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Preface

Bellman has called matrix theory ‘the arithmetic of higher mathematics.’ Under the influence
of Bellman and Kalman engineers and scientists have found in matrix theory a language for repre-
senting and analyzing multivariable systems. Our goal in these notes is to demonstrate the role of
matrices in the modeling of physical systems and the power of matrix theory in the analysis and
synthesis of such systems.

Beginning with modeling of structures in static equilibrium we focus on the linear nature of the
relationship between relevant state variables and express these relationships as simple matrix–vector
products. For example, the voltage drops across the resistors in a network are linear combinations
of the potentials at each end of each resistor. Similarly, the current through each resistor is as-
sumed to be a linear function of the voltage drop across it. And, finally, at equilibrium, a linear
combination (in minus out) of the currents must vanish at every node in the network. In short, the
vector of currents is a linear transformation of the vector of voltage drops which is itself a linear
transformation of the vector of potentials. A linear transformation of n numbers into m numbers is
accomplished by multiplying the vector of n numbers by an m-by-n matrix. Once we have learned
to spot the ubiquitous matrix–vector product we move on to the analysis of the resulting linear
systems of equations. We accomplish this by stretching your knowledge of three–dimensional space.
That is, we ask what does it mean that the m–by–n matrix X transforms Rn (real n–dimensional
space) into Rm? We shall visualize this transformation by splitting both Rn and Rm each into two
smaller spaces between which the given X behaves in very manageable ways. An understanding of
this splitting of the ambient spaces into the so called four fundamental subspaces of X permits one
to answer virtually every question that may arise in the study of structures in static equilibrium.

In the second half of the notes we argue that matrix methods are equally effective in the modeling
and analysis of dynamical systems. Although our modeling methodology adapts easily to dynamical
problems we shall see, with respect to analysis, that rather than splitting the ambient spaces we
shall be better served by splitting X itself. The process is analogous to decomposing a complicated
signal into a sum of simple harmonics oscillating at the natural frequencies of the structure under
investigation. For we shall see that (most) matrices may be written as weighted sums of matrices of
very special type. The weights are the eigenvalues, or natural frequencies, of the matrix while the
component matrices are projections composed from simple products of eigenvectors. Our approach
to the eigendecomposition of matrices requires a brief exposure to the beautiful field of Complex
Variables. This foray has the added benefit of permitting us a more careful study of the Laplace
Transform, another fundamental tool in the study of dynamical systems.
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1. Matrix Methods for Electrical Systems

1.1. Nerve Cables and the Strang Quartet

We wish to confirm, by example, the prefatory claim that matrix algebra is a useful means of
organizing (stating and solving) multivariable problems. In our first such example we investigate
the response of a neuron to a constant current stimulus. Ideally, a neuron is simply a cylinder of
radius a and length ℓ that conducts electricity both along its length and across its lateral membrane.
Though we shall, in subsequent chapters, delve more deeply into the biophysics, here, in our first
outing, we stick to its purely resistive properties. Theses are expressed via two quantities: ρi, the
resistivity, in Ωcm, of the cytoplasm that fills the cell, and ρm, the resistivity in Ωcm2 of the cell’s
lateral membrane.

R

R

R

R

R
i

i

i

m

m

R m

Figure 1.1. A 3 compartment model of a neuron.

Although current surely varies from point to point along the neuron it is hoped that these variations
are regular enough to be captured by a multicompartment model. By that we mean that we choose
a number N and divide the neuron into N segments each of length ℓ/N . Denoting a segment’s axial
resistance by

Ri =
ρiℓ/N

πa2

and membrane resistance by

Rm =
ρm

2πaℓ/N

we arrive at the lumped circuit model of Figure 1.1. For a neuron in culture we may assume a
constant extracellular potential, e.g., zero. We accomplish this by connecting and grounding the
extracellular nodes, see Figure 1.2.
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Figure 1.2. A rudimentary neuronal circuit model.

This figure also incorporates the exogenous disturbance, a current stimulus between ground and the
left end of the neuron. Our immediate goal is to compute the resulting currents through each resistor
and the potential at each of the nodes. Our long–range goal is to provide a modeling methodology
that can be used across the engineering and science disciplines. As an aid to computing the desired
quantities we give them names. With respect to Figure 1.3 we label the vector of potentials

x =









x1

x2

x3

x4









and vector of currents y =















y1

y2

y3

y4

y5

y6















.

We have also (arbitrarily) assigned directions to the currents as a graphical aid in the consistent
application of the basic circuit laws.

R
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R R

i i i

m m m
i 0

x x x x

y

y

y

y

y

y

1 2 3 4

2

3

4

5

6

1

Figure 1.3 The fully dressed circuit model.

We incorporate the circuit laws in a modeling methodology that takes the form of a Strang

Quartet after ?,

(S1) Express the voltage drops via e = −Ax.
(S2) Express Ohm’s Law via y = Ge.
(S3) Express Kirchhoff’s Current Law via AT y = −f .
(S4) Combine the above into AT GAx = f .

The A in (S1) is the node–edge adjacency matrix – it encodes the network’s connectivity. The G
in (S2) is the diagonal matrix of edge conductances – it encodes the physics of the network. The f
in (S3) is the vector of current sources – it encodes the network’s stimuli. The culminating AT GA
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in (S4) is the symmetric matrix whose inverse, when applied to f , reveals the vector of potentials,
x. In order to make these ideas our own we must work many, many examples.

1.2. Example 1

With respect to the circuit of figure 1.3, in accordance with step (S1), we express the six potentials
differences (always tail minus head)

e1 = x1 − x2

e2 = x2

e3 = x2 − x3

e4 = x3

e5 = x3 − x4

e6 = x4

Such long, tedious lists cry out for matrix representation, to wit

e = −Ax where A =















−1 1 0 0
0 −1 0 0
0 −1 1 0
0 0 −1 0
0 0 −1 1
0 0 0 −1















Step (S2), Ohm’s law, states that the current along an edge is equal to the potential drop across
the edge divided by the resistance of the edge. In our case,

yj = ej/Ri, j = 1, 3, 5 and yj = ej/Rm, j = 2, 4, 6

or, in matrix notation,

y = Ge

where

G =















1/Ri 0 0 0 0 0
0 1/Rm 0 0 0 0
0 0 1/Ri 0 0 0
0 0 0 1/Rm 0 0
0 0 0 0 1/Ri 0
0 0 0 0 0 1/Rm















Step (S3), Kirchhoff’s Current Law, states that the sum of the currents into each node must be
zero. In our case

i0 − y1 = 0

y1 − y2 − y3 = 0

y3 − y4 − y5 = 0

y5 − y6 = 0

or, in matrix terms

By = −f
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where

B =









−1 0 0 0 0 0
1 −1 −1 0 0 0
0 0 1 −1 −1 0
0 0 0 0 1 −1









and f =









i0
0
0
0









Turning back the page we recognize in B the transpose of A. Calling it such, we recall our main
steps

e = −Ax, y = Ge, and AT y = −f.

On substitution of the first two into the third we arrive, in accordance with (S4), at

AT GAx = f. (1.1)

This is a linear system of four simultaneous equations for the 4 unknown potentials, x1 through x4.
As you may know, the system (1.1) may have either 1, 0, or infinitely many solutions, depending on
f and AT GA. We shall devote chapters 3 and 4 to a careful analysis of the previous sentence. For
now, we simply invoke the Matlab backslash command and arrive at the response depicted in
Figure 1.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

5

6

7

8

9

10

11

12

z  (cm)

x 
 (

m
V

)

Figure 1.4. Results of a 16 compartment simulation. cab1.m.

Once the structure of the constituents in the fundamental system (1.1) is determined it is an easy
matter to implement it, as we have done in cab1.m, for an arbitrary number of compartments. In
Figure 1.4 we see that the stimulus at the neuron’s left end produces a depolarization there that
then attenuates with distance from the site of stimulation.

1.3. Example 2

We have seen in the previous section how a current source may produce a potential difference
across a neuron’s membrane. We note that, even in the absence of electrical stimuli, there is always
a difference in potential between the inside and outside of a living cell. In fact, this difference is
one of the biologist’s definition of ‘living.’ Life is maintained by the fact that the neuron’s interior
is rich (relative to the cell’s exterior) in potassium ions and poor in sodium and chloride ions.
These concentration differences establish a resting potential difference, Em, across the cell’s lateral
membrane. The modified circuit diagram is given in Figure 1.5.
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m m m
i 0

E E Em m m

Figure 1.5 Circuit model with batteries associated with the rest potential.

The convention is that the potential difference across the battery is Em. As the bottom terminal
of each battery is grounded it follows that the potential at the top of each battery is Em. Revisiting
steps (S1–4) of the Strang Quartet we note that in (S1) the even numbered voltage drops are now

e2 = x2 − Em, e4 = x3 − Em and e6 = x4 − Em.

We accommodate such things by generalizing (S1) to

(S1’) Express the voltage drops as e = b − Ax where b is the vector that encodes the batteries.

No changes are necessary for (S2) and (S3). The final step now reads,

(S4’) Combine (S1’), (S2) and (S3) to produce

AT GAx = AT Gb + f. (1.2)

This is the general form for a resistor network driven by current sources and batteries.

Returning to Figure 1.5 we note that

b = −Em[0 1 0 1 0 1]T and AT Gb = (Em/Rm)[0 1 1 1]T .

To build and solve (1.2) requires only minor changes to our old code. The new program is called
cab2.m and results of its use are indicated in Figure 1.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−66

−65

−64

−63

−62

−61

−60

−59

−58

z  (cm)

x 
 (

m
V

)

Figure 1.6. Results of a 16 compartment simulation with batteries, Em = −70 mV . cab2.m
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1.4. Exercises

1. In order to refresh your matrix-vector multiply skills please calculate, by hand, the product
AT GA in the 3 compartment case and write out the 4 equations in (1.1). The second equation
should read

(−x1 + 2x2 − x3)/Ri + x2/Rm = 0. (1.3)

2. We began our discussion with the ‘hope’ that a multicompartment model could indeed ade-
quately capture the neuron’s true potential and current profiles. In order to check this one
should run cab1.m with increasing values of N until one can no longer detect changes in the
computed potentials.

(a) Please run cab1.m with N = 8, 16, 32 and 64. Plot all of the potentials on the same (use
hold) graph, using different line types for each. (You may wish to alter cab1.m so that it
accepts N as an argument).

Let us now interpret this convergence. The main observation is that the difference equation,
(1.3), approaches a differential equation. We can see this by noting that

dz ≡ ℓ/N

acts as a spatial ‘step’ size and that xk, the potential at (k − 1)dz, is approximately the value
of the true potential at (k − 1)dz. In a slight abuse of notation, we denote the latter

x((k − 1)dz).

Applying these conventions to (1.3) and recalling the definitions of Ri and Rm we see (1.3)
become

πa2

ρi

−x(0) + 2x(dz) − x(2dz)

dz
+

2πadz

ρm

x(dz) = 0,

or, after multiplying through by ρm/(πadz),

aρm

ρi

−x(0) + 2x(dz) − x(2dz)

dz2
+ 2x(dz) = 0.

We note that a similar equation holds at each node (save the ends) and that as N → ∞ and
therefore dz → 0 we arrive at

d2x(z)

dz2
− 2ρi

aρm

x(z) = 0. (1.4)

(b) With µ ≡ 2ρi/(aρm) show that

x(z) = α sinh(
√

µz) + β cosh(
√

µz) (1.5)

satisfies (1.4) regardless of α and β.

We shall determine α and β by paying attention to the ends of the neuron. At the near end
we find

πa2

ρi

x(0) − x(dz)

dz
= i0,

which, as dz → 0 becomes
dx(0)

dz
= −ρii0

πa2
. (1.6)
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At the far end, we interpret the condition that no axial current may leave the last node to
mean

dx(ℓ)

dz
= 0. (1.7)

(c) Substitute (1.5) into (1.6) and (1.7) and solve for α and β and write out the final x(z).

(d) Substitute into x the ℓ, a, ρi and ρm values used in cab1.m, plot the resulting function
(using, e.g., ezplot) and compare this to the plot achieved in part (a).
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2. Matrix Methods for Mechanical Systems

2.1. Elastic Fibers and the Strang Quartet

We connect 3 masses (nodes) with four springs (fibers) between two immobile walls, as in Fig-
ure 2.1, and apply forces at the masses and measure the associated displacement.

k
1

m
1

x
1

f
1

k
2
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Figure 2.1. A fiber chain.

We suppose that a horizontal force, fj, is applied to each mj, and produces a horizontal dis-
placement xj, with the sign convention that rightward means positive. The bars at the ends of
the figure indicate rigid supports incapable of movement. The kj denote the respective spring stiff-
nesses. Regarding units, we measure fj in Newtons (N) and xj in meters (m) and so stiffness,
kj, is measured in (N/m). In fact each stiffness is a parameter composed of both ‘material’ and
‘geometric’ quantities. In particular,

kj =
Yjaj

Lj

(2.1)

where Yj is the fiber’s Young’s modulus (N/m2), aj is the fiber’s cross-sectional area (m2) and Lj

is the fiber’s (reference) length (m).
The analog of potential difference is here elongation. If ej denotes the elongation of the jth

spring then naturally,

e1 = x1, e2 = x2 − x1, e3 = x3 − x2, and e4 = −x3,

or, in matrix terms,

e = Ax where A =









1 0 0
−1 1 0
0 −1 1
0 0 −1









.

We note that ej is positive when the spring is stretched and negative when compressed. The analog
of Ohm’s Law is here Hooke’s Law: the restoring force in a spring is proportional to its elongation.
We call this constant of proportionality the stiffness, kj, of the spring, and denote the restoring
force by yj. Hooke’s Law then reads, yj = kjej, or, in matrix terms

y = Ke where K =









k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4









.

The analog of Kirchhoff’s Current Law is here typically called ‘force balance.’ More precisely,
equilibrium is synonymous with the fact that the net force acting on each mass must vanish. In
symbols,

y1 − y2 − f1 = 0, y2 − y3 − f2 = 0, and y3 − y4 − f3 = 0,
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or, in matrix terms

By = f where f =





f1

f2

f3



 and B =





1 −1 0 0
0 1 −1 0
0 0 1 −1



 .

As is the previous section we recognize in B the transpose of A. Gathering our three important
steps

e = Ax

y = Ke

AT y = f

we arrive, via direct substitution, at an equation for x. Namely

AT y = f ⇒ AT Ke = f ⇒ AT KAx = f.

Assembling AT KA we arrive at the final system




k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3 + k4









x1

x2

x3



 =





f1

f2

f3



 . (2.2)

Although Matlab solves such systems with ease our aim here is to develop a deeper understanding
of Gaussian Elimination and so we proceed by hand. This aim is motivated by a number of
important considerations. First, not all linear systems have unique solutions. A careful look at
Gaussian Elimination will provide the general framework for not only classifying those systems
that possess unique solutions but also for providing detailed diagnoses of those systems that lack
solutions or possess too many.

In Gaussian Elimination one first uses linear combinations of preceding rows to eliminate nonzeros
below the main diagonal and then solves the resulting triangular system via back–substitution. To
firm up our understanding let us take up the case where each kj = 1 and so (2.2) takes the form





2 −1 0
−1 2 −1
0 −1 2









x1

x2

x3



 =





f1

f2

f3



 (2.3)

We eliminate the (2, 1) (row 2, column 1) element by implementing

new row 2 = old row 2 +
1

2
row 1, (2.4)

bringing




2 −1 0
0 3/2 −1
0 −1 2









x1

x2

x3



 =





f1

f2 + f1/2
f3





We eliminate the current (3, 2) element by implementing

new row 3 = old row 3 +
2

3
row 2, (2.5)

9



bringing the upper–triangular system
Ux = g, (2.6)

or, more precisely,




2 −1 0
0 3/2 −1
0 0 4/3









x1

x2

x3



 =





f1

f2 + f1/2
f3 + 2f2/3 + f1/3



 (2.7)

One now simply reads off
x3 = (f1 + 2f2 + 3f3)/4.

This in turn permits the solution of the second equation

x2 = 2(x3 + f2 + f1/2)/3 = (f1 + 2f2 + f3)/2,

and, in turn,
x1 = (x2 + f1)/2 = (3f1 + 2f2 + f3)/4.

One must say that Gaussian Elimination has succeeded here. For, regardless of the actual elements
of f we have produced an x for which AT KAx = f .

Although Gaussian Elimination, remains the most efficient means for solving systems of the form
Sx = f it pays, at times, to consider alternate means. At the algebraic level, suppose that there
exists a matrix that ‘undoes’ multiplication by S in the sense that multiplication by 2−1 undoes
multiplication by 2. The matrix analog of 2−12 = 1 is

S−1S = I

where I denotes the identity matrix (all zeros except the ones on the diagonal). We call S−1 “the
inverse of S” or “S inverse” for short. Its value stems from watching what happens when it is
applied to each side of Sx = f . Namely,

Sx = f ⇒ S−1Sx = S−1f ⇒ Ix = S−1f ⇒ x = S−1f.

Hence, to solve Sx = f for x it suffices to multiply f by the inverse of S. Let us now consider how
one goes about computing S−1. In general this takes a little more than twice the work of Gaussian
Elimination, for we interpret

SS−1 = I

as n (the size of S) applications of Gaussian elimination, with f running through n columns of
the identity matrix. The bundling of these n applications into one is known as the Gauss-Jordan
method. Let us demonstrate it on the S appearing in (2.3). We first augment S with I.





2 −1 0 | 1 0 0
−1 2 −1 | 0 1 0
0 −1 2 | 0 0 1





We then eliminate down, being careful to address each of the 3 f vectors. This produces




2 −1 0 | 1 0 0
0 3/2 −1 | 1/2 1 0
0 0 4/3 | 1/3 2/3 1





10



Now, rather than simple back–substitution we instead eliminate up. Eliminating first the (2, 3)
element we find





2 −1 0 | 1 0 0
0 3/2 0 | 3/4 3/2 3/4
0 0 4/3 | 1/3 2/3 1





Now eliminating the (1, 2) element we achieve




2 0 0 | 3/2 1 1/2
0 3/2 0 | 3/4 3/2 3/4
0 0 4/3 | 1/3 2/3 1





In the final step we scale each row in order that the matrix on the left takes on the form of the
identity. This requires that we multiply row 1 by 1/2, row 2 by 3/2 and row 3 by 3/4, with the
result





1 0 0 | 3/4 1/2 1/4
0 1 0 | 1/2 1 1/2
0 0 1 | 1/4 1/2 3/4



 .

Now in this transformation of S into I we have, ipso facto, transformed I to S−1, i.e., the matrix
that appears on the right upon applying the method of Gauss–Jordan is the inverse of the matrix
that began on the left. In this case,

S−1 =





3/4 1/2 1/4
1/2 1 1/2
1/4 1/2 3/4



 .

One should check that S−1f indeed coincides with the x computed above.
Not all matrices possess inverses. Those that do are called invertible or nonsingular. For

example
(

1 2
2 4

)

is singular.
Some matrices can be inverted by inspection. An important class of such matrices is in fact

latent in the process of Gaussian Elimination itself. To begin, we build the elimination matrix that
enacts the elementary row operation spelled out in (2.4),

E1 =





1 0 0
1/2 1 0
0 0 1





Do you ‘see’ that this matrix (when applied from the left to S) leaves rows 1 and 3 unsullied but
adds half of row one to two? This ought to be ‘undone’ by simply subtracting half of row 1 from
row two, i.e., by application of

E−1
1 =





1 0 0
−1/2 1 0

0 0 1





Please confirm that E−1
1 E1 is indeed I. Similarly, the matrix analogs of (2.5) and its undoing are

E2 =





1 0 0
0 1 0
0 2/3 1



 and E−1
2 =





1 0 0
0 1 0
0 −2/3 1





11



Again, please confirm that E2E
−1
2 = I. Now we may express the reduction of S to U (recall (2.6))

as

E2E1S = U

and the subsequent reconstitution by

S = LU, where L = E−1
1 E−1

2 =





1 0 0
−1/2 1 0

0 −2/3 1





One speaks of this representation as the LU decomposition of S. We have just observed that the
inverse of a product is the product of the inverses in reverse order. Do you agree that S−1 = U−1L−1?
And what do you think of the statement S−1 = A−1K−1(AT )−1?

LU decomposition is the preferred method of solution for the large linear systems that occur in
practice. The decomposition is implemented in Matlab as

[L U] = lu(S);

and in fact lies at the heart of Matlab ’s blackslash command. To diagram its use, we write Sx = f
as LUx = f and recognize that the latter is nothing more than a pair of triangular problems:

Lc = f and Ux = c,

that may be solved by forward and backward substitution respectively. This representation achieves
its greatest advantage when one is asked to solve Sx = f over a large class of f vectors. For example,
if we wish to steadily increase the force, f2, on mass 2, and track the resulting displacement we
would be well served by

[L,U] = lu(S);
f = [1 1 1];
for j=1:100,

f(2) = f(2) + j/100;
x = U \ (L \ f);
plot(x,’o’)

end

You are correct in pointing out that we could have also just precomputed the inverse of S and then
sequentially applied it in our for loop. The use of the inverse is, in general, considerably more costly
in terms of both memory and operation counts. The exercises will give you a chance to see this for
yourself.

2.2. A Small Planar Network

We move from uni-axial to biaxial elastic nets by first considering the swing in Figure 2.2.
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Figure 2.2. A simple swing.

We denote by x1 and x2 the respective horizontal and vertical displacements of m1 (positive
is right and down). Similarly, f1 and f2 will denote the associated components of force. The
corresponding displacements and forces at m2 will be denoted by x3, x4 and f3, f4. In computing
the elongations of the three springs we shall make reference to their unstretched lengths, L1, L2,
and L3.

Now, if spring 1 connects (0,−L1) to (0, 0) when at rest and (0,−L1) to (x1, x2) when stretched
then its elongation is simply

e1 =
√

x2
1 + (x2 + L1)2 − L1. (2.8)

The price one pays for moving to higher dimensions is that lengths are now expressed in terms of
square roots. The upshot is that the elongations are not linear combinations of the end displacements
as they were in the uni-axial case. If we presume however that the loads and stiffnesses are matched
in the sense that the displacements are small compared with the original lengths then we may
effectively ignore the nonlinear contribution in (2.8). In order to make this precise we need only
recall the Taylor development of

√
1 + t about t = 0, i.e.,
√

1 + t = 1 + t/2 + O(t2)

where the latter term signifies the remainder. With regard to e1 this allows

e1 =
√

x2
1 + x2

2 + 2x2L1 + L2
1 − L1

= L1

√

1 + (x2
1 + x2

2)/L
2
1 + 2x2/L1 − L1

= L1 + (x2
1 + x2

2)/(2L1) + x2 + L1O(((x2
1 + x2

2)/L
2
1 + 2x2/L1)

2) − L1

= x2 + (x2
1 + x2

2)/(2L1) + L1O(((x2
1 + x2

2)/L
2
1 + 2x2/L1)

2).

If we now assume that

(x2
1 + x2

2)/(2L1) is small compared to x2 (2.9)

then, as the O term is even smaller, we may neglect all but the first terms in the above and so
arrive at

e1 = x2.

To take a concrete example, if L1 is one meter and x1 and x2 are each one centimeter than x2 is
one hundred times (x2

1 + x2
2)/(2L1).
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With regard to the second spring, arguing as above, its elongation is (approximately) its stretch
along its initial direction. As its initial direction is horizontal, its elongation is just the difference
of the respective horizontal end displacements, namely,

e2 = x3 − x1.

Finally, the elongation of the third spring is (approximately) the difference of its respective vertical
end displacements, i.e.,

e3 = x4.

We encode these three elongations in

e = Ax where A =





0 1 0 0
−1 0 1 0
0 0 0 1



 .

Hooke’s law is an elemental piece of physics and is not perturbed by our leap from uni-axial to
biaxial structures. The upshot is that the restoring force in each spring is still proportional to its
elongation, i.e., yj = kjej where kj is the stiffness of the jth spring. In matrix terms,

y = Ke where K =





k1 0 0
0 k2 0
0 0 k3



 .

Balancing horizontal and vertical forces at m1 brings

−y2 − f1 = 0 and y1 − f2 = 0,

while balancing horizontal and vertical forces at m2 brings

y2 − f3 = 0 and y3 − f4 = 0.

We assemble these into

By = f where B =









0 −1 0
1 0 0
0 1 0
0 0 1









,

and recognize, as expected, that B is nothing more than AT . Putting the pieces together, we find
that x must satisfy Sx = f where

S = AT KA =









k2 0 −k2 0
0 k1 0 0

−k2 0 k2 0
0 0 0 k3









.

Applying one step of Gaussian Elimination brings








k2 0 −k2 0
0 k1 0 0
0 0 0 0
0 0 0 k3

















x1

x2

x3

x4









=









f1

f2

f1 + f3

f4








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and back substitution delivers
x4 = f4/k3,

0 = f1 + f3,

x2 = f2/k1,

x1 − x3 = f1/k2.

The second of these is remarkable in that it contains no components of x. Instead, it provides a
condition on f . In mechanical terms, it states that there can be no equilibrium unless the horizontal
forces on the two masses are equal and opposite. Of course one could have observed this directly
from the layout of the truss. In modern, three–dimensional structures with thousands of members
meant to shelter or convey humans one should not however be satisfied with the ‘visual’ integrity of
the structure. In particular, one desires a detailed description of all loads that can, and, especially,
all loads that can not, be equilibrated by the proposed truss. In algebraic terms, given a matrix
S one desires a characterization of (1) all those f for which Sx = f possesses a solution and (2)
all those f for which Sx = f does not possess a solution. We provide such a characterization in
Chapter 3 in our discussion of the column space of a matrix.

Supposing now that f1 + f3 = 0 we note that although the system above is consistent it still
fails to uniquely determine the four components of x. In particular, it specifies only the difference
between x1 and x3. As a result both

x =









f1/k2

f2/k1

0
f4/k3









and x =









0
f2/k1

−f1/k2

f4/k3









satisfy Sx = f . In fact, one may add to either an arbitrary multiple of

z ≡









1
0
1
0









(2.10)

and still have a solution of Sx = f . Searching for the source of this lack of uniqueness we observe
some redundancies in the columns of S. In particular, the third is simply the opposite of the first.
As S is simply AT KA we recognize that the original fault lies with A, where again, the first and
third columns are opposites. These redundancies are encoded in z in the sense that

Az = 0.

Interpreting this in mechanical terms, we view z as a displacement and Az as the resulting elonga-
tion. In Az = 0 we see a nonzero displacement producing zero elongation. One says in this case
that the truss deforms without doing any work and speaks of z as an ‘unstable mode.’ Again, this
mode could have been observed by a simple glance at Figure 2.2. Such is not the case for more
complex structures and so the engineer seeks a systematic means by which all unstable modes may
be identified. We shall see in Chapter 3 that these modes are captured by the null space of A.

From Sz = 0 one easily deduces that S is singular. More precisely, if S−1 were to exist then S−1Sz
would equal S−10, i.e., z = 0, contrary to (2.10). As a result, Matlab will fail to solve Sx = f
even when f is a force that the truss can equilibrate. One way out is to use the pseudo–inverse, as
we shall see below.
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2.3. A Large Planar Network

We close with the (scalable) example of the larger planar net in Figure 2.3. Elastic fibers,
numbered 1 – 20, meet at nodes, numbered 1 – 9. We limit our observation to the motion of the
nodes by denoting the horizontal and vertical displacements of node j by x2j−1 and x2j respectively.
Retaining the convention that down and right are positive we note that the elongation of fiber 1 is

e1 = x2 − x8

while that of fiber 3 is

e3 = x3 − x1.
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Figure 2.3. A crude tissue model.

As fibers 2 and 4 are neither vertical nor horizontal their elongations, in terms of nodal displace-
ments, are not so easy to read off. This is more a nuisance than an obstacle however, for recalling
our earlier discussion, the elongation is approximately just the stretch along its undeformed axis.
With respect to fiber 2, as it makes the angle −π/4 with respect to the positive horizontal axis, we
find

e2 = (x9 − x1) cos(−π/4) + (x10 − x2) sin(−π/4) = (x9 − x1 + x2 − x10)/
√

2.

Similarly, as fiber 4 makes the angle −3π/4 with respect to the positive horizontal axis, its elongation
is

e4 = (x7 − x3) cos(−3π/4) + (x8 − x4) sin(−3π/4) = (x3 − x7 + x4 − x8)/
√

2.

These are both direct applications of the general formula

ej = (x2n−1 − x2m−1) cos(θj) + (x2n − x2m) sin(θj) (2.11)

for fiber j, as depicted in the figure below, connecting node m to node n and making the angle θj

with the positive horizontal axis when node m is assumed to lie at the point (0, 0). The reader
should check that our expressions for e1 and e3 indeed conform to this general formula and that e2

and e4 agree with ones intuition. For example, visual inspection of the specimen suggests that fiber
2 can not be supposed to stretch (i.e., have positive e2) unless x9 > x1 and/or x2 > x10. Does this
jibe with (2.11)?
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Figure 2.4. Elongation of a generic bar, see (2.11).

Applying (2.11) to each of the remaining fibers we arrive at e = Ax where A is 20-by-18, one
row for each fiber, and one column for each degree of freedom. For systems of such size with such a
well defined structure one naturally hopes to automate the construction. We have done just that in
the accompanying M-file and diary. The M-file begins with a matrix of raw data that anyone with
a protractor could have keyed in directly from Figure 2.3. More precisely, the data matrix has a
row for each fiber and each row consists of the starting and ending node numbers and the angle the
fiber makes with the positive horizontal axis. This data is precisely what (2.11) requires in order
to know which columns of A receive the proper cos or sin. The final A matrix is displayed in the
diary.

The next two steps are now familiar. If K denotes the diagonal matrix of fiber stiffnesses and
f denotes the vector of nodal forces then y = Ke and AT y = f and so one must solve Sx = f
where S = AT KA. In this case there is an entire three–dimensional class of z for which Az = 0
and therefore Sz = 0. The three indicates that there are three independent unstable modes of the
specimen, e.g., two translations and a rotation. As a result S is singular and x = S\f in Matlab

will get us nowhere. The way out is to recognize that S has 18 − 3 = 15 stable modes and that if
we restrict S to ‘act’ only in these directions then it ‘should’ be invertible. We will begin to make
these notions precise in Chapter 4 on the Fundamental Theorem of Linear Algebra.

Figure 2.5. The solid(dashed) circles correspond to the nodal positions before(after) the application
of the traction force, f .

For now let us note that every matrix possesses such a pseudo-inverse and that it may be
computed in Matlab via the pinv command. On supposing the fiber stiffnesses to each be one
and the edge traction to be of the form

f = [−1 1 0 1 1 1 − 1 0 0 0 1 0 − 1 − 1 0 − 1 1 − 1]T ,

we arrive at x via x=pinv(S)*f and refer to Figure 2.5 for its graphical representation.

2.4. Exercises

1. With regard to Figure 2.1, (i) Derive the A and K matrices resulting from the removal of the
fourth spring (but not the third mass) and assemble S = AT KA.
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(ii) Compute S−1, by hand via Gauss–Jordan, and compute L and U where S = LU by hand
via the composition of elimination matrices and their inverses. Assume throughout that with
k1 = k2 = k3 = k,

(iii) Use the result of (ii) with the load f = [0 0 F ]T to solve Sx = f by hand two ways, i.e.,
x = S−1f and Lc = f and Ux = c.

2. With regard to Figure 2.2

(i) Derive the A and K matrices resulting from the addition of a fourth (diagonal) fiber that
runs from the top of fiber one to the second mass and assemble S = AT KA.

(ii) Compute S−1, by hand via Gauss–Jordan, and compute L and U where S = LU by hand
via the composition of elimination matrices and their inverses. Assume throughout that with
k1 = k2 = k3 = k4 = k.

(iii) Use the result of (ii) with the load f = [0 0 F 0]T to solve Sx = f by hand two ways, i.e.,
x = S−1f and Lc = f and Ux = c.

3. Generalize figure 2.3 to the case of 16 nodes connected by 42 fibers. Introduce one stiff
(say k = 100) fiber and show how to detect it by ‘properly’ choosing f . Submit your well-
documented M-file as well as the plots, similar to Figure 2.5, from which you conclude the
presence of a stiff fiber.

4. We generalize Figure 2.3 to permit ever finer meshes. In particular, with reference to the figure
below we assume N(N − 1) nodes where the horizontal and vertical fibers each have length
1/N while the diagonal fibers have length

√
2/N . The top row of fibers is anchored to the

ceiling.

21

2NN+2N+1

3

N(N−1)

(N−1)(4N−3)

4N

4N−14N−2

4N−4 4N−3

4N−511

10

9
8

7

6

54

3

2

1

N

(i) Write and test a Matlab function S=bignet(N) that accepts the odd number N and
produces the stiffness matrix S = AT KA. As a check on your work we offer a spy plot of A
when N = 5. Your K matrix should reflect the fiber lengths as spelled out in (2.1). You may
assume Yjaj = 1 for each fiber. The sparsity of A also produces a sparse S. In order to exploit
this, please use S=sparse(S) as the final line in bignet.m.
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(ii) Write and test a driver called bigrun that generates S for N = 5 : 4 : 29 and for each N
solves Sx = f two ways for 100 choices of f . In particular, f is a steady downward pull on
the bottom set of nodes, with a continual increase on the pull at the center node. This can be
done via f=zeros(size(S,1),1); f(2:2:2*N) = 1e-3/N;
for j=1:100,
f(N+1) = f(N+1) + 1e-4/N;
This construction should be repeated twice, with the code that closes §2.1 as your guide. In
the first scenario, precompute S−1 via inv and then apply x = S−1f in the j loop. In the
second scenario precompute L and U and then apply x = U\(L\f) in the j loop. In both
cases use tic and toc to time each for loop and so produce a graph of the form
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Submit your well documented code, a spy plot of S when N = 9, and a time comparison like
(will vary with memory and cpu) that shown above.
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3. The Column and Null Spaces

3.1. The Column Space

We begin with the direct geometric interpretation of matrix–vector multiplication. Namely, the
multiplication of the n-by-1 vector x by the m-by-n matrix S produces a linear combination of the
columns of S. More precisely, if sj denotes the jth column of S, then

Sx = [s1 s2 · · · sn]









x1

x2
...

xn









= x1s1 + x2s2 + · · · + xnsn. (3.1)

The picture I wish to place in your mind’s eye is that Sx lies in the plane spanned by the columns
of S. This plane occurs so frequently that we find it useful to distinguish it with a

Definition 3.1. The column space of the m-by-n matrix S is simply the span of its columns,
i.e.,

R(S) ≡ {Sx : x ∈ R
n}.

This is a subset of R
m. The letter R stands for range.

For example, let us recall the S matrix associated with Figure 2.2. Its column space is

R(S) =















x1









k2

0
−k2

0









+ x2









0
k1

0
0









+ x3









−k2

0
k2

0









+ x4









0
0
0
k3









: x ∈ R
4















.

As the first and third columns are colinear we may write

R(S) =















x1









k2

0
−k2

0









+ x2









0
k1

0
0









+ x3









0
0
0
k3









: x ∈ R
3















.

As the remaining three columns are linearly independent we may go no further. We ‘recognize’
then R(S) as a three dimensional subspace of R

4. In order to use these ideas with any confidence
we must establish careful definitions of subspace, independence, and dimension.

A subspace is a natural generalization of line and plane. Namely, it is any set that is closed
under vector addition and scalar multiplication. More precisely,

Definition 3.2. A subset M of R
d is a subspace of R

d when
(1) p + q ∈ M whenever p ∈ M and q ∈ M , and
(2) tp ∈ M whenever p ∈ M and t ∈ R.

Let us confirm now that R(S) is indeed a subspace. Regarding (1) if p ∈ R(S) and q ∈ R(S)
then p = Sx and q = Sy for some x and y. Hence, p+ q = Sx+Sy = S(x+ y), i.e., (p+ q) ∈ R(S).
With respect to (2), tp = tSx = S(tx) so tp ∈ R(S).

This establishes that every column space is a subspace. The converse is also true. Every subspace
is the column space of some matrix. To make sense of this we should more carefully explain what
we mean by ‘span’.
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Definition 3.3. A collection of vectors {s1, s2, . . . , sn} in a subspace M is said to span M when
M = R(S) where S = [s1 s2 · · · sn].

We shall be interested in how a subspace is ‘situated’ in its ambient space. We shall have occasion
to speak of complementary subspaces and even the sum of two subspaces. Lets take care of the
latter right now,

Definition 3.4. If M and Q are subspaces of the same ambient space, R
d, we define their direct

sum
M ⊕ Q ≡ {p + q : p ∈ M and q ∈ Q}

as the union of all possible sums of vectors from M and Q.

Do you see how R
3 may be written as the direct sum of R

1 and R
2?

3.2. The Null Space

Definition 3.5. The null space of an m-by-n matrix S is the collection of those vectors in R
n

that S maps to the zero vector in R
m. More precisely,

N (S) ≡ {x ∈ R
n : Sx = 0}.

Let us confirm that N (S) is in fact a subspace. If both x and y lie in N (S) then Sx = Sy = 0
and so S(x + y) = 0. In addition, S(tx) = tSx = 0 for every t ∈ R.

As an example we remark that the null space of the S matrix associated with Figure 2.2 is

N (S) =















t









1
0
1
0









: t ∈ R















,

a line in R
4.

The null space answers the question of uniqueness of solutions to Sx = f . For, if Sx = f and
Sy = f then S(x− y) = Sx− Sy = f − f = 0 and so (x− y) ∈ N (S). Hence, a solution to Sx = f
will be unique if, and only if, N (S) = {0}.

Recalling (3.1) we note that if x ∈ N (S) and x 6= 0, say, e.g., x1 6= 0, then Sx = 0 takes the
form

s1 = −
n
∑

j=2

xj

x1

sj.

That is, the first column of S may be expressed as a linear combination of the remaining columns
of S. Hence, one may determine the (in)dependence of a set of vectors by examining the null space
of the matrix whose columns are the vectors in question.

Definition 3.6. The vectors {s1, s2, . . . , sn} are said to be linearly independent if N (S) = {0}
where S = [s1 s2 · · · sn].

As lines and planes are described as the set of linear combinations of one or two generators, so
too subspaces are most conveniently described as the span of a few basis vectors.

Definition 3.7. A collection of vectors {s1, s2, . . . , sn} in a subspace M is a basis for M when the
matrix S = [s1 s2 · · · sn] satisfies
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(1) M = R(S), and
(2) N (S) = {0}.

The first stipulates that the columns of S span M while the second requires the columns of S to
be linearly independent.

3.3. A Blend of Theory and Example

Let us compute bases for the null and column spaces of the adjacency matrix associated with
the ladder below

1 2

3 4

1 2 3

4 5

6 7 8

Figure 3.1. An unstable ladder?

The ladder has 8 bars and 4 nodes, so 8 degrees of freedom. Continuing to denote the horizontal
and vertical displacements of node j by x2j−1 and x2j we arrive at the A matrix

A =























1 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 1 0 0
0 0 0 −1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0























To determine a basis for R(A) we must find a way to discard its dependent columns. A moment’s
reflection reveals that columns 2 and 6 are colinear, as are columns 4 and 8. We seek, of course,
a more systematic means of uncovering these, and perhaps other less obvious, dependencies. Such
dependencies are more easily discerned from the row reduced form

Ared = rref(A) =























1 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0























Recall that rref performs the elementary row operations necessary to eliminate all nonzeros below
the diagonal. For those who can’t stand to miss any of the action I recommend rrefmovie.

Each nonzero row of Ared is called a pivot row. The first nonzero in each row of Ared is called
a pivot. Each column that contains a pivot is called a pivot column. On account of the staircase
nature of Ared we find that there are as many pivot columns as there are pivot rows. In our example
there are six of each and, again on account of the staircase nature, the pivot columns are the linearly
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independent columns of Ared. One now asks how this might help us distinguish the independent
columns of A. For, although the rows of Ared are linear combinations of the rows of A no such thing
is true with respect to the columns. The answer is: pay attention only to the indices of the pivot
columns. In our example, columns {1, 2, 3, 4, 5, 7} are the pivot columns. In general

Proposition 3.1. Suppose A is m-by-n. If columns {cj : j = 1, . . . , r} are the pivot columns of
Ared then columns {cj : j = 1, . . . , r} of A constitute a basis for R(A).

Proof: Note that the pivot columns of Ared are, by construction, linearly independent. Suppose,
however, that columns {cj : j = 1, . . . , r} of A are linearly dependent. In this case there exists a
nonzero x ∈ R

n for which Ax = 0 and

xk = 0, k 6∈ {cj : j = 1, . . . , r}. (3.2)

Now Ax = 0 necessarily implies that Aredx = 0, contrary to the fact that columns {cj : j = 1, . . . , r}
are the pivot columns of Ared. (The implication Ax = 0 ⇒ Aredx = 0 follows from the fact that we
may read row reduction as a sequence of linear transformations of A. If we denote the product of
these transformations by T then TA = Ared and you see why Ax = 0 ⇒ Aredx = 0. The reverse
implication follows from the fact that each of our row operations is reversible, or, in the language
of the land, invertible.)

We now show that the span of columns {cj : j = 1, . . . , r} of A indeed coincides with R(A).
This is obvious if r = n, i.e., if all of the columns are linearly independent. If r < n there exists a
q 6∈ {cj : j = 1, . . . , r}. Looking back at Ared we note that its qth column is a linear combination
of the pivot columns with indices not exceeding q. Hence, there exists an x satisfying (3.2) and
Aredx = 0 and xq = 1. This x then necessarily satisfies Ax = 0. This states that the qth column of
A is a linear combination of columns {cj : j = 1, . . . , r} of A. End of Proof.

Let us now exhibit a basis for N (A). We exploit the already mentioned fact that N (A) =
N (Ared). Regarding the latter, we partition the elements of x into so called pivot variables,

{xcj
: j = 1, . . . , r}

and free variables
{xk : k 6∈ {cj : j = 1, . . . , r}}.

There are evidently n − r free variables. For convenience, let us denote these in the future by

{xcj
: j = r + 1, . . . , n}.

One solves Aredx = 0 by expressing each of the pivot variables in terms of the nonpivot, or free,
variables. In the example above, x1, x2, x3, x4, x5 and x7 are pivot while x6 and x8 are free. Solving
for the pivot in terms of the free we find

x7 = 0, x5 = 0, x4 = x8, x3 = 0, x2 = x6, x1 = 0,

or, written as a vector,

x = x6























0
1
0
0
0
1
0
0























+ x8























0
0
0
1
0
0
0
1























, (3.3)
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where x6 and x8 are free. As x6 and x8 range over all real numbers the x above traces out a plane
in R

8. This plane is precisely the null space of A and (3.3) describes a generic element as the
linear combination of two basis vectors. Compare this to what Matlab returns when faced with
null(A,’r’). Abstracting these calculations we arrive at

Proposition 3.2. Suppose that A is m-by-n with pivot indices {cj : j = 1, . . . , r} and free indices
{cj : j = r + 1, . . . , n}. A basis for N (A) may be constructed of n − r vectors {z1, z2, . . . , zn−r}
where zk, and only zk, possesses a nonzero in its cr+k component.

With respect to our ladder the free indices are c7 = 6 and c8 = 8. You still may be wondering what
R(A) and N (A) tell us about the ladder that did not already know. Regarding R(A) the answer
will come in the next chapter. The null space calculation however has revealed two independent
motions against which the ladder does no work! Do you see that the two vectors in (3.3) encode
rigid vertical motions of bars 4 and 5 respectively? As each of these lies in the null space of A
the associated elongation is zero. Can you square this with the ladder as pictured in figure 3.1? I
hope not, for vertical motion of bar 4 must ‘stretch’ bars 1,2,6 and 7. How does one resolve this
(apparent) contradiction?

We close a few more examples. We compute bases for the column and null spaces of

A =

(

1 1 0
1 0 1

)

Subtracting the first row from the second lands us at

Ared =

(

1 1 0
0 −1 1

)

hence both rows are pivot rows and columns 1 and 2 are pivot columns. Proposition 3.1 then
informs us that the first two columns of A, namely

{(

1
1

)

,

(

1
0

)}

(3.4)

comprise a basis for R(A). In this case, R(A) = R
2.

Regarding N (A) we express each row of Aredx = 0 as the respective pivot variable in terms of
the free. More precisely, x1 and x2 are pivot variables and x3 is free and Aredx = 0 reads

x1 + x2 = 0

−x2 + x3 = 0

Working from the bottom up we find

x2 = x3 and x1 = −x3

and hence every vector in the null space is of the form

x = x3





−1
1
1



 .

In other words

N (A) =







x3





−1
1
1



 : x3 ∈ R






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and




−1
1
1





constitutes a basis for N (A).
Let us stretch this example a bit and see what happens. In particular, we append a new column

and arrive at

B =

(

1 1 0 2
1 0 1 3

)

.

The column space of A was already the ‘whole’ space and so adding a column changes, with respect
to R(A), nothing. That is, R(B) = R(A) and (3.4) is a basis for R(B).

Regarding N (B) we again subtract the first row from the second,

Bred =

(

1 1 0 2
0 −1 1 1

)

and identify x1 and x2 as pivot variables and x3 and x4 as free. We see that Bredx = 0 means

x1 + x2 + 2x4 = 0

−x2 + x3 + x4 = 0

or, equivalently,
x2 = x3 + x4 and x1 = −x3 − 3x4

and so

N (B) =















x3









−1
1
1
0









+ x4









−3
1
0
1









: x3 ∈ R, x4 ∈ R















and






















−1
1
1
0









,









−3
1
0
1























constitutes a basis for N (B).
The number of pivots, r, of an m-by-n matrix A appears to be an important indicator. We shall

refer to it from now on as the rank of A. Our canonical bases for R(A) and N (A) possess r and
n− r elements respectively. The number of elements in a basis for a subspace is typically called the
dimension of the subspace.

3.4. Exercises

1. Which of the following subsets of R3 are actually subspaces? Check both conditions in defini-
tion 2 and show your work.

(a) All vectors whose first component x1 = 0.

(b) All vectors whose first component x1 = 1.
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(c) All vectors whose first two components obey x1x2 = 0.

(d) The vector (0, 0, 0).

(e) All linear combinations of the pair (1, 1, 0) and (2, 0, 1).

(f) All vectors for which x3 − x2 + 3x1 = 0.

2. I encourage you to use rref and null for the following. (i) Add a diagonal crossbar between
nodes 3 and 2 in Figure 3.1 and compute bases for the column and null spaces of the new
adjacency matrix. As this crossbar fails to stabilize the ladder we shall add one more bar. (ii)
To the 9 bar ladder of (i) add a diagonal cross bar between nodes 1 and the left end of bar 6.
Compute bases for the column and null spaces of the new adjacency matrix.

3. We wish to show that N (A) = N (AT A) regardless of A.

(i) We first take a concrete example. Report the findings of null when applied to A and AT A
for the A matrix associated with Figure 3.1.

(ii) For arbitrary A show that N (A) ⊂ N (AT A), i.e., that if Ax = 0 then AT Ax = 0.

(iii) For arbitrary A show that N (AT A) ⊂ N (A), i.e., that if AT Ax = 0 then Ax = 0. (Hint:
if AT Ax = 0 then xT AT Ax = 0 and says something about ‖Ax‖, recall that ‖y‖2 ≡ yT y.)

4. Suppose that A is m-by-n and that N (A) = R
n. Argue that A must be the zero matrix.

5. Suppose that both {s1, . . . , sn} and {t1, . . . , tm} are both bases for the subspace M . Prove
that m = n and hence that our notion of dimension makes sense.
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4. The Fundamental Theorem of Linear Algebra

The previous chapter, in a sense, only told half of the story. In particular, an m-by-n matrix A
maps R

n into R
m and its null space lies in R

n and its column space lies in R
m. Having seen examples

where R(A) was a proper subspace of R
m one naturally asks about what is left out. Similarly, one

wonders about the subspace of R
n that is complimentary to N (A). These questions are answered

by the column space and null space of AT .

4.1. The Row Space

As the columns of AT are simply the rows of A we call R(AT ) the row space of A. More precisely

Definition 4.1. The row space of the m-by-n matrix A is simply the span of its rows, i.e.,

R(AT ) ≡ {AT y : y ∈ R
m}.

This is a subspace of R
n.

Regarding a basis for R(AT ) we recall that the rows of Ared ≡rref(A) are merely linear
combinations of the rows of A and hence

R(AT ) = R((Ared)
T ).

Recalling that pivot rows of Ared are linearly independent and that all remaining rows of Ared are
zero leads us to

Proposition 4.1. Suppose A is m-by-n. The pivot rows of Ared constitute a basis for R(AT ).

As there are r pivot rows of Ared we find that the dimension of R(AT ) is r. Recalling Proposition
2.2 we find the dimensions of N (A) and R(AT ) to be complementary, i.e., they sum to the dimension
of the ambient space, n. Much more in fact is true. Let us compute the dot product of an arbitrary
element x ∈ R(AT ) and z ∈ N (A). As x = AT y for some y we find

xT z = (AT y)T z = yT Az = 0.

This states that every vector in R(AT ) is perpendicular to every vector in N (A).

Let us test this observation on the A matrix stemming from the unstable ladder of §3.4. Recall
that

z1 =























0
1
0
0
0
1
0
0























and z2 =























0
0
0
1
0
0
0
1






















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constitute a basis for N (A) while the pivot rows of Ared are

x1 =























1
0
0
0
0
0
0
0























, x2 =























0
1
0
0
0
−1
0
0























, x3 =























0
0
1
0
0
0
0
0























,

and

x4 =























0
0
0
1
0
0
0
−1























, x5 =























0
0
0
0
1
0
0
0























, x6 =























0
0
0
0
0
0
1
0























.

Indeed, each zj is perpendicular to each xk. As a result,

{z1, z2, x1, x2, x3, x4, x5, x6}

comprises a set of 8 linearly independent vectors in R
8. These vectors then necessarily span R

8.
For, if they did not, there would exist nine linearly independent vectors in R

8! In general, we find

Fundamental Theorem of Linear Algebra (Preliminary). Suppose A is m-by-n and has
rank r. The row space, R(AT ), and the null space, N (A), are respectively r and n− r dimensional
subspaces of R

n. Each x ∈ R
n may be uniquely expressed in the form

x = xR + xN , where xR ∈ R(AT ) and xN ∈ N (A). (4.1)

Recalling Definition 4 from Chapter 3 we may interpret (4.1) as

R
n = R(AT ) ⊕N (A).

As the constituent subspaces have been shown to be orthogonal we speak of R
n as the orthogonal

direct sum of R(AT ) and N (A).

4.2. The Left Null Space

The Fundamental Theorem will more than likely say that R
m = R(A) ⊕ N (AT ). In fact, this

is already in the preliminary version. To coax it out we realize that there was nothing special
about the choice of letters used. Hence, if B is p-by-q then the preliminary version states that
R

q = R(BT ) ⊕ N (B). As a result, letting B = AT , p = n and q = m, we find indeed R
m =

R(A)⊕N (AT ). That is, the left null space, N (AT ), is the orthogonal complement of the column
space, R(A). The word ‘left’ stems from the fact that AT y = 0 is equivalent to yT A = 0, where y
‘acts’ on A from the left.
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In order to compute a basis for N (AT ) we merely mimic the construction of the previous section.
Namely, we compute (AT )red and then solve for the pivot variables in terms of the free ones.

With respect to the A matrix associated with the unstable ladder of §3.4, we find

AT =























1 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 −1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 1 0 0 0























and

(AT )red = rref(AT ) =























1 0 −1 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0























.

We recognize the rank of AT to be 6, with pivot and free indices

{1, 2, 4, 5, 6, 7} and {3, 8}

respectively. Solving (AT )redx = 0 for the pivot variables in terms of the free we find

x7 = x8, x6 = x8, x5 = 0, x4 = 0, x2 = x3, x1 = x3,

or in vector form,

x = x3























1
1
1
0
0
0
0
0























+ x8























0
0
0
0
0
1
1
1























.

These two vectors constitute a basis for N (AT ) and indeed they are both orthogonal to every column
of A. We have now exhibited means by which one may assemble bases for the four fundamental
subspaces. In the process we have established

Fundamental Theorem of Linear Algebra. Suppose A is m-by-n and has rank r. One has the
orthogonal direct sums

R
n = R(AT ) ⊕N (A) and R

m = R(A) ⊕N (AT )
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where the dimensions are
dimR(A) = dimR(AT ) = r

dimN (A) = n − r

dimN (AT ) = m − r.

We shall see many applications of this fundamental theorem. Perhaps one of the most common
is the use of the orthogonality of R(A) and N (AT ) in the characterization of those b for which an
x exists for which Ax = b. There are many instances for which R(A) is quite large and unwieldy
while N (AT ) is small and therefore simpler to grasp. As an example, consider the (n − 1)-by-n
‘first order difference’ matrix with −1 on the diagonal and 1 on the super diagonal,

A =













−1 1 0 0 ·
0 −1 1 0 ·
· · · · ·
· · · · ·
· · 0 −1 1













It is not difficult to see that N (AT ) = {0} and so, R(A), being its orthogonal complement, is the
entire space, R

n−1. That is, for each b ∈ R
n−1 there exists an x ∈ R

n such that Ax = b. The
uniqueness of such an x is decided by N (A). We recognize this latter space as the span of the
vector of ones. But you already knew that adding a constant to a function does not change its
derivative.

4.3. Exercises

1. True or false: support your answer.

(i) If A is square then R(A) = R(AT ).

(ii) If A and B have the same four fundamental subspaces then A=B.

2. Construct bases (by hand) for the four subspaces associated with

A =

(

1 1 −1
1 0 −1

)

.

Also provide a careful sketch of these subspaces.

3. Show that if AB = 0 then R(B) ⊂ N (A).

4. Why is there no matrix whose row space and null space both contain the vector [1 1 1]T ?

5. Write down a matrix with the required property or explain why no such matrix exists.

(a) Column space contains [1 0 0]T and [0 0 1]T while row space contains [1 1]T and [1 2]T .

(b) Column space has basis [1 1 1]T while null space has basis [1 2 1]T .

(c) Column space is R
4 while row space is R

3.

6. One often constructs matrices via outer products, e.g., given a n-by-1 vector v let us consider
A = vvT .

(a) Show that v is a basis for R(A),

(b) Show that N (A) coincides with all vectors perpendicular to v.

(c) What is the rank of A?

30



5. Least Squares

We learned in the previous chapter that Ax = b need not possess a solution when the number of
rows of A exceeds its rank, i.e., r < m. As this situation arises quite often in practice, typically in
the guise of ‘more equations than unknowns,’ we establish a rationale for the absurdity Ax = b.

5.1. The Normal Equations

The goal is to choose x such that Ax is as close as possible to b. Measuring closeness in terms
of the sum of the squares of the components we arrive at the ‘least squares’ problem of minimizing

‖Ax − b‖2 ≡ (Ax − b)T (Ax − b) (5.1)

over all x ∈ R
n. The path to the solution is illuminated by the Fundamental Theorem. More

precisely, we write

b = bR + bN where bR ∈ R(A) and bN ∈ N (AT ).

On noting that (i) (Ax − bR) ∈ R(A) for every x ∈ R
n and (ii) R(A) ⊥ N (AT ) we arrive at the

Pythagorean Theorem

‖Ax − b‖2 = ‖Ax − bR − bN‖2 = ‖Ax − bR‖2 + ‖bN‖2, (5.2)

It is now clear from (5.2) that the best x is the one that satisfies

Ax = bR. (5.3)

As bR ∈ R(A) this equation indeed possesses a solution. We have yet however to specify how one
computes bR given b. Although an explicit expression for bR, the so called orthogonal projection
of b onto R(A), in terms of A and b is within our grasp we shall, strictly speaking, not require it.
To see this, let us note that if x satisfies (5.3) then

Ax − b = Ax − bR − bN = −bN . (5.4)

As bN is no more easily computed than bR you may claim that we are just going in circles. The
‘practical’ information in (5.4) however is that (Ax − b) ∈ N (AT ), i.e., AT (Ax − b) = 0, i.e.,

AT Ax = AT b. (5.5)

As AT b ∈ R(AT ) regardless of b this system, often referred to as the normal equations, indeed
has a solution. This solution is unique so long as the columns of AT A are linearly independent,
i.e., so long as N (AT A) = {0}. Recalling Chapter 2, Exercise 2, we note that this is equivalent to
N (A) = {0}. We summarize our findings in

Proposition 5.1. The set of x ∈ R
n for which the misfit ‖Ax − b‖2 is smallest is composed of

those x for which
AT Ax = AT b.

There is always at least one such x.
There is exactly one such x iff N (A) = {0}.

As a concrete example, suppose with reference to the figure below that

A =





1 1
0 1
0 0



 and b =





1
1
1



 .
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Figure 5.1. The decomposition of b.

As b 6= R(A) there is no x such that Ax = b. Indeed,

‖Ax − b‖2 = (x1 + x2 − 1)2 + (x2 − 1)2 + 1 ≥ 1,

with the minimum uniquely attained at

x =

(

0
1

)

,

in agreement with the unique solution of (5.5), for

AT A =

(

1 1
1 2

)

and AT b =

(

1
2

)

.

We now recognize, a posteriori, that

bR = Ax =





1
1
0





is the orthogonal projection of b onto the column space of A.

5.2. Applying Least Squares to the Biaxial Test Problem

We shall formulate the identification of the 20 fiber stiffnesses in Figure 2.3, as a least squares
problem. We envision loading, f , the 9 nodes and measuring the associated 18 displacements, x.
From knowledge of x and f we wish to infer the components of K = diag(k) where k is the vector
of unknown fiber stiffnesses. The first step is to recognize that

AT KAx = f

may be written as
Bk = f where B = ATdiag(Ax). (5.6)
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Though conceptually simple this is not of great use in practice, for B is 18-by-20 and hence (5.6)
possesses many solutions. The way out is to compute k as the result of more than one experiment.
We shall see that, for our small sample, 2 experiments will suffice.

To be precise, we suppose that x(1) is the displacement produced by loading f (1) while x(2) is the
displacement produced by loading f (2). We then piggyback the associated pieces in

B =

(

ATdiag(Ax(1))
ATdiag(Ax(2))

)

and f =

(

f (1)

f (2)

)

.

This B is 36-by-20 and so the system Bk = f is overdetermined and hence ripe for least squares.
We proceed then to assemble B and f . We suppose f (1) and f (2) to correspond to horizontal

and vertical stretching

f (1) = [−1 0 0 0 1 0 −1 0 0 0 1 0 −1 0 0 0 1 0]T

f (2) = [0 1 0 1 0 1 0 0 0 0 0 0 0 −1 0 −1 0 −1]T

respectively. For the purpose of our example we suppose that each kj = 1 except k8 = 5. We
assemble AT KA as in Chapter 2 and solve

AT KAx(j) = f (j)

with the help of the pseudoinverse. In order to impart some ‘reality’ to this problem we taint
each x(j) with 10 percent noise prior to constructing B. Please see the attached M–file for details.
Regarding

BT Bk = BT f

we note that Matlab solves this system when presented with k=B\f when B is rectangular. We
have plotted the results of this procedure in the figure below
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Figure 5.2. Results of a successful biaxial test.

The stiff fiber is readily identified.
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5.3. Projections

From an algebraic point of view (5.5) is an elegant reformulation of the least squares problem.
Though easy to remember it unfortunately obscures the geometric content, suggested by the word
‘projection,’ of (5.4). As projections arise frequently in many applications we pause here to develop
them more carefully.

With respect to the normal equations we note that if N (A) = {0} then

x = (AT A)−1AT b

and so the orthogonal projection of b onto R(A) is

bR = Ax = A(AT A)−1AT b. (5.7)

Defining
P = A(AT A)−1AT , (5.8)

(5.7) takes the form bR = Pb. Commensurate with our notion of what a ‘projection’ should be we
expect that P map vectors not in R(A) onto R(A) while leaving vectors already in R(A) unscathed.
More succinctly, we expect that PbR = bR, i.e., PPb = Pb. As the latter should hold for all b ∈ R

m

we expect that
P 2 = P. (5.9)

With respect to (5.8) we find that indeed

P 2 = A(AT A)−1AT A(AT A)−1AT = A(AT A)−1AT = P.

We also note that the P in (5.8) is symmetric. We dignify these properties through

Definition 5.1. A matrix P that satisfies P 2 = P is called a projection. A symmetric projection
is called an orthogonal projection.

We have taken some pains to motivate the use of the word ‘projection.’ You may be wondering
however what symmetry has to do with orthogonality. We explain this in terms of the tautology

b = Pb + (I − P )b.

Now, if P is a projection then so too is (I − P ). Moreover, if P is symmetric then the dot product
of b’s two constituents is

(Pb)T (I − P )b = bT P T (I − P )b = bT (P − P 2)b = bT 0b = 0,

i.e., Pb is orthogonal to (I − P )b.
As examples of nonorthogonal projections we offer

(

1 0
1 0

)

and





1 0 0
−1/2 0 0
−1/4 −1/2 1





Finally, let us note that the central formula, P = A(AT A)−1AT , is even a bit more general than
advertised. It has been billed as the orthogonal projection onto the column space of A. The need
often arises however for the orthogonal projection onto some arbitrary subspace M . The key to
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using the old P is simply to realize that every subspace is the column space of some matrix. More
precisely, if

{x1, . . . , xm}
is a basis for M then clearly if these xj are placed into the columns of a matrix called A then
R(A) = M . For example, if M is the line through [1 1]T then

P =

(

1
1

)

1

2

(

1 1
)

=
1

2

(

1 1
1 1

)

is orthogonal projection onto M .

5.4. Exercises

1. A steal beam was stretched to lengths ℓ = 6, 7, and 8 feet under applied forces of f = 1, 2,
and 4 tons. Assuming Hooke’s law ℓ − L = cf , find its compliance, c, and original length, L,
by least squares.

2. With regard to the example of §5.3 note that, due to the the random generation of the noise
that taints the displacements, one gets a different ‘answer’ every time the code is invoked.

(i) Write a loop that invokes the code a statistically significant number of times and submit
bar plots of the average fiber stiffness and its standard deviation for each fiber, along with the
associated M–file.

(ii) Experiment with various noise levels with the goal of determining the level above which it
becomes difficult to discern the stiff fiber. Carefully explain your findings.

3. Find the matrix that projects R
3 onto the line spanned by [1 0 1]T .

4. Find the matrix that projects R
3 onto the plane spanned by [1 0 1]T and [1 1 − 1]T .

5. If P is the projection of R
m onto a k–dimensional subspace M , what is the rank of P and what

is R(P )?
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6. Matrix Methods for Dynamical Systems

Up to this point we have largely been concerned with (i) deriving linear systems of algebraic equa-
tions (from considerations of static equilibrium) and (ii) the solution of such systems via Gaussian
elimination.

In this section we hope to begin to persuade the reader that our tools extend in a natural fashion
to the class of dynamic processes. More precisely, we shall argue that (i) Matrix Algebra plays a
central role in the derivation of mathematical models of dynamical systems and that, with the aid
of the Laplace transform in an analytical setting or the Backward Euler method in the numerical
setting, (ii) Gaussian elimination indeed produces the solution.

6.1. Neurons and the Dynamic Strang Quartet

A nerve fiber’s natural electrical stimulus is not direct current but rather a short burst of current,
the so–called nervous impulse. In such a dynamic environment the cell’s membrane behaves not
only like a leaky conductor but also like a charge separator, or capacitor.
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Figure 6.1. An RC model of a neuron.

The typical value of a cell’s membrane capacitance is

c = 1 (µF/cm2)

where µF denotes micro–Farad. The capacitance of a single compartment is therefore

Cm = 2πa(ℓ/N)c

and runs parallel to each Rm, see figure 6.1. We ask now how the static Strang Quartet of chapter
one should be augmented. Regarding (S1’) we proceed as before. The voltage drops are

e1 = x1, e2 = x1 − Em, e3 = x1 − x2, e4 = x2,

e5 = x2 − Em, e6 = x2 − x3, e7 = x3, e8 = x3 − Em,

and so

e = b − Ax where b = −Em























0
1
0
0
1
0
0
1























and A =























−1 0 0
−1 0 0
−1 1 0
0 −1 0
0 −1 0
0 −1 1
0 0 −1
0 0 −1






















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In (S2) we must now augment Ohm’s law with voltage–current law obeyed by a capacitor, namely
– the current through a capacitor is proportional to the time rate of change of the potential across
it. This yields, (denoting d/dt by ′),

y1 = Cme′1, y2 = e2/Rm, y3 = e3/Ri, y4 = Cme′4,

y5 = e5/Rm, y6 = e6/Ri, y7 = Cme′7, y8 = e8/Rm,

or, in matrix terms,
y = Ge + Ce′

where
G = diag(0 Gm Gi 0 Gm Gi 0 Gm)

C = diag(Cm 0 0 Cm 0 0 Cm 0)

are the conductance and capacitance matrices.
As Kirchhoff’s Current law is insensitive to the type of device occupying an edge, step (S3)

proceeds exactly as above.

i0 − y1 − y2 − y3 = 0 y3 − y4 − y5 − y6 = 0 y6 − y7 − y8 = 0,

or, in matrix terms,
AT y = −f where f = [i0 0 0]T .

Step (S4) remains one of assembling,

AT y = −f ⇒ AT (Ge + Ce′) = −f ⇒ AT (G(b − Ax) + C(b′ − Ax′)) = −f,

becomes
AT CAx′ + AT GAx = AT Gb + f + AT Cb′. (6.1)

This is the general form of the potential equations for an RC circuit. It presumes of the user
knowledge of the initial value of each of the potentials,

x(0) = X. (6.2)

Regarding the circuit of figure 6.1 we find

AT CA =





Cm 0 0
0 Cm 0
0 0 Cm



 AT GA =





Gi + Gm −Gi 0
−Gi 2Gi + Gm −Gi

0 −Gi Gi + Gm





AT Gb = Em





Gm

Gm

Gm



 and AT Cb′ =





0
0
0



 .

and an initial (rest) potential of
x(0) = Em[1 1 1]T .

We shall now outline two modes of attack on such problems. The Laplace Transform is an analytical
tool that produces exact, closed–form, solutions for small tractable systems and therefore offers
insight into how larger systems ‘should’ behave. The Backward–Euler method is a technique for
solving a discretized (and therefore approximate) version of (6.1). It is highly flexible, easy to code,
and works on problems of great size. Both the Backward–Euler and Laplace Transform methods
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require, at their core, the algebraic solution of a linear system of equations. In deriving these
methods we shall find it more convenient to proceed from the generic system

x′ = Bx + g. (6.3)

With respect to our fiber problem

B = −(AT CA)−1AT GA

=
1

Cm





−(Gi + Gm) Gi 0
Gi −(2Gi + Gm) Gi

0 Gi −(Gi + Gm)





(6.4)

and

g = (AT CA)−1(AT Gb + f) =
1

Cm





EmGm + i0
EmGm

EmGm



 .

6.2. The Laplace Transform

The Laplace Transform is typically credited with taking dynamical problems into static problems.
Recall that the Laplace Transform of the function h is

(Lh)(s) ≡
∫ ∞

0

e−sth(t) dt.

where s is a complex variable. We shall soon take a 2 chapter dive into the theory of complex
variables and functions. But for now let us proceed calmly and confidently and follow the lead of
Matlab . For example

>> syms t
>> laplace(exp(t))
ans = 1/(s-1)
>> laplace(t*exp(-t))
ans = 1/(s+1)2

The Laplace Transform of a matrix of functions is simply the matrix of Laplace transforms of
the individual elements. For example

L
(

et

te−t

)

=

(

1/(s − 1)
1/(s + 1)2

)

.

Now, in preparing to apply the Laplace transform to (6.3) we write it as

Lx′ = L(Bx + g) (6.5)

and so must determine how L acts on derivatives and sums. With respect to the latter it follows
directly from the definition that

L(Bx + g) = LBx + Lg = BLx + Lg. (6.6)
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Regarding its effect on the derivative we find, on integrating by parts, that

Lx′ =

∫ ∞

0

e−stx′(t) dt = x(t)e−st

∣

∣

∣

∣

∞

0

+ s

∫ ∞

0

e−stx(t) dt.

Supposing that x and s are such that x(t)e−st → 0 as t → ∞ we arrive at

Lx′ = sLx − x(0). (6.7)

Now, upon substituting (6.6) and (6.7) into (6.5) we find

sLx − x(0) = BLx + Lg,

which is easily recognized to be a linear system for Lx, namely

(sI − B)Lx = Lg + x(0). (6.8)

The only thing that distinguishes this system from those encountered since chapter 1 is the presence
of the complex variable s. This complicates the mechanical steps of Gaussian Elimination or the
Gauss–Jordan Method but the methods indeed apply without change. Taking up the latter method,
we write

Lx = (sI − B)−1(Lg + x(0)).

The matrix (sI − B)−1 is typically called the resolvent of B at s. We turn to Matlab for its
symbolic calculation. For example,

>> syms s
>> B = [2 -1;-1 2]
>> R = inv(s*eye(2)-B)
R =
[ (s-2)/(s*s-4*s+3), -1/(s*s-4*s+3)]
[ -1/(s*s-4*s+3), (s-2)/(s*s-4*s+3)]

We note that (sI − B)−1 is well defined except at the roots of the quadratic, s2 − 4s + 3. This
quadratic is the determinant of (sI−B) and is often referred to as the characteristic polynomial
of B. The roots of the characteristic polynomial are called the eigenvalues of B. We will develop
each of these new mathematical objects over the coming chapters. We mention them here only to
point out that they are all latent in the resolvent.

As a second example let us take the B matrix of (6.4) with the parameter choices specified in
fib3.m, namely

B =
1

10





−5 3 0
3 −8 3
0 3 −5



 . (6.9)

The associated resolvent is

(sI − B)−1 =
1

χB(s)





s2 + 1.3s + 0.31 0.3s + 0.15 0.09
0.3s + 0.15 s2 + s + 0.25 0.3s + 0.15

0.09 0.3s + 0.15 s2 + 1.3s + 0.31





where
χB(s) = s3 + 1.8s2 + 0.87s + 0.11 (6.10)
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is the characteristic polynomial of B. Assuming a current stimulus of the form i0(t) = t exp(−t/4)/1000,
and Em = 0 brings

(Lg)(s) =





1.965/(s + 1/4)2

0
0





and so (6.10) persists in

Lx = (sI − B)−1Lg

=
1.965

(s + 1/4)2(s3 + 1.8s2 + 0.87s + 0.11)





s2 + 1.3s + 0.31
0.3s + 0.15

0.09





Now comes the rub. A simple linear solve (or inversion) has left us with the Laplace transform of
x. The accursed No Free Lunch Theorem informs us that we shall have to do some work in order
to recover x from Lx.

In coming sections we shall establish that the inverse Laplace transform of a function h is

(L−1h)(t) =
1

2πi

∫

C

h(s) exp(st) ds, (6.11)

where s runs along C, a closed curve in the complex plane that encircles all of the singularities of
h. We don’t suppose the reader to have yet encountered integration in the complex plane and so
please view (6.11) as a preview pf coming attractions.

With the inverse Laplace transform one may express the solution of (6.3) as

x(t) = L−1(sI − B)−1(Lg + x(0)). (6.12)

As an example, let us take the first component of Lx, namely

Lx1(s) =
1.965(s2 + 1.3s + 0.31)

(s + 1/4)2(s3 + 1.8s2 + 0.87s + 0.11))
. (6.13)

The singularities, or poles, are the points s at which Lx1(s) blows up. These are clearly the roots
of its denominator, namely

−11/10, −1/2, −1/5 and − 1/4, (6.14)

and hence the curve, C, in (6.11), must encircle these. We turn to Matlab however to actually
evaluate (6.11). Referring to fib3.m for details we note that the ilaplace command produces

x1(t) = 1.965

(

8e−t/2 − (1/17)e−t/4(40912/17 + 76t)

+ (400/3)e−t/5 + (200/867)e−11t/10

) (6.15)
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Figure 6.2. The 3 potentials associated with figure 6.1.

The other potentials, see the figure above, possess similar expressions. Please note that each of the
poles of Lx1 appear as exponents in x1 and that the coefficients of the exponentials are polynomials
whose degrees are determined by the orders of the respective poles. fib3.m

6.3. The Backward–Euler Method

Where in the previous section we tackled the derivative in (6.3) via an integral transform we
pursue in this section a much simpler strategy, namely, replace the derivative with a finite difference
quotient. That is, one chooses a small dt and ‘replaces’ (6.3) with

x̃(t) − x̃(t − dt)

dt
= Bx̃(t) + g(t). (6.16)

The utility of (6.16) is that it gives a means of solving for x̃ at the present time, t, from knowledge
of x̃ in the immediate past, t − dt. For example, as x̃(0) = x(0) is supposed known we write (6.16)
as

(I/dt − B)x̃(dt) = x(0)/dt + g(dt).

Solving this for x̃(dt) we return to (6.16) and find

(I/dt − B)x̃(2dt) = x̃(dt)/dt + g(2dt)

and solve for x̃(2dt). The general step from past to present,

x̃(jdt) = (I/dt − B)−1(x̃((j − 1)dt)/dt + g(jdt)), (6.17)

is repeated until some desired final time, Tdt, is reached. This equation has been implemented in
fib3.m with dt = 1 and B and g as above. The resulting x̃ (run fib3 yourself!) is indistinguishable
from figure 6.2.

Comparing the two representations, (6.12) and (6.17), we see that they both produce the solution
to the general linear system of ordinary equations, (6.3), by simply inverting a shifted copy of B.
The former representation is hard but exact while the latter is easy but approximate. Of course we
should expect the approximate solution, x̃, to approach the exact solution, x, as the time step, dt,
approaches zero. To see this let us return to (6.17) and assume, for now, that g ≡ 0. In this case,
one can reverse the above steps and arrive at the representation

x̃(jdt) = ((I − dtB)−1)jx(0). (6.18)
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Now, for a fixed time t we suppose that dt = t/j and ask whether

x(t) = lim
j→∞

((I − (t/j)B)−1)jx(0).

This limit, at least when B is one-by-one, yields the exponential

x(t) = exp(Bt)x(0),

clearly the correct solution to (6.3). A careful explication of the matrix exponential and its
relationship to (6.12) will have to wait until we have mastered the inverse Laplace transform.

6.4. Dynamics of Mechanical Systems

Regarding the fiber nets of Chapter 2, we may move from the equilibrium equations, for the
displacement x due to a constant force, f ,

Sx = f, where S = AT KA,

to the dynamical equations for the displacement, x(t), due to a time varying force, f(t), and or
nonequilibrium initial conditions, by simply appending the Newtonian inertial terms, i.e.,

Mx′′(t) + Sx(t) = f(t), x(0) = x0, x′(0) = v0, (6.19)

where M is the diagonal matrix of node masses, x0 denotes their initial displacement and v0 denotes
their initial velocity.

We transform this system of second order differential equations to an equivalent first order system
by introducing

u1 ≡ x and u2 ≡ u′
1

and then noting that (6.19) takes the form

u′
2 = x′′ = −M−1Su1 + M−1f(t).

As such, we find that u = (u1 u2)
T obeys the familiar

u′ = Bu + g, u(0) = u0 (6.20)

where

B =

(

0 I
−M−1S 0

)

, g =

(

0
M−1f

)

, u0 =

(

x0

v0

)

. (6.21)

Let us consider the concrete example of the chain of three masses in Fig. 2.1. If each node has mass
m and each spring has stiffness k then

M−1S =
k

m





2 −1 0
−1 2 −1
0 −1 2



 . (6.22)

The associated characteristic polynomial of B is

χB(s) = s6 + 6cs4 + 10c2s2 + 4c3, where c ≡ k/m, (6.23)
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is a cubic in s2 with simple roots at −2c and −2c±
√

2c. And so the eigenvalues of B are the three
purely imaginary numbers

λ1 = i

√

2c −
√

2c, λ2 = i
√

2c, λ3 = i

√

2c +
√

2c (6.24)

and their complex conjugates, λ4 = −λ1, λ5 = −λ2 and λ6 = −λ3. Next, if the exogenous force, f ,
is 0, and the initial disturbance is simply x1(0) = 1 then

Lu1(s) =
1

χB(s)





3c2s + 4cs3 + s5

cs(s2 + 2c)
c2s



 . (6.25)

On computing the inverse Laplace Transform we (will) find

x1(t) =
6
∑

j=1

exp(λjt)(3c
2λj + 4cλ3

j + λ5
j) exp(λjt)

(s − λj)

χB(s)

∣

∣

∣

∣

s=λj

, (6.26)

that is, x1 is a weighted sum of exponentials. As each of the rates are purely imaginary it follows
that our masses will simply oscillate according to weighted sums of three sinusoids. For example,
note that

exp(λ2t) = cos(
√

2ct) + i sin(
√

2ct) and exp(λ5t) = cos(
√

2ct) − i sin(
√

2ct).

Of course such sums may reproduce quite complicated behavior. We have illustrated each of the
displacements in Figure 6.3 in the case that c = 1. Rather than plotting the complex, yet explicit,
expression (6.26) for x1, we simply implement the Backward Euler scheme of the previous section.
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Figure 6.3. The displacements of the 3 masses in Fig. 2.1, with k/m = 1, following an initial dis-
placement of the first mass. For viewing purposes we have offset the three displacements. chain.m
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6.5. Exercises

1. Compute, without the aid of a machine, the Laplace transforms of et and te−t. Show all of your
work.

2. Extract from fib3.m analytical expressions for x2 and x3.

3. Use eig to compute the eigenvalues of B as given in (6.9). Use poly to compute the charac-
teristic polynomial of B. Use roots to compute the roots of this characteristic polynomial.
Compare these to the results of eig. How does Matlab compute the roots of a polynomial?
(type type roots) for the answer). Submit a Matlab diary of your findings.

4. Adapt the Backward Euler portion of fib3.m so that one may specify an arbitrary number
of compartments, as in fib1.m. As B, and so S, is now large and sparse please create the
sparse B via spdiags and the sparse I via speye, and then prefactor S into LU and use
U\L\ rather than S\ in the time loop. Experiment to find the proper choice of dt. Submit
your well documented M-file along with a plot of x1 and x50 versus time (on the same well
labeled graph) for a 100 compartment cable.

5. Derive (6.18) from (6.17) by working backwards toward x(0). Along the way you should explain
why (I/dt − B)−1/dt = (I − dtB)−1.

6. Show, for scalar B, that ((1 − (t/j)B)−1)j → exp(Bt) as j → ∞. Hint: By definition

((1 − (t/j)B)−1)j = exp(j log(1/(1 − (t/j)B)))

now use L’Hôpital’s rule to show that j log(1/(1 − (t/j)B)) → Bt.

7. If we place a viscous damper in parallel with each spring in Figure 2.1 as below

k
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f
1

k
2
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k
3
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3

m
3

x
3

f
3

k
4

d
4

then the dynamical system (6.20) takes the form

Mx′′(t) + Dx′(t) + Sx(t) = f(t) (6.27)

where D = AT diag(d)A where d is the vector of damping constants. Modify chain.m to solve
this new system and use your code to reproduce the figure below.
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Figure 6.1. The displacement of the three masses in the weakly damped chain, where k/m = 1
and d/m = 1/10.
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7. Complex Numbers and Functions

7.1. Complex Algebra

A complex number is simply a pair of real numbers. In order to stress however that the two
algebras differ we separate the two real pieces by the symbol +i. More precisely, each complex
number, z, may be uniquely expressed by the combination x + iy where x and y are real and i
denotes

√
−1. We call x the real part and y the imaginary part of z. We now summarize the

main rules of complex arithmetic.
If

z1 = x1 + iy1 and z2 = x2 + iy2

then
z1 + z2 ≡ (x1 + x2) + i(y1 + y2)

z1z2 ≡ (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

z1 ≡ x1 − iy1,

z1

z2

≡ z1

z2

z2

z2

=
(x1x2 + y1y2) + i(x2y1 − x1y2)

x2
2 + y2

2

|z1| ≡
√

z1z1 =
√

x2
1 + y2

1,

In addition to the Cartesian representation z = x + iy one also has the polar form

z = |z|(cos θ + i sin θ), where θ ∈ (−π, π] and

θ = atan2(y, x) ≡



























π/2, if x = 0, y > 0,

−π/2, if x = 0, y < 0,

arctan(y/x) if x > 0,

arctan(y/x) + π if x < 0, y ≥ 0,

arctan(y/x) − π if x < 0, y < 0.

This form is especially convenient with regards to multiplication. More precisely,

z1z2 = |z1||z2|{(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)}
= |z1||z2|{cos(θ1 + θ2) + i sin(θ1 + θ2)}.

As a result,
zn = |z|n(cos(nθ) + i sin(nθ)).

A complex vector (matrix) is simply a vector (matrix) of complex numbers. Vector and matrix
addition proceed, as in the real case, from elementwise addition. The dot or inner product of two
complex vectors requires, however, a little modification. This is evident when we try to use the old
notion to define the length of complex vector. To wit, note that if

z =

(

1 + i
1 − i

)

then
zT z = (1 + i)2 + (1 − i)2 = 1 + 2i − 1 + 1 − 2i − 1 = 0.
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Now length should measure the distance from a point to the origin and should only be zero for the
zero vector. The fix, as you have probably guessed, is to sum the squares of the magnitudes of
the components of z. This is accomplished by simply conjugating one of the vectors. Namely, we
define the length of a complex vector via

‖z‖ ≡
√

zT z. (7.1)

In the example above this produces

√

|1 + i|2 + |1 − i|2 =
√

4 = 2.

As each real number is the conjugate of itself, this new definition subsumes its real counterpart.
The notion of magnitude also gives us a way to define limits and hence will permit us to introduce

complex calculus. We say that the sequence of complex numbers, {zn : n = 1, 2, . . .}, converges to
the complex number z0 and write

zn → z0 or z0 = lim
n→∞

zn,

when, presented with any ε > 0 one can produce an integer N for which |zn − z0| < ε when n ≥ N .
As an example, we note that (i/2)n → 0.

7.2. Complex Functions

A complex function is merely a rule for assigning certain complex numbers to other complex
numbers. The simplest (nonconstant) assignment is the identity function f(z) ≡ z. Perhaps the
next simplest function assigns to each number its square, i.e., f(z) ≡ z2. As we decomposed the
argument of f , namely z, into its real and imaginary parts, we shall also find it convenient to
partition the value of f , z2 in this case, into its real and imaginary parts. In general, we write

f(x + iy) = u(x, y) + iv(x, y)

where u and v are both real–valued functions of two real variables. In the case that f(z) ≡ z2 we
find

u(x, y) = x2 − y2 and v(x, y) = 2xy.

With the tools of the previous section we may produce complex polynomials

f(z) = zm + cm−1z
m−1 + · · · + c1z + c0.

We say that such an f is of degree m. We shall often find it convenient to represent polynomials
as the product of their factors, namely

f(z) = (z − λ1)
m1(z − λ2)

m2 · · · (z − λh)
mh . (7.2)

Each λj is a root of f of degree mj. Here h is the number of distinct roots of f . We call λj a
simple root when mj = 1. In chapter 6 we observed the appearance of ratios of polynomials or so
called rational functions. Suppose

r(z) =
f(z)

g(z)
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is rational, that f is of order at most m−1 while g is of order m with the simple roots {λ1, . . . , λm}.
It should come as no surprise that such a r should admit a Partial Fraction Expansion

r(z) =
m
∑

j=1

rj

z − λj

.

One uncovers the rj by first multiplying each side by (z − λj) and then letting z tend to λj. For
example, if

1

z2 + 1
=

r1

z + i
+

r2

z − i
(7.3)

then multiplying each side by (z + i) produces

1

z − i
= r1 +

r2(z + i)

z − i
.

Now, in order to isolate r1 it is clear that we should set z = −i. So doing we find r1 = i/2. In order
to find r2 we multiply (7.3) by (z − i) and then set z = i. So doing we find r2 = −i/2, and so

1

z2 + 1
=

i/2

z + i
+

−i/2

z − i
. (7.4)

Returning to the general case, we encode the above in the simple formula

rj = lim
z→λj

(z − λj)r(z). (7.5)

You should be able to use this to confirm that

z

z2 + 1
=

1/2

z + i
+

1/2

z − i
. (7.6)

Recall that the resolvent we met in Chapter 6 was in fact a matrix of rational functions. Now, the
partial fraction expansion of a matrix of rational functions is simply the matrix of partial fraction
expansions of each of its elements. This is easier done than said. For example, the resolvent of

B =

(

0 1
−1 0

)

is

(zI − B)−1 =
1

z2 + 1

(

z 1
−1 z

)

=
1

z + i

(

1/2 i/2
−i/2 1/2

)

+
1

z − i

(

1/2 −i/2
i/2 1/2

)

.

(7.7)

The first line comes from either Gauss-Jordan by hand or via the symbolic toolbox in Matlab .
More importantly, the second line is simply an amalgamation of (7.3) and (7.4). Complex matrices
have finally entered the picture. We shall devote all of Chapter 9 to uncovering the remarkable
properties enjoyed by the matrices that appear in the partial fraction expansion of (zI − B)−1.
Have you noticed that, in our example, the two matrices are each projections, that they sum to I,
and that their product is 0? Could this be an accident? To answer this we will also need to develop
(zI − B)−1 in a geometric expansion. At its simplest, the n-term geometric series, for z 6= 1, is

n−1
∑

k=0

zk =
1 − zn

1 − z
. (7.8)
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We will prove this in the exercises and use it to appreciate the beautiful orthogonality of the columns
of the Fourier Matrix.

In Chapter 6 we were confronted with the complex exponential when considering the Laplace
Transform. By analogy to the real exponential we define

ez ≡
∞
∑

n=0

zn

n!

and find that
eiθ = 1 + iθ + (iθ)2/2 + (iθ)3/3! + (iθ)4/4! + · · ·

= (1 − θ2/2 + θ4/4! − · · · ) + i(θ − θ3/3! + θ5/5! − · · · )
= cos θ + i sin θ.

With this observation, the polar form is now simply z = |z|eiθ. One may just as easily verify that

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

These suggest the definitions, for complex z, of

cos z ≡ eiz + e−iz

2
and sin z ≡ eiz − e−iz

2i
.

As in the real case the exponential enjoys the property that

ez1+z2 = ez1ez2

and in particular
ex+iy = exeiy = ex cos y + iex sin y.

Finally, the inverse of the complex exponential is the complex logarithm,

ln z ≡ ln(|z|) + iθ, for z = |z|eiθ.

One finds that ln(−1 + i) = ln
√

2 + i3π/4.

7.3. Complex Differentiation

The complex function f is said to be differentiable at z0 if

lim
z→z0

f(z) − f(z0)

z − z0

exists, by which we mean that
f(zn) − f(z0)

zn − z0

converges to the same value for every sequence {zn} that converges to z0. In this case we naturally
call the limit f ′(z0).

Example: The derivative of z2 is 2z.

lim
z→z0

z2 − z2
0

z − z0

= lim
z→z0

(z − z0)(z + z0)

z − z0

= 2z0.

49



Example: The exponential is its own derivative.

lim
z→z0

ez − ez0

z − z0

= ez0 lim
z→z0

ez−z0 − 1

z − z0

= ez0 lim
z→z0

∞
∑

n=0

(z − z0)
n

(n + 1)!
= ez0 .

Example: The real part of z is not a differentiable function of z.
We show that the limit depends on the angle of approach. First, when zn → z0 on a line parallel

to the real axis, e.g., zn = x0 + 1/n + iy0, we find

lim
n→∞

x0 + 1/n − x0

x0 + 1/n + iy0 − (x0 + iy0)
= 1,

while if zn → z0 in the imaginary direction, e.g., zn = x0 + i(y0 + 1/n), then

lim
n→∞

x0 − x0

x0 + i(y0 + 1/n) − (x0 + iy0)
= 0.

This last example suggests that when f is differentiable a simple relationship must bind its
partial derivatives in x and y.

Proposition 7.1. If f is differentiable at z0 then

f ′(z0) =
∂f

∂x
(z0) = −i

∂f

∂y
(z0).

Proof: With z = x + iy0,

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0

= lim
x→x0

f(x + iy0) − f(x0 + iy0)

x − x0

=
∂f

∂x
(z0).

Alternatively, when z = x0 + iy then

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0

= lim
y→y0

f(x0 + iy) − f(x0 + iy0)

i(y − y0)
= −i

∂f

∂y
(z0).

End of Proof.

In terms of the real and imaginary parts of f this result brings the Cauchy–Riemann equa-
tions

∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y
. (7.9)

Regarding the converse proposition we note that when f has continuous partial derivatives in region
obeying the Cauchy–Riemann equations then f is in fact differentiable in the region.

We remark that with no more energy than that expended on their real cousins one may uncover
the rules for differentiating complex sums, products, quotients, and compositions.

As one important application of the derivative let us attempt to expand in partial fractions a
rational function whose denominator has a root with degree larger than one. As a warm-up let us
try to find r1,1 and r1,2 in the expansion

z + 2

(z + 1)2
=

r1,1

z + 1
+

r1,2

(z + 1)2
.
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Arguing as above it seems wise to multiply through by (z + 1)2 and so arrive at

z + 2 = r1,1(z + 1) + r1,2. (7.10)

On setting z = −1 this gives r1,2 = 1. With r1,2 computed (7.10) takes the simple form z + 1 =
r1,1(z + 1) and so r1,1 = 1 as well. Hence

z + 2

(z + 1)2
=

1

z + 1
+

1

(z + 1)2
.

This latter step grows more cumbersome for roots of higher degree. Let us consider

(z + 2)2

(z + 1)3
=

r1,1

z + 1
+

r1,2

(z + 1)2
+

r1,3

(z + 1)3
.

The first step is still correct: multiply through by the factor at its highest degree, here 3. This
leaves us with

(z + 2)2 = r1,1(z + 1)2 + r1,2(z + 1) + r1,3. (7.11)

Setting z = −1 again produces the last coefficient, here r1,3 = 1. We are left however with one
equation in two unknowns. Well, not really one equation, for (7.11) is to hold for all z. We exploit
this by taking two derivatives, with respect to z, of (7.11). This produces

2(z + 2) = 2r1,1(z + 1) + r1,2 and 2 = 2r1,1.

The latter of course needs no comment. We derive r1,2 from the former by setting z = −1. We
generalize from this example and arrive at

Proposition 7.2. The First Residue Theorem. The ratio, r = f/g, of two polynomials where
the order of f is less than that of g and g has h distinct roots {λ1, . . . , λh} of respective degrees
{m1, . . . ,mh}, may be expanded in partial fractions

r(z) =
h
∑

j=1

mj
∑

k=1

rj,k

(z − λj)k
(7.12)

where, as above, the residue rj,k is computed by first clearing the fraction and then taking the
proper number of derivatives and finally clearing their powers. That is,

rj,k = lim
z→λj

1

(mj − k)!

dmj−k

dzmj−k
{(z − λj)

mjr(z)}. (7.13)

As an application, we consider

B =





1 0 0
1 3 0
0 1 1



 (7.14)

and compute the Rj,k matrices in the expansion of its resolvent

R(z) = (zI − B)−1 =





1
z−1

0 0
1

(z−1)(z−3)
1

z−3
0

1
(z−1)2(z−3)

1
(z−1)(z−3)

1
z−1





=
1

z − 1
R1,1 +

1

(z − 1)2
R1,2 +

1

z − 3
R2,1.
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The only challenging term is the (3,1) element. We write

1

(z − 1)2(z − 3)
=

r1,1

z − 1
+

r1,2

(z − 1)2
+

r2,1

z − 3
.

It follows from (7.13) that

r1,1 =

(

1

z − 3

)′

(1) = −1

4
and r1,2 =

(

1

z − 3

)

(1) = −1

2
(7.15)

and

r2,1 =

(

1

(z − 1)2

)

(3) =
1

4
. (7.16)

It now follows that

(zI − B)−1 =
1

z − 1





1 0 0
−1/2 0 0
−1/4 −1/2 1



+
1

(z − 1)2





0 0 0
0 0 0

−1/2 0 0





+
1

z − 3





0 0 0
1/2 1 0
1/4 1/2 0



 .

(7.17)

In closing, we that the method of partial fraction expansions has been implemented in Matlab .
In fact, (7.15) and (7.16) follow from the single command

[r,p]=residue([0 0 0 1],[1 -5 7 -3]).

The first input argument is Matlab -speak for the polynomial f(z) = 1 while the second argument
corresponds to the denominator

g(z) = (z − 1)2(z − 3) = z3 − 5z2 + 7z − 3.

7.4. Exercises

1. Express |ex+iy| in terms of x and/or y.

2. Suppose z 6= 1 and define the n-term geometric series

σ ≡
n−1
∑

k=0

zk,

and show, by brute force, that σ − zσ = 1 − zn. Derive (7.8) from this result.

3. Confirm that eln z = z and ln ez = z.

4. Find the real and imaginary parts of cos z and sin z. Express your answers in terms of regular
and hyperbolic trigonometric functions.

5. Show that cos2 z + sin2 z = 1.
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6. As in the real calculus, the exponential and natural log permit one to define arbitrary powers.
Please compute

√
i via the definition zp ≡ ep ln z.

7. Carefully sketch, by hand, the complex numbers ωn = exp(2πi/n) for n = 2, 4 and 8. ωn is
called an nth root of unity. Please compute ωn

n by hand. Construct the n-by-n Fourier Matrix,
Fn, via

Fn(j, k) =
1√
n

ω(j−1)(k−1)
n , (7.18)

where the row index, j, and the column index, k, each run from 1 to n. We will now prove
that the conjugate of Fn is in fact the inverse of Fn, i.e., that FnF

∗
n = I. To do this first show

that the (j,m) element of the product FnF
∗
n is

n
∑

k=1

F (j, k)F ∗(k,m) =
1

n

n
∑

k=1

exp(2πi(k − 1)(j − m)/n). (7.19)

Conclude that this sum is 1 when j = m. To show that the sum is zero when j 6= m set
z = exp(2πi(j − m)/n) and recognize in (7.19) the n-term geometric series of (7.8).

8. Verify that sin z and cos z satisfy the Cauchy-Riemann equations (7.9) and use Proposition 7.1
to evaluate their derivatives.

9. Compute, by hand the partial fraction expansion of the rational function that we arrived at in
(6.13). That is, find r1,1, r1,2, r2, r3 and r4 in

r(s) =
s2 + 1.3s + 0.31

(s + 1/4)2(s + 1/2)(s + 1/5)(s + 11/10)

=
r1,1

s + 1/4
+

r1,2

(s + 1/4)2
+

r2

s + 1/2
+

r3

s + 1/5
+

r4

s + 11/10
.

Contrast your answer with the explicit expression in (6.15).

10. Submit a Matlab diary documenting your use of residue in the partial fraction expansion
of resolvent of

B =





2 −1 0
−1 2 −1
0 −1 2



 .

You should achieve

(sI − B)−1 =
1

s − (2 +
√

2)

1

4





1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1





+
1

s − 2

1

2





1 0 −1
0 0 0
−1 0 1



+
1

s − (2 −
√

2)

1

4





1
√

2 1√
2 2

√
2

1
√

2 1




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8. Complex Integration

Our main goal is a better understanding of the partial fraction expansion of a given resolvent.
With respect to the example that closed the last chapter, see (7.14)–(7.17), we found

(zI − B)−1 =
1

z − λ1

P1 +
1

(z − λ1)2
D1 +

1

z − λ2

P2

where the Pj and Dj enjoy the amazing properties

BP1 = P1B = λ1P1+D1 and BP2 = P2B = λ2P2

P1 + P2 = I, P 2
1 = P1, P 2

2 = P2, and D2
1 = 0,

P1D1 = D1P1 = D1 and P2D1 = D1P2 = 0.

In order to show that this always happens, i.e., that it is not a quirk produced by the particular
B in (7.14), we require a few additional tools from the theory of complex variables. In particular,
we need the fact that partial fraction expansions may be carried out through complex integration.

8.1. Cauchy’s Theorem

We shall be integrating complex functions over complex curves. Such a curve is parametrized
by one complex valued or, equivalently, two real valued, function(s) of a real parameter (typically
denoted by t). More precisely,

C ≡ {z(t) = x(t) + iy(t) : t1 ≤ t ≤ t2}.

For example, if x(t) = y(t) = t from t1 = 0 to t2 = 1, then C is the line segment joining 0 + i0 to
1 + i.

We now define
∫

C

f(z) dz ≡
∫ t2

t1

f(z(t))z′(t) dt.

For example, if C = {t + it : 0 ≤ t ≤ 1} as above and f(z) = z then

∫

C

z dz =

∫ 1

0

(t + it)(1 + i) dt =

∫ 1

0

{(t − t) + i2t} dt = i,

while if C is the unit circle {eit : 0 ≤ t ≤ 2π} then

∫

C

z dz =

∫ 2π

0

eitieit dt = i

∫ 2π

0

ei2t dt = i

∫ 2π

0

{cos(2t) + i sin(2t)} dt = 0.

Remaining with the unit circle but now integrating f(z) = 1/z we find

∫

C

z−1 dz =

∫ 2π

0

e−itieit dt = 2πi.

We generalize this calculation to arbitrary (integer) powers over arbitrary circles. More precisely,
for integer m and fixed complex a we integrate (z − a)m over

C(a, ρ) ≡ {a + ρeit : 0 ≤ t ≤ 2π},
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the circle of radius ρ centered at a. We find
∫

C(a,ρ)

(z − a)m dz =

∫ 2π

0

(a + ρeit − a)mρieit dt

= iρm+1

∫ 2π

0

ei(m+1)t dt

= iρm+1

∫ 2π

0

{cos((m + 1)t) + i sin((m + 1)t)} dt

=

{

2πi if m = −1,

0 otherwise,

(8.1)

regardless of the size of ρ!
When integrating more general functions it is often convenient to express the integral in terms

of its real and imaginary parts. More precisely
∫

C

f(z) dz =

∫

C

{u(x, y) + iv(x, y)}{dx + idy}

=

∫

C

{u(x, y) dx − v(x, y) dy} + i

∫

C

{u(x, y) dy + v(x, y) dx}

=

∫ b

a

{u(x(t), y(t))x′(t) − v(x(t), y(t))y′(t)} dt

+ i

∫ b

a

{u(x(t), y(t))y′(t) + v(x(t), y(t))x′(t)} dt.

The second line should invoke memories of

Proposition 8.1. Green’s Theorem. If C is a closed curve and M and N are continuously
differentiable real–valued functions on Cin, the region enclosed by C, then

∫

C

{M dx + N dy} =

∫∫

Cin

(

∂N

∂x
− ∂M

∂y

)

dxdy

Applying this proposition to the situation above, we find, so long as C is closed, that
∫

C

f(z) dz = −
∫∫

Cin

(

∂v

∂x
+

∂u

∂y

)

dxdy + i

∫∫

Cin

(

∂u

∂x
− ∂v

∂y

)

dxdy.

At first glance it appears that Green’s Theorem only serves to muddy the waters. Recalling the
Cauchy–Riemann equations however we find that each of these double integrals is in fact identically
zero! In brief, we have proven

Proposition 8.2. Cauchy’s Theorem. If f is differentiable on and in the closed curve C then
∫

C

f(z) dz = 0.

Strictly speaking, in order to invoke Green’s Theorem we require not only that f be differentiable
but that its derivative in fact be continuous. This however is simply a limitation of our simple mode
of proof, Cauchy’s Theorem is true as stated.
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This theorem, together with (8.1), permits us to integrate every proper rational function. More
precisely, if r = f/g where f is a polynomial of degree at most m − 1 and g is an mth degree
polynomial with h distinct zeros at {λj}h

j=1 with respective multiplicities of {mj}h
j=1 we found that

r(z) =
h
∑

j=1

mj
∑

k=1

rj,k

(z − λj)k
. (8.2)

Observe now that if we choose the radius ρj so small that λj is the only zero of g encircled by
Cj ≡ C(λj, ρj) then by Cauchy’s Theorem

∫

Cj

r(z) dz =

mj
∑

k=1

rj,k

∫

Cj

1

(z − λj)k
dz.

In (8.1) we found that each, save the first, of the integrals under the sum is in fact zero. Hence
∫

Cj

r(z) dz = 2πirj,1. (8.3)

With rj,1 in hand, say from (7.13) or residue, one may view (8.3) as a means for computing the
indicated integral. The opposite reading, i.e., that the integral is a convenient means of expressing
rj,1, will prove just as useful. With that in mind, we note that the remaining residues may be
computed as integrals of the product of r and the appropriate factor. More precisely,

∫

Cj

r(z)(z − λj)
k−1 dz = 2πirj,k. (8.4)

One may be led to believe that the precision of this result is due to the very special choice of curve
and function. We shall see ...

8.2. The Second Residue Theorem

After (8.3) and (8.4) perhaps the most useful consequence of Cauchy’s Theorem is the freedom
it grants one to choose the most advantageous curve over which to integrate. More precisely,

Proposition 8.3. Suppose that C2 is a closed curve that lies inside the region encircled by the
closed curve C1. If f is differentiable in the annular region outside C2 and inside C1 then

∫

C1

f(z) dz =

∫

C2

f(z) dz.

Proof: With reference to the figure below we introduce two vertical segments and define the
closed curves C3 = abcda (where the bc arc is clockwise and the da arc is counter-clockwise) and
C4 = adcba (where the ad arc is counter-clockwise and the cb arc is clockwise). By merely following
the arrows we learn that

∫

C1

f(z) dz =

∫

C2

f(z) dz +

∫

C3

f(z) dz +

∫

C4

f(z) dz.

As Cauchy’s Theorem implies that the integrals over C3 and C4 each vanish, we have our result.
End of Proof.
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a

b

c

d

C

C

1

2

Figure 8.1. The Curve Replacement Lemma.

This proposition states that in order to integrate a function it suffices to integrate it over regions
where it is singular, i.e., nondifferentiable.

Let us apply this reasoning to the integral
∫

C

z

(z − λ1)(z − λ2)
dz

where C encircles both λ1 and λ2 as depicted in the cartoon on the next page. We find that
∫

C

z

(z − λ1)(z − λ2)
dz =

∫

C1

z dz

(z − λ1)(z − λ2)
+

∫

C2

z dz

(z − λ1)(z − λ2)
.

Developing the integrand in partial fractions we find
∫

C1

z dz

(z − λ1)(z − λ2)
=

λ1

λ1 − λ2

∫

C1

dz

z − λ1

+
λ2

λ2 − λ1

∫

C1

dz

z − λ2

=
2πiλ1

λ1 − λ2

.

Similarly,
∫

C2

z dz

(z − λ1)(z − λ2)
=

2πiλ2

λ2 − λ1

.

Putting things back together we find

∫

C

z

(z − λ1)(z − λ2)
dz = 2πi

(

λ1

λ1 − λ2

+
λ2

λ2 − λ1

)

= 2πi. (8.5)

Replace this contour

With this contour

Now, as we squeeze the neck (and round the
heads) we find that the two sides of the neck
cancel and we arrive at the two contours

λ

λ
1

2

C

C C1
2

Figure 8.2. Concentrating on the poles.
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We may view (8.5) as a special instance of integrating a rational function around a curve that
encircles all of the zeros of its denominator. In particular, recalling (8.2) and (8.3), we find

∫

C

r(z) dz =
h
∑

j=1

mj
∑

k=1

∫

Cj

rj,k

(z − λj)k
dz = 2πi

h
∑

j=1

rj,1. (8.6)

To take a slightly more complicated example let us integrate f(z)/(z−a) over some closed curve
C inside of which f is differentiable and a resides. Our Curve Replacement Lemma now permits us
to claim that

∫

C

f(z)

z − a
dz =

∫

C(a,ρ)

f(z)

z − a
dz.

It appears that one can go no further without specifying f . The alert reader however recognizes
that the integral over C(a, ρ) is independent of r and so proceeds to let r → 0, in which case z → a
and f(z) → f(a). Computing the integral of 1/(z − a) along the way we are lead to the hope that

∫

C

f(z)

z − a
dz = f(a)2πi

In support of this conclusion we note that
∫

C(a,ρ)

f(z)

z − a
dz =

∫

C(a,ρ)

{

f(z)

z − a
+

f(a)

z − a
− f(a)

z − a

}

dz

= f(a)

∫

C(a,ρ)

1

z − a
dz +

∫

C(a,ρ)

f(z) − f(a)

z − a
dz.

Now the first term is f(a)2πi regardless of ρ while, as ρ → 0, the integrand of the second term
approaches f ′(a) and the region of integration approaches the point a. Regarding this second term,
as the integrand remains bounded as the perimeter of C(a, ρ) approaches zero the value of the
integral must itself be zero. End of Proof.

This result is typically known as

Proposition 8.4. Cauchy’s Integral Formula. If f is differentiable on and in the closed curve
C then

f(a) =
1

2πi

∫

C

f(z)

z − a
dz (8.7)

for each a lying inside C.

The consequences of such a formula run far and deep. We shall delve into only one or two. First,
we note that, as a does not lie on C, the right hand side is a perfectly smooth function of a. Hence,
differentiating each side, we find

f ′(a) =
df(a)

da
=

1

2πi

∫

C

d

da

f(z)

z − a
dz =

1

2πi

∫

C

f(z)

(z − a)2
dz (8.8)

for each a lying inside C. Applying this reasoning n times we arrive at a formula for the nth
derivative of f at a,

dnf

dan
(a) =

n!

2πi

∫

C

f(z)

(z − a)1+n
dz (8.9)
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for each a lying inside C. The upshot is that once f is shown to be differentiable it must in fact be
infinitely differentiable. As a simple extension let us consider

1

2πi

∫

C

f(z)

(z − λ1)(z − λ2)2
dz

where f is still assumed differentiable on and in C and that C encircles both λ1 and λ2. By the
curve replacement lemma this integral is the sum

1

2πi

∫

C1

f(z)

(z − λ1)(z − λ2)2
dz +

1

2πi

∫

C2

f(z)

(z − λ1)(z − λ2)2
dz

where λj now lies in only Cj. As f(z)/(z − λ2) is well behaved in C1 we may use (8.7) to conclude
that

1

2πi

∫

C1

f(z)

(z − λ1)(z − λ2)2
dz =

f(λ1)

(λ1 − λ2)2
.

Similarly, As f(z)/(z − λ1) is well behaved in C2 we may use (8.8) to conclude that

1

2πi

∫

C2

f(z)

(z − λ1)(z − λ2)2
dz =

d

da

f(a)

(a − λ1)

∣

∣

∣

∣

a=λ2

.

These calculations can be read as a concrete instance of

Proposition 8.5. The Second Residue Theorem. If g is a polynomial with roots {λj}h
j=1 of

degree {mj}h
j=1 and C is a closed curve encircling each of the λj and f is differentiable on and in

C then
∫

C

f(z)

g(z)
dz = 2πi

h
∑

j=1

res(f/g, λj)

where

res(f/g, λj) = lim
z→λj

1

(mj − 1)!

dmj−1

dzmj−1

(

(z − λj)
mj

f(z)

g(z)

)

is called the residue of f/g at λj by extension of (7.13).

One of the most important ‘instances’ of this theorem is the formula for

8.3. The Inverse Laplace Transform

If r is a rational function with poles {λj}h
j=1 then the inverse Laplace transform of r is

(L−1r)(t) ≡ 1

2πi

∫

C

r(z)ezt dz (8.10)

where C is a curve that encloses each of the poles of r. As a result

(L−1r)(t) =
h
∑

j=1

res(r(z)ezt, λj). (8.11)

Let us put this lovely formula to the test. We take our examples from chapter 6. Let us first
compute the inverse Laplace Transform of

r(z) =
1

(z + 1)2
.
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According to (8.11) it is simply the residue of r(z)ezt at z = −1, i.e.,

res(−1) = lim
z→−1

d

dz
ezt = te−t.

This closes the circle on the example begun in §6.3 and continued in exercise 6.1. For our next
example we recall from (6.13) (ignoring the leading 1.965),

Lx1(s) =
(s2 + 1.3s + 0.31)

(s + 1/4)2(s3 + 1.8s2 + 0.87s + 0.11))

=
(s2 + 1.3s + 0.31)

(s + 1/4)2(s + 1/2)(s + 1/5)(s + 11/10)
,

and so (8.11) dictates that

x1(t) = exp(−t/4)
d

ds

(s2 + 1.3s + 0.31)

(s + 1/2)(s + 1/5)(s + 11/10)

∣

∣

∣

∣

s=−1/4

+ exp(−t/2)
(s2 + 1.3s + 0.31)

(s + 1/4)2(s + 1/5)(s + 11/10)

∣

∣

∣

∣

s=−1/2

+ exp(−t/5)
(s2 + 1.3s + 0.31)

(s + 1/4)2(s + 1/2)(s + 11/10)

∣

∣

∣

∣

s=−1/5

+ exp(−11t/10)
(s2 + 1.3s + 0.31)

(s + 1/4)2(s + 1/2)(s + 1/5)

∣

∣

∣

∣

s=−10/11

.

(8.12)

Evaluation of these terms indeed confirms our declaration, (6.15), and the work in exercise 7.9.
The curve replacement lemma of course gives us considerable freedom in our choice of the curve

C used to define the inverse Laplace transform, (8.10). As in applications the poles of r are typically
in the left half of the complex plane (why?) it is common to choose C to be the half circle

C = CL(ρ) ∪ CA(ρ),

comprised of the line segment, CL, and arc, CA,

CL(ρ) ≡ {iω : −ρ ≤ ω ≤ ρ} and CA(ρ) ≡ {ρeiθ : π/2 ≤ θ ≤ 3π/2},

where ρ is chosen large enough to encircle the poles of r. With this concrete choice, (8.10) takes
the form

(L−1r)(t) =
1

2πi

∫

CL

r(z)ezt dz +
1

2πi

∫

CA

r(z)ezt dz

=
1

2π

∫ ρ

−ρ

r(iω)eiωt dω +
ρ

2π

∫ 3π/2

π/2

r(ρeiθ)eρeiθteiθ dθ.

(8.13)

Although this second term appears unwieldy it can be shown to vanish as ρ → ∞, in which case
we arrive at

(L−1r)(t) =
1

2π

∫ ∞

−∞

r(iω)eiωt dω, (8.14)

the conventional definition of the inverse Laplace transform.
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8.4. Exercises

1. Compute the integral of z2 along the parabolic segment z(t) = t + it2 as t ranges from 0 to 1.

2. Evaluate each of the integrals below and state which result you are using, e.g., The bare–handed
calculation (8.1), Cauchy’s Theorem, The Cauchy Integral Formula, The Second Residue The-
orem, and show all of your work.

∫

C(2,1)

cos(z)

z − 2
dz,

∫

C(2,1)

cos(z)

z(z − 2)
dz,

∫

C(2,1)

cos(z)

z(z + 2)
dz,

∫

C(0,2)

cos(z)

z3 + z
dz,

∫

C(0,2)

cos(z)

z3
dz,

∫

C(0,2)

z cos(z)

z − 1
dz.

3. Let us confirm the representation (8.4) in the matrix case. More precisely, if R(z) ≡ (zI−B)−1

is the resolvent associated with B then (8.4) states that

R(z) =
h
∑

j=1

mj
∑

k=1

Rj,k

(z − λj)k

where

Rj,k =
1

2πi

∫

Cj

R(z)(z − λj)
k−1 dz. (8.15)

Compute the Rj,k per (8.15) for the B in (7.14). Confirm that they agree with those appearing
in (7.17).

4. Use (8.11) to compute the inverse Laplace transform of 1/(s2 + 2s + 2).

5. Use the result of the previous exercise to solve, via the Laplace transform, the differential
equation

x′(t) + x(t) = e−t sin t, x(0) = 0.

Hint: Take the Laplace transform of each side.

6. Evaluate all expressions in (8.12) in Matlab ’s symbolic toolbox via syms, diff and subs
and confirm that the final result jibes with (6.15).

7. Return to §6.6 and argue how one deduces (6.26) from (6.25). Evaluate (6.26) and graph it
with ezplot and contrast it with Fig. 6.3.

8. Let us check the limit we declared in going from (8.13) to (8.14). First show that

|eρeiθt| = eρt cos θ.

Next show (perhaps graphically) that

cos θ ≤ 1 − 2θ/π when π/2 ≤ θ ≤ π.
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Now confirm each step in

ρ

∣

∣

∣

∣

∣

∫ 3π/2

π/2

r(ρeiθ)eρeiθteiθ dθ

∣

∣

∣

∣

∣

≤ ρ max
θ

|r(ρeiθ)|
∫ 3π/2

π/2

|eρeiθt| dθ

= ρ max
θ

|r(ρeiθ)|2
∫ π

π/2

eρt cos θ dθ

≤ ρ max
θ

|r(ρeiθ)|2
∫ π

π/2

eρt(1−2θ/π) dθ

= max
θ

|r(ρeiθ)|(π/t)(1 − e−ρt),

and finally argue why
max

θ
|r(ρeiθ)| → 0

as ρ → ∞.
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9. The Eigenvalue Problem

Harking back to chapter 6 we labeled the complex number λ an eigenvalue of B if λI −B was
not invertible. In order to find such λ one has only to find those s for which (sI − B)−1 is not
defined. To take a concrete example we note that if

B =





1 1 0
0 1 0
0 0 2



 (9.1)

then

(sI − B)−1 =
1

(s − 1)2(s − 2)





(s − 1)(s − 2) s − 2 0
0 (s − 1)(s − 2) 0
0 0 (s − 1)2



 (9.2)

and so λ1 = 1 and λ2 = 2 are the two eigenvalues of B. Now, to say that λjI − B is not invertible
is to say that its columns are linearly dependent, or, equivalently, that the null space N (λjI − B)
contains more than just the zero vector. We call N (λjI−B) the jth eigenspace and call each of its
nonzero members a jth eigenvector. The dimension of N (λjI−B) is referred to as the geometric
multiplicity of λj. With respect to B above we compute N (λ1I − B) by solving (I − B)x = 0,
i.e.,





0 −1 0
0 0 0
0 0 −1









x1

x2

x3



 =





0
0
0





Clearly

N (λ1I − B) = {c[1 0 0]T : c ∈ R}.
Arguing along the same lines we also find

N (λ2I − B) = {c[0 0 1]T : c ∈ R}.

That B is 3-by-3 but possesses only 2 linearly independent eigenvectors, much like our patient
on the front cover, suggests that matrices can not necessarily be judged by the number of their
eigenvectors. After a little probing one might surmise that B’s condition is related to the fact that
λ1 is a double pole of (sI − B)−1. In order to flesh out that remark and find a proper replacement
for the missing eigenvector we must take a much closer look at the resolvent.

9.1. The Resolvent

One means by which to come to grips with (sI − B)−1 is to treat it as the matrix analog of the
scalar function

1

s − b
. (9.3)

This function is a scaled version of the even simpler function 1/(1−z). This latter function satisfies
(recall the n-term geometric series (7.8))

1

1 − z
= 1 + z + z2 + · · · + zn−1 +

zn

1 − z
(9.4)
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for each positive integer n. Furthermore, if |z| < 1 then zn → 0 as n → ∞ and so (9.4) becomes,
in the limit,

1

1 − z
=

∞
∑

n=0

zn,

the full geometric series. Returning to (9.3) we write

1

s − b
=

1/s

1 − b/s
=

1

s
+

b

s2
+ · · · + bn−1

sn
+

bn

sn

1

s − b
,

and hence, so long as |s| > |b| we find,

1

s − b
=

1

s

∞
∑

n=0

(

b

s

)n

.

This same line of reasoning may be applied in the matrix case. That is,

(sI − B)−1 = s−1(I − B/s)−1 =
1

s
+

B

s2
+ · · · + Bn−1

sn
+

Bn

sn
(sI − B)−1, (9.5)

and hence, so long as |s| > ‖B‖ where ‖B‖ is the magnitude of the largest eigenvalue of B, we find

(sI − B)−1 = s−1

∞
∑

n=0

(B/s)n. (9.6)

Although (9.6) is indeed a formula for the resolvent you may, regarding computation, not find it
any more attractive than the Gauss-Jordan method. We view (9.6) however as an analytical rather
than computational tool. More precisely, it facilitates the computation of integrals of R(s). For
example, if Cρ is the circle of radius ρ centered at the origin and ρ > ‖B‖ then

∫

Cρ

(sI − B)−1 ds =
∞
∑

n=0

Bn

∫

Cρ

s−1−n ds = 2πiI. (9.7)

This result is essential to our study of the eigenvalue problem. As are the two resolvent identities.
Regarding the first we deduce from the simple observation

(s2I − B)−1 − (s1I − B)−1 = (s2I − B)−1(s1I − B − s2I + B)(s1I − B)−1

that

R(s2) − R(s1) = (s1 − s2)R(s2)R(s1). (9.8)

The second identity is simply a rewriting of

(sI − B)(sI − B)−1 = (sI − B)−1(sI − B) = I,

namely,

BR(s) = R(s)B = sR(s) − I. (9.9)
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9.2. The Partial Fraction Expansion of the Resolvent

The Gauss–Jordan method informs us that R(s) will be a matrix of rational functions of s,
with a common denominator. In keeping with the notation of the previous chapters we assume the
denominator to have the h distinct roots, {λj}h

j=1 with associated orders {mj}h
j=1.

Now, assembling the partial fraction expansions of each element of R we arrive at

R(s) =
h
∑

j=1

mj
∑

k=1

Rj,k

(s − λj)k
(9.10)

where, recalling equation (8.4), Rj,k is the matrix

Rj,k =
1

2πi

∫

Cj

R(z)(z − λj)
k−1 dz. (9.11)

To take a concrete example, with respect to (9.1) and (9.2) we find

R1,1 =





1 0 0
0 1 0
0 0 0



 R1,2 =





0 1 0
0 0 0
0 0 0



 and R2,1 =





0 0 0
0 0 0
0 0 1



 .

One notes immediately that these matrices enjoy some amazing properties. For example

R2
1,1 = R1,1, R2

2,1 = R2,1, R1,1R2,1 = 0, and R2
1,2 = 0. (9.12)

We now show that this is no accident. We shall find it true in general as a consequence of (9.11)
and the first resolvent identity.

Proposition 9.1. R2
j,1 = Rj,1.

Proof: Recall that the Cj appearing in (9.11) is any circle about λj that neither touches nor
encircles any other root. Suppose that Cj and C ′

j are two such circles and C ′
j encloses Cj. Now

Rj,1 =
1

2πi

∫

Cj

R(z) dz =
1

2πi

∫

C′

j

R(z) dz

and so

R2
j,1 =

1

(2πi)2

∫

Cj

R(z) dz

∫

C′

j

R(w) dw

=
1

(2πi)2

∫

Cj

∫

C′

j

R(z)R(w) dw dz

=
1

(2πi)2

∫

Cj

∫

C′

j

R(z) − R(w)

w − z
dw dz

=
1

(2πi)2

{

∫

Cj

R(z)

∫

C′

j

1

w − z
dw dz −

∫

C′

j

R(w)

∫

Cj

1

w − z
dz dw

}

=
1

2πi

∫

Cj

R(z) dz = Rj,1.
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We used the first resolvent identity, (9.8), in moving from the second to the third line. In moving
from the fourth to the fifth we used only

∫

C′

j

1

w − z
dw = 2πi and

∫

Cj

1

w − z
dz = 0. (9.13)

The latter integrates to zero because Cj does not encircle w. End of Proof.

Recalling definition 5.1 that matrices that equal their squares are projections we adopt the
abbreviation

Pj ≡ Rj,1.

With respect to the product PjPk, for j 6= k, the calculation runs along the same lines. The
difference comes in (9.13) where, as Cj lies completely outside of Ck, both integrals are zero. Hence,

Proposition 9.2. If j 6= k then PjPk = 0.

Along the same lines we define
Dj ≡ Rj,2

and prove
Proposition 9.3. If 1 ≤ k ≤ mj − 1 then Dk

j = Rj,k+1. D
mj

j = 0.
Proof: For k and ℓ greater than or equal to one,

Rj,k+1Rj,ℓ+1 =
1

(2πi)2

∫

Cj

R(z)(z − λj)
k dz

∫

C′

j

R(w)(w − λj)
ℓ dw

=
1

(2πi)2

∫

Cj

∫

C′

j

R(z)R(w)(z − λj)
k(w − λj)

ℓ dw dz

=
1

(2πi)2

∫

C′

j

∫

Cj

R(z) − R(w)

w − z
(z − λj)

k(w − λj)
ℓ dw dz

=
1

(2πi)2

∫

Cj

R(z)(z − λj)
k

∫

C′

j

(w − λj)
ℓ

w − z
dw dz

− 1

(2πi)2

∫

C′

j

R(w)(w − λj)
ℓ

∫

Cj

(z − λj)
k

w − z
dz dw

=
1

2πi

∫

Cj

R(z)(z − λj)
k+ℓ dz = Rj,k+ℓ+1.

because
∫

C′

j

(w − λj)
ℓ

w − z
dw = 2πi(z − λj)

ℓ and

∫

Cj

(z − λj)
k

w − z
dz = 0. (9.14)

With k = ℓ = 1 we have shown R2
j,2 = Rj,3, i.e., D2

j = Rj,3. Similarly, with k = 1 and ℓ = 2 we find

Rj,2Rj,3 = Rj,4, i.e., D3
j = Rj,4, and so on. Finally, at k = mj we find

D
mj

j = Rj,mj+1 =
1

2πi

∫

Cj

R(z)(z − λj)
mj dz = 0

by Cauchy’s Theorem. End of Proof.
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Of course this last result would be trivial if in fact Dj = 0. Note that if mj > 1 then

D
mj−1
j = Rj,mj

=

∫

Cj

R(z)(z − λj)
mj−1 dz 6= 0

for the integrand then has a term proportional to 1/(z − λj), which we know, by (8.1), leaves a
nonzero residue.

With this we now have the sought after expansion

R(z) =
h
∑

j=1

{

1

z − λj

Pj +

mj−1
∑

k=1

1

(z − λj)k+1
Dk

j

}

, (9.15)

along with verification of a number of the properties enjoyed by the Pj and Dj.

In the case that each eigenvalue is simple pole of the resolvent, i.e., mj = 1, we arrive at the
compact representation

(zI − B)−1 =
n
∑

j=1

Pj

z − λj

. (9.16)

As a quick application of this we return to a curious limit that arose in our discussion of Backward
Euler. Namely, we would like to evaluate

lim
k→∞

(I − (t/k)B)−k.

To find this we note that (zI − B)−1 = (I − B/z)−1/z and so (9.16) may be written

(I − B/z)−1 =
h
∑

j=1

zPj

z − λj

=
h
∑

j=1

Pj

1 − λj/z
(9.17)

If we now set z = k/t, where k is a positive integer, and use the fact that the Pj are projections
that annihilate one another then we arrive first at

(I − (t/k)B)−k =
h
∑

j=1

Pj

(1 − (t/k)λj)k
(9.18)

and so, in the limit find

lim
k→∞

(I − (t/k)B)−k =
h
∑

j=1

exp(λjt)Pj (9.19)

and naturally refer to this limit as exp(Bt). We will confirm that this solve our dynamics problems
by checking, in the Exercises, that (exp(Bt))′ = B exp(Bt).

9.3. The Spectral Representation

With just a little bit more work we shall arrive at a similar expansion for B itself. We begin by

67



applying the second resolvent identity, (9.9), to Pj. More precisely, we note that (9.9) implies that

BPj = PjB =
1

2πi

∫

Cj

(zR(z) − I) dz

=
1

2πi

∫

Cj

zR(z) dz

=
1

2πi

∫

Cj

R(z)(z − λj) dz +
λj

2πi

∫

Cj

R(z) dz

= Dj + λjPj,

(9.20)

where the second equality is due to Cauchy’s Theorem and the third arises from adding and sub-
tracting λjR(z). Summing (9.20) over j we find

B
h
∑

j=1

Pj =
h
∑

j=1

λjPj +
h
∑

j=1

Dj. (9.21)

We can go one step further, namely the evaluation of the first sum. This stems from (9.7) where we
integrated R(s) over a circle Cρ where ρ > ‖B‖. The connection to the Pj is made by the residue
theorem. More precisely,

∫

Cρ

R(z) dz = 2πi
h
∑

j=1

Pj.

Comparing this to (9.7) we find
h
∑

j=1

Pj = I, (9.22)

and so (9.21) takes the form

B =
h
∑

j=1

λjPj +
h
∑

j=1

Dj. (9.23)

It is this formula that we refer to as the Spectral Representation of B. To the numerous
connections between the Pj and Dj we wish to add one more. We first write (9.20) as

(B − λjI)Pj = Dj (9.24)

and then raise each side to the mj power. As P
mj

j = Pj and D
mj

j = 0 we find

(B − λjI)mjPj = 0. (9.25)

For this reason we call the range of Pj the jth generalized eigenspace, call each of its nonzero
members a jth generalized eigenvector and refer to the dimension of R(Pj) as the algebraic
multiplicity of λj. Let us conform that the eigenspace is indeed a subspace of the generalized
eigenspace.

Proposition 9.4. N (λjI − B) ⊂ R(Pj) with equality if and only if mj = 1.
Proof: For each e ∈ N (λjI − B) we show that Pje = e. To see this note that Be = λje and so

(sI − B)e = (s − λj)e so (sI − B)−1e = (s − λj)
−1e and so

Pje =
1

2πi

∫

Cj

(sI − B)−1e ds =
1

2πi

∫

Cj

1

s − λj

e ds = e.
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By (9.24) we see that R(Pj) ⊂ N (λjI − B) if and only if mj = 1. End of Proof.

With regard to the example with which we began the chapter we note that although it has only
two linearly independent eigenvectors the span of the associated generalized eigenspaces indeed
fills out R3, i.e., R(P1) ⊕ R(P2) = R3. One may view this as a consequence of P1 + P2 = I,
or, perhaps more concretely, as appending the generalized first eigenvector [0 1 0]T to the original
two eigenvectors [1 0 0]T and [0 0 1]T . In still other words, the algebraic multiplicities sum to the
ambient dimension (here 3), while the sum of geometric multiplicities falls short (here 2).

9.4. Diagonalization of a Semisimple Matrix

If mj = 1 then we call λj semisimple. If each mj = 1 we call B semisimple. In this case we see
that

dimN (λjI − B) = dimR(Pj) ≡ nj

and that
h
∑

j=1

nj = n.

We then denote by Ej = [ej,1 ej,2 · · · ej,nj
] a matrix composed of basis vectors of R(Pj). We note

that
Bej,k = λjej,k,

and so
BE = EΛ where E = [E1 E2 · · ·Eh] (9.26)

and Λ is the diagonal matrix of eigenvalues,

Λ = diag(λ1ones(n1, 1) λ2ones(n2, 1) · · ·λhones(nh, 1)).

As the eigenmatrix, E, is square and composed of linearly independent columns it is invertible and
so (9.26) may be written

B = EΛE−1 and Λ = E−1BE. (9.27)

In this sense we say that E diagonalizes B. Let us work out a few examples. With respect to the
rotation matrix

B =

(

0 1
−1 0

)

we recall, see (8.3), that

R(s) =
1

s2 + 1

(

s 1
−1 s

)

=
1

s − i

(

1/2 −i/2
i/2 1/2

)

+
1

s + i

(

1/2 i/2
−i/2 1/2

)

=
1

s − λ1

P1 +
1

s − λ2

P2,

(9.28)

and so

B = λ1P1 + λ2P2 = i

(

1/2 −i/2
i/2 1/2

)

− i

(

1/2 i/2
−i/2 1/2

)

.
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As m1 = m2 = 1 we see that B is semisimple. By inspection we see that R(P1) and R(P2) are
spanned by

e1 =

(

1
i

)

and e2 =

(

1
−i

)

,

respectively. It follows that

E =

(

1 1
i −i

)

, E−1 =
1

2

(

1 −i
1 i

)

, Λ =

(

i 0
0 −i

)

and so

B = EΛE−1 =
1

2

(

1 1
i −i

)(

i 0
0 −i

)(

1 −i
1 i

)

.

Consider next,

B =





1 0 1
0 1 1
0 0 2



 (9.29)

and note that [E,L] = eig(B) returns

E =





1 0 1/
√

3

0 1 1/
√

3

0 0 1/
√

3



 L =





1 0 0
0 1 0
0 0 2





and so B = ELE−1. We note that although we did not explicitly compute the resolvent we do
not have explicit information about the orders of its poles. However, as Matlab has returned 2
eigenvalues, λ1 = 1 and λ2 = 2, with geometric multiplicities n1 = 2 (the first two columns of E
are linearly independent) and n2 = 1 it follows that m1 = m2 = 1.

9.5. The Characteristic Polynomial

Our understanding of eigenvalues as poles of the resolvent has permitted us to exploit the beau-
tiful field of complex integration and arrive at a (hopefully) clear understanding of the Spectral
Representation. It is time however to take note of alternate paths to this fundamental result. In
fact the most common understanding of eigenvalues is not via poles of the resolvent but rather as
zeros of the characteristic polynomial. Of course an eigenvalue is an eigenvalue and mathematics
will not permit contradictory definitions. The starting point is as above - an eigenvalue of the n-
by-n matrix B is a value of s for which (sI −B) is not invertible. Of the many tests for invertibility
let us here recall that a matrix is not invertible if and only if it has a zero pivot. If we denote the
jth pivot of B by pj(B) we may define the determinant of B as

det(B) ≡
n
∏

j=1

pj(B)

For example, the pivots of

B =

(

a b
c d

)

are a and d − bc/a and so
det(B) ≡ ad − bc.

70



Similarly, the pivots of

sI − B =

(

s − a −b
−c s − d

)

are s − a and (s − d) − bc/(s − a) and so

χB(s) = (s − a)(s − d) − bc.

This is a degree-2 polynomial for the 2-by-2 matrix B. The formula that defines the determinant
of a general n-by-n matrix, though complicated, always involves an alternating sum of products of
n elements of B, and hence

χB(s) ≡ det(sI − B)

is a polynomial of degree n. It is called the characteristic polynomial of B. Since the zeros
of χB(s) are the points where det(sI − B) = 0, those zeros are precisely the points where sI − B
is not invertible, i.e., the eigenvalues of B. The Fundamental Theorem of Algebra tells us that a
degree-n polynomial has no more than n roots, and thus an n-by-n matrix can never have more
than n distinct eigenvalues. In the language of §9.3, we must have h ≤ n. Let us look at a few
examples. First, consider the matrix from §9.5,

B =

(

0 1
−1 0

)

.

The simple formula for the 2-by-2 determinant leads to

det(sI − B) = s2 + 1 = (s − i)(s + i),

confirming that the eigenvalues of B are ±i.
For larger matrices we turn to Matlab . Its poly function directly delivers the coefficients of

the characteristic polynomial. Returning to the 3-by-3 example of (9.1), we find
>> B = [1 1 0; 0 1 0; 0 0 2]
>> chi B = poly(B)
chi B = 1 -4 5 -2
>> roots(p)
2.0000
1.0000 + 0.0000i
1.0000 - 0.0000i

which means χB(s) = s3 − 4s2 + 5s − 2 = (s − 1)2(s − 2) which is none other than the common
denominator in our resolvent (9.2). It is interesting to contrast this with the example of (9.29).
They have the same characteristic polynomials and therefore the same eigenvalues, although the
latter is semisimple while the former is not.

9.6. Exercises

1. Argue as in Proposition 9.1 that if j 6= k then DjPk = PjDk = 0.

2. Argue from (9.24) and P 2
j = Pj that DjPj = PjDj = Dj.
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3. We suggested in Chapter 6 that x(t) = exp(Bt)x(0) is the solution of the dynamical system
x′(t) = Bx(t). Let us confirm that our representation (for semisimple B)

exp(Bt) =
h
∑

j=1

exp(λjt)Pj (9.30)

indeed satisfies
(exp(Bt))′ = B exp(Bt).

To do this merely compare the t derivative of (9.30) with the product of

B =
h
∑

j=1

λjPj

and (9.30).

4. Let us compute the matrix exponential, exp(Bt), for the nonsemisimple matrix B in (9.1) by
following the argument that took us from (9.16) to (9.19). To begin, deduce from

(zI − B)−1 =
1

z − λ1

P1 +
1

(z − λ1)2
D1 +

1

z − λ2

P2

that

(I − B/z)−1 =
1

1 − λ1/z
P1 +

1

z(1 − λ1/z)2
D1 +

1

1 − λ2/z
P2.

Next take explicit products of this matrix with itself and deduce (using exercise 2) that

(I − B/z)−k =
1

(1 − λ1/z)k
P1 +

k

z(1 − λ1/z)k+1
D1 +

1

(1 − λ2/z)k
P2.

Next set z = k/t and find that

(I − (t/k)B)−k =
1

(1 − (t/k)λ1)k
P1 +

t

(1 − (t/k)λ1)k+1
D1 +

1

(1 − (t/k)λ2)k
P2,

and deduce that

exp(Bt) = lim
k→∞

(I − (t/k)B)−k = exp(λ1t)P1 + t exp(λ1t)D1 + exp(λ2t)P2.

Finally, argue as in the previous exercise that (exp(Bt))′ = B exp(Bt).

5. We would now like to argue, by example, that the Fourier Matrix of Exer. 7.7 diagonalizes
every circulant matrix. We call this matrix

B =









2 8 6 4
4 2 8 6
6 4 2 8
8 6 4 2









circulant because each column is a shifted version of its predecessor. First compare the results
of eig(B) and F ∗

4 B(:, 1) and then confirm that

B = F4diag(F ∗
4 B(:, 1))F ∗

4 /4.

Why must we divide by 4? Now check the analogous formula on a circulant 5-by-5 circulant
matrix of your choice. Submit a marked-up diary of your computations.
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6. Let us return exercise 6.7 and study the eigenvalues of B as functions of the damping d when
each mass and stiffness is 1. In this case

B =

(

0 I
−S −dS

)

where S =





2 −1 0
−1 2 −1
0 −1 2



 .

(i) Write and execute a Matlab program that plots, as below, the 6 eigenvalues of B as d
ranges from 0 to 1.1 in increments of 0.005.

−2.5 −2 −1.5 −1 −0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

real

im
ag

in
ar

y

Figure 9.1. Trajectories of eigenvalues of the damped chain as the damping increased.

(ii) Argue that if [u; v]T is an eigenvalue of B with eigenvalue λ then v = λu and −Su−dSv =
λv. Substitute the former into the latter and deduce that

Su =
−λ2

1 + dλ
u.

(iii) Confirm, from Exercise 7.10, that the eigenvalues of S are µ1 = 2 +
√

2, µ2 = 2 and
µ3 = 2 −

√
2 and hence that the six eigenvalues of B are the roots of the 3 quadratics

λ2 + dµjλ + µj = 0, i.e., λ±j =
−dµj ±

√

(dµj)2 − 4µj

2
.

Deduce from the projections in Exer. 7.10 the 6 associated eigenvectors of B.

(iv) Now argue that when d obeys (dµj)
2 = 4µj that a complex pair of eigenvalues of B collide

on the real line and give rise to a nonsemisimple eigenvalue. Describe Figure 9.1 in light of
your analysis.
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10. The Spectral Representation of a Symmetric Matrix

Our goal in this chapter is to show that if B is symmetric then
• each eigenvalue, λj, is real,
• each eigenprojection, Pj, is symmetric and
• each eigennilpotent, Dj, vanishes.

Let us begin with an example. The resolvent of

B =





1 1 1
1 1 1
1 1 1





is

R(s) =
1

s(s − 3)





s − 2 1 1
1 s − 2 1
1 1 s − 2





=
1

s





2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3



+
1

s − 3





1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3



 .

=
1

s − λ1

P1 +
1

s − λ2

P2

and so indeed each of the bullets holds true. With each of the Dj falling by the wayside you may
also expect that the respective geometric and algebraic multiplicities coincide.

10.1. The Spectral Representation

We begin with
Proposition 10.1. If B is real and B = BT then the eigenvalues of B are real.

Proof: We suppose that λ and x comprise an eigenpair of B, i.e., Bx = λx and show that λ = λ.
On conjugating each side of this eigen equation we find

Bx = λx and Bx = λx (10.1)

where we have used the fact that B is real. We now take the inner product of the first with x and
the second with x and find

xT Bx = λ‖x‖2 and xT Bx = λ‖x‖2. (10.2)

The left hand side of the first is a scalar and so equal to its transpose

xT Bx = (xT Bx)T = xT BT x = xT Bx (10.3)

where in the last step we used B = BT . Combining (10.2) and (10.3) we see

λ‖x‖2 = λ‖x‖2.

Finally, as ‖x‖ > 0 we may conclude that λ = λ. End of Proof.

We next establish
Proposition 10.2. If B is real and B = BT then each eigenprojection, Pj, and each eigennilpotent,
Dj, is real and symmetric.
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Proof: From the fact (please prove it) that “the transpose of the inverse is the inverse of the
transpose” we learn that

{(sI − B)−1}T = {(sI − B)T}−1 = (sI − B)−1

i.e., the resolvent of a symmetric matrix is symmetric. Hence

P T
j =

(

1

2πi

∫

Cj

(sI − B)−1 ds

)T

=
1

2πi

∫

Cj

{(sI − B)−1}T ds

=
1

2πi

∫

Cj

(sI − B)−1 ds = Pj.

By the same token, we find that each DT
j = Dj. The elements of Pj and Dj are real because they

are residues of real functions evaluated at real poles. End of Proof.

The next result will banish the nilpotent component.

Proposition 10.3. The zero matrix is the only real symmetric nilpotent matrix.
Proof: Suppose that D is n-by-n and D = DT and Dm = 0 for some positive integer m. We

show that Dm−1 = 0 by showing that every vector lies in its null space. To wit, if x ∈ Rn then

‖Dm−1x‖2 = xT (Dm−1)T Dm−1x

= xT Dm−1Dm−1x

= xT Dm−2Dmx

= 0.

As Dm−1x = 0 for every x it follows (recall Exercise 3.3) that Dm−1 = 0. Continuing in this fashion
we find Dm−2 = 0 and so, eventually, D = 0. End of Proof.

We have now established the key result of this chapter.

Proposition 10.4. If B is real and symmetric then

B =
h
∑

j=1

λjPj (10.4)

where the λj are real and the Pj are real orthogonal projections that sum to the identity and whose
pairwise products vanish.

One indication that things are simpler when using the spectral representation is

B100 =
h
∑

j=1

λ100
j Pj. (10.5)

As this holds for all powers it even holds for power series. As a result,

exp(B) =
h
∑

j=1

exp(λj)Pj.

75



It is also extremely useful in attempting to solve

Bx = b

for x. Replacing B by its spectral representation and b by Ib or, more to the point by
∑

j Pjb we
find

h
∑

j=1

λjPjx =
h
∑

j=1

Pjb.

Multiplying through by P1 gives λ1P1x = P1b or P1x = P1b/λ1. Multiplying through by the
subsequent Pjs gives Pjx = Pjb/λj. Hence,

x =
h
∑

j=1

Pjx =
h
∑

j=1

1

λj

Pjb. (10.6)

We clearly run in to trouble when one of the eigenvalues vanishes. This, of course, is to be expected.
For a zero eigenvalue indicates a nontrivial null space which signifies dependencies in the columns
of B and hence the lack of a unique solution to Bx = b.

Another way in which (10.6) may be viewed is to note that, when B is symmetric, (9.15) takes
the form

(zI − B)−1 =
h
∑

j=1

1

z − λj

Pj.

Now if 0 is not an eigenvalue we may set z = 0 in the above and arrive at

B−1 =
h
∑

j=1

1

λj

Pj. (10.7)

Hence, the solution to Bx = b is

x = B−1b =
h
∑

j=1

1

λj

Pjb,

as in (10.6). With (10.7) we have finally reached a point where we can begin to define an inverse
even for matrices with dependent columns, i.e., with a zero eigenvalue. We simply exclude the
offending term in (10.7). Supposing that λh = 0 we define the pseudo–inverse of B to be

B+ ≡
h−1
∑

j=1

1

λj

Pj.

Let us now see whether it is deserving of its name. More precisely, when b ∈ R(B) we would expect
that x = B+b indeed satisfies Bx = b. Well

BB+b = B
h−1
∑

j=1

1

λj

Pjb =
h−1
∑

j=1

1

λj

BPjb =
h−1
∑

j=1

1

λj

λjPjb =
h−1
∑

j=1

Pjb.

It remains to argue that the latter sum really is b. We know that

b =
h
∑

j=1

Pjb and b ∈ R(B).

76



The latter informs us that b ⊥ N (BT ). As B = BT we have in fact that b ⊥ N (B). As Ph is
nothing but orthogonal projection onto N (B) it follows that Phb = 0 and so B(B+b) = b, that is,
x = B+b is a solution to Bx = b.

The representation (10.5) is unarguably terse and in fact is often written out in terms of individual
eigenvectors. Let us see how this is done. Note that if x ∈ R(P1) then x = P1x and so

Bx = BP1x =
h
∑

j=1

λjPjP1x = λ1P1x = λ1x,

i.e., x is an eigenvector of B associated with λ1. Similarly, every (nonzero) vector in R(Pj) is an
eigenvector of B associated with λj.

Next let us demonstrate that each element of R(Pj) is orthogonal to each element of R(Pk) when
j 6= k. If x ∈ R(Pj) and y ∈ R(Pk) then

xT y = (Pjx)T Pky = xT PjPky = 0.

With this we note that if {xj,1, xj,2, . . . , xj,nj
} constitutes a basis for R(Pj) then in fact the union

of such bases,
{xj,p : 1 ≤ j ≤ h, 1 ≤ p ≤ nj}, (10.8)

forms a linearly independent set. Notice now that this set has

h
∑

j=1

nj

elements. That these dimensions indeed sum to the ambient dimension, n, follows directly from the
fact that the underlying Pj sum to the n-by-n identity matrix. We have just proven

Proposition 10.5. If B is real and symmetric and n-by-n then B has a set of n linearly independent
eigenvectors.

Getting back to a more concrete version of (10.5) we now assemble matrices from the individual
bases

Ej ≡ [xj,1 xj,2 . . . xj,nj
]

and note, once again, that Pj = Ej(E
T
j Ej)

−1ET
j , and so

B =
h
∑

j=1

λjEj(E
T
j Ej)

−1ET
j . (10.9)

I understand that you may feel a little underwhelmed with this formula. If we work a bit harder
we can remove the presence of the annoying inverse. What I mean is that it is possible to choose a
basis for each R(Pj) for which each of the corresponding Ej satisfy ET

j Ej = I. As this construction
is fairly general let us devote a separate section to it.

10.2. Gram–Schmidt Orthogonalization

Suppose that M is an m-dimensional subspace with basis

{x1, . . . , xm}.
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We transform this into an orthonormal basis

{q1, . . . , qm}

for M via
(GS1) Set y1 = x1 and q1 = y1/‖y1‖.
(GS2) y2 = x2 minus the projection of x2 onto the line spanned by q1. That is

y2 = x2 − q1(q
T
1 q1)

−1qT
1 x2 = x2 − q1q

T
1 x2.

Set q2 = y2/‖y2‖ and Q2 = [q1 q2].
(GS3) y3 = x3 minus the projection of x3 onto the plane spanned by q1 and q2. That is

y3 = x3 − Q2(Q
T
2 Q2)

−1QT
2 x3

= x3 − q1q
T
1 x3 − q2q

T
2 x3.

Set q3 = y3/‖y3‖ and Q3 = [q1 q2 q3].
Continue in this fashion through step
(GSm) ym = xm minus its projection onto the subspace spanned by the columns of Qm−1. That is

ym = xm − Qm−1(Q
T
m−1Qm−1)

−1QT
m−1xm

= xm −
m−1
∑

j=1

qjq
T
j xm.

Set qm = ym/‖ym‖.
To take a simple example, let us orthogonalize the following basis for R3,

x1 = [1 0 0]T , x2 = [1 1 0]T , x3 = [1 1 1]T .

(GS1) q1 = y1 = x1.
(GS2) y2 = x2 − q1q

T
1 x2 = [0 1 0]T , and so q2 = y2.

(GS3) y3 = x3 − q1q
T
1 x3 − q2q

T
2 x3 = [0 0 1]T , and so q3 = y3.

We have arrived at

q1 = [1 0 0]T , q2 = [0 1 0]T , q3 = [0 0 1]T . (10.10)

Once the idea is grasped the actual calculations are best left to a machine. Matlab accomplishes
this via the orth command. Its implementation is a bit more sophisticated than a blind run through
our steps (GS1) through (GSm). As a result, there is no guarantee that it will return the same
basis. For example

>> X=[1 1 1;0 1 1;0 0 1];
>> Q=orth(X)
Q =
0.7370 -0.5910 0.3280
0.5910 0.3280 -0.7370
0.3280 0.7370 0.5910

This ambiguity does not bother us, for one orthogonal basis is as good as another. We next put
this into practice, via (10.9).
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10.3. The Diagonalization of a Symmetric Matrix

By choosing an orthogonal basis {qj,k : 1 ≤ k ≤ nj} for each R(Pj) and collecting the basis
vectors in

Qj = [qj,1 qj,2 · · · qj,nj
]

we find that

Pj = QjQ
T
j =

nj
∑

k=1

qj,kq
T
j,k.

As a result, the spectral representation (10.9) takes the form

B =
h
∑

j=1

λjQjQ
T
j =

h
∑

j=1

λj

nj
∑

k=1

qj,kq
T
j,k. (10.11)

This is the spectral representation in perhaps its most detailed dress. There exists, however, still
another form! It is a form that you are likely to see in future engineering courses and is achieved
by assembling the Qj into a single n-by-n orthonormal matrix

Q = [Q1 · · · Qh].

Having orthonormal columns it follows that QT Q = I. Q being square, it follows in addition that
QT = Q−1. Now

Bqj,k = λjqj,k

may be encoded in matrix terms via
BQ = QΛ (10.12)

where Λ is the n-by-n diagonal matrix whose first n1 diagonal terms are λ1, whose next n2 diagonal
terms are λ2, and so on. That is, each λj is repeated according to its multiplicity. Multiplying each
side of (10.12), from the right, by QT we arrive at

B = QΛQT . (10.13)

Because one may just as easily write

QT BQ = Λ (10.14)

one says that Q diagonalizes B.
Let us return to our example

B =





1 1 1
1 1 1
1 1 1





of the last chapter. Recall that the eigenspace associated with λ1 = 0 had

e1,1 = [−1 1 0]T and e1,2 = [−1 0 1]T

for a basis. Via Gram–Schmidt we may replace this with

q1,1 =
1√
2
[−1 1 0]T and q1,2 =

1√
6
[−1 − 1 2]T .
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Normalizing the vector associated with λ2 = 3 we arrive at

q2 =
1√
3
[1 1 1]T ,

and hence

Q = [q1,1 q1,2 q2] =
1√
6





−
√

3 −1
√

2√
3 −1

√
2

0 2
√

2



 and Λ =





0 0 0
0 0 0
0 0 3



 .

10.4. Rayleigh’s Principle and the Power Method

As the eigenvalues of an n-by-n symmetric matrix, B, are real we may order them from high to
low,

λ1 ≥ λ2 ≥ · · · ≥ λn.

In this section we will derive two extremely useful characterizations of the largest eigenvalue. The
first was discovered by Lord Rayleigh in his research on sound and vibration. To begin, we denote
the associated orthonormal eigenvectors of B by

q1, q2, . . . , qn

and note that each x ∈ Rn enjoys the expansion

x = (xT q1)q1 + (xT q2)q2 + · · · + (xT qn)qn. (10.15)

Applying B to each side we find

Bx = (xT q1)λ1q1 + (xT q2)λ2q2 + · · · + (xT qn)λnqn. (10.16)

Now taking the inner product of (10.15) and (10.16) we find

xT Bx = (xT q1)
2λ1 + (xT q2)

2λ2 + · · · + (xT qn)2λn

≤ λ1{(xT q1)
2 + (xT q2)

2 + · · · + (xT qn)2}
= λ1x

T x.

That is, xT Bx ≤ λ1x
T x for every x ∈ Rn. This, together with the fact that qT

1 Bq1 = λ1q
T
1 q1

establishes

Proposition 10.6. Rayleigh’s Principle. If B is symmetric then its largest eigenvalue is

λ1 = max
x 6=0

xT Bx

xT x

and the maximum is attained on the line through q1.

For our next characterization we return to (10.16) and record higher powers of B onto x

Bkx = (xT q1)λ
k
1q1 + (xT q2)λ

k
2q2 + · · · + (xT qn)λk

nqn

= (xT q1)λ
k
1

(

q1 +
xT q2

xT q1

λk
2

λk
1

q2 + · · · + xT qn

xT q1

λk
n

λk
1

qn

)

.
(10.17)
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And so, using sign(t) ≡ t/|t|,
Bkx

‖Bkx‖ = sign(λk
1x

T q1)q1 + O((λ2/λ1)
k)

and note that the latter term goes to zero with increasing k so long as λ1 is strictly greater than
λ2. If, in addition, we assume that λ1 > 0, then the first term does not depend on k and we arrive
at

Proposition 10.7. The Power Method. If B is symmetric and its greatest eigenvalue is simple
and positive and the initial guess, x, is not orthogonal to q1 then

lim
k→∞

Bkx

‖Bkx‖ = sign(xT q1)q1

10.5. Exercises

1. The stiffness matrix associated with the unstable swing of figure 2.2 is

S =









1 0 −1 0
0 1 0 0
−1 0 1 0
0 0 0 1









.

(i) Find the three distinct eigenvalues, λ1 = 1, λ2 = 2, λ3 = 0, along with their associated
eigenvectors e1,1, e1,2, e2,1, e3,1, and projection matrices, P1, P2, P3. What are the respective
geometric multiplicities?

(ii) Use the folk theorem that states “in order to transform a matrix it suffices to transform its
eigenvalues” to arrive at a guess for S1/2. Show that your guess indeed satisfies S1/2S1/2 = S.
Does your S1/2 have anything in common with the element-wise square root of S?

(iii) Show that R(P3) = N (S).

(iv) Assemble

S+ =
1

λ1

P1 +
1

λ2

P2

and check your result against pinv(S) in Matlab .

(v) Use S+ to solve Sx = f where f = [0 1 0 2]T and carefully draw before and after pictures
of the unloaded and loaded swing.

(vi) It can be very useful to sketch each of the eigenvectors in this fashion. In fact, a movie is
the way to go. Please run the Matlab truss demo by typing truss and view all 12 of the
movies. Please sketch the 4 eigenvectors of (i) by showing how they deform the swing.

2. The Cayley-Hamilton Theorem. Use Proposition 10.4 to show that if B is real and symmetric
and p(z) is a polynomial then

p(B) =
h
∑

j=1

p(λj)Pj. (10.18)

Confirm this in the case that B is the matrix in Exercise 1 and p(z) = z2 + 1. Deduce from
(10.18) that if p is the characteristic polynomial of B, i.e., p(z) = det(zI −B), then p(B) = 0.
Confirm this, via the Matlab command, poly, on the S matrix in Exercise 1.
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3. Argue that the least eigenvalue of a symmetric matrix obeys the minimum principle

λn = min
x 6=0

xT Bx

xT x
(10.19)

and that the minimum is attained at qn.

4. The stiffness of a fiber net is typically equated with the least eigenvalue of its stiffness matrix.
Let B be the stiffness matrix constructed in Exercise 2 of §2.5, and let C denote the stiffness
matrix of the same net, except that the stiffness of fiber 4 is twice that used in constructing
B. Show that xT Bx ≤ xT Cx for all x ∈ R4 and then deduce from (10.19) that the stiffness of
the C network exceeds the stiffness of the B network.

5. The Power Method. Submit a Matlab diary of your application of the Power Method to the
S matrix in Exercise 1.
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11. The Singular Value Decomposition

11.1. Introduction

The singular value decomposition is, in a sense, the spectral representation of a rectangular
matrix. Of course if A is m-by-n and m 6= n then it does not make sense to speak of the eigenvalues
of A. We may, however, rely on the previous section to give us relevant spectral representations of
the two symmetric matrices

AT A and AAT .

That these two matrices together may indeed tell us ‘everything’ about A can be gleaned from

N (AT A) = N (A), N (AAT ) = N (AT ),

R(AT A) = R(AT ), and R(AAT ) = R(A).

You have proven the first of these in a previous exercise. The proof of the second is identical. The
row and column space results follow from the first two via orthogonality.

On the spectral side, we shall now see that the eigenvalues of AAT and AT A are nonnegative
and that their nonzero eigenvalues coincide. Let us first confirm this on the A matrix associated
with the unstable swing (see figure 2.2)

A =





0 1 0 0
−1 0 1 0
0 0 0 1



 . (11.1)

The respective products are

AAT =





1 0 0
0 2 0
0 0 1



 and AT A =









1 0 −1 0
0 1 0 0
−1 0 1 0
0 0 0 1









.

Analysis of the first is particularly simple. Its null space is clearly just the zero vector while λ1 = 2
and λ2 = 1 are its eigenvalues. Their geometric multiplicities are n1 = 1 and n2 = 2. In AT A we
recognize the S matrix from exercise 10.1 and recall that its eigenvalues are λ1 = 2, λ2 = 1, and
λ3 = 0 with multiplicities n1 = 1, n2 = 2, and n3 = 1. Hence, at least for this A, the eigenvalues of
AAT and AT A are nonnegative and their nonzero eigenvalues coincide. In addition, the geometric
multiplicities of the nonzero eigenvalues sum to 3, the rank of A.

Proposition 11.1. The eigenvalues of AAT and AT A are nonnegative. Their nonzero eigenvalues,
including geometric multiplicities, coincide. The geometric multiplicities of the nonzero eigenvalues
sum to the rank of A.

Proof: If AT Ax = λx then xT AT Ax = λxT x, i.e., ‖Ax‖2 = λ‖x‖2 and so λ ≥ 0. A similar
argument works for AAT .

Now suppose that λj > 0 and that {xj,k}nj

k=1 constitutes an orthogonal basis for the eigenspace
R(Pj). Starting from

AT Axj,k = λjxj,k (11.2)

we find, on multiplying through (from the left) by A that

AAT Axj,k = λjAxj,k,
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i.e., λj is an eigenvalue of AAT with eigenvector Axj,k, so long as Axj,k 6= 0. It follows from the

first paragraph of this proof that ‖Axj,k‖ =
√

λj, which, by hypothesis, is nonzero. Hence,

yj,k ≡ Axj,k√
λj

, 1 ≤ k ≤ nj (11.3)

is a collection of unit eigenvectors of AAT associated with λj. Let us now show that these vectors
are orthonormal for fixed j.

yT
j,iyj,k =

1

λj

xT
j,iA

T Axj,k = xT
j,ixj,k = 0.

We have now demonstrated that if λj > 0 is an eigenvalue of AT A of geometric multiplicity nj

then it is an eigenvalue of AAT of geometric multiplicity at least nj. Reversing the argument, i.e.,
generating eigenvectors of AT A from those of AAT we find that the geometric multiplicities must
indeed coincide.

Regarding the rank statement, we discern from (11.2) that if λj > 0 then xj,k ∈ R(AT A). The
union of these vectors indeed constitutes a basis for R(AT A), for anything orthogonal to each of
these xj,k necessarily lies in the eigenspace corresponding to a zero eigenvalue, i.e., in N (AT A). As
R(AT A) = R(AT ) it follows that dimR(AT A) = r and hence the nj, for λj > 0, sum to r. End of
Proof.

Let us now gather together some of the separate pieces of the proof. For starters, we order the
eigenvalues of AT A from high to low,

λ1 > λ2 > · · · > λh

and write
AT A = XΛnXT (11.4)

where
X = [X1 · · ·Xh], where Xj = [xj,1 · · ·xj,nj

]

and Λn is the n-by-n diagonal matrix with λ1 in the first n1 slots, λ2 in the next n2 slots, etc.
Similarly

AAT = Y ΛmY T (11.5)

where
Y = [Y1 · · ·Yh], where Yj = [yj,1 · · · yj,nj

].

and Λm is the m-by-m diagonal matrix with λ1 in the first n1 slots, λ2 in the next n2 slots, etc. The
yj,k were defined in (11.3) under the assumption that λj > 0. If λj = 0 let Yj denote an orthonormal
basis for N (AAT ). Finally, call

σj =
√

λj

and let Σ denote the m-by-n matrix diagonal matrix with σ1 in the first n1 slots and σ2 in the next
n2 slots, etc. Notice that

ΣT Σ = Λn and ΣΣT = Λm. (11.6)

Now recognize that (11.3) may be written

Axj,k = σjyj,k
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and that this is simply the column by column rendition of

AX = Y Σ.

As XXT = I we may multiply through (from the right) by XT and arrive at the singular value
decomposition of A,

A = Y ΣXT . (11.7)

Let us confirm this on the A matrix in (11.1). We have

Λ4 =









2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









and X =
1√
2









−1 0 0 1

0
√

2 0 0
1 0 0 1

0 0
√

2 0









and

Λ3 =





2 0 0
0 1 0
0 0 1



 and Y =





0 1 0
1 0 0
0 0 1



 .

Hence,

Σ =





√
2 0 0 0

0 1 0 0
0 0 1 0



 (11.8)

and so A = Y ΣXT says that A should coincide with





0 1 0
1 0 0
0 0 1









√
2 0 0 0

0 1 0 0
0 0 1 0













−1/
√

2 0 1/
√

2 0
0 1 0 0
0 0 0 1

1/
√

2 0 1/
√

2 0









.

This indeed agrees with A. It also agrees (up to sign changes in the columns of X) with what one
receives upon typing [Y,SIG,X]=svd(A) in Matlab .

You now ask what we get for our troubles. I express the first dividend as a proposition that
looks to me like a quantitative version of the fundamental theorem of linear algebra.

Proposition 11.2. If Y ΣXT is the singular value decomposition of A then
(i) The rank of A, call it r, is the number of nonzero elements in Σ.
(ii) The first r columns of X constitute an orthonormal basis for R(AT ). The n − r last columns
of X constitute an orthonormal basis for N (A).
(iii) The first r columns of Y constitute an orthonormal basis for R(A). The m− r last columns of
Y constitute an orthonormal basis for N (AT ).

Let us now ‘solve’ Ax = b with the help of the pseudo–inverse of A. You know the ‘right’ thing
to do, namely reciprocate all of the nonzero singular values. Because m is not necessarily n we must
also be careful with dimensions. To be precise, let Σ+ denote the n-by-m matrix whose first n1

diagonal elements are 1/σ1, whose next n2 diagonal elements are 1/σ2 and so on. In the case that
σh = 0, set the final nh diagonal elements of Σ+ to zero. Now, one defines the pseudo-inverse of
A to be

A+ ≡ XΣ+Y T .
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Taking the A of (11.1) we find

Σ+ =









1/
√

2 0 0
0 1 0
0 0 1
0 0 0









and so

A+ =









−1/
√

2 0 0 1/
√

2
0 1 0 0

1/
√

2 0 0 1/
√

2
0 0 1 0

















1/
√

2 0 0
0 1 0
0 0 1
0 0 0













0 1 0
1 0 0
0 0 1





=









0 −1/2 0
1 0 0
0 1/2 0
0 0 1









in agreement with what appears from pinv(A). Let us now investigate the sense in which A+ is
the inverse of A. Suppose that b ∈ Rm and that we wish to solve Ax = b. We suspect that A+b
should be a good candidate. Observe now that

(AT A)A+b = XΛnXT XΣ+Y T b by (11.4)

= XΛnΣ+Y T b because XT X = I

= XΣT ΣΣ+Y T b by (11.6)

= XΣT Y T b because ΣT ΣΣ+ = ΣT

= AT b by (11.7),

that is, A+b satisfies the least-squares problem AT Ax = AT b.

11.2. The SVD in Image Compression

Most applications of the SVD are manifestations of the folk theorem, The singular vectors asso-

ciated with the largest singular values capture the essence of the matrix. This is most easily seen
when applied to gray scale images. For example, the jpeg associated with the image in the top
left of figure 11.2 is 262-by-165 matrix. Such a matrix-image is read, displayed and ‘decomposed’ by
M = imread(’jb.jpg’); imagesc(M); colormap(gray);
[Y,S,X] = svd(double(M));
The singular values lie on the diagonal of S and are arranged in decreasing order. We see their
rapid decline in Figure 11.1.
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Figure 11.1. The singular values of John Brown.

We now experiment with quantitative versions of the folk theorem. In particular, we examine the
result of keeping but the first k singular vectors and values. That is we construct

Ak = Y(:,1:k)*S(1:k,1:k)*X(:,1:k)’;

for decreasing values of k.

Figure 11.2. The results of imagesc(Ak) for, starting at the top left, k=165, 64, 32 and
moving right, and then starting at the bottom left and moving right, k=24,20,16.
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11.3. Trace, Norm and Low Rank Approximation

In this section we establish a precise version of last section’s folk theorem. To prepare the way
we will need the notion of matrix trace and norm. The trace of an n-by-n matrix B is simply the
sum of its diagonal elements

tr(B) ≡
n
∑

j=1

Bjj. (11.9)

It enjoys a very useful property, namely, if A is also n-by-n then

tr(AB) = tr(BA). (11.10)

From here we arrive at a lovely identity for symmetric matrices. Namely, if B = BT and we list its
eigenvalues, including multiplicities, {λ1, λ2, . . . , λn} then, from (10.13) it follows that

tr(B) = tr(QΛQT ) = tr(ΛQQT ) = tr(Λ) =
n
∑

j=1

λj. (11.11)

You might wish to confirm that this holds for the many examples we’ve accumulated. From here
we may now study the properties of the natural, or Frobenius, norm of an m-by-n matrix A,

‖A‖F ≡
(

m
∑

i=1

n
∑

j=1

A2
ij

)1/2

. (11.12)

It is not difficult to establish that in fact

‖A‖F = (tr(AAT ))1/2 (11.13)

from which we may deduce from (11.11) that

‖A‖2
F =

m
∑

i=1

λi(AAT ) =
m
∑

i=1

σ2
i ,

i.e., the Frobenius norm of a matrix is the square root of the sum of the squares of its singular
values. We will also need the fact that if Q is square and QT Q = I then

‖QA‖2
F = tr(QAAT QT ) = tr(AAT QT Q) = tr(AAT ) = ‖A‖2

F . (11.14)

The same argument reveals that ‖AQ‖F = ‖A‖F . We may now establish

Proposition 11.3. Given an m-by-n matrix A (with SVD A = Y ΣXT ) and a whole number
k ≤ min{m,n} then the best (in terms of Frobenius distance) rank k approximation of A is

Ak = Y (:, 1 : k)Σ(1 : k, 1 : k)X(:, 1 : k)T .

The square of the associated approximation error is

‖A − Ak‖2
F = min

rank(B)=k
‖A − B‖2

F =
∑

j>k

σ2
j .

Proof: If B is m-by-n then

‖A − B‖2
F = ‖Y ΣXT − B‖2

F = ‖Y (Σ − Y T BX)XT‖2
F = ‖Σ − Y T BX‖2

F .
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If B is to be chosen, among matrices of rank k, to minimize this distance then, as Σ is diagonal, so
too must Y T BX. If we denote this diagonal matrix by S then

Y T BX = S implies B = Y SXT ,

and so
‖A − B‖2

F =
∑

j

(σj − sj)
2.

As the rank of B is k it follows that the best choice of the sj is sj = σj for j = 1 : k and sj = 0
there after. End of Proof.

11.4. Exercises

1. Suppose that A is m-by-n and b is m-by-1. Set x+ = A+b and suppose x satisfies AT Ax = AT b.
Prove that ‖x+‖ ≤ ‖x‖. (Hint: decompose x = xR + xN into its row space and null space
components. Likewise x+ = x+

R +x+
N . Now argue that xR = x+

R and x+
N = 0 and recognize that

you are almost home.)

2. Experiment with compressing the bike image below (also under Resources on our Owlspace
page). Submit labeled figures corresponding to several low rank approximations. Note:
bike.jpg is really a color file, so after saving it to your directory and entering Matlab you
might say M = imread(’bike.jpg’) and then M = M(:,:,1) prior to imagesc(M)
and colormap(’gray’).

3. Please prove the identity (11.10).

4. Please prove the identity (11.13).
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12. Reduced Dynamical Systems

We saw in the last chapter how to build low rank approximations of matrices using the Singular
Value Decomposition, with applications to image compression. We devote this chapter to building
reduced models of dynamical systems from variations of the power method, with applications to
neuronal modeling.

12.1. The Full Model

We consider distributed current injection into passive RC cable of Chapter 6. We suppose it has
length ℓ and radius a and we choose a compartment length dx and arrive at n = ℓ/dx compartments.
The cell’s axial resistivity is R. Its membrane capacitance and conductance are Cm and GL.

L L
L L

u 1 u u u2 3 n

m m m mC C C C

v2 v3

G G G G

R R vn
v1

Figure 12.1. The full RC cable.

If uj is the synaptic current injected at node j and vj is the transmembrane potential there then
(arguing as in Chapter 6) v obeys the differential equation

Cv′(t) + Gv(t) = u(t), (12.1)

where

C = (2πadxCm)In, G = (2πadxGL)In − πa2

Rdx
Sn,

In is the n-by-n identity matrix and Sn is the n-by-n second–difference matrix

Sn =













−1 1 0 0 · · · 0
1 −2 1 0 · · · 0
· · · · · ·
0 · · · 0 1 −2 1
0 · · · 0 0 1 −1













(12.2)

We divide through by 2πadxCm and arrive at

v′(t) = Bv(t) + g(t)

where
B =

a

2RCmdx2
Sn − (GL/Cm)In and g = u/(2πadxCm). (12.3)

We will construct a reduced model that faithfully reproduces the response at a specified compart-
ment (the putative spike initiation zone), assumed without loss to be the first,

y(t) = qT v(t), where qT = (1 0 0 · · · 0),

to an arbitrary stimulus, u. On applying the Laplace Transform to each side of (12.1) we find

sLv = BLv + Lg
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and so the output
Ly = qTLv = qT (sI − B)−1Lg ≡ H(s)Lg

may be expressed in terms of the transfer function

H(s) ≡ qT (sI − B)−1.

12.2. The Reduced Model

We choose a reduced dimension k and an n × k orthonormal reducer X, suppose v = Xv̂ and
note that v̂ is governed by the reduced system

v̂′(t) = XT BXv̂(t) + XT g(t),

ŷ(t) = qT Xv̂(t),

We choose X so that the associated transfer function,

Ĥ(s) = qT X(sIk − XT BX)−1XT ,

is close to H. We will see that it suffices to set

X(:, 1) = B−1q/‖B−1q‖,
X(:, j + 1) = B−1X(:, j)/‖B−1X(:, j)‖, j = 1, . . . , k − 1,

(12.4)

followed by orthonormalization,
X = orth(X).

We note that (12.4) is nothing more than the Power Method applied to B−1, and so as j increases the
associated column of X approaches the (constant) eigenvector associated with the least eigenvalue

of B. We apply this algorithm and then return to prove that it indeed makes H close to Ĥ.
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Figure 12.2. Response of the first compartment in a 100 compartment cell and the corresponding
3 compartment reduced cell to identical current injections distributed randomly in space and time.
cabred.m

Now, in order to understand why this method works so well we examine the associated transfer
functions. In particular, we examine their respective Taylor series about s = 0. To begin, we note
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that the first resolvent identity, (9.8), permits us to evaluate

R′(s) = lim
h→0

R(s + h) − R(s)

h
= lim

h→0

(−h)R(s + h)R(s)

h
= −R2(s).

and so

R′′(s) = −2R(s)R′(s) = 2R3(s), R′′′(s) = 6R2(s)R′(s) = −6R4(s),

and in general

djR(s)

dsj
= (−1)jj!Rj+1(s) and so

djR(0)

dsj
= −j!(B−1)j+1

and so

H(s) = qT R(s) = −
∞
∑

j=0

sjMj, where Mj = qT (B−1)j+1

are the associated moments. The reduced transfer function is analogously found to be

Ĥ(s) = −
∞
∑

j=0

sjM̂j, where M̂j = qT X((XT BX)−1)j+1XT . (12.5)

If M̂j = Mj for 0 ≤ j < k then Ĥ(s) = H(s) + O(sk) and so we now show that the reducer built
according to (12.4) indeed matches the first k moments.

Proposition 12.1. If (B−1)j+1q ∈ R(X) for 0 ≤ j < k then M̂j = Mj for 0 ≤ j < k.

Proof: We will show that MT
j = M̂T

j , beginning with j = 0 where

MT
0 = B−1q and M̂T

0 = X(XT BX)−1XT q.

We note that P = X(XT BX)−1XT B obeys P 2 = P and PX = X and proceed to develop

M̂T
0 = X(XT BX)−1XT q

= X(XT BX)−1XT BB−1q

= PB−1q = B−1q = MT
0 ,

where the penultimate equality follows from the assumption that B−1q ∈ R(X) and the fact that
P acts like the identity on X. When j = 1 we find

M̂T
1 = X(XT BX)−1(XT BX)−1XT q

= X(XT BX)−1XT BB−1X(XT BX)−1XT BB−1q

= PB−1PB−1q = (B−1)2q = MT
1

where the penultimate equality follows from the assumption that (B−1)2q ∈ R(X). The remaining
moment equalities follow in identical fashion. End of Proof.
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12.3. Exercises

1. Show that the n-by-n second difference Sn in (12.2) obeys

xT Snx = −
n−1
∑

j=1

(xj − xj+1)
2

for every x ∈ Rn. Why does it follow that the eigenvalues of Sn are nonpositive? Why does
it then follow that eigenvalues of the B matrix in (12.3) are negative? If we then label the
eigenvalues of B as

λn(B) ≤ λn−1(B) ≤ · · · ≤ λ2(B) ≤ λ1(B) < 0,

which eigenvector of B does (12.4) approach as j increases?

2. Please derive the Taylor expansion displayed in (12.5).

3. Please confirm that X(XT BX)−1XT B is indeed projection onto R(X).
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