the Weight with respect to the fulcrum must be equal.
1t j&s :asy to see that this coincides with what is stated
in Art. 206.

211. In the present Chapter we have left out of con-
sideration the fact that the rod or bar of the Lever will
itself have weight. 1f the fulcrum be at the centre of
gravity of this rod or bar the weight of the rod or bar is
entirely supported by the fulcrum, and so need not be re-
garded; the rod or bar so far as we are concerned with it
is practically without weiﬁht. But if the fulerum is not at
the centre of gravity of the rod or bar, allowance must be
made for the weight of the rod or bar: the account of the
Co_mgxon Steel-yard in the next Chapter will illustrate this
poin .

XIII. THE BALANCE,

212. The various kinds of Balances form such a very
important application of the Principle of the Lever that we
shall devote a separate Chapter to them. The use of the
Balance, as is well known, is to determine the weight of
any proposed body, so that in this case we employ the
Lever not to produce motion, but to prervent motion, that
is to preserve equilibrium.

213. The Common Balance.

The Common Balance consists of a beam with a scale
suspended from each end; the beam can turn about a
fulerum which is above the centre of gravity of the beam,
80 that if the scales were removed the beam would adjust
itself to a position of stable equilibrium: see Art. 183,
The arms of the beam should be of equal length, and the
scales of equal weight, so that the beam may be at rest in
a horizontal position when the scales are attached and are
empty. If these conditions are satisfied the Balance is said
to be true; if not it is said to e false. The body to be

T. P, 6
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weighed is placed in one scale and weights in the other
until the beam remains at rest in a horizontal position. In
this case if the Balance be true the weight of the body is
indicated by the weights which have been put in the other
scale. We may test whether the Balance is true by ob-
serving whether the beam still remains at rest in a horizon-
tal position when the contents of the two scales are inter-
changed. But even if a Balance be false we may determine
by its aid the exact weight of a body, if we em{:lo the
process which is called double weighing. Put the ¥
which is to be weighed in one scale, and in the other scale
put sand or shot so as exactly to counterpoise the body.
Remove the body and put in its place weights so as just to
regtore equilibrium again. Then the sum of these weights
indicates the weight of the body. This process of double
weighing is very simple in theory and very exact in practice,

214. Another kind of Balance is that in which the
arms are unequal, and the same Weight is used to weigh
different substances by putting it at different distances
from the fulcrum. The Common Steel-yard is of this kind.

9215. The Common Steel-yard.

f SRR 3

Let AB be the beam of the Steel-ym-d, C the fulcrum.
Let 4 be the fixed point from which the body to be
weighed is suspended. Let @ be the weight of the beam
together with the hook or scale-pan at 4. Let P be a

'
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weight which may be placed at any distance from the
fulcrum. We have now to graduate the Steel-yard, that
is to put marks on it so that if we observe the position
which P has when a body is suspended from ., and the
whole is in equilibrium, we may know the weight of that
body. Now we might Eroceed by the aid of theory. For
the weights P and @ being parallel forces we can deter-
mine their resultant by Art. 165; and then this resultant
must balance the weight of the body, according to the
Principle of the Lever. But it will be more simple to
proceed by the aid of experiment. Take then a weight,
say of one pound, and suspend it from 4 ; move P about
until such a place is found for it that the beam just remains
in equilibrium, and mark the place with the figure 1. Again
instead of the weight of one pound at 4 put a weight of
two pounds; move P about as before, and mark with the
figure 2 the place which it has when the beam is in equi-
librium., Proceeding in this way the beam becomes gradu-
ated, and the Bteel-yard is fit for use. It will be found by
trial that the figures 1,2, 3, 4, ... succeed at equal distances
on the beam. Thus when we have a body to be weighed
we suspend it from 4, and then move P about until it
comes to such a place that the beam remains at rest in a
horizontal position. Let this, for example, be when P is
midway between the figures 3 and 4, as in the diagram;
then we infer that the body weighs 34 pounds.

216. Sometimes two different graduations are recorded
on the Steel-yard, corresponding to two different moveable
Weights. In this way we can extend the range of the
machine without making the machine itself inconveniently
long; thus one graduation might give us the weights of
bodies up to 10 pounds, and then another graduation cor-
responding to a heavier moveable weight might give us the
weights of bodies of 10 pounds and upwards to about 100

ounds. Or the two graduations may correspond to two
giﬂ'erent positions of the point 4 from which the body to
be weighed is hung, the moveable weight P being the same
in both cases.

217. Another kind of Steel-yard is called the Danish
Steel-yard. .
6—2
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This consists of a heavy beam which terminates in a
knob at one end; and the body to be weighed is placed at
other end, the fulcrum being moveable. Let 4B be
beam; let P denote its weight, and & its centre of

to be weighed is suspended from A,

PG A
P w

and the fulcrum is moved about until there is equilibrium,
when the beam is horizontal. The Danish Steel-yard might
be graduated by the aid of theory; for P at G must balance
the body hung from A4 according to the Principle of the
Lever. Or we may by experiment as before. Let
a body of one pound weight be ed at 4 ; move the
fulcrum about until there is ilibriam with the beam
horizsontal, and mark the position of the falcrum by the
figure 1. Again, instead of the weight of one pound at 4
B:t a weight of two pounds; move the fulcrum about as

fore, and mark with the figure 2 the place which it has
when the beam is horizontal and in equilibrium. Proceed-
ing in this way the beam becomes graduated and the Steel-
yard is fit for use. It will be found in this case that the
figures 1, 2, 3, 4, ... do not succeed at equal intervals on
the beam. Thus in using the Danish Steel-yard to weigh a
body if the fulcrum comes precisely under one of the figures
marked on the beam we know the weight of the body; but
if the fulcrum comes between two of the figures we cannot

tell the weight exactly, but only two values between which
it must lie.

218. There are some weighing machines which do not
depend on the Principle of the Lever. They usually consist
meinly of a strong spring which is drawn out to a greater
extent the heavier the body is which is suspended from it;
and a contrivance is furnished by which we can readily
observe how far the spring has been drawn out. These
machines may be graduated by exzperiment, that is by
suspending known weights and recording the corresporiding
points to which the spring is drawn out, .
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XIV. THE WHEEL AND AXLE. THE TOOTHED
‘WHEEL.
219. Tn this Chapter we shall consider two other
Mechanical Powers, namely, the Wheel and Axle, and the
Toothed Wheel.

220. The Wheel and Azle. This machine consists of

PV

two cylinders which have a common axis; the larger cylin-
der is called the Wheel and the smaller the Aale. The
two cylinders are rigidly connected with the common axis,
which is supported in a horizontal position, so that the
machine can turn round it. The Weight acts by a string
which is fastened to the Axle and coiled round it; the
Power acts by a string which is fastened to the Wheel and
coiled round it. The Weight and the Power tend to turn
the machine round the axis in opposite directions.

221. When there is equilibrium on the Wheel and Axle
the Power must be to the Weight in the same proportion as
the radius of the Azle is to the radius of the Wheel. For
it is easy to see the close resemblance between this machine
and a Lever of the first class. It will be obvious that the
effect of the Weight must be the same whether it is placed



86 THE WHEEL AND AXLE.

as in the diagram, or whether it is placed at that part of
the Axle which is close to the Wheel; and the effect of the
Power must be the same whether it is placed as in the
diagram, or whether it is placed at that part of the Wheel
which is close to the Axle. Then if we imagine these
chanlges to be made in the position of the Weight and
the Power we obtain the following diagram:

Here CA is the radius
of the Wheel, and CB is
the radius of the Axle.
Wei; may eor;sid%r. ﬁcg as
a Lever of whic] is
the fulcrum. The Weight a
W, and the Power P,act a
in the manner shewn in
the diagram; and in order
that there may be equi-
librium P must be to W~
in the same proportion as
CBis to CA.

222. We have hitherto » w
supposed that the Power _
acts by means of a string, but it may act by the direct a(ppli-
cation of a man’s hand, as in the familiar example of the
machine used to draw up a bucket of water from a well.

223. The important principle of Art. 208 holds with
respect to this machine. Suppose for instance that the
radI:m of the Wheel is four times the radius of the Axle;
then a weight of four pounds hanging round the Axle can
be supported by a weight of one pound hanging round the
‘Wheel. Thus a Power only a very little greater than one

und will be sufficient to move the Weight of four pounds;
ut still to raise the Weight through any space the Power
must descend through four times that space. Thus if the
machine turns round just once, so as to raise the Weight
through a space equal to the circumference of the Axle,
then the Power descends through a space equal to the cir-
cumference of the Wheel ; and these circumferences are in
the same proportion as the radii, so that the circumference
of the Wheel is four times that of the Axle.
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- 224, A Windlass and a Capstan may be considered as
cases of the Wheel and Axle. The Windlass scarcely differs
from the machine used to draw up water from a well; it
has however more than one fixed handle for the conveni-
ence of workin¥ it, or there may be a moveable handle which
can be shifted from one place to another. In the Capstan
the fixed axis round which the machine turns is vertical ;
the hand which supslies the Power describes a circle in a
horizontal plane, and the Weight is some heavy body which
2;] attached to the Axle by a rope passing in a horizontal
irection.

225. Toothed Wheels. Let two wheels of wood or

metal have their circumferences cut into equal teeth at
equal distances. Let the Wheels be moveable about their
centres, and in their own planes, and let them be placed in
the same plane so that their edges touch, one tooth of one
- circamference lying between two teeth of the other circam-
ference. If one of the Wheels of this pair be turned round
its centre by any means the other Wheel will also be made
to turn round its centre. Or a force which tends to turn
one Wheel round may be balanced by a suitable force which
tends to turn the other Wheel round in the contrary direc-
tion. The two forces may be supposed to act by means of
strings on Axles belonging to the "i?oothed Wheels. Thus
the Power P may be supposed to act at 4,and the Weight
‘W to act at B; al:o M is the common centre of one
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Toothed Wheel and Axle, and NV the common centre of the
other Toothed Wheel and Axle.

226. The condition of equilibrium is somewhat com-
plex; the reader may take it as verified by experiment :
when there is equilibrium on a fair of Toothed Wheels
the moment of the Power round the cenlre of its Azle
must be to the moment of the Weight round the centre of
its Azle in the same proportion as the radius of the
Power Wheel is to the radius of the Weight Wheel. The
principle of Art. 208 may be shewn to hold with respect to
this machine.

227. In practice this machine is used to transmit
motion ; and then it is necessary to pay great attention
to the form of the teeth, in order to secure uniform action
in the machine, and to prevent the grinding away of the
surfaces. On this subject, however, the student must
consult works on mechanism. Toothed wheels are exten-
sively applied in all machinery, as in cranes and steam-
engines, and especially in watch-work and clock-work.

228. Wheels are sometimes turned by means of straps
passing over their circumferences : in such cases the minute
protuberances of the surfaces ﬁtrevent the sliding of the
straps. The strap passing partly round a Wheel exerts a
force on the Wheel at both points where it leaves the
‘Wheel : the effect at each point would be measured by the
moment of the tension of the strap at that point round the
centre of the Wheel. If it were not for the friction, and
the weight and stiffness of the strap, the tension would be
the same throughout, and so the action at one point of
the Wheel would balance the action at the other point.

XV. THE PULLY.

229. The Pully consists of a small circular plate or
wheel which can turn round an axis passing through the
centres of its faces, and having its ends supported by a
framework which is called the blcck. The circular plate
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has a groove cut in its edge to prevent a string frem
slipping off when it is put round the Pully.

230. Let A4 denote a Pully, the block of which is
fixed; and suppose a Weight at- goecwe——os
tached to the end of a string passing e T
round the Pully. If the string be
pulled at the other end by a Power
equal to the Weight, there will be
equilibrium ; if the string be pulled
by a Power somewhat greater, the
Weight will be raised. Thus a fized
Pully is a machine by the aid of which
we can change the direction of a force P
without changing its magnitude. For
example, we might have a Power
which could most conveniently act in
a direction $nclined at a certain angle to the horizon, and
we might wish to use it in supporting a Weight, that is in
balancing a vertical force; then by transmitting the
Power by means of a string, and passing the string round a
fixed Pully, a8 in the diagram, we can support a Weight
equal to the Power. A fixed Pully is often used when
weights are to be raised, as for example the sails of ships.
Thus a fized Pully, though it may be very convenient, does
not afford us any mechanical adcantage: see Art. 207.
We shall presently see that by the aid of a moreable Pully,
or of a system of moveable Pullies, we do obtain mechanical
advantage.

231. It might at first sight appear that nothing is
gained by making the circular plate of the Pully capable of
tnrningva-onnd its axis ; but practically this is very im(for-
tant. hen the circular plate can thus turn round, it
is found by trial that in the state of equilibrium the tension
of the string is almost exactly the same on both sides of
the Pully, so that a Weight can be moved by a Power
which is very slightly greater. But when the circular
plate cannot turn round it is found that there may bo a
considerable difference between the tension of the string
on the two sides of the Pully; and so a Weight could not

moved unless the Power were considerably greater.
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;lf‘his is owing to Friction, which we shall explain here-
ter.

232. Now consider the case of a single moveable
Pully. Let a string pass round the Pully 4, have one end
fixed as at KX and be pulled vertically _
upwards by a Power P at the other
end. Let a Weight 7 be attached
to the block of the Pully. Thus it is
found on trial that there is equilibrium
if the Power is equal to half the
Weiﬁht. In fact we may consider the
block to be acted on by three parallel
forces; namely the Weight down-
wards, and the two forces upwards
arising from the tension of the two
parts of the string. Thus the Weight must be equal to
the sum of the two upward forces. But the tension of the
string is throughout equal to the Power. Therefore twice
P isequal to W. The reader will see that there is nothin,
strange in this result. The Weight 7 has to be supporte
in some manner, and on examining we find that the result
is the same as if half the Weight were supported by a
fixed beam at X, and half by the Power.

e ==

233. If the Power be only a little greater than half
the Weight, the Weight will be raised. According to the
principle of Art. 208 if the Weight is raised through any
space the end of the string at which the

ower acts must be raised through twice K
that space. This may be easily shewn.

For suppose the Weight to be raised
through any space, say one inch; then
tb%gart KC of the string between the
fixed end and the Pully must be short-
ened by ome inch, and to keeg, the
string stretched the end at which £ acts
must be raised through two inches, -
Thus the Power end of the string
moves through twice the space through
which the Weight moves.
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234, Sometimes the two parts of the string are not

parallel. But in order that there may be equilibrium
the two parts eof the string must be inclined to the
vertical at the same angle ; for if they were not the Pully
would be drawn towards the side where the string was
most inclined to the vertical. Then when there is equili-
brium the Weight is equal to twice that part of the Power
which acts in the vertical direction; supposing the Power
resolved into two components, one vertical and the other
horizontal: see Art. 156. We now pass on to consider
various combinations of Pullies.

sents a system of Pullies in which

each Pully hangs by a separate

string, and all the strings are parallel;

it is usually called the First System

of Pullies. In this system the string

which passes round any Pully, except

the higgnest., has one end attached to

a fixed Eoint, and the other end to

the block of the next higher Pully;

and the string which passes round

the highest Pully has one end attach-

ed to a fixed point, and the other

end supported by the Power. Wesaw

that for equilibrium on the single
moveable Pully the Weight must be- .
twice the Power; in the First System of Pullies it is

235. I'irst System of Pullies. The diagram repre_
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found that for equilibrium if there are 2 moveable Pullies
the Weight must be 4 times the Power, if there are 3
moveable Pullies the Weight must be 8 times the Power,
if there are 4 moveable Pullies the Weight must be
16 times the Power, and so on. Thus for every additional
moveable Pully the Weight that can be supported by a
given Power is doubled.

236. There is no difficulty in the reasoning by which
this result is established. Suppose there are 4 moveable
Pullies. By the principle of the single moveable Pully the
tension of the string which passes under the lowest Pully

is -I;, ; thus the next Pully is drawn downwards by a force
equal to l;f , and consequently the tension of the string

which passes round it is 1:—’ ; in like manner the next Pully

is drawn downwards by a force equal to _y}', and con-
gequently the tension of the string which passes round it is
=) in like manner the next Pully, which is the highest in
this diagram, is drawn downwards by a force equal to
5’ and consequently the tension of the string which

passes round it is —?g . This last tension must be equal to
the power which acts at the end of the string ; so that P

w
is equal to 6

237. In the System of Pullies considered in the pre-
ceding Article let X, L, M, N denote the points at which
the ends of the strings are fastened. The part of the

Weight W supported at X is .’;: , the part supported at
Lis --IZ{, the part Qupported at M is _V:_' , and the part
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supported at NV is —;’%’ ; also the power supports —lug . It
v;’i/ll be Wgasi}lf; fm;,r}d that;gle sum of these parts, that is of
528’6 and 16 18 equal to 77, as we might
have expected.

238. As in former cases, if the Power be a little greater
than is necessary for equilibrium, the Weight will be moved ;
and the principle of Art. 208 will be found to hold.

239. Second System of Pullies.

The diagram represents a system
of which the same string passes round
all the Pullies, and the parts of it
between the Pullies are parallel; it
is usually called the Second System
of Pullies. In this diagram there are
Jour strings at the lower block, and
when there is equilibrium the Weight
is four times the Power. In like
manner, if there are six strings at the
lower block, then when there is equi-
librium the Weight is six times the
Power. In this diagram one end of
the string is represented as fastened
to the upper block, and the number
of strings at the lower block is an even number. But the
end of the string might be fastened to the lower block, and
then the number of strings at the lower block would be
an odd number.

240, There is no difficulty in the reasoning by which
the condition for equilibrium in the Second System of
Pullies is established. The tension of the string is the same
throughout, and is equal to the Power; so that if there
are four strings at the lower block we may regard that
block as drawn upwards by four parallel forces each equal
to the Power, and drawn downwards by the Weight.
Therefore the Weight must be equal to four times the
Power. It will be seen that there are five strings at the
upper block, so that the fixed point X must support alto-
gether five times P, that is the sum of W and P. A
remark similar to that of Art. 238 may be repeated here.
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241, Third System of Pullies.
The m represents a series
of Pullies in which each string is
attached to the Weight, and all the
strings are parallel; it is usually
called the Third System of Pullies.
In this system the string which
round any Pully, except the
owest, has one end attached to the
block of the next lower Pully ; the
string which passes round thelowest
Pully has one end attached to the
‘Weight, and the other end sup-
%orbed by the Power. The highest
ully is fixed, and the others are
moveable. The condition of equi-
librium for the Third System of Pullies can be expressed
most easily by stating what proportion the sum of the
Weight and the Power must bear to the Power. If there
is one Pully the sum is twice the Power, if there are
2 Pullies the sum is 4 times the Power, if there are 3 Pul-
lies the sum is 8 times the Power, if there are 4 Pullies the
sum is 16 times the Power, and 8o on. Thus for every
additional Pully the proportion which the sum bears to the
Power is doubled. If the sum is twice the Power the
‘Weight is equal to the Power; if the sum is 4 times the
Power the Weight is 3 times the Power; if the sum is
8 times the Power the Weight is 7 times the Power ; if the
sum is 16 times the Power the Weight is 15 times the
Power, and so on. ’

242. There is no difficulty in the reasoning by which
the condition of equilibrium for the Third System of
Pullies is established. Suppose that there are four Pullies.
Let W denote the Weight to which all the strings are
fastened, and P the Power which acts vertically down-
wards at the end of the string which passes over the lowest
Pully. The tension of the string which passes over the
lowest Pully is P, hence this Pully is drawn downwards by
a force equal to 2P, and consequently this must be the
tension of the string which is fastened to it, and draws it
upwards, passing over the second Pully. Hence the second
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Pully is drawn downwards by a force equal to 4P, and
consequently this must be the tension of the string which
is fastened to it, and draws it upwards, passing over the
third Pully. In like manner 82 is the tension of the string
which passes over the fourth Pully, that is the highest in our
di Now all the strings are fastened to the Weight,
and 80 help to supgort it ; thus 7 must be equal to the sum
of P, 2P, 4P, and 8P ; that is, /¥ must be equal to 15P.
Or we might shorten the process a little thus. The tension
of the string which goes over the highest Pully is 8P, so
that this Pully is drawn downwards by a force equal to
16 P ; but the whole Weight supported at X must be equal
to the sum of # and P; therefore the sum of W and P
is equal to 16 P, and consequently W is equal to 15P. A
remark similar to that of Art. 238 may be repeated here,

243. We have hitherto supposed that the weights of
the Pullies themselves are neglected, but in practice it may
be necessary to take these weights into account; it will be
sufficient to treat one case as an example. Consider the
Third System of Pullies, and suppose, as in Art. 241, that
there are four Pullies. The weight of the lowest Pully
here assists the Power, and acts just like the Power, except
that it has a system of ¢tAree Pullies above it instead of
Jour; thus it will support 7 times its own weight. Simi-
larly the weight of the next Pully will supﬁgrt 3 times its
own weight, and the weight of the next to that will support
just its own weight. The weight of the highest Pully will
not give any aid. Thus finally we have the following re-
sult: the Weight 777 is equal to the sum of 15P together
with 7 times the weight of the lowest Pully, 3 times the
weight of the next, and the weight of the next to that.

244, The Pully is one of the most useful of the simple
machines, on account of its portability, the cheapness of its
construction, and the ease with which it may be applied in
almost any situation, It is much used in building when
weights are to be raised to great heights. But its chief
employment is in connexion with the rigging of ships,
where almost every arrangement is accomplished by its aid,
In practice however it is found that the mechanical advan-
tage is far less than that which theory assigns: this arises
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from the stiffness of the string or rope and the friction
between the wheels and the blocks: it appears that in
most cases, owing to these causes, the Power produces only
one-third of its theoretical effect. .

XVI. THE INCLINED PLANE, THE WEDGE, AND
THE SCREW.

245. An Inclined Plane in Mechanics is a smooth
plane supposed to be made of wood or metal or some other
rigid material, and fixed in a position inclined to the
horizon. It is supposed to be capable of resisting in a
direction B;rpendicular to its surface, to any required
amount. When an Inclined Plane is used as & Mechanical
Power the straight lines indicating the directions in which
the Power and the Weight act are supposed to be both in
one vertical plane, namely in the plane

perpendicular to the straight line in B
which the Inclined Plane meets the

horizon. Thus the Inclined Plane is -

represented by a right-angled triangle

such as 4ABC; the horizontal side £ )

AQ is called the base, the vertical side

BC is called the Aeight, and the hypotenuse 4B is called
the length. The angle BAC is the inclination of the In-
clined Plane to the horizon.

246. Suppose a heavy body placed on an Inclined
Plane. The gVeight of the body tends vertica.ll{I down-
wards, but owing to the resistance of the Plane the body
cannot move in that direction; it will however slide down
the Plane unless prevented by a suitable force, and the
amount of the force which we must use will depend on the
direction in which it acts. We will suppose that the force
acts along the Plane, or parallel to it; the proposition
which applies to this case is the following: When a Weight
18 put on an Inclined Plane, and kept in equilibrium by
a Power acting parallel to the Plane, the Power 3 to the

Weight tn the same proportion as the height of the Plane
48 to vts length.

N
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247. The preceding statement may be taken as an ex-
perimental truth, or it may be established by reasoning, as
we will now shew. Let ¥ denote .
the Weight, and P the Power. From B

any point L in the Inclined Plane b
draw LN at right angles to the Plane, L
meeting the at N; and draw

N M vertical, meeting the Plane at /.

N o

The body on the Inclined Plane is
kept in equilibrium by three forces, the Power which is
supposed to act along the Plane, the Weight of the body
which acts vertically downwards, and the Resistance of the
Plane which acts at nExt angles to the Plane. Now the
sides of the triangle LMN are parallel to the directions of
these three forces, namely LM to that of the Power, MN
to that of the Weight, and VL to that of the Resistance.
Hence, by Art. 155, the sides of this triangle are in the
pmtgortion of the forces, so that the Power is to the Weight
i the same proportion as LM is to ML, and the Resist-
ance is to the Weight in the same proportion as LN is to
MN. But by measurement, or by theory, it may be shewn
that the triangles LM N and CBA are similar; so that
LM is to MN in the same proportion as CB is to BA, and
NL.is to MN in the same proportion as AC is to BA.
Hence finally the Power is to the Weight in the same pro-

rtion as CB is to BA, and the istance is to the

eight in the same proportion as AC is to BA4. Btrictly
8 ing we required only the proportion of the Power to
the Weight; but the Eroportion of the Resistance to the
Weight will be useful hereafter.

248. If we suppose the Power to be a little greater
than is necessary for equilibrium the Weight will be moved
alon%the Plane, Suppose the Wei%xt to be drawn along
the Plane from 4 to B, so that the Power has passed over
the length of the Plane; then the Weight has passed over
as much space as the Power, but the wertical height
through which the Weight has passed is BC. Thus we
have here a fresh illustration of the important principle of
Art. 208,and at the same time an indication of the way in
which the principle is to be understood : the motion of the
Weight estimated tn the direction of the Weight bears the

T. P, 7
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same proportion to the motion of the Power estimated in
the direction of the Power, as the Power bears to the
‘Weight in equilibrium,

249. There is another case with regard to the Inclined
Plane which it is usual to notice, namely that in which
the Power acts horizontally ; the proposition which applies
ta this case is the following: When a Weight is put on
an Inclined Plane and kept in equilibrium by a Power
acting horizontally, the Power is to the Weight in the
zz:ne proportion as the height of the Plane s to its

6.

250. The preceding statement may be taken as an ex-
perimental truth ; or it may be established by reasoning, as
we willnow shew. Let 7 denote the
‘Weight, and P the Power. From B

any point Z in the Inclined Plane N
draw LN at right angles to the M
Plane, meeting the base at V; and

draw NM vertical, meeting at M the

horizontal straight line drawn through 2 oo
L. The body on the Inclined Plane is kept in equilibrium
by three forces, the Power which acts horizontally, the
‘Weight of the body which acts vertically downwards, and
the Resistance of the Plane which acts at right angles to
the Plane. Now the sides of the triangle Z M are parallel
to the directions of these three forces, namely ZM to that of
the Power, MN to that of the Weight, and NZ to that of
the Resistance. Hence, by Art. 155, the sides of this
triangle are in the proportion of the forces, so that the
Power is to the Weight in the same proportion as LM is
to MN. But by measurement, or by theory, it may be
shewn that the triangles LZMN and BCA are similar, so
that ZM is to MV in the same proportion as BCis to CA4.
Hence finally the Power is to the Weight in the same pro-
portion as BC is to CA. ‘

251. If we suppose the Power to be a little greater
than is necessary for equilibrium the Weight will be moved
along the Plane. Suppose the Weight to be drawn alon
the Plane from 4 to B, so that the Power has passe

Al
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horizontally over the AC; then the Weight has
passed vertically over the space BC. Hence the space
passed over by the Weight estimated in the direction of
the Weight is to the space passed over by the Power esti-
mated in the direction of the Power as the Power is to the
‘Weight in the state of equilibrium, Thus we have here a
fresh illustration of the important principle of Art. 208, and
an indication, as in Art. 248, of the way in which it is to be
understood.

252. The Wedge is a hard solid

body bounded by five plane figures,
two of which are triangles and the
others are four-sided figures. The

four sided-figures are often rectangles,
and then the triangles are in parallel
planes.

253. The Wedge may be employed
to separate bodies. We may suppose P
the Wedge urged forwards by a force 4 B
P acting on one of the four-sided '
faces, and urged backwards by two
resistances Q and R arising from the
bodiés which the Wedge is employed \/
to separate,.and acting on the other
four-sided faces. These forces will
be supposed all to act in onee(;)lane
which is perpendicular to the edge of the Wedge; and we
shall assume that the Wedge is smooth, so that the force on
each face is at right angles to the face. Let the triangle
ABC represent a section of the Wedge made by a plane
perpendicular to its edge; and s\}gpose the Wedge kept in
equilibrium by the forces P, @, B at right angles to 425,
BC, OA respectively: then by reasoning which we do not
give here it 18 shewn that P, @, R are in the same propor-
tion to each other as 4B, BC, CA respectively. If AC
and BC are equal the Wedg: is called an Zfsosceles Wedge
in this case @ and R must be equal, and each of them be in
the same proportion to P that ACis to 4B.

254, There is very little value or interest in the pre-
ceding Article, because the circumstances there supposed

7—2
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255. The Screw. Everybody is familiar with the use of
a Screw for fastening pieces of wood together, and this will

supply great help towards understanding the action of a
Screw as a Mechanical Power. The Screw consists of a
right circular cylinder 4B, with a uniform £rojecting
thread abcd... traced round its surface, making always the
same angle with straight lines parallel to the axis of the
cylinder. ~ This cylinder fits into a block C pierced with an
equal cylindrical aperture, on the inner surface of which is
cut a groove, the exact counterpart of the projecting thread
abed...Thus when the block is fixed and the cylinder is intro-
duced into it, the only manner in which the cylinder can
move is backwards or forwards by turning round its axis,

—_—
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256. In practice the forms of the threads of screws
may vary, as we see exemplified in the annexed diagrams.

257. We may obtain in the following way some notion

of the most essential characteristic of the w, namely
its making at every point the same angle with the straight
lines lel to the axis of the cylinder.
Let ABNM be any rectangle. Take any
point Cin BN, and make CD, DE, EF,... G

all equal to BC. Join C4, and through D,
E, F,...draw straight lines parallel to C4, ¢
meeting A M at the points ¢, d, e,...respec-
tively. Then if we conceive ABNM to
be formed into the convex surface of a
riiht cylinder, the straight lines AC, ¢D,
dE; ¢F,...will com a connected curve
which takes the shape of a thread of &
Screw, supposing the thread to be exces- °
sively fine. In this diagram BC represents

what is called the distance between two

consecutive threads of the Screw. A B

258. Suﬁpoae the axis of the Screw to be vertical, and
let a Weight W be placed on the Screw. Then the
Weight, by its tendency to descend, would cause the
Screw to turn round in the block unless this motion were
prevented by some Power. We will suppose this Power P
to act at the end of a horizontal arm perpendicular to the
lever, and horizontally; the arm is firmly attached to the

linder, as is shewn in the diagram of Art. 255, in which
the arm is represented as attached to the cylinder at 4.
The distance between the axis of the cylinder and the point
of application of the Power we shall call the Power-arm.

¥

RN
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It is found that when there is equilibrium P is to W in
the same proportion as the distance between two consecu-
tive threads of the Screw is to the circumference of the
circle having the Power-arm for radius. The reasoning on
which this depends is not simple enough to find a place
here, 80 that this may be taken as an experimental fact.
It is interesting however to observe its agreement with
the principle of Art. 208, as illustrated in Arts. 248 and
251. For suppose the Power to be a little greater than is
necessary for equilibrium, then the Weight will be moved;
by turning the Screw once round the Weight will be raised
through a space equal to the distance between two con-
secutive threads. Also the whole space passed over by the
end of the Power-arm, estimated in the direction of the
Power, consists of a multitude of small spaces which are
together equivalent to the circumference of the circle
having the Power-arm for radius. .

259. The most common use of a screw is not to support
a Weight, but to exert a Pressure. Thus suppose a fixed
horizontal board above the body denoted by W in the
diagram of Art. 255; then by turning the Screw the body
will be compressed between the head of the Screw and
the fixed board. A bookbinder’s press is an example of
this mode of using the Screw. The proportion between P
and W will be that stated in Art. 258, where # now
denotes the whole force exerted parallel to the axis of the
Screw by the body which is compressed; a force arising
partly from the weight of the body, but mainly from the
resistance which it offers to compression. The Screw-pile
is another exemplification of the same thing; it is used for
foundations which are to be laid under water. The thread
of a Screw is cut out in the lower part of a wooden or metal
pile; and by means of a capstan the pile is gradually
screwed down to the depth which it is required to take:
this process is found to succeed where it would be practi-
cally impossible to drive a pile down by blows.

260. In practice there will be much friction in the
use of a screw; in the familiar case to which we allude
at the beginning of Art. 255 this friction is in fact the
‘Weight which the Power has to overcome.
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XVIL. COMPOUND MACHINES.

261. We have already spoken of the meckanical ad-
rantage of a machine, and have defined it to be the pro-
rtion of the Weight to the Power when the machine is
in equilibrium: see Art. 207. Now we might theoretically
obtain any amount of mechanical advantage by the use of
any of the Mechanical Powers. For example, in the Wheel
and Axle the advantage is the proportion of the radius of
the Wheel to the radius of the Axle, and this proportion
can be made theoretically as great as we please; but
practically if the radius of the Axle is very small the
machine is not strong enough for use, and if the radius of
the Wheel is very great the machine becomes of an incon-
venient size. Hence it is found advisable to employ various
compotnd machines, by which great mechanical advantage
may be obtained, combined with due strength and conve-
nient size. We will now consider a few of these compound
machines.

262. Combination of Levers. Let AB, BC, CD be
three Levers, having fulcrums at K, Z, M respectively.

K B L O M

1 "

w

Sup;i?se.a.ll the Levers to be Lorizontal, and let the
middle Lever have each end in contact with an end of one
of the other Levers. Sup(fose the system in equilibrium
with a Power P acting downwards at 4, and a weight
W acting downwards at D. It is easy to see that
equilibrium can be secured by a proper adjustment of P
and W ; for P tends to raise the right-hand end of the
Lever which has X for its fulerum; thus the left-hand end
of the Lever which has L for its fulcrum is pressed up-
wards, and therefore the right-hand end of the same Lever
is pressed downwards: then the left-hand end of the
Lever having M for its fulecrum is pressed downwards, and
therefore the right-hand end of the same Lever is pressed
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upwards, and if this upward pressure is sufficient W will
be supported. It is found by th and by trial that the
advantage of this combination of Levers is expressed by
the product of the numbers which express the advantages
of the separate Levers. For example, suppose that AK is
3 times KB, that BL is 4 times LC, and that CM is 5 times |
MD; then the advautages of the Levers scparately are
expressed by 3, 4, and 5 respectively, and the advantage
of the combination is expressed by 3 x 4 x 5, that is by 60. !
Hence any Power at 4 will support a Weight of 60 times
that amount at D. If we suppose the Power to be a little
eater than is necessary for equilibrium the Weight will |
g moved, but in order to raise the Weight through any
space the Power must descend through 60 times that

space.

263. Combinations of Wheels and Axles are often
used. The Wheel of each of the pieces which form the
combination is made to act on the Axle of the next b
means of teeth or of a strap. It is found by theory
by trial that the advan of this combination is ex-
pressed by the product of the numbers which express the
advantages of the separate pieces.

264, The Differential Axle, or Chinese Wheel.

This machine may be considered as a combination of
the Wheel and Axle with a single moveable Pully, Two
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linders of different radii have a common axis with which
they are firmly connected ; the axis is supported in a hori-
zontal position so that the two cylinders can turn as one
body round the axis. A string has one end fastened to
the r cylinder, is coiled several times round the cylin-
der, then leaves it, passes under a moveable Pully and is
coiled round the smaller cylinder to which the other end
is fastened. The string is coiled in ops_osite ways round
the two cylinders, so that as it winds off one it winds on
the other. A Weight /# is hung from the moveable Pully ;
and the equilibrium is maintained by a Power P applied
at the end of a handle attached to the axis. It is found
by theory and by trial that there is equilibrium on this
machine when the Power is to the Weight in the same
proportion as half the difference of the radii of the two
cylinders is to the length of the arm at which the Power
acts. Thus by making the difference of the radii of the
two cylinders sufficiently small we can secure any amount

_of mechanical advantage.

265. It is not difficult to shew that the preceding
statement is consistent with the principle of Art. 208. For
suppose the Power to be a little greater than is necessary
for equilibrium ; thus the Weight will be raised. Let the
Power describe the circumference of the circle of which
the Power-arm is the radius. Then from the smaller
cylinder a piece of the string is unwound equal in length
to the circumference of the cylinder; and on the larger
cylinder a piece of the string is wound equal in length to
the ci erence of the cylinder. Thus the excess of the
circumference of the larger cylinder over the circamference
of the smaller is equal to the whole length of string which
is removed from the hanging position; so that each of the
two vertical grﬁons is shortened by half this length, which
is therefore the space through which the Weight is raised.
Thus the same number which expresses the proportion of
the Weight to the Power when there is equilibrium, ex-

resses also the proportion of the space passed over by the
gower to the space passed over by the Weight when there
is motion. i



106 COMPOUND MACHINES.

266. Hunter’s Screw, or the Differential Screw.

AB is a right circular
cylinder, having a Screw
traced on its surface ; this fits
into a corres[)onding groove
cut in the block CE, which
forms part of therigid frame-
work CDFE. The cylinder
AB is hollow, and has a
thread cut in its inner sur-
face, so that a second Screw
GH can work in it. The
second Screw does not turn
round, for it has a cross-
bar KL the ends of which
are constrained by smooth
grooves, so that the piece
GHLK can only move up and down. The machine is used
to produce a great pressure on any substance placed be-
tween KL and the fixed base on which the framework
CDFE stands; this pressure we will call the Weight, and
denote by W : the Power P is ap(i)lied by a handle at the
top of the outer screw. It is found by theory and b[v; trial
that there is equilibrium in this machine when the Power
is to the Weight in the same proportion as the difference
of the distances between two consecutive threads in the
two Screws is to the circumference of the circle having the
Power-arm for radius.

267. It is not difficult to shew that the preceding
statement is consistent with the principle of Art. 208. For
suppose the Power to be a little greater than is necessary
for equilibrium, then the Weight will be moved. Let the
outer Screw be turned round once. The whole space passed
over by the end of the Power-arm, estimated in the direc-
tion of the Power-arm, is equal to the circumference of the
circle having the Power-arm for radius, as in Art. 258. B
turning round the outer Screw the piece KL descends
through a space equal to the distance between two consecu-
tive threads; at the same time some of the lower Screw
enters into the other, namely a length cqual to the distance
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between two consecutive threads. Therefore, on the whole,
the piece KL descends through a space equal to the differ-
ence of the distances between two consecutive threads in
the two Screws. Thus the same number which expresses
the proportion of the Weight to the Power, when there is
equiﬁbnnm, expresses also the Izgcéportion of the space
passed over by the Power estimated in the direction of
the Power to the space passed over by the Weight, when
there is motion.:

XVIII. COLLISION OF BODIES.

268. In the last nine Chapters we have been concerned
mainly with questions relating to eguilibrium ; we now
return to some which relate to motion.

‘When the application of force results in motion we
measure the force by the momentum which is produced in
a definite time, as for instance, one second; and as long as
we keep to the action of force on the same body we may
measure the force by the velocity which is produced. One
of the forces with which we are familiar is gravity, which

- takes an appreciable time to produce a moderate velocity.
There are however other forces which seem to produce a
large velocity almost instantaneously. For example, when a
cricket-ball is driven back by a blow from a bat the original
velocity of the ball is taken away and a new one is given to
it in a contrary direction ; the velocity taken away, and also
that given, are very large, while the whole operation takes

lace in an extremely brief time. Similarly, when a bullet
18 discharged from a a very large velocity is given to the
bullet in an extremely brief time. Forces which produce
such effects as these are called impulsive forces; and the
following is the usual definition: An impulsive force is a
Jorce which produces a large change of motion in an
extremely brief time.

269. Thus impulsive forces do not differ in Zind from
other forces but only in degree; and an impulsive force is
merely a force which acts with very great intensity during
a very brief time. As the laws of motion may be taken to
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be true whatever be the intensity of the forces which pro-
duce the motion, we can apply these laws to the action of
impulsive forces. But since the duration of the action of
an impulsive force is too brief to be appreciated, we cannot
measure such a force by the momentum produced in a
definite time; it is usual to measure an impulsive force by
the whole momentum which it produces.

270. We shall not have to consider the result of the
simultaneous action of impulsive forces and ordinary forces
for the following reason : the impulsive forces are so much
more intense than the ordinary forces that during the brief
period of simultaneous action the latter do not produce an
effect of any importance in comparison with that produced
by the former. THus, to make a supposition which is not
extravagant, an impufsive force might produce a velocity of
1000 feet per second in less than one tenth of a second
while the earth’s attraction in one tenth of a second would
produce a velocity-of about 3 feet per second.

The words impact and tmpulse are often used as ab-
breviations for the action ¢f an impulsive force, or for
tmpulsive action.

271. We are now about to consider some questions
relating to the collision of two bodies; the bodies may be
considered to be small spheres of uniform substance. We
shall not take account of any possible rotation of these
spheres ; that is to say, the motion we are about to consider
is that which all the particles of the body have in common,
leaving out such as may be different for different icles.
The collision of spheres 18 called direct when at the Instant of
contact the centres of the spheres are moving in the straight
line in which the impulse takes place, that is, in the straight
line which joins the centres of the two spheres; the col-
lision is called obligue when this condition 1s not fulfilled.

272. When one body impinges directly on another, the
following is considered to be the nature of the mutual
action. The whole duration of the impact is divided into
two parts. During the first part a certain impulsive force
acts in opposite directions on the two bodies, of such an
amount as to render their velocities equal. During the
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second part another impulsive force acts on each body in
the same direction as before, and the magnitude of this
second impulsive force bears to the magnitude of the former
a proportion which is constant for a given pair of bodies.
This proportion lies between the values 0 and 1, both in-
clagive. When the proportion is 0 the bodies are termed
tnelastic; when it is greater than 0 and less than 1 the
bodies are called imperfectly elastic; and when it is 1 the
bodies are called penfectly elastic. This proportion is called
the coefficient of elasticity, or the index of elasticity.

273. There are three assumptions involved in the pre-
ceding Article.

‘We assume that there is an epoch at which the velo-
cities of the two bodies are equal: this will probably be
admitted as nearly self-evident.

We assume that during each of the two parts into
which the whole duration of the impact is divided by this
epoch, the action on the two bodies is equal and opposite :
this is justified by the Third Law of Motion.

‘We assume that the action on each body after the epoch
is in the same direction as before, and bears a constant
ratio to it: this assumption may be taken on trial as a
matter to be tested by observation.

74. The theory of the collision of bodies appears to
be chiefly due to Newton, who made some experiments on
the subject, and recorded the results in his Principia. In
his experiments the two balls used together seem always
to have been formed of the same substance. He found
that the value of the index of elasticity was for balls of

worsted about g, for balls of steel about the same, for

balls of cork a little less, for balls of ivory g, for balls

15

of glass i’
275. We have still to explain why the words elastic
and inelastic are used in Art. 272. 1t appears from ex-
periment that bodies are compressible in various degrees,



110 COLLISION OF BODIES.

and recover more or less their original forms after the com-
pression has been withdrawn ; so likewise they may be bent
or twisted to some extent, and will recover their original
forms when the forces which bent or twisted them cease to
act : this property is called elasticity. When one body
impinges on another we may naturally suppose that the
surfaces near the point of contact are compressed during
the first part of the impact, and that they recover more or
less their original forms during the second part of the
impact. . .

276. By the aid of the principles which we have now
explained the change of motion in bodies produced by
collision may be calculated ; but it is not suitable to our
plan to enter on this calculation, and so we will merely
state the result for some special cascs. We now consider
only direct collision.

277. Suppose that there is a collision betwcen two
balls equal in mass and perfectly elastic; then the two
balls interchange velocities. There are various particular
exau:‘i)les included in this single statement. Thus let a
ball 4 impinge on a ball B at rest; then 4 is brought to
rest, and B moves on with the velocity which A4 originally
had. Again, let 4 and B be both moving in the same
direction, and let A owzertake B ; then after the collision
they both move on in the same direction as before, A with
the velocity which B originally had, and B with the velocity
which A4 originally bad. Finally let 4 and B be movilfg
in opposite directions and meet ; then after the collision
moves backwards with the velocity which B originally had,
and B moves backwards with the velocity which 4 origi-
nally had. Thus in fact if we suppose the two balls exactly
alike, 80 that one cannot be distinguished from the other;
the result is the same in all theso examples as if one body
had gone through the other, or as if one had passed close
by the side of the other.

278. It is easy to verify the statement made with
respect to the three preceding examples by experiments.
The first example especially is interesting,. We may sake
a row of equal elastic balls, say B, C, D at rest in a
straight line, either close together or separated. Then let
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an equal ball 4 impinge on B in the direction of the
straight line. By this collision 4 is brought to rest, and
B proceeds, with the velocity which 4 had, to strike C;
then B is brought to rest and C proceeds to strike D;
finally C is brought to rest, and D proceeds with the
velocity which A4 originally had. If the balls B, C, D
were at first close together it is curious to see D fly off
apparently immediately 4 strikes B. Ivory balls, though
not perfectly elastic, are sufficiently elastic to exhibit the
experiment well.

279. Next suppose that there is a collision between
two balls which are inelastic. Then after collision the
balls do not separate, but move on together with the same
velocity. This velocity can be determined when we know
the velacities of the balls before the collision by the aid of
the principle that the momentum of the system is the same
after collision as before. The principle can be expressed
briefly in the foregoing words; but a little explanation is
necessary in order to fix the meaning of the term momen-
tum of the system. If the balls are moving in the same
direction the momentum of the system is the sum obtained
by adding the momentum of one ball to the momentum of
the other; if the balls are moving in opposite directions
the momentum of the system is the difference obtained by
subtracting the momentum of one ball from the momentum
of the other. If one body is at rest before the collision
then the momentum of the system is the momentum of the
other body. This principle of the identity of the momen-
tum of the system before and after collision is shewn by
g‘xeory to be an obvious consequence of the Third Law of

otion.

280. Suppose for example that a ball of mass 5 moving
with a velocity 6 strikes a ball of mass 4 moving with a
velocity 3; the velocities may be understood to be ex-
pressed throughout in feet per second. Then if the balls
are moving in the same direction the momentum of the
system before impact is 30+12, that is 42. After the
collision the balls move on together with the velocity

é’?; for with this velocity, since the whole mass is 9, the
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momentum of the system after the collision will be 42,
the same as before. But if the balls are originally mov-
ing in contrary directions the momentum of the system
before the collision is 30—12, that is 18; and so after

collision the balls move on with the velocity ., that is

2: the direction of this velocity is the same as that of
{,il;? ball which had the greater momentum before the col-
on.

281. The general problems of the direct collision of
elastic balls which are not equal in mass, and of imperfectly
elastic balls, do not yield results which we can express
simply and easily in words ; except that the principle just
stated with respect to momentum always holds, namely
that the momentum of the system is the same after the
collision as before. ut numerical results are easily ob-
tained by following the steps of Art. 272. Suppose for
example that a ball of mass 5 moving with a velocity 6 over-
takes a ball of mass 4 moving with a velocity 3. 'If the balls
are inelastic we found in Art. 280 that they would move

14

on together with the velocity %2- that is 3 Suppose

however that instead of being inelastic the balls have %

for their index of elasticity; then - will still be the com-

mon velocity at the end of the first part of the impact.
Thus the ball which had originally the velocity 6 has lost

6—%,tlmtis g; and therefore during the second part of
the impact it will 1ose§of§, that is 1: so that its final

velocity will be 13‘?-1, that is 3'. The ball which had
originally the velocity 3 gained during the first part of the
shock -133 3, that is g ; and therefore during the second



COLLISION OF BODIES. 113

part of the shock it will gain 3 of 5, thatis - : 8o that its

3 4
. 14 5 . 71
ﬁnalvelocitywﬂlbe; + that is TR

282. We have hitherto supposed that both balls are in
motion ; or at least if one ball is at rest before collision we
have supposed that it is moveable. But a particular case
may be noticed of another kind, namely that in which one

y moves and strikes another which is fized; we may for
simplicity take this fixed body to be a plane. We suppose
the collision to be direct. Then it 18 found that if the
moving ball and the fixed plane are tnelastic the movi
ball remains close to the fixed plane after collision ; anv&nﬁ
the moving ball and the fixed plane are perfectly elastic
the moving ball recoils after collision in the same straight
line and with the same velocity as before. If the moving
ball and the fixed plane are imperfectly elastic the moving
ball recoils after collision in the same straight line as
before, with a velocity which is equal to the product of the
former velocity into the index of elasticity.

283. The next subject which naturally occurs for con-
sideration is the obligue collision of bodies.
In the din‘imm let O represent the centre of one ball,
irecti

and CA the ion in which it is moving at the instant

B
A

A’
Bl

of collision; let C” represent the centre of the other ball,
and C' 4’ the direction in which it is moving at the instant of
collision. Then it is found by theory that we may treat the

blem thus. Resvlve the velocity of the ball whose centre
18 C into two components, one along CC’, and the other at

T. P. 8
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right angles to CC’; also resolve the velocity of the ball
‘whose centre is €' into two components, one along CC’, and
the other at right angles to CC’. Then the velocities along
OC are changed in. precisely the same way as if the balls
moving with these alone came into direct collision; and
the velocities at right angles to CC" are not affected at
all ; that is they remain the same for each ball after collision
as before. Since we thus know the two component veloci-
ties of the ball whose centre is C, we can find the resultant
velocity after collision, and the direction, CB, of this velocity.
Similarly we can find the resultant velocity after collision
of the other ball, and its direction C'B'".

It is often convenient to resolve velocities into com-
ponents in the manner just exemplified ; the method is the
same as for resolving forces: see Art. 156.

284, An imgortant case of oblique collision is that in

which a moving ball strikes a fixed plane.
Let AC represent the direc-
tion in which the ball moves be- 4 D
fore it strikes the fixed plane at
C; let CD be at right angles to B

the plane. After striking the

plane the ball will go off in some

direction which we denote by CB. S

The angle ACD is called the

angle of incidence, and the angle BCD the angle of reflec-
tion. If the ball and the fixed plane are perfectly elastic
these angles are equal, and the velocity of the ball after
collision is equal to the velocity before. If the ball and
the fixed plane are imperfectly elastic the angle of reflec-
tion is greater than the angle of incidence, the relation
between the two depending on the index of elasticity.
In the case in which the ball and the fixed plane are
inelastic the angle of reflection is a right angle, so that
the ball after collision moves close to the plane. The
velocity after collision is always less than the velocity be-
fore collision, except when the ball and the fixed plane are
perfectly elastic,
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285. Many remarkable results are obtained by the
collision of on a billiard-table, which the principles
we have stated would not be sufficient to explain. These
results depend on two circumstances which we have not
consid namely the rotation of the balls, and the
Jriction between the balls, and between the balls and the
table: the theory of such results would be altogether be-
yond the present work.

XIX. MOTION DOWN AN INCLINED PLANE.

286. We have a.lready;nsﬁuoken about the motion of a
body falling freely, but we will now make.a few additional
remarks on the subject. The motion in this case is said to
be uniformly accelerated : this means that in successive
equal intervals of time the velocity of the falling body
receives equal additions. The laws of the motion involve,
a8 we saw, two numbers, namely 16 which expresses the
number of feet fallen through in the first second of time,
and 32 which expresses in feet per second the velocity at
the end of the first second. The first number is Aalf the
second, and the reason for this may be seen without diffi-
culty. The velocity increases in the same proportion as
the time, and in the first second the velocity begins with
the value 0 and ends with the value 32. Hence 16 ma;

be called the average velocity; for instance at the en

of the first tenth of a second the body is falling with the

velocity lio of 32, and at the end of nine-tenths of the

second it is falling with the velocity % of 32: the sum of

these two velocities is 32, so that the half sum is 16, Itis
easy to admit that when the velocity increases or decreases
uniformly as the time increases, then the space described
in a given time is just the same as would be described by a
body moving during that time uniformly with the average
velocity, that is with a velocity equal to half the sum of
the velocities at the beginning and the end of the given
time.
8—2
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287. Let us apply the principle just stated to find
the space through which the body will fall in the fowrth
second of its descent. The velocii‘:{ at the beginning of the
Jourth second, that is at the end of the third second, is
3 x 32, that is 96. The veloci&y at the end of the fourth
second is 4 x 32, that is 128. The half sum of 96 and 128
is 112, so that a body moving uniformly with the average
velocity would describe 112 feet in a second. This, as we
saw in Art. 91, is exactly the space through which a body
falls in the fourth second of its descent, as it should be
according to our principle.

288. Of the two numbers which thus present them-
selves in the laws of falling bodies, namely 16 and 32, we
might take either as the representative of the force of

vity ; but it is found most convenient to take 32 which
s::mtes the eelocity gained in the first second by a body
falling freely. This number is very important in Me-
chanics ; it is usually denoted by the letter g in books
which discuss the mathematical theory of the subject.
The strength of any other constant force, may be compared
with that of iravity, by observing the appropriate number
which now takes the place of 32. Thus at the surface of
the sun for a falling body the number would be 27 times 32;
the attraction of the sun at its surface being about 27

~ times the attraction of the earth at its surface. At the
surface of the moon for a falling body the number would

be about % of 32, that is rather more than 5.

289. We have already mentioned a contrivance, called
Atwood’s machine, by which we can exhibit a motion of
the same kind as that of a body falling freely, but much
slower, and so better adapted for observation : see Art. 140.
Another case of such motion is that furnished by a body
sliding down a smooth inclined plane. We have seen in
Art. 246 that when a body is placed on an Inclined Plane
it may be supported by a force acting along the Plane less
than the weight of the body, namely by a Power having
the same proportion to the Weight of the body as the
height of the Plane bears to its length. This ¥eads to
the conclusion that a body will slide down the inclined
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plane in the same manner as a body falls freely, but at a
slower rate, Instead of the number 32 we must now take
a smaller number, namely a number in the same pro-
portion to 32 as the height of the plane is to its length.

For example, if the height of the plane is % of its length
the standard number with which we shall be concerned
wil be 3 of 32, that is 4. A body sliding down such &

plane would gain in the first second a velocity of 4 feet
per second, and an equal additional velocity in every other
second ; and it would slide down through 2 feet in the
first second. An important fact connected with this case
of motion is that the velocity gained by a body in sliding
down the inclined plane is precisely the same as would be
gained by the body if it fell freely through the height of
the plane.

290. Various interesting results are obtained by theory
and may be verified by experiment
respecting the motion of bodies A
down smooth inclined planes.

Thus, for example, let 4 be
the highest point of a circle in a
vertical plane, 4B a diameter,
AC any chord. Then the time of
sliding down AC is equal to the
time of falling freely down AB;
8o also the time of sliding down
OB is equal to the same time. B

291. Another example of motion of the same kind as
that of a falling body is furnished by placing one body on a
smooth horizontal table and allowing it to be drawn along
the table by another body which descends vertically, the two
bodies being conn: by a string which passes over a
pully at the edge of the table. SuPpose for instance that
the weiglit of the body on the table is 5 pounds, and the
weight of the descending body 3 pounds. Then the mass
to be moved is the sum of the two masses, and the corre-
sponding weight is 8 pounds. But the weight of the
body on the table is resisted by the table, and so it does

c
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not produce any motion ; and thus the weight of 3 pounds:
has to move all the mass instead of just moving itself.

Therefore the effect produced is g of what would be pro-

duced if the descending body were free; and the motion
is like that of a falling body, only instead of the standard

number 32 we must use g of 32, that is 12.

XX. PROJECTILES.

292. In Art. 124 we have considered the motion of a
body projected vertically upwards, and have shewn that
the body will reach the height from which it would have
had to fall in order to gain the velocity with which it was
projected upwards, A few words may be given to the case
of a body projected vertically downwards. A person might
stand on a high tower and send a body vertically down-
wards, starting it say with a velocity of 64 feet per second.
In this case the body starts with the velocity which would
be gained in falling for two seconds, and the subsequent
motion is precisely the same as that of a body which falls
freely, but which began its descent just two seconds before
we turned our attention to it. As in Art. 126 we must
notice that during the motion, that is after the body has
been projected, the only force acting is the force of gravity.

293. We have hitherto considered only motion in a
straight line, but daily observation presents us with exam-
ples of other kinds of motion. The most familiar case is
that in which a body is started in some direction neither
vertically upwards nor vertically downwards, and is left to
move under the action of gravity. As examples we may
take a cricket-ball thrown by the hand, an arrow shot from
a bow, and a ball shot from a cannon. A body thus pro-
jecteld and left to the action of gravity is called a Pro-
Jectile. . .
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294. Let a body be projected T
from the point 4, in any direction
which is not vertical; let 47 be
the space which would bedescribed p

by the body in any assigned time
if gravity did not act, so that 47"
isthe direction of projection. Draw

AM vertically downwards, equal 4 Q
to the through which a body
would from rest in the as-

signed time under the action of M
gravity. Complete the parallel-
ogram ATPM; then P, the cor-
ner opposite to 4, will be the place ~
of the body at the end of the as-
signed time. For by the Second Law of Motion gravity
will communicate the same vertical velocity to the body as
it would if the body had not received any other velocity.
Thus at any instant there will be the same vertical velocity
as if there had been no velocity parallel to 47, and the
same velocity parallel to 4 7 as if there had been no vertical
velocity. Therefore the spaces described parallel to 47
and A4 M respectively will be the same as if each alone had
been described. Thus P will be the place of the body at
the end of the assigned time.

295, It is obvious that by the method just given we
may determine the position which the projectile has at any
assigned instant; and if we go through the process for a great
number of different instants, marking on a piece of paper
the places obtained, we shall obtain a good representation of
the Eath of the projectile. It is found to be a curve which
mathematicians a parabola, and of which they have
discovered many interesting properties. But we do not
assume that the reader has at present studied the nature
of this curve. Some idea of the form of the curve may be
gained by watching the flight of an arrow. Or suppose we
make a small hole in the lower part of the side of a barrel
full of water; the drops of water are forced out and become
projectiles, and as one follows another we have a continued
stream which takes the form of a parabola,
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296. The parabola is not a closed curve like a circle,
but stretches on without end; and in this respect it resem-
bles a straight line. Suppose one arrow to be shot nearly
vertically upwards, and another to be shot very obliquely;
then at first sight the two paths may seem to be not much
alike. The reason for the apparent diversity is that the
two paths are not of corresponding extent; but in reality
all parabolas are similar, that is, a portion of one parabola
is an exact copgeof the corresponding ?ortion of any other,
though it may be on a larger or a smaller scale.

297. Return to the diagram of Art. 294. Produce AM
to IV, so that MV is equal to 4.M, and complete the paral-
lelogram A7QN; then when the body is at 2 it will be
moving for an instant in the direction parallel to the dia-
gonal 4Q. Suppose, for example, that 3 seconds elapse, after
starting, before the body is at P; then 47 represents the
space through which the body would move in 3 seconds if
gravity did not act: thus if the original velocity is 40 feet -
per second A 7" represents 3 x 40 feet. Also 4. represents
the space fallen through under the action of gravity in
3 seconds, so that 4 /=9 x 16; and therefore AN=9 x 32,
Hence 47 bears the same proportion to AN as 3 x40
bears to 9 x 32, that is as 40 bears to 3 x 32. But 40 repre-
sents the original velocity along 47, and 3 x 32 represents
the vertical velocity given by gravity in 3 seconds. Hence
AT and AN are proportional to the compounent velocities
of the body at the end of 8 seconds, and are in the direc-
tions of these velocities respectively. Hence when the body
is at P the direction of the resultant velocity is parallel to
AQ; and the magnitude of the resultant velocity bears the
:amj };roportion to that of the original velocity as 4@ bears

0 AT,

298. While the projectile is in motion the only force
acting on it is that of gravity; if at the instant the projec-
tile is at 2 this force were to cease acting, the body would
thenceforward move on uniformly in the direction, and with
the velocity, just determined.

299. Another method of treating the problem of pro-
Jectiles may be briefly noticed, as it is found very advan-
tageous in mathematical calculations. This consists in
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resolcing the velocity with which the body is projected into
two components, one vertical and one horizontal

For example, suppose that the velocity with which the
body is projected is 100 feet per second, and that the direc-
tion of projection is such that this velocity can be resolved
into components of 80 feet and 60 feet respectively, the
former vertical and the latter horizontal. Then theory
shews that the Aeight to which the grojectile rises in any
ﬁmut that which a body would have reached if sent
vertically upwards with a velocity of 80 feet per second.
And the distance measured horizontally from the startin,
point is just that which a body would have reached if it hnﬁ
moved uniformly at the rate of 60 feet per second. Henco
the position of the projectile at any assigned instant can be
readily determined.

300. In all that we have said in this Chapter we have
left out of consideration the resistance of the air ; but in prac-
tice this is a very important matter, and in consequence of
it the %th of the projectile is not what mathematicians call
a gar la. The resistance of the air becomes more con-
siderable as the velocity of projection is increased ; and if
this velocity is very great the motion is quite different from
that which we have theoretically determined. For example,
a cannon-ball of certain weight and size being proj at
a certain inclination to the horizon with a velocity of 1000
feet per second was found to strike the ground again at a
distance of about 5000 feet from the starting point, whereas
according to the theory which we have given the ball ought
to have gone more than six times as far. Bnt the consider-
ation of the motion of projectiles, taking into account the
resistance of the air, is much too difficult for an elementary
book like the present.

301. We have supposed in this Chapter as in other places
that the projectile never goes very far from the surface of
the earth: see Art. 100. The earth’s radius is about 4000
miles, and at the surface of the earth the force of gravity -
is measured by the number 32. If we could ascend to a
height of 4000 miles from the surface, 8o as to be at doubls
the original distance from the centre, the earth’s attraction



122 MOTION IN A CIRCLE.

would be only a fourth of what it was before, and there-
fore a body instead of falling through 16 feet in the first
second would fall through 4 feet, and instead of gaining a
velocity of 32 feet per second would gein a velocity of 8
feet per second. In like manner at a triple distance from
the earth’s centre the attraction would be o‘:}iy a ninth of
what it was at first ; and 8o on. This is technically expressed
by saying that the atraction varies inversely as the square
of the distance: sce Art. 77. This would be strictly true
if the earth were a sphere of the same substance through-
out; and in the actual state of things it is very nearly
* true. Hence if a body were to fall from a very great height

it would not gain in every second precisely the same
velocity; in fact in every second it would gain a trifle
more velocity than it gained in the second immediately
preceding. This would be practically of no moment in
the case of any motion, such as we could observe, con-
tinued for only a few seconds; but it would become im-

é).ortant in the case of a fall which lasted for a long
ime,

XXI. MOTION IN A CIRCLE.

302. The force of gravity is constant in magnitude and
direction ; that is so long as we keep near the same place
on the earth’s surface the force undergoes no change in
these respects. More complex problems of motion arise
when we consider the operation of forces which may change
in magnitude, or in direction, or in both.

303. Suppose that a body is observed to describe a
circle with uniform velocity; then theory demonstrates
the following results. Zhe body is acted on by a force
passing through its centre of gravity, constant in mag-
nitude, and always directed to the centre of the circle;
and in order to compare this force with the weight of the
body we must take the square of the velocity, divide it
by the radius, and find the proportion of this quotient
to 32,
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304. No single statement in connexion with motion is
more important than that just given, and the student
should regard it with earnest attention. To prevent mis-
take we add that in estimating the velocity and the radius
we must take a foo¢ as the unit of length, and a second
as the unit of time. Also it may happen that the moving
body is under the operation of two or more forces; then
our statement means that these forces must be equivalent
to a single resultant having the value assigned. This case
of motion gives us an example in which the force though
constant in magnitude, is variable in direction; for at an
instant the direction of the force is the straight line whicf‘;
at that instant can be drawn from the centre of gravity of
the body to the centre of the circle.

305. We proceed to illustrate the statement of Art. 303.
Suppose, for example, that the velocity in the circle is 20
feet per second, and the radius of the circle 5 feet. The
square of 20 is 400 ; and if 400 be divided by 5 the quotient
is 80. Thus the force which acts on the body, and makes

it describe the circle, is g—g of the weight of the body, that

is : of the weight of the body. Again, suppose that the

radius of the circle is 7 feet, and that the body describes
the circumference of the circle in 2 seconds. By Art. 28

the circumference of the circle is about 97—2 x 14 feet, that

is about 44-feet. Hence the velocity is about 22 feet per
second. The square of 22 is 484; and dividing this by

the radius we obtain 4—?3. Thus the force which acts on

the body, and makes it describe the circle, is 7—4’?;—2 of the
121

weight of the body, that -is 6 of the weight, that is

rather more than twice the weight.

306. Thus we may hope that the important statement
of Art. 303 is intelligible, and we have next to consider
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how it is known to be true. It is in fact- capable of de-
monstration ;)g strict mathematical reasoning, but it may
also be verified by trial. There is however no very obvious
example which immediately presents itself ; a boy’s slin
is sometimes mentioned, but this does not strictly fulfi
all the conditions. For the loaded end of the sling in
general does mot describe an exact circle; the hand at
the other end shifts its position perpetually, and keeps
urging the loaded end to increased s If the hand
remains quite still, so that the loaded end describes an
exact circle, still this circle is not described with uniform
velocity, when, as is usually the case, the sling moves in
a vertical plane ; the velocity is greater at the lower than
at the upper points of the circle. )

307. In the absence of appropriate spontaneous ex-
amples we must contrive experiments. Put a ball on a
smopth table, fasten it by a string to a fixed point in the
table, and start the ball so as to describe a circle round
the fixed point as centre. If the table is smooth the ball
will move for some time %retty uniformly, and the velocity
with which it moves can be observed. It is easy to devise
means for measuring the force which acts on the ball
and tends towards the centre of the circle; this is in
fact the tension of the string. We may have the string
formed of some material which will stretch, and observe
carefully the length of the stril;i when the ball describes a
circle uniformly. Then stop the motion, take away the
ball from the string, fix one end of the string and han
a weight at the other end just heavy enough to stretc
the string to the length it had in the case of motion:
then the tension of the string in both cases is equal to this
weight. Thus we know the velocity with which the ball
moved, the radius of the circle, and the force acting
towards the centre of the circle ; and accordingly we can
test the truth of the statement in Art. 303 as to the
relation between these quantities. Or instead of fastening
one end of the string to a fixed point in the table, when
the ball at the other end is describing a circle, we may

ass the string through a small hole in the table and
iang & weight at the other end. When this weight
remains at rest it measures the tension of the string, and
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therefore the force which is directed towards the small
hole as centre, and acts on the body describing a circle
round that centre.

308. In this experiment of the ball on the smooth
table the weight of the ball vertically downwards is just
balanced by the resistance of the table upwards, and
thus these two forces do not affect the motion of the ball
on the table. Setting aside the weight and the resistance
of the table the only force which acts on the ball during the
motion is the force towards the centre of the circle. Sup-
pose we stop the action of this force at any instant, which
we may do by cutting the string, then the ball will continue
to move uniformly in the direction in which it is moving
at that instant ; this direction is at right angles to the
straight line drawn from the ball to the centre of the
circle at that instant, or in the language of Geometry it
is the tangent to the circle at the point which the ball
occupies at the instant. Thus it must be remembered
that whtle a body describes a circle with uniform velocity
the resultant of all the forces which act on it is a single
force towards the centre of the circle. We say the resultant
of all the forces, because there may be forces which just
balance each other as in the case of the ball on the smooth
tatkle, where the weight and the resistance balance each
other.

309. There is still another mode of making the ex-

iment which may be noticed. Let one end of a string

fastened to a weight and the other end to a fixed point.
Let the string be drawn aside from the vertical direction
and let a velocity be given to the weight in a horizonta
direction. By trial it will be found possivle to get the
weight to move for some time in a horizontal plane and
to describe a circle. The tension of the string may be
supposed to be resolved into two components, one vertical
and the other horizontal: see Art. 156. The vertical
component will balance the weight of the body, 8o that the
body goes neither up nor down. The horizontal component
constitutes the force towards the centre of the circle
which makes the weight describe the circle. It is easy
to determine the value of the tension of the string, by
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such methods as those of Art. 307 ; and then the com-
ponents into which it is resolved can be found: thus the
truth of the statement in Art. 303 can be tésted.

310. Suppose a man to run round a circle of which the
radius is 20 feet, at the rate of 8 feet in a second. Then
the resultant force which acts on him is directed towards

. . 64 .
the centre of the circle, and is equal to 39% 20 of his

weight, that s to ;- of his weight. This resultant forco

must be produced by a combination of the man’s weight
.and the action of the ground. Hence the action of the
ground must not be entirely vertical but oblique; the ver-
tical component of it must just balance the man’s weight,

and the horizontal component of it must be equal to %) of

the weight. In order that the action of the ground may
pass through the man’s centre of gravity, which is neces-
sary in order that it may combine with the weight to form
the horizontal force, the man must lean inwards towards
tlie centre of the circle : the amount of this leaning must be
at tho rate of 1 inch horizontal to 10 inches verti

311. We find in Astronomy some of the best illustra-
tions of the motion of a body under the influence of a force
which has its direction always changing but always passin
through a fixed poiut. For instance the Earth moves roun
the Sun under the action of the Sun’s attraction. The Earth
does not describe a circle, and so does not furnish exactly
a case of the motion considered in the present Chapter;
but still the path in which the Earth moves is very nearly
a circle, and the amount of the Sun’s force is not much
different from that assigned by Art. 303. Soalso the Moon
relatively to the Earth describes a path which is very

" nearly a circle. The distance of the Moon from the Earth
is about 240,000 miles ; -thus the circumference of the circle
which the Moon describes round the Earth is about

272 x 480000 x 5280 feet.
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‘The time in which this circle is described is about 27} days,
that is about 27} x 24 x 60 x 60 seconds. Hence we obtain
the velocity by dividing the former number by the latter.
Then by the statement of Art. 303 we can compare the
force which the Earth exerts on a body moving like the
Moon moves, with the weight of the body; that is in fact,
we com the force which the Earth exerts on a body
moving like the Moon moves, with the force which the
Earth would exert on the body if it were close to the
Earth’s surface. This comparison was the foundation of
Newton’s system of Astronomy; the result is that the force
on a body in the sitnation of the Moon is about o of
the force on the same body if it were at the Earth’s surface :
see Art. 301,

XXIL SIMPLE PENDULUM.

312. Let one end of a fine string be fastened to a fixed
point, and the other end to a small heavy particle. In the
position of equilibrium the string will be vertical. Let the
particle be displaced from its position of equilibrium, the
string being kept stretched, and then allowed to move.
The particle will go backwards and forwards; this is called
oacilzting. The particle thus describes arcs of a circle;
owing to friction and the resistance of the air the arcs
described become gradually less and less, until at last the
particle comes to rest. The string and particle together
constitute what is called a simple pendulum.

313. The forces which act on the heavy particle are
its own weight and the tension of the string. The former
force acts always vertieally downwards, and is always of the
same amount; 8o that it is constant in direction and mag-
nitude. The latter force perpetually changes its direction,
though the direction alwa{s passes through a fixed point.
The weight acting vertically may be supposed at any iustant
to be resolved into two components, one along the string at
that instant, and the other at right angles to it. The for-
mer produces no motion, being resisted by the string; the
latter urges the heavy particle along the circular arc
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towards the lowest point. The motion is found to be of
the following kind : the particle being at one of the extreme
points of an arc starts, as if from rest, and the velocity
continually increases until the particle reaches the lowest
point of the arc; then as it goes up through the rest of the
arc the velocity diminishes until the particle reaches its
bighest point at the other end of the arc. The time of
moving from the starting point to the lowest point is the
same as that of moving from the lowest point to the other
end of the arc; and when the arc is very small it is found
that this time does not sensibly change as the arc becomes
smaller and smaller. The time of passing from one end of
an arc to the other is called the time of oscillation; it may
be found according to theory, by the following rule: Take
the length of the string in feet, divide by 32, and extract

the square root of the result; then multiply by ‘%2 and the
product will be the time in seconds.

314. The important point to notice with respect to the
preceding rule is that it supposes the arc through which
the particle moves to be very small; but then it is true
without taking into account the greater or less extent of
this small arc. The rule may be made more accurate by

using instead of 272 the number 3:1416: see Art. 28. Also

for the sake of extreme precision we should have instead of
32 to put a slightly different number, different for different
places: see Art. 98. The length of a simple pendulum
which oscillates in a second at the latitude of London is
39°1393 inches. This is about "994 of the metre, the French
standard of length.

315. We have said that the rule in Art. 313 supposes
the arc of oscillation to be very small ; and therefore it
will be proper to give some notion of the correction which
must be made when the arc is not very small. The time
found by the rule must then be increased by a small frac-
tion of itself, and this fraction may be found with sufficient
accuracy in the following manner: the numerator is the
square of the number of degrees in the angle between the
extreme position of the pendulum and the position of
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equilibrium, and the denominator is 50000. Thus, for
example, suppose the pendulum oscillates through an
angle of 10 degrees altogether, then there are 5 degrees
in the angle with which we are concerned; the square.of

. 25 1 .
5 is 25, and 50000 = 000" Therefore the time found by

the rule of Art. 313 must be increased by QOLOO of itself;

so that if that rule gives one second for the time when
the arc is very small the correct time when the arc corre-
sponds to 10 degrees will be 15545 seconds.

316. The time of oscillation does not depend on the
nature of the substauce of which the heavy particle is
composed ; this corresponds with the fact that, sctting
aside the resistance of the air, all bodies fall to the ground
from the same height in the same time. The word oscilla-
tion is used by some writers to denote the time taken
by the heavy particle in passing from one end of an arc
to the same point again ; this amounts to fwice the timo
which we assign to an oscillation. Also the word vibration
is sometimes used instead of oscillation.

817. Instead of compelling a particle to describe an
arc of a circle by means of a string we might have a fino
tube made in the form of an arc of a circle, and fixed in
a vertical plane; and then the particle might be placed
within the tube =0 as to slide up and down. Theory shews
that the motion is of the same kind as the other, provided
the tube is smooth internally. The resistance of the tube
in this case takes the place of the tension of the string in
the other. '

318. We may also have other cases of motion by
supposing a fine smooth tube, as in the preceding Article,
not in the form of an arc of a circle but in that of an arc
of any other curve. One interesting result obtained by
theory then is that whatever be the form of this curve
the velocity of the heavy particle at any point is just tho
same as if it had fallen freely through a vertical space
equal to the deEth of this point vertically below the start-
ing point. We have already remarked in Art. 289 that this
is the case when the tube is in the form of a straight line.

T. P. 9
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319. Two very curious results in connexion with this
su::jiect may be noticed. Suppose the fine smooth tube
made in the form of half a icular curve which mathe-
maticians call a cycloid, and let it be placed as they would
say with its base horizontal and its vertex downwards;
denote the highest point of the curve by 4, and the lowest
point by B. Then the heavy particle would slide from
A to B down this curve in less time than down any other
curve from 4 to B. And if C denote any point of the
curve between 4 and B the ém'ticle would slide down the
portion of the curve from C to B, starting at C, in the
same time as down the whole curve from A to B. The
two statements can be well demonstrated experimentally
by constructing tubes or troughs on a large scale. In
particular the truth of the second statement can be very
effectively shewn ; a man takes a ball in each hand, and by
stretching out his arms he can put one ball at a point
of the trough far above the point at which he puts the
other, and let both start at the same instant; then the
zlﬁ)pel‘ ball just overtakes the lower ball at the bottom of

e curve.

320. It is easy to give a notion of the curve which
we call a cycloid. 1t is the curve which a point in the
circumference of a carriage wheel would trace out as the
wheel turns onoce round in rolling along the ground ; the
point being supposed the lowest point of the wheel at the
beginning and at the end of the turning. The curve thus
formed will bear some resemblance to the outline of a
very flat arch of a bridge. The curve must be supposed
turned upside down and half of it taken when used in the
manner of Art. 319.

XXIII. FRICTION.

321. WE have hitherto supposed that all bodies are
s#mooth, but practically this is not the case, and we must
ni(')g g.xamine the results which follow from the roughness
of bodies.
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322. The ordinary meaning of the words smootkh and
rough is well known, and a little explanation will settle
the sense in which these words are used in Natural Phi-
losopelg. Let there be a fixed plane horizontal surface
formed of polished marble ; place on this a piece of marble
having & plane polished surface for its base. If we
attempt to move this piece of marble by a horizontal force
we find that there is some resistance to be overcome ; the
resistance may be very small, but it always exists. The
same thing will appear if we change the material with
which we make the m::geriment, as for instance if we
use wood instead of le, or if we have the fixed plane
of one material and the moveable body of another. We
say then that the surfaces are not perfectly smootk, or
we say that they are to some extent 7ough. Thus surfaces
are called #mooth when no resistance is caused by them
to the motion of one over the other, and they are called
rough when such a resistance is caused by them; this
resistance is called friction, and it always acts in the con-
trary direction to that in which motion takes place or
is about to take place. Although we may imagine smooth
bodies to exist, yet strictly speaking there is always some
degree of roughness in practice.

323. The following is another method of explaining the
meaning of the words smooth and rough in our subject.
‘When bodies are such that if they are pressed together the
force which each exerts on the other must be at right
angles to the two surfaces the bodies are called smooth;
when this is not the case they are called rough. If the two
surfaces which are pressed together are both glana sur-
faces this definition is immediately applicable, but if one
or each of the surfaces is a cu: surface some explana-
tion is required. Suppose that one surface is curved and
the other plane, as for example when a sphere is pressed

inst a plane; then a straight-line at right angles to the
plane at the point of contact is to be considered as also at
right angles to the curved surface. Next suppose that each
surface 18 curved, as for example when one sil;ere is pressed
against another sphere; then a plane must be supposed to
touch each surface at the point of contact, and a straight
line at right angles to this plane is to be considered as also
at right angles to the curved surfaces.

9-2
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324. Bu we want to support a Weight by the
aid of a machine ; then friction may be said to %elp the
Power, for the Weight may be increased beyond the value
which according to theory the Power would support, and
yet motion may be prevented by the friction. But suppose
we want to give motion ; then friction may be said to oppose
the Power, for the Power must be increased beyond the
value which according to theory would move the Weight in
order to overcome the friction. Suppose we increase the
P wer sufficiently then we actually overcome the friction and
produce the motion which we desire. Thus there is in
vvery case a limit to the friction, and experiments have
been made in order to obtain information with respect to
the extreme amount of friction which can be brought into
action between two surfaces when they are pressed to-
gether. The following Laws have been thus obtained.

(1) The friction varies in the same proportion as the
force with which the bodies are pressed at right angles to
the surfaces in contact, so long as the materials of the bodies
in contact remain the same.

(2) The friction remains the same whatever may be the
extent of the surfaces in contact so long as the force
pressing the bodies at right angles to the surfaces is the
same.

These two Laws are true not only when motion is just
about to take place, but when there 18 sliding motion. But
in sliding motion the friction is not always the same as in
the state bordering on motion; when there is a difference
the friction is greater in the state bordering on motion than
in actual motion.

(3) The friction is the same whatever may be the
velocity when there is sliding motion,

325. Coefficient of Friction. Let two bodies be pressed
together by any force at n;iht angles to the surfaces in con-
tact, and let us try to make one body slide on the other
by a force parallel to the surfaces, increasing the force we
apply until it is just sufficient for the purpose; then the
proportion of this transverse force to the force at right
nngles to the surfaces is called the Coefficient of Friction.
For example suppose that two bodies are pressed together
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by a force of 10 pounds, and that we can just make one
body slide on the other by a force of 3 pounds; then the

coefficient of friction is % .

326. The following results have been obtained by ex-
periment; they apply to the case of actual motion. The

coefficient of friction for iron on stone is between % and

17(—); for timber on timber between % and ?5 ; for metals
on metals between % and i. Thus, for example, if two

metallic bodies are pressed together with a force of 100
pounds, then in order to keep one in motion over the

other we must exert a force between 2% of 100 pounds

and i of 100 pounds, that is between 15 pounds and 25

pounds. The precise amount of force will depend on the
. n:rt}lre of the metals and the degree of smoothness of their
surfaces.

327. Angle of Friction.

Let a body be placed on an In-
clined Plane; if the plane were F
perfectly smooth the body would
not remain in equilibrium. Let
W denote the weight of the body,
which acts vertically downwards ;
let R denote the Resistance of the |
Plane, which acts at right angles \J
to the Plane; let # denote the . w
Friction, which acts along the Plane. Now, by Art. 246,
we know that so long as the body remains in equilibrium,
the Weight, the Resistance, and the Friction are in the pro-
portion of the length, the base, and the height of the Plane
respectively. Thus the Friction is to the Resistance in the
same proportion as the height of the Plane is to its base.
Let the Plane be gradually tilted until the body just begins
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to slide down the Plane; then in this case the proportion
of the Friction to the Resistance is what we call the co-
efficient of friction for the state bordering on motion.
Thus we have an experimental method of finding the value
of this coefficient. The angle which the Inclined Plane
makes with the horizon in the state of the body bordering
on motion is called the angle of friction.

328. 'We have hitherto supposed that one body slides
over another; the friction then may be called for distinc-
tion sliding friction. There is however another case in
which the friction may be called rolling friction. - Thus a
solid cylinder may roll on a fixed plane, or within a fixed
hollow cylinder ; or a hollow cylinder may roll round a fixed
cylindrical axis. It is found by experiment that in this
case the friction is very nearly proportional to the pressure,
but is much less than for the case of sliding surfaces kept
in contact by the same pressure.

329. Friction may be diminished in various ways.
Thus we may make the surfaces in contact very smooth ;
or we may interpose some lubricating material, such as
oil or grease, between the surfaces in contact. It is found
advantageous to have the bodies in contact of different
substances ; thus axles may be made of steel, and the
parts on which they turn of gun metal or brass; in time-

ieces the steel axles often turn on agate or on diamond.
e endeavour also as much as possible to avoid sliding
friction and to introduce rolling friction; thus small
wheels called castors are placed at the feet of tables and
chairs for this purpose. Large masses of stone are often
moved by the aid of many castors in the form of cannon
balls placed under them. The following example has been
given to illustrate the diminution of friction by various
contrivances. A roughly hewn block of stone weighing
1080 pounds was drawn from the quarry on the surface
of the rock by a force of 758 pounds. The stone was
placed on a wooden sledge and then a force of 606 pounds
was sufficient to draw it over a wooden floor. When the
wooden surfaces in contact were smeared with tallow the
force necessary to draw the stone was reduced to 182
pounds. Finally when the load was placed on wooden
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rollers three feet in diameter the force was reduced to 28
pounds. ’

330. A very important contrivance is used for di-
minishing friction in the case of a body which turns round
an axis in the way a grindstone does. The axis instead of
resting on an immoveable support at each end rests on
Jriction wheels as they are called. Two equal wheels are

laced parallel and very near to each other ; the distance

tween their centres is less than a diameter of the wheels.
Thus at the upper part a kind of an angle is made on
which rests one end of the axis of the body which is to
turn. The other end rests on another similar pair of
wheels. The friction wheels turn with the body, and the
friction is found to be much less than it would be if the
body turned on immoveable supports.

331. There are cases in which we find the assistance
of friction very useful. Thus in frosty weather the iron
rails become so slippery that the wheels-of a locomotive
engine turn round without bditing the rails, and it is
necessary to scatter a little sand on them to obtain the
necessary roughness and consequent friction. When first
railways were proposed it was maintained by some persons
that the friction would always be inadequate to make the
wheels bite, and that it would be necessary to cut teeth
on the wheels and on the rails. SBometimes to procure
enough friction we change rolling motion into sliding
motion ; thus the wheel of a carriage is locked when
descend’ing' a hill in order to moderate the velocity by
increasing the friction.

332. A remarkable case of friction is that which
occurs when a rope is coiled round a solid body. Thus one
end of a rope may be fastened to a barge, and if the rope
is coiled two or three times round a strong post the barge
will be easily held fast by & very small force at the other
end of the rope, in spite of the current of the river in which
it may be floating. The whole friction in this case in-
creases very rapidly with the number of coils. Thus for
example suppose that when the rope is coiled once round -
a force of one hundred weight supports eight hundred
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weight by the aid of the friction; then the same force
will support 8 times 8 hundred weight when the rope is
coiled twice round, and 8 times this when the rope is
coiled ¢Arice round, and so on.

333. Friction may naturally present itself to the
reader at first in the light of an imperfection or obstacle
in nature. By reason of friction the simplicity which we
should otherwise often see in virtue of tEe First Law of
Motion disappears. By reason of friction our machines
never produce so much effect in moving bodies as they
would otherwise. Nevertheless it is not difficult to shew
that friction promotes in many respects the comfort of
man, and a very interesting Chapter is devoted to the
subject in Dr Whewell’'s Bridgewater Treatise; from this
work the next two Articles are mainly derived.

334. The simple operations of standing and walking
would scarcely be possible without the aid of friction ;
every person knows how difficult and how dangerous they
are when performed on ice. Now there is really con-
siderable friction in the case of ice, as we may see by the
fact that a stone sliding on ice is brought to rest after
it has gone but a slight distance. But the friction on ice
is much less than on ordinary ground, and from our ex-
perience in moving on ice we may learn how embarrassing
would be our condition on a perfectly smooth plane. At
every step we take it is the friction of the ground which
prevents the foot from sliding back, and thus allows us
to push the other foot and the body forwards. And in

. the more violent motions of running and jumping it is easily
seen that we depend entirely on friction for the possibility
of the feat. Likewise when we wish to hold things in our
hand it is friction which enables us to succeed; and on
the contrary it was formerly the custom for wrestlers to
rub their bodies with oil that they might be less easil
grasped by their adversaries. Again the objects whi
surround us in our rooms, as chairs, tables, and books
would yield to the slightest push or current of air, and
be in a state of tperpetual motion if it were not for friction.
The stability of our buildings is largely due to friction.
It is true that mortar is used to assist in iy)inding the bricks
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and stones together, but were it not for friction the
strength of the mortar would be always on trial as it were,
at every shock and every breeze; and would give way
under the long continued strain. But owing to friction
the stability would subsist in nmnlyl cases even without the
mortar, and thus the tenacity of the mortar is reserved as
it were for extreme occasions.

Were it not for friction rivers that now flow gently
would be converted into rapid torrents. By the aid of
friction we can form long threads and sheets out of the
short fibres of cotton, flax or hemp; for it is friction conse-
quent upon the mutual pressure of the fibres which are
twisted together that keeps the material of these fibres
together.

335. Itisremarkable that friction which is so important
in the concerns of the world disappears almost entirely
when we turn to the la?er motions of the heavenly bodies.
All motions on the earth soon stop, but the moon and the
planets continue in their courses for ages. 8o great is the
apparent difference that the ancients were quite misled,
and divided motion into two kinds, natural like that of
the heavenly bodies, continually preserved, and violent like
that of earthly objects, soon extinguished. Modern philo-
sophers maintain that the nature of motion is the same,
and the laws the same, for celestial and terrestrial bodies;
that all motions are natural, but that in terrestrial motions
friction comes into play and alters their character. More-
over there is strong reason for believing that all space is
occupied by a medium, which though excessively rare does
impede the motions of the heavenly bodies.

XXIV. GENERAL MOTION.,

336. WE have more than once drawn attention to the
circumstanee that the motion with which we have been
concerned is of a simple and restricted kind. We have
spoken of it as the motion of a particle, and as the motion
of a body where all the points move in the same manner,
and as excluding all motion of rotation; see Arts. 123
and 285. The motion of bodies considered without this
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restriction is beyond an elementary work like the present,
and we must confine ourselves to a very few remarks re-
specting it. One of the most simple cases is that of motion
round a fixed axis. Take, for example, the diagram of
Art. 220, and suppose that 2 and W are not in the pro-
portion necessary for e;z'uilibrium. Then motion ensues;
one of the two, P and W, descends and the other ascends,
while the piece consisting of the Wheel and Axle turns
round a fixed horizontal axis, Suppose that # is larger
than it ought to be for equilibrium ; then 7 descends, and
it is found by theory that 7~ moves down with a velocity
which increases in the same proportion as the time, that is
W moves in the same manner as a body falling freely; but
the motion is less rapid than that of a free body. Instead
of the number 32 of Art. 92 we have now a smaller number,
the value of which depends on P and 7 and on the weight
and size of the machine. Also P ascends according to the
same law, but with another number instead of 32. If the
machine is very small and light compared with P and W
its own motion will be unimportant, and we have very
nearly the same case as that in Art. 142.

337. In the preceding case we have a body which can
turn round a fixed axis, and which is kept in motion by the
action of constant forces, namely P and W. But such
motion might be prodnoe(i by the action of forces which are
not constant. For example, in raising water from a well
the hand which turns the machine might exert force irregu-
larly, sometimes more and sometimes less; and then the
ascending body would no longer move like a body under
the influence of gravity only.

338. We have spoken in Art. 312 of a stmple pendulum,
and have defined it as a heavy particle at one end of a fine
string, the other end being fixed. But this is rather an
idealg pendulum than a really existing object. A real pen-
dulum may be defined to be a body of any form which can
turn round a fixed horizontal axis,

Let AB be a body of any form, as for instance a rod
with two fixed balls, one near each end. Suppose the
plane of the ﬁs:per to be vertical, and let C' denote
the point at which a horizontal axis passes through the
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body. The ends of this axis arve supported; and the
body bein¥ drawn away from its position of equilibrium
and then left free will move to and

fro. Now it is found by theory that A
the motion of this real pendulum is
exactly the same as that of a simple
pendulum of some definite length
which can be calculated when the form

and the substance of the body are
known; this length is called the length

of the equivalent simple pendulum.

If we measure along the line through

C and the centre of gravity of the
bo‘:lvx’ a distance CO equal in length

to the length of the equivalent simple
pendulum, then O is called the centre

of oscillation, while C is called the B
centre of suspension. The centre of
gnavitoy of the body will be at some point between C
and O.

339. It is remarkable that the centres of oscillation
and suspension are comvertible; this means that if the
body instead of turning round the horizontal axis at C turns
round a parallel axis at O, then C becomes the new centre
of oscillation.

340. The position of the centre of oscillation can be
determined as we have said by theory; but it may also
be found by experiment. For example if a slender rod
oscillate about an axis through one end at right angles to
the rod it is found that it oscillates in the same time as a
simple pendulum ¢wo thirds of the length of the rod. Thus
the centre of oscillation is distant two thirds of the length
of the rod from the fixed rod. The statement can be veri-
fied by making the rod oscillate about an axis through the
point thus assigned; then by Art. 339 the time of oscilla-
tion will be the same as before.

341. The rule found by theory for the length of the
equivalent simple pendulum in the case of any body is the
following. Suppose the body to consist of any number of
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equal small particles, then the required length is a fraction
to be calculated thus: The numerator is the sum of the
squares of the distances of the particles from the horizontal
axis; the denominator is the sum of the distances of the

articles below the horizontal plane through the axis
?rom that plane, diminished by the sum of the distances of
those above, when the body is in its lowest position.

842, The centre of oscillation does not necessarily
fall within the body. It is obvious from the diagram of
Art. 338 that the parts of the bod{‘above and below Crespec-
tively are always tending by their weights to move the
pendulum in contrary directions, so that if these two parts
are so adjusted as to produce nearly equal effects the
motion may be very slow indeed, and thus CO may be very
long and wnsequentglthe point O quite beyond the body.
Musicians use a small pendulum called a metronoms for
the sake of marking time; though very short it can be
made to oscillate in a second or even in a longer time. It
is of the form represented in the dli)ﬁam, namely a rod
with balls at the ends. The upper can be moved to
any position which may be desired, and held fixed in that
position by a screw; thus the metronome can be made to
oscillate at & quicker or slower rate as may be required.

343. It will be observed that a heavy body oscillates in
the same manner as if the whole weight were collected at
the centre of oscillation, not as if it were collected at the
centre of gravity. It is sometimes stated incautiously that
the weight of a body may always be supposed to be col-
lected at the centre of gravity; but the present case shews
that such a statement is too wide: see Art. 169.

344. The following very important result is demon-
strated by theory with respect to the motion of any body.
The motion of the centre of gravity of a body is exactly
the same as the motion of a particle having a mass equal
to the mass of the body and acted om by forces equal
and parallel to those which act on the body. The reader
will scarcely be prepared to understand completely this
very remarkable statement, but even an ilﬁperfect notion
of it will be of service. Take, as a simple example, a top spin-
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ning and moving on the ground. There are various forces
acting, the weight of the top, the resistance and the friction
from the ground, and the resistance of the air.. Suppose
all these forces moved up to the centre of gravity of the
body, each force remaining parallel to its original direction,
and let their resultant be found; then if this resultant act
ona g:rticle of the same mass as the whole top the motion
will the same as the actual motion of the centre of
gravity of the top.

345. Another result of the same kind is the following.
The motion of a body round its centre of gravity is the
same as the body would take if its centre of gravity were
fized and the body were left to turn round under the
tnfluence of the forces really acting. But this, like the
fornlfr proposition, is beyond the range of an efementa.ry
worl
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XXV. FLUIDS.

' 346. Two opposing principles are found to operate
extensively throughout the material world; one is the
princii)le of cohesion which tends to bind the component
particles of bodies together, aud the other is the ciple
of repulsion which tends to separate Mices. ’lgm
priociple of cohesion is perhaps conn with that of
attraction between bodies at a distance; the principle of
repulsion is perhaps identical with heat, or at least in-
timately connected with it. Now the three forms under
which matter presents itself depend upon the relative
influence of these two principles. In solid bodies cohesion
prevails over repulsion, so that the particles form one
connected mass, not to be separated without the applica-
tion of force. In air and gases the principle of repulsion

redominates, and the particles require the application of

orce in order to keep them in contact or near each other.
The third form of matter, namely that of water and other
liquids, is one in which neither of the two principles is
predominant ; the particles can be separated by the apgli-
cation of forces so slight as to be practically insensible,
but they do not require to be confined in every direction,
like those of air and gases to prevent them from escaping.

347, The term Auid includes two classes of objects,
namely liquids like water, and gaseous bodies like air ; the
two classes have some properties in common, and each
class has also some of a special kind. We shall treat first
of liquids and then of gases. The most commeon liquid is
water, and this may be taken as the type of all. Hence
the science which we are about to consider has received
names derived from the Greek word for water. The term
Hydrostatics has been applied to all that concerns the
mechanical properties of liquids in_equilibrium, and Hy-
drodynamics to the subject of liquids in motion : the term
Hydraulics is sometimes applied to the theory of machines
which depend on the action of liquids.
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348. The general Eroperties which we are about to
consider are those which belong to what are called gerfect
liquids. By perfect liquids we mean such as offer no
resistance whatever to the separation of their parts, and
on this account adapt themselves to the slmlpe of the
vessels containing them. Strictly stﬁeaking no liquids are
ﬁ:rfect; but still for water and other liquids there will

no error of practical importance introduced in the
statements we shall make. There are however substances
which though liquids are far from being perfect in the
sense we have explained, and to which therefore our
sul uent statements will not apply; for instance tar or
melted glue. Water apﬂroaches more nearly than oil to
the idea of a perfect liquid, and ajcohol more nearly
than water.

349. It was formerly supposed that liquids were in-
compressible; that is to say 1t was held that a liquid could
not have its bulk diminished by any pressure however

t. An experiment was made at Florence, and thence
own as the Florentine experiment, which seemed to
confirm this notion. Water was enclosed in a hollow
globe of gold; the globe was squeezed in such a manner
as to alter its form, and therefore by the conclusions of
Geometry to diminish its size, and it was found that the
water was forced through the pores of the gold. But it
is now well ascertained that water is compressible, though
the compressing force must be ve argreat in order to
produce a sensible effect. The stan fact may be put
in the following form, which will be fully comprehended
as the reader proceeds with the subject: water when
pressed by a column of water 33 feet high has its density
increased by *000046 of its original density. Also the
increase of density will be in proportion to the pressure ;
so that under the pressure of a column of water 3300 feet
high the density would be increased by 0046 of the
original density, and under the llPrea:sure of a column of
water 7000 feet the density would be increased by about
‘01 of the original density. Or we may put the last fact
in this form: at the depth of 7000 feet in the sea a mass

of water will lose %0 of the bulk it would have at the
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surface of the sea. When the force which compresses a
liquid is removed the liquid regains its original bulk and
density.

350. We may if we please imagine that a liquid is
composed of very small smooth spherical icles, and
thus connect the properties of a liquid with those of an
assemblage of particles ; but such a supposition is not
necessary for our purpose.

XXVI. PRESSURE TRANSMITTED IN ALL
DIRECTIONS.

351. THE foundation of all we have to teach about
liquids is a principle which seems to have been first
enunciated by Pascal ; it is called the transmissibility of
pressure in every direction.

A B

Let ABCD be a vertical section of a closed vessel full
of liquid. At two places in the upper surface, £ and F,
let there be equal holes in which are })lawed tubes of equal
bore; the holes and the tubes may for simplicity be sup-
posed circular. In these tubes let there be pistons which
can work easily up and down, remaining water tight, like
the moveable part of a boy’s squirt. Push one of these
pistons down_with a certain force; say that the piston
at E is pushed down with a force of one pound. en it
will be }:mnd on trial that the piston at F is thrust up,
and if we wish it to stop in its place we must push it
down also with a force of one E)ound. In other words, if-
we apply any force on a part of the upper surface of the
liqni(f in the closed vessel, that force 18 as it were trans-
nitted in equal amount to any other equal part of the
same upper surface, ‘
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352, Next let the tubes at £ and F be of unequal
bore ; suppose the area of # to be double the area of E.
Then it will be found on trial that if the piston at £ is
pushed down with a force of one pound, and we wish to

eep the piston at F in its place, we must push it down
with a force of two pounds, This is an immediate result
from the principle of Art. 351 ; for according to the
principle a pressure equal to that exerted on the piston
at Z is transmitted to each of the portions of the same
area of the piston at #. In like manner if the area of
the tube.at # is ten times the area of the tube at E, then
when the piston at Z is pushed down with a force of one
pound the siston at F must be pushed down with a force
of ten pounds if we wish to keep it in its place.

353. The preceding two Articles supply rather an
illustration of the meaning of the principle of the trans-
missibility of pressure than a mode of establishing it very
strictly. For in practice there would be frietion which
would impede the motion of the pistons, and prevent the
accurate accordance of the facts with the theory. But
the truth of the principle may be readily admitted, as it
will be confirmed by numerous results which can be- de-
duced from it and verified by trisl.

354. We have hitherto supposed the two pistons to be
Klaeed in the upper surface of the vessel. But suppose we
ave a piston at @, a place in the side of the vessel ; let
this be of equal area with the pistons at Z and . 1t will

A B
be found on trial that even if we exert no force at £ and
F the piston at G will be thrust out; this arises from the
weight of the liquid, as we shall see in the next Chapter.

T. P, 10
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Su; that a force is applied to the piston at G, just
m%‘;:t to keep it in its place, so that the liquid remains
in equilibrium. Let now the piston at £ be pushed down
with any force, say a force of one pound; it will be found,
as we said before, that to preserve equilibrium the piston
at # must be pushed down with a force of one pound : and
moreover we must push in the piston at @ with a force of
one pound in addition to the force already exerted on
it. Thus the force applied at £ is transmitted to the
equal area at G. Also if the area of the piston at @ is
ten times the area of the piston at E, then when a force
of one pound is applied to the piston at £ we must in
order to preserve equilibrium apply a force of ten pounds
to the piston at @, in addition to the force which it was
necessary to exert to keep this piston from being thrust
out before any force was applied to the piston at E.

355. In our illustration we have supposed the tubes at
E and F to be vertical, and that at G to be horizontal; but
the principle is not to be restricted to these cases. The
side of the vessel in which the tube is supposed to be in-
serted need not be necessarily either horizontal or vertical,
but may be inclined at any angle to the horizon. Still the
result will hold, namely, that when equilibrium has been
obtained by a) Plyin%)eproper forces to the pistouns, then if
any additional force be applied to one piston we must apply
an equal additional force to every portion of the same area
in all the other pistons, in order to maintain equilibrium,

356. The principle of the transmissibility of pressure
through a ﬂnidp explains the action of a little contrivance
which is called the Aydrostatic paradox; the name is
given because at first sight the effects seem out of propor-
tion to the causes in action.

CD and EF are flat boards, which are connected b
flexible leather, or cloth, 8o as to form a water-tight vesse{
AB is a vertical tube which communicates with the vessel.
Let the vessel and a part of the tube be filled with water,
and suppose a piston to work in the tube and to be re-
tained in its place by a suitable force. Suppose, for an
example, that the area of the bore of the tube is one
square inch, and that the area of the upper board of EF is
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' a thousand square inches. Then if the piston is pushed
down with an additional force of one pound the board E#'

A

B c D

will be thrust upwards with a force of a thousand pounds;
so that in fact the board would support the weight of a
thousand pounds placed on it without sinking down. It
will be seen after reading the next Cha;?ter that instead
of using a piston in the tube 4B the required force may be
obtained by making the column of water in the tube of
sufficient height. We shall see hereafter that the principle
of the hydrostatic paradox is the essential part of a valu-
able machine called Bramah’s Press.

The-important principle of Art. 208 applies here, namely
that what is gained in power is lost in speed: for if we
were to force the piston in the tube down through one inch
t.l;e boarcllLEF would ascend through only one thousandth
of an inc

XXVII. PRESSURE FROM THE WEIGHT OF
LIQUIDS,

357. We have hitherto considered liquids as contained
in closed vessels and transmitting toall points any pressure
which may be applied at their surfaces; but we have now
to treat of the pressure produced by the weight of liquids.

358. Suppose liquid put into a vessel open at the top;
then the upper surface will be a horizontal plane. That it
is a plane surface is obvious from common observation. To

19—2
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say that it is a Aorizontal plane means that it is at right
angles to the direction of gravity, and this may be esta-
blished by an easy experiment. If a plumb line be hung
over the surface of a liquid at rest the eye can discern that
the direction of the plumb-line and the direction of its
image reflected in the liquid seem to fall in the same
straight line; and when the student is acquainted with the
elements of Optics he will know that this shews the surface
of the liquid to be at right angles to the direction of the
plumb line. The result may
also be established by reason-
ing. Suppose the surface of
ai’iquidtobe curved, as de- c D el
noted by ABCDE. Consider B
a portion of the fluid BCD
such as would be cut off by a
plane BD inclined to thehori-
zon. Then this portion would
be like a body Placed on a
smooth Inclined Plane, acted
on only by its own weight;
and so it would not be in equi-
librium but would run down the Plane,

359. Let there be an open vessel with vertical sides
containing liquid Consider any portion of the area of the

D @ ¢

A

base, as for instance, ono square inch near the point P;
then the lit’w'd itself produces on this sguwminch & pressure
equal to ¢ weigz of a column of the liguid, of which
the area of the base is one square inch, and the height
18 the vertical depth g‘. P below the surface of the liquid.
Thus if the depth P@ is 28 inches, and the liquid is water,
the pressure on a square inch of the base at 2 would be
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equal to the weight of a column of water of which the base
is one square inch and the height is 28 inches. .Such a
column would contain 28 cubic inches of water. Now a
cubic foot of water weighs about 1000 ounces Avoirdupois,

so that a cubicinch weighsm

1728
28T02080 ounces, that is about a pound. It will be con-
venient to remember that a column of water of which the
area of the base is a square inch and the height is 28 inches
weighs about a pound Avoirdupois.

360. But let us advert to the evidence for the truth of
the preceding statement. We might contrive some ex-
rimental test. For instance the vessel might be placed
Ri;h on supports at its.corners, so as to allow of easy access
to the base; then a tube might be inserted at P in which a
piston should work; and the force necessary to sustain this
piston in its place could be found by trial. Or we might
adopt some methods of reasoning. For instance the sides
of the vessel being vertical it seems obvious first that the
whole pressure on the base must be equal to the whole
weight of the liquid, and next that the pressure on any
assigned part of the base will be proportional to the area
of the part; and from these two natural suppositions the
result will follow. There is also a method of reasoning
which may apﬂear somewhat artificial to the reader at first,
but which well deserves attention as it is very useful in the
theoretical investigations of the subject. Consider a vertical
column of the liquid which has for its base an area of a
square inch at P, and reaches up to the surface of the
liquid. Conceive this to become solid; then we may take it
as obvious that the ?ressure on the square inch is not
altered. The weight of this solid column must be supported
by the resistance of the base, which is equal and opposite
to the pressure the liquid exerted on the base. For the
liquid around the column will exert pressures on it only in
horizontal directions, and so will in no & counteract
the weight of the column. Thus finally the pressure on
the square inch of area at P is equal to the weight of the
column of liquid standing on this square inch of area as
base.

ounces, and 28 cubic inches

weigh



150 PRESSURE OF WEIGHT OF LIQUIDS.

361. Next suppose a plane area of one square inch to
be placed at any point between P and @, in a korizontal
pozition. The pressure on one side of it, say the n(rper side,
will be equal to the weight of the column of liquid above it.
This will appear obvious on reflection. We might suppose
all the liquid below the plane area to become solid, and
allow that the pressure on the plane area would remain
unchanged : then this case reduces to the former.

362. Next suppose that at any point of the lignid we
put an area of one square inch inclined to the horizon. The

D 9 ¢

A P B

pressure on one side will be the same in amount as if the
area were horizontal and aé the same depth.. The words
at the same depth are used for brevity; they require a
little explanation in order to bring out their strict sense.
The depth of the inclined plane must be understood to
mean the average depth, that is the depth of the centre of
gravity. It would not be easy to obtain a very simple direct
verification of this statement; but we may give an experi-
mental illustration which will serve to render the meanin,
clear. Let there be a flat piston moving in a tabe cl
at the bottom and quite water-tight; and in the tube let
there be a spring which resists the motion of the piston,
80 that a certain pressure must be exerted on the piston to
maintgin it at a certain position in the tube. t the
whole under the surface of the liquid; then the pressure
exerted by the liquid pushes the piston in until there is
equilibrium between the pressure and the resistance of the
spring. Then for all positions of the piston so long as the
centre of gravity of its area remains at the same depth the
piston will remain in equilibrium.

863. All the results we have given in this Chapter
aro obtained on the supposition that the upper surface
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of the liquid is left free. If a lid is put on the upper
surface, and pushed down, this gives rise to an additional
pressure which is transmitted to every point of the liquid.
It will appear hereafter that the atmosphere produces a
pressure of about fifteen gounds on every square inch
of surface exposed to it ; and this pressure is transmitted
through the liquid to a square inch of area placed in any
position within the liquid.

364. But at present we leave out of consideration the
action of any other force except the weight of the liquid
itself; and the results at which we have arrived may be
summed up briefly thus: the pressure at any point of
a lquid is proportional to the depth of the point below
the surface, and 13 the same in every direction. Like
many other brief statements this would be scarcely in-
telligible without previous explanations. We measure
pressure at any point by the pressure on a certain small
area, say a square inch, so placed as to have its centre of

vity at the point; and when we say that the pressure
i8 the same in every direction we mean that this area may
be placed at any inclination to the horizon.

365. The fact that the pressure is the same tn all
directions round any assigned point, to which we have just
drawn attention, is quite distinct from the fact that liquids
transmit pressure from one point to another: both are
very important properties of liquids.

366. The reader will observe that we speak of the
pressure of a liquid a¢ a point and not of the pressure on
a point ; in order to form a notion of the pressure of a
liguid we must suppose that it is exerted on some definite
area; this area may be very small, but it is not what is
called a point in geometry.

XXVIIL. VESSELS OF ANY FORM.

367. In the preceding Chapter we supposed liquid
to be contained in a vessel with zertical sides; but we
must now proceed to some other cases.

R
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Let us suppose liquid to be contained in vessels which
have sides that are not vertical; these sides may slope
outwards as in the left-hand side diagram, or inwards

.

A B A B

as in the right-hand side diagram. The two results which

were. obtained in the preceding Chapter, and summed up

in Art. 364 are still true, and thus we shall be led to some
- curious and important consequences.

368. Consider the case represented by the left-hand
side diagram. The pressure on the base of the vessel is
equal to the weight of such a column of the liquid as
would stand vertically over the base; thus it is less than
the weight of all the liquid contained in the vessel. The
weight of the liquid contained in the vessel is equal to the
vertical component of the pressure on the vessel; but this
does not fall entirely on the base; part falls on the in-
clined sides. Next consider the case represented by the
right-hand side diagram. The pressure on the bdase of
the vessel is equal to the weight of such a column of the
liguid as would stand vertically over the base; thus it is
greater than the weight of all the liquid contained in the
vessel. ‘In this case, as in the former, there is pressure by
the liquid on all the vessel in contact with it, and therefore
resistance from the vessel on the liquid. But in this
case the vertical component of the resistance from the in-
clined sides tends downewards; and the difference between
this and the resistance of the base upwards is equal to the
weight of the liquid in the vessel.

369. The following is the general result. Let there
be a. series of vessels all having flat bases of the same
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area, all open at the top, and filled with the same liquid
up to the same keight; then the pressure on the base of
any vessel will be the same, namely the weight of such a
column of the liquid as would stand vertically over the
base. The vessels may have any shape whatever; they
may be like cups, or jugs, or decanters, or pails; and the
omningatthe top mayi)e as small as we please. Itis
plain that we have thus a fact of the same nature as that
involved in the Hydrostatic
Paradox. Suppose that the
;eswl is in the fl(;\nrgn suggeaht:{l
the diagram, e and shal-
loyw, with a tall slender neck.
Pour in liquid until it fills all ]
the shallow and the neck 4 B
up to CD. Then the pressure .
on the base of the vessel, represented by A4 B, is equal to the
weight of such a column of the liquid as would stand
on this base and reach up to CD: and it is obvious that
this may be many times as large as the weight of all the
liquid contained in the vessel.

D C

370. - The reader will observe that the pressure about
which we are speaking is the pressure of the liquid on that
side of the base with which it is in contact, and not the
pressure between the other side of the base and the table
or ground on which the vessel may be sugposed to stand.
The latter is equal to the sum of the weights of the vessel
and the liquid which it contains, by the ordinary principles
of mechanics,

371. Experimental evidence can be furnished of the
truth of the general statement of Art. 369. Vessels are
constructed of various shapes, as suggested in that Article,
and havinﬁ bases of the same area. These bases are not
Jized to the sides of the vessels, but are kept in contact
with them by forces which can be exerted by means of a
lever. Then it is found that when the vessels are filled up
to the same height the same force must be exerted in
every case in order to keep the moveable base in its
place.
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372. The theoretical demonstration of the statement is
so simple that it well deserves the little attention which
is necessary in order to understand it.

Let P be any point in the base of a vessel containing
liquid : we wish to shew that
the pressure on an assigned D S ¢
area at P is equal to the
weight of a column of the

liguid which would stand on

that area, and reach up to Jq———R

the surface of the liquid CD. 1P B
If a vertical straight line can

be drawn in the liguid from P to the open surface the pro-
position has been already established, namely in Art. 359;
the case which we have to examine is that in which this
vertical straight line cannot be drawn in the liquid owing
to the inclined sides of the vessel. In this case however
it will be possible to pass fromthe point P to the open
surface by a zi composed of vertical and horizontal
straight lines; thus in the diagram we have PQ and RS
vertical, and @R horizontal. '

Now in the first place the pressure at R is known by
Art. 359; it is proportional to the depth RS.

Next we shall shew that the pressure at @ is the same
as the pressure at 2. For suppose the liquid in the form
of a slender horizontal rod along QZ, with parallel vertical
ends, to become solid; the pressures on its ends are the
only horizontal forces acting along the rod, and these must
therefore be equal for equilibrium.

Finally the pressure at @ being equal to the pressure
at R the column of liquid 2Q is in precisely the same
circumstances as it would be if it were placed vertically
under RS instead of in the position it occupies. Hence
the pressure on the assigned area at P is precisely the
same as it would be if a vertical straight line could be
drawn ¢n the liguid from P to the open surface.

373. Thus the pressure of the liquid on the base of any
vessel, which is open at the top, is equal to the weight
of such a column of the liquid as would stand vertically
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over the base, and reach up to the open sutface. The
pressure may be supposed to act at the centre of gravity
of the base : see Art. 172.

XXIX. PRESSURES ON THE SIDES OF VESSELS.

374. 'We have now sufficiently considered the pressure
on the base of a vessel containing liquid; we proceed to
the pressure on the sides. The fact that the pressure
increases as the depth increases suggests an obvious
practical remark with respect to constructions which are
intended to resist the pressure of liquids. Suppose we
have to carry a canal across a low valley, so that is neces-
sary to make embankments to serve as artificial sides for
the canal. Since the pressure of the liquid increases in the
same proportion as the depth, the strength of the embank-
ment ought also to increase with the depth: thus the
embankment should be wide at the bottom, and may
become gradually thinner towards the top.

375. Again, the pressure in a liquid depends on the
depth but not at all on the length of the vessel in which it
is contained. Hence if the water of a pond or canal is to
be restrained at one end by a flood-gate or dam, it will
not matter whether the channel of water is a few yards or
a mile long, so far as the flood-gate or dam is concerned;
the pressure is the same on it in the two cases. This is a
fact which often seems very puzzling to persons who have
not attended to natural philosophy; they do not consider
that when the channel is lengthened 8o as to involve more
water the sides are also lengthened which confine it, 8o
that there is no necessary increase of pressure on the end.
1t must be remembered however that the statement assumes
the water to be af rest ; if the water is liable to be thrown
into commotion by the wind or other causes it is plain that
a large mass of water will in general produce more im-
pression on the restraints than a small mass.
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376. Let ABCD re nt a vertical side of a vessel,
which is in the form of a rectangle; AB is supposed at
the bottom, and CD at the surface of the liquid. Let

D U
E P
4 B

EF be parallel to the top and bottom, and midway between
them. Take two equal and llel strips of the side, one
as much below EF as the other is above it; the pressure
on the former is greater than it would be for an equal
strip close to EF, and the pressure on the latter is just as
much less. Hence the sum of the pressures on the two
strips is the same as if they were both placed close to EF.
Proceeding in this way we see that the pressure on points
in EF may be called the average pressure all over the
side; and the whole pressure is the same as if the whole
side were at the depth of EF. Thus the whole pressure
on the side is equal to the weight of a column of the liquid
having the vertical side for base, and half the depth of the
side for height. For instance, if the vessel is a cube open
at the top and full of liquid, the whole pressure on one side
is just half the pressure on the base.

877. The pressures on all parts of the plane side are
parallel, being all at right angles to the plane; hence in
this case the whole pressure is the same thing as the
resultant pressure: see Art. 166.

378. We know that for every system of parallel forces
there is a centre at which the resultant of the whole system
may be su;':ﬁosed to act: see Art. 166. When the parallel
forces are the pressures of a liquid on a plane this point is
called the cenire of pressure. In the case in which the
plane is the rectangular side of a vessel full of liquid the
position of the centre of pressure can be easily determined.
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For join the middle point of CD to the middle point of
AB; then the centre of pressure must be at some point
of this straight line, because the pressure on each hori-
zontal strip may be supposed to act at the middle point of
the strip. Thus the only questjon is how far down this
straight line the centrs of pressure will be; and the answer
is two-thirds of the way down,so that its distance from
the top will be twice the distance

from the bottom. In fact the c
problem of finding the centre of
these pressures i8 the same as
that of finding the centre of
gravity of a triangle. For sup-
pose a triangle 4BC, such that
AB and BC are the same as in
Art. 376. Divide this triangle
into narrow strips parallel to the
base, all of the same width. Then
the size of these strips will in 4 B
crease in just the same propor-

portion as their distapce from C, that is in just the same
proportion as the pressures of the liquid on the successive
strips into which we may suppose the side 4BCD in
Art. 376 to be divided. Hence the weights of the successive
strips of the triangle will represent the pressures on the
successive strips of the side of the vessel; and thus the
centre of pressure will be as far down in the side of the
vessel as the centre of gravity is in the triangle; that is
two thirds of the way down: see Art. 172

379. We have hitherto sup] the rectangular side
of the vessel to be zertical; but similar considerations
apply to the case in which the rectangular side is inclined
to the horizon. As in Art. 376 we shall find that the
average pressure is that along the middle horizontal line
of the rectanﬁ(:, and is measured by the vertical depth of.
this straight line below the surface of the liquid. Thus the
whole pressure on the side is equal to the weight of a
column of the li(}llid having the side for base, and half the
vertical depth of the side for height. The position of the
centre of pressure is the same as if the side were vertical.
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380. We need pot pursue the subject further, but we
may state a general remKt that is obtained by theory. If
a plane area of any form is immersed in a liquid the
pressure is the same at all points if the area is in a hori--
zontal position; but if the area is not in a horizontal
gggl}ion the pressure is greater as the vertical depth
mes greater. The aperage pressure is that at the
centre of gravity of the plane area, The whole or resultant
Eressure is equal to the weight of a column of the liquid
aving the plane areg for base, and the vertical depth of
the centre of gravity of the plane srea for height. No
simple rule can be givep for determining the position of
the centre of pressure.

381. The preceding result admits of a certain ex-
tension, which, though of no practical importance, requires
notice, for it is sometimes given in books in such a manner
as might mislead an incautious reader. Suppose a body
having a curved ‘surface, for example a sphere, to be im-
mersed in a liquid. Or suplpoge a vessel in the form of a
curved smface, for example a common bowl, to contain
liquid. It is still true that the sum of the pressures of
the liquid on the curved surface is equal to the weight of
a column of the liquid having this surface for base, and the
vertical depth of the centre of gravity of the surface for

_height. But we must remember that it is the sum of the
pressures and not the resultant of them which has this
value; the pressures not being all parallel, their sum and
their resultant are altogether different. Now there is no.
special mechanical importance belonging to the sum of a
set of forces, though there often is to their resultant:
hence this proposition relative to the tkole pressure
on any curved surface is really of no practical value,

352. One remark may be placed here, which will be of
use as we proceed. Suppose a mass of liquid at rest in-
a vessel, and fix the attention on any definite portion of
this mass; the portion may be in the form of a cube or
of a sphere, or of any body whatever, regular or irregu-
lar. The liquid surrounding it will exert pressures all
over it, but as the definite portion remains in equilibrium-
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the resultant of all these forces must be a vertical force,
equal to the weight of the definite portion, and passing
through its centre of gravity. For if these conditions are
not satisfied, the definite portion of the liquid cannot be at
rest; it would not be at rest even if it were solid, but
would go up or down or turn round; and so it will not be
at rest when it is liquid.

XXX, LIQUIDS STAND AT A LEVEL.

383. WE have shewn that the surface of a liquid in
equilibrium in a vessel is a horizontal plane. Now suppose
we put a liquid into a
vessel composed of two
vertical tubes connected 4
by a horizontal tube. The
surface of the liquid in
each tube will be a hori-
zontal plane as we have )
already stated; and moreover the two surfaces will be in
the same horizontal plane; thus if 4B and CD denote the
surfaces of the liquid in the tubes then 4.8 and CD are in
the same horizontal plane. This last fact we have not
hitherto explicitly stated, though it is intimately connected
with some of our previous results ; the fact in its various
forms is exp by saying that liquids seek their level.
It amounts to this: if liquid can 8 from one vessel
to another by means of a connecting channel it will do
80, until the upper surface of the fluid is throughout in the
same horizontal plane.

384, The preceding statement admits of easy ex-
perimental illustrations. It will be found, for instance,
to hold with respect to a common tea-pot and its spout.
If only a very small quantity of water is put into the tea-
pot it may remain below the point of communication with
the spout; but when more water is added it will pass
into the spout, and then it will stand at the same level
irrthe two parts of the vessel.
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385. The fact is closely connected in theory with
two others which bave come before us. We have shewn
in Art. 362 that the pressure at any point inside a liquid
is in proportion to the depth of the point below the open
surface ; and we have shewn in Art. 372 that the pressure is
equal at any two points in the same horizontal plane,
Now these two statements would not be consistent with
each other unless the liquid in communicating vessels
stood at the same level. All the facts too are connected
with the principle of Art. 184 that for stable equilibrium
the centre of gravity should be as low as possible; for
instance if the liquid in different communicating vessels
did not stand at the same level, we could bring the centre
of gravity of the whole to a lower position by taking liquid
from the place where it stood highest and putting it into
another vessel in a lower position,

386. So long as we keep within a few yards of the
same spot on the earth liquid in a vessel or in a small
pond has its surface practically a plane. But this is not
true with regard to large expanses of water; we know
for instance that the Pacific Ocean must be curved into a
hemispherical form, and even for lakes of moderate size
the deviation from a plane may be recognized. Thus,
suppose & circular lake of four miles in diameter; if an
accurately straight line could be made to pass from a point
just in the circumference of the boundary to a point on
the circumference diametrically opposite, it would dip
under the surface of the water, und at the middle of the
luke would be about 32 inches below the surface.

387. Thus for a lﬁe expanse of water the surface
is not plane but curv This leads us to give a strict
definition of a level surface; it is such that at all puints
of it the force of gravity has the same value, and its
direction is at right angles to the surface. The level
surfaces are very nearly spherical in form round a common
centre ; the force of gravity is less at any point of the
outer of two such surfaces than at any point of the inner.

388. The properties of liquids which we have con-
sidered produce various phenomena that are exhibited
on the surface of the globe, Water confined in a poad
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or hk:al maintainsfits:lf at ;i'esel'.(,1 and takes l:.alltlavgl surg;ee,
practically plane if the confined space is small, but other-
wise cm'ves into a nearly spherical form. On the other
hand if there be an outlet for the water, as the particles
have little cohesion they yield to the force of gravity and
descend. Thus rain falling on the tops of mountains, if the
soil is not soft and easily penetrable, collects in rills which
unite and form larger streams. These descend along the
sides of mountains and mix with others so as to produce
rivers. The course is determined by the nature of the

ound, and the general tendency of the water to descend.
ﬂ‘ is found that if the descent be about a foot in four
miles the stream in a straight channel would flow at the
rate of about four miles in an hour: the average slo)
of the large rivers of the world is greater than this. It
belongs to Physical Geography to describe the various
peculiarities which rivers present in their courses from
the mountains in which they rise to the seas into which they
fall, such as the cataracts which they form when they
change their level suddenly and violently, and their oc-
casional disappearance and reappearance after flowing for
some time underground. :

389. A canal is an artificial channel of water made
to connect two places. If the two ends are not in the
same level surface the entire course cannot he in one
level surface; and even if the two ends are in the same
level surface it may be difficult or impossible to construct
the canal entirely on one level owing to the presence of
mountaing, Of course if the canal were one unbroken
channel the water would descend from the higher parts
leaving them dry, and would overflow the banks at the
lower parts. To obviate this the canal in part of its
course consists of separate portions called locks which
stand at different levels, and which are separated from
each other by flood-gates. When a boat is taken through
this part of the canal a communication is opened between
the compartment in which the boat is and that into which
it is to pass: the water in the two compartments is thus
brought to the same level, the gates between them are
opened and the boat is drawn onwards. Thus every time °
‘a boat passes up or down through the locks some water

T. P. 11
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is lost from the highest part of the canal; and the supply
must therefore be perpetually renewed by natnn.lp or
artificial means. .

390. The mode in which water is conveyed through
our large towns offers an interesting exemplification of
the principle that liquids stand at a level. A reservoir
is formed at as high an elevation as the water is desired
to reach; this is kept full by means of water falling into
it or being pumped up into it from lower levels. Pipes

roceed from the reservoir through the town which is
go be supplied, and in any of these the water will rise to
the height which it has in the reservoir; so that it can
be brought to the upﬂ:r rooms of tall houses. The ancient
Romans were in the habit of bringing water to their towns
from a distance, by means of agueducts, that is by artificial
channels constructed on a level surface, or on a gentle
descent. Hence it has been supposed that they were not
acquainted with the principle that liguids stand at a level;
but it seems to be now made out that it was not ignorance
of this principle but a want of the n pipes which
kept them from using the modern system. Kven in recent
times the ancient system has been adopted as possessing
some special advantages; an example is furnished by an
aqueduct for supplying water to New York,

XXXI. VOLUMES OF SOLIDS IMMERSED IN
LIQUIDS.

391. If we wish to determine the volume of a solid body
of known regular form, as a cube or a sphere, we have only to
use the rules for the process which are given in books on
Mensuration. Thus, for instance, the solid body may be in
the form of a brick 9 inches long, 3 inches broad, and 2
inches deep; and then we know that the volume is ex-
pressed in cubic inches by the product of the numbers 9, 3,
and 2; that is the volume is 54 cubic inches. But rules
cannot be given for finding the volume of any irregular
body, as a stone or & coal. It is a natural consequence
that we usually estimate the (tuantity of solids by weight
rather than by volume, that is by pounds and ounces rather
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than by cubic feet and inches. On the other hand liquids,
by their property of yielding and ﬁlli:ﬁ all the corners of a
vessel in which they may be placed, allow us to determine
their volumes easily; and accordingly we usually estimate
the quantity of liqniés,by volume.

392. But we may also use the fundamental property of
litinids, namely their extreme mobility, to def e the
volume of a solid. We suppose that the solid will sink in
a certain liquid if left to itself; then if the solid be put into
a veasel of the liquid it will displace liquid equal in bulk
to its own. There are various forms in which this fact ma;
b:lf)resented. Thus sup a vessel of sufficient size just
full of water; let a solid be carefully dropped in and the
water which runs out accurately collected: then this water
is obviously just equal in bulk to the solid. The volume ot
the water co may be ascertained l:.);‘f)ourinﬁ it into
a vessel which has already been measured and bas lines
marked on its surface indicating how much it holds when
filled up to an assigned level. Or again, take a vessel con-
taining some water, though not full, and observe the level
at which the water stands; then Xut in the solid, which we
sup to go to the bottom and to be perfectly covered

water. The water now rises to a higher level than
before, and the bulk of the solid is exactly equal to that of
the water which would be comprised between the two
levels. This quantity can be easily calculated if the vessel
be of suitable shape; for instance, if the veesel have a rect-
angular base and its four sides vertical, the volume is found
by the rule which we have already exemplified in Art. 391.

393. We have supposed the solid to snk in the water,
but we know that man{nsubstances, as wood for example,
will not sink in water. In this case we must press the solid
into the water by a slender wire, or by other means. Or
we may attach the solid to another of such a nature that
both together will sink in water, and thus we can find the
volume of both together; then we can find separately the
volume of the sinker, and finally, by subtraction, the volume
of the solid with which we are concerned.

394. In the same manner as we pro) to find the
schole volume of a solid we may also find the volume of any

. 11—2
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part of it we lgleaso, rovided the part is such as could be
cut off by a plane © have only to keep that with
which we are concerned just below the surface of the water,
and observe how much of the water runs over if the vessel
were originally full, or through what space the level rises
.if the vessel were originally only partly filled.

. 395. There are however practical difficulties which may
obstruct the process in the case of some bodies. Thus the
solid may be soluble in water; then perhaps some other
liquid may be found in which the solid is not soluble. Or
the water may make its way into the pores of the substance,
as it would within a ?onge; then perhaps a thin coat of
varnish can be agplie sufficiently durable to keep out the
.wet during the short time occupied by the process,

XXXII. WEIGHTS OF SOLIDS IMMERSED
IN LIQUIDS.

396. In the preceding Chapter we have treated of the
-immersion of solids in liquids as affording a method of
determining the volumes of solids. In that Chapter there
‘is no mechanical principle involved; the whole is a matter
of mensuration, that is of elemen Geometry: but we
are now about to introduce the er to some very im-
‘portant mechanical facts, Let us suppose that a person
takes a stone weighing about 5 pounds, fastens a string to
it, and holds the other end of the string; then he supports
the stone, that is he exerts a force sufficient to balance the
weight of 5 pounds. Let him now hold the string so that
the stone may be immersed in a bucket of water; if the
stone rests on the bottom of the bucket it is supported
without the exertion of any force by the person. But let
us suppose the stone not to touch the bottom of the bucket;
in this case the weight is apcrarently much less than before
"the stone was immersed, and will seem to the person hold-
ing the string to be about 3 pounds. The fact is one which
can be easily verified to a.ng extent, and it is universall,
found that when a heavy body is thus suspended in a liqui
in which it would sink if left alone its weight seems dimin-
ished; the heavy body is as it were to some degree sup-
-ported by the liquid. It is customary to say that the solid
Joses a portion of its weight.
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897. The next point to settle is the amount of this
diminution of weight. The following is found to be the
law: when a solid is suspended in a liquid the weight is
diminished by the weight of an equal bulk of the liquid.
Or instead of saying by the weight of an equal bulk of the
liquid we may say by the weight of the liquid displaced.
This law can be easily verified. In the case of the stone
which we considered in the preceding Article the weight
can be accurately determined before immersion. Agai
when the stone is immersed let the end of the string ins: )
of being held by the hand be fastened to the end of the
arm ,of a balance, or to a spring which serves as a weigh-
ing machine; thus the apparent weight can be accurately
determined. Therefore, gy subtraction, the diminution of
weight becomes known. ' And, as in the preceding Chapter,
we can find the bulk of the liquid which is equal to the
bulk of the solid ; and consequently the weight of so much
liquid becomes known. From these results we can make the
requisite comparison, and thus the truth of the law which
wo have stated is established.

398. Besides the direct comparison of weights by
which, as we have shewn in Art. 397, the truth of the law
is established, there are indirect methods by which we ob-
tain the same result. Before the stone is immersed its
whole weight is supported by the hand. Suppose the sides
of the vessel are vertical. When the stone is immersed
the weight of which the hand is relieved must be thrown
on the vessel in some way, and we may naturally infer that
in consequence there must be an increase of pressure on
the base just equal to this, and therefore the same increase
in the pressure of the vessel on the ground or on any sup-
ports on which it rests. Take a vessel full of water and
attach it to some weighing machine; suagend the stone in
the vessel; then water runs out equal in bulk to the stone,
but the spring wzighing—machine does not alter its reading.
The relief afforded to the weight of the stone immersed is
thus inferred to be exactly equal to the weight of an equal
bulk of the water. .

399, Or we may establish the truth of the law by
reasoning. Suppose a solid immersed in a liquid. The
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resultant force of the liguid on the solid may be naturally
taken to be exactly equal to what it would be on any body*
of precisely the same size and shape as the solid whatever
might be the material of which it was composed. Hence it
would be exactly equal to the resultant action on so much
of the liquid itself as would occupy just the same space as
the solid; and therefore, by Art. 382, this resultant action
is a force upwards equal to the weight of the liquid dis-
placed. Thus the diminution of the weight of the suspended
solid is equal to the weight of the liquid displaced.

400. We have hitherto ll:;lﬁm_poeed the solid entirely
immersed in the liquid ; but si considerations apply to
the case of a solid partially immersed. The diminution of
weight will be equal to the weight of so much liquid as
agrees in bulk with the immersed portion of the solid; or
we may say briefly that the diminution of weight is equal
to the weight of the displaced liquid.

401. Next suppose we have a solid that does not sink
but floats on the liquid. In this case the sokols weight is
lost, that is the whole weight is supported by the liquid.
Hence by Art. 400 we see that when a solid floats on &
liquid the weight of the solid is egual to the weight of the
liquid which it displaces.

402, It will be convenient to state some facts relating
to the weight and volume of water which are wanted for
numerical applications.

The grain is thus determined: a cubic inch of pare
water weighs 252458 grains.

A pound Avoirdupois contains 7000 grains.
A cubic foot of water weighs 1728 x 252'458 grains, that
jg 16x 1728 x 252458 ounces Avoirdupois: it will be found

70 .
that this number to three decimal places is 997°137. Thus
it is usually sufficient in practice to take 1000 ounces
Avoirdupois as the weight of a cubic foot of pure water.

A gallon is a measure which will hold 10 pounds Avoir-
dupois of pure water, that is 70000 grains. Hence the
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number of cubic inches in a gallon is %‘%; it will be
found that this number to three decimal places is 277-274.
Thus it is usually sufficient in practice to take 277} as tho

number of cubic inches in a gallon,

XXXIII. APPLICATIONS,

403 The principles of the preceding Chapter lead to
various interesting applications and illustrations. One of
the most important 18 the comparison of the weights of

ual bulks of various substances. The specific gravity of
:qbody is the proportion which the weight of the body bears
to that of an equal bulk of some standard substance; and
- the standard substance is usually pure water at the tem-
perature of 62 degrees of Fahrenheit’s thermometer. The
mode of determining the specific gravity of solids is in
principle that of Art. 397, with due precaution to ensure
accuracy. The solid is weighed, the weight of an equal
bulk of the water is found; and the former result divided
by the latter gives the specific gravity. We shall recur
to the process hereafter, and shall consider also the spe-
cific gravity of liquids and gases; we give here a few of
the results which have been obtained with r t to
solids; the figures are to be found to ¢Aree decimal places
in various works; but with much diversity, so that it will
be sufficient here to go to one decimal place.

Platina 21°5. Copper 8°9.
(L]{old 194, '}ron 78

ercury 13°6. in 73.
Lead 114 Marble 2-7.
Silver 105. Ivory 19

Thus platina is 21'5 times heavier than water, bulk for
bulk; gold is 194 times heavier; and so on. Some of
these results are liable to a little modification under cir-
cumstances; thus for hammered.gold the specific gravity is
nearly 194, and for cast gold it is 19-26. Since a cubic
foot of water weighs very nearly 1000 ounces Avoirdupois
we can immediately determine the weights of known
volumes of other substances, with sufficient practical accu-
racy, by means of a Zuble of Specific Gravitics, For



168 APPLICATIONS.

instance a cubic foot of iron will weigh 7'8 times as much
a8 a cubic foot of water, that is it will weigh 7'8 times 1000
ounces, that is 7800 ounces. Hence a cubic inch of iron
will weigh 7800 ounces,
1728

404. Platina and gold are comparatively scarce sub-
stances, 80 that we are limited in the use of very dense
materials, that is of materials which are extremely heavy
for a given bulk. The power of man over matter is in
many ways great; in particular we shall see when we
describe the air pump, and some other machines, that we
can obtain matter in a state of extreme tenuity; but as
yet no means have been found for obtaining matter in a
staté of extreme density. It is obvious that there are
various useful applications which might be made of a
very dense substance if such could be readily procured.
Thus in forming sea walls, or the foundations of the
arches of bridges and other constructions under water, a
stone as dense as gold if it could be easily found or com-
posed artificially would be of great service. So, too, a
strip of extremely dense material would be very advan-
tageous for the keel of a ship.

405. The support, whether partial or total, which a
solid body in a liquid receives from the liquid is a very
familiar fact,and is often expressed by the term buoyancy.
It is obvious that the degree of support depends on the
nature of the liquid. Thus the Table in Art. 403 shews
that silver, lead, copper, iron and tin will all sipk in water,
and all float in mercury. So also as oil is a little lighter
than water, bulk for bulk, a body might sink in oil which
would float on water.

406. The human body when the chest is expanded by
drawing in air is rather lighter than an equal bulk of
water, 8o that it would float on water with some portion
not immersed. A person who floats has to exercise care
to preserve the mouth and the nose above the surface of
the water, 80 as to secure the power of breathing. When
the air is expelled from the chest the bulk of the body is
sensibly diminished while the weight suffers no appreciable
change; and then the body sinks a little in the water.
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Thus the body is in a perpetual state of oscillation up and:
down; the body in sinking falls a little below its equilibrium
position, and in rising ascends a little above it. When a
man uses his hands to assist himself in swimming or in
floating, his proceeding resembles that of a bird when
flying; the reaction of the water for the man, and of the
air for the bird, is a force which is perpetually urging the
body upwards,

~ 407. The buoyancy afforded by water is obvious to
persons wading or bathing. In deep water 8o much is the
weight diminished that the feet are scarcely sensible of
any pressure. Stones and rocks may be trodden on
without inconvenience, which by their sharpness or rough-
ness would cause great pain to a person walking barefoot
on them without the support of the water. In trying to
ford a river where there is a current men and animals
have sometimes been thrown down by a comparatively
slight stream, on account of their small pressure on the

und, and consequently the small sustaining friction.

t water is denser than fresh water, and therefore it is
easier to swim and float in seas than in rivers. A cubic
foot of salt water weighs about 1027 ounces. An experi-
ment is sometimes porformed which shews the difference
in buoyancy between salt water and fresh water. An egg
will sink to the bottom in a vessel of fresh water, and will
float in a vessel of salt water. Let fresh water be poured
gently on some salt water in a vessel; then a mixture of
the two takes place where they are in contact. Put an
egg carefully into the upper part; then it will descend,
and after a little oscillation it will rest in a position where
it displaces liquid in weight equal to its own. This
position. of the egyg is one of stable equilibrium; for if the
egg be depressed a little it comes into the place of some-
what denser liquid, and is urged up again; and if the egg
is elevated a little it comes into the place of somewhat
rarer liquid, and is-urged down again.

408. It is possible to give to a body composed of
any material such a form that it will float upon water.
Thus a basin composed of metal or china will float with
the convex side downwards, In this case the body dis-
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places as much water as a body of the same shape and
weight would do, if instead of being hollow it were com-
pletely closed up; at least such is the case if we neglect
the insignificant weight of the air which the hollow body
holds. A tea-cup may be put into water with its convex
part downwards, and it will be observed to float, and it
will continue to float if some water be poured into it; by
gradually increasing the water we find that before the.
cup is full it will sink, namely when the weight of the cup
and of the contained water is greater than the weight of
the water which the whole cup would displace. )

409. A ship which is formed of wood might float
even if filled with water; for wood in general is lighter
bulk for bulk, than water. But some wood is heavier,
bulk for bulk, than water; and in all cases, taking into
account the metal used in the construction, the whole
weight of a ship may be greater than the weight of an
equal bulk of water, so that the ship would sink if filled
with water. But as long as the water is kept out the
ship floats with a part above the surface of the water.
Ships can be made of iron, as we know by constant obser-
vation; for increased safety they should be divided into
water-tight compartments, so that if the water enters ono
compartment by a leak or any accident, the water dis-
placed by the other compartments may still keep the
vessel afloat. The buoyancy of fluids is seen in a remark-
able degree in the case of the ironclads which are
now constructed. Notwithstanding the weight of the
armour, several inches thick, which covers the sides, and
the additional burden of the enormous guns, the vessels
float. The fact is that they are of vast size, and so the
weight of the displaced water is very considerable.

410. We may weigh a ship by means of the principle
that the weight of the ship is equal to the weight of the
displaced water. For the form of the ship is in general
sufficiently regular to enable us to determine the volume of
the ‘displaced water by the aid of rules given for the
P : see Mensuration, Chapter XXXI. And when
we Enow the volume of the displaced water we can imme-
diately find its weight. A simpler calculation of the same
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kind will tell us how much more freight can be put on
a ship, when it already floats in a certain position. The:
area of the plane of Rotation means the area of a hori-
zontal section of the ship made at the surface of the water.
Now su this area 18 1000 square feet in the case of a
certain ship, and that it is safe to sink the ship an ad-
ditional foot in the water; then the additional water
displaced will be about 1000 cubic feet, and consequently
the ship will bear an additional weight equal to that of
1000 cubic feet of water. If this is salt water the weight is
about 1027000 ounces, that is 64137 pounds.

411. The use of bladders and corks to enable persons-
to float is well known. The bladder filled with air is
practically of no weight, so that when it is attached to the
person and kept below the surface an upward force is
obtained equal to the weight of the water which the in-
flated bladder displaces. In the case of the cork the.
upward foroe is equal to the weight of the water displaced
diminished by the weight of the cork itself; and the weight
of the cork is appreciable, though small.

412. The pontoons used in military operations may be
noticed. These are simply water-tight casks which are
usually made of metal for greater strength. They are put
into a river in sufficient number and connected together;
they float, and will continue to do.so even when laden with
heavy weights, so that they can be used as a temporary.
bridge for the passage of an army and its artillery. The
same principle is applied to life-boats; they have round
them a hollow metallic tube which by itself would float,
and so when fastened to the boat below the surface of the
water it gives buoyancy to the boat.

413. A contrivance called a camel has been used in
Holland for enabling ships to pass over a spot in the water
which would otherwise be too shallow. Large chests full
of water are fastened to the sides of the ships ; the water
is then removed and the increased buoyancy enables the
ship to float over the shallow spot. The water may be
removed from the vessels in various ways. Pumps may be
employed ; or if the vessels have no tops and their upper

rl:,s ire above the surface, the water may be drawn out
uckets.
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414, The principle of floating bodies is used to re-’
te the supply of liquids to reservoirs or other vessels.
or instance, water is admitted to a tank, and it is re-

quired to keep the water always at or below a certain level
in the tank. For this a ball-tap is the usual contrivance.
A hollow ball of metal floats on the surface, and therefore
rises a8 the level of the water rises. This ball can be
connected by a wire or a lever with a tap or valve placed
at the pipe through which the water enters the tank ; and
the wire or lever is 8o adjusted as to close the valve when
the water has risen to the prescribed level. A valve is a.
contrivance much used in machines which are connected
with fluids; it is a little door which can open or shut so
as to allow passage to a fluid through a pipe in one
direction, but not in the contrary direction.

415. The Diving Bell is an instrument which we shall
describe hereafter; but the reader perhaps already knows
that by means of it work may be done under water. For
instance, the contents of a sunken shi? mnai.{ he examined
and recovered, and the foundations of buildings may be
laid in the sea. The workmen find that their power of
moving objects seems to be vastly increased under the
water ; the weight of most stones is little more than half
the weight on dry land, so that a man can move a stone
ll::;z&}y twice as great as the largest he could move on dry

XXXIV. DIFFERENT LIQUIDS.

416. We have hitherto considered only one kind of
liquid at a time, but there are various phenomena con-
nected with the presence of two or more liquids in com-
munication.

'417. Suppose_that oil and water are mixed together
in a vessel ; it will be found that after a little time has
elapsed the water which is the heavier liquid will occupy
the lower part, and the oil wl:iicltl h:i :ll:e lll)ghtedra:;q%ﬁ
will occupy the upper part, an e boun
tween thgytwo liqligeds lv?vill be a horizontal plane. It
might be possible with great care to get the oil into the
lower part of the vessel and the water over if, but the
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equilibrium would be wunstable; any accidental blow
would derange the system, and the water would finally get
to the bottom. In a similar -manner if water be mixed
with mercury the me will go to the bottom, and the
water to the top. If oil, water, and mercury be mixed
together the mercury goes to the bottom, the water takes
the middle position, and the oil goes to the top ; and the
bolalzldary between two different liquids is a horizontal
plane. :

418. Tt is easy to see that when we have thus two
or more liquids in a vessel some modification inust be
made in the verbal statement of results obtained in the
case of & single liquid. We must not say universally, as in
Art. 364, that the pressure is proportional to the depth;
though this will be true 'so long as we take points within

the highest layer of liquid. The pressure at any point

will be measured by the weight of a column consisting of
portions of different liquids, namely, of the liquids which
occur between the level of the point and the level of the
topmost surface. It will still be true that the pressure
is the same at all points in the same horizontal plane ; and

from this we deduce by reasoning that the boundary be-

tween two different liquids is a horizontal plahe.

419. We suppose that when different liquids are put
together they form what is called a mechanical mizturs,
and not a chemical combination. The reader may pro-
bably know that when two liquids are put together they
sometimes form a comgound possessing distinct properties
of its own, and which cannot be easily separated again
into the two liquids from which it arose. An example,
though not a very striking one, may be seen in the mixture
of wine and water; when such a mixture is made it will
not very readily s?lparate itself again like the mixture of
oil and water considered in Art. 417,

420. The principle that liquids stand af a Zevel, which
was explained in Chapter XXX, must now receive a little
limitation when different liquids communicate.

Supi)ose we have oil and water in different vessels,
but still in communication. For example, let there be a

-bent tube; let water occupy the lower part, and suppose
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it to rise on the left hand
side to thelevel AB. Let
G H be the common boun-
dary of the oil and the
water, and suppose the oil
to extend from GH up
to 1 l

e

AB and CD will not be in the same horizontal plane; CD
will be higher than 4B. We may easily state the relation
between the twolevels. Let EF be in the same horizontal
plane as GH ; thus CG represents the height of the oil,
and AE the height of the water, above the level of their
common boundary GH, 1t is found that CG is in the
same proportion to AE as the specific gravity of water
is to the specific gravity of oil. The specific gravity of

olive oil is about 9, so that in thismeAEisl%ofCG.

This important result can be fully verified by experiment,
but the verification is almost unnecessary because the
result is an obvious consequence of principles already
established. For the pressure at £ is measured by the
weight of a column of water of the height £4 ; and the
pressure at G is measured by the weight of a column of
oil of the height GC; see Art. 359. And the pressure at
G is equal to the re at E, by Art. 418. us finally
the weight of a column of water of the height £4 must be
equal to the weight of a column of oil on a base of the
same size and of the height GC. Then since the weights
are equal, the height GC must be to the height £4 in
the same ﬂproport.ion as the specific gravity of water is to
the specific gravity of oil.

421. Various illustrations of the prineiple involved in
Art. 417 present themselves. A simple case is the wali
in which cream is formed by the li%hter particles of mi
risini to the upper part of the vessel containing it. Again
by the application of Aeat a substance is in general ex-
panded, so that it becomes lighter, bulk: for bulk, than
it was originally. Let us suppose that heat is applied at
.the bottom of a vessel of water ; then as the lower layer of
water gains heat it expands, and so becomes lighter and
-rises to the surface. e heavier and colder water on the
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other hand descends, and thus in time the heat is com-
municated to the whole mass of water. The motion may
be easily watched, if the vessel be made of glass, by throw-
ing in some coloured particles of about the same specitic
vity as the water: for these are carried upand down
Ethe moving flaid. If, however, the heat is applied at
top of the vessel the water at the top is rendered
Iighter than the rest and so does not descend ; in this case
although the heat is ultimately communicated to the whole
mass of water, yet it is a much slower process than in
the former case. On the contrary if we wish to cool a
liquid the lowering of the temperature should be effected
at the top; for then the cooler liquid, being heavier than
the rest, descends, and other liquid comes to the top to
be exposed to the same cooling influence.

422. When heat is continually applied to water it is
found that if the water is in an open vessel its heat cannot
be raised beyond a certain point. At this point the water
becomes changed into vapour called steam. If the heat is
agplied at the bottom of the vessel the steam is formed
there first in the shape of bubbles., Steam is several
hundred times lighter than water, bulk for bulk, so that
the bubbles rise rapidly to the surface and escape ; this is
the well-known process called boiling.

XXXV. EQUILIBRIUM OF FLOATING BODIES.

423. We have already paid some attention to the
equilibrium of ﬂoatift;? bodies, but we must now consider
the subject more fully. We have shewn that when a
solid floats in equilibrium on a liquid the weiﬁht of the
solid is always equal to the weight of the liquid which it
displaces; but as we shall now see something more is
requisite to ensure the equilibrium of the solid.

424. Take in the first place a sphere of wood, and
depress it very gently in water until it has reached a
suitable depth; then it will remain at rest. Next take a
solid in the shape of a brick, made of wood, and depress
.it very gently, keeping the upper face alicays horizontal,;
"the same result will happen. But take this brick-shaped
solid, and put it into the water obliguely, so that it has no
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face parallel to the horizon; let it be depressed very gently
until the weight of the displaced water is equal to the
weight of the solid, and then be left to itself. The solid
most probably will not remain in equilibrium, but wil
turn over.

425. In order that a solid may be in equilibrium when
floating on a liquid two conditions must be satisfied. (1)
The weight of the solid must be equal to the weight of the
ligquid displaced. (2) The centre of gravity of the solid
and the centre of gravity of the liquid displaced must be
in the same vertical straight line. The first of these two
conditions has been already explained. If a solid be
wholly or partially immersed in a liquid it is acted on b
two forces, its own weight vertically downwards, whi
may be supposed to act at its centre of gravity, and a
force equal to the weight of the displaced liquid vertically
up which may be supposed to act at the centre of
gravity of the displaced liquid. If these two forces are
not equal the solid will move downwards or upwards ac-
cording as the former or the latter force preponderates.
But suppose that the two centres of gravity are not in the
same vertical straight line, then even if the two forces are
equal they do not keep the solid in equilibrium because
they are not directly apposed to each other; they will turn
the body round.

426. If a solid composed of materials lighter than
water, bulk for bulk, is put into still water we know as an
experimental fact that it will at last come to a position of
equilibrium. There may be for a time a movement up and
down, or a rocking to and fro; but the friction at last
stops the motion, and the solid remains at rest. Also even
if a body is composed of material which is heavier than
water, bulk for bulk, yet by giving to it & hollow form we
can in general secure for it a position of equilibrium when
put on water. The subject is very important, and is con-
nected with that of the stability and instability of equili-
brium noticed in Art, 182,

427. If we suppose the floating solid to be symmetri-
cal in shape, like a sphere, then it is easy to see that the
centre of gravity of the floating solid and the centre of
gravity of the water displaced do lie in the same vertical
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straight line whatever may be the depth of immersion;
and thus if this depth be suitably taken the solid will
remain in equilibrium. The same remark applies to the
brick-shaped solid when one face is kept horizontal. In
such cases the equilibrium is stable so far as regards any
movement up and down. For if the solid is pushed down
g little the weight of the water displaced is greater than
in the position of equilibrium; and so the upward force
*)repon erates, and the solid rises when left to itself. In
ike manner if the solid be drawn up a little the weight
displaced is less than in the position of equilibrium; and
80 the downward force ominates, and the solid de-
scends when left to itself,

428. Let us suppose a ship or such like body floating
in equilibrium on water. Let it be tilted by the wind or
some other force sideways. Let 4BC represent a vertical

section of the ship, taken at right angles to the length,
passing through @, the centre of gravity of the ship, and
cutting the keel at B. Let H be the centre of gravity of
the water displaced by the ship in its tilted position.
Then the ship is acted on by its own weight downwards at
@, and by a force vertically upwards at Z equal to
the weight of the water displaced. If these forces are not
equal t%ere will be motion upwards or downwards; but
this is of small consequence, because by such motion there
is a tendency to promote the required adjustment for
equilibrium, as explained at the end of the preceding
Article. The important question is as to the direction in

T.P, 12
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which the ship will turn round. Draw a vertical straight
line through #, and let it meet BG produced, if necessary,
at M. This point M is called the metacenire, and in books
which discuss the theory of the subject it is shewn how
the position of this point may be determined when the
amount of tilting is very slight; but the process is not
sufficiently elementary for our purpose. We may however
easily see the impertance which attaches to the position of
the point M. Suppose M to be, as in the diagram, above
G. Then it may be taken as tolerably obvious that the
Jjoint effect of the upward force at M and the downward
force at G is to turn the ship back again so as to bring
B@ to be vertical as at first. Thus the original position
of the ship is one of stable equilibrium with res to
this tilting. Suppose however that M falls below G; then
in the same way we see that the joint effect of the upward
force at M and the downward force at @ is to turn the
ship further away from the position in which B@G is verti-
cal. Thus the original Eosit.ion of the ship is one of
unstable equilibrium. with respect to this tilting. See
Art. 345.

429. Hence we see that it is essential for the safety of
a ship that the centre of gravity should not be too high up.
The proger situation is secured by putting the heavy gomfs
which the ship carries as low in the hold as possible.
After a ship has discharged the cargo it is found ne
to put into the hold sand or stones or such things for the
sake of bringing down the centre of gravity of the whole
as low as possible; these things are called ballast. So
also if people go on the water in a small boat they must be
careful to remain sitting down so as to keep the centre of
gravity low; and especially they should avoid any sudden
rising, which may elevate the centre of gravity, and tilt
the boat at the same time.

430. We may observe that we have not taken the
most general form of the investigation. We have assumed
that the body is of the nature of a ship so as to have its
two sides symmetrical, and we have supposed that the
tilting is from side to side. Under these circumstances
G and H remain always in the same vertical plane in which
.the tilting takes place; otherwise the matter becomes too
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‘e'émflicahd for an elementary book. As a simple ex-
ample let us suppose a sphere of wood floating on water.
The centre of gravity of the solid is the centre of the
-sphere ; and it is a result of geometr; that the metacentre
is also at the centre of the sphere. Thus the equilibrium
‘is of the kind which we have called neutral in Art. 183.
.If instead of a whole sphere the floating body is a portion
-of a sphere cut off by a plane, then whether this portion
is greater or less than a hemisphere, the centre of gravity
will be below the centre of the sphere, while the meta-
"centre is at the centre of the sphere; hence the body will
float in stable equilibrium when the flat part is horizontal
and outside the water. .

XXXVI. SPECIFIC GRAVITY OF SOLIDS

431. We have often in the preceding Chapters spoken
of one body a8 heavier than another, bulk for bulk; thus
gold is more than nineteen times as heavy as water bulk
Jor bulk. In other wordsa cubic inch of gold is more than
nineteen times as heavy as a cubic inch of water; and so for
a cubic foot. When we =peak of one body as heavier than
.another we may mean heavier bulk for bulk; in this sense
gold is heavier than iron. Or we may mean that one as-
signed body is heavier than another, as that a certain iron
bar is heavier than a certain %old coin. It is always plain
from the circumstances in which of these senses we use
the word keavier; the former is usually the sense required
in the ent work. We sometimes use the words heary
and light as if there were no comparison intended between
the body with which we are concerned and other bodies.
Thus we may say that lead is heavy and that cork is light.
But some comparison is really intended; we mean that
lead is heavier, bulk for bulk, than most objects with which
we are familiar; and that cork is lighter, bulk for bulk, than

most objects, or at least than most kinds of wood, with

which we are familiar.

432. We have already in Art. 403 defined specific
gravity as the proportion dof the weight of any substance to
the weight of an equal volume of the standard substance;

12—2
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and we have stated that the standard substance is usuall
water. But we must now be a little more precise wit
respect to this standard substance. Water as obtained
from springs or rivers is not always the same thing; it con-
tains various substances mixed with it in greater or less
degree, and hence the condition is added that the water
must be pure. Water is made pure by distillation, that is,
the water must be boiled and the vapour collected and con-
densed by cooling: in this way it 1s found that the sub-
.stances which common water holds in solution are left
behind, and pure water obtained. Moreover the bulk of
water changes as the temgeratnre changes, other things
being the same. It is found that pure water diminishes in
bulk as the temperature diminishes until the temperature
is about 40 degrees of Fahrenheit's thermometer, and after
that if the temperature is still lowered the bulk increases.
Hence the temperature of 40 degreesof Fahrenheit’s thermo-
meter is that which it is found convenient to take for the
standard. Thus finally we may say that the specific gravity
of any substance is the proportion of the weight of the sub-
stance to the weight of an equal volume of pure water at
the temperature of 40 degrees of Fahrenheit’s thermo-
meter.

433. The words dense and density are often used in
books on Natural Philosophy, and we may here exemplify
the meaning of them. We say that water has its greatest
density at the temperature of 40 degrees of Fahrenheit’s
thermometer, or that water is more dense at this tempera-
ture than at any other. The simple fact which we have to
express is that a cubic foot of water at this temperature
weighs more than a cubic foot of water at any other tempe-
rature. As a convenient mode of representing this to our
imagination we may su]ilpose that the particles of water
are closer together at the standard temperature than at
any other. The density of a given body then is ﬁater
the smaller the volume of that body is; thus if a y is
brought by cold or by pressure to occupy half its original
space we say that the density is doubled. It would not be
easy to double the denl:i)? of a solid or of a liquid; but the
density of a gaseous y can be easily doubled or even
still more increased. We sometimes extend the range of
the words dense and density, and use them in the com-
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parison of two bodies of different material; thus we may
say that gold is more dense than silver, or has greater
density; but in such a case we mean simply that gold is
heavier than silver, bulk for bulk.

434, In order to find the specific gravity of any solid
which will sink in water we proceed thus: weigh the solid
in water and out of it, the difference is the weight of an
equal bulk of the water; divide the weight of the solid
out of the water by this and the quotient is the specific
gravity of the solid. For example, a piece of gold is found
to weigh 97 grains, and on being immersed in water to
weigh only 92 grains; thus the weight of an equal bulk of
water is 5 grains, and therefore the specific gravity of the

gold is 37, that is 193, If the body is in the form of

small fragments it maty be put into a cup, and the whole
immersed in a vessel of water, and the weight in water de-
termined. Then the weight of the cup when immersed
alone in the water must be determined, and by subtraction
we have the weight in water of the collection of small
f ents. Their weight out of water can also be found,
and then the specific gravity becomes known.

435. If we know the specific gravities of two metals we
can determine the specific gravity of a compound formed by
melting together known quantities of these metals, assuming
that the volume of the compound is e%\;a.l to the sum of the
volumes of the two metals, and also that in the compound
the two metals are thoroughly mixed so as to form a com-
pound of the same density throughout. For example, su

we take 5 cubic inches of gold of which the specific
gravity is 19'4, and combine thém with 20 cubic inches of
copper of which the specific gravity is 89, and want to
know the specific gravity of the compound. We may if we
lease work with cubic feet instead of cubic inches, and our
guage will then become more simple,

A cubic foot of water weighs 1000 ounces;
a cubic foot of gold weighs 19400 ounces;
a cubic foot of copper weighs 8900 ounces;

thus five cubic feet of gold weigh 97000 ounces,
. and twenty cubic feet of copper weigh 178000 ounces.

A
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Therefore the twenty-five cubic feet of the compound-
weigh 275000 ounces, and therefore one cubic foot weighs
11000 ounces; and the specific gravity of the compound is

11000 .
m—o—, that is 1_1.

436. Various other questions may be proposed with
respect to compound bodies. Thus we may suppose that
we know we have 5 cubic inches of gold in the compound,
and 20 cubic inches of some other metal; also we may
have found by experiment the specific gravity of the com-
pound, and may wish to know the specific gravity of the
other metal in the compound. For example, suppose that
the specific gravity of the compound is found to be 11.
Then we know that a cubic foot of the compound will weigh
11000 ounces, and therefore 25 cubic feet of it will weigh
275000 ounces. But 5 cubic feet of gold weigh 97000 ounces,
and therefore 20 cubic feet of the other metal weigh 178000
ounces ; thus one cubic foot of it weighs 8900 ounces, and

the specific gravity of the metal is %g—g,that is 89. The

Tables of Specific Gravity shew us then that this metal has
Jjust the same specific gravity as copper, so that if we know
it to be a simple metal we infer that it is copper.

437. Or again we may have a com;l))ound body which
we know is made of %old and copper, but how much of
each we are not told. Then if we know the specific gravities
of gold, of copper, and of the compound, we can find the
quantities of gold and of copper in any assigned quantity of
the compound. The following is the rule: as the difference
of the specific gravities of fgold and of the compound is to
the difference of the specific gravities of gold and of cop-
per, so is the bulk of copscr to the whole bulk. In any
case the reader might find the quantities of gold and of
copper by this rule and then verify the result by the method
of Art. 435. The demonstration of the rule itself is not
sufficiently elementary for the present book.

438. A famous story relating to the philosopher Archi-
medes is always told in books which treat on the subject
now before us. Hiero King of Syracuse gave to an artist
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& certain welght of gold to be made into a crown. The
crown was furnished, and of course of the proper weight,
but the king suspected that some of the gold had been
replaced by silver, and he wished to settle this point with-
out doing any inj to the crown. He consulted Archi-
medes, and it is said that the mode in which the problem
miiht be solved flashed across the mind of the philosopher
as he was in his bath; and that in a transport of joy he
rushed from his chamber exclaiming in Greek, 1 have found
it, I have found it. But the story, as repeated in modern
times, seems to ascribe much more to Archimedes than he
really then discovered. What he did was probably this:
he used the principle that if a solid sinks in a vessel full of
water the wolume of the water ejected is exactly equal to
the volume of the solid. He found in this way the volume
of the crown, the volume of an equal weight of gold, and
the volume of.an equal weight of silver. This would be
sufficient to enable him to determine how much gold and
how much silver there was in the crown. He used in fact
the geometrical principle involved in Chapter XXXI, but
not the mechanical principle involved in Chapter XXXII.

439. We assume in the last four Articles, as stated in
the beginning of Art. 435, that the volume of the compound
is e% to the sum of the volumes of the metals which form

ut in practice this is frequently not the case, and thus
the real specific gravity of a compound differs from that
assigned by the process of Art. 435. For example, take the
specific gravity of copper as accurately 878, and that of
zinc as accurately 6'86; and let 14 pounds of copper be -
mixed with 7 pounds of zinc. Theoretically the specific
gravity_of the com&mnd should be 8'14; but by experi-
ment 1t is found to be about 8'6. The volume of the com-
pognq. is thus a little less’ than the volumes of the copper
and zinc.

440, Hitherto we have considered the specific gravity
of any substance to be the proportion of the weight of that
substance to the weight of an equal volume of the standard
substance. But we may shew that this is the same thing
as the proportion of the volume of the standard substance
to the volume of an equal weight of the substance con-
gidered. For example, suppose that the weight of a certain
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substance is equal to the weight of g of the same bulk of -
water. Thus the weight of a cubic foot of the substance is
2 of the weight of a cubic foot of water, and the speciic

gravity of the substance is g And g is also the preportion
of a volume of water to the volume of an equal weight of
the substance.

441. To find the specific gravity of a solid which is
lighter than water we may proce thus. Take a vessel
with vertical sides,and havinione side carefully marked with
horizontal straight lines so that we know how much of the
vessel is occupied by any liquid put into it by noting the
line to which the level rises. Fill the vessel with water up
to any of these lines, and note the line. Put the solid to
float on the water; in consequence of this the level will
rise: note the line at which the level stands. Again push
the solid entirely under the surface, and note the line at
which the level of the water stands. Thus we can deter-
mine the volume of the portion of the solid immersed when
floating in equilibrium, and also the whole volume of the
solid ; the former divided by the latter gives the specific
gravity of the solid. For example, suppose the side of the
vessel to be marked with equidistant horizontal lines ; and
let the level of the water rise from its first position through
24 divisions when the solid floats; and let the level of the
water rise from its first position through 4 divisions when
the solid is entirely immersed. Thus the two volumes are
in the proportion of 24 to 4; and the specific gravity of the

solid by Art. 440 s 2%, that is g.

442. Or we might determine the specific gravity of a
solid which floats on water in the following way. First
weigh the solid. Then attach one end of a string to the
solid, immerse the solid comgletely in water, and let the
string pass under a pully at the bottom of the water, then
rise vertieally and have its other end attached to the arm
of a balance. By this means we ascertain what is the
weight of water equal in bulk to the solid, diminished by
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the weight of the solid itself; and by adding the known
weight of the solid itself we obtain the weight of an equal
bulk of water. Divide the weight of the body by the weight
of an equal bulk of water, and the quotient is the specific
gravity of the body. For example, suppose that a solid
weighs 5 ounces; when the solid is kept completely im-
mersed in water by a string which passes under a pully and
then rises vertically, let the force which the string exerts
be equal to 7 ounces: then the weight of water equal in
bulk to the solid is 12 ounces, and therefore the specific

gravity of the solid is 112

443. There is still another method for determining the
:Eeciﬂc gravity of a solid which floats on water. Attach
e solid to a second so dense that both ther sink in
water; this body may be called the sinker. Weigh the two
together both in the water and out of the water; the differ-
ence is the weight of water equal in bulk to the two solids.
Also determine separately the weight of water equal in bulk
to the sinker, and then by subtraction we know the weight of
water equal in bulk to the first solid. Weigh this solid
separately; then its specific gravity is the quotient of this
weight by the weight of an equal bulk of water. For exam-
ple, & piece of wood and iron together weigh 138 ounces,
and in water 8 ounces; so that 130 ounces is the weight of
water equal in bulk to the two. Again, the iron alone weighs
78 ounces, and in water 68 ounces, so that the weight of an
equal bulk of water is 10 ounces; and the weight of water
equal in bulk to the wood is therefore 120 ounces. More-
over as the wood and iron together weigh 138 ounces, and
the iron alone weighs 78 ounces, the wood weighs 60 ounces.

Hence finally the specific gravity of the wood is 167(:),
that is ;.

444. We have made repeated umse of the important
principle that when a solid is immersed in a litiuid the
weight is diminished by the weight of an equal bulk of the
liquid, but there is one curious application of the principle
to which we have not yet drawn attention. The air is a
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fluid and possesses the property of buoyancy which all
liquids have. Hence a.nyli)od in air loses weight equal to
that of an equal bulk of air. us if we put any body into
one scale of a balance and a counterpoise into the other, we
must not in general take the counterpoise as representing
the ezact weight of the body. The fact is that the true
weight of the counterpoise, diminished by the weight of an
equal bulk of air, is equal to the true weight of the body
diminished by the weight of an equal bulk of air. If-the
body and the counterpoise have the same volume the true
weight of the countergoise is exactly equal to the true
weight of the body; but if not, -the true weight of the.
counterpoise is less or greater than the true weight of the
body according as the volume of the countérpoise is less or
greater than that of the body. The correction thus required
to the weight of a body when estimated in the usual way is
too small to be of importance in ordinary matters, though
it must be regarded in scientific investigations.

445. Tho specific gravities of some substances have
been given in Art. 403 ; the following are selected from an
elaborate Table in Dr Young’s Lectures which extends to
four places of decimals :

Diamond 362 Lignum Vitee 1'33
Flint glass 333 ‘Heart of Oak 1:17

Slate 2:67 Mahogany 106
Salt 213 ‘Walnut 67
Sulphur 203 ‘White fir *57
Newcastle coal 127 Poplar *38
Ice ‘93 Cork 24

The specific gravities of the woods must be taken as.
arerage values, for the results will vary according to the
character of particular specimens.

XXXVII. SPECIFIC GRAVITY OF LiQUIDS.

446. One of the most obvious methods of finding the
specific gravity of a liquid is by actually determining the
weight of an assigned volume of it. Let a flask be pro-
vided with a stopper which accurately fits it, and weigh the
flask and stopper. Also fill it with water and weigh it
again. Then by subtraction we know the weight of water
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which would exactly fill the flask. We are now prepared
to find the sgeciﬁc gravity of any liquid whatever, For fill
the flask with the liquid and weigh it ; subtract the weight
of the flask, and the remainder is the weight of the liquid
which would exactly fill the flask. Divide this by the
weight of the water which would exactly fill the flask, and
the quotient is the specific gravity of the liquid. For ex-
smg e, suppose that the water which would exactly fill the
flask is found to weigh 20 ounces, and that the liquid which.
would exactly fill the flask is found to weigh 18 ounces; then

the specific gravity of the liquid is ;—(8), that is 1%.

447. Or we may determine the specific gravity of a
liquid by tmmersing the same solid successively in the
liquid and in water. The weight lost in the first case is
the weight of the liquid equal in bulk to the solid, and the
weight lost in the second case is the weight of water equal
in bulk to the solid: divide the former by the latter, and the,
quotient is the specific gravity of the liquid. For example,
a piece of glass when immersed in sulphuric acid is ob-
served to lose 185 grains of its weight, and when immersed.
in water is observed to lose 100 grains of its weight: hence
the specific gravity of sulphuric acid is ;%g, that is 185,

448. Or we might determine the specific gravity of a
liquid by floating the same solid successively on the liquid
and on water. The volume immersed in the first case is
the volume of the liquid equal in weight o the solid, and
the volume immersed in the second case is the volume
of water equal in weight to the solid; divide the latter by
the former and the quotient is the specific gravity of the
liquid ; see Art. 440. For example, a solid floats on oil
and the volume immersed is found to be 25 cubic inches;
and when it floats on water the volume immersed is fqnmi,
to be 23 cubic i?ches: hence the specific gravity of the oil

23
is o=

449. Liquids are readily combined 8o as to form a new
liquid, and when the specific gravities of the components
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are known we can determine the specific gravity of "the
mixture formed of assigned quantities of them, assuming
that the volume of the mixture is equal to the sum of the
volumes of the components. For examnf;le sup) that a
pint of water is mixed with a pint of cohol of which the
specific gravity is ‘8, and we want to know the specific
gravity of the compound. We may if we please work with
cubic feet instead of pints, and our language will then be~
come more simple. :

A cubic foot of water weighs 1000 ounces;

a cubic foot of alcohol weighs 800 ounces.
Hence the two cubic feet of the mixture weigh 1800 ounces,
therefore one cubic foot of the mixture weighs 900 ounces,

and therefore the specific gravity of the mixture is 00

1000 ’
that is -9.
In practice however it is often found that the volume of
a mixture of fluids is not equal to the sum of the volumes
of the components: see Art. 439.

450. All the spirits which are used in the arts and in
ordinary life consist of mixtures of alcohol and some other
substances, of which water is the principal. It is often
important to know what proportion the alcohol is of the
whole in a certain mixture; or in ordinary language to
know the strength of the spirit. The more water is mixed
with the alcohol the greater the specific gravity of the
mixture becomes, When the mixture has about the same
specific gravity as oil it is called proof spirit, so that all
spirit which will float on oil is said to be above proof.
Thus the process of finding the specific gravity of a liquid
becomes one of practical interest, and various instruments
are used for the pu called Hydrometers. They all
depend on the principle that when a body floats on a liquid
it displaces a quantity of the liquid equal in weight to its
oWN:

451. The common Hydrometer. AB is a hollow cylin-
drical stem; C and D are two hollow spheres, which. have
their centres so situated that the axis of 4B if pro-
duced would pass through them. D is loaded with lead,
8o that the centre of gravity of the whole instrument
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may be below the centre of gmvi:jyl of the fluid displaced
‘when the instrument floats with the cylindrical stem ver-
tical and wpwards. When the hydrometer

floats in water suppose that the surface of A

the water meets the stem AB at P; and Q

when it floats in the liquid which we are

examining suppose that the surface of the

liquid meets the stem AB at @. Then the

specific gravity of the liquid is the pro-

portion which the volume of the part of the

instrument below P bears to the part of the

_instrument below Q; see Art. 440. The vo-

lume of the part below P is the volume of

the whole instrument diminished by the vo-

lume of the stem from P upwards; and the

volume of the part below Q is the volume of

the whole instrument diminished by the vo-

lume of the stem from @ upwards: thus these

volumes may be readily determined.

452, Sikes's Hydrometer. Thisinstru- 4
ment differs from the preceding in two
respects; the stem 4B is a very thin flat
bar, and there is a series of weights capa-
ble of being attached to the part of the
stem below the large sphere. These weights
are in the form of round discs with notches
cut in them by which they can ride on the
stem. The weights are of such magnitude
that if the instrument would float in a liquid
with the whole of its stem above the surface
the addition of one weight would sink it
nearly to 4. By the use of the weights
the instrument is in fact capable of being
converted into a series of hydrometers. So
long as we keep the same number of weights
attached below C, the. mode of obtaining
from the instrument the specific gravity
of a liquid is the same as in the preceding Article. But
if we have to use more or fewer of the weights when the
instrument floats on a liquid than when it floats on water
the -matter is not quite so simple. This hydrometer is
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employed by the excise officers under the authority -of
government to determine the specific gnvity of spirits, with
the view of fixing the amount of duty to be wE.id; it is
accompanied with a Table properly calculated which gives
the specific gravity of a liquid as soon as the number of
weights attached to the stem is known and the depth to
which the stem sinks has been observed.

453. Nicholson’s Hydrometer. C is a A
hollow cylinder or ball; 4 is a dish sup- \IB/
ported by a slender wire B, the direction of

which is the same as the axis of C, From
the lower extremity of C a heavy dish D is
suspended. The weights of the various parts
of the instrument are so adjusted that when o
1000 grains are placed in the dish 4, the
instrument will sink in water to a point
marked on the stem B near the middle of it. é

Therefore the weight of 80 much water as

would be equal in volume to the instrument

below the marked point is -equal to 1000

grains together with the weight of the in- D :

strument. Now put the hydrometer in the liquid which is

to be examined, and by increasing or decreasing the weight

in the dish 4 make the instrument sink again to the marked

Eoint. Thus we know the weight of so much of the
iquid as is equal in volume to the instrument below the
marked point. Divide this weight by the corresponding
weight in the case of water, and the quotient is the specific

gravity of the liquid,

454. Nicholson’s Hydrometer may also be used for
finding the specific gravities of solids. FPlace the solid,
reduced to a convenient size, in the dish 4, and let addi-
tional weights be placed in the dish until the instrument
will sink in water to the marked point. Then the weight of
the solid together with the additional weights which have
been used must amount to 1000 grains, and so the weight
of the solid is known. Next remove the solid from A4,
-place it in D, and as before add weights in 4 until the
instrument will sink to the marked point. Then the
-weight of the solid in water, together with the weights in A,
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must amount to 1000 grains, and so the weight of the solid
in water is known. Thus we know the weight of the solid,
and also its weight in water ; and therefore, by subtraction,
we find the wei%ht lost in water: divide the weight of the
-solid by this, and the quotient is the specific gravity of the
solid. Of course any other weight might be adopted
throughout instead of the 1000 grains which we have taken
for simplicity.

455. “The wire which supports the dish 4 in this
instrument is so thin, that an inch of it displaces only the
tenth of a grain of water. The accuracy of its results
.depending therefore on the coincidence of the mark on the
wire with the surface, which can always be ascertained to
a very small fraction of an inch, will come within the limit
of a very minute fraction of a grain. Specific gravities
may thus be obtained correctly to within & hundred thou-
sandth part of their whole value, or to five places of
decimals.”

456. The hydrometer might be usefnlli employed to
detect adulteration in various liquids which are used in
ordinary life. For instance, the specific gravity of milk
is greater than that of water, being about 1°03. By mix-
ing water with milk the specific gravity is made less than
that of milk, and the greater is the proportion of water
used the more is the specific gravity diminished. Thus a
very accurate hydrometer would enable us to find the
proportion of water to milk in a mixture of the two.

457. A gallon is such a measure of volume as will
just hold ten pounds :Avoirdupois of pure water. Hence
‘if we multiply the specific gravity of a liquid by 10 we
obtain the weight in pounds of a gallon of it.

I 432 The following are the specific gravities of some
‘liquids : .
1 Sea water 1027 Alcohol °795

Linseed oil 940 Naphtha ‘753

Olive 0il  -915 Ather 724
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XXXVIIL SPECIFIC GRAVITY OF GASES.

459. We have still to consider the ific gravity of
gases, and we will give a Chapter to the subject here,
although we shall have to allude to various matters which
will be more fully explained in some subsequent Chapters,
treating on Pneumatics.

460. Let us confine our attention first to one of the
gaseous bodies, namely common air, which surrounds us
altogether and which we continually breathe. Now al-
though air may at first seem to have no weight, yet it
really has; and we shall see hereafter that this gives rise
to many important results. Here we need only say that
if a flask be filled with air it will weigh more when
empty, shewing that the air has weight.

461. A very remarkable property of gaseous bodies is
that they may be compressed to almost any extent. Thus
air being put into a strong vessel we may compress it
into ha]é or a quarter of its original bulk. Moreover if
we keep air in a vessel under a certain amount of pressure
it will exd(;:nd by the application of heat and contract by
the withdrawal of heat. Again, the weight of an assigned
volume of air or of any gas will depend to some extent on
the quantity of watery vapour which is mixed with the air
or gas. Instruments called Aygrometers are constructed -
to shew the amount of this vapour. It follows from what
has been said, that in speaking of the specific gravity of any
gaseous body there are many circumstances which must be
regarded in order to fix the exact condition of the body.

462. 'We may now state the facts with respect to air
with sufficient accuracy for our purpose. Let the tempera-
ture be that of the freezing pomt of water ; let the air be
dry, that is free from watery vapour; let the air be in what
we may call its natural state of pressure, namely, the state
at which it is at the level of the sea on an ordinary day.
Then it is found that a cubie foot of air will weigh nem'{y
1. ounces; thus taking water for the standard, the specific
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gravity of air is 11—3%, that is ‘0013, Or we may say that

water is about 768 times as heavy, bulk for bulk, as air in
the state just explained. A more accurate statement is
the following: 100 cubic inches of air at the temperature
of 60 degrees of Fahrenheit’s thermometer, and under a
pressure denoted by 30 inches in the height of the baro-
meter, weigh 31'0117 grains,

463. The specific gravities of gases are usually referred
to common air as the standard; they may be referred to
water if necessary by means of the facts stated in the pre-
ceding Article. The subject however is not sufficiently
elementary to be pursued here; indeed the various gases
are not things with which we are so familiar as we are with
solids and liquids: the gases require the aid of chemistry
to make them known to us. The following Table gives the
ratio of the specific gravities of some of these bodies to the
:ﬁciﬁc gravity of air at the same temperature and under

same pressure,

" Hydrogen ‘0688  Carbonic acid 15245
Vapour of water ‘6201  Vapour of alcohol 1'6133
Nitrogen --- 976 -Chlorine © 24403
Oxygen 11026  Sulphurie acid 27629,

XXXIX. EFFLUX OF LIQUIDS.

464. The subject of the motion of liquids is one of

t difficulty, and though theory and experiment have
g:ee: much employed on it the knowledge gained up to
the present time is far from complete. We shall consider
only some simple cases.

465. Velocity of tssuing ligutd. If a small hole be
made in the side of a vessel which is full of liquid the
liquid will escape with a certain velocity. The forces
which produce the motion are the weight of the liquid
itself and the pressure of the surrounding liquid; these

T. P. . + 13
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would be in equilibrium if
there were no hole. Let 4B
be the surface of the liquid B
in the veasel, C the point at
which the holeis made, Then ck
it is found by theory that | [~ -
the velocity with which the “~n
liquid spouts out at C'is the N,
same as would be acquired D
by a body falling freely down

the space BC. This supposes that the surface 4B and
the orifiee at € are exposed to the same , a8 for
instanee that ef the atmosphere, which wxﬁ be explained
hereafter. If the pressure at the level AB is greater
than at O, the effeet is the same as if the height BC
were increased to the extent which would correspond
to this excess of pressure; and similarly if the pressure
at the level AB is less than at € the height BC must
be mspooed diminished to a corresponding extent. Each
particle of liquid on leaving the vessel will describe a
parabola by virtue of the principles of Chapter XX.;
and thus by the continuous stream of particles we obtain
a visible representation of the parabolic course,

466. If we suppose the hole to be in the shape of a
horizontal pipe the liquid will issue in a horizontal di-
rection, 80 glmt the particles start from the highest point
of their course and afterwards continually descend. But
we may if we please insert at C a short pipe inclined to
the horizon upw: and then the fluid will ascend ob-
liquely to some height before it begins to descend. Or
the short pipe may be first horizontal for a brief spacﬁ
and then turn vertically upwards: in this case the liqui
spouts vertically upwards, and according to theory would
rise to the level of 4B.

467. Although the theory on which the preceding
Article depends is beyond the range of the present work,
yet there 18 one part of the result involved in it of which
the reasomableness may be rendered tolerably evidént ;
and this process well deserves attention. The liquid at -
C issues with a certain velocity, namely, with that which
‘would be acquired in falling freely down BC. Hence if
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‘we want the liquid to issue with twice this velocity we
must make the hole, not at twice the depth of C below
‘the surface, but at four times this depth : that is, we have
‘a8 it were to provide four times the pressure in order te
secure twice the velocity. But the apparent difficulty is
‘'soon removed. For since the velocity at the lower hole
is to be double that at the higher hole, each particle issues
‘from the lower hole with double the velocity with which
it issues from the higher hole; and moreover supposing
the holes to be of the same size, double the number of
particles will issue in the same time from the lower hole
as from the higher hole. Thus, in all, we have at the lower
‘thole four times the effect &r:duoed which is produced at
the higher hole, corresponding, as might be expected, to
the circumstance that the pressure at the lower hole in
equilibrium is four times that at the higher.

. 468. There are two cases of the motion considered
in Art. 466, namely, that in which the liquid in the vessel
is always maintained at the same level, and that in which
it is not. In the latter case the value which theory gives
for the velocity does not agree with observation when the
level of the descending fluid comes near the hole. Bat in
‘both cases, s0 long as the hole is not too near the surface
of the liquid the actual velocity of the issuing liquid does
not differ much from the value assigned by theory. But
when the liquid is made to spout vertically upwards it
does not reach the level of the liquid in the vessel; the
velocity of the issuing fluid is diminished by the friction
against the sides of the pipe or opening through which
it escapes, and the resistance of the air also produces &
sensible effect.

469. If we know the size of a hole and the velocity
with which liquid is escaping through it, we can calculate
‘the amount of liquid which will flow out in an assigned
time. But in making such calculations and comparing the
results with observation it is found that the theoretieal
estimate is too large. Some curious phenomena have
been noticed in connexion with this subject. We will
suppose that the hole is very small, that it is in the base
of the vessel, and that the base is very thin; this special

13—2
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.case has been examined with much attention. At the
hole the particles of liquid do not move vertically down-
wards 8o as to form a cylindrical column, but the lines
of direction of the motion are inclined towards each other
as if they were about to meet at a point. Thus the stream
of issuing liquid is narrowest at a short distance from the
hole, and this part of the stream is called the vena con-
tracta or contracted vein. The area of a section of the
vena contracta is equal to about five-eighths of the area
of the hole. If in calculating the amount ¢f liquid which
.would pass in a given time through a hole in the base
-of a vessel we take the area of the veng contracta instead
of the area of the real hole, the result is found to agree
reasonably well with observation.

XL RESISTANCE OF LIQUIDS.

470. 'The resistance which a solid body experiences in
moving through a li(\l)lid is & matter of great importance in
practice; but the subject is not one which admits of ele-
mentary exposition, and we shall confine ourselves to a few
simple remarks. -

471, Bup that a flat board is urged through aliquid
which is itself at rest; suppose the board to move with
uniform velocity in a direction at right angles to its plane.
Then it is found bf{otheory that the resistance which the
board experiences from the liquid is at right a.ngles to the
board, and is eqlt)tgl to the weight of a column of the liquid
which has the board for base, and for height the space
1hrou%h which a body. must fall freely in order to acquire
the velocity. The height by Art. 127 is equal to the square
of the velocity divided by 64. But this theoretical result
is not very exactly confirmed by experiment.

472. If the preceding result be accepted as correct, we
see that we must apply to the board a force equal to the
weight of the column there mentioned in order to keep it
moving uniformly. For then the force which we apply
Jjust balances the resistance, and the board continues to
move with uniform velocity according to the First Law of
Motion. One fact involved in_this result deserves to be
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explicitly noticed: suppose a force to be applied just suffi-
ciel:s‘t toieep the boarmmg at a certa.?n uniform rate,
then if we wish to have the velocity doubled we must exert
Jfour times as much force, if we wish to have the velocity
tripled we must exert nine times as much force, and so on.
For according to the statement of Art. 471, if the velocit

is doubled the resistance becomes four times as 'great,‘ani
80 on. Moreover some reason may be given in explanas
tion, If the velocity of the moving board is doubled then
the board strikes against twice as many particles of liquid
as before in a given time, and also strikes each particle with
twice the velocity it did before. Thus the board may
naturally produce four times the movement in the liqui

which it did before, and so may itself experience four times
the resistance which it did before. .

473. Next suppose that the board is urged through the
liquid in a direction which is not at right angles to its plane.
Suppose for instance that the board faces North East,
but that it is urged in the direction from South to North.
In this case the resistance of the liquid is exerted as be-
fore at right angles to the board, and its amount is found
by resolving the velocity of the board intq two components,
namely, one at right angles to the hoard, and the other
along the board ; the former component is alone regarded,
and the resistance at right angles to the board is the same
as would be experienced by the board if it were moving in
this direction with this component velocity. When we have
thus obtained the resistance in the direction at right angles
to the board, we may often have to consider only that part
of it which acts in the direction of the motion of the board.
The whole process is somewhat beyond the range of this
book ; but the important principle still holds that if the
velocity is doubled the resistance becomes four times as
great, and so on.

474. We can thus understand the difficulty which occurs
in attempting to lﬁive avery great velocitX to bodies moving
in the water, as igs or steam-boats. As long as we keep
to the same steam-boat then in order to double the velocity,
supposed uniform, we must apply four times the force, and
g0 on. Much may be done by trial in devising the most

" favourable shape for the steam-boat in order to diminish
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the resistance, but still if we attempt to obtain a very great
velocity the resistance becomes too great to be overcome
with due economy in the use of force.

XLI. GASEOUS BODIES.

475. 'We have hitherto been explaining the properties
of liguids, that is of flaid bodies which, although not ab-
solutely incompressible, yet retain their dimensions practi-
cally unchanged under all forces to which they are usually
e In liquids the two opposing principles, cohesion
and repulsion, may be said to be nearly balanced. Inm air
and other gaseous bodies the repulsive principle prevails,
80 that cohesion seems scarcely to exist. The constituent
particles of the body fly asunder if left unconfined, and re-
quire to be constrained completely in some manner if we
wish to keep them before us for examination. They can
be compressed by suitable force to almost any extent, and
when the force is withdrawn they return to their original
dimensions. They are frequently called elastic fluids.

476. The distinction between solid, liguid, and gaseous
is not 8o much a distinction between bodies as a distinction
between the different states which the same substance may
assume. We know for instance that the same substance
may be solid in the state of ice, liquid in the state of
water, and gaseous in the state of steam. Chemists have
strong reason for believing that all bodies can be made to
sass into these three states, and that the state assumed

epends principally on the quantity of heat which is pre-
sent. Gaseous bodies are sometimes divided into two
classes; to one of these the term gases is more peculiarly
appropriated, and to the other the term zapours. A vapour
is a gaseous body which passes easily by a reduction of
. temperature, or an increase of pressure, into the liquid
state; thus steam is a vapour because by a slight cooling it
is reduced to water. A gas, strictly so called, retains that
form under all ordinary conditions of temperature and
pressure; thus carbonic acid is a gas becanse it is only by
special means that it can be reduced to a liquid: and com-
mon air is a still more eminent example, because no means
have yet been found for bringing it to another state. '



GASEOUS BODIES. 199

477. The passage from the liquid to the gaseous state
- is usually accompanied by a large increase of volume. Thus
a cubic inch of water is converted by boiling into about
1700 cubic inches of steam ; so that the cubic inch of water
becomes nearly a cubic foot of steam. If we su that
the substance consists of a large number of pam(gga,?“ laced
at nearly equal distances, then we may imagine that in
mg om the state of water to that of steam the average

istance between two adjacent particles becomes about
twelve times as great as at first.

478. 'The changes of state take place at different tem-
for different bodies. Thus to cause water to take
the solid state of ice the temperature must be reduced to
32 degrees of Fahrenheit’s thermometer ; while if the tem-
Em.tnre is raised to 212 degrees the water becomes steam.
m freezes at about 40 degrees below the zero of
F eit’s thermometer, and boils at about 650 degrees.
Thus we see that one substance, as mercury, may remain in
the liquid state at a temperature so low that another sub-
stance, as water, becomes solid; and at a temperature so
high that another becomes gaseous.

479. There is a curious fact connected with the ggﬂ-
sage of bodies from the solid to the liquid state, and from
the liquid to the gaseous ; it is expressed by the statement
that in these changes heat becomes latent. . Suppose that a
pound of water at 32 degrees of heat as measured by Fah-
renheit’s thermometer is mixed with a pound of water at
174 degrees ; it is found that the temperature of: the mix-
ture is 103 degrees which is half the sum of 32 and 174
degrees: the hotter water has lost, and the colder has
gained 71 degrees of temperature. But now suppose that
a pound of ice at 32 degrees is put with a pound of water
at 174 degrees ; after a time the ice will all 'be melted, and
the temperature of the mixture will be only 32 degrees.
The water has lost 142 degrees of temperature, and the ice
has been melted without any apparent increase of tempera-
ture: the heat thus lost by the water is said to be
in the melted ice. Thus we see that in the process of con-
verting a solid into a liquid a large quantity of heat is

uired which is in‘some manner absorbed by the liquid
and does not become apparent by a rise of temperature.

L]
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In like manner when water is converted into steam a large
uantity of heat becomes latent. The amount is greater
. than in the case of liquefied ice, being now about 900
d instead of 142. These numerical values have been
itfferently assigned by various experiments; but extreme
accuracy is unnecessary for our purpose.

480. The term latent heat has been long in use and
perhaps does not often lead to any confusion or error; but
there i8 always a danger that such descriptive terms should
be made to suggest more than they are actually intended
to convey. It might be objected in the present case that
heat cannot be properly said to be kidden becduse its in-
fluence is ifested in the remarkable change of state,
namely, from the solid to the liquid state, or from the
liquid to the gaseous.

481. Common air i3 the most obvious and the most
important of the gaseous bodies, and we shall in the main
confine ourselves to the properties of air, though the me-
chanical results obtaiped are applicable in general to gases
and vapours. The science which relates to the mechanical
properties of the air is called Preumatics. It belongs to
Chemistry to treat of the special properties of each gas,

XLII. AIR A SUBSTANCE.

432, The atmosphere is a thin fluid which surrounds
the globe, and is ne for the support both of animal
and vegetahle life. Although before attention has been
drawn to its properties it might be imagined that air is
scarcely a form o})e matler, yet on due consideration it will
be found to be such, though in a very rarefied condition.

483. The air is generally supposed to be fransparent,
but when we look at a cloudless sky we recognise a blue
colour which may be attributed to the air. The fact that
this colour is not visible when we inspect a small quantity
of air by itself is consistent with other facts of a similar
kind. Thus sea-water in a large mass presents a greenish
tint, but a small quantity of it seems without colour. So
also wine in a very slender glass appears much paler in
tint than in a wider glass. -
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484. One of the most obvious propertiés of matter is
weight, and air may be shewn to possess this. It would
seem a natural process to test this by first weighing an
empty bladder, and then weighing this bladder of air;
Arnistotle is said to have done so, and, finding the same
result in the two cases, to have inferred that air has no
weight. Bat here. we have the operation of a cause of
error to which we drew attention in Art. 444; the ad-
ditional weight of air in the bladder is counterbalanced b;
the buoyancy of the atmosphere-exerted on the infla
bladder. The experiment must then be made in a manner
which avoids this cause of error. Take a flask of glass
or metal, and exhaust it of air by the aid of a machine to’
be described hereafter, called the air-pum&); then weigh
the exhausted flask. Admit the air to the flask and we‘ifh'
it again. Then the difference between the two results
gives us the weight of the air which the flask will hold. As
we have said in Art. 462 the weight of a cubic foot of air
under ordinary circumstances is about 1 ounces. We
spoke of exhausting the flask of air; but in practice we
cannot draw out ai/ the air, though we may contrive to
leave only a quantity which is quite inappreciable. Again,
“the experiment may be cameg a step further. For not
only can we draw air out of a vessel, but we can force into
it any quantity of air we please. Thus we can increase the
amount of air in the vessel, and we shall find that as we do
80 wo increase the weight of the air in the same pro-
portion. -

485. Again, the resistance which air o&poses to motions
through it i§ an evidence that it has the.properties of
matter; we are very sensible of this resistance when we run.
The reaction of the air when they strike it with their wings
enables birds to fly; in a space void of air they could not
fly. Wind is air in motion, and the powerful effects of
high winds are merely the consequences of matter in violent
hotion.

486, It is usual to remark that air possesses the pro-
perty of matter which we call émpenstrability. Invert a
tumbler and press it below the surface of water; then it is
easy to see that the water does not get to the highest part
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of the tumbler. If a small cork be floating on that part of
the water over which the tumbler was placed, the cork will-
not reach the highest part of the tumbler. The air in
the tumbler is indeed compressed into less space than it
originally occupied, and so the water occupies part of the
tumbler; but the air remains in the upper part of the
tambler and excludes the water from it.

XLIII. PRESSURE OF THE ATMOSPHERE.

487. If we put air in a vessel furnished with a move-
able piston we find that we can push in the piston and
compress the air to any extent we please. If we wish to
keep the air in this compressed state we must retain the
*ﬁston in its place by a suitable force; if we diminish that
orce the air pushes the piston back through some space,
and if we remove all the force the air resumes its origimi
dimensions, There must be some relation then between
the force which we apply to the piston, and the volume oc-
cupied by the compressed air; this relation we shall con-
sider in the next Chapter after some necessary preliminaries
in the present.

488. We know that air requires the exercise of some
constraint to confine it within the space it occupies, and so
we naturally suppose that there must be some
acting on the apparently unconstrained air around us, and
we soon find that this pressure must be supplied by the
atmosphere itself; any stratum of air has to support the
pressure produced by the weight of all the stfata abeve it.
A very imgort.a.nt experiment serves to demonstrate the
existencec; the pressure of the atmosphere, and to measure
its amount.

489. To measure the pressure of the atmosphere.

Take a glass tube a yard long, open at one end and closed.
at the other; fill it with mercury and place a finger over
the open end to prevent the escape of the mercm;y. In-
vert the tube,put the end closed by the finger below the'
surface of a vessel containing mercury, and withdraw the
finger. Some of the mercury will fall out of the tube,
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leaving a vacuum, that is an empty space, at the top of the
tube. In the diagram let 4B denote ,
the tube, EF the surface of the mer-
curyin the vessel,and @ the surface of
the mercury in the tube. It is found.
that the height of G above the level
of EF is about 30 inches, so long as
the place at which the experiment is

e is not muchabove the level of the
sea; but even at the same place the
height is always fluctuating slightly
according to the state of the tempe-
rature and the weather. The column
of mercury above the leve] of EF is
supported by the pressure of the at-
mosphere on the surface of the mer-
cury in the vessel; this pressure is
transmitted through the mercury in
the vessel, and into the tube by means
of the end B. The principle is the
same a8 in Art. 420; we may imagine ¢ D
two tubes, one containing mercury of
about 30 inches high, and the other extending upwards as
far as the atmosphere extends, and the columns of mer-
cury and of air would produce the same pressure at their
lowest points: the column of mercury must be supposed to
be in a tube closed at the top 8o as to relieve it from the
pressure of the atmosphere above it.

490. As we ascend to a height above the level of the
sea the pressure of the atmosphere diminishes, and so the
height of the column of mercury diminishes. If the at-
mosphere were throughout of the same density there would
be a diminution of about one inch in the mercury for ev
900 feet of ascent; but the fact is that the higher we ascen
the less is the density of the atmosphere, and so the diminu-
tion of the column of mercury is not in exact proportion to
the ascent.

491. We see then that the pressure of the at here
under ordinary circumstances on a square inch of sur-
Jace is equal to the pressure of a column of mercury of the
height 30 inches standing on one square inch as base: thus
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the pressure is equal to the weight of 30 cubic inches
of mercury, that is about 15 pounds.

492. In the propositions which we have given with re- .

spect to liquids in equilibrium in open veaselg we have sup-

that no pressure was exe on the upper surfaces.

ut we now see that the atmoaphere will exert a pressure,

which under ordinary circumstances is about 15 pounds on

& square inch; and hence it is necessary to advert to the

principal results formerly obtained, in order to ascertain
whether they still hold.

g)l The upper surface of a liquid will still be a hori-
zontal plane as in Art. 358 ; for the pressure of the atmo-
:{here being of the same amount on every square inch of

e surface will not distarb the horizontal surface. . .

g) Suppose a small area taken inside a vessel contain-
iquid ; then the pressure will be the weight of a certain
column of liquid extending up to the surface, increased
by the amount of pressure due tp the atmosphere; see
Arts. 362 and 363.

éj:g In Arts. 876..,378 we have found the pressure of
liquid on a vertical side of a vessel, and the point at which
the pressure may be supposed to act. Now if we consider
the pressure of the atmesphere we must observe that it
will act in the same manner on the two fqces of the verti-
cal side; on one face the atmosphere would be in contact
with the vertical side, and on the other face the pressure
will be transmitted through the liquid. Thus on the whole
the pressure of the atmosphere merely supplies two equal
opposing forces which ce each other and leave our
former result unaffected.

(4) The princljfle of Chapter XXX. that liguids stand
at a level will still hold when we regard the pressure of the
atmosphere,

55) The result obfained gt the epd of Art. 420 will still
hold when we regard the pressure of the atmosphere; for
practically the pressure of the atmosphere at the levels
AB and CD will be the same, supposing these levels only
slightly different.
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XLIV. RELATION BETWEEN PRESSURE
AND VYOLUME.

493. Two important principles were established with
respect to liquids in Chapters XXVI. and XXVII. ; namely,
that pressure applied to the surface of a liquid in a vessel
iz transmitted unaltered in amount throughout the Liﬂuid,
and that the at any point is the same in all di-
rections round the point. Now these two principles hold
for air and gases as well as for liquids, as may be shewn by
‘the same reasom’n% and experiments as have been already
‘used ; thus they hold for all fuids.

494. - We are now about to explain the relation which
holds between the volume and the pressure for the case of
compressible fluids, that is for the case of air and the

gases.
Take & glass tube and bend it B
80 that the two branches shall be
parallel. Let 4, the end of the
.shorter branch, be closed, and B, E| Q
the end of the longer branch
-open. Pour into the tube a sm
'3uantity of mercury, and, by with-
rawing air or adding mercury, .%

make the mercury in the two

branches stand at the same level ¥

CHT e :
vertical straight line at M. o4 D

Thus in 4D we have a quantity of N o

mercury sustaining the pressure of
the atmosphere ; for the pressure at C' is produced by the
atmosphere, and this pressure is transmitted to D. We
will suppose this pressure to be of its ordinary amount, so
that it is measured by 30 inches of mercuri. Pour more
mercury into the tube at B, and suppose the mercury to
rise to £ in the longer branch andp to F in the shorter
branch. Let the level of Z meet the vertical straight line
MPQ at @, and let the level of F meet this straight line
at P. Then the air which formerly occupied the space
represented by 4D is now compressed into the space
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represented by AF. The pressure at # is now the pres-
sure of the atmosphere increased by the pressure measured
by the height P@ of mercury. Suppose for instance that
IYQ is 18 inches; then the pressure at # is measured b;

30+ 18 inches, that is by 48 inches, of mercury. It is foun

by trial that the volume represented by 4F bears the same
proportion to the volume represented by 4.D as 30 bears
to 48; and a similar result holds whatever may be the
relative positions of P, @, and M. Thus in the W
of Arithmetic the volume of the air varies inversely as the
pressure exerted on it. For example, if the pressure were
increased to 60 inches of mercury the volume would be
reduced to half of the original volume ; and if the pressure
were increased to 90 inches of mercury the volume would
be reduced to one third of the original volume; and so on.

495. The preceding experiments and results are of
t importance in the subject, and a few remarks should
made on some incidental points. A condition must be
carefully regarded to which we have not yet adverted;
namely, the temperature must be the same throughout the
experiment. For if the temperature of the air be changed
the volume of the air will be changed on that account,
while the pressure remains the same. The sudden com-
pression of the air, when me! is poured in, will raise
the t.emx;erat.ure of the air slightly, so that time must be
allowed for the air in the shorter branch to cool down to
its original temperature. We have used 18 inches for the
sake of an example to measure the additional pressure, but
the experiment may be varied by the use of more or less
mercury, 80 a8 to introduce other numbers in the place of
18. we have taken 30 inches to measure the pressure
of the atmosphere at the time and place of the experiment;
but the real number may be somewhat greater or less than
this, and would have to be accurately determined on the
occasion. The volumes represented by 4D and AF must
be estimated with accuracy. If we are sure that the tube
is of the same bore throutihout we may take the volumes
to be in the proportion of the lengths of the portions of the
tu})e; but if 1:thl isb not the We may eﬁmine the
volumes accurate] weighing the quantities of mercy
‘which they will ho¥¢ v ? "
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" 496. In the experiment we su the air to be
first under the ordinary pressure of the atmosphere, and
afterwards under a greéater pressure; in order to establish
the law universally we ought to examine also the case in
which the air is put under a pressure less than that of the
atm'lqe en;lasshxbe d bend

ea and ben
it so that the two branches f“%
shall be parallel. Let 4, the
end of the longer arm, be B
closed, and B, the end of the
shorter arm, be open. Pour
mercury into the tube, and by ud
withdrawing air or adding mer-
cury make mercury In the
two branches stand at the
same level O and D; let this
level meet the vertical straight
line MPQ at M. Thenin 4D E
we have a quantity of air sus-
taining the pressure of the at-
mosphere ; we will suppose this
to be measured by 30 inches of mercury. Withdraw some
of the mercury from the tube, and let the mercury sink to
the level E in the shorter brane% and to the level # in the
longer branch. Let the level of £ meet the vertical straight
line MPQ at Q, and let the level of # meet the same
straight line at 2. Thus the air which formerly occupied
the space represented l};AD is now expanded into the
space represented by 44. The pressure at F is now the
pressure of the atmosphere diminished by a pressure
measured by the height PQ of mercury. Suppose, for
instance, that PQ is 9 inches; then the pressure at 7 is
measured by 30—9 inches, that is by 21 inches, of mercury.
It is found that the volume representedgx A F bears the
same proportion to the volume represented by 4D as 30
bears to 21.

497. The result which is established in Arts. 494...496
may be put in other ways which are equivalent to the
statement that the volume varies inversely as the pressure.
Thus since the density of a given body varies inversely as

|
k]
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its volume we may state the law thus : the density of air
at a given temperature varies directly as the pressure
exerted on it. Or again, the pressure to which air is sub-
Jected is resisted by the air, and in the state of equilibrium
the resistance is eq]:s;l to the pressure; now this resistance
is ascribed to the elasticity of the air, and thus the law is
sometimes expressed thus: the volume ¢f the air is in-
versely proportional to its elasticity. The law itself is
sometimes called Boyle's Law, and sometimes Mariotic's
Law, from the names of two philosophers by whom it was
discovered. The law was long held to be absolutely true
for all us bodies, as experiments had been made in
which the pressure was carried on to an amount equal to
twenty-seven times that of the atmosphere, and the results
seemed to agree with the law. In more recent times how-
ever, in consequence of closer scrutiny, it has been found
that the law is not absolutely true; for the gaseous bodies
which are not liquefiable, such as air, hydrogen, and nitro-

n, the deviations from the law are almost insensible; but
in the case of liquefiable a8 carbonic acid, the de-
viations may be considerable : in all cases gases are rather
more compressible than Boyle’s law would indicate, but
h; cllrogen 18 a remarkable exception, being less compres-

e.

498. We have alluded in Art. 495 to the fact that when
the pressure remains unchanged the volume of air or a
gas changes when the temperature changes. The law on
which this depends may be stated with sufficient accuracy
for our purpose thus: add 450 to the number of degrees in
the temperature as expressed by Fahrenheit’s thermometer,
‘the volume is proportional to the sum. Thus, for an
example, suppose that the pressure is kept unchanged and
that the temperature has been increased from 50 degrees to
100 degrees ; 450+ 50=500, and 450 4+ 100=>550. Then the
volume at the higher temperature bears the same pro-
rtion to the volume at the lower temperature as 550
ars to 500, that is, as 11 bears to 10. :
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XLV. THE BAROMETER.

499. The Barometer is an instrument for measurin
the pressure of the atmosphere ; we have already explai eg
the principle of the instrument in Art. 489, and we have
now to. add a few practical remarks. The principle of the
Barometer is that a column of mercnryl;ms & vacuum
above it, and is exposed to the pressure of the atmosphere
at its base. In the construction of the instrument it
is mnecessary to. be careful in securing as far as possible
this vacuum abeve. Now it is found that mercury in its
ordinary state freq}x:ently contains air or other elastic
fluid combined with it; and moreover particles of air
and moisture are sometimes adhering to the glass tube
when the mercury is gom-ed into it Then when the
pressure of the atmosphere is removed from the top of
the column of mercury the moisture becomes vapour, and
that and the air rise to the top of the tube, and occupy
the space which ought to be a vacuum. In consequence
of this there is a pressure at the top of the mercury which
tends to force.it down, and so the hejght of the column
is less than it ought to be. To guard against this defect,
it is found advantageous to heat the tube before the
mercury is &)ut in ; thus the particles of air become ex-
panded and their elastic force is increased and they
escape : also the moisture is converted into vapour and
escapes. The mercury is boiled, and this process expels
from it any air or other elastic fluid which may have
been combined with it. After all these precauntions have
been taken the portion of the glass tube. above the mer-
cury will be practically a vacuum ; it is indeed highlf pro-
bable that vapour may arise from. the mercury itself and
occupy this space, but it does not appear that this will
exert any sensible pressure,

500. In the instrument, as we have described it in
Art. 489, it is necessary to observe the level of the mer-
cury at two points, namely, the place where it is exposed
to the atmosphere, and the top of the column; and from
the two observations we deduce the height of the column,

T. P, 14
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Various methods however have been devised in order to
obviate the necessity of the Zwo observations.

501. If the area of a section of the vessel in which
the lower end of the tube is immersed is very large com-
] with the area of a section of the tube, it is obvious
that the level of the mercury in the vessel will remain
almost unchanged when the column in the tube rises or
falls a little. Hence we may consider this level as fixed,
and measure from it upwards the height of the column. A
small brass scale divided into inches and tenths of an
inch may be fixed close to the glass, so that by looking
at the mark nearest to the top of the mercury we may
ascertain the height of the column; the brass scale need
not extend beyond the heights between 28 and 31 inches,
whicH is practically inclusive of the range under ordinary
circumstances.
. 502. Another method of avoiding the necessity for
two observations is to have the numbers recorded on the
brass scale really ezact. That is, the maker of the instru-
ment must ascertain for any position of the up&er end
of the column what is the true distance between the level
of that end and the level in the vessel, and must record
it on the scale. We may conceive that this is done by
actual examination of every case at which a mark is to be
recorded ; but practiealli the maker can assist himself
by an easy principle. If the sides of the vessel are vertical,
and the bore of the tube uniform, there will be & precise
relation of a simple character between the changes of
level in the vessel and the tube. Suppose, for instance,
that the area of a section of the vessel, excluding the part
occupied by the tube, is 100 times the area of a section
of the bore of the tube; then when the level in the tube
rises 1 inch, the level in the vessel will sink 1_(136 of an inch,
and therefore the height of the column will be increased
by 113y inches. Therefore a length which is actually 1
inch on the brass scale must be marked as lg}v; and so
on in the same proportion. Hence by ing off the
_ mark opgoeite to the top of the mercury we learn the
accurate height of the column which measures the pregsure
of the atmosphere. . . ..
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- 503. There is still a third method of avoiding the ne-
cessity of two observations in order to know the height of
the barometer. The bottom CD of the vessel denoted in
Art. 489 is made 8o that it can move up and down without
any leakage of mercury. Then when the instrument is
to be consulted, the bottom is moved up or down so as
to bring the surface of the mercury EF to one fixed level ;
this is effected by having a fine point projecting from the
side of the vessel near its top, and mz&mg the surface of
the mercury just touch this point.

504. Any other fluid might theoretically be used in-
stead of mercury for the construction of a barometer, as
for example water. The height of a column of water

upported by the pressure of the atmosphere will be about
134 times the height of the column of mercury, because
the weight of mercury, bulk for bulk, is about 13} times
that of water. Hence the height of the water barometer
would be rather less than 34 feet on an average; and this
great height would obviously render the instrument some-
what unwieldy compared with the mercury barometer.
Theoretically the water barometer would have the ad-
vantage of enabling us to discriminate more accurately
the ever varying pressure of the atmosphere; for to a
change of one-tenth of an inch in the height of the mercury
barometer will correspond a change of more than an inch
and a quarter in the water barometer. Thus in fact the
scale of fluctuation is magnified as it were 13} times, so
that minute changes become much more conspicuous. On
the other hand, water is more susceptible of evaporation
than mercury, so that the space which ought to be a
vacuum is practically less so for the water barometer than
for the mercury barometer. A water barometer was for-
merly in use at the apartments of the Royal Society of
London, but is not now retained.

505. Pressures are often roughly estimated by taking
the ordinary pressure of the atmosphere as the unit,
Thus engineers may speak of a pressure of thres atmo-
8pheres, by which they mean a pressure three times as
great as the ordinary pressure of the atmosphere, that is
a pressure of about 45 pounds on the square inch.

14—2
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-506. We see from Art. 504 that the pressure. of the
atmosphere will sustain a column of water of the height of
about 34 feet. The ancients had observed that when air
was withdrawn from a vessel exposed to water the water
would rise in it; and they give what they considered an
ex’:lnnation of this and kindred facts by saying that nature
ab. ed a vacuum. But during the life of Galileo it was
found that a column of water of more than 34 feet would
not be sustained, so that a vacuum would be left above;
this shewed the absurdity of the old doctrine.. Torricelli 8
Enpil of Galileo appears first to have sutxﬁgested that the

eight sustained would be inversely as the density of the
" liquid employed, and thus he virtually constructed what we
now call a barometer. Pascal first pro that experi-
ment- which at once serves as a test of the truth of the
theory of the instrument and furnishes one of its most
valuable applications. He predicted that the column of
mercury would be shorter on the top of a mountain than at
its base; and he requested a friend to verify the prediction
by trial on the mountain Puy de Déme in Auvergne. The
success of the experiment was complete, and Pascal after-
wards repeated it on a high tower in Paris,

507. It is obvious that at the top of a mountain the
Feasure of the atmosphere will bo less than at the bottom
or the superincumbent mass of air is much diminished. if
we observe the height of the barometer at the bottom of
the mountain and also at the top, we can by the aid of
theory find the height of the mountain. The exact rule
for the purpose is rather complicated, and requires us to
know the meemture at the bottom and the top, and alse
the latitude of the place. But a rough rule may be given
which will hold reasonably well 8o long as one station is not
more than 3000 feet above the other. Observe the heights
of the barometer at the bottom and at the top of the moun-
tain ; divide the difference of the heights by the sum, and
multiply the result by 52428 ; this will be the height of the
mountain in feet. For exam%le, the height of a barometer on
Carnarvon Quay was 302 inches, and on the top of Snowdon
265 inches. ere the sum is 56'7, and the difference is
3'7; multiply together 652428 and 37, and divide the pro-
duct by 56°7; thus we obtain 3421. The real height of the
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mountain found by careful measurement was 3555 feet. In
the rough rule which we have given no attention is paid to
the temperature of the air ; the rule really assumes that the
sum of the two readings of Fahrenheit’s thermometer at
the top and bottom is 64 degrees, or, as we may say, that

the average temperature is 32 d The result found
by the rgﬂa is improved if we a.dig a thousandth part for
ever{edegree in the sum of the temperatures above 64.
In the preceding example the temperature at the lower
station was 60 degrees, and at the upper station 49

degrees ; the sum is 109 which exceeds 64 by 45, Thus
the result should be increased by the I%o part. Now

%505 of 3421 is about 150, 50 that we obtain 3571, which

differs very little from the true value. The.process may
be easily applied to a very lofty mountain by dividing the
whole height into convenient separate portions; for example,
if the mountain is supposed to be about 6000 feet high, we
may by the rule determine with sufficient accuracy the
height of a nearly midway station above the bottom, and
the height of the top above this station.

508. From the level of the Thames to the top of St
Paul’s Cathedral in London is about 500°feet; and the dif-
ference in the height of the barometer at the two stations
is about half an inch. Mont Blanc is about 15000 feet
hiﬁllgthe barometer at its summit stands at about 15 inches,
indicating that half the mass of the atmosphere is below
the level of the top of Mont Blanc.

509. As we ascend in the atmesphere the density be-
oomes less because the pressure of the superincumbent air.
is less ; it is probable that the atmosphere extends to more.
than 50 miles from the surface of the earth, becoming at
last excessively rare. It is a point of some interest to
determine what would be the %eight of the dtmosphere
supposed homogeneous. This means that we want to
know what would be the height of a column of fluid sup-
ported by the atmosphere, supposing the fluid incompres-
sible and of the same density as the atmosphere is.- We
know that the height of the water barometer would be
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about 34 feet; now water is about 768 times as deuse as air
under the ordinary circumstances : see Art. 462. Hence the
height of the homogeneous atmosphere would be 34 x 768
feet, that is about 26000 feet, that is about & miles. It
should be noticed that this result holds for any place what-
ever. Thus at the top of Mont Blane the pressure and the
density of the air are just half what they are respectively
at the surface of the earth: thus the pressure there would
be able to support a column of incompressible fluid five
miles high of tie same density as the air has there.

510.° If at a given place the force of gravity were sus-

tible of change, the height of the homogeneous atmo-
sphere would vary in the inverse proportion. Suppose for
example the force of gravity became increased. The height
of the water barometer and the height of the mercury
barometer would remain unchanged; the 3¢ feet of the
one would still balance the 30 inches of the other, but the
pressure measured by them would be increased in the same
proportion as the force of gravity. Hence the density of
the air at.the surface of the earth would be in in
this proportion, and therefore the height of air of that
density corresponding to the height of the water barometer
would be less than the height of the original homogeneous
atmosphere.

511. The following statement given by Dr Young sup-
plies a striking notion of the wide limits between which
the density of air may theoretically range ; “at the dis-
tance of the earth’s semidiameter, or neariy 4000 miles,
above its surface, the air, if it existed, would become so rare,
that a cubic inch would occupy a space equal to the sphere’
of Saturn’s orbit: and on the other hand, if there were a
mine about 42 miles deep, the air would become as dense*
a8 quicksilver at the bottom of it.”

XLVI. BAROMETER FOR COMMON USE.

512. In speaking of the barometer hitherto we have
had in view its construction for scientific purposes; we
ought however to take some notice of a popular form in
which the instrument frequently appears, which is called
the Wheel Barometer. .
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A tube of uniform bore is taken .
closed at one end and open at the
other. It is bent so as to form
two ?mllel branches, the shorter
branc beini:’l;at with the open
end. After being filled with mer-
cury it is placed so that the branches
may be vertical ; the distance be-
tween the levels in the two branches
of the tube shews the pressure of
the atmosphere as represented by
the height of a column of mercury.
On the surface which is exposed to
the atmosphere a small iron ball
floats ; this is denoted by P. To
this ball a string is attached which
passes round a groove in the circumference of the wheel C,
and has at the other end a weight @ rather lighter than P.
‘Suppose the mercury in the shorter arm to rise a little;
then P ascends and @ descends; the friction of the string
round the wheel is sufficient to turn the whebl, and the
amount through which it has been turned is shewn by a
pointer D g,ttached to it, the end of which moves over a
graduated circle G. Similarly if P descends then @ ascends,
and the pointer moves in the contrar{l direction. Suppose,
for example, that P ascends through one inch ; then the
mercury in the longer branch of the tube'descends through
one inch, and the height of the barometric column is di-
minished by two inches. Let the circumference of the
wheel C be 2 inches, and let the circumference of the gra-
duated circle G be 40 inches. Then when the barometric
column i8 diminished by two inches one inch of strin
passes over the wheel C, so that the wheel turns half roun
and the pointer goes half round, that is, over 20 inches.
Thus for a change of 2 inches in the height of the baro-
metric column there is a change of 20 inches in the position
of the end of the pointer; so that the scale of fluctuation
is magnified as it were fen times,

513. The wheel barometer serves for common use
though it is not accurate enough for scientific purposes.
The iron ball P is somewhat heavier than the counterpoise
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@, and thus there is really a slight force in addition to the
pressure of the atmosphere exerted to sustain the column
of mercury, namely, the excess of the weight of P over the
weight of Q. Moreover when the pressure of the atmo-
sphere is diminished, so that the mercury in the shorter
branch has a tendency to ascend, the ball must be raised ;
and thus a change of pressure so minute as not to be suffi-
oienié. to raise 2 would not be exhibited by the instru-
men

514. It is said that during the great earthquake at
Lisbon in 1775 the mercury in the barometer in England
fell so low as to disappear from that portion of the tube
which is usually left uncovered for observation. The rapid
fall of the barometer at sea has sometime:dgiven warnin;
of & coming storm when the most experienced sailors woul
not otherwise have had any suspicion of danger. The baro-
meter is often popularly supposed to serve as a weather
glass, and the makers of wheel barometers are in the habit
of putting such words as Rain, Fair, Changeable, against
parts of the graduated circle over which the end of the
pointer ranges. But experience shews that there is no
very close correspondence between the weather actually
occurring and the contemgomeous position of the pointer.
By Arts. 508 and 512 it 18 easy to see that there may be
5 inches difference on the circumference of a wheel baro-
meter between the position of the end of the pointer at the
same :i)och at the level of the Thames and at the top of
Bt Paul's Cathedral, while the weather is probably of the
same character at the two stations. The changes of the
atmospheric pressure may however be made to give some
suggestions as to the weather likely to follow such changes,
especiallg] with regard to a particular place, if observations
are carefully made and studied there. The following rules
are given' in Dr Lardner’s 7'reatise om Hydrostatics and
Preumatics as in general fairly trustworthy.

(1) Generally the riainﬁl of the mercury indicates the
approach of fair weather; the falling of it shews the ap-
proach of foul weather. :

(2) In sultry weather the fall of the mercury indicates
coming thunder. In winter, the rise of the mercury indi-



BAROMETER FOR COMMON USE. 217

cates frost. In frost, its fall indicates thaw, and its rise
indicates snow.

(3) Whatever change of weather suddenly follows a
change in the barometer may be ex to last but a
short time. Thus, if fair weather follow immediately the
rise of the mercury there will be very little of it; and, in
the same way, if foul weather follow the fall of the mer-
cury it will last but a short time.

(4) If fair weather continue for several days, during
which the mercury continually falls, a long succession of
foul weather will probably ensue; and again, if foul weather
continue for several days, while the mercury continually
rises, a long succession of fair weather will probably

(6) A fluctuating and unsettled state in the mercurial
column indicates changeable weather.

515. One of the most general laws which has been
observed in meteorology is expressed thus: the barometer
usually falls when the thermometer rises, and the barometer
usually rises when the thermometer falls, The reason is
simple. When the thermometer rises the air expands and
consequently overflows into the neighbouring regions ; and
80 the pressure of the atmosphere is diminished, and the
barometer falls. On the other hand, when the thermometer
falls the air contracts, and this produces an influx from the
neighbouring regions, and consequently an increase of
pressure, and so the barometer rises.

, 516. An instrument ecalled the Aneroid Barometer
has been introduced in recent years for measuring the
pressure of the atmosphere. It consists of an elastic me-
tallic chamber either in the form of a flat box or of a short
tube ; the air is exhausted from the chamber which is then
closed 80 as to be air-tight. When the pressure of the
atmosphere increases the chamber slightly contracts, and
when the pressure of the atmosphere decreases the chamber
slightly expands. These changes are transmitted by a sys-
tem of wheels and levers to a pointer which moves over
an index; this index is graduated by trial, by the maker
of the instrument, so that the reading against the pointer
jn any position records the corresponding pressure of the
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atmosphere. The instrument is recommended by its porta-
bility, for it can be made to take up little more’mom than
a watch; but it is liable to gradual so that it
ought to be compared from time to time with a goed mer-
cury barometer. An Aneroid is a serviceable companion
for an Alpine tourist, as it enables him to form a good -
estimate of the height he has reached. Suppose the tourist
to make several observations with it in the course of a day;:
then even if the instrument is a little wrong the error will
probably be the sams at every station, so that the difference
of the heights of any two stations will be correctly given :
and the amount of error of the instrument at the time will
be known if one of the observations is made at a station of
which the actual height has been well settled by other
means. . .

517. It appears as we have stated in Art. 491, that the
pressure of the atmosphere is about 15 pounds on every
square inch; and thus it may at first sight seem very
sti that we are not conscious of this great pressure.
But the fact is that the air is all around us; and also the
internal parts of the body are filled with fluids, in the
liquid or us state, which exert a pressure from within
equal to of the atmosphere from without.

518. The applications of the pressure of the atmosphere
are numerous and important. As we shall see hereafter,
pumps for raising water act by means of this pressure.” In
a common pair of bellows when the upper board is raised
the pressure of the atmosphere forces air through a hole
in the lower board; a small valve prevents the air from
escaping through this hole when the upper board is pressed
down, and thus the air is driven through the nozzle of the bel-
lows. Most persons must have seen the large constructions
in which the gas used for lighting the shops and houses of a
town is stored for consumption. They consist of pits lined
with iron and containing water; the gas is confined between
the water and a large covering vessel, in the same manner as
the air in the experiment of Art. 486 is retained in the
upper part of the inverted tumbler. When beer is drawn
from a cask it flows at first because a little air is left
at the top of the cask, and this, though expanding as beer
is drawn out, still exerts for a time sufficient pressure, with-
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the assistance of the weight of the liquid, to overcome the
g:asure of the air which op ‘the issue of the beer
m the tap. After a time the air at the top of the cask
is so much expanded that it no longer exerts sufficient
pressure, and 8o the beer will not flow. Then a little more
air is let in through a hole at the top of the cask provided
for the p called the vent-peg, which is kept closed
until it 18 thus necessary to open it for a shorttime. The
gurgling sound which is h when we pour water from a
ecanter that is nearly full, arises from the air forced in by
the pressure of the atmosphere to supply the place of the
water withdrawn; the sound continues as long as the
neck of the decanter is choked by the water escaping.' But
as the water is gradually withdrawn room is obtained in
the neck of the decanter for water to pass out through
g:rt (;i;l:he neck and for air to enter through the rest of
e n

519. An interesting protess for estimating the magni-

tude of the pores of ies as compared wi&

that of the solid parts depends on the use of the 4]

pressure of the atmosphere. Some substances,

as charcoal and gumice stone, contain an im-

mense number of small cavities, and to these

the process may be applied. Take a long glass

tube open at both ends, and fill & portion 4B €

with charcoal, supporting the charcoal at B by

a perforated partition which will allow air te

pass through. Plunge the tube in a vessel of

mercury to the level B, then cover the end 4, and with-

draw the upper part of the tube from the mercury. If

there had been no air in the cavities of the charcoal the

mercury would remain in the tube at the usual height of 30

inches above the level of the mercury in the vessel. But

when the pressure of the atmosphere is diminished the air

in the cavities of the charcoal issues from the cavities and

expands, and by its elastic force compels the mercury to

stand at a lower height than it would otherwise reach.

Suppose the mercury stands at € at the height of 15 inches

above the level in the vessel. Then the air in the pores
d in BC, being under half the atmospher'c pressure, oc-

cupies just double the space it did formerly; and thus the
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space denoted by BC is just equal to the volume of all the
pores. It is found in this way that the solid part of char-
coal is really about four times as heavy as water, bulk for
bulk, although charcoal is usually taken to be about half
as heavy as water, bulk for b The solid matter of
gmoe stone is found to be as heavy as marble, bulk for

XLVII. AIR PUMPS,

520. It is important to be able to examine the conse-
quences which result when bodies are withdrawn from the
influence of the pressure of the atmosphere. Accordingly
machines are constructed by the aid of which we can with-
draw the air almost entirely from certain closed vessels,
and perform various interesting experiments in the empty
* space. These machines are known as Avr Pumps.

521. The construction of Air Pumps may vary a little as
to details, but the principles are the same in every case. A
plate of brass or other metal, made exactly plane, is pro-
vided, and on that is placed a strong glass bell with its
mouth downwards; this vessel is called the Receiver. The
glass at the mouth is ground very smooth, so that it
may fit exactly on the metal allplal;e. To ensure that the
contact between the two shall be air-tight, it is usual to
smear the mouth of the glass with lard or some other
unctuous substance. The air is then withdrawn from the
glass vessel by a pipe which passes through the metal plate ;
and we shall now describe way in which this is eflected.
ABis a cylindrical vessel in which &
piston can move up and down. At
the bottom of the cylinder there is a
valve C which opens upwards. There
is algo a valve D in the piston which
opens upwards. A pipe & passes
from the bottom of the cylinder and
communicates with the receiver.
Suppose the piston to be at the
bottom of the cylinder, and that the
receiver and the pipe contain air of
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the density of the atmosphere. Raise the piston to the
top of the cylinder; the valve D is kept closed by the
pressure of atmosphere above it, while the pressure of
the air in the receiver and the pi&e opens the valve C, and
the air diffuses itself throughout the receiver, the pipe, and
the cylinder. Push the piston down to the bottom of the

li:ger; then the valve C closes and the air in the cylin-

er is expelled throu{n the valve D. Then the operation
may be repeated. When the piston ascends the air in the
receiver and the pipe is diffused through the receiver, the
pipe, and the cylinder ; and when the piston descends so
much of the air as was in the cylinder is expelled. Thus
the air in the receiver is gradually diminish

522, A valve is a contrivance which allows a current of
fluid to pass through a tube or aperture in one direction
but not in the other. The valves in the air pump are
commo:(]{y formed of a triangular piece of oiled silk,
stretched over a grated orifice in a piece of metal, to which
the corners of the triangle are fustened. When air pressea
on the upper surface of the silk it is brought into contact
with the edge of the orifice, and the passage of air pre-
vented ; when air presses on the lower surface of the silk
::)is raised from the edge of the orifice, and air is allowed

pass.

523. It must be observed that we cannot remove all
the air from the receiver. Let us suppose for example that
the volume of the receiver and the pipe together is nine
times that of the cylinder. Then when the air is diffused
through the receiver, the pipe, and the cylinder, that in the

cylinder is 110 of the whole, Thus by the up and down stroke
of the piston we can remove 116 of the air originally in the re-

ceiver and the pipe; and therefore we leave i% . Thus we
can never remove all the air; for at the end of an up and
down stroke of the piston we leave in 130 of what there
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mstthebegmnmg’ ing of the stroke. It is easy to find
by arithmetic what ion of the original quantity will
remain after any number of what we will operations.

At the end of the first we have loft 3 of the original
quantity; at the end of the second llo of what there was
at the end oftheﬁnt,thatisi%xlg—oofthe original,
that is S of the original; at the end of the third opera-
i;ion wé have left % of the quantity at the end of the

.. 9 _ 81 . . s . 729
second, that is 10 X 100 of the original quantity, that 18500
of the original quantity; and so on.

524. Thus we see that even if there were no ical
difficulties in the machine itself we could never draw out
all the air from the receiver ; but there are various practi-
cal difficulties which also limit the degree of exhaustion
attainable. Thus however light the valve may be made it
has some weight, and when the air in the receiver and

ipe becomes so attenuated that it has no longer sufficient
orce to raise the valve C the exhaustion of the receiver
cannot be carried further. Again, the valve D has the
pressure of the atmosphere above it ; if the piston could be
gxshed down to the bottom of the cylinder the air between
and C, however attenuated it might be at the beginning
of the downward stroke, would become sufficiently con-
densed to overcome the pressure of the atmosphere. But
practicallmhe piston cannot be pushed close to the bottom
of the cylinder, and hence it might happen that the valve
D would finally remain closed, and so dprevent the ex-
haustion of the receiver from being carried further. There
are two ways in practice by which this difficulty is met.
One way consists In closing the top of the cylinder leavinﬁ
ounly a valve opening upwards and a hole thm'ngin whic]
the piston-rod works in an air-tight collar, In consequence
of this the valve D, when it descends, is relieved from the
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pressure of the atmosphére, and so can be opened by a
very small force from below. Another advantage gained
is that the removal of the pressure of the atmosphere from-
the upper surface of the piston diminishes the labour of
the upward stroke. The air pump with this modification
is called Smeaton’s Air Pump. There is another way of
securing the same advantage as by Smeaton’s Air Pump.
Instead of the cylinder beinﬁ ol[:en to the atmosphere at
the top it communicates with the receiver of an auxiliary,
air pump; and then by occasionally giving a few strokes to
this we can always keep the lE::res:sure above D considerably
less than that of the atmosphere.

525. We have thus sufficiently explained the prin-
ciple of the air pump; in practice various details are
regarded for the sake of convenience, at least when the
machine is on a large scale. .Thus we have spoken of one
cylinder, but there are usuallitwo, side by side ; by means
of a toothed wheel and rack-work the two pistons are
moved simultaneously, one going up while the other goes
down, so that the exhaustion proceeds twice as rapidly as
with a si gle cylinder. Moreover the labour of worﬁng the
pump is diminished ; for while one piston is being drawn
up the pressure of the atmosphere above it produces a
great resistance to be overcome ; but when two pistons are
used this resistance is balanced by an equal pressure on the
sarface of the descending piston, which assists the motion.
Thus the pump may be worked by a force which is suffi-
cient to overcome the friction together with the difference
of the pressures on the Jower surfaces of the ascending and
descending pistons. Instead of the valve C some instru-
ment makers substitute a stopper, which is raised when
necessary by a rod passiniethrough the piston and working
tightly in it, so as to carried up and down by the
motion of the piston-rod. In spite of all the care with
which the instrument is made it is found that there is
always some leakage at various parts, and although the

uantity of air which thus enters is smal compared with
?lmt drawn out by the early operations, yet it may be as
much as is drawn out by the later operations; so that
finally the exhaustion reaches a tg;)sint beyond which it
could not be carried were it for this reason alome.- It is
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found that a diminution of the density of the air to.one
thousandth of its original value is practically almost as
much as can be obtained. )

526. The air pump is usually furnished with an ap-
pendage by which the degree of exhaustion can be as-
certained. One such appendage is called the barometer
gauge, The upper end of a barometer tube, instead of

ein, :losed, is allowed to be open and to communicate
with the receiver. If all the air could be withdrawn from
the receiver the mercury in the barometer gange would
then stand at the ordinary height; but some air will always
remain, and thus the mercury in the barometer gauge will
not reach to the ordinary height. Su, , for example,
that it stands at the height of 28 inches instead of 30
inches ; this shews that the pressure of the air in the
receiver is measured by the hejght of 2 inches of mercury,

so that the dengity of the air in the receiver is 30. of the

density of the ordinary air. The siphon gauge is another
contrivance for ascertaining the degree

of "exhaustion. This is a bent tube A ¢
ABCD closed at A, and communicating
with the receiver at . The whole of
AB and part of BC is filled with mer-
cury at first ; as the exhaustion proceeds
the mercury sinks in 4B and rises in
BC. If the air could be entirely re-
moved the mercury would stand at the
same level in 4B -and: BC. If the mer-
cury in 4B stands at a level three inches
higher than in BC then the density of

the air in the receiver is :—0 of the den-~
sity of the ordinary air,

XLVIIL. AIR-PUMP EXPERIMENTS.

527. Numerous interesting experiments are performed
by the aid of the air pump; they enable us to understand
the important functions of the atmosphere by shewing us
how very different the phenomena would be if that atmo.
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sphere were removed. The experiments have the great
merit of being very successful ; the spectator can easily
watch them and will admit that their testimony is decisive.

528. The experiment called the guinea and feather
experiment is intended to shew that if the resistance of
the air is removed all bodies will fall to the ground from
the same starting point in the same time. A tall receiver
is provided, furnished with a small platform at the top
on which a coin and a feather are placed. After the
receiver has been sufficiently exhausted of air the plat-
form is removed by turning a screw provided for the pur-
pose; the coin and the feather fall, and reach at the
same instant the plate which supports the receiver.

529. The pressure of the atmosphere is illustrated in
the following way. A jar open at both ends is converted
into a receiver bi fastening a ]piece of bladder over one
end, and the other end is placed on the plate. After
one or two strokes of the air pump the bladder becomes
much stretched and bent inwards, so as to take a cup-
like shape ; the pressure of the atmosphere above is not
fully balanced by the pressure of the attenuated air below
the bladder, and so the bladder is forced inwards. By
continuing the exhaustion the bladder is urged still further,
until at last it bursts.

530. Let a little air be put into a bladder, and let the
bladder be closed in an air tight manner and placed under
the receiver of an air pump. As the receiver becomes
gradually exhausted the air inside the bladder, having
little pressure to constrain it, expands, and the bladder
swells and appears to be fully inflated. In like manner
some fruits when dried and shrivelled retain within them
a little air which expands when the pressure is removed
from their surfaces; thus when a shrivelled apple is placed
under a receiver and the air withdrawn it is restored ap-
parently to a plump and fresh condition; raisins in like
manner expand to the size of the grape from which they
were originally derived. On the re-admission of air to the
receiver the fruits become again shrivelled as at first.

531. When we say that water or any other liquid
boils we mean that it passes from the liquid to the gaseous

T. P. 15
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state; it is found that the temperature at which this change
of state takes place diminishes when the pressure of the
- atmosphere i8 decreased. Under the ordinar{rpressure of
the atmosphere, water boils at 212 degrees of Fahrenheit’s
thermometer ; if the pressure is reduced so as to be
measured by 23% inches of mercury, water boils at 200
degrees. Thus if water which is hot, though much below
the ordinary boiling temperature, be placed under a re-
ceiver and the air exhausted the water soon begins to
boil furiously. By observing the temperature at which
water will boil on the top of a mountain we may form a
good idea of the height of the mountain, supposing that
we have a Table in which are recorded the results of
trials already made at various elevated places. Thus at
the summit of Mont Blanc water boils at 187 degrees;
80 that if we found water to boil on any mountain at that
temperature we might assume the height to be equal to
the height of Mont Blanc, It is found that a diminution
of about one tenth of an inch in the height of the baro-
meter corresponds to a diminution of about one sixth
of a degree in the temperature at which water boils. It
is obvious that when water boils at a low temperature
inconvenience may arise from the fact that we cannot
easily obtain water at so high a temperature as we re-
uire ; it is said that the monks at the monastery of St
ernard cannot make good soup or good tea, because on
account of their high situation water boils at too low a
temperature. But by boiling water in closed vessels it
is ible to produce so great a pressure as to the
boiling point far above the ordinary temperature of 212
degrees. Other processes besides that of boiling are pro-
moted by diminishing the pressure of the atmosphere ; if a
bottle of champagne is opened on the top of a high moun-
tain the wine may burst forth and be almost entirely lost.

532. The experiment of making water boil at a low
temperature, by diminishing the pressure on its surface,
can be performed in a striking manner without the aid
of the air pump. Water is put into a glass flask, so as
to occupy about half of it; then the water is boiled by
placing a lamp beneath the flask, so that the upper part
of the flask becomes full of steam, the air being expelled.

.
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The flask is now stopped with a cork, removed from the
lamp, and allowed to cool down to a temperature below
212 degrees. By pouring cold water on the upper part
of the flask the steam is cooled and some of it is con-
densed, so that the pressure on the surface of the water
is much diminished ; and in consequence the water begins
to boil again. The experiment requires great care to
prevent accidents,

533. A celebrated illustration of the.pressure of the
atmosphere is called the experiment of the Magdeburg
hemispheres. Two hollow hemijspheres are constructed
of brass; they fit agcurately together so as to be air tight -
and to form a hollow sphere : the two parts can however
be separated with ease. A small pipe furnished with a
stop-cock is fixed to one of the hemispheres ; this pipe can
be connected with an exhausting cylinder, such as we
have described tn Art. 521, and so the air can be with-
drawn from the interior of the hollow sphere: the stop-
cock is then closed to prevent the entrance of fresh air,
and the sphere may be removed from the cylinder. Now
if we attempt to pull the hemispheres apart we find that
there is a great resistance to prevent the separation ; this
is due to the pressure of the atmosphere on the external
surface, and its amount may be readily assigned. We
must find the number of square inches in the area of a
section of the sphere through its centre, and multiply it
by 15 to obtain the pressure in pounds. The experiment
was devised by Otto Guericke of Magdeburg, the inventor
of the air pump. He constructed such a pair of hemi-
spheres one foot in diameter; the area of the section in
this case is about 113 square inches, and multiplying this
by 15 we obtain about 1700 for the number of pounds.
Thus if we hang up the sphere when the air is exhausted,
and attach a weight of about 1700 pounds to it, the two
hemispheres will not be separated. This sugposes the air
to be completely exhausted, but even with only partial
exhaustion a very great force is necessary in order to
. separate the two hemispheres. The rule we have given
for estimating the amount of the pressure which urges one
hemisphere inst the other may be easily justified.
Lwmagine one hemisphere placed mouth downwards on a

15—-2
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smooth horizontal table, and the air exhausted from the
space between it and the table; then the resultant pressure
on the external surface of the hemisphere is in fact the
weight of the column of the atmosphere which stands on
tl;:cgortion of the table covered by the hemisphere, and

es up to the limit of the atmosphere. The amount
of this we know to be 15 gounds on each square inch of
the circular area of the table which is covered by the
hemisphere.

534. The air pump is a machine for withdrawing
air from an enclosed space ; there is also a machine called
the condenser by which air may be forced into an enclosed
space to any amount we please. But this instrument does
not furnish us with any very important experiments, and
80 a brief notice of it will suffice. Take the diagram of
Art. 521, and suppose the valves to open downwards in-
stead of upwardg. Let thee(f)iston be in its highest po-
sition ; then when it is forced down, the pressure of the
air between D and C opens the valve C, and being greater
than that of the atmosphere keeps the valve D closed.
Thus when the piston ﬁas reached the bottom, the air
which was originally in the cylinder has been forced
through C into the pipe E, and the receiver with which
the pipe is connec ‘While the piston is being drawn
up, the valve C is closed by the pressure of the air below
it, while the valve D is opened by the pressure of the
atmosphere. Thus when the piston is at the highest point
the cylinder is again full of air, and the whole process may
be repeated. Every complete operation forces into the
receiver and pipe a8 much air as would fill the cylinder
under the ordinary pressure. Suppose, for example, that
the volume of the glpe and the receiver together is nine
times the volume of the cylinder; then at each descent

of the piston, air equal in quantity to % of that originally

in the pipe and the receiver is forced through C. Thus
at the end of five operations the air in the pipe and the

receiver consists of the original air together with 9§ more ;

and at the end of nine operations there is just twice the
eriginal quantity of air in the pipe and the receiver.
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635. The air gun is an instrument of no practical
importance, but which may be noticed as its action depends
on the condensation of air. A strong chamber is con-
structed into which air is condensed until the elastie force
of the whole is very t. The chamber is connected
with a tube in which a bullet is placed ; by opening a valve
the condensed air rushes out and sweeps the bullet along
the tube, from which it issues with great velocity : the
force which drives the bullet along the tube is the excess
of the pressure of the condensed air behind, above the
ordinary pressure of the atmosphere in front.

XLIX. PUMPS.

536. There are various machines for raising water from
one level to another which is higher; and we will now de-
scribe some of them.

537. The common pump sometimes called the suction
gump. ABisacylinder havingat the
ottom a valve C opening upwards.
A piston works up and down in the
cylinder, having a valve D opening )
upwards. A pipe BE passes from Ve
e bottom of the cylinder, and the 4
end of it is below the surface of the
water in a well; let £ denote the
level of the water in the well. Su
pose the piston to be at C, and the
pipe to be full of air. Let the piston
be raised to 4; then the pressure
of the atmosphere keeps the valve
D closed, ans the pressure on the
valve C' being lessened the air in
the pipe opens this valve and fills
the cylinder below the piston. The
Pressure of the air in the pipe is now .
ess than that of the atmosphere, and accordingly the pres-
sure of the atmosphere on the surface of the water in
the well forces water up the pipe £B to such a height
as to make the pressure at £ equal to that of the atmo-
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sphere. When the piston descends the valve C closes, and
tEe air between C and the piston escapes through D. The
water will rise in £B each time this operation is repeated
until at last it passes through C; and now when the piston
descends to C the water passes through D and is then
carried up by the piston as it ascends and discharged
through the spout at 4.

538. It will be observed that the ascent of the water
consists in general of two distinct processes. The water is
received from £ to B by the pressure of the atmosphere,
and in consequence of this £B must not be higher than the
column of water which this pressure would support, that is
about 34 feet. But the length 4.8 may be as great as we
please, provided that we have a cylinder and a piston rod
of sufficient strength, and force enough to do the requisite
work. For when the water reaches to a point in the cylin-
der the height of which above £ is greater than the
standard 34 feet, the pressure of the atmosphere will take
it no further, and it must be lifted by the ascending piston
from this point up to the spout. If the height of the spout
above E is not greater than the standard 34 feet, then we
" have 12‘)t the two processes but -only the first of those just
notice

539. An error is frequently made with respect to the
amount of force which must be used to work the piston ;
it seems to be imagined that the pressure of the amosphere
renders, or ought to render, any application of force to
the piston unnecessary. Let us suppose that the piston is
at some point between 4 and B, that the water in the
pipe has risen to the level M ; so that between M and the
piston there is air. Then above the piston we have the
pressure of the atmosphere; and below the piston we have
this pressure diminished by so much as corresPonds to the
height of the column £3. Thus on the whole the piston
is urged down by a pressure which is measured by the
hei%ilt of the column £ of water; and so force must be
applied sufficient to overcome this. But if the height of
the piston above £ is greater than the standard 34 feet,
then below the piston there is a vacuum, and the pressure
above it is the pressure of the atmosphere increased by the
weight of the water which is to be lifted. .
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540. The forcing pump. ABis
a cylinder having at the bottom a
valve C opening upwards. A piston
D works up and down in the cylin-
der. A pipe BE passes from the
bottom of the cylinder, and the end
of it is below the surface of the
water in a well; let £ denote the
level of the water in the well. Just
above C a tube BF passes from the
cylinder and has a valve at F open-
ing upwards. Suppose the piston to :
be at C, and the pipe to be full of air. Let the piston be
raised; then the pressure on the valve C being lessened
the air in the pipe opens this valve and fills the cylinder
below the piston. The pressure of the air in the pipe is
now less than that of the atmosphere, and accordingly the
pressure of the atmosphere on the surface of the water in
the well forces water up the'pipe £B -40.such a height as
to make the pressure at £ equal to that of the atmosphere.
When the piston descends the valve C closes, and part of
" the air between the piston and C is forced through the
valve F. The water will rise in £B each time this opera-
tion is repeated until at last it passes through C; and
now when the piston descends some of the water is forced
through the valve F. As in the common pump £B must
not be greater than the standard 34 feet; but the ascend-
ing tube may be as long as we please, and if the pump be
of sufficient strength and the force enough for the work,
‘we may raise water to any height we please. )

Sometimes instead of a piston D there is a solid cylin-
der working through a water-tight collar at. 4,

541. The stream of issuing water

may be made continuous by connecting e
the tube BF with a large vessel having
a pipe HK which reaches nearly to the
H
- F

bottom. Suppose the water to be forced
into this vessel and to reach the level
G. Then a})ove 6; there is eﬁon;ilclansﬁd
air which formerly occupi the

vessel above the level H, and the pres- — J
sure of this condensed air on the

(]
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water in the lower part of the vessel forces out the water
through AKX in a continuous stream.

542. The fire engine is a forcing pump with the ap-
pendage Just described; there are usually two cylinders
worked simultaneously, so that one ascends while the other
descends in the manner mentioned in Art. 525 with re-
spect to the air pump.

543. There are various other contrivances for raising
water, but we need not delay long upon them, as they do
not involve any new principle. We may just notice a

ump called the lifting pump, which
giﬁers from the suction pump in hav-
ing the fixed valve above the piston rR
instead of below it. The piston is c
moved up and down by a frame-work ==
of which PQR represents part. When
the piston descends the valve D in it
opens, and water rises above it; and §))
when the piston ascends it lifts this |
water through the fixed valve C to
any height that may be desired. This
contrivance is said to avoid the incon- P Q
venience arising “from the length of
the barrel through which the piston rod of a sucking pump
would have to descend in order that the piston might re-
main within the limits of atmospheric pressure.”

. 544. It will be observed that in all the pumps which
we have described the pressure of the atmosphere dis-
charges a very important function. There are however
processes for raising water in which this pressure is not
concerned. A simple examgle is that of drawing water
from a well by the aid of a bucket. The ckain pump is
of the same kind; through a vertical cylinder moveable
bottoms or pistons are drawn one after another lifting the
water above them. In the plunging pump a long hollow
cylinder having at its lowest part a va{:e opening upwards
is inserted in water; the cylinder is so long as to reach
considerably above the surface of the water. The water
enters through the-valve, and rises to the same level inside
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the cylinder as outside. A solid cylinder somewhat less
in diameter than the hollow cylinder is plunged into the
hollow cylinder; the water having no other escape is driven
up in the hollow cylinder, and may be conducted through
a spout provided at the highest part. Such a pump has
been constructed with two cylinders, and two plungers
working simultaneously, one ascending as the other de-
scends; a plank moveable about its middle point has its
ends connected with the plungers, and a man walking
backwards and forwards on the plank continually by his
weight supplies the force necessary to raise one plunger
and depress the other. ’

545. The Screw of Archimedes is a machine for raising
water, which is said to have been invented by that ancient
philosopher for the ]fnrpose of enabling the inhabitants of
the low grounds of Egypt to clear away the stagnant water
left by the Nile after its inundations. This machine may
be presented in slightly different forms, and we will confine
ourselves to the simplest. A hollow tube is bent into the
form of a corkscrew and placed inclined to the horizon.
The screw can be turned round in the manner of a cork-
screw and is so fixed that its lower end alternately dips
below the surface of the water and rises above it as the
screw is turned round. Then during each turn of the
screw water enters at the lower end; and in suc-
cessive turns of the screw the water thus entering
on up the screw until at last it issues from the top. The
fact that the water will thus pass along the screw is not
very easy to establish by the aid of diagrams so as to
be intelligible to the early student; but it becomes clear
on examining a model of the machine. The screw must
obviously not be inclined at too great an angle to the
horizon : for instance, if it is placed vertically no water will
be raised. Let the screw be at rest, and suppose that as
we za.ss along it we find points such that the screw rises on
each side of them, then the proper inclination is not ex-
ceeded. Moreover, of the two directions in which the screw
can be turned round only one is suitable, namely, that in
which a corkscrew would be turned round in order to
penetrate a cork occupying the place of the water.
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L. VARIOUS INSTRUMENTS.

546. Bramak’s Press
or the Hydrostatic Press.
A piston 4 can be moved
up and down a small cylin-
der by the aid of a lever; a
piston B can be moved up
and down a large cylinder. :
The two cylinders communi- ———
cate by a channel filled with water, which also o
cKlinders up to the pistons. If any pressure is exerted on
the smaller piston 4 an equal ?ressure is transmitted to
every portion of the piston B of equal area. Thus if the
area of a section of the piston B is a hundred times the
area of a section of the piston 4, then when a pressure of
10 ;t))ounds is exerted on the piston 4 the piston B is urged
up by a pressure of 1000 pounds. The pressure on 4 may
be applied by means of a lever. These machines are used
very extensively in practice where great force is required,
as in testing the strength of iron chains, or in raising enor-
mous weights; they may be constructed so as to exert a

ressure of three hundred tons., They have been employed
1n some of the greatest works of modern engineering, as in
launching the Great Eastern steamship, and in raising the
Britannia Bridge. 1t has been said that if Archimedes
had been acquainted with the Hydrostatic Press he would
have preferred it to the Lever for his progmed feat of
moving the world. The principle of the machine has been
known since the time of Pascal, but it long remained un-
develoEed on account of the difficulty of making the piston
B work in a water-tight manner in its cylinder. Bramah
invented a peculiar leather collar which fits more tightly
as the pressure on the piston increases.

547. The Spirit Level. c
It is sometimes necessary AC — R
to determine if a certain
plane surface is accurately horizontal. A small tube is
almost filled with a liquid which is as nearly as possible a
perfect fluid, for instance spirit; as the tube is not quite
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full of the spirit a small bubble of air remains. The tube is
apparently straight, but is really an arc of a very large
circle. It is mounted on brass work, and is so adjusted
that when placed on a strictly horizontal plane the bubble
occupies the middle of the tube. If the plane on which
the instrument is placed is not horizontal this is shewn by
the circumstance tgat the bubble, which always tends to-
wards the highest point of the tube, moves away from the
middle point.

548. The Siphon is a contrivance for transferring
liquid from a vessel through a tube which rises to a higher
level than the liquid in B
the vessel. The siphon
is a bent tube 4BC
open at both ends. Let
it be filled with liquid
and the ends closed; ° K
and let it be put with
A, the end of the
shorter arm, beneath
the surface of the li-
quid in a vessel; let A
and K denote points
in 4B and BC which are in the same level as this surface.
Open the end 4 of the tube; then the pressure at H and
at K will be equal to the pressure of the atmosphere.
Thus the liquid contained between K and C is urged down
by its own weight, and by a pressure at K equal to the pres-
sure of the atmosphere. Open the end C'; then as there is
only the pressure of the atmosghere there, the liquid in XC
will not be supported and will flow out. More liquid is then
forced by the pressure of the atmosphere up A5 to supply
the vacuum which would otherwise be formed, and thus a
continuous flow is maintained, until the level of the liquid
in the vessel sinks below the end. 4. It is necessary that
the hei%!lt of B above the level HK should be less than
the height of a column of the liquid which the pressure of
the atmosphere would sustain ; thus if the liquid is water
this height must be less than 34 feet. Forif the height were
greater than this the pressure of the atmosphere could not
force liquid up to B so as to maintain a flow through B(.
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549. We have supposed the siphon to be filled with
the liquid at first, but other means may be used to set it
in O{wmtion. For instance, the end A may be put under
the liquid, and then the air may be withdrawn from the
tube by suction at C; the pressure of the atmosphere
ggl force liquid up 4B to take the place of the air with-

WI.

550. Montgolfier's Ram, or the Hydraulic Ram.
A is a pipe by _
which water de-
scends obliquely
from a reservoir;
the water bymeans
of a valve B, which
opens upwards,can
enter into an air
vessel C, and it can leave this through an ascending tube
D. At E there is a valve opening downwards by which
water may escape without entering the air vessel. Sup-
ggse the pipe, and its continuation below the air vessel, to
full of water; also suppose the valve B closed by its
own weight, and the valve £ supported in its place. Let
the valve £ be set free; then its own weight draws it
down ; the water flows out at this point, and by its motion
carries up the valve £ until the orifice becomes stogged.
At this instant the water in the channel from 4 to E, being
suddenly checked in its motion, exerts a very great pres-
sure on the surface which constrains it, fotces open the
valve B, enters the air vessel and the ascending tube, and
at the same time compresses the air in the upper part
of the air vessel. As soon as the water comes to rest B
closes, then % sinks by its own weight, and the action is
renewed. In this manner more water passes through B at
each stroke, and by the reaction of the compressed air in
the upper part of C the water is forced up the ascending
tube to any required height, where it is discharged.

551. A small auxiliary chamber is sometimes added.
The upper part F of this contains air, the lower part con-
tains some of the water of the pipe. When for an instant
the water comes to rest the compressed air in F recoils
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and occupies a larger space than it did originally; thus the
pressure below £ is lessened so that the valve descends
more readily. A portion of the air in C and D is taken u
by the water, which absorbs a considerable quantity of air
under high pressure: to supply the waste thus caused a
valve is put at G, which opens and allows air to enter
during the recoil of the water; and some of it finds its way
through B to the vessel C.

552. The hydraulic ram is easily constructed, and it is
durable as the valves are of a very simple character, so
that it may be advantageously applied whenever there is a
stream or a reservoir of water which would not otherwise
be used. But much of the water is wasted by flowing
through E, and it must depend upon local circumstances
whether this is an economical method for using an available
supply of water power.

553. The form and use of a balloon are well known
from familiar observation. A large bag is constructed of
silk, and filled with light gas so that it takes a globular
form. It weighs much less than an equal volume of com-
mon air, even; when a car occupied by two or three persons
is attached to it; and so it rises in the atmosphere on

being released from its fastenings. Balloons were invented .

by two brothers named Montgolfier ; they filled their
balloon with air which was kept heated by a small fire, and
owing to the heat was lighter, bulk for bulk, than the
atmosphere. Afterwards hydrogen gas was used which is
only about one fourteenth as heavy as the atmosphere, bulk

for bulk. At the Sresent time the gas which serves for .

lighting streets and houses is used : this is much heavier
than hydrogen, being about half as heavy as the atmo-
sphere, bulk for bulk ; but it has the great advantage of
being very easily obtainable. It is important that the bal-
loon should not be quite filled at first, ncanse the pressure
of the atmosphere diminishes as the balloon rises, so that
the gas within expands and tends to burst the silk. The
balloon is urged upwards by a force equal to the excess of
the weight of the air displaced above the weight of the
balloon and its adjuncts. The weight of the air displaced
by the balloon alone, without its adjuncts, remains con-
stant during the ascent until the ballcor has swollen out
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to its extreme size. For suppose, for example, the bal-
loon to have ascended so high that the density of the
air is half its value at the surface, then the pressure is
half what it originally was, and so the balloon swells out
to twice its original size, and therefore the weight of the
air which it displaces remains unchanged. Bags of sand
are usually taken in the car which may be emptied when
an increase of the upward velocity is desi For the
upward force is the weight of the displaced air diminished .
by the weight of the balloon and its adjuncts, and so the
upward force is increased by throwing out the sand. More-
over the mass to be moved is diminished by the same
operation. Thus on both accounts the upward velocity will
be increased : see Art. 132. By means of a valve the per-
sons in the car can allow some gas to escape, and so di-
alinish dfhe upward force on the balloon when they wish to
escen

554, Ascents in balloons have-been made for the pur-
pose of determining the bem%erature and the pressure of
the atmosphere at different heights above the surface of
the earth. In some cases balloons have risen te a height
of more than five miles. But they have not hitherto been
of use in passing from one assigned place to another, on
account of the want of means for constraining their course.
They are carried along in the direction of the wind; and
even this is not a definite course which can be known be-
forehand, because it is found that in different strata of
the atmosphere there are currents which tend in different
ways. Scientific men seem now to be turning their at-
tention to the comstruction of flying machines, yet up to
the present time balloons are the only centrivances for
practically moving through the air. 1t is said that M.
Giffard, an eminent French engineer, has recently obtained
some success in controlling the course of a balloon. He
constructed an .oblong pointed balloon, to the sterm of
which he attached a rudder, and in the car he carried a
small steam engine of three horse power, which worked a
screw formed of sails like a windmill. M. Giffard was able
to make way through the air at about six miles an hour
against the wind, and to, give a circular motion to his bal-
loon. Quarterly Review, July, 1875, .
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555. The Diving Bell. This is a large vessel closed
at the top and sides, but open at the bottom. It was
originally shaped something like a bell, and took its name
from this circumstance; but it is now usually made square
at the top and bottom, the bottom being a little larger
than the top. The bell is lowered into water with its
mouth downwards, precisely as the tumbler is put into
water in the experiment of Art. 486, The pressure to
which the air in the bell is thus exposed forces it into a
smaller volume, so that the water rises some way in the
bell ; yet there remains air enough in the upper part of
the bell to enable persons to breathe at considerable depths
below the surface. Moreover the water may be almost
wholly expelled from the bell by forcing in air from above
through a tube which enters the bell at its mouth ; also
the air may in this way be changed as often as it becomes
unfit to be breathed.

556. We may easily find the space which the air in
the bell will occupy when we know the depth below the
swrface of the water, assuming that the original stock of
air has not been increased. Suﬁpose for instance that the
level of the water inside the bell is 20 feet below the sur-
face of the water. The pressure of the atmosphere is
measured by a column of water 34 feet high ; and thus at
the level of the water in the bell the whole pressure is
measured by a column in height 3420 feet, that is 54
feet. Thus the air in the bell was originally exposed to a
pressure measured by 34 feet, and afterwards to a pressure
measured by 54 feet; therefore, by Art. 494, the volume of

{ho air in the bell is 7 of its original volume, that is 34
of-the volume of the bell.

557. The diving bell, as is well known, is employed in
recovering objects from. the sea, especially the stores or
the treasures lost in a sunken ship. The bell is usually
furnished with seats for the workmen, and shelves for their
tools ; there are also means of communicating signals be-
tween persons in the bell and others at the surface. The
increased pressure of the air causes some inconvenience to
the workmen in the bell, producing especially a painful
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sensation in the ears; but there is no danger, provided
there are trustworthy persons at the surface who will pay
immediate attention to the signals made to them.

558. It is usual to give an account, in connection with
H{drostatical Instruments of two which are more closely
related to Heat than to our present subject; and ac-
cordingly we shall briefly notice the Zhermometer and
the Steam Engine.

559. The Thermometer. Almost all bodies expand
by heat and contract by cold. This circumstance is used to
furnish the means of recording and comparing tempera-
tures ; the expansion or contraction of mercury combined
with that of a glass vessel in which it is contained is
usually employed for this purpose. The thermometer con-
sists of a slender glass tube closed at one end and ex-
Eandin at the other into a hollow globe called the bulb.

he bulb and part of the stem contain mercury; the rest
of the stem is a vacuum. The thermometer is made in the
following manner. At first the end of the slender tube is
open, and is placed below the surface of mercury in a ves-
sel; the bulb is heated which partially expels the air from
it. As the bulb cools mercury is forced by the pressure of
the atmosphere through the tube into the bulb. The mer-
cury in the bulb is then heated until it boils, the other end
of the tube being still surrounded by mercury : thus the
remaining air is expelled, and its place supplied by mer-
curial vapour : this condenses in coeling and more mercury
enters the tube and fills it completely. When the tem-
perature is lowered to the highest point which the instru-
ment is intended to mark, the end of the tube hitherto
open is closed. As the mercury continues to cool it con-
tracts and leaves a vacuam at the upper part of the tube.

560. To graduate a thermcmeter. The instrument
is put into melting snow, and a mark is made opposite to
the end of the column of mercury in the tube; this is
called the freezing point. Next the instrument is sur-
rounded with the vapour of water boiling under the
standard pressure of the atmosphere, and & mark is made
opposite to the end of the column of mercury in the tube;
this is called the boiling point. The space on the tube
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between the marks which denote the freezing point and
the boiling point.may be divided into any number of equal
parts which is convenient; these parts are called degrees.
In the Centigrade thermometer the space is divided into
100 degrees, and 0 is put at the freezing point and 100
at the boiling point; this is the instrument commonly
used for scientific purposes. In Fahrenheit’s thermometer
the space is divided into 180 degrees, and 32 is put at the
freezing point and 212 at the boiling point: this is the
instrument in popular use in England, and it is often
called the common thermometer. In Reaumur’s thermo-
meter tho space is divided into 80 equal parts, and 0.is
put at the freezing point and 80 at the boiling point,

561. It iz easy to pass from a reading on one ther-
mometer to the corresponding reading on another. For
instance, suppose that a Centigrade thermometer indicates
30 degrees, and that we require the corresponding reading
on Fahrenheit’s thermometer. The number 30 on the
Centigrade thermometer indicates %, that is %, of the
whole space between the freezing point and the boiling
point; now in. Fahrenheit’s thermometer this space .is

divided into 180 degrees, and % of 180 is ‘54: thus the

reading in Fahrenheit’s thermometer must be 54 above the
freezing point, and as the reading for the freezing point is
82 the required reading is 32 + 54, that is 86. Again, sup-
pose that Fahrenheit's thermometer indicates 104 degrees,
and that we require the corresponding reading on the
Centigrade thermometer. Since 104 —32="72, Fahrenheit’s
thermometer indicates. 72 degrees above the freezing point.

Now 72 degrees above the freezing point means 17720 , that

is g, of the wholo space between the freezing point and
the boiling point. This space in the Centigrade thermo-
meter is divided into 100 degrees; and g of 100 is 40 : thus

the required reading is 40,
T. P. 16



242 .VARIOUS INSTRUMENTS.

562. The temperature of melting snow is always the
same. The temperature of boiling water is different for
different states of tho gressure of the atmosphere: see
Art. 531, The exact definition of the boiling point of the
Centigrade thermometer is the boiling point when the

height of the barometer is 1@% of a metre at a place on the

level of the sea in latitude 45 degrees North. The -;—g of a

metre is about 2923 inches. A variation of 1045 of an inch
in the barometer from the standard height causes a change
of about onec degree centigrade in the temperature of steam.

563. The Atmospheric
Steam Engine. AB is a
hollow cylinder into which
a pipe C passes from a
boiler. D is a pipe which
communicates with a ves-
sel of cold water. E is a
piston which works up and
down in the cylinder. The
piston is connected with
one end of a lever FGH
which can turn round a
fixed point G. From the
other end of the lever is
suspended a rod HK, by
which the machinery connected with the steam engine is
set in motion; this rod carries a weight Z which is equal
to half the atmospheric pressure on the upper surface of
the piston E. An apparatus connected with the lever
opens a cock in C when the piston is in its lowest position,
and closes it when the ;l)liston is in its highest position. A
cock in D is opened when the piston comes to its highest
position, and is closed soon after the piston begins to de-
scend. Suppose that the piston is in its lowest position ;
and let the pressure of steam in the boiler be a little
greater than that of the atmosphere. When the cock in C
i3 opened steam rushes into the cylinder; thus the pressure
on the two surfaces of the piston is about equal, and the
piston is made to rise by means of the weight L attached




VARIOUS INSTRUMENTS. . 243

to the'end H of the lever. When the piston is at its
highest point the cock in D opens, and a jet of cold water
enters the cylinder ; this conggnses the steam and forms a
vacuum below the piston. The piston is then forced down
by the pressure of the atmosphere which is twice as great
as the opposing weight Z. The water introduced into the
cylinder, together with that arising from the condensed
steam, escapes through a valve provided for that purpose
at the bottom of the cylinder; this valve opens when the
piston is nearly at its lowest point.

564. The great defect of the atmospheric steam engine
is that by the admission of the cold water the cylinder
is cooled at every stroke, so that when steam again enters
the cylinder part of it is condensed ; this leads to a waste
of fuel. Watt improved the engine by having the con-
densation carried on in a separate chamber. Thus instead
of water entering through D to condeise the steam in the
cylinder, the steam escaped through D into a vessel of cold
water and was there condensed. But further improve-
ments were made, and thus the engine assumed the form
now to be described. :

565. Watt's Steam Engine. AB is
2 hollow cylinder closed at both ends;
C and D are openings at the ends. A
piston E works up and down in the <4 IC'

cylinder by means of a rod which passes
through a steam-tight collar in the
upper end of the cylinder. A vessel of K
cold water, called the condenser, is ,
placed near the cylinder. The openings D
at C and D are connected with appro- B
priate pipes furnished with cocks, so
that stearn may be alternately admitted and expelled.
‘When the piston is in its lowest position steam from the
boiler enters through D, and at the same time a communi-
cation is made between C and the condenser, so that the
steam above the piston passes away and is condensed while
the piston is forced up by the pressure beneath it. When
the piston is in its highest position steam from the boiler
enters through C, and the steam below the piston passes
16—3
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away through D to the condenser, so that the piston is
forced down by the pressure of the steam above it. This
engine is sometimes called the double-acting steam engine
from the circumstance that the force of steam drives the
piston alternately up and down.

566. The High-pressure Steam Engins. The con-
struction is much the same as in Watt’s steam engine, but
there is no condenser. The steam has a pressure many
times greater than that of the atmosphere, and instead of
being condensed after each stroke it is permitted to escape
into the open air. This is the form of steam engine used
on railways.

567. We have given only a brief sketch of the steam
engine ; there are many important details connected with
the subject, for an account of which the student must con-
sult special treatises. One of the most remarkable contri-
vances due to Watt is called the Parallel Motion. In
the atmospheric steam engine the ends of the lever are
arched, and chains passing round them are connected with
the ends of the rods which move up and down ; thus the
Qiston E can pull the end #' down, but cannot push it up.

Watt devised a system of jointed bars which allowed the
piston rod to move vertically and # to describe an arc of a
circle, while the piston rod could push as well as pull the
ond of the lever. The motion is very important not only in
the steam engine but in various cases where motion in a
right line is to be transformed, as it were, into motion in a
circular arc, and the contrary ; attention has recently been
drawn to this transformation by some fine researches of
Professor Sylvester in relation to a method invented by
M. Peaucellier.

LI. FAMILIAR APPLICATIONS.

568. In this Chapter the principles which have been
already explained will be applied to some familiar ex-
a;lq ‘ires, in some cases taken from well-known toys of
children.

569. The Kite is memorable as having been a favourite
toy with Newton; and the yourger Fuler,a well-known
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mathematician, has devoted to it a memoir in the Trans-
actions of the Berlin Academy for 1756. It is unnecessar
to describe an object so well known as the kite; we wi
suppose it floating in the air and at rest. There are three
forces which act and maintain. equilibrium; the weight of
the kite, including the tail ; the force of the wind ; and the
tension of the string. The weight acts vertically down-
wards. The wind may be taken to blow horizontally, but
its force must be supposed to. be resolved into two com-
ponents, one along the surface of the kite, and the other at
1ight angles to the surface; it is only the latter which
produces any effect on the kite, for the former would be like
a wind gliding over the surface of the kite and not press-
ing it: see Art. 473. The tension of the si-ing acts in the
direction. of the string at the peint where it leaves the
kite; but usually the string near the kite is, as it were,
divided into two, one going to a point near the upper end
of the kite, and the other to-a point near the lower end:
in this case the tensions. of the two strings are equivalent
to the tension of a single string the direction of which is
that of the kite-string at the point where it is divided into
two. The three forces which thus act on the kite must
fulfil the proper conditions in. order to produce equi-
librium; this will require that. their directions should meet
at a point, and that their magnitudes should be in the
proper proportion,

570. The kite then adjusts itself to a suitable inclina-
tion, and the tail adjusts itself to a-suitable position, so as
to bring about the precise circumstances necessary for
equilibrium ; but it would not be easy to state in words
exactly what these must be. If we consider the kite alone
we can find the situation of its centre of gravity by the
experimental method of Art. 170; but when the tail is
attached the situation of the centre of gravity of the whole
will deiend on the position taken by the tail. The weight
of the kite alone, or of the kite and the tail, can easily be
ascertained, If we consider the kite alone, the points at
which the force of the wind on it may be supposed to
act can be found. For we may conceive the force of the
wind to consist of parallel pressures on all the portions of
the face of the kite, the pressures being equal on equal
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portions of the face. The point where their resultant acts’
will be the centre of gravity of the face of the kite; this
is not necessarily the centre of gravity of the whole kite,
for there is usually a straight piece of wood running down
the middle of the kite, and a curved piece of wood at the
top; but it would be the centre of gravity of the kite if
these pieces of wood were removed. We might cut out a
figure in pasteboard, or thick paper, of the shape of the
kite, and then its centre of gravity would be practically
coincident with the centre of gravity of the face which we
_require. But when the tail is taken into consideration
also, since there must be some action of the wind on that,
it is impossible to say at what point the resultant force of
the wind may be supposed to be exerted. The string itself
will be in equilibrium when all the system is at rest, and
this gives rise to an interesting problem though too diffi-
cult for an elementary book. The forces acting on the
string are its own weight, the pressure of the wind, and
the tensions at the two ends, where the string may be con-
sidered to be held fast. It is obviously seen by trial
that the string does not take the form of a straight line.

571. The See-saw. A plank is put across a log of
wood, and oue boy sits on one end of the plank and
another boy on the other end. The plank turns round
the part in contact with the log as a fulerum, and so the
boys move alternately up and down. If the boys are of
unequal weight their positions must be adjusted accord-
ing to the principle of the lever; the distance of the
heavier boy from the fulerum must bear the same pro-
portion to the distance of the lighter boy from the ful-
crum as the weight of the lighter boy bears to theé
weight of the heavier boy. The motion is kept up by
each boy in his descent touching the ground with his
feet, which diminishes his pressure on the plank, and
gives to the weight of the other boy a momentary supe-
riority. Or the descending boy may push firmly against
the ground, which tends still more to send him up and
bring the other boy down.

572. The Swing. This well-known contrivance bears
a resemblance to a pendulum. The person in the swing
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may have his motion kept up by receiving an occasional
push to counteract the effects of the resistance of the
air and the friction at the points of support. He may
slso keeg up, and even increase, his own motion by crouch-
ing in the swing when at the highest point and rising in.
the swing when at the lowest point. It is not possible
. to establish this result strictly in an elementary manner,
but we may give some explanatory remarks. When the
man crouches in the swing he puts his centre of gravity
further from the fixed point than it was before; thus the
result is like that of augmenting the length of a simple
pendulum while starting it at the same inclination to
the vertical: therefore the centre of gravity descends
through more vertical space and so has a greater velocity
at the bottom than before: see Art. 318. Again, when
the man rises he brings his centre of gravity nearer to
the points of support; thus the result is like that of
diminishing the length of a simple pendulum while starting
it with the same velocity from the lowest point; there-
fore the pendulum must move through a larger angle
than before, in order that by passing through the same
vertical space as before it may lose the velocity with
which it started. Thus by either crouching at the high-
est point or rising at the lowest, the motion is increased ;
and of course if both changes are made the effect pro-
duced is all the greater.

573. The Top. A few words must be devoted to this
striking toy; the tops introduced of late years, which
continue spinning for several minutes, are especially in-
teresting. The reader will perhaps be disappointed by
the remark that it is impossible to give any satisfactory.
account of the subject in an elementary book; but suc]
is the fact; for the discussion of the motion is really a
most difficult problem, requiring the highest mathematical
resources. One peculiarity of the motion is the steady
character which sometimes belongs to it when the top
in popular language is said to be slegping. We know that
it 18 almost impossible to balance the top on its point
when the top does not rotate, and the questicn then is,
how can the top be kept from falling when it rotates
rapidly ? Suppose that at any instant the centre of gra-
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vity of the top, instead of being vertically over the small
base, is a little to the right-hand side; then before the
top has time to fall over towards this side the rotation
carries the centre of gravity round to the opposite side,
and: thas prevents the fall towurds the right-hand side.
Another peeuliarity of the motion is the fact that under
certain circumstances.the top raises itself from an inclined
position to a vertical position ; this is done by the aid
of the friction. It may suffice to convince the reader of
the difficulty of the subject just to state that some rea-
poning- given by Euler in explanation of this fact, and
adopted by Dr Whewell, is proriounced by a well-quali-
fied judge to be vague, inconclusive, and directly the
reverse- of the-truth. A popular explanation has. been
giverr which assumes the existence of a fréction acting
vertically upwards at the point of contact with the ground ;
but in the first place friction acts horizontally and not
vertically, and in the second place the effect of a vertical
force would be to increase the inclination of the top to
the vertical instead of diminishing it: see Art. 345.

574: The Popgun. This is a well-known toy. A
llet is- put at each end of a:hollow cylinder so as to
eep the cylinder air-tight. One of the glletl is pushed
forwards by a stick, and thus the air between the two
pellets is com resse(i, and its elastic force increased. The
other pellet then is pushed out as soon as the pressure
of the compressed air behind is greater than that of the
atmosphere in front, together with the friction between
the pellet and the hollow. cylinder.

575. The Squirt. A hollow cylinder is tapered off
to a point where there is a hole; this end is put under
the surface of water in a vessel, and a piston drawn
nearly through the cylinder just as in the common pumg:
water is forced in by the pressure of the atmosphere. The
water will not flow out of itself if the squirt is removed
from the vessel, but may be expelled to some distance by
driving the piston back rapidly.

576. The Sucker. A string is fastened to the middle
of a circular piece of leather, and the leather is moistened
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and pressed closely-against the flat surface of a stone or
other heavy body, 8o as to-exclude the air. Then the heavy
body may be raised by means of the string; the leather
soems as if it were glued.to the body, being really held in
contact. with it b{ the pressure of the atmosphere on the
upper surface of the leather.

577. A wheel-carriage illustrates various mechanical
principles. Compared with. a sledge it has the t
advantage of a diminished friction. In the-sledge we bave
sliding friction. between the sledge and the ground; in
the carriage. we have rolling friction between the wheels
and the ground; rolling friction is-less than sliding fric-
tion: see Art. 328. In the carriage there is sliding fric-
tion between the axle and. the nave of the wheel in which
it turns; but the rubbing surface is small and so can be
easily made smooth and kept greased It is found on
the: whole that when a road is in good: condition, the re-
sistance on a wheel carriage from friction does not exceed

516 or .%5 of the load The shock against obstacles in the

road is much less in the case of a wheel-carriage than of a
sledge; the wheel is pulled over the obstacle, turning
round it as a fulcrum. Theory shews that other circum-
stances being the same a large wheel is pulled over an
obstacle more easily than a small wheel. The forewheels
of a carriage-are made small, because as they can go under
the body of the carriage turning is made easy. When
the carriage is going up-hill the pressure is greater on the
hind wheels, which are large; and when going down hill
the })ressure is greater on the front wheels, which are
small : thus in the former case we gain ease, and in the
latter security. The-springs of a carriage much diminish
the shock of obstacles; they serve the same purpose as
the powerful springs which are placed at the ends of rail-
way carriages, and called buffers: the force of the shock
at starting or stopping, when one railway carriage strikes
up against another, is spent as it were in compressing these
powerful springs instead of acting directly on the carriages
and the passengers,
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878. The Rocket. This consists of a long cylindrical
tube which is filled with an inflammable mixture con-
sisting chiefly of gunpowder. This mixture is ignited,
and as it burns away the rocket is driven upwards ver-
tically or obliquely, as it may have been pointed. The
moment the powder is in flames a large quantity of gas
is produced; this is to some extent confined by the at-
mosphere, which resists its escape, and so it presses against
the end of the hollow part of the rocket and forces the
rocket upwards. Thus the pressure of the atmosphere
is necessary for the motion of the rocket ; for if there were
no atmosphere the gas would find no resistance to develope
its elastic force, and would exert scarcely any pressure
on the rocket. The same principle has been suggested as
suitable for producing motion in a vessel ; a steam engine
was to force out water from the vessel into the surround-
ing sea or river, and the resistance of this sea or river
against the issuing water was to force the vessel on. It is
asserted that the animal world presents illustrations of
the same princigle; for the larva of a dragon-fly appears to
swim forward by ejecting water from its tail, and the
nautilus likewise. :

579. The motion of a sailing vessel produced by the
action of the wind on the sails, and guided by the action
of the water on the rudder, will afford good illustrations
of mechanical principles : we begin with the action of
the wind. Suppose that a ship has to sail from the South
towards the North, and that the wind is blowing exactly
in the same direction; then if a sail is stretched right
across the vessel, that is at right angles to the length of
the vessel, it catches the full pressure of the wind, and
the vessel is urged on. In this case it would be of little
use to put a second sail parallel to the first just behind or
before it; for the sail nearest the bow would be sheltered
by the other from the wind, and so would experience only
a slight pressure. Next let us suppose that the ship is
to sail from the South to the North as before, but that the
wind blows from East to West. Let the sail now be
stretched, not at right angles to the length of the ship, .
*  in some direction intermediate between the propose(i

- of the vessel and that of the wind ; say towards



FAMILIAR APPLICATIONS. _ 251

the North-East and South-West.
Let ABC denote the position
of the sail, and £B the direc-
tion of the wind. Suppose the
velocity of the wind resolved
into two components, one along
AB and the other along DB
at right angles to 4B8; the
latter only is effective in pro-
ducing a pressure on the sail:
see Art. 473. 'Thus we get a
force acting on the sail in
the direction DB; this force
is not in the direction in which
the ship is to move, but we may suppose it resolved
into two components, one acting from the stern to the
bow and the other at right angles to this. The former
component urges the ship in the required direction ; the
latter would tend to urge the ship sideways, but it pro-
duces little effect becanse of the resistance opposed by
the water to the large surface which the ship presents
sideways ; what effect it does produce must be counter-
acted from time to time by the action of the rudder.

580. It will be seen that two or three sails may be
used parallel to each other; thus in the diagram a second
sail, as large as the first, might be placed near the stern, so
that neither of them should intercept the wind from the
other. We have supposed that the angle between the
direction of the wind and that of the course is a right
angle ; but this is not essential : the precise position in
which the sails must be put in order to secure the greatest
velocity will depend on the angle between the directions
of the wind and the course, and can be determined in
every case by trial. A ship cannot sail directly against
the wind, but it may approach very nearly to such a
course. For instance the wind might be from the North
East, and yet the ship sail from South to North. If the
wind is directly, or nearly directly, opposed to the desired
course the ship must adopt a zigzag course. Thus, for
instance, if the ship cannot sail directly from South to
North it may sail towards the North East for some dis-
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tance, and then change its"direction and sail for some
distance towards the North West; thus: by one or more
such tacks the.ship may reach its proposed port.

581. We proceed to explain the use of the Rudder.
Su(r se the ship sailing from South to North, and let the
rudder be in its middle position, that is let the rudder and
the keel be in one fpla.ne. Then the resistance of the water
acts on one side of the ship precisely in the same manner
as on the other, and so does not tend to change the direc-
tion of the motion. Suppose then. that in order to avoid
an obstacle, as for instance another ship, it is desirable to
change the direction of the ship by. turning the bow to-
wards the right hand side: te effect this the rudder is
turned towards the right hand side. Let R7 denote the
position of the rudder thus turned to the right-hand side;
by reason of the passage of the rudder through the water,
with the ship, a resistance is exerted on the rudder in the
direction MV which is at right angles to 27" One effect
of this would be to push the whole ship in the direction
MN ; but a more important effect is to give the ship a
rotation in the horizontal plane round its centre of gravity;
see Arts. 344 and 345. Thus in virtue of this rotation the
bow of the ship turns towards the right hand, and the stern
towards the left hand. When the proper change of direc-
tion has been produced the rudder is put back again into
its middle position.

582. Rowing Boat. In Art. 19S we just alluded to
the oar of a boat as affording an example of a Lever of the
second class; but it will be instructive to consider the
forces which act on the boat. The man who rows exerts
by his hands a certain force on the oar or the pair of oars
which he grasps: we will suppose that he holds a singlle
oar, and we will denote the force he exerts on it by P. In
consequence of this effort of the man a certain force is
exerted by the oar on the row-lock and by the row-lock on
the oar ; this we will denote by @. If the man holds two
oars P is the sum of the forces he exerts on the oars,
and @ the sum of the forces at the row-locks, Now
Q is greater than P by the nature of the lever, for the
oar may be considered to form a lever of the second class
with the fulcrum at the blade in the water. It might
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at first sight seem that @ is the force which the man applies
to the boat to maintain it in motion. But we must re-
member that he cannot bring his strength to bear on the
oar unless he pushes with his feet against the boat in the
opposite direction. The force thus exerted is practically
equivalent to the force which he exerts by his hands, that
is to P. Hence he really exerts on the boat the force
Q- P. 1t is only through having the external water as a
fulerum that he is able to bring the force @ which s
greater than P to act in the contrary-direction, and thus
to leave @— P to be effective-on the boat. Children in a
railway carriage may sometimes be seen pushing at the
front of the carriage in order to start it ; they do not know
that, since action and reaction are equal, the force of their
gands is balanced by that of their feet in the contrary
irection.

583. The preceding Article suggests the remark that
in a Mechanical Problem there may be more than one
distinct body involved, and that in order to discuss the
equilibrium or the motion we may have to consider each
body separately. Thus if a man row a boat with a pair of
oars there will be four bodies, namely the boat, the man,
and the two oars, each acted on by its special system of
forces. We will illustrate the matter by considering the
case of a wheelbarrow which contains a load, as a stone,
and is held by a man in the position just previous to mo-
tion so that the whole is in equilibrium. The stone is
acted on by its own weight downwards, and by the re-
sistance of the wheelbarrow at the point or points of con-
tact. The wheelbarrow consists of two distinct parts;
namely, the trough-part including the legs and arms, and
the wheel-part consisting of the wheel with its axle. The
trough-part is acted on by its own weight, by the pressure
of the stone, by the action of the wheel-part at the ends of
the axle, and by the force exerted by the man’s hands. The
wheel-part is acted on by its own weight, by the action
of the trough-part at the ends of the axle, by the resistance
of the ground in a vertical direction at the points where
the wheel touches the ground, and by the friction of the
ground at the same point in a horizontal direction. The
man is acted on by his own weight, by the pressure of the
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wheelbarrow on his hands, by the resistance of the ground
in a vertical direction, and by the friction of the ground in
a horizontal direction. By the law of the equality of
action and reaction the pressure of the stone on 316 wheel-
barrow is equal and opposite to that of the wheelbarrow
on the stone; the action of the trough-part on the wheel-
part is equal and opposite to that of the wheel-part on
the trough-part, and the action of the man on the wheel-
barrow is equal and opposite to that of the wheelbarrow
on the man. We suppose the ground to exert a friction,
which it will do in practice ; but it is theoretically conceiv-
able that there is no friction. In this case as the man’s
weight and the action of the ground are both vertical, so
must the action of the wheelbarrow on him also be, in
order that he may be in equilibrium ; that is, he must pull
the wheelbarrow in a vertical direction upwards and be
pulled by it in a vertical direction downwards. This would
require him to lean backwards so as to throw his centre of
gravity behind the points at which he presses the ground ;
for the upward force on him must fall between the two
downward forces that he may be in equilibrium. In this
case all the other forces which act on the trough-part being
vertical the action from the wheel-part must also be so0;
then the other forces on the wheel-part being vertical
there can be no friction on it.

LII. WORK.

584. In modern treatises on Practical Mechanics the
term Work is employed in a peculiar sense ; and various
useful facts and rules are conveniently stated by the aid
of the term in this sense. We propose accordingly to
give some explanations and illustrations which will enable
the reader to understand and apply such facts and rules.

6585. The labour of men and animals and the power
furnished by nature in wind, water, and steam, are em-
ployed in performing operations of various kinds, such as
drawing loads, raising weights, pumping water, sawing
wood, and driving nails. In these, and similar operations,
we may perceive one common quality which is adopted
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as characteristic of Work, and suggests the following de-
finition; Work is the production of motion against re-
sistance.

586. This definition will not be fully appreciated at
once; the beginner may be inclined to think that it will
scarcely include every thing to which the term work is
popularly applied: he will find however as he proceeds
that the definition is wide enough for practical purposes.
According to this definition a man who merely supports a
load does not ‘work ; for here there is resistance without
motion. Also while a free body moves uniformly no work
is performed; for here there is motion without resistance.

587. Work, like every other measurable thing, is mea-
sured by a unit of its own kind which we may choose at
pleasure. The unit of work adopted in England is the
work which is sufficient to overcome the resistance of a
force of one pound through the space of one foot: or
we may say practically that the unit of work s the work
done tn raising a pound weight vertically through one foot.

588. The term jfoot-pound is used in some books in-
stead of the term wnit-of-work : so that foot-pound may
be considered as an abbreviation for one pound weight
raised vertically through onme foot.

589. Some English writers prefer to use the French
system of weights and measures instead of our own ; this
system is explained in the Mensuration jfor Beginners.
In this system the standard weight is the Ailogramme
which corresponds to about 15432 English grains, that
is rather more than two pounds Avoirdupois ; the standard
length is the metre which is about 39:371 English inches.
The unit of work is that done in raising one kilogramme
through a vertical height of one metre; it is called a
kilogrammetre.

590. The term horse-power is used in measuring the
performance of steam engines. Boulton and Watt esti-
mated that a horse could raise 33000 pounds vertically
through one foot in one minute; this estimate is probably
too high, on the average, but it is still retained, so that
a horse power means a power which can perform 33000
units of work in a minute. :
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691. The term duty is also used with respect to
steam engines ; it means the quantity of work which can
be obtained by burning a given quantity of fuel. In good
ordinary engines the duty of one pound weight of coal
varies between 200000 and 500000. A horse power will
yield about 2000000 units of work in an hour, so that the
consumption of coal per horse power per hour varies be-
tween 10 pounds and 4 pounds. Sanguine persons look
forward to the possibility of so improving the steam engine
as to obtain & horse power per hour with the consumption
of one pound of coal. And already the results obtained by
some engines much exceed what-we have given as the duty
of good ordinary engines ; so that 70000000 is taken as the
duty of one bushel of coals, the bushel containing about 87

unds. Another estimate is 100000000 as the -greatest
uty at present obtained ‘from one bushel of coals. The
average daily labour of a man working under the most
favourable circumstances may be put at 2000000, and of &
horse at 10000000, so that a‘bushel of coals consumed daily
can perform, on the highest estimate of duty, the work of
50 men or of .10-horses,

592. Some writersthave found pleasure in constructing
examples of the virtue contained.in a bushel of coals. The
following, taking 70000000 as the duty of a bushel of coals,
are from Herschel's Discourse on the Study of Natural
Philosophy.

“The ascent of Mont Blanc from the-valley of Cha-
mouni is considered, and with justice, as the most toilsome
feat that a strong man can execute in two days. The com-
bustion of two pounds of coal would place him on the
summit.

“The Menai Bridge, ene of - the:most stupendous works
of art that has ever been raised by man in modern ages,
cousists of a mass of iron, not less than four millions of
pounds in weight, suspended at a medium height of about
120 feet above the sea. The consumption of seven bushels
<l)lf coals would suffice to raise it to the place where it

angs.

“The great pyramid of t is composed of granite. I%
is 700 feet in the side of its base, and 5838 in perpendicular
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height, and stands on eleven acres of ground. Its weight
is therefore 12760 millions of pounds, at a medium height
of 125 feet ; consequently it would be raised by the effort
of about 630 chaldrons of coal, a quantity consumed in
some foundries in a week.”

But the first example is stated in a note to be not quite
a fair estimate. Such an example as the second also is
open to the charge of exaggeration ; for although the seven
bushels of coals might be able to raise a weight equivalent
to that of the Menai bridgogyrovided this weight were in a
convenient situation, this is altogether different from raising
the actual bridge.

593. By our definition of Work its amount is mea-
sured by the product of the number of pounds in the
force into the number of feet in the space through which it
is exerted. Thus the Work is the same so lonﬁ as this pro-
duct remains the same. For example, the Work is the same
to raise 5 pounds vertically through 4 feet, or 10 gounds
ve}'tically through 2 feet, or 20 pounds vertically through
1 foot.

594. Observations have been made of the amount of
work which can be performed by men and by animals
labouring in various ways; and the results are given in
treatises on Practical Mechanics. The following Table is
an example : the first column states the kind of labour, the
second column the number of hours in a day’s labour, the
third t;:olumn the number of units of work performed in a
minute.

Man raising his own weight on a ladder 8 4230
Man raising a weight with a cord and pulley | 6 1560
Man turning a windlass 8 2600
Man lifting earth with spade to the height

of five feet 10 470

Besides these general statements particular facts have
been given as the result of special experiments: thus a
man ascended a mountain 9000 feet high in 9 hours, so
that, his weight being 14 stone, his work was at the rate
of 3270 units in a minute ; in a boat race it was calculated
that the work done by a rower was at the rate of 7500
units per minute,

T, P, 17
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595. There is one mode in which the labour of men
and animals is employed which is not directly comparable
with the application of a force to raise a weight, namely,
that of carrying burdens along a horizontal ro: It seems
that a portion of the labour is spent in merely supporting
the burden, and this portion does no work in the sense in
which the term is used here : the remainder of the labour
does the work of carrying the burden. By observation we
may find the amount of useful effect which can be produced
by this mode of labour; thus for example, it is said that a

- porter walking with a burden on his back through a day of
seven hours long can carry a weight of 90 pounds through
145 feet in a minute. But this is not the work in the sense
in which we have used the word. Nor must it be taken to
measure the whole labour of the [l)orber ; for, as we have
said, some labour is spent in merely supgorting the bur-
den : moreover some labour is also spent by the porter in
carrying the weight of his own body. ‘It will be seen in
the Table of Art. 594, that there is a great difference ap-

arently between the amounts of work which are performed
in various ways. This is doubtless partly owing to the
weight of the man’s body or limbs. In the first case men-
tioned in the Table the whole-of this weight is taken into
account ; in the last case it is not, and yet labour is spent
ggd the man in the perpetual elevation of a portion of his

y.

596. The main part of the labour of walking arises
from the fact that at each step the centre of gravity is
raised and made to describe a small portion of a curve. It
has been calculated that at every step the centre of gravity
is raised through a perpendicular height equal to about one
eleventh of the length of the step ; thus a person in walking
for eleven miles would raise his body through a succession
of lifts together e(ﬂml to a mile : therefore if his weight
were 160 pounds he would in this way alone perform
160 x 5280 units of work. Other estimates however put a
much smaller fraction in place of the one el¢venth.

597. A large number of examples may be proposed
which consist merely of the application of Arithmetic to the
measurement of work; but tge importance of the subject
is more obvious when we combine it with some principles
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already explained, and in the first place with one which
occurs 80 often in Mechanics, namely, that of the centre of
gravity.

598. The following is a very important proposition :
When weights are ratsed 'verticaly;: throughp(:zriouo
heights the whole work is the same as that of raising a
weight equal to the sum of the weights from the first
position of the centre of gracity to the last. Some part of
this proposition is obvious. For if we have a soligabody
and move it vertically upwards so that each point describes
a vertical straight line of the same length f!())(l)‘ every point,
then the centre of gravity also describes a vertical straight
line of the same length ; and the proposition thus merely
. makes the whole work just equal to the sum of its obvious
parts. But the proposition includes something more. Su;

e for instance that a heavy chain is lying on the ground ;
et one end be taken and lifted up until the whole chain
hangs vertically with its other end just touching the
ground. Then the different parts of the chain have been
raised through different spaces; the top of the chain
through a space equal to the length of the chain, and the
bottom of the chain through no space at all. The proposi-
tion then says that the whole work is measured by the
product of the weight of the chain into the height of its
centre of gravity in the last position above the ground. If
the chain be of the same kind throughout the centre of
gravity will be at the middle point when the chain hangs
vertically. In this case the proposition a%péa.rs to be very
natural, and almost self-evident. It can be demonstrated
by the aid of a little mathematics ; but the reader can take
it as a fact which may be verified experimentally. As
another illustration we may mention the case of raising a
Venetian blind.

599. The Work done in raising a heavy body along
a smooth Inclined Plane 18 equal to the Work done in
raising the same body through the .corresponding vertical
space. The Weight of the body may be resolved into two
components, one down the Plane, and the other at right
angles to the Plane ; the former is the part which resists
motion up the Plane. Now by Art. 246 we know that
the former component is to the whole Weight as the height

17—2
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of the Plane is to its length. And thus it follows that a
resistance equal to this component exerted throughout the
length of the Plane gives just the same amount of Work
aﬁ tl}lg Weight of the body exerted through the height of
the Plane.

600. If a body be dragged along a rough horizontal
plane the Work done is the product of the weight into the
coefficient of friction and into the space. This follows at
once from principles already explained. For when a heavy
body is dragged along a horizontal plane the resistance is
not the Weight of the body, but the product of the weight
into the coefficient of friction; see Art. 325. Then the
Work is the product of this resistance into the space.

601. Next sup%)se a body is drawn uﬁ a rough In-
clined Plane; the Work done consists of the sum of two

arts. First there is that part which would be done if the

lane were smooth, and this is just the same as that done
in raising the whole weight through the corresponding
vertical space. Next there is the part which depends on
friction; and it is found that this is equal to the product of
the weight into the coefficient of friction into the horizontal
length described. For the resistance is found by multiply-
ing the coefficient of friction into the pressure at right
angles to the Plane; and, by Art. 247, this pressure bears
the same proportion to the whole weight as the base of the
Plane does to its length. Thus the product of this pressure
at ﬁht angles to the Plane into the length of the plane is
equal to the ﬂ)roduct of the whole weight into the base of
the Plane. Hence we obtain the required result.

602. Next consider the case of a body drawn down a
rough Inclined Plane, the Plane being too rough for the
body to slide down by itself. Here the Work owing to
friction is as before the product of the weight into the
coeflicient of friction into the horizontal length. And to
obtain the resultant Work we must diminisk this by the
groduct of the weight into the vertical space described ;
or tendency down the Plane has not now to be overcome
by force applied, but is really a force furnished by nature
which assists in urging the body down the Plane.
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603. In cases which occur in practice the length of an
Inclined Plane is scarcely perceptibly different from the
base in gize. Thus suppose we have on a railway a rise of
1 foot in 100; then it will be found that the difference
between the length and the base of such an incline will be
at the rate of about 1 foot in 4 miles.

604. The preceding four Articles may be applied to the
case of carriages drawn along a common road or a railroad ;
in this case there is indeed a rotatory motion of the wheels
which is not contemplated in our propositions: but the
weight of the wheels will in general be small compared
with the weight of the whole mass which is moved, and we
will assume that no important error can arise from neglect-
ing the rotatory motion. The numerical value of the coeffi-
cient of friction will depend on various circumstances.
Take the case of a cart on a common road; then observa-
tion indicates that the value of the coefficient depends on
the size of the wheels, and on the velocity of motion, as
well as on the nature of the road. For a cart having wheels
four feet in diameter, drawn with a velocity of six miles an
hour along a good road, the value of the coefficient may lie
between 51(—) and %0 . Again, take the case of a train drawn
along a railroad; then observation indicates that the value
of the coefficient depends on the velocity. For a velocity

of 30 miles an hour the value will be about -2—21-2—0; that is

the friction is about 16 pounds per ton, estimated on the
whole weight of the engine and the load. There is how-
ever besides this the resistance of the air, which depends
on the square of the velocity and the area of the frontage
of the train.

605. In an account of the Mechanical Powers we have
frequently drawn attention to a general principle that in
the state of motion what is gained in power is lost in speed.
Now it is really the same principle which in discussions on
Work reappears under the following form: the Work ap-
plied toa machineis eaual to the Work done by the machine.
In this form it is called the Principle of Work. In fact
.when the parts of a machine move uniformly it is found
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that the proportion between the Weight and the Power is
the same as for equilibrium ; and from this the proposition
is derived: the reader may take it as a result established
by theory.

606. But the statement of the Principle of Work re-
quires to be modified in practice. The whole work done
by a machine may be divided into two parts, the wseful
part and the lost part. The useful part is that which the
machine is designed to perform. e lost part is that
which is not wanted but which is unavoidably performed ;
such for example a8 moving the parts of the machine itself
which are necessarily heavy, or overcoming friction or the
want of flexibility of springs. It is still true that the whole
work applied to the machine is equal to the whole work,
useful and lost, done by the machine; and consequently the
us¢ful work alone is always less than the work applied to
the machine. A good example of the distinction between
useful and lost work is furnished by a steam vessel; the
useful work is the moving the vessel itself, and the lost
work is the setting in motion a large mass of water by the
strokes of the paddle-wheels.

607. The proportion of the useful work done by a
machine to the work applied to the machine is called the
efficiency of the machine, and sometimes the modulus of
the machine. The efficiency or modulus is thus a fraction;
and it is of course the object of inventors and improvers to
bring this fraction as near to unity as possible.

608. Take for example a high pressure steam engine,
working without expansion or condensation. Up to 10
horse-power the modulus for an ordinary engine is *4, and
for the best engines ‘5. The modulus increases as the horse-
power increases, and when the engine is of above 40 horse-
power the modulus is *56 for an ordinary engine and ‘7 for
the best engines. For an undershot water-wheel the modu-
lus lies between 25 and '3 ; and for an overshot water-wheel
under favourable circumstances the modulus lies between
*7 and *75. For a common pump the modulus lies between
*25 and '3. In the common pump work is wasted in the
friction of the solid parts, in generating the velocity with
which the water is discharged, and in producing eddies in
the water; and we must also add the leakage of the water.
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609. Accumulated Work. If a body is moving it is
said to have work accumulated in it; in fact if a body

ssesses any velocity it can be made to do work by parting
with that velocity. For examgle, a cannon-ball in motion
can penetrate a resisting substance, and water flowing
against a water-wheel can turn the wheel. Suppose that a
body is moving with any velocity; that velocity might have
been gained by falling through a suitable vertical height,
and if the body be started up with such velocity it will just
reach that height. This suggests the following as a measure
of accumulated work: the work accumulated in a moving
body is measured by the product of the weight of the body
into the s through which it must fall to acquire the
velocity. tead of the space through which the body
must fall we may take the quotient of the square of the
velocity by 64: see Art. 127,

610. An example will illustrate this. The force neces-
sary to drive in an ordinary nail may be taken as 200 pounds;

suppose that the nail is to be driven to the depth of il()

of a foot: then the Work to be done is 200 x llo , that is 20.

Let us take a hammer weighing 2 pounds and give to it the
velocity which would be gained in falling through 1 foot;
then the work accumulated in the hammer is 2 x 1, that is 2.
Hence ten blows of the hammer on the nail would theo-
retically do the work of driving the nail in. Practically

- however a large part of the work accumulated in the ham-

_mer is lost at each blow, as will be understood from the
next Chapter.

611. 'The termlabouring force was used by Dr Whewell,
in his Mechanics of Engineering, nearly in the same sense
as we have here used Work; the former term suggests
rather the cause and the latter the gffect: but as the cause
is measured by the effect the terms are practically equiva-
lent. “In our towns in which large manufactories exist,
such establishments often generate by their machinery more
labouring force than they need; and the surplus (transferred
by an axis, or in some other way, to a distance) is hired by

other persons, and employed for the purposes of the most
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varied kind of work. In such towns, we oftén read ad-
vertisements of ‘ power to be disposed of to a amount.’
The power here spoken of is labouring force. e cost is
pr(()iportionul to the quantity of labouring force so bought
and sold”

612. There are various sources of labouring force.
They may be enumerated as the powers of water, wind,
steam, man, and animals. To these may be added mag-
netism, electricity, and chemical agencies, which, however,
up to the present time, have contributed very little to the
general stock of force.

613. In England, in recent times, wind and water have
been comparatively much less used than in earlier times;
and at present steam is the main source of our labouring
force. Or, to speak more correctly, we may say that the

. stores of coal really contain our available labouring force,
It is of course possible that in future means may be in-
vented for availing ourselves of other natural forces. For
instance, by the tides an enormous mass of water is raised
twice a day through a considerable height ; so that if this
water could be stored up in any way its fall would supply a
vast amount of labouring force : but no practical method
of turning the tides to this account seems to have as yet
been proposed.

LIII. ENERGY.

614. We have spoken in the preceding Chapter of
Work and of Accumulated Work ; now the term Energy
has been recently introduced and employed in the same
sense a8 we have used Accumulates ork. Thus by
Energy we mean the capacity which a body has, when in
a given condition, for performing a certain measurable quan-
tity of Work, - The Energy of a moving bodﬁ is equal to the
product of its weight into the height through which it
must fall to acquire the velocity which it has. Moreover
we shall always express the weight in pounds and the
height in feet. Instead of the height through which the
body must fall we may take the quotient of 510 square of
the velocity by 64.
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615. A beginner is not in a position to judge of the
advantage which will follow from the use of certain defini-
tions, or of the propriety of these definitions ; but he may
anticipate, after reading the preceding Chapter, that inte-
resting and important facts can be stated and applied by
the use of the word Energy as now explained. e may
add that these facts are not confined to the Mechanical
sciences with which we are occupied, but extend to other
subjects of great interest as Heat, Eiectricity and Chemi-
cal Action. We shall be able to give but a brief outline
here.

616. A simple example will-shew at once that Energy
B;lesents itself naturally to our attention. Suppose that a
I of certain weight fired with a certain velocity will just
go through a plank one inch thick. Let a similar ball be
red with twice the former velocity ; then it is found by
trial that this will go through a plank of about four inches
thick ; so that the penetrating power of the ball changes,
not in the same proportion as the velocity, but as the
square of the velocity, that is as the Energy. Again, sup-
se a soldier to disc a ball from his rifle ; it is well
nown that the rifle recoils, and would give a severe blow
if it were not held firmly against the shoulder. Now it
follows from the Law of the equality of Action and Re-
action that in one semse the backward stroke of the rifle
on the shoulder is equal to the stroke which the ball would
inflict on an obstacle just as it left the rifle. The two are
equal in this respect that the momentum of the one is-
equal to the momentum of the other. Suppose that the

rifle weighs 10 pounds, and the ball one ounce, that is 11—6

of a pound; and suppose that the ball starts from the rifle
with a velocity of 800 feet per second : then therifle recoils

with a velocity of 1:_2013 feet per second, that is with a

velocity of 5 feet per second. But the Energy of the ball

is measured by 11_6,(@06_?92; and that of the rifle by

%5 . o0 that the Energy of the ball is 160 times that

leGT
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of the rifle. Thus we need not be surprised that in spite
weapon for the soldier's purpoee  for althaugh theve 1 the
weapon for 's purpose ; for ere is the
backward stroke yet the Energy of this is inconsiderable
compared with that of the ball.

—  617. By the fall of a heavy body we gain Energy, and
hence it follows that if a bmgbody be in a position from
which it can fall we may regard it as a store of Energy.
In other words, we may apply the term Energy of position
to a body in such a situation. Thus if a mass of water is
80 that we can if we please allow it to fall and turn
the wheel of a water mill, we may say thal the water is a
store of Energy or has an Energy of position. When the
spring of a watch is wound up there is a store of Energy
which suffices to keep the watch in motion for several
hours. When the string of a bow or a cross-bow is pulled
back there is a store of%nergy which suffices to propel the
arrow. .

618. In Chapter XVIIL. we have discussed various
cases of the Collision of bodies. It will be found on ex-
amining the results there obtained that there is always a
loss of Energy by the collision of two bodies unless the
bodies are perfectly elastic. For example, suppose two
equal inelastic balls to move with equal velocities in oppo-
gite directions and come in contact. The energy of each
ball is the same before impact, and therefore the Energy
of the two is double that of one of them. By the impact the
balls are reduced to rest, and so the Energy is destroyed.
Again, suppose that one inelastic ball impinges on an equal
inelastic ball at rest. After impact the two balls move with
half the velocity of the impinging ball before impact. Thus
the Energy of each ball after impact is one fourth of the
Energy of the impinging ball before impact ; and therefore
the ener%y of the system after impact is half of the
energy 3.6 ore impact. Other examples may easily be con-
structe

619. Again, we have noticed in Art. 606 that in using
any machine there is always a large proportion of the Work
lost, owing to friction and other canc~~~ S~m-~ of the Work

8t npgea.rs in the form of motic which it

1 not the object of the machi i3 does
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not apply to all that is lost, especially to that which is lost
by the friction of solid parts.

620. The question then arises what becomes of the
Energy lost in such cases as those of Art. 618, and of the
Work lost in the use of machines. Modern science shews
that it is in some way turned into heat; that it is possible
to measure the amount of heat which corresponds to a
given amount of Energy ; and that if we make 8 strict cal-
Culation of the amount of Work done by a machine, and of
the amount of heat developed, we shall find that the two
together balance the Work applied, so that there is no
destruction of Energy. The fact is called the principle of
the Conservation of Energy.

621. That there is some connection between motion
and heat must have been long known. Savages are said to
kindle a fire by rapidly rubbing one piece of wood against
another. A workman after sawing a log or filing & nail
could not fail to observe that his tool became warm. To.
wards the end of the last century the celebrated chemist
8ir Humphry Davy shewed that two pieces of ice might be
nearly melted by rubbing them together, when by reason of
the arrangements he made the heat could not have been
obtained from the surrounding bodies. Shortly before
Count Rumford had observed that in the process of bori
cannons & large amount of heat was developed. Whatnwl;‘;
nowW necessary was an exact determination of the relatj
between the quantity of mechanical work performed agg
glxges ma:allgl:nquant&tz ofdhgat generated; this in recent,

ascertaine careful i inci
p}z:lly by Dr Joule of Ma.ncheat).'er. The%l?:lnr?sﬁ:’gmﬁ
t! 1(113 .:ga’wd : if water be allowed to fall through 1391‘?
and its motion suddenly stopped, sufficient heat wi]leebg

produced to raise the te
of tho Centigrade thermometer. ~ . ° "o 00 dogree

622, If we take

? a8 our unit of heaf
toraise the temperature of one pound o: :‘vha:e?ﬁe’:legme of
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water one degree of Fahrenheit's thermometer, one unit of
heat is equivalent to g of 1891 units of work, that is to 772

units of work. Moreover the heat required to raise the
temperature of one pound of water by a given amount is
not guite the same for all original temperatures, though the
difference is very slight. To be precise then we may say
that the unit &Y heat is the quantity of heat required to
raise the temperature of water by one degree, starting from
the temperature of 60 degrees of Fahrenheit’s thermometer.

623. It should be noticed that water requires more
heat than most substances in order to raise its temperature
by a given amount: the same ?iuantity of heat which would
raise one pound of water one degree of temperature would
raise about n¢ne pounds of iron one degree.

624. . We may add to the examples which we have
already given of the conversion of motion into heat some
cases of sudden blows: thus a blacksmith can make a piece
of lead hot by repeated blows, and a cannon-ball striking
against an iron target may make it red hot. Other cases
less immediately obvious may be noticed. When a bell is
put into vibration, by a stroke of the clapper, part of the
energy of the vibration is communicated to the air, and by
the aid of this the sound of the bell is heard. The state of
motion communicated to the air passes on with the known
velocity of sound, but it no doubt mes at last converted
into heat. Also a portion of the energy of the vibration
rl;emains in the bell, and this is ultimately converted into

eat.

625. Suppose for an example that an iron ball weighing
9 pounds, and moving with a velocity of 1000 feet per second,
enters a mass of water and is brought to rest; the Energy

of the ball is equal to 1’%’2@, that is to 140625.

Divide this by 772; the quotient is 182, so that 182 units of
heat will be produced by taking the velocity from the ball.
This heat will raise the temperature of the water and the
iron ball. Suppose for instance there are 90 pounds of
water; the 9 pounds of iron count as 1 pound of water in
the demand for heat, by Art. 623; so that the 182 units of
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heat may be supposed given to 91 pounds of water, and will
therefore just suffice to raise the tem?emture of the ball
and the water 2 degrees of Fahrenheit’s thermometer.

626. The principle of the Conservation of Energy is
not confined to the two subjects which we have considered
and here brought into connexion, namely mechanical work
and heat; it is extended by philosophers so as to include
chemical action and electrical action: the principle asserts
that in all transformations of Energy from one kind of action
to another the amount of Energy remains unchanged.

627. The earlier researches into the subject of Energy
related chiefly to the conversion of Work into Heat ; more
recently attention hasbeen given to the conversion of Heat
into Work. Sir W. Thomson has been led to a principle
which is called the Dissipation of Energy, meaning how-
ever something different from what the words would at
first naturally suggest. It is found that although we can
easily convert Work into Heat, we cannot get all the Heat
back aﬁain into the form of Work. In consequence of this
it is held that the mechanical Energy of the universe is be-
coming every day more and more changed into Heat; and
so science looks forward “to an end when the whole universe
will be an etf;ually heated inert mass, and from which every
thing like life or motion or beauty will have utterly gone
away.” Two treatises have been published on the subject
of Energy to which the student may refer for more in-
formation; The Conservation of Energy... by Professor
Balfour Stewart, and An Elementary Ezposition of the
Doctrine of Energy, by D. D. Heath.

LIV. ELASTICITY.

628. In the theory of Mechanics we suppose for sim-
plicity that we are concerned with rigid bodies, that is
with bodies which retain always the same shape and size.
But a body is never really rigid ; it always changes more
or less its shape and size under the action of force, and
when the force is withdrawn the body resumes, at least to
some extent, the or':ginal shape and size: the property
by virtue of which this resumption takes place 18 called
Elasticity.
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629. Gaseous bodies and liquids may be said to be
elastic inasmuch as they regain their original size when
any pressure to which they have been exposed is with-
drawn; but we now propose to confine ourselves to the
case of solid bodies, in which the skape as well as the size
have to be considered.

630. A solid is said to be perfectly elastic which
returns ezactly to its original size and shape, when an
constraint to which it has been subjected is removed ; an
it is said to be ¢mperfectly elastic when this is not the
case. Strictly speaking no solid is perfectly elastic, though
some solids possess the property of elasticity in a very high
degree, as for example, Indian rubber, ivory, glass, and
marble; other solids, as lead and clay, have very little elas-
ticity. If a ball of ivory be allowed to fall on-a slab of
polished marble it will rebound to nearly the original height.
It is believed that during the brief time of collision the
ball was at first slightly flattened, and then resumed its
original form; and that the rebound is occasioned by the
effort to resume its original form.

631. Practically speaking almost every solid body may
be considered perfectly elastic up to a certain point. That
is, there is generally a limit of constraint for every body to
which it may be exposed and from which it will recover
when the constraint is rgmoved, the recovery being com-
plete so far as our means of observation extend. But if
the constraint is carried beyond this limit the body
undergoes some appreciable lasting change of shape or of
size, or of both ; in technical language the body receives a
permanent set. For degrees of constraint beyond the
limit the body is imperfecfly elastic. It is obvious that in

ractice it will be necessary to pay great attention to the
imit of elasticity, so as to ensure safety and durability
in constructions. The perfect elasticity of some bodies
within certain limits is shewn by obvious facts; thus a
steel watch-spring, or the spring by which a pen-knife is
closed, will continue to work for years without any appre-
ciable change. We proceed to consider three different
modes of constraint to which bodies may be exposed, and
to state the laws which determine the behaviour of bodies




ELASTICITY. 271

under the influence of such constraint and their own
elasticity.

632. Extension. If forces are exerted on rods and
wires tending to lengthen them the elasticity of the sub-
stances will called into action. Experiments are con-
ducted by fixing one end of a wire to a firm support; then
the constraint may be exerted at the other end along the
direction of the wire by means of a lever: or the wire may
be put in a vertical position and weights attached to the
free end. The amount of lengthening thus produced is
carefully observed; and the following laws are found to
hold so long as the limit of elasticity is not exceeded.

(1) Rods and wires are perfectly elastic, that is they
resume their original lengths as soon as the stretching
force is removed.

(2) For the same substance and the same diameter
the lengthening is proportional to the original length and
. also to the stretching force.

(8) For rods and wires of the same substance under
the same stretching force the lengthening is inversely pro-
portional to the square of the diameter of the rod or wire.

633. The second of the preceding three laws is some-
" times called Hooke's Law, from the name of the person
who first obtained it ; the law does not hold quite strictly
however, as we shall see by some numerical results given
in the next Chapter.

634. Both calculation and experiment shew that when
bodies are lengthened by a stretching force their volumes
increase. Thus if a wire is pulled out, and so lengthened,
the area of a section of the wire will at the same time
diminish, but not so much as to leave the volume just
what it was before. It appears in general that all causes
which increase the densitﬂ of a body increase the elasticity,
and those which diminish the density diminish the elas-
ticity. Thus the elasticity of metals diminishes continu-
ously as the temperature rises from 59 degrees to 392 de-
grees of Fahrenheit’s thermometer; but iron and steel form
exceptions, for their elasticity increases as the temperature
rises to 212 degrees, and then diminishes,
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635. Compression. In like manner experiments are
made on bars or rods by subjecting them to the action of
force in the direction of their length which tend to skorten
them. Laws similar to those of Art. 632 now hold with
respect to the shortening and the compressing force.

636. Torsion. Experiments on the elasticity called
into action when wires are fwisted are conducted by means
of what is called the Zorsion Balance. One end of a wire
is fixed ; the wire hangs vertically, and ta the other end a
needle is attached at right angles to the wire. Immedi-
ately below the needle there is a graduated horizontal
circle having its centre in the same vertical line as the wire.
By turning the needle round in the horizontal plane,
through any angle, the wire is twisted ; the angle through
which the need%e is turned is called the angle of torsion,
and the force necessary to retain the needle in the posi-
tion to which it has been turned is called the force of tor-
sion. When the needle is left to itself after having been
turned through any angle it oscillates for some time, to.
and fro, like a pendulum, until at last it comes to rest in
its original position. The elasticity of torsion for sfous
rods has also been investigated, but by a method different
from that used for wires. Both for wires and rods the
following laws are found to hold so long as the limit of
elasticity is not exceeded.

(1) The oscillations for the same rod or wire are,
like those of a ﬁ»endulum, performed in nearly the same
time, whether the angle of torsion be greater or smaller.

(2) For the same rod or wire the angle of torsion
is proportional to the force of torsion.

(8) With the same force of torsion, and with rods or
wires of the same diameter and of the same substance,
the angle of torsion is proportional to the length of the
rod or wire.

%) If the same force of torsion is applied to wires
of the same length and the same substance the angle of
torsion is inversely proportional to the jfourth power of
th‘i: djtsémeter, that is to the square of the square of the

meter.

637. A solid when cut into a rod or a thin Ylate, and
fixed at one end, after having been more or less bent
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strives to return to its ori%ilnal position. This kind of
elasticity is of frequent application in the arts, as for
instance in can'iage-sprinis, watch-springs, and springs
for measuring weights. The elasticity of hair, wool, and
feathers is of service in pillows and cushions.

638. The importance of the elasticity of bodies,
especin.lq of the metals, for the ordinary concerns of life
is forcib) {) stated in the Illustrations of Mechanics by
the late Professor Moseley. “ With the elasticity of me-
tallic bodies every ome is conversant. It is a progerty
which, as it belongs to steel, iron, and brass, contributes
eminently to the resources of art, and ministers largely
to the uses of society. Were it, indeed, not for this
property, it would be ¢n vain that the metals should be
dug out of the earth and elaborated into various utensils.
Infinitely more brittle than glass, they would immediately
be dashed to pieces by the slight shocks to which every
thing is more or less subject; a shower of hail, or even
of rain, would be sufficient to ¢ndent their surfaces, and
the imgact of the minute particles of dust blown against
them by the wind would be sufficient permanently to
destroy their polish.”

LV. STRENGTH OF MATERIALS.

639. In all questions of practical engineering it is
of the utmost importance to ascertain how far we can
rely on the materials we em%loy to support the strains
or pressures which may be brought to bear on them.
To a great extent the necessary information consists in
numerical results connected with the principles of the
preceding Chapter on Elasticity.

640. Modulus of Elasticity. Suppose a given rod or
bar held fast at one end and stretched by a force at the
other; then by Hooké's Law the amount of lengthening is
groportional to the stretching force : see Art. 633. This

aw indeed holds only 8o long as the amount of lengthen-
ing is slight ; but let us assume for the moment that the
Law holds for any amount of lengthening. Then by the

< TP 18
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application of a proper force, the rod or bar could just

be doubled in length; this force expressed in pounds

Avoirdupois per square inch is called the Modulus of

%‘laaticity. e term was introduced by Dr Thomas
oung.

641, The values of the Modwlus of Elasticity have
been determined by experiment for almost every selid
substance of importance, and will be found in works on
Practical Mechanics,such as Rankine’s Applied Mechanics.
‘We give here a selection from these values.

Material. Modulus,
Brass, cast 9170000
Brass, wire 14230000
Copper wire 17000000
Iron, cast 17000000
Iron, wire 25300000
Steel 29000000 to 42000000
Elm 700000 to 1340000
Fir 900000 to 1900000
Oak, European - 1200000 to 1750000
Teak, Indian 2400000

642. The meaning of the foregoing Table will be seen
from an .example. Suppose a rod or bar of cast brass
one square inch in section ; then if a weight of one poumi
were hung at the end the bar would be lengthened 9170000 7(1)000
}mrt of its original length; by two pounds it would be
engthened double this amount; by three pounds triple
this amount ; and so on. This holds 8o long as the length-
ening is not very great; if it held for any amount of
lengthening the l—l’e'mgt;h would be just doubled by a weight
of 9170000 pounds. If the area of the section of the brass
rod is more or less than a square inch, more or less weight
will be required in proportion, to produce the same
amount of lengthening; thus if it be Aalf a square inch
in section Zalf the weight will be required ; if it be three
square inches in section three times the weight will be
~equired ; and so on,
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643. Tenacity. Suppose we take a rod or bar of
any material ; and stretch it by a weight. As the weight
is Increased so also the amount of lengthening increases,
but at last, when the weight becomes sufficiently great,
the rod or bar breaks. The breaking weight is taken as
a measure of the fenacity of the bar or rod; it is de-
termined by experiment and expressed in pounds Avoir-
dupois per square inch.

644. The following Table gives the Zenacity of various
materials.

Material Tenacity.

Brass, cast 18000
Brass, wire 49000
Copper wire 60000
Iron, cast 16500

_ Iron, wire 70000 to 100000
Steel 100000 to 130000
Elm 14000
Fir . 9000 to 14000
Oak, European 10000 to 19800
Teak, Indian 15000

645. The following Table also gives in a convenient
shape information respecting the tenacity of various metals
in the form of a wire. Suppose wires one-sixteenth of
an inch in diameter formed of different metals ; then the
numbers of pounds which they would support are de-
fermined by experiment to be approximately the fol-
owing:

Iron 512 Gold 140
Copper 282 Zinc 102
Platina 256 Tin 32
Silver 175 Lead 25

646. When iron is stretched beyond the elastic limit
the character of the phenomena will depend altogether on
the nature of the iron. If the ironm is soft and ductile it
will be reduced to a much smaller size in the neighbour-
hood of the point where the fracture ultimately takes
?bwe; the area of a section may thus be reduced to three-
ourths of the original area. This peculiarity is sometimes
called foughness; it is in many respects of great value, -

18—2
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because the iron thus affords warning that it is about to
break. But cast-iron on the whole is comparatively an
uncertain metal, and frequently breaks with little or no
warning. )

647. [Endurance.- The resistance of a bar to a force
which stretches it is called tenacity; writers on Practical
Mechanics have not fixed on a term which shall denote the
resistance of a bar to a force which compresses it : we shall
here use Endurance. A bar is taken and compressed in
the direction of its length by a weight which is gradually
increased until the is crushed. This crushing weight
is taken as a measure of the endurance ; it is determined
by experience and expressed in pounds Avoirdupdis per
square inch.

648. The following Table gives the Endurance of
various materials.

Material. Endurance.
Brass, cast 10300
Iron, cast 112000
Iron, wrought 36000 to 40000
Elm 10300
Fir 5375 to 6200
Oak, British 10000
Teak, Indian 12000
Brick 550 to 1100
Granite 5500 to 11000
Limestone 4000 to 5500
Sandstone 2200 to 5500

649. Crushing, that is breaking by compression, is not
8o simple an operation as tearing asunder ; according to Pro-
fessor Rankine there are five different forms which crush-
ing assumes in different substances.
(1) Crushing by splitting. This consists of a breaking
up into fragments, with the surfaces of separation nearl
arallel to the direction of the pressure; it occurs wiﬂ{
hard substances of a uniform glassy texture, such as vitri-
fied bricks.
(2) Crushing by shearing or sliding. This consists of
a breaking where the surfaces of separation are inclined to
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the direction of the pressure ; it occurs in substances of a
granular texture, such as cast-iron and most kinds of stone
and brick.

(3) Crushing by bulging. This consists of a lateral
swelling and spreading out of the materials; it occurs in
substances which are ductile acd tough, such as wrought
iron.

(4) Crushing by buckling or rippling. This is cha-
racteristic of fibrous surfaces, and consists in a lateral
bending and wrinkling of the fibres, sometimes accompa-~
nied by a splitting of them asunder; it occurs in timber,
in plates of wrought iron, and in bars longer than those
which give way by bulging.

(5) Crushing by cross-breaking. This is the mode of
breaking of columns in which the length greatly exceeds
the breadth; the columns yield sideways and are broken
across like beams under a transverse force,

650. When substances are crushed by splitting or
shearing the endurance considerably exceeds the tenacity :
thus for cast-iron the endurance is rather more than six
times the temacity, In the case of crushing by bulging
the endurance is in general less than the tenacity, some-
times much less ; for wrought iron the endurance is from
two-thirds to four-fifths of the tenacity. The endurance of
most kinds of dry timber is from one-half to two-thirds of
the tenacity; the endurance of moist timber is only about
half that of dry timber.

651. In modern engineering iron and steel are the most
important materials ; they have to a great extent superseded
the wood which was formerly employed. Hence in stating
some facts with respect to the strength of materials we
shall confine ourselves to iron and steel. Experimental
results with respect to the behaviour of bodies, as for ex-
ample rods, under the influence of tension or pressure,
apply strictly speaking to the precise bodies on which the
operations are performed; and caution will always be
necessary in extending them to other bodies apparently of
‘precisely the same kind : owing to some internal defect, or
other cause, a bar may be considerably weaker than we
should have been led to expect from observation on ano-~
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ther bar of a})parently the same kind. In some specimens
of iron cut from a large mass the elastic limit was found
to be under 4 tons of strain per square inch, while in gene-
ral the limit was from 8 to 12 tons. The average tenacity
of cast-iron may be taken at 7 tons ; but in some specimens
it is only 5 tons, while in others it reaches 14 or even 15
tons. The length of time during which the constraint is
applied has a considerable influence on the result produced ;
in one experiment a weight at first stretched a bar less
than ‘2 of an inch, but in the course of 17 hours stretched
it nearly 24 of an inch.

652. In consequence of the great variety in the merit
of cast-iron engineers are compelled to adopt means for
testing the quality of the material furnished to them by
iron founders. One method is to cast in a mould a har of
one square inch in section and four feet long, and to test it
’ b‘v)s:upporting it on its ends in a horizontal position and

observing how much deflection is produced by a weight
hung in the middle. A good bar ought to sustain a loagof
more than 600 pounds with a deflection of about half an
inch. The engineer may also test the tenacity of the bar
under extension, and its endurance under compression.
Sometimes instead of examining specimens of the same
iron the engineer will order more beams or bars than he
requires, and will take at random a certain number of these
and test them up to the highest strain to which his struc-
ture will be exposed: then if any of these fail he will
reject the whole supply,

653. We will now give some numerical details. A con-
venient fact to remember is that a bar of wrought iron,
one square inch in area, if stretched by a weight of one

ton will be lengthened nearly i-(%(ﬁ part. The change of
temperature from winter to summer will produce a length-
ening of about ﬁ part. Hence it follows that if the

ends of such a bar are attached to fixed obstacles so that
the bar exerts no pressure on them in summer, it will in
winter exert a force of 5 tons to draw them together.
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.654. In one series of experiments cast-iron bars were
taken one square inch in section and 10 feet long. They
were siretched by various weiszlts ranging from a little over
1000 pounds to 17000 pounds; the latter weight on an
average broke the bars. A permanent set, indicating the
limit of the elasticity, was obtained by about one-tenth of
the breaking weight. When the stretching weight was a
little over 1000 pounds the rod was lengthened ‘009 of an
inch; when it was about 9500 pounds the rod was length-
ened ‘1 of an inch; and when it was nearly 15000 pounds
the rod was lengthened nearly ‘2 of an inch.

655. In another series of experiments similar bars
were submitted to compression by various weights rang-
ing from a little over 2000 pounds to a little over 37000
pounds; the latter weight on an average greatly injured
the bars. A permanent set, indicating the limit of the
elasticity, was obtained by about one-seventeenth of the
injuring weight, When the compressing weight was a
little over 2000 pounds the rod was shortened about ‘02 of
an inch; when it was nearly 21000 pounds the rod was
shortened rather more than ‘2 of an inch; and when it
wfas apmﬁ 87000 pounds the rod was shortened about ‘4
of an inc|

656. It will be seen that Hooke's Law does not hold
very exactly in the case of either of the series of experi-
ments given in Articles 654 and 655. But we must ob-
serve that when the constraining weight is not extremely
large the lengthening which it produces by stretching is
numerieally very nearly equal to the shortening which it

roduces by compression. Thus for example the constrain-
ing weight being about 4200 pounds both the lengthening
and the shortening were about '039 of an inch. As the con-
straining weight increases the shortening becomes sensi-
bly less than the lengthening; and this is in accordance
with the statement of Art. 650 that the endurance of cast
iron is much greater than the tenacity.

657. The material which is most extensively employed
in the arts is wrought iron; it is obtained directly from
cast iron by a process which removes the greater part of
the impurities. The tenacity may be taken to be on an

A4
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average 23 tons per sq;llare inch ; and the limit of elas-
ticity as approximately half the tenacity.

658. Experiments give the following results with re-
spect to the stretching of wrought iron bars one square
inch in section and ten feet long. The stretching weight
wag at first 1262 pounds,and was successively increased
by this amount until at last it was 30 times the original
weight. Under the first weight the lengthening was rather
more than ‘005 of an inch; under a weight 20 times as
great it was about 11 of an inch : throughout this range
the lengthenings followed Hooke's Law prei;txI closely. As
the wggbt was increased beyond this point the deviations
from Hooke’s Law became very large: until under a weight
30 times as great as the first the lengthening was about 29
inches, that is about eighteen times as great as it would
have been according to Hooke’s Laww.

659. The strength of wrought iron is not much affected
by the increase of the temperature up to 350 degrees of
the common thermometer. There has been a difference of
opinion as to the influence of extreme frost; direct experi-
ment does not seem to make out that the strength is less
in cold weather; but there exists a popular notion that
iron and steel are rendered more brittle by frost, and this
receives some confirmation from the fact that the accidents
on railways arising from the breaking of the rails and of
the axles of the carriages are most frequent in winter,

660. An opinion prevails, and apparently en good
grounds, that some change takes place in the eonstitution
of wrought iron when it has been subjected to incessant
Jjars for a long time; and that in consequence of this the
strength is much diminished. The axles of railway carriages,
and the chains of cranes, are cited as examples of this
great deterioration. With respect to chains it is well es-
tablished that in the course of time they change for the
worse, and it is a rule in the War Department that all
chains are to be ({Jassed periodically through the fire, and
thereby annealed: thus the quality is restored, and the
duration of the chain prolonged.

661. Steel is a combination of pure iron and carbon;
its tenacity is far greater than that of wrought iron, ranging
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from 30 tons to 50 tons per square inch. Moreover, when
steel is tempered in oil the limit of elasticity is fully three
times as great as that of wrought iron; am{ the steel will
stretch much before rupture takes place. A good service-
able quality of steel is now manufactured, by what is called
the Bessemer process, in an economical manner, and this is
applied to many of the purposes for which iron was formerl
used, especially where strength is to be combined wi
lightness,

662. The engineer being furnished with information
as to the strength of the materials which he has to use
must be guided by experience as to the greatest deman
which he will make on that strength in his constructions.
Of course for safety he will keep far below the extreme
limit which is theoretically allowable. Thus the average
tenacity of wrought iron may be taken as 23 tons to the
square inch ; but in practice 1t is not considered prudent to
calculate on more than’ 5 tons: and in the case of chains
which are liable to a sudden impulse, as the chains of
cranes, it would be unwise to rely on as much as 5 tons,
In practice there are three terms used for different degrees
of strength of materials ; namely ultimate strength, progf
stren%gh, and working strength. The wlitimate strength
may be taken to be measured by the constraint which will
destroy or damage the material in a specified way ; the
proof strength as measured by the greatest constraint
which is consistent with safety; and the working strength
as measured by the greatest constraint allowed by prudence
and experience. The ultimate strength may be 2 or 3
times as great as the proof strength, and 10 times as great
as the working strength. Constraint equal to the proof
strength might not produce any harm in a single short
trial, but it might by long continunance or by frequent
operation.

663. Numerical results slightly different from those
adopted in the present Chapter may be found in works
of good authority ; and from the nature of the subject it
cannot be expected that all experiments will be in exact
agreement. The older writers naturally could not attain
the same accuracy as their successors; but it is difficult to
account for the wide discrepancy sometimes to be found
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between their statements and those which are at present
received. For instance Dr Young says “ The weight of the
modulus of the elasticity of a square inch of steel...is about
3 million pounds...” The modern value is at the lowest
nearly ten times this : see Art. 641. Again, he says “ Oak
will suspend much more than fir ; but fir will support twice
as much as oak...” According to modern authority oak
will support nearly twice as much as fir: see Art. 648.

664. A few interesting remarks may be quoted from
Dr Young. “The strongest wood of each tree 18 neither at
the centre nor at the circumference, but in the middie be-
tween both; and in Europe it is generally thicker and
firmer on the south east side of the tree. Although iron is
much stronger than wood, yet it is more liable to accidental
imperfections; and when it fails, it gives no warning of its
approaching fracture...... Wood, when it is criﬁpled, com-
plains, or emits a sound, and after this, although it is much
weakened, it may still retain strexfligth enough to be of
service. Stone sometimes throws off small splinters when
it is beginning to give way: it is said to be capable of sup-
porting by much the greatest weight when it is placed in
that position, with respect to the horizon, in which it has
been found in the quarry.”

LVI. STRENGTH OF BEAMS.

665. We have spoken of the strength of materials in
the preceding Chapter ; in the next place it would be egro-
per to enquire into the strength of structures formed of
these materials : we shall however.confine ourselves almost
entirely to one simple case, that of beams placed in a hori-
zontal position, either fixed at one end or supported at
both ends. The engineers now use the term girder for a
beam supported at both ends, and cantilever for a beam
fixed at one end ; the beam in both cases is supposed to be
subjected to transverse strain, as for instance, to that pro-
duced by a weight.

666. Suppose & horizontal rectangular beam to have
one end firmly fixed, and at the other end let a weight W
ing; we neglect tho weight of the beam itself. By
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the action of the weight
the beam will be drawn
out of the horizontal
position; the diagram is
intended to shew the new
form of the beam: it is
much exaggerated for the
benna s sapposonto. be
is sup] e
built into a wall, on the
right haud side of the p-
vertical line AC, or to be
otherwise fixed, and we are concerned with only the por-
tion on the left-hand side of AC, The boundaries 4B
and CD both become curved, 4B being longer, and CD
shorter, than when they were both horizon We must
understand distinctly what is meant b¥l‘ the length, the
depth, and the breadth of the beam. The length is the
distance from end to end, namely the distance from A4 to
B in the original position. The depth is the distance from
the upper surface to the lower; it is the straight line 4C
in the diagram. The breadth is the distanee from the
front to the back ; it is not shewn in the diagram, being
perpendicular to the plane of the paper.

667. Somewhere between 4B and CD a line exists
which was originally horizontal, and of the same length as
it is in the bent form; we will denote it by EF. This
line is called the neutral line in the surface ABDC. The
assemblage of the neutral lines in all the sections parallel
to ABDC is called the neutral surface.

665. Now take the portion of the beam which stands
out from the wall, denoted by 4BDC, and consider the
forces which keep it in equilibrium : these are the weight
W, and the actions along the imaginary section repre-
sented by AC. The actions will be partly in the vertical

lane, denoted by AC, and partly at right angles to it.
e former must on the whole be equal to the weight 7,
and we shall not require to take any more notice of them;
the latter are very important for our purgose. The part
of the beam above the neutral surface is lengthened ; its.
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elasticity is brought into play, and thus we have forces
acting on the beam at points between 4 and F, all to-
wards the right-hand side. In like manner the part of
the beam delow the neutral surface is shortened ; its elas-
t.icit.{l is brought into play, and thus we have forces acting
on the beam at points between C and F), all towards the
left-hand side. The two sets of forces must balance each
other, because there are no other forces acting on the
beam in the horizontal direction. If the lengthening and
shortening are small the elasticity brought into play by the
former is equal to that brought into play by the latter;
and the neutral surface will then be midway between the
upper and lower surfaces. The forces acting on the beam
ong FC tend to turn the beam round A4 in one direction ;
while the forces acting on the beam along #4, and also
the weight W, tend to turn the beam in the opposite
direction ; but on account of their greater distance from
A the moments round 4 of the forces along FC will be
ter than the moments round A4 of the forces along
'A. For equilibrium it is necessary that the excess
should just be equal to the moment round A4 of the
weight W,

669. ‘The further we proceed from the neutral line,
upwards or downwards, tge greater is the extension or
compression respectivelr; thus along AC the former is

eatest at 4, and the latter is greatest at C. The force
g::tween F and O on the beam is a compression ; and there-
fore if we were to cut through FC with a fine saw, so0 as to
remove extremely little of the material, the compression
would be still exerted as before, and the equilibrium little
if at all endangered. But, on the other hand, a ve
slight incision downwards at 4 would weaken the strenga;
of the beam, and might be followed by a total fracture.

670. If the weight 7 is gradually increased until the
beam breaks at 4 we obtain in the final value of the
weight a measure of the strength of the beam. Now ma-
thematical investigation, confirmed by experiment, shews
that the strength of the beam is proportional to the pro-
duct of the breadth into the square of the depth, divided
by the length. This result may be easily justified b

* ~ple reasoning. First as to the breadth. If the bread(.l{
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be doubled the effect is the same as if two beams of equal
length and depth were placed side by side, and, as each
singly would just sustain the same weight before breaking,
the two together would sustain twice as much as one alone.
Similarly we see that if the breadth is ¢ripled the strength
is tripled ; and 8o on. Thus the strength increases in the
same proportion as the breadth. Next as to the depth.
If the depth be doubled then since AC is doubled we have
double the force from elasticity which we had before ; and
the distance of any point from A is doubls the former dis-
tance of the corresponding point: and thus the moment
round A4 is four times as great as it was before, and there-
fore the weight sustained before breaking will be four
times a8 great as it was before. Similarly we see that if
the depth is ¢ripled the strength is nine times as great as
it was at first; and so on. Thus the strength increases in
the same proportion as the square of the depth. Finally
as to the length. If the length be doubled the moment of
W round A is doubled; and therefore if ¥ be halved the
moment remains the same as before: thus the strength is
half what it was before. Similarly we see that if the
length is ¢ripled the strength is a third of what it was at
first ; and so on. Thus the strength diminishes in the
same proportion as the length increases.

671. Along the neutral line we have neither extension
nor compression ; hence the beam may be pierced or re-
duced in size near the neutral surface without danger.
For instance, if holes are to be bored parallel to the
breadth, for the insertion of pins or rods, they should be
made 8o as to pass close to the neutral surface. In like
manner we may save material without great sacrifice of
strength by giving up the solid rectangular form., This is
almost always done in the case of iron girders; they often
consist of two horizontal flat parts called flanges, con-
nected by a vertical flat called the eweb. The form in
this case is something like what we should obtain by run-
ning two broad and deep groves in the solid rectangular
beam, one along the neutral line in the front, denoted by
FE in the diagram, and one along the neutral line on the
back. There are sometimes two webs, and then the girder
becomes tubular with a rectangular section. Inthe tubular
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bridges on some railway lines we have girders of such large

dimensions as to allow the weight to be placed inside the

girder instead of being borne on the outside in the usual

:na;mer: the weight in this case being the engine and
rain.

672. If we want to take account of the weight of the
beam itself in Art. 666 wé must suppose this to be collected
at the centre of gravity. We shall no longer have the
simple result of Art. 670.

673. Let us now consider the case of a beam which is
supported at both ends, though not built into a wall; and
let 1t bear a weight. Let .

KLMN denote the beam f’ Zs
placed on quports at M (3 Vi
and AV; and let a weight R

X be hung from the beam
at PQ. The beam will \
bend under the load ; the A
upper layers of the beam

will be shortened, and the lower layers will be lengthened.
This case may be referred to that of Art. 666, as we will
now shew. e two supports will exert upward forces on
the beam, say R at M, and S at V. These forces will be
such as just to balance X, and their values might be found
by Art. 165: for instance, if PQ is the middle of the
beam, then R and S are each equal to half of X. Then con-
sider the part QMK P of the beam ; this may be supposed
to take the place of ABDC of Art. 666, the letters corre-
slimnding 80 that QM corresponds to A8 and KP to DC:
also R takes the place of . The strength of the beam is
determined b{‘hincreasing the weight X until the beam
breaks at Q. e strength is found to follow the same rule
as in Art. 670. If the is precisely the same as that
of Art. 666, and the suspende weiiht the same, being
now hung at the middle, the strength under the present
circumstances is four times as great as in Art. 666: for
the length @21 is half of 4B, and the force R is half of X,
Thus if a beam fized at one end can just sustain a eertain
weight at the other end without breaking, the same beam
supported at both ends will just sustain four times that
weight at its middle point.

y
<4
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674. The rule which assigns the strength of the beam
is consistent with the well-known fact that a long beam
which is to bear a weight should rest on an edge and not on
a face. Suppose that a plank is one inch thick and six
inches across; when it rests on an edge the breadth is one
inch, and the depth is six inches, so that the product of
the breadth-into the square of the depth is 36 ; when it
rests on a face the breadth is 6 inches, and the depth is 1
inch, so that the Eroduct of the breadth into the square of
the depth is 6: thus the strength in the former case is six
times as great as in the latter.

675. We will now shew by an example how we may
determine the strength of a solid rectangular beam when
the strength of another beam of the same material but of
different dimensions is known. It has been found by ex-
periment that the strength of a beam of teak, 7 feet long,
2 inches broad, and 2 inches deep, used in the manner of
Art. 673, is 938 pounds ; required the strength of a beam
of teak 107feet long, 1 inch broad, and 3 inches deep.

1.9

It is 938 x 15 x 5 x 7, that is 739 pounds nearly. Here the

factor 110 comes from the lengths, the factor % from the
breadths, and the factor g from the squares of the depths.

676. The following Table gives the relative strengths
of beams of various materials, used in the manner of Art.
673. The beams are supposed to be one foot long, and the
section to be a square inch; the beams are supported at
their ends and loaded at the middle: the strength is ex-
pressed in pounds:

Material Btrength.
Cast Iron 1830 to 2410
Blue Gum 880 to 1110

Fir 270 to 680
Oak 480 to 760
Teak 820 to 830

Sandstone 60 to 130



288 STRENGTH OF BEAMS.

677. 1f the rectangular beam is square the breadth is
equal to the depth; and the strength of the beam is pro-
rtional to the cube of the breadth, divided by the length.
he strength of solid cylindrical beams in like manner is
found to be proportional to the cube of the diameter,
divided by the length.

678. When a beam is supported at the two ends, and
bears any weight, it is bent out of its horizontal position as
we have seen. We will suppose that the weight is borne
at the middle point; then the distance through which the
middle point is forced below its position before the weight
was put on is called the deflection. It is found that the
deflection varies as the product of the weight into the cube
of the length, divided by the product of the breadth into
the cube of the depth. By this we may determine the de-
flection of any beam under a given weight, when the deflec-
tion of another beam of the same material but of different
dimensions is known. For example, suppose that for a
rod of English oak one foot long, one inch broad, and one
inch deep the deflection is one inch under a weight of 3360
pounds ; required the deflection when the length is 20 feet,
the breadth 5 inches, and the depth 8 inches, under a
weight of 6000 pounds. The required deflection in inches
.. 6000 1.1 . .
is o560 % 8000 x 5 %513 that is, about six inches. Here

the factor ggg—g occurs because the deflections are in the
same proportion as the weights. The number 8000 is the
cube of 20 ; this factor occurs because the deflections are

in the same proportion as the cubes of the lengths. The
factor % occurs because the deflection diminishes in the
same proportion as the breadth increases. The number
512 is the cube of 8; and the factor 51—2 occurs because

the deflection diminishes in the same proportion as the cube
of the depth increases. ‘

679. Exgsriments have been made as to the strength
of columns, both solid and hollow, when employed to resist
pressure in the direction of the axis. When the column is
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solid the strength is found to depend very much on the
secure fixing of the.ends. Thus when both ends of the
column are flat, the ‘strength is three times as great as
when both ends are rounded; and when one end is flat and
the other end rounded, the strength is twice as great as
when both ends are rounded. It has been long known that
when an assigned quantity of material is to be formed into
a column of assigned height, more strength is obtained b,
making the column hollow than by making it solid; an
some authorities have stated that the column is strongest
when the internal diameter is to the external diameter in
the same sroportion as 5 is to 11. Examples of the use of
hollow rods and columns are frequent in nature; as in the
bones of animals, the stiff part ef feathers, and the stalks
of corn and other plants.

680. Dr Young remarks: “It is obvious that when the
bulk of the substance employed becomes very considerable,
its weight may bear 8o great a proportion to its strength as
to add materially to the load to be supported. In most
cases the weight increases more rapidly than the strength,
and causes a practical limitation of the magnitude of our
machines and edifices. We see also a similar limit in nature:
a tree never grows to the height of 100 yards; an animal
is never strong enough to overset a mountain. It has
been observed that whales are often larger than any land
animals, because their weight is more supported by the
pressure of the medium in which they swim.” But it is
easy to lay too much stress on such remarks, and we may
therefore just draw attention to some matters of a contrary
tendency. The great tubular bridges across rivers and
straits, which the present generation has constructed, would
have been considered almost impossible a few years since,
A tree has been discovered in California which surpasses Dr
Young’s limit of 100 yards. The ostrich might have been
deemed the largest bird that has existed on the earth if we
had not received from New Zealand the bones of an extinct
creature of far greater size,

On the subject of this and the preceding Chapter the
reader may consult a treatise on Z%e Strength of Materials
and Structures by J. Anderson. v . .

T, P. 19
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LVIL. CAPILLARY PHENOMENA.

681. We have stated that the surface of a liquid in
equilibrium is a Aorizontal ‘{)lane, and that liquids seek
their level : see Arts. 358 and 383 : we have now to notice
some phenomena which are exceptions to these general
laws. They occur when solid bodies are placed in contact
with liquids, and are called caﬁllary phenomena because
they are best seen in tubes the bore of which is not greater
than the diameter of a hair.

682. Let a very fine glass tube open at both ends be
plunged vertically in a vessel of water. The water is seen
to stand at a higher level in the tube than in the rest of
the vessel; and moreover the surface of the water in the tube
is not plane but curved, with the concavity upwards. Again,
if water be put into a vessel of any size the surface of the
water is not horizontal, close to the vessel, but concave
upwards, rising above the general level ; and the same
holds with respect to the water close to a solid which
floats on the water.. These phenomena are also observed
in the case of other liquids which eet the surfaces of ves-
sels or tubes in contact with them. But in the case of
liguids which do mot wet the surfaces in contact with
them, the facts are different. Thus when a fine glass tube,
open at both ends, is plunged vertically in a vessel of mer-
cury, the mercury is seen to stand at a lower level in the
tube than in the rest of the vessel ; and moreover the sur-
face of the mercury in the tube is not plane but curved,
with the convexity upwards. Again, the surface of mer-
cury close to any vessel which contains it, or any solid
which floats on it, is not horizontal but convex upwards,
sinking below the general level. In extremely fine glass
tubes the surface of water and of other liquids which wet
the glass is a concave hemisphere; and the surface of
mercury is a convex hemisphere,

. .683. Water will in general wet a surface with which it
is brought into contact; but it will not do so_if the sur-
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face is oiled or waxed. Thus if the inner surface of a fine
glass tube be oiled, the phenomena, when it is plunged
vertically in water, are like those which are seen when a
tube is ﬂplung'ed in mercury. And the water round a ball
of wax floating on it is depressed below the ordinary level
and curved with its convexity upwards.

684. Thus the statement made in Art. 383 will require
to be a little modified if one of the vertical tubes is very
fine. Buppose the left-hand tube very fine, and the right-
hand tube large; then if the liquid be water it will stand
at a Aigher level in the left-hand tube than in the other,
and if the liquid be mercury at a lvwer level.

685. Capillary elevation.depends on the nature of the
liquid; the nature of the, .tube is of scarcely any conse-
quence, provided the precaution is taken of first wetting
the tube with the liquid which is to be used in the ex-
periment. In a tube of, about ‘04 of an inch in diametcr
water will be elevated about 12 inches, nitric acid about
‘9 of an inch, alcohok about ‘5 of an inch. Capillary
depression depends on the nature of the tube as well as
on that of the liquid. In a glass tube of ‘08 of an inch in
diameter mercury will be depressed about °15 of an inch ;
in a glass tube of ‘2 of an inch in diameter mercury will
be depressed about ‘06 of an inch ; in a glass tube of ‘4
of an inch in diameter it will be depressed about ‘015 of
an inch. The mercury in a barometer has its upper sur-
face convex, and it is therefore necessary in reading the
barometer always to regard the highest point of the sur-
face. If however the mercury with which the barometer
is filled has been boiled for a long time in contact with the
atmosphere, it is found that the surface has undergone
some chemical change, and is then a plane at right angles
to the axis of the tube.

686. Capillary phenomena depend on the attractions
which are exerted between the particles of the liquid
itself, and also between the particles of the liquid and
those of any solid close to the liquid. So long as the mu-
tual distance of the particles is not extremely small the
attraction follows Newton’s law; but when the distance is
extremely small this does not seem to be the case. The
theory of capillary phenomena has been studied by some

19—2
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great mathematicians, and it is one of the most abstruse
in natural philosophy. It follows from these investiga-
tions that in the case of tubes not exceeding ‘1 of an inch
in diameter, the amount of elevation or depression is
greater in the same proportion as the diameter of the
tult)ie is smaller; and this law has been verified by obser-
vation.

687. Capillary phenomena mail be observed not only
in tubes but in various cases in which solids and liquids
are in contact. Thus, as we have already stated, liquid in
a vessel experiences capillary elevation or depression close
to the sides of the vessel. Let a flat plate of glass be
placed vertically in water ; then it will be found that close
to the Elate the water will rise to the height of about ane-
seventh of an inch above the general level. Again, let a
flat plate of glass be placed vertically in mercury; then it
will be found that close to the plate the mercury will sink
to the depth of about one seventeenth of an inch below
the general level. Take two plates and put them verti-
cally in water ; if the plates are parallel, and near toge-
ther, the water rises between them; and so likewise it
does when the two plates instead of being parallel are
joined along a common vertical edge, in such a manner as
to form a very small angle. It is on the principles of
capillary attraction that water ascends in wood, sponge,
sugar, blotting-paper, and other porous bodies generally.
The same forces which produce these capillary phenomena
also determine the form which a drop of water assumes
when hanging or falling.

688. The wick of a candle or lamp feeds the flame by
capillary attraction. The wick is a bundle of threads the
surfaces of which are very nearly in contact ; and thus the
melted tallow, or the oil, rises between them in the same
way as the water between the plates in the experiments of
the preceding Article. If a short fine iron tube be inserted
in a vessel of oil the oil will rise to the top of the tube by
capillary attraction, and may there be lighted. Suppose a
bundle of threads, such as form the wick of a lamp, to
have one end dipped in a vessel of liquid, and to be passed
over the edge of the vessel and allowed to hang down on
*he outside below the level of the liquid. The liquid rises
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from the vessel between the threads by capillary attrae-
tion, and then issues from the other end in drops after the
manner of liquid issuing from a siphon. Any impurity in
the liquid remains in the vessel, and is not transmitted
throu%h the bundle of threads: the contrivance is appro-
priately called the Siphon Filter,

689. Let a fine tube open at both ends be plunged
vertically in water, and then carefully withdrawn; a dro
of water will hang at the bottom of the tube, and a sma
column of water will remain in the lower part of the tube:
the length of this column will be greater than the height
of the column in the tube .above the general level of the
surrounding water before the tube was withdrawn. Thus
it is possible to construct a vessel which shall hold some
water though the bottom is full of holes. The bottom may
be made of wire gauze, of iren or brass; then the meshes
of the wire, being very fine, serve as capillary tubes, g0
that below each mesh a drop of water may hang, and a
little column of water be supported above the drop.

690. There are also ether :phenomena which seem
allied to capillary phienoména and are usually connected with
them. Small needles, if slightly greased and placed very
carefully on the surface of water, will remain without sink-
ing; and some ‘insects can walk on the surface of water.
The needles and the feet of the insects are not wetted b;
the water ; a small depression is formed round them, an
they are supported in the same way as bodies would be if
they displaced just as much'water as would fill these de-
pressions.

691. Let two small balls ef wood or pith be placed on
the surface of water; each floats with the water close round
it raised a little above the general level. Let the balls be
80 near each other that no portion of water at the general
level occurs between the two raised portions: then the two
balls attract each other and run together. If instead of
the wood or pith balls we put two wax balls, the water
close round is depressed a little below the general level ;
and, as before, the balls attract each other when they are
brought very near to each other. But if we put a pith
ball on water close to a wax ball they repel each othcr.
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Two needles carefully placed on water near each other will
attract each other; and in like manner two iron balls
placed on mercury attract each other.

692. There are numerous processes in nature and art
where the influence of the forces may be traced which are
concerned in the production of capillary phenomena. Thus
water is sup to rise from wells and reservoirs below
the surface of the earth to the roots of plants which are
nearer the surface in the same way as it rises in fine tubes.
Moisture deposited on the surface of fibrous bodies is trans-
mitted through the interior by capillary attraction ; and in
consetznce an increase of volume occurs which may lead
to striking results. Thus let one end of a rope be fixed at
a point, and the other end fixed to a weight vertically be-
low the point; the rope being just stretched tight. Let
the rope be wetted ; then it swells in bulk, and in the act
of swelling it shortens its length and raises the weight.
Considerable weights may be raised in this manner. An-
other illustration is furnished by a process used in France
for splitting off mill-stones from a block ; it is thus de-
scribed in Bir J. Herschel's Discourse on Natural Philo-
sophy. “When a mass of stone sufficiently large is found,
it is cut into a cylinder several feet high, and the question
then arises how to subdivide this into horizontal pieces so
a8 to make as many mill-stones. For this purpose horizon-
tal indentations or grooves are chiselled out quite round the
cylinder, at distances corresponding to the thickness in-
tended to be given to the mill-stones, into which wedges of
dried wood are driven. These are then wetted, or exposed
to the night dew, and next ‘morning the different pieces
are found separated from each other by the expansion of
the wood, consequent on its absorption of moisture...”

693. Endosmose. There are phenomena somewhat
resembling capillary elevation and depression, but which
at present have not been well connected with them. The
general fact involved is this : when two different liquids
are separated by a thin porous partition, either of organic
orinorganic substance, currents arise between them in op-
posite directions. M. Dutrochet having introduced into the
swimming bladder of a carp a thin syrup, carefully closed
up the aperture by which he introduced it, and placed the
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bladder in a vessel of water. After a time he found that
the weight of the bladder had increased considerably ; the
water had passed through the {)ores of the bladder, and
become mixed with the syrup. In another experiment he
filled the bladder with water, and then put it in a vessel
of syrup; in this caso the weight was diminished after a
time: the water passed out of the bladder and became
mixed with the syrup. He gave the name endosmose to
the first process, and exosmose to the second. At present
the former word alone is found sufficient to enable us to
describe all the phenomena ; and it is applied to the cur-
rent which ¢ncreases the volume : so that in both experi-
ments there is endosmose from the water to the syrup.

694. The experiment is usually performed in the fol-
lowing way. Take a long tube open at both ends ; to one
end fasten a membranous bag containing a strong syrup :
then immerse the bag in a vessel of water, supporting the
tube in a vertical position. It is found that some of the
syrup passes out into the vessel, but at the same time
more of the water passes into the bag, so that the liquid
will rise in the tube to the height of several inches. The
experiment may be changed by putting water into the bag,
and syrup into the vessel. Then again more water passes
through the membrane than syrup : so that the level of the
li(txid in the vessel rises. In both experiments endosmose
takes place from the water to the gyrup. Instead of syrup
other liquids may be used, a8 milk or albumen; and, in-
general, endosmose takes place towards the denser liquid.

695. For the production of endosmose the following
conditions are necessary-: (1) The liquids must be different
but yet capable of mixing, as spirit and water; there is
no endosmose between oil and water. (2) The liquids
must be of different densities. (3) The membrane must
be such that at least one of the liquids can pass through it.
The ascent of the sap in plants seems to be a case of
endosmose.

696. The phenomena of endosmose are seen in the
case of gases. If two different gases are separated by a
porous 1;:sa.l'tit,ion currents are produced both ways; and
finally the composition of the mixture on both sides of the
partition is the same.
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LVIII. ANIMAL MECHANICS.

697. In the structure and in the movements of livin
creatures numerous interesting illustrations of mechanica
principles have been pointed out by philosophers. 1In order
to appreciate these fully some knowledge of anatomy and
physiology would be re?uired ; but a few remarks may be
made which will be easily intelligible.

698. The long bones of men are kollow, in agreement
with the principle that they are stronger than solid bones
of the same weight and length would be: see Art. 679.
At a joint of two bones a tough elastic substance called
cartilage is always interposed to break the force of shocks,
like the buffers attached to railway carriages: see Art.
577. And moreover a joint is always provided with an

" apparatus by which a eertain viscid liquid can be spread
over the surfaces in contact. This somewhat resembles the
white of an egg, and is hence called synovia ; it is per-
petually renewed as required, and acts like the oil and
unguents which are used to prevent friction in machinery:
see Art. 329.

699. Numetous examples of Levers of ‘the third kind
occur in the animal frame. One is found in the human
fore-arm when applied to raise an object. The fulcrum is
at the elbow; the Power is exerted by a muscle which
comes from the upper part of the arm, and is inserted
in the fore-arm near the elbow ; the Weight is the object
raised in the hand. The muscle is a strap capable of
extension and contraction, after the manner of an india-
rubber band.

700. The pressure of the atmosphere plays an im-
portant in keeping together the mechanism of the
joints, Thus the head of the thigh bone cannot be sepa-
rated by the mere weight of the limb from the surface
of the cavity in the adjacent bone to which it is accurately
fitted; in all motions the contact is maintained by the
pressure of the atmosphere : the muscles which surround
the hip joint may be divided, but still the weight of the
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limb does not move the head of the thigh bone from
the cavity. But if the cavity be exposed to the air by
boring a small hole, or if the pressure of the atmosphere
be removed by the aid of an air pump, the separation
takes place. In ascendingl high mountains the pressure
of the atmosphere is much diminished, and thus more
stress is thrown on the muscles in order to maintain the
contact between the convex and concave bones: this
appears to be one cause of the peculiar fatigue felt in a
laborious ascent. Dr Arnott seems to have been the first
to draw attention to this example of the pressure of the
atmosphere; he estimated the pressure at the knee joint
to be about 60 pounds.

701. It is owing to the pressure of the atmosphere
that various animals can sustain their bodies in opposition
to the force of gravity. A fly on the ceiling of a room
is an obvious example. The feet of the creature are
furnished with a contrivance like a boy’s sucker; so that
a vacuum can be formed at the extremity of each foot,
and the pressure of the atmosphere retains the foot in
contact with the coilinf. It is said that the structure
can be perceived “by looking at the movement of the
feet of any insect upon the ingide of a glass tumbler
through a common magnifying glass ; the different suckers
are readily seen separately to be pulled off from the
surface of the glass, and reopposed to another part.” The
same contrivance is found in the feet of other creatures,
especially in the feet of the walrus, where it can be easily
examined on account of the-large size of the animal.

702. There ars two kinds of motion of animals on
the land. In one the effort consists in pressing the
ground in the direction opposite to that in which the
motion is to take place; the pressure is Produced by
internal muscular effort, and the reaction of the ground
.yields the force necessary to give forward motion: this
18 the mode of walking of man and quadrupeds. The
other kind of motion may be called creeping, and is seen
in the case of a snail: the animal here lays hold of an
_external fixed point, and clings to it by a part of his
body ; then he drags the mass of his body towards this
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point. The motion of a snail may be watched by putting
the animal on a piece of transparent glass, an i:)oking
through it from below. :

703. The motion of birds is produced by the reaction
of the air which they beat with their wings; so that
the resistance of the air is essential to them, and they
could not fly in a vacuum. The most arduous part of
a bird’s motion is the rising from the ground ; the bird
often runs for a short distance, or throws itself into the
air by a sudden leap: the process resembles that of
starting a boy’s kite. Long-winged oceanic birds appear
to use the tips of their wings as levers to raise their bodies.
Birds which have a large surface of wing, as eagles, give
only slight strokes in their flight. Birds on the contrary
which have little wings, as pigeons, move them to a great
extent, and thus compensate for the slight resistance which
they experience from the air.

704. The motion of a fish is usually produced by lash-
ing the water with its tail The cuttle fish compresses
forcibly its pouch which is full of liquid, drives out this
liquid in one direction, and thus propels itself in the
opposite direction. Fishes are furnished with an air-
bladder which they can compress by muscular action;
this accordingly they do when they want to sink, for
80 they render themselves heavier than water, bulk for
bulk: when they want to rise they allow the air-bladder
to expand. As a fish is nearly of the same specific gravity
as the medium in which it moves, there is no need for
constant exertion, as in the case of the bird to prevent
sinking ; all that is necessary is to overcome the resistance
of the medium.

705. The structure -of the wings of insects has re-
ceived much attention. It appears that under all modi-
fications two elements are essential, namely a rigid main-
rib, and a flexible membrane. If the rigidity of the former
is destroyed flight is prevented; and so also it is if the
lxlngmbrane be covered with a varnish which hardens as it

~ies.
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706. The subject of animal locomotion has been dis-
cussed in two works recently published, namely Animal
Mechanism by E. J. Marey, and Animal Locomotion by
Dr Pettigrew. One object which is sought by both works
is to prepare the way for the construction of flying ma-
chines, by a careful study of the motion of. birds. From
Dr Pettigrew’s work some interesting facts may be
borrowed. The Albatross, which weighs about 17 pounds,
can sail for about an hour at a time without once flapping
his wings. The great velocity and consequently great
momentum which an animal can acquire is illustrated by
the following statements: A sword-fish has been known to
thrust his tusk through the upper sheathing of a vessel,
a layer of felt, four inches of deal, and fourteen inches
of oak plank. A wild duck terminated its career by
coming violently into contact with one of the glasses of
the Eddystone Lighthouse. The glass, which was fully
an inch in thickness, was completely smashed. Advantage
is taken of this circumstance in killing sea-birds, a bait
being pinned on a board and set afloat with a view to
Brea ing the neck of the bird when it stoops to seize the

ait.

707. One of the earliest writers on the subject of
the motion of fishes was Borelli ; he gave an explanation
" and a diagram which have been since generally adopted.
The half of a fish’s body which contains the head is
supposed to remain in a straight form, while the half
which contains the tail moves to and fro like a pendulum ;
and this tail part by striking the water produces a reaction
which urges the fish forward. According to Dr Pettigrew
the fish really bends both the halves of its body, so as
to form a figure like two sickles turned in opposite di-
rections. This is the simplest case; in the long-bodied
fishes, like eels, instead of two such curved portions there
may be several ; and the fish alternately straightens and
bends them all.
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' LIX. WATER.

708. As water discharges so many functions in the life
- of man we may well devote a few pages to tracing the
various forms which it assumes. -

709. It is the same substance which constitutes seas,
rivers, springs, clouds, rain, snow, hail and ice. The sun
heating the surface of the oceans and rivers, raises from
them vast quantities of water in the form of vapour ; this
ascends into the atmosphere and remains invisible as long
as the temperature is high enough. But the temperature
declines as the distance from the earth is increased, owing
to the atmosphere being too rafd to retain the sun’s heat ;
and thus vapour at some height above the ground becomes
mist or cloud. The formation of mists may be observed
very frequently along the course of a river, or in a damp
valley, in the evening; the vapour raised by the sun con-
tinues as vapour during the day, but when the temperature
declines it 18 condensed into mist. There is at all times
much vapour present in the air, but especially during the
hot summer days, and then if any cold surface is presented
to the air some of the vapour is immediately condensed on
it ; thus for instance, if we fill 3 tumbler with very cold
water the outside of the tumbler on a hot summer day
becomes covered with moisture, which arises from the con-
densation of vapour. In like manner the insides of window

anes become covered with moisture when the air outside
i8 suddenly chilled. In ball rooms in Russia and Norway
it has sometimes happened that on the sudden opening of
a window a slight shower of snow has fallgn in the room.

710. Clouds are supported by the atmosphere, and
they rise in it until they reach a stratum of air of about the
same density as their own; there they remain in equili-
brium until disturbed by some change in the temperature.
The greatest height which clouds are known to have
reached is about 10000 feet. Clouds may be suddenly con-
densed so that the particles unite and form drops of water,
and these descend to the earth as rain. Sometimes the
process is accompanied by thunder and lightning, and the




WATER. 301

rain is then' unusually violent. Snow and hail are forms
which the descending water takes when the temperature
becomes diminished ie]ow the freezing point of water; in
the case of snow the diminution takes place before the
condensation of the vapour into drops, and in the case of
hail gfter the condensation.

711. The quantity of rain which falls at any specified
lace depends much on local circumstances. In the British
i)slands the western side catches the clouds which have
passed over the Atlantic ocean, and have become laden
with vapour; thus this side has a much ter rainfall
than the eastern side has. Rains in England are also often
introduced by a south-east wind. Va&)our brought to us
by such a wind must have been raised in countries to the
south and east of us; and we may accordingly attribute it
to the valleys watered by the Meuse, the Mgoselle, and the
Rhine, and to some extent to the more remote regions of
the Elbe, the Oder, and the Weser. It has been calculated
that the quantity of rain which falls in England is thirty-
six inches a year on the average ; that is to say if we sup-
pose the rain to be uniformly distributed it would amount
to a volume baving the area of Bngland for a base, and a
yard for height. Of this quantity it is supposed that thir-
teen inches flow off to the sea by rivers, and that the re-
maining twenty-three inches are raised again from the
ground by evaporation. The thirteen inches which flow
into the sea are restored by evaporation from the sea, and
are carried back to the land through the atmosphere.

712. The vicinity of mountains exercises considerable
influence on the supply of rain, and often gives rise to
special phenomena. Killarney in Ireland is noted for its
luxuriant vegetation. The south-west wind is checked by
the Kerry mountains, tilted up, and carried over them ; the
vapour which the wind has brought from the Atlantic is
expanded on reaching this height : this causes a reduction
of the temdperature, which produces condensation of the
vapour, and incessant rain. Again, a traveller sometimes
descends from the Alps amidst a heavy fall of rain or snow,
while the Pla.ins of Lombardy from which the wind is blow-
ing are blue and cloudless. The wind is hot enough t~
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keep the vapour in the atmosphere in its transparent state
over the plains; but when the vapour rises among the
mountains the fall of temperature, owing to their cold
summits and its own expansion, produces a condensation
and the fall of rain or snow.

713. A striking phenomenon of a similar kind is fre-
quently seen at the Ca.(i)e of Good Hope, “ where the south
or south-easterly wind which sweeps over the Southern
Ocean, impinging on the long range of rocks which termi-
nate in the Table Mountain, is thrown up by them,......
makes a clean sweep over the flat table-land which forms
the summit of that mountain (about 3850 feet high), and
thence plunges down with the violence of a cataract, cling-
ing close to the mural precipices that form a kind of back-
ground to Cape Town, which it fills with dust and uproar.
A perfectly cloudless sky meanwhile prevails over the town
the sea, and the level country, but the mountain is covereci
with a dense white cloud, reaching to no great height above
its summit, and quite level, which, though evidently swept
along by the wind, and hurried furiously over the edge of
the precipice, dissolves and completely disappears on a
definite level, suggesting the idea, (whence it derives its
name) of a Table-cloth.” Herschel's Meteorology.

714. One form in which water presents itself to our
notice is that with which we are familiar under the name
of Dew. The air always contains vapour of water floating
in it ; and the higher the temperature of the air the more
vapour can it support in an invisible state. But if the
temperature of the air is lowered then some of this vapour
is condensed and takes the form of globules of water.
This condensation frequently happens at night, especially
after a warm day; and then at early morning the fields
and gardens are found plentifully covered with this
moisture which is called Dew ; if the temperature is below
the freezing point of water the moisture becomes frozen,
and is called Hoar Frost.

715. The principal facts noticed with fespect to dew
are the following: (1) Surfaces on which dew is deposited
aro always colder than the neighbouring air. (2) Dew is
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not deposited on a cloudy night; but if the clouds with-
draw even for a few minutes, and leave an open sky,
the deposition of dew begins: and on the other hand if
in a clear night a large cloud passes suddenly over-head
the deposition of dew is checked. (3) Dew is not de-
ited in a sheltered situation. (4) Dew is most co-
piously deposited on surfaces which part with their heat
readily, and regain it slowly; and dew is very slightly
degosited on surfaces which part with their heat slowly,
and regain it readily: thus much more dew is deposi
on grass and plants than on the bare earth or the stones.
(5) Dew is not deposited when there is much wind. :

716. All the facts stated in the preceding Article agree
well with the principle that dew is the vapour in the
atmosphere condensed by contact with surfaces colder
than the air in which it floated. The earth gains heat
from the sun during the day; during the night this heat
escapes from the earth again into the air: thus the sur-
face of bodies near the ground becomes colder than the
surrounding air, and so dew is deposited. But if the
sky is covered with clouds the heat is sent back to the
earth, and so prevents the fall of temperature and the
consequent deposition of dew. Again if a spot be shel-
tered the heat is prevented from escaping, and so the
temperature is maintained too high to allow the deposi-
tion of dew. It belongs to the science of Heat to dis-
tinguish the two classes of bodies referred to in (4) of the
preceding Article ; and it is found that bodies behave with
respect to dew precisely as might have been antici;i‘ated
from the facts established in the science of Heat. Thus,
for example, dew is plentifully deposited on such substances
as cloth, wool, velvet, and cotton; now these substances
are much used for clothing, because they have the property
of impeding the passage of heat from the body; they allow
their outer surfaces to be very cold while they remain
warm within : so that these outer surfaces part with their
heat readily and regain it slowly. A wind checks the de-
position of dew on a surface, because it perpetually brings
;varm air over the surface, and so keeps.up the tempera-

ure. .
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717. As we have seen in Art. 709 there are various
well-known phenomena which depend on the same prin-
ciple as the deposition of dew. Another example may
often be seen in winter time; during a long frost the
walls of a house may become very cold, and then when
a warm moist thaw occurs the vapour is condensed on
the walls, and runs copiously down them. The circum-
stances connected with the deposition of dew were first
carefully studied .and explained b(f Dr Wells; his book
on the subject is strongly commended by Sir J. Herschel
as a beautiful specimen of experimental enquiry.

718. Water, as we have said, rises from the sea and
the land in the form of vapour, and descends in the
forms of rain, snow, and hail. Some of the descending
water falls at once into seas or oceans; another part
falls first into lakes or rivers, and from them passes
on to seas or oceans. Part falls on the land, and is ab-
sorbed into the structure of trees and vegetables, or is
drained off into rivers, or sinks into the ground. That
which sinks into the ground after p ing for some
distance arrives at strata which it cannot penetrate, as
for instance rock or clay, and then it collects into sub-
terranean cavities. These cavities may find some natural
outlet through springs; and the store of water collected
in them is often by the aid of wells and pumps made
useful to man. In many places a stratum of clay occurs
near the surface of the ground which prevents the water
from sinking deeper; so that by diﬁging a well water
is reached at a very slight depth. The well is in fact a
cavity into which the water collects from the neighbour-
hood, and from which it can be easily raised.

719. Rain-water as it falls from the clouds is very
pure, and insipid to the taste. The water which is ob-
tained from sgt;ings and wells usually contains in it

articles of substances dissolved which it has received
rom the soil around ; thus it is in general more pleasant
to the taste. In some cases, as is well known, the water
from springs contains a very large quantity of foreign
~atter, with which it acquires a peculiar flavour and
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-sméll; springs of such a character are called 4nedicinal.
The water from wells, especially in large towns, is often
charged with noxious matter, owing to the fact that
refuse which ought to be conveyed away is allowed to sink
through the ground, and to -contaminate the contents
:of the well ; -the water then beecomes dangerous to drink,
and the more so ‘because there is sometimes nothing un-
pleasant to the ‘taste to give a-warning of the evil. The
supply of water is so important for health that in mosat
JJarge towns it is brought from distant reservoirs into
which it is ‘eollected from springs or from rivers, The
reservoirs are &laced at as high a level as it is necessary
‘for the water to reach,so that by virtue of the:prinec(iiple
that liquids stand at a level the water can be eonveyed in
wpipes from the-reservoir to the top of the highest houses.

%720. There is 'a species of -well called Artesian well,
from having been -first adopted at Artois in France. The
earth .is pierced ‘with a bore of a few inches in diameter,
and by carrying this down low-enough water is sometimes
reached which will rise to the surface of the ground, or
even spout out above that level. The water thus reached
is contained in a stratum resting on another which the
water cannot penetrate. The water-bearing stratum may
come .to the surface of the earth many miles from the
place at which the well is dug, and -it may be as full of
water as it can hold : thus when the bore is made the
water rises in it, on the general principle that liquids
stand at a.level. A famous Artesian well at Grenelle near
Paris is 1860 feet deep; it gives 656 gallons a minute,
and the temperature of the water is about 80 degrees of
Fahrenheit’s thermometer, There are Artesian wells in
Cambridge, which reach a water-bearing stratum from
100 to 150 feet below the town; this stratum comes to
the surface of the earth in the form of loose sandy beds
in Bedfordshire and West Cambridgeshire, and is there
sug{;lied with water by rain-fall. Formeriy when these
wells were few in number the water used to spout out
at the surface; but now owing to the increased demand
the wells do not overflow except after unusually wet
seasons. Bonney's Cambridgeshire Geology.

T. P, : 20
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721. At varlous places on the éarth’s surface we
have springs of warm or hot water. There are many such
in the district of the Pyrenees. Four occur at Bath ih
England ; the hottest of these yields 128 gallons every
minute at the temperature of 117 degrees of Fahrenheit’s
thermometer. Such springs may come from spots at some
depth below the surface of the earth, for it is well ascei-
tained that the temperature rises as we descend below
the surface ; on an average the rise seems to be one degree
of Fahrenheit’s thermometer for about 55 feeét in descent.

722, Some springs flow glentifully for a period, then
cease for another period, and then flow again as before;
these are called intermittent springs. It has been sug-
gested as an explanation of these springs that the outlet
from the internal cavity is of the nature of a siphon.
Imagine a cavity in the inside of a hill, and sup,
that a channel in the form of a siphon proceeds from
about the middle, or near the bottom -of one side, of the
cavity, and that the water thus escapes and issues in the
form of a spring from the face of the hill. During a long

season the surface of the water in the cavity may sink
below the point where the siphon enters the side of the
cavity. Then the spring ceases; and it will not flow again
until the water in the cavity has attained such a height
as to stand on a level with the top of the siphon outlet,
and it is obvious that this may require a considerable
- prevalence of wet weather before a sufficient store is
Sra.m' ed into-the cavity.

723. A very slight inclination is sufficient to give the
motion to water which rivers require. It is found that a
fall of three inches a mile in a smooth straight channel
will give a velocity of three miles an hour. The Ganges at
the distance of 1800 miles from its mouth is about 800
feet above the level of the sea; and the water takes nearl
a month to pass over this course. Rivers bring down witg
them solid materials which are deposited mnear their
mouths, and thus form bars which obstruct the entrance;
the quantity of this matter is so great as in time to form
large additions of low land to the coast near the mouth of
the river. In a similar way the river Rhone rushes into
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the lake of Geneva with its stream turbid owing to the
substances which it brings down from the mountains; it
issues cléarand blue, having deposited in the lake the mat-
ter with which it was charged. In all probability the lake
will thus be finally filled up.

724. The quantity of water which passes through a
vertical section of a river at any point can be ascertained
when we know the dimensions of the section and the rate
at which the river is flowing. ‘Thus, suppose for example
that the breadth of a river is 100 feet, the depth on an
average 12 feet, and the rateof the stream 5 feet in a
second ; then the witer flows at the rate of 100x12x5
cubic feet, that is 6000 cubic feet, a second. It is
found that a river is usually navigable if the discharge
amounts to 1400 cubic feet in a second. The Seine at
Paris is estimated to flow at the rate of about 4500 cubic
feet in a second; and the Rhone at Lyons at the rate of
about 21000 cubic feet in a'second.

725. 'We must not overlook the important office which
heat performs in the various changes of water. It is the
sun that draws up from the earth and sea the vapour
which passing on through the atmosphere augments the
polar snow and feeds the glaciers of Switzerland. It has
sometimes been hastily assumed that if the sun’s heat were
diminished greater glaciers would be produced than those
now existing ; but it must not be forgotten that any dimi-
nution of the sun’s heat would be followed by a less sus;iz
of vapour, and thus the growth of the glaciers woul
arrested. It has been said that the “earth and its atmo-
sphere constitute a vast distilling aﬁpamtus in which the
equatorial region plays the part of the boiler and the chill
. regions of the poles the part of the condenser.” Professor
Tyndall’s Forms of Water.

726. Fresh water as it cools contracts until the tem-
perature is 40 degrees of Fahrenheit’s thermometer ; in
cooling further it expands, and when cooled to 32 degrees
it freezes. Hence the greatest density of water occurs at
the temperature of 40 degrees, and water of this tempera-
ture will lie at the bottom of a reservoir with cooler water

20—2
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or ice floating above it. Moreover in the act of freezing a
further and very considerable expansion takes place; thus
ice is lighter than water, ‘bulk for bulk, and so floats on
the surface. Hence rivers and lakes do not become frozen
throughout in one solid mass; the ice as it is formed rises
to the surface until it makes a stratum there thick enough
to protect the rest of the water from extreme cold.

727. The fact of the great éxpansion-of water in the
act of freezing has been established by repeated experi-
ment. Shells filled with water and well stoIpped, have
been burst by the freezing of the water. In‘a severe
winter the metal pipes which convey water through a
house are sometimes cracked by the force of water freezing
in them ; and when the temperature rises‘the crack is dis-
covered by the leaking of the water.

728. Ice presents itself in a very-iiteresting and in-
structive form in the well-known glaciers of Switzerland,
which ‘may be*described briefly as rivers frozen but yet in
motion. For an account of these phenomena and for the
explanation-of them we must refer to spee¢ial'works on the
subject. ‘Fwo important faéts :mdy be mentioned which
have been used in the explanation'of glaciers. The freez-
ing point 'of ‘water is lowered by pressure; ‘the amount
however is slight,tbeing about one seventieth-of a-degree
of Fahrenheit’s‘thermometer. for -a pressure equal:toithat
of the atmosphere. ‘When two .pieces -of thawing iee:are
placed in“contact'they freeze togéther ; this fact is ex-
pressed by the word regelation.,

729. Vast masses of ice are frequently found floating
in the sea, which are called Jcebergs. Sometimes they
rise to the height of hundreds of feet above the surface of
the sea; and taking the specific gravity of sea-water at
1027, and of ice at ‘926, it follows that the volume below
the surface must be about nine times that above. These
icebergs are believed to have come from Arctic glaciers;
some run aground on the shores and often maintain them-
selves for years; while others wander 2000 miles from the
place of their origin until finally they are dissolved in the
~ arm waters of the Atlantic Ocean,
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LX. THE ATMOSPHERE.

730: We-have spoken of the atmosphere as giving rise
to many important consequences by reason of the pressure
which it exerts; but there are.various other ways in which
the atmosphere exercises great influence on the life and
condition of men, especially by reason of the winds which
occur in it, and accordingly we will now pay some attention
to the subject. .

731. The atmosphere presses. with. a weight of about
15 pounds on each square inch of the surface of the earth
at the level of the sea; hence we can calculate the entire
weight, estimated: at the surface. of the earth, of the air
which surrounds us. The result is about eleven millions of
millions of millions of pounds, after making some allowance
for the fact that a portion of the land is above the level of
the sea, 8o that there is a corresponding diminution of the
air. About 90} per-cent. of the- abmosphere consists of a
mixture of two gases, oxygen and: nitregen. The propor-
tion of these two gases in weight is that of 23 to 77, and
in volume, under the same pressure, is that of 21 to 79.
Of the remaining half per cent. of the-atmosphere, not con-
gisting of oxygen andtnitrogen, about one tenth consists of
carbonic acid, and the rest of agneous vapour. The amount
of aqueous vapour however is not always the same at a
given place; it may be. sometimes more and sometimes
less than the average: the.flucfuations in the amount of
vapour at any place, and the, transference of vapour from
one place to another, give rise to the various phenomena
of which we have treated in, Chapter LIX.

732. Tt is found that over that part of the globe which
extends from the equator to about 30 degrees of North lati-
tude the wind blows nearly constantly in a direction which
may be described as from the North East; and over the
corresponding portion of the Southern hemisphere the
wind blows nearly constantly in a direction which may be
described as from the South East: these remarkable winds
are called ¢rade winds, and we ﬂproceed to explain how they
arise, Winds are caused chiefly by the action of the sun



310 THE ATMOSPHERE. -

on the atmosphere. Suppose that great heat prevails at a
certain place on the earth’s surface; the air is expanded,
and consequently it rises and overflows into the adjacent
parts of the atmosphere. Thus the pressure is diminished
on the surface of the earth.at the place where the great
heat prevails, and increased at the adjacent places on the
surface ; the result is that air is. driven in towards the
heated place by this difference of pressure. Hence we
have two currents of air, one in the higher parts of. the at-
* mosphere outwards from the heated place, and one in the
lower parts of the atmosphere inwards towards the heated

place.

783. Consider-now the Northern hemisphere of the
earth, By the preceding Article we may expect to have a
current of air constantly flowing in the higher parts of the
atmosphere from the hot equatorial regions towards the
cold polar regions; and another current in the lower parts
of the atmos&here from the (;)olar regions towards the

uatorial. ence we should have a prevailing North
wind in the Northern hemisphere: But we must now ex-
amine the effect which will be produced by the rotation of
the earth on its axis, a circumstance which as yet we have
not regarded. By reason of this rotation every place on
the earth describes a circle in 24 hours; the nearer the
place is to the equator, the %reater this circle is, and
consequently the greater the velocity. Now a mass of air
coming from the North towards the equator, begins its
motion with a certain velocity toewards the East, as well as
the velocity towards the South; namely, the Eastward ve-
locity which belongs to the starting place. As.this mass
of air moves towards the equator i{ is perpetually coming
into contact with parts of ‘the earth’s surface which are
travelling towards the East with greater velocity than its
own. Thus the relative motion of the air with respect to
the surface of the earth-is from the East; and this com-
bined with the motion which_it has towards the equator,
that is from the North, gives the wind an intermediate
direction, which we describe roughly as coming from the
North East. In like manner the prevailing wind in the
Southern hemisphere will be one in the direction which we
m:a'.‘y8 describe roughly as coming from the South East.
This explains the general character of the trade-winds.
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734, We have seen that a current of warm air travels
in the higher Parts of the atmosphere from the equator
towards the poles. The temperature of this air gradually
declines, and the air comes to the surface at some distance
from the equator. When the air reaches the surface it is
moving towards the East, with the velocity in that direction
which it had at the equator ; for since it has travelled in
the hifher parts of the atmosphere it has lost very little of
its velocity l'z friction. Thus the Eastward velocity is
greater than the velocity in the same direction of the p!
with which the air comes in contact, so that the relative
motion of the air with respect to the place is towards the
East. This will be combined with the motion which the
air has from the equator, that is towards the North if we
suppose the place i the Northern hemisphere ; and the
result in this case is that the wind takes an intermediate
direction, which we may describe roughly as coming from
the South West. Thus we see the origin of the Westerly
and South Westerly gales, so prevalent in our latitude.

735. In erder to carry our explanation further, and
bring out a closer agreement between theori and fact, we
must agsume that the reader possesges some knowledge of
astronomy. If the earth were entirely covered with water,
and the axis of rotation were perpendicular to the plane in
which the earth moves round the sun, the general character
of the winds would be that which we have described ; but
these two conditions do not hold, and thus the facts do not
exactly correspond with our theory. It will be sufficient to
cxamine one case of exception, which is the most important ;
let us consider then that part of the Indian ocean which
is near the continent of Asia. Here the wind actually ex-
perienced is one blowing from the North East, during the
period oomﬁtised between the beginning of October and
the end of March ; and one blowing from the South West,
during the period comprised between the beginning of
April and the end of September : these are called monsoons.
The former monsoon is in fact what our theory {ves under
the name of trade-wind ; the latter monsoon however is
decidedly contrary to this, and has to be accounted for : |
that is, we have to shew why the wind blows from the :
South West during the period comprised between the be- |

-—
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ginning of April and the end of September. During this
period the sun’s heat is given much more to the Northern
hemisphere than to the Southern; the sun is vertical on
every day to all the places in the North torrid zone which
have a certain.latitude : this latitude changes from day to
day, incrminti for the first three months, and decreasing
for the-last three months.. Hence the-heat is very great
over the region extending- from Arabia to Cochin China;
consequently. the air becomes expanded.and flows over.
An under current.sets in.from the equatorial regions which
are less strongly heated ;. this current as it moves-from the
equator comes to places which. have a.less Eastward velo-
city than its own, so that it has a relative Eastward velocity.
The motions towards the North and towards the East
give rise to a wind in a direction which we may describe
roughly as coming from the South. West..

786.. A curious. law. has been: established’ by observa-
tion with respect to the direction in whieh the wind shifts
in Europe and North America ; namely, that the wind has
a tendency to pass round the compass in. the order North,
East, South, West. The wind often makes.a complete re-
volution in this direction, or even more than.one revolution;
while it seldom moves in the contrary direction, and very
rarely continues that motion through a complete revolution.
The fact has been known from the time of Lord.Bacon, but
it.is now called Dove’s-law of rotation of*the wind, as that
writer was the first to give an explanation of it : see Her-
schel’s Meteoralogy.

737. Instruments are constructed by which we ascertain
the direction and the force of the wind at any time; they
are called anemometers. A common.weathercock illustrates
the manner by which the direction of the wind is ascer-
tained ; it should be placed so as to be clear from any ob-
stacles which. would impede the free circulation of the
wind in its.neighbourhood. Arrangements can be made by
which the instrument itself shall register the direction of
the wind, so as to require inspection only at fixed intervals,
The force of the wind may be ascertained by observing how
far the pressure which it exerts on a square foot of surface
will urge back a spring of known elasticity ; or it may be
determined by allowing the wind to drive round a light
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vane, and. observing the number of revolutions in a given
time: in both cases the instrument may be made self-
registering. -

738. The temperature and moisture at any place on
the earth’ surface are much affected by the direction of
the prevailing winds. Thus in England a South West wind
is warm and rainy, while a North East wind is cold and
dry ; the former comes to us cl;:l&ged with excessive moist-
ure from the Atlantic ocean, the latter comes to us
from Sweden and Russia, and thus is deficient in heat and
in moisture. The perpetual exchange of heat and moisture
between one place and another, through the agency of the
system of circulation established by the winds, is one of the
most striking operations of nature; and the atmosphere
has in consequence been called by Dr Whewell a great
watering engine, and by Sir J. Herschel a great distilling
apparatus,

739. Leawing the subject of the winds we will now con-
sider the-pressure of the atmosphere. We have spoken of
this as being equal to 15 pounds on a square inch, and as
measured by the height 30 inches of the mercury baro-
meter ; these may be regarded as average values for a place
near the level of the sea, but there are various fluctuations
in this pressure which have been detected by observation,
and in some degree-explained.

740. In a voyage between the tropics it is found that
the height of the barometer is diminished in going from a
tropic to the equator, the amount being nearlya quarter of
an inch. This is attributed to the copious evaporation
which is always taking place in the warm intertropical seas.
The formation of vapour at any spot faster than it is carried
off would be attended by an increase of pressure; but if
vapour be carried off as soon as it is formed the pressure
may remain unchanged: while if the vapour in passing
away carries some air with it there will be a decrease of
pressure. In the intertropical seas the vapour, carrying
air with it, is raised up from the surface, and flows over
and spreads itself out in the higher regions of the atmo-
sphere : this causes a decrease of pressure as compared
with that which is experienced beyond the tropics.
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741. There I8 an annual fluctuation in -the preasure of
the atmosphere the amount of which has not been settl;
except for a few places; it may be described in gen
terms as consisting in the fact that the average pressure is
greater in winter than in summer. Thus, for example, at
Calcutta the average height of the barometer is about half
an inch }freater in January than in July. At the Cape of
(Good Hope, where our seasons are reversed, the average
height is about ‘29 of an inch greater in July than in Jan-
uary. In the Northern hemisphere during July the heat
is greater than in the Southern hemisphere; hence arise
a more copious evaporation and the transfer of air and
vapour from the Northern to the Southem.hemislz,here,
and a decrease of pressure in the Northern hemisphere :
the process is like that decrease of pressure, in a.voyage
fArgtT lt.he tropics to the.equaton explained in the preceding

cle.

742. There is also a daily flactuation in the pressure
of the atmosphere ; on an average this pressureis greater
at about nine hours before moon and nine hours after
noon than at any other.time ; and- is less at about three
hours before nean.and three hours after noon than at
any other time. This fluctuation occurs with such regu-
larity in some tropical countries, according to Humboldt,
that in day-time the hour may be inferred from the height
of the barometer without a greater error on an average
than 15 or 16 minutes. ;

743. Besides the. regular fluctuations in the height
of the barometer there are others which at present must
be regarded as facts quite unexplained. First, with regard
to place: there exist extensive tracts throughout which
the barometer is permanently lower than its average
height, to the amount of an inch or more; the portion
of the Antarctic ocean from 63%-to 78° of South latitude,
and from 7% to §°: of West longitude is said to exhibit
this peculiarity. Secondly, with regard to time: it is
found that occasionally a great atmospheric wave passes
over a large extent of country, and the total depth of a
wave from crest to trough may be measured by a dif-
ference in the height of the barometer of as much as
three quarters of an inch. It seems to have been made
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out that a vast wave of this kind passes annually over
Great Britain and adjacent regions in the month of No-
vember. It occupies about 14 days in passing over a
place, moving at the rate of about 19 miles per hour,
so that its total breadth is not less than 6000 miles;
the total depth of the wave from crest to trough corre-
sponds to a difference in the.height of the barometer little
ort of an inch,

LXIL. MOLECULES.

744, A few paragraphs may be devoted to a state-
ment of the medern views with respect to. molecules ;
we shall give the nesults which have been obtained, with
more or less confidence, though the methods employed
for obtaining them are not of a suitable character for an
elementary work,

745. Take any- portion, say a drop, of water; divide
it into two, then each portion seems to retain all the
properties of the original drop, and among others that
of being divisible: the parts are like the whole in every
respect except size. Now divide each of the parts into
two, each of the new parts again into two, and so on.
‘We shall soon arrive at the stage in which the separate
portions are too small to be perceived or handled ; but
we have no doubt that if our senses and our instruments
were more delicate the process might be carried further.
Then arises the question, whether this subdivision can
be continued for ever. Accarding to the prevalent belief
it could not; after a certain number of operations the
drop would be separated into parts which could not be
furtgler subdivided. We should thus arrive in imagination
at the atom, which, as the word signifies, is something
that cannot be cut into pieces.

746. Now let us introduce the word molecule. A
drop of water may be divided into a certain number,
and no more, of portions which are all similar; each of
these is called a molecule of water. But the molecule
of water is not an atom, for it contains two different

4
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substances, namely oxygen and hydrogen ; and by a certain
process it may separated into the- two. Whether
these two are really atoms or not may be left.undecided.

747. Every substance, simple or compeund, has its
own molecfnler;y if this molecule be divided its parts are
molecules of a substance or of substances different from
that of which the whole is a molecule. An atom, if there
be such a thing, must be a molecule of an elementary
substance.

748. The molecules of all bodies are in motion, even
when the body itself aspea.rs to be at rest. These motions
in the case of a solid body are confined within a very
narrow range and are quite imperceptible. Each mole-
cule of a solid body has a certain mean position about
which it vibrates, and frem which it never departs to
an appreciable extent, being retained near it by the
action of the surrounding molecules. But the molecules
of liquids and gases are not confined within any definite
limits ; they di themselves through the whole mass.

749. Air, or any other gas, when enclosed in a vessel
presses utpon the sides of the vessel; this is due to the
motion of the molecules; which strike against the sides
and thus communicate a series of impulses, followiug each
other so rapidly that they produce an effect not to be
distinguished from a continuous pressure.

750. Buppose the velocity of the molecules to be given,
but the number of them to admit of being varied. Since
each molecule on an average strikes the sides of the
vessel the same number of times, and with the same
impulse, each will contribute an equal share to the whole
effect. Thus the pressure in a vessel of given size is
proportional to the number of molecules in it, that is to
the quantity of the air or gas in the vessel. This is con-
sistent with the well-known fact that the pressure of air
is proportional to its density; see Art. 497.

751, Next suppose the velocity of the molecules in-
creased. Each molecule now strikes the sides of the
vessel a greater number of blows in a second, and more-
over the strength of each blow is also increased in the
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-same proportion ; thus the pressure increases in the same
proportion as the sguare of the velocity. The increase
of velocity correspends to a rise of temperature ; and in
this way we can explain ‘the effect of warming the gas,
and also the fact that under a eonstant pressure all gases
expand cqually between given temperatures.

752. If molecules of -different masses are mixed to-
gether the greater masses will move more slowly than
the smaller, but on an -average every molecule whether
great or small will have the same momentum. In a cubic
inch of any gas at a standard lpressure and temperature
there is the same number of molecules,

753. At the temperature of the freezing point it is
calculated that the average velocity of the molecules of
hydrogen is about 2633 yards a second ; that of the mole-
cules of oxygen is one-fourth of this, The mass of a
molecule of oxygen is 16:times the mass of a molecule of
hydrogen. The velocity of the molecules of air in a room
may be taken to be-about 17 miles asecond. The relative
masses of the molecules:of -other gases have also been
determined, and their velocities ; and these together with
the results already given are héld to be very accurate.

754. The molecules-moving in every possible direction
- are perret.ually striking - against each other. Every time
two molecules come into eollision the paths of both are
changed, and the)"lﬁlo off in new directions. Thus each
molecule is contin -having its course altered, and so,
in spite of its great velocity, it may be a long time before
it reaches any conmsiderable distance from its starting
int, Ammonia is a gas easily recognisable by its smell ;
its molecules have a velocity of 6566 yards in a second.
This velocity is 80 great that if there were no obstacle as
soon as a bottle of ammonia was opened the smell would
rvade a large room; but owing to the perpetual col-
isions of the molecules of ammonia with the molecules of
air the smell makes slow progress, and takes a long time
to reach the most distant parts of the room.

. 755. Calculations have been made as to the average
distance travelled over by a molecule between one col-
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lision and another, and from this and the knbwn average
velocity the number of collisions in a second “can be in-
ferred. The results however are to be regarded as only
rough approximations until the methods of experinmeénting
are greatly improved. For hydrogen the following are
the results : the average length of path between two con-
secutive collisions is about four-millionths of an inch, and
%5]1 number of collisions in a ‘second eightéen thousand
ons.

756. The principal difference between a gas and a
liquid seems to be that in a gas each molecule spends
the greater part of its time in describing its free path,
and is for a very small portion of its time engaged in
encounters with other molecules; whereas in a liquid
the molecule has hardly any free ﬁa.t.h, and is always in
a state of close encounter with other melecules. I:f:nce
in a liquid the diffusion of motion fromh one molecule to
another takes place much more rapidly than the diffusion
of the molecules themselves.

757. Calculations have been made in order to de-
termine the mass of a molecule, its diameter, and the
number of molecules in & given volume. The results how-
ever do not claim to be accurate like those of Art. 753,
nor even to be approximate like those of Art. 755,
but only to be probable conjectures. Thus some calcu-
lations by Professor Clerk Maxwell give the following
results : the size of the molecules of hydrogen is such
that about fifty millions of them in & row would occupy
an inch; and a million million million million of them
would weigh about seventy grains; in a cubic yard of any
gas at standard pressure and temperature there are about
twenty-five million million million molecules. The follow-
ing result is given by Sir William Thomson : imagine a
single drop of water to be magnified until it becomes as
large as the earth, having a diameter of 8000 miles; and
let all the molecules be magnified in the same proportion ;
then a single molecule will appear under these circum-
stances to be larger than a shot and smaller than a
cricket ball,
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758, A molecule seems to be always the same, in-
capable of growth or decay, of generation or destruction.
Moredver the sun and ‘the stars appear to be built up
of molecules of the same kind a.s'tlll)ose which we find on
the earth. “None ‘of the processes of Nature, since the
time when Nature began, have produced the slightest
difference in the ptoperties of any molecule. We are
therefore unable to ascribe either the existence of the
molecules or the identity of their properties to the
operation of any of the causes which we call natural. On
the other hand, the exact equality of each molecule to all
others of the same kind gives it, a8 Sir John Herschel has
well said, the essential character of a manufactured article,
and pre’(,:ludes the idea of its being eternal and self-
existent. :

This ‘chapter is derived from a ‘lecture delivered by
Professor Clerk Maxwell at Bradford on Sept. 22, 1873.

LXII. PERPETUAL MOTION.

759. The search after perpetual motion has been in
Mechanies like the attempts at squaring the circle in Geo-
metry, or at the transmutation of metals in Chemistry,

uﬁy fascinating and delusive. It is. probable that many
3310 have proposed to themselves to seek for perpetual
motion have had no clear idea of what they were aiming
at, and a few remarks on the subject may be conveniently
placed in an elementary work like the present.

760. We are familiar with the performance of work by
men and animals ; and we know that the strength of such
agents has to be maintained by a constant supply of food.
The steam-engine is a more economical instrument, because
the fuel required to produce a certain amount of work
costs far less than the food which would be necessary to
enable men or animals to attain an equivalent result. Thus
naturally speculative persons might be led to enquire if a
machine could be constructed infinitely more economical
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than any yet known; a machine in fact which should be
always working, and which should cost absolutely nothing
to maintain it in operation. Such a machine would be a
source of inexhaustible wealth, far surpassing in value the
power of changing the baser metals into gold. For the
value of gold depends largely on its scarcity, and not on.its
intrinsic utility ; while on the other hand an unlimited
supply of force would reduce the cost-of almost every arti-
cle which is manufactured, and practically annihilate the
labour consumed in every Jeps.rtment of human life.

761, There are many applications of natural forces by
which we may continually do twork; but at the same time
these are not solutions of the problem of tual motion
and do not even pretend to such. For example, if a
person lives near an unfailing waterfall, he may construct a
waterwheel, and thus have a machine always working or
fit to work, and requiring no assistance to maintain its
action. But this is not a self-supporting machine; sthe
force arises from the constant flow of water. On the-other
hand all who make attempts at perpetual motion avail
themselves of some of the powers of nature, such as gravity
or magnetism ; thus it is necessary to draw some dis-
tinction by which we may discriminate between what -is -to
be considered as a solution of the problem and what is not.
Perhaps those who speculate on the subject would: say that
the powers of nature must be such as act on the definite
mass of the machine, and do not continually introduce
fresh matter, as the waterfall does ; or they would say that
any natural agent might be used which is everywhere
available in an unlimited quantity and at no cost.

762. A machine may be easily constructed which, after
once being started, shall continue in action for a long time
without any fresh assistance. Thus a common clock when
wound up will go for 15 days, and it might be made to go
for a much longer period, as a year. 8o also a chemical or
galvanic action might be adjusted which should be very
slow in its process, and thus continue for a long time in
operation. Ent in both these cases the motion ceases after
some time, 8o that we do not obtain perpetual motion.
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763. The perpetual motion which enthusiasts seek is
something more than the words strictly imply : the desired
machine is not one that merely moves perpetually, it must
be able to do work ; so that in fact if it were not to do
work its motion would be for ever-increasing in speed. It
is very easy to obtain theoretically the wuseless perpetual
motion which is just kept up, but produces no practical
effect. Put a grindstone in rotation; the motion theoreti-
cally would last for ever, setting aside friction and the
resistance of theair : these impediments might by ingenious
contrivances be so far alleviated as to enable the motion to
be continued for a long time, but even if they could be en-
tirely removed so that the motion would be literally per-
petual, still it would be what we have called useless; for
the grindstone would be soon arrested if we attempted to
make it do work, such as that of sharpening an axe, with-
out any new appiica.tion of force to it.

764. Many of the projects for perpetual motion really
are like the example just selected; even if all friction
and consequent waste of power could be removed the most
that woul& be obtained would be the useless result of a
continual repetition of the same motion without any in-
crease, 80 that it would be retarded and finally stopped if
the attempt were made to obtain any work out of it.
Two schemes which have been frequently suggested under
various modifications may be noticed.

765. Imagine a wheel with spokes, like a cartwheel,
turning round a horizontal axis ; let a heavy weiiht, in the
form of a ring, slide on each spoke, or the spoke may be
made hollow and the weights in the form of balls, may be
confined within them. As the wheel turns round the
weights move along the spokes; some of them will hel
the rotation of the wheel and the others will retard it : if
the wheel is turning round in the same direction as the
hands of a watch, then those weights which are at any
instant on the right-hand side, to a person looking at
the wheel, will assist the motion, and those weights which
are at the same instant on the left-hand side will retard
the motion. It is not difficult to see that nothing is gained
by the use of these moveable weights; those which help

T. P. 21
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are just balanced by those which retard. But instead of
. straight spokes sanguine speculators have proposed to
use spokes curved in & particular manner, so that the
weights which help the motion should remain as remote as
ible from the axis, and therefore exert greater in-
uence, while those which retard the motion should linger
near the axis, and therefore exert less influence. Such at-
tempts however are in vain ; theory proves distinctly that,
setting aside friction and resistance, the same motion will
perpetually recur without any increase; and experiment
soon shews that by reason of friction and resistance even
this useless perpetual motion cannot be secured.

766. Again, imagine a screw of Archimedes employed
to raise water, and let the water when raised fall on a
waterwheel suitably adjusted so as to turn the screw itself.
Here again, on the most favourable estimate all that could
be obtained would be wuseless perpetual motion ; but even
this could never be secured owing to the waste of power by
friction and resistance. In fact the modulus of a good

waterwheel .is not greater than %); so that the water-

wheel could not do more than % of the work it ought theo-
retically todo. And the modulus of the screw of Archime-
des could not be more than 1—76 Thus on the whole the
machine instead of perpetually raising again all the water
supplied would not raise more than that is

49
100

0 10’
, of it.

767. Both these contrivances were suggested at a very
early period, and Bishop Wilkins, more than two centuries
ago, speaking of two substantially coincident with them,
says “till experience had discovered their defect and in-
sufficiency, I did certainly conclude them to be infallible.”
After describing them he says; “Thus have I briefly ex-
plained the probabilities and defects of these subtle con-
trivances whereby the making of a perpetual motion hath
been attempted. I would be loth to discourage the en-
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uiry of any ingenious artificer by denying the ibilit
gf effecting it with any of these mechanical hel p?sl?ut ye{
(I conceive) if those principles which concern the slowness
of the power in comparison to the greatness of the weight
were rightly understood and thoroughly considered, they
would make this experiment to seem, if not altogether im-
possible, yet much more difficult than otherwise, perhaps,
it will appear. However, the enquiring after it cannot but
deserve our endeavours, as being one of the most noble
amongst all these mechanical subtilties. And, as it is in
the fable of him who dug the vineyard for a hid treasure,
tho’ he did not find the money, yet he thereby made the
ground more fruitful, so, tho we do not attain to the
effecting of this particular, yet our searching after it may
discover 8o many other excellent subtilties as shall abun-
dantly recompence the labour of our enquiry.” The Bisho
then adverts to “the pleasures of such speculations whic
do ravish and sublime the thoughts with more clear angeli-
cal contentments”: this he illustrates by the examples of
Archimedes, Thales, and Pythagoras.

768. The mathematician knows that with such forces
as experience shews to be actuallly operating in nature use-
ful perpetual motion is impossible. There are indeed con-
cetvable laws of force for which this assertion does not
hold ; but forces never actually %resent themselves which
conform to such laws, 8o firmly has the conviction of the
impossibility of a useful perpetual motion impressed itself
on men of scienco that they extend their belief even to the
mechanical applications of heat and electricity ; and they
have thus in some cases been led to anticipate with confi-
dence the results of untried experiments.

769. A history of attempts to groduce perpetual mo-
tion was published in 1861, entitled Perpetuum Mobile ;
or, search jfor self-motive power...by Henry Dircks, C.E.
In the long list of projects which this volume records there
appear to be only two which carry any special interest
with them; and in both the alleged discovery was kept
secret. One of theése is due to the Marquis of Worcester,
who published a curious book entitled the Century of In-
ventions, in which among other things he claims to have

21—2
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eontrived a machine which bears some resemblance to a
modern steam-engine. In the fifty-sixth Article of his
book he gives a brief account of a wheel which he invented
and exhibited in the Tower before King Charles 1. and
several members of his court. He says it was “a most
- incredible thing if not seen”; and that “ The wheel was
14 foot over, and 40 weights of 50 pounds apiece.” It
would seem to have been of the nature of the contrivance
noticed in Art. 765. The other discovery is claimed by
Orffyreus, who was born in Alsace. He is said to have
constructed for the Landgrave of Hesse Cassel a wheel
which revolved 25 or 26 times in a minute; and continued
in motion for two months. A letter on this wheel is in
print which was addressed by ’s Gravesande to Newton,
speaking favourably of the contrivance and its inventor.
e most probable conjecture is that the rotation was pro-
duced by clockwork concealed in the wheel. Orffyreus is
said to have destroyed his wheel in dissatisfaction with the
treatment which he received.

770. Amusing instances are on record of the confidence
of sanguine speculators in the success of their projects.
Thus we find one person whose anxiety was as to whether
he should ever be able to stop his machine when once in
motion. Another person proposed a modification of the
waterwheel and pump scheme of Art. 766, and being in
alarm lest his machine should pump. up more water than
required for itself, suggested the use of a wastepipe by
which the superfluous water could in fact be thrown away.
In a case which was submitted to the late Dr Whewe
the only misgiving of the projector arose from moral con-
siderations ; he feared that the labouring classes having no
longer any necessity for toiling would sink into idleness
and vice.

771. The history of the subject reproduces ?erpetually
the same features. Accident brings the idea of perpetual
motion to the attention of a man who can handle tools, and
who has some inventive faculty, a quality by no means rare
but which is of little use except it be combined with a
knowledge of what has been done before. Such a person
however is in general ignorant of all the preceding failures
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and also of the rinciples on which a well-trained mathe-
matician relies for his conviction of the impossibility of
attaining the proposed result. He soon convinces himself
that he has succeeded, and having probably exhausted his
own funds he applies to some person who can furnish
capital for constructing models and engines, and for making
the invention known. Loss and ;ierhaps ruin ultimately
fall on the sanguine but undisciplined countriver and the
credulous patron.



EXAMPLES.

IV. MOTION. FALLING BODIES.

1. A railway train performs a journey of 45 miles in
2 hours: find the velocity in feet per second.

2. A train is moving at the rate of 270 yards per
minute: express this velocity in feet per second.

3. The distance of the Moon being about 240000 miles
find the uniform velocity of a body which would pass from
the Earth to the Moon In 400 days.

4. The minute-hand of a watch is twice as long as the
second-hand: shew that the end of the second-hand moves
thirty times as fast as the end of the minute-hand.

5. Find the space described in the fifth second by a
falling body.

6. A body falls for six seconds: find the space described
in the last two seconds of the fall.

7. Find the space described by a falling body in one
tenth of a second beginning at the end of four seconds.

8. Find the space described by a falling body in one
twentieth of a second beginning at the end of two seconds.

9. If a body fall for a quarter of a minute shew that it
would then be moving at the rate of 480 feet per second;
and ta:.scerl;ain what this velocity will be, expressed in miles
per hour. :

10. Shew that a falling body acquires in the seventh
of a second a velocity of about three miles per hour,
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11. Find the velocity of a falling body at the end of -
two seconds, and also at the end of two seconds and a
twentieth: and shew that the space actually described in
the twentieth of a second is the same as if the body had
moved uniformly with a velocity equal to half the sum of
the two velocities.

12. A stone dropped into a well is heard to strike the
waﬁr in two seconds and a quarter: find the depth of the
wel

13, Shew by Art. 88 that the spaces described by a
falling body in the first, second, third, fourth... seconds are
in the proportion of the successive odd numbers 1,3, 5,7,...

14. A falling body is observed to describe 336 feet in
one second : find how ¥ong it has been falling altogether.

15. A body has been falling for a certain number of
seconds: shew that the number of feet described in the
next two seconds is the product of 64 into the number
of seconds increased by unity.

16. A falling body is observed to describe 144 feet in
two seconds: find how long it had been falling when it was
first observed.

17. Shew by numerical examples that the velocity of
a falling body at the middle of any interval is half the sum
of the velocities at the inning and the end of the in-
terval. For instance, half the sum of the velocities at the
end of three seconds and at the end of three seconds and
a half is the velocity at the end of three seconds and a
quarter.

18. Shew that the space described b}! a falling body
between the end of three seconds and the end of three
seconds and a half is the same as would be described by
a body moving uniformly with the velocity which the
falling body has at the end of three seconds and a quarter.
Take other examples of a gimilar kind.

19. Two are dropped at the same instant from
two different points, one vertically above the other: shew
that the balls as they fall always keep at the same distance
from each other.

20. Two balls are dropped from the same point at
different instants: shew that as they fall the distance be-
tween them increases continually with the time.
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V. RELATIVE MOTION. COMPOUND MOTIOﬁ.

1. A steamer is moving at the rate of 20 feet
second: find the resultant velocity of a ball which is shot
from the stern to the bow of the steamer with a velocity of
15 feet per second.

2. Find also the resultant velocity of the ball if it is
shot from the bow to the stern.

3. Find also the resultant velocity of the ball if it is

shot from side to side.
. 4, One steamer moves from West to East at the rate
of 12 miles per hour, and another moves from South to
North at the rate of 16 miles per hour: shew that one will
geparate from the other at the rate of 20 miles per hour:
the steamers start from the same point at the same time.

5. An express train 66 yards long moving at the rate
of 40 miles an hour meets a slow train 110 yards long
moving at the rate of 20 miles an hour. Find how long a
man in the express train takes to pass the slow train, and
how long the express train takes in completely passing the
slow train,

6. A railway train is moving at the rate of 60 miles
per hour, and a ball is dropped from a point at the end of
the train which is 16 feet above the ground: shew that if
the ball did not partake of the motion of the train when it
reached the ground it would be 88 feet behind the train.

7. A river one mile broad is running downwards at
the rate of four miles an hour; a steamer can go up the
river at the rate of six miles per hour; find at what rate
it can go down the river,

8. A stone after falling for one second strikes a plane
of glass in breaking through which it loses half its ve-
locity: find how far it will fall in the next second.

9. Through what space must a heavy body fall from
rest in order to acquire a velocity of 160 feet per second?
If it continue falling for another second after having ac-
quired this velocity find through what space it will f

10. A heavy particle is dropped from a given point,
and after it has fallen for one second another particle is
dropped from the same point. Find the distance between
- the particles when the first has moved for five seconds.
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VI. MOTION CAUSED BY FORCE.

1. A body in motion is observed to move over 45 feet
" in the first three seconds, and over £0 feet during the next
five seconds: shew that it must have been acted on by
some force during the motion.

2. A body falls through 169 feet: find its velocity : ind
also the time it takes to fall through the next 120 feet.

3. An arrow is shot upwards and at the end of six
seconds reaches the ground again: find the height to
which it ascended and the velocity at starting.

4. A body falls down ‘through 289 feet: find the time
of motion and the velocity acquired.

5. An arrow is shot upwards with a velocity of 112 feet
per second : find the height to which it will rise.

6. A body is thrown upwards with a velocity of 96
feet per second: find after how many seconds it will be
moving downwards with a velocity of 48 feet per second.

7. A balloon is movinin wards with a certain velocity;
a weight hangs from the balloon biyl a string : if the string
be cut what will be the motion of the weight ?

8. A heavy particle is dropped from a height of 169
feet above a level plane, and while falling it is carried
horizontally with a uniform velocity of 8 feet per second.
At wh;: distance from the starting point will it strike the

un,
grog- A ball is allowed to fall to the ground from a
height of 64 feet, and at the same instant another ball is
thrown upwards with just sufficient velocity to carry it to
the height from which the first one falls: shew when the
balls will pass each other.

10. Find in the Example of Art. 124 the height of the
body at the end of two seconds and a half, :

VII. MASS AND MOMENTUM.
1. A body has a certain momentum after falling for a

certain time: shew that in order to gain a double mo-
mentum it must fall for double the time, .
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2. A body has a certain momentum after falling
through a certain s : shew that in order to gain a
double momentum 1t must fall through four times the
space.

3. Shew that the momentum of a ball weighing three
pounds two ounces, moving with the velocity of 20 feet
per second is the same as that of a ball weighing two
poumg and a half, moving with the velocity of 25 feet per
8econ -

4. An arrow shot upwards from a bow reaches to a
certain height : shew that if the weight of the arrow be
doubled, other circumstances remaining the same, the
height reached will be one-fourth of its former value.

5. A bOd{. weighing 5 pounds moves uniformly over
300 feet in the same time as another body weighing 3
pounds moves uniformly over 500 feet : shew that the mo-
mentum-is the same in the two cases.

6. A certain forco can give to a body weighing a
pound a velocity of 10 feet per second: shew that it could
give to a body weighing a ton a velocity of 6% of an inch
in a second.

7. A boat with its crew weighs 9 cwt.; and the crew
can row it at the rate of 3 miles an hour. If the boat
be fastened to a vessel weighing 120 tons, shew that the
crew will be able to pull the vessel along at the rate of
about a foot in a minute. .

8. A body is known to he under the action of a
constant force; it is observed to move from rest and in
the first second to describe 8 feet: shew that the force is
equal to half the weight of the body.

9. A body known to be acted on by a constant force
moves from rest and is found to describe a space of 36
feet in the first three seconds of its motion: find with
what velocity it will be moving at the end of the sixth
second of its motion. :

10. A body containing 50 pounds of matter is set in
motion by a constant force which acts for five seconds; the
force then ceases to act, and the body, now acted on by no
force, moves over 64 feet in the next two seconds; shew
that the force is equivalent to a weight of 10 pounds.
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11. A moving body is observed to increase its velocity
by a velocit{vmof 8 feet per second in every second: find
how far the body would move from rest in 5 seconds.

12. A body under the action of a constant force de-
scribes in three successive seconds spaces of 12 feet, 18
feet, and 24 feet respectively: find what importion the
force produ%x;ﬁ the motion bears to the weight of the body.

13. A y moves from rest and at the end of 8
seconds has a velocity of 40 feet per second; its velocity
is known to have been uniformly accelerated : find how far
the body went in the 8 seconds. Supposing the motion
to continue under the same circumstances find how far
the body will go in the next 8 seconds.

14. The velocity of a train is known to have been in-
creasing uniformly; at onme o’clock its velocity was 12
miles an hour, at ten minutes past one o’clock its velocity
was 36 miles an hour: find the velocity at 74 minutes past
one o’clock.

15. Find the proportion which the force acting on the
:rain in the prece«fm' g Example bears to the weight of the

rain,

16. A body is moving at a given instant with a ve-
locity of 40 feet per second: from this instant a constant
force is made to act on it in a direction opposite to that of
the motion which brings it to rest after it has described
20 feet: find the proportion which this force bears to the
weight of the body.

17. Two bodies whose weights are 2 cwt. and 96 lbs.
respectively move from rest under the action of constant
forces ; the former is found to describe 8 feet in the first
three seconds of its motion, and the latter to describe 7
feet in the first two seconds of its motion, Find the pro-
portion of the former force to the latter. :

18. A body moving from rest under the action of a
constant force acquires in each second an additional
velocity of 12 feet per second: find the distance it passes
over in the first five seconds of its motion, and the velocity
it has after passing over 96 feet from its starting point.

19. A stone is let fall from the top of a tower. A
second after another stone is thrown downwards after it,
and overtakes the first stone in a second: find the velocity
with which the second stone was projected.
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20, If a body is projected upwards with a velocit{ of
120 feet per second find the greatest height to which it
will rise; and find when it is moving upwards with a
velocity of 40 feet per second.

VIII. THIRD LAW OF MOTION.

1. Explain the Zick of a gun.

2. Suppose in Art. 139 that the heavier body weighs
9 ounces, and the lighter body 7 ounces: find the space
which rg;'ch body describes in two seconds, and the velocity
acqui

qa. Find the tension of the string in the preceding
Example.

4. In Atwood’s machine one of the two bodies is

heavier than the other by half an ounce: find the weight
of each body so that the heavier may fall through one foot
in the first second.
5. In Atwood’s machine the heavier weight is 43 ounces,
and the lighter is 33 ounces: find the velocity acquired at
the end of a quarter of a minute. If the string be then
cut find after what interval the ascending weight will be
for an instant at rest.

6. Shew that if in Atwood’s machine the lighter of the

two weights is g of the heavier the velocity gained in any
time is ‘li of that of a falling body in the same time; if the
lighter weight is % of the heavier the velocity is % of that

of a falling body; if the lighter weight is ;’ of the heavier

the velocity is % of that of a falling body ; and so on.

7. Find the proportion of the weights in Atwood’s
machine in order that the heavier body may fall through
one foot in the first second.

8. Find also the proportion of the weights in order
that the heavier body may fall through one inch in the
first second. .
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9, " Shew.that in Atwood’s machine if the sum of the
weights is 3 munds, and their difference half an ounce, the
motion will such that instead of the number 32 feet
of Art. 92 we shall have four inches.

10. A man jumps suddenly off a platform with a twenty
pound wei(glht in his hand : find the pressure of the weight
on his hand while he is in the air.

IX. OCOMPOSITION OF FORCES.

1. Find the resultant of three forces of 38, 5, and 8
pounds respectively, acting all in the same direction in a
straight line,

2. Find the resultant of three forces of 3, 5, and 8
pounds res;;ectively, acting in the same straight line, but
the t force opposite in direction to the other two.

3. Forcese to 40 ;})lounds and 9 pounds respectively
act at right angles: find the magnitude of their resultant.

4. Two forces equivalent to 36 pounds and 48 pounds
act at a point (1) in the same direction, (2) in opposite
directions, (3) at right angles. Find their resultant in each
case.

5. Shew by a diagram that if two equal forces act in
directions which include an angle of 120 degrees the re-
sultant is equal to each component.

6. Three equal forces act in one plane in such a wa;
that each of them makes an angle of 120 degrees with eac
of the other two : shew that the three forces will balance.

7. Employ the foregoing proposition to shew that the
resultant of the forces 7 pounds and 14 pounds acting at an
angle of 120 d is the same as the resultant of forces
of 7 pounds, and 7 pounds acting at an angle of 60 degrees.

8. ABCD is a square: find the resultant of forces re-
presented by 4B, AC, and AD. .

9. Forces represented by 4, 5, 10 pounds respectively
act on a particle : shew that they cannot keep it at rest.

10. ABCD is a square. Forces of 10 pounds each act
from A4 to B, from B to C, and from C to D respectively :
shew that they can be balanced by a force of 10 pounds
acting along a certain straight line. .
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11. ABCD is a square. A force of 10. pounds acts
from D to 4, a force of 10 pounds from B to C, and a force
of 20 pounds from 4 to B: find their resultant.

12. ABCD is a square. A force of 4 pounds acts from
4 to B, a force of 6 pounds from B to C, and a force of
10 pounds from C to D : find their resultant.

13. ABCD is a square: & force of 100 pounds acts
from A4 to C and is balanced by two forces acting
ively from B to 4, and from D to 4 : find these forces.

14. Draw a rectangle 4BCD, such that the side 4B
is three-fourths of the side BC'; forces of 3, 9, and 5 pounds
act from B to 4, from B to C, and from D to B respect-
ively : find their resultant.

15. It is required to substitute for a given vertical
force two others, one horizontal and one inclined at an
angle of 45 degrees to the vertical : determine by a dia-
gram the magnitude of these two forces.

16. A body rests on a smooth horizontal plane, and is
acted on by a force of six pounds in a direction inclined
obliquely downwards at an angle of 45 degrees to the
horizon. Find by a diagram the magnitude of the hori-
zontal force required to prevent the motion of the body.

17. Three strings are tied in a knot; the ends of two
of them are fastened to pegs, and the third has a known
weight attached to it: give a construction for finding the
forces pulling the pegs; and from the construction shew to
what the two forces respectively become almost equal when
one of the supporting strings is almost long enough to allow
the other toli)xang in a vertical position.

18. A weight of 24 pounds is suspended by two strings,
one of which is horizontal, and the other is inclined at an
angle of 45° to the vertical direction: find by a diagram
the tension of each string.

19. 8ix vertical smooth posts are fixed in the ground
at equal intervals round the circumference of a circle,
and a cord without weight is passed twice round them
all in a horizontal plane, and pulled together with a force
of 100 pounds. Find the magnitude and direction of the
resultantvsressure on each post.

20. hen a horse is employed to tow a large bar
along a canal the tow-rope is nsually of considerable length :
give a reason for using a long rope instead of a short one.
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Shew whether the same considerations hold good in re-
lation to the length of the rope when a steam-tug is used
instead of a horse. .

X. PARALLEL FORCES. CENTRE OF GRAVITY,

[The parallel forces are supposed Zike.]

1. Two parallel forces of 5 and 7 pounds act in straight
lines which are one foot apart : find their resultant.

2. Three forces of 2, 10, and 12 pounds act along pa-
rallel lines in a body : shew how they may be adjusted so
as to produce equilibrium.

3. At two opposite corners of a square act two forces
each of one unS? and at the other two corners act two
forces each of two Eounds; all the forces are parallel : find
the magnitude of the resultant and the point where it acts.

4. The resultant of two ‘parallel forces of 18 pounds
and 54 pounds is distant 2 feet from the former force:
find its distance from the latter.

5. Three equal J')amllel forces act at three poiuts of a

straight line 4, B, C; if 4B=RBC find the position of the
centre of the parallel forces.

6. Four equal parallel forces act at four points of a
straight line 4, B, C, D; if AB=BC=CD find the po-
gition of the centre of the parallel forces,

7. A rod AB weighs 10 pounds and is found to
‘balance about a point 8 feet from 4 ; a weiﬁht of 6 pounds
is fastened to 4 : find about what point the rod will now
balance.

8. Two balls of uniform density and 6 inches in radius
are placed side by side in contact ;. one weighs 120 pounds
and the other weighs 360 pounds ; find how far the centre
of gravity of the two balls is from the centre of the.
heavier.

9. Two thin circular discs of the same material are
placed in contact; if the radius of one be double the.
radius of the other shew that the centre of gravity of the
two discs is at a distance from the centre of the larger
circle equal to one fifth of the distance of the centres,
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10. A uniform rod weighs 10 pounds; a weight of
10 pounds is fastened to one end and a weight of 20

unds to the other: find about what point the whole will

ance. .

11. A rod whose weight can be neglected rests on
two J]»oints 12 inches apart ; a weight of 18 pounds hangs
on the rod between the points and 4 inches from one of
them : find the pressure on each point.

12. A uniform rod 6 feet long has a weight of 10
pounds fastened to one end; it will balance on a point
6 inches from that end: find the weight of the rod.

13. A straight rod is bent at right angles, so that
one part is twice as long as the other: shew how the
centre of gravity of the bent rod can be determined.

14. Equal weights are placed at the corners of a tri-
angle : find the centre of gravity of the three weights,
and shew that it is the same point as the centre of gravity
of the triangle.

15. Weights of one pound each are placed at two of
the corners of a triangle, and a weight of two pounds at
the ﬁzrd corner : find the centre of gravity of the three
weights.

16. A cylindrical vessel weighing 4 pounds and the
. internal de%th of which is 6 inches will just hold 2 pounds

of water ; the centre of gravity of the vessel when empty
i8 3'39 inches from the top : find the centre of gravity of
the vessel and its contents when full of water.

17. Equal weights are placed at the angular points of
a heavy triangular plate, and also at the middle points of
the n;li es: find the centre of gravity of the plate and the
weights,

18. Two uniform cylinders of the same material are
Jjoined together end to end so that their axes are in the
same straight line ; one cylinder is 9 inches long and 2
inches in diameter, and the other is 6 inches long and
3 inches in diameter: find the centre of gravity of the
combination.

19. Four heavy particles of the relative weights 2, 3,
4, 5 are placed at the corners of a square board in order:
find the centre of gravity of the four particles.

20. Find the cenire of gravity of three equal rods
AB, AC, AD,diverging from a common point 4.
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XI. PROPERTIES OF THE CENTRE OF GRAVITY.

1. Shew that a cylinder if placed on its flat end will
be in stable equilibrium, but if placed on its curved sur-
face in neutral equilibrium.

2. A uniform rod has at one end a small heavy ball;
the rod is pushed gently along a table with the ball fore-
most and falls off when a quarter of the length of the
rod is beyond the edge of the table: shew that the ball
is as heavy as the rod.

3. Two balls weighing 4 pounds and 1 pound re-
spectively have their centres connected by a rod without
weight 50 inches long; they are supported at a point of -
the rod and can turn freely round: find in what position
they will rest if-the point is 8 inches from the centre of the
heavier ball.

4. A triangular board is hung by a string attached
to one corner: find what point in the opposite side will
be in a line with the string.

5. If the force of gravity instead of acting vertically
were to act horizontally from East to West would this
affect the position within a body of its centre of gravity 1

6. ABCDE is a board of i lar figure; and it is
found that when the board is hung from A the point C is
in the vertical line through A ; and that when it is hung
from B the point D is in the vertical line through B: if
the board is hung from the point £ find what point in the
perimeter will be vertically below E.

7. A uniform equilateral triangle has a sphere of the
same wei&ht as the triangle attached to it so that the
centre of the sphere is at an angular point of the triangle :
if the triangle be suspended by a string attached to the
middle point of one of the sides which passes through the
* centre of the sphere shew by a diagram the situation of
the sides of the triangle in cquilibrium.

8. ABCD isa quadrilateral figure such that the sides
AB and AD are equal, and also the sides CB and CD
are equal : find the centre of gravity of the figure.

9. A short circular cylinder of wood has a hemispheri-
cal end; when placed with its curved end on a smooth
table it rests in any })osition in which it is placed : deter-
mine the position of the centre of gravity.

T. P, 22
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10. A piece of uniform paper in the form of a regular
hexagon has one of the equilateral triangles obtained by
Jjoining the centre to two consecutive angular points cut
out: determine the position of the centre of gravity of the
remainder of the paper.

XII. TBRE LEVER.

[The lever is supposed to be withonut weight unless the
contrary is stated.]

1. In alever of the first kind the force at one end is 3
pounds, and its distance from the fulcrum is 4 inches; if
the distance of the force at the other end from the ful-
crum is 6 inches, find the force.

2. Alever 10 feet long has a weight of 11 pounds at
one end ; the fulcrum is 10 inches from this end: find
what weight at the other end the 11 pounds will balance.

3. Find where the fulcrum must be placed that 2

ds and 8 pounds may balance at the extremities of a
ever 5 feet long.

4, A child weighing 56 pounds is at one end of a
plank and a child weighing 72 pounds at the other end;
the -plank is 16 feet long : find the distance of each child
from the fulcrum when the plank is used for a see-saw.

5. The arms of a lever are respectively 15 and 16
inches : find what weight at the end of the short arm will
balance 30 Eounds at the end of the long arm, and what
weight at the end of the long arm will balance 30 pounds
at the end of the short arm.

6. In a pair of nut-crackers if the nut be placed at a
distance of one inch from the hinge, and the hand presses
at a distance of eight inches, shew that for every ounce of
pressure exerted lg the hand the nut undergoes a pres-
sure of half a pound. .

7. A force of 1 pound 14 ounces acts on a lever at the
distance of 3 feet 4 inches from the fulcrum ; another
force of 2 pounds 8 ounces acts at the distance of 2 feet
6 inches from the fulcrum and tends to turn the lever in
the contrary direction : shew that the lever will remain in
equilibrium,
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8. A straight lever 6 feet long, and heavier towards
one end than the other, is found to balance on a fulerum
2 feet from the heavier end, but when placed on a fulcrum
at the middle it requires 2 weight of 3 dpmmds hung at the
}ighter end to keep it horizontal : find the weight of the
ever. :

9. A straight lever 20 inches long weighs 10 ounces :
find where the fulcrum must be placed in order that the
lever may be in equilibrium with a weight of 16 ounces
hung at one end and a weight of 9 ounces at the other.

10. A pole 10 feet long weighinﬁ 24 pounds rests
with one end against the foot of a wall; from the other
end a cord runs horizontally to a point in the wall 8 feet
from the ground : find the tension of the cord.

11. A man whose weight is 160 pounds wishing to
raise a rock leans with his whole weight on one end of a
horizontal crow-bar &5 feet long which is propped at the
distance of 4inches from the end in contact with the rock :
find what force he exerts on the rock, and what pressure
the prop has to sustain.

12. Twomen 4 and B carry a weight of 200 pounds
on a pole between them; the men are 5 feet apart and
the weight is at a distance of 2 feet from 4: find the
weight which each man has to bear.

13. Two weights are carried on a pole which rests at
M and N on the shoulders of two men; one weight is 40
pounds and is put at a point C such that MC is to CV as
3 is to 2; the other weight is 56 pounds and is put at a
point D such that MD is to DN as 5 is to 2: find the
weight which each man must bear.

14. ACB is a bent lever with its fulcrum at C; tho
anglo ACB is a right angle; the arms 4C and BC are
10 inches and 7 inches, and 4C is in a vertical position; a
horizontal force of 21 pounds acting at 4 is balanced by a
vertical force acting at B: find the force at B, and shew
in what direction the pressure on the fulcrum acts.

15. AB is a straight lever acted on at 4 and B by
two equal forces whose directions contain an angle of 60
degrees ; the force at 4 acts at right angles to 4B: find
where the fulerum must be taken for equilibrium, and the
pressure on the fulcrum.

22—2
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XIII. THE BALANCE.

1. The arms of a balance instead of being equal are
respectively 12 and 13 inches long; a body which really
weighs 9 pounds 12 ounces is weighed on this balance :
find the apparent weight first when it is put at the end of
tte long arm, and next when it is put at the end of the
'y “Sm. that a body which reall h d

2. Suppose a body whic y weighs one poun
appears u? a balance to weigh one pound one ounce: find
tll:e proportion of the lengths of the arms.

3. ’l)‘(l)le arms of a balance instead of being equal are
respectively 15 and 16 inches long ; a body which really
weighs 30 pounds is weighed on this balance: find the
apparent weight first when it is put at the end of the long
arm, and next when it is put at the end of the short arm.

4. Shew by Examples 1 and 3 and others of the like
kind that the sum of the two apparent weights is greater
than twice the real weight.

5. Shew by Examples 1 and 3 and others of the like
kind that the product of the two apparent weights is
:ﬂus.l to the square of the real weight, the weights beirg

expressed in terms of the same unit.

6. A substance is weighed from both arms of a fal:e
balance, and its apparent weights are 9 pounds and 4
pounds: find the true weight.

7. A uniform bar 20 inches long and weighing two
pounds is used as a common steel-yard, the fulcrum being
5 inches from one end: find the greatest weight which
can be weighed with a moveable weight of 4 pounds.

8. Shew that in a common balance it makes no differ-
ence at what point of the scale-pan the weight is put,
whether at the centre or nearer to the edge.

9. A man in the act of being weighed in a balance
of the ordinary kind pushes with a walking stick the beam
of the balance at a point between the part of suspension
of the gcale-pan in which he is and the fulcrum : deter-
minehwhether any effect will be produced on his apparent
weight. ’

10. In the preceding case if the scale in which the
man is be kept from moving laterally by a horizontal
string attached to a fixed point, find the effect.
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X1V. THE WHEEL AND AXLE. THE TOOTHED
‘WHEEL.

1. If the radius of the Axle is 3 inches, and that of
the Wheel 2 feet, find what Power will support a Weight
of 112 pounds.

2. The radius of the Axle is 14 inches: find what the
radius of the Wheel must be, so that a Weight of any
number of pounds may be supported by a Power of as
many eunces.

3. The radius of the Axle is 4 inches, and that of the
‘Wheel 3 feet; a Weight of 18 pounds js hung from the
Axle: find what Power is required for equilibrium, and
will!at will be the whole pressure on the axis of the ma-
chine.

4. A weight is to be raised by means of a rope passing
round a horizontal cylinder 10 inches in diameter, turned by
a winch with an arm 24 feet long: find the greatest weight
which a man could so raise without exerting a pressure of
more than 50 pounds on the handle of the winch.

5. The radius of the Axle is 3 inches, and that of the
Wheel 10 inches: if the Power be 4 pounds and the
‘Weight 13 pounds, shew that there will not be equilibrium
but that the Power will prevail.

6. Find the dimensions of a Wheel and Axle by means
of which a Power of 40 pounds will suffice to raise a
‘Weight of 5 cwt. o

7. It is found that by means of a Wheel and Axle a
‘Weight of 15 pounds is supported by a Power of 2 pounds.
If the Power be slightly increased so as to raise the
‘Weight, find how far the Power must descend to raise the
‘Weight through one foot.

8. The radius of the Axle of a capstan is 1 foot; if
four men push each with a force of 100 pounds on spokes
5 feet long, shew that on the whole a tension of 2000
pounds can be produced on the rope which passes round
the Axle.

9. A Wheel and Axle is used to raise a bucket from a
well; the circumference of the Wheel is 60 inches, and
while the Wheel makes three revolutions the bucket, which
weighs 30 pounds, rises one foot: find the smallest force
which can turn the Wheel.
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10. Explain how it is that in drawing up a bucket of
water from a deep well the difficulty increases slightly as
the bucket ascends.

XV. THE PULLY.

1. In the first system of Pullies if there are five Pullies
and the Power is 3 pounds, find the Weight.

2. In the same system if there are four Pullies and the
Weight is 48 pounds, find the Power.

3. In the same system if the Power is 7 pounds and
the Weight 112 pounds, find the number of Pullies.

4. In the second system of Pullies if there are 6
strings at the lower block and the Power is 5 pounds, find
the Weight.

5. In the same vsvystem if there are 8 strings at the
lower block and the Weight is 56 pounds, find the Power.

6. In the same system if the Power is 5 pounds and
the Weight is 25 pounds, find the number of strings, and
draw the diagram.

7. Inthe third system of Pullies if there are five
Pullies and the Power is 2 pounds, find the Weight.

8. In the third system of Pullies if there are four
Pullies and the Weight is 60 })ounds, find the Power.

9. In the same system if the Power is 3 pounds and
the Weight is 45 pounds, find the number of Pullies.

10. Suppose there are four Pullies in the third system,
each weighing 1 pound, and that the Power is 5 pounds,
find the Weight.

XVI. THE INCLINED PLANE, THE WEDGE,
AND THE SCREW.

1. Suppose the Power to act parallel to the Plane,
and that the height of t