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PREFACE TO THIRD EDITION.

In preparing the third edition of Engineering Mathematics,

besides revision and correction of the previous text, considera-

ble new matter has been added.

The chain fraction has been recognized and discussed as a

convenient method of numerical representation and approxi-

mation; a paragraph has been devoted to the diophantic equa-

tions, and a section added on engineering reports, discussing

the different purposes for which engineering reports are made,

and the corresponding character and nature of the report, in

its bearing on the success and recognition of the engineer's

work.

- Charles Pbotbus Steinmetz.
Camp Mohawk,

September 1st, 1917.
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PREFACE TO FIRST EDITION.

The following work embodies the subject-matter of a lecture

course which I have given to the junior and senior electrical

engineering students of Union University for a number of

years.

It is generally conceded that a fair knowledge of mathe-

matics is necessary to the engineer, and especially the electrical

engineer. For the latter, however, some branches of mathe-

matics are of fundamental importance, as the algebra of the

general number, the exponential and trigonometric series, etc.,

which are seldom adequately treated, and often not taught at

all in the usual text-books of mathematics, or in the college

course of analytic geometry and calculus given to the engineer-

ing students, and, therefore, electrical engineers often possess

little knowledge of these subjects. As the result, an electrical

engineer, even if he possess a fair knowledge of mathematics,

may often find difficulty in dealing with problems, through lack

of familiarity with these branches of mathematics, which have

become of importance in electrical engineering, and may also

find difficulty in looking up information on these subjects.

In the same way the college student, when beginning the

study of electrical engineering theory, after completing his

general course of mathematics, frequently finds himself sadly

deficient in the knowledge of mathematical subjects, of which

a complete familiarity is required for effective understanding

of electrical engineering theory. It was this experience which

led me some years ago to start the course of lectures which

is reproduced in the following pages. I have thus attempted to

bring together and discuss explicitly, with numerous practical

applications, all those branches of mathematics which are of

special importance to the electrical engineer. Added thereto

vii



viii PREFACE.

are a number of subjects which experience has shown me
to be important for the effective and expeditious execution of

electrical engineering calculations. Mere theoretical knowledge

of mathematics is not sufficient for the engineer, but it must

be accompanied by ability to apply it and derive results—to

carry out numerical calculations. It is not sufficient to know
how a phenomenon occurs, and how it may be calculated, but

very often there is a wide gap between this knowledge and the

ability to carry out the calculation; indeed, frequently an

attempt to apply the theoretical knowledge to derive numerical

results leads, even in simple problems, to apparently hopeless

complication and almost endless calculation, so that all hope

of getting reliable results vanishes. Thus considerable space

has been devoted to the discussion of methods of calculation,

the use of curves and their evaluation, and other kindred

subjects requisite for effective engineering work.

Thus the following work is not intended as a complete

course in mathematics, but as supplementary to the general

college course of mathematics, or to the general knowledge of

mathematics which every engineer and really every educated
man should possess.

In illustrating the mathematical discussion, practical

examples, usually taken from the field of electrical engineer-

ing, have been given and discussed. These are sufficiently

numerous that any example dealing with a phenomenon
with which the reader is not yet familiar may be omitted and
taken up at a later time.

As appendix is given a descriptive outline of the intro-

duction to the theory of functions, since the electrical engineer
should be familiar with the general relations between the
different functions which he meets.

In relation to " Theoretical Elements of Electrical Engineer-
ing," "Theory and Calculation of Alternating Current Phe-
nomena," and " Theory and Calculation of Transient Electric
Phenomena," the following work is intended as an introduction
and explanation of the mathematical side, and the most efficient

method of study, appears to me, to start with " Electrical
Engineering Mathematics," and after entering its third
chapter, to take up the reading of the first section of " Theo-
retical Elements," and then parallel the study of " Electrical
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Engineering Mathematics," " Theoretical Elements of Electrical

Engineering," and " Theory and Calculation of Alternating

Current Phenomena," together with selected chapters from

"Theory and Calculation of Transient Electric Phenomena,"

and after this, once more systematically go through all four

books.

Charles P. Steinmetz.

Schenectady, N. Y.,

December, 1910.

PREFACE TO SECOND EDITION.

In preparing the second edition of Engineering Mathe-

matics, besides revision and correction of the previous text,

considerable new matter has been added, more particularly

with regard to periodic curves. In the former edition the

study of the wave shapes produced by various harmonics,

and the recognition of the harmonics from the wave shape,

have not been treated, since a short discussion of wave shapes

is given in "Alternating Current Phenomena." Since, how-

ever, the periodic functions are the most important in elec-

trical engineering, it appears necessary to consider their shape

more extensively, and this has been done in the new edition.

The symbolism of the general number, as applied to alter-

nating waves, has been changed in conformity to the decision

of the International Electrical Congress of Turin, a discussion

of the logarithmic and semi-logarithmic scale of curve plot-

ting given, etc.

Charles P. Steinmetz.
December, 1914.
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ENGINEEKING MATHEMATICS.

CHAPTER I.

THE GENERAL NUMBER.

A. THE SYSTEM OF NUMBERS.

Addition and Subtraction.

I. From the operation of counting and measuring arose the

art of figuring, arithmetic, algebra, and finally, more or less,

the entire structure of mathematics.

During the development of the human race throughout the

ages, which is repeated by every child during the first years

of life, the first conceptions of numerical values were vague

and crude: many and few, big and little, large and small.

Later the ability to count, that is, the knowledge of numbers,

developed, and last of all the ability of measuring, and even

up to-day, measuring is to a considerable extent done by count-

ing: steps, knots, etc.

From counting arose the simplest arithmetical operation

—

addition. Thus we may count a bunch of horses:

1, 2, 3, 4, 5,

and then count a second bunch of horses,

1, 2, 3;

now put the second bunch together with the first one, into one

bunch, and count them. That is, after counting the horses
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of the first bunch, we continue to count those of the second

bunch, thus

:

1, 2, 3, 4, 5,-6, 7, 8;

which gives addition,

or, in general,

5 + 3 = 8;

a + b = c.

We may take away again the second bunch of horses, that

means, we count the entire bunch of horses, and then count

off those we take away thus:

1, 2, 3, 4, 5, 6, 7, 8-7, 6, 5;

which gives subtraction,

8-3-5;
or, in general,

c—b = a.

The reverse of putting a group of things together with

another group is to take a group away, therefore subtraction

is the reverse of addition.

2. Immediately we notice an essential difference between

addition and subtraction, which may be illustrated by the

following examples

:

Addition: 5 horses +3 horses gives 8 horses,

Subtraction: 5 horses—3 horses gives 2 horses.

Addition : 5 horses + 7 horses gives 12 horses.

Subtraction: 5 horses— 7 horses is impossible.

From the above it follows that we can always add, but we
cannot always subtract; subtraction is not always possible;

it is not, when the number of things which we desire to sub-

tract is greater than the number of things from which we
desire to subtract.

The same relation obtains in measuring; wc may measure

a distance from a starting point A (Fig. 1), for instance in steps,

and then measure a second distance, and get the total distance

from the starting point by addition: 5 steps, from A to B.
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then 3 steps, from B to C, gives the distance from A to C, as

8 steps.

5 steps +3 steps = 8 steps;

1234 5-678
(6 1 1 1 1 0) I 1

A B C

Fig. 1. Addition.

or, we may step off a distance, and then step back, that is,

subtract another distance, for instance (Fig. 2),

5 steps— 3 steps = 2 steps;

that is, going 5 steps, from A to B, and then 3 steps back,

from B to C, brings us to C, '2 steps away from A.

12 3 4
I tt . I 1-

C B

Fig. 2. Subtraction.

Trying the case of subtraction which was impossible, in the

example with the horses, 5 steps— 7 steps = ? We go from the

starting point, A, 5 steps, to £, and then step back 7 steps;

here we find that sometimes we can do it, sometimes we cannot

do it; if back of the starting point A is a stone wall, we cannot

step back 7 steps. If A is a chalk mark in the road, we may
step back beyond it, and come to in Fig. 3. In the latter case,

->S1O12345
tb I

ip 1 1 1 1 *-
B

Fig. 3. Subtraction, Negative Result.

at C we are again 2 steps distant from the starting point, just

as in Fig. 2. That is,

5-3=2 (Fig. 2),

5-7 = 2 (Fig. 3).

In the case where we can subtract 7 from 5, we get the same

distance from the starting point as when we subtract 3 from 5,
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but the distance AC in Fig. 3, while the same, 2 steps, as

in Fig. 2, is different in character, the one is toward the left,

the other toward the right. That means, we have two kinds

of distance units, those to the right and tho^-'c to the left, and

have to find some way to distinguish them. The distance 2

in Fig. 3 is toward the left of the starting point A, that is,

in that direction, in which we step when subtracting, and

it thus appears natural to distinguish it from the distance

2 in Fig. 2, by calhng the former -2, ^vhile we call the distance

AC in Fig. 2: +2, since it is in the direction from A, in which

we step in adding.

This leads to a subdivision of the system of absolute numbers,

12 3J-, .^, <j, .

into two classes, positive numbers,

+ 1, +2, +3, ...:

and negative numbers,

-1, -2, -3, ...;

and by the introduction of negative numbers, we can always

carry out the mathematical operation of subtraction:

and, if b is greater than c, a merely becomes a negative number.

3. We must therefore realize that the negative number and

the negative unit, —1, is a mathematical fiction, and not in

universal agreement with experience, as the absolute number
found in the operation of counting, and the negative number
does not always represent an existing condition in practical

experience.

In the application of numbers to the phenomena of nature,

we sometimes find conditions where we can give the negative

number a physical meaning, expressing a relation as the

reverse to the positive number; in other cases we cannot do
this. For instance, 5 horses— 7 horses = —2 horses has no
physical meaning. There exist no negative horses, and at the

best we could only express the relation by saying, 5 horses —7
horses is impossible, 2 horses are missing.
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In the same way, an illumination of 5 foot-candles, lowered

by 3 foot-candles, gives an illumination of 2 foot-candles, thus,

5 foot-candles— 3 foot-candles = 2 foot-candles.

If it is tried to lower the illumination of 5 foot-candles by 7

foot-candles, it will be found impossible; there cannot be a

negative illumination of 2 foot-candles; the limit is zero illumina-

tion, or darkness.

From a string of 5 feet length, we can cut off 3 feet, leaving

2 feet, but we cannot cut off 7 feet, leaving —2 feet of string.

In these instances, the negative number is meaningless,

a mere imaginary mathematical fiction.

If the temperature is 5 deg. cent, above freezing, and falls

3 deg., it will be 2 deg. cent, above freezing. If it falls 7 deg.

it will be 2 deg. cent, below freezing. The one case is just as

real physically, as the other, and in this instance' we may
express the relation thus:

+ 5 deg. cent. —3 deg. cent. = +2 deg. cent.,

+5 deg. cent. —7 deg. cent. = —2 deg. cent.;

that is, in temperature measurements by the conventional

temperature scale, the negative numbers have just as much
physical existence as the positive numbers.

The same is the case with time, we may represent future

time, from the present as starting point, by positive numbers,

and past time then will be represented by negative numbers.

But we may equally well represent past time by positive num-
bers, and future times then appear as negative numbers. In

this, and most other physical applications, the negative number

thus appears equivalent with the positive number, and inter-

changeable: we may choose any direction as positive, and

the reverse direction then is negative. Mathematically, how-

ever, a difference exists between the positive and the negative

number; the positive unit, multiphed by itself, remains a pos-

itive unit, but the negative unit, multiplied with itself, does

not remain a negative unit, but becomes positive:

( + l)x( + l) = ( + l);

(-1)X(-1) = ( + 1), andnot =(-1).
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Starting from 5 deg. northern latitude and going 7 deg.

south, brings us to 2 deg. southern latitude, which may be

expresses thus,

+ 5 deg. latitude -7 deg. latitude = -2 deg. latitude.

Therefore, in all cases, where there are two opposite direc-

tions, right and left on a hne, north and south latitude, east

and west longitude, future and past, assets and liabilities, etc.,

there may be apphcation of the negative number; in other cases,

where there is only one kind or direction, counting horses,

measuring illumination, etc., there is no physical meaning

which would be represented by a negative number. There

are still other cases, where a meaning may sometimes be found

and sometimes not; for instance, if we have 5 doUars in our

pocket, we cannot take away 7 dollars; if we have 5 dollars

in the bank, we may be able to draw out 7 dollars, or we may

not, depending on our credit. In the first case, 5 dollars -7

dollars is an impossibility, while the second case 5 dollars -7

dollars = 2 dollars overdraft.

In any case, however, we must realize that the negative

number is not a physical, but a mathematical conception,

which may find a physical representation, or may not, depend-

ing on the physical conditions to which it is applied. The

negative number thus is just as imaginary, and just as real,

depending on the case to which it is apphed, as the imaginary

number V— 1, and the only difference is, that we have become
familiar with the negative number at an earlier age, where we
wer.^ less critical, and thus have taken it for granted, become
familiar with it by use, and usually do not realize that it is

a mathematical conception, and not a physical reality. When
we first learned it, however, it was quite a step to become
accustomed to saying, 5— 7 =—2, and not simply, 5—7 is

impossible.

Multiplication and Division.

4- If we have a bunch of 4 horses, and another bunch of 4

horses, and still another bunch of 4 horses, and add together

the three bunches of 4 horses each, we get,

4 horses -I- 4 horses + 4 horses = 12 horses;
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or, as we express it,

3X4 horses = 12 horses.

The operation of multiple addition thus leads to the next

operation, mvltiplicaiion. MultipUcation is multiple addi-

tion,

bxa = c,

thas means

a + a + a + . . . {b terms) =c.

Just like addition, multiplication can always be carried

out.

Three groups of 4 horses each, give 12 horses. Inversely, if

we have 12 horses, and divide them into 3 equal groups, each

group contains 4 horses. This gives us the reverse operation

of multipUcation, or division, which is written, thus:

12 horses , ,

^ = 4 horses;

or, in general,

c

6
= «-

If we have a bunch of 12 horses, and divide it into two equal

groups, we get 6 horses in each group, thus:

12 horses „ .

^ =D horses,

if we divide into 4 equal groups,

12 horses „

,

;;

= 3 horses.
4

If now we attempt to divide the bunch of 12 horses into 5 equal

groups, we find we cannot do it; if we have 2 horses in each

group, 2 horses are left over; if we put 3 horses in each group,

we do not have enough to make 5 groups; that is, 12 horses

divided by 5 is impossible; or, as we usually say; 12 horses

divided by 5 gives 2 horses and 2 horses left over, which is

written,

12
-r- = 2, remainder 2.
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Thus it is seen that the reverse operation of multiplication,

or division, cannot always be carried out.

5. If we have 10 apples, and divide them into 3, we get 3

apples in each group, and one apple left over.

-15- = 3, remainder 1,

we may now cut the left-over apple into 3 equal parts, in which

case,

1 =34 = 3,

In the same manner, if we have 12 apples, we can divide

into 5, by cutting 2 apples each into 5 equal pieces, and get

in each of the 5 groups, 2 apples and 2 pieces.

12 1^ = 2 + 2X^=21.
5 6

To be able to carry the operation of division through for

all numerical values, makes it necessary to introduce a new
unit, smaller than the original unit, and derived as a part of it.

Thus, if we divide a string of 10 feet length into 3 equal

parts, each part contains 3 feet, and 1 foot is left over. One
foot is made up of 12 inches, and 12 inches divided into 3 gives

4 inches; hence, 10 feet divided by 3 gives 3 feet 4 inches.

Division leads us to a new form of numbers: the fraction.

The fraction, however, is just as much a mathematical con-

ception, which sometimes may be applicable, and sometimes
not, as the negative number. In the above instance of 12

horses, divided into 5 groups, it is not apphcable.

12 horses
,

r = 2f horses

is impossible; we cannot have fractions of horses, and what
we would get in this attempt would be 5 groups, each com-
prising 2 horses and some pieces of carcass.

Thus, the mathematical conception of the fraction is ap-
plicable to those physical quantities which can be divided into
smaller units, but is not applicable to those, which are indi-
visible, or individuals, as we usually call them.
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Involution and Evolution.

6. If we have a product of several equal factors, as,

4X4X4 = 64,

it is written as, 4^ = 64

;

or, in general, a^ = c.

The operation of multiple multiplication of equal factors

thus leads to the next algebraic operation

—

involution; just as

the operation of multiple addition of equal terms leads to the

operation of multiplication.

The operation of involution, defined as multiple multiplica-

tion, requires the exponent h to be an integer number; 6 is the

number of factors.

Thus 4-3 has no immediate meaning; it would by definition

be 4 multiplied ( — 3) times with itself.

Dividing continuously by 4, we get, 48-j-4=45; 4'-^4 = 4*;

4*-^4 = 43; etc., and if this .successive division by 4 is carried

still further, we get the following series:

43 4X4X4
4 4



10 ENGINEERING MATHEMATICS.

Thus, powers with negative exponents, as a-*, are the

reciprocals of the same powers with positive exponents
: ^

7. From the definition of involution then follows,

because o'' means the product of b equal factors a, and a" the

product of n equal factors a, and a''Xa'' thus is a product hav-

ing ?>+n equal factors a. For instance,

43X42 = (4X4X4)X(4X4)=4S.

The question now arises, whether by multiple involution

we can reach any further mathematical operation . For instance

,

(43)2 = ?,

may be written,

(43)2=43x43

= (4X4X4)X(4X4X4);

= 46;

and in the same manner,

(a^)" = a''";

that is, a power a^ is raised to the n* power, by multiplying

its exponent. Thus also,

(a'')" = (a")'';

that is, the order of involution is immaterial.

Therefore, multiple involution leads to no further algebraic

operations.

8. 43 = 64;

that is, the product of 3 equal factors 4, gives 64.

Inversely, the problem may be, to resolve 64 into a product

of 3 equal factors. Each of the factors then will be 4. This

reverse operation of involution is called evolution, and is written

thus,

^64 = 4;

or, more general,
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Vc thus is defined as that number a, which, raised to the power
h, gives c; or, in other words.

Involution thus far was defined only for integer positive

and negative exponents, and the question arises, whether powers
J_ n

with fractional exponents, as c** or c*, have any meaning.

Writing,

i\V ^x|
1\cb ) =c ^ ^C^ = C,

i- .

it is seen that c^ is that number, which raised to the power b,

1 . 6/—
gives c; that is, c* is vc, and the operation of evolution thus

can be expressed as involution with fractional exponent,

and
1\ n

or.

^=(ci)"=(^)".

- i 6 —
C 6 = (cm) b = Vc",

and

Obviously
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Attempting to calculate ^, we get,

^2 = 1.4142135...,

and find, no matter how far we carry the calculation, we never

come to an end, but get an endless decimal fraction; that is,

no number exists in our system of numbers, which can express

-^, but we can only approximate it, and carry the approxima-

tion to any desired degree ; some such numbers, as it, have been

calculated up to several hundred decimals.

Such numbers as ^2, which cannot be expressed in any
finite form, but merely approximated, are called irrational

numbers. The name is just as wrong as the name negative

number, or imaginary number. There is nothing irrational

about -^2. If we draw a square, with 1 foot as side, the length

of the diagonal is -^2 feet, and the length of the diagonal of

a square obviously is just as rational as the length of the sides.

Irrational numbers thus are those real and existing numbers,
which cannot be expressed by an integer, or a fraction or finite

decimal fraction, but give an endless decimal fraction, which
does not repeat.

Endless decimal fractions frequently are met when express-
ing common fractions as decimals. These decimal representa-
tions of common fractions, however, are periodic decimals,
that is, the numerical values periodically repeat, and in this

respect are different from the irrational number, .and can, due
to their periodic nature, be converted into a finite common
fraction. For instance, 2.1387387
Let

then,

subtracting.

Hence,

x= 2.1387387.

1000x = 2138.7.387387.

999x = 2136.6

2136.6 _ 21366 1187 77

999 ~ 9990 ~ 555" "^555-
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Quadrature Numbers.

v/+r=(+2),

(+2)x(+2) = (+4);

</Ta = {-2),

(-2)X(-2) = (+4).

Therefore, -^4 has two values, (+2) and (—2), and in

evolution we thus first strike the interesting feature, that one

and the same operation, with the same numerical values, gives

several different results.

Since all the positive and negative numbers are used up
as the square roots of positive numbers, the question arises,

What is the square root of a negative number? For instance,

4^^ cannot be —2, as —2 squared gives +4, nor can it be +2.

-^34= -^4x(-l)= i2-</-l, and the question thus re-

solves itself into : What is "^1 ?

We have derived the absolute numbers from experience,

for instance, by measuring distances on a line Fig. 4, from a

starting point A.

-5 -4 -3 -3 -1 +1 +3 +3 +4 +5
1 1 1-—®—I—$—I—e—I 1 1CAB

Fig. 4. Negative and Positive Numbers.

Then we have seen that we get the same distance from A,

twice, once toward the right, once toward the left, and this

has led to the subdivision of the numbers into positive and

negative numbers. Choosing the positive toward the right,

in Fig. 4, the negative number would be toward the left (or

inversely, choosing the positive toward the left, would give

the negative toward the right).

If then we take a number, as +2, which represents a dis-

tance AB, and multiply by (—1), we get the distance AC= -2



14 ENGINEERING MATHEMATICS.

in opposite direction from A. Inversely, if we take AC= -2,

and multiply by (-1), we get AB= +2; that is, multiplica-

tion by (-1) reverses the direction, turns it through 180 deg.

If we multiply +2 by V^, we get +2\/-l, a quantity

of which we do not yet know the meaning. Multiplying once

more by V~^, we get +2X\^^xV -1= -2; that is,

multiplying a number +2, twice by V^, gives a rotation of

180 deg., and multiplication by \/^ thus means rotation by

half of 180 deg.; or, by 90 deg., and +2v^^ thus is the dis-

OD

\90°

-®-

FiG. 5.

tance in the direction rotated 90 deg. from +2, or in quadrature

direction AD in Fig. 5, and such numbers as +2\/-l thus

are quadrature numbers, that is, represent direction not toward

the right, as the positive, nor toward the left, as the negative

numbers, but upward or downward^

For convenience of writing, V-l is usually denoted by

the letter j.

II. Just as the operation of subtraction introduced in the

negative numbers a new kind of numbers, having a direction

180 deg. different, that is, in opposition to the positive num-
bers, so the operation of evolution introduces in the quadrature

number, as 2j, a new kind of number, having a direction 90 deg.
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different; that is, at right angles to the positive and the negative

numbers, as illustrated in Fig. 6.

As seen, mathematically the quadrature number is just as

real as the negative, physically sometimes the negative number
has a meaning—if two opposite directions exist— ; sometimes it

has no meaning—where one direction only exists. Thus also

the quadrature number sometimes has a physical meaning, in

those cases where four directions exist, and has no meaning,

in those physical problems where only two directions exist.

+4/

+ 3/

+2;

-4 -3 -3 -1 +1 +2 +3

-3

-3j

-J

Fig. 6.

For instance, in problems dealing with plain geometry, as in

electrical engineering when discussing alternating current

vectors in the plane, the quadrature numbers represent the

vertical, the ordinary numbers the horizontal direction, and then

the one horizontal direction is positive, the other negative, and

in the same manner the one vertical direction is positive, the

other negative. Usually positive is chosen to the right and
upward, negative to the left and downward, as indicated in

Fig. 6. In other problems, as when dealing with time, which

has only two directions, past and future, the quadrature num-
bers are not applicable, but only the positive and negative
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numbers. In still other problems, as when dealing with illumi-

nation, or with individuals, the negative numbers are not

applicable, but only the absolute or positive numbers.

Just as multiplication by the negative unit (—1) means
rotation by 180 deg., or reverse of direction, so multiplication

by the quadrature unit, j, means rotation by 90 deg., or change

from the horizontal to the vertical direction, and inversely.

General Numbers.

12. By the positive and negative numbers, all the points of

a line could be represented numerically as distances from a

chosen point A.

-a?

Fig. 7. Simple Vector Diagram.

By the addition of the quadrature numbers, all points of

the entire plane can now be represented as distances from
chosen coordinate axes x and y, that is, any point P of the

plane, Fig. 7, has a_horizontal distance, 05= +3, and a

vertical distance, BP=+2j, and therefore is given by a

combination of the distances, 05= +3 and BP= +2]'. For
convenience, the act of combining two such distances in quad-
rature with each other can be expressed by the plus sign,

and the result of combination thereby expressed by OB+BP
= 3+2j.
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Such a combination of an ordinary number and a quadra-

ture number is called a general number or a comiplex quantity.

The quadrature number jh thus enormously extends the

field of usefulness of algebra, by affording a numerical repre-

sentation of two-dimensional systems, as the plane, by the

general number a + jh. They are especially useful and impor-

tant in electrical engineering, as most problems of alternating

currents lead to vector representations in the plane, and there-

fore can be represented by the general number a-\-jb; that is,

the combination of the ordinary number or horizontal distance

a, and the quadrature number or vertical distance jb.

Fig. 8. Vector Diagram.

Analytically, points in the plane are represented by their

two coordinates: the horizontal coordinate, or abscissa x, and

the vertical coordinate, or ordinate y. Algebraically, in the

general number a+jh both coordinates are combined, a being

the X coordinate, jb the y coordinate.

Thus in Fig. 8, coordinates of the points are,

-Pi: a;=+3, y= +2 Pg: 2;= +3 j/= -2,

-P3: a;=-3, y=+2 P4: x= -3 y= -2,

and the points are located in the plane by the numbers:

Pi =3 +2/ P2 = 3-2y P3=-3+2y P4=-3-2;
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13. Since already the square root of negative numbers has

extended the system of numbers by giving the quadrature

number, the question arises whether still further extensions

of the system of numbers would result from higher roots of

negative quantities.

For instance,

A'~r=?

The meaning of ^^^1 we find in the same manner as that

of f^I
A positive number a may be represented on the horizontal

axis as P.

Multiplying a by -^—1 gives a-^— 1, whose meaning we do

not yet know. Multiplying again and again by •\'—l, we get, after

four multiplications, o(-v'-l)*= —a; that is, in four steps we
have been carried from o to —a, a rotation of 180 deg., and

'v'^1 thus means a rotation of—— = 45 deg., therefore, a-v'-l

is the point Pi in Fig. 9, at distance a from the coordinate

center, and under angle 45 deg., which has the coordinates,

a a .

a;=—= and y = —=y, or, is represented by the general number,

-v'-l, however, may also mean a rotation by 135 deg. to P2,
since this, repeated four times, gives 4x135 = 540 deg.,
or the same as 180 deg., or it may mean a rotation by 225 deg.

or by 315 deg. Thus four points exist, which represent a 4-^',
the points:

v2 V2

Therefore, -vZ-fis still a general number, consisting of an
ordinary and a quadrature number, and thus does not extend
our system of numbers any further.
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In the same manner, V+ 1 can be found; it is that number,

which, multipUed n times with itself, gives +1. Thus it repre-

sents a rotation by — deg., or any multiple thereof; that is,

J- . • .360 , ,. . •
360

the X coordmate is cos qX— , the y coordmate sm gX—

,

n n

and,

^— 360 . . 360
+ l = cos oX +] sm qX ,

where q is any integer number.

Fig. 9. Vector Diagram a-ij—l.

There are therefore n different values of a\/ + l, which lie

equidistant on a circle with radius 1, as shown for n = 9 in

Fig. 10.

14. In the operation of addition, a + b = c, the problem is,

a and b being given, to find c.

The terms of addition, a and b, are interchangeable, or

equivalent, thus: a + b = b+ a, and addition therefore has only

one reverse operation, subtraction; c and b being given, a is

found, thus: a^c-b, and c and a being given, b is found, thus:

j,_P_o_ Either leads to the same operation—subtraction.

The same is the case in multiplication; aXb = c. The
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factors a and h are interchangeable or equivalent; aXh = hXa
. . c c

and the reverse operation, division, a= ,- is the same as h=—.

In involution, however, a'' = c, the two numbers a and b

are not interchangeable, and a^ is not equal to 6°. For instance

43 = 64 and 34 = 81.

Therefore, involution has two reverse operations:

(a) c and b given, a to be found.

or evolution,

b
—

a= \ c:

Fig. 10. Points Dfetermined by v^+l.

(&) c and a given, b to be found,

6 = loga c;

or, logarithmation.

Logarithmation.

15. Logarithmation thus is one of the reverse operations
of involution, and the logarithm is the exponent of involution.

Thus a logarithmic expression may be changed to an ex-
ponential, and inversely, and the laws of logarithmation are
the laws, which the exponents obey in involution.

1. Powers of equal base are multiplied by adding the
exponents: a''Xa'' = a''+". Therefore, the logarithm of a
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product is the sum of the logarithms of the factors, thus logo cXd
= l0ga C +\0ga d.

2. A power is raised to a power by multiplying the exponents

:

(a'')" = a*".

Therefore the logarithm of a power is the exponent times

the logarithm of the base, or, the number under the logarithm

is raised to the power n, by multiplying the logarithm by n:

loga c"=n loga c,

loga 1 = 0, because a" = 1. If the base o > 1, loga c is positive,

if c>l, and is negative, if c<l, but >0. The reverse is the

case, if a<l. Thus, the logarithm traverses all positive and
negative values for the positive values of c, and the logarithm

of a negative number thus can be neither positive nor negative.

loga (-c)=loga c+loga (-1), and the question of finding

the logarithms of negative numbers thus resolves itself into

finding the value of loga ( — 1).

There are two standard systems of logarithms one with
the base £ = 2.71828. . .*, and the other with the base 10 is

used, the former in algebraic, the latter in numerical calcula-

tions. Logarithms of any base a can easily be reduced to any
other base.

For instance, to reduce 6= loga c to the base 10: 6 = loga c

means, in the form of involution : a'' = c. Taking the logarithm

hereof gives, b logio a = logio c, hence,

, logioc logioc
o=-j ; or logo c=-, .

logio a *=
logio a

Thus, regarding the logarithms of negative numbers, we need

to consider only logio ( — 1) or log^ ( —1).

If jx = log, (
- 1), then £'^ = -

1,

and since, as will be seen in Chapter II,

£'^ = cos x + j sin X,

it follows that,

cos x+/sin X = —1,

* Regarding e, see Chapter II, p. 71.
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Hence, x= n, or an odd multiple thereof, and

loge(-l)=jV(2n + l),

where n is any integer number.

Thus logarithmation also leads to the quadrature number

j, but to no further extension of the system of numbers.

Quaternions.

i6. Addition and subtraction, multipUcation and division,

involution and evolution and logarithmation thus represent all

the algebraic operations, and the system of numbers in which

all these operations can be carried out under all conditions

is that of the general number, a+jb, comprising the ordinary

number a and the quadrature number jb. The number a as

well as b may be positive or negative, may be integer, fraction

or irrational.

Since by the intreduction of the quadrature number jb,

the application of the system of numbers was extended from the

line, or more general, one-dimensional quantity, to the plane,

or the two-dimensional quantity, the question arises, whether

the system of numbers could be still further extended, into

three dimensions, so as to represent space geometry. While

in electrical engineering most problems lead only to plain

figures, vector diagrams in the plane, occasionally space figures

would be advantageous if they could be expressed algebra-

ically. Especially in mechanics this would be of importance

when dealing with forces as vectors in space.

In the quaternion calculus methods have been devised to

deal with space problems. The quaternion calculus, however,

has not yet found an engineering apphcation comparable with

that of the general number, or, as it is frequently called, the

complex quantity. The reason is that the quaternion is not

an algebraic quantity, and the laws of algebra do not uniformly

apply to it.

17. With the rectangular coordinate system in the plane,

Fig. 11, the z axis may represent the ordinary numbers, the y
axis the quadrature numbers, and multipUcation by j=V—l
represents rotation by 90 deg. For instance, if Pi is a point
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a+jb=5+2j, the point P2, 90 deg. away from Pi, would
be:

P2 = iPi=Ka+ib) =j(3 +2j) = -2 +3j,

To extend into space, we have to add the third or z axis,

as shown in perspective in Fig. 12. Rotation in the plane xy,

by 90 deg., in the direction +x to +y, then means multiplica-

tion by j. In the same manner, rotation in the yz plane, by
90 deg., from +y to +z, would be represented by multiplica-

> +

Fig. 11. Vectors in a Plane.

tion with h, and rotation by 90 deg. in the zx plane, from +2
to +x would be presented by k, as indicated in Fig. 12.

AH three -of these rotors, j, h, k, would be V — 1, since each,

applied twice, reverses the direction, that is, represents multi-

plication by (—1).

As seen in Fig. 12, starting from +x, and going to +y,
then to +z, and then to +x, means successive multiphcation

by j, h and k, and since we come back to the starting point, the

total operation produces no change, that is, represents mul-

tiphcation by ( + 1). Hence, it must be,

jhk= +1.
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Algebraically this is not possible, since each of the three quan-

tities is V^, and V'-ixV'^xV^== -^/^, and not

( + 1).

+z

>+a;

Fig. 12. Vectors in Space, ihk=+l.

If we now proceed again from x, in positive rotation, but

first turn in the xz plane, we reach by multiplication with k

the negative z axis, —z, as seen in Fig. 13. Further multiplica-

+ y

->+«

-y

Fig. 13. Vectors in Space, hhi= —1.

tion by h brings us to +y, and multiplication by j to -x, and
in this case the result of the three successive rotations by
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90 deg., in the same direction as in Fig. 12, but in a different

order, is a reverse; that is, represents (-1). Therefore,

khj= —1,
and hence,

jhk= —khj.

Thus, in vector analysis of space,we see that the fundamental

law of algebra,

aXh = hXa,

does not apply, and the order of the factors of a product is

not immaterial, but by changing the order of the factors of the

product jhk, its sign was reversed. Thus common factors can-

not be canceled as in algebra; for instance, if in the correct ex-

pression, jhk = — khj, we should cancel by /, h and k, as could be
done in algebra,we would get +1 = —1, which is obviously wrong.

For this reason all the mechanisms devised for vector analysis

in space have proven more difficult in their appUcation, and
have not yet been used to any great extent in engineering

practice.

B. ALGEBRA OF THE GENERAL NUMBER, OR COMPLEX
QUANTITY.

Rectangular and Polar Coordinates.

i8. The general number, or complex quantity, ei+jb, is

the most general expression to which the laws of algebra apply.

It therefore can be handled in the same manner and under

the same rules as the ordinary number of elementary arithmetic.

The only feature which must be kept in mind is that j^ = — 1, and

where in multiplication or other operations j^ occurs, it is re-

placed by its value, —1. Thus, for instance,

(a

+

jb) (c

+

jd) = ac+ jad + jbc +j%d
= ac+ jad + jbc — bd

= (ac —bd) +j{ad + bc).

Hetefrom it follows that all the higher powers of j can be

eliminated, thus:

f-
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In distinction from the general number or complex quantity,

the ordinary numbers, +a and —a, are occasionally called

scalars, or real numbers. The general number thus consists

of the combination of a scalar or real number and a quadrature

number, or imaginary number.

Since a quadrature number cannot be equal to an ordinary

number it follows that, if two general numbers are equal,

their real components or ordinary numbers, as well as their

quadrature numbers or imaginary components must be equal,

thus, if

a+jb = c+id,

then,

a = c and b = d.

Every equation with general numbers thus can be resolved

into two equations, one containing only the ordinary numbers,

the other only the quadrature numbers. For instance, if

x+jy = 5-3i,
then,

a;=5 and y= —3.

19. The best way of getting a conception of the general

number, and the algebraic operations with it, is to consider

the general number as representing a point in the plane. Thus
the general number a +jb = 6+2.5]' may be considered as

representing a point P, in Fig. 14, which has the horizontal

distance from the y axis, 0A=BP = a = 6, and the vertical

distance from the x axis, OB =AP = b=2.5.

The total distance of the point P from the coordinate center

then is

0P = ^0A2+AP^

= Va2 +62 = v/62 +2.52 = 6.5,

and the angle, which this distance OP makes with the x axis,

is given by

tan 6===
OA

b 2.5
= - = —=0.417.
a 6
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Instead of representing the general number by the two

components, a and h, in the form a+jb, it can also be repre-

sented by the two quantities : the distance of the point P from

the center 0,

C= Va2+62;

and the angle between this distance and the x axis,

tan d=-.
a

Fig. 14. Rectangular and Polar Coordinates.

Then referring to Fig. 14,

a = c cos ^ and 6 = csin5,

and the general number a-\-jh thus can also be written in the

form,

c(cos (9+j sin d).

The form a-Vjh expresses the general number by its

rectangular components a and 6, and corresponds to the rect-

angular coordinates of analytic geometry; a is the x coordinate,

h the y coordinate.

The form c(cos^-f j sin ^) expresses the general number by

what may be called its polar components, the radius c and the
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angle 6, and corresponds to the polar coordinates of analytic

geometry, c is frequently called the radius vector or scalar,

6 the phase angle of the general number.

While usually the rectangular form a+jb is more con-

venient, sometimes the polar form c(cos d +j sin d) is preferable,

and transformation from one form to the other therefore fre-

quently applied.

Addition and Subtraction.

20. If oi+j6i = 6+2.5 y is represented by the point Pi;

this point is reached by going the horizontal distance ai = 6

and the vertical distance 6i=2.5. If a2+jb2 = S+ij is repre-

sented by the point P2, this point is reached by going the

horizontal distance a2 = 3 and the vertical distance 62 = 4.

The sum of the two general numbers (ai +ihi) + (02 +^2) =

(6+2.5/) + (3-H4j), then is given by point Pq, which is reached

by going a horizontal distance equal to the sum of the hor-

izontal distances of Pi and P2: ao = ai +a2 = 6+3 = 9, and a

vertical distance equal to the sum of the vertical distances of

Pi and P2: 60 = 61+62 = 2.5+4 = 6.5, hence, is given by the

general number

ao + j6o = (ai + 02) + J (61 + 62)

= 9 + 6.5/.

Geometrically, point Po is derived from points Pi and P2^

by the diagonal OPq of the parallelogram OP1P0P2, constructed

with OPi and OP2 as sides, as seen in Fig. 15.

Herefrom it follows that addition of general numbers
represents geometrical combination by the parallelogram law.

Inversely, if Pq represents the number

ao+y6o = 9 + 6.5y,

and Pi represents the number

Oi+j6i=6+2.5/,

the difference of these numbers will be represented by a point

P2, which is reached by going the difference of the horizontal
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distances and of the vertical distances of the points Pq and
Pi. P2 thus is represented by

and
«2 = ao—ai = 9—6=3,

?)2 = 60-^)1 =6.5 -2.5 = 4.

Therefore, the difference of the two general numbers (ao+J^o)
and (tti +y6i) is given by the general number:

as seen in Fig. 15.

^2 +y&2 = (oso -aC) +j{ho -61)

= 3 + 4/,

Fig. 15. Addition and Subtraction of Vectors.

This difference a2+j62 is represented by one side OP2 of

the parallelogram OP1P0P2, which has OPi as the other side,

and OPq as the diagonal.

Subtraction of general numbers thus geometrically represents

the resolution of a vector OPo into two components OPi and

OP2, by the parallelogram law.

Herein lies the main advantage of the use of the general

number in engineering calculation : If the vectors are represented

by general numbers (complex quantities), combination and
resolution of vectors by the parallelogram law is carried out by
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simple addition or subtraction of their general numerical values,

that is, by the simplest operation of algebra.

21. General numbers are usually denoted by capitals, and

their rectangular components, the ordinary number and the

quadrature number, by small letters, thus:

A = ai+ja2]

the distance of the point which represents the general number A
from the coordinate center is called the absolute value, radius

or scalar of the general number or complex quantity. It is

the vector a in the polar representation of the general number

:

A = a(cos (9+
J
sin d),

and is given by a = Voi^ + a-i^.

The absolute value, or scalar, of the general number is usually

also denoted by small letters, but sometimes by capitals, and

in the latter case it is distinguished from the general number by
using a different type for the latter, or underlining or dotting

it, thus:

A = ai+ja2; or A-=^ai+ja2\ov A = ai+ja2

or A = ai+ia2; or A=ai+/a2

a=Vai^ ^ar] or A = Va{'- +ai^,

and ai+/a2 = a(cos tf + jsin(?);

or ai+ya2 = A(cos tf +j sin (9).

22. The absolute value, or scalar, of a general number is

always an absolute number, and positive, that is, the sign of the
rectangular component is represented in the angle 6. Thus
referring to Fig. 16,

^=ai+ya2 = 4+3/;

gives, a=\/ai^+a2^ = 5;

tan 61 = 1=0.75;

^ = 37deg.;

and 4=5 (cos 37 deg. +/ sin 37 deg).
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A = ai+ja2 = 4:-Sj

a=Vai^+a2^ = 5;

31

tan i9 = -- = -0.75;
4

d = -37 deg. ; or = 180 -37 = 143 deg.

Fig. 16. Representation of General Numbers.

Which of the two values of d is the correct one is seen from

the condition ai = a cos 6. As ai is positive, +4, it follows

that cos d must be positive; cos (—37 deg.) is positive, cos 143

deg. is negative; hence the former value is correct

:

A = 5{cos( -37 deg.) +j sin( -37 deg.){

= 5(cos 37 deg. — ; sin 37 deg.).

Two such general numbers as (4+3j) and (4—3j), or,

in general,

(a+jb) and (a—jb),

are called conjugate numbers. Their product is an ordinary

and not a general number, thus: (a + jb){a~jb) = a^ +b^.
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The expression

A=ai+ia2= -4+3;

gives

3
tan (9= --r= -0.75;

4

^ = -37 deg. or = 180 -37 = 143 cleg.

;

but since ai = a cos is negative, -4, cos ^ must be negative,

hence, d = 143 deg. is the correct vahie, and

A = 5(cos 143 deg. +j sin 143 deg.)

= 5( -cos 37 deg. +j sin 37 deg.)

The expression

A = a\+ia2= -4-3y

gives

6>=37deg.; or =180+37 = 217 deg.;

but since ai = a cos 6 is negative, -4, cos d must be negative,

hence ^ = 217 deg. is the correct value, and,

4=5 (cos 217 deg. +j sin 217 deg.)

= 5( — cos 37 deg. — j sin 37 deg.)

The four general numbers, +4+3;, +4-3/, —4+3/, and
—4 — 3j, have the same absolute value, 5, and in their repre-

sentations as points in a plane have symmetrical locations in

the four quadrants, as shown in Fig. 16.

As the general number A = ai+ja2 finds its main use in

representing vectors in the plane, it very frequently is called

a vector quantity, and the algebra of the general number is

spoken of as vector analysis.

Since the general numbers A=ai+ja2 can be made to

represent the points of a plane, they also may be called plane

numbers, while the positive and negative numbers, +a and— a.
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may be called the linear numbers, as they represent the points

of a line.

Example : Steam Path in a Turbine.

23. As an example of a simple operation with general num-
bers one may calculate the steam path in a two-wheel stage

of an impulse steam turbine.

w,»»»»)
> +«

FiQ. 17. Path of Steam in a Two-wheel Stage of an Impulse Turbine.

Let Fig. 17 represent diagrammatically a tangential section

through the bucket rings of the turbine wheels. Wi and W2
are the two revolving wheels, moving in the direction indicated

by the arrows, with the velocity s = 400 feet per sec. / are

the stationary intermediate buckets, which turn the exhaust

steam from the first bucket wheel Wi, back into the direction

required to impinge on the second bucket wheel W2. The

steam jet issues from the expansion nozzle at the speed So =2200
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feet per sec, and under the angle ^o = 20 deg., against the first

bucket wheel W^.

The exhaust angles of the three successive rows of buckets,

Wi, I, and W2, are respectively 24 deg., 30 dcg. and 45 deg.

These angles are calculated from the section of the bucket

exit required to pass the steam at its momentary velocity,

and from the height of the passage required to give no steam

eddies, in a manner which is of no interest here.

As friction coefficient in the bucket passages may be assumed

Ay = 0.12; that is, the exit velocity is 1— A;y=0.88 of the entrance

velocity of the steam in the buckets.

>+«

Fig. 18. Vector Diagram of Velocities of Steam in Turbine.

Choosing then as x-axis the direction of the tangential
velocity of the turbine wheels, as y-axis the axial direction,

the velocity of the steam supply from the expansion nozzle is

represented in Fig. 18 by a vector OSo of length so=2200 feet

per sec, making an angle (9o=20 deg. with the x-axis; hence,
can be expressed by the general number or vector quantity

:

So = So (cos 60 +j sin ^o)

=2200 (cos 20 deg. +/sin 20 deg.)

= 2070 + 750/ ft. per sec

The velocity of the turbine wheel TFi is s = 400 feet per second,
and- represented in Fig. 18 by the vector OS, in horizontal
direction.
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The relative velocity with which the steam enters the bucket

passage of the first turbine wheel Wx thus is

:

= (2070 +750j) -400

= 1670+750jft. per sec.

This vector is shown as OSi in Fig. 18.

The angle Oi, under which the steam enters the bucket

passage thus is given by

750
tan i9i=YgyQ = 0.450, as 6ii = 24.3deg.

This angle thus 'has to be given to the front edge of the

buckets of the turbine wheel TFi.

The absolute value of the relative velocity of steam jet

and turbine wheel Wi, at the entrance into the bucket passage,

is

Si = \/16702 + 7502 = 1830 ft. per sec.

In traversing the bucket passages the steam velocity de-

creases by friction etc., from the entrance value Si to the

exit value

S2 = si(l- Ay) = 1830X0.88 = 1610 ft. per sec,

and since the exit angle of the bucket passage has been chosen

as ^2 = 24 deg., the relative velocity with which the steam

leaves the first bucket wheel Wi is represented by a vector

0^ in Fig. 18, of length S2 = 1610, under angle 24 deg. The

steam leaves the first wheel in backward direction, as seen in

Fig. 17, and 24 deg. thus is the angle between the steam jet

and the negative x-axis; hence, ^2 = 180—24 = 156 deg. is the

vector angle. The relative steam velocity at the exit from

wheel TFi can thus be represented by the vector quantity

'?2 = S2(cos 62 +j sin 62)

= 1610 (cos 156 deg. +j sin 156 deg.)

= -1470+655/.

Since the velocity of the turbine wheel Wi is s = 400, the

velocity of the steam in space, after leaving the first turbine



36 ENGINEERING MATHEMATICS.

wheel, that is, the velocity with which the steam enters the

intermediate /, is

= (-1470 +655/) +400

= -1070 + 655/,

and is represented by vector Otiz in Fig. 18.

The direction of this steam jet is given by

tan (?3=
-Jo7Q=

-0.613,

as

03 = -31.6 deg. ; or, 180 -31.6 = 148.4 deg.

The latter value is correct, as cos di is negative, and sin Oz is

positive.

The steam jet thus enters the intermediate under the angle

of 148.4 deg. ; that is, the angle 180 —148.4 =31.6 deg. in opposite

direction. The buckets of the intermediate / thus must be

curved in reverse direction to those of the wheel Wi, and must

be given the angle 31.6 deg. at their front edge.

The absolute value of the entrance velocity into the inter-

mediate / is

S3 = \/l0702 + 6552 = 1255 f^ per sec.

In passing through the bucket passages, this velocity de-

creases by friction, to the value

:

S4=S3(1 ~kj) = 1255 XO.88 = 1105 ft. per sec,

and since the exit edge of the intermediate is given the angle:

^4 = 30 deg., the exit velocity of the steam from the intermediate

is represented by the vector OSi in Fig. 18, of length 84 = 1105,
and angle ^4 = 30 deg., hence,

^4 = 1105 (cos 30 deg. +/ sin 30 deg.)

= 955 + 550/ ft. per sec.

This is the velocity with which the steam jet impinges
on the second turbine wheel W2, and as this wheel revolves
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with velocity s = 400, the relative velocity, that is, the velocity

with which the steam enters the bucket passages of wheel W2, is,

05 = 04 —

s

= (955+550j)-400

= 555+550/ ft. per sec;

and is represented by vector OS5 in Fig. 18.

The direction of this steam jet is given by

550
tan ds—^= 0.990, as ds= 44.8 deg.

Therefore, the entrance edge of the buckets of the second

wheel W2 must be shaped under angle ^5=44.8 deg.

The absolute value of the entrance velocity is

S5 = V5552+ 5502 = 780 f^. pgr sec.

In traversing the bucket passages, the velocity drops from

the entrance value S^, to the exit value,

S6 = S5(1 -/cy) = 780X0.88 = 690 ft. per sec.

Since the exit angles of the buckets of wheel W2 has been

chosen as 45 deg., and the exit is in backward direction, 6q =

180—45=135 deg., the steam jet velocity at the exit of the

bucket passages of the last wheel is given by the general number

(Se =S6(cos de +] sin d^)

= 690 (cos 135 deg. +/ sin 135 deg.)

= -487+487J ft. per sec,

and represented by vector OSe in Fig. 18.

Since s = 400 is the wheel velocity, the velocity of the

steam after leaving the last wheel W2, that is, the "lost"

or " rejected " velocity, is

57 = ^6+5
= (-487+487/) +400

= -87+ 487/ ft. per sec,

and is represented by vector O^Sy in Fig. 18.
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The direction of the exhaust steam is given by,

487
tan(97=—^V-=-5.6, as 617 = 180-80 = 100 deg.,

and the absolute velocity is,

S7 = \/872+ 4872 = 495 ft. per sec.

Multiplication of General Numbers.

24. If A=ai+ja2 and B^hi+jhi, are two general, or

plane numbers, their product is given by multiplication, thus:

AB = (ai+ya2)(6i+i&2)

= ai&i +jaih2 +ja2bi +j^a2b2,

and since p= —1,

AB =(«!&! -a2?'2)+y(ai&2+ a2&i),

and the product can also be represented in the plane, by a point,

C = Ci+iC2,

Ci = aibi — a2&2,

where,

and

C2 = aih2+a2bi.

For instance, A=2+j multiplied by 5 = 1+1.5/ gives

ci=2Xl-lXl.5 = 0.5,

C2 = 2X1.5 + 1X1=4;
hence.

(7 = 0.5 + 4/,

as shown in Fig. 19.

25. The geometrical relation between the factors A and B
and the product C is better shown by using the polar expression;
hence, substituting.

which gives

ai=a cos a

02 = a sin a

tan a
a2

ai

and

and

fcl=



THE GENERAL NUMBER. 39

the quantities may be written thus

:

A=a(cos a+j sin a);

B = b(cos ^+/sin^),
and then,

C=AB = ab{cos a+/sin «)(cos /9+ j sin ^)

= ab
i
(cos a cos /? —sin a sin'/?) +/(cos a sin /? +sin a cos /?)}

= a6 {cos (a +13) +j sin (a +^)j

;

Fig. 19. Multiplication of Vectora

that is, two general numbers are multiplied by multiplying their

absolute values or vectors, a and b, and adding their phase angles

a and /?.

Thus, to multiply the vector quantity, A = ai+ ja2 = a (cos

a+j sin a)hy B = bi +jb2^b{cos p + j sin ^) the vector 0^ in Fig.

19, which represents the general number A, is increased by the

factor b = V61M-6?, and rotated by the angle /?, which is given

bv tan B=T--
bi

Thus, a complex multiplier B turns the direction of the

multiphcand A, by the phase angle of the multiplier B, and

multiplies the absolute value or vector oi A, by the absolute

value of B as factor.
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The multiplier B is occasionally called an operator, as it

carries out the operation of rotating the direction and changing

the length of the multiphcand.

26. In multiplication, division and other algebraic opera-

tions with the representations of physical quantities (as alter-

nating currents, voltages, impedances, etc.) by mathematical

symbols, whether ordinary numbers or general numbers, it

is necessary to consider whether the result of the algebraic

operation, for instance, the product of two factors, has a

physical meaning, and if it has a physical meaning, whether

this meaning is such that the product can be represented in

the same diagram as the factors.

For instance, 3x4 = 12; but 3 horses X 4 horses does not

give 12 horses, nor 12 horses^, but is physically meaningless.

However, 3 ft. X4 ft. = 12 sq.ft. Thus, if the numbers represent

(})—I—I—©-e—i—I—I—I—I—I—I—©-H

—

'— I "

o A B c

Fig. 20.

horses, multiplication has no physical meaning. If they repre-

sent feet, the product of multiplication has a physical meaning,

but a meaning which differs from that of the factors. Thus,

if on the line in Fig. 20, OA=Z feet, 05 = 4 feet, the product,

12 square feet, while it has a physical meaning, carmot be

represented any more by a point on the same line; it is not

the point 0C= 12, because, if we expressed the distances OA
and OB in inches, 36 and 48 inches respectively, the product

would be 36X48 = 1728 sq.in., while the distance OC would be

144 inches.

27. In all mathematical operations with physical quantities

it therefore is necessary to consider at every step of the mathe-
matical operation, whether it still has a physical meaning,

and, if graphical representation is resorted to, whether the

nature of the physical meaning is such as to allow graphical

representation in the same diagram, or not.

An instance of this general hmitation of the application of

mathematics to physical quantities occurs in the representation

of alternating current phenomena by general numbers, or

complex quantities.
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An alternating current can be represented by a vector 01
in a polar diagram, Fig. 21, in which one complete revolution
or 360 deg. represents the time of one complete period of the

alternating current. This vector 01 can be represented by a
general number,

I=H+jl2,

where ii is thejiorizontal, i2 the vertical component of the

current vector 01.

Fig. 21. Current, E.M.F. and Impedance Vector Diagram.

In the same manner an alternating E.M.F. of the same fre-

quency can be represented by a vector OE in the same Fig. 21,

and denoted by a general number,

E = ei+je2.

An impedance can be represented by a general number,

Z=^r + jx,

where r is the resistance and x the reactance.

If now we have two impedances, OZi and OZ2, ^i = ri-j-jxi

and Z2 = r2+ix2, their product Zi Z2 can be formed mathemat-
ically, but it has no physical meaning.
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If we have a current and a voltage, / = ii + jt2 and E = ei + je2,

the product of current and voltage is the power P of the alter-

nating circuit.

The product of the two general numbers 7 and E can be

formed mathematically, IE, and would represent a point C

in the vector plane Fig. M. This point C, however, and the

mathematical expression IE, which represents it, does not give

the power P of the alternating circuit, since the power P is not

of the same frequency as / and E, and therefore cannot be

represented in the same polar diagrain Fig. 21, which represents

I and E.

If we have a current / and an impedance Z, in Fig. 21;

/= i\+jt2and Z= r+ix, their product is a voltage, and as the

voltage is of the same frequency as the current, it can be repre-

sented in the same polar diagram. Fig. 21, and thus is given by

the mathematical product of [ and Z,

E= IZ={ii+ji2)ir-\-ji),

= {iir -i2X ) +jfer +iix).

28. Commonly, in the denotation of graphical diagrams by

general numbers, as the polar diagram of alternating currents,

those quantities, which are vectors in the polar diagram, as the

current, voltage, etc., are represented by dotted capitals: E, I,

while those general numbers, as the impedance, admittance, etc.

,

which appear as operators, that is, as multipliers of one vector,

for instance the current, to get another vector, the voltage, are

represented algebraically by capitals without dot: Z= r-{-jx=
impedance, etc.

This limitation of calculation with the mathematical repre-

sentation of physical quantities must constantly be kept in

mind in all theoretical investigations.

Division of General Numbers.

2Q. The division of two general numbers, A = ai+/a2 and
B = bi+jb2, gives,

A ai+ja2

This fraction contains the quadrature number in the numer-

ator as well as in the denominator. The quadrature number
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can be eliminated from the denominator by multiplying numer-
ator and denominator by the conjugate quantity of the denom-
inator, hi— jb2, which gives:

(oi +ja2)(bi -,762) (aih +a2^2) +j(a2bi -0162)

~{bi+ib2){b,-jb2)' bi^+b2'

aibi+a2b2 . 02^1 — cn&2

bi^ + b2^ +^ bi^+b2^ '

for instance,

^,_ A 6+2.5/
0=-;:

B 3 + 4/

_ (6 + 2.5/) (3 -4/)

(3 +4/) (3 -4/)

28-16.5/

25

= 1.12-0.66/.

If desired, the quadrature number may be eliminated from

the numerator and left in the denominator by multiplying with

the conjugate number of the numerator, thus:

i. ai +/a2

•~B~br+]b2
(ai+ja2)(ai-ja2)

~(&i+/&2)(ai-/a2)

ai^ + a^^

for instance.

(ai&i +a262) +/(ai^2 -O2&1)

'

^_^_ 6+2.5/
• B 3+4/

'

_ (6 + 2.5/) (6 -2.5/)
~

(3 + 4/) (6 -2.5/)

42.25

28 + 16.5/

30. Just as in multipUcation, the polar representation of

the general number in division is more perspicuous than any

other.
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Let A = a (cos a +/ sin a) be divided by B = b{cos ,8 + ] sin /?),

thus:

„_i4_a(cos a+y sin a)

• ~B~b(cosJ+Jan^
a(cos a+i sin a) (cos /? — / sin /?)

~6(cos /3+j sin /5)(cos /?— j sin /?)

a{ (cos a cos /?+ sin a sin /?) +j'(sin a cos /? —cos a sin /9)

}

^
i>(cos2/?+sin2|5)

= -r{cos (a — /?) +/ sin (a —/?)}.

That is, general numbers A and i? are divided by dividing

their vectors or absolute values, a and b, and subtracting their

phases or angles a and (3.

Involution and Evolution of General Numbers.

31. Since involution is multiple multiplication, and evolu-

tion is involution with fractional exponents, both can be resolved

into simple expressions by using the polar form of the general

number.

If,

A = ai +/a2 = a(cos a+j sin a),

then

C'= A" = a"(cos na+y sin na).

For instance, if

A = 3 +4/= 5 (cos 53 deg. +j sin 53 deg.);

then,

(7 = A4 = 54(cos 4X53 deg. +/ sin 4x53 deg.)

= 625(cos 212 deg. +j sin 212 deg.)

= 625( -cos 32 deg. -j sin 32 cleg.)

= 625( -0.848 -0.530 j)

= -529 -331 j.

If, A=ai+ja2 = a (cos a+/sin a), then

G=\/~A = A« =a" (cos - +? sin -

n/-l Oi . . a\= Val COS- + ? sm - ).

\ n ' n
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32. If, in the polar expression of A, we increase the phase

angle a by 2Tt, or by any multiple of 2k : 2qn, where q is any
integer number, we get the same value of A, thus:

4 = a{cos(a+2(;;r) +j sin(a +2g7r)},

since the cosine and sine repeat after every 360 deg, or 2-k.

The wth root, however, is different:

r, nn: n^( a+2g;r . . a^-2qn\C=vA = Va cos — +1 sm 3_ i_

We hereby get n different values of C, for g = 0, 1, 2. . .n— 1;

q=n gives again the same as 5 = 0. Since it gives

« + 2mi a
=-+2k;

n n

that is, an increase of the phase angle by 360 deg., which leaves

cosine and sine unchanged.

Thus, the nth root of any general number has n different

values, and these values have the same vector or absolute

term v^, but differ from each other by the phase angle — and

its multiples.

For instance, let 4= -529 -331/= 625 (cos 212 deg.

+

j sin 212 deg.) then,

C= ^1= ^(cos^^^±^+/sin^i^±^)

= 5(cos53+jsin53) =3 + 4/

= 5(cosl43+/sinl43) = 5(-cos37+/sin37)= -4 + 3/^

= 5(cos 233 +/ sin 233) = 5( -cos 53-/ sin 53) = -3-4/
= 5(cos 323 +/ sin 323) = 5(cos 37 -/ sin 37) =4-3/
= 5(cos 413+/ sin 413) = 5(cos 53 + / sin 53) =3+4/

The n roots of a general number A = a(cos «+/ sin a) differ
'

2t:
from each other by the phase angles — , or 1/nth of 360 deg.,

and since they have the same absolute value v^a, it follows, that

they are represented by n equidistant points of a circle with

radius v'^a, as shown in Fig. 22, for n = 4, and in Fig. 23 for
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n = 9. Such a system of n equal vectors, differing in phase from
each other by 1/nth of 360 deg., is caMed a. polyphase system, or

an n-phase system. The n roots of the general number thus

give an ?i-phase system.

33- For instance, \/l = ?

If A = a (cos a+y sin a) = l. this means: a=l, a=0; and
hence,

n/- 207: . . 2q7r
vl =cos h? sm ;

n * n

P,=-4+3i

Pr3+4/

Pr-S-ij
Pr^-3j

Fig. 22. Roots of a General Number, n=4.

and the n roots of the unit are

2=0 <^=l;

„ 1
360 . . 360

g = l cos +7sm
;

o r.
360 . . 360

q = 2 cos2x— +; sin 2x2^;

1 / ^ X 360 . . 360
q =n~l cos(n-l) —^+;sm(n-l)--

^ n

However,

360

n
c„s,--+,-si„,-^°=(c„.'S_V,-,„ !!»)'.
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hence, the n roots of 1 are,

„/- / 360 . . 360\«
VI = I cos Vj sin— I

,

47

n I

where q may be any integer number.

One of these roots is real, for g=0, and is = +1.

If n is odd, all the other roots are general, or complex

numbers.

If n is an even number, a second root, for 2 = 0' '^ ^^^° ^&^:

cos 180+ /sin 180= -1.

Fig. 23. Roots of a General Number, n=^.

If n is divisible by 4, two roots are quadrature numbers, and

are +j, for q=-^, and -], for 5 = ^-

34. Using the rectangular coordinate expression of the

general number, A = ai + J«2, the calculation of the roots becomes

more complicated. For instance, given •^= ?

Let C'=-C4=ci+yc2;

then, squaring,

A = (ci+/c2)2;

hence,

a\ +ja2 = (ci^ -02^) +2jciC2.

Since, if two general numbers are equal, their horizontal

and their vertical components must be equal, it is

:

ai=ci^— C2^ and a2 = 2ciC2.
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Squaring both equations and adding them, gives,

Hence

:

and since
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Therefore, the absolute value of a fractional expression is

the product of the absolute values of the factors of the numer-
ator, divided by the product of the absolute values of the

factors of the denominator.

The phase angle of a fractional expression is the sum of

the phase angles of the factors of the numerator, minus the sum
of the phase angles of the factors of the denominator.

For instance.

^ (3-4/)2(2 + 2y)-y-2.5 + 6j

5(4 + 3y)2\/2

25(cos307+/sin307)22\/2(cos45+/sin45)^(r5(cosll4+/sinll4)i

125(cos37+jsin37)2\/2

=0.4^a5|cos(2x307+45+^-2x37j

/ 114
+jsm (2X307 +45 +-^-2X37

= 0.4"v/a5{cos263+/sin263}

= 0.746| -0.122-0.992/) = -0.091 -0.74/.

36. As will be seen in Chapter II:

u^ u^ it*

£"=l+w+|2- + |3- + u: + . .

X^ X* X^ 1^
cosx=l-|2 +^-^ + ^--1...

x^ x^ x^
smz= x—r- + 1^—177+ -. . .

\6 |o \t

Herefrom follows, by substituting, x = d, u = jd,

cos ^+y sin d= e^',

and the polar expression of the complex quantity,

A = a(cos a+j sin a),

thus can also be written in the form.
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where e is the base of the natural logarithms,

£ = 1+1+^ +^ +^ + ... =2.71828...

Since any number a can be expressed as a power of any

other number, one can substitute,

where ao= logea= ,

"^°
, and the general number thus can

logio £

also be written in the form,

that is the general number, or complex quantity, can be expressed

in the forms,

A=ai+ja2
= a(cos a+j sin a)

The last two, or exponential forms, are rarely used, as they

are less convenient for algebraic operations. They are of

importance, however, since solutions of differential equations

frequently appear in this form, and then are reduced to the

polar or the rectangular form.

37. For instance, the differential equation of the distribu-

tion of alternating current in a flat conductor, or of alternating

magnetic flux in a flat sheet of iron, has the form

:

and is integrated by y = As~^'', where.

hence,

This expression, reduced to the polar form, is

?/ = Ai£"'"''"^(cos cx-j sin ex) +A2£~''''(cos cx+j sin ex).
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Logarithmation.

38. In taking the logarithm of a general number, the ex-
ponential expression is most convenient, thus

:

log£ (fli +ja2) =log£ a(cos a +j sin a)

= log£a£"'

= log£ a+logse'"

= loge a +ja;

or, if 6 = base of the logarithm, for instance, 6 = 10, it is:

log(,(ai+ja2)=logja£''' = logj a+ja logj s;

or, if b unequal lOj reduced to logio;

I / ,
• \ logio a

. logio s

logio logio b

Note. In mathematics, for quadrature unit V— 1 is always

chosen the symbol i. Since, however, in engineering the symbol i

is universally used to represent electric current, for the quad-

rature unit the symbol j has been chosen, as the letter nearest

in appearance to i, and j thus is always used in engineering

calculations to denote the quadrature unit V— 1.



CHAPTER II.

POTENTIAL SERIES AND EXPONENTIAL FUNCTION.

A. GENERAL.

39. An expression such as

y-ih (1)

represents a fraction; that is, the result of division, and hke
any fraction it can be calculated; that is, the fractional form

eliminated, by dividing the numerator by the denominator, thus:

l-x\l=l+x+x2+x^+. . .

1-x
+ x

x—x^

+ X2

+ x3.

Hence, the fraction (1) can also be expressed in the form:

y=j-— = l+x+x^+x^ + (2)

This is an infinite series of successive powers of x, or a poten-

tial series.

In the same manner, by dividing through, the expression

y-ih' (3)

can be reduced to the infinite series,

y^YJ^^^'~^~^^^~^^+
~

(4)

52
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The infinite series (2) or (4) is another form of representa-
tion of the expression (1) or (3), just as the periodic decimal
fraction is another representation of the common fraction

(for instance 0.6363 = 7/11).

40. As the series contains an infinite number of terms,

in calculating numerical values from such a series perfect

exactness can never be reached; since only a finite number of

terms are calculated, the result can only be an approximation.
By taking a sufficient number of terms of tlie series, however,

the approximation can be made as close as desired; that is,

numerical values may be calculated as exactly as necessary,

so that for engineering purposes the infinite series (2) or (4)

gives just as exact numerical values as calculation by a finite

expression (1) or (2), provided a sufficient number of terms

are used. In most engineering calculations, an exactness of

0.1 per cent is sufficient; rarely is an exactness of 0.01 per cent

or even greater required, as the unavoidable variations in the

nature of the materials used in engineering structures, and the

accuracy of the measuring instruments impose a limit on the

exactness of the result.

For the value a;= 0.5, the expression (1) gives y = z—Tr-r = 2;

while its representation by the series (2) gives

2/
= l +0.5+0.25 +0.125 +0.0625 + 0.03125 + . (5)

and the successive approximations of the numerical values of

y then are

:

using one term: y=l =1; error: —1
" two terms: y = l+ 0.5 =1.5; " -0.5
" three terms: J/= 1+ 0.5+ 0.25 =1.75- " -0.25
" four terms: i/=l+ 0.5+0.25+0.125 =1.875; " -0.125
" five terms: ;/= 1 + 0.5+ 0.25+0.125+ 0.0625 = 1.9375 " -0.0625

It is seen that the successive approximations come closer and

closer to the correct value, y = 2, but in this case always remain

below it; that is, the series (2) approaches its hmit from below,

as shown in Fig. 24, in which the successive approximations

are marked by crosses.

For the value a; = 0.5, the approach of the successive

approximations to the hmit is rather slow, and to get an accuracy

of 0.1 per cent, that is, bring the error down to less than 0.002,

requires a considerable number of terms.
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For x = 0.1 the series (2) is

2/
= l +0.1 +0.01+0.001 +0.0001 + (6)

and the successive approximations thus are

l:y=l; 2:y=l.l; 3:y=l.U; 4:y=l.ni; 5:y=l.nU;

and as, by (1), the final or Hmiting value is

t 5 6+ 4 5

+ 3

2

Fig. 24. Convergent Series with One-sided Approach.

the fourth approximation already brings the error well below

0.1 per cent, and sufficient accuracy thus is reached for most

engineering purposes by using four terms of the series.

41. The expression (3) gives, for a; = 0.5, the value,

^=rTo:5=l=^-^^^^---

Represented by series (4), it ^ves

2/
= l-0.5 + 0.25-0.125+0.0625-0.03125+- (7)

the successive approximations are;

1st: y= l =1; error: +0.333...
2d: y^l-0.5 =0.5; " -0.1666...
3d: 3/=l-0.5+ 0.25 =0.75; " +0.0833...
4th: !/- 1-0.5+0.25-0.125 =0.625; " -0.04166...
5th: i/= l-0.5+0.25-0.125+ 0.0625 = 0.6875; " +0.020833...

As seen, the successive approximations of this series come
closer and closer to the correct value 2/

= 0.6666 . . . , but in this

case are alternately above and below the correct or limiting

value, that is, the series (4) approaches its limit from both sides,

as shown in P^ig. 25, while the series (2) approached the limit

from below, and still other series may approach their limit

from above.
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With such alternating approach of the series to the limit,
as exhibited by series (4), the limiting or final value is between
any two successive approximations, that is, the error of any
approximation is less than the difference between this and the
next following approximation.

Such a series thus is preferable in engineering, as it gives
mformation on the maximum possible error, while the series
with one-sided approach does not do this without special in-
vestigation, as the error is greater than the difference between
successive approximations.

42. Substituting a;=2 into the expressions (1) and (2),

equation (1) ^ves

+1

3
+ 5

+
2

1
" 1+x

Fig. 25. Convergent Series with Alternating Approach.

while the infinite series (2) gives

j/
= l+2-l-4+8-Hl6+32-h ..;

and the successive approximations of the latter thus are

1; 3; 7; 15; 31; 63. . .;

that is, the successive approximations do not approach closer

and closer to a final value, but, on the contrary, get further and
further away from each other, and give entirely wrong results.

They give increasing positive values, which apparently approach

00 for the entire series, while the correct value of the expression,

by (1), is 2/= -1.

Therefore, for a; =2, the series (2) gives unreasonable results,

and thus cannot be used for calculating numerical values.

The same is the case with the representation (4) of the

expression (3) for x=2. The expression (3) gives

f/=Y^ = 0.3333 . . .
;
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while the infinite series (4) gives

2/
= l-2 +4-8 +16-32+- . .,

and the successive approximations of the latter thus are

1; -1; +3; -5; +11; -21; . . .;

hence, while the successive values still are alternately above

and below the correct or limiting value, they do not approach

it with increasing closeness, but more and more diverge there-

from.

Such a series, in which the values derived by the calcula-

tion of more and more terms do not approach a final value

closer and closer, is called divergent, while a series is called

convergent if the successive approximations approach a final

value with increasing closeness.

43- While a finite expression, as (1) or (3), holds good for

all values of x, and numerical values of it can be calculated

whatever may be the value of the independent variable x, an

infinite series, as (2) and (4), frequently does not give a finite

result for every value of x, but only for values within a certain

range. For instance, in the above series, for —1 <a;< + l,

the series is convergent; while for values of x outside of this

range the series is divergent and thus useless.

When representing an expression by an infinite series,

it thus is necessary to determine that the series is convergent;

that is, approaches with increasing number of terms a finite

limiting value, otherwise the series cannot be used. Where
the series is convergent within a certain range of x, diver-

gent outside of this range, it can be used only in the range oj

convergency, but outside of this range it cannot be used for

deriving numerical values, but some other form of representa-

tion has to be found which is convergent.

This can frequently be done, and the expression thus repre-

sented by one series in one range and by another series in

another range. For instance, the expression (1), y = -
, by

J. ~r •(/

substituting, x= -, can be written in the form

1 u

i+i ^+"'
u
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and then developed into a series by dividing the numerator
by the denominator, which gives

y =u—u^+u^~u'^ + . . .;

or, resubstituting x,

1111
^~x"F2+^3--4 + - ...... (8)

which is convergent for x= 2, and for a; = 2 it gives

2/ = 0.5 -0.25+0.125 -0.0625 + . . . (9)

With the successive approximations

:

0.5; 0.25; 0.375; 0.3125...,

which approach the final hmiting value,

2/
= 0.333. . .

44. An infinite series can be used only if it is convergent.

Mathemetical methods exist for determining whether a series

is convergent or not. For engineering purposes, however,

these methods usually are unnecessary; for practical use it

is not sufficient that a series be convergent, but it must con-

verge so rapidly—that is, the successive terms of the series

must decrease at such a great rate—that accurate numerical

results are derived by the calculation of only a very few terms;

two or three, or perhaps three or four. This, for instance,

is the case with the series (2) and (4) for x = 0.1 or less. For

x = 0.5, the series (2) and (4) are still convergent, as seen in

(5) and (7), but are useless for most engineering purposes, as

the successive terms decrease so slowly that a large number
of terms have to be calculated to get accurate results, and for

such lengthy calculations there is no time in engineering work.

If, however, the successive terms of a series decrease at such

a rapid rate that all but the first few terms can be neglected,

the series is certain to be convergent.

In a series therefore, in which there is a question whether

it is convergent or divergent, as for instance the series

,11111
2/= l+2 +3 +4 +5 +6 +• • • (divergent),
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or .11111, r +^^^^~2+3 "4'^5"6+ (convergent),

the matter of convergency is of little importance for engineer-

ing calculation, as the series is useless in any case; that is, does

not give accurate numerical results with a reasonably moderate

amount of calculation.

A series, to be usable for engineering work, must have

the successive terms decreasing at a very rapid rate, and if

this is the case, the series is convergent, and the mathematical

investigations of convergency thus usually becomes unnecessary

in engineering work.

45. It would rarely be advantageous to develop such simple

expressions as (1) and (3) into infinite series, such as (2) and

(4), since the calculation of numerical values from (1) and (3)

is simpler than from the series (2) and (4), even though very

few terms of the series need to be used.

The use of the series (2) or (4) instead of the expressions

(1) and (3) therefore is advantageous only if these series con-

verge so rapidly that only the first two terms are required

for numerical calculation, and the third term is negligible;

that is, for very small values of r. Thus, for .r = 0.01, accord-

ing to (2),

2/
= l +0.01 +0.0001 +. . . = 1 +0.01,

as the next term, 0.0001, is already less than 0.01 per cent of

the value of the total expression.

For very small values of x, therefore, by (1) and (2),

and by (3) and (4),

y=j~='^+^, (10)

2/=r+-^
= l-^,

. . . (11)

ana tnese expressions (10) and (11) are useful and very com-
monly used in engineering calculation for simplifying work.

For instance, if 1 plus or minus a very small quantity appears

as factor in the denominator of an expression, it can be replaced

by 1 minus or plus the same small quantity as factor in the

numerator of the expression, and inversely.
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For example, if a direct-current receiving circuit, of resist-

ance r, is fed by a supply voltage eo over a line of low
resistance rg, what is the voltage e at the receiving circuit?

The total resistance is r+ro] hence, the current, i=
eo

, ,
r+ ro'

and the voltage at the receiving circuit is

r + ro

If now To is small compared with r, it is

« =eo—^^=eo|l-y| (13)

r

As the next term of the series would be (— ) , the error

made by the simpler expression (13) is less than (— ] . Thus,

if ro is 3 per cent of r, which is a fair average in interior light-

ing circuits, (— ) =0.03^ = 0.0009, or less than 0.1 per cent;

hence, is usually negligible.

46. If an expression in its finite form is more complicated

and thereby less convenient for numerical calculation, as for

instance if it contains roots, development into an infinite series

frequently simplifies the calculation.

Very convenient for development into an infinite series

of powers or roots, is the binomial theorem,

/1 , ^. 1, n(n-l)
, ,

w(w-l)(n-2 )

(l±u)" = l±nu-\ n^ u ± jo u^ + -

where

lm= lx2x3X. . .Xm.

(14)

Thus, for instance, in an alternating-current circuit of

resistance r, reactance x, and supply voltage e, the current is,
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If this circuit is practically non-inductive, as an incandescent

lighting circuit; that is, if x is small compared with r, (15)

can be written in the form,

_ 1

e e
i = -

.+(7
-(r)1". . . .

ae)

and the square root can be developed by the binomial (14), thus,

/x\2 1
M= ( -) ; n= — -, and gives

[-(r)T '^^-m4(^-m*- <->

In this series (17), if x = 0.lr or less; that is, the reactance

is not more than 10 per cent of the resistance, the third term,

a\~) , is less than 0.01 per cent; hence, neghgible, and the

series is approximated with sufficient exactness by the first

two terms.
1

. X.

1+.
r

'-4 iy as)
'1 \r

and equation (16) of the current then gives

^-7('4©1 ™
This expression is simpler for numerical calculations than

the expression (15), as it contains no square root.

47. Development into a scries may become necessary, if

further operations have to be carried out with an expression

for which the expression is not suited, or at least not well suited.

This is often the case \A'herc the expression has to be integrated,

since very few expressions can be integrated.

Expressions under an integral sign therefore very commonly
have to be developed into an infinite series to carry out the

integration.
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EXAMPLE 1.

Of the equilateral hyperbola (Fig. 26),

xy = a^, ... . (20)

the length L of the arc between Xi = 2a and X2 = 10a is to be

calculated.

An element dl of the arc is the hypothenuse of a right triangle

with dx and dy as cathetes. It, therefore, is,

dl = Vdx^+dy^

-Mty^^' (21)
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X . .

Substituting - = i;; that is, dx^adv, also substituting

Di =— = 2 and i)2 =— =10,
a a '

gives

=U \R'^^-
The expression under the integral is inconvenient for integra-

tion; it is preferably developed into an infinite series, by the

binomial theorem (14).

Write M= -7 and 71=77, then
V* 2'

and
/"«! f 1 1 1 t^

-...\dv

1

r^'( 1 i_ _i 5^_

1

3X128X1^18

, , ._^1/1 1\ 1/1 1

6 \Vi^ V2^/ 5b \«i7 V2^

- +

J^/l 1_\_
^176\i;iii V2'y '^"

and substituting the numerical values,

L= ai (10-2) +^(0.125-0.001)

-^(0.0078-0) +^(0.0001 -0)1

= al8 + 0.0207- 0.0001 \
= 8.0206a.

As seen, in this series, only the first two terms are appreciable

in value, the third term less than 0.01 per cent of the total,

and hence negligible, therefore the series converges very
rapidly, and numerical values can easily be calculated by it.
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For Xi<2 a; that is, Vi <2, the series converges less rapidly,

and becomes divergent for xi<a; or, vi<l. Thus this series

(17) is convergent for v>l, but near this limit of convergency
it is of no use for engineering calculation, as it does not converge

with sufficient rapidity, and it becomes suitable for engineering

calculation only when vi approaches 2.

EXAMPLE 2.

48. log 1=0, and, therefore log (1+x) is a small quantity

if X is small, log (1 +x) shall therefore be developed in such

a series of powers of x, which permits its rapid calculation

without using logarithm tables.

It is

logu=J-;

then, substituting (l+x) for u gives,

log(l+.x)=Jp_^ (24)

From equation (4)

1

l+x

hence, substituted into (24),

= l — x + x^—x^ + .

log (1 +x) =
j

(1 ~x + x^ —x^ + . . .)dx

=
I
dx — I xdx +

I
x^dx —

I
x^dx -

x^ x^ X*
, ,= a;—2+3--J+ • • ;

.... (25)

hence, if x is very small, — is negligible, and, therefore, all

terms beyond the first are negligible, thus,

log {l+x)=x;

while, if the second term is still appreciable in value, the more

complete, but still fairly simple expression can be used,

log {l + x) =x-^=x[l—^
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If instead of the natural logarithm, as used above, the

decimal logarithm is required, the following relation may be

applied

:

logio a = logios logs a = 0.4343 logs a,

logio a is expressed by log^ a, and thus (19), (20) (21) assume

the form,

/ .r2 j3 -f-i

logio (l+^)=0.4313(x--+--^+.

or, approximately,

logio(l+a:)=0.4343x;

or, more accurately,

logio(l+.T)=0.4343.r(l-|

B. DIFFERENTIAL EQUATIONS.

49. The representation by an infinite series is of special

value in those cases, in which no finite expression of the func-

tion is known, as for instance, if the relation between :r and y
is given bj^ a differential equation.

Differential equations are solved by separating the variables,

that is, bringing the terms containing the one variable, y, on

one side of the equation, the terms with the other variable x

on the other side of the equation, and then separately integrat-

ing both sides of the equation. Ycry rarely, however, is it

possible to separate the variables in this manner, and where

it cannot be done, usually no systematic method of solving the

differential equation exists, but this has to be done by trying

different functions, until one is found which satisfies the

equation.

In electrical engineering, currents and voltages are dealt

with as functions of time. The current and c.m.f. giving the

power lost in resistance are related to each other by Ohm's
law. Current also produces a magnetic field, and this magnetic

field b}' its changes generates an c.m.f.—the e.m.f. of self-

inductance. In this case, c.m.f. is related to the change of

current; that is, the differential coefficient of the current, and
thus also to the differential coefficient of e.m.f., since the e.m.f.
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is related to the current by Ohm's law. In a condenser, the

current and therefore, by Ohm's law, the e.m.f., depends upon
and is proportional to the rate of change of the e.m.f. impressed

upon the condenser; that is, it is proportional to the differential

coefficient of e.m.f.

Therefore, in circuits having resistance and inductance,

or resistance and capacity, a relation exists between currents

and e.m.fs., and their differential coefficients, and in circuits

having resistance, inductance and capacity, a double relation

of this kind exists; that is, a relation between current or e.m.f.

and their first and second differential coefficients.

The most common differential equations of electrical engineer-

ing thus are the relations between the function and its differential

coefficient, which in its simplest form is,

t-r, m
or

1=.., .... (27)

and where the circuit has capacity as well as inductance, the

second differential coefficient also enters, and the relation in

its simplest form is,

cPy

or

dF^-y-'
(28)

S-^' (29)

and the most general form of this most common differential

equation of electrical engineering then is,

g+2c|+a, + 6 = (30)

The differential equations (26) and (27) can easily be inte-

grated by separating the variables, but not so with equations

(28), (29) and (30); the latter are preferably solved by trial.

SO. The general method of solution may be illustrated with

the equation (26)

:

l=» (-)
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To determine whether this equation can be integrated by an

infinite series, choose such an infinite series, and then, by sub-

stituting it into equation (26), ascertain \vhether it satisfies

the equation (26) ; that is, makes the left side equal to the right

side for every value of x.

Let,

y = ao+aix+a2X^ + a-sX^ + a4X'*+ . . . . (31)

be an infinite series, of which the coefficients ao, a\, a^, 03. . .

are still unknown, and by substituting (31) into the differential

equation (26), determine whether such values of these coefficients

can be found, which make the series (31) satisfy the equation (26).

Differentiating (31) gives,

-^ = ai+2a2i+ 3 03^2 + 404x3 + (32)

The differential equation (26) transposed gives,

dy

dx
-2/= (33)

Substituting (31) and (32) into (33), and arranging the terms
in the order of x, gives,

(gi - ao) + (2a2- ai)x + (803 - a2).r2

+ (4a4- 03)3-3 + (5a5-a4)x*+ .=0. . (34)

If then the above series (31) is a solution of the differential

equation (26), the expression (34) must be an identity; that is,

must hold for every value of x.

If, however, it holds for every value of x, it does so also

for a; = 0, and in this case, all the terms except the first vanish,
and (34) becomes,

oi-Oo=0; or, 0i=an. . . . (35)

To make (31) a solution of the differential equation (oi-oo)
must therefore equal 0. This being the case, the term (ai-oo)
can be dropped in (34), which then becomes,

(2o2-ai)a; + (3a3-a2)a;2 + (4a4-03)x3 + (5a5-a4)a;4 + . =0;

or.

a:{(2a2-ai) + (3a3-a2)x + (4a4-a3).r2 + . . .}=0.
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Since this equation must hold for every value of x, the second

factor of the equation must be zero, since the first factor, x, is

not necessarily zero. This gives,

(2o2— ai) +(3a3 — a2)x + (4a4— a3)x2 + . . .=0.

As this equation holds for every value of x, it holds also for

x = 0. In this case, however, all terms except the first vanish,

and,

2a2-ai=0; (36)

hence,

ai
a2 = -

)>

and from (35),

az-- 2"

Continuing the same reasoning,

3a3 — a2 = 0, 4a4— 03=0, etc.

Therefore, if an expression of successive powers of x, such as

(34), is an identity, that is, holds for every value of x, then all

the coefficients of all the powers of x must separately be zero*

Hence,

Oi— ao=0; or ai = ao;

o A ai ao
2a2— oi = 0; or a2=-2=-^,

o n «2 Cto.

oas— a2= U; or a3=-o" = |o;

4a4

etc..

a3=0; or 0'i=-^ = u;

etc.

(37)

* The reader must realize the difference between an expression (34), as

equation in i, and as substitution product of a function; that is, as an
identity.

Regardless of the vahies of the coefficients, an expression (34) as equation

gives a number of separate values of x, the roots of the equation, which
make the left side of (34) equal zero, that is, solve the equation. If, however,

the infinite series (31) is a solution of the differential equation (26), then

the expression (34), which is the result of substituting (31) into (26), must
be correct not only for a limited number of values of x, which are the roots

of the equation, but for all values of x, that is, no matter what value is

chosen for x, the left side of (34) must always give the same result, 0, that

is, it must not be changed by a change of x, or in other words, it must not

contain x, hence all the coefficients of the powers of x must be zero.
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Therefore, if the coefficients of tlie pcries (31) are chosen

by equation (37), this scries satisfies the differential equation

(26); that is,

\
a:2 x3 a;4

1

2/ = ao l+x+-2+^+u+-- |- • • (38)

is the solution of the differential equation,

dy

dx
--y-

51. In the same manner, the differential equation (27),

dz

dx
= az. (39)

is solved by an infinite series,

z = ao+aiX+a2X^+a3X^ + . . ., . . . (40)

and the coefficients of this scries determined by substituting

(40) into (39), in the same manner as clone above. This gives,

(ai — aao) +{2a2— aai)x + {Sa3— aa2)x^

+ {4a4-aa3)x^ + . . .=0, . (41)

and, as this equation must be an identity, all its coefficients

must be zero ; that is,

ai~aao = 0; or ai = aao;

a o?
2o2— aai=0; or a2 = «i :y = ao y;on a a?
3a3— aa2 = 0; or 03 = 0,20=0070"; ] . (42)

^ n a a^
404—003 = 0; or 04 = 03^ = 0077;

etc., etc.

and the solution of differential equation (39) is,

f

,

a'^x^ a^x^ o^x* 1

z =Oo|l+ax+—
+-J3-+-^

+ ...|. . (43)

52. These solutions, (38) and (43), of the differential equa-
tions (26) and (39), are not single solutions, but each contains

an infinite number of solutions, as it contains an arbitrary
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constant ao] that is, a constant which may have any desired

numerical vahie.

This can easily be seen, since, if z is a solution of the dif-

ferential equation,

dz

d^= ^^'

then, any multiple, or fraction of z, bz, also is a solution of the

differential equation;

dibz)

since the h cancels.

Such a constant, ao, which is not determined by the coeffi-

cients of the mathematical problem, but is left arbitrary, and

requires for its determinations some further condition in

addition to the differential equation, is called an integration

constant. It usually is determined by some additional require-

ments of the physical problem, which the differential equation

represents; that is, by a so-called terminal condition, as, for

instance, by having the value of y given for some particular

value of X, usually for x = 0, or x = oo

.

The differential equation,

i-r. W
thus, is solved by the function,

y = aoyo, (45)

where,
/>»2 rpS 'V*4

2/o
= l+x+2-+pj+jj+ ....... (46)

and the differential equation,

|-«^' (*^)

is solved by the function,

z = aoZo, (48)

where,

a^x^ aH^ a^.r* ,.„,

0o
= H-fla;+^-+-rj-+-|y- + (49)
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yo and zo thus are the simplest forms of the solutions ij and z

of the differential equations (26) and (39).

53. It is interesting now to determine the value of 2/". To

raise the infinite series (46), which represents %, to the nth

power, would obviously be a very complicated operation.

However,

t"^-'t ^^»)

dv
and since from (44) w~°"2/; • (51)

by substituting (51) into (50),

t-^y-' (-^2)

hence, the same equation as (47), but with y" instead of z.

Hence, if y is the solution of the differential equation,

dy^
dx y'

then z= 2/" is the solution of the differential equation (52),

dz
-j- = nz.
ax

However, the solution of this differential equation from (47),

(48), and (49), is

z = aoZo',

ZQ =l+nx+—^+^+. . . ;

that is. if

then,

2/o
= l+a;+2-+73+...,

n^x^ n^3?
«o = ?/o"

= l+wa;+^^+-T^ + ... ; . . . (53)

therefore the series y is raised to the nth power by multiply-
ing the variable x by n.
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Substituting now in equation (53) for n the value - gives

1 111
j/o^=i+i+2+j3+rf+--- ; • (54)

that is, a constant numerical value. This numerical value

equals 2.7182818. . ., and is usually represented by the symbol s.

Therefore,

j_

hence,
/ytji /v'O 'y'i

yo = e- = l+x+-+'j^ + -r^ + . . .
,

(.55)

and

, ,. , n^x^ n^x^ n'^x* , „,
20 =%"= («^)"=s"^ = l+nj:+—5-+-r5- +-,— + . . . ; (56)

therefore, the infinite series, which integrates above differential

equation, is an exponential function with the base

£ = 2.7182818 (57)

The solution of the differential equation,

l=» w
thus is,

J/= ao^^ (59)

and the solution of the differential equation,

|-«^' ^60)

is,

J/
= ao^''^ (61)

where fflg is an integration constant.

The exponential function thus is one of the most common
functions met in electrical engineering problems.

The above described method of solving a problem, by assum-

ing a solution in a form containing a number of imknown
coefficients, Cg, a\, a-i. .., substituting the solution in the problem

and thereby determining the coefficients, is called the method

of indeterminate coefficients. It is one of the most convenient
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and most frequently used methods of solving engineering

problems.

EXAMPLE 1.

54. In a 4-pole 500-volt 50-k\v. direct-current shunt motor,

the resistance of the field circuit, inclusive of field rheostat, is

250 ohms. Each field pole contains 4000 turns, and produces

at 500 volts impressed upon the field circuit, 8 megalines of

magnetic flux per pole.

What is the equation of the field current, and how much
time after closing the field switch is required for the field cur-

rent to reach 90 per cent of its final value?

Let r be the resistance of the field circuit, L the inductance

of the field circuit, and i the field current, then the voltage

consumed in resistance is,

fir = 'ri.

In general, in an electric circuit, the current produces a

magnetic field; that is, lines of magnetic flux surrounding the

conductor of the current; or, it is usually expressed, interlinked

with the current. This magnetic field changes with a change of

the current, and usually is proportional thereto. A change

of the magnetic field surrounding a conductor, however, gen-

erates an e.m.f. in the conductor, and this e.m.f. is proportional

to the rate of change of the magnetic field; hence, is pro-

portional to the rate of change of the current, or to

di .

-r, with a proportionality factor L, which is called the induct-
CLl'

ance of the circuit. This counter-generated e.m.f. is in oppo-

di
sition to the current, —L-t., and thus consumes an e.m.f.,

di . .

+J-I-T,, which is called the e.m.f. consumed by self-inductance,

or inductance e.m.f.

Therefore, by the inductance, L, of the field circuit, a voltage

is consumed which is proportional to the rate of change of the

field current, thus,

^ di

'^^^dt-
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Since the supply voltage, and thus the total voltage consumed
in the field circuit, is e= 500 volts,

. ^ di
e = n+Lj^; (62)

or, rearranged,

di e—ri

Substituting herein,

u = e-n; (63)

hence,

du di

gives,

dt
'"

'dt'

du r
= --n (64)

This is the same differential equation as (39), with a=
,

and therefore is integrated by the function,

u = ao£ L
;

therefore, resubstituting from (63),

e—ri= aQ£ ^
,

and

r r

This solution (65), still contains the unknown quantity ao;

or, the integration constant, and this is determined by know-
ing the current i for some particular value of the time t.

Before closing the field switch and thereby impressing the

voltage on the field, the field current obviously is zero. In the

moment of closing the field switch, the current thus is still

zero; that is,

i = for t = 0. . (66)
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Substituting these values in (65) gives,

hence,

0= -; or ao = +e,
r r

^ = 7(l-^"^') (67)

is the final solution of the differential equation (62); that is,

it is the value of the field current, i, as function of the time, t,

after closing the field switch.

After infinite time, i = oo, the current i assumes the final

value io, which is given by substituting i=oo into equation

(67), thus,

e 500 „ ,„ox
io = - = 7r,^ = 2 amperes; .... (58)

r /oU

hence, by substituting (68) into (67), this equation can also be

written,

i-= io(l-£"^')

= 2(l-rr'), (69)

where io = 2 is the final value assumed by the field current.

The time ti, after which the field current i has reached 90

per cent of its final value Iq, is given by substituting i = 0.9io

into (69), thus,

0.9to=?o(l-rr"),
and

e~^"=0.1.

Taking the logarithm of both sides,

rr

J <ilog €=-1;

and

r log £
«i=rT:^ (70)
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5S' The inductance L is calculated from the data given

in the problem. Inductance is measured by the number of

interlinkages of the electric circuit, with the magnetic flux

produced by one absolute unit of current in the circuit; that

is, it equals the product of magnetic flux and number of turns

divided by the absolute current.

A current of i^ = 2 amperes represents 0.2 absolute units,

since the absolute unit of current is 10 amperes. The number
of field turns per pole is 4000; hence, the total number of turns

71= 4X4000 = 16,000. The magnetic flux at full excitation,

or tg = 0.2 absolute units of current, is given as <? = 8 X 10^ lines

of magnetic force. The inductance of the field thus is:

, n§ 16000X8X106 ^,^ ,„„ , , . „,„,
Z, =_^ = THs = 640 X 109 absolute units = 640/;.,

To 0.2 '

the practical unit of inductance, or the henry (A) being 10^

absolute units.

Substituting L = 640 r= 250 and e = 500, into equation (67)

and (70) gives

i= 2(l- £-0-390,

and

^^^
250X(X4343 =

^-^^^^" ^^^^

Therefore it takes about 6 sec. before the motor field has

reached 90 per cent of its final value.

The reader is advised to calculate and plot the numerical

values of i from equation (71), for

t = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3, 4, 5, 6, 8, 10 sec.

This calculation is best made in the form of a table, thus;

and,

hence,

and,

logs =0.4343;

0.39nog, =0.1694<;

.-o='9' = Ar3ol694i.
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The values of £-o-39' can also be taken directly from the

tables of the exponential function, at the end of the book.

I
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In an electric reservoir, the electric pressure or voltage e

corresponds to the water pressure or height of the water, and
to the storage capacity or sectional area A of the water tank
corresponds the electric storage capacity of the condenser,

called capacity C. The current or flow out of an electric

condenser, thus is,

--4: ^''^

The capacity of condenser is,

C= 20 mf= 20XlO-6 farads.

The resistance of the discharge path is,

r =2X106 ohms;

hence, the current taken by the resistance, r, is

. e

r

and thus

,de e

^'dt^r'

and
de

dt Cr
''

Therefore, from (60) (61),

and for t = 0, e = eo = 10,000 volts; hence

e = ao£ ^'•j

and

0.1 of the initial value:

is reached at

:

10,000 = ao,

t_

= 10,000£-°-°25' volts; . . (74)

e = 0.1eQ,

ii=r^ = 92sec (75)
log £
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The reader is advised to calculate and plot the numerical

values of e, from equation (74), for

t = 0; 2; 4; 6; 8; 10; 15; 20; 30; 40; CO; 80; 100; 150; 200 sec.

57. Wherever in an electric circuit, in addition to resistance,

inductance and capacity both occur, the relations between

currents and voltages lead to an equation containing the second

differential coefficient, as discussed above.

The simplest form of such equation is:

S-^ (^«)

To integrate this by the method of indeterminate coefficients,

we assume as solution of the equation (76) the infinite series,

y = ai)+aix+a2X^+a'iX^+a4,x* + (77)

in which the coefficients ao, ai, a2, 0,3, 0,4,. . . are indeterminate.

Differentiating (77) twice, gives

^ = 2a2+2x3a3X+3x4a4a;2+4x5a5x3 + ... , . (78)

and substituting (77) and (78) into (76) gives the identity,

2a2+2x3a3X +3XiaiX^ +iX5asx^ + . . .

=a{ao+aix+a2X^ + a3X^ + . . .);

or, arranged in order of x,

(2a2— aao)+x(2X3a3— aai)+2;2(3X4a4— 002)

+ x3(4x5as-aa3)+. . .=0 (79)

Since this equation (79) is an identity, the coefficients of

all powers of x must individually equal zero. This gives for

the determination of these hitherto indeterminate coefficients

the equations,

2a2— aao = 0;

2x3a3 — aai=0;

3x4a4— aa2 = 0;

4 X Sas— aas = 0, etc.
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Therefore

aa2 Oofl^ aar, aio^
°-t=i7m=-n-', «5=-

3X4



80 ENGINEERING MATHEMATICS.

In this case, instead of the integration constants Oo and Oi,

the two new integration constants A and B cart be introduced

by the equations

ao =A+B and -^ = A-B;

hence,
^^ a^

A=—^— and -8=—^—

,

and, substituting these into equation (83), gives,

, r , 62x2 53x3 ¥x*
y=A

I
^+bx+^+-.Y+~nr + -

1 7 ?''^' ^""^^ ^^^
1

+5|i-5x+^2:-i3:+Tr-+---|- •
(^4)

The first series, however, from (56), for n = h is e^^'^, and

the second series from (56), for n= —5 is e~^'^.

Therefore, the infinite series (83) is,

y^Ae + '^^+Bi-^''; (85)

that is, it is the sum of two exponential functions, the one with

a positive, the other with a negative exponent.

Hence, the difTerential equation,

di-^y' (76)

is integrated by the function,

y = A£ + *^+B£-'^, (86)

where,

b=\/a. . . . (87)

However, if a is a negative quantity, h = Va is imaginary,

and can be represented by

i = ic, (88)

where

c^=-a (89)

In this case, equation (86) assumes the form,

2/
= 4£+k^+5j-kx.

^QQ)
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that is, if in the differential equation (76) a is a positive quantity,

= +b^, this differential equation is integrated by the sum of

the two exponential functions (86) ; if, however, a is a negative

quantity, = — c^, the solution (86) appears in the form of exponen-

tial functions with imaginary exponents (90).

58. In the latter case, a form of the solution of differential

equation (76) can be derived which does not contain the

imaginary appearance, by turning back to equation (80), and

substituting therein a=—c^, which gives,

d'y
2 (91)

y= ao\ 1

fiA yZ A 7-4 ,^6 r^

or, writing A=aQ and B =
ai

y= A 1

^2r2 /.4r4C^X^ C^X* C°X'.676

-+-

I
+

+ B\ CX-—r-+-p-
3

+ . . . (92)

The solution then is given by the sum of two infinite series,

thus.

and

w(cx) = l-

^4r4 /.6,6c-x~ C^X* C°X_

^^"^H 16"
+

v{cx)=cx-
f3.r3 g5j-5

+ .

• (93)

as

y = Au{cx) +Bv{cx). (94)

In the w-series, a change of the sign of x does not change

the value of u,

u{— cx)=u{+cx) (95)

Such a function is called an even function.
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In the ?;-series, a change of the sign of x reverses the sign

of V, as seen from (93):

v{— cx) = —v{+cx) (96)

Such a function is called an odd function.

It can be shown that

u{cx)=Qos,cx and v{cx) = sva ex; . . . (97)

hence,

t/ = A cos cx+i? sin ex, (98)

where A and B are the integration constants, which are to be

determined by the terminal conditions of the physical problem.

Therefore, the solution of the differential equation

J-^y' (99)

has two different forms, an exponential and a trigonometric.

If a is positive
,

^2=+b'y,
. ... (100)

it is:

y= Ae + ^='+Be-^'', .... (101)

If a is negative,

dt2--c'y, (102)

it is:

2/ = ^ cos ex +5 sin ex (103)

In the latter case, the solution (101) woukl appear as ex-
ponential function with imaginary exponents;

2/ = ^£+'^^+££-'"
(104)

As (104) obviously must be the same function as (103), it

follows that exponential functions with imaginary exponents
must be expressible by trigonometric functions.
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59. The exponential functions and the trigonometric func-

tions, according to the preceding discussion, are expressed by
the infinite series,

, X2 j;4 ^6

cosx= l-2+[4-|g+-. .

/T^3 'Y-O v7

sin x = x—T^ +7^ — 77=- + — . . .

I I I

Therefore, substituting fu for x,

(105)

„-u= i+y^___j_.+_+j____j_

,, m2 M* U^ W*^ M'' U'

However, the first part of this series is cos u, the latter part

sin u, by (105) ; that is,

£'" = cos u+j sm u.

Substituting —u for +u gives,

£-j« = cos u~j sin w.

Combining (106) and (107) gives.

cos M =

and
c+)"_ r— J"

sm M = -

2j

Substituting in (106) to (108), jv for w, gives,

£'"' = cos jv+j sm jv, ]

£+^ = cos p— /sin jV. J

and.

(106)

(107)

(108)

(109)
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Adding and subtracting gives respectively,

COS p =
:^

and

sin iv= -

'>i

(110)

By these equations, (106) to (110), exponential functions

with imaginary exponents can be transformed into trigono-

metric functions with real angles, and exponential functions

with real exponents into trignometric functions with imaginary

angles, and inversely.

Mathematically, the trigonometric functions thus do not

constitute a separate class of functions, but may be considered

as exponential functions with imaginary angles, and it can be

said broadly that the solution of the above differential equa-

tions is given by the exponential function, but that in this

function the exponent may be real, or may be imaginary, and

in the latter case, the expression is put into real form by intro-

ducing the trigonometric functions.

EXAMPLE 1.

6o. A condenser (as an underground high-potential, cable)

of 20 mf. capacity, and of a voltage of eo = 10,000, discharges

through an inductance of 50 mh. and of negligible resistance,

"What is the equation of the discharge current?

The current consumed by a condenser of capacity C and

potential difference e is proportional to the rate of change

of the potential difference, and to the capacity; hence, it is

dt'

current, is

C-;^, and the current from the condenser; or its discharge

'-4: (""

The voltage consumed by an inductance L is proportional

to the rate of change of the current in the inductance, and to the

iniluctance ; hence,

^=4 ^"2)
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Differentiating (112) gives,

de d^i

dt~ dfi:
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Substituting the numerical values, Cq = IOjOOO volts, C= 20

mf. = 20X10- 6 farads, L = 50 mh.=0.05h. gives,

^l̂
= 0.02 and VCL = 10-^;

hence,

t= 20G sin 1000 t and e= 10,000 cos 1000 t.

6i. The discharge thus is alternating. In reality, due to

the unavoidable resistance in the discharge path, the alterna-

tions gradually die out, that is, the discharge is oscillating.

The time of one complete period is given by,

27r
1000^0 =2;r; or, to=j^-

Hence the frenquency,

. 1 1000 _„ ,/=— = -^— = 159 cycles per second.

As the circuit in addition to the inductance necessarily

contains resistance r, besides the voltage consumed by the

inductance by equation (112), voltage is consumed by the

resistance, thus

er-ri, (117)

and the total voltage consumed by resistance r and inductance

L, thus is

. T di
e = n+Lj^ (118)

Differentiating (118) gives,

de di ^ dH
jr'dt+^wr ^1^9)

and, substituting this into equation (111), gives,

^ di ^^ dH „

'-^^'dt+^^dt^-'^' (120)

as the differential equation of the problem.

This differential equation is of the more general form, (30),

62. The more general differential equation (30).

d^y „ dy
J+2c/^ + ay + b^0, (121)
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can, by substituting,

which gives

y+- = ^, (122)

dy dz

dx dx'

be transformed into the somewhat simpler form,

S-^4:+--o (12^)

It may also be solved by the method of indeterminate

coefficients, by substituting for z an infinite series of powers of

X, and determining thereby the coefficients of the series.

As, however, the simpler forms of this equation were solved

by exponential functions, the applicabilitj' of the exponential

functions to this equation (123) may be directly tried, by the

method. of indeterminate coefficients. That is, assume as solu-

tion an exponential function,

z = As>'^, (124)

where A and b are unknown constants. Substituting (124)

into (123), if such values of A and b can be found, which make
the substitution product an identity, (124) is a solution of

the differential equation (123).

From (124) it follows that,

^ = 6A£*- and ^^=bUe^, . . . (125)

and substituting (124) and (125) into (123), gives,

A£'>^{b^+2cb+a]=0 (126)

As seen, this equation is satisfied for every value of x, that

is, it is an identity, if the parenthesis is zero, thus,

b2+2cb+a = 0, (127)

and the value of b, calculated by the quadratic equation (127),

thus makes (124) a solution of (123), and leaves A still undeter-

mined, as integration constant.
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From (127),

or, substituting,

Vc^-a = p, (128)

into (128), the equation becomes,

b=-c±p. ... . (129)

Hence, two values of b exist,

bi=—c + p and ?)2=— c— p,

and, therefore, the differential equation,

S+2.|+a.^0, . . . (130)

is solved by Ae^'''; or, by Ae''™, or, by any combination of

these two solutions. The most general solution is,

that is,

y= ^,j(-C + p)x_|_^„j.(-6-p)x

(J/

As roots of a quadratic equation, bi and 62 may both be

real quantities, or may be complex imaginary, and in the

latter case, the solution (131) appears in imaginary form, and

has to be reduced or modified for use, so as to eliminate the

imaginary appearance, by the relations (106) and (107).

EXAMPLE 2.

63. Assume, in the example in paragraph 60, the discharge

circuit of the condenser of C = 20 mf. capacity, to contain,

besides the inductance, L = 0.0.5 h, the resistance, r=125 ohms.

The general equation of the problem, (120), dividing by
C L, becomes,

dH r dl i

dP^Ldt-'CL^'^ ^.132)
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This is the equation (123), for:

x= <, 2c=-7=2500:

1
z = i, a =

CL
= 106

If p = Vc^— a, then

P •2L CL

~2L\ ^C
and, writing

^F^
4L

C"

and since

'2L'

^ = 10 and ^= 2500,

s = 75 and p = 750.

The equation of the current from (131) then is.

2L -ll .
+ 2l' + Aas' 2L

(133)

(134)

(135)

(136)

(137)

This equation still contains two unknown quantities, the inte-

gration constants Ai and A2, which are determined by the

terminal condition: The values of current and of voltage at the

beginning of the discharge, or t = 0.

This requires the determination of the equation of the

voltage at the condenser terminals. This obviously is the voltage

consumed by resistance and inductance, and is expressed by

equation (118),

e = ri+ L
dt'

(118)
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di
hence, substituting herein the value of i and -j:, from equation

(137), gives

r + s ^ -'l^'t r-s ^ -"-±^1
=^-^i£ 2L +-2-A2S 2Z,

= £ 2l' '-±^A,e^^U'-^A,r^L
I

(138)

and, substituting the numerical values (133) and (136) into

equations (137) and (138), gives

and,

e= 100Ai£-5oo'+25A2£-20oo'

.(139)

At the moment of the beginning of the discharge, t = 0,

the current is zero and the voltage is 10,000; that is,

t = 0; 1 = 0; 6= 10,000 . . .(140)

Substituting (140) into (139) gives,

= yli+A2, 10,000 = 100^1+25^2;

hence,

A2=-Ai; ^1= 133.3; ^2= -133.3. . . (141)

Therefore, the current and voltage are,

i= 133.3{£-5o<«-£-2ooo'j,
j

e= 13,333£-5°'"-3333s-2ooo'
J

(142)

The reader is advised to calculate and plot the numerical
values of i and e, and of their two components, for.

t = 0, 0.2, 0.4, 0.6, 1, 1.2, 1.5, 2, 2.5, 3, 4, 5, BxlO'^ sec.
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64. Assuming, however, that the resistance of the discharge

circuit is only r= 80 ohms (instead of 125 ohms, as assumed
above)

:

4L.
r^— -77 in equation (134) then becomes —3600, and there-

fore:

s= V-3600 = 60V"^ = 60j,

and

P=^=6ooy.

The equation of the current (137) thus appears in imaginary

form,

i=£-800'jAl£ + 600j«^_^2£-600''|.
. . . (143)

The same is also true of the equation of voltage.

As it is obvious, however, physically, that a real current

must be coexistent with a real e.m.f., it follows that this

imaginary form of the expression of current and voltage is only

apparent, and that in reality, by substituting for the exponential

functions with imaginary exponents their trigononetric expres-

sions, the imaginary terms must eliminate, and the equation

(143) appear in real form.

According to equations (106) and (107),

£+600j'= cos QOOt+j sin QOOt; 1

(144)
£-6ooj(= cos 600f-j sin 600i.

J

Substituting (144) into (143) gives,

i= e-^^°*\BicosQ00t+B2sm600t}, . . (145)

where Bi and B2 are combinations of the previous integration

constants Ai and A2 thus,

Bi = Ai+A2, and Bi^jiAi-Az). . (146)

By substituting the numerical values, the condenser e.m.f.,

given by equation (138), then becomes,

e = £-8oo(j (40-l-30j)Ai(cos OOOf-f/sin 6000

-I- (40- 30j)^2(cos 600i- / sin 6000

!

= £-8oo«j (405i +3052)cos 600t + (40^2 -305i) sin 600i}. (147)
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Since for i=0, i = and e = 10,000 volts (140), substituting

into (145) and (147),

= Bi and 10,000 = 40 5i+30 Bz.

Therefore, Bi = and 52 = 333 and, by (145) and (147),

i = 333£-8oo'sin600i; 1

. . (148)

e = 10,000£-80o' (cos 600 t + 1.33 sin GOOO-J

As seen, in this case the current i is larger, and current

and e.m.f. are the product of an exponential term (gradually

decreasing value) and a trigonometric term (alternating value)

;

that is, they consist of successive alternations of gradually

decreasing amplitude. Such functions are called oscillating

functions. Practically all disturbances in electric circuits

consist of such oscillating currents and voltages.

600^= 277- gives, as the time of one complete period,

^ =1^ = 0.0105 sec;
bOO

and the frequency is

/=-m =95.3 cycles per sec.

In this particular case, as the resistance is relatively high,

the oscillations die out rather rapidly.

The reader is advised to calculate and plot the numerical

values of i and e, and of their exponential terms, for every 30

T T T
degrees, that is, for t = 0, t-^, 2 y^, 3 t^, etc., for the first two

periods, and also to derive the equations, and calculate and plot

the numerical values, for the same capacity, C = 20 mf., and
same inductance, L = 0.05h, but for the much lower resistance,

r = 20 ohms.

65. Tables of s"'"^ and e~^, for 5 decimals, and tables of

log £+'' and log £~^, for 6 decimals, are given at the end of

the book, and also a table of £"* for 3 decimals. For most
engineering purposes the latter is sufficient; where a higher

accuracy is required, the 5 decimal table may be used, and for
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highest accuracy interpolation by the logarithmic table may be
employed. For instance,

J
— 13.6847 _?

From the logarithmic table,

log £-10 =5.657055,

log £-3 =8.697117,

log £-0-6 =9.739423,

log £-008 =9.965256,

log £-00047 = 9 997959^

r interpolated,

between log £-0004 =9.998263,

added I and log £-0005 =9.997829),

log £-i3-8«*^ = 4.056810 =0.056810-6.

From common logarithmic tables,

j-13.6847^ 113975x10-6.

Note. In mathematics, for the base of the natural loga-

rithms, 2.718282 . . . , is usually chosen the symbol e. Since,

however, in engineering the symbol e is universally used to

represent voltage, for the base of natural logarithms has been

chosen the symbol £, as the Greek letter corresponding to e,

and £ is generally used in electrical engineering calculations in

this meaning.



CHAPTER III.

TRIGONOMETRIC SERIES.

A. TRIGONOMETRIC FUNCTIONS.

66. For the engineer, and especially the electrical engineer,

a perfect familiarity with the trigonometric functions and

trigonometric formulas is almost as essential as familiarity with

the multiplication table. To use trigonometric methods

efficiently, it is not sufficient to understand trigonometric

formulas enough to be able to look them up when required,

but they must be learned by heart, and in both directions; that

is, an expression similar to the left side of a trigonometric for-

mula must immediately recall the right side, and an expression

similar to the right side must immediately recall the left side

of the formula.

Trigonometric functions are defined on the circle, and on
the right triangle.

Let in the circle. Fig. 28, the direction to the right and
upward be considered as positive, to the left and downward as

negative, and the angle a be counted from the positive hori-

zontal OA, counterclockwise as positive, clockwise as negative.

The projector s of the angle a, divided by the radius, is

called sin a; the projection c of the angle a, divided by the

radius, is called cos a.

The intercept t on the vertical tangent at the origin A,
divided by the radius, is calletl tan a; the intercept ct on the

horizontal tangent at B, or 90 deg., behmd A, divided by the

radius, is called cot a.

Thus, in Fig. 28,

s c
sma=-; cosa = -;

r r

,
t ct

tana = -; cot a = —

.

(1)

94
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In the right triangle, Fig. 29, with the angles a and /3,

opposite respectively to the cathetes a and b, and with the

hypotenuse c, the trigonometric functions are

:

sin a = cos /5
=

tan a = cot

,

a . „ ?>

= -; cos a=sin B=—
c ^ c

a
, „ b

= T-; cota=tanS= —

.

a

(2)

By the right triangle, only functions of angles up to 90 deg.,

or —, can be defined, while by the circle the trigonometric

functions of any angle are given. Both representations thus

must be so famihar to the engineer that he can see the trigo-

FiG. 28. Circular Trigonometric

Functions.

Fig. 29. Triangular Trigono-

metric Functions.

nometric functions and their variations with a change of the

angle, and in most cases their numerical values, from the

mental picture of the diagram.

67. Signs of Functions. In the first quadrant, Fig. 28, all

trigonometric functions are positive.

In the second quadrant. Fig. 30, the sin a is still positive,

as s is in the upward direction, but cos a is negative, since c

is toward the left, and tan a and cot a also are negative, as t

is downward, and d toward the left.

In the third quadrant, Fig. 31, sin a and cos « are both
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negative: s being downward, c toward the left; but tan a and

cot a are again positive, as seen from t and ct in Fig. 31.
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68. Relations between sin a and cos «. Between sin a and
cos a the relation,

sin^ a+cos^ a = l,

exists; hence,

sin.a = Vl- cos^ a
;

cos a = Vl — sin^ a.

(4)

(4a)

Equation (4) is one of those which is frequently used in

both directions. For instance, 1 may be substituted for the

sum of the squares of sin a and cos a, while in other cases

sin^ a +cos2 a may be substituted for 1. For instance.

sin^a + cos^a /sinaX^I aV
cos^a cos^ a Vcosa/

Relations between Sines and Tangents.

+ I=tan2a + 1.

hence

tan a =

cot a =

cot a =

tana =

sm a

cos a '

cos a
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quantity, tan a is given as the ratio of tlie vertical component

over the horizontal component, or of the reactive component

over the power component.

In this case, if

a
tan « = T-,

sin « =—==, and coso:=-^ „ ; • (5&)

or, if

c
cot « =T)

sin «=—=;=, and cos a =—7===. . . (5c)

The secant functions, and versed sine functions are so

little used in engineering, that they are of interest only as

curiosities. They are defined by the following equations

:

1
sec a =

cos a

1
cosec a- =

sm a

sin vers a = 1 — sin a,

cos vers a = 1 — cos a.

69. Negative Angles. From the circle diagram of the

trigonometric functions follows, as shown in Fig. 33, that when
changing from a positive angle, that is, counterclockwise

rotation, to a negative angle, that is, clockwise rotation, s, t,

and ct reverse their direction, but c remains the same; that is.

sin (— a) = —sin a,

cos (— a)= +COS a,

tan (— «)= —tan a.

cot (— «) = —cot a,

(6)

cos a thus is an " even function," while the three others are

" odd functions."
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Supplementary Angles. From the circle diagram of the

trigonometric functions follows, as shown in Fig. 34, that by
changing from an angle to its supplementary angle, s remains

in the same direction, but c, t, and ct reverse their direction,

and all four quantities retain the same numerical values, thus,

sin {n—a) = +sin a, -\

cos (tt— a) = — cos a,

tan {K—a) = — tan a

,

cot (tt— a) = — cot a.

(7)

Fig. 33. Functions of Negative

Angles.

Fig. 34. Functions of Supplementary

Angles.

Complementary Angles. Changing from an angle a to its

complementary angle 90° — a, or ^— a, as seen from Fig. 35,

the signs remain the same, but s and c, and also t and ct exchange

their numerical values, thus.

sin(|-
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70. Angle («±7r). Adding, or subtracting n to an angle a,

gives the same numerical values of the trigonometric functions

/ +
B ct
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the direction of the cosine, tangent, and cotangent, but leaves

the sine in the same direction, since the sine is positive in the

second quadrant, as seen in Fig. 37.

Subtracting —, or 90 deg. from angle a, interchanges the

functions, s and c, and t and ct, and also reverses the direction,

except that of the cosine, which remains in the same direction;

that is, of the same sign, as the cosine is positive in the first

and fourth quadrant, as seen in Fig. 38. Therefore,

= +C0S a,
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71. Relations between Two Angles. The following relations

are developed in text-books of trigonometry

:

sin (a +^) =sin a cos /? + cos a sin /5,

sin (a-;9)=sin a cos ^-cos a sin /5,

cos (a +/9) =cos a cos ^-sin a sin /?,

cos (a— /5)=cosa cos /?+sin a sin ^, .

Herefrom follows, by combining these equations (13) in

pairs

:

cos a cos/3= J[cos (a+/5) +cos (a-/?)!,
'

sin a sin ^= JScos (a-/?)-cos (a+/5!),

sin a cos/? = Jisin (a+/5)+sin (a— /9)i,

cos a sin/3= iisin (a+/?)-sin (a-^)}.
,

By substituting ai for (a+^), and ^i for (a-/3) in these

equations (14), gives the equations,

(14)

sin ai+sin /?i
=

sin ai— sin ,5i
=

cos ai+cos/3i =

2 sm —
^

cos —2

—

2 sm—f;
— cos

2 cos—7:— cos

cos ai— COS pi= —2 sm

—

^
— sm

2

2

(15)

These three sets of equations are the most important trigo-

nometric formulas. Their memorizing can be facilitated by

noting that cosine functions lead to products of equal func-

tions, sine functions to products of unequal functions, and

inversely, products of equal functions resolve into cosine,

products of unequal functions into sine functions. Also cosine

functions show a reversal of the sign, thus: the cosine of a

sum is given by a difference of products, the cosine of a differ-

ence by a sum, for the reason that with increasing angle

the cosine function decreases, and the cosine of a sum of angles

thus would be less than the cosine of the single angle.
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Double Angles. From (13) follows, by substituting a for ;9:

sin 2a = 2 sin a cos a,

cos 2a = cos^ a — sin^ «,

= 2 cos^ a— 1,

= 1 — 2 sin^ a.

Herefrom follow

(16)

sin^ a =
1 — cos 2a

and cos^ a =
1+ cos 2a

(16a)

72. Differentiation.

d ,. ,

-J- (sm a) = + cos a,

d . .

-;- ( COS a) = —sm a.
da

(17)

The sign of the latter differential is negative, as with an

increase of angle a, the cos a decreases.

Integration.

I
sin ada= —cos a,

I
cos ada= +sina.

Herefrom follow the definite integrals

:

X
+ 211 ^

sin {a+a)da=0;

cos {a+a)da=0;

i

sin (a +o)da:= 2 cos (c+ a);

I
cos (a+a)cZa=-2sin (c+a);

Jc i

(18)

(18a)

(186)
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sin arfa=0;

cos ada = ;

sin ada;= +1;

cos ada = +1.

(18c)

(18d)

73. Binomial. One of the most frequent trigonometric

operations in electrical engineering is the transformation of the

binomial, a cos a +6 sin a, into a single trigonometric function,

by the substitution, a = c cos p and 6 = c sin p; hence,

where

a cos a + b sin a=c cos (a— p).

c = Va^ + 62 and tanp=— ; .

or, by the transformation, a = c sin g and b = c cos q,

a cos a + ?) sin a = c sin (a+g),

where

c = Va^ + 62 and tang = r

74. Polyphase Relations.

(19)

(20)

(21)

(22)

2}cccos a+a±-
Lm\n

= 0,

'^r-v . / 2min\
2j- sm ( a+a±—^;~] =0,

(23)

J

where m and n are Integer numbers.

Proof. The points on the circle which defines the trigo-

nometric function, by Fig. 28, of the angles {a + a±
2miTi\

7'
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are corners of a regular polygon, inscribed in the circle and
therefore having the center of the circle as center of gravity.

For instance, for n= 7, m = 2, they are shown as Pi, P2, . . . P7,

in Fig. 39. The cosines of these angles are the projections on

the vertical, the sines, the projections on the horizontal diameter,

and as the sum of the projections of the corners of any polygon,

p.

(}
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a2 + &2_c2

or

c2= a2 + 62_2a6cos r-

ah sin 7-

(26)

Area =
2

c2 sin « sin ^

2 sin ^

(27)

B. TRIGONOMETRIC SERIES.

76. Engineering phenomena usually are either constant,

transient, or periodic. Constant, for instance, is the terminal

voltage of a storage-battery and the current taken from it

through a constant resistance. Transient phenomena occur

during a change in the condition of an electric circuit, as a

change of load; or, disturbances entering the circuit from the

outside or originating in it, etc. Periodic phenomena are the

alternating currents and voltages, pulsating currents as those

produced by rectifiers, the distribution of the magnetic flux

in the air-gap of a machine, or the distribution of voltage

around the commutator of the direct-current machine, the

motion of the piston in the steam-engine cylinder, the variation

of the mean daily temperature with the seasons of the year, etc.

The characteristic of a periodic function, y=f{x), is, that

at constant intervals of the independent -variable x, called

cycles or periods, the same values of the dependent variable y
occur.

Most periodic functions of engineering are functions of time

or of space, and as such have the characteristic of univalence;

that is, to any value of the independent variable x can corre-

spond only one value of the dependent variable y. In other

words, at any given time and given point of space, any physical

phenomenon can have one numerical value only, and therefore

must be represented by a univalent function of time and space.

Any univalent periodic function,

y=m, (1)
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can be expressed by an infinite trigonometric series, or Fourier
series, of the form,

y= ao + ai cos cx+a2 cos 2cx + a3 cos 3cx+ . . .

+ 6isincj+62sin2cx+?)3sin3cx + . . ; .... (2)

or, substituting for convenience, cx=0, this gives

i/ = ao+oicos (9+a2Cos2(9+a3Cos3^+ .

+ &1 sin ^ + 62 sin 25 + 63 sin 3(?-F ; (3)

or, combining the sine and cosine functions by the binomial
(par. 73),

2/ = ao+ci cos ((9-^i)+C2 cos (25-/?2)+C3 cos (35-/33)+ . .1

= ao+cisin(5 + 7-i)+c2sin(25 + 7-2)+C3sin (SO + rs) + .1 '
^ ^

where

tan jSn =

or tan rn=r~-
On

an'

a,

(5)

The proof hereof is given by showing that the coefficients

a„ and 6 „ of the series (3) can be determined from the numencal
values of the periodic function (1), thus,

y=f{x)=U{d). . . (6)

Since, however, the trigonometric function, and therefore

also the series of trigonometric functions (3) is univalent, it

follows that the periodic function (6), y=fo{d), must be uni-

valent, to be represented by a trigonometric series.

77. The most import-ant periodic functions in electrical

engineering are the alternating currents and e.m.fs. Usually

they are, in first approximation, represented by a single trigo-

nometric function, as:

i=io cos {6—w);

or,

e= eo sin {d—d);

that is, they are assumed as sine waves.
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Theoretically, obviously this condition can never be perfectly

attained, and frequently the tleviation from sine shape is suffi-

cient to require practical consideration, especially in those cases,

where the electric circuit contains electrostatic capacity, as is

for instance, the case with long-distance transmission lines,

underground cable systems, high potential transformers, etc.

However, no matter how much the alternating or other

periodic wave differs from simple sine shape—that is, however

much the wave is " distorted,'' it can always be represented

by the trigonometric series (3).

As illustration the following applications of the trigo-

nometric series to engineering problems may be considered

:

{A) The determination of the equation of the periodic

function; that is, the evolution of the constants a„ and b^ of

the trigonometric series, if the numerical values of the periodic

function are given. Thus, for instance, the wave of an

alternator may be t^iken by oscillograph or wave-meter, and

by measuring from the oscillograph, the numerical values of

the periodic function are derived for every 10 degrees, or every

5 degrees, or every degree, depending on the accuracy required.

The problem then is, from the numerical values of the wave,

to determine its equation. While the oscillograph shows the

shape of the wave, it obviously is not possible therefrom to

calculate other quantities, as from the voltage the current

under given circuit conditions, if the wave shape is not first

represented by a mathematical expression. It therefore is of

importance in engineering to translate the picture or the table

of numerical values of a periodic function into a mathematical

expression thereof.

(B) If one of the engineering quantities, as the e.m.f. of

an alternator or the magnetic flux in the air-gap of an electric

machine, is given as a general periodic function in the form

of a trigonometric series, to determine therefrom other engineer-

ing quantities, as the current, the generated e.m.f., etc.

A. Evaluation of the Constants of the Trigonometric Series from
the Instantaneous Values of the Periodic Function.

78. Assuming that the numerical values of a univalent

periodic function y=fo{0) are given; that is, for every value

of 0, the corresponding value of y is known, either by graphical

representation. Fig. 41; or, in tabulated form. Table I, but
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the equation of the periodic function is not known. It can be
represented in the form,

2/ = ao+ai cos d + a2 cos 2d + a3 cos 3^ + . . . +a„ cos 716* + . . .

+ 61 sin (9+&2sin26' + &5sin 3(9 + . . .+6„sin ntf + . . , (7)

and the problem now is, to determine the coefficients oo, oi,

tt2 . . . 61, 62 . . .

Fig. 41. Periodic Functions.

T.ABLE I.

e
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All the integrals containing trigonometric functions vanish,

as the trigonometric function has the same value at the upper

limit 2n as at the lower limit 0, that is,

/- -/ = -(cos znTT— cos 0) =U
/ n /o n^

/sin nd Z^" 1 • n^ A/• / =-(sm 2?i7r— sm 0)=0,
'

and the result is

IT / /2ll

ydd^ao/o/ =2;rao;

hence
f:

1 r~'
ao = 2^| ydO. . (8)

ydd is an element of the area of the carve y, Fig. 41, and

X2izydd thus is the area of the periodic function y, for one

period; that is,

ao = o-^> (9)

where Jl = area of the periodic function y=fo{G), for one period;

that is, from ^ = to d = 2n.

A
2n is the horizontal width of this area A, and 77- thus is

Zn

the area divided bj' the width of it; that is, it is the. average

height of the area A of the periodic function y; or, in other

words, it is the average value of y. Therefore,

ao = avg. {y)o^' (10)

The first coefficient, oo, thus, is the average value of the

instantaneous values of the periodic function y, between = Q

and d = 2n.

Therefore, averaging the values of y in Table I, gives the

first constant ao.

79. To determine the coefficient a„, multiply equation (7)

by cos nd, and then integrate from to 2n, for the purpose of

making the trigonometric functions vanish. This gives
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r2^ rin rin

I
j/cos r2(9(i(9 = ao )

cos n(9(i(9+ai I cos n(9 cos /?d^ +
J^ Ji) Jo

02
I

cos n^ cos 25d(9 + . . . +a„ j cos^ ?i(9d^ + . ,

.

Jo Jo

.

I
cosn^sin(9d^ + 62

(
Ja Jo

-2i

+ &! I
cosnds\nddd + 'b2\ (ios,nddu.2ddd + . .

.

+ ?)„ I cosn^sin n^d<? + . . .

\
Jo

Hence, by the trigonometric equations of the preceding

section: ,-,.

r%i! ri^ r27,

I
ycosnddd=ao\ cosn9d(?+ai I |[cos(n+l)(9+cos(n— l)(9]d(9

Jo Jo Jo

+ a2
I

i[cos (n + 2)^+cos {n-2)d]dd + . .

.

Jo
r2n

+ o„l Kl+cos2n^)di9 + . . .

Jo

X2it
i[sin (Ti + l)^-sin (n-\)S\dd

Jr2x
I

i[sin(n+ 2)^-sin(n-2)^]d9 + ...

+ &„
I

isin2n(9d(9 + . . .

Jo..

All these integrals of trigonometric functions give trigo-

nometric functions, and therefore vanish between the limits

and 27r, and there only remains the JSrst term of the integral

multiplied with a„, which does not contain, a trigonometric

function, and thus remains finite

:

nn /dY'

and therefore,

p.
I y cos n0dd= an7:;

Jo
hence

1 p'
an = - I y cos nddd (11)

^ Jo
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If the instantaneous values of y are multiplied with cos nd,

and the product y„ = y cos nd plotted as a curve, y cos nddd is

an element of the area of this curve, shown for n= 3 in Fig. 42,

and thus I y cos nOdd is the area of this curve ;
that is.

-A nr (12)

Fig. 42. Curve of y cos 39.

where il„ is the area of the curve y cos nd, between (9=0 and

e=2n.

As 2r. is the width of this area ^„, 77^ is the aA'-erage height

of this area; that is, is the average value of y cos nd, and -A„

thus is twice the average value of y cos nd
; that is,

1

o„=2 avg. (1/ cos nd)o (13)

Fig. 43. Curve of y sin ZO.

The coefficient a„ of cos nd is derived by multiplying all

the instantaneous values of y by cos nd, and taking twice the

average of the instantaneous values of this product y cos nd.
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80. ?)„ is determined in the analogous manner by multiply-

ing y by sin nd and integrating from to 27r; by the area of the

curve y sin nd, shown in Fig. 43, for n = 3,

/^2k rij! r2K

I
y'&mnddd = ao\ sinnM/9 + ail smndcosddd

Jo Jo Jo

+ 02 j
sin n^ cos 2^^ + . +a„ I sin n^ cos n(?(i^ + . .

.

X2i
pin

sin nd sin ddd + 62 1 sin nd sin 2ddd + . .

.

X2)rsin2n(9d(9+ ..

= aoj sinn(9d» + ai I i[sin (» + l)^+sin (n-l)^]d5
Jo </o

+ 02 i[sin(n + 2)0+sin (n-2)0]d(9 + . .

.

+ a„ I isin 2n&^0 + . . .

Jo

\hx f "i-Lcos (n-l)<?-cos (n+ l)(9]d5

+ &2 p^iLcos (n- 2)0 -cos (n+ 2)0]d(9 + . .

.

+&J Ml-cos2n0]d(? + ...

Jo

hencCj

6„ =i r^sinn^dO (14)

= -^n', (15)

where A„' is the area of the curve y^= y sin nQ. Hence,

6„= 2 avg. (2/sinn0)o^^ • ... (16)
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and the coefficient of sin nd thus is derived by multiplying the

instantaneous values of y with sin nd, and then averaging, as

twice the average of y sin nd.

8i. Any univalent periodic function, of which the numerical

values y are known, can thus be expressed numerically by the

equation,

y= aQ+ai cos 6+a2Cos 26 + . . . +a„ cos nd+ . .

+ 61 sin (9+62 sin 2d + . . .+6„ sin n^ + . . . (17)

where the coefficients a^, ai, a2, . . .h\, 62 ... , are calculated

as the averages

:

2i
Oo = avg. {y)o ,

ai=2avg. (j/cos 6)^^";
2x

6i = 2avg. (ysin 6)^ ;

2>r

a2 = 2avg. (2/ cos 2(9)q""; 62 = 2 avg. fy sin 2^)q ";

a„ = 2 avg. (ycos nb
2«

6„ = 2 avg. (y sin nb C;

(18)

Hereby any individual harmonic can be calculated, without

calculating the preceding harmonics.

For instance, let the generator c.m.f. wave. Fig. 44, Table

II, column 2, be impressed upon an underground cable system

Fig. 44. Generator e.m.f. wave

of such constants (capacity and inductance), that the natural

frequency of the system is G70 cycles per second, while the

generator frequency is 60 cycles. The natural frequency of the



TRIGONOMETRIC SERIES. 115

circuit is then close to that of the Uth harmonic of the generator

wave, 660 cycles, and if the generator voltage contains an
appreciable 11th harmonic, trouble may result from a resonance

rise of voltage of this frequency; therefore, the 11th harmonic
of the generator wave is to be determined, that is, an and bn
calculated, but the other harmonics are of less importance.

Table II

e
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hence, its effective value is

5.07—- = 3.58,
V2

while the effective value of the total generator wave, that

is, the square root of the mean squares of the instanta-

neous values y, is

e = 30.5,

thus the 11th harmonic is 11.8 per cent of the total voltage,

and whether such a harmonic is safe or not, can now be deter-

mined from the circuit constants, more particularly its resist-

ance.

82. In general, the successive harmonics decrease; that is,

with increasing n, the values of a„ and 6„ become smaller, and

when calculating o„ and 6„ by equation (18), for higher values

of n they are derived as the small averages of a number of

large quantities, and the calculation then becomes incon-

venient and less correct.

Where the entire series of coefhcients an and bn is to be

calculated, it thus is preferable not to use the complete periodic

function y, but only the residual left after subtracting the

harmonics which have already been calculated; that is, after

Uq has been calculated, it is subtracted from y, and the differ-

ence, ?/i =1/— flo, is used for the calculation of ai and bi.

Then ai cos ^ + ?)i sin ^ is subtracted from 1/1, and the

difference,

y2 = yi— (0.1 cos +bi sm d)

= y—{O'0+O'i COS + bi sin 6),

is used for the calculation of 02 and 62-

Then 02 cos 2d+b2 sin 26 is subtracted from 1/2, and the rest,

2/3, used for the calculation of a.i and 6.3, etc.

In this manner a higher accuracy is derived, and the calcu-

lation simplified by having the instantaneous values of the

function of the same magnitude as the coefficients a„ and 6^.

As illustration, is given in Table III the calculation of the

first three harmonics of the pulsating current, Fig. 41, Table I:



TRIGONOMETRIC SERIES. 117

83. In electrical engineering, the most important periodic

functions are the alternating currents and voltages. Due to

the constructive features of alternating-current generators,

alternating voltages and currents are almost always symmet-
rical waves; that is, the periodic function consists of alternate

half-waves, which are the same in shape, but opposite in direc-

tion, or in other words, the instantaneous values from 180 deg.

to 360 deg. are the same numerically, but opposite in sign,

from the instantaneous values between to 180 deg., and each

cycle or period thus consists of two equal but opposite half

cycles, as shown in Fig. 44. In the earlier days of electrical

engineering, the frequency has for this reason frequently been

expressed by the number of half-waves or alternations.

In a symmetrical wave, those harmonics which produce a

difference in the shape of the positive and the negative half-

wave, cannot exist; that is, their coefficients a and b must be

zero. Only those harmonics can exist in which an increase of

the angle 6 by 180 deg., or n, reverses the sign of the function.

This is the case with cos nd and sin nd, if n is an odd number.

If, however, n is an even number, an increase of ^ by tt increases

the angle nd by 2?: or a multiple thereof, thus leaves cos nd

and sin nO with the same sign. The same applies to a^. There-

fore, symmetrical alternating waves comprise only the odd

harmonics, but do not contain even harmonics or a constant

term, and thus are represented by

i/ = ai cos ^+a3 cos 3/? + a6 cos 5/?+ ..

+ &1 sin e+bs sin Sd+bssin5d + (19)

When calculating the coefficients a„ and bn of a symmetrical

wave by the expression (18), it is sufficient to average from

to n; that is, over one half-wave only. In the second half-wave,

cos nd and sin 7id have the opposite sign as in the first half-wave,

if n is an odd number, and since y also has the opposite sign

in the second half-wave, y cos nd and y sin nd in the second

half-wave traverses again the same values, with the same sign,

as in the first half-wave, and their average thus is given by

averaging over one half-wave only.

Therefore, a symmetrical univalent periochc function, as an
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Table

e
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III.



(21)
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alternating voltage and current usually is, can be represented

by the expression,

y = ax cos O+a^ cos 3 O + a^ cos 5 + a7 cos 7(9 + .
.

.

+ f>isin f^ + bssinS d+hsAn^ d+h^inl 6 +...; (20)

where,

ai = 2 avg. (y cos 6)^'; 61=2 avg. {y sin ^)o'';

as =2 avg. (j/ cos 3/9)0"; 63 =2 avg. (j/ sin 3(9)0";

as = 2 avg. (1/ cos 50)^'; 65 = 2 avg. (?/ sin 50)^';

07 = 2 avg. (j/ cos 7(?)o'; ?>7 = 2 avg. (1/ sin 7^)0".

84. From 180 deg. to 360 deg., the even harmonics have

the same, but the odd harmonics the opposite sign as from

to 180 deg. Therefore adding the numerical values in the

range from 180 deg. to 360 deg. to those in the range from

to 180 deg., the odd harmonics cancel, and only the even har-

monics remain. Inversely, by subtracting, the even harmonics

cancel, and the odd ones remain.

Hereby the odd and the even harmonics can be separated.

If y= y{0) are the numerical values of a periodic function

from to 180 deg., and y' = y{d+n) the numerical values of

the same function from 180 deg. to 360 deg.,

y2{d)=l\y{d)+y{d+n)], .... (22)

is a periodic function containing only the even harmonics, and

ydO) = h\y{d)-y{d+n)\ . ... (23)

is a periodic function containing only the odd harmonics ; that is

:

y\{d) = a\ cos d+az cos 3^+ as cos bO + . . .

+ 61 sin (9 + 63 sin 3 ^ + 65 sin 5(9+ .. .; . . (24)

2/2(^) =ao+a2 cos 2(9+a4 cos 40 + . . .

+ 62sin20 + 54sin46' + .. ., (25)

and the complete function is

y{0)=yx{e)+y^{0) (26)
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By this method it is convenient to determine whether even
harmonics are present, and if they are present, to separate
them from the odd harmonics.

Before separating the even harmonics and the odd har-

monics, it is usually convenient to separate the constant term
ao from the periodic function y, by averaging the instantaneous
values of y from to 360 deg. The average then gives ao,

and subtracted from the instantaneous values of y, gives

yo{0)=yiO)-aQ (27)

as the instantaneous values of the alternating component of the

periodic function; that is, the component y^ contains only the

trigonometric functions, but not the constant term. ?/o is

then resolved into the odd series yi, and the even series 2/2-

85. The alternating wave y^ consists of the cosine components

:

u{d)-=ai cos d+a2 cos 2d+a3 cos Sd+a^ cos 4(9 + , . ., (28)

and the sine components

;

v{d)=bi sin (? + &2 sin 2(9 + 63 sin 35+ 64 sin 45 + . ..; (29)

that is,

yo{e)=uie)+v(d) (.30)

The cosine functions retain the same sign for negative

angles {—6), as for positive angles ( + 6), while the sine functions

reverse their sign; that is,

u{-e)=+u{d) and v{-d) = -v{d). . . . (31)

Therefore, if the values of j/o for positive and for negative

angles 6 are averaged, the sine functions cancel, and only the

cosine functions remain, while by subtracting the values of

j/o
for positive and for negative angles, only the sine functions

remain; that is,

yo(d)+yo{-d) = 2u{e);

(32)

2/o(5)-j/o(-5) = 2K5);.

hence, the cosine terms and the sine terms can be separated

from each other by combining the instantaneous values of y^

for positive angle 6 and for negative angle (—(9), thus:

u{d) = \\y,{d)+yo{-d)],\
(33)

K^) = i!2/o(^)-2/o(-^)!-
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Usually, before separating the cosine and the sine terms,

u and V, first the constant term n^ is separated, as discussed

above; that is, the alternating function yo = y— ao used. If

the general periodic function y is used in equation (33), the

constant term a^ of this periodic function appears in the cosine

term u, thus:

u{6) =l{yid) +y{— d)\ =ao+ai cos 6 + a2Cos20 + a3 cos 30 + . . .,

while v{d) remains the same as when using y^.

86. Before separating the alternating function y^ into the

cosine function u and the sine function v, it usually is more

convenient to resolve the alternating function
?/o

into the odd

series yi, and the even series 2/2, as discussed in the preceding

paragraph, and then to separate j/i and 2/2 each into the cosine

and the sine terms

:

uii6) = ^\yi{0)+yi{—d)}^aicosd+a3Cos3d+a5Cos5O+

Vi{d) = i\yi(d)-yi(-6)\=-bismd+b3smSd+b5sm5d+

U2(d) =My2(d) +y2i- 0)\ =a2Cos2d + aiCos id + . ; 1

V2{0)=^{y2{d)-y2(-d)\=h2sm2e+bism4d + ...
J

(34)

(35)

In the odd functions mi and Vi, a change from the negative

angle (— 6) to the supplementary angle (tt— 6) changes the angle

of the trigonometric function by an odd multiple of ;: or 180

deg., that is, by a multiple of 2/r or 360 deg., plus 180 deg.,

which signifies a reversal of the function, thus

:

ui{0) = Myi{d)-yi(K-d)\,
]

\
. . . (36)

However, in the even functions M2 and V2 a change from the

negative angle (—0) to the supplementary angle (;r—i9), changes

the angles of the trigonometric function by an even multiple

of tt; that is, by a multiple of 2n or 360 deg.; hence leaves

the sign of the trigonometric function unchanged, thus

:

U2(0)^h{y2{d)+y2{n-d)\, 1

(37)
V2(d) = i{y2(0)-y2{n-e)].



TRIGONOMETRIC SERIES. 123

To avoid the possibility of a mistake, it is preferable to use

the relations (34) and (35^, which are the same for the odd and
for the even series.

87. Obviously, in the calculation of the constants a„ and
b„, instead of averaging from to 180 deg., the average can

be made from —90 deg. to +90 deg. In the cosine function

uid), however, the same numerical values repeated with the

same signs, from to —90 deg., as from to +90 deg., and
the multipliers cos nd also have the same signs and the same

numerical values from to —90 deg., as from to +90 deg.

In the sine function, the same numerical values repeat from

to —90 deg., as from to +90 deg., but with reversed signs,

and the multipliers sin n6 also have the same numerical values,

but with reversed sign, from to —90 deg., as from to +90
deg. The products u cos nd and v sin nd thus traverse the

same numerical values with the same signs, between and

— 90 deg., as between and +90 deg., and for deriving the

averages, it thus is sufficient to average only from to — , or

90 deg. ; that is, over one quandrant.

Therefore, by resolving the periodic function y into the

cosine components u and the sine components v, the calculation

of the constants o„ and hn is greatly simplified; that is, instead

of averaging over one entire period, or 360 deg., it is necessary

to -average over only 90 deg., thus:

ai=2 avg. (mi cos Q)^; ?)i = 2 avg. (ui sin ^^o^ ;

a2= 2 avg. {u2 cos 2^)0^

;

62 = 2 avg. {v^ sin 2(9)o2

as = 2 avg. {m cos 3^)0^"; 63 =2 avg. (ug sin Zd)^'^ ; I

_ (35)

a4= 2 avg. (m4 cos 4(9)o2 ; 64 = 2 avg. (i;4 sin 45)o2

05 = 2 avg. (m5 cos hff)Q^; 65 = 2 avg. (us sin hB)^

etc. etc.

where mi is the cosine term of the odd function ?/i; ui the

cosine term of the even function 2/2; M3 is the cosine term of

the odd function, after subtracting the term with cos d; that is,

uz = u\ — oi cos 0,
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analogously, Ui is the cosine term of the even function, after

subtracting the term cos 2d;

U4,=U2—o,2 cos 26,

and in the same manner,

u^ = U3— az cos 3^,

W6 = tt4— 04 cos 40,

and so forth; Vi, V2, Vr„ V4, etc., are the corresponding sine

terms.

When calculating the coefficients a„ and &„ by averaging over

90 deg., or over 180 deg. or 360 deg., it must be kept in mind

that the terminal values of y respectively of u or v, that is,

the values for 6 = and = 90 deg. (or = 180 -deg. or 360

deg. respectively) are to be taken as one-half only, since they

are the ends of the measured area of the curves a„ cos n6 and

bn sin n6, which area gives as twice its average height the values

a„ and f)„, as discussed in the preceding.

In resolving an empirical periodic function into a trigono-

metric series, just as in most engineering calculations, the

most important part is to arrange the work so as to derive the

results expeditiously and rapidly, and at the same time

accurately. By proceeding, for instance, immediately by the

general method, equations (17) and (18), the work becomes so

extensive as to be a serious waste of time, while by the system-

atic resolution into simpler functions the work can be greatly

reduced.

88. In resolving a general periodic function y{d) into a

trigonometric series, the most convenient arrangement is:

1. To separate the constant term a^, by averaging all the

instantaneous values of y{d) from to 360 deg. (counting the

end values at = and at = 360 deg. one half, as discussed

above)

:

ao=avg. |2/(0)!o^ (10)

and then subtracting a^ from y(0), gives the alternating func-

tion,
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2. To resolve the general alternating function yo(d) into
the odd function yi{6), and the even function y2(d),

yiid) = h{yo(d)-yo(G+^)}; .... (23)

y2{d) = i{yo(d)+yoid+^)\ (22)

3. To resolve yi(0) gnd y2{d)) into the cosine terms u and
the sine terms v,

M0)=Myiid)+yi{-d)\]]

vi(0) = Uyi(s)~yii-0)\;\'

U2i0) = h{y2{0)+y2i-d)\;]

V2ie)=i\y2ie)-y2(-e)\.\'

4. To calculate the constants Oi, a2, as.

by the averages,

n

a„ = 2avg. (M„cosne)o2;

^ . ... (<5«)

6„ = 2 avg.(t)„sin nd)^^^

If the periodic function is known to contain no even har-

monics, that is, is a symmetrical alternating wave, steps 1 and

2 are omitted.

. . . (34)

. . .- (35)

ii, h, h-

Fig. 45. Mean Daily Temperature at Schenectady.

89. As illustration of the resolution of a general periodic

wave may be shown the resolution of the observed mean daily

temperatures of Schenectady throughout the year, as shown
in Fig. 45, up to the 7th harmonic*

* The numerical values of temperature camiot claim any great absolute

accuracy, as they are averaged over a relatively small number of years only,

and observed by instruments of only moderate accuracy. For the purpose

of illustrating the resolution of the empirical curve into a trigonometric

series, this is not essential, however.
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Table IV

(1)
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Table V.
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(1)
e
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Table VIII.

COSINE SERIES u^.
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Table IV gives the resolution of the periodic temperature

function into the constant term ao, the odd series yi and the

even series j/2.

Table V gives the resolution of the series t/i and 7/2 into

the cosine and sine series ui, Vi, uz, t'2--

Tables VI to IX give the resolutions of the series ui, v\, uz,

V2, and thereby the calculation of the constants a„ and 6„.

90. The resolution of the temperature wave, up to the

7th harmonic, thus gives the coefficients:

ao=+8.75;

ai = -13.28; 61= -3.33;

a2= -0.001; b2= -0.602;

03 = -0.33; 63 = -0.14;

a4= -0.154; 64= +0.386

a5= +0.014; 65= -0.090

06= +0.100; b6 = -0.154

07= -0.022; 67 =-0.082

or, transforming by the binomial, a„cosn(9+f)nsinn^ = c„cos

(n^- ^„), by substituting c„=\/a„2+6„2 andtan7-„=— gives,

ao=+8.75;

ci=-13.69; n= + 14-15°; or n=+14.15°;

c2=--0.602; 7-2=+89.9°; or ^^=+44.95°+180n;

C3=+0.359; r3=-23.0°; or ^'= -7.7+120n=+ 112.3+120OT;

C4=-0.416; 7'4=-68.2°; or ^*=-17.05+90n=+72.95+90m;

C5=+0.091; 7'5=-81.15°; or ^^=-16.23+72n= +55.77+72m;

C6=+0.184; r6=-57.0°; or ^=-9.5+60n=+50.5+60m;

C7=-0.085; 7-7=+75.0°; or y= + 10.7+51.4n,

where n and m may be any integer number.
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Since to an angle rn, any multiple of 2?: or 360 deg. may

be added, any multiple of — may be added to the angle -^,

and thus the angle — may be made positive, etc..

Qi. The equation of the temperature wave thus becomes:

2/
= 8.75-13.69 cos (0-14.15°)-O.6O2 cos 2(i9-44.95°)

-0.359 cos 3(<?- 52.3") -0.416 cos 4(^-72.95°)

-0.091 cos 5(^-19.77°) -0.184 cos 6(i9-20.5°)

-0.085 cos 7(^-10.7°); (a)

or, transformed to sine functions by the substitution,

cos w=— sin (w— 90°):

2/ = 8.75 + 13.69 sin ((9-104.15°) +0.602 sin 2((9-89.95°)

+ 0.359 sin 3(^-82.3°) +0.416 sin 4((9- 95.45°)

+0.091 sin 5(61-109.77°) +0.184 sin 6(^-95.5°)

+0.085 sin 7((9- 75°). (b)

The cosine form is more convenient for some purposes,

the sine form for other purposes.

Substituting /? = ^-14.15°; or, 5=^-104.15°, these two

equations (a) and (6) can be transformed into the form,

2/
= 8.75-13.69 cos /3-0.62 cos2(/3-30.8°)-0.359 cos3(/3-38.15°)

-0.416 cos 4(/3- 58.8°) -0.091 cos 5(/?-5.6°)

-0.184 cos 6(/?- 6.35°) -0.085 cos 7(/?-48.0°), (c)

and

2/-8.75+13.69 sin a+0.602 sin 2(5+14.2°) + 0.359 sin 3(5+21.85°)

+0.416 sin 4(5+8.7°) +0.91 sin 5(5-5.6°)

+0.184 sin 6(5+8.65°) +0.085 sin 7(5+29.15°). (d)

The periodic variation of the temperature y, as expressed

by these equations, is a result of the periodic variation of the

thermomotive force; that is, the solar radiation. This latter
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is a minimum on Dec. 22d, that is, 9 time-degrees before the

zero of 6, hence may be expressed approximately by:

z=c-h cos (^+9°);

or substituting /? respectively ^ for (9:

2= c-/icos (/? +23.15°)

= c+/isin (.5+23.15°).

This means: the maximum of y occurs 23.15 deg. after the

maximum of z; in other words, the temperature lags 23.15 deg.,

or about ^ period, behind the thermomotive force.

Near d=0, all the sine functions in (d) are increasing; that

is, the temperature wave rises steeply in spring.

Near 5= 180 deg., the sine functions of the odd angles are

decreasing, of the even angles increasing, and the decrease of

the temperature wave in fall thus is smaller than the increase

in spring.

The fundamental wave greatly preponderates, with ampli-

tude ci = 13.69.

In spring, for 5 =—14.5 deg., all the higher harmonics

rise in the same direction, and give the sum 1.74, or 12.7

per cent of the fundamental. In fall, for 5=— 14.5+;r, the

even harmonics decrease, the odd harmonics increase the

steepness, and give the sum —0.67, or —4.9 per cent.

Therefore, in spring, the temperature rises 12.7 per cent

faster, and in autumn it falls 4.9 per cent slower than corre-

sponds to a sine wave, and the difTerence in the rate of tempera-

ture rise in spring, and temperature fall in autumn thus is

12.7+4.9 = 17.6 per cent.

The maximum rate of temperature rise is 90—14.5 = 75.5

deg. behind the temperature minimum, and 23.15+75.5 = 98.7

deg. behind the minimum of the thermomotive force.

As most periodic functions met by the electrical engineer

are symmetrical alternating functions, that is, contain only

the odd harmonics, in general the work of resolution into a

trigonometric series is very much less than in above example.

Where such reduction has to be carried out frequently, it is

advisable to memorize the trigonometric functions, from 10

to 10 deg., up to 3 decimals; that is, within the accuracy of

the slide rule, as thereby the necessity of looking up tables is
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eliminated and the work therefore done much more expe-

ditiously. In general, the slide rule can be used for the calcula-

tions.

As an example of the simpler reduction of a symmetrical

alternating wave, the reader may resolve into its harmonics,

up to the 7th, the exciting current of the transformer, of which

the numerical values are given, from 10 to 10 deg. in Table X.

C. REDUCTION OF TRIGONOMETRIC SERIES BY POLY-

PHASE RELATION.

92. In some cases the reduction of a general periodic func-

tion, as a complex wave, into harmonics can be carried out

in a much quicker manner by the use of the polyphase equation.

Chapter III, Part A (23). Especially is this true if the com-
plete equation of the trigonometric series, which represents the

periodic' function, is not required, but the existence and the

amount of certain harmonics are to be determined, as for

instance whether the periodic function contain even harmonics
or third harmonics, and how large they may be.

This method does not give the coefficients a„, hn of the
individual harmonics, but derives from the numerical values

of the general wave the numerical values of any desired

haimonic. This harmonic, however, is given together with all

its multiples; that is, when separating the third harmonic,
in it appears also the 6th, 9th, 12th, etc.

In separating the even harmonics 2/2 from the general

wave y, in paragraph 84, by taking the average of the values
of y for angle 6, and the values of y for angles {0+Tt), this

method has already been used.

Assume that to an angle there is successively added a
constant quantity a, thus: d; + a; d + 2a; d + 3a; d + ia,

etc., until the same angle d plus a multiple of 2?! is reached;

+ na= d + 2m7i:; that is, a =—— ; or, in other words, a is

1/n of a multiple of 2k. Then the sum of the cosine as well
as the sine functions of ail these angles is zero:

cos ^-l-cos ((9 + a)+cos (<? + 2a)+cos ((?+3a)+. .

+C0S (^ + [?i-l]a)=0;
(1)
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sin ^+sin ((?+a)+sin {d+2a) +sin (d+3a)+. .

.

+sin (^+[n-l]o)=0, (2)

where

na= 2m.n (3)

These equations (1) and (2) hold for all values of a, except for
a = 2n, or a multiple thereof. For a=2Tt obviously all the terms
of equation (1) or (2) become equal, and the sums become
n cos d respectively n sin d.

Thus, if the series of numerical values of y is divided into

2n
n successive sections, each covering — degrees, and these

lb

sections added together,

2/W +2/(^+1) +.(^+2|)+,(^+3|)+...

+ y(o+Jn-lf-^, . . . . . . . (4)

In this sum, all the harmonics of the wave y cancel by equations •

(1) and (2), except the nth harmonic and its multiples,

a„ cos nd+bn sin n(9j a2n cos 2nO+b2n sin 2nd, etc.

in the latter all the terms of the sum (4) are equal; that is,

the sum (4) equals n times the nth harmonic, and its multiples.

Therefore, the nth harmonic of the periodic function y, together i

with its multiples, is given by

yni6)-l yC^) +2/(^^1) +2/(^+2^) + -+2/(^+[n-l]^)} (5)

For instance, for n= 2,

y2=i\yiO)+yi0+n)],

gives the sum of all the even harmonics; that is, gives the

second harmonic together with its multiples, the 4th, 6th, etc.,

as seen in paragraph 7, and for, n = 3,

y:^-l\y(0)+y(o+'^]+y(o+~
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gives the third harmonic, together with its multiples, the 6th,

9th, etc.

This method does not give the mathematical expression

of the harmonics, but their numerical values. Thus, if the

mathematical expressions are required, each of the component

harmonics has to be reduced from its numerical values to

the mathematical equation, and the method then usually offers

no advantage.

It is especially suitable, however, where certain classes of

harmonics are desired, as the third together with its multiples.

In this case from the numerical values the effective value,

that is, the equivalent sine wave may be calculated.

93. As illustration may be investigated the separation of

the third harmonics from the exciting current of a transformer.

Table X

A
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photographic film of the oscillograph. Column 7 then gives
one-third the sum of columns 2, 4, and G, that is, the third har-
monic with its overtones, iz.

To find the 9th harmonic and its overtones ig, the same
method is now applied to iz, for angle 2,6. This is recorded
in Table X B.

In Fig. 46 are plotted the total exciting current i, its third

harmonic iz, and the 9th harmonic ig.

This method has the advantage of showing the limitation

of the exactness of the results resulting from the limited num-

FiG. 46.

ber of numerical values of i, on which the calculation is based.

Thus, in the example, Table X, in which the values of i are

given for every 10 deg., values of the third harmonic are derived

for every 30 deg., and for the 9th harmonic for every 90 deg.;

that is, for the latter, only two points per half wave are deter-

minable from the numerical data, and as the two points per half

wave are just sufficient to locate a sine wave, it follows that

within the accuracy of the given numerical values of i, the

9th harmonic is a sine wave, or in other words, to determine

whether still higher harmonics than the 9th exist, requires for

i more numerical values than for every 10 deg.

As further practice, the reader may separate from the gen-
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eral wave of current, lo in Table XI, the even harmonics i2,

by above method,

t2 = Jh'o(^)+to(^+180deg.)!,

and also the sum of the odd harmonics, as the residue,

ll =10— 12,

then from the odd harmonics z'l may be separated the third

harmonic and its multiples,

i:3 = ^Ki('9)+ii(^+120deg. )+ti(^+240deg.)!,

and in the same manner from {3 may be separated its third

harmonic; that is, ig.

Furthermore, in the sum of even harmonics, from I'a may
again be separated its second harmonic, ii, and its multiples,

and therefrom, ig, and its third harmonic, ie, and its multiples,

thus giving all the harmonics up to the 9th, with the exception

of the 5th and the 7th. These latter two would require plotting

the curve and taking numerical values at different intervals,

so as to have a number of numerical values divisible by 5 or 7.

It is further recommended to resolve this unsymmetrical

exciting current of Table XI into the trigonometric series by
calculating the coefficients a„ and b„, up to the 7th, in the man-
ner discussed in paragraphs 6 to 8.

Table XI
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D. CALCULATION OF TRIGONOMETRIC SERIES FROM
OTHER TRIGONOMETRIC SERIES.

94' An hydraulic generating station has for a long time been

supplying electric energy over moderate distances, from a num-
ber of 750-kw. 440Q-volt 60-cycle three-phase generators. The
station is to be increased in size by the installation of some
larger modern three-phase generators, and from this station

6000 k\v. are to be transmitted over a long distance transmis-

sion line at 44,000 volts. The transmission line has a length

of 60 miles, and consists of three wires No. OB. & S. with 5

ft. between the wires.

The question arises, whether during times of light load the

old 750-kw. generators can be used economically on the trans-

mission line. These old machines give an electromotive force

wave, which, like that of most earlier machines, differs con-

siderably from a sine wave, and it is to be investigated, whether,

due to this wave-shape distortion, the charging current of the

transmission line wiU be so greatly increased over the value

which it would have with a sine wave of voltage, as to make

the use of these machines on the transmission hne uneconom-

ical or even unsafe.

Oscillograms of these machines, resolved into a trigonomet-

ric series, give for the voltage between each terminal and the

neutral, or the Y voltage of the three-phase system, the equa-

tion:

e = eo{sin 61-0.12 sin (3(9-2. 3°)-0. 23 sin (5^-1.5°)

+0.13 sin (7^-6.2°)}. . (1)

In first approximation, the line capacity may be considered

as a condenser shunted across the middle of the line; that is,

half the hne resistance and half the hne reactance is in series

with the line capacity.

As the receiving apparatus do not utilize the higher har-

monics of the generator wave, when using the old generators,

their voltage has to be transformed up so as to give the first

harmonic or fundamental of 44,000 volts.

44,000 volts between the lines (or delta) gives 44,000 h- V3 =

25,400 volts between hne and neutral. This is the effective
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value, and the maximum value of the fundamental voltage

wave thus is: 25,400 X \/2 = 36,000 volts, or 36 kv.; that is,

eo = 36, and

e = 36{sin (9-0.12 sin (35-2.3°)-0.23 sin (5^-1.5°)

+ 0.13 sin (7^-6.2°)!, . (2)

would be the voltage supplied to the transmission line at the

high potential terminals of the step-up transformers.

From the wire tables, the resistance per mile of No. B. & S.

copper hne wire is ro=0.52 ohm.

The inductance per mile of wire is given by the formula

:

Lo= 0.7415 log ^ + 0.0805mh, .... (3)

where k is the distance between the wires, and l^ the radius of

the wire.

In the present case, this gives Z, = 5 ft. = 60 in. 1^ = 0. 1625 in.

Lo = l .9655 mh., and, herefrom it follows that the reactance, at

/=60 cycles is

xo = 27r/Lo = . 75 ohms per mile (4)

The capacity per mile of wire is given by the formula

:

Co=—p"if-; (5)

hence, in the present case, Co =0.0159 mf., and the condensive

reactance is derived herefrom as

:

= 166000 ohms; .... (6)^^
2rfCo

60 miles of line then give the condensive reactance,

X
a-<. = TTj-)= 2770 ohms;

30 miles, or half the line (from the generating station to the

middle of the line, where the line capacity is represented by a

shunted condenser) give: the resistance, r = 30ro= 15.6 ohms;
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the inductive reactance, x= 30xo = 22 . 5 ohms, and the equiva-

lent circuit of the line now consists of the resistance r, inductive

reactance x and condensive reactance x^, in series with each

other in the circuit of the supply voltage e.

95. If i= current in the hne (charging current) the voltage

consumed by the line resistance r is ri.

di
The voltage consumed by the inductive reactance x \s x-j^;

the voltage consumed by the condensive reactance Xc is Xc I idd,

and therefore,

di f
e = x-j^-\-ri-\-Xc\ idd (7)

Differentiating this equation, for the purpose of eliminating

the integral, gives

de dH di

dd^''dm^''do^'''''''

or [. . . . (8)

§=22.5^+ 16.61 +2770.

The voltage e is given by (2), which -equation, by resolving

the trigonometric functions, gives

e= 36 sin (9-4.32 sin 3^-8.28 sin 50+4.64 sin 7^

+0.18 cos 30+0.22 cos 55-0.50 cos 70; . (9)

hence, differentiating,

de^ = 36 cos (9-12.96 cos 30-41.4 cos 50+32.5 cos 70
dd

-0.54 sin 30-1.1 sin 50+3.5 sin 70. , (10)

Assuming now for the current i a tiigonometric series with

indeterminate coefficients,

i = Oi cos 0+a3 cos 30+ as cos 50 +07 cos 70

4 ?>i sin +6,3 sin 30 +65 sin 50 +h sin 70, . (11)
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substitution of (10) and (11) into equation (8) must give an

identity, from which equations for the determination of a„ and

bn are derived; that is, since the product of substitution must

be an identity, all the factors of cos d, sin 6, cos 3d, sin 3d,

etc., must vanish, and this gives the eight equations:

36 =2770ai+ 15.66i- 22.5ai;l

=27706i- 15.6ai- 22.5?>i;

-12.96 = 2770a3+ 46.863- 202. Saa;

- 0.54 = 2770?)3- 46.8a3- 202. S&s;

-41.4 =2770a5+ 7865- 562. Sag;

- 1.1 =2770&5- 78a5- 56.2565;

32.5 =277007+109.267-1102.507;

3.5 =277067-109.207-1102.567. J

Resolved, these equations give

01= 13.12

61= 0.07

03=- 5.03

63 = - 0.30

05= -18.72

65=- 1.15

07= 19.30

67= 3.37

hence,

2 = 13.12cos6»-5.03cos3^-18.72cos5» + 19.30cos7(? ]

+0.07 sin (9-0. 30 sin 3^-1. 15 sin 5^+3.37 sin 7^

= 13.12 cos ((9-0.3°)-5.04 cos (3^-3.3°)

-18.76 cos (5(9-3.6°) +19.59 cos (7^-9.9°).

(12)

(13)

(14)
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96. The effective value of this current is given as the square
root of the sum of squares of the effective values of the indi-

vidual harmonics, thus

:

'=^/2f-2:^2'« amp.

As the voltage between line and neutral is 25,400 effective,

this gives Q = 25,400X21. 6 = 540,000 volt-amperes, or 540 kv.-

amp. per line, thus a total of 3Q = 1620 kv.-amp. charging cur-

rent of the transmission line, when using the e.m.f. wave of

these old generators.

It thus would require a minimum of 3 of the 750-kw.

generators to keep the voltage on the line, even if no power
whatever is dehvered from the line.

If the supply voltage of the transmission line were a perfect

sine wave, it would, at 44,000 volts between the hnes, be given

by

ei = 36sin0, . . . (15)

which is the fundamental, or first harmonic, of equation (9).

Then the current i would also be a sine wave, and would be

given by

ti = oi cos d+bi sin 6,

= 13.12 cos ^+0.07 sin d,

= 13.12 cos (^-0.3°),

and its effective value would be

(16)

T 13.12 „ „/i=—7=- = 9.3 amp (17)

This would correspond to a kv.-amp. input to the line

3Qi = 3 X 25.4 X 9.3 = 710 kv.-amp.

The distortion of the voltage wave, as given by equation (1),

thus increases the charging volt-amperes of the line from 710
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kv.-amp. to 1620 kv.-amp. or 2.28 times, and while with a sine

wave of voltage, one of the 750-kw. generators would easily be

able to supply the charging current of the line, due to the

Fig. 47.

wave shape distortion, more than two generators are required.

It would, therefore, not be economical to use these generators

on the transmission Hne, if they can be used for any other

purposes, as short-distance distribution.

Fig. 48.

In Figs. 47 and 48 are plotted the voltage wave and thp
current wave, from equations (9) and (14) respectively, and
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the numerical values, from 10 deg. to 10 deg., recorded in

Table XII.

In Figs. 47 and 48 the fundamental sine wave of voltage

and current are also shown. As seen, the distortion of current

is enormous, and the higher harmonics predominate over the

fundamental. Such waves are occasionally observed as charg-

ing currents of transmission lines or cable systems.

97. Assuming now that a reactive coil is inserted in series

with the transmission line, between the step-up transformers

and the line, what will be the voltage at the terminals of this

reactive coil, with the distorted wave of charging current

traversing the reactive coil, and how does it compare with the

voltage existing with a sine wave of charging current?

Let L= inductance, thus x= 27r/L = reactance of the coil,

and neglecting its resistance, the voltage at the terminals of

the reactive coil is given by

^'—4 ^i«)

Substituting herein the equation of current, (11), gives

e' = x{ai sin d+Saa sin Sd + das sin 5d+7ar sin 76 "j

— bi cos d—Sbs cos 3(9— 565 cos 55— 767 cos 75
1 ; J

hence, substituting the numerical values (13),

e' = x{ 13.12 sin 6- 15.09 sin 35-93.6 sin 55+135.1 sin 75

-0.07 cos 5 +0.90 cos 35+5.75 cos 55-23.6 cos 75)

= xj 13.12 sin (5-0.3°) -15.12 sin (35-3.3°)

-93.8 sin (55-3.6°)+139.1 sin (75-9.9°)!.

This voltage gives the effective value

(19)

(20)

iJ' = a;\/i{ 13.122 + 15.122+93.82 +139.12} =119.4.r,

while the effective value with a sine wave would be from (17),

hence, the voltage across the reactance x has been increased

12.8 times by the wave distortion.
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The instantaneous values of the voltage e' are given in the

last column of Table XII, and plotted in Fig. 49, for x= l.

As seen from Fig. 49, the fundamental wave has practically

Fig. 49.

vanished, and the voltage wave is the seventh harmonic, modi-

fied by the fifth harmonic.

Table XII



CHAPTER IV.

MAXIMA AND MINIMA.

98. In engineering investigations the problem of determin-

ing the maxima and the minima, that is, the extrema of a

function, frequently occurs. For instance, the output of an

electric machine is to be found, at which its efficiency is a max-
imum, or, it is desired to determine that load on an induction

motor which gives the highest power-factor; or, that voltage
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X and y, that is, the function y=f{x), is unknown, or if the

function y=f{x) is so complicated, as to make the mathematical

calculation of the extrema impracticable. As examples of

this method the following may be chosen:

B
16
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occurs at point /i^^^, for S=10.2 kilolines, /x = 1340, and minima
at the starting-point Pa, for B=0, ^= 370, and also for B=oo,
where by extrapolation ;U= 1.

Example 2. Find that output of an induction motor
which gives the highest power-factor. While theoretically

an equation can be found relating output and power-factor

of an induction motor, the equation is too compUcated for use.

The most convenient way of calculating induction motors is

to calculate in tabular form for different values of slip s, the

torque, output, current, power and volt-ampere input, efficiency,

power-factor, etc., as is explained in " Theoretical Elements
of Electrical Engineering," third edition, p. 3G3. From this
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occurs, is more or less inaccurate, since at the extreme the

curve is horizontal. For instance, in Fig. 53, the maximum

of the curve is so fiat that the value of power P, for which

cos d became a maximum, may be anywhere between P=4000

and P = 4300, within the accuracy of the curve.

In such a case, a higher accuracy can frequently be reached

by not attempting to locate the exact extreme, but two points

of the same ordinate, on each side of the extreme. Thus in

Fig. 53 the power Pq, at which the maximum power factor

cos (5 = 0.904 is reached, is somewhat uncertain. The value of

power-factor, somewhat below the maximum, cos (9 = 0.90,

is reached before the maximum, at Pi = 3400, and after the

maximum, at P2 = 4840. The maximum then may be calculated

as half-way between Pi and P2, that is, at Po = ilPi+P2! =

4120 watts.

This method gives usually more accurate resuhs, but is

based on the assumption that the curve is symmetrical on

both sides of the extreme, that is, falls off from the extreme

value at the same rate for lower as for higher values of the

abscissas. Where this is not the case, this method of inter-

polation does not give the exact maximum.
Example 3. The efSciency of a steam turbine nozzle,

that is, the ratio of the kinetic energy of the steam jet to the

energy of the steam available between the two pressures between

which the nozzle operates, is given in Fig. 54, as determined by
experiment. As abscissas are used the nozzle mouth opening,

that is, the widest part of the nozzle at the exhaust end, as

fraction of that corresponding to the exhaust pressure, while

the nozzle throat, that is, the narrowest part of the nozzle, is

assumed as constant. As ordinates are plotted the efficiencies.

This curve is not symmetrical, but falls off from the maximum,
on the sides of larger nozzle mouth, far more rapidly than on
the side of smaller nozzle mouth. The reason is that with

too large a nozzle mouth the expansion in the nozzle is carried

below the exhaust pressure p2, and steam eddies are produced

by this overexpansion.

The maximum efficiency of 94.6 per cent is found at the point

Po, at which the nozzle mouth corresponds to the exhaust

pressure. If, however, the maximum is determined as mid-

way between two points Pi and P2, on each side of the maximum,
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at which the efficiency is the same, 93 per cent, a point Po' is

obtained, which lies on one side of the maximum.
With unsymmetrical curves, the method of interpolation

thus does not give the exact extreme. For most engineering
purposes this is rather an advantage. The purpose of deter-

mining the extreme usually is to select the most favorable
operating conditions. Since, however, in practice the operating
conditions never remain perfectly constant, but vary to some
extent, the most favorable operating condition in Fig. 54 is

not that where the average value gives the maximum efficiency

04
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Thus in apparatus design, when determining cxtrema of

a function y=f{.r), to scloft tliem as operating condition,

consideration must be gi^•en to 1h(! shape of the curve, and
where tlie curve is uns}-niinetrieal, the most efficient operating

point may not lie at tlie extreme, but on that side of it at wliich

the (•^u^'e falls off slower, the more so the greater the range of

variation is, which may occur during operation. This is not

always realized.

100. If the function y=f(r) is i)lotted as a curve, Fig.

50, at the extremes of tlie function, tlie points Pi, P2, P3, Pi
of cur^-e Fig. 50, the tangent on the cur\-e is horizontal, since
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At the extreme, the tangent on the curve is horizontal,

that is, 2^6 = 0, and, therefore, it follows that at an extreme

of the function,

y-m, (1)

l=« <^)

The reverse, however, is not necessarily the case; that is,

dv
if at a point x, y : -^ = 0, this point may not be an extreme;

that is, a maximum or minimum, hut may be a horizontal

inflection point, as points Pg and Pe are in Fig. 50.

With increasing x, when passing a maximum (Pi and P2,

Fig. 50), y rises, then stops rising, and then decreases again.

When passing a minimum (P3 and P4) y decreases, then stops

decreasing, and then increases again. When passing a horizontal

inflection point, y rises, then stops rising, and then starts rising

again, at P5, or y decreases, then stops decreasing, but then

starts decreasing again (at Pe).

The points of the function y=f{x), determined by the con-

dv
dition, -r = 0, thus require further investigation, whether they

represent a maximum, or a minimum, or merely a horizontal

inflection point.

This can be done mathematically: for increasing x, when

passing a maximum, tan 6 changes from positive to negative;

that is, decreases, or in other words, -t- (tan 0)<0. Since

tan (?=-/, it thus follows that at a maximum ji < 0. Inversely,

at a minimum tan 6 changes from negative to positive, hence

d d^v
increases, that is, ^ (tan (?)>0; or, ^2 > 0. When passing

a horizontal inflection point tan 6 first decreases to zero at

the inflection point, and then increases again; or, inversely,

tan 6 first increases, and then decreases again, that is, tan 6=

— has a maximum or a minimum at the inflection point, and
dx

d d^y
therefore, -y- (tan d) =

-f^
= at the inflection point.
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In engineering problems the investigation, whether the

dv
solution of the condition of extremes, 'iz^^i- represents a

minimum, or a maximum, or an inflection point, is rarely-

required, but it is almost always obvious from the nature of

the problem whether a maximum of a mmimum occurs, or

neither.

For instance, if the problem is to determine the speed at

which the efficiency of a motor is a maximum, the solution:

speed =0, obviously is not a maximum but a mimimum, as at

zero speed the efficiency is zero. If the problem is, to find

the current at which the output of an alternator is a maximum,
the solution i = obviously is a minimum, and of the other

two solutions, ii and i^, the larger value, 12, again gives a

minimum, zero output at short-circuit current, while the inter-

mediate value I'l gives the maximum.
loi. The extremes of a function, therefore, are determined

by equating its differential quotient to zero, as is illustrated

by the following examples

:

Example 4. In an impulse turbine, the speed of the jet

(steam jet or water jet) is Si. At what peripheral speed iSo is

the output a maximum.
The impulse force is proportional to the relative speed of

the jet and the rotating impulse wheel; that is, to {S1-S2).

The power is impulse force times speed S2; hence,

P = kS2{Sy-S2), (3)

dP
and is an extreme for the value of S2, given by -r^ = ; hence,

do 2

Si-2S2 = and 'S2=y; . • • (4)

that is, when the peripheral speed of the impulse wheel equals

half the jet velocity.

Example 5. In a transformer of constant impressed

e.m.f. 60 = 2300 volts; the constant loss, that is, loss which
is independent of the output (iron loss), is Pj = 500 watts. The
internal reustance (primary and secondary combined) is r = 20
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ohms. At what current i is the efficiency of the transformer
a maximum; that is, the percentage loss, i, a minimum?

The loss is P= P,-+ri2 = 500 +20i2 (5)

The power input is Pi =ei= 2300i; .... (6)

hence, the percentage loss- is,

;4^^^' (7)

and this is an extreme for the value of current i, given by

hence.

or.

dz-«'

(Pi+ri^)e-ei(2ri)
= 0;

Pi— ri^ = and i=.J— = 5 amperes, ... (8)

and the output is Po = ei = 11,500 watts. The loss is, P= Pj-|-

ri2 = 2P^ = 1000 watts; that is, the i^r loss or variable loss, is

equal to the constant loss P,-. The percentage loss is,

P VTr
><=-p7= ^=0.087 = 8.7 percent,

and the maximum efficiency thus is,

l-;-0.913 = 91.3 per cent.

102. Usually, when the problem is given, to determine

those values of x for which y is an extreme, y cannot be expressed

directly as function of x, y=f{x), as was done in examples

(4) and (5), but y is expressed as function of some other quan-

ties, y=f(u, v . .), and then equations between u, v . . and x

are found from the conditions of the problem, by which expres-

sions of X are substituted for n, v . ., as shown in the following

example

:

Example 6. There is a constant current I'o through a cir-

cuit containing a resistor of resistance ro. This resistor ro
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is shunted by a resistor of resistance r. What must be the

resistance of this shunting resistor r, to make the power con-

sumed in r, a maximum? (Fig. 56.)

Let i be the current in the shunting resistor r. The power

consumed in r then is,

P= n^ (9)

The current in the resistor ro is io-i, and therefore the

voltage consamed by ro is roiio-i), and the voltage consumed

by r is ri, and as these two vohages must be equal, since both

-V\^

Fig. 56. Shunted Resistor.

resistors are in shunt with each other, thus receive the same

voltage,

ri= ro(io— i),

and, herefrom, it follows that,

'-ttfJ^
^i«)

Substituting this in equation (9) gives,

{r + Toy ^ ^

dP
and this power is an extreme for -j- =

; hence

:

(r+ ro)*
"

'

hence,

r = ro; (12)

that is, the power consumed in r is a maximum, if the resistor

r of the shunt equals the resistance ro.
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The current in r then is, by equation (10),

and the power is,

. ^o

p^Toio^

4

103. If, after the function y=f{x) (the equation (11) in

example (6) ) has been derived, the differentiation t- = is

immediately carried out, the calculation is very frequently

much more complicated than necessary. It is, therefore,

advisable not to differentiate immediately, but first to simplify

the fimction y=fix).

If y is an extreme, any expression differing thereform by

a constant term, or a constant factor, etc., also is an extreme.

So also is the reciprocal of y, or its square, or square root, etc.

Thus, before differentiation, constant terms and constant

factors can be dropped, fractions inverted, the expression

raised to any power or any root thereof taken, etc.

For instance, in the preceding example, in equation (11),

rroHo'^

(r+ro)2'

the value of r is to be found, which makes P a maximum.

If P is an extreme,

r

^'^(r + ro)2'

which differs rrom P by the omission of the constant factor

roHo^, also is an extreme.

The reverse of y:,

(r + ro)2

2/2
= ,

is also an extreme. (2/2 is a minimum, where j/i is a maximum,

and inversely.)

Therefore, the equation (11) can be simplified to the form

:

(r+ro)2 ro2
2/2= — = r+2ro+y,
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and, leaving out the constant term 2ro, gives the final form,

2/3 =r+^ (13)

This differentiated gives,

dr r^ '

hence,

r = ro.

104. Example 7. From a source of constant alternating

e.m.f. e, power is transmitted over a line of resistance ro and

reactance xq into a non-inductive load. What must be the

resistance r of this load to give maximum power?

If i= current transmitted over the hne, the power delivered

at the load of resistance r is

P = ri^. (14)

The total resistance of the circuit is r+ro] the reactance

is Zo; hence the current is

i=—=i—=, (15)
\/(r + ro)2+.xo2

and, by substituting in equation (14), the power is

^^(r + rof + xo^'
^^^)

if P is an extreme, by omitting e^ and inverting,

(r + roY+xa^
2/1

=

r

r(?+Xf?
= r+2ro +

r

is also an extreme, and likewise,

,
ro^+.To^

J/2
= r+

,

is an extreme.
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Differentiating, gives:

dr r^
'

7-= \V+2-o2. (17)

V^Tierefrom follows, by substituting in equation (16),

'{ro+Vro^+Xo^f + xa'

2{ro + Vro^+Xo^y
(18)

Very often the function y=f(x) can by such algebraic

operations, which do not change an extreme, be simplified to

such an extent that differentiation becomes entirely unnecessary,

but the extreme is immediately seen; the following example

will serve to illustrate

:

Example 8. In the same transmission circuit as in example

(7), for what value of r is the current i a maximum?
The current i is given, by equation (15),

V(r+ro)2+Xo2'

Dropping e and reversing, gives,

yi = V{r+ro)^+XQ^;

Squaring, gives,

j/2=(r+ro)2+a;o2;

dropping the constant term xo^ gives

2/3
= (r+ro)2; (19)

taking the square root gives

yi = r+ro;
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dropping the constant term tq gives

2/5 = r; (20)

that is, the current i is an extreme, when y5 = r is. an extreme,

and this is the case for r = and r = co
: r = gives,

(21)

as the maximum value of the current, and r = oo gives

{ = 0,

as the minimum value of the current.

With some practice, from the original equation (1), imme-

diately, or in very few steps, the simphfied final equation can

be derived.

105. In the calculation of maxima and minima of engineer-

ing quantities x, y, by differentiation of the function y=f(x),

it must be kept in mind that this method gives the values of

X, for which the quantity y of the mathematical equation y =f{x)

becomes an extreme, but whether this extreme has a physical

meaning in engineering or not requires further investigation;

that is, the range of numerical values of x and y is unlimited

in the mathematical equation, but may be limited in its engineer-

ing application. For instance, if x is a resistance, and the

differentiation of y='f{x) leads to negative values of x, these

have no engineering meaning; or, if the differentiation leads

to values of x, which, substituted in y=f{x), gives imaginary, or

negative values of y, the result also may have no engineering

application. In still other cases, the mathematical result

may give values, which are so far beyond the range of indus-

trially practicable numerical values as to be inapplicable.

For instance

:

Example g. In example (8), to determine the resistance

r, which gives maximum current transmitted over a trans-

mission line, the equation (15),

\/(r + ro)2+Xo2'
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immediately differentiated, gives as condition of the extremes:

*-_ 2(r+ro)

dr 2{{r + ro)^+xo^\V{r + ro)^+xV^~ '

hence, either r+ro = 0; (22)

or, (r+ro)2+a;o2 = oo (23)

the latter equation gives r = oo; hence i= 0, the minimum value

of current.

The former equation gives

r=-ro, (24)

as tne value of the resistance, which gives maximum current,

and the current would then be, by substituting (24) into (15),

i=- (25)

The solution (24), however, has no engineering meaning,

as the resistance r cannot be negative.

Hence, mathemetically, there exists no maximum value

of i in the range of r which can occur in engineering, that is,

within the range, 0< r< oo.

In such a case, where the extreme falls outside of the range

of numerical values, to which the engineering quantity is

limited, it follows that within the engineering range the quan-

tity continuously increases toward one limit and continuously

decreases toward the other limit, and that therefore the two

limits of the engineering range of the quantity give extremes.

Thus r=0 gives the maximum, r = oo the minimum of current.

io6. Example lo. An alternating-current generator, of

generated e.m.f. e= 2500 volts, internal resistance ro = 0.25

ohms, and synchronous reactance xo = 10 ohms, is loaded by

a circuit comprising a resistor of constant resistance r = 20

ohms, and a reactor of reactance x in series with the resistor

r. What value of reactance x gives maximum output?

If i= current of the alternator, its power output is

P = rP = 20i^; (26)
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the total resistance is r+ro = 20.25 ohms; the total reactance

is x+xo = 10+x ohms, and therefore the current is

and the power output, by substituting (27) in (26), is

(27)

20X2500^

Im- ru2) + (x + xo)2" 20.252 + (10 +a:)2
P=

, .J .. =..Z Z,^,2 - (28)

Simplified, this gives

2/i = (r + ro)2 + (x+xo)2; (29)

2/2 = (a;+xo)2;

hence,

fe=2(. + x.)=0;

and

a;= — xo= — 10 ohms; (30)

that is, a negative, or condensive reactance of 10 ohms. The

power output would then be, by substituting (30) into (28),

re^ 20+2500^
P=7—;

—

rx-=—oA og9 watts = 305 kw. . . (31)
(r+ror 20.252

If, however, a condensive reactance is excluded, that is,

it is assumed that x >0, no mathematical extreme exists in the

range of the variable x, which is permissible, and the extreme

is at the end of the range, x = 0, and gives

P=
f ^^2^ = 245 kw (32)

107. Example n. In a 500-kw. alternator, at voltage

e = 2500, the friction and windage loss is P„ = 6 kw., the iron

loss •Pt = 24 kw., the field excitation loss is Py=6 kw., and the

armature resistance r = 0.1 ohm. At what load is the efficiency

a maximum?
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The sum of the losses is:

P= P„+P,.+P/ + n;2- 36,000 +0.11:2. _ _ (33)

The output is

Po= ei = 2500i; (34)

hence, the efficiency is

Pq ei 25OO1:

\+P~

or, simplified,

' Po+P ei+ P„+Pi + P/+ n2 36000+2500i + 0.H2'
^^^'>

hence,

and.

j/i
= -. -+n;

dyi P^+Pi + Pf
-= r-

di i^

l
P^ + Pi + Pf _ /36000

--yj
--yJ-^^

= 600 amperes, (36)

and the output, at which the maximum efficiency occurs, by
substituting (36) into (34), is

P = ei = 1500kw.,

that is, at three times full load.

Therefore, this value' is of no engineering importance, but

means that at full load and at all practical overloads the

maximum efficiency is not yet reached, but the efficiency is

still rising.

108. Frequently in engineering calculations extremes of

engineering quantities are to be determined, which are func-

tions or two or more independent variables. For instance,

the maximum power is required which can be delivered over a

transmission line into a circuit, in which the resistance as well

as the reactance can be varied independently. In other

words, if

y=Ku,v) (37)
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is a function of two independent variables u and v, such a

pair of values of m and of v is to be found, which makes y a

maximum, or minimum.
Choosing any value wo, of the independent variable u,

then a value of v can be found, which gives the maximum (or

minimum) A^alue of y, which can be reached for u = uo. This

is done by differentiating y=f{uo,v), over v, thus:

"^ = 0. (3«)

From this equation (38), a value,

v=fi{uo), (39)

is derived, which gives the maximum value of y, for the given

value of Mo, and by substituting (39) into (38),

y=f2M, (40)

is obtained as the equation, which relates the different extremes
of y, that correspond to the different values of Mq, with uq.

Herefrom, then, that value of Mo is found which gives the

maximum of the maxima, by differentiation

:

1S^=« («)

Geometrically, y=f(u,v) may be represented by a surface

in space, with the coordinates y, u, v. y =/(Mo,y), then, represents

the curve of intersection of this surface with the plane Mo=
constant, and the differentation gives the maximum point
of this intersection curve. y=f2(110) then gives the curve
in space, which connects all the maxima of the various inter-

sections with the Mo planes, and the second differentiation

gives the maximum of this maximum curve 2/=/2(mo), or the
maximum of the maxima (or more correctly, the extreme of
the extremes).

Inversely, it is possible first to differentiate over u, thus,

df(u,Vo)

—d^-^^ (42)
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and thereby get

u=f3{vo), (43)

as the value of u, which makes y a maximum for the given

vakie of v = vq, and substituting (43) into (42),

y=f4{vo), (44)

is obtained as the equation of the maxima, which differentiated

over vo, thus,

^^« <«)

gives the maximum of the maxima.

Geometrically, this represents the consideration of the

intersection curves of the surface with the planes t;= constant.

However, equations (38) and (41) (respectively (42) and

(45)) give an extremum only, if both equations represent

maxima, or both minima. If one of the equations represents

a maximum, the other a minimum, the point is not an extre-

mum, but a saddle point, so called from the shape of the sur-

face y=f(u, v) near this point.

The working of this will be plaiq from the following example

:

log. Example 12. The alternating voltage e = 30,000 is

impressed upon a transmission line of resistance ro==20 ohms
and reactance .to = 50 ohms.

What should be the resistance r and the reactance x of the

receiving circuit to deliver maximum power?

Let -1 = current delivered into the receiving circuit. The
total resistance is {r+ro); the total reactance is (x+Xo); hence,

the current is

i=
,

' ..... (46)
v(r+ro)2 + (a:+a;o)2

The power output is P = rP; (47)

hence, substituting (46), gives

re-2

('+ro)2 + (a;+Xo)2

(a) For any given value of r, the reactance x, which gives

dP
maximum power, is derived by ^-=0.
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P simplified, gives yi = (x+Jq)^; hence,

^=2(x+xo)=0 and x=-xo . . . (49)
dx

that is, for any chosen resistance r, the power is a maximum,

if the reactance of the recciAang circuit is chosen equal to that

oftheline, but of opposite sign, that is, as condensive reactance.

Substituting (49) into (48) gives the maximum power

available for a chosen value of r, as

:

-,
re-

or, simplified,

hence,

(r+ro)2'
(50)

y2 =—^ and y3 = r+—;

|? = 1-^ and r^ro, .... (51)

and by substituting (51) into (50), the maximum power is,

""---&. ^^2)

(b) For any given value of x, the resistance r, which gives

maximum power, is given by -r- = 0.

P simplified gives,

(r +r-o)2 + (X +Xo)2 Tq^ + (x+Xq)^
2/1
=

; y2-r +
^;

;

dr r'^

r=\/ro2 + (x+xo)2, ..... (53)

which is the value of r, that for any given value of x, gives

maximum power, and this maximum power by substituting

(53) into (48) is,

„ Vro2 + (x+xo)V
f^o = -

[ro + Vro2 + (x + xn)2]2 + {x+xq)^

.... (54)
2{rQ'\-Vro^ + [x+Xoy\'
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which is the maximum power that can be transmitted into a
receiving circuit of reactance x.

The value of x, which makes this maximum power Pq the

dP
highest maximum, is given by -^— = 0.

Pq simplified gives

2/3 = ?-o + V?-o2 + (a;+a;o)2;

y5 = ro^ + (.x+Xoy;

j/6 = (x+Xo)2;

?/7 = (x+zo);

and this value is a maximum for (a;+.'r;o)=0; that is, for

x=—xo (55)

Note. If x cannot be negative, that is, if only inductive

reactance is considered, x= gives the maximum power, and

the latter then is

e2
* max^TT / r, 9, >

.... (00)

the same value as found in problem (7), equation (18).

Substituting (55) and (54) gives again equation (52), thus,

P =—

110. Here again, it requires consideration, whether the

solution is practicable within the limitation of engineering

constants.

With the numerical constants chosen, it would be

e2 300002
^max = 47p

= 80" = 1 1 ,250 kw.;

e
1
=^ = 750 amperes.
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and the voltage at the receiving end of the line would be

e'=ix/r2+3;2 = 750\/20- +502 = 40,400 ^qH^.

that is, the voltage at the receiving end would be far higher

than at the generator end, the current excessive, and the efficiency

of transmission only 50 per cent. This extreme case thus is

hardly practicable, and the conclusion would be that by the

use of negative reactance in the receiving circuit, an amount

of power could be delivered, at a sacrifice of efficiency, far

greater than economical transmission would permit.

In the case, where capacity was excluded from the receiv-

ing circuit, the maximum power was given by equation (56) as

P„, = ^''"
.- ^GlOO kw.max

2\ro + Vro- + .r'o'

III. Extremes of engineering quantities x, y, are usually

determined by differentiating the function,

2/=/W, (57)

and from the equation,

i">. (^«

deriving the values of x, which make y an extreme.

Occasionally, however, the equation (58) cannot be solved

for X, but is either of higher order in x, or a transcendental

equation. In this case, equation (58) may be solved by approx-

imation, or preferably, the function,

z=-r- (59)
ax,

is plotted as a curve, the values of x taken, at which z = 0,

that is, at which the curve intersects the A"-axis. For instance:

Example 13. The e.m.f. wavc^ of a thme-phase alternator,

as determined by oscillograph, is represented by the equation,

e = 36000jsin (9-0.12 sin (3^-2.3°)-23 sin (S/?-!. 5°) +
0.13 sin (7^-6.2°)! (60)
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This alternator, connected to a long-distance transmission line,

gives the charging current to the hne of

1= 13.12 cos (6i-0.3°)-5.04cos(3i9-3.3°)-18.76cos (50-3.6°)

+ 19.59 cos (70-9.9°) .... (61)

(see Chapter III, paragraph 95).

What are the extreme values of this current, and at what

phase angles d do they occur?

The phase angle 6, at which the current i reaches an extreme

value, is given by the equation

fe-'
(62)

Fia. 57.

Substituting (61) into (62) gives,

Hi
z=^ = -13.12 sin (0-0.3°) +15.12 sin (30-3..3°) +93.8 sin

au

(50-3.6°)-137.1sin (70-9.9°) = O. . . . (63)

This equation cannot be solved for d. Therefore z is

plotted as function of 6 by the curve, Fig. 57, and from this

curve the values of 6 taken at which the curve intersects the

zero line. They are:

= 1°; 20°; 47° 78°; 104°; 135°; 162°.



170 ENGINEERING MATHEMATICS.

For these angles d, the corresponding values of i are calculated

by equation (61), and are:

to=+9; -1; +39; -30; +30; -42; +4 amperes.

The current thus has during each period 14 extrema, of

which the highest is 42 amperes.

112. In those cases, where the mathematical expression

of the function y=f{x) is not known, and the extreme values

therefore have to be determined graphically, frequently a greater

accuracy can be reached by plotting as a curve the differential

of y=f{x) and picking out the zero values instead of plotting

y=f(x), and picking out the highest and the lowest points.

If the mathematical expression of y=f{x) is not known, obvi-

dv
ously the equation of the differential curve z=--- (64) is usually

not known either. Approximately, however, it can fre-

quently be plotted from the numerical values of y=f{x), as

follows

:

If xi, X2, X3 . . . are successive numerical values of x,

and 2/1) ?/2, 2/3 • • the corresponding numerical values of y,

approximate points of the differential curve z=-^ are given

by the corresponding values:

X2+Xx XZ+X2 Xi+Xs
as abscissas

:

as ordinates

:

y2-yi
.

y3-y2
.

yt-ys
X-2-Xi ' X3-Z2' Xi—Xs'

113. Example 14, In the problem (1), the maximum permea-
bility point of a sample of iron, of which the B, H curve is given

as Fig. 51, was determined by taking from Fig. 51 corresponding

values of B and H, and plotting /'=77, against B in Fig. 52.

A considerable inaccuracy exists in this method, in locating

the value of B, at which /i is a maximum, due to the flatness

of the curve, Fig. 52.
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The successive pairs of corresponding values of B and H,
as taken from Fig. 51 are given in columns 1 and 2 of Table I.

Table I.

B
Kilolinea,
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Example 15. A storage battery of n = 80 cells is to be

connected so as to give maximum power in a constant resist-

ance r = 0.1 ohm. Each battery cell has the e.m.f. eo = 2.1

volts and the internal resistance ro = 0.02 ohm. How must
the cells be connected?

Assuming the cells are connected with x in parallel, hence
n . .- m series. The internal resistance of the battery then is

n
-To

=—5- ohms, and the total resistance of the circuit is -^rn + r.
X X"^ x^

Fig. 58. First Differential Quotient of B,ii Curve

The e.m.f. acting on the circuit is - eo, since - cells of e.m.f.

eo are in series. Therefore, the current delivered by the battery
is,

n

i= -

,ro+r

and the power which this current produces in the resistance

r, is,

rn^eo^

,n >.
•
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This is an extreme, if

nro

is an extreme, hence,

ax x^

and

X'^"= 4,

that is, ^='\}— = 4 cells are connected in multiple, and

^ /^ on 11 •- = ^ —= 20 cells m series.
X \ro

115. Example 16, In an alternating-current transformer the

loss of power is limited to 900 watts by the permissible temper-

ature rise. The internal resistance of the transformer winding

(primary, plus secondary reduced to the primary) is 2 ohms,

and the core loss at 2000 volts impressed, is 400 watts, and

varies with the 1.6th power of the magnetic density and there-

fore of the voltage. At what impressed voltage is the output

of the transformer a maximum?
If e is the impressed e.m.f. and i is the current input, the

power input into the transformer (approximately, at non-

inductive load) is P = ei.

If the output is a maximum, at constant loss, the input P
also is a maximum. The loss of power in the winding is

ri2 = 2i2.

The loss of power in the iron at 2000 volts impressed is

400 watts, and at impressed voltage e it therefore is

. V- X400,
\2000/

and the total loss in the transformer, therefore, is

,
1-6

Pi = 2i2+400i2oy =900;
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herefrom, it follows that,

^^^450-200(20^

and, substituting, into P'=ei:

6

P = e^450-200(2^)''.

Simplified, this gives,
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the internal resistance of the transformer as 7- = 6 ohms, and

herefrom the i^r loss at impressed voltage e is respectively,

., 150X106 ^ .^ 37.5X106 ^^
n^ = ^ and ni^= ^ watts.

Since the core loss is 60 watts at 1000 volts, at the voltage e

it is

Viooo/Pi=60x(^j^QQJ watts.

The total loss, at full load, thus is

X. T. : nr. f e y-\ 150X106

and at half load it is

. .^ f e \i-6 37.5X106

Simphfied, this gives

•6

^-(lO()o)"+2.5Xl06Xe-

hence, differentiated,

eO-6

^^Iooo^-^-^'^^^^'>^'''=^'

6^-6 = 3.125 X 106 X 10001-6 = 3.125 X lO^o-^

;

e3-6 = 0.78125 X 106 X lOOQi-s = 0.78125 X lO^^-^

;

hence, e= 1373 volts for maximum efSciency at full load.

and e= 938 volts for maximum efficiency at half load.

117. Example 18. (o) Constant voltage e = 1000 is im-

pressed upon a condenser of capacity C = 10 mf., through a

reactor of inductance L= 100 mh., and a resistor of resist-

ance r= 40 ohms. What is the maximum value of the charg-

ing current?



176 ENGINEERING MATHEMATICS.

(b) An additional resistor of resistance r' = 210 ohms is

then inserted in series, making the total resistance of the con-

denser charging circuit, r = 250 ohms. What is the maximum
value of the charging current?

The equation of the charging current of a condenser, through

a circuit of low resistance, is (" Transient Electric Phenomena
and Oscillations," p. 61)

:

where

. 2e _il(
. q

q 2L

AL

5=\/-C"'"''

and the equation of the charging current of a condenser, through

a circuit of high resistance, is (" Transient Electric Phenomena
and Oscillations," p. 51),

s

where

4L

Substituting the numerical values gives:

(a) 1 = 10.2 £-200( sin 980 i;

{h) z = 6.667i
£-500(_ j-20oo(j_

Simplified and diiTercntiated, this gives

:

(a) z=-^ = 4.9 cos 980i-sin 980^=0;

hence tan980< = 4.9

980<= 68.5° =1.20

1.20 +n;r

908
^^^-

dio

do
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hence, £+i500( = 4^

log; 4
1500^=,—— = 1.38,

log s
'

f = 0.00092 sec,

and, by substituting these values of t into the equations of the

current, gives the maximum values:

1.20 + 7ij

(a) i=10e 4.9 =7.83 £-0-6*"= 7.83X0.53" amperes;

that is, an infinite number of maxima, of gradually decreasing

values: +7.83; -4.15; +.2.20; -1.17 etc.

(6) i= 6.667(£-o-^- £-1-8*) =3.16 amperes.

ii8. Example 19. In an induction generator, the fric-

tion losses are P/=100 kw.; the iron loss is 200 kw. at the ter-

minal voltage of e = 4 kv., and may be assumed as proportional

to the 1.6th power of the voltage; the loss in the resistance

of the conductors is 100 kw. at i = 3000 amperes output, and may
be assumed as proportional to the square of the current, and
the losses resulting from stray fields due to magnetic saturation

are 100 kw. at e=4 kv., and may in the range considered be

assumed as approximately proportional to the 3.2th power

of the voltage. Under what conditions of operation, regard-

ing output, voltage and current, is the efficiency a maximum?
The losses may be summarized as follows:

Friction loss, P/=100 kw.;

Iron loss, Pi+200(^) ;

i2rloss, '^'=^^^^(3000/ '

/g\3.2
Saturation loss, P^ = 100 (j I ;

hence the total loss is Pz^Pf+Pi+Pc+P,

-M^-<T<M4
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The output is P= ei; hence, percentage of loss is

,
P. 100{l+2(|)^%(3^)%(f)^"}

The efficienc}' is a maximum, if the percentage loss -^ is a

minimum. For any value of the voltage e, this is the case

at the current i, given by -tt = 0; hence, simplifying and differ-

entiating X,

di i^ ^30002 ^'

i=3000^1+2(|)"V(|)";

then, substituting i in the expression of A, gives

and A is an extreme, if the simplified expression,

2/~g2+41-6gO-4 "^43-2^

IS an extreme, at

dy 2 0.8 1.2 „

de~~"e3~4i-6ei-4+4F2^ >

0.8 1.2
hence, 2+^,e^6___e3.2^0;

/e \i'^ 2
hence, 1^1 =--=^ and e= 5.50 Ica^,

and, by substitution the following values are obtained : /I = 0.0323;
efficiency 96.77 per cent; current '!: = 8000 amperes; output
P = 44,000 kw.

119. In all probability, this output is beyond the capacity
of the generator, as limited by heating. The foremost limita-

tion probably will be the ih heating of the conductors; that is.
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the maximum permissible current will be restricted to, for

instance, i = 5000 amperes.

For any given value of current i, the maximum efficiency,

that is, minimum loss, is found by differentiating,

,
100(1+2(|)'\(34)V(|'"

A —
ei

over e, thus

:

de

Simplified, X gives

hence, difTerentiated, it gives

©^^(l)''4(-(:3000/

"\/^e\i-6
3+J61+55

gyyj^

V4/ 11

For 1= 5000, this gives:

|y''' = 1.065 and e = 4.16kv.;

hence,

/I = 0.0338, Efficency 96.62 per cent. Power P=20,800 kw.

Method of Least Squares.

120. An interesting and very important application of the

theory of extremes is given by the method of least squares, which

is used to calculate the most accurate values of the constants

of functions from numerical observations which are more numer-

ous than the constants.

If y=Ax), (1)
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is a function having the constants a, h, c . . . and the form of

tlie function (1) is known, for instance,

y = a + bx+cx'^, (2)

and the constants a b, c are not known, but the numerical

values of a number of corresponding values of x and y are given,

for instance, by experiment, Xi, X2, xz, x^. . . and j/i, j/2, 2/3, 2/4 • • •
,

then from these corresponding numerical values x„ and 2/„

the constants a, b, c . . . can be calculated, if the numerical

values, that is, the observed points of the curve, are sufficiently

numerous.

If less points X\ y\, X2, J/2 • are observed, then the equa-

tion (1) has constants, obviously these constants cannot be

calculated, as not sufficient data are available therefor.

If the number of observed points equals the number of con-

stants, they are just sufficient to calculate the constants. For

instance, in equation (2), if three corresponcUng values x\, yi;

X2, 2/2; ^3, 2/3 arc observed, by substituting these into equation

(2), three equations are obtained:

yi = a+bxi+cxi^;

y2 = a+bx-2+cx2~\

y3 = a-3+bx+cx3^,

(3)

which are just sufficient for the calculation of the three constants

a, b, c.

Three observations would therefore be sufficient for deter-

mining three constants, if the observations were absolutely

correct. This, however, is not the case, but the observations

always contain errors of observation, that is, unavoidable inac-

curacies, and constants calculated by using only as many
observations as there are constants, are not very accurate.

Thus, in experimental work, always more observations

are made than just necessary for the determination of the

constants, for the purpose of getting a higher accuracy. Thus,

for instance, in astronomy, for the calculation of the orbit of

a comet, less than four observations are theoretically sufficient,

but if possible hundreds are taken, to get a greater accuracy

in the determination of the constants of the orbit.
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If, then, for the determination of the constants a, b, c of

equation (2), six pairs of corresponding values of x and y were

determined, any three of these pairs would be sufficient to

give a, h, c, as seen above, but using different sets of three

observations, would not give the same values of a^ b, c (as it

should, if the observations were absolutely accurate), but

different values, and none of these values would have as high

an accuracy as can be reached from the experimental data,

since none of the values uses all observations.

121. If y=Ax), (1)

is a function containing the constants a,b, c . . ., which are still

unknown, and Xi, yi, X2, j/2; xz, y^; etc., are corresponding

experimental values, then, if these values Were absolutely cor-

rect, and the correct values of the constants a,b, c . . . chosen,

yi=/(xi) would be true; that is,

/(xi)-2/i = 0;
1

(5)

7(2:2) -2/2 = 0, etc.
J

Due to the errors of observation, this is not the case, but

even if a, &, c . . . are the correct values,

yiT^fixi) etc.; . ... (6)

that is, a small difference, or error, exists, thus

/(xi)-j/i = 5i;

.... (7)

f{x2)-y2 = S2, etc.;
j

If instead of the correct values of the constants, a, b, c . . .,

other values were chosen, different errors di, 82 . . . would

obviously result.

From probability calculation it follows, that, if the correct

values of the constants a, b, c . . are chosen, the sum of the

squares of the errors,

ai2 +V + oV + (8)

is less than for any other value of the constants a, b, c . . .; that

is, it is a minimum.
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122. The problem of determining the constants a, h, c . . .,

thus consists in finding a set of constants, which makes the

sum of the squares of the errors d a minimum ; that is,

2= 2(?2 = minimum, . . . (9)

is the requirement, which gives the most accurate or most

probable set of values of the constants a, b, c . . .

Since by (7), S=f{x) — y, it follows from (9) as the condi-

tion, which gives the mpst probable value of the constants

a,b,c...;

2= 2]{/(x) — 2/P= minimum; . . (10)

that is, the least sum of the squares of the errors gives the most

probable value of the constants a, h, c . . .

To find the values oi a, b, c . ., which fulfill equation (10),

the differential quotients of (10) are equated to zero, and give

• (11)

This gives as many equations as there are constants a,b,c . .
.,

and therefore just suffices for their calculation, and the values

so calculated are the most probable, that is, the most accurate

values.

Where extremely high accuracy is required, as for instance

in astronomy when calculating from observations extending

over a few months only, the orbit of a comet which possibly

lasts thousands of years, the method of least squares must be

used, and is frequently necessary also in engineering, to get

from a limited number of observations the highest accuracy

of the constants.

123. As instance, the method of least squares may be apphed

in separating from the observations of an induction motor,

when running light, the component losses, as friction, hysteresis,

etc.
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In a 440-volt 50-h.p. induction motor, when running ligbt,

that is, without load, at various voltages, let the terminal

voltage e, the current input i, and the power input p be observed

as given in the first three columns of Table I:

Table I

e
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as indicated by the abrupt rise of current and of power beyond

473 volts. This obviously is due to beginning magnetic satura-

tion of the iron structure. Since with beginning saturation

a change of the magnetic distribution must be expected, that

is, an increase of the magnetic stray field and thereby increase

of eddy current losses, it is probable that at this point the con-
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hence,

thus:

z=I,d2 = S{a+be^-^+ce^ -pof = immmum, (15)

dz
^=2:|a+6ei-6+ce2-poi=0;

dz

db"
Sfa + 6ei-6 + ce2-po|ei-6=0;

dz
^=2Sa + 6ei-6+ce2-po}e2 = 0;

(16)

and, if n is the number of observations used (n= 6 in this

instance, from e = 148 to e = 473), this gives the following

equations:

m + 62ei-6+c2e2-Spo = 0;
'

oi:ei-6+6Ee3-2 + cSe3-6-Eei-623o= 0; . . (17)

aSe2 +&Se3-6 +cSe4- I,e^po = 0.

Substituting in (17) the numerical values from Table I gives.

hence,

and

a + 11.7 b 103 + 126 c 103 = 1550

a +14.6 b 103+163 c 103= 1830

a + 15.1 h 103 + 170 c 103 = 1880

= 540;

& = 32.5x10-3;

c = 5XlO-3,

po= 540 +0.0325 ei-6+0.005 e^.

(18)

(19)

(20)

The values of po, calculated from equation (20), are given

in the sixth column of Table I, and their differences from the

observed values in the last column. As seen, the errors are in

both directions from the calculated values, except for the three

highest voltages, in which the observed values rapidly increase

beyond the calculated, due probably to the appearance of a
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loss which does not exist at lower voltages—the eddy currents

caused by the magnetic stray field of saturation.

This rapid divergency of the observed from the calculated

values at high voltages shows that a calculation of the constants,

based on all observations, would have led to wrong values,

and demonstrates the necessity, first, to critically review the

series of observations, before using them for deriving constants,

so as to exclude constant errors or unidirectional deviation. It

must be realized that the method of least squares gives the most

probable value, that is, the most accurate results derivable

from a series of observations, only so far as the accidental

errors of observations are concerned, that is, such errors which

follow the general law of probability. The method of least

squares, however, cannot eliminate constant errors, that is,

deviation of the observations which have the tendency to be

in one direction, as caused, for instance, by an instrument reading

too high, or too low, or the appearance of a new phenomenon
in a part of the observation, as an additional loss in above

instance, etc. Against such constant errors only a critical

review and study of the method and the means of observa-

tion can guard, that is, judgment, and not mathematical

formalism.

The method of least squares gives the highest accuracy

available with a given number of observations, but is frequently

very laborious, especially if a number of constants are to be cal-

culated. It, therefore, is mainly employed where the number of

observations is limited and cannot be increased at will; but where

it can be increased by taking some more observations—as is

generally the case with experimental engineering investigations

—the same accuracy is usually reached in a shorter time by
taking a few more observations and using a simpler method
of calculation of the constants, as the 2A-method described in

paragraphs 153 to 157.

Diophantic Equations.

1 23A.—The method of least squares deals with the case,

when there are more equations than unknown quantities. In

this case, there exists no set of values of the unknown quantities,

which exactly satisfies the equations, and the problem is, to find
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the set of values, which most nearly satisfies the equations, that

is, which is the most probable.

Inversely, sometimes in engineering the case is met, when there

are more unknown than equations, for instance, two equations

with three unknown quantities. Mathematically, this gives not

one, but an infinite series of sets of solutions of the equations.

Physically however in such a case, the number of permissible

solutions may be limited by some condition outside of the algebra

of equations. Such for instance often is, in physics, engineering,

etc., the condition that the values of the unknown quantities

must be positive integer numbers.

Thus an engineering problem may lead to two equations with

three unknown quantities, which latter are limited by the con-

dition of being positive and integer, or similar requirements,

and in such a case, the number of solutions of the equation may
be finite, although there are more equations than unknown
quantities.

For instance:

In calculating from economic consideration, in a proposed

hydroelectric generating station, the number of generators,

exciters and step-up transformers, let:

X = number of generators

y = number of exciters

z = number of transformers

Suppose now, the physical and economic conditions of the

installation lead us to the equations:

8x + Zy + z = 49 (1)

2x + y + Sz = 21 (2)

These are two equations with three unknown, x, y, z; these

unknown however are conditioned by the physical requirement,

that they are integer positive numbers.

To attempt to secure a third equation would then over deter-

mine the problem, and give either wrong, or limited results.

Eliminating z from (1) and (2), gives:

11a; -h 4?/ = 63 (3)
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hence:

63 - llx _ „
I

3 -3x ,

2/ = 4 = 15 - 2a; + -^-- (4)

3 — 3a;

since y must be an integer number, —|— must also be an

integer number. Call this u, it is:

3 - 3a;

(5)

since x must be an integer number, ^ must also be an integer

number, that is:

M = 3y 6)

hence, substituted into (5), (4) and (2):

4 -"
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X = 5

2 = 3

We thus have here the case of two equations with three un-

known quantities, which have only one single set of these un-

known quantities satisfying the problem, and thus give a definite

solution, though mathematically indefinite.

This type of equation has first been studied by Diophantes

of Alexandria.





CHAPTER V.

METHODS OF APPROXIMATION.

124. The investigation even of apparently simple engineer-

ing problems frequently leads to expressions which are so

complicated as to make the numerical calculations of a series

of values very cumbersonme and almost impossible in practical

work. Fortunately in many such cases of engineering prob-

lems, and especially in the field of electrical engineering, the

different quantities which enter into the problem are of very

different magnitude. Many apparently complicated expres-

sions can fiequently be greatly simphfied, to such an extent as

to permit a quick calculation of numerical values, by neglect-

ing terms which are so small that their omission has no appre-

ciable effect on the accuracy of the result; that is, leaves the

result correct within the limits of accuracy required in engineer-

ing, which usually, depending on the nature of the problem,

is not greater than from 0.1 per cent to 1 per cent.

Thus, for instance, the voltage consumed by the resistance

of an alternating-current transformer is at full load current

only a small fraction of the supply voltage, and the exciting

current of the transformer is only a small fraction of the full

load current, and, therefore, the voltage consumed by the

exciting current in the resistance of the transformer is only

a small fraction of a small fraction of the supply voltage, hence,

it is negligible in most cases, and the transformer equations are

greatly simplified by omitting it. The power loss in a large

generator or motor is a small fraction of the input or output,

the drop of speed at load in an induction motor or direct-

current shunt motor is a small fraction of the speed, etc., and
the square of this fraction can in most cases be neglected, and
the expression simplified thereby.

Frequently, therefore, in engineering expressions con-

taining small quantities, the products, squares and higher

187
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powers of such quantities may be dropped and the expression

thereby simphfied; or, if the quantities are not quite as small

as to permit the neglect of their squares, or where a high

accuracy is rciciuired, the first and second powers may be retained

and only the cul^es and higher powers dropped.

The most common method of procedure is, to resolve the

expression into an infinite series of successive powers of the

small quantity, and then retain of this series only the first

term, or only the first two or three terms, etc., depending on the

smallness of the quantity and the required accuracy.

125. The forms most frequently used in the reduction of

expressions containing small quantities are multiplication and

division, the binomial series, the exponential and the logarithmic

series, the sine and the cosine series, etc.

Denoting a .small quantity by s, and where several occur,

by Si, S2, S3 . . . the following expression holds:

(1 ± Si) (1 ± .S2) = 1 ± Si ± S2 ± S1S2,

and, since S1S2 is small compared with the small quantities

Si and S2, or, as usually expressed, S1S2 is a small quantity of

higher order (in this case of second order), it may be neglected,

and the expression written

:

(l±Si)(l±S2) = l±Si±S2 (1)

This is one of the most useful simplifications : the multiplica-

tion of terms containing small quantities is replaced b}^ the

simple addition of the small quantities.

If the small quantities Si and S2 are not added (or subtracted)

to 1, but to other finite, that is, not small quantities a and h,

a and h can be taken out as factors, thus,

{a±s,){h±S2)=ah(\±^{l±^=ah{l±-^±'^, . (2)

where — and -r must be small quantities.

As seen, in this case, si and .S2 need not necessarilj' be abso-

lutely small ("luantities, but may be quite large, provided that

a and b are still larger in magnitude; that is, Si must be small

compared with a, and S2 small compared with b. For instance,
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in astronomical calculations the mass of the earth (which

absolutely can certainly not be considered a small quantity)

is neglected as small quantity compared with the mass of the

sun. Also in the effect of a lightning stroke on a primary

distribution circuit, the normal line voltage of 2200 may be

neglected as small compared with the voltage impressed by
~ lightning, etc.

126. Example. In a direct-current shunt motor, the im-

pressed voltage is eo = 125 volts; the armature resistance is

ro = 0.02 ohm; the field resistance is ri = 50 ohms; the power

consumed by friction is p/=^-300 watts, and the power consumed

by iron loss is pi=400 watts. What is the power output of

the motor at io = 50, 100 and 150 amperes input?

The power produced at the armature conductors is the

product of the voltage e generated in the armature conductors,

and the current i through the armature, and the power output

at the motor pulley is,

p = ei-'Pf-'Pi- (3)

The current in the motor field is — , and the armature current

therefore is,

i= in-^= ^o--, (4)

6n
where — is a small quantity, compared with io.

The voltage consumed by the armature resistance is roi,

and the voltage generated in the motor armature thus is:

e= eo— roi, (5)

where roi is a small quantity compared with eo.

Substituting herein for i the value (4) gives,

= eo-ro[io-:fj (6)

Since the second term of (6) is small compared with eo,

€0
and in this second term, the second term — is small com-

pared with io, it can be neglected as a small term of higher
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order; that is, as small compared with a small term, and

expression (6) simplified to

e = eo— roio (7)

Substituting (4) and (7) into (3) gives,

p= (eo- roio) U'o-yj-Vf- Pi

= eoio{l-'-ff){l-^)-Pf-p. ... (8)

Expression (8) contains a product of two terms with small

quantities, which can be multiplied by equation (1), and thereby

gives,

p^eoto[l-—-~j-J-pf-pi

= eoio—roio^— -— Pf-pi (9)

Substituting the numerical values gives,

p = 125i;o-0.02io2-562.5-300-400
= 125-io— 0.02io2— 1260 approximately;

thus, for to=50, 100, and 150 amperes; p = 4940, 11,040, and
17,040 watts respectively.

127. Expressions containing a small quantity in the denom-
inator are frequently simplified by bringing the small quantity

in the numerator, by division as discussed in Chapter II para-

graph 39, that is, by the series,

-^-— = lTx+x^Tx^+x*^x^+ .., . . (10)

which series, if x is a small quantity s, can be approximated
by:

1

1+s

1

1-s

= l-s:

= l+s;

(11)
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or, where a greater accuracy is required,

1

1+s

_1_
1-s

= l-s+s2;

= 1+S+S2.

(12)

By the same expressions (11) and (12) a small quantity

contained in the numerator may be brought into the denominator

where this is more convenient, thus

:

l+s =
1-s'

.1— 8=^;—;—; etc.
1+s'

(13)

More generally then, an expression like , where s is

small compared with a, may be simplified by approximation to

the form,

a±s
''i^-O^'

4^..^ (14)

or, where a greater exactness is required, by taking in the second

term,

128. Example. What is the current input to an induction

motor, at impressed voltage eo and slip s (given as fraction of

synchronous speed) if tq+ jxo is the impedance of the primary

circuit of the motor, and ri + jxi the impedance of the secondary

circuit of the motor at full frequency, and the exciting current

of the motor is neglected; assuming s to be a small quantity;

that is, the motor running at full speed?

Let E be the e.m.f. generated by the mutual magnetic flux,

that is, the magnetic flux which interlinks with primary and

with secondary circuit, in the primary circuit. Since the fre-

quency of the secondary circuit is the fraction s of the frequency
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of the primary circuit, the generated e.m.f. of the secondary

circuit is sE.

Since xi is the reactance of the secondary circuit at full

frequency, at the fraction s of full frequency the reactance

of the secondary circuit is sxi, and the impedance of the sec-

ondary circuit at slip s, therefore, is ri+jsxi; hence the

secondary current is,

• ri + ]sxi

If the exciting current is neglected, the primary current

equals the secondary current (assuming the secondary of the

same number of turns as the primary, or reduced to the same
number of turns); hence, the current input into the motor is

7 =-^ (16)

The second term in the denominator is small compared
with the first term, and the expression (16) thus can be

approximated by

sE sE(^ .sxA
1 =—, r-=— 1-2— (17)

M^ + l-z

The voltage E generated in the primary circuit equals the

impressed voltage eo, minus the voltage consumed by the

current / in the primary impedance; ro+ j'xo thus is

^ = eo-/(ro+j>o). . . ... (18)

Substituting (17) into (18) gives

sE I s^' \S = e„--(ro+j>o)(^l-.7^j. . . . (19)

In expression (19), the second term on the right-hand side,

which is the impedance drop in the primary circuit, is small

compared with the first term eo, and in the factor ( 1 — 7
—

\ n

of this small term, the small term ]'— can thus be neglected
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as a small term of higher order, and equation (19) abbreviated

to

sE
E = eo~— {ro+ jxo) (20)

From (20) it follows that

E= :r^ ,

and by (13),

S = eo jl-^(ro+/xo)
I

(21)

Substituting (21) into (17) gives

and by (1),

=— \^-s--]s—.—
} (22)

If then, loo^in—jio' is the exciting current, the total

current input into the motor is, approximately,

=— |l+'^--F^— )+^o-po'. - . . (23)

129. One of the most important expressions used for the

reduction of small terms is the binomial series

:

n(n— 1) „ n(n— l)(n— 2)
(l±x)«= l±nx+-^-2 x2±

1^

2 -I ^ l! L
-J.3

+- y-^ x4±... (24)

If x is a small term s, this gives the approximation,

(l±s)" = l±ns; ... . . (25)
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or, using the second term also, it gives

(l±,s)" =l±ns+^^^s2 (26)

In a more general form, this expression gives

1±-) =0/(1 ±-^1; etc. . . (27)

By the binomial, higher powers of terms containing small

quantities, and, assuming n as a fraction, roots containing

small quantities, can be eliminated; for instance,

„, 1 i/ s\^ ^r-( •'- \Va±s=(a±s)« =an| 1 ±- ) =vall±— I;

1 1 1/ s\-« 1/, ns\
=t;; l±r =T^ IT-

;ia±sY I sY a"\ a / WX a J

'

1
,

,-i -1/ s\-i 1 / s\
n/

~ = (a±s) »=a " 1±-) =-;r7=(lT— );

m

v(a±s)"> = (a±s)" =anM ±- ) =va'"l 1±— 1; etc.

One of the most common uses of the binomial series is for

the elimination of squares and square roots, and very fre-

quently it can be conveniently applied in mere numerical calcu-

lations; as, for instance,

(201)2= 2002(1 +^y)' = 40,000(l +j-^ =40,400;

29.92 = 302 (1 __Lj
' = 900 (1 _ ^-) = 900- 6 = 894

;

vmS = lOVl - 0.02 = 10(1 - 0.02) 2 = 10(1 - 0.01) = 9.99;

1 1 1
=

^ n.. ^ = 0.985; etc.
VlM (1 + 0.03)1/2 1015
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130. Example i. If r is the resistance, x the reactance of an

alternating-current circuit with impressed voltage e, the

current is

x/r^+x^

If the reactance x is small compared with the resistance r,

as is the case in an incandescent lamp circuit, then.

1^

e ( /xY] 2

^=-7== =—r=== = - 1 I

^n-

If the resistance is small compared with the reactance, as

is the case in a reactive coil, then.

e e ^
J 1

/'"

Vr2+x2 / /r\2 x\ \x
X.'^J

''^-im (28)
x[ 2\x

Example 2. How does the short-circuit current of an

alternator vary with the speed, at constant field excitation?

When an alternator is short circuited, the total voltage

generated in its armature is consumed by the resistance and the

synchronous reactance of the armature.

The voltage generated in the armature at constant field

excitation is proportional to its speed. Therefore, if eo is the

voltage generated in the armature at some given speed So,

for instance, the rated speed of the machine, the voltage

generated at any other speed S is

S

-^0
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a

or, if for convenience, the fraction -^r is denoted bj^ a, then

a^-^ and e = aeo,

where a is the ratio of the actual speed, to that speed at which

the generated voltage is eo-

If r is the resistance of the alternator armature, xq the

synchronous reactance at speed So, the synchronous reactance

at speed S is x = axn, and the current at short circuit then is

i^-^=^^-Jf^= (29)
Vr^+x^ V r2 + a^X(p

Usually r and Xq are of such magnitude that r consumes

at full load about 1 per cent or less of the generated voltage,

while the reactance voltage of Xo is of the magnitude of from

20 to 50 per cent. Thus r is small compared with Xq, and if

a is not very small, equation (29) can be approximated by

aeo eo| 1 / r V

«-roJl+ —
\axo/

oJl+(-
(30)

Then if a;o = 20r, the following relations exist:

a= 0.2 0.5 1.0 2.0

t = -x0.9688 0.995 0.99875 0.99969
Xo

That is, the short-circuit current of an alternator is practi-

cally constant independent of the speed, and begins to decrease

only at very low speeds.

131. Exponential functions, logarithms, and trigonometric

functions are the ones frequently met in electrical engineering.

The exponential function is defined by the series,

^ ,
x^ x^ x^ x^
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and, if a; is a small quantity, s, the exponential function, may
be approximated by the equation,

£±^ = l±s; (32)

or, by the more general equation,

£±'"' = l±as; . . . (33)

and, if a greater accuracy is required, the second term may
be included, thus,

S'
2

£±«= l±s+-, (34)

and then

2g2
j±M = ij.as+r__ (35)

fdx
The logarithm is defined by logs x= I — ; hence,

log.(l±x)=±J^|^.

Eesolving :j--^ into a series, by (10), and then integrating,

gives

log£(l±x)=±
j
{lTx+x'^^^x^ + . . .)dx

y2 'y'3 .jA 0-5

= ±.x-y±3—jig- (36)

This logarithmic series (36) leads to the approximation,

logs (lis) =±s; . ... (37)

or, including the second term, it gives

log. (lis) =±s-s2, (38)

and the more general expression is, respectively,

log. (ais)=loga(li^-)=loga+log(li^)=logai^, (39)



198 ENGINEERING MATHEMATICS

and, more accurately,

s s^

loge (a±s) = loga±----2
a a^

(40)

Since logio iV = logio fXlogt N=0A3i3 log£ A'', equations (39)

and (40) may be written thus,

logio(l±s)=± 0.4343s;

logio (a±s) = logio a ±0.4343

-

. (41)

132. The trigonometric functions are represented by the

infinite series

:

, x^ x^ sfi

cos.T = l-i2+|4-|g+.

sin X=X—-rr+T^— '-rT+.

li li li

(42)

which when s is a small quantity, may be approximated by

coss= l and sin s= s; . . .

or, they may be represented in closer approximation by

(43)

cos s= l ——

;

sm s= ;

or, by the more general expressions.

(44)

cos as = 1 and cos as = 1

2q2
a-'s-

sin as = as and sin as -

(45)

133. Other functions containing small terms may frequently

be approximated by Taylor's series, or its special case,

MacLaurin's series.

MacLaurin's series is written thus:

/(^) =/(0) +xf'(0) +p/"(0) +p/-"'(0) +. . . , . (46)
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where /', /", /'", etc., are respectively the first, second, third,

etc., differential quotient of/; hence,

/(s)^/(0)+s/'(0): 1

f{as)=f{0)+asf'{0). \

Taylor's series is written thus.

(47^

X .,.,,. X'
3

fib +X) =/(6) +Xf{b) + r^f"(h) +r:^f"{b) +..., . (48)

and leads to the approximations

:

fib±s)=f(b)±sf'ib);

f{b±as)=f{b)±asf'{b).
(49)

Many of the previously discussed approximations can be

considered as special cases of (47) and (49).

134. As seen in the preceding, convenient equations for the

approximation of expressions containing small terms are

derived from various infinite series, which are summarized

below

:

• ni.n—1) „ n{n—1)(n—2) „
{l±x)" = l±nx+ .^

x2±- r^ -x^ + . .

/V.2 -yO -y^

/V.2 -yO jy*^

log£ {l±x)=±x-'-^±j-j±. . .
;

.T^2 'Y'4 ^6

cosx=
l-J2+|4-|g+...;

jf'O po ^7

&iB.X= X— -nr+j^ — -r=-+. . .
;

II ll li

Ax) =/(0) +xf'(0) +|V(0) +Sf"'m +. ;

f(b±x) =f{b) ±xf'(b) +|/"(&) ±y"'(b) +...

\ m
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The first approximations, derived by neglecting all higher

terms but the first power of the small quantity x= s in these

series, are:

(l±s)" = l±«s;
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The next term in the parenthesis of equation (30), by the

binomial, would have been -\ -x— s^; substituting n=— i;

s = (— ) , the next becomes +5-(— ) • The smaller the a, the
\a.xo) 8 \axo/

less exact is the approximation.

The smallest value of a, considered in paragraph 130, was

3 / J.
\4

a= 0.2. For 3;o= 20r, this gives +^[— =0.00146, as the
o \axo/

value of the first neglected term, and in the accuracy of the

result this is of the magnitude of - X 0.00146, out of - X 0.9688,
Xq '

Xo

the value given in paragraph 130; that is, the approximation

gives the result correctly within ' ,„„„ =0.0015 or within one-^ 0.9680

sixth of one per cent, which is sufficiently close for all engineer-

ing purposes, and with larger a the values are still closer

approximations.

136. It is interesting to note the different expressions,

which are approximated by (1+s) and by (1 — s). Some of

them are given in the following

:

1-s
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VrpIT; Vl-2s;
1 1

.

Vl^^' Vl+2s'

\l-s' \l+s'

1 1
.

-C/r=^' ^l+ns'

-ms

S/1 — (n— m)s'

etc.
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, 1 •

1 H— sm ns]

cos V— 2s;

etc.

1— sin ns;

cos V2s;

etc.

137. As an example may be considered the reduction to its

simplest form, of the expression

:

2si
J2g.

\/a^-\'(a + Si)3i4— sin 6S2! -^lae"- cos^^/

—

—

—

\ (Jb

e-3«Ca+2si) 1
1

/a-S2—alogf^ —

—

v'a— 2si

then,

4— sin6s2 = 4(l— jsin6s2J =4(1 — ^82);

2f} siea=l+2-;

COS'' = 1
Sl

a \ a

£-3« = ]-3s2;

= 1-2^;
a'

o+2si = o 1+2
a/'

-alog£^^^= l-alog,
1+S2

-alog£^l-2j

= l-aIog£fl

—

-j=l+S2;

2si\ 1/2

Va-2,s,^aV2(l-=_j -a^^\l~~);
Sl
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hence,

(ji/2xa3/4(^l+| ii) X4(l-^S2) X
F=-

.-x(l+2j)(.-2j)

(1-3^2) X«(l+2j)(]+S2)Xai/2^1-^)

4a3/.(l+3£l_3 ,^_2^\
\ 4 a 2 a a/

— +S2 )

a a I
a3/2(l-3s2+2

= 4(1-1^+^-1
V 4 a ^2a

138. As further example may be considered the equations

of an alternating-current electric circuit, containing distributed

resistance, inductance, capacity, and shunted conductance, for

instance, a long-distance transmission line or an underground

high-potential cable.

Equations of the Transmission Line.

Let I be the distance along the line, from some starting

point; E, the voltage; /, the current at point I, expressed as

vector quantities or general numbers; Zo = ro+jxo, the line

impedance per unit length (for instance, per mile); Yo = go+jbo
= line admittance, shunted, per unit length; that is, tq is the

ohmic effective resistance; xo, the self-inductive reactance;

60, the condensive susceptance, that is, wattless charging

current divided by volts, and ^0 = energy component of admit-
tance, that is, energy component of charging current, divided

by volts, per unit length, as, per mile.

Considering a line element dl, the voltage, dE, consumed
by the impedance is Zoldl, and the current, dl, consumed by
the admittance is Yi,Ed.l; hence, the following relations may be
written

:

dl

dl
-^=YoE (2)
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Differentiating (1), and substituting (2) therein gives

(PE

dP
= ZoYoE,

and from (1) it follows that,

j_J_dE
Zq dl

'

Equation (3) is integrated by

E = AeSl,

and (5) subbtituted in (3) gives

B=±VZoYo;

hence, from (5) and (4), it follows

[Yo.

Yd. L2« -VzoYoi:

Next assume

l = lo, the entire length of line;

Z = IqZo, the total line impedance

;

and Y=loYo, the total line admittance;

then, substituting (9) into (7) and (8), the following expressions

are obtained

:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Ei = AiS +^^Y_^_^,^.-VzY;

lY.
Iv {Ai£+V^-^2^-^^^!

(10)

as the voltage and current at the generator end of the line.

139. If now £0 and h respectively are the current and
voltage at the step-down end of the line, for 1=0, by sub-

stituting 1 = into (7) and (8),

Ai+A2=Eq]

Ai-A2 = Ij
Y-

(11)
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Substituting in (10) for the exponential function, the series,

, ZY ZYVZY Z272 z^Y^VZY

and arranging by {A1+A2) and (Ai— A2), and substituting

herefor the expressions (11), gives

Ei =E0'
ZY Z272] „{ ZY Z^Y^

, , . Z7 i?272i f ZY Z^Y^
7i = /o \l+~^+-,^\ +YEq\1+-j^ +

24 °|^+"6"+T20"(

(13)

When 1= —lo, that is, for Eo and /o at the generator side, and

El and h at the step-down side of the line, the sign of the

second term of equations (13) merely reverses.

140. From the foregoing, it follows that, if Z is the total

impedance; Y, the total shunted admittance of a transmission

line, 'Eo and lo, the voltage and current at one end; Ei and 7i,

the voltage and current at the other end of the transmission

line; then,

^ ^ . ZY Z^Y^]
hi=Jio\ IH—2~"'—94

^, . ZY Z2y2
±ZIo{l+-^+^^

, , ,, ZY Z^Y^, ^^^ i ZY ZW2]
(14)

where the plus sign applies if Eq, Iq is the step-down end,

the minus sign, if Eq, Iq is the step-up end of the transmission

line.

In practically all cases, the quadratic term can be neglected,

and the equations simplified, thus.

Ei = Eo' l^^Uz7ofl+f

/x=/„|i+^|±rEo{i+^},
(15)

z^y^
and the error made hereby is of the magnitude of less than —

24
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Except in the ease of very long lines, the second term of

the second term can also usually be neglected, which givcb

E, = Eo(l+^)±ZIo;

h= /o(l+^)±7?o,
J

(16)

and the error made hereby is of the magnitude of less than —
of the Hne impedance voltage and line charging current.

141. Example. Assume 200 miles of 60-cycle line, on non-

inductive load of 60 = 100,000 volts; and io = 100 amperes.

The line constants, as taken from tables are 2= 104 +140; ohms
and y= +0.0013/ ohms; hence,

Z7=- (0.182-0.136/);

.Bi = 100000(1-0.091+0.068]) +100(104+ 140;)

= 101400+20800;, in volts;

Zi = 100(l-0.091+0.068;)+0.0013;Xl000G0
= 91+136.8;', in amperes.

. zy 0.174X0.0013 0.226 ^ ^^„The error is -^= ^ = —;5—= 0.038.
6 6 6

In El, the neglect of the second term of 0/0= 17,400, gives

an error of 0.038x17,400 = 660 volts = 0.6 per cent.

In Zi, the neglect of the second term of 2/£'o = 130, gives an

error of 0.038x130 = 5 amperes = 3 per cent.

Although the charging current of the line is 130 per cent

of output current, the error in the current is only 3 per cent.

Using the equations (15), which are nearly as simple, brings

22„2 226^
the error down to -:&='

94
=0.0021, or less than one-quarter

per cent.

Hence, only in extreme cases the equations (14) need to be

used. Their error would be less than ;^= 'i.QxlO~^, or one

three-thousandth per cent.
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The accuracy of the preceding approximation can be esti-

mated by considering the physical meaning of Z and Y: Z
is the Hne impedance; hence ZI the impedance voltage, and

zi
u=^, the impedance voltage of the line, as fraction of total

voltage; Y is the shunted admittance; hence YE the charging

YE .

current, and v=—j-, the charging current of the hne, as fraction

of total current.

Multiplying gives uv=ZY; that is, the constant ZY is the

product of impedance voltage and charging current, expressed

as fractions of full voltage and full current, respectively. In

any economically feasible power transmission, irrespective of

its length, both of these fractions, and especially the first,

must be relatively small, and their product therefore is a small

quantity, and its higher powers negligible.

In any economically feasible constant potential transmission

line the preceding approximations are therefore permissible.

Approximation by Chain Fraction.

141A.—A convenient method of approximating numerical

values is often afforded by the chain fraction. A chain fraction

is a fraction, in which the denominator contains a fraction, which

again in its denominator contains a fraction, etc. Thus:

2+ 1

3+ 1

1+1
4

Only integer chain fractions, that is, chain fractions in which
all numerators are unity, are of interest.

A common fraction is converted into a chain fraction thusly:
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511 ^ ^
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511 ^ ^



APPROXIMATION BY CHAIN FRACTION. 208c

1 130
1 +

13 + 1 121

1 _ 121

] + 1
~ 130

13+1

^ + 1

3 +1 _ 511

1 + 1
~ 130

13 + 1

^ + 1

1 _ 130

3 + 1
~ 511

1+ 1

13+ 1

2+ 1 ^ 1152

511

13 + 1

^^l

1 _ _51]^

2 + 1
~ 1152

3TI
1 + 1

13+ 1

^^\

The expression of the numerical value by chain fraction gives a

series of successive approximations. Thus the successive ap-

proximation of the chain fraction

:
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1 511
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As seen, successive approximations are alternately above and

below the true value, and the approach to the true value is

extremely rapid. It is the latter feature which makes the chain

fraction valuable, as where it can be used, it gives very rapidly

converging approximations.

141B.—Chain fraction representing irrational numbers, as

IT, €, etc., may be endless. Thus:

3 + 1

7 + 1
= 3.14159265 ...

15 + 1

288+ 1

2 + 1

1 + 1

3 + 1

1 + 1

7 +

The first three approximations of this chain fraction of tt are

:

difference : = %

(1)3 + ^ =3 1/7 =3.142857.. +.00127 = + .043%

[2) 3 + 1 ^g 15/106 = 3. 141 5094... -.0000832 =-.0026%

^ + r5

;3) 3 + 1 =3 16/113=3. 1415929... + .0000003

7+1 = + • 000009%
15 + 1

1

As seen, the first approximation, 3 1/7, is already sufficiently

close for most practical purposes, and the third approximation

of the chain fraction is correct to the 6th decimal.

144.—Frequently irrational numbers, such as square roots,

can be expressed by periodic chain fractions, and the chain
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fraction offers a convenient way of expressing numerical values

containing square roots, and deriving their approximations.

For instance:

Resolve -\/6 into a chain fraction.

As the chain fraction is < 1, -\/6 has to be expressed in the form

:

Ve = 2 + (V6 - 2) (1)

and the latter term: (V6 - 2), which is <1, expressed as chain

fraction.

To rationalize the numerator, we multiply numerator and

denominator by (\/6 + 2):

^^ (V6-2)(V6 + 2) 2 1

^^^~^^~
V6 + 2 ~-v/6 + 2~V6 + 2

thus:

\/6 = 2 +
V6 + 2

2

as is > 1, it is again resolved into:

V6 + 2 _ ^ |.
\/6-2__ 2 +^

thus:

V6=2+l
2 +^

continuing in the same manner:

V6-2 _ (V6-2)(\/6 + 2) _ 2 1

2 ~ 2(V6 + 2)
~

2(a/6 + 2)
"
Ve + 2

hence:

V6 = 2 + 1

2+1

and:

hence:

V6 + 2

-v/6 + 2 = 4 + (Ve - 2)
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\/6 = 2+l
2+1

4 + (Ve - 2)

and, as the term {\/Q — 2) appeared already at (1), we are here

at the end of the recurring period, that is, the denominators now
repeat

:

\/6 = 2+ 1

2+ 1

4+ 1

2+ 1

4 + 1

2+ .

a periodic chain fraction, in which the denominators 2 and 4

alternate.

In the same manner,

\/2 =1 + 1 with the periodic denominator 2

2r+j
2+ 1

2 + .

\/3 =1 + 1 with the periodic denominators 1 and 2m
2+ 1

1+ 1

2+._

•\/5 =2+1 with the periodic denominator 4

4T1
4+1

4+,.

This method of resolution of roots into chain fractions gives

a convenient way of deriving simple numerical approximations

of the roots, and hereby is very useful.

For instance, the third approximation of \/2is 1 ^2; with an

error of .2 per cent, that is, close enough for most practical

purposes. Thus, the diagonal of a square with 1 foot as side,

is very closely 1 foot 5 inches, etc.





CHAPTER VI.

EMPIRICAL CURVES.

A. General.

142. The results of observation or tests usually are plotted

in a curve. Such curves, for instance, are given by the core

loss of an electric generator, as function of the voltage; or,

the current in a circuit, as function of the time, etc. When
plotting from numerical observations, the curves are empirical,

and the first and most important problem which has to be

solved to make such curves useful is to find equations for the

same, that is, find a function, y=f(x), which represents the

curve. As long as the equation of the curve is not known its

utility is very limited. ^\'hile numerical values can be taken

from the plotted curve, no general conclusions can be derived

from it, no general investigations based on it regarding the

conditions of efficiency, output, etc. An illustration hereof is

afforded by the comparison of the electric and the magnetic

circuit. In the electric cii'cuit, the relation between e.m.f. and

current is given by Ohm's law, i=—, and calculations are uni-

versally and easily made. In the magnetic circuit, however,

the term corresponding to the resistance, the reluctance, is not

a constant, and the relation between m.m.f. and magnetic flux

cannot be expressed by a general law, but only by an empirical

curve, the magnetic characteristic, and as the result, calcula-

tions of magnetic circuits cannot be made as conveniently and

as general in nature as calculations of electric circuits.

If by observation or test a number of corresponding values

of the independent variable x and the dependent variable y are

determined, the problem is to find an equation, y=f{x), which

represents these corresponding values: Xi, X2, Xz . . , Xn, and

2/1) y2, 2/3 •• • Vn, approximately, that is, within the errors of

observation.

209
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The mathematical expression which represents an empirical

curve may be a rational equation or an empirical equation.

It is a rational equation if it can be derived theoretically as a

conclusion from some general law of nature, or as an approxima-

tion thereof, but it is an empirical equation if no theoretical

reason can be seen for the particular form of the equation.

For instance, when representing the . dying out of an electrical

current in an inductive circuit by an exponential function of

time, we have a rational equation: the induced voltage, and

therefore, by Ohm's law, the current, varies proportionally to the

rate of change of the current, that is, its differential quotient,

and as the exponential function has the characteristic of being

proportional to its differential quotient, the exponential function

thus rationally represents the dying out of the current in an

inductive circuit. On the other hand, the relation between the

loss by magnetic hysteresis and the magnetic density: W= i]B^'^,

is an empirical equation since no reason can be seen for this

law of the 1.6th power, except that it agrees with the observa-

tions.

A rational equation, as a deduction from a general law of

nature, applies universally, within the range of the observa-

tions as well as beyond it, while an empirical equation can with

certainty be relied upon only within the range of observation

from which it is derived, and extrapolation beyond this range

becomes increasingly uncertain. A rational equation there-

fore is far preferable to an empirical one. As regards the

accuracy of representing the observations, no material difference

exists between a rational and an empirical erjuation. An
empirical equation frequently represents the observations with

great accuracy, while inversely a rational equation usually

does not rigidly represent the observations, for the reason that

in nature the conditions on which the rational law is based are

rarely perfectly fulfilled. For instance, the representation of a

decaying current by an exponential function is based on the

assumption that the resistance and the inductance of the circuit

are constant, and capacity absent, and none of these conditions

can ever be perfectly satisfied, and thus a deviation occurs from
the theoretical condition, by what is called " secondary effects."

143- To derive an equation, which represents an empirical
curve, careful consideration shoukl first be given to the physical
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nature of the phenomenon which is to be expressed, since

thereby the number of expressions which may be tried on the

empirical curve is often greatly reduced. Much assistance is

usually given by considering the zero points of the curve and

the points at infinity. For instance, if the observations repre-

sent the core loss of a transformer or electric generator, the

curve must go through the origin, that is, y = for x = 0, and

the mathematical expression of the curve y=f(x) can contain

no constant term. Furthermore, in this case, with increasing x,

2/ must continuously increase, so that for x = GO, y = (x>. Again,

if the observations represent the dying out of a current as

function of the time, it is obvious that for a; = go, j/
= 0. In

representing the power consumed by a motor when running

without load, as function of the voltage, for x = 0, y cannot be

= 0, but must equal the mechanical friction, and an expression

like y= Ajf- cannot represent the observations, but the equation

must contain a constant term.

Thus, first, from the nature of the phenomenon, which is

represented by the empirical curve, it is determined

(a) Whether the curve is periodic or non-periodic.

(6) Whether the equation contains constant terms, that is,

for .T = 0, 2/5^0, and inversely, or whether the curve passes

through the origin: that is, 2/
= for a; = 0, or whether it is

hyperbolic; that is, y= oo for x = 0, or a;=oo for 2/
= 0.

(c) What values the expression reaches for oo. That is,

whether for a;= oo, 2/
= oo, or 2/

= 0, and inversely.

(d) Whether the curve continuously increases or decreases, or

reaches maxima and minima.

(e) AVhether the law of the curve may change within the

range of the observations, by some phenomenon appearing in

some observations which does not occur in the other. Thus,

for instance, in observations in which the magnetic density

enters, as core loss, excitation curve, etc., frequently the curve

law changes with the beginning of magnetic saturation, and in

this case only the data Ijclow magnetic saturation would be used

for deriving the theoretical equations, and the effect of magnetic

saturation treated as secondary phenomenon. Or, for instance,

when studying the excitation current of an induction motor,

that is, the current consumed when running light, at low

voltage the current may increase again with decreasing voltage.
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instead of decreasing, as result of the friction load, when the

voltage is so low that the mechanical friction constitutes an

appreciable part of the motor output. Thus, cmijirical curves

can be represented by a single eciuation only when the physical

conditions remain constant within the range of the observations.

From the shape of the curve then frequently, with some

experimce, a guess can be made on the probable form of the

equation which may express it. In this connection, therefore,

it is of the greatest assistance to be familiar with the shapes of

the more common forms of curves, by plotting and studying

various forms of ecjuations y=f{x).
By changing the scale in which observations are plotted

the apparent shape of the curve may be modified, and it is

therefore desirable in plotting to use such a scale that the

average slope of the cuyyq is about 45 deg. A much greater or

much lesser slope should be avoided, since it does not show the

character of the curve as well.

B. Non-Periodic Curves.

144. The most common non-periodic curves are the potential

series, the parabolic and hyperbolic curves, and the exponential

and logarithmic curves.

The Potential Series.

Theoretically, any set of observations can be represented

exactly by a potential series of any one of the following forms:

y= ao + aix+a2.z^+asx^ + . .
;

. . (1)

y = aix + a2x'~+aix^+ .;.... (2)

a 1 a2 to
2/
=ao+-+j,+-3 + . .; (3)

^ = 7+.^ + ^^ + -

• • . (4)

if a sufficiently large number of terms are chosen.
For instance, if n corresponding numerical values of x and y

are given, xi, yi; x^, 1/2; ... x„, y,„ they can be represented
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by the series (1), when choosing as many terms as required to

give n constants a :

2/ = ao+aix+a2a:2 + . . .+a„_in"~i. . . . (5)

By substituting the corresponding values Xi, yi] X2, 2/2,

into equation (5), there are obtained n equations, which de-

termine the n constants ao, ai, a2, . . . a„_i.

Usually, however, such representation is irrational, and
therefore meaningless and useless.

Table I.

e

100-''
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as the resultant of a number of large jiosUiA-e and negative

terms. Furthermore, if one of the observations is omitted,

and the potential series calculated from the remaining six

values, a series reaching up to x^ would )x' the result, thus,

y = ao+aix+a2X~ + . . .+a5jfi, .... (8)

16

12-

-8-

-12

-16

-SO
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2. If the successive coefficients a follow a definite law,
indicating a convergent series which represents some other
function, as an exponential, trigonometric, etc.

3. If all the coefficients, a, are very small, with the exception
of a few of them, and only the latter ones thus need to be con-
sidered.

Table II.

X
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The values of column 4 can now be represented by the same

form of equation, namely,

y, = ho^h^x^+h^x^, (12)

in which the constants io, ^2, 63 are calculated by the method

of least squares, as described in paragraph 120 of Chapter IV,

and give

2/1
= 0.031-0.093^2+0.076x3. . . . (13)

Equation (13) added to (11) gives the final approximate

equation of the torque, as,

2/0
= 0.531+2.407x2-0.224x3 (14)

The equation (14) probably is the approximation of a

rational equation, since the first term, 0.531, represents the

bearing friction; the second term, 2.407x2 (which is the largest),

represents the work done by the fan in moving the air, a

resistance proportional to the square of the speed, and the

third term approximates the decrease of the air resistance due

to the churning motion of the air created by the fan.

In general, the potential series is of limited usefulness; it

rarely has a rational meaning and is mainly used, where the

curve approximately follows a simple law, as a straight line,

to represent by small terms the deviation from this simple law,

that is, the secondary effects, etc. Its use, thus, is often

temporary, giving an empirical approximation pending the

derivation of a more rational law.

The Parabolic and the Hyperbolic Curves.

146. One of the most useful classes of curves in engineering

are those represented by the equation,

y= ax^; (15)

or, the more general eciuation,

y-h = a{x-cY (16)

Equation (16) differs from (15) only by the constant terms h

and c; that is, it gives a different location to the coordinate
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center, but the curve shape is the same, so that in discussing

the general shapes, only equation (15) need be considered.

If n is positive, the curves y = ax^ are 'parabolic curves,

passing through the origin and increasing with increasing x.

If n>l, 2/ increases with increasing rapidity, \in<\,y increases

with decreasing rapidity.

If the exponent is negative, the curves j/=aa;~"=— are

hyperbolic curves, starting from y=cc for a:=0, and decreasing

to 2/=0 for a;= oo.

n=l gives the straight line through the origin, n=0 and

n= cx) give, respectively, straight horizontal and vertical lines.

Figs. 61 to 71 give various curve shapes, corresponding to

different values of n.

Parabolic Curves.
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-1 4-
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a^a-
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aap
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In Fig. 72, sixteen different parabolic and hyperbolic curves
are drawn together on the same sheet, for the following values
n= l, 2, 4, 8, Go_; I |, I 0: -1, -2, -4, -8; -i; -J, -j.'

147- Parabolic and hyperbohc curves may easily be recog-

nized by the fact that if x is changed by a constant factor, y also

changes by a constant factor.

Thus, in the curve y^x^, doubling the x increases the y
fourfold; in the curve y = x^-5^, doubling the x increases the y
threefold, etc.; that is, if in a curve,

fil^)
-jy-y= constant, for constant g, . . (17)

the curve is a parabolic or hyperbolic curve, y= ax^, and

fiqx) a{qxy

If q is nearly 1, that is, the x is changed onjy by a small

value, substituting g'= l+s, where s is a small quantity, from
equation (18),

hence,

fix-Vsx) ^, .

f{x+sx)-f(x)

fix)
= ns; (19)

that is, changing x by a small percentage s, y changes oy a pro-

portional small percentage ns.

Thus, parabolic and hyperbolic curves can be recognized by

a small percentage change of x, giving a proportional small

percentage change of y, and the proportionahty factor is the

exponent n; or, they can be recognized by doubling x and

seeing whether y hereby changes by a constant factor.

As illustration are shown in Fig. 73 the parabohc curves,

which, for a doubling of x, increase y: 2, 3, 4, 5, 6, and 8 fold.

Unfortunately, this convenient way of recognizing parabolic

and hyperbolic curves applies only if the curve passes through

the origin, that is, has no constant term. If constant terms

exist, as in equation (16), not x and y, but (x-c) and (y-b)

follow the law of proportionate increases, and the recognition



224 ENGINEERING MATHEMATICS.

becomes more difficult; that is, various values of c and of h

are to be tried to find one which gives the proportionality.

W

Fig. 72. Parabolic and Hyperbolic Curves. y= xn.

148. Taking the logarithm of equation (15) gives

log 2/ = log ci+nlogx; . . . . (20)
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that is, a straight line; hence, a parabolic or hyperbolic curve can

be recognized by plotting the logarithm of y against the loga-

rithm of X. If this gives a straight line, the curve is parabolic

or hyperbolic, and the slope of the logarithmic curve, tan d=n,
is the exponent.
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constants. This fact makes it all the more desirable to get

from the physical nature of the problem some idea on the

existence and the value of the constant terms.

Differentiating equation (20) gives

:

dii dx

y X

that is, in a parabolic or hyperbohc curve, the percentual

change, or variation of y, is n times the percentual change,

or variation of x, if n is the exponent.

Herefrom follows:

dy

y

dx

that is, in a paraboUc or hyperbolic curve, the ratio of variation,

dy

ym=——, is a constant, and equals the exponent n.
dx

X

Or, inversely:

If in an empirical curve the ratio of variation is constant

the curve is—within the range, in which the ratio of variation

is constant—a parabolic or hyperbolic curve, which has as

exponent the ratio of variation.

In the range, however, in which the ratio of variation is

not constant, it is not the exponent, and while the empirical

curve might be expressed as a parabolic or hyperbolic curve
with changing exponent (or changing coefhcient), in this case

the exponent may be very different from the ratio of varia-

tion, and the change of exponent frequently is very much
smaller than the change of the ratio of variation.

This ratio of variation and exponent of the parabolic or

hyperbolic approximation of an empirical curve must not be
mistaken for each other, as has occasionally been done in

reducing hysteresis curves, or radiation curves. They coincide
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only in that range, in which exponent n and coefficient a of

the equation y = ax^ are perfectly constant. If this is not

the case, then equation (20) differentiated gives:

dy da ^ , n— = hlogx an-i—ax,
y a X

and the ratio of variation thus is

:

dy

y X da ^ dn
m=—— = n-\ \-x logx —

;

dx a X X

X

that is, the ratio of variation m differs from the exponent n.

Exponential and Logarithmic Curves.

149. A function, which is very frequently met in electrical

engineering, and in engineering and physics in general, is the

exponential function,

J/=a«"^; (21)

which may be written in the more general form,

j/-6 = a£»(^-'^^ (22)

Usually, it appears with negative exponent, that is, in the

form,

?/= a£-"^ (23)

Fig. 74 shows the curve given hy the exponential function

(23) for a= 1 ; n = 1 ; that is,

y=e-^, .... . . (24)

as seen, with increasing positive x, y decreases to at x= + 00,

and with increasing negative x, y mcreases to 00 at a; = — 00.
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The curve, ?/=£+^, has the same shape, except that the

positive and the negative side (right and left) arc interchanged.

Inverted these equations (21) to (24) may also be written

thus,

nx = log-;

n{x—c) = \og-

1
ynx= —log—;

x==-hgy;

that is, as logarithmic curves.

-iJ.O -1.6 -1.3 -0.8 -0,4 0.4 0.8 1.2

Fig. 74. Exponential Function. y = e-x.

. (25)

\1
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the curve is an exponential function, y—az^^, and the following

equation may be written

:

f(x + q) a£"(^+g)

f{x) ^ ae"^
B^

.

(27)

Hereby the exponential function can easily be recognized,

and distinguished from the parabolic curve ; in the former a

constant term, in the latter a constant factor of x causes a

change of y by a constant factor.

As result hereof, the exponential curve with negative

exponent vanishes, that is, becomes negligibly small, with far

greater rapidity than the hyperbolic curve, and the exponential

V
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the exponential functions, and a convenient method of recog-

nizing them.

However, both of these characteristics apply only if x and y

contain no constant terms. With a single exponential function,

only the constant term of y needs consideration, as the constant

term of x may be eliminated. Equation (22) may be written

thus:

2/-& = a£"^^-'^>

= a£'

(28)

where A=o£~'^ is a constant.

An exponential function which contains a constant term b

would not give a straight line when plotting log y against x.

\
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but would, give a curve. In this case then log (y—b) would be

plotted against x for various vahies of b, and by interpolation

that value of b found which makes the logarithmic curve a

straight line.

I5I. While the exponential function, when appearing singly,

is easily recognized, this becomes more dif&cult with com-
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Fig. 76 gives the following combinations of e"^ ajid £-2i.

(1) 2/= £--^+0.5^-2^;

(2) 2/=£-'+0.2£-2^;

(3) 2/=^-^;

(4) j/=£-^-0.2£-2-^;

(5) 2/=£-^-0.5e-2^

(6) i/=£-^-0.Se-2^

(7) y=e-- -2x-

(8) 2/=£-^-1.5£- -2 a-
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Fig. 77 gives the following combination of £-^ and £-1°=^:

(1) ?/=£-^+0.5£-io^;

(2) y=e-^;

(3) 2/=£-"-O.U-io^;

(4) 7/=j-^_o.5£-io^;

(5) 2/=s-^-j-10r.

(6) y=j-:^_i.5e-io^

Fig. 78 gives the hyperbolic functions as combinations of
e+^and e~^ thus,

i/= cosh x= §(£+=^ + £~^);

2/
= sinh x= J(£+^— £-^).

C. Evaluation of Empirical Curves.

152. In attempting to solve the problem of finding a mathe-
matical equation, y=f{x), for a series of observations or tests,

the corresponding values of x and y are first tabulated and
plotted as a curve.

From the nature of the physical problem, which is repre-

sented by the numerical values, there are derived as many
data as possible concerning the nature of the curve and of the

function which represents it, especially at the zero values and

the values at infinity. Frequently hereby the existence or

absence of constant terms in the equation is indicated.

The log X and log y are tabulated and curves plotted between

X, y, log .T, log y, and seen, whether some of these curves is a

straight line and thereby indicates the exponential function, or

the paraboUc or hyperbolic function.

If cross-section paper is available, having both coordinates

divided in logarithmic scale, and also cross-section paper having

one coordinate divided in logarithmic, the other in common
scale, X and y can be directly plotted on these two forms of

logarithmic cross-s ction paper. Usually not much is saved

thereby, as for the n- merical calculation of the constants the

logarithms still have to be tabulated.
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If neither of the four curves: x, xj; x,\ogy; hgx,y-, logx,

log y is a straight line, and from the physical condition the

absence of a constant term is assured, the function is neither

an exponential nor a paraboUc or hyperbolic. If a constant

term is probable or possible, curves are plotted between x,

y—b, logx, log (y—b) for various values of b, and if hereby

one of the curves straightens out, then, by interpolation,

that value of 6 is found, which makes one of the curves a straight

line, and thereby gives the curve law. A convenient way of

doing this is: if the curve with log y (curve 0) is curved by angle

tto (tto being for instance the angle between the tangents at the

two end points of the curve, or the difference of the slopes at the

two end points), use a value b^, and plot the curve with log

iy—bi) (curve 1), and observe its curvature a^. Then inter-

polate a value b^, between b^ and 0, in proportion to the curva-

tures «! and ckq, and plot curve with log iy— bi) (curve 2), and

again interpolate a value 63 between 62 and either b^ or 0, which-

ever curve is nearer in slope to curve 2, continue until either the

curve with log {y— b) becomes a straight line, or an S curve and
in this latter case shows that the empirical curve cannot be

represented in this manner.

In this work, logarithmic paper is very useful, as it permits

plotting the curves without first looking up the logarithms, the

latter being done only when the last approximation of b is

found. In the same manner, if a constant term is suspected in

the X, the value ix—c) is used and curves plotted for various

values of c. Frequently the existence and the character of a

constant term is indicated by the shape of the curve; for

instance, if one of the curves plotted between x, y, log x, log y
approaches straightness for high, or for low values of the ab-
scissas, but curves considerably at the other end, a constant
term may be suspected, which becomes less appreciable at one
end of the range. For instance, the effect of the constant c in

{x—c) decreases with increase of x.

Sometimes one of the curves may be a straight line at one

end, but curve at the other end. This may indicate the presence

of a term, which vanishes for a part of the observations. In
this case only the observations of the range which gives a
straight line are used for deriving the curve law, the curve
calculated therefrom, and then the difference between the
calculated curve and the observations further investigated.
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Such a deviation of the curve from a straight line may also

indicate a change of the curve law, by the appearance of

secondary phenomena, as magnetic saturation, and in this case,

an equation may exist only for that part of the curve where the

secondary phenomena are not yet appreciable. The same
equation may then be apphed to the remaining part of the curve,

by assuming one of the constants, as a coefficient, or an exponent,

to change. Or a second equation may be derived for this part

of the curve and one part of the curve represented by one, the

other by another equation. The two equations may then over-

lap, and at some point the curve represented equally well by
either equation, or the ranges of application of the two equa^

tions may be separated by a transition range, in which neither

applies exactly.

If neither the exponential functions nor the parabolic and
hj'perbolic curves satisfactorily represent the observ'ations,

X
further trials may be made by calculating and tabulating —

V X 1J

and —, and plotting curves between x, y, -, -. Also expressions
X y X

as x^+by^, and {x—ay+b{y—c)^, etc., may be studied.

Theoretical reasoning based on the nature of the phenomenon
represented by the numerical data frequently gives an indi-

cation of the form of the equation, which is to be expected,

and inversely, after a mathematical equation has been derived

a trial may be made to relate the equation to known laws and
thereby reduce it to a rational equation.

In general, the resolution of empirical data into a mathe-

matical expression largely depends on trial, directed by judg-

ment based on the shape of the curve and on a knowledge of

the curve shapes of various functions, and only general rules

can thus be given.

A number of examples may illustrate the general methods of

reduction of empirical data into mathematical functions.

153. Example 1. In a 118-volt tungsten filament incan-

descent lamp, corresponding values of the terminal voltage e

and the current i are observed, that is, the so-called " volt-

ampere characteristic " is taken, and therefrom an equation for

the volt-ampere characteristic is to be found.

The corresponding values of e and i are tabulated in the

first two columns of Table III and plotted as curve I in
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.

Fig. 79. In the thii-d and fourth column of Table III are

given log e and log i. In Fig. 79 then are plotted log e, i, as

curve II; e, log i, as curve III; log e, log i, as curve IV.

As seen from Fig. 79, curve IV is a straight line, that is

0.2 0.t 0.6 0.8 1.0 1.2 lA 1.6 1.8 2:0 2.2 i.i^log 6

2
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purposes, are derived by the so-called " 2A method," which,

with proper tabular arrangement of the nimierical values, gives

high accuracy with a minimum of work.

Table III.

VOLT-AMPERE CHARACTERISTIC OF 118-VOLT TUNGSTEN LAMP.

e
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subtracted from the sum of all the \ogi. The difference A

then equals HA, and, divided by 14, gives

A = log a = 8.211;

hence, a = 0.01625, and the volt-ampere characteristic of this

timgsten lamp thus follows the equation,

log 1 = 8.211 +0.6 log e;

i = 0.016256° -6.

From e and i can be derived the power input p= d, and the

resistance r--

i

p=0.01625ei-6;

,0-4
e

r
0.01625'

and, eliminating e from these two expressions, gives

p= 0.01625V = 11.35r4xl0-i'',

that is, the power input varies with the fourth power of the

resistance.

Assuming the resistance r as proportional to the absolute

temperature T, and considering that the power input into the

lamp is radiated from it, that is, is the power of radiation P^,

the equation between p and r also is the equation between P^

and T, thus,

P, = fcr4.

that is, the radiation is proportional to the fourth power of the

absolute temperature. This is the law of black body radiation,

and above equation of the volt-ampere characteristic of the

tungsten lamp thus appears as a conclusion from the radiation

law, that is, as a rational equation.

154. Example 2. In a magnetite arc, at constant arc length,

the voltage consumed by the arc, e, is observed for different

\-alues of current i. To find the equation of the volt-ampere

characteristic of the magnetite arc

:
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Table IV.

VOLT-AMPERE CHARACTERISTIC OF MAGNETITE ARC.

e
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Proceeding in Table IV in the same manner with logi

and log (e-30) as was done in Table III with log e and log x,

gives

n=-0.5; yi = loga = 1.956; and a = 90.4;

Fig. 80. Investigation of Volt-ampere Characteristic of Magnetite Arc.

hence

log (e-30) = 1.956-0.5 log i;

e-30 = 90.4i-o-5;

e =30+^i
Vi
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which is the equation of the magnetite arc volt-ampere charac-

teristic.

155. Example 3. The change of current resulting from a

change of the conditions of an electric circuit containing resist-

ance, inductance, and capacity is recorded by oscillograph and

gives the curve reproduced as I in Fig. 81. From this curve

\



242 ENGINEERING MATHEMATICS.

Table V.

TRANSIENT CURRENT CHARACTERISTICS.

(
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it is necessary to multiply Jt by log £ = 0.4343 before dividing it

into log i to derive the value of n. This gives n= 1.07.

Taking now the sum of all the five values of t, multiplying it

by log e, and subtracting this from the sum of all the five values

of log i, gives 5A = 3.467; hence

A = log a = 0.693,

a = 4.94,

and log ii = 0.693 -1.07t log s;

ii = 4.94£-i°^

The current ii is calculated and given in the fifth column

of Table V, and the difference i' = d = i\—i in the sixth

column. As seen, from t= 1.2 upward, ij agrees with the

observations. Below t= 1.2, however, a difference i' remains,

and becomes considerable for low values of t. This difference

apparently is due to a second term, which vanishes for higher

values of t. Thus, the same method is now applied to the

term i'; column 8 gives hgi', and in curve III of Fig. 81 is

plotted logi' against t. This curve is seen to be a straight

line, that is, i' is an exponential function of t.

Resolving i' in the same manner, by using the first four

points of the curve, from i = to t = OA, gives

log i2=0.460-3.84« logs;

and, therefore,

i=ti-i2= 4.94£-i"^'-2.85£-^-8*«

is the equation representing the current change.

The numerical values are calculated from this equation

and given under ic in Table V, the amount of their difference

from the observed values are given in the last column of this

table.

A still greater approximation may be secured by adding

the calculated values of t2 to the observed values of i in the

last five observations, and from the result derive a second

approximation of ii, and by means of this a second approxi-

mation of t2.
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156. As further example may be considered the resolution

of the core loss curve of an electric motor, which had been

expressed irrationally by a potential series in paragraph 144

and Table I.

Table VI.

CORE LOSS CURVE.

e

Volts.
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sponds to such a low value of Pi as to lower the accuracy of

the observation. Averaging then the four middle values,

gives J =7.282; hence,

log Pi= 7.282 + 1.6 log e.

Pi =1.914ei-^' in watts.

"
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157. As a further example may be considered the resolution

of the magnetic characteristic, plotted as curve I in Fig. 83,

and given in the first two columns of Table VII as H and B.

Table VII.

MAGNETIC CHARACTERISTIC.

H
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Excluding the three lowest values of the observations, as

not lying on the straight line, from the remaining eight values,

as calculated in Table VII, the following relation is derived,

B
=0.211 +0.0507 i?,

1 n
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TJ

The diiference between the observed values of — , and the

value given by above equation, which is appreciable up to

H=Q, could now be further investigated, and would be found

to approximately follow an exponential law.

As a final example may be considered the investigation of

a hysteresis curve of silicon steel, of which the numerical values

are given in columns 1 and 2 of Table VIII.

The first column gives the magnetic density B, in fines of

magnetic force per cm.^; the second column the hysteresis loss

iv, in ergs per cycle per kg. (specific density 7.5). The third

column gives log B, and the fourth column log iv.

Of the four curves between B, w, log B, log lu, only the

curve relating log iv to log B approximates a straight line, and

is given in the upper jjart of Fig. 84. This curve is not a

straight line throughout its entire length, but only two sections

of it are straight, from 5 = 50 to S =400, and from B = 1600 to

5=8000, but the curve bends between 500 and 1200, and above

8000.

Thus two empirical formulas, of the form; w = aB'^, are

calculated, in the usual mamier, in Table ^TII. The one

applies for lower densities, the other for medium densities :

Low density: £^400: w = 0.0034l52-ii

Medium density: 1600^5^8000: iv = 010mB^-^'^

In Table VIII the values for the lower range are denoted

by the index 1, for the higher range by the index 2.

Neither of these empirical formulas appfies strictly to the

range: 400<B<1G00, and to the range 5 > 8000. They may
be applied within these ranges, by assuming either the coefficient

a as varying, or the exponent n as varying, that is, applying a

correction factor to a, or to n.

Thus, in the range: 400 <5< 1600, the loss may be repre-

sented by:

(1) An extension of the low density formula;

u) = ai52-" or w = 0.003415»i.

(2) An extension of the medium density formula

w = a'>B^-^ or w= 0.10965"2.
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by giving tables or curves of a respectively n. Such tables are

most conveniently given as a percentage correction.
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Table VIII.

HYSTERESIS OF SILICON STEEL.
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to the ranges where the logarithmic curve is not a straight

line, are given in Table VIII as

Jai Ja2 Ani An2

«

they are calculated as follows

:

Assuming n as constant, =no, then a is not constant, =ao,

and the ratio :

Aa a

a Go

is the correction factor, and it is:

w=aB'",

hence

:

log w = log a + no log B
and

log a= log w -Wo log B;

thus:

and

log — =log a —log ao=log w -log ao —no log B,
ao

Aa a
l=A''log w—log ao—wologB— 1. . (1)

a ao

Assuming a as constant, =ao, then n is not constant, =no,

and the ratio.

An n

n no

is the correction factor, and it is

iu = oo5";

hence

log w=\ogao+n log B,
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and

thus

and

n log S=log w — log ao]

n n log B log w —log ao

no no log B no log B '

^w_ri log w -log gp -Tip log B
n wp wplogS

by these equations (1) and (2) the correction factors in columns

5 to 8 of Table VIII are calculated, by using for ap and no the

values of the lower range curve, in columns 5 and 7, and the

values of the medium range curve, in columns 6 and 8.

Thus, for instance, at B = 1000, the loss can be calculated

by the equation,

w=aiB"\

by applying to ai the correction factor:

—15.7 per cent at constant: ni=2.11, that is,

ai =0.00341(1 -0.157) =0.00287;

or by applying to Wi the correction factor:

—1.14 per cent at constant: ai =0.00341, that is,

ni =2.11(1 -0.0114) =2.086.

Or the loss can be calculated by the equation,

^y = a2^"^

by applying to 02 the correction factor:

—11.1 per cent at constant: 712 = 1.60, that is,

02=0.1096(1 -0.111) =0.0974;
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or by applying to ria the correction factor:

—1.06 per cent at constant: 02=0.1096, that is,

^2 = 1.60(1 -0.0106) =1.583;

and the loss may thus be given by either of the four ex-

pressions :

w = 0.0028752" = 0.00341B2°»« = 0.09745i''=0.10965i-^^^

As seen, the variation of the exponent n, required to extend

the use of the parabolic equation into the range for which it

does not strictly apply any more, is much less than the varia-

tion of the coefficient a, and a far greater accuracy is thus

secured by considering the exponent n as constant—1.6 for

medium and high values of B— and making the correction in

coefhcient a, outside of the range where the 1.6th power law

holds rigidly.

In the last column of Table VIII is recorded the ratio of

. . ^ log w
vanation, m= ~-, , as the averages each of two successive

J log B
values. As seen, m agrees with the exponent n within the

two ranges, where it is constant, but differs from it outside

of these ranges. For instance, if B changes from 1600 down-

ward, the ratio of variation m increases, while the exponent

n slightly decreases.

In Fig. 84 are shown the percentage correction of the

coefficients ai and a2, and also the two exponents Ui and ri2,

together with the ratio of variation in.

The ratio of variation ??i is very useful in calculating the

change of loss resulting from a small change of magnetic density,

as the percentual change of loss w is m times the percentual

(small) change of density.

As further example, the reader may reduce to empirical

equations the series of observations given in Table IX. This

table gives:

A. The candle-power L, as function of the power input p,

of a 40-watt tungsten filament incandescent lamp.

B. The loss of power by corona (discharge into the air), p,

in kw., in 1.895 km. of conductor, as function of the voltage

e (in kv.) between conductor and return conductor, for the
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Table IX.

-4. Luminosity characterigtic of 40~watt tungsten incandescent lamp.
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distance of 310 cm. between the conductors, and the conductor

diameter of 1 . 18 cm.

C. The relation between steam pressure P, in kg. per cm.',

and the steam volume V, in m.^, at the boiUng-point, per kg.

of dry steam.

D. Periodic Curves.

is8. All periodic functions of time or distance can be ex-

pressed by a trigonometric series, or Fourier series, as has been
discussed in Chapter III, and the methods of resolution, and
the arrangements to carry out the work rapidly, have also

been discussed in Chapter III.

The resolution of a periodic function thus consists in the

determination of the higher harmonics, which are superimposed

on the fundamental wave.

As periodic functions are of the greatest importance in elec-

trical engineering, in the theory of alternating current pheno-

mena, a familiarity with the wave shapes produced by the dif-

ferent harmonics is desirable. This familiarity should be

sufficient to enable one in most cases to judge immediately from

the shape of the wave, as given by oscillograph, etc., on the har-

monics which are present or at least which predominate.

The effect of the lower harmonics, such as the third, fifth,

etc., (or the second, fourth, etc., where present), is to change

the shape of the wave, make it differ from sine shape, giving

such featm-es as fiat top wave, peaked wave, saw-tooth, double

and triple peaked, steep zero, flat zero, etc., while the high

harmonics do not change the shape of the wave so much, as

superimpose ripples on it.

Odd Lower Harmonics.

159. To elucidate the variation in shape of the alternating

waves caused by various lower harmonics, superimposed upon

the fundamental at different relative positions, that is, different

phase angles, in Figs. 85 and 86 are shown the effect of a third

harmonic, of 10 per cent and 30 per cent of the fundamental,

respectively. A gives the fundamental, and C D E F G the

waves resulting by the superposition of the triple harmonic

in phase with the fundamental (C), under 45 deg. lead (D), 90

deg. lead or quadrature (E), 135 deg. lead (F) and opposition
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{G) . (The phase differences here are referred to the maximum
of the fundamental: with waves of different frequencies, the

phase differences naturahy change from point to point, and in

speaking of pliase difference, the reference point on the wave

IW Third Harmonic

Effect of Small Third Harmonic.

must thus be given. For instance, in C the third harmonic is

in phase with the fundamental at the maximum point of the
latter, but in opposition at its zero point.)

The equations of these waves are:

A:
J/ =100 cos^

C: ?y=100cos/?+ 10cos3/?
E: 2/ = 100 cos /? + 10 cos (3/?+ 90 deg.)

G: ?/ = 100 cos /?+ 10 cos (3/?+ 180 deg.)

= 100cos/?-10cos3/?
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C: 2/ =100 COS /?+ 30 cos 3/?

D: 2/ =100 cos /?+ 30 cos (3/? +45 deg.)

E: 2/ =100 cos /?+30 cos (3/3+ 90 deg.)

i^; 2/ =100 cos /?+ 30 cos (3/?+ 135 deg.)

G; 2/ = 100 cos ^+ 30 cos (3/?+ 180 deg.)

=100 cos /3-30 cos 3/?

257

30 !< Third Harmonic

Fig. 86. Effect of Large Third Harmonic.

In all these waves, one cycle of the triple harmonic is given in

dotted lines, to indicate its relative position and intensity, and

the maxima of the harmonics are indicated by the arrows.
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As seen, with the harmonic in jjhase or in opposition (C and

G), tlie waves are symmetrical; with the harmonic out of phase,

the waves are unsymmetrical, of the so-called "saw tooth"

type, and the saw tooth is on the rising side of the wave with a

lagging, on the decreasing side with a leading triple harmonic.

Third Harmonic Flat Zero & Reversal

Fig. 87. Flat Zero and Reversal by Third Harmonic.

The latter arc shown in D, E, F; the former have the same shape
but reversed, that is, rising and decreasing side of the wave
interchanged, and therefore are not shown.

The triple harmonic in phase with the fundamental, C, gives
a peaked wave with flat zero, and the peak and the flat zero
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become the more pronounced, the higher the third harmonic,
until finally the flat zero becomes a double reversal of volt-

age, as shown in Fig. 87d.

Fig. 87 shows the effect of a gradual increase of an in-phase
triple harmonic: a is the fundamental, b contains a 10 per

5^ Pifth Harmonic

Fig. 88. Effect of Small Fifth Harmonic.

cent, c a 38.5 per cent and d a, 50 per cent triple harmonic, as

given by the equations:

a: J/
=100 cos /?

b: 2/ = 100 cos/?+ 10cos3^

c: 2/=100cos/?+ 38.5cos3/?

d: 2/
= 100cos/?+ 50cos3/?
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At c, the wave is entirely horizontal at the zero, that is, remains

zero for an appreciable time at the reversal. In this figure, the

three harmonics are showm separately in dotted lines, in their

relative intensities.

A triple harmonic in opposition to the fundamental (Tigs.

85 and 86G) is characterized by a flat top and steep zero, and

20^ Pifth Harmonic

Fig. 89. Effect of Large Fifth Harmonic.

with the increase of the third harmonic, the flat top develops

into a double peak (Fig. 86G), while steepness at the point of

reversal increases.

The simple saw tooth, produced by a triple harmonic in

quadratm-e with the fundamental is shown in Fig. 85E. With
increasing triple harmonic, the hump of the saw tooth becomes
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more pronounced and changes to a second and lower peak, as

shown in Fig. 86. This figure gives the variation of the saw-

tooth shape from 45 to 45 deg. phase difference : With the phase

of the third harmonic shifting from in-phase to 45 deg. lead, the

flat zero, by moving up on the wave, has formed a hump or saw
tooth low down on the decreasing (and with 45 deg. lag on the

increasing) side of the wave. At 90 deg. lead, the saw tooth has

moved up to the middle of the down branch of the wave, and
with 135 deg. lead, has moved still further up, forming practi-

cally a second, lower peak. With 180 deg. lead—or opposition

of phase—the hump, of the saw tooth has moved up to the

top, and formed the second peak—or the flat top, with a lower

third harmonic, as in Fig. 85G.

Figs. 88 and 89 give the effect of the fifth harmonic, super-

imposed on the fundamental, of 5 per cent in Fig. 88, and of 20

per cent in Fig. 89. Again A gives the fundamental sine wave,

C the effect of the fifth harmonic in opposition with the funda-

mental, E in quadratiu-e (lagging) and G in phase. One cycle

of the fifth harmonic is shown in dotted lines, and the maxima
of the harmonics indicated by the arrows.

The equations of these waves are given by:

A: 2/ =100 cos /9

C: 2/ =100 cos/?-5 cos 5/?

E: y=100 cos ^5-5 cos (5/3 -h 90 deg.)

G: 2/=100cos/?-t-5 cos 5^9

A: y=100 cos /?

C: 2/ =100 cos/? -20 cos 5,3

E: 2/ =100 cos /?-20 cos (5/?-h90 deg.)

G: 2/ =100 cos^-f-20cos5/?

In the distortion caused by the fifth harmonic (in opposi-

tion to the fundamental) flat top (Fig. 88C) or double peak (at

higher values of the harmonic. Fig. 89C), is accompanied by flat

zero (or, at very high values of the fifth harmonic, double rever-

sal at the zero, similar as in Fig. S7d), while in the distortion

by the third harmonic it is accompanied by sharp zero.

With the fifth harmonic in phase with the fundamental, a

peaked wave results with steep zero. Fig. 88^, and the transi-
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tion from the steep zero to the peak, with larger values of the

fifth harmonic, then develops into two additional peaks, thus

giving a treble peaked wave. Fig. 88(7, with steep zero. The

beginning of treble peakedness is noticeable already in Fig.

88G, with only 5 per cent of fifth harmonic.

10^ Third Harmonic &
5 ^ Fifth Harmonic

Pig. 90. Third and Fifth Harmonic.

With the seventh harmonic, the treble-peaked wave would
be accompanied by flat zero, and a quadruple-peaked wave
would give steep zero (Fig. 95).

The fifth harmonic out of phase with the fundamental again
gives saw-tooth waves. Figs. 88 and 89£', but the saw tooth
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produced by the fifth harmonic contains two humps, that is,

is double, with one hump low down, and the other high up on
the curve, thereby giving the transition from the symmetrical
double peak C to the symmetrical treble peak G.

10 S« Third Harmonic &
5 ^ Fifth Harmonic

Fig. 91. Third and Fifth Harmonic.

i6o. Characteristic of the effect of the third harmonic

thus is:

Coincidence of peak with flat zero or double reversal, of steep

zero with flat top or double peak, and single hump or saw tooth,
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While characteristic of the effect of the fifth harmonic is:

Coincidence of peak with steep zero, or treble peak, of flat

top or double peak with flat zero or double reversal, and double

saw-tooth.

10^ Third Harmonic &
5 ^ Fifth Harmonic

Fig. 92. Third and Fifth Harmonic.

By thus combining third and fifth harmonics of proper

values, they can be made to neutralize each other's effect in any

one of their characteristics, but then accentuate each other in

the other characteristic.

Thus peak and flat zero of the triple harmonic combined with

peak and steep zero of the fifth harmonic, gives a peaked wave
with normal sinusoidal appearance at the zero value; combin-
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ing the flat tops or double peaks of both harmonics, the flat

zero of the one neutrahzes the steep zero of the other, and we
get a flat top or double peak with normal zero. Or by com-
bining the peak of the third harmonic with the flat top of the
fifth we get a wave with normal top, but steep zero, and we get a
wave with normal top, but flat zero or double reversal, by com-
bining the triple harmonic peak with the fifth harmonic flat top.

Thus any of the characteristics can be produced separately

by the combination of the third and fifth harmonic.
By combining third and fifth harmonics out of phase with

fundamental—such as give single or double saw-tooth shapes, the

various other saw-tooth shapes are produced, and still further

saw-tooth shapes, by combining a symmetrical (in phase or in

opposition) third harmonic with an out of phase fifth, or

inversely.

These shapes produced by the superposition, under different

phase angles, of fifth and third harmonics on the fundamental,

and their gradual change into each other by the shifting in

phase of one of the harmonics, are shown in Figs. 90, 91 and 92

for a third harmonic of 10 per cent, and a fifth harmonic of 5

per cent of the fundamental.

In Fig. 90 the third harmonic is in phase, in Fig. 91 in quadra-

ture lagging, and in Fig. 92 in opposition with the fundamental.

A gives the fundamental, B the fundamental with the third har-

monic only, and C, D, E, F, the waves resulting from the super-

position of the fifth harmonic on the combination of funda-

mental and third harmonic, given as B. In C the fifth harmonic

is in opposition, in D in quadrature lagging, in E in phase, and

in F in quadrature leading.

We see here round tops with flat zero (Fig. 90C), nearly

triangular waves (Fig. 90i?), approximate half circles (Fig.

92£'), sine waves with a dent at the top (Fig. 92C), and vari-

ous different forms of saw tooth.

The equations of these waves are

:

A: 1/ =100 cos/?

B: 2/=100cos/?-f-10cos3^

C: 2/ =100 cos ^-1-10 cos 3/?-5 cos 5/?

D: 2/ =100 cos /? + 10 cos 3/?-5 cos (5/?-t-90 deg.)

E: 2/ =100 cos /? + 10 cos 3,-9+ 5 cos 5,5
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A. 2/ =100 COS/?

B: 2/=100 cos ^-10 cos (;]:9 + !)() (Ic^.)

C:
J/ =100 cos /?-10 cos (;>,? + 90 det;-.)-.") cos 5/?

D: y=100 cos ^-10 cos (3/?+ 90 (lcg.)-5 cos (5/9+ 90 deg.)

E: 2/ =100 cos /9-10 cos (3/9+ 90 deg.) +5 cos 5/9

F: 2/ =100 cos /9-10 cos (3/9+ 90 deg.) + 5 cos (5/9+ 90 deg.)

A: 2/ =100 cos /9

B; 2/=100cos/9-10cos3/?

C- y=100 cos /9-10 cos 3/9-5 cos 5/9

£>.• 2/ = 100 cos /9-10 cos 3/9-5 cos (5/9+ 90 deg.)

E: 2/ =100 cos /9-10 cos 3-9+ 5 cos 5/9

Even Har.moxics.

i6i. Characteristic of the wave-shape distortioia of even har-

monics is that the wave is not a symmetrical wave, but the

two half waves have different shapes, and the characteristics

of the negative half wave are opposite to those of the positive.

This is to be expected, as an even harmonic, which is in phase

with the positive half wave of the fundamental, is in opposition

with the negative; when leading in the positive, it is lagging

in the negative, and inversely.

Fig. 93 shows the effect of a second harmonic of 30 per cent

of the fundamental A, superimposed in quadratui-e, 60 deg.

phase displacement, 30 deg. displacement and in phase, in

B, C, D and E respectively.

The equations of these waves are:

A: y =100 cos /9 and y' =30 cos (2-9-90)

B: 2/ =100 cos /9+ 30 cos (2/9-90)

C: 2/ =100 cos /9 + 30 cos (2/9-60)

D: 2/ =100 cos /9+ 30 cos (2./9-30)

E: 2/ =100 cos /9+ 30 cos 2;9

Quadrature combination (Fig. 935) gives a wave where the

rising side is flat, the decreasing side steep, and inversely with
the other half wave. C and D give a peaked wave for the one, a
saw tooth for the other half wave, and E, coincidence of phase
of fundamental and second harmonic, gives a combination of

one peaked half wave with one flat-top or double-peaked wave.
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Characteristic of C, D and E is, that the two half waves are

of unequal length.

In general, even harmonics, if of appreciable value are easily

recognized by the difference in shape, of the two half waves.

Fig. 93. Effect of Second Harmonic.

By the combination of the second harmonic with the third

harmonic (or the fifth), some of the features can be intensified,

others suppressed.

An illustration hereof is shown in Fig. 94 in the production
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of a wave, in which the one half wave is a short high peak, the

other a long flat top, by the superposition of a second harmonic

of 4(3.5 per cent, and a third harmonic of 10 per cent both in

phase with the fundamental.

A gives the fundamental sine wave, B and C the second and

third harmonic, D the combination of fundamental and second

Second & Third Harmonic

FiQ. 94. Peak and Flat Top by Second and Third Harmonic.

harmonic, giving a double peaked negative half wave, and E the

addition of the third harmonic to the wave D. Thereby the

double peak of the negative half wave is flatted to a long flat

top, and the peak of the positive half wave intensified and
shortened, so that the positive maximum is about two and one-
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half times the negative maximum, and the negative half wave
nearly 75 per cent longer than the positive half wave.

The equations of these waves are given by:

A: 2/ =100 cos/?

B: y =46.5 cos 2/?

C: t/=10cos3/?

D: 2/ =100 cos /?+46.5 cos 2/?

E: 2/ =100 cos /?+46.5 cos 2/?+ 10 cos 3/?

High Harmonics.

162. Comparing the effect of the fifth harmonic, Figs. 88 and

89, with that of the third harmonic, Figs. 85 and 86, it is seen

Fig. 95. Effect of Seventh Harmonic.

that a fifth harmonic, even if very small, is far easier distin-

guished, that is, merges less into the fundamental than the third

harmonic. Still more this is the case with the seventh har-

monic, as shown in Fig. 95 in phase and in opposition, of 10 per

cent intensity. This is to be expected: sine waves which do not

differ very much in frequency, such as the fundamental and

the second or third harmonic, merge into each other and form a

resultant shape, a distorted wave of characteristic appearance,
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while sine waves of \n-y different frequencies, as the fundamen-

tal and its eleventh harmonic, in Fig. 96, when superimposed,

remain distinct from each other; the general shape of the wave

is the fundamental sine, and the high harmonics appear as rip-

ples upon the fundamental, thus giving what may be called a

corrugated sine wave. By counting the number of ripples per

Fig. 96. Wave in which Eleventh Harmonic Predominates.

compl(>t(^ wave, or i)cr half wave, the order of the harmonic

can then rapidly be determined. For instance, the wave shown

in Fig. 96 contains mainly the eleventh harmonic, as there are

eleven ripples per wave. The wave shown by the oscillogram

Fig. 97 shows the twenty-third harmonic, etc.

Fig. 97. C D 23510. Alternator Wave with Single High Harmonic.

\'er}' frequently high harmonics appear in pairs of nearly the

same freciuency and intensity, as an eleventh and a thirteenth

harmonic, etc. In this case, the ripples in the wave shape show
maxima, where the two hai-monics coincide, and nodes, where
the tw(j harmonics are in opposition. The presence of nodes
makes the counting of the number of ripples per complete wave
more difficult. A convenient method of procedure in this case
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IS, to measure the distance or space between the maxima of one
or a few ripples in the range where they are pronounced, and
count the number of nodes per cycle. For instance, in the
wave, Fig. 98, the space of two ripples is about 60 deg., and two
nodes exist per complete wave. 60 deg. for two ripples, give

Fig. 98. Wave in which Eleventh and Thirteenth Harmonics Predominate.

o 360

"fi(T

"" 12 ripples per complete wave, as the average frequency

of the two existing harmonics, and since these harmonics differ

by 2 (since there are two nodes), their order is the eleventh and
the thirteenth harmonics.

163. This method of determining two similar harmonics, with

Fig. 99. C D 23512. Alternator Wave with Two Very Unequal High
Harmonics.

a little practice, becomes very convenient and useful, and may
frequently be used visually also, in determining the frequency

of hunting of synchronous machines, etc. In the phenomenon
of hunting, frequently two periods are superimposed, a forced

frequency, resulting from speed of generator, etc., and the

natural frequency of the machine. Counting the number of

impulses, /, per minute, and the number of nodes, n, gives the



';>7'? ENGINEERING MATHEMATICS.

two frequencies: /+- undf--; and as one of these frequencies

is the impressed engine frequency, this affords a check.

Where tlie two high harmonics of nearly equal order, as the

eleventh and the thirteenth in Fig. 98, are approximately equal

in intensity, at the nodes the ripples practically disappear,

and between the nodes the ripples give a frequency intermediate

between the two components: Apparently the twelfth harmonic

in Fig. 98. In this case the two constituents are easily deter-

mined: 12-1=11, and 12 + 1 =13.

A\Tiere of the two constituents one is greater than the other

the wave still shows nodes, but the ripples do not entirely disap,

pear at the nodes, but merely decrease, that is, the wave show-

a sine with ripples which increase and decrease along the waves

Fig. 100. CD 23511. Alternator Wave with Two Nearly Equal High
Harmonics.

as shown by the oscillograms 99 and 100. In this case, one of

the two high frequencies is given by counting the total number
of ripples, but it may at first be in doubt, whether the other

component is higher or lower by the number of nodes. The
decision then is made by considering the length of the ripple at

the node : If the length is a maximum at the node, the secondary

harmonic is of higher frequency than the predominating one;

if the length of the ripple at the node is a minimum, the second-

ary frequency is lower than the predominating one. This is

illustrated in Fig. 101. In this figure, A and B represent the

tenth and twelfth harmonic of a wave, respectively; C gives

their superposition with the lower harmonic A predominating,

while B is only of half the intensity of A . D gives the superposi-

tion of A and B at equal intensity, and E gives the super-

position with the higher frequency B predominating. That is,

the respective equations would be

:
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A: y=cos 10/?

B: y=cos 12/?

C: 2/=cos 10/?+ 0.5 cos 12/?

Z>; y=cos 10^ + cos 12/?

£: 2/ =0.5 cos 10^+ cos 12;9

As seen, in C the half wave at the node is abnormally long,

showing the preponderance of the lower frequency, in E abnor-

Superposition of High Harmonics

Fig. 101. Superposition of Two High Harmonics of Various Intensities.

mally short, showing the preponderance of the higher frequency.

In alternating-current and voltage waves, the appearance of

two successive high harmonics is quite frequent. For instance,

if an alternating current generator contains n slots per pole,

this produces in the voltage wave the two harmonics of orders
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2m -1 and 2/i + l. Such is the origm of the harmonics in the

oscillograms Figs. 99 and 100.

The nature of the increase and decrease of the ripples and the

formation of the nodes by the superposition of two adjacent

high harmonics is best seen by combining their expressions trig-

onometrically.

Thus the harmonics:

2/i =cos (2n — 1)/?

and 2/2 =cos (2n + l)/?

combined give the resultant

:

'=2/1 + 2/22/ =2/1 + 2/2

=cos (2re-l)/? + cos (2?i + l)/3

=2 cos ^ cos 2?i/?

that is, give a wave of frequency 2n times the fundamental:

cos 2?i/?, but which is not constant, but varies in intensity

by the factor 2 cos /9.

Not infrequently wave-shape distortions are met, which are

not due to higher harmonics of the fundamental wave, but are

incommensurable therewith. In this case there are two entirely

unrelated frequencies. This, for instance, occurs in the second-

ary circuit of the single-phase induction motor; two sets of

currents, of the frequencies/, and (2/—/J exist (where /is the

primary frequency and/ the frequency of slip). Of this nature,

frequently, is the distortion produced by surges, oscillations,

arcing grounds, etc., in electric circuits; it is a combination of

the natural frequency of the cu'cuit with the impressed fre-

quency. Telephonic currents commonly show such multiple

frequencies, which are not harmonics of each other.



CHAPTER VII.

NUMERICAL CALCULATIONS.

164. Engineering work leads to more or less extensive
numerical calculations, when applying the general theoretical

investigation to the specific cases which are under considera-
tion. Of importance in such engineering calculations are

:

(a) The method of calculation.

(6) The degree of exactness required in the calculation.

(c) The intelligibility of the results.

{d) The reliabihty of the calculation.

a. Method of Calculation.

Before beginning a more extensive calculation, it is desirable

carefully to scrutinize and to investigate the method, to find

the simplest way, since frequently by a suitable method and
system of calculation the work can be reduced to a small frac-

tion of what it would otherwise be, and what appear to be

hopelessly complex calculations may thus be carried out

quickly and expeditiously by a proper arrangement of the

work. Indeed, the most important part of engineering work—and
also of other scientific work—is the determination of the method
of attacking the problem, whatever it may be, whether an

experimental investigation, or a theoretical calculation. It is

very rarely that important problems can be solved by a direct

attack, by brutally forcing a solution, and then only by wasting

a large amount of work unnecessarily. It is by the choice of

a suitable method of attack, that intricate problems are reduced

to simple phenomena, and then easily solved; frequently in

such cases requiring no solution at all, but being obvious when
looked at from the proper viewpoint.

Before attacking a more complicatecl problem experimentally

or theoretically, considerable time and study should thus first be

devoted to the determination of a suitable method of attack.

275
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The next then, in cases where considerable numerical calcu-

lations are required, is the method of calculation. The most

convenient one usually is the arrangement in tabular form.

As example, consider the problem of calculating the regula-

tion of a 60,000-volt transmission hne, of r = 60 ohms resist-

ance, x = 135 ohms inductive reactance, and & = 0.0012 conden-

sive susceptance, for various values of non-inductive, inductive,

and condensive load.

Starting with the complete equations of the long-distance

transmission line, as given in " Theory and Calculation of

Transient Electric Phenomena and Oscillations," Section III,

paragraph 9, and considering that for every one of the various

power-factors, lag, and lead, a sufficient number of values

have to be calculated to give a curve, the amount of work
appears hopelessly large.

However, without loss of engineering exactness, the equa-

tion of the transmission line can be simplified by approxima-

tion, as discussed in Chapter V, paragraph 123, to the form.

^i =^„{l+^}+Z(o{l+^};
(1)

where Eq, Iq are voltage and current, respectively at the step-

down end. El, h at the step-up end of the line; and

Z=r-t-jx=60 + 135/ is the total line impedance;

Y = g-{-jb= +0.0012] is the total shunted line admittance.

Herefrom follow the numerical values

:

ZY ^ ,
(60+1.35])(+0.0012/)

"^
2
~^^

2

= ] -f0.036y-0.0Sl =0.919+0.036/;

ZY
1 +-g- = 1 + 0.012/- 0.027 = 0.973 + 0.012/;
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ZY)
Z\ 1 +~

I

=(60+ 135j)(0.973+0.012j-)

= 58.4+0.72j+131.1j-1.62 = 56.8+131.8y;

ZY
Y\ 1 +-g-

J

= (+0.0012j) (0.973 +0.012J)

= + 0.001168/-0.0000144 = (-0.0144+1.1687)10-3

hence, substituting in (1), the following equations may be

written :

El = (0.919 +0.036/)Eo + (56.8 + 131.8y)/o = A+B;
(2)

7i = (0.919+0.036j)/o - (0.0144 -1.168j)£'olO-3 = C-D.
j

165. Now the work of calculating a series of numerical

values is continued in tabular form, as follows:

1. 100 PER CENT Power-factor.

^0= 60 kv. at step-down end of line.

A = (0.919 +0.036;)Eo= 55.1 +2.2; kv.

Z)= (0.0144- 1.168;)'a 10- »=0.9 -70.1; amp.
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taken, and plotted as curves, which, for the same voltage
ei = 60 at the step-up end, give ii, eo, and cos d, for the same
value io, that is, give the regulation of the line at constant
current output for varying power-factor.

b. Accuracy of Calculation.

166. Not all engineering calculations require the same
degree of accuracy. When calculating the efficiency of a large

alternator it may be of importance to determine whether it is

97.7 or 97.8 per cent, that is, an accuracy within one-tenth

per cent may be required; in other cases, as for instance,

when estimating the voltage which may be produced in an
electric circuit by a line disturbance, it may be sufficient to

—
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(a) Estimation of the magnitude of an effect; that is,

determining approximate numerical values within 25, 50, or

100 per cent. Very frequently such very rough approximation

is sufficient, and is all that can be expected or calculated.

For instance, when investigating the short-circuit current of an

electric generating system, it is of importance to know whether

this current is 3 or 4 times normal current, or whether it is

40 to 50 times normal current, but it is immaterial whether

it is 45 to 46 or 50 times normal. In studying lightning

phenomena, and, in general, abnormal voltages in electric

systems, calculating the discharge capacity of lightning arres-

ters, etc., the magnitude of the quantity is often suflBcient. In

calculating the critical speed of turbine alternators, or the

natural period of oscillation of s3Tichronous machines, the

same applies, since it is of importance only to see that these

speeds are sufficiently remote from the normal operating speed

to give no trouble in operation.

(b) Approximate calculation, requiring an accuracy of one

or a few per cent only; a large part of engineering calcu-

lations fall in this class, especially calculations in the realm of

design. Although, frequently, a higher accuracy could be

reached in the calculation proper, it would be of no value,

since the data on which the calculations are based are sus-

ceptible to variations beyond control, due to variation in the

material, in the mechanical dimensions, etc.

Thus, for instance, the exciting current of induction motors

may vary by several per cent, due to variations of the length

of air gap, so small as to be beyond the limits of constructive

accuracj', and a calculation exact to a fraction of one per cent,

while theoretically possible, thus would be practically useless.

The calculation of the ampere-turns required for the shunt

field excitation, or for the series field of a direct-current

generator needs only moderate exactness, as variations in the

magnetic material, in the speed regulation of the driving

power, etc., produce differences amounting to several per

cent.

(c) Exact engineering calculations, as, for instance, the

calculations of the efficiency of apparatus, the regulation of

transformers, the characteristic curves of induction motors,

etc. These are determined with an accuracy frequently amount-
ing to one-tenth of one per cent and even greater.
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Even for most exact engineering calculations, the accuracy
of the slide rule is usually sufficient, if intelligently used, that
is, used so as to get the greatest accuracy. For accurate calcu-
lations, preferably the glass slide should not be used, but the
result interpolated by the eye.

_

Thereby an accuracy within \ per cent can easily be main-
tained.

For most engineering calculations, logarithmic tables are
sufficient for three decimals, if intelUgently used, and as such
tables can be contained on a single page, their use makes the
calculation very much more expeditious than tables of more
decimals. The same apphes to trigonometric tables: tables
of the trigonometric functions (not their logarithms) of three
decimals I find most convenient for most cases, given from
degree to degree, and using decimal fractions of the degrees
(not minutes and seconds).*

Expedition in engineering calculations thus requires the use
of tools of no higher accuracy than required in the result, and
such are the slide rules, and the three decimal logarithmic and
trigonometric tables. The use of these, however, make it

neccessary to guard in the calculation against a loss of accuracy.

Such loss of accuracy occurs in subtracting or dividing two
terms which are nearly equal, in some logarithmic operations,

solution of equation, etc,, and in such cases either a higher

accuracy of calculation must be employed—seven decimal

logarithmic tables, etc.—or the operation, which lowers the

accuracy, avoided. The latter can usually be done. For
instance, in dividing 297 by 283 by the slide rule, the proper

way is to divide 297-283 = 14 by 283, and add the result

to 1.

It is in the methods of calculation that experience and judg-

ment and skill in efficiency of arrangement of numerical calcu-

lations is most marked.

167. While the calculations are unsatisfactory, if not carried

out with the degree of exactness which is feasible and desirable,

it is equally wrong to give numerical values with a number of

* This obviously does not apply to some classes of engineering work, in

which a much higher accuracy of trigonometric functions is required, aa

trigonometric surveying, etc.
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ciphers greater than the method or the purpose of the calcula-

tion warrants. For instance, if in the design of a direct-current

generator, the calculated field ampere-turns are given as 9738,

such a numerical value destroys the confidence in the work of

the <!alculator or designer, as it implies an accuracy greater

than possible, and thereby shows a lack of judgment.

The number of ciphers in which the result of calculation is

given should signify the exactness, In this respect two

systems are in use:

(a) Numerical values are given with one more decimal

than warranted by the probable error of the result; that is,

the decimal before the last is correct, but the last decimal may
be wrong by several units. This method is usually employed

in astronomy, physics, etc.

(b) Numerical values are given with as many decimals as

the accuracy of the calculation warrants; that is, the last

decimal is probably correct within half a unit. For instance,

an efficiency of 86 per cent means an efficiency between 85.5

and 86.5 per cent; an efficiency of 97.3 per cent means an

efficiency between 97.25 and 97.35 per cent, etc. This system

is generally used in engineering calculations. To get accuracy

of the last decimal of the result, the calculations then must

be carried out for one more decimal than given in the result.

For instance, when calculating the efficiency by adding the

various percentages of losses, data like the following may be

given

:

Core loss 2.73 per cent

i^r 1.06

Friction 0.93

Total 4.72

Efficiency 100-4.72 = 95.38

Approximately 95.4 "

It is obvious that throughout the same calculation the
same degree of accuracy must be observed.

It follows herefrom that the values

:

2i; 2.5; 2.50; 2.500,
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while mathematically equal, are not equal in their meaning as

an engineering result

:

2.5 means between 2.45 and 2.55;

2.50 means between 2.495 and 2.505;

2.500 means between 2.4995 and 2.5005;

while 2^ gives no clue to the accuracy of the value.

Thus it is not permissible to add zeros, or drop zeros at

the end of numerical values, nor is it permissible, for instance,

to replace fractions as 1/16 by 0.0625, without changing the

meaning of the numerical value, as regards its accuracy.

This is not always realized, and especially in the reduction of

common fractions to decimals an unjustified laxness exists

which impairs the reliability of the results. For instance, if

in an arc lamp the arc length, for which the mechanism is

adjusted, is stated to be 0.8125 inch, such a statement is

ridiculous, as no arc lamp mechanism can control for one-tenth

as great an accuracy as implied in this numerical value: the

value is an unjustified translation from 13/16 inch.

The principle thus should be adhered to, that all calcula-

tions are carried out for one decimal more than the exactness

required or feasible, and in the result the last decimal dropped

;

that is, the result given so that the last decimal is probably

correct within half a unit.

c. Intelligibility of Engineering Data and Engineering Reports.

1 68. In engineering calculations the value of the results

mainly depends on the information derived from them, that is,

on their intelligibility. To make the numerical results and

their meaning as inteUigible as possible, it thus is desirable,

whenever a series of values are calculated, to carefully arrange

them in tables and plot them in a curve or in curves. The

latter is necessary, since for most engineers the plotted curve

gives a much better conception of the shape and the variation

of a quantity than numerical tables.

Even where only a single point is required, as the core

loss at full load, or the excitation of an electric generator at

rated voltage, it is generally preferable to calculate a few
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ment in Fig. 103 is correct; it shows the relative variation
of voltage as function of the load. Fig. 104, in which the
cross-sectioning does not begin at the scale zero, confers the
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case with magnetization curves, it is unnecessary to have the zero

of the function coincide with the zero of the cross-sectioning, but

rather preferable not to have it so, if thereby a better scale of

the curve can be secured. It is desirable, however, to use suffi-

ciently small cross-sectioning to make it possible to take numer-

ical values from the curve with good accuracy. This is illus-

trated by Figs. 105 and 106. Both show the magnetic charac-

teristic of soft steel, for the range above5 =8000, in which it is

usually employed. Fig. 105 shows the proper way of plotting for

showing the shape of the function, Fig. 106 the proper way of

plotting for use of the curve to derive numerical values therefrom.

K
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These two requirements frequently are at variance with
each other, and then a compromise has to be made between
them, that is, such a scale chosen that the total ranges of the
two coordinates do not differ much, and at the same time
the average slope of the curve is not far from 45 deg. This
usually leads to a somewhat rectangular area covered by the
curve, as shown, for instance, by curve I, in Fig. 107.

It is obvious that, where the inherent nature of the curve
is incompatible with 45 degree slope, this rule does not apply.
Such for instance is the case with instrument calibration curves,

which inherently are essentially horizontal lines, with curves
like the slip of induction motors, etc.

As regards to th? magnitude of the scale of plotting, the larger

the scale, the plainer obviously is the curve. It must be kept in

mind, however, that it would be wrong to use a scale which is

materially larger than the accuracy of the values plotted.

Thus for instance, in

plotting the calibration

curve of an instrument,

if the accuracy of the

calibration is not greater

than .05 per cent, it

would be wrong to use

.01 per cent as the unit

of ordinate scale.

In curve plotting, a

scale should be used

which is easily read.

Hence, only full scale,

double scale, and half

scale should be used.

Triple scale and one-

third scale are practi-

cally unreadable, and should therefore never be used. Quadruple

scale and quarter scale are difficult to read and therefore unde-

sirable, and are generally unnecessary, since quadruple scale is

not much different from half scale with a ten times smaller unit,

and quarter scale not much different from double scale of a ten

times larger unit.

170. In plotting a curve to show a relation y=f{x), in gen-

eral X and y should be plotted directly, on ordinary coordinate
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paper, but not log x, or y^, or logarithmic paper used, etc., as

this would not show the shape of the relation y=f{x). Using

for instance semi-logarithmic paper, that is, with logarith-

mic abscissae and ordinary ordinates, the plotted curve would

show the shape of the relation y=f (log x), etc. The use of

logarithmic paper, or the use of y'^, or -y/a; as coordinate, etc., is

justified only where the purpose is to show the relation between

y and log x, or between y^ and x, or between y and ^/x, etc., as is

the case when investigating the equation of an empir cal curve,

or when intending to show some particular feature of the relation

y=f{x). Thus for instance when plotting the power p consumed

by corona in a high potential transmission hne, as function of the

line voltage e, by using y/p as ordinate, a straight line results.

Also where some particular function of one of the coordinates,

as log X, gives a more rational relation, it may be used instead

of X. Thus for instance in radiation curves, or when expressing

velocity as function of wave length or frequency, or expressing

attenuation of a wireless wave, etc., the log of wave length or

frequency, that is, the geometric scale (as used in the theory of

sound, with the octave as unit) is more rational and therefore

preferable.

Sometimes the values of a relationship extend over such a

wide range as to make it impossible to represent all of them in

one curve, and then a number of curves may have to be used,

with different scales. In such cases, the logarithmic scale often

brings all values within one curve without improperly crowding,

and especially where the purpose of curve plotting is not so

much to show the shape of the relation, as to record for the pur-

pose of taking numerical values from the curve, the latter ar-

rangement, that is, the use of logarithmic or semi-logarithmic

paper may be desirable. Thus the magnetic characteristic of

iron is used over a range of field intensities from very few am-
pere turns per cm. in transformers, to thousands of ampere
turns, in tooth densities of railway motors, and the magnetic
characteristic thus is either represented by three curves with

different scales, of ratios 1-HlO-^lOO, as shown in Fig. 109, or

the log of field intensity used as abscissae, that is, semi-logarith-

mic paper, with logarithmic scale as abscissae, and regular scale

as ordinates, as shown in Fig. 110.

It must be realized that the logarithmic or geometrical scale
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—in which equal divisions represent not equal values of the

quantity, but equal fractions of the quantity—is somewhat

less easy to read than common scale. However, as it is the same

scale as the slide rule, this is not a serious objection.

A disadvantage of the logarithmic scale is that it cannot

extend down to zero, and relations in which the entire range

down to zero requires consideration, thus are not well suited

for the use of logarithmic scale.

171. Any engineering calculation on which it is worth

while to devote any time, is worth being recorded with suffi-

cient completeness to be generally intelligible. Very often in

making calculations the data on which the calculation is based,

the subject and the purpose of the calculation are given incom-

pletely or not at all, since they are familiar to the calculator at

the time of calculation. The calculation thus would be unin-

telligible to any other engineer, and usually becomes unintelli-

gible even to the calculator in a few weeks.

In addition to the name and the date, all calculations should

be accompanied by a complete record of the object and purpose

of the calculation, the apparatus, the assumptions made, the

data used, reference to other calculations or data employed,

etc., in short, they should include all the information required

to make the calculation intelligible to another engineer without

further information besides that contained in the calculations,

or in the references given therein. The small amount of time

and work required to do this is negligible compared with the

increased utility of the calculation.

Tables and curves belonging to the calculation should in

the same way be completely identified with it and contain

sufficient data to be intelligible.

1 71A. Engineering investigations evidently are of no value,

unless they can be communicated to those to whom they are of

interest. Thus the engineering report is an essential and im-

portant part of the work. If therefore occasionally an engineer

or scientist is met, who is so much interested in the investigating

work, that he hates to "waste" the time of making proper and
complete reports, this is a very foohsh attitude, since in general

it destroys the value of the work.

As practically every engineering investigation is of interest

and importance to different classes of people, as a rule not one,
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but several reports must be written to make the most use of

the work; the scientific record of the research would be of no
more value to the financial interests considering the industrial

development of the work than the report to the financial or

administrative body would be of value to the scientist, who
considers repeating and continuing the investigation.

In general thus three classes of engineering reports can be

distinguished, and all three reports should be made with every

engineering investigation, to get best use of it.

(a) The scientific record of the investigation. This must be

so complete as to enable another investigator to completely check

up, repeat and further extend the investigation. It thus must
contain the original observations, the method of work, apparatus

and facilities, calibrations, information on the limits of accuracy

and reliabihty, sources of error, methods of calculation, etc., etc.

It thus is a lengthy report, and as such will be read by very few, -

if any, except other competent investigators, but is necessary

as the record of the work, since without such report, the work

would be lost, as the conclusions and results could not be checked

up if required.

This report appeals only to men of the same character as the

one who made the investigation, and is essentially for record

and file.

{h) The general engineering report. It should be very much

shorter than the scientific report, should be essentially of the

nature of a syllabus thereof, avoid as much as possible complex

mathematical and theoretical considerations, but give all the

engineering results of the investigation, in as plain language as

possible. It would be addressed to administrative engineers,

that is, men who as engineers are capable of understanding the

engineering results and discussion, but have neither time nor

famiharity to follow in detail through the investigation, and are

not interested in such things as the original readings, the discus-

sion of methods, accuracy, etc., but are interested only in the

results.

This is the report which would be read by most of the men

interested in the matter. It would in general be the form in

which the investigation is communicated to engineering societies

as paper, with the scientific report relegated into an appendix of

the paper.
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(c) The general report. This should give the results, that is,

explain what the matter is about, in plain and practically non-

technical language, addressed to laymen, that is, non-engineers.

In other words, it should be understood by any intelligent non-

technical man.

Such general report would be materially shorter than the

general engineering report, as it would omit all details, and

merely deal with the general problem, purpose and solution.

In general, it is advisable to combine all three reports, by
having the scientific record preceded by the general engineering

report, and the latter preceded by the general report. Roughly,

the general report would usually have a length of 20 to 40 per

cent of the general engineering report, the latter a length of 10

to 25 per cent of the complete scientific record.

The bearing of the three classes of reports may be understood

by illustration on an investigation which appears of commercial

utility, and therefore is submitted for industrial development to

a manufacturing corporation; the financial and general adminis-

trative powers of the corporations, to whom the investigation is

submitted, would read the general report and if the matter

appears to them of sufficient interest for further consideration,

refer it to the engineering department. The general report thus

must be written for, and intelligible to the non-engineering

administrative heads of the organization. The administrative

engineers of the engineering department then peruse the general

engineering report, and this report thust must be an engineering

report, but general and not require the knowledge of the specialist

in the particular field. If then the conclusion derived by the

administrative engineers from the reading of the general engineer-

ing report is to the effect that the matter is worth further con-

sideration, then they refer it to the specialists in the field covered

by the investigation, and to the latter finally the scientific record

of the investigation appeals and is studied in making final report

on the work.

Inversely, where nothing but a lengthy scientific report is

submitted, as a rule it will be referred to the engineering depart-

ment, and the general engineer, even if he could wade through
the lengthy report, rarely has immediately time to do so, thus

lays it aside to study sometime at his leisure—and very often

this time never comes, and the entire matter drops, for lack of

proper representation.
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Thus it is of the utmost importance for the engineer and the
scientist, to be able to present the results of his worlf not only by
elaborate and lengthy scientific report, but also by report of
moderate length, intelligible without dif&culty to the general
engineer, and by short statement intelligible to the non-engineer.

d. Reliability of Ntxmerical Calculations.

172. The most important and essential requirement of

numerical engineering calculations is their absolute reliability.

When making a calculation, the most brilliant ability, theo-
retical knowledge and practical experience of an engineer are
made useless, and even worse than useless, by a single error in

an important calculation.

Reliability of the numerical calculation is of vastly greater

importance in engineering than in any other field. In pure
mathematics an error in the numerical calculation of an
example which illustrates a general proposition, does not detract

from the interest and value of the latter, which is the main
purpose; in physics, the general law which is the subject of

the investigation remains true, and the investigation of interest

and use, even if in the numerical illustration of the law an
error is made. With the most brilhant engineering design,

however, if in the numerical calculation of a single structural

member an error has been made, and its strength thereby calcu-

lated wrong, the rotor of the machine flies to pieces by centrifugal

forces, or the bridge collapses, and with it the reputation of the

engineer. The essential difference between engineering and

purely scientific caclulations is the rapid check on the correct-

ness of the calculation, which is usually afforded by the per-

formance of the calculated structure—but too late to correct

errors.

Thus rapidity of calculation, while by itself useful, is of no

value whatever compared with rehability—that is, correctness.

One of the first and most important requirements to secure

rehability is neatness and care in the execution of the calcula-

tion. If the calculation is made on any kind of a sheet of

paper, with lead pencil, with frequent striking out and correct-

ing of figures, etc., it is practically hopeless to expect correct

results from any more extensive calculations. Thus the work



293a ENGINEERING MATHEMATICS.

should be done with pen and ink, on white ruled paper; if

changes have to be made, they should preferably be made by

erasing, and not by striking out. In general, the appearance of

the work is one of the best indications of its rehability. The

arrangement in tabular form, where a series of values are calcu-

lated, offers considerable assistance in improving the reliability.

173. Essential in all extensive calculations is a complete

system of checking the results, to insure correctness.

One way is to have the same calculation made independently

by two different calculators, and then compare the results.

Another way is to have a few points of the calculation checked

by somebody else. Neither way is satisfactory, as it is not

always possible for an engineer to have the assistance of another

engineer to check his work, and besides this, an engineer should

and must be able to make numerical calculations so that he can

absolutely rely on their correctness without somebody else

assisting him.

In any more important calculations every operation thus

should be performed twice, preferably in a different manner.

Thus, when multiplying or dividing by the slide rule, the multi-

plication or division should be repeated mentally, approxi-

mately, as check; when adding a colmnn of figures, it should be

added first downward, then as check upward, etc.

Where an exact calculation is required, first the magnitude
of the quantity should be estimated, if not already known,
then an approximate calculation made, which can frequently

be done mentally, and then the exact calculation ; or, inversely,

after the exact calculation, the result may be checked by an
approximate mental calculation.

Where a series of values is to be calculated, it is advisable

first to calculate a few individual points, and then, entirely

independently, calculate in tabular form the series of values,

and then use the previously calculated values as check. Or,

inversely, after calculating the series of values a few points

should independently be calculated as check.

When a series of values is calculated, it is usually easier to

secure reliability than when calculating a single value, since

in the former case the different values check each other. There-
fore it is always advisable to calculate a number of values,

that is, a short curve branch, even if only a single point is
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required. After calculating a series of values, they are plotted
as a curve to see whether they give a smooth curve. If the
entire curve is irregular, the calculation should be thrown away,
and the entire work done anew, and if this happens repeatedly
with the same calculator, the calculator is advised to find

another position more in agreement with his mental capacity.

If a single point of the curve appears irregular, this points to

an error in its calculation, and the calculation of the point is

checked; if the error is not found, this point is calculated

entirely separately, since it is much more difficult to find an
error which has been made than it is to avoid making an
error.

174. Some of the most frequent numerical errors are:

1. The decimal error, that is, a misplaced decimal point.

This should not be possible in the final result, since the magni-
tude of the latter should by judgment or approximate calcula-

tion be known sufficiently to exclude a mistake by a factor 10.

However, under a square root or higher root, in the exponent

of a decreasing exponential function, etc., a decimal error may
occur without affecting the result so much as to be immediately

noticed. The same is the case if the decimal error occurs in a

term which is relatively small compared with the other terms,

and thereby does not affect the result very much. For instance,

in the calculation of the induction motor characteristics, the

quantity ri^+s^Xi^ appears, and for small values of the slip s,

the second term s^Xi^ is small compared with ri^, so that a

decimal error in it would affect the total value sufficiently to

make it seriously wrong, but not sufiiciently to be obvious.

2. Omission of the factor or divisor 2.

3. Error in the sign, that is, using the plus sign instead of

the minus sign, and inversely. Here again, the danger is

especially great, if the quantity on which the wrong sign is

used combines with a larger quantity, and so does not affect

the result sufficiently to become obvious.

4. Omitting entire terms of smaller magnitude, etc.
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NOTES ON THE THEORY OF FUNCTIONS.

A. General Functions.

175. The most general algebraic expression of powers of

X and y,

P'(^)2/) = (000+0012; + 002^^ + . • .) + (aio+aiix + ai2x2+. . .)i/

+ (020+0212;+ 022^2 +. . .)2/2+. . .

+ (a„o+a„ix+o„2a;^+. • . )2/" = 0) ••••(!)
is the imflicit analytic function. It relates y and x so that to

every value of x there correspond n values of y, and to every

value of y there correspond m values of x, if m is the exponent

of the highest power of a; in (1).

Assuming expression (1) solved for y (which usually carmot

be carried out in final form, as it requires the solution of an

equation of the nth order in y, with coefficients which are

expressions of x), the explicit analytic function,

y=m, (2)

is obtained. Inversely, solving the implicit function (1) for

X, that is, from the explicit function (2), expressing x as

function of y, gives the reverse function of (2); that is

^=/i(2/) (3)

In the general algebraic function, in its implicit form (1),

or the explicit form (2), or the reverse function (3), x and y
are assumed as general numbers; that is, as complex quan-
tities; thus,

x = xi-\-jx2;
\

y=yi+jy2,
J

and likewise are the coefficients Ooo, aoi

(4)

294
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If all the coefficients a are real, and x is real, the corre-

sponding n values of y are either real, or pairs of conjugate
complex imaginary quantities: yi +J2/2 and 2/1-/2/2.

176- For n= l, the implicit function (1), solved for y, gives

the rational function,

aoo + aoiX + ao2X^ + . . .

'^~aio +anX + ai2X^ + .. '
^^

and if in this function (5) the denominator contains no x, the

integer function,

y= a^+aix+a2X^+. . .+a,nX'^, , . . (6)

is obtained.

For n=2, the implicit function (1) can be solved for y as a,

quadratic equation, and thereby gives

—
(ai(i+Oiii+ at;a:'+ ...)J::

that is, the explicit form (2) of equation (1) contains in this

case a square root.

For n>2, the explicit form y=f{x) either becomes very

complicated, for n = 3 and n= 4, or cannot be produced in

finite form, as it requires the solution of an equation of more

than the fourth order. Nevertheless, y is still a function of

X, and can as such be calculated by approximation, etc..

To find the value yi, which by function (1) corresponds to

x= xi, Taylor's theorem offers a rapid approximation. Sub-

stituting xi in function (1) gives an expression which is of

the nth order in y, thus: F(xiy), and the problem now is to

find a value 2/1, which makes F{xi,yi)=0.

However,

w ^ wr , ,. dF(M, y) h^ d?F{x,,y)
F{Xi,yx) = F(x,,y)+h -^—

+J2 dhf
+" " " ' " ^^^

where h = yi— y is the difference between the correct value 2/1

and any chosen value y.
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Neglecting the higher orders of the small quantity h, in

(8), and considering that F{xi,yi)=0, gives

h=-
dF{x,,yy

dy

(y)

and herefrom is obtained yi=y+h, as first approximation.

Using this value of yi as y in (9) gives a second approximation,

which usually is sufficiently close.

177. New functions are defined by the integrals of the

analytic functions (1) or (2), and by their reverse functions.

They are called Abelian integrals and Ahelian functions.

Thus in the most general case (1), the explicit function

corresponding to (1) being

the integral,

y=f{^),

^=
)
f{x)dx,

(2)

then is the general Abelian integral, and its reverse function,

x= 4>{z),

the general Abelian function.

(a) In the case, n = l, function (2) gives the rational function

C5), and its special case, the integer function (6).

Function (6) can be integrated by powers of x. (5) can be

resolved into partial fractions, and thereby leads to integrals

of the following forms

:

x«^dx;(1) /.

(10)
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Integrals (10), (1), and (3) integrated give rational functions,

(10), (2) gives the logarithmic function log (x-a), and (10), (4)

the arc function arc tan x.

As the arc functions are logarithmic functions with complex
imaginary argument, this case of the integral of the rational

function thus leads to the logarithmic function, or the loga-

rithmic integral, which in its simplest form is

/dx , , ^— = logx, . . . . (11)

and gives as its reverse function the exponential function,

(12)

It is expressed by the infinite series.

Z^ gS ^4

£^=l+Z+p-+Tg+|^+ (13)

as seen in Chapter II, paragraph 53.

178. b. In the case, n=2, function (2) appears as the expres-

sion (7), which contams a square root of some power of x. Its

first part is a rational function, and as such has already been

discussed in a. There remains thus the integral function.

=/^+i,.i+S«^ + ..^+l,^._j_.
^j^,

co + CiX + CiX-+ .

This expression (14) leads to a series of important functions.

(1) Forp = lor2,

=/:
V5o+ 61.x +62x2 , ,_.

ax. . . . . (15)
Cn+Cix + C22;^+.

By substitution, resolution into partial fractions, and

separation of rational functions, this integral (11) can be

reduced to the standard form,

'"
(16)/.

In the case of the minus sign, this gives

dxr d:

"JvT-
arc sin x, . . . (17)
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and as reverse functions thereof, there are obtained the trigo-

nometric functions.

x = sin 2, 1

Vl — x" = cos z.
J

In the case of the plus sign, integral (16) gives

dx

. (18)

/; -log{ Vl +x2— a;j =arc sinh x, . (19)
Vl+x^

and reverse functions thereof are the hyperbolic functions,

X = t: = sinh z
;

Vl+x^--
S +'+i

-- cosh ,?.

(20)

The trigonometric functions are expressed by the series

:

5;3 5^5 £7

sin. =
2-j3+j^-iy+

..

cos 3 = 1— pj+TT- • +

(21)

as seen in Chapter II, paragraph 58.

The hyperbolic functions, by substituting for e"*"^ and £~'

the series (13), can be expressed by the series:

^3 ;S ;7

sinh 2= + 7-r+7^+fz-.+ .

o p 7

(22)

cosh 3= IH-TTY +i-j- +T77 +

179- In the next case, p = 3 or 4,

/V&o +5lX +?)2a;^ +53X3+^4X4

Co + cix + Cix'^ +

.

dx, (23)

already leads beyond the elementary functions, that is, (23)

cannot be integrated by rational, logarithmic or arc functions,
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but^ gives a new class of functions, the elliptic integrals, and
their reverse functions, the elliptic functions, so called, because
they bear to the ellipse a relation similar to that, which the
trigonometric functions bear to the circle and the hyperbolic
functions to the equilateral hyperbola.

The integral (23) can be resolved into elementary functions,
and the three classes of elliptic integrals

:

dx

\/x(l-a:)(l-c2x)'

xdx

Vx{l-x)(l-cH)'

dx

{x-b)Vx{l-x) (l-c^x)

(24)

(These three classes of integrals may be expressed in several

different forms.)

The reverse functions of the elliptic integrals are given by
the elliptic functions

:

x = sin am(u, c);

Vl — X= cos am(u, c) ;
(25)

\/l —c^x = Jam{u, c)
;

known, respectively, as sine-amplitude, cosine-amplitude, delta-

amplitude.

Elliptic functions are in some respects similar to trigo-

nometric functions, as is seen, but they are more general,

depending, as they do, not only on the variable x, but also on

the constant c. They have the interesting property of being

doubly periodic. The trigonometric functions are periodic, with

the periodicity 27t, that is, repeat the same values after every

change of the angle by 2^. The elliptic functions have two
periods pi and p2, that is.

sin am{u +npi +mp2, c) =sin am{u, c), etc.; (26)

hence, increasing the variable u by any multiple of either

period pi and p2, repeats the same values.
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The two periods are given by the equations,

dx
pi

Va;(l — x)(l — c^x)'

dx

(27)

2Vx(l-x)(l-c2x)

i8o. Elliptic functions can be expressed as ratios of two

infinite series, and these series, which form the numerator and

the denominator of the elliptic function, are called theta func-

tions and expressed by the symbol 6, thus

sin am{u, c) -

1 »(£
'6^ (g)'

cos amiu
.'>-a/t?

te)

OA
Aam{u, c) = ^l — c^-

TIU
(28)

and the four d functions may be expressed by the series

:

^o(x) = 1 —2q cos 2x +254 cos 4x -2q^ cos 6x + -. . . :

25

^i(x)=22i/*sinx-259/*sui3x+234 sin 5x- + .. .
;

25

^2(2;) =2^1/* cos X +25"/* COS 3x +2g 4 cos 5x + ;

6i3(x) = 1+2(7 cos 2x +254 cos 4x +2^9 cos 6x + . • ,

where

q= e." and a = jn—
Pi

, (29)

(30)

In the case of integral function (14), where p>4, similar

integrals and their reverse functions appear, more complex



APPENDIX A. 301

than the eUiptic functions, and of a greater number of periodici-
ties. They are called hyperelliptic integrals and hyperelliptic

functions, and the latter are again expressed by means of auxil-

iarj' functions, the hyperelliptic 6 functions.

i8i. Many problems of physics and of engineering lead to

elliptic functions, and these functions thus are of considerable

importance. For instance, the motion of the pendulum is

expressed by elliptic functions of time, and its period thereby
is a function of the amplitude, increasing with increasing ampli-
tude: that is, in the so-called "second pendulum," the time of

one swing is not constant and equal to one second, but only

approximately so. This approximation is very close, as long

as the amplitude of the swing is very small and constant, but
if the amplitude of the swing of the pendulum varies and
reaches large values, the time of the swing, or the period ot

the pendulum, can no longer be assumed as constant and an
exact calculation of the motion of the pendulum by elliptic

functions becomes necessary.

In electrical engineering, one has frequently to deal with

oscillations similar to those of the pendulum, for instancp,

in the hunting or surging of synchronous machines. In

general, the frequency of oscillation is assumed as constant,

but where, as in cumulative hunting of synchronous machines,

the amplitude of the swing reaches large values, an appreciable

change of the period must be expected, and where the hunting

is a resonance effect with some other periodic motion, as the

engine rotation, the change of frequency with increase of

amplitude of the oscillation breaks the complete resonance and

thereby tends to limit the amplitude of the swing.

182. As example of the application of elliptic integrals, may
be considered the determination of the length of the arc of an

ellipse.

Let the ellipse of equation

'T»2 /i/2

^24=1' (31)

be represented in Fig. 93, with the circumscribed circle,

2;2+ 2/2= a2. ... . . (32)
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To every point P= x, y of the ellipse then corresponds a

point Pi = x, 7/1 on the circle, which has the same abscissa x,

and an angle d = AOP\.

The arc of the ellipse, from A to P, then is given by the

integral,

,.., f_41^5E=^, .... (33)

Jo 2^ -

where

Wz{l-z){l-c^z)'

2r= sin2 (9=(-l and c=- ,

\a/ a

is the eccentricity of the ellipse.

^
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Functions may be represented by an infinite series of terms;

that is, as a sum of an infinite number of terms, which pro-

gressively decrease, that is, approach zero. The denotation of

the terms is commonly represented by the summation sign 2.

Thus the exponential functions may be written, when
defining,

[0 = 1; 'ln = lX2x3X4X. . .Xn,

as

ex= i+,+_4-- + .....S.- .... (35)

which means, that terms j— are to be added for all values of n
n

from n = to n=oc .

The trigonometric and hyperbolic functions may be written

in the form

:

X^ X^ X^ ^ , .s X^"*! ,„„.
sinx =x-T^+fv-^+ .. = 2"(-l)"^5-—r; . (36)

]3 |5 |7
'

' '
|
2n + l

j'2 '^4 ^6 00 X^"
cosx = l-i2+|T-|6+ •• = ?"(-l)"g (37)

» X-
2n+l

sinhx-X+T7r+TV+7=-+... = 2n———; . . . (38)
13 15

' 17 2n+ l

X2 X* x" » X2"
coshx=

l+i2+|^+ig+...
= Snj^ (39)

Functions also may be expressed by a series of factors;

that is, as a product of an infinite series of factors, which pro-

gressively approach unity. The product series is commonly

represented by the symbol JJ.
Thus, for instance, the sine function can be expressed in the

form,

sm X = X(i-S)(i-&)('-S--=^w(i-i)- ««

184. Integration of known functions frequently leads to new

functions. Thus from the general algebraic functions were
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derived the Abelian functions. In physics and in engineering,

integration of special functions in this manner frequently leads

to new special functions.

For instance, in the study of the propagation through space,

of the magnetic field of a conductor, in wireless telegraphy,

lightning protection, etc., we get new functions. If i=f (J)

is the current in the conductor, as function of the time t, at a

distance x from the conductor the magnetic field lags by the

X
time h=—, where S is the speed of propagation (velocity of

o
hght). Since the field intensity decreases inversely propor-

tional to the distance x, it thus is proportional to

X

y-^^>- (41)

and the total magnetic flux then is

z=
j
ydx

=J J—rf^ (42)

If the current is an alternating current, that is, f (t) a
trigonometric function of time, equation (42) leads to the
functions.

Tsin X
,M= I ax;

-J
cos X

,

-ax.

(43)

If the current is a direct current, rising as exponential
function of the time, equation (42) leads to the function,

w
/e^x

(44)
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Substituting in (43) and (44), for sin x, cos x, e^ their

infinite series (21) and (13), and then integrating, gives the

following

:

sm X—d2; =X-g|g+^-y=+

C0S X
, ,

X^ X* x^

/ t-dx =hgx+x+^^+^ + .

. (45)

For further discussion and tables of these functions see
'' Theory and Calculation of Transient Electric Phenomena and

Oscillations," Section III, Chapter VIII, and Appendix.

i8S. If y=f{x) is a function of x, and z=
j f (x)dx = ^(x)

n
its integral, the definite integral, Z= \ f{x)dx, is no longer

mJa

a function of x but a constant,

Z = <^(&)-</,(a).

For instance, if y=^c(x—n)^, then

c{x—ny
-/c(x—nydx=-

and the definite integral is

Z=
I

c(z-n)2dx = |((E>-n)3-(a-n)3}.

This definite integral does not contain x, but it contains

all the constants of the function / (x), thus is a function of

these constants c and n, as it varies with a variation of these

constants.

In this manner new functions may be derived by definite

integrals.

Thus, if

y=f{x,u,v...) (46)

is a function of x, containing the constants u, v . .

.
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The definite integral,

Z=
I

f{:£,u,v.. . )dx, (47)

is not a function of x, but still is a function of w, v . . . , and

may be a new function.

i86. For instance, let

J/=£-:r2;«-l; (48)

then the integral,

(49)/(w)= rr--x«-iofx,

is a new function of u, called the gamma function.

Some properties of this function may be derived by partial

integration, thus

:

r{u + l)=ur{u); (50)

if n is an integer number,

r{u) = {u-l){u-2)...{u-n)r{u-n), . . (51)

and since

Al) = l, (52)

if u is an integer number, then,

r{u) = \u-l. (53)

C. Exponential, Trigonometric and Hyperbolic Functions.

(a) Functions of Real Variables.

187. The exponential, trigonometric, and h^'perbolic func-

tions are defined as the reverse functions of the integrals,

Cdx .

a- w =J— = log2;, (54)

and: x=£" (55)

f dx
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and: x=sm.u, (57)

Vl-x2 = C03 M, (58)

/fix
c- "=

I
77T=5=-log{Vl+a;2-x}; . . . . (59)

and x= 2— =sinhw; .... (60)

£" -\- e~"
Vl+x2= —=coshM (61)

From (57) and (58) it follows that

sin^ m+cos2m= 1 (62)

From (60) and (61) it follows that

cos^ /iM— sin 2/iM=:l. (63)

Substituting (— x) for x in (56), gives (— m) instead of u,

and therefrom,

sin (— w) = — sin M (64)

Substituting (— m) for u in (60), reverses the sign of x,

that is,

sinh (— m) = — sinh w. . . . (65)

Substituting (— x) for x in (58) and (61), does not change

the value of the square root, that is,

cos (— m)=cos M, (66)

cosh (—w)= cosh M, (67)

Which signifies that cos u and cosh u are even functions, while

sin u and sinh u are odd functions.

Adding and subtracting (60) and (61), gives

£=="= cosh w± sinh M (68)
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/ (5) Functions of Imaginary Variables.

i88. Substituting, in (56) and (59), x= —jy, thus y = jx, gives

dx

U c~U

a;=sinu; a; = sinh«

V1+x2 = cosm; vT+x2 = coshM =

2 '

hence, ju /—. , hence, m= i

VT+f' " J VI^'

i/ = sinhjM =
;^

; y=smiu; . . . (69)

£)" -)_ £-;u

Vl +2/2 = cosh /m=
^^

; Vl— j/2 = cos ju; . . . (70)

Resubstituting a; in both

sinh fw £3"— £-'"
.

£>._£-« sin m _^^
a;=sinM = r^ =—^-^

: x = sinhii=

—

^— =—:— ; (71)

.« 4_ p—u£"+£

2
£)« + 5-1

Vl — x^ = COS ti= cosh /m vT+x^ = cosh u =

= COS ju. . (72)

Adding and subtracting,

£±'"= cos M±/.sin M = cosh jM±siuh ju

and £±" = cosh ii±sinhu = cos j'mTJ sin jM. . . (73)

(c) Functions of Complex Variables

189. It is:

e"±i^=s:"e^'''=£"{cosv±ismv); . . . (74)
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sin {u±jv) =Bin u cos jv±cos u sin jv

= Sin u cosh v±] cos wsmh v =—^^—sin u ± ]
—

^z—cos «

;

cos (u ± ]v) = COS w COS ]vT sin u sin p
£" + £-" .£"-£-"

.= COS u cosh uT J
sin Ksmh ?; =—-x—cos u =F J—^— sin w

;

sinh(w±p)=
:^

=—^—cosvij—^— sinr

= sinh u cos v±j cosh m sin v;

cosh(M±p)= 2 =—2

—

^osv±]—
^
—sinu

= cosh u cos v±j sinh w sin v

;

etc.

(75)

(76)

(77)

(78)

(d) Relations.

190. From the preceding equations it thus follows that the

three functions, exponential, trigonometric, and hyperbolic,

are so related to each other, that any one of them can be

expressed by any other one, so- that when allowing imaginary

and complex imaginary variables, one function is sufficient.

As such, naturally, the exponential function would generally

be chosen.

Furthermore, it follows, that all functions with imaginary

and complex imaginary variables can be reduced to functions

of real variables by the use of only two of the three classes

of functions. In this case, the exponential and the trigono-

metric functions would usually be chosen.

Since functions with complex imaginary variables can be

resolved into functions with real variables, for their calculation

tables of the functions of real variables are sufficient.

The relations, by which any function can be expressed by

any other, are calculated from the preceding paragraph, by

the following equations

:
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«=•=" = cosh M ±sinh u= cos ju^ j sin ju;

£± '" = cos V ± y sin t; = cosh jv± j sinh jv
;

£"*'"=£" (cos rijsin v),

sinh jM £'"— £"'"

sin M =

J

sin jv = j sinh v= j

2] '

£"-£-"

sin (u±jv) =sin w cosh 2> ± / cos u sinh r

£" + £~"
.

£*— e~'"
=—^— sin u±j— cosw;

cos w = cosh ju = -^^—

;

cos J j;= cosh V =
£'" + £-'"

COS {u±jv) = cos w cosh vT J
sin u sinh j;

sinh w = -

-^— cos wT;—p— sin u;

— £~" sin ju

2

sinh jv = j sin v --

1 '

^v_ g-jv

sinh {u ± jv) = sinh ucosv±j cosh u sin v

£«_£-« £"+£-"
=—2

^°^ ^±^—

2

^^'^ ^'

cosh M =
U _J_ c~ «£"+£

2 = cos ]u;

cosh p= cos v=

cosh (w ± jv) = cosh M cos V ± / sinh w sin t;

"2— cosr±7—2"
• sm V.

(a)

(&)

(c)

(d)

(e)
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And from (b) and (d), respectively (c) and (e), it follows that

sinh (u± jv) =
J sin (± i'— j'u) = ± j sin (?;± ju)

;

cosh (u± jv) = cos (i'T ju)

.

if)

Tables of the exponential functions and their logarithms,

and of the hyperboHc functions with real variables, are given

in the following Appendix B.



APPENDIX B.

TWO TABLES OF EXPONENTIAL AND HYPERBOLIC
FUNCTIONS.

Table I.

£ = 2,7183, log £ = 0.4343.

X
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Table II.

EXPONENTIAL AND HYPERBOLIC FUNCTIONS.
£= 2.718282— 2.7183, log e= 0.4342945~0.4343.

p.p.
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Table II

—

Continued.

EXPONENTIAL AND HYPERBOLIC FUNCTIONS.

T



INDEX
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Abelian integrals and functions, 305
Absolute number, 4

value of fractional expression, 49
of general number, 30

Accuracy, loss of, 281

of approximation estimated, 200
of calculation, 279

of curve equation, 210

of transmission line equations, 208
Addition, 1

of general number, 28

and subtraction of trigonometric

functions, 102

Algebra of general number or com-
plex quantity, 25

Algebraic expression, 294

function, 75

Alternating current and voltage vec-

tor, 41

functions, 117, 125

waves, 117, 125

Alternations, 117

Alternator short circuit current, ap-

proximated, 195

Analytical calculation of extrema,

152

function, 294

Angle, see also Phase angle.

Approximation calculation, 280

by chain fraction, 208c

Approximations giving (1 + s) and

(1 - s), 201

of infinite series, 53

methods of, 187

Arbitrary constants of series, 69, 79

Area of triangle, 106

Arrangement of numerical calcula-

tions, 275

Attack, method of, 275

Base of logarithm, 21

Binomial series with small quanti-

ties, 193

theorem, infinite series, 59
of trigonometric function, 104

Biquadratic parabola, 219

Calculation, accuracy, 279

checking of, 291

numerical, 258

reliability, 271

Capacity, 65

Chain fraction, 208

Change of curve law, 211, 234

Characteristics of exponential curves,

228

of parabolic and hyperbolic curves,

223

Charging current maximum of con-

denser, 176

Checking calculations, 293a

Ciphers, number of, in calculations,

282

Circle defining trigonometric func-

tions, 94

Coefficients, unknown, of infinite

series, 60

Combination of exponential func-

tions, 231

of general numbers, 28

of vectors, 29

Comparison of exponential and hy-

perbolic curves, 229

Complementary angles in trigono-

metric functions, 99

Complex imaginary quantities, see

General number.

315
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Complex, quantity, 17

algebra, 27

see General number.

Conjugate numbers, 31

Constant, arbitrary of series, 69, 79

errors, 186

factor with parabolic and hyper-

bolic curves, 223

phenomena, 106

terms of curve equation, 211

of empirical curves, 234

in exponential curves, 230

with exponential curves, 229

in parabolic and hyperbolic

curves, 225

Convergency determinations of

potential series, 215

of series, 57

Convergent series, 56

Coreless by potential series, 213

curve evaluation, 244

Cosecant function, 98

Cosh function, 305

Cosine-amplitude, 299

components of wave, 121, 125

function, 94

series, 82

versed function, 98

Cotangent function, 94

Counting, 1

Current change curve evaluation,

241

of distorted voltage wave, 169

input of induction motor, ap-

proximated, 191

maximum of alternating trans-

mission circuit, 159

Curves, checking calculations, 2936

empirical, 209

law, change, 234

rational equation, 210
use of, 284

D

Data on calculations and curves, 271

derived from curve, 285

Decimal error, 2936

Decimals, number of, in calculations,

282

in logarithmic tables, 281

Definite integrals of trigonometric

functions, 103

Degrees of accuracy, 279

Delta-amplitude, 299

Differential equations, 64

of electrical engineering, 65, 78, 86

of second order, 78

Differentiation of trigonometric

functions, 103

Diophantic equations, 186

Distorted electric waves, 108

Distortion of wave, 139

Divergent series, 56

Division, 6

of general number, 42

with small quantities, 190

Double angles in trigonometric

functions, 103

peaked wave, 255, 260, 266

periodicity of elliptic functions,

299

scale, 289

E

Efl&ciency maximum of alternator,

162

of impulse turbine, 154

of induction generator, 177

of transformer, 1 55, 174

Electrical engineering, differential

equations, 65, 78, 86

Ellipse, length of arc, 301

Elliptic integrals and functions, 299

Empirical curves, 209

, evaluation, 233

equation of curve, 210

Engineering differential equations,

65, 78, 86

reports, 290

Equilateral hyperbola, 217

Errors, constant, 186

numerical, 2936

of observation, 180
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Estimate of accuracy of approxima-

tion, 200

Evaluation of empirical curves, 233

Even functions, 81, 98, 305

periodic, 122

harmonics, 117, 266

separation, 120, 125, 134

Evolution, 9

of general number, 44

of series, 70

Exact calculation, 281

Exciting current of transformer,

resolution, 137

Explicit analytic function, 294

Exponent, 9

Exponential curves, 227

forms of general number, 50

functions, 52, 297, 304

with small quantities, 196

series, 71

tables, 312, 313, 314

and trigonometric functions, rela-

tion, 83

Extrapolation on curve, limitation,

210

Extrema, 147

analytic determination, 152

graphical construction of differen-

tial function, 170

graphical determination, 147, 150,

168

with intermediate variables, 155

with several variables, 163

simplification of function, 157

Factor, constant, with parabolic

and hyperbolic curves, 223

Fan motor torque by potential ser-

ies, 215

Fifth harmonic, 261, 264

Flat top wave, 255, 260, 265, 268

zero waves, 255, 258, 261, 265

Fourier series, see Trigonomelric

series.

Fraction, 8

as series, 52

chain-, 208

Fractional exponents, 11, 44

expressions of general number, 49

Full scale, 289

Functions, theory of, 294

G
Gamma function, 304

General number, 1, 16

algebra, 25

engineering reports, 291

exponential forms, 50

reduction, 48

reports on engineering matters,

292

Geometric scale of curve plotting,

288

Graphical determination of extrema,

147, 150, 168

H
Half angles in trigonometric func-

tions, 103

Half waves, 117

Half scale, 289

Harmonics, even, 117

odd, 117

of trigonometric series, 114

two, in wave, 255

High harmonics in wave shape, 255,

269

Hunting of synchronous machines,

257

Hyperbola, arc of, 61

equilateral, 217

Hyperbolic curves, 216

functions, 294

curve, shape, 232

integrals and functions, 298

tables, 313, 314

Hyperelliptic integrals and func-

tions, 301

Hysteresis curve of silicon steel, in-

vestigation of, 248

Imaginary number, 26

quantity, see Quadrature number.
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Incommensurable waves, 257

Indeterminate coefficients, method,

71

Indeterminate coefficients of infi-

nite series, 60

Individuals, 8

Inductance, 65

Infinite series, 52

values of curves, 211

of empirical curves, 233

Inflection points of curves, 153

Impedance vector, 41

Implicit analytic function, 294

Integral function, 295

Integration constant of series, 69, 79

of differential equation, 65

by infinite series, 60

of trigonometric functions, 103

Intelligibility of calculations, 283

Intercepts, defining tangent and co-

tangent functions, 94

Involution, 9

of general numbers, 44

Irrational numbers, 11

Irrationality of representation by
potential series, 213

J, 14

Least squares, method of, 179, 186

Limitation of mathematical repre-

sentation, 40

of method of least squares, 186

of potential series, 216

Limiting value of infinite series, 54

Linear number, 33

see Positive and Negative number.

Line calculation, 276

equations, approximated, 204

Logarithm of exponential curve, 229

as infinite series, 63

of parabolic and hyperbolic curves,

225

with small quantities, 197

Logarithmation, 20

of general numbers, 51

Logarithmic curves, 227

functions, 297

paper, 233, 287

scale, 288

tables, number of decimals in, 281

Loss of curve induction motor, 183

M

Magnetic characteristic on semi-

logarithmic paper, 288

Magnetite arc, volt-ampere charac-

teristic, 239

characteristic, evaluation, 246

Magnitude of effect, determination,

280

Maximum, see Extremum.

Maxima, 147

McLaurin's series with small quan-

tities, 198

Mechanism of calculating empirical

curves, 237

Methods of calculation, 275

of intermediate coefficients, 71

of least squares, 179, 186

of attack, 275

Minima, 147

Minimum, see Extremum.

Multiple frequencies of waves, 274

Multiplicand, 39

Multiplication, 6

of general numbers, 39

with small quantities, 188

of trigonometric functions, 102

Multiplier, 39

N

Negative angles in trigonometric

functions, 98

exponents, 11

number, 4

Nodes in wave shape, 256, 270

Non-periodic curves, 212

Nozzle efficiency, maximum, 150

Number, general, 1
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Numerical calculations, 275
values of trigonometric functions,

101

Observation, errors, 180

Octave as logarithmic scale, 288
Odd funcfons, 81, 98, 305

period c, 122

harmonics in symmetrical wave,
117

separation, 120, 125, 134

Omissions in calculations, 2936

Operator, 40

Order of small quantity, 188

Oscillating functions, 92

Output, see Power.

IT and 2 added and subtracted in

trigonometric function, 100

approximated by chain fraction,

208c

Pairs of high harmonics, 270

Parabola, common, 218

Parabolic curves, 216

Parallelogram law of general num-
bers, 28

of vectors, 29

Peaked wave, 255, 258, 261, 264

Pendulum motion, 301

Percentage change of parabolic and
hyperbolic curves, 223

Periodic curves, 254

decimal fraction, 12

phenomena, 106

Periodicity, double, of elliptic func-

tions, 299

of trigonometric functions, 96

Permeability maximum, 148, 170

Phase angle of fractional expression,

49

of general number, 28

Plain number, 32

see General number.

Plotting of curves, 212

proper and improper, 286
of empirical curve, 234

Polar co-ordinates of general num-
ber, 25, 27

expression of general number, 25,

27, 38, 43, 44, 48

Polyphase relation, reducing trigo-

nometric series, 134

of trigonometric functions, 104

system of points or vectors, 46
Positive number, 4
Potential series, 52, 212
Power factor maximum of induction

motor, 149

maximum of alternating trans-

mission circuit, 158

of generator, 161

of shunted resistance, 155

of storage battery, 172

of transformer, 173

of transmission line, 165

not vector product, 42

of shunt motor, approximated, 189

with small quantities, 194

Probability calculation, 181

Product series, 303

of trigonometric functions, 102

Projection, defining cosine function,

94

Projector, defining sine function, 94

Q

Quadrants, sign of trigonometric

functions, 96

Quadrature numbers, 13

Quarter' scale, 289

Quaternions, 22

R

Radius vector of general number, 28

Range of convergency of series, 56

Ratio of variation, 226

Rational equation of curve, 210

function, 295

Rationality of potential series, 214
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Real number, 26

Rectangular co-ordinates of general

number, 25

Reduction to absolute values, 48

Relations of hyperbolic trigono-

metric and exponential func-

tions, 309

Relativeness of small quantities, 188

Reliability of numerical calculations,

293

Reports, engineering, 290

Resistance, 65

Resolution of vectors, 29

Reversal by negative unit, 14

double, at zero of wave, 258, 261

Reverse function, 294

Right triangle defining trigonomet-

ric functions, 94

Ripples in wave, 45

by high harmonics, 270

Roots of general numbers, 45

expressed by periodic chain frac-

tion, 208e

with small quantities, 194

of unit, 18, 19, 46

Rotation by negative unit, 14

by quadrature unit, 14

Saddle point, 165

Saw-tooth wave, 246, 255, 258, 260,

265

Scalar, 26, 28, 30

Scale in curve plotting, proper and
improper, 212, 286

full, double, halt, etc., 287

Scientific engineering records, 291

Secant function, 98

Second harmonic, effect of, 266

Secondary effects, 210

phenomena, 234

Semi-logarithmic paper, 287

Series, exponential, 71

infinite, 52

trigonometric, 106

Seventh harmonic, 262

Shape of curves, 212

proper in plotting, 286

of exponential curve, 227, 230

of function, by curve, 284

of hyperbolic functions, 232

of parabolic and hyperbolic curves,

217

Sharp zero wave, 255, 260, 265

Short circuit current of alternator,

approximated, 195

Sign error, 293c

of trigonometric functions, 95

Silicon steel, investigation of hystere-

sis curve, 248

Simplification by approximation, 187

Sine-amplitude, 199

component of wave, 121, 125

function, 94

series, 82

versus function, 98

Sine function, 305

Slide rule accuracy, 281

Small quantities, approximation, 187

Special functions, 302

Squares, least, method of, 179, 186

Steam path of turbine, 33

Subtraction, 1

of general number, 28

of trigonometric functions, 102

Summation series, 303

Superposition of high harmonics, 273

Supplementary angles in trigono-

metric functions, 99

Surging of synchronous machines,

301

Symmetrical curve maximum, 150

periodic function, 117

wave, 117

Tabular form of calculation, 275

Tangent function, 94

Taylor's series with small quantities,

199

Temperature wave, 131

Temporary use of potential series,

216
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Termmal conditions of problem, 69
Terms, constant, of empirical curves,

234

in exponential curve, 229

with exponential curve, 229

in parabolic and hyperbolic

curves, 225

of infinite series, 53

Theorem, binomial, infinite series,

59

Thermomotive force wave, 133

Theta functions, 300

Third harmonic, 136, 255

Top, peaked or flat, of wave, 255

Torque of fan motor by potential

series, 215

Transient current cnrve, evaluation,

241

phenomena, 106

Transmission equations, approxi-

mated, 204

line calculation, 275

Treble peak of wave, 262

Triangle, defining trigonometric

functions, 94

trigonometric relations, 106

Trigonometrical and exponential

functions, relations, 83

functions, 94, 304

series, 82

with small quantity, 198

integrals and functions, 298

series, 106

calculation, 114, 116, 139

Triple harmonic, separation, 136

peaked wave, 255

scale, 289

Tungsten filament, volt-ampere

characteristic, 235
Turbine, steam path, 33

U

Unequal height and length of half

waves, 268

Univalent functions, 106

Unsymmetric curve maximum, 151

wave, 138

Values of trigonometric functions,

101

Variation, ratio of, 226

Vector analysis, 32

multiplication, 39

quantity, 32

see General number.

representationby general number,
29

Velocity diagram of turbine steam

path, 34

functions of electric field, 304

Versed sine and cosine functions,

98

Volt-ampere characteristic of mag-
netite arc, 239

of tungsten filament, 235

Z

Zero values of curve, 211

of empirical curves, 233

of waves, 255












