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PREFACE

1 have intended that the present book shall provide such know-
ledge of the Kinetic Theory as is required by the average serious
student of physics and physical chemistry. I hope it will also
give the mathematical student the equipment he should have
before undertaking the study of specialist monographs, such,
for instance, as the recent books of Chapman and Cowling (T'he
Mathematical Theory of Non-uniform Gases) and R. H. Fowler
(Statistical Thermodynamics).

Inevitably the book covers a good deal of the same ground
as my earlier book, The Dynamical Theory of Gases, but it is
covered in a simpler and more physical manner. Primarily I
have kept before me the physicist’s need for clearness and direct-
ness of treatment rather than the mathematician’s need for
rigorous general proofs. This does not mean that many subjects
will not be found treated in the same way—and often in the
same words—in the two books; I have tried to retain all that
was of physical interest in the old book, while discarding much
of which the interest was mainly mathematical.

It is a pleasure to thank Professor E. N. da C. Andrade for
reading my proofs, and suggesting many improvements which
have greatly enhanced the value of the book. I am also greatly
indebted to W. F. Sedgwick,* sometime of Trinity College,
Cambridge, for checking all the numerical calculations in the
latest edition of my old book, and g}lggésting many improve-
ments. o '

- J.H.JEANS
DorxiNg

June 1940

[* W. F. Sedgwick writes (1946): “As a rule I only checked one or
two of the items in the tables. As regards these and the numerical
results given in the text, I did indeed as a rule agree, at least approxi-
mately, with Jeans’ figures, but in a few cases (see Philosophical
Magazine, Sept. 1946, p. 661) my results differed substantially.”

PusrisEERs’ Notg.]
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Chapter I
INTRODUCTION .

The Origins of the Theory

1. Assoon as man began to think of abstract problems at all,
it was only natural that speculations as to the nature and ultimate
structure of the material world should figure largely in his writings
and philosophies.

Among the earliest speculations which have survived are those
of Thales of Miletus (about 640-547B.c.), many of whose idcas
may well have been derived from still earlier legends of Egyptian
origin. He conjectured that the whole material universe consisted
only of water and of substances derived from water by physical
transformation. Earth was produced by the condensation of
water, and air by its rarefaction, while air when hcated became
fire. About 5003B.c. Heraclitus advanced the alternative view
that earth, air, fire and water were not transformable one into the
other, but constituted four distinct unalterable ““elements’, and
that all material substances were composed of these four elements
mixed in varying proportions—a sort of dim anticipation of
modern chemical theory. At a somewhat later date, Leucippus
and Democritus maintained that matter consisted of minute hard
particles moving as separate units in empty space, and that
there were as many kinds of particles as there are different
substances.

Unhappily nothing now remains of the writings of either
Democritus or Leucippus; their opinions are known to us only
through second-hand accounts. From these we lcarn that
they imagined their particles to be cternal and invisible,
and so small that their size could not be diminished; Lence the
name dropos—indivisible. The particles of any particular sub-
stance, such as iron or water, were supposed to be all similar to
one another, and every one of them carried in itself all the attri-
butes of the substance. For instance, Democritus taught that the
atoms of water, being smooth and round, are unable to hook on to
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2 INTRODUCTION

each other, so that they roll over and over like small globes;
on the other hand, the atoms of iron, being rough, jagged and
uneven, cling together to form a solid body. The “atoms” of
the Grecks corresponded of course to the molecules of modern
chemistry.

Similar views were advocated by Epicurus (341-276 B.¢.), but
rejected by Aristotle. In a later age (a.p. 55) Lucretius advanced
substantially identical ideas in his great poem De rerum natura.
In this he claimed only to expound the views of Epicurus, most
of whose writings are now lost.

Lucretius explains very clearly that the atowns of all bodies
are in ceaseless motion, colliding and rcbounding fram one
another. When the distances which the atoms cover bé;-twoen
successive rebounds are small, the substance is in the solid state:
when large, we have “thin air and bright sunshine”’. He further
cxplains that atoms must be very small, as can be scen cither
from the imperceptible wearing away of objects, or from the
way in which our clothes can become damp without exhibifing
vigible drops of moisture.*

There was little further discussion of the problem until the
middle of the seventeenth century, when Gassendif examined
some of the physical consequences of the atomic view. He assumed
his atoms to bo similar in substance, although different in size and
form, to move in all directions through empty space, and to be
devoid of all qualities except absolute rigidity. With these simple
assumptions, Gassendi was ablc to explain a number of physical
phenomena, including the three states of matter and the transi-
tions from one to another, in a way which differed but little from
that of the modern kinetic theory. He further saw that in an
ordinary gas, such as atmospheric air, the particles must be very
widely spaced, and he was, so far as we know, the first to conjecture
that the motion of these particles could account by itself for a
number of well-known physical phenomena, without the addition
of separate ad hoc hypotheses. All this gives him a very special
claim to be regarded as the father of the kinetic theory.

* See an essay by E. N. da C. Andrade, ‘‘ The Scientific Significance of
Lucretius”’, Munro's Lucretius, 4th edition (Bell, 1928).
1 Syntagma Philosophicum, 1658, Lugduni.
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Twenty years after Gassendi, Hooke advanced somewhat
similar ideas. He suggested that the elasticity of a gas resulted
from the impact of hard independent particles on the substance
which enclosed it, and even tried to explain Boyle’s law on this
basis.

Newton accepted these views as to the atomic structure of
matter, although he suggested a different explanation of Boyle’s
law*. He wrotet

“It seems probable to me that God in the beginning formed
matter in solid, massy, hard, impenetrable, moveable particles

.., and that these primary particles, being solids, are incow-
parably harder than any porous bodies compounded of them;
even so hard as never to wear or break in picces.”

Hooke was followed by Daniel Bernoulli,} who is often credited
with many of the discoveries of Gassendi and Hooke. Bernoulli,
again supposing that gas-pressure results from the impacts of
particles on the boundary, was able to deduco Boyle’s law for the
relation between pressure and volume. In this investigation the
particles were supposed to be infinitesimal in size, but Bernoulli
further attempted to find a general relation between pressure and
volume when the particles were of finite size, although still
absolutely hard and spherical.

After Bernoulli, there is little to record for almost a century.
Then we find Herapath§ (1821), Waterston|| (1845), Joule{| (1848),
Kronig** (1856), Clausius (1857) and Maxwell (1859) taking up the
subject in rapid succession.

* Seo § 50, below.

t Opticks, Query 31 (this did not appear until the second edition of
the Opticks, 1718).

t Daniel Bernoulli, Hydrodynamica, Argentoria, 1738: Scctio decima,
“De affectionibus atque motibus fluidorum elasticorum, praecipue
autom aeris.”

§ Annals of Philosophy (2), 1. p. 273.

|| Phl. Trans. Roy. Soc. 183 (1592), p. 1. Waterston presented a long
paper to the Royal Society in 1845, but this contained many inaccuracies
and so was not published until Lord Rayleigh secured its publication,
for what was then a purely historical interest, in 1892.

9§ British Association Report, 1848, Part II, p. 21; Memoirs of the
Manchester Literary and Philosophical Society (2), 9, p. 107.

** Poggendorff’'s Annalen.

I-2



4 INTRODUCTION

In his first paper* Clausius calculated accurately the relation
between the temperature, pressure and volume in a gas with
molecules of infinitesimal size; he also calculated the ratio of the
two specific heats of a gas in which the molecules had no energy
except that of their motion through space. In 1859, Clerk Max-
well read a paper before the British Association at Aberdeen, | in
which the famous Maxwecllian law of distribution of velocitics
made its first appearance, although the proof by which Maxwell
attempted to establish it is now universally agreed to have been
invalid.} In the hands of Clausius and Maxwell the theory de-
veloped with great rapidity, so that to write its history from this
time on would be hardly less than to give an account of th§ subject
in its present form.

The Thrce States of Matter

2. Most substances arc capable of existing in three distinet
states, which we describe as solid, liquid and gaseous. The typical
example is water, with its three states of ice, water and steam.
It is natural to conjecture that the three states of matter corre-
spond to three different types or intensities of motion of the funda-
mental particles of which the matter is comnposed, and it is not
difficult to see how the necessity for these three different states
may arise.

We know that two bodies cannot occupy the same space; if we
try to make them do so, repulsive forces come into play, and keep
the two bodies apart. If matter consists of innumerable particles,
these forces must be the aggregate of the forces from individual
particles. These particles can, then, exert forces on one another,
and the forces are repulsive when the particles are pushed suf-
ficiently close to one another. If we try to tear a solid body into
pieces, another set of forces comes into play—the forces of
cohesion. These also indicate the existence of forces between
individual particles, but the force between two particles is no
longer one of repulsion; it is now one of attraction. The fact that
a solid body, when in its natural state, resists both compression

* “Ueber die Art der Bewegung welche wir Wirme nennen”, Pogg.
Ann. 100, p. 353.

t Phil. Mag. Jan. and July 1860; Collected Works, 1, p- 377,

1 See Appendix 1, p. 296,
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and dilatation, shews that the force between particles changes
from one of repulsion at small distances to one of attraction at
greater distances, as was pointed out by Boscovitch in 1763.*

3. The Solid State. Somewhere between these two positions
there must be a position of stable equilibrium in which two
particles can rest in proximity without either attracting or re-
pelling one another. If we imagine a great number of particles
placed in such proximity, and so at rest in their positions of
equilibrium, we have the kinetic theory conception of a mass of
matter in the solid state—a solid body. Modern X-ray technique
makes it possible to study both the nature and arrangement of
these particles. In solid bodies of crystalline structure, the
“ particles” are atoms and electrons, arranged in a regular three-
dimensional pattern;t in conductors the electrons are free to
thread their way between the atoms.

When the particles which constitute a solid body oscillate
about their various positions of equilibrium, we say that the body
possesses heat. The energy of these oscillatory motions is, in fact,
the heat-encrgy of the body. As the oscillations become more
vigorous, we say that the temperature of the body increases.

We may malke a definite picture by supposing that the oscil-
latory motipns are first set up by rubbing two solid objects to-
gether. We place the surfaces of the two bodies so close to one
another that the particles near the surface of one exert per-
ceptible forces on the particles near the surface of the other; we
then move the surfaces over one another, so that the forces just
mentioned draw or push the surface particles from their positions
of equilibrium. At first, the only particles to be disturbed will be
those which are in the immediate neighbourhood of the parts
actually rubbed, but gradually the motion of these parts will
induce motion in the adjoining regions, until ultimately the
motion spreads over the whole mass. This motion represents heat
which was, in the first instance, generated by friction, and then
spread by conduction through the whole mass.

* Theoria Philosophiae Naturalis (Venice, 1763; English translation,
Open Court, Chicago and London, 1922). See especially §§ 74 ff.

t See W. L. Bragg, Crystal Structure, and innumerable other books
and papers.
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As a second example, we may imagine that two solid bodies,
both devoid of internal motion, impinge one upon the other—as
for instance a hammer upon a clock-bell. The first effect of this
impact will be that trains of waves are set up in the two bodies,
but after a sufficient time the wave character of the motion will
become obliterated. Motion of some kind must, however, persist
in order to account for the energy of the original motion. This
original motion will, in actual fact, be replaced by small vibratory
motions in which the particles oscillate about their positions of
equilibrium—according to the kinetic theory, by heat motion.
In this way the kinetic energy of the original motion of the solid
bodlies is transformed into heat-encrgy.

4. The Liquid State. If a solid body acquires more heat, t}@e
energy of its vibrations will increase, so that the excursions of its
particles from their positions of equilibrium will become larger.
1f the body goes on acquiring more and more heat, some of the
particles will ultimately be endowed with so much kinetic encrgy
that the forces from the other particles will no longer be able to
hold them in position; they will then, to borrow an astronomical
term, escape from their orbits, and move to other positions.
When a considerable number of particles are doing this, the
application of even a small force, provided it is continued for a
sufficient length of time, can cause the mass to change its shape;
it does this by taking advantage time after time, as opportunity
occurs, of the weakness of the forces tending to retain individual
particles.

If still more heat is provided, a greater and greater number of
the particles will move freely about; finally, when all the particles
are all doing this, the body has attained the state we describe as
liquid.

So long as the body is in the solid state, the particles which
execute vibrations will usually be either isolated electrons or
atoms. In the liquid state it is comparatively rare for either
electrons or atoms to move as independent particles, because the
forces binding these into molecules are usually too strong to be
overcome by the heat-motion; thus the particles which move
independently in a liquid are generally complete molecules.

Until recently it was supposed that the molecules of a liquid
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moved at random, and shewed a complete disorder in their
arrangement—in sharp contrast to the orderly arrangement of
the particles in a solid. Recent investigations suggest the need for
modifying this view. A molecule in a liquid is probably acted
on all the time by about as many other molecules as it would be
if in the solid statc. The forces from these neighbouring molecules
imprison it in a cell from which it only rarely escapes. The main
difference between a solid and a liquid is not that between
captivity and freedom; it is only that the particle of a solid is held
in fetters all the time, while that of a liquid is held in fetters
nearly all the time, living a life of comparative freedom only in
the very bricf intervals between one term of imprisonment and
the next. Further X-ray technique has shewn that there is a
certain degree of regularily and order in the arrangement of the
liquid molecules in space.*

This knowledge is derived only from a statistical study of the
molecules of a liquid; no known technique makes it possible to see
the wanderings of individual molecules. Perhaps this is not sur-
prising, since even the largest of molecules are beyond the limits
of vision in the most powerful of microscopes. But if a number of
very small solid particles—as, for instance, of gamboge or lyco-
podium—are placed in suspension in a liquid, these particles are
set into motion as the moving molecules of the liquid collide with
them and hit them about, now in this direction and now in that.
These latter motions can be seen through a microscope, so that
the solid particles act as indicators of the motions of the molecules
of the liquid, and so give a very convincing, even if indirect, proof
of the truth of the kinetic theory conception of the liquid state.
They are called Brownian movements, after the English botanist,
Robert Brown.

For, in 1828 Brown had suspended grains of pollen in water, and
examined the mixture through a microscope. He found that the
pollen grains were engaged in an agitated dance, which was to all
appearances continuous and interminable. His first thought was
that he had found evidence of some vital property in the pollen,

* See in particular, ¢ Recent Theories of the Liquid State’’, N. F. Mott

and R. W. Gurney, Physical Society Reports on Progress in Physics
(C.U. Press), 5 (1939), p. 46.
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but he soon found that any small particles, no matter how non-
vital, executed similar dances. The true explanation, that the
particles were acting merely as indicators of the molecular motion
of the liquid in which they were immersed, was given by Delsaux
in 1877 and again by Gouy in 1888. A full mathematical
theory of the movements was developed by Kinstein and von
Smoluchowski about 1905.*

In 1909 Perrin suspended particles of gamboge in a liquid
of slightly lower density, and found that the heavy particles
did not sink to the bottom of the lighter liquid; they were pre-
vented from doing so by their own Brownian movements. If the
liquid had been infinitely fine-grained, with molccules &f in-
finitesimal size and weight, every solid particle would havé had
as many impacts from above as below; these impacts, coming in
a continuous stream, would have just cancelled one another out.
so that each particle would have been free to fall to the bottom
under its own weight. But when they were bombarded by mole-
cules of finite size and weight, the solid particles were hit, now in
one direction and now in another, and so could not lic inertly on
‘the bottom of the vessel. From the extent to which they failed
to do this, Perrin was able to form: an estimate of the weights of
the molecules of the liquid (§16, below)and this agreed so well with
other estimates that there could be but little doubt felt as to the
truth either of the kinetic theory of liquids, or of the associaterl
cxplanation of the Brownian movements.

A molecule of a liquid which has escaped {rom its orbit in the
way described on p. 6 may happen to come near to the surface of
the liquid, in which case it may escape altogether from the attrac-
tion of the other molecules, just as a projectile which is projected
from the earth’s surface with sufficient velocity may escape from
the earth altogether. When this happens the molecule leaves the
liquid, and the liquid must continually diminish both in mass and
volume owing to the loss of such molecules, just as the earth’s
atmosphere continually diminishes owing to the escape of rapidly
moving molecules from its outer surface. Here we have the kinetic
theory interpretation of the process of evaporation, the vapour
being, of course, formed by the escaped molecules.

* See § 180, below.
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If the liquid is contained in a closed vessel, each escaping mole-
cule must in time strike the side or top of the vessel; its path is
now diverted, and it may fall back again into the liquid after a
certain number of impacts. In time a state may be reached such
that as many molecules fall back in this way as escape by evapora-
tion; we now have, according to the kinetic theory, a liquid in
equilibrium with its own vapour.

5. The Gaseous State. On the other hand, it is possible for the
whole of the liquid to be transformed into vapour in this way,
before a steady state is reached. Here we have the kinctic theory
picture of a gas—a crowd of molecules, cach moving on its own
independent path, entirely uncontrolled by forces from the other
molecules, although its path may be abruptly altered as regards
both speed and direction, whenever it collides with another
molecule or strikes the boundary of the containing vessel. The
molecules move so swiftly that even gravity has practically no
controlling effect on their motions. An average molecule of
ordinary air moves at about 500 metres a second, so that the
parabola which it deseribes under gravity has a radius of curva-
ture of about 25 kilometres at its vertex, and even more elsewhere,
This is so large in comparison with the dimensions of any con-
taining vessecl that we may, without appreciable error, think of
the molecules as moving in straight lines at uniform speeds,
except when they encounter cither other molecules or the walls of
the containing vessel. This view of the nature of a gas explains
why a gas spreads immediately throughout any empty space in
which it is placed; there is no need to suppose, as was at one time
done, that this expansive property is evidence of repulsive forces
between the molecules (cf. § 50, below).

As with a liquid, so with a gas, there is no absolutely direct
evidence of the motions of individual molecules, but an indirect
proof, at one remove only, is again provided by the Brownian
movements. For these occur in gases as well as in liquids; minute
particles of smoke* and even tiny drops of oil floating in a gas
may be seen to be hit about by the impact of the molecules of
the gas.

Andrade and Parker, Proc. Roy. Soc. A. 159 (1937), p. 507.
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Recently E. Kappler* constructed a highly sensitive torsion-
balance, in which the swinging arm was free to oscillate in an
almost perfect vacuum. The swinging arm had a moment of
momentum of 0-235 millionth of a gm. ecm.?, and when it swung
in a gas at pressure of only a few hundreds of a millimetre of
mercury, its period of oscillation was about 15 scconds. When the
oscillations were recorded on a moving photographic film, it was
seen that they did not proceed with perfect regularity. The speed
of motion of the arm experienced abrupt changes, and, as we
shall see later (p. 129), there can be no doubt
that these were caused by the impacts of
single molecules of the gas.

Perhaps, however, the simplest evidence of
the fundamental accuracy of thekinetic theory
conception of the gascous state is to be found
in experiments of a type first performed by
Dunoyer.t He divided a cylindrical tube into
three compartments by means of two parti-
tions perpendicular to the axis of the tube,
these partitions being pierced in their centres
by small holes, as in fig. 1. The tube was fixed
vertically, and all the air pumped out. A small
piece of sodium was then introduced into the
lowest compartment, and heated to a sullicient
temperature to vaporiseit. Molecules of sodium Tig. 1
are now shot off, and move in all directions.

Most of them strike the wallsof the lowest compartment of the tube
and form a deposit there, but a few escape through the hole in the
first partition, and travel through the second compartment of the
tube. These molecules do not collide with one another, since their
paths all radiate from a point—the small hole through which they
have entered the compartment; they travel like rays of light
issuing from a source at this point. Some travel into the upper-
most compartment through the opening in the second partition,
and when they strike the top of the tube, make a deposit there.

* Ann. d. Phys. 31 (1938), p. 377.

1 L. Dunoyer, Comptes Rendus, 152 (1911), p. 592, and Le Radium, 8
(1911), p. 142.
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This is found to be an exact projection of the hole through which
they have come. The experiment may be varied by removing the
upper partition and suspending a small object in its place. This is
found to form a ““shadow ” on the upper surface of the tube; if the
hole in the first diaphragm is of appreciable size, an umbra and
penumbra may even be discernible.

Stern* and Gerlach as well as a band of collaborators at
Hamburg, and many workers elsewhere, have
expanded this simple experiment into the \
elaborate technique known as ‘““molecular
rays”’. The lower compartment of Dunoyer's
tube is replaced by an electric oven or furnace
in which a solid substance can be partly
transformed into vapour (see fig. 2). Some of T
the molecules of this vapour pass through a \ y—
narrow slit in a diaphragm above the oven,
and, as before, a small fraction of these pass
later through a second parallel slit in a second
diaphragm. These form a narrow beam of
molecules all moving in thesame plane (namely
the plane through the two parallel slits) anr
this beam can be experimented on in various ways, some of which
are described later in the present book.

Ifig. 2

Mechanical Illustration of the Kinetic Theory of Gases

6. It is important to form as clear an idea as possible of the
conception of the gaseous state on which the kinetic theory is
based, and this can best be done in terms of simple mechanical
illustrations.

We still know very little as to the structure or shape of actual
molecules, except that they are complicated structures of elec-
trons and protons, obeying laws which are still only imperfectly
anravelled. At collisions they obey the laws of conservation of
momentum and energy, at least to a very close approximation.
They also behave like bodies of perfect elasticity. For, as we
shall shortly see, the pressure of a gas gives a measure of the

* Zeitachr. f. Phys. 39 (1926), p. 751.
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total kinetic energy of motion of its molecules, and this is known
to stay unaltered through millions of millions of collisions.

Since, however, it is desirable to have as concrete a repre-
sentation as possible before the mind, at least at the outset, we
shall follow a procedure which is very usual in the development,
of the kinetic theory, and agree for the present to picture a mole-
cule as a spherical body of unlimited elasticity and rigidity—to
make the picture quite definite. let us say a steel ball-bearing or
a minute billiard ball. The justification for this procedure lies in
its success; thcory predicts, and experiment confirms, that an
actual gas with highly complex molecules behaves, in many
respects, like a much simpler imaginary gas in which t}ge mole-
cules are of the type just described. Indeed, one of the most
striking features of the kinetic theory is the extent to which it is
possible to predict the behaviour of a gas as a whole, while re-
maining in slmost complete ignorance of the behaviour and pro-
perties of the molecules of which it is composed; the reason is that
many of the properties of gases depend only on general dynamical
principles, such as the conservation of energy and momentum.
It follows that many of the results of the theory are true for all
kinds of molecules, and so would still be true even if the molecules
actually were billiard balls of infinitesimal size.

Since it is casier to think in two dimensions than in three, let
us begin with a representation of molecular motions in two
dimensions. As the molecules of the gas are to be represented by
billiard balls, let us represent the vessel in which the gas is con-
tained by a large billiard table. The walls of the vessel will of
course be represented by the cushions of the table, and if the
vessel is closed, the table must have no pockets. Finally, the
materials of the table must be of such ideal quality that a ball once
set in motion will collide an indefinite number of times with the
cushions before being brought to rest by friction and other passive
forces. A great number of the properties of gases can be illustrated
with this imaginary apparatus. )

If a large number of balls are taken and started from random
positions on the table with random velocities, the resulting state
of motion will give a representation of what is supposed to be the
condition of matter in its gaseous state. Each ball will be con-
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tinually colliding with the other balls, as well as with the cushions
of the table. The velocities of the balls will be of the most varying
kinds; a ball may be brought absolutely to rest at one instant,
while at another, as the result of a succession of favourable col-
lisions, it may possess a velocity far in excess of the average. We
shall, in due course, investigate how the velocities of such a col-
lection of balls are distributed about the mean velocity, and shall
find that, no matter how the velocities are arranged at the outset,
they will tend, after a sufficient number of collisions, to group
themselves according to a law which is very similar to the well-
known law of trial and error—the law which governs the grouping
in position of shots fired at a target.

If the cushions of the table were not fixed in position, the con-
tinued impacts of the balls would of course drive them back.
(learly, then, the force which the colliding balls exert on the
cushions represents the pressure exerted by the gas on the walls of
the containing vessel. Let us imagine a movable barrier placed
initially against one of the cushions, and capable of being moved
parallel to this cushion. Moving this barrier forward is equivalent
to decreasing the volume of the gas. If the barrier is moved for-
wards while the motion of the billiard balls is in progress, the
impacts both on the movable barrier and on the three fixed
cushions will become more frequent—because the halls have a
shorter distance to travel, on the average, between successive
impacts. Here we have a mechanical representation of the in-
crease of pressure which accompanics a diminution of volume in
a gas. To take a definite instance, let us suppose that the movable
barrier is moved half-way up the table. As the space occupied by
the moving balls is halved, the balls are distributed twice as
densely as before in the restricted space now available to them.
Impacts will now be twice as frequent as before, so that the pres-
sure on the barrier is doubled. Halving the space occupied by our
quasi-gas has doubled the pressure—an illustration of Boyle’s
law that the pressure varies inversely as the volume, This, how-
ever, is only true if the billiard balls are of infinitesimal size; if
they are of appreciable size, halving the space accessible to them
may more than double the pressure, since the extent to which
they get in one another’s way is more than doubled. At a later
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stage, we shall have to discuss how far the theoretical law con-
necting the pressure and density in a gas constituted of molecules
of finite size is in agreement with that found by experiment for an
actual gas.

Let us imagine the speed of each ball suddenly to be doubled.
The motion proceeds exactly as before,* but at double speed—
just as though we ran a cinematograph film through a projector
at double speed. At each point of the boundary there will be
twice as many impacts per second as before, and the force of each
impact will be twice as great. Thus the pressure at the point will
be four times as great. If we increase the speed of the balls in any
other ratio, the pressure will always be proportional to thé square
of the speed, and so to the total kinetic energy of the balls. This
illustrates the general law, which will be proved in due course,
that the pressure of a gas is proportional to the kinctic energy
of motion of its molecules. As we know, from the law of Charles,
that the pressure is also proportional to the absolute temperature
of the gas, we see that the absolute temperaturc of o gas must
be measured by the kinetic encrgy of motion of its molecules—a
result which will be strictly proved in due course (§ 12).

Still supposing the barrier on our billiard table to be placed
half-way up the table, let us imagine that the part of the table
which is in front of the barrier is occupicd by white balls moving
with high speeds, while the part behind it is similarly occupied by
red balls moving with much smaller speeds. This corresponds to
dividing a vessel into two separate chambers, and filling one with
a gas of one kind at a high temperature, and the other with a gas
of a different kind at a lower temperature. Now let the barricr
across the billiard table suddenly be removed. Not only will the
white balls immediately invade the part which was formerly
occupied only by red balls, and vice versa, but also the rapidly
moving white balls will be continually losing energy by collision
with the slower red balls, while the red of course gain energy
through impact with the white. After.the motion has been in
progress for a sufficient time, the white and red balls will be

* In actual billiards the angles of course depend on the speed, but this
is a consequence of the imperfect elasticity of actual balls. With ideal
balls of perfect elasticity, the course of events would be as stated above.
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equally distributed over the whole of the table, and the average
velocities of the balls of the two colours will be the same, Here we
have simple illustrations of the diffusion of gases, and of equalisa-
tion of temperature. The actual events occurring in nature are,
however, obviously more complex than those suggested by this
analogy, for molecules of different gases differ by something more
fundamental than mere colour.

Next let the barrier be replaced by one with a sloping face, so
that a ball which strikes against it with sufficient speed will run
up this face and over the top. Such a ball will be imprisoned on
the other side, but one which strikes the slanting face at slower
speed may run only part way up, and then come down again and
move as though it had been reflccted from the barrier. The barrier
isin effect a mechanism for sorting out the quick-moving from the
slow-moving balls.

Let the space between the sloping barrier and the opposite
cushion of the table be filled with balls moving at all possible
speeds to represent the molecules of a liquid. A ball which runs
against the sloping face of the barrier with sufficient speed to get
over the top will represent a molecule which is lost to the liquid
by cvaporation. The total mass of the liquid is continually
diminishing in this way; at the same time, since only the quick-
moving molecules escape, the average kinetic energy of the
molecules which remain in the liquid is continually being lowered.
Thus, as some molecules of the liquid evaporate, the remainder
of the liquid decreases in temperature. Here we have a simple
illustration of the cooling which accompanies evaporation—a
process which explains the action of nearly all modern refriger-
ating machinery.

7. One further question must be considered. No matter how
clastic the billiard balls and table may be, the motion cannot
continue indefinitely. In time its energy will be frittered away,
partly perhaps by frictional forces such as air-resistance, and
partly by the vibrations set up in the balls by collisions. The
energy dissipated by air-resistance becomes transformed into
energy in the air; the energy dissipated by collision is transformed
into energy of internal vibrations of the billiard balls. What, then,
does this represent in the gas, and how is it that a gas, if consti-
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tuted as we have supposed, does not in a very short time lose the
energy of translational motion of its molecules, and replace it by
energy of internal vibrations of these molecules, and of radiation
travelling through the surrounding space?

The difficulties raised by this and similar questions formed a
most serious hindrance to the progress of the kinetic theory for
many ycars. Maxwell drew attention to them, and Kelvin,
Rayleich and many others worried over them, but it was only
after the introduction of the quantum theory by Planck and his
followers in the early ycars of the present century, that it became
possible to give anything like a satisfactory explanatjon. This
cxplanation is, in bricf, that the analogy between billrﬁprd balls
and molecules fails as soon as we begin to consider que%itions of
internal vibrations and the transfer of their cnergy to the sur-
rounding space. The analogy, which has served us well for a long
time, breaks down at last. For the motion of billiard balls, as of
all objects on this scale of size, is governed by the well-known
Newtonian laws, whereas the internal motions of molecules, and
their transfer of encrgy to the surrounding space in the form of
radiation, are now helieved to be governed by an entirely different
system of laws. In the present book, we shall develop the kinetic
theory as far as it can be developed without departing from the
Newtonian laws, and shall notice the inadoquacy of these laws in
certain problems. The newer system of Jaws, constituting the
modern theory of quantum mechanics, is beyond the scope of the
present book.



Chapter I1
A PRELIMINARY SURVEY

The Pressure in a Gas

8. The present chapter will contain a preliminary discussion
of some of the principal problems of the kinetic theory. We shall
not go into great detail, or strive after great mathematical
accuracy or rigour—this is reserved for the more intensive dis-
cussions of later chapters. Ourimmediate object is merely to make
the reader familiar with the main concepts of the theory, and to
give him a rapid bird’s-cye view of the subject, so as to ensure
his not losing his bearings in
the more complete discussions
which come later.

The main actors in the
drama of the kinetic theory
are rapidly-moving molecules;
the principal events in their
lives are collisions with one
anotherand with the boundary
of a containing vessel. Let
us consider the latter events
first.

To begin with the very
simplest conditions, let us first
imagine that a single molecule is moving inside a cubical contain-
ing vessel of edge,and colliding with the six faces time after time.
We shall suppose that the molecule is infinitesimal in size, and also
perfectly elastic, so that no energy will be lost on collision with the
boundary. Thus the velocity of motion, which we shall denote
by ¢, will retain the same value throughout the whole motion.
We shall also suppose that at each collision the molecule bounces
off the wall of the vessel at the same angle as that at which it
struck. Thus we get a succession of paths such as a, b, ¢, d, e, ...
in fig. 3.

JKT 2

Fig. 3
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We can find the lengths of successive paths by & very simple
artifice. Let fig. 4 represent a honeycomb of cells, each of which
is a cube of edge I. Draw the first path a of the molecule in the
first cell, exactly as it is described in the actual cubical vessel, and
extend the line a indefinitely through the honeycomb of cells.
Then it is easy to sce that the intercepts b, ¢, d, e, ... made by suc-
cessive cells will be exactly equal to the paths b, ¢, d, e, ... of the
actual molecule in the real vessel. If we imagine a point starting
along the path a at the instant at which the actual moleonle starts

in the closed vessel, and moving at the "
same speed ¢ as the real molecule, then \ /
the pathsa,b, ¢,d, e, ... in the honeycomb —

\

will be described at exactly the same
time as the paths a, b, ¢, d, e, ... in the

J
real vessel,
i
/
(3

Let rectangular coordinates Oz, Oy,
Oz be taken in the honeycomb, parallel
to the three dircctions of the edges of the
cube, and let A, g, v be the direction y
cosines of the line abcde. ... In the course

of unit time, we must suppose our /
a

moving point to describe a distance ¢
along thig line, so that it will travel a
distance cA parallel to Oz, cu parallel to
Oy and cv parallel to Oz. In travelling
the distance cA parallel to Oz, it will encounter faces of the honey-

comb perpendicular to Oz at equal distances ! apart. Each such

encounter will of course coincide with a collision between the real

molecule and a face perpendicular to Ox. The number of such

collisions in unit time is therefore cA/l. .

At each such collision, the momentum parallel to Oz is re-
versed. If m is the mass of the molecule, this is of amount mcA,
so that the total transfer of momentum, or *“impact”, between
the molecule and the face of the vessel is 2mcA. The total of all
such impacts between the moving molecule and the two faces
perpendicular to Oz must be

Kig. 4

A 2mcind

2chxT_ T
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There are similar impacts with the other pairs of faces, of total
amounts
2,2 2,,2
2me o and 2mcy .
l 1
Thus the total of all the impacts exerted by the molecule on
all the six faces in unit time is

2
?f_’;i A2+ p240?) = 2"1'“’2.

This, the total impact exerted in unit time, is also the total
pressure exerted on the six faces of the cube.

If there are a very great number of molecules inside the
vessel, of masses m,, my, my, ... moving with different velocities
¢y, €y, C3..., and so small as never to collide with one another,
the total impact they exert on all six faces is

2
T(m1cf+m,c§+mac§+...). ...... (1)

If these molecules move in all directions at random, they will
obviously exert equal pressures on the six faces of the cube. As
the total area of the six faces is 62, the pressure p per unit area ia
given by

1
P=3p (m 2+ mgaci+...).
The numerator in this fraction is twice the total kinetic energy

of motion of all the molecules in the gas, while the denominator is
three times the volume of the gas. Thus we have

2 x kinetic energy
3 x volume

pressure = , A(2)
and see that the pressure is equal to two-thirds of the kinetic energy
per unit volume.

Since kinetic energics are additive, pressures must also be
additive. Thus the pressure exerted by a mixture of gases is the
sum of the pressures exerted by the constituents of the miature
separately. This js Dalton’s law.

If the volume of the vessel is allowed to change, while the.
molecules and their energy of motion are kept the same, we see
that the pressure varies inversely as the volume. This is Boyle's law.

22 ..

315
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If we write C? for the average value of ¢? throughout the gas,
the average being taken by mass, we have

myct+mycd+...= (my+my+...) C3
while my,+mg+...= po,

where v is the volume and p the density of the gas. ¥rom equation
(2) the pressure is now given by

p=13%pC%, (3)
go that C? = 3_p L (4)
p \

With this formula we can calculate the speed of m\Plecular
motion for a gas in any physical condition we please. Ordinary
air at room temperature and at a pressure of one atmosphere
is found to have a density of 0-00123 gramme per litre. Inserting
these values of p and p in equation (4), we find that the mole-
cular velocity is about 500 metres per second, which is roughly
the speed of a rifle bullet.

9. We have not yet shewn that the pressure has the same value
at all regions on the surface of the vessel, nor that its amount
depends only on the volume of the vessel, independently ‘of its
shape—these facts are established in the next chapter (§33).
Neither have we taken account of the collisions of the various
molecules with one another, but it is easy to see that these do not
affect the result. For a collision between two molecules does not
of itself produce any pressure on the boundary, and neither does
it affect the value of expression (2), since energy is conserved at a
collision.

It may at first seem strange that the pressure should depend on
the state of things throughout the whole of the gas in a vessel, and
not only on the state of things close to the boundary on which the
pressure is exerted. One molecule, for instance, in the far interior
of the gas may be moving with immense velocity. How, it may be
asked, can this molecule exert a correspondingly immense pres-
sure on the boundary from which it is completely disconnected?
The answer is, of course, that after a short time either the molecule
will itself strike the boundary or else, through the medium of
collisions, will communicate its high energy to other molecules
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which will strike the boundary in due course. For we must notice
that formula (2) does not give the pressure at a single instant of
time, but only the pressure averaged through one second, or of
course through some other comparatively long interval of time.
A more serious question is whether wé were justified in assum-
ing that the molecules bounce off the walls of the containing vessel
at the same angle, and with the same speed, at which they met
this wall. The assumption was introduced solely for the sake of
simplicity, and is probably not true (see § 34, below). But it is in
no way essential to the proof. All that is necessary is that the
molecules should, on the average, leave the walls with energy equal
to that with which they arrive. The aggregate of the impacts
which the molecules exert on the walls before they are brought
to rest is then given by half of expression (1); the other half
represents the impacts which the walls exert on the molecules
to restore their motion. Then the total pressure is as before.
Even the supposition that the average energy of a molecule is
unchanged by impact with the boundary may not of course be
strictly true. If a very hot gas is put into a very cold vessel, we
know that the vessel will acquire heat from the gas, and will
continue to do so until the temperatures of the gas and vessel are
equal. The transfer of heat from the gas to the vessel can only take
place when molecules collide with the wall of the yessel, so that
they do not, on the average, leave it with as much energy as they
brought to it. This does not have any great influence on the calcu-
lation of the pressure, because the transfer of heat is so slow a
process that very little energy can be transferred at a single col-
lision. But it points the way to other questions of interest.

Equipartition of Energy

10. Let us consider in some detail the transfer of energy at the
collisions of two molecules, which will be supposed to be smooth
hard spheres of perfect elasticity, and will ultimately be taken
to belong to the wall and the gas respectively. Let us take the
line of impact at collision to be the axis Oz, this not necessarily
coinciding with our former Oz, which was perpendicular to one
of the walls.
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Let the molecules have masses m, m', and let their components

of velocity before collision be
u,v,w and ', v, w'.

Since the impact occurs along the axis Oz, the components of
velocity parallel to Oy and Oz are unaltered, so that we may
suppose the velocities after the collision to be

%, v,w and u,v,w'.

w0 w’

w1,

Gas Wall
Fig. 8

The equations of energy and momentum now take the simple
forms
fmul+ dm'u'? = mut + Im'u'?,
mu+m'u’ =mu+mn'w,
or, by a slight transposition,
m(u? —u?) = —m'(%'2—u'?), eeeeee(B)
mu—u)=-m'(z'-v'). ... (6)
From these equations we obtain at once, by division of corre-
sponding sides,
Uutu=%w'+u L. (7)
or U —-u=—(u—-u)
shewing that the relative velocity is simply reversed at collision,
a necessary consequence of perfect elasticity.
Solving equations (6) and (7), we find that the velocities after
collision are given by
(m+m')% = (m—m')u+2mu, " eeeend(8)

(m+m )% = (m' —m)u' + 2mu. eeeee(0)
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Now if m is the mass of the molecule of the wall, and m’ that of
the molecule of the gas, this collision results in the wall gaining
energy of amount

dm(u?—u?) = Im(@—u) (v +u)
2mm/’ ' ,
- (m+m’)2(m uw' +mu) (v —u)
2mm
T (m+m

When a collision takes place, the velocity u of the wall
molecule may be either positive or negative. Since this mole-
cule has, on the whole, no continuous motion along the axis
of z, and does not change its position except for small in-and-out
oscillations, the average value of » must be zero. Thus if we
average over a large number of collisions, the average value of
wu’ is zero, and we find as the mean gain of energy to the wall

’

2 [(m'u'2 —mu?) + (m—m') uu').

2mm
(m+m')
where mu? denotes the mean value of mu2, and so on.

Thus the vessel gains in energy and so rises in temperature if
the average value of m'u’2 is greater than the average value of
mu?, and conversely. If the vessel and the gas have the same
temperature, the vessel neither gains nor loses energy on the
average, so that we have

mus = mu'? veeenn(10)

11. Suppose next that two kinds of gas are mixed in the vessel,
the mass and velocity-components of the molecules of the second
kind being denoted by m’’, ”’, v"/, w’’, and suppose further that
both kinds of gas are at the same temperature as the vessel itself.
Then there is no loss or gain of energy to the vessel through col-
lisions with either kind of molecule, so that, in place of equation
(10), we must have

——— (m'u m'u' —mu?),

mu = mu? = m'u', veeene(11)

Since the molecules will be moving in all directions equally,
we also have

m'v'? = m'w'® = m'u'?, ...(12)
a.nd there are similar equations for the second kind of molecules
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Equation (11) gives at once the relation

%mrr(urla+v/la+wl'g) = %mr(urz_l_vlz_l_w;z). e (13)

Thus when two gases are mixed at the same temperature, the
average kinetic energy of their molecules is the same. The less
massive molecules must move, on the average, faster than the
more massive, the difference of speed being such as to make the
average kinetic energy the same in the two cases. This is a special
case of a much wider theorem known as the equipartition of’
energy. The general theorem is of very wide application, de-\v
pending as it does only on the general laws of dynamics. (See |
§ 211 below.) !

An illustration, of a rather extreme kind, is provided by the °
Brownian movements. Andrade and Parker* find that the
particles of freshly-burned tobacco smoke have an average
diameter of about 1:6 x 10-¢ cm., so that their mass must be of
the order of 10718 gm., or 20,000 times the mass of a molecule of
air. If the particles are suspended in air, their average speed
will be about a 140th of that of the air molecules—say 3 metres
a second. The combination of ultra-slow speed with ultra-large
size makes it possible to study their motions in the microscope.
Yet even here we do not see this actual motion, but only the
motion resulting from a succession of free paths, each of which
is performed with this velocity on the average.

Another illustration of the same dynamical principle can be
found in astronomy, being provided by the motion of the stars in
space. The stars move with very different speeds, but there is
found to be a correlation between their speeds and masses, the
lighter stars moving the faster, and this correlation is such that
the average kinetic energy of stars of any specified mass is
(with certain limitations) equal to that of the stars of any other
mass. Here, as 50 often in astronomy, the stars may be treated as
molecules of a gas, and the facts just stated seem to shew that the
stars have been mixed long enough for all types of stars to have
attained the same ‘‘ temperature”.

* Proc. Roy. Soc. A, 159 (1937), p. 515.
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Tempemtyre and Thermodynamics

12. Equation (13) has shewn that the average kinetic energy
of motion of a molecule depends only on the temperature, and
it is important to discover the exact law of this dependence.

We must first define temperature. Many ways of measuring
temperature depend on the physical properties of particular
substances. The ordinary thermometry, for instance, depends on
the physical properties of water, glass and mercury. If we used
alcohol or gas in our thermometer instead of mercury, we should
obtain a slightly different temperature-scale. In fact, there are
at least as many ways of measuring temperature as there are
substances wherewith to measure it. But, outside all these,
there is one more fundamental way which is independent of the
properties of any particular substance. Clearly this is the way
which should be used in the kinetic theory, since this is concerned
with the properties of all substances equally.

According to thermodynamical theory, the addition of a small
amount of heat-energy d@ to a mechanical system at a tempera-
ture @ produces an increase d@/f(f) in a physical quantity S,
which is defined to be the “entropy” of the system. Here f(6)
is a function, so far unspecified, of the temperature 0, which
may so far be measured in any way we please; a change in
the method of measuring 6 is compensated by a change in the
form of the function f.

This expresses no property of nature or of matter so far. It
merely defines S as the quantity obtained by successive alge-
braic additions of the quantity d@/f(), and so as

daQ
5= oy
But the investigations of Carnot* shewed that there is a certain
particular form for f(0), for which the quantity S defined in this
way depends only on the physical state of the mechanical
system concerned. If we start from any physical state 4, and
after a series of additions and subtractions of heat-energy bring
the system back again to its original state 4, then 8 will also

* Réflexions sur la puissance motrice du feu (English translation,
Macmillan (1890)), or Preston, Theory of Heat, Chapter vin, Section 11.
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return to its original value. Thus for such a cycle of changes, we

must have
f “449 o
40
This expresses Clausius’ form of the second law of thermo-

dynamics. The same thing may be expressed more mathema-
tically by the statement that if

dS = 4Q

J0)
then dS is a ‘‘perfect differential”’. These relations are true for
all mechanical systems, and so do not depend on the physical
properties of any particular substances except in so far as these
are involved in the measuring of ¢.

Lord Kelvin pointed out in 1848* that the foregoing facts
make it possible to build up a thermometer scale which shall be
independent of the physical properties of all substances; we
need only define the new temperature 7' by the equation

T=f(0). ‘
The scale obtained in this way is known as the “absolute”
scale. It isindefinite only to the extent of a multiplying constant,
since 7' might equally well be chosen to be any multiple of f(6).
In practice, this constant is chosen so that the difference between
the freezing and boiling points of water (under the same con-
ditions as for the centigrade scale) is equal to 100 degrees. To
this extent, and this only, the ‘“absolute’ scale is related to a
particular substance. On this scale, the entropy S is defined by

dQ
dS = 7

We proceed to connect the results already obtained with this
absolute scale of temperature.

Returning to our cubical vessel of volume I, let us suppose
that one of its faces can slide in and out, like a piston in a cylinder,
so that we can change the volume of the vessel. At first let it be
of volume 3, as before, and contain N molecules of average

* W. Thomson, Proc. Camb. Phil. Soc. (1848) and Trans. Roy. Soc.
Bdinburgh (1854).
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kinetic eriergy Z, each molecule being a hard elastio sphere of
infinitesimal size.

Now suppose that a small quantity of energy is added, in the
form of heat, to the gas in the cylinder. Part of this may warm up
the gas, so that the average energy of each molecule is increased
from E to E +d E; as there are N molecules, this
uses up an amount Nd £ of the energy. Another /,/
part of the added energy may be used in ex-
panding the volume v of the gas. If the movable ////)/ //ﬂ
face increases its distance from the opposite face
by dI, the volume will be increased from I to |, 1,
1?(I+dI), an increase of volume dv equal to 12dl.
As the gas exerts a pressure pl? on this movable [ —
face, there must also be a force pl? acting on the
movable face from outside to hold it in position.
When the gas expands to the extent just
described, this force is pushed back a distance dl, and the energy
consumed in doing this is p/*dl or pdv. The sum of these two
amounts of energy must be equal to the amount of heat-energy
added to this gas. Calling this d¢), we must have

¥ig. b

dQ =NdE+pdv. ... (14)

On inserting the value already found for p in equation (2), this
becomes

dQ = NdE+gMdv ...... (15)

Thus the value of dS is given by

=7 =t ey

Since § depends only on E and v, we have
o8 N 028 2NE
oF T’ % 3Tv’

We obtain the value of aaLg either by differentiating 9.5/dv

with respect to E, or by differentiating 08/0E with respect to v.
Equating the two values so obtained, we find

2 (25
oE\3Tv ’
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This shews that £/T must be a constant, and gives us our first
insight into the physical meaning of absolute temperature; we
see that it is simply proportional to the average kinetic energy
of motion of a molecule. We may in fact write

%g =R, L. (16)
where I is a constant which is usually called Boltzmann’s
constant. We have already seen (§ 11) that & has the same value
for all gases at any assigned temperature, so that R is the samg
for all gases; it is in fact a universal constant of nature. Its valué,
as we shall see later, is 1:379 x 10~¢ in c.@.S. centigrade units. \

We have thus found that the average kinetic energy of motion‘\.

of each molecule is proportional to the absolute temperature,'
the exact relation being

Im(u4+024+w?) =3RT. .. (17)

Since the motions of the molecules can have no preference for
particular directions in space, the mean values of u?, »? and w?
must all be equal, so that relation (17) may be expressed in the

form Mt =mot=mwt = RT. ... (18)

The Gas-laws

13. With these rclations we can at once express the relations
between pressure, volume and temperature. In equation (2),
namely

2 x kinetic energy

3 x volume

b

pressure =

we may put the kinetic energy equal to N E, where N is the total
number of molecules and Z is the average kinetic energy of each.
The relation now becomes

2NE NRT

e . 9
P=— S (19)

If the N molecules consist of N, molecules of one kind, N, of
a second kind, and so on, so that N = N, + N, + ..., we have

p— TBT NMRT NRT
v v v
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Thus the pressure exerted by a mixture of different gases is
equal to the sum of the pressures which would be exerted by the .
constituentsseparately, which again brings us to Dalton’slaw (§8).
We have already noticed that when the temperature is kept con-
stant, p varies inversely as v (Boyle’s law); equation (19) shews
further that when the volume is kept constant, p varics as 7', the
absolute thermodynamic temperature (Charles’ law). Further,
when p is kept constant, v varies as T'; if a mass of gas is kept at
constant pressure, its volume will change in exact proportionality
with the absolute temperature. Thus the absolute temperature
is the temperature which would be read off a thermometer in
which the expanding substance was a gas of the ideal kind we
have been considering, the molecules being hard spheres of
infinitesimmal size, exerting no force except at collisions. This,
indeed, expresses the fundamental principle of gas-thermometry.
1t enables us to fix the zero-point of the absolute temperature
scale—the absolute zero of temperature. This is found to be

—2732°C. (20)

At this temperature, £ = 0, which means that all the molecules
are at rest; there is no molecular motion, so that the substance
cannot be in the gaseous state. As the temperature is raised
above this point, motion ensues, the average kinetic energy per
molecule being always proportional to the temperature measured
from this zcro-point.

If we warm up the gas inside an enclosure which is kept at
constant pressure, both p and v must remain constant, so that,
from relation (19), NRT remains constant. It is interesting to
notice that heating up the enclosure does not, as might at first
be thought, increase the total quantity of heat inside it; as 7
increases N correspondingly decreases, so that all the heat we
provide goes elsewhere. For instance, when we light a fire in a
room, we do not increase the heat-content of the air of the room;
this remains unchanged. By increasing the pressure, we drive
some molecules out of the ronm, and the original amount of heat,
now being distributed over a smaller number of molecules, gives
more energy to each.
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14. Formula (19), namely
pv = NRT,

shews that the number of molecules in a gas of specified volume,
temperature and pressure 18 the same for all gases, and so i8 inde-
pendent of the nature of the gas.

This is commonly known as Avogadro’s law, having been pro-
posed by Avogadro in 1811 as a hypothesis to explain the fact
that gases unite, both by weight and by volume, in simple pro-
portions which are measured by the ratios of small integral
numbers. '

Without the kinetic theory to help us, it would have been rathey
natural to think that, if a gas had specially massive molecules, the
standard pressure of one atmosphere would be produced by a'
smaller number of molecules than in a gas with light molecules.
The kinetic theory shews that at any specified temperature
massive molecules move more slowly than light ones, so that in
actual fact the pressure exerted per molecule is the same for all,
namely R7'/v. Thus the number of molecules per c.c. needed to
produce one atmosphere pressure at the standard temperature of
0°C. is the same for all gases. This number, which is known as
Loschmidt’s number, will be denoted by N,, and its numerical
evaluation is naturally of great importance for the kinetic
theory of matter.

Closely associated with it is another number, which measures
the number of molecules in a gramme-molecule of any substance
—i.e. in a mass of the substance in which the number of grammes
is equal to the molecular weight of the substance. This is
commonly known as Avogadro’s number and will be denoted
by N,.

Evaluation of Avogadro’s and Loschmidt's Numbers

15. These numbers can be evaluated in a great variety of
ways. Virgo* has enumerated more than eighty different
experimental determinations which had been made by 1933,
and the number continually increases.

* Science Progress, 108 (1933), p. 634, or Loeb, Kinetic Theory of Gases
(2nd edn, 1934), p. 408.
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The numbers can be evaluated most accurately from electro-
lytic phenomena. When a mass of any substance is broken up
electrolytically, a certain quantity of electricity is consumed, this
being required to provide the electronic charges on the ions.
Experiment shews that 9648-9 electromagnetic units of charge
are required for every gramme-molecule of the substance.
According to the most recent determinations, the electronic
charge e—i.e. the charge on a single electron or ion—is given by

e = 4-803 x 10719 electrostatic units
= 1-602 x 10-2° electromagnetic units

to an accuracy of within 1 part in 1,000.* Thus the above-
mentioned 96489 clectromagnetic units are equal to

9648-9
= -6 B 2
N, = 1os 1o = 6023 %10 (21)
electronic units of charge. This, then, must be the number of
molecules in a gramme-molecule of any substance, i.e. in a mass
which contains a number of grammes equal to the molecular
weight of the substance. Since the molecular weight of hydrogen
is 2:016, a gramme-molecule of hydrogen weighs 2-016 grammes,
so that the number of molecules of hydrogen to a gramme is
6-023 x 10%
2-016
The density of hydrogen at standard temperature and pressure
is 0-00008987, so that a cubic centimetre of hydrogen at standard
temperature and pressure weighs 0-00008987 gramme. The num-
ber of molecules it contains is accordingly

N, = 0-00008987 x 2-987 x 1028 = 2:685 x 1019, ..... .(22)

= 2:987 x 10%,

This is Loschmidt’s number.

16. Another, although far less exact, determination of N, can
be made from observations on the Brownian movements in the
way already explained. Perrin, who first developed the method,
obtained values uniformly larger than those given above. Later

* Birge, Nature, 137 (1926), p. 187; Phys. Rev., 241 (1937), p- 241;

H. R. Robinson, Reports on Progress in Physics, 4, Physical Society
(1938), p. 218; Nature, 23 July 1938, p. 159.
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observations by H. Fletcher* gave the value N; = 6-03 x 10%,
with a probable error of about 2 per cent of the whole, but a still
more recent determination by Pospiil{ gives N; = 6-22 x 1023,
From experiments on the Brownian movements of his torsion-
balance (§5), Kappler deduced as the value of Boltzmann’s
constant (see equation (60) below), B = 1-36 x 10~1¢. Combining
this with the relation pv = NRT, we can deduce as the value
of I,
N, = 2:67 x 10, ;

Kappler estimated the probable error of his determination pf
R to be 3 per cent, so that there is a certain element of luck in t};a
agreement between this and the true value of N,.

17. The largeness of the numbers &, and NV, gives a measure of
the fine-grainedness of the molecular structure of matter. Some
conception of the degree of fine-grainedness implied may perhaps
be obtained from the following considerations.

The number of molecules in a drop of water one cubic millimetre
in volume will be

A
mTﬁ_;—an = 334 x 10“,
whence we can calculate that if the water is allowed to evaporate
at such a rate that a million molecules leave it every second, the
time required for the whole drop to evaporate will be 3:34 x 1013
seconds, which is more than a million years.

Again, a man is known to breathe out about 400 c.c. of air at
each breath, so that a single breath of air must contain about
1022 molecules. The whole atmosphere of the earth consists of
about 10% molecules. Thus one molecule bears the same relation
to a breath of air as the latter does to the whole atmosphere of the
carth. If we assume that the last breath of, say, Julius Caesar
has by now become thoroughly scattered through the atmosphere,
then the chances are thateach of us inhales one molecule of it with
every breath we take. A man’s lungs hold about 2000 c.c. of air,
so that the chances are that in the lungs of each of us there are
about five molecules from the last breath of Julius Caesar.

* Phys. Rev. 4 (1914), p. 440.
t Ann. d. Phys. 83 (1927), p. 735.
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The 2:685 x 10%° molecules in a cubic centimetre of ordinary air
move with an average speed of about 500 yards in a second. In a
single second, then, the molecules in a cubic centimetre of air
travel a total distance of 13 x 102! yards, or 12 x 108 kilometres,
which is about 150,000 times the distance to Sirius.

18. Since a cubic centimetre of gas at 0°C. and at standard
atmospheric pressure contains 2685 x 101? molecules, the average
distance apart of adjacent molecules must be about

(2-685 x 10'°)~t cm.,
or 3:34x10~7 em. If we pass 100 km. up in the atmosphere—
broadly speaking to auroral heights—we come to pressures of
only about a millionth of an atmosphere; here the average dis-
tance of the molecules is only about 3 x 10-% cm. Out in inter-
stellar space the pressure is probably less by a further factor of
about 10-1%; here adjacent molecules are, on the average, a few
cenlimetres apart.

Molecular Masses

19. Asthere are 2-987 x 10*¥moleculesin a gramme of hydrogen,
the mass of thehydrogen molecule must be 3-347 x 10-24 grammes,
and that of the hydrogen atom 1-673 x 10-24 grammes.

The masses of other molecules will be in exact proportion
to their molecular weights; that of oxygen, for instance, of
molecular weight 32, is 53-12 x 10~2¢ grammes.

The Specific Heats of a Gas

20. Aswe have seen, the heat-energy of a gas is the aggregate
of the energies of its scparate molecules, and the temperature
of the gas gives a measure of this energy. Thus to raise the
temperature of a gas, the energy of its molecules must be
increased. The amount of heat or of energy needed to raise the
temperature of unit mass by 1° is called the specific heat of the
gas; it may be measured either in heat- or in energy-units.

Equation (14) already obtained, namely

dQ = NdE + pdv, eernn(28)
tells us how much energy is required to produce any specified
change in the temperature and volume of a gas, and so provides
a basis for a discussion of the specific heats of a gas.
IXT 3
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Specific heat measurements are usually made under one of two
alternative conditions:
(1) At constant volume, i.e. in a closed vessel.

(2) At constant pressure, i.e. in a vessel which is open to
the air or other space at a fixed pressure.

To study specific heats measured at constant volume, we put
dv =0, and the last term in equation (23) is immediately
obliterated; all the heat goes to increasing the energy of the
molecules, and the equation becomes :

dQ = NdE.
The specific heat at constant volume, C,, which is the heat re-

quired to raise unit mass of the gas through a temperature change
of 1°C,, is given by

aQ
Co= >
iE
or again by C,=N — T

where & is now the number of molecules in a unit mass of the gas.
Since Nm = 1, we may replace N by 1/m. We have so far supposed
the heat measured in energy-units. One calorie or heat-unit is
equal to J energy-units, where J is the mechanical equivalent

of heat, given by
J = 4184 x107,

so that if €, is measured in heat-units, its value is

_1aE
o= Jmdm e
If the measurement of specific heat is made at constant pres-

sure, the gas expands as its temperature is raised, and dv must no
longer be put equal to zero. The value of the pressure is given by

pv = NRT,
so that when the pressure is kept constant, we obtain by differ-
entiation pdv=NRdT,
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and equation (20) assumes the form
dQ = NdE + NRdT,

whence the specific heat at constant pressure, C,, measured in
heat-units, is given by

1dQ 1 (dE
CP‘?ZT'?E(T’J""R)' ...... (25)
The difference and ratio (y) of the specific heats are seen to be
given by R
C,-C,= T e (26)
Y
y=Coony 2L (27)

c, +di«i/dT'
If the molecules are hard elastic spheres, the value of & is 3RT,
and the value of C,/C, becomes 15.

Relation (26) is obeyed by most gases throughout a substantial
range of physical conditions (Carnot’s law). Also the ratio of
the specific Leats is equal to about 15 for the monatomic gases
mercury, helium, argon, etc., suggesting that the atoms of these
substances behave, in some respects at least, like the hard
spherical balls which we have taken as our molecular model. On
the other hand air and the permanent diatomic gases have a
value of C,/C, equal to about 1% under normal conditions, sug-
gesting that their molecules are not adequately represented by
the hard spherical balls of our model. This is perhaps hardly
surprising, secing that these molecules are known to consist of
two distinct and scparable atoms.

21. Complex molecules of this kind may rotate or have internal
motion of their parts, so that clearly we must suppose they can
possess energy other than the kinetic energy of their motion; let
us suppose that on the average this energy is £ times the average
kinetic energy of motion. The average total energy of a molecule
E is now given by _

E = 3RT(1+p).
Carrying through the analysis as before, we find

3R
Cy = 57, (1+), (28)
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3R R
Op Bm(l-"ﬂ)"-m, ...... (29)
in which £ has been supposed not to vary with 7.
. R
The relation C,-C, = T

which is true for most gases, still holds, but in place of relation
(27) we have
C, 2
=—t=l4+—s. ...
Y=T,T Ta+p) (20)

Thus the value of # can be deduced from the observed value xf
C,/C, for any gas. This gives us some knowledge of the structure
of the molecules of gases, which will be produced and discussed in
its proper place.

Maxwell’s Law

22. So far we have been concerned only with the average
kinetic energy, and the average speeds of molecules; we have had
no occasion to think of the energies or speeds of individual mole-
cules. And it is obvious that the speeds of motion of the various .
molecules cannot be all equal; even if they started equal, a few
collisions would soon abolish their equality. For the solution of
many problems, it is necessary to know how the velocities of
motion are arranged round the mean, after so many collisions
have occurred that the gas has reached its final steady state in
which the distribution of velocities is no longer changed by
collisions.

To study this problem, let us imagine that the molecules of a
gas still move in a closed vessel, but that they are under the in-
fluence of some permanent field of force—gravitation will serve
to fix a concrete picture in our minds, although it is more in-
structive to imagine something more general. Under these con-
ditions, the velocity of a molecule will change continuously as it
moves from point to point under the forces of gravity or the other
permanent field of force, and will also change discontinuously
each time it collides with another molecule.

Let us now fix our attention on a small group of molecules
which occupies a small volume of space dzdydz, defined by the
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condition that the z-coordinate lies within the small range from
z to z + dz, while the y- and z-coordinates lie within similar ranges
from y to y +dy, and from z to z+dz. We shall not concern our-
selves with all the molecules inside the small element of volume,
but only with those particular molecules of which the velocity
components are approximately u, v, w; to be precise we shall
confine our attention to molecules with velocities such that the
u-component lies between » and u + du, while the v- and w-com-
ponents lie within similar small ranges from » to v +dv and w to
w+dw. The number of molecules in this group will of course be
proportional not only to the volume dx dy dz, but also to the pro-
duct of the small ranges du dvdw. Thus it is proportional to the
product of differentials

dudvdwdzdydz.

It is also proportional to another factor of the nature of a
“ density”’, which specifics the number of molecules per unit
range lying within the range in question. This factor naturally
depends on the particular values of z, , z and of u, v, w. Let us
suppose that, whatever these values are, it is

J(u,v,w,2,y,2),
so that the number of molecules in the group under considera-
tion is
fuw.v,w,z,y,2)dudvdwdzdydz. ... (31)

As the motion of the gas proceeds, changes will occur in the
values of 2,7,z and »,»,w for individual molecules, and also in
the values of dx,dy,dz,du,dv and dw for the group as a whole.
Let us suppose that after a small time dt, these quantities have

become
z,y,2,u, v, w and do’,dy’,dz,du’,dv’,dw’,

1espectively. These are of course given by
z' = x+wudt, ete. e (32)
and w =u+Xdt ete., = ... (33)

where X, Y, Z are the components of force per unit mass on &
molecule at z, y, 2.
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If the gas is in a condition of steady motion, this group of
molecules will exactly step into places which have just been
vacated by a second group of molecules, which occupied these
places at the beginning of the interval of time d¢, and so will be
equal in number to this second group. The number in the second
group is, as in formula (31),

S, o w2y, 2" ) du dv' dw' d’ dy' d2', ... (34)
so that if the gas is in a state of steady motion, expressions (34)
and (31) must be equal. ‘

The relation between u, v, w,z,y,z and %', ¢, w', 2, ¥/,
is that expressed in equations (32) and (33). From these rela,-';
tions, it is fairly easy to shew that the product of the six.
differentials du’ dv' dw’ dx’ dy’ d2’ is precisely equal to the
product du dv dw dx dy dz; we need not spend time over a detailed
proof, since this would only constitute a very special case of a
general theorem to be proved later (§206). The products of
differentials in formulae (31) and (34) being equal, we must
have the equation

flu,v,w,z,9y,2) = f(u',v,w',z,y,2"). ... (35)

Thus f(u, v, w, z, ¥, z) is a quantity depending only on the values
of u,v,w and of z, y, 2, which does not change in value as a mole-
cule follows out its natural motion without any collisions taking
place. One such quantity is of course the cnergy of the molecule,
which we may denote by Z; clearly then

fu,v,wa,y,2)=E ... (36)
is & solution of equation (35). A more general solution is
flu,v,w,2,y,2) = HE), .. (37)

where @(E) is any function whatever of Z, as for instance its
square or its logarithm. Here E, the total energy of a moving
molecule, is given by

E=im@u+o®+uwl)+y, ... (38)
where x is the potential energy of a molecule in the field of force,
so that the forces acting on the molecule are given by

mX-~—, mY = 17>, mZ=—a-.
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It is quite easy to shew* that this expresses the most general
solution possible of equation (35), but we need not delay over this
proof, as a complete discussion of the whole problem will be given
later (Chap. x).

23. We have now found that if the law of distribution
is given by equation (37), where @ represents any function
whatever, the distribution of velocities will not be altered by
the natural motion of the gas, so long as no collisions take
Pplace.

In general, however, the law of distribution will be altered by
collisions, and the question arises whether there is any special
form for the function @ such that collisions have no effect. If so,
on inserting this {form of @ in equation (37), we shall obtain a law
of distribution which remains unaltered both by the natural
motion of the gas and by the occurrence of collisions between its
molecules. Such a law of distribution must of course represent a
true steady state.

As we shall see later (§ 189), a gas in which abundant collisions
are occurring behaves exactly like the fluid of hydrodynamical
theory; at every point there is a pressure of the amount given by
equation (3) or (19), namely

p=14pCt= 8_1;1,

If the gas is in a steady state at a uniform temperature 7',
variations in this pressure hold the gas at rest against the forces
exerted by the external field. As we have supposed these forces
to be X, Y, Z per unit mass, the hydrostatic equations which
express this are

op

= —pX, ete.,

or, inserting the values of p and X,

qu—jge = —’B‘a‘x‘, etCa
m ox m ox

* See, for example, Jeans, Astronomy and Cosmogony (2nd edn.),
p. 364.
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These three equations have the common integral, well known
in hydrodynamical theory,

RTlogp = —x+a constant,

or
p= Bewrr (39)

where B is a constant.

If the steady state of the gas is not to be destroyed by collisions,
p must vary with the potential y in the way indicated by thls
equation.

Now p expresses the law of distribution in space alone, Whereax
f expresses it for both space and velocitics. If we are to find a!
true steady state, it must be by extending the p given by formula.
(39) into a formula for f by the addition of velocity terms in u, v
and w. Since p is a function of )y only, while f must be a function of

tm(u?+ 0%+ w®) + x,
the obvious extension of formula (39) is
im0t twh)+x
f(u,v,w,z,y,2) = ABe” RT
where A Bis a new constant, being 4 times the former constant B.
We shall see later that this is the usual law of distribution for

n gas in its steady state. It is customary to write z for 1/2R7', so
that the formula becomes

Ju,v,w,x,79,2) = ABe hmuHvi+ud-thy (40)

The two factors B and e~2"x express the law of distribution of
the molecules in space in accordance with formula (39). The

remaining factors
A e—tmiul+vi+w?)

must therefore express the law of distribution of velocity com-
ponents for the molecules at any point of space.

24. This law was first discovered by Maxwell, and so is com-
monly known as Maxwell’slaw. It occupies a very central position
in the kinetic theory, and will be fully discussed in a later chapter.

A more rigorous proof will also be given. The proof just given
fails entirely in mathematical rigour, but is of interest because
it provides a physical interpretation of the exponential factor
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which is the outstanding feature of Maxwell’s law. We have
seen that this is exactly analogous to the exponential in the
well-known formula (39) which expresses the falling off of
density of a gas in a field of force. This latter formula shews
that the chance of a molecule having high potential energy falls
off exponentially with the amount of the potential energy: in
the same way Maxwell’s law tells us that the chance of a molecule
having high kinetic energy falls off exponentially with the
amount of the kinetic energy. The two cxponentials are of
exactly similar origin.

We can sce still more clearly into the matter by supposing
our gas to be the atmosphere, and the field of force to be that
of the earth’s gravitation. We may think of a molecule of air
which reaches the top of the atmosphere as getting there as the
result of a succession of lucky collisions with other molecules,
each of which gives it enough potential energy to climb one
rung higler in the ladder of the atmosphere. The chance of any
molecule experiencing a succession of » lucky hits is proportional
to a factor of the form e—**, where ¢ is a constant. Thus we can
picture in a gencral way why the chance of a molecule having
potential encrgy x is proportional to e~#X, where f# is a new
constant. This gives a physical insight into the origin of the
exponcntial factor in formula (39).

In the same way we may think of a molecule with an excep-
tionally large energy Z, as having acquired it by a succession
of lucky collisions. If E is the average kinetic energy of a
molecule, the number of lucky collisions necded to give kinetic
energy E is proportional to E — I, and the chance of a molecule
having experienced this number of lucky collisions is propor-
tional to e#&-B) which again is proportional to e~#Z,

The value of an exponential with negative index, such as
e~2*, falls off very rapidly as z becomes large, but it does not
become actually zero until z reaches the value +co. Applying
this to formula (41), we see that there are molecules with all
values of u,v,w right up to u,v,w = + oo, but large values of
u, v, w are excessively rare. Still even the largest values are not
prohibited by the formula.

To notice a simple consequence of this, we know that pro-
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jectiles escape altogether from the earth’s gravitational field if
their velocity of projection exceeds about 11 kilometres per
second. In the earth’s atmosphere, the average molecular
velocity is one of hundreds of metres per second. Thus molecular
velocities of 11 kilometres per second are excessively rare, but are
not non-existent. Of the molecules in the outermost layer of
the atmosphere, a certain small proportion must always have
velocities in excess of this. These molecules in effect constitute
projectiles which will pass off into space never to return. I'or this
reason, the earth is continually losing its atmosphere, although
at an excessively slow rate.

The molecules which are most likely to attain speeds df
11 kilometres a second are those of smallest weight, for these
have the highest average velocity. Thus hydrogen will be lost
more rapidly than nitrogen, and nitrogen more rapidly than
oxygen. A simple calculation shews that any hydrogen in the
earth’s atmosphere would be speedily lost.

The corresponding velocity for the moon is only about 2-4
kilometres per second, so that when the moon had an atmosphere
—as it must have had at some time in the past—the rate of
escape must have been comparatively rapid. This is why the
moon no longer has an appreciable atmosphere. The atmosphere
of the other planets and their satellites may be discussed in the
same way, with results which are found always to be in agreement
with observation.

The mean value of %2+ 22+ w?, which we have denoted by C?,
can be obtained from formula (41) by a simple integration (cf. § 91,
3 or 35 T. In a similar way, the
2hm m
mean value of the velocity J(u?+ v+ w?), which we shall denote by
¢, is found to be - «/ , which is 0-921 times C, so that C= 1-086¢.

below), and is found to be

(m h m)’

25, If two gases are mixed, and the mixture has attained its
steady state, the temperature must be the same for both, so that
h, which is equal to 1/2RT', must be the same for both. Thus the
laws of distribution for the two gases will be of the form

A e-hmiut ot e (42)
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A’ e hmwhiviiwn ceenr(43)

where m’ and u’,v’,w’ denote the mass and components of
velocity of a molecule of the second gas.
If we introduce new velocities '/, v"’, w’’ defined by

/ m
’
w = ”T,u”, ete.,

this second law may be put in the form
A’ e—hm( u”'+v"“+w"l),

which is identical with (41) except for ", v, w" replacing u, v, w.
Thus the molecular velocities in the second gas are uniformly
J(m/m’) times those in the first gas. As a particular case of this,

m (Wit rw'?) = mui+ it wd), ... (44)

so that the average molecular energy is the same in the two gases,
the result already obtained in §11.

The Free Path

26. We may next glance at some problems connected with the
free paths of the molecules—i.e. the distances they cover between
successive collisions.

Let us fix our attention on any one molecule, which we may
call 4, and consider the possibility of its colliding with any one
of the other molecules B, C, D, .... If, for the present, we picture
each molecule as a sphere of diameter o, then a collision will occur
whenever the centre of 4 approaches to within a distance o of
the centre of B, C, D, or any other molecule. Thus we may imagine
4 extended to double its radius by a sort of atmosphere, and
there will be a collision whenever the centre of B, C, D, ... passes
into this atmosphere (see fig. 7).

Now as 4 moves in space, we may think of it as pushing its
atmosphere in front of it, and for each unit distance that 4 moves,
the atmosphere covers a new volume 7o® of space. If there are
v molecules per unit volume, the chance that this volume shall
enclose the centre of one of the molecules B, C, D, ... is nvo?.
If the molecules B, C, D, ... were all standing still in space,
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the average distance that 4 would have to travel before it ex-
perienced a collision would be

1
mvo*

This calculation reproduces the essential features of the free-
path problem, but is generally in error numerically because it
treats the molecule 4 as being in motion while all the other
molecules stand still to await its coming. Thus it gives accurately
the free path of a molecule moving with a speed infinitely greater

S~

— "

Fig. 7 -

than that of the other molccules (§114). 1t also gives very ap-
proximately the free path of an electron in a gas, because this,
owing to its small mass, moves enormously faster than the mole-
cules of the gas. It must however be noticed that o no longer
represents the diameter either of a molecule or of an electron,
but the arithmetic mean of the two, and as the diameter of the
electron is very small, o is very nearly the radius of the molecule.

In a variety of cases numerical adjustments are needed
which will be investigated later (§§ 108 ff.). When all the mole-
cules move with speeds which conform to Maxwell’s law, the
average free path is found to be

1 veeenn(45)

\2nvo?
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Viscosity

27. The free path in a gas which is not in a uniform steady state
is of special interest. A molecule which describes a free path PQ
of length A with z-velocity u may be regarded as transporting
z-momentum mu from P to Q. If the gas is in a steady state, we
may be sure that before long another molecule will transport an
equal amount mu of momentum from @ to P, so that, on balance,
there is no transfer of momentum.

Suppose, however, that the gas is not in a steady state, but is
streaming in parallel layers, with a velocity
which varies from one layer to another. To
make a definite problem, suppose that the gas
is streaming at every point in a direction [—>
parallel to the axis Oz, that its velocity of
streaming is zero in the plane z =0, and
gradually incrcases as we pass to positive values [
of z (fig. 8). Let the velocity of streaming at
any point be denoted by %, which is of course ¢
the average value of u for all the molecules Fig. 8 r
at this point. &

Again every molecule which describes a free path PQ with
velocity u transports momentum mu from P to . If the free
path crosses the plane z = 0, the molecule transports momentum
across the plane z = 0.

The molecules which cross this plane from the positive to the
negative side have, on the average, positive values of u, because
they start from regions where the gas is streaming in the direction
for which » is positive, and so transport a positive amount of
momentum across the plane z=0 into regions where the momen-
tum is negative. But the molecules which cross in the reverse
direction start from regions in which  is prevailingly negative,
and so on the average carry a negative amount of momentum
across the plane into regions where the momentum is positive.
Thus both kinds of free path conspire to equalise the momentum,
and so also the velocities, on the two sides of the plane. It is
as though there were a force acting in the plane z=0 tending
to reduce the differences of velocity on the two sides of this

-
a2

S ——
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plane. This provides the kinetic theory explanation of gas-
viscosity.

A rough calculation will give an idea of its amount. Let a
typical molecule describe a free path with momentum parallel to
Oz of amount mu, and let us suppose the projection of the free
path on the axis of z to be A’. Then the velocities of streaming
differ at its two ends by an amount

A’ du :
and if the momentum mu is that appropriate to P it is m\
appropriate to ¢ by an amount \

7«’ d— ...... (46)

If there are » molecules per unit volume, and we suppose each

tomove with an average velocity ¢, the number of molecules which

cross unit area of the plane z = 0 in both directions in unit time is

of the order of magnitude of v¢; multiplying this by expression

(46), we find that the transfer of momentum per unit area per
unit time across the plane z = 0 would be

_ ,du _.,du
Ve X mA Ez-=pc)l i

if each free path had the same projection A’ on the axis of z. If
the free paths are distributed equally in all directions in space and
of average length A, we eagily find that the average value of A’
is $A. Inserting this value for A" into the formula just obtained,
we find that the transfer of momentum is

1pcA g‘
The theory of viscosity tells us that the transfer is
du
14z’
where 7 is the coefficient of viscosity. Thus
7 = {peA. veeena(47)
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This simple calculation needs innumerable adjustments, but
more exact analysis to be given later shews that the actual value

of the coefficient of viscosity does not differ greatly from that just
found.

Conduction of Heat

28. A moving molecule transports energy and mass as well
as momentum. A molecule which describes the free path P@Q of
fig. 8 with encrgy £ may be regarded as transporting energy
E from P to Q. If the mean energy E at P is equal to that at @,
this transfer of energy will be equalised by another in the opposite
direction. Butif the gasis arranged in layers of equal temperature
parallel to the plane of zy, the two mean cnergies will not be
equal, and the {irst molecule carries, on the average, an excess
of energy _

xeE
to @, while the second carries a deficiency of equal amount to P.
Just as in our earlier discussion of momentum, we find that across
unit area of any plane there is a transfer of energy equal to
VE/\’%‘—? , or %vé:\d;:-. ...... (48)

Now the theory of conduction of heat tells us that the transfer

of energy is
ar
Jk 2 I (49)

where & is the coefficient of conduction of heat and J is the
mechanical equivalent of heat. Comparing expressions (48) and
(49), we find as the value of %,
VA dE <
2_.] ﬁ [ (-)0)

We have found as the values of 7 (the coefficient of viscosity)
and C, (the specific heat at constant volume)

N = ’}PE’\'

1 dE
Co= mar

k=
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Using these relations, equation (60) may be put in the form
k=9C,, ... (61)

The three quantities k, 7 and C, which enter into this equation
can all be determined experimentally, and the accuracy with
which they satisfy the equation provides a test of the truth of our
theory. We shall see in Chapter vii that the equation is satisfied
with very fair accuracy; the relatively small discrepancies are
such as can be ascribed to the simplifying assumptions we have
made and to the fact that molecules have more complexity of
structure than our theory has allowed for.

29. Finally, if we regard the moving molecules of a gas a:
transporters of mass, we arrive at a theory of gaseous diffusion,
which will be discussed in due course.

Numerical value of the Free Path

30. Of the quantities which enter into the viscosity equation
7 = §pea,

we have secen how to calculate ¢, and # and p can be determined
experimentally. Thus A can be deduced from this equation, or,
better, from the more exact equations to be given later. We shall
find that the free path in ordinary air is about 6 x 108 ¢m. or a
400,000th part of an inch. In hydrogen, under similar conditions,
the free path is about 1-125 x 10-5 cm. The length of mean free
path, as is clear from formula (45), is independent of the tempera-
ture or speed of molecular motion, and depends only on the
density of the gas. If we double the number of molecules in our
gas, keeping its volume unaltered, each molecule has twice as
many molecules to collide with, so that at each instant the
chance of collision is twice as great as before. Consequently the
mean free path is halved. In general the length of the mean free
path is inversely proportional to the number of molecules per
cubic centimetre of gas. If the pressure is reduced to half a
millimetre of mercury, the gas has only 1:1520 of normal
atmospheric density, so that the free path in air is about a tenth
of a millimetre. In interstellar space, the density may be as low
as 10~ gm. per c.c. and the free path is of the order of 10'¢ cm.,
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or 100,000 million km. In internebular space, where the density
of gas may be as low as 10~2° gm. per c.c., the free path will be of
the order of 10'® km., or about 1000 light-years.

Comparing the values just obtained for the length of the free
path with those previously given for the velocity of motion, we find
that the mean time of describing a free path is about 13 x 10-10
seconds in air under normal conditions, about 2 x 10~7 seconds
in air at 0°C. at a pressure equal to that of half a millimetre
of mercury, and about a thousand million years in internebular
space—out here a molecule travels for a long while before meeting
another!

As a consequence of these long free paths, molecules out in
interstellar space can exist in conditions which are impossible
under the far more crowded conditions of laboratory samples,
with the result that lines and bands are observed in nebular
spectra which cannot be reproduced in the laboratory, although
theoretical calculations shew that they ought to occur in gases
at extremely low densities.

Molecular Diameters

31. Having estimated the frce path from an experimental
determination of the coefficient of viscosity, we may proceed
to estimate the molecular diamcter from the relation

A = __.1**

2mva?’
We find (§ 152) that the diameter of a molecule of air is about
3:75x 10~8 em., while that of a molecule of hydrogen is only
about 2:72 x 10-8 cm.

Thus in gas at atmospheric pressure the mean free path of a
molecule is some hundreds of times its diamcter (160 times for
air, 400 times for hydrogen). When the pressure is reduced to half
a mil'imetre of mercury, the free path is hundreds of thousands
times the diameter. It is generally legitimate to suppose, as a
first approximation, that the linear dimensions of molecules are
small in comparison with their free paths.

More definite figures for the lengths of free paths and the size
of molecules will be given later, but it is no easy matter to discuss

] KT 4
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these questions with any precision; we cannot even define the
gize of a molecule. The difficulty arises primarily from our ignor-
ance of the shape and other properties of the molecule. If mole-
cules were in actual fact elastic spheres, the question would be
simple enough; the size of the molecule would be measured simply
by the diameter of the sphere. The molecules are not, however,
elastic spheres; if they are assumed to be elastic spheres, experi-
ment leads to discordant results for the diameters of these spheres,
shewing that the original assumption is unjustifiable. Not only
are the molecules not spherical in shape, but also they are s
rounded by fields of force, and most experiments measure th
extension of this field of force, rather than that of the molecules,
themselves.

These questions will be discussed more fully at a later stage
(85146 1.).



Chapter 111
PRESSURE IN A GAS

CALCULATION OF PRESSURE IN AN IDEAL GaS

32. Leaving our general survey, we now turn to a more de-
tailed study of various special problems. The present chapter will
be concerned with the calculation of the pressurc in a gas.

This has already been calculated on the supposition that the
molecules of the gas are hard spheres of infinitesimal size, which
exert no forces on one another except at collisions. We now
give an alternative calculation, which still assumes the molecules
to be infinitesimal in size and exerting no forces except at
collisions, although not necessarily hard or spherical.

33. Let dS in fig. 9 represent a small area of the boundary of
a vessel enclosing the gas. Let there
be v molecules per unit volume of the
gas,and let thesebedivided into classes, :
so that all the molecules in any one
class have approximately the same
velocities, both as regards magnitude

———
and direction. Let vy, v,.... be the num- z
bers of molecules in these classes, so s
that Vit Vot ...=D,
Since the molecules of any one class Fig. 9

all move in parallel directions, they

may be regarded as forming a shower of molecules of density
v, per unit volume, in which every molecule moves with the
same velocity. Some showers will be advancing towards the
area dS of the boundary, some receding from it. Let us suppose
that the shower formed by molecules of the first class is ad-
vancing.

The molecules of this shower which strike d§ within an interval
of time dt will be those which, at the beginning of the interval,
lie within a certain small cylinder inside the vessel (see fig. 9).

42
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This cylirider has dS for its base, and its height is , dt, where u,
is the velocity of molecules of the first shower in the direction
normal to dS, which we shall take to be the axis of z. Thus the
volume of tho cylinder is %, dtdS, and the number of molecules
of the first shower inside it is »,u,dtdS.

Each of these molecules brings to dS momentum mu, in a
direction normal to the boundary. Thus in time d¢ the whole
shower brings momentum mvu,2dtdS, and all the showers
which are advancing on dS bring an aggregate momentu
Zmv,u2dtdS, where the summation is over all showers for whic
u i8 positive.

The pressure between the boundary and the gas first reduces)
this z-momentum to zero, and then creates new momentum in \
the opposite direction (u negative).

The pressure which, acting steadily for a time dt, will reduce
the original momentum to zero is Zmyu,2dS, where the sum-
mation is again over all showers for which « is positive.

The pressurc needed to create the new momentum after
impact can be calculated in precisely the same way. We
cnumerate the molecules which have impinged on d§ within an
interval dt, and find that their momentum would be produced
by a steady pressure Zmy,u,2dS, where the summation is now
over all showers for which » is negative.

Combining these two contributions, we find that the total
pressure pdS on the area dS is given by

pdS = ZmypuidS, ... (52)
where the summation is over all the showers of molecules.
The value of Zv,u} is the sum of the values of %2 for all the

molecules in unit volume, and this is equal to »u?®. Thus equation
(52) may be written in the form

p= myu? = pi’. - (53)
As we have seen (§ 12) that
mu? = mv® = mw® = ymC? = RT, ... (54)

equation (53) again assumes the new forms ‘
p = }pC? = vRT. er.-..(B88)
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1f the gas consists of a mixture of molecules of different kinds,
the summation of equation (52) must be extended to all the types
of molecules, and the final result, instead of equation (55), is

p=@w+v+..)RT. ... (56)

If a volume v of homogeneous gas contains N molecules in all,

then (v+v'+...)v = N, and equations (55) and (56) may be

combined in the single equivalent equation
pv=NRT.

34, In making this calculation, it has not been necessary to
make any assumption as to the way in which momenta or velo-
cities are distributed in the various showers after reflection from
the boundary.

Certain experiments by Knudsen* have led him to the con-
clusion that the directions of mole-
cular motion after impact are not
in any way related to the dircc-
tions of motion before impact, hut
that the molecules start out afresh
after impact in random directions
from the boundary, so that the
number which make an angle
between @ and 6+df with the
normal to the surface will be pro-
portional to sinddf. If this were
the true law, it is casily seen that when molecules are reflected
from a minute area of the inner surface of a sphere, the number
which would strike any area of the sphere would be propor-
tional simply to the area. Knudsen has tested this by reflect-
ing molecules from a small area of a glass sphere which was
kept at room temperature, and allowing them, after reflection,
to form a deposit on the remainder of the sphere which was kept
at liquid air temperature (fig. 10). The law was found to be well
obeyed.

From the same supposition, Knudsen has deduced certain
other propertics which he findst to be in good agreement with

* Ann. d. Phys. 48 (19135), p. 111, and The Kinetic Theory of Gases
(Methuen, 1934), pp. 26 ff. 1 Ann. d. Phys. 48 (1915), p. 1113.

Fig. 10
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observations on the flow of gases. The assumption in question has

also been tested by R. W. Wood,* who finds that it agrees very
closely with experiment. The exact law of reflection, although
immadterial for the calculation of normal pressure, is of importance
when tangential stresses have to be estimated, as in the flow of
gases through tubes (§§ 143, 144 below).

Langmuirt and others have supposed that when a gas is in
contact with a solid, those molecules of the gas which collide with,
the surface of the solid are either partially or wholly adsorbed by
the solid, and subsequently re-emitted by the surface in 4 manner
which does not depend on their history before adsorption took

place; the molecule, so to speak, ends one life when it strikes the "

boundary and after aninterval starts out again on a new existence.
This supposition has obtained considerable expcrimental con-
firmation and provides a rational explanation of Knudsen’s law.
A great deal of work has been done on the subject, but many com-
plications and difficulties remain.

35. As we have already noticed (§§13, 14), equation (57) pre-
dicts all the well-known laws of gases—the laws of Avogadro,
Dalton, Boyle and Charles. These laws have of course only been
shewn to be valid within the limits imposed by the assumptions
made in proving them. The principal of these assumptions have
been that the molecules (or other units by which the pressure is
exerted) are so small that they may be treated as points in com-
parison with the scale of length provided by intermolecular
distances, and that the forces between molecules are negligible
except at collisions. Thus the laws are best regarded as ideal
laws, which can never be absolutely satisfied, but which are
satisfied very approximately in a gas of great rarity. An
imaginary gas in which the molecules exert no forces except at
collisions, and have dimensions so small in comparison with the
other distances involved that they may be regarded as points is
spoken of as an ““ideal” gas. The foregoing laws are always true

* Phil. Mag. 30 (1915), p. 300; see also Phil. Mag. 32 (1916), p. 364.

t+ Phys. Rev. 8 (1916), p. 149; Journ. Amer. Chem. Soc. 40 (1918),
p. 1361; T'rans. Faraday Soc. 17 (1921), Part III.

t For a good sumnmary, see Loeb, Kinetic Theory of Gases (2nd edn.,
1934), pp. 338 ff.

4
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for an ideal gas; for real gases they will be true to within vary-

"ing degrees of closeness, the accuracy of the approximation
depending on the extent to which the gas approaches the state
of an ideal gas.

The method of evaluating the pressure which has been given
in §33 in no way requires that the medium should be gaseous,
although the resulting laws of Dalton, Boyle and Charles are
usually thought of only in relation to gases. Clcarly, however,
these laws must apply to any substance with a degree of approxi-
mation which will depend only on the nearness to the truth of the
assumptions just referred to.

In point of fact the laws are found to be true (as they ought
to be) for the osmotic pressure of weak solutions. They are
also true for the pressure exerted by free electrons moving
about in the interstices of a conducting solid, and also for the
pressure cxerted by the ‘““atmosphere” of electrons surrounding
a hot solid. Each of these pressures p may be assumed to be given
by formula (55), where v is the number of free electrons per unit
volume.

Numerical Estimate of Velocities
36. From equation (55) we at once obtain the relation

3p
ci== .. 58
. (58)

which, as we have already noticed, provides the means of esti-
mating the molecular velocity of a gas, as soon as corresponding
values of p and p have been detcrmined observationally.

The density of oxygen at 0° and at the standard atmospheric
pressure of 1-01323 x 10% dynes per sq. cm. is found to be
0-0014290, whence we can calculate from equation (58) that

C = 461-2 metres per second.

Also we have seen (§ 24) that C' = 1-086 times ¢, the mean velocity
of all molecules, so that

¢ = 425 metres per second.
We have also obtained the relation

=", ‘ ereena(59)



56 PRESSURE IN A GAS

where T is the temperature on the absolute scale, and R is a con-
stant which is the same for all gases. Thus as between one kind of*
molecule and another, C varies as m—t. Knowing the values of C
and ¢ for oxygen at 0° it is easy to calculate them for any other
substance. It is also easy to calculate C and ¢ for other tempera-
tures since equation (59) shews that both vary as T%, the square
root of the absolute temperature.
37. In this way the following table has been calculated:

Molecular Velocities at 0°C.

Molecular C ¢
Gas (or other weoirh R
ght = (cm. per sec. | (cm. per sec.
substance) (O = 16) m 2t 0°Cy | at b C)

RN PR A o e Y S |
Hydrogen 2-016 4127 x 101 1839 x 102 1694 x 102
Helium 4-002 2077 x 10* | 1310x 102 | 1207 x 10?
Water-vapour 18-016 462 x 104 615 % 102 565 x 102
Neon 20-18 412 x 104 584 x 104 538 x 102
(Carbon-monoxide 28-00 297 x 104 493 x 102 454 x 10*
Nitrogen 28 02 297 x 104 493 x 102 454 x 102
Ethylene 28-03 297 x 104 493 x 103 454 x 10*
Nitric oxide 30-01 277 x 104 476 x 102 438 x 102
Oxygon 32-00 260 x 10* 461 x 102 425 x 10®
Argon 39-94 208 x 104 431 x 102 380 x 102

arbon-dioxide 44-00 189 x 104 393 x 102 362 x 102
Nitrous oxide 4402 189 x 104 303 % 102 362 x 102
Krypton 82-17 101 x 10* 286 x 102 263 x 10®
Xenon 131-3 63 x 104 227 x 102 209 x 102
Mercury vapour 200-6 41-6 x 10¢ 185 x 102 170 x 102
Air — [287x 10%]| 485x 107 | 447 x 10?
Free electron @55 (H=1)| 1-5615x 10*1| 1-114x 107 | 1-026 x 107

We find that for oxygen R/m = 259-6 x 104, while the value
of m is found, as in §19, to be 53:12 x 10-2¢ grammes. Hence,
by multiplication,

R = 1379 x 10718, veee..(60)

This quantity is a universal constant, depending only on the
particular scale of temperature employed. It will be remembered
that 3R is the kinetic energy of translation of any molecule
whatever at a temperature of 1° absolute (cf. equation (17)). It
is often convenient to denote this by a single symbol «, so that

a=3R=2068x10-1, ... (61)
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The kinetic energy of translation of a molecule (or free atom
or clectron) at a temperature of 7' degrees absolute is now a7'.
Other numerical values which are frequently of scrvice are

RT,=3-761Tx 1074, oT, = 5651 x 10-1,

where 1) = 273-2° (centigrade), the temperature of melting ice
(0° C.) on the absolute scale.

38. The order of magnitude of the molecular velocities just
obtained might have been foreseen, without detailed calculation,
in the following way.

Any disturbance in a gas will of course first produce an effect
on the molecules in its immediate neighbourhood. When these
molecules collide with those in the adjacent layers of gas, the
effect of the disturbance is carried on into that layer, and so on
indefinitely. Thus the molecules of a gas act as carriers of any
disturbance, and the disturbance is propagated through the gas
with a velocity comparable with the mean velocity of motion of
the molecules, just as, for instance, news which is carried by relays
of messengers spreads with a velocity comparable with the mean
rate at which the messengers travel. The propagation of a dis-
turbance in the gas is, however, nothing but the passage of a wave
of sound, whence we see that the mean molecular velocity in any
gas must be comparable with the velocity of sound in the same
gas. Actually the velocity of sound a is given by the well-known
hydrodynamical formula

a = -y2 ,
p
where v is the ratio of the two specific heats of the gas in question
(cf. § 222 below). On replacing p by its value, §pC?, this equation
becomes

a= «/;770
For diatomic gases at ordinary temperatures, y = 1§, so that
a =0683C = 0742, ... (62)

shewing the actual relation between the velocity of sound and the
velocities C and ¢ for these gases.

For instance, the table gives for air at 0°C., C = 485 metres
per second, whence formula (62) leads to @ = 331-3 metres per
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second for the velocity of sound in air, which approximates very
closely to the true value.

E[fusion of Qases

39. The general order of magnitude of molecular velocities can
also be discovered experimentally by making a minute hole in the
wall of a containing vessel and allowing the imprisoned gas to
stream out; the velocity of eflux is nothing else than the velo- !
cities of the individual molecules. These would have becn simply
molecular velocities inside the vessel had the hole not been
present. The hole in the vessel causes the molecular velocities to
persist out into space, wherc they can be measured observa-
tionally. In fig. 9 (p. 51) imagine that the element of surface dS
is replaced by a minute trap-door, which is suddenly opened.
The number of molecules which stream through the trap-door
in time d¢ is of course equal to the number which would have
impinged on the element dS of the boundary had the trap-door
remained closed. If each molecule were moving directly towards
the trap-door with a velocity ¢, the mean velocity of all the
molecules of the gas, this number would be

ve dS dt,

8o that the rate of efflux, measured in terms of mass per unit
time per unit area of aperture, would be

mye=pc. e (63)

Actually half of the molecules are moving away from the
aperture, so that this formula must be reduced by a factor of },
and those which are moving towards the aperture are moving
in all directions at random, and therefore according to the law
sin dfd¢. A simple integration shews that this reduces formula
(63) by a further factor of 3. When both of these considerations
are taken into account, formula (63) must be replaced by

1pe.
Thus the rate of efflux is the same as if the whole gas of
density p streamed out of the aperture with a uniform velocity }c.
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Using the value for ¢ obtained in § 24, we find that the formula
can also be put in the form

RT

2mm’

P

shewing that the rates of ¢fflux of different gases at the same density
and temperature vary inversely as the square roots of the molecular
weights of the gases.

For gases at the same pressure and temperature, the densities
are proportional to the molecular weights, so that the rate of
efflux varies as the square root of either. This of course follows
more directly from the equipartition of energy (§ 11).

40. In 1846 Graham* made some experiments to test this latter
law, measuring the speeds of efflux of various gases coming
through fine perforations in a brass plate. The results are shewn
in the following table:

Efflux of Gases
G J/(density) | Rate of efflux
as (air = 1) (air = 1)
Ilydrogen 0-263 0-276
Marsh gas 0-745 0-753
Iithylene 0-985 0-987
Nitrogen 0-986 0-986
Air 1-000 1-000
Oxvgen 1-051 1-053
Carbon-dioxide 1-237 1-203

Had the law been completely confirmed, the numbers in the
second and third columns would have been identical ; we should
then have had a direct experimental proof of the law of equi-
partition of energy. Actually the numbers given in the table
seem rather to suggest that the law is not obeyed with any great
accuracy.

Knudsen found the reason for this in 1909;} it is simply that
as the molecules are not mere points of infinitesimal size, they
collide with one another and affect one another’s motion

* Phil. Trans. Roy. Soc. 136 (1846), p. 573.
1 Ann. d. Phys. 28 (1909), p. 75.
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in passing through the perforations. He performed experiments
similar to those of Graham, but used a hole only 0-025 mm.
diameter, cut in a platinum strip of only 0-0025 mm. thickness.
He worked down to pressures as low as 0-:01 mm. of mercury, at
which gascous collisions are very rare indeed, and found that the
theoretical laws were well obeyed so long as the mean free path
in the issuing gas was at least ten times the diameter of the
hole. Assoon as the mean free path became less than this, rather
more gas came out than was predicted by the formula, and as th
pressurc was still further increased, the efllux of gas gradually
passed over to that predicted by the ordinary hydrodynamical
formula for the flow of fluid through a hole.

A number of cxperimenters have tried to determine the
molecular weights of various gases by a use of formula (64), but
Knudsen’s results make it clear that accurate results cannot be
expected unless extreme precautions are taken.

Formula (64) is applicable only to a gas flowing out into a per-
fect vacuum. If there is any gas on the farther side of the orifice,
some of the molecules of the issuing gas will collide with the
molecules of the external gas and be driven back, thus reducing
the rate of efflux. If, however, the external gas is of very low
density, there will be few collisions of this kind, and formula (64)
will still give a good approximation to the rate of efflux.

Transpiration of Gases

41. For experimental purposes, it is often better, instead of
using a single orifice or perforation,
to use the large number of very small
orifices provided by the interstices in
a plug of porous material, such as un- 4
glazed earthenware or meerschaum.
The phenomenon is then spoken of
as “transpiration’ rather than “effu- Fig. 11
sion”’.

Imagine a vessel of gas divided into two parts by such a porous
plug (fig. 11). Transpiration or effusion will be going on from each
side of this plug to the other. If the two chambers into which the
vessel is divided are denoted by A4 and B, there will be some gas
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from A crossing through the porous plug into B, and similarly
some from B crossing into 4. If the pressures in both chambers
are sufficiently low, bothrates of transpiration may, as an approxi-
mation, be supposed given by formula (64). If the gases in the
two chambers are the same in all respects, the two rates of effusion
will of course be the same. If, however, one chamber is kept
warmer than the other, then the rates of effusion will not be the
same, and we have the phenomenon of thermal transpiration.

Let T',, Ty, be the temperatures of the two chambers, and let
the corresponding densities and pressures be p 4, pp and p 4, py.
If the temperature difference is permancntly maintained, the
flow of gas will continue until a state is attained in which the flow
from A to B is exactly equal to that from B to 4, Formula (64)
shews that this state will be reached when

PaNTy = ppyTh- ()
The ratio of the pressures p4, py is accordingly given by

Pa_Pa T 4 _ T4
Ps Pply BT

Thus if the two chambers are kept unequally heated, a flow
of gas will be set up, and will continue until the difference of
pressure between the two sides is established which is expressed
by equation ((6).

Osborne Reynolds* investigated this phenomenon in a series
of experiments in which the two chambers were kept at tempera-
tures of 8° C. and 100° C. When a steady state was attained, the
pressures were measured, and it was found that, so long as the
pressure was sufficiently low, equation (65) was satisfied with
very considerable accuracy. At higher pressures this equation
failed, as was to be expected.

If the chambers 4 and B in fig. 11 are not only connected by
the porous plug, but also by an external pipe, which keeps the
pressures in 4 and B equal, then a steady state cannot be at-
tained so long as the temperatures are kept permanently at
different temperatures T, T5. Instead of this, there will be a
steady flow of gas through the cycle formed by the chambers

* Phil. Trans. 170, II (1879), p. 727.
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4, B and the pipe, a flow which is suggestive of and analogous to
that of a thermoelectric current.

Cohesion of Gases

42, An entirely different situation occurs if the chamber B in
fig. 11 contains no gas, while chamber A4 is filled with gas kept at
temperature 7',. This gas will flow through the plug or orifice into
the chamber B, and its temperature as it arrives in the chamber;
B, say T, could be measured by a thermometer placed in B.

Suppose that the molecules of the gas had been held together
by strong forces of cohesion, so that each molecule was attracted
by the other molecules of the gas, or at least by those in its im-
mediate proximity. Then each molecule, while passing through
the plug, would be under an attraction towards the molecules in
the chamber 4, and as this attraction would reduce its velocity,
the average velocity of molecules arriving in B would be less
than the average velocity of molecules in 4; the temperature 7},
would be less than 7',.

Thus we see that an examination of the temperature of a gas
after transpiration or effusion will give us information as to the
existence or non-existence of forces of cohesion in a gas. Experi-
ments of this general type had been devised and conducted by
Gay-Lussac in 1807 and Joule in 1845, although they had used
merely a tube and a tap in place of the porous plug used by the
later experimenters. The more sensitive form of apparatus was
devised by Lord Kelvin, who carried out a delicate and crucial
set of experiments in collaboration with Joule.*

The earlier experiments had failed to detect any temperature
change in the gas, shewing that the forces of cohesion in a gas
were at least small. In the more elaborate experiments of Joule
and Kelvin, slight falls of temperature were observed; for in-
stance, in an experiment in which air passed by transpiration
from a pressure of about four atmospheres to a pressure of one
atmosphere, the change of temperature observed was a fall of
0-9° C. In general it was found that for air and many of the more

* The original papers will be found in the Phil. Trans. Roy. Soc.

(143, p. 357; 144, p. 321; 150, p. 325 and 152, p. 579). See also Lord
Kelvin’s Collected Works, 1, p. 333.
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permanent gases the cooling, although appreciable, was very
slight, while for hydrogen a slight heating was observed. This
change of tempcrature was known as the Joule-Thomson effect.
It did not, as was at first thought, establish the existence of a
force of cohesion in gases—or of negative cohesion in hydrogen.
For as the gas passed through the porous plug—generally a wad
of cotton-wool—the pressure fcll, so that the gas actually going
through the plug was doing work in pushing forward, by its
pressure, the less dense gas in front of it, while work of the same
kind but greater in amount was done on it by the denser gas
behind. The net result was of course a gain of energy to the gas
traversing the plug, so that even if this gas consisted of infini-
tesimal billiard balls which exerted no cohesive forces on one
another, it would still emerge with an increase of energy, and
this would necessarily appear as an incrcase of temperature
when equilibrium had been attained (cf. § 92 below).

When the observed results are corrected to allow for this, it is
found that the molccules of all gases, including hydrogen, lose
kinetic energy in passing through the plug. The loss for air is
found to be 0-051 calorie per gramme for each atmosphere drop
of pressure; the corresponding figure for hydrogen is 0-06 calorie
per gramme. It follows that the molecules of a gas may not
properly be treated as points exerting no forces on one another;
they attract one another, so that there are forces of cohesion in a
gas, just as there are in a liquid or a solid.

CALCULATION OF PRESSURE IN A NoN-IDEAL GaAS

43. In §33 the pressure in a gas was calculated on the assump-
tions that the molecules were infinitesimal in size, and that they
exerted no forces on one another except when they were actually
in collision. We now see that neither of these assumptions is true
for an actual gas, and so must proceed to calculate the pressure
for a real gas in which the molecules are of finite size, and exert
forces of cohesion on one another even when they are not in
contact. Many such calculations have been made, the most
famous being that of Van der Waals (1873) to which we now turn.
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Van der Waals’ Equation

44. We shall face our difficulties separately, and so begin by
supposing that the molecules are of finite size, being spheres of
finite diameter o, but that these exert no forces on one another
except when in actual contact.

Let there be N molecules 4, B, C, ... in a volume », and
imagine, as before, that a sphere of radius o is drawn round the

centre of each of these mole-
cules (fig. 12). Since the centres (\

of two molecules cannot be
within a distance less than o
from each other, it is im-
pussible for the centre of mole-
cule A4 to lie within any of the
spheres of radius ¢ surround- i
ing the (& — 1) other molecules ﬂ ~

B, C, D, .... Each of these w07

spheres has a volume $§70?, s0 b

that their combined volume is

%#(N —1) o3, Since N is a very

great number, we may neglect B

the difference between N —1 1

and N and write this total U

volume in the form £ N7o3. 1
We shall proceed on the

supposition that this total

volume is only a small frac- _/

tion of the total volume v of

the gas. In this case we may

disregard the possibility of two of the spheres of radius o inter-

secting, and so suppose that the space outside the spheres

is of volume v—4N#o?. This is, then, the space available for the

centre of molecule 4. Thus the chance of finding the centre of

molecule A inside a specified volume dv is nil if this volume lies

inside one of the spheres, and otherwise is

dv
ey e L

Fig. 12
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Now let molecule 4 be moving with a velocity of components
, v, w, the component % being, as before, perpendicular to a
certain region dS of the boundary. The molecule 4 will hit this
region dS§ of the boundary within a small interval of time dt if,
at the beginning of this interval, its centre lies within a small
element of volume udSdt, which is at a distance }o from the
boundary. Let us now identify this element of volume with the
dv of the last paragraph.

We must now consider the two possibilities separately of this
element of volume lying within one of the N — 1 spheres of radius
o, and of its not so lying.

We can imagine each sphere divided into two hemispheres by a
plane through its centre parallel to dS; we may describe these as
the nearer and farther hemispheres. Each point in the farther
hemisphere is farther from dS than the centre of the sphere, so
that no such point can ever be at a distance less than 4o from the
boundary. Since the element of volume is only at a distance 3o
from the boundary, it can never lie in one of the farther hemi-
spheres, but all points in the nearer hemispheres are open to it.
The t{otal volume of the farther hemispheres is (N —1)mo?,
or, again disregarding the difference between N —1 and N, is
$Nno3. Thus the chance of dv lying inside one of the spheres is

§Nnos
—
while the chance of its not so lying is
v—&Nma?
— .

.(68)

In the former case there is no chance of a collision. In the latter
case the chance of a collision within the interval d¢ is, from
fermula (67),

Ndv
oo ENaes

The chance of a collision is found by multiplying together the

two probabilities (68) and (69) and so is
Ndv v-b
v v-2b

JxT 5
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where b= §Nno?,

and so is four times the total volume of all the molecules of the
gas. Since b has already been supposed to be small in comparison
with v, we may neglect (b/v)?, and write this in the form

Ndv
v—b’

We accordingly see that when /v is small—i.e. when the aggre,
gate volume of the molecules is small compared with the spac
occupied by the gas—the effect of the finite size of the molecule
is adequately allowed for by replacing v by v—b, i.e. by re-
ducing the volume of the vessel by four times the total volume of \
N molecules. When this is done we have as the equation giving
the pressure, in place of equation (57),

plv—-b)=NRT. ... (71)

Since we are neglecting squares of b/v, this may be put in the
alternative form

pv = NRT(l+g), ...... (72)

which is frequently found useful.

When b/v is not treated as a small quantity, the calculation of
the pressure presents a much more serious problem. Boltzmann*
has carried the calculation as far as squares of (b/v)?, and finds .
that the pressure is given by

b b5 (b\2
pv = NRT {l +o+3g (?—)) + },
but this is hardly found to agree better with observation than the
simpler equation (72).

45. A second correction is necessitated by the forces of
cohesion, the existence of which we noted in § 42. So long as a
molecule is sufficiently remote from the surface; forces act on it
which will vary continually, both in direction and magnitude,
but which, when averaged over a sufficient interval of time, are
likely to cancel out, and leave an average resultant equal to zero.
Thus this second correction will not affect the pressure of the gas

* Vorlesungen iiber Gastheorse, 2, § 51,
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at internal points; this is given by equation (71). But to calculate
the pressure of the gas at or near the boundary, these forces must
be taken into account.

Let us fix our attention on a molecule which is as near to the
boundary as it can go. If the force from each adjacent molecule
isresolved into components in and at right angles to the boundary,
all directions in the boundary plane are equally likely for the first
component, but the second component is invariably directed in-
wards. Thus when we average over a sufficient length of time, the
resultant force will be a force directed inwards at right angles to
the boundary.

Thus the effect of all the intermolecular forces is that of a
permanent ficld of force acting upon each molecule at and near
the surface. 1t is this field of force which is often pictured as
giving rise to the phenomena of capillarity and surface-tension in
liquids. It can be regarded as exerting a steady inward pull upon
the outermost layer of molecules of the gas. In magnitude this
pull will be proportional jointly to the number of molecules per
unit area in this layer, and to the intensity of the normal com-
ponent of force. As each of these two factors is directly pro-
portional to the density of the gas, the pull will be proportional
to the square of the density; let us suppose that it is of amount
¢p?® per unit area, where ¢ is a constant depending only on the
nature of the gas. Then the molecules, when they reach the
boundary, are no longer deflected by impact alone, but by the
joint action of their impact with the boundary and of this pull.
Thus their change of momentum may be supposed to be pro-
duced by a total pressure p + cp? per unit area, instead of by the
simple pressure p.

Hence equation (71) must be further amended by writing it in

tke form
(p+cp?) (v—-b) = NRT,

or again, replacing p by Nm/v, and putting cN?m? = a,
(p+§§) (v—=b)= NRT. ... (73)

This is Van der Waals’ equation connecting p, v and 7'. So long
as we confine our attention to a single mass of gas, a and b are
5-2
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constants, but in general they depend on the amount of gas as
well as on its nature, a being proportional to the square and b to
the first power of the amount of gas.

Dieterici’s Equation

46. Van der Waals’ treatment of the forces of cohesion over-
looks the fact that when cohesive forces exist, some molecules
which would have reached the boundary had there been no such
forces may never reach the boundary at all, being deflected by
the cohesion forces before their paths meet the boundary. Suc
molecules exert no pressure on the boundary, whereas Van defi
Waals’ argument has supposed them to exert a ncgative pressure.\
Because of this, equation (73) admits of negative values for p,
although an examination of the physical conditions shews that
the true value of p must necessarily be positive.

This objection is of no weight so long as it is clearly recognised
that equation (73) is true only to the first order, as regards devia-
tions from Boyle’s law, but the equation is often, and very use-
fully, applied to cases where these deviations cannot properly be
regarded as small. Because of this, Dieterici* has proposed an
alternative equation of state which is not open to this last
objection. We have seen that the molecules which are close to the
boundary of the gas act as though they were drawn back into the
gas by a permanent field of force. Let x be the work done in
drawing a molecule from the interior of the gas to any assigned
position near the boundary against these forces, then the density
p' at this point is, as in equation (39),

r=p e,
where p is the density in the interior, and so is what is ordinarily
meant by the density of the gas. We now take this point close
up to the boundary of the gas, and find that the pressure on the
boundary p is given by
p=p'u=pute

where p’ and x are the density and potential at the boundary
of the gas.

* Wied. Ann. 65 (1898), p. 826 and 69 (1899), p. 686.
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Thus the field of force reduces the pressure to a value which is
less than that given by Boyle’s law by a factor e~¥'ET. If we
assume that the pressure is similarly reduced when the molecules
are of finite size, we obtain the pressure at the boundary in the
form

NRT
= 2 xRT
vy

The work y is clearly proportional to p, to a first approximation,
and is casily scen to be equal to a/Nv, where a is the a of Van der
Waals, leading to the equation

_NET e,
v—b
This equation was first given by Dieterici in 1898, and is found, as
we shall see later, to {it the observed facts considerably better
than the equation of state of Van der Waals.

The General Calculation of Pressure

47. Logically, neither of the two foregoing pressure calculations
is completely satisfactory, as can be scen in the following way.
The correction a arises from forces which the molecules exert on
one another when reasonably ncar to one another, i.e. when their
centres are at distances somewhat greater than o apart. The
correction b arises from forces which the molecules exert on one
another when their centres are at exactly the distance o apart.
It cannot, however, be supposed that the forces acting on natural
molecules can be divided into two distinct types in this way.
The forces between two molecules must change continuously with
the distance, so that the @ and b of Van der Waals’ equation ought
to be different contributions from a more general correction, and
so ought to be additive. This is not the case with the equations
either of Van der Waals nor of Dieterici.

There is, however, a wider calculation of pressure, first given
by Clausius* in 1870, to which this objection does not apply. It
proceeds by studying the motions of the molecules of a gas a8
these move under the influcnce of perfectly general forces, these

* Phil. Mag. Aug. 1870.
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including the forces at collision, the forces of cohesion between
molecules, and the forces of impact at the boundary. In this way
the pressure is found in terms of the general forces between
molecules. To this we now turn.

The Virial of Clausius

48. We suppose the motion of any molecule in a gas to be
governed by the Newtonian equations

. lz.c
X = M ete,, ... (7(‘)

where X, Y, Z are the components of the total force acting on th%
molecule. Multiplying these three equations by , ¥, 2 respectively
- and adding, we obtain \

d2x+ d2y dzz
de? Ly dtz e

1 T S SRR

imdt [dt(z2+y +22):| me, . (76)

(@ X+yY+2Z) =

where ¢, as before, is the velocity of the molecule.
As the motion of the gas proceeds, g'-:(x2+y2+zz) continually

fluctuates in value, but there is no tendency to a steady increase
or decrease. If, then, we sum over all the molecules of the gas, the
first term on the right of equation (76) disappears, and we have
1Zme? = -4 X+yY+2Z). ... (77)

The expression on the right is known as the Virial of Clausius;
we see that it is equal to the total kinetic energy of translation of
the molecules.

Contributions to the virial are made by all the forces which
ever act upon the molecules. We may divide these into

(1) The forces at collisions between molecules.

(2) The forces of cohesion between molecules.

(3) The forces of impact between molecules and the boundary
of the containing vessel.
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Let us first examine the contribution made by (3); it is through
this that the pressure is introduced into our analysis.

Let dS be any element of surface of the containing vessel, the
coordinates of its centre being z, 9,2, and the direction-cosines of

its inward normal being I,m,n. If p is the pressure of the gas
on this surface, the total of all the
forces which this element of surface
exerts on all the molecules of the gas
has components

IpdS, mpdS, npds. f/
Hence the contribution of all these | //g

. . . w

forces to the virial is 0

—(le+my+nz)pdS. ...... (78)

Let r be the distance of d.S from

the origin, and 6 the angle between the normal to dS and the
line joining the origin to d8 (fig. 13). Then

l,m,m

d ‘Sv

Fig. 13

lz+my+nz =— rcosl,

and expression (78) may be replaced by {7 cos@pdS or §r¥pdw,
where dw is the element of solid angle which d§ subtends at the
origin,

If p is assumed to have the same value at all points of the
surface, the total contribution to the virial made by all parts of
the surface is

ip J- ridw,

where the integral extcnds over the whole surface, and this is
equal to $pv,

where v is the whole volume of the containing vessel. Equation
(77) now becomes

Zime? = §pv—3X(x X +yY +22Z), ... (79)

where only intermolecular forces are now to be included in the
last term.

49. Suppose that the molecules are infinitesimal in size, but
not necessarily spherical in shape, and that they exert no forces
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except when in actual contact. When a collision occurs, action
and reaction are equal and opposite, so that X, ¥, Z have equal
and opposite values for the two molecules concerned. Since we
are supposing the molecules to be infinitesimal in size, z, y, z have
the same value for the two molecules, so that the contribution
which all the intermolecular forces, including the forces of col-

lision, make to
Z(xX+yY +22Z)

isnil. Since we are supposing these to be the only forces in action,
equation (79) becomes

pv = Zimc?,
which is the equation already obtained for the pressure in an\
ideal gas.

Whatever the shape and size of the molecules, and whatever '
the forces between them may be, the corrections to be applied
to this simple equation are all contained in the more general
equation (79), which may be written in the form

pv=2Imc2+ XX +yY +2Z). ... (80)

50. This equation shews that the pressure may be regarded as |
made up of two contributions, one coming from the kinetic
energy of motion of the molecules, and the other from the
potential energy of their intermolecular forces, including of
course the forces of collision.

The essence of the kinetic theory view of pressure is that it
stresses this first contribution; the second figures only as a small
correcting term. Newton had shewn* that if the pressure of
a gas was proportional to its density, this pressure could be
accounted for by repulsive forces between the particles of the gas;
this view of course neglects the motion of the molecules and attri-
butes the whole pressure to the second term in equation (80).
We can, however, see that this view is untenable, for the following
reason. -

Let us imagine the containing vessel, together with the gas
inside it, expanded to n times its original linear dimensions. The
coordinates z, y, z are all increased n-fold, and as observation tells

* Principia, Prop. xxui1, theorem xvr.



PRESSURE IN A GAS 73

us that pv remains constant, equation (80) shews that X, Y, Z
must be decreased to 1/n times their original values. In other
words, the intermolecular forces must vary inversely as the
distance, as indeed Newton shewed. This is, however, an im-
possible law, since it would make the action of the distant parts
of the gas preponderate over that of the contiguous parts, and so
would not give a pressure which would be constant for a given
volume and temperature as we passed from one vessel to another,
or even from one part to another of the surface of the same vessel.
We therefore conclude that the pressure of a gas cannot be
explained by assuming repulsive forces between the molecules;
it must arise mainly from the motion of the molccules.

51. We next proceed to calculate the contribution of the inter-
molecular forces to the virial. Let us assume that the force be-
tween two molecules is a repulsive force ¢{r), which depends only
on the distance r they are apart. If the centres of the molecules
are at z, ¥, z,2', 9, Z,and if X, ¥, Z, X', Y', Z' are the com-
ponents of the forces acting on them, then

X =92, X = ¢ 7, eto,

go that the contribution to ZxX made by the force between these
two particles is

s X+x2'X' = ?g-) (z—2')%

The contribution to Z(xX +yY +22) is therefore

s@{(x—w’)%(.1/—3/)2+ (z—2)% = rg(r).

Thus equation (80) may be replaced by
pv = $Zme+ X 2rd(r), ... (81)

where the summation extends over all pairs of molecules.

52. Since the gas contains N molecules, the summation on the
right of equation (81) must be taken over }N(N —1) pairs of
molecules.

Let 4, B be the two molecules of any such pair. If the mole-
cules were simply points exerting no forces on one another, the
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chance of 4 and B being at a distance between r and r + dr from

one"another would be
dnridr

v

e (82)

the numerator being the volume of the shell of thickness dr sur-
rounding molecule 4, and the denominator v being the whole
space possible for the centre of B. Thus the number of pairs of
molecules having their centres within a distance r of one another
would be

2nN? '

r2dr, .. (83)

since it is obviously legitimate to neglect the difference between
N—-1and N.

Suppose, however, that molecules at a distance » repcl one
another with a force ¢(r). Then we shall find, in § 228, that the
probability of finding two molecules at a distance r apart is less
than the probability of finding the same two molecules at a dis-
tance co apart (oo here denoting any distance great enough for the
molecules to be out of range of each other’s action) by a factor

e—zhx,

where y is the work which must be done in bringing the two
molecules together from an infinite distance, so that

x= [ "omar.

Making this correction to expression (83), the number of pairs
of molecules at a distance r apart will be

2 r2e-2hxdy,
v
Multiplying this by $7¢(r) and integrating over all values of 7,
$22rd(r) = ———N - r3¢(r) etxdr, ... (85)
or, since é(r) =— ——
ZZro(r) = 2"N dx e-”'x dr,
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Replacing §Zme? by its value NRT, equation (81) assumes the
. form

2aN2 (* _dy
= —_— 3 4\ ,—2h
pv=NRT+ 7 fordre xdr
or pv = NRT(I +€), ...... (80)
onN (= _dy )
[ 3 A o2,
where B = 3RT), e xde, .. (87)

Replacing 1/RT by its value 2/, and integrating by parts, we
readily find that B may be put in the alternative form

B= 27rNJ‘ﬁD ri(l—e2xydr. ... (88)
' 0

53. If the molecules approximate closely to hard clastic spheres,
the forces between molecules only come into play when r is very
nearly equal to o; for all other values of 7,

ax _
dr
Thus we may replace #° by o2 in equation (87) and find
2nNG3 [© o, dX
B=Srr ), u ™
mNo?
= - == -?— 3 =
sarr = TN =b

where b is the b of Van der Waals’ equation.
Equation (86) now becomes

pv = NRT(I +g) ...... (89)

which agrees with Van der Waals’ equation (72).

Clearly, then, equation (86) is a generalisation of Van der
Whaals’ equation, the general quantity B, defined by equation
(88), replacing the simple b of Van der Waals. The quantity B is
generally known as the Second Virial Coefficient.

If forces of cohesion of the kind specified in §45 are also
supposed to act, these forces will have a contribution to make to
the virial. To the first order of small quantities, we may, in ealcu-
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lating £Xr¢(r), ignore the effect of the forces of cohesion on the
distribution of density of the gas. The value of ZXr¢(r) is there-
fore obviously proportional simply to p? per unit volume of the
gas. Allowing for this addition to the virial, equation (89) must
be replaced by

Y = NRT(] +€) —cpv,

where ¢ is the same as the ¢ of §45, and is independent of the
temperature. Or again this last equation may be written |

a '~ B
(p+1~;-2\’v=NRT(1+;),

agreeing with Van der Waals’ equation (73) as far as the ﬁrst\
order of small quantities. i

54. The quantity B is casily evaluated when the repulsive
force ¢(r) varies as an inverse power of the distance, say
¢(r) = ur—°. We then have

x= [ ==

2 2h #
so that ZErd(r) = 2N f £, e (. 1,..-.) dr

v
_2nN?%(2hpu\;q _.3
T 2hw (s-—l) 1‘(1 s— 1)
It follows that B can be put in the form
B = 27Nd?,
where 0@ is given by
2h/‘l‘ 8—1 3
o (oY) o0

This amounts to supposing that the molecules behave like elastic
spheres, but that these have a diameter oo which depends on 4,
and so varies with the temperature; this merely represents the
fact that at high temperatures the collisions are more violent, so
that the molecules penetrate farther into each other’s fields of
force before being brought to relative rest.



PRESSURE IN A GAS 77

If B, and o, are the values of B and ¢ at 0° C., the general
values at temperature 7' are given by

55. The evaluation of B for more complicated laws of force
presents a very intricate problem of mathematics. Keesom* has
studied the problem when the molecules arc regarded as rigid
spheres of diameter o surrounded by an attractive field of force
proportional to ur—¢, and has evaluated B in the form of an infinite
series

(2huyr
L {(s—1)n—3}]

where » is the work done in separating two molecules which are
in contact, and removing them to an infinite distance apart.
Keesom has alsot evaluated B when the molecules are rigid
spheres each containing an electric doublet at its centre, the value
again being expressed as an infinite series.

J. E. Lennard-Jones} has discussed the problem when the
molecules are supposed to repel according to the law of force§

B= %nNo‘al:l 31‘2

A, A,
™
and has obtained for B the value
B=13} N(}l v )" SR, e (91)
) 2hA,, (n—1 :—‘:—-1
where Yy= -—_1 (éi&;\:)

[ I,(z(]n 1) 3)
n—4) T n—1 ,
and  F(y) = yn_m‘lr( )— 1z=;1 Tl(n—1) y }
This contains the two simple formulae previously given as
special cases.
* Comm. Phys. Lab. Leiden, Supp. 24 B (1912), p. 32, and Proo.

Amsterdam Akad. 15 (1912), p. 1406. t L.c. ante,
1 Proc. Roy. Soc. 106 A (1924), p. 463. § See § 149 below,
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Gas THERMOMETRY

56. In spite of its imperfections, the equation of Van der
Waals undoubtedly provides the most convenient basis for dis-
cussing the behaviour of a gas over those ranges of pressure,
density and temperature within which the deviation from
Boyle’s law is small. We consider now some of the physical pro-
perties of a gas predicted by the equation of Van der Waals.

Changes of Constant Volume

57. Let us first suppose the volume of the gas to be kept cor\-
stant, and the temperature be raised from 7}, to 7j.

If p,, p, are the pressures corresponding to these tem pemtures,\
Van der Waals’ equation tells us that

(po+%) (v—b) = NRT,, ... (92)
(p1+§g) (v—b) = NRT,. ... (93)
By subtraction we get

(p1—po) (v—0) = NR(T, - T).

This shews that the increase in pressure is proportional to the
increase in temperature; in fact p, is given by the formula

P1 = Po{l +6,(T1— 1Y)},

where &, is a “ pressure-coefficient”’ given by

NR
= ——7 ienes 94
“r Po(v—">) (94)
or, from equation (92), by
a\l
Kp = (1 +m2) q—,o- S e (95)

In practical work, the initial temperature T, is usually taken
to be 0° C., so that 1f 6 is the temperature on the centigrade scale

P = po(l + K’o).
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Equation (85) shews that «, depends on the density but not
on the temperature, so that for a given density of gas, the pressure-
coefficient 18 independent of the temperature.

This law naturally is true only within the limits in which Van
der Waals’ equation is true. Regnault* proved that it was very
approximately true under ordinary conditions by filling gas
thermometers with different gases and shewing that they gave
identical readings over a large range of temperature. More recent
and more exact experiments have shewn, as might be expected,
that the law is by no means absolutely exact or of universal
validity. Full tables of values of «, will be found in the Recueil
de constantes physiques.t As a specimen may be given the fol-
lowing values, obtained by Chappuis in 1903.}

Values of k,,

T ¢ ‘ For nitrogen | Tor CO,
OMPperature | (5,=1001-9 mm. at 0° C.) | (p,=998:56 mm. "at 0°C.) |
0° to 20° K, = 0-0036754 Ky = 0-0037336
0° to 40° 0-0036752 0-0037299
0° to 100° 0-0036744 0-0037262

Callendar§ gives the following values for the pressure-
cocfficients (0° to 100° C. at initial pressure 1000 mm.) of three
of the more permanent gases:

Air 0-00367425,
Nitrogen  0-00367466,
Hydrogen 0-00366254,
while for neon and argon, Leducq has found the values:
Neon T,= 547°C.to T} =29-07°C., «k, = 0-003664,
Argon T, = 11-95°C. to T} = 31-87°C., «k, = 0-003669.

A gas in which the pressurc obeys the Boyle-Charles law
pv=NRT exactly is described as a “perfect” gas. For such a

* Mém. de I'Acud. 21, p. 180. )

t Pp. 234-40. The pressure-coefficient &, from range 0 to &’ is there
denoted by £ t L.c.p. 234.

§ Phil. Mag. 5, p. 92. o Comptes Rendus, 164 (1917), p. 1003,
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gas, a=0, so that k, = 5735 O 0:003660. It will be noticed that

the pressure-coefficient of hydrogen approximates very nearly
to that of a perfect gas, shewing that the value of a is extremely
small for hydrogen. Thus the value of «,, is almost independent
of the volume of the gas. For this reason the Comité internationale
des poids et mesures decided on the constant volume hydrogen
thermometer as standard gas-thermometer. The small value
which is known to exist for a is recognised in the stipulation of
the committee that the volume at which the gas is used is tq‘ be
such that there is a pressure of 1000 mm. at 0° C. But nitro%en

gas-thermometers are also employed, and are found to possdss
certain advantages.

Changes at Constant Pressure

58. Let us next suppose that the pressureis kept at the constant
value p, and that changing the temperature from 7, to 7 is found
to change the volume from v, to ;. The two equations analogous
to (92) and (93) of § 57 are

(p+%) (vo—b) = NRT,, ... (96)

Yo

(p+-i) (v,=b)=NRT,. ... (97)
1

Neglecting the product ab which is a small quantity of the
second order, we obtain, on subtraction,

a

( ‘ﬁ) (-0 = NR(T,=T). ... (98)
0“1

We find from this that v, is given by

vy = vo{l +K,(Ty — To)h

where «,, is a ‘ volume-coefficient’’ given by

_NE

Pro—afvy’

On eliminating NR between this and equation (96), we obtain

a (1 1 by 1
k, = {1 +E’”—o(;o+”_1)_”—o}ﬁ. ...... (99)

Ky =
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This is more complicated than the formula for the pressure-
coefficient (95) in that it depends both on the volume and the
pressure, :

For a perfect gas, a=b=0, and the value of «,, like that of
Kp, becomes 0-003660. The following table, similar to that given
on p. 79, contains some observed values of ,.

Values of «,

For nitrogen For CO, For CO,

Temp. (p=1001-9mm.) | (p=998-5mm.) | (p=>517-9 mm.)

0° to 20° £, =0-0036770 &, = 00037603 &, = 0-0037128
0° to 40° 0-0036750 0-0037636 0-0037100
0° to 100° 0-0036732 0-:0037410 0-0037073

Further values will be found in the Recueil de constantes
physiques, from which the above are taken.

The absolute scale of temperature can, as we have seen, be
defined without reference to any particular substance. This
makes it a perfect scale for abstract problems and theoretical
discussions, but no thermometer can ever be constructed to
read absolute temperatures directly. If any gas existed which
was ‘““perfect’’ in the sense explained above, a gas-thermometer
using this gas would give readings of absolute temperature. In
the absence of such a perfect gas, the absolute scale can be
approximately realised by making the necessary small correc-
tions to gas-thermometers in which ordinary gases are used.
These corrections depend on the extent to which the values
of k,, and k, for the gases used differ from the theoretical value
0-:003660 for a perfect gas. Tables of such corrections will be
found in books of physical constants.*

Evaluation of a and b
59. From an experimental evaluation of the ‘‘pressure-
coefficient” «k, given by equation (95), the quantity a can be
obtained at once, and when this is known, the value of b can be
obtained from the observed value of the volume-coefficient.

* E.g. Kaye and Laby, Physical Constants, 8th edn (1936), p. 47.
6
JKT
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For instance, using Callendar’s value for «,, for air at a pressure
of 1000 mm. mercury, we have (equation (95)), with 7T}, = 273-2,

a\l
while 1 0-003660.
To
At this pressure, therefore,

2 = 1oy X 0000013 = 0-0047 atmosphere pressure,

Thus for air at 1-3158 atmospheres pressure at the boundary,
the forces of cohesion result in an apparent diminution of pressute
of 0:0047 atmosphere, or about one-three hundredth of the wholé,
so that the pressure in the interior of the gas is 1-3205 atmo
spheres. This gives some idea of the magnitude of the forces of
cohesion.

At other pressures, a/v? is proportional to 1/v2, and so to the
square of the pressure. For instance, at a pressure of 1 atmo-
sphere,

g,.; = 2649-5 in c.G.S. units = 0-00260 atmosphere.

When a has been determined in this way, we can determine b
from the observed values of «,. This determination is of special
interest, because from it we can calculate directly the value of o,
the diameter of the molecule or of its sphere of molecular action.
From the discussion of a great number of experiments by
Regnault, Van der Waals deduced the following values for b:

Air 0-0026,
Carbon-dioxide 0-0030,
Hydrogen 0-00069.

These values refer to a mass of gas which occupies unit volume
at a pressure of 1000 mm. of mercury. —

A more recent method of determining b depends on the measure-
ment of the Joule-Thomson effect. Calculations by Rose-Innes*
lead to the following values for b:

Air 1-62, Nitrogen 2-03, Hydrogen 10-73,

* Phil. Mag. 2 (1901), p. 130.
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Referred to a cubic centimetre of gas at normal pressure,

Air 0-00209,
Nitrogen  0-00255,
Hydrogen 0-00096.

For helium, Kamerlingh Onnes* has determined the value
for b: ’ ‘

Helium 0-000432.

Values of Molecular radius 3o

60. The value of b is, as in equation (70), equal to §N7o3, and
since the values of b have been determined for a cubic cm. of gas
at normal pressure, we may take N = 2-69 x 101° (§15), and so
determine o immediately.

The values of 40 deduced from the best values of b are as
follows:

Gas (l‘::ll_le‘)t? ggs) Observer Value of §o
Hydrogen 0-00096 Rose-Tnnes 1-27 x 10-®
Helium 0-000432 Kamerlingh Onnes | 0:99x 10-8
Nitrogen 0:00255 Rose-Innes 1-78 x 10-8
Air 0-00209 Rose-Innes 1:66 x 109
Carbon-dioxide 0-00228 Van der Waals 1-71 x 10-8

ISOTHERMALS

61. One of the most instructive ways of representing the rela-
tion between the pressure, volume and temperature of a gas is
by drawing ““isothermals” or graphs shewing the relation between
pressure and volume when the temperature is kept constant.
There will of course be one isothermal corresponding to every
possible temperature, and if all the isothermals are imagined
drawn on a diagram in which the ordinates and abscissae re-
present pressure and volume respectively, we shall have a com-
Plete representation of the relation in question.

® Comm. Phys. Lab. Leiden, 102a (1907), p. 8.

6-2
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Isothermals of an Ideal Gas
62. For an ideal gas, the relation is expressed by the equation
pv=NRT. ... (100)

To represent this relation by means of isothermals, we take p
and v as rectangular axes and draw the group of curves obtained
by assigning different constant values to 7' in equation (100). The
curves all have equations of the form pv = const., and so are a
system of rectangular hyperbolas, lying as in fig. 14. These a‘re
the isothermals of an ideal gas.

p

/

Fig. 14

Isothermals of a Gas obeying Van der Waals’ Equation

63. Let us next examine what isothermals will correspond to
Van der Waals’ equation

(p+1%) (v=b)= NRT. ... (101)

It will be noticed that if the system of curves shewn in fig. 14

is pushed bodily through a distance b parallel to the axis of v,

they will give the system of isothermals represented by the
equation

p(v - b)=NRT, ... (102)

and on further drawing down every ordinate through a distance



PRESSURE IN A GAS 856

afv? parallel to the axis of p, we shall obtain the system of iso-
thermals represented by Van der Waals’ equation (101).

The isothermals are found to lie as in fig. 15 in which the thick
line 4 B is the curve p = —a/v?, while the line BCD is v = b.

PF D

0 Lcl\ Ti— .

U=Y, § Wﬁh A
B

Fig. 15

The isothermals corresponding to high temperatures naturally
lie exactly like those in the earlier fig. 14, the isothermals of an
ideal gas, but at lower temperatures divergences begin to appear.
Below a certain temperature, the value of p does not steadily in-
crease as v decreases; on the contrary, after increasing for a time,
the value of p reaches a maximurn, then decreases to a minimum,
after which it again increases.

These maxima and minima must of course occur at the points
at which dp/dv = 0.

From equation (101), we may write the equation of the iso-
thermals in the form

log (p+§-2)+log (v—>b) = const., vesee.(103)
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and the points at which dp/dv = 0 are seen to be given by

a(v—2b)
T

p=

Clearly this value of p is positive for all values of v between 2b
and co. Within this range it attains a maximum value, which is
readily found to be given by
8a

NRT = 2. ... 104)

a
v=23b p= g 27

The isothermals for values of 7' greater than that given by\this
equation can have no points at which dp/dv = 0, and so are every-
where convex to the axis of v.

64. The isothermals of a real gas will lie like those shewn\in
fig. 156 so long only as the gas does not differ too much from an
ideal gas. The curves in fig. 15 will accordingly represent the
isothermals of a real gas with accuracy in the regions far removed
from both axes, but not near to these axes. We must inquire what
alterations must be made in these curves in order to represent the
isothermals of a real gas.

The isothermal 7' = 0 is represented in fig. 15 by the broken
line made up of the curve 4 B and the vertical line BCD. The true
isothermal is, however, known with accuracy. If a gas is cooled
to temperature 7' =0 and is then compressed, the pressure
remains zero until the molecules are actually in contact. Let the
volume in this state be denoted by v,. The pressure may now be
increased to any extent and the volume will still retain the same
value v,, this being the smallest volume which can be occupied
by the molecules. Now v,, being the smallest volume into which
N spheres each of diameter o can be compressed, is easily found
to be given by

g = VO
A
while the value of b is (cf. equation (70))
b = §Nnod® = 2-96v,. eses..(105)

Thus the true isothermal 7' = 0, instead of being the curve
ABCD in fig. 15, consists of the two lines vE, EF. If we imagine
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the curves in fig. 15 so distorted that the point B is made to
coincide with the point E, and the curve 4 BOD with the lines
vEF, we shall obtain an idea of the run of the isothermals of a
real gas. The curves will perhaps lie somewhat as in fig. 16, in
which both the vertical and horizontal scales have been largely
increased over those employed in fig. 15, but the vertical scale has
been increased much more than the horizontal.

Isothermals of a gas obeying Dieterici’s Equation

65. The isothermals of a gas which is supposed to obey
Dieterici’s equation may be discussed in a similar manner.

NE

0 U= v
Fig. 16

If we neglect the exponential factor, the isothermals are again
given by equation (102), namely

p(v—b) = NRT,

and, as before, the curves may be obtained by shifting the iso-
thermals of an ideal gas (fig. 14) through a distance b parallel to
the axis of v. If we now restore the exponential factor, we must
reduce the value of p at each point of each isothermal by a factor
¢~—9/NETv and the resulting curves will be the isothermals required.
They will again be found to lie as in fig. 18.
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Aguain the network of isothermals for the lower temperatures
contain regions in which p and v are decreasing together. The
equation of an isothermal may be written in the form

a
NRTv
so that the points at which p has its maximum and minimum
values on any isothermal are given by

logp+1log (v—b)+ = const.,

1 a
v—b " NRITw'

so that NRT = 9@%;22

P _
dv_o or

Between the values » = b and v = oo, we see that 7 is eveﬂy-
where positive. It attains a maximum value given by ‘
a

a
= = 2 g2 el
v=2bh, p= e NRT o (106)

Continuity of the Liquid and Gaseous States

66. According to Van der Waals’ equation, the temperature

determined by equation (104),

T = $iNTp’

has the special property that at all temperatures above this
temperature a decrease of volume is always accompanied by an
increase of pressure, but below it every isothermal contains
stretches in which the pressure and volume decrease together.
Every point on these latter stretches represents a collapsible or
unstable state, since, if the gas is already yielding to pressure,
each contraction increases the disparity between the resistance
of the gas and the force exerted on it—the gas is like an army in
retreat which becomes more and more demoralised with every
yard it retreats. -

The equation of Dieterici makes exactly similar predictions
except that the critical temperature, determined by equation
(108), is given by

a

T:IN_IZ—b'.
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Let us fix our attention on any one collapsible state of the kind
predicted by both equations, say that represented by the point
X in fig. 16. On the same isothermal as X, there must clearly be
two other points Y, Z which represent states having the same
temperature and pressure as X. At each of these two points
dp/dv is positive, so that the two states in question are both
stable; they ought therefore both to be known to observation.
The point Z obviously represents the gaseous state; the point ¥
corresponding to lesser volume is believed to represent the liquid
state.

With this interpretation it is at once clear that so long as a gas
is kept at a temperature above that of the isothermal P, PF,, no
amount of compression can force it into the liquid state. The
temperature of the isothermal P, PP, is called the ‘‘critical tem-
perature’’ of the substance. We see that so long as a gas is kept
above the critical temperature, mo pressure, however great, can
liquefy 1t.

67. A gas which is below the critical temperature is usually
described as a vapour. We therefore see that the line PF, in fig. 16
is the line of demarcation between the gaseous and vapour states,
while PP, is the line of demarcation between the gaseous and
liquid states.

It remains to examine the demarcation between the liquid and
vapour states, which is at present represented by the unstable
region in which dp/dv is positive. If U is any point in this region.
common experience tells us that there is a stable state in which
the pressure and volume are those of the point U. What is this
state?

Let us imagine a line drawn through U parallel to the axis of
v. Let this cut any isothermal in the points X, ¥, Z, the two latter
representing stable states—liquid and vapour respectively. As
these two states have the same pressure, it follows that a quantity
of vapour in the state Z can rest in equilibrium with a quantity
of liquid in state ¥. By choosing these quantities in a suitable
ratio, the combination of the two will be represented by the point
U. Here, then, we have an interpretation of the physical meaning
of the point U. As the vapour is compressed at the temperature
of the isothermal SZQXRY, the substance remains a vapour
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»

until the point Z is reached. At this point condensation sets in;
some of the substance is in the state Z but some also is in the state
Y. As the ratio of these amounts changes, the representative
point moves along the straight line ZXU Y until, by the time the
point ¥ is reached, the whole of the matter is in the liquid state.
After this the substance, remaining wholly in the liquid state,
moves through the series of changes represented by the path
YQ'N.

There is of course an element of arbitrariness in this, for instea
of describing the path SZU YN the substance might equally we
have been supposed to describe the path SR'RYN, keeping at
the same temperature throughout; or any other path composed
of two stable branches of an isothermal joined by a line of constant \
pressure. In other words, there is no unique relation between the
pressure and temperature of evaporation or condensation. This
is, however, in accordance with the known properties of matter;
there are such things in nature as super-cooled vapours which
may be represented by the range Z@ in fig. 16, and super-heated
liquids, which may be represented on the range Y E.

Under normal conditions, however, when there are no compli-
cations produced by surface-tensions, particles of dust, or other
impurities, there must be a definite boiling point corresponding
to every pressure, and the path of a substance from one state
to another, given the same external conditions, must be quite
definite. So far we have not arrived at any such definiteness.

Maxwell* and Clausiust both attempted to obtain definite
paths for a substance changing at a constant temperature. They
reached the conclusion that if the line SZX YN in fig. 16 is to
represent the actual isothermal path from S to N, it must be so
chosen that the areas ZQX, XRY are equal. For, imagine the
substance starting from Z, and passing through the cycle of
changes represented in fig. 16 by the path ZQXRYXZ, the first
part of the path ZQXRY being along the curved isothermal, and
the second part YXZ along the straight line. Since this is a
closed cycle of changes, it follows from the second law of thermo-

dynamics that fd—-q? = 0, where d@ is the total heat supplied to
* Oollected Works, 2, p. 425. t Wied. Ann. 9 (1880), p. 337.
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the substance in any small part of the cycle and the integral is
taken round the whole closed path representing the cycle. Since
the temperature is constant throughout the motion, this equation

becomes J d@ = 0, so that the integral work done on the gas

throughout the cycle is nil. As in § 12, this work is equal to Jp dv

and therefore to the area, measured algebraically, of the curve in

fig. 16 which represents the cycle. Hence this area must vanish,
which is the result already stated.

P

Fig. 17

68. The figure which is obtained from fig. 16 upon replacing the
curved parts of isothermals such as ZQXRY by the straight line
ZXY is represented in fig. 17. This figure ought accordingly to
represent the main features of the observed systems of isothermals
of actual substances.

Comparison with Experiment

69. Fig. 18 shows the isothermals of crabon-dioxide as found in
the classical experiments of Andrews.* The figures on the left
hand denote pressure measured in atmospheres (the isothermals

* Phil. Trans. 159 (1869), p. 6575 and 167 (1878), p. 421.
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only being shewn for pressures above 47 atmospheres), while
those on the right denote the temperatures centigrade of the
various isothermals.

The isothermal corresponding to the temperature 31-1° is of

great interest, as being very near to the critical isothermal, the
value of the critical temperature being given by Andrews as
30-92° and by Keesom as 30-98°, .
On this isothermal, as on all those
above it, the substance remains
gaseous, no matter how great the
pressure.

The next lower isothermal, 90t
corresponding to temperature
21-56°C., shows a horizontal range 5ol
at a pressure of about 60 atmo-
spheres. As the representative

1o

100+

. . 70r
point moves over this range,
boiling or condensation is taking >
place. Thus at a pressure of 60f -
about 60 atmospheres the boiling i
point of carbon-dioxide is about  sof \_ _Jus
21-6°C. The ratio of volumes in Fig. 18

the liquid and vapour states is
equal to the ratio of the two values of » at the extremities of the
horizontal range—a ratio of about one to three.

The lowest isothermal of all corresponds to a temperature of
13-1° C. Here the inequality between the volumes of the liquid
and the gas is greater than before. In fact an examination of the
general theoretical diagram given in fig. 17 shews that as the tem-
perature decreases the inequality must become more and more
marked, so that in all substances the distinction between the
liquid and gaseous states becomes continually more pronounced
a8 we recede from the critical temperature.

The Critical Point
70. The point represented by P in fig. 16 is generally described
as the “critical point”. Just as there are points in England at
which three counties meet, 8o here is a point where three states
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meet—the liquid, the vapour and the gaseous. And, because of
this, asubstanceat the critical point possesses certain remarkable
properties.

The values of the temperature, pressure and volume at the
critical point are usually denoted by 7, p, and »,. The tempera-
ture 7, is of course the critical temperature, above which lique-
faction is impossible; p, and v, may be defined as the pressure and
volume at which liquefaction first begins when the substance is
at a temperature just below 7.

We have seen that the existence of this critical point is implied
in the equations of both Van der Waals and Dieterici. The two
equations make different predictions as to the position of the
point, but this is not surprising, since both equations are only
true when the deviations from Boyle’s law are small, and the
critical point is in a region in which these deviations are quite
definitely not small. Thus both predictions as to the position of
the critical point are unwarranted extrapolations. The predictions
are shewn in the following table:

. NRT,
Equation of NRT, Do v, Pute

Van der Waals o-aoz 0-037 1% 3006 | 267

Dieterici 0-25 Z 0-034 :2 2.006 | 3-69

The last column is of interest from the fact that NR T,/p,v,is, on
any theory, a pure number, having no physical dimensions at all.
If Boyle’s law still held at the critical point, this number would
of course be equal to unity; we see how far the critical point is
from the regions in which Boyle’s law holds.

Actual observations of critical data are recorded in the table
on p. 94 overleaf.

These data shew that the properties of different gases vary
widely, and that for most gases neither the equation of Van der
Waals nor that of Dieterici comes particularly near to the truth.
Generally speaking, however, the equation of Dieterici appears
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to be‘ more accurate than that of Van der Waals, particularly for

the heavier and more complex gases.

NRT,

Gas Y o

1 PoVo

Hydrogen 2-80 3-27
Helium —_ 3:26
Nitrogen 1-60 3-42
Oxygen 1-46 3-42
Neon — 3:42
Argon —_ 3:42
Xenon — 3-60
co, 1-86 3-61
HCl —_ 3-48
CCl, — 3-68
C,H, —_ 3-71
C.H,Br — 3-78
C,H,Cl — 3:81
Van der Waals 3-:00 2-67
Dieterici 2-00 3:69

71. It is interesting to compare the two equations at pla.ces

other than the critical point.

According to the equation of Dieterici,
NRT
pv(1—b/v)’
so that, on taking logarithms of both sides,

ealNRTv =

e = tog(R2) L (O] 9)=+
NETv™ %8 v v 2 ) 3(0

a NRT b2 b
and NET = log( )+b+2v 3t
According to Van der Waals,

p(v—b) = NRT——(v ~b),

whence we obtain
NR T) b2 b3
- b+ —+—

42 b l_“__)’(l..’_”
NET» T2 \NRT v) Voboees

1
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If we neglect powers and products of the small quantities a
and b, both equations predict that

NRT
vlog (-———)
pv
should be constant along any isothermal. The following table
gives, in its last column, the value of this quantity along the
critical isothermal (7' = 187-8°C.) of isopentane, as calculated
from the observations of Young. The values of p in the third
column are those given by Dieterici’s equation (74) for the tem-
perature 187-8° C.and the pressurerecorded in the second column.*

Critical Isothermal of Isopentane

Critical temperature=187-8° C. Critical volume =4-266 c.c. per gramme.

Volume v, Prossure p, Prossure p |y oo (& RT)
per gramme | mm. of mercury (calc.) g v

2-4 49080 42730 1-271
2-5 40560 35810 1-486
2:6 34980 32090 1:669
2-8 28940 28390 1-938
3-0 26460 26780 2-103
3-2 25490 26000 2-206
3-6 25050 25420 2-326
40 25020 25320 2-402
43 25010 25300 2-447
4:6 25000 25300 2-483

b 24990 25240 2:520

6 24840 24880 2-564

7 24400 -— 2-577

8 23710 23400 2-582

9 22930 — 2:576
10 22040 21590 2-576
12 20300 19850 2-568
15 17980 17540 2:548
20 14840 14560 2-564
30 10950 10770 2-526
40 8570 8508 2-624
50 7068 7025 2-625
60 6001 5978 2-652
80 4014 4604 2-680
90 4132 4127 2-637
100 3750 3740 2680

* Ann. d. Phys. 5 (1901), p. 58.
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It appears that vlog (AZZT) is approximately constant for all
pressures less than about 12 atmospheres, shewing the range
within which a first approximation holds. There is, however, very
tolerably good agreement between the observed and calculated
values of p far beyond this range, indicating considerable
accuracy in Dieterici’s equation.

Reduced Equation of State

72. The critical temperature, pressure and volume fo
noteworthy milestones in the various states of a gas, and ko
provide valuable units for the measurement of temperaturs,
pressure and volume in general.

Let us introduce quantities t, p and v defined by

T P v
t = =, = =, l’) = —,
7 Y7, Ve
go that { denotes the ratio of the temperature of any substance to
its critical temperature, and so on. The quantities t, p, b are called/
the reduced temperature, pressure and volume respectively.

According to Van der Waals’ equation, we have (cf. equations
(104)) “ Sa
p= ﬁb_zp’ v = 3bv, NRT = §75t'

so that the equation reduces to

(p+%) (n-g) =§t. ...... (108)

" It will be noticed that this equation is the same for all gases,
since the quantities a, b which vary from one gas to another have
entirely disappeared. An equation, such as that of Van der
Waals, which aims at expressing the relation between pressure,
volume and temperature in a gas, is called an equation of state,
or sometimes a characteristic equation or gas-equation. Equation
(108) may be called the ‘“‘reduced’ equation of state of Van der
Waals, and is the same for all gases.

On the other hand, according to Dieterici’s equation, the values
of t, p and b are given by equations (106) and on substituting
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these values for 7, p,, v, in Dieterici’s equation, we find that the
corresponding ‘‘reduced” equation of state is

p(0~1) = 1e7(-5),

Corresponding States

73. If either of these equations could be regarded as absolutely
true for all gases, it appears that when any two of the quantities
t, p, v are known, the third would also be given, and would be the
same for all gases. In other words, there would be a relation of the
form p = f(t,v), in which the coefficients in f would be inde-
pendent of the nature of the gas.

The same is true for any equation of state whatever, provided
that this contains only fwo quantities which depend on the par-
ticular structure of the gas in question—say, for instance, the
same two as in the equation of Van der Waals, representing the
size of the molccules and the cohesion-factor. For if a and &
represent these two constants, the equation of state will be a
relation between the five quantities

p,v,T,a and b,

The critical point is fixed by two more equations, these being
2
in fact %ﬁ = 0and (c-livl; = 0, and these involve the critical quanti-
v
ties 7, p, and v, as well as @ and b. From the three equations just
mentioned we can eliminate a and b, and are left with a single
equation connecting 7', p, v and 7T, p,, v,. Considerations of
physical dimensions shew that it must be possible to put this

equation in the form
p=/tyv), .. (110)

in which the coefficients in f are independent of the nature of the
gas. This is the result which has been already established for the
special equations of Van der Waals and Dieterici.

Assuming that the gas-equation can be expressed in the form
(110), two gases which have the same values of t, p and v are said
to be in *corresponding” states. Clearly for two gases to be in

TKRT 7
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corresponding states, it is sufficient for any two of the three
quantities t, p and v to be the same for both. )

74. It is sometimes asserted as a natural law, that when two of
the quantities t, p and v are the same for two gases, then the third
quantity will necessarily also be the same, and this supposed law
is called the ““Law of Corresponding States . This law will, how-
ever, only be true if the reduced equation of state can be put in
the form of equation (110), and this in turn demands that the
nature of the gas shall be specified by only two physical constants,
a8 for instance the a and b of Van der Waals. There is of course no
question that the law is true as a first approximation, because t.
equations of both Van der Waals and Dieterici are true as a firs
approximation, but if the law were generally true, all the entrie
in the table on p. 94 would be equal, which is obviously not the’
case.

The law of corresponding states can be expressed in the form
that by contraction or expansion of the scales on which p and v
are measurcd, the isothermals of all gases can be made exactly the
same. This same statement can be put in the alternative form
that graphs in which logp, logp and log T' are plotted against
one another will be the same for all gases.

OTHER EQUATIONS OF STATE

The Empirical Equation of State of Kamerlingh Onnes

75. Following Kamerlingh Onnes, let us introduce a quantity
K defined for any gas by
NRT,
De¥e
a oonsideration of physical dimensions shewing that K must be
a pure number, and let us further put

b
UK=K-

K =

With this notation, Van der Waals’ equation (108) reduces to

(¥'+-ﬁf—:%)(bx—%)t. ...... (111)
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whwh can also be written in the form

t 27
pog = ———
L__L 64ng
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1 271 1 1
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‘ +bx(8 o4t) T 64v- T 51908

2
+—a 1 112
409603, T 2076803, T [ +eer(112)

As innumerable observers have found that an equation of this
type is not adequate to rcpresent the various states of a gas,
Kamerlingh Onnes proposed the more general empirical form

B € ‘D ¢ 8"}

b =t{14+ >+
P tog Tontog T ok Tl

where B, €, D, ... are themselves series of the form

h+%+&+%,
an expansion which contains no fewer than twenty-five adjustable
coeflicients.
If the law of corresponding states were true, the coefficients in
the expansions (111), (112) ought to be the same for all gases.
Actually Kamerlingh Onnes* found that an equation of state
of the form (113) can be obtained which expresses with fair
accuracy the observations of Amagat on hydrogen, oxygen,
nitrogen and C,H,,0, also of Ramsay and Young on C,H,,0 and
of Young on isopentane (C,H;,). The coefficients in this equation
are found to be those given in the following table:

B=0b+7

1 2 3 4 5
10D 117-796 | —228-038 | —172:891 - 72-765 -3-172
104 ¢ 135-580 | —135-788 295-908 160-949 51-109
105 d 66-023 —19-968 | —137-157 55-851 | —-27-122
107 ¢ -179-991 648-583 | —490-683 97-940 4-582
10°§ 142-348 | —547-249 508-536 | —127-736 12-210

® Encyc. d. Math. Wissenschaften, 5 (1912), 10, p. 729, or Comm. Phys.
Lab, Leiden, 11, Supp. 23(1912), p. 115.
72
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The circumstance that the same equation of state is valid for
all these six gases shews of course the wide applicability of the law
of corresponding states. On the other hand, the coefficients of the
equation of state of argon and helium are found to differ very sub-
stantially from those in the above table. Indeed Kamerlingh
Onnes found that the isothermals of helium* can be represented
very fairly between 100° C. and —217°C. by the equation

NRTb—a 5NRTH?

v 18 v
which is simply Van der Waals’ equation adjusted by the inclusio!
of Boltzmann’s second-order correction (§44). It must howeve
be noticed that the value of T}, for helium is very low, about 5-3
abs., so that the range of temperatures studied by Prof. Kamer-
lingh Onnes is about from t = 10 to t = 70, and for these high
values of t it is inevitable that Van der Waals’ equation should in
any case give a good approximation.

po = NRT +

The Equation of State of Clausius

76. Various attempts have been made to improve Van der -
Waals’ equation by the introduction of a few more adjustable
constants, which can be so chosen as to make the equation agree
more closely with experiment.

One of the best known of these improved equations is that of
Clausius, namely

(“Wa;c?) (v—b) = NRT. ... (114)

On putting ¢ = 0, the equation becomes similar to that of Van
der Waals, except that the a of Van der Waals’ equation is re-
placed by a’/T'; in other words, instead of a being constant, it is
supposed to vary inversely as the temperature. For some gases
such an equation is found to fit the observations better than the
equation of Van der Waals.

If, however, ¢ is not put equal to zero, but is treated as an
adjustable constant and selected to fit the observations, there is
found to be no tendency for ¢ to vanish. The following table shews

* Comm. Phys. Lab. Leiden, 102a (1907).
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the values of a’, b and ¢ which are found by Sarrau® to give the
best approximation to the observations of Amagat:

Gas a’ b c c/b
Nitrogen 0-4464 0-001359 0-000263 0-19
Oxygen 0:-5475 0-000890 0-000086 075
Ethylene_ . 2688 0:000967 0:001919 1-98
Carbon-dioxide 2092 0-000866 0-000949 1-10

77. We have already seen that, if Van der Waals’ equation
were true, the law of corresponding states would follow as a
necessary consequence. The reason for this is that in Van der
Waals’ law there are only two constants, a and b, which re-
spectively provide the scales on which the pressure and volume
can be measured in reduced coordinates.

The equation of Clausius, on the other hand, contains three
separate constants, a’, b and c, and of these two, namely b and ¢,
provide different scales on which the volume can be measured:
these two scales only become identical if b and ¢ stand in a constant
ratio to one another. Thus if the law of corresponding states were
true, the ratio c/b would be the same for all gases. The last column
of the above table shews, however, that there is not even an
approximation to constancy in the values of ¢/b.

78. Clausius originally devised formula (114) in an effort to
find a formula which should fit the observations of Andrews on
carbon-dioxide. It was found that this formula, although fairly
successful in the case of carbon-dioxide, was not equally successful
with other gases, and Clausius then suggested the more general
form

lp+(it’%i—amT) 1 }(v—b) — NRT,

| (w+¢)?
which contains five adjustable constants. For carbon-dioxide, it
is found that n = 2 and @’’’ = 0, so that the equation reduces to

nt

(114), but for other gases » and a’”’ do not approximate to these
values. For instance Clausius finds that for ether n = 1-192, for
water-vapour n = 1-24, while to agree with observations on
alcohol, » itself must be regarded as a function of the temperature

* Comptes Rendus, 114 (1882), pp. 639, 718, 845.
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and. pressure, having values which vary from 1-087 at 0°C. to
0-184 at 240°C,

Beatty and Bridgeman have suggested an equation of state,
also containing five adjustable constants, of the form

(o= men-c) o34

They find that this represents at least fourteen gases, to within
an accuracy of one-half of one per cent, down to the critical poipt.

It is, however, obvious that there can be no finality in any| of
these formulae; it is possible to go on extending them indefinitely
without arriving at a fully satisfactory formula, as might indead
be anticipated from the circumstance that they are purely em-
pirical, and not founded on any satisfactory theoretical basis.



Chapter IV
COLLISIONS AND MAXWELL'S LAW

79. In §8 we traced out the path of a single molecule under
the simplest conceivable conditions. It is only in very exceptional
cases that such a procedure is possible. Usually the kinetic theory
has to rely on statistical calculations, based on the supposition
that the number of molecules is very great indeed; the molecules
are not discussed as individuals, but in crowds. In doing this, the
theory encounters all the well-known difficulties of statistical
methods. Indeed these confront us at the very outset, when we
attempt to frame precise definitions of the simplest quantities,
such as the density, pressure, etc. of a gas.

The Definition of Density

80. Let us fix our attention on any small space inside the gas,
of volume 2. Molecules will be continually entering and leaving
this small space by crossingits boundary. Each time this happens,
the number of molecules inside the space increases or decreases by
unity. Thus the number of molecules inside the space will be
represented by a succession of consecutive numbers, such as

n,n+l,n+2,n+1,n,n+l,n,n-1,n,n-1,n-2,
n—-1,n,n+l,n,n-1,...

This succession of numbers will fluctuate around their average
value, say n. Since the fluctuations arise from the passage of
molecules over the boundary, they will be proportional to the
area of this boundary, and so to the square of the linear dimen-
sions of the space, but the number » will be proportional to the
volume of the space, and so to the cube of its linear dimensions.
As the volume is made larger, the fluctuations become more and
more insignificant in proportion to n.

In an actual gas the volume Q can usually be chosen of such
size that it shall contain a very large number of molecules, and
yet be very small compared with the scale on which the physical
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properties of the gas vary; a cubic millimetre is often a suitable
volume. The number of molecules contained in an element of this
kind, divided by the volume £ of the element, will give the mole-
cular density of the gas, which is usually denoted by v. Actually
v is a fluctuating quantity, but if the volume 2 can be chosen
sufficiently large, the fluctuations are inappreciable. In such a
case » may be treated as a steady quantity, and we may think of
it as the number of molecules per unit volume in a specified regiPn
of the gas. !
If each molecule is of mass m, and

p=mp,

p will measure the mass of all the molecules per unit volume; it i
the “density”’ of the gas.

The Law of Distribution of Velocities

81. We have already seen that the molecules of a gas do not all
move at the same speed; the components of velocity can have all
values. For instance, when the gas has reached a steady state,
they are distributed according to Maxwell’s law (§ 23). '

To discuss the velocities of a great number N of molccules, let
us take any point as origin, and draw from it a number of separate
lines, each line representing the velocity of one molecule, both in
magnitude and direction. The point at the extremity of any such
line will have as its coordinates u, », w, the components of velocity
of the corresponding molecule. The distribution of points ob-
tained in this way is of course the same as the distribution of
the molecules would be in space if they all started together at a
point and each moved for unit time with its actual velocity.
The number of points of which the coordinates lie between the
limits » and % +du, v and v+dv, w and w+dw may be denoted
by 7dudvdw, where 7 corresponds to the v above, being the
“density "’ of points at the point u, v, w. The fumber of molecules
of which the velocities lie between » and u+du, v and v+dv,
w and w+ dw will now be rdudvdw. If N is the total number of
molecules under consideration, it is often convenient to replace
r by Nf. If it is further necessary to specify the point u,v, w at
which f is measured, we may write f(u, v, w) instead of f. Because
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of the occurrences of collisions, f(x, v, w) is a fluctuating function
of u,v,w, but under suitable conditions the fluctuations will be
inappreciable.

To avoid the continual repetition of these limits, let us describe
a molecule of which the components of velocity lie between « and

u+du, v and v+dv, w and w+dw as a molecule of class A. Then
the number of molecules of class A is

Nf(u,v,w)dudvdw.

Since the total number of molecules under consideration is N,
the probability that any single molecule selected at random shall
have velocity-components lying between u and u-+dw, v and
v+dv, w and w+dw will be f(u, v, w) dudv dw.

The Assumption of Molecular Chaos

82. Let us fix our attention on any small volume of the gas
which contains N molecules. We may imagine that we measure
the velocity of each molecule, represent it by a point u,»,w in
our diagram, and so calculate f(u, v, w) for all values of %, v and
w. Having done this, we may proceed to some other group of N
molecules and again calculate f(u, v, w) for all values of , v and w.
The two sets of values of f may prove to be the same, in which case
we say that the two groups of molecules have the same distribu-
tion of velocities; or obviously they may be different, as for in-
stance if the two groups of molecules were taken from regions of
the gas which were at different temperatures.

Let us now suppose that the second group of molecules is
chosen from the same region of the gas as the first, but that it is
chosen in a very special way. Let it consist of all the molecules
which lie within a certain small distance e of molecules which are
themselves moving at exceptionally rapid speeds. The question
arises as to whether this special way of choosing our group of
molecules has any influence on the distribution of velocities. It
might at first be thought, with some plausibility, that there would
be some such influence—a molecule near to a second and rapidly
moving molecule is more likely than others to have collided with
this second very energetic molecule quite recently, in which case
it might have acquired an undue amount of energy from it.
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Boltzmann introduced into the kinetic theory the assumption
that no such influence exists; he called this the ‘‘assumption of
molecular chaos”, but was unable to give any proof, or even any
discussion, of its truth. We also shall make this assumption,
ultimately justifying our procedure by a proof (given in Appendix
1V), that the assumption is true. We shall make the assumption
in the form that the chance that a molecule of class A shall be
found within any small element of volume dzdydz is

vf(u,v,w)dudvdwdadydz, ... (11p)

where f is the law of distribution of velocities for the group df
molecules in a small volume Q2 which includes the smaller elemen
dxdydz. We assume this to be true for every small element o
volume dzdydz, no matter how this is chosen.

. The Changes produced by Collisions when the
Molecules are Elastic Spheres

83. From the statistical point of view, the state of a gas is fully
known when its density and the law of distribution of velocities |
are known at every point. As every collision between molecules
changes the velocities of the two molecules concerned, the re-
peated occurrence of collisions must produce continual changes in
the law of distribution of velocities. We shall first discuss these
changes in a general way; ultimately we shall find that every gas
may, after a sufficient time, reach a steady state, i.e. a state which
is not altered by collisions, so that the density and law of distribu-
tion of velocities remain statistically the same at every point of
the gas throughout all time—just as a population can attain a
steady state, so that births and deaths and the normal process of
growing old do not alter its statistical distribution by ages. This
steady state is specified by Maxwell’s law, which we have already
obtained in § 23.

To begin by discussing the problem in its simplest form, let us
suppose that the molecules of the gas are smooth rigid spheres,
and that the physical conditions are the same at every point of
the gas. Let us first imagine the gas to be in a state in which the
molecular density and the law of distribution of velocities
f(u,v,w) are the same at every point of space. Since there is
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nothing to differentiate the various regions in space, this uni-
formity of distribution must persist throughout all time, although
the actual form of the function f may change with the time.

84. Let us first consider the simplest possible kind of collision,
a direct head-on collision between two molecules which are
moving with velocities « and »’ along a line which we may take to
be the axis of . Asin § 10, the total momentum along the axis of
z, namely m(u +u'), will remain the same after collision, while the
relative velocity u’—u changes its sign, because of the perfect
elasticity of the molecules. It follows that the molecules merely
exchange their velocities along the axis of z; if the velocities
before collision are u, ', the velocities after collision are u’, u
respectively.

Any additional velocities the molecules may have in the direc-
tions of Oy and Oz will persist unchanged after the collision, since

Fig. 19

there is no force to change them. Thus if the molecules had
velocities before collision
u,v,wand o', v, ',
their velocities after collision will be
o' ,v,wand »,v’, W',
By considering a number of collisions with velocities very near,

but not exactly equal to, the foregoing, we see that if the velocities
before collision lie within the limits

wand u+du, vandv+dv, wand w+dw
and o and w' +du’, v and v’ +dv’, w’ and w'+dw’,

then the velocities after collision will lie within the limits

«' and u’ +du’, vand v+dv, wand w+dw
and wand u+du, v and v’ +dv’, w’ and w' +dw'.
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In discussing such a group of collisions, we may speak of the
product of the six differentials du dvdwdu’ dv’ dw’ as the spread
of the velocities. We now see that the total spread of the six
components before collision, namely dudvdwdu'dv’dw’, is
exactly equal to the total spread after collision, namely
du' dvdw du dv’ dw'—a result we shall need later.

So far the collision has been supposed to take place with its line
of impact along the axis of z, the relative velocity being %’ —u.
In such a case we obtain the velocities after the collision by supér-
posing the relative velocity along the line of impact (taken with
its appropriate sign) on to the velocities before impact. Now
this rule makes no mention of the special direction (namely O
that we have chosen for the line of impact, it must be of universa
application. So also must the other result we have obtained—
that the total spread dudvdwdu’dv’dw’ of the velocities before
collision is equal to the total spread after collision.

85. Let us now remove the restriction that the line of impact is
to be in the direction Oz, and consider a more general type of
collision, which we shall describe as a collision of type «, and shall ,
define by the three following conditions: :

(i) One of the two colliding molecules is to be a molecule of
class A, defined by the condition that the velocity-components
lie within the limits » and u + du, » and v+dv, w and w + dw.

(ii) The second colliding molecule is to be of class B, defined
by the condition that the velocity-components lie within the
limits " and »’ +du’, ' and v' +dv’, w’ and w’ +dw’.

(iii) The direction of the line of impact is to have direction-
cosines I,m,n, and is to lie within a specified small solid
angle dw.

If the molecules all have the same diameter o, a collision will
occur each time that the centres of any two molecules come within
a distance o of one another. Let us now imagine a sphere of
radius o drawn round the centre of each molecule of class A. We
can mark out on the surface of this sphere the solid angle dw
specified in condition (iii), thus obtaining an area o?dw, in a direc-
tion from the centre of the sphere of direction-cosines I, m,n.
Clearly a collision of type & will occur every time that the centre
of a molecule of class B comes upon this area o?dw.
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Let the relative velocity of the two molecules at such a collision
be V. Inany small interval of time d¢ before such a collision occurs,
the second molecule will move relative to the first, through a
distance V¥ dt in the direction of V. Hence at a time dt before the
collision, the centre of the second molecule must have lain on an
area o2dw which can be obtained by moving our original area
o?dw through a distance Vdt from its old position in the direction
opposite to that of V. And if a collision is to take place some time
within the interval dt, the centre of the second molecule must lie
inside the cylinder which this element o2 dw traces out as it makes -
the motion just mentioned (see fig. 20).
yZ L,m,n

Kig, 20

The base of this cylinderis o?dw; its height is V dt x cos &, where
0 is the angle between the direction I, m, 7 and that of ¥ reversed.
Hence its volume, which is the product of base and height, is
Vo?cos@dwdt. The assumption of molecular chaos now comes
into play, and we suppose that the probability that a molecule
of class B shall lie within this small cylinder at the beginning of
the interval dt is

vf (', v, w')du’ do’ dw’' Volcos Odwdt. ... (116)
This, then, must also be the probability that our single molecule

of class A shall experience a collision of type @ within the interval
of time dt.
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Each unit volume of the gas contains vf(u, v, w)dudvdw mole-
cules of class A, and on multiplying this by expression (116) we
obtain the total number of collisions of type & which occur in a
unit volume of the gas in a time-interval d¢. The number is found
to be
Vif(u, v, w)f(u',v',w’) Vo2 cos 0 dudvdw du'dv'dw'dwdt. ......(117)

Each of these collisions results in one molecule leaving
class A.

86. Let us next consider a type of collision which results i a
molecule entering class A. We shall describe this as a collision bf
type £, and shall define it by the three conditions that

(i) After the collision, one of the molecules is to be of class A\

(ii) After the collision, the other molecule is to be of class B.

(iii) The direction of the line of centres at impact is to satisfy
the same condition as for a collision of type « (p. 108).

In brief, the two molecules have velocities before collision
which are identical with those which the two molecules of a type
o collision acquire after collision, and vice versa.

Let the velocities before collision be

u,v,w and %', %', w’ with spreads dudvdw and du’ dv’ dw'.
Making the necessary alterations in formula (117), we see that the
number of collisions of type £ which occurs per unit volume in
time df is

vif(u, v, w)f(w',v',w’) Vo? cos 0 du dv dw du’ dv’ dw’ dw dt.
L (118)
The quantities v, o2, cos§, dw and dt stand unaltered, since
these have the same value for both types of collision. Further-
more, the result obtained in § 84 shews that the total spread of
velocities after collision is equal to the total spread before, so that

dudvdwdu' dv’' dw’ = dudvdwdu' dv’ dw’
and formula (118) may be written in the form

v¥f(,v,w)f(@',v',w') Vot cos 0 dudvdwdu’ dv’ dw' dwdt.

vee-..(119)
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The Condition for a Steady State

87. We may notice that expression (119), which specifies the
number of collisions of type f, is identical with expression (117),
which specifies the number of collisions of type a, except that
[(@, v, w)f(@',v',w’) replaces f(u,v, w)f(w,v',w').

If, then,

f@, v, w)f@,v",w')>f(u,v,w)f(u',v',w),

collisions of type £ will be more frequent than collisions of type «,
and class A of molecules will gain by collisions of these two types.
I7
f@,v,w)f@, v, ') = fu,v,w) fu',v',0'), ...... (120)
then collisions of types a and f occur with equal frequency, so
that class A neither increases nor decreases its numbers as the
result of collisions of these two types. If equation (120) is true for
all values of the velocity-components, then class A neither gains
nor loses as the result of collisions of any type whatsoever. The
same is true of cvery other class of molecules, so that if equation
(120) is true for all velocities, each class retains the same number
of molecules throughout all collisions—the gas is in a steady state.
It is, then, very important to examine whether equation (120)
can be satisfied for all velocities. Since a collision changes
u, v, w, %, v, w into %, 3, w, ', v, W', the equation merely ex-
presses that f(u, v, w) f(u', v’, w') remains unchanged by a collision,
or again, taking logarithms, that

logf(u,v,w)+logf(u',v,w') ... (121)

remains unchanged at a collision. :

This expression is the sum of two contributions, one from each
molecule, and we immediately think of a number of quantities of
which the sum is conserved at a collision. To begin with there are
the energy }m(u?+v?+w?), and the three components of angular
momentum (mu, mp,mw); these give four possible forms for
log f(u,v,w). A fifth is obtained by taking log f(u, v, w) equal to a
constant (conservation of number of molecules, i.e. mass), and
it is obvious that there can be no others. For if any additional
form were possible for log f, there would be five equations giving
%,9,%, %, v, W in terms of », v, w, ¥, v',w’,s0that %, v, w, %, v, 0’
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would be determined except for one unknown. There must, how-
ever, be two unknowns, as the direction of the line of centres is
unknown.

The general solution of equation (120) is therefore seen to be

log f(u, v, w) = a;m(u? + v?+w?) + a,mu + agmv+ a,;mw + o,

where o, a,, &tg, 2,4, o5 are constants. These may be replaced by
new constants and the solution written in the form ’

log f(u, v, w) = aym[(u—up)*+ (v —vo)?+ (w—wy)*] + a4
or, if we still further change the constants,
f(u,v,w) = Aemlu-—u+-v +w—wy)?), veee(128

in which 4, k, g, vy, w, are new arbitrary constants.

If f(u,v,w) is of this form, the gas will be in a steady state,
i.e. the distribution of velocities will not be changed by collisions.
This value of f is a slight generalisation of that previously
obtained in § 23 (formula (41)).

88. Let us now examine what these various constants mean in .
physical terms. As the index of the exponential in formula (123)°
is necessarily negative or zero for all values of u, v and w, we
see that f(u, v, w) has its maximum value when the index is zero,
i.e. when w=uy, U=, w=w,

This shews that the velocities of most frequent occurrence are
those in the immediate neighbourhood of u,, v, w.

Further, since (4 —u,) occurs only through its square, positive
values of u —u, occur exactly as frequently as the corresponding
negative values, so that the average value of u —u, is zero. Thus
the average value of u is u,, so that ug, vy, w, must be the com-
ponents of velocity of the centre of gravity of the whole gas,
while the quantities u—wuy, v—v,, w—w, which figure in the
exponential in equation (123), are simply the-components of the
velocity of a molecule relative to the centre of gravity of the gas.

Let us next write

u—1uy=U,
v— 9, =1V,
w—wy =W,
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so that u = u,+U, etc. We now see that the velocity of any
molecule may be regarded as made up of

(i) a velocity u,, vy, wy which is the same for all molecules, being
the velocity of the centre of gravity of the gas, and

(ii) a velocity U, V, W relative to the centre of gravity of the
gas, which of course is different for each molecule.

We may speak of the former velocity as the “mass-velocity ”
of the gas, and of the latter velocity as the ‘thermal” velocity
of the molecule, since it arises from the thermal agitation of the
gas. From formula (123), the law of distribution of thermal
velocities is '

fU,V, W) = Je-hmU+Vi+wh)

This brings us back to Maxwell’s law, which we obtained in
§23. We see that % is identical with the % of § 23, which was
there found to have the value 1/2RT.

The right-hand member of this equation shews that the
probability that the thermal velocity of a molecule shall have
components which lie within the limits U and U +4dU, V and
V+dV, W and W +dW is

Ae—hmUW+VI+W JU dV dW.
If we integrate this from
U=-00to 400, V=—-0ooto +o0 and W = —o0to +c0,

we obtain the total probability that the molecule shall have
velocity-components lying somewhere within these limits. But
as every molecule must have thermal velocities which lie some-
where within these limits, this total probability must be equal to
unity, so that we must have

+ o
A J J fe"""‘”’+"’+w’>du dVdW = 1.
-

The value of the integral is easily found to be (w/hm)!
(Appendix VI, p. 306), so that

A= (h;")'.

JKT 8
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Any one of the N molecules has an amount
Im(U24+V2+ W2)
of thermal energy, so that the total thermal energy of the gas is
obtained: by summing the quantity over all the N molecules.

The number of molecules having a thermal velocity of which
the components lie between the limits

UandU+dU, Vand V+dV, W and W+dW
is NAetmO+VHWI G gV AW,
/

and the contribution which these molecules make to the totg
thermal energy is

ImNA(U24 V24 W2) e~ hmlU? VW g gV dW.
Summing this over all values of U, V, W, we find the total thermal '
energy of the N molecules to be

+ w
ymNA f f f (U2 V2 4 W) -WmUh+Virwh U gV dW,

The value of the integral is easily found to be

3 J-"i
2N hm®’

so that the total thermal energy is

n® 3N
The average thermal energy of a molecule is accordingly
3/4h, or 3RT, in agrecment with formula (17).

Steady State in a Mixture of Gases

89. A slightly more complex problem arises when the gas
consists of a mixture of molecules of two different kinds. Let us
suppose that the molecules of both kinds are hard smooth spheres;
let m,, 0, 1y, f, refer to the first kind of molecule, while m,, o, vy, f,
refer to the second kind. We proceed as before and obtain, in
place of formula (117),

nfi(u, v,w)fy(w', v, w') V[}(0y + 0,)]2
x cos Odudvdwdu’ dv' dw' dwdt
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for the number of collisions of type « in which the second molecule
is supposed to be of the second kind.

If the gas is to be in a steady state, there must be no net loss or
gain to molecules of class A through collisions with molecules of
the second kind. The condition for this is found to be that (in
place of equation (120))

H(@,0,w) f,(@', ' 0') = fy(u, v, w) fo(u',v',w'), ...... (125)
and we see, just as before, that logf, and logf, must represent
quantities which are conserved at collision. Again we find that
log f; and log f, may be molecular energies, or components of
momentum, or constants, or a combination of all five, so that
finally f; and f, must be of the form

fl(u! v, w) = Ale—hml[(u—uu)’-}-(v—a,,)’ﬂw—w,,)’]’
f 2(“: v, w) = Aze—hm,((u—-uo)’+(v—vo)’+(w-wu)'],

where h, u,, v,, w, are the same in both formulae.

The fact that & is the same for the two kinds of gases shews that
in the steady state the average kinetic energy of the two kinds
of molecules is the same. This is a special case of the general
theorem of equipartition of energy to which we have already
referred (§11).

Remembering that the absolute temperature in a gas is
measured by the average kinetic energy of its molecules, we see
that when two gases are mixed they will in time reach a steady
state in which the temperature is the same for both.

THE MAXWELLIAN DISTRIBUTION

90. We may notice first that the componentsU, V, W of thermal
velocity enter separately into Maxwell’s law. To be more precise,
if we write

P(U) = Ale—hmV* = (’i’l‘)* ehmut (126)
m

then equation (124), which expresses Maxwell’s law, can be
written in the form

f(U,V, W)dUadViW = [¢(U)dU] [¢(V)dV][(W)dW].
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This shews that the probability of a molecule having a velocity
of components U, V, W is the product of three independent
probabilities, onc of which depends only on U, one only on V and
the third only on W. It follows that the probability of a molecule
having any specified velocity in the direction of Oz is inde-
pendent of the velocity-components of the molecule in other
directions, being in fact determined by the formula

AU)dU = (’iﬂ’f)' ehmUt gy

sents a steady state in which the law of distribution of thermal

To recapitulate, we have now found that cquation (124) repre-\
velocities (U, V, W) is given by the formula

i
fU,V,W) = (’—Z") e~ hmUTHVIEWY (128)
while the law of distribution for a single component is
[ H
$(U) = (’17’-:-’) s (129)

Equation (128), which expresses Maxwell’s law of distribution,
was first given in his 1859 paper. The proof by which he sought to
establish the law is now generally agreed to have been unsound.
It began by assuming, without any attempted justification, that
the distributions of U, V, W were indcpendent. This proof is re-
produced in Appendix I (p. 296) on account of its historic interest.
The proof given in the present chapter is a modification of one
originally given by Boltzmann and Lorentz, but this also pro-
ceeded on the basis of an unjustified assumption, namely that of
molecular chaos (§ 82). In respect of logical completeness, then,
there is little to choose between the two proofs, but the proof just
given has the merit of giving a vivid picture of the physical pro-
cesses at work in a gas, besides providing a number of formulae
which are otherwise useful. -

The investigations of Boltzmann and Lorentz went further
than this. Equation (123) contains the most general solution of

' equation (120), but it has not been shewn that it represents all
possible steady states. Boltzmann and Lorentz proved this; their
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proof is given in Appendix II, and so will be assumed henceforth.
Thus by giving different values to the constants &, g, v, w, in
equation (123) we obtain all the steady states which are possible
for a gas. It is further proved in Appendix II that a gas which is
left to itself will gradually approach to one or other of these steady
states, and must finally attain it after sufficient time has elapsed.

A more complete proof of all this, which involves neither
Maxwell’s assumption of the independence of U, V and W nor

the assumption of molecular chaos, is given in Appendix IV
(p. 301).

Thermal Motions

91. Let us next suppose that the thermal velocity U, V, W of
a molecule is of amount ¢, and that its direction lics within a small
solid angle dw. Then U%+ V%4 W? = ¢2, and by a well-known
transformation of coordinates

dU dV dW = c?dcdw.
The law of distribution now assumes the form
AePn? c2dedw.

The direction of U, V, W only enters this formula through the
differential dw, so that the chance of this direction lying within
any solid angle is exactly proportional to the magnitude of the
solid angle. In other words, all directions are equally likely, as
indeed we should expect. For when the gas has no mass-motion
there is no reason why thermal velocities should favour one
direction more than another. When the gas has a mass-motion,
the principle of relativity takes charge of the situation, and shews
that the distribution of thermal velocities must be the same as
when the gas has no mass-motion.
If we integrate over all possible directions for dw, the law of
distribution becomes
dmde'mFctde. L. (130)

In fig. 21 the thin line shews the graph of the curve
y= e—z',
while the thick line is the graph of the curve

y = 2z%e,
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the factor 2 being introduced in this latter curve to make the
areas of the two curves the same. The thin curve gives a graphical
representation of the distribution of any single component
(U, V or W) of molecular velocity while the thick gives the same
for the total molecular velocity c.
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Fig. 21

On the thin curve the maximum ordinate occurs at y = 0,
shewing that the most frequent value of U is U = 0. The value
of y falls off rapidly as z increases, shewing that large values of U
are rare. The average numerical value of U is

© ® 1 0-5642
—hmut —hmUd J1) — -
fo Ue d”/ L‘ ™Y = G = Gt

and so is represented by the ordinate of x = 0-5642 in fig. 21.
Molecules with more than four times this velocity are represented
by the area of that part of the thin curve which lies to the right
of the ordinate z = 2-257, and this is seen to be very small indeed.
Thus it is very rare for any component of molecular velocity to
have as much as four times the average value.

The thick curve exhibits the distribution of ¢ among the mole-
oules of the gas and here the maximum ordinate is that of x = 1,
so that the most frequent value of ¢ is 1/(hAm)}. The graph shews
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that values of ¢ which are more than 2} times the most frequent

value of ¢ are very rare. The average value of ¢, which we shall
denote by ¢, is

- ® @ 2 1-1284
C=| clehmidc J‘ 2g—hmo' do = =
f 0 / o SIS = e = i)
and so is just double the average value of any single coordinate
U,VorWw.
The mean value of ¢? may be denoted by c2, but is more com-
monly denoted by C2. Its value is readily found to be
_3 _1s5
~ 2m  hm’

so that
¢ =0-921C and C = 1-086¢.

With C2? definud in this way, the average thermal energy of a
molecule is $mC?, and the thermal energy per unit volume is
$myC?or 1pC?; it is the same as though the whole gas were moving
forward through space with a velocity C, or 1-086¢.

Mass-Motion and Molecular- Moiion

92. We have seen that in the most general “steady state”
possible, the motion consists of a thermal motion compounded
with a mass-motion. The mass-motion has velocity components
Ug, Vg, W, While the thermal motion has velocity components
% — g, ¥ — Vg, W — Wy, Which we have denoted (p. 112) by U,V, W.
The kinetic energy per unit volume of the gas is

Zim(u? + v2+w?),
and since U=V =IW=0,
we have
Zim(u?+ v +w?) = ImZ{(U +up)?+(V+ v0)2 + (W +w,)%}

= }mZ (U + V2 + W2+ ud + 0] +wp)
= }my(C?+ud + v]+wf)
= tp(uf+vi+ w5+ 0%,

where p is the mass-density of the gas, given by p = mv,
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This shews that the total energy of a gas may be regarded
as the sum of the energies of its mass-motion and its thermal
motion.

Let us suppose that a vessel containing gas, which has so far
been moving with a velocity of which the components are
Uy, Vg, Wy, i8 suddenly brought to a standstill. This will of course
destroy the steady state of the gas, but after a sufficient time the
gaswill assume anew and different steady state. The mass-velocity
of this steady state will obviously be nil, and the energy wholly
molecular. The individual molecules have not been acted upon
by any external forces except in their impacts with the containin
vessel, and these leave their energy unchanged. The new mole
cular energy is therefore equal to the former total energy. This
enables us to determine the new steady state. In the language \
of the older physics, one would say that by suddenly stopping the
forward motion of the gas the kinetic energy of this motion had
been transformed into heat. In the language of the kinetic theory
we say that the total kinetic energy has been redistributed, so as
now to be wholly molecular.

An interesting region of thought, although one outside the
domain of pure kinetic theory, is opened up by the consideration
of the processes by which this new steady state is arrived at. To
examine the simplest case, let us suppose the gas to be contained
in a cubical box, and to have been moving originally in a direction
perpendicular to one of the sides. The hydrodynamical theory of
sound is capable of tracing the motion of the gas throughout all
time, subject of course to the assumptions on which the theory is
based. The solution of the problem obtained from the hydro-
dynamical standpoint is that the original motion of the gas is
perpetuated in the form of plane waves of sound in the gas, the
wave fronts all being perpendicular to the original direction of
motion, This solution is obviously very different from that arrived
at by the kinetic theory. For instance, the solution of hydro-
dynamics indicates that the original direction of motion remains
differentiated from other directions in space through all time,
whereas the solution of the kinetic theory indicates that a state
is soon attained in which there is no differentiation between
directions in space.
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The explanation of the divergence of the two solutions is
naturally to be looked for in the differences of the assumptions
made. The conception of the perfect non-viscous fluid postulated
by hydrodynamics is an abstract ideal which is logically incon-
sistent with the molecular constitlutibn of matter postulated by
the kinetic theory. Indeed in & later part of the book we shall
find that molecular structureis inconsistent with non-viscosity;
and shall be able to shew that the actual viscosity of gases is
simply and fully accounted for by their molecular structure. If
we introduce viscosity terms into the hydrodynamical discussion,
the energy of the original motion becomes ‘‘dissipated” by vis-
cosity. On the kinetic theory view, this energy has been converted
into molecular motion. In fact the kinetic theory enables us to
trace as molecular motion energy which other theories are
content to regard as lost from sight.

Fig. 22

93. Maxwell’s law of distribution of velocities has an obvious
similarity to the well-known law of trial and error. If a marksman
fires shots at a target, the result will look somewhat as in fig. 22.
The marksman tries, in firing each shot, to make both the x and
the y coordinates as small as possible. Subject to certain assump-
tions, which we need not discuss here, Gauss shewed that the two
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efforts may be treated as independent. The chance that the x
coordinate shall be between z and z+dx is

K —kz?
J;e de, e (131)

where « is a constant which measures the skill of the marksman.
If the marksman is skilled, small values of z are frequent, so that
k is large; the more skilled the marksman, the greater the value
of «, this becoming infinite for an ideal marksman of perfect
skill. Formula (131) is similar to Maxwell’s formula (126) for the
chance of a velocity component between U and U +dU, except
that x replaces Am, which, as we have seen, is inversely pro
portional to C? and so to the absolute temperature of the gas!
Thus we may imagine Maxwell’s formula arrived at by all the
molecules aiming at zero for each component velocity. The total
of their errors of marksmanship provides the total thermal energy
of the gas, so that a high temperature corresponds to bad marks-
manship and conversely.

When a marksman aims at a two-dimensional target, as in
fig. 22, the law of distribution of his shots is

I_( e—K(E"HI') dx dy,
m
or, transforming to plane polar coordinates r, 6, is
L exrr drdp.
m

If the target is three-dimensional, the corresponding law

becomes K\
(_) e—ﬂz'+v'+l’)dxdydz,
T

or, in three-dimensional polar coordinates r, 0, ¢,
t
(7—’:) e+ r2drsin 6d0d¢g,

which is now identical with Maxwell’s law (§91). Just as (in
fig. 22) the marksman aims at a radial distance r = 0, so here the
molecules aim at a total velocity ¢ = 0; the average velocity is
1-1284

not, however, ¢ = 0, but as we have already seen ¢ = ———.
(hm)}
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94. Although Maxwell’s law is comparatively simple in itself,
its introduction into a physical problem often leads to compli-
cated, and even intractable, mathematics. It is sometimes per-
missible to avoid the introduction of Maxwell’s law, and obtain a
rough approximation to the solution of a physical problem by
assuming that all the molecules have exactly the same velocity,
and in order that this velocity may be consistent with the actual
values of the pressure and of the kinetic energy, this uniform
velocity must be supposed to be C.

Some idea of the amount of error involved in this approxima-
tion may be obtained from a study of fig. 21. Since C? = 3/(2hm),
and Am is taken equal to unity in drawing the curves of fig. 21, the
approximation amounts to the assumption that the whole area
of the curve is collected close to the abscissa

3
Z—A/'2-=1225.

The graph shews that the approximation is a very rough one.

95. It is sometimes required to know how many of the mole-
cules of a gas have a speed greater than or less than a given speed
¢o- Out of a total of N molecules the number which have a speed
in excess of ¢, is, by formula (130),

i
4N (hzn ) f e—hme? 3 e,
7] Je
and, on integrating by parts, this becomes
$ ®
2N (@E) U e~hmet g +coe—""'co'}.
m a

In terms of the probability integral, or error function defined by
L] 2 ® .
erfx = T J.z e*dz,
this number becomes

N (erf z+ :/2; a:e"‘) s e (132)
3

where z = (hm)ic, = 3 (6—09)
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From a table of values of erf z, it is easy to calculate the number
of molecules either having velocity greater than any value c,, or
within any range ¢, to ¢,. The general run of the numbers to be
expected can often be sufficiently seen by an inspection of the
curves of fig. 21, but for exact calculations the table given in
Appendix V will be required. The values of 1—etf z are given
in the fourth column of this table.

Experimental Verification of Maxwell’s Law i

96. The more general discussion given in Chap. X below wil
shew that Maxwell’s law is not only applicable to the molecules o
gases, but also to those of liquids, to the atoms of solids, to the
free electrons in solids and even to the Brownian movements of
particles suspended in a liquid or a gas. Although the law is of
such outstanding importance in many branches of physics, it is
only in recent years that experimental confirmation of its truth
has been obtained.

The first confirmation of the law was provided by the electrons
escaping from a hot metallic filament. In the interior of a con-
ducting filament, electrons are moving in all directions. Those
which reach the surface with a speed above a certain limit may
overcome the restraining forces at the surface and pass into outer
space, much as molecules escape from the surface of a liquid by
evaporation. The speed with which any individual electron leaves
the surface provides a record of the speed with which it was ori-
ginally travelling inside the metal. By putting various retarding
potentials on the escaping electrons, it is possible to find what
proportion of the electrons are travelling with speeds above a
succession of assigned limits, and so to plot out the law of distri-
bution of velocities, both outside and inside the filament.

Experiments of this general type were originally performed by
0. W. Richardson and F. C. Brown,* and later by Schottky,?}
Sih Ling Ting} and J. H. Jones.§

® Phil. Mag. 16 (1908), pp. 353, 890; 18 (1909), p. 681,
+ Ann. d. Phys. 44 (1914), p. 1011.

1 Proc. Roy. Soc. 98 A (1921), p. 374.

§ Proc. Roy. Soc. 102 A (1923), p. 734.
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The original experiments of Richardson and Brown were con-
cerned only with the electrons escaping from hot platinum, and
shewed that Maxwell's law was obeyed with considerable
accuracy. Then Schottky obtained similar results with carbon
and tungsten, except that all velocitics appeared to be sub-
stantially higher than could be reconciled with the temperature
of the filament. The work of Jones cleared up these difficulties,
and finally Germer,* making an extensive series of experiments
at temperatures which ranged from 1440° abs. to 2475° abs.,
shewed that the speeds of the electrons not only satisfied Max-
well’s law with accuracy, but also that their absolute magnitudes
agreed exactly with the temperature of the hot filament.

97. Meanwhile, attacks were being made on the far more
difficult problem of testing the law
directly for molecular velocities. In
1920, Sternt planned an arrange-
ment, a development of that of
Dunoyer (§5), by which he hoped
to be able to measure molecular
velocities directly. Fig. 23 shews a
cross-section of the apparatus, At
its centre is a platinum wire W
heavily coated with silver. Sur-
rounding this is a cylindrical drum D containing a narrow slit S,
and still farther out another concentric drum PP’. The whole
apparatus can be rotated as a rigid body about W.

The complete apparatus is put inside an enclosure in which
a good vacuum can be obtained. If the wire W is now heated to
a suitable temperature, atoms of silver are emitted in profusion,
and if the gas-pressure is sufficiently low, so that the free path
is very great compared with the dimensions of the apparatus,
some of these silver molecules will pass through the slit S a1d
form a deposit on the outer drum PP’. If the apparatus is at
rest, this deposit will of course be formed at-a point P exactly
opposite 8, but if the whole apparatus is rapidly rotating, the

Fig. 23

* Phys. Rev. 15 (1925), p. 795. .
t Zeitschr. f. Phys. 2 (1920), p. 49; 3 (1920), p. 417, and Phys. Zeitschr.
21 (1920), p. 582.
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outer cylinder moves on through an appreciable distance while
the molecules are crossing from the slit S, so that the deposit is
formed farther back than if there were no rotation. Atoms which
move at different speeds will of course form deposits at different
places, and by measuring the position and intensities of the
various deposits, it is possible to calculate the distribution of
velocities in the atoms by which the deposits were formed.
Unfortunately the apparatus did not prove sensitive enough to
give very convincing results. i
98. In1927 E.E. Hall* designed a new, and more sensitive, foAn
of the same apparatus, which is shewn diagrammatically in fig. 2

Oven

Fig. 24

An electrically heated oven represented at the bottom of the
diagram contains a vapour. Molecules emerge through the
opening O, moving in all directions, and the slit S selects a beam
of parallel moving molecules. These move in the direction OS
at different speeds which ought, as we believe, to conform to
Maxwell’s law. Above the slit S is a rotating drum, with a slit in
its side which, once in each revolution, comes directly above the
fixed slit S. If the drum were rotating very slowly, molecules
would, on each of these occasions, pass through the slit and form
a deposit on the point of the drum opposite to the slit. If, how-
ever, the drum rotates so fast that the speed of its surface is com-
parable with that of the molecules, the drum has turned through
an appreciable angle before the molecule strikes its farther side,
so that the point of deposition of the molecule is displaced by a
distance which will be inversely proportional to the velocity of

* See Loeb, Kinetic Theory of Gases (2nd ed. 1934), pp. 132, 136.



COOLLISIONS AND MAXWELL'S LAW 127

t!me molecule. If the drum hasa radius of 6 inches and rotates 100
times per second, the speed of its surface is 314 feet per second,
and a molecule which is travelling at 1000 feet per second will

take g}5 second to cross the drum. In this interval the surface of

the drum will move

$35 feet or 74 inches,

so that the point of deposition will be displaced this far from the
point opposite the slit. In this way we obtain a sort of velocity-
spectrum of the specds of the molecules of the vapour.
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I. F. Zartman* and C. C. Kot experimented with bismuth
vapour in this way, but the velocity spectrum they obtained,
shewn in fig. 25, does not entirely agree with that to be expected
from Maxwell’s law. Ko finds, however, that his spectrum agrees
with that to be expected if the vapours consisted of a mixture of
molecules of Bi, Bi,, and Biy, in the proportion at 827°C. of
44 :54 :2, the molecules of each kind obeying Maxwell’s law. In
this way a rather indirect proof of Maxwell’s law is obtained.

* Phys. Rev. 37 (1931), p. 383.
t Journal Franklin Instivute, 217 (1934), p. 173,
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99. More recently, V. W. Cohen and A. Ellett,* experimenting
with various alkali atoms in a similar manner, have obtained a
very convincing confirmation of Maxwell’s law.

The same experimenterst have also studied the velocities in a
beam of potassium atoms which had been scattered by a crystal
of magnesium oxide. They found that these conformed to Max-
well’s law, the absolute values being those appropriate to the
temperature of the crystal, independently of the origin of the
beam of atoms before striking the crystal. This suggests that the
atoms were adsorbed by the crystal surface, and subsequently
re-emitted from it by a process of evaporation, in accordance wi
the suggestion of Maxwell and Langmuir (§ 34).

In both these last experiments, the atoms were sorted out!
according to their velocities of motion, by passing them through
a magnetic ficld; the atoms, being charged, had their paths curved
by the field, the radius of curvature being exactly proportional
to the specd of motion. A more complicated way of magnetic
sorting of atoms las been devised by Meissner and Scheffers,}
who have verified Maxwell’s law with great precision for atoms
of lithium and potassium. !

100. These magnetic methods are useful only for sorting out
electrically charged atoms; a magnetic field has no influence on
molecules or neutral atoms. In 1926 Stern§ proposed to sort out
these by a method rather like the toothed wheel method which
Fizeau used to measure the velocity of light. In 1929 Lammert||
constructed an apparatus on these lines and obtained a very
satisfactory confirmation of Maxwell’s law for mercury atoms.

In fig. 26, O contains mercury vapour. A slit in this and a
second slit S limit the emerging mercury atoms to a parallel
moving beam. After passing through §, the atoms of the beam
encounter in succession two wheels W;, W;, both mounted on the
same shaft, and rapidly rotating. Each wheel has a slit in it, of
the same width as the slit S. Once in each revolution of the wheel

* Phys. Rev. 52 (1937), p. 502.

1 Ellett and Cohen, Phys. Rev. 52 (1937), p. 509.
t Phys. Zeitschr. 34 (1933), p. 173.

§ Zeitschr. f. Phys. 39 (1926), p. 751.

|| Zeitschr. f. Phys. 56 (1929), p. 244.
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W,, the whole beam of molecules passes through the slit in ¥,
and impinges on the wheel ;. The slit in W} is not parallel to that
in W, but is set to be at an angle of about 2 degrees behind it.
Thus those molecules which travel exactly the distance between
W, and W,, while the wheels are turning through 2 degrees, will
pass through the slit in W,; molecules which travel at other
speeds are either too late or too early to get through. By running
the wheels at different speeds, it is possible to pick out the mole-
cules which travel at any desired speed; these are allowed to form
a deposit on a transparent screen, and from the density of this
deposit the number of molecules can be estimated. In this way
Lammert shewed that Maxwell’s law was satisfied to a con-
siderable degree of accuracy.

W W,
& 1 2

7

Fig. 26

Kappler obtained yet another confirmation of the law by the
use of the miniature torsion-balance already described in §5.
When the arm is immersed in gas of very low density, the impacts
of the separating molecules can be detected and analysed
statistically. The results obtained indicate that the velocities of
the individual molecules conform to Maxwell’s law.

101. A certain amount of confirmation of Maxwell’s law is pro-
vided by astrophysical observation. The atmosphere of a star
consists of a mixture of atoms of different kinds moving with all
possible velocities. If an atom of hydrogen is moving towards the
earth with a speed v, and emitting the line He, its light when
received on earth and resolved in a terrestrial spectroscope
will not be found in the normal position of the He line, but

IxT 9
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will be seen to be displaced through a wave-length dA given

by
dA
A

in accordance with the usual Doppler-effect. As the atoms have
a very wide range of speeds, the line they produce is of substantial
breadth, and the distribution of intensity in this line will again
provide a sort of velocity spectrum of the moving atoms. Once
again, however, this gives no direct proof of Maxwell’s law, since
the atoms which emit the light are not all at the same depth {n
the star’s atmosphere; the light we receive comes from places dt
different temperatures, so that again the velocity spectrum doel
not come from a single Maxwellian distribution of velocities, bu
from a great number superposed. The observed distribution is
found to be that to be expected from a number of superposed
Maxwellian distributions.

102. The objections just mentioned do not apply to a gas
made luminous in the laboratory, for here the temperature,
pressure, etc. are the same throughout the gas. Ornstein and
van Wyck* have studied the velocity spectrum emitted by
helium gas at very low pressure, the gas being made luminous
by passing an electric discharge through it. The observed velocity
spectrum agreed well with that to be expected from a Maxwellian
distribution, but at a temperature some 50° C. above that of the
gas in the tube. They thought the difference might be attributed
to the general heating of the gas by the discharge.

v
=E’

* Zeitachr. [. Phys. 18 (1932), p. 734.



Chapter V
THE FREE PATH IN A GAS

103. We have already seen how viscosity and conduction of
heat can be explained in terms of the collisions of gas molecules,
and of the free paths which the molecules describe between col-
lisions. As a preliminary to a more detailed study of these and
other phenomena, the present chapter deals with various general
problems associated with the free path, the molecules again being
supposed, for simplicity, to be elastic spheres.

Number of Collisions

104. Let us begin by making a somewhat detailed study of the -
collisions which occur in & gas when this is in a steady state, so
that .the velocities are distributed according ‘to Maxwell’s law.
It is clear that the occurrence of collisions cannot be affected by
any mass-motion the gas may have as a whole, so that we may
disregard this, put %, = v, = w, = 0, and suppose the law of
distribution of velocities to be

flu,v,w) = ( ).e"“'"" ...... (133)

where o2 = ul+ vl 'l

In §85 we calculated the frequency of collisions of various
kinds in a gas in which the molecules were similar spheres, all of
diameter . We found the number of collisions of class & occumng
per unit volume per unit time to be

v f(u, v, w)f(u', o', w') Vo? cos 6 du dvdwdu’ dv’' dw' dw,
If we replace f(u,v,w) and f(u',v',w’) by the special values
appropriate to the steady state, this number of collisions becomes

,,2(’_”1’) ~hm(ui+i w0 2 co O du dvdwdu’ dy' dw' dw,
pe vE

Here V is the relative velocity at collision, given by
V2 = (u=u')+(v—0v')+(r—w)k
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105. Expression (134) depends only on the velocities at col-
lision, except for the factor g2 cos fdw. Clearly 0?dw is an element
of area on a sphere of radius o,
sayP in fig. 27, and o2 cosfdw is
its projection ¢ on a plane AB
at right angles to V. We may in
fact replace o*cosfdw by dS,
an element of area in this plane;
we then see that the projection
is equally likely to be at all
points inside a circle of radius
o, a8 18 of course otherwise
obvious.

In terms of the usual polar co- B ) \
ordinates 6, ¢, the factors which Fig. 27

involve the angles in expression (134) may be rewritten in the
form

cosfdw = sinfcos@dfd¢p = }sin20d(20)dg. ...... (135)

When collision occurs, the relative velocity along the line of
impact is reversed, while that at right angles to this line persists
unchanged. Thus the relative velocity is bent through an angle
20, and the polar coordinates of its direction after collision are
20, ¢. Formula (135) now shews that all directions are equally
likely for the relative velocity after collision. a result first given
by Maxwell.

106. Integrating expression (134) with respect either to d§ or
to 0 and ¢, we replace o2cosfdw by mo?, and find that the
number of collisions at all angles of incidence is

3
wvz(’—b;—'}) e—hmiuttritwt+ut o0 o2 dy dy dwdu’ do’ dw'.

This is the number of collisions per unit time per unit volume of
gas in which the two molecules belong to what we have described
(§85) as class A and class B respectively—that is to say, the first
molecule has a velocity of which the components lie within the
limits » and «+du, v and v+ dv, w and w+dw, while the second
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has a velocity of which the components lie within the limits
»' and u’'+du’, v’ and v’ +dv’, w’ and w' +dw'.

Let us fix our attention for the moment on the z-components
of velocity, namely » and %'. These enter formula (136) through
the relative velocity ¥V, and also through the factor

e-hmut+u™ dy dy’. .(137)

We can plot values of » and %’ in a plane diagram as shewn in
fig. 28. We can also plot them in the same diagram with the axes
turned through an angle of 45°, the
new coordinates §, £’ now being
given by 3 3

u

’ r __ 1 ’
£= ;/é(u u), £= ~/2(u +u).

Transforming to these new co- ‘<
ordinates, we find that 0 v
e~ tmuttutdy duy' = e~hmEHNIEdE, Fig. 28
since w2+ u'2, the square of the distance from the origin, is equal
to £2+£'2; and dudu’, an element of area in the plane, may be

replaced by d£d&’. Thus formula (136) for the number of collisions
between molecules of classes A and B becomes

ﬂvz(’i"f)s e MmN Vot dEdy dEdE dy' dE,
m
.(138)
in which 9 = -7‘5 (v’ —v), etc. The reason for this transformation
o\ -

of coordinates is seen as soon as we express the value of V in the
new coordinates, for we find that

V2 = (0 —u)?+ (v —v)P+ (' —w)?
= 2(82+7%+ &%),
go that V does not depend on £',7',{’. Thus we may at once
integrate formula (138) for all values of £, 7' and {’, obtaining

m,s(l‘l’f)! e-hmE+r* D Vot dEdy di,
n
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This is not, as might at first be thought, the number of collisions
in which £, #, { lie within limits d£, dy, d{; it is twice that number,
since each collision has been counted twice—once as a collision
between a molecule of class A and one of class B, and again as a
collision between a molecule of class B and one of class A. Thus
the true number of collisions in which £, %, ¢ lie within assigned
limits d£ dz d{ is half the foregoing, or

[lm

}nv"(?)‘e"‘m@’ﬂ”")Va’dgd'r]d(_,’. eennr(139)

There is an obvious resemblance to Maxwell’s law of distribu-
tion of velocities. Again we see that all directions for £,, { are
equally likely, and as the relative velocity ¥ has components
V2E, 27, V28, it follows that all directions are equally likely for ¥,
the relative velocity before collision. We have also just seen
(§ 105) that, whatever the directions may be of the velocities
and relative velocity of the molecules before collision, all
directions are equally likely for the relative velocity after
collision.

107. Integrating formula (139) over all possible directions for
V, we obtain, as in § 106,

781m 3
Vigt A/"-"} e MYy, covee.(140)

as the total number of collisions in which the relative velocity
lies betwcen V and V +dV. If we finally integrate this from V = 0
to V = oo, we obtain for the total number of collisions of all
kinds
vio? [—. cesenn(141)

Since (§91) € = 2(whm)-t, this may be replaced by

LYY

W viagic.
These results will be required later.
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Free Path

108. The free path is usually defined as the distance which a
molecule travels between one collision and the next. We have
seen that the ¥ molecules in a unit volume of gas experience

122
\/2va'3

collisions per unit time. Since each collision terminates two free
paths, the total number of free paths is twice the foregoing ex-
pression, or

V2m2ate.

The total length of all these free paths is of course the total
distance travelled by the » molecules in unit time. and this is v¢.
Hence by division we find that the average length of a free path is

1 _ 07071
ﬁﬂya‘ - ma 2 °
This is generally described as Maxwell’s mean free path; as

we shall see later (§§ 117, 135), there are other ways of defining
and evaluating the mean free path in a gas.

Free Path in a Mizture of Gases

109. It is rather more difficult to calculate the free path in a
mixture of gases in which there are molecules of different sizes.

As before, the constants of the molecules of different types will
be distinguished by suffixes, those of the first type having a suffix
unity (m,, oy, v, fy), and so on. We shall require a system of
symbols to denote the distances apart at collision of the centres
of two molecules of different kinds. Let these be 8,;, S5, S,3, ete.,
S,, being the distance of the centres of two molecules of types
P, ¢ when in collision. Obviously

Sy = 4(o1+0y), Sy=o0y, etci.///’
As in § 89, we find for the number of collisions per unit time

between molecules of types 1 and 2 and of classes A and B
respectively (as defined in § 85)

Vvofi(u, v,w) fo(w', v', w') V 835 cos O dudvdwdu’ dv’ dw' dw,
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where V is the relative velocity, and dw the element of solid angle
to within which the line of centres is limited.

Replacing f,,f, by the valucs appropriate to the steady state,
and carrying out the integration with respect to dw, the number
of collisions per unit time is found to be

kimimd
7"’1"2(—-;;—5 e~ Mmet+me™) ) 7 82, du dvdwdu’ dv’ dw’,

this expression being exactly analogous to expression (136)
previously obtained.

Let the velocity-components «, v, w,%’,v’,w’ now be replaced
by new variables, u,v,w, «, 2,7 given by

!
—,etc.; o =u"—u,etc.,, ...... (144)

so that u,v,w are the components of velocity of the centre of
gravity of the two molecules, and a, 3,77 are as usual the com-
ponents of the relative velocity V. Writing
WHVEHEWE=C, i+ fi+yt=T2
we find that
1M

m
2+ myc'® = (my+my) €2+ ——-
my 2 (my+my) m, +my

We readily find, by the method already used in §106, that
dudu’ = duda, so that expression (143) may be replaced by

pe.

h3mim} e—h[(m,+m.) et T

ﬂvll'z( = T )VS%zdudvdwdadﬂd-y.

110. On integrating with respect to all possible directions in
space for the velocity c of the centre of gravity, we may replace
dudvdw by 4mc?dc while similarly, integrating with respect to
all possible directions for ¥, we may replace dadfdy by 4xV24dV.
The number of collisions per unit volume per unit time for which
¢, V lie within specified small ranges dcdV is therefore

—nfmitme 4 UL

16y, h3mimiS2,e Moty ] ctV3dcedV.
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Integrating from € = 0 to ¢ = oo, the number of collisions for
which V lies between V and V +dV is found to be

wh3mim3 b

) - v
4V1V2Jm'7;;§j S%ze mtm - Pidy ... (147)

and again integrating this expression from ¥V = 0 to V = oo, the
total number of collisions per unit volume per unit time between
molecules of types 1 and 2 is found to be

2ot [ (mi + an) e (148)

This formula gives the number of free paths of the v, molecules
of the first type in unit volume, which are terminated per unit
time by molecules of the second type. When the difference be-
tween the two types of molecules is ignored, it reduces to twice
expression (141) already found, the reason for the multiplying
factor 2 being that already explained on p. 134.

111. If we divide expression (148) by »,, we obtain the mean
chance of collision per unit time for a molecule of type 1 with a
molecule of type 2. Summing this over all types of molecule, the
total mean chance of collision per unit time for a molecule of
type 1 is found to be

250,88, A/g(% +"il) ...... (149)
1 (]

where the summation is taken over all types of molecule. The
mean time interval between collisions is of course the reciprocal
of this.

The total distance described by », molecules of the first kind
per unit time is

while the total number of free paths described by these v,
molecules is equal to v, times expression (149). By division, the
mean free path for molecules of the first type is found to be

1
Al = m .
nZ'll,S?,Jl +#
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When there is only one kind of gas present, this reduces to
formula (140) already found.

If there are only two kinds of gas present, one with molecules
of far greater mass than the other (m,>m,), the lighter molecules
will move enormously more rapidly than the heavier because of
the equipartition of energy. We may now put m,/m, =0, and
formula (151) reduces to

1

e St m,Sh,

If the diameter of the lighter molecules is much smaller than
that of the more massive, the first term in the denominator may
be neglected, and the free path is given by

1 4

P S
' mw,83  mrv.ol

This is the simple case already considered in § 26, our formula
(152) agrecing with the formula there obtained. It gives the free
path of electrons threading their way through a gas.

DrPENDENCE OF FREE PAaTH ON VELOCITY

112. This last calculation will have suggested that the free
path of a molecule may depend very appreciably on the velocity
of the molecule; a molecule moving with exceptional speed may
expect a free path of exceptional length, while obviously a
molecule moving with zero velocity can expect only a free path
of zero length.

It is important to examine the exact correlation between
the speed of a molecule and its expectation of free path.

We shall suppose that the gas consists of a mixture of molecules
of different types, as in § 109.

Let us fix our attention on a molecule of the first type, moving
with velocity ¢. The chance of collision per unit time with a
molecule of the second type having a specified velocity ¢’ is equal
to the probable number of molecules of this second kind in a
cylinder of base 783, and of height ¥, where V is the relative
velocity.
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The second molecule is supposed to have a velocity ¢’. Let 6, ¢
be angles determining the direction of this velocity, 6 measuring
the angle between its direction and that of ¢, and ¢ being an
azimuth. The number of molecules of the second kind per unit
volume for which ¢',6,¢ lie within small specified ranges
dc',d0.d¢ is

vz(’%&’)' e~"mec'25in §dOdgdc’.

The result of integrating with respect to ¢ is obtained by
replacing d¢ by 27, and on multiplying this by #8%,V, we obtain
for the number of molecules of the second kind which lie within
the cylinder of volume 753,V and are such that ¢, § lie within a
range dc’, do,

20,82, N ThImE Ve hme?c'2sin fdOde’.  ......(163)

When ¢, ¢’ are kept constant, the value of V varies only with 6,
being given by
V2 = ¢c®+¢'2—2cc’ cos 0,

whence we obtain by differentiation, still keeping ¢, ¢’ constant,
VaV = cc’ sin 0d6.

Thus we can replace expression (153) by
20, S2, N hIm e~ hmec’ '% de'V2dV, ceene.(154)

and proceed to integrate with respect to V. The limits for V are
¢+c’ and ¢ ~¢’, so that

J- V2dV = %c(c®+ 3c'?) when ¢’ >¢
= §c'(c'?+3c?) when ¢’ <ec.
Thus the result of integrating expression (154) with respect to V is
when ¢’ >¢, $1,8%Vmhdmie—me ¢’ (c2 + 3¢'2) de’, virenn(185)
_— 2
whenc' <¢, §v,S%\7h*m} e—hmw”"-’c— (€2 +3ct)de’.  .....(156)

If we now integrate this quantity with respect to ¢’ from ¢’ = 0
to ¢’ = co (using the appropriate form according as ¢’ is greater
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or less than c), we obtain, as the aggregate chance per unit time
of a collision between a given molecule of the first type moving
with velocity ¢, and a molecule of the second type moving with
velocity ¢,

——— @
8% Jhn“mg[:f ¢'(c®+ 3c'2) e~hmac ¢’
¢

Cp'2(n'2 2
+J C_E:_:ac)e-hmn""dc']. ...... (157)
0

The former of the two integrals inside the square bracket can
be evaluated directly. To integrate the second integral, we
replace im,c'2 by % After continued integration with respect to
%, we find as the sum of the two integrals in expression (1587),

” Jh° Gl:c«/h g€~ "M+ (2himyc? + 1) f ""'dy:l.

If we introduce a function* y(x) defined by
Y(x) = we ="+ (222 + l)fze-”’dy, eeene.(159)
0
expression (158) may be expressed in the form
4,5 sV cxkmy),

and hence if we denote expression (157) by 0,,, its value is found

to be
‘\/_"'2 St

Oy = Yl cAhmy). veeer.(160)

With this definition of (912 we see that when a molecule of the
first kind is moving with a velocity ¢, the chance that it collides
with a molecule of the second kind in time dt is 0,,d¢.

113. If we change the suffix 2 into 1 wherever it occurs, we
obtain an expression @,, for the chance per unit time that a
molecule of the first kind moving with velocity ¢ shall collide
with another molecule of the same kind.

* The value of [ “emvt dy cannot be expressed in simpler terms, so that
0

Y(z) as defined b3" equation (159) is already in its simplest form. Tables
for the evaluation of y/(x) are given in Appendix v.
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By addition, the total chance per unit time that a molecule
of the first kind moving with velocity ¢ shall collide with a
molecule of any kind is

E@u = @11+912+913+.--. ...... (161)

In unit time the molecule we are considering describes a dis-
tance c; hence the chance of collision per unit length of path is

%zal,. (162)

The mean free path A, for molecules of the first kind moving
with velocity ¢, is accordingly

c
A,, = 20—1‘ «  auseas (163)
When there is only one kind of gas, this assumes the form
c hmc?®
=== ... 164
=5 Nmvary(cvhm) (164)

114. This formula expressing A, as a function of ¢ is, unhappily,
too-complex to convey much definite meaning to the mind, and
we are therefore compelled to fall back on numerical values. The
following table, which is taken from Meyer’s Kinetic Theory of
Gases (p. 429), gives the ratio of A, (equation (164)) to Maxwell’s
mean free path A (equation (142)) for different values of ¢, from
c=0toc=o0.

cfe hmc?® A /A A/A,
0 - 0 o0
0-26 - 0-3445 29112
0-5 - 0-6411 1-5604
0-627 3 0-7647 1.3111
0-886 1 0-9611 1-0407
1.0 - 1-0257 0-9749
1-253 2 11340 0-8819
1-5635 3 1-2127 0-8247
1.772 4 1-2572 0-7954
2 - 1-2878 0-7765
3 - 1-36561 0-7380
4 - 1-3803 0-7244
b - 1-3923 0-7182
6 - 1-3989 0-7149
(-] - 1-4142 0:7071

We notice that for infinite velocity A, = +/2A, as previously
found.
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Probability of a Free Path of given Length

115. Tt is of interest to find the probability that a molecule
shall describe a free path of any assigned length.

Let f(I) denote the probability that a molecule moving with a
velocity c shall describe a free path at least equal to I. After the
molecule has described a distance I, the chance of collision within
a further distance dl is, by formula (162), equal to dl/A.. Hence
the chance that a molecule shall describe a distance , and then a
further distance dl, without collision is

SO (1-dija,).
This must however be the same thing as f(I +dl) or

of(l
1) +‘fa(z‘) dl.
Equating these expressions, we have
a0 __fa)
ol A
of which the solution is
J() = el eeeen.(165)

the arbitrary constant of the integration being determined by the
condition that f(0) = 1. Thus a shower of N molecules, cach
originally moving with the same velocity ¢, will be reduced in

number to
Ne-VAe

after travelling a distance ! through the gas. Typical numerical
values are given below, N being taken to be 100:

;-: 0 001 002 01 02 025 033 050 1 2 3 4 416

¢
Ne*A= 100 99 98 90 82 78 72 61 3714 5 2 1

The occurrcnce of the exponential in expression (166) shews
that free paths which are many times greater than the mean free
path will be extremely rare. For instance, only one molecule in
148 will describe a path as great as 5A,, only one in 22,027 a
path as great as 10A,, only one in 2:7 x 10% a path as great as
1004, and so on.
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116, Formula (166) can be tested experimentally in various
ways, and each test provides a value of the free path A, from
which it is then possible to deduce the molecular diameter o.

When a shower of electrons or other swiftly moving particles
is shot through a gas, it is natural to assume a law of diminution
of the form

i=ige~e, ... (167)

where ig is the initial current, ¢ the current after a distance z,
and a is a coeflicient of extinction. Innumerable experimenters
have found that a law of this type represents the facts. We see
that formula (167) is identical with (166), « being the reciprocal
of the free path A,.

In recent years, a number of experimenters* have tested
formulae of this type for beams of electrons projected into gases
with low velocities which are comparable with those which occur
in the kinetic theory. In general the lengths of free path and
molecular diameters deduced from them agree well with those
calculated in other ways. Here and there, however, difficult
questions arise. The most difficult is perhaps connected with
electrons of low velocity moving through the monatomic gases—-
helium, argon, neon, krypton and xenon. As a certain electronic
speed is approached, the mean free path undergoes a violent
decrease, as though the atomic diameter was greatly increased.
For still lower vclocities the free path is abnormally long, almost
a8 though the atoms had become transparent to the electrons.
The kinetic theory alone is not able to provide a satisfactory
explanation of these phenomena; to obtain this we must avail
ourselves of the methods of wave-mechanics. But until we come
to these quite low electronic velocities, experiment shews that
collisions occur in the way predicted by pure kinetic theory.

Max Bornt has tested formula (167) for the free path of com-
plete atoms with satisfactory results. A beam of silver atoms is
projected in the usual way from an electric furnace, so that each

* H. F. Mayer, Ann. d. Phys. 64 (1921), p. 451. C. Ramsauer, 4nn. d.
Phys. 64 (1921), p. 513. R. B. Brode, Phys. Rev. 25 (1925), p. 636.
M. Rusch, Ann. d. Phys. 80 (1926), p. 707. R. Kollath, Phys. Zeitschr.

31 (1930), p. 986.
t Phys. Zeitachr. 21 (1920), p. 578,
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atom of the beam falls on one or other of four screens of glass
cooled to liquid air temperature. These four screens are at
different distances z,, #,, 24, z,. The number of molecules which
strike the screens per unit area can be estimated from the density
of silver deposit on the glass, and are found to be approximately

in the ratio
e~ ; g=al: ; g—aTy ; g= 2Ty,

In this way, Born found the free path of silver atoms moving
through air at atmospheric pressure to be about 1-3 x 10-% cm.
More recently Bielz,* using a refinement of the same method, has
found the free path of silver atoms moving through nitrogen at
atmospheric pressure to be about 1-29 x 10-% ¢cm.

F. Knauer{ has tested the formula for the scattering of a
beam of complete molecules, shot both into the same gas as the
beam and also into mercury vapour. The predictions of the
kinetic theory are confirmed at high velocities, but at low
velocities it is found necessary to call in the wave-mechanics
to explain the observations.

117. On differentiating formula (165), we see that the prob-
ability that a molecule moving with a velocity ¢ shall describe a
free path of length between [ and I +dl is

e-mc;’lé, cererr(168)

The foregoing results apply only to molecules moving with a
given velocity c. If the velocities are distributed in accordance
with Maxwell’s law, then the fraction of the whole number of
molecules which at any given instant have described a distance
greater than [ since their last collision will be

(e
Wfo dncle~hme-iede, ... (169)

This function is not easy to calculate in any way. As the result
of a rough calculation by quadrature, I have found that through
the range of values for ! in which its value is appreciable, it does

* Zeitschr. f. Phys. 32 (1925), p. 81.
t Zeitschr. f. Phys. 80 (1933), p. 80 and 90 (1934), p. 559.



THE FREE PATH IN A GAB 148

not ever differ by more than about 1 ‘per cent. from e~ which

is the value for molecules moving with velocitj 1 /ch_nz-.
At any instant a fraction

78,3
J %,311 dgre—hme* c2 e

of the whole number of molecules is moving with velocity c. These
molecules, on the average, are starting to describe distances ¢/@
each before collision. Hence the average distance A, that all the
molecules will travel before collision is given by

1 [2dzie*dx
—hme? =
Ap= f o 47re c2dc va"J. 7@

This integral can only be evaluated by quadrature. The evalua-
tion has been performed by Tait* and Boltzmann,} who agree in
assigning to it the value 0-677, leading to a value for A, which
is some 4 per cent less than the value of the free path calculated
in § 108.

It must be noticed that these two free paths are calculated in
different ways. That calculated in § 108 is the mean of all the
paths described in unit time, that just calculated is the mean
of all the paths being described at a given instant, or to be more
precise, is the mean of all the distances described from a given
instant to the next collision (cf. § 134 below). This latter is
commonly known as Tait’s free path.

LAaw oF DISTRIBUTION OF VELOOITIES IN COLLISION

118. In many physical problems, it is important to consider
the distribution of relative velocities, ratios of velocities, ete. in
the different collisions which occur. We attempt to obtain ex-
pressions for various laws of distribution of this type.

In formulae (155) and (156) we obtained expressions for the
chance per unit time that a molecule of type 1 moving with

* Edinburgh Trans. 33 (1886), p. 74.
1 Wien. Sitzungsber. 96 (1887), p. 905, of Gastheorie, 1, p. 73.

JKT 10
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velocity ¢ should collide with a molecule of type 2 moving with a
velocity between ¢’ and ¢’ +dc’.

The number of molecules of type 1 per unit volume moving
with a velocity between ¢ and ¢ 4 dc is

1 1
41"’1(}%11)‘ e~hmec2dc,

Multiplying expressions (155) and (156) by this number we
obtain, as the total number of collisions per unit time per unit
volume between molecules having specified velocities within
ranges dc, dc’,

when ¢’ >c,

18y v, 82, h3mimle—Mmet+mec2e’ (2 + 3¢2) dede, ... (170)
when ¢’ <c,

L8, 83, B3 mimye—romei+micoe'2(3c2 + ¢'2) dede’. ... (171)

119. We proceed next to find the number of collisions in which
the velocities ¢, ¢’ stand in a given ratio to one another. Let
¢ = kc¢’, and let the variables in expressions (170) and (171) be
changed from ¢, ¢’ to «, ¢’. Clearly the differential dcdc’ becomes
¢’'dxdc’, and the two expressions become

when x> 1,
18p,v, 83, h3mymf e—he*mxttm (32 4 1) dic'®de’. ... (172)
when k<1,
18y, v, 83 h3m mi e hemutimg g 2(k2 4 3)dic'de’.  ......(173)
On integrating these expressions with respect to ¢’ from
¢’ = 0 to ¢’ = 00, we obtain the number of collisions for which «,

the ratio of the velocities, lies within a given range d«. The
numbers are readily found to be

3,,3 2

when x> 1, 51,1, 8% (mnhm) (”:g—%d wen(174)
3,,,3 2 ;-2

when k<1, 5v1v,8},(mkm) ﬁ‘{% ...... (175)
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The total number of collisions per unit time per unit volume may
of course be derived by integrating this quaritity from x = 0 to
& = co. It is found to be

20,0, 8%, ,/ ;—: (7—;—1 +"%.). ...... (176)

which agrees, as it ought, with formula (148).

120. The law of distribution of « in different collisions can be
obtained by dividing expressions (174) and (175) by the total
number of collisions (176). This law of distribution is found to be

5 mimi «k(3k2+1)
2 (my+ mg)t (mkB+mg)t
5 mimi k*x%?+3)
2 (my+mg)t (mok® +mg)t

when x> 1,

when k<1,

The law of distribution of values of x when the molecules are
similar is obtained on taking m; = my,. We must notice however
that if we simply put m, = m, in expressions (177) and (178) each
collision is counted twice, once as having a ratio of velocities x
and once as having a ratio of velocities 1/x. It seems simplest to
define the value of « for a collision in this case as the ratio of the
greater to the smaller velocity, so that « is always greater than
unity, and we then obtain the law of distribution by putting
m, = m, in expression (177) and multiplying by two so that each
collision shall only count once. The law of distribution is found to
be

bk (3x2+1)

V2(1 + k2 o

of which the value when integrated from x = 1 to ¥ = co is unity,
as it ought to be.

PERSISTENCE OF VELOCITY AFTER COLLISION

121. The next problem will be to examine the average effect
of a collision as regards reversal or deflection of path. We shall
find that in general a collision does not necessarily reverse the
velocity in the original direction of motion, or even reduce it to

10-2
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rest: there is a marked tendency for the original velocity to persist
to some extent’after collision. It is obviously of the utmost
importance to form an estimate of the extent to which this
persistence of velocity occurs.

Persistence of Velocity when the Molecules are
Stmilar Elastic Spheres

122. Let us again represent molecules by elastic spheres, and
consider two molecules of equal mass colliding with velocities
¢, ¢’. In fig. 29 let OP and OQ represent these velocities, and let
R be the middle point of PQ. Then we can resolve the motion of
the two molecules into

(i) a motion of the centre of mass of the two, the velocity of
this motion being represented by OR, and

(ii) two equal and opposite velocities relative to the centre of
mass, these being represented by RP and RQ.

Imagine a plane RT'S drawn through R parallel to the common
tangent to the spheres at the moment of impact, and let P’, @’

Fig. 29

be the images of P, Q in this plane. Then clearly RP’ and RQ’
represent, the velocities relatively to the centre of gravity after
impact, so that OP' and OQ’ represent the actual velocities in
space.

‘We have already seen (§104) that all directions are equally
likely for RP’, RQ’, the velocities after collision, so that the
“expectation” of the component of velocity of either molecule
after impact in any direction is equal to the component of OR
in that direction.
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123.' Let us now average over all possible directions for the
velocity of the second molecule, keeping the magnitude of this
velocity constant. In fig. 30 let OP, OQ as before represent the
velocities of the two colliding molecules, and let R be the middle
point of PQ, so that OR represents the velocity of the centre of
gravity of the two molecules. We have to average the components
of the velocity OR over all positions of @ which lie on a sphere
having O for centre. It is at once obvious that the average com-
ponent of OR in any direction perpendicular to OP is zero. We
have, therefore, only to find the component in the direction OP,
say ON. We must not suppose all directions for 0Q to be equally
likely, for (cf. §85) the probability of collision with any two

Fig. 30

velocities is proportional to the relative velocity. Thus the
probability of the angle POQ lying between & and 6+ df is not
simply proportional to sin 8d6, but is proportional to PQ sin 8d8,
for PQ represents the relative velocity. The average value of the
component ON is therefore

f'ON.PQsinodo
ON =2 . (180)
JPQsinada
0

Let us now write
OP=¢, 0Q=c, PQ=V,

80 that V2 =c2+c'?—2cc'cosd. ... (181)
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Then

ON = }(OP+OM) = }(c+¢'cosb) = ::E(3c3+c”- 73).

ceres(182)
‘By differentiation of relation (181), we have
VdV = ec'sinfdo,
so that equation (180) becomes

G5 _ LB+ -V V2V 30+ VAV

dcfV2aV T 4 defVEV?
...... (183)
the limits of integration being from V =¢'~cto V = ¢’ +ec.
Performing the integration, we find that
, — 15¢t+c't
whenc>¢ » ON = T(‘)“c(:—}—é?_'_—c—,éj s essess (184)
, == _ ¢(5c'?+ 3c?)
whenc<ec s ON = *5(35",2?02)- «  eesnes (185)

124. Since these expressions are positive for all values of ¢
and ¢’, we see that whatever the velocities of the two colliding
molecules may be, the “expectation’ of the velocity of the first
molecule after collision is definitely in the same direction as the
velocity before collision. Naturally the same also is true of the
second molecule.

If we denote ON, the “expectation” of velocity after collision
of the first molecule in the direction of OP, by a, then the ratio
a/c may be regarded as a measure of the persistence of the
velocity of the first molecule.

Formulae (184) and (185) give the values of a, and hence of the
persistence a/c. It is at once seen that the values of a/c depend
only on the ratio ¢/c’, and not on the values of ¢ and ¢’ separately.
If, as before (§119), we denote c/c’ by «, the values of the per-
sistence are

a 1564 +1

when x> 1, E = To—léz(a'xa—_l_—l), ......(186)
a 3k*+5b

when k<1, ¢ = B(at3)’ eeree(187)
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125. These expressions are too intricate to convey much
meaning as they stand. The following table gives numerical values

of the persistence a/c corresponding to different values of «, the
ratio of velocities:

S=o 4 2 134 1 % % 3 o0

2 = 0500 0492 0:473 0-441 0-400 0:368 0-354 0-339 0333
c'

=0 3 4+ 3+ 1 W 2z 4 o

Tt now appears that the persistence is a fraction which varies
from 33} to 50 per cent, according to the ratio of the original
velocities. From the values given, it is clear that we are likely to
obtain fairly accurate results if we assume, for purposes of rough
approximation, that the persistence is always equal to 40 per
cent of the original velocity.

126. By averaging over all possible values of the ratio x, we can
obtain an exact value for the mean persistence averaged over all
collisions.

Each collision involves two molecules of which the roles are
entirely interchangeable. Let us agree to speak of the molecule
of which the initial velocity is the greater as the first molecule,
s0 that c/c¢’ or k is always greater than unity.

The persistences of the velocities of the two molecules involved
in any one collision are respectively

1oct+1 g 3+5eT
10x2(3k + 1) 5(3k*+1)’

the first of these expressions being given directly by formula (186),
while +he second is immediately obtained by writing 1/« for x in
expression (187).

The mean persistence of the two molecules concerned in this
collision, being the mean of the two expressions just found, is

25k4+6x2+1

20<%(3c3+ 1) ° verens(188)
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A few numerical values of this quantity are found to be:

k=1 13} 1} 2 3 4 o
mean persistence = 0-400 0-401 0-404 0-413 0-415 0-416 0-417

The law of distribution of values of « in the different collisions
which occur has been found in formula (179) to be

bx(3x2+1)
mi K. e (189)

Multiplying together expressions (188) and (189) and inte-
grating from « = 1 to £ = o0, we find that the mean persistence
of all velocities after collision is

1 1
Z+IJ§ log, (1 +42) = 0-408.

Thus the average value of the persistence is very nearly equal
to §, the value when the molecules collide with exactly equal
velocities.

Persistence when Molecules have Different Masses

127, The calculations just given apply only when the molecules
are all similar. Let us now examine what value is to be expected
for the persistence when the molecules have different masses and
sizes, but are still supposed to be elastic spheres.

Consider a collision between two molecules of masses m,, m,;
let their velocities be a, b respectively as before, and let their
relative velocity be V. Maxwell’s result (§ 104) is still true that
all directions are equally likely for the velocities after impact
relative to the centre of gravity, and the expectation of any
component of velocity after collision is exactly that of the
common centre of gravity.

We may accordingly proceed to average exactly as in §123.
But if ORin fig. 30 represents the velocity of the centre of gravity,
R will no longer be the middle point of PQ; it will divide PQ
in such a way that m,RP = m,RQ. We then find, in place of
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relations (182), '

ON="1"Tac, ™ _ (0, cosb).

ot €+ 0080). (190)

So long as ¢ and ¢’ are kept constant, we can average this exactly
as before. The first term, being constant, is not affected by
averaging, while the average value of the second term

c+c¢' cosf

is equal to P times the average of the term }(c+¢’cos6)
my+my
already found in §123.
Hence, if (a/c), denotes the value of the persistence a/c when
the two masses are equal, we have, in the general case in which
the masses are unequal,

a_ m—m, 2m, (oc)
e

¢ mytmy my+my\c

This gives the persistence of the velocity ¢ of the molecule of
mass m,, the values of (a/c), being given by the table on p. 151.
The persistence is of course a function of the two quantities
m,/my and ¢'/c.

128. If we assume as a rough approximation that the value of
(et/c), is equal to 0-400 regardless of the ratio of velocities «, then
equation (191) reduces to the approximate formula

o _ my—§my
c  my+my

which of course depends only on m,/m,. This formula, however,
must not be applied when the ratio m,/m, is either very large or
very small.

When m,/m, is very small, ¢ will be large compared with ¢’ in
practically all collisions, so that « is very great and the appro-
priate value to assume for (a/c), is }, this corresponding to k = co.
From equation (191) we now obtain the approximate formula

.M ...(’-"—lsmau). ...... (193)
c my+my, \m,
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In the limit when m, vanishes in comparison with m,, the
persistence vanishes, as of course it must; at a collision the light
molecule simply bounces off the heavy molecule; all directions
can be seen to be equally likely by the method of § 104, and there-
fore the persistence is nil.

At the opposite extreme, when ls very large, the appropriate

values to assume are xk = 0 and (5) = 4. The approximate
€
formula derived from equation (191) is now

?-:m...(ﬁ la,rge). ...... (194)

In the limit when m, vanishes, the persistence becomes equal
to unity. This also can be seen directly : the heavy molecule merely
knocks the light molecule out of its way, and passes on with its
velocity unaltered.

129. In place of these approximate formulae, it is quite feasible
to obtain a formula accurate for all values of m,/m, by averaging
the exact equation (191).

The result is

(3) - log (WTFE+ )+- L
c . 4}" l+ 2 g lu ﬂ 4”2)

where y? = m,/m,;. On substituting this into equation (191), we
obtain a formula giving the average persistence of veloclty for
any ratio of masses.

130. It is readily verified that when g = 1 the value of this
average persistence is 0-406, as already found in § 126.

When g is very small, formula (195) reduces to

ot 1 -— u*+ terms in etc
c).”3 15” " % ete,

‘and similarly when y is large, the expansion is

a _ 1 1 loggp . _1_
(E), =321 + ut + terms in ik eto.
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From formulae (195) and (191), the following values can be
calculated:

2= 0 & 3+ ¥+ 1 2 5 10 o

(%) = 0-333 0-335 0-339 0-360 0-406 0-432 0-491 0-498 0-500
e

(%) = 1-000 0-879 0-779 0-573 0-406 0-243 0-152 0-086 0-000

These figures shew that the persistence is always positive but
may have any value whatever, according to the ratio of the masses
of the molecules.

131. For laws of force between molecules different from that
between elastic spheres, the persistence of velocity will obviously
be different from what it is for elastic spheres. Clearly, however,
everything will depend on our definition of a collision. If we sup-
pose that a very slight interaction is sufficient to constitute a
collision, then the mean free path will be very short, while the
persistence will be nearly equal to unity. If, on the other hand,
we require large forces to come into play before calling a meeting
of two molecules a collision, then the free path will be long, but
the persistence will be small, or possibly even negative. In fact,
the variations in the persistence of velocities just balance the
arbitrariness of the standard we set up in defining a collision. This
being so, it will be understood that the conception of persistence
of velocities is hardly suited for use in cases where a collision is
not a clearly defined event.



Chapter VI
VISCOSITY

132. At a collision between two molecules, energy, momentum
and mass are all conserved. Energy, for instance, is neither
created nor destroyed; a certain amount is transferred from one
of the colliding molecules to the other. Thus the moving molecules
may be regarded as transporters of energy, which they may hand
on to other molecules when they collide with them. As the result
of a long chain of collisions, energy may be transported from a
region where the molecules have much energy to one where they
have but little energy : studying such a chain of collisions we have
in effect been studying the conduction of heat in a gas. If we
examine the transport of momentum we shall find that we have
been studying the viscosity of a gas—the subject of the present
chapter. For viscosity represents a tendency for two con-
tiguous layers of fluid to assume the same velocity, and this is
effected by a transport of momentum from one layer to the
other. Finally if we examine the transfer of the molecules them-
selves we study diffusion.

For the moment. we must study the transport of momentum.
We think of the traversing of a free path of length A as the trans-
port of a certain amount of momentum through a distance A.
If the gas were in a steady state, every such transport would be
exactly balanced by an equal and opposite transport in the re-
verse direction, so that the net transport would always be nil.
But if the gas is not in a steady state, there will be an unbalanced
residue, and this results in the phenomenon we wish to study.

General Equations of Viscosity

133. Consider a gas which is streaming in a direction parallel
to the axis of z at every point as in fig. 31, the mass-velocity u,
being different for different values of 2, so that the streaming is in
layers parallel to the plane of zy.
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Let us denote mu, the z-momentum of any.molecule by z, and
let ZZ denote the mean value of 4 at any point of the gas. Then
is equal to mu,, and is a function of z only.

For definiteness let us suppose that z and 7 both increase as we
move upwards in fig. 31. Molecules will z
be crossing any plane z =z, in both 0
directions, and transporting a certain N -
amount of x across this plane as they \
do so. The amount of # which any X~ N
particular molecule transports across =%
this plane will of course depend on 9
the whole history of the molecule
before meeting the plane. We shall
however begin by supposing that it Q
depends only on the history of the Fig. 31
molecule since its last collision; we
shall assume that the average molecule carries the amount of x
appropriate to the point at which this last collision occurred.

134. Consider, then, a molecule which meets the plane z = z,
at P, having previously come from a collision at Q. Let the
velocity components of the molecule be u, v, w, and let the velocity
be regarded as consisting of two parts:

(i) a velocity u,, of components u,, 0, 0, equal to the mass-
velocity of the gas at P;

(ii) a velocity ¢, of components u—u,, v, w, the molecular-
velocity of the molecule relatively to the gas at P.

Let QP in fig. 31 represent the path of the molecule since its
last collision, and let RP represent the distance travelled by the
gas at P in the same interval of time, owing to its mass-velocity
%y, 0, 0. Then @R will represent the path described by the mole-
cule relative to the mass-motion of the surrounding gas. Let the
length QR be denoted by A,, and let this make an angle 6 with the
axis of z.

Since all directions of this molecular-velocity may be regarded
as equally probable, the probability of @ lying between 6 and
6+d0 is proportional to sinfdf. The number of molecules
per unit volume having relative molecular-velocities for which
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¢ and ¢ lie within specified small ranges dc, d6 may therefore be
taken to be
3¥f(c) sin 6d0de, vener(196)

where fo f(¢)de = 1, in order that the total number may be equal

to v.

The number of molecules having a velocity satisfying these
conditions, which cross a unit area of the plane z = z, in time dt,
is equal to the number which at any instant occupy a cylinder of
base unity in the plane z = z, and of height ¢ cos 8 dt; it is therefore

Yvef(c) cosOsinfdbdedt. ... (197)

We shall suppose that on the average these molecules carry
the amount of xz-momentum x appropriate to the point @, and
not that appropriate to the point P.

The z-co-ordinate of Q is

zo— A, cos 0,

so that the average value of x at Q is less than that at P by an
amount

0
A,. cos (5;) .
Hence the group of molecules under discussion carry, on the
average, an amount of u

R
—Accosﬂ(gg) ...... (198)

in excess of that appropriate to the point P, where A, is the
mean free path for & molecule moving with velocity c.

The total excess of # which these molecules CAITY BCToss the
plane z =z, is equal to the product of expressions (197) and

(198), namely
— §A,cos Ovef (c) cosOsinfdde. -

On integrating the expression just found with respect to 6, we
obtain the total transfer of momentum by all molecules with
velocities between ¢ and ¢+dc, whatever their direction. The
limits for 6 are O to m, values of 8 from 0 to }m covering molecules
which cross the plane from below, and values of 6 from }7 to o
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those which cross the plane from above. The result of this inte-

gration is -
el ) Z) deat,

a negative sign indicating that the transfer is from above to
below. On further integrating from ¢ = 0 to ¢ = oo, we obtain for
the amount of momentum carried across unit area of the plane in
time d¢ by all molecules,

I (%‘) J : eA f(c)dedt = 4v (g’;‘) ox, .(199)

where ¢A, denotes the mean value of cA, averaged over all the
molecules of the gas.

In the foregoing argument it might perhaps be thought that
A, should have been replaced by 3A, instead of by A.. For if QO
(fig. 31) is the whole free path described before collision occurs,
there is no reason why PO should be less than PQ, so that the
probable value of PQ might be thought to be 1A.

The fallacy in this reasoning becomes obvious on considering
that after a molecule has left P, its chances of collision are exactly
the same whether it has just undergone collision at P or has
come undisturbed from Q. Hence PO = A,, and therefore, by a
‘'similar argument, PQ = A,.

A simple example taken from Boltzmann’s Vorlesungen* will
perhaps elucidate the point further. In a series of throws with a
six-faced die the average interval between two throws of unity is
of course five throws. But starting from any instant the average
number of throws until a unit throw next occurs will be five, and
similarly, working back from any instant, the average number
of throws since a unit throw occurred is also five.

135. We may put

A, =tl, <eeee(200)
where ! is a new quantity, which is of course the mean free path
of a molecule, this mean being taken in a certain way. This is not
the same as any of the ways in which it was taken in the last
chapter, so that we do not obtain an accurate result by replacing

* Vol. 1, p. 72.
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i by any of the known values of the mean free path. At the same
time the mean values calculated in different ways will not greatly
differ from one another, and as our present calculation is at best
one of approximation, we may be content for the moment to
suppose ! to be identical with the mean free path, however calcu-
lated. The extent of the error involved in this procedure will be
examined later.

136. We have shewn that the aggregate transfer of momentum
per unit of time across a unit area of a plane parallel to the plane
of zy is

_OF
el L (201)

* If we replace u by its value mu, i becomes mu,, and the transfer
of momentum is seen to be

_, 0y
ipcl B (202)

This transfer of momentum results of course in a viscous drag of
equal amount across the plane z =z, Now a viscous fluid,
moving with the same velocity as the gas at every point, would
exert a viscous drag

dad)

0z
per unit area across the plane z = z,, where 7 is the coefficient of

viscosity of the fluid. Thus the gas will behave exactly like a
viscous fluid of viscosity 7 given by

p=3p. (203)

137. We can now obtain some insight into the molecular

- mechanics of gaseous viscosity. Let us imagine two molecules,
with velocities u, v, w and —u, v, w, penetrating from a layer at
which the mass-velocity is 0, 0, 0 to one at which it is u,, 0, 0. By
the time the molecules have reached this second layer, we must
suppose that their velocities are divided into two parts, namely,

u—1uy, v,w and u%y,0,0
for the first, and —u—uyv,w and %y,0,0
for the second. The first part in each case will represent molecular-
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motion, and the second part will represent mass-motjon. Now

in §92, it was found that the total energy of the gas could be

regarded as the sum of the energies of the molecular and mass-

motions; indeed, the sum of the energies of the molecular-motions

of the two molecules now under discussion is easily seen to be
m(u® + v+ w?) + mud.

The first term is equal to the energy of the molecular-motion
of the two molecules at the start; the second term represents an
increase which must be regarded as gained at the expense of the
mass-motion of the gas. Thus we see that the phenomenon of
viscosity in gases consists essentially in the degradation of the
energy of mass-motion into energy of molecular-motion; this’
explains why it is accompanied by a rise of temperature in thé
gas.

Corrections when Molecules are assumed to be Llastic Spheres

138. From want of definite knowledge of molecular structure,
two errors have been introduced into our calculations. In the
first place we have neglected the persistence of velocitics after
collision, and in the second place we have ignored the difference
between two different ways of estimating the mean free path.
If the molecules are elastic spheres, it is possible to estimate the
amount of error introduced by both these simplifications.

We may begin by an exact calculation of cA,, to replace the
assumption of equation (200). The quantity required is clearly

on, = f : forede. e (204)

On substituting the value for A, given by equation (164), and

putting )
37,3
fle) = J %_:_:3 4mc2e hnet,
we find
X = ‘e 4(hm)bcetmet . 4 ©xde~rdy
" Jv mvoty(cVhm) avhmvotr)o  Y(@) ’
— lec
= h ===
where x = c\hm T

J KT 1



162 VISCOSITY
Thus if  is defined by equation (200), we must take

© 8 e—=' dy
z=_ A A2hm 421%2 T er(208)

The integral can only be evaluated by quadratures. Tait* and
Boltzmannt agree in assigning to ! a value equal to 1-051 times
Maxwell’s mean free path calculated in §108.

139. A more serious error has been introduced by neglecting
the persistence of velocities which was investigated in the last
chapter. When a molecule arrives at P after describing a path of
which the projection on the axis of z is {, with a velocity of which
the component parallel to the axis of z is w, then, on tracing back
the motion, we know that as regards the previous path of each
molecule the expectation of average velocity parallel to the axis
of z is 6w, where 6 measures the persistence. The expectation of
the projection of this path on the axis of z may therefore be taken
to be 6¢. Similarly, the expectation of the projection of each of the
paths previous to these may be taken to be 62§, and so on. Thus
the molecule must be supposed to have come, not from a distance
¢ measured along the axis of z, but from a distance

4

E+08+6%C+... =105 v (206)

‘We must not, however, assume that such a molecule on arriving
at the plane z = 2z, has, on the average, a value of # appropriate

to the plane z = z,+ -1—%9. For the molecule has not travelled a
¢

1-6

of its excess of momentum will have been shared with the col-

liding molecule. Of the various simple assumptions possible, the

most obvious one to make is that at each collision the excess of

momentum above that appropriate to the point at which the

collision takes place is halved, half going to the colliding molecule
and half remaining with the original molecule. Making this

distance —— undisturbed, and at each collision a certain amount

* Collected Works, 2, pp. 152 and 178.
1t Wien. Sitzungsber. 84 (1881), p. 45,
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assumption, it is clear that the excess of momentum to be
expected is not that due to having travelled undisturbed a
distance equal to that given by expression (206), but a distance

£+ MO+ 30+ 3B+ .. )]} = i—_‘:m ...... (207)

Thus we must insert a factor 1/(1—46) in the integrand of
equation (205) before integration, the value of @ being obtained
from the table on p. 151. As the result of a rough integration

by quadratures, I find
_1-382

=——, . 208
\2mvo? (208)
so that the viscosity coefficient is given by
me
= }pcl = 0461 ——. ... 209
1=sp V2no? (209)

140. This formula, although undoubtedly better than formula
(203), is still only an approximation. It might be possible to im-
prove still further on the rough assumptions just made, and so
obtain results still closer to the truth. This, however, seems un-
necessary, since exact numerical results are obtainable by the
mathematical methods explained in Chap. IX below. There we
shall see how Chapman, following Maxwell’s method, has arrived
at the exact formula.

=0499-2%_ . (210)
7 V270’

and Enskog has confirmed this, by an entirely different method.

JVARIATION OoF VISCOSITY WITH DENSITY

141. Equation (210) shews that 7 is independent of the density
of the gas, when the molecules are elastic spheres. And it is clear
that whatever structure we assume for the molecules of the gas,
I will, to a first approximation, vary inversely as the number of
molecules per unit volume of the gas, so that formula (203)
must give a value of 9 which is independent of v. Increasing
the number of molecules in a given volume increases the
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number. of carriers, but decreases their efficiency as carriers

pari passu; for on doubling the number of molecules per unit

volume, the free path is reduced by half so that the momentum

of any carrier will only differ, on the average, by half as much

from the average momentum at the point of its next collision.
Thus we obtain Maxwell’s law:

the coefficient of viscosity of a gas is independent of its density.

l In spite of its apparent improbability, this law was predicted
by Maxwell on purely theoretical grounds, and its subsequent
experimental confirmation has constituted one of the most
striking triumphs of the kinetic theory.

Some of the physical consequences of this law are interesting,
and occasionally surprising. For instance, the well-known law of
Stokes tells us that the final steady velocity » of a sphere falling
through a viscous fluid is given by

y < I —2)
6man

where a, M are the radius and mass of the sphere, and Jf, the mass
of fluid displaced. Since 7 is, by Maxwell's law, independent of
the density, it follows that, within the limits in which Stokes’s law
is true, the final velocity of a spherc falling through air or any
other gas will be independent of the density of the gas, or more
strictly will depend on the density of the gas only through the
term M — M, which will differ only inappreciably from M. Thus,
a small sphere will fall as rapidly through a dense gas as through
a rare gas. Again the air-resistances experienced by a pendulum
ought to be independent of the density of the air, so that the
oscillations of a pendulum ought to die away as rapidly in a rare
gas as in a dense gas, as was in fact found to be the case by Boyle
as far back as 1660.*

To test the truth of the general law, Maxwell} fixed three
parallel and coaxal circular discs on a common axis, and then
suspended them by a torsion thread in such a way that the three
movable discs could oscillate between four parallel fixed discs.

* Thomson and Poynting, Propertiss of Maiter, p. 218.
t Phil. Trans. 156 (1866), p. 249, or Coll. Works, 2, p. 1.
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As in Boyle’s pendulum experiment, the oscillations were found
to die away at the same rate whether the air were dense or rare,
up to pressures of one atmosphere.

142. At very much higher pressures at which the free path is
becoming comparable only with molecular diameters, Maxwell's
law fails altogether as is only to be expected. For we have
supposed that a free path transports momentum through a
distance A with a velocity ¢, but we have so far overlooked that
the collision which ends the free path transports it through a
further distance o with infinite velocity. Thus the transport for
free path is through a distance of the form A + o cos .

Enskog* has shewn that, becausc of this, the value of 7/p will
not be constant, but will vary as

b

'—J+O-8000+0-7614;},

b
where b and v mean the same as in Van der Waals’ equation.
This factor attains a minimum value of 2:545 when » = 0-8726b,
so that the general value of 7/p can be put in the form

7__1 [v. o i 9(9)
p_2-545|:b+0 8000 4 0 7614v:| » mln.‘

This formula is found to represent observed variations of
y/p fairly well, especially at high densities. The table on p. 166
gives the values of » for nitrogen at 50° C., as observed by
Michels and Gibson,t together with the values calculated from
Enskog’s equation just given.

The minimum in %/p is clearly marked. The value » = 0-8726b,
at which theory predicts that it ought to occur, is reached at
about 580 atmospheres.

Similar variations in 7/p for carbon-dioxide have been ob-
served by Warburg and v. Babo,} the minimum value being

* K. Svenska Veten. Handb. 63 (1922), No. 4; see also Chapman and
Cowling, The Mathematical Theory of Non-uniform Gases (1939), p. 288.

1 Proc. Roy. Soc. 134 A (1931), p. 307.

t Wied. Ann. 17 (1882), p. 390, and Berlin. Sitzungsber. (1882), p. 509.
The numbers here given were subsequently corrected by Brillouin (Legons
sur la viscosité des fluides, 1907), and our text has reference to these
corrected figures,
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reached at a pressure of 77-2 atmospheres, at which the density
i8 0-450 gm. per cu. cm. Enskog has verified that these variations
also are in accordance with his theoretical formula.

Viscosity of Nitrogen (50° C.) at high Pressures

Pressure 7/p 7% 108 7 x 108
(atmospheres) (observed) (observed) (calculated)

15:37 0-01179 191-3 181

57-60 0-003274 198-1 190

104-5 0:001928 208-8 205

212-4 0-001148 237-3 224

320-4 0-000952 273-7 266

430-2 0-000887 312-9 308

5417 0-000866 350-9 348

630-4 0-000859 378-6 380

742-1 0-:000870 416-3 418

. 854-1 0-000889 455-0 456
| 965-8 0-000909 491-3 492

A similar, although smaller, dependence of viscosity on density
has also been observed in hydrogen at moderate pressures by
Kamerlingh Onnes, Dorsman and Weber.*

At the other limit of excessively small pressure, remarkable
departures from Maxwell’s law may occur through the free path
becoming comparable with, or even greater than, the dimensions
of the vessel in which the experiment is conducted. If the mole-
cule has not room to describe a free path equal to the theoretical
free path assumed in § 140, the resulting formula obtained for the
viscosity must obviously fail. If [ cannot, from the arrangement
of the apparatus, be greater than some value l,, then # (cf.
equation (209)) cannot be greater than }pcl,, and so ought to
vanish with p. This is found to be the case. As far back as 1881,
Sir W. Crookest measured the viscosities of gases at pressures of
only a few thousandths of a millimetre of mercury, and obtained
values much smaller than those at higher pressures, which tended
to vanish altogether as the density of the gas vanished. Later
investigators have abundantly confirmed his conclusions.

* Comm. Phys. Lab. Leiden, 134a (1913). See also Winkelmann’s-
Handbuch der Physik (11te aufl.), pp. 1399, 14086.
+ Phil. Trans, 172 (1881), p. 387.
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A case of special interest, which we shall now discuss, oconrs
when gas flows through a tube of small or capillary cross-:
section.

The Flow of Gas through Tubes

l43.CWhen gas flows through a tube, the layer of gas in
contact with the wall of the tube is usually held at rest by the
tube, while the rate of flow increases as we pass inwards towards
the centre of the tube.

(Let us suppose the tube to be of circular cross-section,
of radius R, and length L. Let the gas at any distance r from
the axis be flowing along the tube with a velocity v.

The cylinder of gas of radius r coaxal with the tube will

. . dv . .
experience a viscous drag —7 3 per unit area over its whole

surface, and as this is of area 2arL, the whole cylinder experi-
ences a viscous drag of amount

—2mrLy g—: .

If the flow is steady, so that the gas moves without accelera-
tion, this viscous drag must be exactly balanced by the differ-
ence of the pressures at the two ends of the cylinder. This will
be nr?(p,— p,), where p,, p, are the pressures per unit area at
the ends of the tube, so that p, —p, is the pressure-difference
employed to drive the gas through the tube. Thus

dv ;
=2arLy o = mr (py— py)-

Dividing throughout by —2zrL7y and integrating, we obtain

_ _1_’1—]’2 2
v=A4 Y7 L (211)
where A4 is a constant of integration.
If there is no slip between the gas and the walls of the tube,
v must be zero when r = R. Determining 4 from this condition,
equation (211) becomes

v= %;TP* (R=r?). ... (212)
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The total volume ¥V of gas which flows through the tube in
unit time is
- R 7’(]’1—1’2) 4
V—fo 2mrvdr =—~—8L—"——R e e (213)

This is Poiseuille’s formula for the flow of gas through a tube.
Since the quantities V, L, R and p, — p, all admit of easy measure-
ment, it provjdes a convenient method for measuring % ex-
perimentally.

Experiment shews, however, that the flow of gas in tubes of
very small diameter is often greater than that given by this
formula, as though the gas slipped at its contact with the
walls of the tube. In 1860 Helmholtz and Piotrowski* shewed
that a slip of this kind actually occurred in liquids, and later
Kundt and Warburg} shewed the same for gases. A great
number of investigators, starting with Maxwell,} have dis-
cussed the theory of this slip.

If such a slip occurs, let v, be the velocity of the layer of gas
which is in contact with the walls of the tube. This slip will
produce a viscous force on the gas which will be jointly pro-
portional to v, and to the area of surface, namely 27REL, ovor
which slip occurs. We may take the whole viscous drag on the
gas to be 27RLev,, where € is a constant. Equating this to the
force urging the whole gas through the tube,

2nRLevy = nR?(p, — p,),

so that vy = plsz’R

The constant 4 in equation (211) must now be adjusted so
as to give this value for v when r = R. We accordingly find, as
the general value of v,

v = pl pﬂ (Rz 1’2+ 2R7’)

“aLy
and, instead of equation (213), for the flow per unit time,
. — (P —Py) 4_’7)
V= 57 R‘(1+€R C e (214)

* Wien. Sitzungsber. 40 (1860), p. 607.
1 Pogg. Annalen, 155 (1875), p. 337. t Coll. Works, 2, p. 703.
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We see that the slip at the walls increases the flow by a
fraction 47/cR. This is generally known as the Kundt and
Warburg correction. It is unimportant so long as R is large in
comparison with 7/e, but when R is small compared with 7/e, it
takes control of the whole process, and results in the flow being
proportionate to R® instead of to R*. \

144. The quantity #/e, which measures the ratio of the
friction of the gas on itself to the friction between the gas and
the solid, is generally called the “ coefficient of slip”. Maxwell*
gave much thought to the problem of its evaluation. He assumed
in the first instance that of the molecules which impinged on a
solid wall only a fraction 1—f are reflected back “specularly”,
ie. at the same angle as that at which they struck the wall, the
remaining fraction f leaving the wall at random angles which are
independent of the earlier motions of the molecule.

From a discussion of the experiments of Kundt and Warburg,
Maxwell concluded that f must be about 4. The experiments of
Knudsen described in § 34 seem, on the contrary, to indicate
that, under some circumstances at least, the correct value of f
is not far from unity; most or all of the molecules start out in
purely random directions after impact.

Blankensteint has directly measured the coefficients of slip
between a number of gases and polished oxydized silver, and
finds for f the values 1-00, 1-00, 0-99 and 0-98 for helium,
hydrogen, oxygen and air respectively. For reflection from
other solids the value of f may be substantially smaller. Thus
Millikan} gives the values

Air or CO, on machined brass, old shellac, or mercury f= 1-00

Air on oil 0-895
CO, on oil 0-92
Air on glass 0-89
Air on fresh shellac 0-79

145. The Kundt and Warburg formula (214) is found to
agree well with experiment so long as the pressure of the gas is
sufficiently high, but fails entirely, as might be anticipated,

* Coll. Works, 2, p. 703. See also Loeb, Kinetic Theory of Gases

(2nd ed., 1934), pp. 285ft.
1 Phys. Rev. 22 (1923), p. 682, 1 Phys. Rev, 21 (1923), p. 217.
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for pressures so low that the free path is comparable with, or
greater than, the diameter of the tube. In this case it is re-
markable that the rate of flow is independent of both the
viscosity and the density of the gas. The appropriate analysis
has been given by Knudsen.*

We may suppose that the velocity with which the gas flows
through the tube is small in comparison with the molecular
velocities, and that these latter conform to Maxwell’s law for a
gas with a mass-velocity equal to the velocity.of flow. The
total mass of the molecules which impinge on unit area of the
wall of the tube in unit time is thus }p¢, as in § 39. The average
velocity along the tube is now the same at all points of the gas,
say u,. Thus the total momentum that thc moving molecules
give up to the walls of the tube in unit time is 27RL x }pty,.
This, as before, must be equal to 7.R?(p, —p,), so that

_ 28(py —py)
Lpc

The total mass of gas which flows through the tube in unit
time is accordinglyt
2B(py—po)

1 s e
which, as already remarked, is independent of both 7 and p.
Knudsen has verified that this formula agrees well with ob-
servation. Comparing it with Poiseuille’s formula, we notice
that the flow increases as the cube instead of as the fourth
power of R.

nR2puy =

VARIATION OF VISCOSITY WITH TEMFERATURE

146. We turn next to examine how the viscosity of a gas
varies with its temperature.

Since ¢ is proportional to the square root of the absolute
temperature, formula (210) shews that if the molecules were true

* Ann. d. Phys. 28 (1909), pp. 75, 999; 32 (1910), p. 809; 34 (1911),
p. 593, and later papers. See also M. Knudsen, The Kinetic Theory of

Gases (Methuen, 1934), pp. 21ff.
1+ Knudsen gives a formula which is less than this (erroneously as it

seems to me) by & factor 387’, but the experimental tests agree with this
formula better than with formula (215).



VISOO0SITY 171

elastic spheres, the value of 7 would be proportional to the square
root of the temperature.

As a matter of fact, 7 is found to vary a good deal more rapidly
than this as the temperature increases. The divergence between
experiment and the theoretical value obtained on the assumption
that the molecules are elastic spheres is, however, one that could
have been predicted. The assumption in question is, at best, only
an approximation, and we must continually examine what devia-
tions are to be expected from the results to which it leads.

The peculiarity of a system of elastic spheres is that the motion
remains geometrically the same if the velocity of every sphere is
increased in the same ratio. If the molecules are surrounded by
repulsive fields of force, this is no longer the case; increasing the
velocities increases the degree to which the molecules penetrate
into each others fields of force at collision, and so has the result
of decreasing the effective sizes of the molecules.

Thus if the molecules of a gas are surrounded by fields of force,
and we attempt to represent these molecules by elastic spheres,
we must suppose the size of these spheres to vary with the tem-
perature of the gas. The spheres are large at low temperatures,
small at high.

It follows that in formula (210), 7 must be supposed to depend
on the temperature both through the factor ¢ in the numerator,
and also through the factor o in the denominator. Thus the value
of 9 will not vary simply as the square root of the temperature,
but will vary more rapidly with the temperature than this.

From the way in which 7 is observed to vary with the tempera-
ture, we can obtain some information as to the fields of force
surrounding the molecules. For from equation (210) we can
calculate o as a function of the temperature 7'. Now the value of
o at any specified temperature is, roughly speaking, the average
distance of closest approach of the centres of two molecules in
collision, so that the mutual potential energy of two molecules at
a distance o is, on the average, equal to the kinetic energy of the
velocities along the line of centres before collision.

We readily find (formula (140)) that the average value of V2,
the square of the relative velocity before collision, is §C2. Thus the
square of the velocity of each molecule relatively to the centre of
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gravity of the two colliding molecules will be, on the average,
§C2. The probability that this velocity is at an angle between 8
and 6 +d6 with the line of centres is 2sinfcosfdf, so that the
average square of the relative velocity along the line of centres
V cos@is

%-C"f: 2ginfcos?Gdl = 1C2.
The kinetic encrgy which has been destroyed by the inter-
molecular field of force when the molecules are, on the average,
at their point of closest approach at distance o apart is therefore
4mC? or RT. Thus the mutual potential energy of two molecules
at a distance o apart will be RT, where T is the temperature
corresponding to the value of o in question. The force of repulsion

between two molecules at a distance o is accordingly — R %—Z—j.
If the law of force is ur—*, we must have
L _pY
Pl L
giving on integration
1
_|__B -1
o= [RT(s-—l)] . e (216)

Here o denotes the distance of closest approach of two mole-
cules at an encounter, and when the orbits are at all curved, this
is not quite the same thing as the diameter of the sphere
obtained by supposing the molecules to be elastic spheres.
Thus equation (216) will give a value of & which will'differ by
a numerical multiplier from the value obtained in § 54 by con-
sidering the deviations from Boyle’s law. This multiplicr will
of course vary for different values of s. It will reduce to unity
for elastic spheres, and will differ most from this for the smallest
values of s.

In § 54 we found that molecules with a law of force ur—* could
be regarded as elastic spheres for the purpose of calculating the
pressure, if o were supposed given by

o= [R-T{si_—l)]s‘l—lz/r(l -5-»_3-3). ......(2175
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This agrees with (216) except for the numerical factor, and agrees
completely, as it ought, for elastic spheres (¢ = c0). We see that
molecules which are point centres of force may be treated as
elastic spheres, both as regards pressure and viscosity, but the
spheres must be of different sizes in the two cases, except of course
when the molecules really are spheres.

Although formulae (216) and (217) become identical when s is
infinite, the divergence between them may be very considerable
when s is small. The lowest value for s which can be supposed
to occur for any gas is probably about s = 5 (cf. § 147, below),
and when s = 6,

:/I‘(l - 9—_‘—1) - i/r(i) — 15363,

Thus for such a gasas carbon-dioxide, for which ¢ = 5:6, we may
expect a difference of as much as 50 per cent between the values
of o calculated from viscosity and Boyle’s law.

In such a case as this, however, the calculation from Boyle’s
law fails because b, which from equation (212) ought to vary as
T-%, is supposed, in evaluating b experimentally, to remain
independent of the temperature.

Whatever the value of the numerical multiplier may be, it
2

appears that oi'z will vary as 7%-1, so that  will vary as T, where

2
n= % + =1t e (218)

147. For some gases, 7 is found as a matter of experiment to
vary approximately as a power of 7', being represented with
very tolerable accuracy by the formula

T n
ﬂ = ”0 (273.2) » .uonu(219)

where 7, is of course the coefficient of viscosity at 0°C. A
good instance is helium; the agreement between the observed
values of 7 for this gas and the values given by formula (215)
is exhibited in the table on p. 179 below.

Clearly the molecules of substances for which there is a good
agreement of this kind may be regarded as point ocentres of
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force, repelling according to the law y/r’, where 8 is given by
equation (218).

If a gas is constituted of molecules which are not of this type,
it will still be possible to represent the viscosity-coefficient by
a formula of the type of (219), through any small range of
temperature we please. For the value of n is at our disposal,
and may be chosen so as to give the right value to dz/dT, the
slope of the viscosity-coefficient, through thissmall range. But this
value of # will not usually satisfy the experimental data through
another range; for this some other value of » must be chosen.

The following table gives the values of n for a number of
gases through ranges which include 0°C., together with the

Values of n and s for Certain Gases

1 ... s| Valucofn Value of &
Gas Authority (observed) | (calculated)
Hydrogen 1 0-695 11-3
Deuterium 2 0-699 11-0
Heliumt 3 0-647 14-6
Neon 1 0-657 13-7
Nitrogen 5 0:756 88
Carbon-monoxide 6 0-758 875
Air 6 0-768 8-46
Oxygen 5 0-814 7-40
Hydrochloric Acid 4 1-03 4-97
Argon 7 0-823 7-19
Nitrous oxide 6 0-89 6:16
Carbon-dioxide 6 0-935 56
Chlorine 8 1-0 50

* Authoritios:

1. Kamerlingh Onnes, Dorsman and Weber, Verslay. Kon. Akad. ran
Wetenschappen, Amsterdam, 21 (1913), p. 1375.

2. Van Cleave and Maas, Canadian Journ. of Researoh, 13B (1935),
p. 384.

3. Kamerlingh Onnes and Weber, Verslag. Kon. Akad. van Weten-

schappen, Amsterdam, 21 (1913), p. 1385.

Trautz and Binkele, Ann. d. Phys. 5 (1930), p. 561.

Markowski, Ann. d. Phys. 14 (1904), p. 742. -

. Values given by Chapman and Cowling (The Mathematical Theory
of Non-uniform Gases, Cambridge, 1939), calculated from data
of various experimenters.

7. Schultze, Ann. d. Phys. 5 (1901), p. 163 and 6 (1901), p. 301.
8. Trautz and Winterkorn, Ann, d. Phys. 10 (1931), p. 522.
t See § 148, below.

RS
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values of & caloulated from relation (218). An instance of the
closeness of agreement between formula (219) and observation
will be found below (§ 149).
1f the molecules of a gas were in actual fact elastic spheres,
the value of n would of course be zero, and s would be infinite,
Molecules for which s is large are frequently described as ““hard”,
and those with smaller values of s as ““soft””. Our table shews
that, generally speaking, the hardest molecules are those of
simplest structure. The monatomic molecules helium and neon
come first, then diatomic molecules of simple structure—
hydrogen and deuterium, followed by nitrogen, carbon-monoxide
and oxygen. The softest molecules are those of chlorine and
hydrochloric acid for which s is necarly five. This value seems to
constitute a sort of natural lower limit for s.

148. We next examine the absolute value of 5. We have
already seen that 7 is proportional to mé/o?, or to VmRET/a®.
Using the value of o given by equation (216), we find that the
coefficient of viscosity must be given by an cquation of the form

3
n=A «/m[ﬂ(;:-)]“‘, ...... (220)

where A is a numerical constant.

Chapman* has determined the value of this constant by very
complicated analysis. To a first approximation he found its
value to be

A= 5ym S e (221)
812(.9)1‘(4——)

s—1

where I,(s) is a pure number depending only on s, its actual
value being

Ls)=n f ® sin?0'd da,
0

where 6’ and a have the meanings assigned to them in § 196
below. This integral was introduced by Maxwellt in 1866. He
calculated that when s=5 its value is 7,(5)=1-3682, and
shewed that when s = 5 formula (221) is exact.

* Phil. Trans. Roy. Soc. 211 A (1812), p. 433,
¥ Coll. Works, 2, p. 42.
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In a later paper*, Chapman carries the calculations to a
second approximation, and finds that the value of 4 given by
equation (221) must be multiplied by a factor which increases con-
tinuously from unity when s = 5 to 1:01485 when s = co. Thus the
error in using approximation (221) for 4 is never more than about
1} per cent, and as this is smaller than experimental errors of
observation, it is hardly worth carrying the approximation
further. Before leaving this question, it may be remarked that
Enskogt has given the factor by which 4 must be multiplied
when the molecules repel as the inverse sth power of the distance

in the form

3(s - 5)°
1+ ey o113 T

This of course reduces to unity when s == 5 and has the value
1535 or 1-01485 when 8 = 00, thus agreeing with Chapman’s value
just quoted.

For hard spherical molecules (s = c0) these formulae lead to
the value of 7 already given in formula (210).

Sutherland’s molecular model

149. The foregoing theory has been concerned only with
molecules which attract or repel according to the law ur—s. It
cannot, be supposed that any actual molecules are of so simple
a type as this.

For, as we have already seen, the supposition that the molecular
force falls off as an inverse power of the distance leads to formula
(216) which requires o to vanish absolutely at very high tempera-
tures. It seems more natural, and more in accordance with
modern knowledge of molecular structure, to suppose that a
molecule possesses a hard kernel which is not penetrated by other
molecules no matter how violent the collision between them

may be. -

* Phil. Trans. Roy. Soc. 216 A (1915), p. 279.

1 Kinetische Theorie der Vorgdnge in mdssig verdiinnten Gasen (Inaug.
Dissertation, Upsala, 1917). Enskog’s analysis is given by Chapman and
Cowling, in a somewhat different form, in their book The Mathematical
Theory of Non-unyform Gases (C.U.P., 1939).
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As far back as 1893, Sutherland* had assumed that the effective
value of o at temperature T is

where U, o, are constants, o, being the value of o when 7' = oo,
and therefore being the diameter of the hard kernel of the mole-
cule, while C is the temperature at which o2 = 203.

As the temperature varies, the coefficient of viscosity varies
as ¢l, and so as — T* or again as Tl

2’ C+T
of viscosity at 0° C.(T = 273-2), the gencral coeflicient of vis-
cosity # at temperature 7' will be given by
T \!C+2732
= ”“(273-2) CxT

which is Sutherland’s formula for the viscosity at temperature 7.

For many gases this formula meets with very considerable
success in predicting the variation of viscosity with temperature.
As an illustration may be given the following tables, taken from
a paper by Breitenbach,} in which the observed and calculated
values of the viscosity are compared.

Thus if 7, is the coefficient

Ethylene
(10 = 0-00009613, C = 225-9)
Tomperature 3 (observed) 7 (calculated)

—21-2°C. 0-0000891 0-0000890
160 1006 1012
99-3 1278 1278
1824 1530 1519
302-0 1826 1833

Carbon-dioxide
(70 = 0-00013879, C = 239-7)

Toemperature 7 (obscrved) 7 (calculated)
—20-7° C. 0-0001294 0-0001284
150 1457 1462
99-1 1861 1857
182-4 2221 2216
302-0 2682 2686

* Phil. Mag. 36 (1893), p. 507. t Ann. d. Physik, 6 (1801), p. 168,

IKT 12
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The following values for C have been found by different
observers:

Helium C = 80-3 (Schultze), 78-2 (Schmitt), 70 (Ra,nkine)

Neon C = 56 (Rankine).

Argon C = 169-9 (Schultze), 174-6 (Schmitt), 142 (Ra.nkme)

Krypton C = 188 (Rankine).

Xenon C = 252 (Rankine).

Hydrogen C = 72-2 (Rayleigh), 71-7 (Breitenbach), 79 (Suther-
land), 83 (Schmitt).

Nitrogen C = 102-7 (Trautz and Baumann), 118 (Smlth)

Carbon-monoxide C = 100 (Sutherland), 118 (Smith).

Air C=111-3 (Rayleigh), 119-4 (Broitenbach), 113
(Sutherland).

Nitric oxide C = 128 (Trautz and Gabricl).

Oxygen C = 138 (Markowski), 138 (Schmitt).

Chlorine C = 325 (Rankine).

Nitrous oxide C = 260 (Sutherland), 274 (Smith).
Carbon-dioxide C = 2397 (Breitenbach), 277 (Sutherland), 274

(Smith).
Ethylene C = 2259 (Breitenbach), 272 (Sutherland).
Methyl chloride € = 454 (Breitenbach).

Authorities:
Schultze, Ann. d. Phys. 5 (1901), p. 165, and 6 (1901), p. 310.
Schmitt, Ann. d. Phys. 30 (1909), p. 398.
Rankine, P’roc. Roy. Soc. 84 A (1910), p. 188 and 86 A (1912), p. 162.
Rayleigh, Proc. Roy. Soc. 66 A (1899), p. 68 and 67 A (1900), p. 137.
Breitenbach, Ann. d. Phys. 5 (1901), p. 168.
Sutherland, Phil. Mag. 36 (1893), p. 507.
Smith, Proc. Phys. Soc. 34 (1922), p. 155.
Trautz and Baumann, Ann. d. Phys. 2 (1929), p. 733.
Trautz and Gabriel, Ann. d. Phys. 11 (1931), p. 607.
Markowski, Ann. d. Phys. 14 (1904), p. 742.

We should obviously expect the more permanent gases,
which have low critical temperatures and low boiling points,
to have low values for the Sutherland temperature C. Rankine*
has noticed that most gases for which data are available have
critical temperatures equal to about 1-14 times C.

On the other hand, Kamerlingh Onnest finds very definitely
that the viscosity of helium at low temperatures cannot be re-
presented by Sutherland’s formula with anything like the

* Proc. Roy. Soc. 86 A (1912), p. 166.

+ Kamerlingh Onnes and Sophus Weber, Comm. Phys. Lab. Leiden,
1345, p. 18.
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accuracy given by the simpler formula (219). This is shewn in the
following table: the second column gives the values of 7 observed
for helium, the third column gives the values calculated from
formula (219) on taking 7, = 0-0001887, n = 0-647, while the
last column gives values of 5 calculated by Sutherland’s formula,
ta.king C = 1782.

Viscosity of Helium
T 0-647

4 7 (calculated,

Temperature 7 (observed) %( 273_2) Sutherland)
183-7° C. 0-0002681 0-0002632 0-0002682
99-8 2337 2309 2345
18-7 1980 1970 1979
17-6 1967 1965 1974
—22-8 1788 1783 1771
—60-9 1687 1603 1563
—-70-0 1564 15658 1513
— 785 1506 15156* 1460
—102-6 1392 1389 1317
- 183-3 09186 09185 0745
—~197-06 08176 08213 0628
—198-4 08132 08156 0621
—253-0 03498 03489 0135
—258-1 02946 02887 0092

* This entry, which was obviously wrong in the original table. has
been recalculated.

Very similar results have also been obtained for hydrogen by
Kamerlingh Onnes, Dorsman and Weber,} while a gencral failure
of Sutherland’s formula to represent viscosity at low tempera-
tures has been noticed and discussed by Schmitt, Bestelmeyer,
Vogel and others.}

More General Laws of Force
150. This has led to a study of the way in which viscosity would
depend on temperature with more general laws for the forces
between molecules. In 1924 J. E. Lennard Jones§ introduced a
tentative law of force LA
fir) = 2222

f ,.a

t Comm. Phys. Lab. Leiden, 134a (1913).

t For references see Chapman, Phil. Trans. 216 A (1915), p. 342.

§ Proc. Roy. Soc. 106 A (1924), p. 441, and subsequent papers.
12-2
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and examined the resulting dependence of viscosity on tempera-
ture. This was soon discarded in favour of the more general law

A n
fry=5-%.

Hassé and Cook* have calculated the resulting formula for the
coefficient of viscosity in the special case of n = 9, m = 5. They
found that, with a suitable choice of values for A and u, the
formula could be made to fit the experiments well for hydrogen,
nitrogen and argon, but could not be made to fit for helium,
carbon-dioxide and neon. The agreement of their formula with

observation for hydrogen and argon is shewn in the two tables
below.

Viscosity of Hydrogen
7 x 107 7 x 107
Abs. temp. Zx 107 d (Hassé and | (Kamerhngh

(observed) Cook) Onnes)
457-3 1212 1226 1207
3736 1046 1060 1052
287-6 8717 878 876
273-0 844 846 843
261-2 821 820 816
2556-3 802 806 803
233-2 760 766 757
212-9 710 708 709
194-4 670 664 666
170-2 609-3 603 608
89-63 392-2 380 389
70-87 319-3 320 329
20-04 105-111 111 137

Here the second column gives the best observed value of the
viscosity coefficient, while the third column gives the value
calculated by Hassé and Cook. The last column gives the value
calculated by Kamerlingh Onnes for a simple repulsive force
varying as r~1'2, and it will be seen that the agreement with
observation is not enormously less good than with the more
complex law of Hassé and Cook.

* H. R. Hassé and W. R. Cook, Proc. Roy. Soc. 125 A (1929), p. 196.
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Viscosity of Argon
7 x 107 x 107
Abs. temp. (observed) (Hassz and Cook)
456-4 3243 3212
372-8 2751 2745
286-3 2207 2216
272.9 21186 2129
252-8 1987 1993
2329 1854 18556
212-9 1697 1711
194-3 1675 1572
168-7 1379 1373
899 735-6 686-9

VIScoSITY IN A MIXTURE OF GASES

151. Asthe proportions of two kinds of gas in a mixture change
from 1:0 to 0:1, the coefficient of viscosity of the mixture will
of course also change, starting from the coefficient of viscosity 7,
of the first gas, and ending at the coefficient of viscosity of the
second gas 7,. But, as Graham* found in 1846, the change may
not be continuous, and for certain proportions of the mixture the
coefficient of viscosity of the mixture 7,, may have a value greater
than either of the coefficients of viscosity 7,, 7, of the pure gases.

To a first rough approximation, the viscous transfer of
momentum in a mixture of gases may be regarded as the sum
of the transfers by the different kinds of molecules separately.
Thus if p;,pq pPs ... are the densities of different kinds of
gas, €,,Cy, Cy, ... the average velocities of the molecules of these
different kinds and A, Ay, A,, ... the average free paths, we may
expect the viscosity of the mixture to be given by

7 = 3(PiT1A1 +Paeats +PsCala +...)

For a simple binary mixture, we should expect a coefficient of

viscosity 7,, given by
N1z = 3PT1A1 +3p:824,
or, substituting for A, and A, from formula (151),

Te = ot Ta rx oea(222)
144,22 1+4,2

P P2
* Phil. Trans. Roy. Soc. 136 (1846), p. 573.
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where 7,, 77, are the coefficients of viscosity of the two constituents
when pure, and 4,, 4, are quantities which depend on the masses
and diameters of the molecules of the two components.

When p,/p, is zero, the value of 7,, given by this formula
reduces of course to 7,; when p,/p, is small, it is

Na =" +%: (%&2 - 71*41) .

Thus if 9,>7,4,4,, a small admixture of the second gas in-
creases the coefficient of viscosity. If this inequality is satisfied
and 7, is also less than 7,, the value for 7,, must clearly rise to a
maximum as p,/p, is increased and then descend again to its final
value 7,.

A formula of this type was first given by Thiesen.* Schmitt,}
and later Schroer,} have found that such a formula represents
many, or even most, of the experimental data on the viscosity of
binary mixtures with very fair accuracy.

The exact theoretical investigation of viscosity in a mixture
of gases is very complicated. Formulae for the coefficients
of viscosity of mixture have been given by Maxwell, Kuenen,
Chapman and Enskog, and in every case the theory predicts a
maximum value for a certain ratio of the gases in accordance with
observation. Maxwell’s investigation§ deals only with molecules
repelling as the inverse fifth power of the distance; Kuenen|| deals
with elastic spheres, the formulae being corrected for the phe-
nomenon of “persistence of velocity "’ explained in Chap. v; while
Chapman€ and Enskog** discuss the viscosity of gas-mixture by
following the general methods which are explained in Chap. 1x
below. ,

Chapman’s analysis shews that a formula of the type of (222)
must necessarily fail to represent the facts with any completeness;

* Verhand. d. Deutsch. Phys. Gesell. 4 (1902), p. 238.

t Ann. d. Physik, 30 (1909), p. 303.

1 Zeitschr. f. Phys. Chem. 34 (1936), p. 161. § Coll. Papers, 2, p. 72.

|| Proc. Konink. Akad. Wetenschappen, Amsterdam, 16 (1914), p.
1162 and 17 (1915), p. 1068.

9 Phil. Trans. 216 A (1915), p. 279, and 217 A (1916), p. 115; Proc.
Roy. Soc. 93 A (1916), p. 1.

** Kinetische Theorie der Vorgdnge in mdssig verdiinnten Gasen, Inaug.
Dissertation, Upsala, 1917.
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the necessary formula is found to be of the more general
type

. TP+ 311 Py + 1200

a,pi+bp1py+asp}

where a,,a,,,a, and b are new constants depending on the mole-
cular masses, the law of force, and the temperature. Chapman
shewed that a formula of this type represented the observations
of Schmitt,t and later Trautz} and his collaborators have estab-
lished further agreement between this formula and experiment.

12 ’

Gas 1\&21 K (:13555 :—fd) Authority* }gn(:rlrlf-)
Monatomic
Helium 4 0-000188 1 1-:09 x 10-8
Neon 20 | 0:000312 1 1-:30 x 10-8
Argon 40 0-000210 1 1-83 x 10-8
Krypton 84 0-000233 1 2:08 x 10-8
Xenon 131 0:000211 1 2:46 x 108
Mercury 201 0-000162 2 313 x 10-8
Diatomic
Hydrogen 2 | 0-00008574 3 1-36 x 10-8
Carbon-monoxide 28 0-0001665 4 1-89 x 10-8
Nitrogen 28 | 0-000167 2 1-89 x 10-8
Air —_ 0-000172 2 1:87 x 108
Nitric oxide 30 0-0001794 5 1:88 x 108
Oxygen 32 0:000192 2 1-81 x 108
Hydrogen sulphide| 33 | 0-000118 6 2-32x 108
Chlorine 71 0-000122 7 2-70 % 10-8
Polyatomic
Water vapour 18 | 0-000087 2 2:33 x 10-8
Nitrous oxide 44 | 0-0001366 4 2:33 x 108
Carbon-dioxide 44 0-000137 2 2:33x 108
Methane (CH,) 16 0-000108 (20°C.) 2 2:04x 108
Benzene (C¢H,) 78 | 0-0000700 2 3-75%x 108

% Authorities:
1. Rankine, Proc. Roy. Soc. 83 A (1910), p. 516; 84 A (1910), p. 181.
2. Kaye and Laby, Physical Constants (8th edn., 1936).
3. Breitenbach, Ann. d. Phys. 5 (1901), p. 166.
4. C.J.Smith, Proc. Phys. Soc. 34 (1922), p. 155.
5. Eucken, Phys. Zeitschr. 14 (1913), p. 324.
8. Rankine and Smith, Phil. Mag. 42 (1921), pp. 601, 615.
7. Rankine, Proc. Roy. Soc. 86A (1912), p. 162.

t L.c. ante.
1 Ann. d. Physik, 3 (1929), p. 409; 7 (1930), p. 409; 11 (1931), p. 608.
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DETERMINATION OF SIZE OF MOLECULES

152. We have already, in §31, had an instance of the calcula-
tion of molecular radii from the coefficients of viscosity. When the
coefficient of viscosity of any gas has been determined by experi-
ment, it is possible to regard equation (210) as an equation for o,
and so obtain the molecular radius on the supposition that the
molecules may be regarded as elastic spheres.

The table on p. 183 gives the coefficients of viscosity of various
gases, and the values of 40, calculated from equation (210). These
values are at least of the same order of magnitude as the values
calculated from the deviations from Boyle’s law in §60. The
reason why still better agreement cannot be expected will be clear
from what has already been said in § 146.



Chapter VII
CONDUCTION OF HEAT

Elementary Theory

153. Chapter 11 contained a very incomplete discussion of the
conduction of heat in a gas. We shall now attempt a more exact,
although still imperfect, investigation of the problem.

The principle is that already explained. A molecule which
describes a free path of length ! with velocity C and total
energy E is regarded as transporting energy E through a
distance 7, so that on balance there is a transport of energy
from regions in which E is large to regions in which £ is small—
i.e. from places of high to places of low temperature.

Let a gas be supposed arranged in layers of equal temperature
parallel to the plane of zy. Let £ denote the mean energy of a
molecule at any point in the gas, so that £ will be a function of z.

Let us fix our attention on the molecules which cross a unit area
of the plane z = z,. Some molecules will cross this unit area after
having come a distance ! from their last collision in a direction
making an angle 6 with the axis of 2. The last collision of these
molecules must accordingly have taken place in the plane

2 =zy—1lcosb.

We shall, for the moment, make the simplifying assumption
that the mean energy of these molecules is that appropriate to this
plane, and this may be taken to be

oE
E'-lcosﬁ—a;, ...... (223)

where E is evaluated at z = z,.

The number of molecules which cross the unit area in question
in a direction making an angle between 6 and 6 + df with the axis
of z per unit time is (cf. formula (197))

$vc cos Osin 6d4,

and if we assume that each of these has an average amount of
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energy given by formula (223), the total flow of energy across the
unit area of the plane will be

9= o
(E zcoso " ) 5 cos 0sin 06 = ~ et .
=0

...(224)

If E had been independent of z, this flow of energy would of
course have been nil, for as much would have crossed the plane in
one direction as in the other. But if £ increases with z, the mole-
cules which cross the plane in the direction of z decreasing, carry
more energy than those crossing the plane in the reverse direc-
tion, since they come from regions in which z is greater. Thus
there is a resulting flow of energy in the direction of z de-
creasing.

If k is the coefficient of conduction of heat, the flow of heat
across unit area of the plane z = z, in the direction of z increasing
is -—kg, so that the flow of energy is — Jk %%_" where J is the
mechanical equivalent of heat.

" Equating this to expression (224),

_of _dEoT
“a?=*""la =¥ o
from which it follows that the value of k is

1veldE

D)
k= 3sryar 0 (225)
From equation (24) we have the relation
1 dE
Co= JmdT’

where C, is the specific heat at constant volume, and again, from
equation (203), if 7 is the coefficient of viscosity,

= }velm.
Using these relations, equation (225) becomes
k=7C,. e (226)



CONDUCTION OF HEAT 187
154. The flow of energy across the plane z = z, is at the rate

of ~Jk 5, Per unit area in the direction of 2z increasing. Across

the plane z = zy+dz, the corresponding rate of flow is
ol o*T
)
Consequently the slab of gas for which z lies between z, and
2,+dz gains energy at a rate
02T

Jk a—z'z— dz ... (227)

per unit area, which must increase the temperature of the slab.

To raise the temperature at a rate ‘flT requires energy per unit

area equal to

daT
JPO,U'E[

Equating this to exjression (227), we obtain

PO =k

which is the ordinary Fourier equation of conduction of heat.

Introducing the value of k from equation (226), this becomes
aT _noT
dt ~ p o’

which is the special form of the equation of conduction appro-

priate to the kinetic theory.

...(228)

Ezxact Theory

155. Equation (226) could not in any case be exact and detailed
analysis shows it to be far from exact. There must clearly be an
exact relation of the form

k= 6710.,,

where € is a numerical multiplier, but the evaluation of € presents
a problem of great complexity. Many attempts have been made
to evaluate ¢ by the approximate methods employed in the last
chapter, but none of them has met with much success. For the
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special case of molecules repelling according to the inverse fifth
power of the distance, Maxwell gave an exact theory which led
to the value € = 2:5 (see §199 below). For monatomic gases
Chapman* has evaluated e by methods explained below (cf. §187).
In his first paper he obtained ¢ = 2:500 as a first approximation
for all laws of force of the form xr—, this including of course the
special case 8 = 5 studied by Maxwell. In his second paper he
finds that further approximations alter this value by less than
one per cent of its value. The greatest error in the first approxima-
tion is found to occur in the case of elastic spheres, for which the
value of ¢ is 2-522.

Enskogt has obtained identical results, and has further given
the general formula for monatomic molecules repelling as the
inverse sth power of the distance

(s—56)?
e oy T
3 3s-bF

2(s—1)(101s—113) T

which reduces to Maxwell’s exact value € = § when s = .

EXPERIMENTAL VALUES

156. We proceed to examine the relation between %k and 7
which is found experimentally.

Monatomic Gases. The following table of recent determinations
of k/yC,, the quantity we have denoted by ¢, is given by Enskog:}
Helium§ at 0°C., €=240,

» —191:6°C., €=2-23,
» —252-1°C.,, €= 2-02.

Argon§ at 0°C., e€=249,
.» 182:5°C.,, e€=2-57.
Neon|| at 10°C., €=2-501.

® Phil. Trans. Roy. Soc. 211 A (1912), p. 433 and 216 A (1915), p.
279. .
t See footnote to p. 182. t L.c. p. 104.

§ Eucken, Phys. Zeitschr. 12 (1911), p. 1101; 14 (1813), p. 324.

|| Bannawitz, Ann. d. Phys. 48 (1916), p. 577.
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Other investigators have found similar, although not identical,
values. Thus Schwarze** in 1903 found ¢ = 2-5071t for helium
and € = 2:501 for argon, while Hercus and Labyt} give € = 2:31
for helium and € = 2-47 for argon. Thus the theoretical law seems
to be confirmed to within the limits of experimental error except
at low temperatures.

Other Gases. The following table contains, in its sixth column,
some observed values of k/yC, for various gases. The values
do not, in general, approximate either to 2:5 or to any other
value.

Values of k and of k/yC,

Gas k (obs.) Authority~| 5 (p. 183) C, A/yCy (obs.) | }9y —5)
Hydrogen 0-0003970 1 0 0000857 | 2-42 1-91 1-90
Helium 0-0003.360 1 0-000188 | 0-746+ 240 244
Carbon-monoxide | 0 00005125 1 0-000166 | 0-177 1.85 191
Nitrogen 0-00005646 1 0-:000157 | 0-178% 191 1.91
Ethylene 0 0000407 1 00000061 | 0-274§ 1-556 1-55
Air 0-00000L,60 1 0-000172 0-172})) 191 191
Nitric oxide 0 0000555 1 0-000179 | 0-167 1-86 1-88
Oxygen 0-000057 1 0-000192 0-156 190 1-80
Argon 0 0000:3894 2 0-000210 | 0-07459 2-49 244
Carbon-dioxide 0 0000337 1 0000137 | 0-156 1-58 1-72
Nitrous oxide 00000351 3 0-000137 | 0-148 1.73 173

* Authoritics:

1. Eucken, Phys. Zeitschr. 14 (1913), p. 324.
2. Schwarze, Ann. d. Phys. 11 (1903), p. 303.
3. Value assumed by Eucken (l.c.). This is the mean of determinations by Winkelmann
and Willner.
+ Determined by Vogel, and quoted by Eucken. The value of C, for helium given by the
formula (25) is, however, 0-767.
t Calculated from formula (25). Eucken takes Cy =0-177, Pier gives C, =0-175.
§ The mean of values given by Winkelmann (Pogg. 4nn, 159 (1876), p. 177) and Wiillner
(Wied. Ann. 4 (1878), p. 321).
Il Direct experimental value.
€ The value assumed by Fucken. Schwarze uses the value C, =0-0740, based upon an
experimental determination of Cp by Ditlenberger (Halle Diss. 1897). Pier gives C, = 0-0746.
The theoretical value given by formula (25) is 0-767.

An inspection of the values obtained shews, however, that
k/yC, is greatest for monatomic gases, and least for gases in which
the molecules are of most complex structure (ethylene, carbon-

** Ann. d. Phys. 11 (1803), p. 303.
++ Eucken (Phys. Zeitschr. 14, p. 328) states that Schwarze gives too

high a value for helium owing to miscalculation of the value C..
1t Proc. Roy. Soc. 95 A (1918), p. 190.
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dioxide, etc.). In other words k/nC, is largest when the specific
heat C, originates most in internal motions of the molecules.
This leads us to suspect that when the molecules are regarded as
carriers of energy, a distinction must be made between the energy
of motion in space and the energy of internal motion. If we re-
place C, by its value as found in § 21, equation (226) becomes

k=9C, =31 +ﬂ)%n. ...... (229)

We have seen that when the energy is wholly translational
(8 = 0), the value of k given by this formula must be multiplied
by (approximately) 3. Eucken* has suggested that the simpler
formula (229) may be accurate for the transport of internal
energy, there being (cf. § 212, below) no correlation between the
velocity of the molecule and the amount of internal energy
carried.

Combining these two contributions to the transport of energy,
we arrive at the formula

E=4E+A) o

1z+ﬂ
1+,8”C

=397-6)9C,, = ... (230)

the last two forms being obtained on substituting the values
of C, and vy from equations (29) and (30). According to this
equation, €, or k/yC,, ought to have a value }(9y—5) which
depends only on 7, the ratio of the specific heats. In the last
column of the table on p. 189 the values of }(9y — 5) are given, and
are seen to be in fair agreement with the observed values of &/5C,,.

CoNDUCTION OF HEAT IN RAREFIED Gas
157. The theory of conduction of heat, like that of viscous
flow, assumes a special form when the free path is la.rger than the
dimensions of the apparatus. Molecules then transport heat
across the whole apparatus at a single bound, so that the whole
of the gas must be assumed to be at a uniform temperature;

® Phys. Zeitschr. 14 (1913), p. 324.



OONDUCTION OF HEAT 191

there is no longer a gradual temperature gradient. The appro-
priate mathematical theory has been developed by Knudsen. *

We consider a rarefied gas enclosed in a vessel, and fix our
attention on a small area dS of the inner wall of the vessel.

If all the molecules of the gas moved with the same velocity c,
the number of molecules impinging on the area d.§8 in unit time
would be, as in § 39,

{veds.

Each of these would deliver up energy mc? to the wall, so that
the total energy transferred from the gas to the element d.S
would be

$pcids.

If the molecules do not all move with the same speed, we must
average ¢® in this expression. If the speeds are distributed
according to Maxwell’s law, we find (cf. Appendix v1, p. 306)
that the average value of ¢ is 4/+/(7°m?), and the total transfer
of energy from gas to wall, per unit area and unit time, becomes

1 p 2RT\} (2RT\ , .
sy = () () 10
where p is the pressure in the gas.

If the wall is at the same temperature as the gas, the net
transfer of energy between the wall and the gas must be nil, so
that the wall must yield back energy to the gas at a rate }pc.
Suppose however that the gas is at some temperature T,
(absolute), while the wall is at some other temperature 7', .

The simplest tentative assumption to make is that while the
molecules of the gas are in their condition of adsorption by the
wall (§ 34), they acquire the mean energy which corrresponds
to the temperature of the wall, and subsequently leave the wall
with this mean energy. The molecules will now take away from
the wall T',/T, times the amount of energy they took to it, so
that there will be a net transfer of energy (still measured

* Ann. d. Physik, 31 (1910), p. 205, 33 (1910), p. 1435 and later
papers. See also M. Knudsen, The Kinetic Theory of Gases (Methuen,
1934), p. 46, and Loeb, Kinetic Theory of Gases (2nd ed., 1934), pp.
3281,
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per unit area per unit time) from the wall to the gas of

amount = Tl 1 PE( Tl - To) ‘

QPC(TO—I) = E '——To——-. ...... (231)
Thus the heat dissipated through contact with a rarefied gas
will be jointly proportional to the temperature difference 7', — T,
and to the pressure p.

158. Experiment confirms this law of proportionality, but
generally speaking, does not confirm the multiplying factor in
formula (231). The actual transfer of heat is substantially less
than that predicted by formula (231), as though the interchange
of energy between the solid wall and the adsorbed molecules of
gas were far from complete, an explanation suggested by
v. Smoluchowski* in 1898, and again by Soddy and Berryt in
1910.

This led Knudsen} to introduce a quantity @ which he de-
scribed as a ““coefficient of accommodation”. He imagines, in
brief, that when a molecule is adsorbed by the wall, its energy is
not adjusted through the whole range of temperature difference
T,—T,, but only through a fraction @ of this range. Formula
(231) must now be replaced by

1 pe( T,-T,) a

3T, » e
and it is immediately possible to determine a by experiments on
the dissipation of heat.

The value of a is found to depend very largely on the tempera-
ture and other physical conditions, such as, in particular, the
cleanness or otherwise of the solid surface. Almost all values
for a from 0 to 1 appear to be possible. Thus for CO, in contact
with platinum heavily coated with platinum black, Knudsen
found @ = 0-975; for helium in contact with tungsten, J. K.
Roberts§ found that @ was equal to 0-057 at 22°C., and fell
steadily to 0-025 as the temperature was lowered to —194° C. A

* M. v. Smoluchowski, Wied. Ann. 64 (1898), p. 101,

+ Proc. Roy. Soc. 83 A (1910), p. 254 and 84 A (1911), p. 576.

t Ann.d. Phys.34 (1911), p. 593, 36 (1911), p. 871, and 6 (1930), p. 129.
For a full discussion of the subject see Loeb, Kinetic Theory of Gases
(2nd ed., 1934), pp. 3211f.

§ Proo. Roy. Soc. 129 A (1930), p. 146 and 135 A (1932), p. 182.
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study of the relation between a and the temperature suggested
that @ would be found to vanish at the absolute zero.

General dynamical considerations suggest that the value of @
should be substantially less than unity. In § 10 we considered
the impact of gas molecules of mass m’ on wall molecules of
mass m, both molecules being treated as hard elastic spheres
obeying the Newtonian laws of motion. We found that the
average impact resulted in the gas gaining energy of amount

2mm'
m+m) (mus—m'u'?).

’

dmm
(m+m')?
times the interchange of energy which would occur if the gas
molecules took up the temperature of the wall completely, and
so corresponds to a * coefficient of accommodation” a given by
4mm’ (m —m’ )“

= (m+m')? = T \mxw

This is equal to

This value of ¢ is always less than unity, and is substantially
less except when the masses m, m’ are nearly equal. For more
complicated molecules and more complicated impacts, the theo-
retical value of ¢ would no doubt be very different from the
simple value just found. Various attempts have been made to
calculate a ‘ coefficient of accommodation’ which shall agree
with experiment, and from these it seems to emerge quite clearly
that the problem is one for wave-mechanics, and so is outside
the scope of the present book.* Jackson and Howartht have
found a wave-mechanics formula which represents the observa-
tions of Roberts mentioned above with very fair accuracy.

159. Our theoretical calculations have been based on the
supposition that the only energy which the impinging molecule
can transfer to the wall is its kinetic energy of motion $mc?. We
have already seen (§ 21) that many molecules have other energy
besides this, and the question arises as to what happens to this

* J. M. Jackson, Proc. Camb. Phil. Soc. 28 (1932), p. 136; C. Zener,
Phys. Review, 37 (1931), p. 557 and 40 (1932), pp. 178, 335; Jackson and

Mott, Proc. Roy. Soc. 137 A (1932), p. 703.
1 Proc. Roy. Soc. 142 A (1933), p. 447.

] T 13
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other energy when the molecule impinges on a solid. Knudsen*
has devised ingenious methods for probing this question ex-
perimentally and has reached the conclusion that the internal
molecular energy also has an accommodation coefficient, which,
to within the limits of experimental error, is the same as the
accommodation coefficient for the kinetic energy of translation.
Thus if the internal energy is # times the kinetic energy of
rotation, the total transfer of energy is (1 + f) times that given
by formula (232).

CoNDUCTION OF HEAT AND KELECTRICITY IN SOLIDS

Conduction of Heat

160. In 1900 Drudef propounded a theory of conduction of
heat in solids, according to which the process is exactly similar to
that in gases which we have just been considering, except that
the carriers of the heat-energy are the free electrons in the metals.

According to the simplest form of this theory, the coefficient
of conduction of heat in a solid will be given by equation (225),
namely _

_lvcldE
- § _‘T ET Yy seeens

in which all the quantities refer to the free electrons in the solid,
so that v is the number of free electrons per unit volume, [ is their
average free path as they thread their way through the solid, and
go on. Taking £ = $ RT, this becomes

k (233)

1
k= 2—JVCLR. ...... (234)
Conduction of Electricity

161. Drude’s theory supposes that the free electrons also act
as carriers in the conduction of electricity. If thereis an electric
force S in the direction of the axis of z, each electron will be acted
on by a force e, and so will gain momentum in the direction Oz
atarate Ze per unit time. The time required to describe an average

* Ann. d. Phys. 34 (1911), p. 593.
t Ann. d, Phys. 1 (1900), p. 566,
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free path I, with average velocity 7, will be I/¢, so that in describing
such afree path, the electron will acquire an additional momentum
in the direction of the axis of z equal to Sel/c.

Since the mass of the electron is very small compared with that
of the atom or molecule with which it collides, we must suppose
(¢f. §130) that there is no persistence of velocities after collisions,
so that an electron starts out from collision with a velocity for
which all directions are equally likely, and, in describing its free
path, superposes on to this a velocity

Zel

mc

parallel to the axis of z. It follows that at any instant the free
electrons have an average velocity u,, parallel to the axis of x,
given by

1Zel

Uy = E%.

Across unit area perpendicular to the axis of x, there will be a
flow of electrons at the rate vu, per unit time, and these will carry
a current ¢ given by

T = veuy = 1Zvet

72 me
The coefficient of electric conductivity o is defined by the rela-
tion 7 = £, and is therefore equal to the coefficient of 5 in the
above equation. To the order of accuracy to which we are now
working, ¢ may be supposed to be the velocity of each electron,

so that we may put 3m(c)? = $RT, and the conductivity is given
by _vetle
C=epr e

This is Drude’s formula for electric conductivity.

Ratio of the two Conductivities

162. The Wiedemann-Franz law. By comparison of equations
(234) and (235), we obtain

k_g _1?)’_7.'
o \e/ J°
I3-2
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which is Drude’s approximate formula for k/o. From this equa-
tion it appears that:
at a given temperature, the ratio of the electric and thermal
conductivities must be the same for all substances.
This is the law of Wiedemann and Franz, announced by them
as an empirical discovery in 1853.*
Various attempts have been made to obtain a more exact
formula for k/o. In 1911, N. Bohrt obtained the formula
kL 2 (R:T
2= i1le) 7 -
in which the electrons are supposed to be repelled from the atoms
according to the law ur—%. According to this, the law of Wiede-
mann and Franz is not strictly true, but /o varies only through
the factor 2s/(s— 1) and as s varies from s = 6 to 8 = o0, this only
varies from 2-5 to 2.
The Law of Lorenz. From equation (236) it also follows that:
the ratio of the thermal and electric conductivities must be pro-
portional to the absolule temperature.
a law put forward on theoretical grounds by Lorenz in 1872.

Comparison with Experiment
163. For elastic spheres (s = c0) equation (236) reduces to

k R\:T )
== 2(?) e (237)
a formula originally given by Lorentz.§ Inserting numerical
values, this equation becomes

07’{1; = 3-538 in electromagnetic units.

Extensive experiments to test this formula have been made
by Jéger and Diesselhorst|, C. H. LeesY and many others. In
general these confirmed the theoretical equations, except that

* Pogy. Ann. 89 (1853), p. 497. -

1 Studier over Metallernes Elektrontheorie (Copenhagen, 1911).

t Pogg. Ann. 147 (1872), p. 429 and Wied. Ann. 13 (1882), p. 422.

§ The Theory of Electrons, p. 67 and note 29.

|| Berlin. Sitzungsber. 38 (1899), p. 719, and Abhand. d. Phys.-Tech.
Reichsanstalt, 3 (1900), p. 369.

9 C. H. Lees, ““The effects of low temperatures on the Thermal and
Electrical conductivities of certain approximately pure metals and
alloys”, Phil. T'rans. 208 A (1908), p. 381.
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the observed values of k/o were always somewhat too high.
Jéger and Diesselhorst experimented at 18° C. and at 100°C.
Putting 7' = 291-2 (i.e. 18°C.) in formula (235), and measuring
k in work, instead of in heat, units (i.e. omitting the J in the
denominator), formula (235) gives

BIE' = 4-31 x 10 at 18°C.

The simpler formula of Drude leads to § times this value,
namely
g_ = 6-46 x 1010 at 18° C.
The following are examples of the results obtained experi-
mentally by Jager and Diesselhorst:

for three samples of copper, k/o" = 6-76, 6-65, 6-71 x 1019,
for silver, kjo = 6-86 x 1019,
for two samples of gold, kjo = 7-27, 7-09 x 1010,

As temperature coefficient of this ratio they find:

for two samples of copper, 0-39, 0-39 per cent,
for silver, 0-37 per cent,
for two samples of gold, 0-36, 0-37 per cent.

The theoretical value, as given by equation (237), is 0-366 per
cent. Lees finds that there is a greater divergence from formula
(237) as the temperature of liquid air is approached.

It is more difficult to test the theoretical values for k and o
separately, since the formulae for these coefficients separately
contain the quantities v and 7, for which it is difficult to form a
reliable numerical estimate. But such evidence as is available
shews quite definitely that the formulae for k and o separately
do rot shew anything like so good an agreement with observation
as that shewn by the formula for their ratio k/o.

Indeed the phenomenon of electric super-conductivity shews
that this must be the case. At helium temperatures the resistance
may be only a fraction 10-1! times the resistance at ordinary.
temperatures, but it is impossible to believe that at these tem-
peratures the free path can suddenly increase its length by a
factor 101,



Chapter VIII
DIFFUSION

ELEMENTARY THEORIES

164. The difficulties in the way of an exact mathematical
treatment of diffusion are similar to those which occurred in the
problems of viscosity and heat conduction. Following the pro-
cedure we adopted in discussing these earlier problems, we shall
begin by giving a simple, but mathematically inexact, treatment
of the question.

We imagine two gases diffusing through one another in a
direction parallel to the axis of z, the motion being the same
at all points in a plane perpendicular to the axis of 2. The
gases are accordingly arranged in layers perpendicular to this
axis.

The simplest case arises when the molecules of the two
gases are similar in mass and size—like the red and white
billiard balls we discussed in § 6. In other cases differences
in the mass and size of the molecules tend, as the motion
of the molecules proceeds, to set up differences of pressure in
the gas. The gas adjusts itself against these by a slow mass-
motion, which will of course be along the axis of z at every
point.

Let us denote the mass-velocity in the direction of z increasing
by wq, and let the molecular densities of the two gases be v,, v,.
Then v,, v, and w, are functions of z only.

We assume that, to the approximation required in the problem,
the mass-velocity of the gas is small compared with its molecular-
velocity, and we also assume that the proportions-of the mixture
do not change appreciably within distances comparable with the
average mean free path of a molecule. We shall also, to obtain a
rough first approximation, assume that Maxwell’s law of dis-
tribution of velocities obtains at every point, and that A is the
same for the two gases.
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165. The number of molecules of the first kind, which cross the
plane z = 2, per unit area per unit time in the direction of 2
increasing, is now

t
(’%) f”- vy e imlut ooy dy dodw, ... (238)

in which the limits are from —oo to + 00 as regards « and v, and
from 0 to co as regards w.

In accordance with the principles already explained, » must
be evaluated at the point from which the molecules started after
their last collision. Those which move so as to make an angle
with the axis of z may be supposed, on the average, to come from
a point of which the z coordinate is z,— A cos #, and at this point
the value of v, may be taken to be

by = (¥))smzy— ACOB 0(%";‘) eeee(239)

Inserting this value for v, into expression (238), this expression
becomes the difference of two integrals. The first is expression
(238) with », taken outside the signs of integration and evaluated
at z = 2z;. The value of this integral is easily found to be

v )ems(B01+wg), (240)

where ¢, denotes the mean molecular-velocity of all the molecules
of the first kind.
The second integral is

t
;((aa"gl) (’ﬁ’”_’ll) f J‘ fe—hﬂhlu’w'ﬁ"’-wn)’lw cos @dudvdw.

on,
0z
is already a small quantity of the first order, so that in evaluating
it we may put wy = 0. Replacing cos @ by w/c, it becomes

()5 [ s

in which the integral is taken over all values of u and v, and over
all positive values of w.

Owing to the presence of the multiplier A( ), this expression
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This expression is easily evaluated by noticing that it has just
half the value it would have if taken over all values of u, v, w,

’
and is therefore equal to s})t( ) times the average value of —

taken over all molecules, in a gas having no mass-motion. Thls
. . u?+v2+u?
average value is equal to one-third of the average of —————

or ¢, and is therefore 4¢,. Hence expression (241) is equal to

oy -
%A(—a;) 61.
Combining this with expression (240), we find as the total

value of expression (238),
V]. —

vi(3e, +w,) — ‘}'\ Z o

in which all quantities are to be evaluated in the plane z = z,.
This is the total flow of molecules across unit area of the plane
z = 2, in the direction of z increasing. The corresponding flow in
the opposite direction is
- 0 5
(36, —we) +iA 7 vl
The rate of increase of the number of'molecules of the first kind
on the positive side of the plane z = 2, measured per unit time
per unit area, is the difference of these two expressions. Denoting
this quantity by I}, we have
0
Iy =vwe— 32,2 av

Similarly, for the rate of increase of molecules of the second kind,
If the flow is to be steady, the total flow of mo]eoples over every
plane must be zero, and this requires that
N+r,=0.

Further, the pressure must be constant throughout the gas, so
that we must have
ll1 + V’ = OODS.,



DIFFUSION 201
whence, by differentiation with respect to z,

vy vy
Pz oz

Eliminating w, from these equations, we now obtain

—T,= 101 22C0 + 52,8 00,
I, 3 e e (2
vty 0z

The number of molecules of the first kind, in a layer of unit
cross-section between the planes z = z, and z = z,+dz, is v,dz;

the rate at which this quantity increases is —-! dy dz, but is also found

dt
oI
to be ——671 dz, by calculating the flow across the two boundary

planes. Hence we have

and on using the value of I'; just found, and neglecting small
quantities of the second order, this becomes

dv v,
2,20, e (243)
10, 0,8, + 7,2
where Dyp = 3—————”1 :ii:: L (244)

Equation (243) is the well-known equation of diffusion, D,,
being the coefficient of diffusion of the two gases. Hence the
coefficient of diffusion is given by formula (244). It is symmetrical
as regards the physical properties of the two gases, but depends
on the ratio »,/v, in which they are mixed.

The foregoing analysis is essentially the same as that given by
Meyer in his Kinetic Theory of Gases, and formula (244) is
generally known as Meyer's formula* for the coefficient of
diffusion.

* The actual value of D,; given by Meyer (Kinetic Theory of Gases,
p. 265, English trans.) is §n times that given by formula (244). Meyer’s
formula has, however, attempted to take into account a correction which

is here reserved for later discussion (§ 168). Meyer does not claim that
his correction is exact.
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Coefficient of Self-diffusion
166. Formula (244) becomes especially simple when the
molecules of the two gases are approximately of equal size and
weight. If we agree to neglect the differences in size and weight,
we may take A and ¢ to be the same for each gas, and so obtain

D= (245)

Comparing this with the corresponding approximate formula
(203) for the coefficient of viscosity

7 = }Acp,

we obtain the relation D= % ...... (246)

The quantity D obtained in this way may also be regarded as
the coefficient of self-diffusion or interdiffusivity of a single gas.
It measures the rate at which selected molecules of a homogeneous
gas diffuse into the remainder, as for instance red billiard balls
into white billiard balls in our analogy of § 6, or (approximately)
one isotope into another isotope of the same element. Hartek and
Schmidt have made diffusion experiments with normal hydrogen
and a mixture rich in para-hydrogen, while Boardman and Wild*
have experimented with mixtures of gases—as for instance
nitrogen and carbon-monoxide—in which the molecules are not
only of equal mass, but are believed to be of very similar structure
(see §176).

Dependence on Proportions of Mixture

167. In the special case just considered, the value of D is
independent of the proportion of the mixture, but in the more
general case formula (244) shews ®,, ought to vary with the
proportions of the mixture. In the limiting case in which v, /v, = 0,

2 my\}
B =
1=l 3ymh(m, +my) mvS2, \ My

and there is a similar formula for the case of v,/v;, = 0, in which m,
and m, are interchanged.

* Proc. Roy. Soc. 162 A (1937), p. 516.



DIFFUSION 203

Thus the coefficients of diffusion in these two cases stand in the

ratio !
Dy _ My

’
®P’-0 ml

shewing that the value of D ought according to Meyer’s formula
to vary with the proportions of the mixture to the extent to
which m, differs from m, For example, for the diffusion of
H,—CO,, the extreme variation would be 22 to 1, for A—He it
would be 10 to 1, and so on.

We shall see later that the obscrved variation of D,, with »,/v,
is nothing like as great as is predicted by this formula. For the
moment we proceed to correct the formulae for persistence of
velocities, and shall find that the corrected equations predict a
much smaller dependence of D,, on v,/v,.

Correction to Meyer’s Theory when the Molecules
are Elastic Spheres

168. We shall consider first the correction to be applied to the
simple formula for self-diffusion, namely

D= ... (248)
=
=2 e (249)

Actually, two sources of error have been introduced into these
approximate equations, the first arising from the assumption
that A is the same for all velocities, and the second from neglect
of the persistence of velocities.

As regards the first, A must simply be replaced by A, and taken
under the sign of integration in expression (241). The upshot of
this is, that instead of A in the final result, we have [/, where

f ® N e de
l . _0_—_.—-—-— =

J' % g=hma 2 do
0

-[2]

This however is exactly the same as the ! of the viscosity formula,
so that this correction affects D and « exactly similarly, multi-
plying each by 1-051, but does not affect equation (249).
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169. There remains the correction for the persistence of velo-
cities. We found in §139, that when a molecule arrives at the
plane z = 2, in a given direction, the expectation of the distance
it has travelled in that direction is not A, but %A, where

1
k= =%

Here 0 is the persistence of velocities at a collision between two
molecules of equal mass, of which the value was found in §126
to be 0-406. Thus the expectation of the molecule belonging to
the one gas or the other is not that appropriate to a distance A
back, but to a distance kA, and the effect of ‘‘persistence’ is
therefore to multiply the value of D given in equation (249) by
afactor k. Also, as we saw in § 139, the effect of persistence on the
coefficient of viscosity is to multiply the simple expression
3Acp by a factor 1/(1—10).

The values of D and 7, both corrected for persistence, are
accordingly

1

? =519

1
= 31=30)"P"
and the corrected form of equation (249) must bo

1 107
-0p
Putting 6 = 0-406, the value found in § 126, this becomes

D=

D= 1-342%. ...... (250)

It is of interest to examine into the origin of the difference be-
tween the effect of persistence of velocities on diffusion on the
one hand, and on viscosity and conduction of heat on the other.
Diffusion, it will be seen, is a transport of a quality, while viscosity
and heat-conduction are transports of quantities. The difference
rests ultimately upon the circumstance that qualities remain
unaltered by ocollisions, whereas quantities do not.
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When the molecules are not of equal mass, it is more difficult to
estimate the effect of persistence.

When the molecules were equal, the expectation of the distance
a molecule had come was increased by persistence from A to

A+0A+02A+03A+...=%§. ...... (251)

When the molecules are of unequal masses, the persistence is

different at different collisions, and instead of expression (251),
we shall have one of the form

A+pA+pgA+pgrA+..., ... (252)

where p, g, 7, ... are the different persistences at the various col-
lisions. Suppose we are considering the motion of a molecule of
mass m, in a mixture of molecules of masses m,, m, mixed in the
proportion »,/v,. Then of the quantities p,q,7, ... a certain pro-
portion, say f, of the whole will have an average value 0 = 0-406,
these representing collisions with other molecules of the first
kind, while the remainder, a proportion 1— £ of the whole, will
have an average value which we shall denote by 6,,, this being the
persistence for a molecule of the first kind colliding with one of
the second kind.

Let P denote expression (255), and let 8 denote £0 + (1 — ) 6,,,
this being the expectation of each of the quantities p,q,7,....
We have

P = A+ pA+pgA+pgrA+...,
Ps=  sA+psA+pgsA+...,
and hence, by subtraction,
P(1—8)= A+ (p—8)A+p(q—8)A+pg(r—8)A+....

Clearly the expectation of the right-hand side is A, for the
expectations of p—s, ¢—8, r—s, ... are all zero. Hence the ex-
pectation of P is

P= A A

I—e~ I-(A0+(1-A0)
Aoccordingly the effect of persistence in this mixture of gases is to

increase A to a value of which the expectation is that on the right-
hand side of equation (253).
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170. In §111 we found for the mean chance of collision per unit
time for a molecule of the first kind, moving in a mixture of two
kinds of gas,

o m(1 1)
2 ki 2 = —
21y / hm, + 2081, A/ h (m1 + my ) ’
In this the first term results from collisions with molecules of the
first kind, and the second from collisions with molecules of the

second kind. These two terms must therefore stand in the ratio]
f:1-p, 80 that

B _ 1-4 _ 1

2 0 m m
Vamy, ot vy S2, Jl +1—n—3 N2av, ot + 710, 82, A/H';{{l
2 2

)

which again is equal to A;, the free path of a molecule of the first
kind, by equation (151).

Using this value for £, we find for the value of expression (253),
the free path of a molecule of the first kind increased by per-

sistence,

B = ! s

(l—0)~/§wvlo§+(l—0,,)nv2S§2J1+%

and there is a corresponding quantity F, for the second molecule.

On replacing A,, A, in equation (244) by their enhanced values,
as just found, we obtain as the form of Meyer’s equation, after
ocorrection for persistence of velocities,

D _1InBe+vhAe,
R
In this formula the value of @ is always 0-406, while the

value of 0,, depends, as was seen in § 128, on the ratio of the two

masses. It was there found that 6,, was of the form

My — Xy My
12 =

my + my ’
where o,, was a small positive number, depending on the ratio of

the masses, but lying always between 0 and 4, and equal to 0-188
for equal masses.
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When v, is small, we have, instead of the limiting form given in
§167,

R L L 2 JL _1_+_1_)
BT 3v+v,  3(L+ay) (v, +v,) SN h\my  my)

When v, is small, the limiting form is the same except that a,, is
replaced by o,;. Thus the ratio of the extreme values of D as
vy /vy Varies is

Dypmg _ 1Hay

ED»,-o 1+ Ay ’

instead of the ratio m,:m, found from Meyer’s formula (247).
Since the extreme values possible for a are 0 and }, it appears that
the greatest range possible for D is at most one of 4:3.

Thus, when persistence of velocities is taken into account,
Meyer’s formula yiclds values which do not vary greatly with the
proportion v, : v, of the mixture.*

The Stefan-Maxwell Theory

171, Equation (243) is of the same form as the well-known
equation of conduction of heat: it indicates a progress or spreading
out of the gas of the first kind, similar to the progress and spread-
ing out of heat in a problem of conduction. The larger ® is, the
more rapidly this progress takes place; D is largest when the free
paths are longest, and vice versa. Long free paths mean rapid
diffusion, as we should expect.

Now the formula, for the mean path A, in a mixture of two gases
was found in §111 to be

A = -

N2m 0%+ J(l +ﬁ) v, 8%,
my

s e (257)

* This was pointed out in a valuable paper by Kuenen (* The diffusion
of Gases according to O. E. Meyer”’, Supp. 28 to the Comm. Phys. Lab.
Leiden, Jan. 1913). Kuenen took @ uniformly equal to 0-188, its value
when m, = m,, and assumed the number of collisions to be in the ratio
V1 : VY, S0 that his result is different from mine, but the principle was
essentially the same. In a later paper by the same author (Comm. Phys,
Lab. Leiden, Supp. 38) the mass difference was taken into account.
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where 8,, is the arithmetic mean of the diameters of the two
kinds of molecules. The larger the denominator in this expression,
the smaller A; will be, and so the slower the process of diffusion.
Both terms in the denominator of expression (257) accordingly
contribute something towards hindering the process of diffu-
sion.

The second of these terms arises from collisions of the molecules
of the first kind with molecules of the second kind, and that these
collisions should hinder diffusion is intelligible enough. But it is
not so clear how collisions of the molecules of the first kind with
one another, represented by the first term in the denominator of
expression (257), can hinder the process of diffusion. When mole-
cules of the same kind collide, their average forward motion
remains unaflected by the conservation of momentum, and
it is not easy to see how the process of diffusion has been
hindered.

Stefan* and Maxwellt have accordingly suggested that col-
lisions between molecules of the same kind should be entirely
disregarded; we then have effective free paths given by the
equations

1 1
A1=

— ;o Ag= —
m
J(l ‘7;) ™St

. m
142 S2
A/( m,) dielst

in place of equation (257). Using these values for the free paths,
equation (244) becomes

D, = mié,+mic,
1277 3m(vy + vy) S2a(my +my)t

2 1 1 1
= an—wrmys—zm/ n—h(fra*rra)f """ (259)

* Wien. Sitzungsber. 63 [2] (1871), p. 63, and 65 (1872), p.
323,

+ Coll. Scientific Papers, 1, p. 392, and 2, pp. 57 and 345. See also
Boltzmann, Wien. Sitzungsber. 66 [2] (1872), p. 324, 78 (1878), p. 733,
86 (1882), p. 63, and 88 (1883), p. 835. Also Vorlesungen tiber Gastheorie,
1, p. 96.
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or, in terms of the molecula.r-velooities,"l

Dy = sz VEFEE. e (260)

37 S%z
If the two kinds of molecules are of equal mass and size, this
becomes 9 g

D=c-=——, 261
3 2mo?’ (261)

which may be contrasted with Meyer’s uncorrected formula (245).
Using Chapman’s corrected formula (210) for the coefficient
of viscosity,

7 = 0499 L,

. 2mvo?
equation (261) assumes the form
D= 1-336%, ...... (262)

agreeing almost exactly with equation (250) which was obtained
on correcting Meyer’s formula for persistence of velocities.
When the molecules of the two gases are unequal in mass and
gize, it is more difficult to compare equation (259) with equa-
tion (255) which was obtained by correcting Meyer’s formula for
persistence of velocities; there is the outstanding difference be-

* Meyer, using the value Dy, already explained (see footnote to p. 201),
obtains a value for D;, on Maxwell’s theory equal to 3z times this,
namely

D= Va+ek,

S’l
and this same value is given by Maxwell (l.c. ante and Nature, 8 (1873),
p- 298). On the other hand, Stefan (Wien. Sitzungsber. 68 (1872), p. 323),
Langevin (4nn. de Chim. et de Phys. [8], 5 (1905), p. 245), and Chapman in
his first paper (Phil. Trans. 211 A (1912), P- 449) all arrived at the formula

D= */01+C.n

32vS‘
which is only three-quarters of the value above. Chapman and Langevin
both extended their method to the general law of force ur—*; their method
was somewhat similar to that of Maxwell as given in Chap. 1x (§ 201),
but they assumed Maxwell’s law of distribution to hold, so that their
results were only exact for the case of # = 5, for which their result agrees
with Maxwoll’s formula (264).

JK1 14
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tween the two, that Meyer’s formula depends on the ratio »,/v,,
whereas Maxwell’s formula (259) does not. In the limiting case
of v, = 0, Meyer’s formula reduces to formula (256), which is
identical with Maxwell’s formula (259) divided by the factor
(1+a,,), where a,, is the small number defined in § 128. Thus the
formulae approximate closely; they naturally cannot agree com-
pletely, since the one predicts slight variation with v, /v,, while the
other predicts none at all.

ExAcT GENERAL FORMULAE

172, We have so far only obtained approximate formulae, and
this only for the very special case of molecules which may be
treated as elastic spheres.

When the molecules are treated as point centres of force
repelling according to the law ur—*, the methods of Chapman
and Enskog, which are explained in Chap. 1x below, allow the
value of D,, to be calculated, by successive approximations, to
any desired degree of accuracy.

A first approximation, arrived at by the assumption that the
components of velocity u, v, w relative to the velocity of mass-
motion were distributed according to Maxwell’s law, had been
given by Langevin* in 1905; the same formula was given inde-
pendently by Chapmant in 1911. To a first approximation the
value of D,, is found to be given by

3[m(m, +my) [lun, m, T )
D,y = [m(m, . o) [Tun; my ] e, (263)

a—1 2
8(v + 1) [ 1 I (s) 1*(3 - 8__._].)
where, in the notation of § 195 below,

I,(s) = 4w f cos? }0'a de.

a=0
When ¢ = 5, this is exact, and reduces to
1 m,+m
D2 = 5 J L 264
127 2h(mymy)t (v, +v,) 4, 2 (264)
where A, = I,(5) = 2-6595,

* Ann. de Chim. et de Phys. [8), 5 (1905), p. 245,
t Phil. Trans. 211 A (1912), p. 433.
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a formula which had been derived by Maxwell as far back as
1866, by methods explained below (§201).

When s has a value other than 5, the exact value of D,, will be
obtained on multiplying the above approximate value of D,, by
a numerical multiplier.

Self-Diffusion

173. Chapman has obtained the following table of the values
of this multiplier from calculations carried as far as a second
approximation for special values of s in the case in which the two
kinds of molecules are exactly similar (self-diffusion).

8=>5 §=9 8=17 s=o
Multiplier = 1-000 1-004 1-008 1-015

It appears that the multiplier increases steadily as & increases
from 5 upwards, and reaches its maximum of 1-015 when s = oo
(elastic spheres). In the special case of elastic spheres, Chapman
supposes that the multiplying factor, to a third approximation,
would have the value 1-017, and that this is the value to which
successive approximations are converging, to an accuracy of one
part in a thousand. Assuming this, Chapman finds that the
accurate value of the coefficient of self-diffusion for elastic
spheres* is
0-1520

D= 4v0'3(hm_) ...... (265)
n

=1-200-. ... 266

s (266)

Pidduck, following a method originated by Hilbert,} based on
the transformation of Boltzmann’s characteristic equation (311),
had previously arrived at the formula (265) for D, except that the
number in the numerator, calculated to three places of decimals
only, was given as 0-151.

* Phil. Trans. 217 A (1916), p. 172.
t Proc. Lond. Math. Soc. 15 (1915), p. 89,
1 Math. Ann. 72 (1912), p. 562.

14-2
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Diffusion in a Mizture
174. Both Chapman* and Enskogt have shewn how to obtain,
by successive approximations, formulae for the general value of -
D,; in a mixture of gases. Chapman starts by taking the value
given by equation (263) as a first approximation. Denoting this
value by (D,,),, the general value of ®,, is put in the form

(Diz)o

@n = _ITG% Yy asesss (267)
where ¢, is a small quantity, to be evaluated by successive ap-
proximations. As we have already seen, the value of ¢, is zero for
Maxwellian molecules repelling as the inverse fifth-power of the
distance. In other cases the formulae, even when carried only to
a second approximation, are extremely complicated, and the
reader who wishes to study them in detail is referred to the
original memoirs.}

The principal interest of these general formulae lies in the
amount of dependence of ®,, on the proportion of the mixture
which is predicted by them. We have already seen that the
approximate Maxwell-Stefan theory (§171) predicted that D,,
would be independent of this proportion; on the other hand, the
theory of Meyer predicted very great dependence when the
molecules of the two kinds of gas were of very unequal mass,
although this, it is true, was greatly reduced when *persistence
of velocities” was taken into account.

For the ratio of ®,, in the two extreme cases of v,/v, = 0 and
» /vy = o, Enskog§ gives the formula (accurate to a second
approximation) for the case in which the molecules may be
treated as elastic spheres,

14+—---— ~Zf'§______~

Diymo _ 12m} + 16m,m, + 30m3
@,‘-o G ______mi, - .

12m% + 16m,my + 30m3

This may be compared with the value m,/m, predicted by

* Phil. Trans. 217 A (1916), p. 166.

1 L.c. ante (see footnote to p. 182).

$ Chapman, l.c. equations (13-07), (13-28) ff.; Enskog, l.c. equations
(168) ff. § L.c. p. 103.
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Meyer’s uncorrected formula (§167), and with our formula (§170)
obtained by correcting Meyer’s formula for persistence of velo-
cities. To take a definite instance, it will be found that when
my/mg = 10, the predicted values are as follows:

Meyer 10-000
Meyer (corrected for persistence) 1-324
Chapman-Enskog 1-072

COMPARISON WITH EXPERIMENT

175. It will be convenient to consider first the experimental
evidence as to how far the coefficient of diffusion depends on the
proportion in which the gases are mixed. A series of experiments*
have been made at Halle to test this question, a summary of
which will be found in a paper by Lonius.t

Experiments were made on the pairs of gases H, -0,, Hy- -N,
and N,—O, by Jackmann, on H,—O, and H,—CO, by Deutsch,
and on He—A by Schmidt and Lonius. On every theory which
has been considered, the greatest variation of ®,, with v, /v, ought
to occur when the ratio of the masses of the molecules differs
most {rom unity. The following table} gives the values obtained
for D,, with difierent values of »,/v, for the two pairs of gases for
which this inequality of masses is greatest.

. D .
Pair of Gases " Dy 2
(1, 2 respectively) v, (observed) Observer &ﬁt‘;‘;{ﬁfg;
H,—CO, 3 0-21351 Deutsch 0-212
1 0-21774 ” . 0-222
% 0-22772 ’ 0-226
He—A 2-65 0-24418 Lonius 0-248
2:26 0-24965 » 0-260
1-66 0-25040 Schmidt 0-251
1 0-25405 » 0-254
0-477 0:25626 Lonius 0-257
0-311 0-26312 ”» 0-259

* R. Schmidt, Ann. d. Phys. 14 (1904), p. 801, and the following
Inaug. Dissertations: R. Schmidt (1904), O. Jackmann (1906), R.
Deutsch (1907), and Lonius (1909).

t Ann. d. Phys. 29 (1909), p. 664. See also Chapman, Phil. Trans.
211 A (1912), p. 478. } Lonius, l.c. p. 676.
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The last column gives the values calculated by Chapman from
his theoretical formulae. In these calculations an absolute value
of D,, is assumed such as to make the mean of the calculated
values of D,, for each pair of gases equal to the mean of the
observed values.

The degree of variation in ®,, predicted by the formula of
Chapman is at least of the same order of magnitude as that
actually observed. The superiority of Chapman’s formulae over
the two others already discussed is shewn in the following table,
which gives a comparison between the extreme values of D,, for
He—A observed, and those predicted by these various formulae.
(All values of D,, are multiplied by a factor chosen so as to make
D12 = 1 when v, = v,.)

D, (calculated)
D.
. /y 12
v (observed) (Chapman) cgﬂz :«: (;l) (Meyer)
2:65 0-961 0-976 0-910 0-548
1-00 1-000 1-000 1-000 1-000
0-311 1-036 1-021 1-110 1-626

The foregoing discussion will have shewn that the actual
variation of P,, with the proportion of the mixture is, in any case,
very slight. Consequently, throughout the remainder of this
chapter we shall be content to disregard the dependence of D,,
on the ratio v,/v,.

Cocfficient of Self-Diffusion

176. The formula which it is easiest to test numerically is that
for self-diffusion, but the coefficient of self-diffusion of a gas into
itself is not a quantity which admits of direct experimental
determination. -

A convenient plan, adopted by Lord Kelvin, * is to take a set of
three gases for which the coefficients Dy, D,y D3, are known.
All the quantities in formula (244) are then known with great
accuracy except only S,,. Hence from the three values of

* Baltimore Lectures, p. 205.
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Digs Dg3, Dy; We can calculate Syy, Sy, and so deduce values
of 0y, 0,05 Instead of comparing these values with other de-
terminations of o,, o, and oy, Lord Kelvin inserted them into
formula (245) and so obtained the coefficients of self-diffusion of
the three gases in question.

Lord Kelvin gives the following values of coefficients of inter-
diffusivity of four gases, calculated from the experimental de-
terminations of Loschmidt.

Pairs of gases Dy Pairs of gases Dys
(12, 13, 23)......1-32 (12, 13, 23)......0-193
(12, 14, 24)......135 (12, 14, 24)......0-190
(13, 14, 34)......1:26 (23, 24, 34)......0-183
Gases Mean 1-31 Mean 0-189
H, —(1)
0, —(2)
CO —(3) Pairs of gases Dy Pairs of gases Du

CO;—(4) (12, 13, 23)......0-169 (12, 14, 24)......0-106
(13, 14, 34)......0-175 (13, 14, 34)......0-111
(23, 24, 34)......0-178 (23, 24, 34)......0-109

Mean 0-174 Mean 0-109

The agreement inter se of the values obtained by different sets
of three gases gives a striking confirmation of the theory, except
of course as regards the numerical multiplier which does not affect
the values obtained for D,;, D,,, etec.

Somewhat similar although not entirely identical results were
obtained by Boardman and Wild,* particularly experimenting
with pairs of gases in which the molecules were nearly similar, so
that the coefficient of interdiffusion of a pair of gases could be
identified with the coefficient of self-diffusion of either. They ob-
tained the following coefficients of self-diffusion, all at 16° C.:

Hydrogen 1-43

Nitrogen 0-203
Carbon-monoxide 0-211
Nitrous oxide 0-107
Carbon-dioxide 0-121

but their experiments did not yield completely consistent results.
* Proc, Roy. Soc. 162 A (1937), p. 511,
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177. Tt remains to test the numerical multiplier. The calcula-
tions of Chapman, Enskog and Pidduck combine in predicting
the relation (approximately)

D =1-2007
P

for elastic spheres, while Maxwell’s theory given in Chap. Ix
below predicts the relation (exactly)

D =1-5437
p

for molecules repelling according to the inverse fifth-power of the
distance.

In the following table, the second column gives the value as-
sumed for 7 in the table of p. 183, the third column gives p, the
fourth gives the value of D calculated from Loschmidt’s experi-
ments, and the fifth gives the value of Dp/7.

Cas 7 (p. 183) P D (p.215) .?’B
Hydrogen 0-0000857 0-0000899 1:31 1:37
Oxygen 0-0001926 0-001429 1-189 1-40
Carbon-monoxide 0-0001665 0-001250 0-174 1-:30
Carbon-dioxide 0-000137 0-001977 0-109 1-58

Within the probable error of the experiments, it appears that
‘®p/n has values intermediate between the two values 1-200 and
1-543 predicted by theory for elastic spheres and inverse fifth-
power molecules. Not only is this so, but the values of Dp/n vary
between these limits in a manner which accords well with the
knowledge we already have as to the laws of force (ur~9) in the
different gases concerned, as the following figures shew:

Value of s Dp
(p- 174) 7

Theory 0 1-200
Hydrogen 113 1-37
Carbon-monoxide 87 1-30
Oxygen 74 1-40
Carbon-dioxide 56 1-58
Theory 50 1-543
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It is somewhat remarkable that the values of Dp/y for hydrogen
and carbon-monoxide, in which the molecules are comparatively
“hard” (in the sense of § 147), approximate so closely to the value
1-34 predicted both by Meyer’s corrected theory (§169) and by
the Stefan-Maxwell theory (§171). This suggests that for ordinary
natural molecules the two simpler theories may represent the
processes at work with as great accuracy as the more elaborate
theories of Chapman and Enskog so long as we remain in ignor-

ance of the exact molecular structure which ought to be assumed
in the latter.

Cocfficient of Diffusion for Elastic Spheres

178. The following table gives the observed values of Ty, for
a number of pairs of gases in which the molecules are com-
paratively hard, having values of s greatcr than 7-4 in the table of
p. 174. The table gives also the values of §;, calculated from them
by formula (260) (using values of ¢ given on p. 56), and, in the
last column, the values of S;, calculated from the coefficient of
viscosity as on p. 183.

G Dz | (cale. { (onte
0se8 cale. from | (cale. from
(observed) Do) viscosity)
Hydrogen—Air 0-661 3:23x10-% | 3-23x10-®
. —Oxygen 0-679 3-18 3-17
Oxygen—Air 0-1776 3-69 3-68
» —Nitrogen 0-174 374 370
Carbon-monoxide—Hydrogen | 0-642 3-28 3-25
» —Oxygen 0-183 3-65 3:70

The agreement between the two sets of values of S, is as good
as could reasonably be expected, providing a corresponding con-
firmation of formula (260). When one or both of the two kinds of
moleculos involved is softer than those in the foregoing table the
agreement is still good, although less striking than that found
above, as is shewn in the table below.
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D, Sy Sy,

Giases bs 12 od (calc. fromn | (cale. from

(observed) Dia) viscosity)

Carbon-dioxide—Hydrogen 0-538 3-56x 108 | 3-89 x 10-8
”» ~—Air 0-138 4-03 4-20
~—Carbon-monoxido| 0-136 409 4-22
Nitrous oxide—Hydrogen 0-535 3-57 3-69
—Carbon-dioxide 0-0983 | 4-53 4-66
Lthylene—Hydrogen 0-486 3-756 414
»  ——Carbon-monoxide 0-101 4-99 4-68

Thermal and Pressure Diffusion

179. In 1911 Enskog* predicted on theoretical grounds that
diffusion must occur in any gas in which the temperature is not
uniform throughout. The same is true when there is a pressure
gradient, although this “pressure-diffusion” is of less practical
importance than the “thermal diffusion” just mentioned. Chap-
manf predicted the same phenomena independently in 1916, and
Dootson} confirmed the existence of thermal diffusion in 1917.
The discussion of these phenomena is postponed to the end of
the next chapter.

RaNDOM MoOTIONS AND BROWNIAN MOVEMENTS

180. In §154 we obtained the equation of conduction of heat
in a gas in the form

aT _90*T

Et_ p a J2

while in § 165 we obtained as the equation of diffusion (equation
(243))
dv o
&~ Pug

Replacing ®,, by the value 7/p appropriate for self-diffusion,
this becomes

.(269)

dvl 7 0%y

&= veern(270)

* Phys. Zeitschr. 12 (1911), p. 533.
1 Phil. Trans. 217 A (1916),p.164. 1 Phil. Mag.33 (1917), p. 248.
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We notice at once that this is of the same form as the equation
of conduction of heat (268), so that heat is diffused through a gas
at the same rate and according to the same laws as any selected
group of molecules. There is, of course, a reason for this. If there
were no collisions, both heat and molecules would proceed
through the gas at the same speed, the speed of molecular
motion; when collisions impede progress, they affect the progress
of both heat and molecules in the same way.

It will be understood that here, as throughout the remainder
of this chapter, we are studying the phenomena in their broad
outlines only, and are not striving after numerical exactitude.
The true value of ®,, differs from the value 5/p we have assigned
to it by a numerical factor, but we do not concern ourselves with
this in the present discussion.

The simplest solution of equation (269) is

o

4 -2
= g dmt
n=ge T e (271)

where A4 is any constant. This is the solution for a group of
molecules which start from the plane z = 0 at the instant ¢ = 0,
and gradually diffuse through the gas. There are, of course, pre-
cisely similar solutions to equations (268) and (270). We shall
now see how the same equations and solutions could have been
obtained directly from a detailed study of the molecular move-
ments in the gas.

Random Motions

181. Let us consider the random motion of a single molecule
as it is hit about by collisions with other molecules. As we are
concerned with general principles rather than numerical exacti-
tude, let us simplify the problem to the extreme limit by supposing
that all free paths are of the same length I, and that all are
described parallel to the axis of z; we shall further suppose that
for each free path the directions of z increasing and of z decreasing
are equally likely.

Any molecule which has described a number N of free paths
will have advanced along the axis of z by a distance

+l+l+l+... (to N terms).
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Each of the signs in this series may be either + or —, so that
there are 2V possibilities in all. For some arrangements of signs,
the molecule will have advanced a distance sl along the axis of z.
For this to be the case, there must be p positive and g negative
signs, where p, ¢ are given by

p+g=N, p—g=8 ... (272)

The number of ways in which + and — signs can be arranged
to give this result is of course
N!
plqV’
so that the chance P that the molecule shall have advanced a
distance sl after NV free paths is

N
='-2-9—!q—!2-1-v. ......

This provides a solution to what is commonly known as the
problem of the “random walk”. A man takes a walk of N steps
of a yard each, and each step is as likely to be forward as back-
ward; what is the chance that the end of his walk will find him
8 yards in front of his starting point? Obviously the answer is
given by formula (273).

182, In the applications of this formula to kinetic theory
problems, N, p and g are all large numbers, so that the value of P
can be simplified by using Stirling’s approximation

nl = 2mn ('-’-:)u,

to the value of n! when = is large. Using this relation, equation
(273) takes the form

_ 1 gn

R

From equations (272) we find

P

p =W +e) = (145,

¢=1m-9 = (1-5),
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' 1 1
so that P = JE(;N)* (1+%)p (l—ﬁ)ﬁi “

When N is made very large, the forward and backward paths
must nearly cancel one another, so that in general s will be small

e (274)

compared with N, and p+ 4, ¢+ { may each be put equal to % .
Thus we may write

g \pH g+ ST\ “E.;T'
(1+5) (-5) = () e

and P, as given by formula (274), assumes the approximate
value L
2 X
P = FNe TN s eeeaes
This is the chance that after describing N free paths each of
length I, the molecule shall have advanced a distance sl,

183. Let us now replace sl by z and N by ct/l, where ¢ is the
speed of molecular motion and ¢ the time the motion has pro-
gressed. Formula (275) becomes

’I
__¢ "o,
et
which is in all essentials identical with the equation (271) already
found. Equation (271) gives the density of molecules at a
distance z from the plane z = z,, while equation (276) gives the
probability that any single molecule shall be found at this
distance from z = z,. Clearly the values of P and v; must be the
same except for a multiplying constant.
For the exponentials to be the same, we must have

@=§w=%, ...... (277)

where 7 has the uncorrected value obtained in equation (47).
Thus the analysis just given would have enabled us to calculate
9D accurately except for the numerical adjustments required by
variations in the lengths of free path, persistence of velocities,
and so forth. Its true importance is, however, that it presents



222 DIFFUSION

us with a vivid picture of the process of diffusion; we now see
diffusion as a random walk.

When P is given by formula (276), the graph of P as a function
of zis an exponential curve like the thin curve in fig. 21 (p. 118).
The maximum ordinate is always at the origin—no matter how
long diffusion goes on for, initial condensations are never entirely
smoothed out.

Using the formula of Appendix vi (p. 306), we readily find
that the average numerical value of z is (2lct/m)t or 0-798 Vict.
Thus as diffusion proceeds, the average, or any other propor-

tionate, value of s increases only as /t; travelling at random, we
must take four times as many steps to travel two miles as to
travel one.

Brownian Movements

184. The foregoing ideas are applicable to the Brownian
movements, although in a somewhat modified form. Each
Brownian particle will perform a sort of random walk, but as its
mass is much greater than that of the particles it encounters,
persistence of velocities becomes all important.

Following Einstein* and Smoluchowski,} we may treat all
collisions with other molecules as forming a statistical group,
and regard the Brownian particle as ploughing its way through
a viscous fluid. We accordingly suppose the particle to ex-
perience a viscous drag in the direction opposite to its motion.
We may suppose this viscous force to have components

dx dy dz
T "M Ta
where 7 is the coefficient of viscosity and ¢ is a second coefticient
which depends on the size and shape of the particle, as well as on
the physical properties both of the particle and of the fluid
through which it moves. The equations of motion of the particle

are now
dx d?x
X——eﬂa—z = md—tz«, ete., eeess.(278)

* Ann. d. Physik, 17 (1905), p. 549 and 19 (1906), p. 371.
t Bulletin Acad. Sci. Cracovie (1908), p. 577.
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where X, Y, Z are the components of any extraneous forces
which may act on the particle.

Exactly as with the virial equation of Clausius, we multiply
these three equations of motion by z, y, z, and add corresponding
sides. This gives, after slight transformation,

X +yY+2Z- J;elyd (T*+y*+2%) = Lm‘;ttz(x-+y~+~-) me>,

Integrating through an interval of time ¢, and averaging over
a number of molecules, we obtain

—lendA(z®+y:+2%) = —mc = —3RT,

where A(x2+y?%+ 2%) denotes the change in 2%+ 2 +22 in time {.
Thus, finally,

AP+ y2+22) = %’ L (279)

Again, as in the random walk, the distance travelled in a time ¢
is proportional to +/¢. It is also, naturally enough, proportional
to 4/T, or to ¢. Both these relations have been confirmed ex-
perimentally by Perrin and many others.

If the Brownian particles are spheres of radius a, Stokes’s law
gives the value of € as 67a, and equation (279) assumes the form

RT
A(x2+y2+22) = 77‘ ...... (280)

This equation has been used as a means of determining R,
and hence Loschmidt’s and Avogadro’s numbers, with satis-
factory results (cf. § 16, above).

185. So far we have discussed only the average value of
2?2+ y2+ 22 for all the particles. The distribution of the individual
particles can be discussed in a similar manner, but is best found
by treating the motion as one of diffusion. As in §180, the
distribution of density must satisfy an equation of the form

dv 0%y 0% o%
& K(azs a—y2+a_z=)'

where K is a constant, which is of the nature of a coefficient of
diffusion.
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Analogous to the solution (271) of our former equation, we
obtain as a solution of equation (281),
Zit e

v=rre Kt . . (282)

where A is a constant. For such a distribution of particles, we
readily find that the average value of z2+y%+2* is 6Kt. The
solution (282) is appropriate to a group of particles starting at
the origin at time ¢ = 0, and gradually diffusing through space;
for such a group we have already found the average value of

7]
x2+y2+ 22 to be 6Rpt (equation (279)). Equating this to 6Kz,

we find
K IT
€

This, then, is the value of K in the equation of diffusion (281),
and with this value of K formula (282) will give the distribution
in space of a group of particles which started at the origin at
the instant ¢ = 0. On assigning this value to K in the more
general equation (281), we can trace the motion resulting from

any distribution of Brownian particles.



Chapter IX

GENERAL THEORY OF A GAS NOT IN
A STEADY STATE

186. The present chapter will deal with a variety of problems
in which the gas is not in a steady state, so that the velocities of
the molecules are not distributed according to Maxwell’s law.
In particular we shall discuss the analogy between a gas and the
fluid of hydrodynamical theory, and shall examine new methods
of dealing with the viscosity, heat conduction and diffusion of
a gas. The distribution of velocities will be supposed to be given
by the quite general law

f(u’ v’ w’ x’ y’ z)’
where the symbols have the same meaning as elsewhere in the
book, particularly in § 22.

Hydrodynamical Equation of Continuity

187. We first fix our attention on a small element of volume
dx dy dz inside the gas, having its centre at £,%, { and bounded by
the six planes parallel to the coordinate planes

z=E+ids, y=9ytidy, z={tide
The number of molecules of class A (defined as on p. 105) which
cross the plane z = £— }dx into this element of volume in time d¢
will be
vf (u, v, w, § — 4dc,y, §) dydzdudvdwudt.

Similarly the number of molecules of class A which cross the
plane z = £+ idx out of the element of volume is given by

vf(w, v, w, £+ 3dx, 7, §) dydzdudvdwudt.

By subtraction, we find that the element experiences a net loss
of molecules of class A, caused by motion through the two faces
perpendicular to the axis of z, of amount

6% vf(w, v, w)]dzdydzdudvdwudt,

JKT 15
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in which the differential coefficient is evaluated at £, 9, {. The net
loss of molecules of class A caused by motion through all six faces
is therefore

] 0 o\, , .
(’u P +v % + w—a;) [vf(u, v, w)]dudvdwdxdydzdt. ...(283)
On integrating over all values of %, v and w, we obtain the total
number of molecules which are lost to the element dxdydz in
time dt. We may again write

J- 'qu(u, v, w)ydudvdw = u,, etc.,

where u,, vy, w, are the components of mass-velocity of the gas at
2, Y, z; this number is now seen to be

) 0 ¢ .
(-a—;-c(vuo)+—§?;(vvo)+g(vwo)) dxdydzdt. ...... (284)
The number of molecules in the element at time ¢ is, however,

vdzdydz, and that at time ¢ -+ dt is (v + %: dz) dzdydz. Thus the

net loss must be dy
Tt

Equating this to expression (284), we obtain

dv 0 0 0 .
a; <+ —a—x- (Vuo) + @ (V’Uo) + -ag (Vwo) =0. ...... (285)

dtdxdydz.

If we multiply throughout by m, the mass of a molecule, and
replace vm by p, the density of the gas, this becomes

0 0 0 oQ
i % (pu,) + EY (0v,) + P (pwy) =0. ... (286)

This is the hydrodynamical equation of continuity, expressing
the permanence of the molecules of the gas—in other words, the
conservation of mass.

The Hydrodynamical Equations of Motion

188. There is a somewhat similar equation expressing that
momentum is conserved, or is changed only by the operation of
external forces.
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Each molecule of class A carries z-momentum of amount
mu, so that the loss of a molecule of class A to the element
dx dydz involves a loss of z-momentum equal to mu. The number
of molecules of class A which are lost to the element in time d¢ is
given by expression (283), so that the loss of z-momentum from
this cause is mu times expression (283) and the total loss is

0 0 0
2__ — — ’
mdxdydzdtf”(u 3a:+ uY ay+‘uw az) f(u, v, w)]dudvduw.

This may be written in the form

7

0, — 0 — 9 —
mdxdydzdt (55 (vu?)+ o (vuv) +3, (vuw)) s ereeen (287)

where ut = fffuzf(u, v, w)dudvdw,

uv = fﬁuvf (u, v, w)dudvdw, ete.,

so that u2, uv, etc. are the mean values of u2, uv, etc. at the point
x,Y, 2.

There is a further loss or gain of momentum from the action of
forces on the molecules inside the element dxdydz. A force X
acting on a molecule in the direction of Ox causes a gain of z-
momentum Xd¢ in a time d¢. Combining the sum of these gains
with the loss given by expression (287), we find for the net in-
crease of momentum inside the element dzdy dz in time dt,

0, =, 0 — 0 —
I:Z'X— mdxdydz (_8;: (vu?)+ E (vuv) +_BE (vuw))] dat, ...... (288)

where X denotes summation over all the molecules which were

inside the element dz dy dz at the beginning of the interval dt.
The total z-momentum inside the element dzdydz at time ¢

was, however, mvu,dzdydz. The gain in time d¢ is accordingly

%(vuo) mdxdydzdt,
and on equating this to expression (288), we obtain

d 3 = 8, — B — _
[E—i(uuo)+55(vu‘)+5é(vuv)+3z(vuw)]mdxdydz-Z'X.
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These and the similar equations in y, z are the equations of motion
of the gas, expressing that momentum is changed only by the
action of external forces.

189. In this equation, let us write

u = uy+U, etc.,

thus dividing the motion into the mass motion of the gas as a
whole, and the thermal motions of the molecules. We have
% = uy, and U = 0, so that uv = uyv,+ UV, and similarly for u?
and uw.

If we multiply equation (285) throughout by u,, and subtract
oorresponding sides from equation (289), the latter equation
becomes

d 0 0 0
v (¢7t+ u",‘67c+ v‘,@ +w, 5,7;) uymdxdydz

v 9 o3, @ gy, © i
= EA_[-a;(vU )+@(VUV)+~F;(VUW):| mdxdydz.

We proceed to examine more closely the system of forces
which act upon those molecules of which the centres are inside
the element dx dy dz—the system of forces which we have so far
been content to denote by 2X, XY, IZ.

These forces will arise in part from the action of an external
field of force upon the molecules of the gas, and in part from the
actions of the molecules upon one another.

If there is a field of external force of components =, H, Z per
unit mass, the contribution to ZX will be

Emvdedydz. 0 ..l (291)

The remaining contribution of ZX arises from the inter-
molecular forces. As regards the forces between a pair of mole-
cules, both of which are inside the element dx dydz, we see that,
since action and reaction are equal and opposite, the total contri-
bution to 2X will be nil. We are left with forces between pairs of
molecules such that one is inside and the other outside the
element dxdydz, that is to say, intermolecular forces which act
across the boundary of this element.
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Let the sum of the components of all such forces across a plane
perpendicular to the axis of z be w,,, w,,, w, per unit area,
and let us adopt a similar notation as regards forces acting across
planes perpendicular to the axes of ¥ and 2. Then the contribution
to ZX from forces acting across the two planes z = £ + 3dx is

0w,
o dxdydz.

On adding similar contributions from the other planes, we
find that the z-component of all the molecular forces which act
on the element dx dydz can be put in the form

0w, 0@, 0w,

- ( e +—ay— + a—z) dzdydz.

Combining this contribution to 2ZX with that already found in
expression (291), we find, as the whole value of XX,

°w,, ¢Cw,, O,
— - Tz vz 2T
2X = I mv_,—( 5 + 3y + 5 ) Ida:dydz,

(wzz):-z—}dzdy dz— (wzx)x-£+ldzdy dz = —

and there are, of course, similar equations giving the values of
ZY and 2Z.

Inserting this value for ZX into equation (290), dividing
throughout by dxdydz and replacing mv by p, we obtain

AL _a_)u
’(ai+”°ax+”°ay Yogz) Yo
0

o @ — —— —
=p= ""a_'x(wzz"'puz) _@(wuz +puv)_a_z (wzz+PUW)

This may be compared with the standard hydrodynamical
equation,

0 0 _ o OF, OF, OF,
P(zﬁ“oa—x*”osg;*woé;)“o- P oy o2’
where w,, v, W, is the velocity of the fluid at x, y, 2, and P, P,,,, .,
are vhe components of stress per unit area on unit face perpen-

dicular to Oz.
We see at once that the gas may be treated as a hydrodynamical
fluid with stress components given by

P:w = sz+p0_§, }
B, =w,+pUV, ete.]’
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Gas in a Steady State

190. In the special case in which the gas is at rest and in a
steady state, the molecular velocities will be distributed accord-
ing to Maxwell’s law at every point, so that

— = = ¥
pU’=pu’=vmu2=ﬁ,
as in § 88, and .

UV =VW = WU =0.

Thus of the system of pressures specified by equations (292),
that part which arises from molecular agitation reduces to a
simple hydrostatical pressure of amount »/2h. Clearly the w
system of pressures, arising from the intermolecular forces, must
also reduce to a simple hydrostatical pressure @, and we thercfore
have

P.=P,=P.=w+g,
P,=P,=PF,=0.

The total pressure at the point x, y, z is therefore a simple
hydrostatical pressure of amount Pgiven by
i
2h’

an equation which may be compared with the virial equation (80).

P=w+5:, e (293)

Maxwell’s Equations of Transfer

191. When we discussed the transfer of molecules across the
boundary of a small volume dxdydz in §187, we arrived at the
hydrodynamical equation of continuity. When we discussed the
transfer of momentum in § 188, we arrived at the hydrodynamics)
equations of motion. Let us now, following a "procedure first
developed by Maxwell,* consider the problem of the transfer of
any quantity @ which depends solely on the velocity of a mole-
oule, as for instance «2 or uv.

* Phil, Trans. 157 (1886), p. 1, or Collected Works, 2, p. 26.
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Let the mean value of @ at any point z, y, z be denoted by §,
8o that

Q= J‘Uf(u, v, w) Qdudvdw.

The number of molecules inside the small element of dzdydz
at this point is vdz dy dz, so that ZQ, the aggregate amount of @
inside the element, is given by

2Q = vQdxdydz. = ... (294)

There are various causes of change in 2'Q. In the first place
some molecules will leave the element dzdydz, taking a certain
amount of @ with them. As in §187, the total number of mole-
cules of class A lost to the element dzdydz in time dt is

dxdydzdt(u-a—+'v w%)(vj)dudvdw,

25
%y
go that the total amount of @ lost by motion into and out of the
element is

dxdydzdtfff[( +v +w )(l{f):l Qdudvdw.

If we write
ffquf(u, v, w)dudvdw = uQ, etc.,

go that u( is the mean value of uQ averaged over all the molecyles
in the neighbourhood of the point z, y, 2, this loss of @ can be put
in the form

dzdydadt [a%: (vuQ)+ a% (vo0) +a—az (mw)] e (295)

A second cause of change in XQ is the action of external forces
on the molecules. For any single molecule, the rate of change in
Q from this cause is given by

dQ 0Qdu 0Qdv 0Qdw ( QQ a_Q g_g)
S ma wa T wd m\ X Y w5

where X, Y, Z are the components of the external force acting on
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the molecule. Thus in time dt the total value of £@Q experiences an

increase
dzdydedt > [x(w) + Y(%g) +z(gg):| ...... (296)

where again the bar over a quantity indicates an average taken
over all molecules.

Lastly, 2Q may be changed by collisions between molecules.
If @ is any one of the quantities which have previously been
denoted by x;, X, --- X5» namely, the mass, energy, and the three
components of momentum of a molecule, there is no such change,
but if @ is any other function of the velocities such changes will
occur. In general let us denote the increase in @ which is caused
in the element dxdydz by collisions in time dt by

dedydzdt Q. ... (297)

Then the total change in the aggregate value of @ for all the
molecules in dzdydz is given by the sum of expressions (295),
(296) and (297). The aggregate value of @ is however given by
expression (294). Equating the change in this to the sum of the
three contributions just calculated, we obtain

500) = [ 03+ 2 050) + 1, 000) |

+2 [X(aQ + Y(aQ) + z( aQ)] +4Q. . (298)

Fhis is the general equation of transfer of Q. If we put @ = m,
the mass of a molecule, the equation reduces to (286), the hydro-
dynamical equation of continuity, while if we put @ = mu, the
z-momentum, the equation becomes identical with equation
(289), the equation of motion of the gas.

If we multiply both sides of equation (285) by @ and subtract
from corresponding sides of equation (298), thls latter equation
assumes the alternative form

‘_@_Z[Qaz(vuo) = Q)+ X( Q)]+AQ ...... (209)

where Z' denotes summation with respect to x, y and z. This gives
a new, and more useful, form of the equation of transfer.
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The difficulties of the equation are centred in the calcula-
tion of 4Q. Maxwell gave a general method for the caloulation
of AQ, which is explained in § 196 below, but found himself re-
stricted by mathematical difficulties to the particular case in
which the molecules attracted or repelled according to the law
of force ur-5.

On identifying @ with various functions of %, v and w,
Maxwell obtained equations which were suitable for the discussion
of the problems of viscosity, conduction of heat, and diffusion.
The numerical results he calculated have already been quoted
in their appropriate places.

In 1915 Chapman, in a paper of great power, succeeded in ex-
tending Maxwell’s analysis, so as to apply to the general case of
molecules repelling according to the law ur—*. Chapman’s analysis
is unfortunately too long to be given here even in outline, but his
main results have already been quoted and discussed. They in-
clude of course Maxwellian molecules (s = 5) and elastic spheres
(8 = o0) as special cases.

Time of Relaxation

192. Maxwell's general equation of transfer (299) assumes its
simplest form when the gas has no mass-motion, so that

Uy = Vg = Wy = 0,

and when no external forces act, so that X = ¥ = Z = 0. If the
distribution of velocities is the same throughout the gas, the
equation takes the form

aQ
V‘a—t‘ = AQ,

expressing that the whole change in @ is caused by collisions.
Taking @ = u?—1?, in this equation, Maxwell calculated that

4Q = - 1'1:2(%4:'-i —?’),

where 7 is a constant depending only on the structure of the
molecules. Similarly, on taking @ = uv, he calculated that

AQ = —TV”LE,
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where 7 is the same constant as before. Thus it appears that
u?—v? and uv both satisfy an equation of the form

og
E’ = —TV¢,
of which the solution,
d=goe™ . (300)

shews that ¢ decreases exponentially with the time at such a rate
that it is reduced to 1/e times its original value in a time 1 /‘TV{
Maxwell calls this the “time of relaxation”.

This time of relaxation measures the rate at which devia,tions\
from Maxwell’s law of distribution will subside. A glance at
equations (292) shews that it must also measure the rate at which
inequalities of pressure must subside, as also the shear stresses
F,., F,,, etc.

Maxwell shewed that 7 is related to the coefficient of viscosity %
by the relation

)
v
where p is the hydrostatic pressure, and this provides the
simplest means of evaluating 7. Replacing p by its usual value
vRT, this relation becomes

T="—. (301)
U
To take a definite instance, the value of # for air at 0°C. is
0:000172, and RT = 3-69 x 1014, s0 that 7 = 2:15x 10-10, and
the time of relaxation is

1

= Bx10° seconds.

It is, as we should expect, comparable with the time of describing
a free path. Thus by the time that a few free paths have been
described by each molecule, the exponential on the right hand of
equation (300) has already become very small, so that the gas is
almost in the state specified by Maxwell’s law.
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The Lorentz- Enskog Analysis

193. In 1906, many years after the publication of Maxwell’s
work, an investigation given by Lorentz* for a different purpose
suggested a new line of attack on Maxwell’s problem. This was
developed and carried to a successful termination by Enskogt in
1917.

When a gas is not in equilibrium or in a steady state, the
distribution of velocities will no longer be given by Maxwell’s
law. If, however, the law of distribution f is known at the instant
t, it is clearly possible in principle to follow out the motion of each
group of molecules, calculate the changes in f, and so obtain the
law of distribution at the next instant t+dt, and similarly at
every subsequent instant. Thus the law of distribution is de-
termined for all time when its value is given at any one instant.
The function f must, then, satisfy an equation giving df/dt in
terms of f. We proceed to investigate the general form of this
equation, following a method given by Boltzmann.}

194. Let the molecules be supposed to move in a permanent
field of force, such that a molecule at x, ¥, z is acted on by a force
(X, Y,Z) per unit mass. Then the equations of motion of a
molecule, apart from collisions, are

du dv dw
d—t—X’ 7= Y, ?ﬁ—z'

The number of molecules which at any instant ¢ have velocity
components u, v, w within a small range dudvdw, and co-

ordinates z, y, z within a small range dxdy dz, will be taken to be
vf(u, v, w, z, ¥, 2, t)dudvdwdzdydz.  ...... (302)

Let these molecules pursue their natural motion for a time dt.
At the end of this interval, if no collisions have taken place in the
meantime, the «, v, w components of velocity of each molecule
will have increased respectively by amounts Xdt, Ydi, Zdt,

* Theory of Electrons, Note 29, Teubner, Leipzig (18906) and David
Nutt, London (1909).

t Kinetische Theorie der Vorgange in madssig verdiinnten Gasen (Inaug.
Dissertation, Upsala, Almquist, 1917).

1 Vorlesungen iber Gastheorie, 1, Chaps. 11 and 111.



236 GENERAL THEORY OF A GAS

while the coordinates z, y, z will have increased respectively by
amounts udt, vdt, wdt.

It now follows, as in §22 above, that if no collisions occur,
these molecules will have their velocity-components and space-
coordinates lying within a small range dudvdwdxzdydz sur-
rounding the values u+ Xd!, etc., and z+udt, etc. The number
of molecules within this range at the end of the interval dt is,
however,

vf (u+ Xdt, v+ Ydt, w+ Zdt, x+udt, y+vdt, z+wdt, t+dt)
x dudvdwdzdydz, ...... (303)

and if no collisions occur, this expression must be exactly equal
to expression (302). Expanding it as far as first powers of dt, and
equating to expression (302), we obtain the relation

0 0 0 0 0 0 0
ﬁ(uf) = —[X;,ﬁ+ Y%+ Za'z—u'i'u%+vég_/+wa—z (vf),

expressing the rate at which vf changes on account of the motion
of the molecules, and the forces acting on them.

When collisions occur, these produce an additional change in
vf—Tlet us say an increase at a rate

[% (Vf)] coll,

per unit time. On combining the two causes of change in (vf), we
arrive at the general equation

9 0 0 0 0 0 0
—a-i(vf) = —[X-r.m+ Ya_v+ Za—w+1¢é;c+v@+wa—z] (vf)

+ a%(vf):l e, (305)

coll,

This equation must be satisfied by »f under all circumstances.
When the gas is in a steady state the right-hand member must of
course vanish.

No progress can be made with the development or solution

of this equation until the term [3% f )] has been evaluatedL

coll.

and this unfortunately can only be effected to a very limited
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extent. We saw in §§ 85, 86 that when the molecules are elastic
spheres of diameter o, this change is expressed by the equation

[% of )] = J-[ f ”vz(ff '—ff") Voleos@du dv'dw' dow.
! coll, S

veeen(308)
Let us now attempt to evaluate [éa—g of )] , when the mole-

cules are regarded as point centres of force, attracting or re-
pelling with a force which depends only on their distance apart.

We fix our attention on an encounter between two molecules,
moving, before the encounter, with velocities u, v, w and »’, v, ',
and so with a relative velocity V, given by

V= (u' —u)2+ (0 —v)2+ (W —w)2 ... (307)
In fig. 32 let O represent the centre of the first molecule moving
in some direction @O with a velocity
u, v, w, and let M N P represent the path
described relatively to O by the second
molecule before the encounter begins.
When the second molecule comes to
within such a distance of O that the
action between the two molecules be-
comes appreciable, it will be deflected
from its original rectilinear path M N P,
and will describe a curved orbit such
as MN S, this orbit being of course in
the plane M N PO.

Let ROP be a plane through O
perpendicular to MN, and let MN
meet this plane in a point P. Let the polar coordinates of P
in the plane ROP be p, €, the point O being taken as origin, and
any line RO as initial line. Clearly p is the perpendicular from
the first molecule O on to MN, the relative path of the second
molecule before encounter.

Let us calculate the frequency of collisions in which the second
molecule has a velocity 4’, v, w’ whose components lie within a
small specified range du’'dv’'dw’, while its path before the en-
counter is such that p, € lie within a small range dp, de. For such

Fig. 32
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a collision the line M P must meet the plane ROP within a small
element of area pdpde. Thus the number of such collisions
within an interval d¢ will be equal to the number of molecules
which lie within a small volume pdpdeV dt, and have velocities
within the specified range du’dv’dw’. This number is
uf(u', o', w')du'dv'dw' pdpde V dt. vers.(308)

The number of molecules per unit volume having velocities

between u and u+du, v and v +dv, w and w+dw is
vf(u, v, w)dudvdw,

so that the total number per unit volume of collisions of the kind
we now have under consideration is

Vif(u, v, w)f(w', ', w')dudvdwdu'dv'dw'pdpdeVdt. ...... (309)

The type of collisions now under consideration is similar to
that which we called type a in §85, and expression (309) is
obviously a generalisation of our former expression (117). Pro-
ceeding precisely as in § 86, we obtain, just as in formula (306),

This, then, is the required gencralisation of equation (306),
It clearly reduces to this latter equation for elastic spheres, the
factor o2cosfdw of equation (306) being exactly the factor
pdpde of equation (310).

On substituting this value into equation (305), we obtain as
the characteristic equation which must be satisfied by f,

0 0 0 0 0 0 0
E(Vf) = —I:X—a“a'l- Y%+Z—aﬂ—”+ua—x+v5§+w5;](vf)

+ f J' J f f (I —1f) Vawdvdw'pdpde. ... (311)

For a mixture of gases, in which the different kinds of molecules
are distinguished by the suffixes 1,2, ..., we obtain in a similar
way a series of equations such as

2, . 9 . L,0.,0. 2 o2 2
a0h) =~ [ X Y asamrugsolsullug

+Z f f f f f vy fufs—fifs) Vin'do'dwpdpde. ...... (312)
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195. The condition for a steady state is that the right-hand
members of equations (311) and (312) shall be equal to zero.
If we try putting

f= de-tmiu-upHo—vPrw-wgt) (313)

the integrals on the right of equations (311) and (312) vanish,
so that this value of f provides a solution when X = ¥ = Z = 0,
and vf is independent of z, y, =. It is of course the solution already
found in §87.

On substituting
f = Ae-hmici+2p,

we again obtain a solution, provided

QUL S QU A .
ox oy 0z

Thus (314) is a solution when y is the potential of the forces
acting on the molecule, the result obtained in § 23.

If, however, u,, vy, wy, b and v vary from point to point,
formulae (313) and (314) do not provide a solution, for on substi-
tuting them into the right-hand member of equation (311) we
find that the second term vanishes, while the first does not.

The case in which u,, vy, wy, b and v vary only slightly
from point to point is especially important for the study of
viscosity, conduction of heat and diffusion. In this case we may

assume, as an appropriate solution

f=fHl1+D@x, y, 2, u, v, w)], ... (315)
where @ is a small quantity of the first order, and
fo = Aehmlu—uwftomttw—wgf] (318)

Since f = f, is a solution when u,, vy, W, k and v do not vary
from point to point, equation (315) must necessarily provide a
solution when these quantities vary to the first order of small
quantities.

The right-hand member of equation (312) contains the term
v v, f1f2 of which the value, by equation (315), is

nfifs = vafufu(l+@+9). . ... (317)
Here f,, denotes the value of f, for a molecule of the first kind,
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and 8o on, and the product ®,®; is omitted as being of the secand
order of small quantities. Similarly

whfifa = vfufu(l+&+F). ... (318)

The conservation of energy and momenta at an encounter give
the relation o

Jafoe=lunfee: (319)

sothat v vy(fifs —f1f2) = ViVafufoa(Pr+ By — D, — B;).

On substituting the tentative solution (315) into equation (312),

f may be replaced by f, everywhere except in the integrals; for if

we retained terms in @ in the remaining parts of the equation, we

should be including terms of the second order of small quantities.

Equation (312) accordingly reduces to ;
( 0 0 0 0

y o 0. 2 _
a—t+X51—‘+Y%+J%+uax+’U}j§+w5;)(V1f01)—"1folI,

...... (320)
where
- 2[ [ f f f VS ool @y + By — B, — BL) V du'dv' dw' pdpde,
T (321)
an equation in which every term is of the first order of small
quantities.

On dividing out by »,f,, and replacing f,; by its value from
equation (316), this equation becomes
0 0 0 ° 0 ¢ 0
('a—t+l é—l;-i- Y%-l- Z%+u-a:—v+v@+w&)

x {log v, A — hm[(u—ug)® + (v—vp)% + (w —wp)?]} = I.

The solution (315) is indeterminate in the sense that changes
in ug, vy, wy, ¥4 and h are not independent of changes in @. For
instance, the total momentum in the direction Oz is readily
found to be

mvu°+m.[U.v oPududvdw ... (328)

and the same change can be made in this either by changing u or
by changing @.
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‘. Let us agree that ug, v, w,, ¥4 and A are to have the same
physical interpretation in solution (315) as they have in the steady -
state solution for which @ = 0, e.g. the velocity of mass-motion
of the gas is to have components u,, v,, w,, and so on. This makes
the value of @ quite definite for any assigned physical conditions.
But for this condition to be satisfied, the second term in ex-
pression (323) must vanish, with similar equations in » and w,
and @ must also satisfy the equations

[[[repaudvar o, o (324)
ﬂ. J vfeP(u?+ v +w?)dudvdw =0. ... (325)

With @ restricted in this way, the equation of continuity is
again given by equation (285), so that
Ouy | v, aw,,)

dtlogv = ( 7 +- 3y + P eees-.(326)

in which small quantities of the second order, such as uogg are

neglected. We now multiply both sides of this equation by
ghmc?, add to the corresponding sides of equation (322), and
find that the latter equation reduces to

1+ §hmc’)a%log v +a% {31og b — hm[(u —u,)*

+ (v — )2 + (w—wy2]} — 2hm[ (v — u,) X + ('v—vo) Y +(w—-w,) Z]

+(u 0 +v= 0 4w a)lo v+2hm|:(u* J;cﬁ) +(v2 }c’)a—v'!
oz By %) %€ oy

+ (w?— §c=) e + uv(%%’+%%°) + ]

3 oh oh Ok
2_ 2 =
(mc )( a:’:+vay+waz) 5L L (327)
where I is given by equation (321).

It will be remembered that this equation is only accurate

when O satisfies five relations, expressed by equations (323),
(324) and (325). The solutions in & will however be additive, since

JKT 16
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the equations are linear; five solutions which contribute nothing
to either side are
@ = 1, mu, mv, mw, mc?,

so that to any solution for @ which satisfies equation (327) may
be added terms of the form

® = B+ Cmu+ Dmv+ Emw + Fmec?,

and the constants B, C, D, E, F may be adjusted so as to satisfy
the five necessary conditions.

Law of Force pr—*

196. The next step must be to calculate I, as given by equation
(321), and we can only do this by assuming definite laws for the
interaction between molecules at collisions. We therefore suppose
that the molecules are centres of force repelling according to the
law pr—s.*

If two molecules of masses m,, m, at a distance r apart exert a
repulsive force of this amount, then it is easily shewn that the
motion of either relative to the other is that of a particle of unit
mass moving about a fixed centre of force, the potential energy
when the two are at a distance r apart being

(my+mg) e

mymy(s—1)re—1’
As usual, the differential equation of the orbit is
L (& ] - o lmamal
274 |\ 26 T mymy(s— 1)1’
where 7, 6 are now polar coordinates in the plane of the relative
orbit, 4 is the angular momentum pV, and C = V2, where V,
the relative velocity before the encounter begins, is identical with
the usual ““velocity at infinity ”.

This equation has the integral

- J ’ dr

2C 2(my +mg) ’

—d 8 TN D 8/ B
oA HE T 'mlm,,(.s---l)h"rls )

in which the addition of a constant of integration is avoided by

* The method of §196 is that of Maxwell, Collected Works, 2, p. 36.
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{,aking the direction of the asymptote to the orbit to be the initial
ine § = 0. ' )

Replacing % by pV, and further writing 7 for p/r, so that pisa
pure number, this becomes '

o= . M .(328)
|7

where a= (——~~-— ——~-)s—1 ' 329
P Gt veennn(329)
The apses of the orbit are given by or/00 = 0, and therefore by

—1
o= 2 (1) o

8—1\c
A simple graphical treatment shews that, when s is greater than
unity, this equation can only have one real root. Call this root
7o, then the angle, say 6,, between the asymptote and the apsidal
distance will be given by equation (328) on taking the upper limit
to be 7,. The angle between the asymptotes, say €', is equal to
twice this, and so is given by

6 = 20, = J"'- dn2
—pt__Z
(] ~/1 " 8—1

After the encounter, the velocities par-
allel and perpendicular to the initial line
are of course — ¥V cos0’ and — Vsin6'.

For any value of s, there will naturally
be a doubly infinite series of possible orbits
corresponding to different values of p and '
V. Except for a difference of linear scale,
however, these may be reduced to a singly
infinite system corresponding to the varia-

2

tion of & or pV*-1. Fig. 33* shews some
members of this singly infinite system for
the law of force u/rs.  Fig. 33

* This figure is given by Maxwell, Collected Works, 2, p. 42. Iam in-
debted to the Cambridge University Prees for the use of the original block.
16-2
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In fig. 32 of § 194, the angle ¢ was measured from. an MiWy
chosen line OR. Let us now suppose this to be the mterse.otxox} of
the plane POR with a plane through O containing the direction

of NP and the axis of z, as in fig."34.

In fig. 35, let OR, OX be the directions of this line OR and of
the axis of z. Let O@ be the direction of V, the relative velocity
before collision, so that OR, OX, OG all lie in one plane. Let these
lines be supposed each of unit length, so that the points GXR
lie on a sphere of unit radius about O as centre.

4

N

/[
X L

f {4

Fig. 34

Let 0Y, OZ be unit lines giving the directions of the axes of
y and 2, and let OG’ give the direction of the relative velocity after
the encounter. Then GO@’ is the plane of the orbit, which is the
plane N PO in fig. 34. Thus the angle RG@’ is the ¢ of § 194, while
the angle GOQ' is 6.

Now suppose that, as usual, the velocities before collision are
%, v, w and u', v', w’, so that the relative velocity ¥ is given by
V2= (v —u)+ (v —0)2+ (0 —w)?,

and the velocities after collision are u, v, w and %, v', w".
From the spherical triangle G'GX,
cos X = cos GX cos G@ +sin QX sin GG’ cose,

in which we have cos @' X = -u’—;,_lt, cos GX =% ;u, 8o that

U-u = (u'—u)cos0'+~/7’—-(u'—u)’sinﬁ'cose. ...... (330)
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Denoting the angle XG¥ by w, and XGZ by w,, we have, ina.
gimilar way,

v—v (v' —v) cos 8’ + V2= (v —v)2sin &’ cos (€ — wy),
w—w = (w’-—w)0030’+~/V3—(w'—w)’sin0’cos(e—m,).

To determine w,, we notice that in the triangle GXY, XY = {n
and X@Y = o,; thus

(u' —u) (V' —v) +V[VE= ( —u)}] [V2— (v’ —v)?] cos wy = 0,
(' —u) (W —w)+[V2— (' —u)?] [V2— (v’ —w)?] cos wg = 0.

These equations together with three equations of momentum,
such as

mu+myu = mutmen’, ... (331)
determine the velocities after collision.
Eliminating %’ from equations (330) and (331), we obtain

i = Ma ' 210" + A VE= (' — ) sin @’
u—u+m1+m,[2(u %) 008 §0+«/V (u' —u)?sin@’'cose],

and there are of course similar equations giving ¥ and w.

Solutions for

197. We are now in a position to proceed with the evaluation
of I and the discussion of equation (327). From equation (329)

we have
3 4

pdpde = [(my+my) pfmym =1V *~ladade,
2
so that I = Zyy[(my+my) pfmymel=1J,
where J stands for the quintuple integral
8—-5

J= I f J' j J' (B, + By— &, — Oy adade VoL fydu'dv'do.

In this integral, it will be remembered that @, is a function,
as yet undetermined, of u, v and w; @, is the similar function of
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w', v', w’ for a molecule of the second kind, while &,, &; have
corresponding meanings in terms of the velocities after collision.
Our problem is not to evaluate expression (333) for given values
of @, but to find values of @ such that after integration expression
(333) shall be equal to a certain algebraic function containing
terms of degrees 0, 1, 2 and 3 in %, v and w, namely that on the
left of equation (327).

We see at once the simplification introduced by supposing,
with Maxwell, that s = 5. In this special case, the power of V
disappears entirely from the integral J.

In the more general case, as discussed by Lorentz*and Enskog, }
we consider a tentative solution for equation (327) of the form

D = ug,(c).

With this value for @, let the value of J as defined by equation
(333) be denoted by
J = J(u),

where J(u), in addition to depending on %, depends on the various
constants of the gas, m;, m,, h, etc. Similarly, let @ = vg,(c)
lead to a value J = J(v) and let ¢ = wg,(c) lead to a value

J = J(w).
Then a solution
@ = (lu+mo+nw)dyc)  eeenn. (334)
will clearly lead to
J=lJ(uw)+mJ(v)+nJ(w). ... (335)

Now let I, m, » be regarded as direction-cosines, so that
lu+mv+nw will be the component velocity along a certain
direction (I, m, n); it follows that the solution (334) will lead to a
value of J given by

J=Jlu+mv+nw), ... (336)

where J(lu+mv+nw) is the same function of lu+mv+nw as
J(u) is of u. Comparing (335) and (336), we have

J(lu +mv +nw) —1J (u) —mJ (v) - nJ (w) = 0,

* Vortrdge tiber die Kinetische Theorie der Materie und der Elektrizitdt
(Leipzig, 1914), p. 185.

t Kinetische Theorie der Vorgange in mdssig verdinnten Gasen (Inaug.
Dissertation, Upsala, 1917),
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whence it can be shewn that J(z) must be of the form
J(u) = uy,(c), eto.
Thus we have shewn that a solution
D = ugy(c)
leads to a value of J of the form
J = uxy(c).
By a somewhat similar method, Enskog shews* that a solution
D = (uP—§c?) gy(c)
leads to & value of J of the form
J = (ut—3e?) xafe),
while a solution D = uvdy(c)

leads to J = uvy,(c).

198. Thus the solution of the general steady-state equation
will be

D= ¢‘1+¢‘2+¢‘3+¢'4+B+Cmu+Dm’)+Emw+ ch’,

where ¥,, ¥, have the forms
10v 3\oh
= - 2_ )=
Yi=u {2th 55T (mc 2h) B:c} &.(c),

V= {(u’—%c’)%g+...+uv(?£+%)+...}¢,(G),

and Y, ¥, are obtained from i, by changing z into y, 2
respectively, % into », w and X into Y, Z.

Here ¢,(¢), ¢4(c) are functions of ¢ and the constants of the gas
only. As we have already seen, they cannot be evaluated in finite
terms. Their expansion for a series of powers of ¢? has been con-
sidered by Enskog,} who has also calculated numerical results.}

We are now in a position to apply the analysis of the present
chapter to the exact solution of physical problems,

* Enskog, l.c. pp. 39, 40, t L.c. Chaps, 1t and 111,
{ L.c, Chap. 1v.
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199. In discussing viscosity, the gas may be supposed to be at
the same temperature throughout, so that

% _h_ah_,

ox oy o0z
and at uniform pressure throughout, so that

o _»_w_

ox oy oz

We may also suppose that no external forces are acting on the

gas so that
X=Y=2=0.

As a consequence of this, ¥, ¥,, {5 are all equal to zero, and
the solution (337) reduces to
D=9y,
The law of distribution now becomes (cf. equation (315))
f = Aot (14 ).

The pressures can now be calculated from equations (292).
Neglecting the intermolecular pressures w,,, etc., these are found
to be of the form

Buo

_ ou, 3170 ow,
P =p-27524+ "(ax+ay az)' ...... (338)

where 7 can only be calculated after ¢,(c) has been calculated.
These are, however, precisely the equations of motion of a viscous
fluid having a coefficient of viscosity #.* Thus the pressures given
by equations (338) and (339) will be exactly accounted for by
regarding the gas as a viscous fluid having a coefficient of
viscosity 7.

The value of 7 has been calculated by Enskog,} who found the
values already quoted in Chap. vI.

* Lamb, Hydrodynamics, p. 512, t L.c. pp. 88 ff.
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Conduction of Heat

200. Consider next a gas which is in a steady state, and devoid
of mass-motion, but which is not at & uniform temperature. For
simplicity suppose that the gas is arranged in parallel strata of
equal temperature, so that the temperature is a function of z
only, and that no external forces act,sothat X = ¥ = Z = 0.

In the general solution (337) of the steady state equation, we
now have ¥y = ¥, = ¥, = 0, so that

1ov 3\oh
@ =gy =~ o+ (met gz ) 40
] ov ok
The relation between 3 and P must be found from the

condition that there shall be no mass-motion, i.e. the process of
conduction must not be complicated by the addition of con-
vection. To satisfy this condition, we must have

fffvfou;bldudvdw = 0.

On substituting for ¥, in this equation, and carrying out the

integrations, we obtain a linear relation between 3‘2 and g—g
Using this relation, @ is given as a multiple of Z—Z , or of
1 or
T 2hT 0z’

and from this it is easy to calculate the coefficient of conduction
of heat, by the methods already used in § 199. The result is that
given in § 155.
Diffusion
201. To discuss the phenomenon of diffusion, we may in the
first place suppose the gas to be at a uniform temperature

throughout, and further take u,, v, w, all constant and X, ¥, Z
all zero. A sufficient solution of equation (337) is now seen to be

@ =y, =22 4,00,

v
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corresponding to diffusion in the direction of the axis of z. The
“flow of molecules parallel to the axis of z, measured per unit area
per unit time, is

f J' J- v(%—?) ' et (u - "_‘; %5 ¢1(c)) dudvdw.

The coefficient of diffusion is the coefficient of —oy/0x in this
expression, and is found to have the values already quoted in
§172.

Maxwell’s treatment of the diffusion problem was based upon
his general equation of transfer (299), which assumes the form

2 -0 0m =40, ... (340)

for steady motion parallel to the axis of z. On putting @ = » and
assuming the inverse fifth-power law, this equation becomes

1 oy J—7- —
2hm, ox V1¥aMy My Mg(my +my) Ay (uga— ),  (341)

where A4, is the constant introduced and defined in §172, and
a comparison with the general equation of diffusion enabled
Maxwell to determine the coefficient of diffusion.

The success of the method depended on the assumption of the
law of the inverse fifth-power. Under this law A« was found to
be proportional to %y, — %y, and the equation of diffusion followed
at once. Under any other law 4u is not proportional to 4y, —ug;;
the value of 4Q depends on the law of distribution of velocities
whatever value is given to @, and the equation of diffusion no
longer follows on putting @ = u.

To obtain the equation of diffusion from equation (340) in the
general case, it is necessary to assume @ to be equal to » multi-
plied by a series of powers of c. The resulting equation* is found
to be of the same general type as (341), except fer the important

* For details see Chapman, Phil. Trans. 217 A (1917), pp. 124, 181.
The analysis given by Chapman in this paper is invalidated by an error
of algebra, as was pointed out by Enskog (Arkiv f. Mat. Astron. und
Fysik, 16 (1921)), but the numerical consequences are not serious. For
a corrected discussion see Chapman and Hainsworth, Phil. Mag. 48
(1924), p. 593.



NOT IN A STEADY STATE 251

difference that the left~hand member includes terms in 97/oz
and 9p/ox in addition to the term in dv/2.

If T and p do not vary with z, these additional terms disappear.
But their presence in the general equation indicates that a
process of diffusion is necessarily going on in any gas in which 7'
and p vary from point to point, exception being made of the
special case in which the molecules repel according to the exact
inverse fifth-power of the distance. These phenomena were first
predicted on purely theoretical grounds by Enskog* in 1917;
shortly afterwards they were predicted independently by
Chapman in the paper already quoted.

Thermal- and Pressure-diffusion

202. The phenomenon of “pressure-diffusion” originates in
the terms in 0p/0x, but does not appear to possess any great
importance physically. That of ‘thermal-diffusion”, which
originates in the terms in 07'/dx, is of importance because
numerically its magnitude is comparable with that of ordinary
diffusion. Let us imagine that we have a tube or cylinder,
originally filled with a uniform mixture of two gases, and let the
two ends be kept permanently at different temperatures. As the
result of thermal diffusion, currents will be set up in the tube, the
molecules of the heavier gas tending to diffuse in the direction of
decreasing temperature and vice versa. There is a limit to the
inequality of composition of the mixture which can be established
by this means, for the inequality brings into play ordinary dif-
fusion which acts in the opposite direction and tends to restore
uniformity of composition. Thus a steady state will ultimately
be reached in which the proportion of the mixture will vary
gradually as we pass along the tube.

This predicted variation in the proportion of the mixture was
first confirmed experimentally by F. W. Dootson.t In a typical
experiment, a tube with a bulb at each end was filled with a
mixture of hydrogen and carbon-dioxide in approximately equal
proportions. One bulb was then kept for four hours at a steady

* Kinetische Theorie der Vorginge in mdssig verdinnien Gasen (Inaug.
Dissertation, Upsala, 1917).

t Phil. Mag. 33 (1917), p. 248.
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temperature of 230°C., the other being. kept water-cooled at
10° C. At the end of the four hours samples were drawn off from
the two bulbs and analysed, with the following results:

Hot bulb (230° C.): 44-9 per cent Hy; 56-1 per cent CO,,
Cold bulb (10° C.): 41-3 per cent Hy; 58-7 per cent CO,.

The effect detected here is of the sign and order of magnitude
predicted by theory. In actual amount it is rather less than half |
the amount predicted on the supposition that the moleculea\
behave like elastic spheres. The theoretical effect for elastic
spheres is, however, greater than that for any other type of
molecule, and it will be remembered that it vanishes altogether
for molecules repelling according to the Maxwellian law ur—5,
Thus the effect detected by experiment was about what was to
be expected, and as later and more accurate experiments* have
given very similar results, the theory may be regarded as being
verified.

The steady state phenomenon we have been considering is of
interest in that it depends greatly upon the law of force between
molecules. It seems possible that it may in time lead to powerful
methods for the investigation of molecular fields of force.

Chapman has shown how it can be used for the separation of
gases which have the same molecular weight (e.g. C,H, and N,),
and it has recently proved useful for the separation of iso-
topes.

* Ibbs, Proc. Roy. Soc. 99 A (1921), p. 385, and 107 A (1925), p. 470;
Elliott and Masson, Proc. Roy. Soc. 108 A (1925), p. 378.

1 A fuller discussion of both the theory and the experimental verifica-
tion of thermal diffusion will be found in Chapman and Cowling, The

Mathematical Theory of Non-uniform Gases (C.U. Press, 1939), pp. 262
268.



Chapter X

GENERAL STATISTICAL MECHANICS
AND THERMODYNAMICS

203. So far our molecules have been treated either as elastic
spheres, exerting no forces on one another except when in actual
collision, or else as point centres of force, attracting or repelling
according to comparatively simple laws. The time has now come
to discard all such restrictions, and treat the question in a more
general way, regarding the molecules as general mechanical
structures, which may be as complicated as we please, consisting
of any number of parts, capable of any kind of internal motion
and exerting upon one another forces of any type.

Degrees of Freedom

204. The total number of independent quantities which are
needed to specify the configuration of any mechanical system is
called the number of degrees of freedom of the system. This
number does not depend on the motions, but on the capacities
for motion, of the various parts of the system; it is therefore
related to the geometrical or kinematical, and not to the
mechanical, properties of the system.

For example, if a point is free to move in space, its position can
be specified by three quantities, as for instance z, y, 2, the rect-
angular coordinates of the point, so that a point which is free to
move in space has three degrees of freedom. A rigid body which
is free to move in space has six degrees of freedom, for the position
of the budy can only be fully fixed when six quantities are known,
as for instance z, y, z the coordinates of the centre of gravity of the
body, and three angles to determine the orientation of the body.
Similarly, a pair of compasses has seven degrees of freedom, two
rigid arms connected by a “universal joint” has nine, and so on.

Numbers of degrees of freedom are additive in the sense that
when a complex system is made up of a number of simpler
systems, the number of degrees of freedom of the complex system.
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is equal to the sum of the numbers of degrees of freedom of the
constituent systems. We see this at once on noticing that & know-
ledge of the configuration of the complex system is exactly
equivalent to a knowledge of the configurations of all the con-
stituent systems.

If atoms are regarded as points, each atom has three degrees
of freedom. A diatomic molecule must therefore have six degrees
of freedom. These can be counted up in a variety of different ways,
but the total must always come to six. For instance, we might
take the six degrees of freedom to consist of the three degrees of
freedom of the centre of gravity of the molecule to move in space,
the two degrees of freedom of the line joining the two atoms to
change its direction in space, and the one degree of freedom arising
from the possibility of the two atoms changing their distance
apart. Alternatively, we may suppose each atom to have its own
three degrees of freedom as a point, so that the diatomic molecule
again has six degrees of freedom.

In general, if atoms are regarded as points, a molecule composed
of n atoms will have 3n degrees of freedom, but if atoms are
regarded as rigid bodies capable of rotational as well as trans-
lational motion, such a molecule will have 6n degrees of freedom.

'If electrons are regarded as points, a cluster of n-electrons will
have 3n degrees of freedom. If molecules are treated as points, a
gas consisting of N molecules will have 3N degrees of freedom,
while if each molecule has n degrees of freedom, the gas will have
nN degrees of freedom.

The Motion of a General Dynamical System

205. A dynamical system which has n degrees of freedom needs
n ooordinates to specify its configuration. Let us call these

qlv qm aee qns S ssesas (342)
and let us denote their rates of increase by
| G Ggs e Gne e (343)

The configuration and motion of the system at any instant are
completely known when the values of the above 2» quantities
are known, and olassical mechanics tells us that, if these quanti-
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ties are known at any instant, it is possible to trace out the motion
of the system throughout all future time, or until it experiences
some disturbance from outside. The energy of the system depends
only on these 2n quantities; let us denote it by £. It is convenient
to introduce quantities known as momenta, which we denote by

Py P -+ P

and define by the equations
= _B_E ete
Pe= g, o

Ordinarily £ will contain only squares and products of the
velocities gy, ¢y, -.. ¢, 80 that the momenta are linear functions
of these velocities.

For instance, if the dynamical system is simply & moving
particle of mass m, its coordinates may be supposed to be z, y, z,
its velocities are %, ¥, 2, its energy is

E = im(2?+y2+22),
80 that the momenta are

oF )
-— = mz, etc.
ozx

In this case the momenta reduce to the ordinary momenta of a
moving mass, mu, mv, mw.

A simplification is introduced on replacing the 2n quantities
(342) and (343) by the 2n quantities

91 92 - 9ns P1y P2s -+ Pp- eeevee (344)

When the values of these quantities are known at any instant,
the configuration and velocities of the system are known at that
instant, so that the classical mechanics tells us that the motion
* of the system can be traced throughout all time.
The equations which determine this motion are the well-known

Hamiltonian equations

dp, _ 0K, dq, OE

&= @y (345)
in which it is essential that £ is expressed as a function of the
qla &l‘ld p:s.
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The Conception of a Generalised Space

206. Twice already we have found it convenient to represent
the three components of velocity %, v, w of a molecule by a point
in space of coordinates %, v, w. The same artifice is found useful on
many occasions. And, although the space of nature possesses
only three dimensions, we need not limit our use of the artifice to
spaces of three dimensions, for the spaces we use exist only in our |
imagination. If the configuration and motion of a dynamical ""
system are specified by the 2n quantities (344), we can imagine |
these quantities represented as the coordinates of a space of 2n
dimensions. Such a space is called a ‘‘phase-space”.

Each point in this space represents one set of values of the 2n
coordinates (344), and so represents one state of the system under
discussion. As the natural motion of the system proceeds, the
point moves in the phase-space, and its motion records the history
of the system. The rates at which the point moves in the different
directions of the phase-space—i.e. the components of velocity of
the point—are given by equations (345). The ratios of these com-
ponents give the direction of motion at the point, and we see that
this depends only on the coordinates of the point in the phase-
space. Thus the moving points move along curves in the phase-
space, the positions of which do not change with the time. These
curves are generally known as ““trajectories”’.

We can imagine all such trajectories mapped out in the phase-
space, and the 2n-dimensional chart so obtained will enable us to
follow out the motion of our dynamical system, starting from any
initial state that we please. It is as though the currents in the
Atlantic Ocean were always the same at each point of the Ocean.
A chart could then be drawn, like the usual Admiralty chart,
which would shew the motion of the surface-water at each point .
of the Ocean. Such a chart would enable us to trace the motion
of each particle of surface-water throughout its whole life in the
Ocean.

The problem before us is not, however, to study the motion of
our system when it starts from any particular set of initial con-
ditions; we wish rather to find statistical properties which shall
be true for its motions, no matter from what particular state it
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starts. We therefore imagine the whole of the 2n-dimensional
space filled with moving points each describing its own curve, as
determined by equations (345). We shall suppose these points to
be so thickly scattered in the space that they may be regarded as
forming a continuous fluid; our object is now to make a statistical
study of the particles of this fluid. Let us first consider the motion
of the points which originally occupy a small rectangular element
of volume in the phase-space extending from p, to p, +dp,, ps to
Py +dp,, etc., and so of content dv equal to dp,, dp,, ...dq,.
Let us follow these points in their motion through a small
interval of time d¢. Those which originally occupy the face p, of
the small element of volume are moving perpendicular to the
face at a rate p;, while those in the opposite face p,+dp, are

moving at a rate p, + % dpl. Thus these two layers of particles

are moving apart at a ra.te ldpl, and by the end of the time d¢

op,
their distance apart will ha.ve increased from dp, to

9P, )
14 -==dt)dp,.
( op, P1

There is a similar increase in the distance apart of the slabs of
particles which formed each other pair of faces, so that after an
interval dt the points under consideration will occupy a volume

(H ap‘dt)(l +a7’=dt) dpydp,....

opy 0Py
Multiplying out and neglecting squares of d¢, this becomes
0Py , 0P, gy , Ogy )
l+( 22 L dE [ dpdpy ... 346
[ 0p, Ops 0, g, P1P2 (346)

The values of 7,, ¢,, etc. are of course given by equations (345).
From these we at once find that
0Py 0y
' — = = 0,
opy oqy
and similarly for every other pair of coordinates, so that the
coefficient of d¢ in expression (346) is equal to zero, and the ex-
pression itself reduces to dp, , dpy, ... dq, ,dgy, .... In other words,

JKT 17
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the points under consideration occupy exactly the same volume
at the end of the interval dt as they occupied at the beginning.
Thus their density does not change in any small interval dt, and
80 must remain unaltered through all time.

In brief, there is no tendency for the representative points to
crowd into any special region or regions in the phase-space,
a result which was first enunciated by Liouville, and is generally
known as Liouville’s theorem.

207. Imagine now that any dynamical system is found in-
variably to possess a certain property (e.g. maximum entropy)
after being left to itself for a sufficient time. This might a priori
be for either of two reasons: either that the points in the phase-
space tend to crowd into those regions of the space for which
the property is true, or else that the property is true for the whole
of the space. Liouville’s theorem excludes the first alternative,
so that the second must be the true one. We must now examine
this in some detail,

Normal Properties and the Normnal State

208. Let P denote any property—as for instance maximum
entropy—which the system under consideration may or may not
possess. Let us, as before, represent all possible states of the
system by a collection of points filling the appropriate phase-
space. Let the states in which the system possesses the property
P occupy a volume W, of the space, while those in which the
system does not possess the property P occupy the remaining
volume W — W, of the phase-space. If we choose coordinates and
momenta for the system at random, we are in effect choosing a
point at random in the phase-space to represent the system. The
chance that the system shall possess the property P is ac-
cordingly W/W.

Let us next examine what is the probability that a system initi-
ally selected at random shall have the property P after following
out its natural motion for a time ¢. Imagine the phase-space to be
filled with a cloud of representative points, so close together that
they may be regarded as forming a continuous fluid, and let these
points be distributed initially so that the density of this fluid is
uniform. Each of these points has an equal chance of representing
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the system selected initially at random. Let this cloud of points
move for the time ¢, in accordance with the equations of motion
of the system. Liouville’s theorem shews that at the end of this
time, the fluid will still be of uniform density. Thus after any time
¢t the number of points which represent systems possessing the
property P will be a fraction W,/ W of the whole, and thercfore the
same fraction measures the probability that the system shall
possess the property P after time ¢.

It follows that if the system is found always to possess the
property P after a sufficient time has elapsed, this can only be
because the ratio W;/(W — ) is infinite.

A property P which is such that the ratio W, /(W — W,) is infinite
will be called a ““normal property " of the system, while a system
which possesses all the normal properties of which it is capable
will be said to be in the ‘“‘normal state .

TuE NORMAL STATE

209. So long as a system has only a finite number of coordinates,
the ratio W/(W —W]) corresponding to any property P will
necessarily have a finite value. But in a gas, the number of
degrees of freedom is so large that it may be treated as infinite,
so that it is not surprising that this ratio should become infinite
or zero, since W] and W — W] will in general be functions of the
number of degrees of freedom.

The various properties of the system will, in general, change
with the time, some of them perhaps slowly, some more quickly,
some with extreme rapidity. Let us suppose that a property F
may in general be expected Lo change in a time comparable with
t,, a property P, in a time comparable with #,, and so on. After a
time ¢t which is very large compared with all of the quantities
f1,ts, ... , the system will have had ample time to change all its
properties. In a statistical sense, the influence of the initial con-
ditions will have disappeared; if the representative point started
in peculiar regions of the generalised space, in which any normal
property does not hold, it will have had time to move away from
these. The system may therefore be expected to possess all the
normal properties of which it is capable, and therefore to be in
the normal state.

172
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Complications may arise through the system possessing pro-
perties which are not capable of change at all, or for which the
time of change is infinite or nearly so.

For instance, a system which is perfectly self-contained and
subject to no external influence cannot change its angular
momentum, so that the property of having any particular angular
momentum is one which cannot be acquired or lost with the lapse
of time. In the generalised space, one particular value of the
angular momentum, namely zero, is far commoner than any
other, so that for the property of having zero angular momentum
the value of W/(W — W,) is infinite. Yet the having of zero angular
momentum, although a normal property of the system, is not to
bé regarded as an essential of the normal state; it is not required
by the definition of the normal state, since it is not a property
which the system is capable of acquiring.

On the other hand, if conditions are such that the system can
change its angular momentum, then the property of having the
normal value for its angular momentum must be regarded as one
of the properties of the normal state. For instance, a gas enclosed
in a fixed closed vessel can change its angular momentum, and
it is easily seen that the possessing of zero angular momentum is
one of the normal properties of such a system. Hence in the final
state of the system we must expect the angular momentum of the
gas to be zero.

One property which can never be changed in a conservative
system is that of having a certain value for the energy. Thus in
discussing the normal state, we need only consider systems having
a specified amount of energy. In the same way, if the system has
other quantities or properties which are invariable, account must
be taken of this invariability in specifying the normal state. The
various complications which may arise in this way are somewhat
difficult to discuss in general terms, but are not difficult to treat in
particular cases, as the various examples which occur in the
present book will shew.

The Normal Partition of Energy

210. We shall first consider the normal properties associated
with the partition of energy.
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Let the 2n coordinates of position and velocity (344) now be
denoted by 6,,0,, ...0,,, no distinction in notation being made
between the two, and let us suppose that the energy E can be
divided into separate and distinct parts E,, E,, ... such that E,
depends only on one group of coordinates, say 6,,0,,...6,; E,
depends only on another group, distinct from the former,
04410449, ... 05y, and so on. Also let it be supposed that the
number (s,¢, ...) of coordinates in each of these groups is so great
that it may be treated as infinite. Such a case would for instance
occur if we had oxygen and nitrogen mixed in a closed vessel.
The total energy can be regarded as the sum

' energy of oxygen
+ energy of nitrogen

+energy of containing vessel.
Then

E = E1+E2+ (R =f1(01’ 02: e 03) +f2(0u+l' 0s+2! s 0c+t)+ e
* Let us define the property P as being possessed by the system
when the energy is divided between the various groups of co-
ordinates in such a way that
E, lies within a small range € extending from E, to E, +dE,,
E, ”» . » ” » Ey to E,+dE,, ete.
Then the property P holds throughout that part of the phase-
space for which
fi(6y, 6., ... 0,) lies between E, and E, +dE,, ...... (347)
SoOsi1s Ogygs .. O,y lies between E, and Eg+dE,, ...... (348)
and so on.

The volume W], throughout which the property holds, may be
written in the form

W, =fff...jd0,d02...d0g,,,

where the integration is taken throughout the region defined by
the conditions (347), (348), etc. This again may be written in the
form of the product

W,=(H ...dolde,...do,)(ﬂ ...d0,+1d0,+,...d0,+,)...,

v (349)
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where the first integral is taken within the limits specified by
(347), the second integral within the limits (348), and so on. The
first integral can depend only on E; and dE;, and so must be of
the form F,(E,)dE,. Similarly the second must be of the form
F,(E,)dE,, and so on. Thus W, must be of the form

W, = F\(E)) Fy(L,) ... AE, dE, ... = Fy(Ey) Fy(L,) ... €.

We shall not attempt to evaluate W, directly, but shall attack the

simpler problem of finding for what particular values of E,, E,, ...
W, has its maximum value.

If we slightly change the partition of energy, by altering the
values of E,, I, ... to E,+6F,, E,+E,, ..., but keeping the
ranges dE,,dE,, ... unaltered and each equal to ¢, the change in
log W, is given by

dlog W, = 8log Fy(I,) + &log Fy(E,) + ...
_ dlogF(B) o dlog Fy(F,) ;
=TaE 8E1+——-dE,2——- 0By + ... ... (351)

These changes 0E,, 0E,, ... cannot be anything we please; their
sum must be zero, because the total energy E, + E, + ... must not
change its value. Thus we must have

8E1 = —8E2—8E3—8E‘ T eeny
and equation (351) becomes
e Bl R(E) o
dE, dE, 2
4 {Alog FulBy) _ dlog Fy(Fy)
dE, dE,
If W, is to have its maximum value, this must vanish for all
values of 8E,, 8E,, ..., so that we must have

ﬂ)_gﬂ(_E_'x_) _dlog Fz(Ez) _d IOE_Fa(Ea)
iE, ~ 4B, = dE, = "
The solution of these equations, together with
E=FE+E+E+ ...,
will give the most probable partition of energy for a system of
asgigned total energy E.

dlog W, = {

}8E3+....
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Equipartition of Energy

211. Next suppose that part at least of the system we have had
under discussion consists of the molecules of a gas, these being all
gimilar and » in number. Part of the energy of this system will
be the energy of the translatory motion of these n molecules;
let us identify this with E,, so that

E, = imui+vi+wi+ud+vi+wi+..),
where m is the mass of each molecule, and u,, v;, w;; u,, vy, Ws; ...
are the velocities of individual molecules. We can identify

maty, mvy, mwy, My, mvg, mw,, ete. with the 6,,0,, ... 6, of equa-
tion (349), so that

F(E)dE, = f J' ..d8,d0,...d0, .. (353)

where the integral is taken over all values of 8, 8,, ... 6, for which
E, lies within the specified range of extent d £,.

If the range for F, were from 0 to some assigned value Ej, the
integral could easily be evaluated, for the integration would then
extend throughout the interior of the boundary

2E;
w+vi+ ... = ":1,
or 03+ 03+ ... + 02 = 2mE],

which is a sphere in s-dimensional space. The integration merely
evaluates the volume of this sphere, and since the radius of this
sphere is (2mE’)}, its volume must be C(2mE’)i, where C is a
constant of which the value need not concern us.*

On differentiating this in respect to E], we find that the value
of the integral taken over all values which make E, lie within a
range dF, is

Csm(2mkE,)¥#-1dE,.

This is precisely the quantity we have called F(E,)dE,, so that,
on carrying out the differentiation,
dlog F(E,) 3s—1
—dE,_ - E

m§s

* Actually the value of C is s+ 1)
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We have already identified s with the number of degrees of
freedom of the » molecules to move in space, so that 8 = 3n. If
nis a very large number, the difference between 4s and $s — 1 may
be neglected, and we may write

dlogF(E,) }s in_ 3
T dE, T E,_ E 2

where €, denotes the mean energy of motion 4m(u2+v?+w?) of
a single molecule, of which the value is known to be $RT.
Thus equation (352) assumes the form

dlog F(E,) _ dlogﬁ(ﬂ_) _ 1
" dE, dE, T RT’

Actual molecules may possess energy other than that of this
motion in space—as for instance energy of rotation or of vibra-
tions of their internal structure. Often the energies of such
motions may be expressed as a sum of squares of the coordinates.

In general, if different parts E,, E,,... of the whole energy
consist of s8,t,... squared terms, we may evaluate the most
probable values of E;, E, in precisely the same way as above, and
find that, whatever the physical interpretation of the squared
terms may be, the most probable partition of energy is given, as
regards those parts of the energy for which the energy function is
quadratic, by the equations

E,=3sRT, E,=}tRT, ete.,,  ...... (366)

where s,t,... are the number of coordinates concerned in the
quadratic functions E,, E,, ...

It is proved in Appendix 11 that, as far at least as these parts
of the energy are concerned, the partition of energy expressed by
equations (356) is not only the most likely partition, but also
expresses a ‘‘normal” partition in the sense of §208; that is to
say, this partition is infinitely more probable than any other.

We have accordingly shewn that those parts of a system, say
E,, E,, ..., in which the energy is of quadratic type, will necessarily
tend to the partition of energy specified by equations (356). These
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equations express the Theorem of Equipartition of Energy in its
most general form:

The energy to be expected for any part of the tolal energy which can
be expressed as a sum of squares is of amount }RT for every
squared term in this part of the energy.

The Normal Distribution of Coordinates

212. Not only will there be a normal partition of energy, but
there will also be a normal way for the separate coordinates to be
arranged so as to give this particular energy. For the simple case
of a gas composed of molecules which behave like hard elastic
spheres, this has been shewn to be Maxwell’s law of distribution
which we obtained in the form

f(u’ v, w) dudvdw = Cehmlw+v*3-wtamutagmy-+amw+ag,

- In the present case let us suppose that in addition to its
coordinates and velocities in space z, y, z and u, v, w, the molecule
contains internal motions expressed by additional coordinates
@1, Ps, P, ... Let us suppose that the energy of a molecule is ¢,
this of course being conserved at collisions, and that in addition
to this there are other quantities ¢,, 3, €,, ..., which are conserved
at collisions. Then it is shewn in Appendix 1v that the normal law
of distribution of coordinates is

Ceasi—ttinnm—2s— - dydydzdudvdwdd,dp, ... ...... (358)

If the only quantity which remains constant is the energy, this
reduces to :
Ce?adxdydzdudvdwdeg,dg, ...,  ...... (359)

where 2h replaces a, 80 as to agree with the notation already used,
2h being equal to 1/RT. If certain of the coordinates, say
&1, P2 ... @, enter into the energy € only through their squares, so
that the value of € is of the form

€= 34141+ 10,68+ ... +16,87+ 9D,

where ® does not involve ¢,, ¢, ... @, but only @,.1, Pet2, ... Doy
then the law of distribution may be written in the form

O(e'hﬂnﬁ' d¢1) (e—hﬂﬂ‘a' d¢’) e (e"‘ﬂﬂa’ d¢,) e—2he® d¢,+, . d¢21‘ .
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This shews that there is no correlation between the distributions
of ¢y, Ps, .. §,. The law of distribution of any single coordinate,
say ¢, is of the form

A/"—f’ eMdidg, (360)

the constant being determined from the condition that the inte-
gral, taken from ¢ = — o0 to ¢ = + o0, shall be equal to unity.
The mean value of the contribution from ¢, to the energy is

of course %1, or +RT, as before, and we have

Yt = Yt = Tt = ¥, 8 = Thadi = ... = 32 = BT,

expressing the theorem of equipartition of encrgy in a new form.

THERMODYNAMICS

213. Let us suppose that our gas, containing vessel, etc. are
in their most probable state, specified by the equations
dlog F\(E,) _ dlog Fy( ) _ 1
dE, dg,  ~ T RTT UC
Let the gas now be heated from outside, and suppose that, atter
the gas has again attained its most probable state, we find that
E,, E,, ... have been increased to E,+dE,, E,+dE,,....
With W, defined by equation (350), let us put

P =logW, = log [F\(E,) Fy(E,) ...] +a constant. ...... (362)
Then the heating of the gas changes P by an amount
dlog F\(E,) dlog Fy(E,)
4P = —p B+ — g B, +
Using relation (361) this becomes
1

= (dE1+dEz+ '”)_.R—T’
_ 4
~ RT”

where d@ is the total amount of energy that has been added to the
gas. Thus d Q
= RdP.
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The second law of thermodynamics tells us (§12) that dQ/7T
must be a perfect differential; we now see that it is the differential
of RP where P is defined by equation (362), or again of RlogW,.
According to thermodynamical theory d@/T is equal to d&,
where § is the entropy. We accordingly see that

8 = RP +a constant = Rlog W, +a constant.

We now see that the entropy S is the same thing as P, except
for a multiplying constant R, and an additive constant which is
of no consequence because we are only interested in changesin S.
It is also the same thing as log W, the logarithm of the probability
that the energy of the system under discussion shall be divided
according to the partition

El’ .Ea, sese

We have already seen that the most probable state is one in
which I is a maximum; we may now put this in the form that it
is one in which the entropy is & maximum.

To get a clearer idea of the physical meaning of entropy, let us
suppose that a system consists of only two parts, of energies
E,, E,. Let the total energy E = E, + E, remain unaltered, but
let a quantity of energy d @ pass from the first part E; to the second
part E,, so that the partition of energy is changed from E,, E, to

El - dQ, Ez + dQ.

Let the two parts of the system be at different temperatures
T,, T,. Then the subtraction of energy d@ from the first part of the
system reduces the total entropy by dQ/T;, while the addition of
energy d@ to the second part of the system increases the total
entropy by d@Q/T,. The net gain to the entropy is accordingly
given by 11

If the process is one which occurs in the ordinary course of
nature, in which heat-energy can flow only from a hot body to a
cooler one, 7} is necessarily greater than 7;. Hence in a natural
change dS is positive—the entropy necessarily increases, and &

final steady state is only reached when the entropy has attained
the maximum value which is possible for it.
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Since 8 is equal to Rlog W;, whure W, measures the probability
of a state, this is equivalent to saying that in a natural motion
of a system the probability W, continually increases, and the
system only reaches a final steady state when the probability
W, has reached its maximum value.

Entropy and Probability

214. So far we have defined and discussed entropy as something
associated with.a temperature 7', but temperature has no meaning
except for a system, or part of a system, which is in a steady state.
Entropy has in fact only been defined for a system in a steady
state.

The results just obtained make it possible to remove this
restriction. When parts of the system have specific temperatures
attached to them, we have seen that

S = RlogW, +a constant. ... (363)

But W] has a definite meaning with reference to any partition
of energy in the system, so that we may define a more general
entropy S by equation (363).

Here W] is the volume of that part of the generalised space
which represents systems having the partition in question. This
volume measures, in a sense, the probability that this special
partition shall prevail, so that the entropy is proportional to the
logarithm of the probability.

An increase of entropy is thus associated with an increase of
probability. The law that the entropy always increases means
that a system passes always from a less likely to a more likely
state. The law that the entropy is a maximum in the steady state
means simply that the steady state is the state of maximum
probability.

We have so far thought of the steady state and the final state
as the same thing, but we now see that strictly speaking the two
are not identical. The value of W, the volume or probability,
which corresponds to the steady state is far larger than that which
corresponds to any other state. If the number of molecules in the
gas were infinite, it would be infinitely larger. With the number
of molecules in the gas enormously large, it is enormously larger,
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but not infinitely so. If W, is the probability of the state of
maximum entropy, and W, that of any other specified state,
W, /W, will be very large but not absolutely infinite.

Thus if a gas starts in the second state there is a very large
probability that, after a sufficient time, it will be found in the
steady state. There is also a finite. although very small, prob-
ability that if it starts in the steady state it will be found after a
time ¢ in the second state. Thus the increase of entropy is only a
probability, not a certainty, although the more we increase the
number of molecules in the gas, the nearer this probability comes
to unity.

If the system is allowed to undergo its natural changes for an

infinite time, it is almost a certainty that at some time it will pass
through the second state. This must be so unless the trajectories
in the generalised space all avoid the region of volume W,, and
any such avoidance would be contrary to Liouville’s theorem.
* We may, then, say that an increase of entropy is not a matter
of certainty, but only of very high probability. And if the system
continues in existence for long enough, it is certain that at some
time a decrease of entropy will occur.

215. When applied to concrete instances, these results seem at
first sight somewhat startling. To borrow an illustration from
Lord Kelvin, if we have a bar of iron initially at uniform tem-
perature, and subject neither to external disturbance nor to loss
of energy, it is infinitely probable that, given sufficient time, the
temperature of one half will at some time differ by a finite amount
from that of the other half. Or again, if we place a vessel full of
water over a fire, it is only probable, and not certain, that the
water will boil instead of freeze. And moreover, if we attempt
to boil the water a sufficient number of times, it is infinitely
probable that the water will, on some occasions, freeze instead of
boil. The freezing of the water, in this case, does not in any way
imply a contravention of the laws of nature: the occurrence is
merely what is commonly described as a *‘ coincidence”’, exactly
similar in kind to that which has taken place when the dealer in
a game of bridge finds that he has all the cards of one suit in his
own hand.

The analogy of the distribution of a pack of carde will help us
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to see further into the problem presented by the entropy of a gas.
In dealing cards, it is just as likely that the dealer will have the
thirteen spades as that he will have any other thirteen cards that
we like to specify. The occurrence of a hand composed of thirteen
spades might, however, be justly regarded as a ““coincidence”,
whereas the occurrence of any specified hand in which the cards
were more thoroughly mixed, could not reasonably be so re-
garded. The explanation is that there are comparatively few ways
in which a hand which is all spades can be dealt, but a great
number in which a mixed hand can be dealt. '

A similar remark applies to the result of putting cold wat
over a hot fire. There are comparatively few ways in which th
fire can get hotter, and the water colder, but a great many waysi
which the fire can impart heat to the water—a proposition which
becomes obvious on looking at it in terms of the phase-spacc.
Speaking loosely, it is just as likely that the water will freeze as
that it will boil in any specified way. There are, however, so many
ways in which the water can boil, all these ways being indis-
tinguishable to us, that we can say that it is practically certain
that the water will boil.

The increase of entropy, then, simply means the passage from -
a more easily distinguishable state to a less easily distinguishable
state, or, in terms of the generalised space, from a less probable
to a more probable configuration.

216. In general, the energy of a dynamical system is the sum
of two parts—kinetic and potential. We see from equations (362)
and (363) that the entropy consists of two parts, the former
depending on the energy of the molecules of the gas, and the
latter on their positions. So far we have considered only varia-
tions in the first term, resulting from inequalities in the tempera-
ture of the gas. Similar remarks could, however, be made about
the variations of the second term, these denoting inequalities in
the density of the gas. A single illustration, suggested by Willard
Gibbs,* will, perhaps, make clear what is meant.

If we put red and blue ink together in a vessel, and stir them
up, common experience tells us that, if the inks differ initially in
nothing more than colour, the result of stirring is & uniform violet

* Elementary Principles of Statistical Mechanics, p. 144,
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ink. Here we have the passage from a more easily distinguishable
to a less easily distinguishable arrangement of coloured inks. If,
however, we start by stirring a uniform violet ink composed of a
mixture of red and blue inks, then it is possible, although not
probable, that the eflect of the stirring will be to separate the inks
of different colour, so that one half of the vessel is occupied solely
by red, and the other solely by blue ink. And from the dynamical
standpoint it is no less probable that this should occur, than that
we should be able to start stirring inks which were separated
initially as regards colour.

217. With reference to this subject, some well-known remarks
of Maxwell* are of interest. He says: ‘“One of the best established
facts in thermodynamics is that it is impossible in a system en-
closed in an envelope which permits neither change of volume
nor passage of heat, and in which both the temperature and the
pressure are cverywhere the same, to produce any inequality of
temperature or of pressure without the expenditure of work.
This is the second law of thermodynamics, and it is undoubtedly
true so long as we can deal with bodies only in mass and have no
power of perceiving or handling the separate molecules of which
they are made up. But if we conceive a being whose faculties are
so sharpened that he can follow every molecule in its course, such
a being, whose attributes are still as essentially finite as our own,
would be able to do what is at present impossible to us. For we
have seen that the molecules in a vessel full of air at uniform
temperature are moving with velocities by no means uniform
though the mean velocity of any great number of them, arbitrarily
selected, is almost exactly uniform. Now let us suppose that such
a vessel is divided into two portions 4 and B, by a division in
which there is a small hole, and that a being, who can see the
individual molecules, opens and closes this hole, so as to allow
only the swifter molecules to pass from 4 to B, and only the
slowezr ones to pass from B to A. He will thus, without expendi-
ture of work, raise the temperature of B and lower that of 4, in
contradiction to the second law of thermodynamics.”

Thus Maxwell’s sorting demon could effect in a very shdrt time
what would probably take a very long time to come about if left

* Theury of Heat, p. 328.
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to the play of chance. There would, however, be nothing contrary
to natural laws in the one case any more than in the other.

FLUCTUATIONS

218. Formula (358) or (359) shews that when no external
forces act on a gax, the normal state is one in which the density is
uniform throughout. In this state, and no other, the entropy is
A maximum.

Nevertheless, we saw in §80 how the number of olecules in
any small volume of the gas must continually fluctuate ak
molecules entcr or leave the volume. The entropy, then, car\
never be permanently equal to its maximum value; there must;
he continual fluctuation below and up to this value, even when .
agasisina completely steady state. The phenomena wementioned
in § 215, as for instance the freezing of a kettle of water put over
a fire, result from fluctuations of this kind.

To study these fluctuations in detail, let us fix our attention
on a small element of volume £ in a gas of N molecules, and let
12 be one sth part of the whole volume of the gas. In the state of
maximum entropy, the volume 2 will of course contain one sth
part of all the molecules, namely, N/s, which we shall denote by «.
We proceed to examine how the actual number will fluctuate
about its mean value n.

Since all positions in the gas are equally likely for each molecule
(§ 82), the chance that any particular molecule 4 shall be inside 2

.1 . . s .
at any specified instant is p the chance of its being outside is

1 —;1-. Thus the chance that a group of p selected molecules
A, B, 0, ... shall all be inside, while the remaining N — p molecules
are all outside, is I\# 1\N-»

CEGH

Such a group of » molecules can be selected out of the N
molecules of the gas in

Nl NWN-1)(N=2)..N-p+1)
p!(N-p)! p!
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ways, 80 that the whole chance Q that there shall be p molecules
‘inside £, and the remaining (V — p) outside, is )
-1 -2)...(N- N
Q= NN-1)(N ‘) N-p+ 1)(_1_)"(1_1) *
p! 8

8
If 2 is only a small fraction of the whole volume of the gas, s will
be large, and p small compared with N. In these circumstances,
we may replace N(N¥N —1)...(N —p+1) by N7, and the value of

@ becomes .
o (37

This is the probability that the volume £ shall contain p
molecules in place of its average number n. If p is itself a large
number, although still small compared with N, we can express
this probability in a simpler form by using Stirling’s approxi-
mation for p!, namely

Equation (364) now becomes
Q=v27p G)" S (365)

Let us now put p = n+4, so that & is the excess of molecules
in 2 caused by fluctuations about the mean. Taking logarithms
of both sides, equation (365) becoraes

log @ = 1og~/‘z‘n'5—(n+a)1og(1 +%)+a

o 2
_-.-_-log\/27rp—(n+6‘)(%—§%—z+...)+3

. = log2mn— g—n + terms of higher order in &,

Qnthat _op
Q =2mme . - eeer(368)

JRT 18
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This gives the chance that the number of molecules in the volume
£2 shall differ by & from the average valué n. Or, if we divide up
the whole gas into “cells” of volume £, it gives the proportion
of the whole number in which there are # + 8 molecules.

From the integrals given in Appendix v1 (p. 306), we readily
find that the mean numerical value of & is 0-798,/n, while the
mean value of 42 is exactly n. Thus as n increases, & increases as
N

219. An average cubic millimetre of air at ordinary pressure
contains 2-7 x 10!¢ molecules, so that the average fluctuation i
about 1-3 x 108 molecules—hundreds of millions of molecules i
excess or defect which, however, form only 0-0000005 per cent
of the whole. At a cathode-ray tube pressure of 0-001 mm., a
cubic millimetre contains only about 4 x 101° molecules, so that
the average fluctuation is about 200,000 molecules and there may
be appreciable variations of density over lengths comparable
with a millimetre. A gas which is near to its critical point is
abnormally sensitive to such density variations, which now
shew themselves optically, giving rise to a characteristic opale-
scence. From measurements on this phenomenon also, estimates
of Loschmidt’s number have been made, ranging from
6 x 102 to 7-7 x 10%.* While these cannot claim a high degree of
accuracy, they suffice to shew that the explanation in terms of
fluctuations is correct.

* 8. E. Virgo, Science Progress. 108 (1933), p. 634.



Chapter X1
CALORIMETRY AND MOLECULAR STRUCTURE

Specific Heats

220. A brief account of the problem of calorimetry has already
been given in §§ 20, 21 (p. 33). We proceed now to study the
problem in more detail.

Calorimetry

Let us suppose that the pressure of a gas is known in terms
of its volume and temperature, so that

p =f(@,T). veeern(367)
As in §12, the equation of energy is
dQ = NdE +pdv. ... (368)

Specific heat at constant volume. If the volume v is kept constant
while the heat d@ is absorbed, we may put dv = 0, and the equa-
tion of energy becomes _

dQ = NdE.

If O, is the specific heat at constant volume—i.e. the heat re-
quired to raise the temperature of the gas by one degree—then
the amount of heat required to raise the mass Nm through a
temperature-difference d7 will be C, NmdT. Changing to units
of energy, the number of ergs needed to raise the temperature by

dT will be
JC,NmdT,

where J is the mechanical equivalent of heat. This must then be
the value of d@Q, or of NdE. Hence we have, as the value of C,,
, 1 dE
o= Fmar
Specific heat at constant pressure. If the pressure is kept con-
stant while the heat d@ is absorbed, both v and 7' change, so that
we must not put dv = 0 in equation (368). There is a change of
volume dv which is related to the change of temperature d7
. 18-2
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through the restriction that the value of p, as given by equation
(367), shall remain unaltered. In fact we have the general

formula
_ (o op
dp = (5;)dv+ (a—T)dT,

so that when dp = 0,
_op/oT
‘op[ov

Thus when the heat d@ is absorbed at constant pressure
(dp = 0), the equation of energy becomes

dv = daT.

= NdE—p op/oT
dQ = NdE B[ aT.

If C,, is the specific heat at constant pressure, this is equal to
JC, NmdT, so that

_n__P [
Co=Co~ TNm op/ov

Specific Heats of a Perfect Gas

221, If the gas is perfect, p = NRT /v, whence we readily find
that
Bp,’aT v NER
epjov — T p°

and the formulae for the specific heats become

1 dE

01, = m E?i‘ A assses (369)
R

Op = 0,,+m, Cieeee (370)

the formulae already obtained in §20.

Molecular Structure

222. Experiment shews that for many gases C, and C, are
approximately independent of the temperature through a con-
siderable range of temperatures and pressures in which the gas
behaves approximately as a perfect gas. This, as is shewn by a
reference to equation (369), must mean that dZ/d 7' is a constant,
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and therefore that the mean energy of a molecule of the gas stands
in a constant ratio to the translational energy. As in §21, let us
denote this ratio by (1+ f), so that f is the ratio of internal to
translational energy. Then

E=Q1+p3RT, ... (371)
50 that gg = 3R(1+5). veere(372)
Equations (369) and (370) now become
C=H+A, (379)
G=D+i0+A e, (374)
whence, on division,
O 142 (375)
ol sisp 000

The quantities dZ/dT and g (the two being connected by rela-
tion (372)) can only be evaluated when the internal structure of
the molecule is known. We have not sufficient knowledge of this
internal structure to evaluate these quantities directly, but their
values can to some extent be determined from a comparison of
the specific heat formulae and the experimentally determined
values of the specific heats, and the values obtained in this way
provide a basis for the discussion of the structure of molecules.

As an example of this procedure, we may examine the case
of air which for the moment, as frequently in the kinetic theory,
may be thought of as consisting of similar molecules.

For v, the ratio of the specific heats, under a pressure of 1
atmosphere, the following values have been obtained by Koch
and others:*

Values of ¥ for air at 760 mm. pressure:
6=-1793°C,, v = 1-405,
6= 0°C., y=1404,
6= 100°C. y = 1-403,
6= 500°C., y=1309,
6= 900°C., y = 1-39.%

* Kaye and Laby’s Physical Constants (1936).
t Value given by Kalihne.
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These numbers shew that at this pressure y is almost inde-

pendent of the temperature, and approximately equal to 1%.
Equation (375), namely

2
y=1+ m sy esees .(376)
now shews that § = §.
At higher pressures the value of y is by no means constant, asis
shewn by the following observations by Koch.*

Values of y for Air at High Pressures

6=-179-3°C. 0=0°C.

p= 1 atmos. v = 14056 y = 1404
25 1-567 1-47

100 ,, 2-21 1-66 -
200 ,, 2-:33 1-85

223. Generally speaking, it is found that for monatomic gases,
and for the more permanent diatomic gases, there exists a range
of the kind we have found for air, within which the specific heats
remain approximately constant. But in the case of more complex
gases, it frequently happens that no such range appears to exist.

The table below gives observed values of y for a number of the

more common gases of both types. The third column contains
‘values of # calculated from formula (376), but it will be re-
membered that these values have no obvious physical meaning
except within the range in which the specific heats remain
approximately steady.

The figures in this table, in conjunction with a large mass of
other experimental evidence, shew that the value of £ is approxi-
mately equal to zero (y = 1%) for the monatomic gases—mercury,
krypton, argon and helium. It is nearly equal to §(y = 1%)
throughout the steady range for a number of diatomic gases—
hydrogen, oxygen, carbon-monoxide and others. When we pass
to temperatures below the steady range, £ is found to decrease
with great rapidity.

¢ Ann. d. Physik, 26 (1908), p. 551.
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|
'
i
{
|
i
.

Gas Y b 38 Observer
Monatomic gases
Helium at 18°C. 1-63 0:06 | 0-19 | Behn and Geiger
Helium at —180° 1-667 | 0:00 | 0-00 | Scheel and Heuse
Argon at 0° 1-667 | 0-00 | 0-00 | Niemeyer
Neon at 19° 1642 | 0-04 | 0-13 [ Ramsay
Krypton at 19° 1-689 |—-0-04 |~0-13 »»
Xenon at 19° 1-666 | 0-00 | 0-00 "
Mercury vapour at 310° | 1-666 | 0-00 | 0-00 | Kundt and Warburg
Diatomic gases
Hydrogen at 16° 1-407 [ 0-64 | 1-90 | Scheel and Heuse
Hydrogen at — 76° 1-453 0-47 1-41 »
Hydrogen at —181° 1-597 | 0-12 | 0-37 »
Nitrogen at — 20° 1-400 | 0-67 | 2-00 »
Nitrogen at —161° 1-468 0:42 1-27 »
Oxygen at 20° 1-399 | 067 | 2-01 »
Oxygen at —176° 1-416 | 0-60 | 1-81 »
Oxygen at —181° 1-447 | 049 | 1-48 ”»
Nitric oxide 1-394 | 0-69 | 2-08 | Masson
Chlorine 1-333 1:00 | 3-0 [ Strecker
Bromine 1-293 1-:27 | 3-8 »
Iodine 1203 | 1-27| 38 "
Hydrochlorie acid (HCl) | 1-40 067 | 20 »
Bromine iodide (Br I) 1:33 1-00 30 »
Chlorine iodide (Cl I) 1-317 | 110 | 33 “
Polyatomic gases
Water vapour 1-305 1-19 | 3-56 | Makower
Carbon-dioxide 1-:300 | 1-22 | 3:67 | Lummer and
Pringsheim
Nitrogen peroxide 1-31 1-15 | 3:45 | Natanson
(NO, at 150°)
Nitrous oxide (N,0) 1-324 1:06 | 3-18 | Leduc

The fourth column gives the value of 38, and we notice a
tendency for these values to cluster round integral values, except
at low temperatures. These values are usually 0 for monatomic
gases, 2 and 3 or 4 for diatomic gases; values near to 3f = 1 are
conspicuously absent. General dynamical theory gives some
indication of what this may mean.

224. The energy of a molecule will consist always of three
squared terms representing the kinetic energy of motion, to
which may be added any number of other terms representing

energy of rotation, of internal vibration, etc.

If these latter terms are » in number, the average value of each
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is $ RT, which is also the average value of each squared term in
the kinetic energy of motion. Thus

_InRT =
ﬂ_—gR—@T‘_E’

so that n = 3f. This is the number tabulated in the fourth
column on p. 279.

This shews why 3/, which represents the number of degrees
of freedom, ought always to be integral. The difficulty now is to
understand how it is possible for n to have any other than integral
values.

Let us examine different kinds of gas in turn.

Monatomic Gases

225. The six monatomic gases in the table—mercury, xenon,
krypton, argon, neon and helium—all have very approximately
y=1%, =0, and » = 0. For these gases, then, there is no
appreciable amount of molecular energy except that of transla-
tion. This seems to indicate that the molecules of these gases must
behave at collision like hard spherical bodies. If they did not do

so, an appreciable fraction of the molecular energy of translation .

would be transformed into some other form of energy at each
collision. In these gases the molecule is of course identical with
the atom.

Although the atoms of these substances behave like hard
spherical bodies at collision, there is abundant evidence that they
have a highly complicated internal structure. The helium atom
for instance is known to consist of three parts—a positive nucleus,
which is identical with the a-particle of radioactivity, and two
negative electrons. The helium atom made up in this way must,
as a matter of geometry, have six degrees of freedom in addition
to its three degrees of freedom of motion in space.

The explanation of why the specific heats of such an atom could
be accurately obtained by taking £ = 0 in formulae (373) and
(374) presented for many years a problem of the utmost gravity.
It is now generally accepted that no satisfactory explanation can
be given in terms of the classical system of dynamics. In recent
years the new system quantum-dynamics has provided an ex-

—
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planation not only of the behaviour of the monatomic molecule
but of many other problems of specific heats in addition. This
is, however, outside the range of the present book.

After n = 0, the next value theoretically possible would be
n = 1, giving v = 13. No gas is known for which # and ¥ have
these values, even approximately. This provides additional con-
firmation of the truth of the kinetic theory, since no molecular
system could conceivably have its energy expressible as the sum
of four squared terms; either a rotation or a vibration would
necessarily introduce at least two squared terms into the energy,
beyond the three terms rcpresenting motion in space. Thus a
molecule for which » = 1is an impossibility, and the valuey = 1%
cannot be expected to occur for any type of gas.

Diatomic Gases

226. After n = 0, then, the next value which is theoretically
possible is n = 2, giving ¥ = 1§. The table shews that » and y
have very approximately these values for hydrogen, nitrogen and
oxygen at ordinary temperatures. This indicates two squared
terms in the energy which may either represent a vibration of
the two atoms relative to one another along the line joining
them, or a possibility of a rotation. We must notice that in
general the energy of rotation of a rigid body will be represented
by three squared terms, but the energy of rotation of a body
symmetrical about an axis may be represented by only two, no
rotation about the axis of symmetry being set up by collisions.

Whatever is the true physical origin of these two terms, the
table on p. 279 shews that their energy falls off rapidly as the
temperature falls, particularly in the case of hydrogen. Eucken
and others* have found experimentally that as the absolute zero
of temperature is approached, the molecules of diatomic gases
tend to lose all energy except that of translation, and so behave
like the molecules of monatomic gases, with the values # = 0 and

y=1%

* Eucken, Sitzungsber. Berlin Akad. d. Wissensch. 6 (1912), p. 141;
Scheel and Heuse, Ann. d. Phys. 40 (1913), p. 473; Schremer, Zem I
Phys. Chem. 112 (1924), p. 1.
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More complex Gases

227. Ttis difficult to discover any law or regularity in the values
of » and ¥ for more complex gases. Various attempts have been
made to conneot the values of n and y with the number of atoms
in the molecule, but it is now clear that no general law can be
expected to relate y with the number of atoms, independently
of the nature of the atoms. For instance, Capstick* found the
following values for the methane derivatives:

y n+3
Methane CH, 1-313 6-4
Methyl chloride CH,CI 1-279 7-2
Methylene chloride CH,Cl, 1-219 9-0
Chloroform CHCI, 1-154 13-0
Carbon tetrachloride CCL 1-130 15-4

We sec that the introduction of the series of chlorine atoms
increases n very perceptibly at every step, without increasing the
number of atoms in the molecule. Capstick found a similar law
for paraffin derivatives; the second chlorine atom introduced
into the molecule produced a large change, although the first
may or may not have done so. ‘

A similar result was obtained by Strecker,} who found that
hydrochloric, hydrobromie, hydriodic acids all have approxi-
mately the same values as hydrogen, namely

y=14, n+3=35,

while for chlorine, bromine and iodine, the values are approxi-

mately
Chlorine v=1333 n+3=6,

Bromine, Iodine y = 1-293 n+43 = 6-8.
Similarly for the iodides of bromine and chlorine,
Bromine iodide y =133 2+3=6,
Chlorine iodide 7y = 1-317 n+3 = 6-3.
These figures shew that one halogen can be put in the place
of hydrogen without producing any difference in the values of v

* Phil. Trans. 186 (1895), p. 564; 185 (1894), p. 1.
 Wiedemann’s Annalen, 13 (1881), p. 20 and 17 (1882). p. 86.
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and n, but the substitution of the second halogen atom causes a
marked increase in n.

MOLECULAR AGGREGATION

228. The discussion of the physical properties of gases given in
this and the preceding chapters has been based upon the supposi-
tion that a gas can be regarded as a collection of separate
dynamical systems, namely molecules, each of which retains its
identity through all time. As a close to this discussion, we may
examine what changes are to be expected if the supposition is
regarded as an approximation to the truth only, and not as being
wholly true. We shall first consider what complications are intro-
duced by the possibilities of molecular aggregation, leaving the
discussion of the converse process of dissociation until later.

We again simplify the problem by regarding molecules as
point-centres of force, acting on one another with a force de-
pending only on their distance apart. The chance of finding a free
molecule ot class A inside an element of volume dzdydz is now

Ae e dydvdwdzdydz, 0 ... (377)

while the chance of finding two molecules of classes A and B in
adjacent elements dzdydz and dx'dy’'d?’ is

Aze-tmict+e)—20¥ gy dy dw dx dy dzdu'dv'dw'dx'dy’dz’,

where ¥ is the mutual potential energy of the two molecules.

If we replace the element dz’ dy’ dz' by a spherical shell of radii
r and r + dr surrounding the centre of the first molecule, this last
expression becomes

A2e—hmic'+eN-20¥dy, dy dwdu'dv'dw’ 4mridr dx dy dz,
¥ being a function of 7. If we use the transformations of § 109,

u= }(u+'u:’), etc., a=u'—u,ete,
and write
u3+vﬂ+w2=c$, a2+ﬁ3+72= 'VZ,
we can transform the foregoing expression into
A2 gudvdwdrdydze— -0 dodf dy Anrdr.
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The first factor after the A? expresses the law of distribution
of translational velocities for a double molecule. It is of course
the same as if each double molecule were a permanent structure of
mass 2m. The remaining factors express the distribution of those
coordinates which may be regarded as internal to the double
molecule.

229. So long as the motion of a double molecule is undisturbed
by collisions, c? remains constant, so that the energy equation
shews that $mV?2+ 2% remains constant. The orbits which the
component molecules can describe about their common centre gf
gravity fall into two classes, according as they pass to infinity
not. Analytically these two classes are differentiated by the sig
of }mV?+ 2%, Double molecules for which }mV?2+ 2 is positive
consist of two molecules which have approached one another from',
outside each other’s sphere of action, and which after passing’
once within a certain minimum distance of each other, will again
recede out of each other’s sphere of influecnce. On the other hand,
double molecules for which mV?2+ 2 is negative consist of two
molecules describing orbits about one another, these orbits being
entirely within the two spheres of action, and this motion con-
tinues except in so far as it is interrupted by collisions with other
molecules. Clearly double molecules of the first kind are simply
pairs of molecules in ordinary collision. In discussing molecular
aggregation we must confine our attention to double molecules
of the second kind, i.e, those for which {mV?+2¥ is negative.
Such double molecules cannot be produced solely by the meeting
of two single molecules. It is necessary that while the single
molecules are in collision something should happen to change the
motion—in fact to change the sign of 3mV?2+ 2¥. This might
be effected by collision with a third molecule, or possibly if
}mV?2+ 2% were small at the beginning of an encounter, sufficient
energy might be dissipated by radiation for $mV?+ 2¥ to become
negative before the termination of the encounter. We may dis-
regard the consideration of this second possibility for the present,
with the remark that if this were the primary cause of aggrega-
tion, the equations with which we have been working would not
be valid, since they rest upon the assumption of conservation of
energy for the molecules alone.
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Integrating expression (377) over all values of u, v and w, we
find that v;, the molecular density of uncombined molecules, is

given by o\
Vy = A(’Fn) e aeenea (379)

Similarly, by integration of expression (378), we find for »,
the molecular density of double molecules,

3
Vg = Az(ﬁ%) J. .”.J. e~ MimV+2¥1da dfdy daridr
}
- Az(_”_) J' f MM 167222 qV dr, ... (380)
2hm

in which the integration extends over all values of V and r for
which }mV2+ 2y is negative.
The total number of constituent molecules per unit volume is

V=v+2v+3r+...

= vl(l +:/A§er‘mmy'+’m 1672V r2dV dr+ A2%(...) + ) s
...... (381)
so that if ¢ denotes the fraction of the whole mass which is free,
¢=2= 1 e (382)

v +% f ¢-MAmPL 2P 16728 2 d Yy 4 ..

Eliminating 4 from equations (379), (380;, etc., we obtain a
series of relations of the form

vy = vié(T) }
vy = BY(T), eto.}’

where ¢, ¥, ... are functions of the temperature only. Equations
of this type have formed the basis of practically every theory ot
aggregation and dissociation.*

# Compare, for instance, Boltzmann's Theory, Wied. Ann. 32, p. 39,
or Vorlesungen tber Gastheorie, 2, § 63; Natanson's Theory, Wied. Ann.
38, p. 288, or Winkelmann's Handbuch d. Physik, 3, p. 725, or the theory
of J. J. Thomson, Phil. Mag. [5] 18 (1884), p. 233. These theories are
based on widely different physical assumptions, but all lead to equations
of the same general form as (403). The difference of the physical assump-
tions made shews itself in the different forms for the functi~ns ¢(T'), ete.
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" To study the variation of aggregation with temperature a
knowledge of the exact form of the functions ¢(T'), (T, etc. is
necessary, but it is possible to examine the dependence of aggre-
gation on density without this knowledge.

Dependence of Aggregation on Density

230. For a number of substances, it is probable that no greater
degree of aggregation need be considered than that implied in the
formation of double molecules. For such substances

P = v+ 2v,.
Neglecting the Van der Waals corrections, the pressur* is
given by (equation (56))

P = RT(,+v,) = }RT(v+v,) = ARvT(1+q), ...... (3*4)
where q is introduced from equation (382). Thus it appears that
¢, the fraction of the whole mass which is free, can be readily
obtained from readings of pressure and temperature.

The following table gives the values of 1—g calculated in this

way from the observations of Natanson* on the density of
peroxide of nitrogen:

Aggregation of NO,

Value of 1—¢ = 2:’

Temp.

p=115mm.|p = 250 mm.|p = 580 mnm. p=760mm.'

6 =—12-6°C. 0-919 — — —
0= 0° 0-837 0-901 — —
0= 21° —_ —_ 0-824 —
= 49.7° 0-253 0-370 0-550 —_
6= 1737° 0-084 0-149 0-263 —
6= 99-8° 0-031 0-050 0-093 0-117
6= 151-4° Inappreciable

Here the single molecule is NO,, the double molecule is N,0,, and
more complex structures are supposed to occur only in negligible
amounts. The value of 1 —g¢ is 2v,/v, and so measures the propor-
tion by mass which occurs in the form N,0,.

* Recueil de constantes physiques, p. 168.
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Equation (383) predicts that the ratio of vy to »¥ ought to be
the same for all readings at the same temperature. We have from
this equation

D
12 =AT gy 2ng(T),

KR

1

so that %(;-- 1) = (Vil) (20, $(T)] = 2vg(T).

Substituting the value of v given by equation (384), we obtain

¢(T)
1= = 4 g

. 1
shewing that the ratio

—qg2
qg ought to be the same for all readings

at the same temperature.

The following table, calculated from the observations in the
table of p. 286, will shew to what extent this prediction of theory
is borne out by experiment:

Aggregation of NO,
i
Value of — = 495,”')
T R
'emp. — .
p=115mm.|p = 260mm.| p = 580 mm. | » = 760 mm.
0 =49-7°C. 0-689 0-608 0-680 —
0 ="1737° 0-167 0-152 0-145 —
8 = 99-8° 0-056 0-043 0-037 0-037

Dependence of Aggregation on Temperature

231. The degree to which the aggregation varies with tempera-
ture depends on the functions ¢(T'), ¥(T), ete. introduced in
equations (383). From equations (379) and (380), we find

$(T) =22 = ( 2’1':)' j f e MMV 1672V 202 dV dy. ......(385)

At the highest temperatures (4 very small) the value of ¢(7')
will be clearly insignificant, but the presence of the exponential
in formula (385) suggests that after ¢(7T) has once become
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appreciable, it must be expected to increase rapidly with falling
temperature.

Our knowledge of the structure of matter is not sufficient to
enable us to evaluate ¢(7'), as given by equation (385), with
precision. Progress can only be made by the introduction of
simple hypotheses as to the interaction of molecules, which may
prove to lead to results near to the truth.

Boltzmann*imagined that potential energy exists between two
molecules only when the centre of the second lies within a small
and clearly defined region which is of course fixed relative to the
first, and that when the second molecule has its centre within
““sensitive region”’, the potential energy has always the same
value . This region does not necessarily consist of a spheridal
shell, but if & denotes its total volume, equation (385) may he
written in the form

]
ST = (’%’r‘) we-2h® f e-imP 472 g,

where © répla.ces the integral 47 f r2dr, which has represented the

extent of the ‘sensitive region’ in our analysis. If we replace
thmV? by 22, this equation may be expressed in the form ‘

(T = % e‘”""joe“"’:vzdr. ...... (386)

The upper limit of integration is determined by the condition
that ymV?2+ 2% shall vanish, and is therefore given by 2= — 2h ¥,
the value of ¥ being necessarily negative. If we put — ¥ = Rp,
so that B is positive, the value of £2is 2hRf or §/T.

For some substances ¥ may be so large that a good approxima-
tion can be obtained by taking the integral in equation (386) be-
tween the limits = 0 to 2 = co. The integration is now readily
effected, and we find

S(T) = we—h¥ = we=¥IRT = eI,
in which ¥ is negative. The degree of dissociation is then given by
1 dpo ]
o | BT ef
® Vorlesungen tiber Gastheorse, 2, Chap. VL.
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which is Boltzmann’s formula for molecular aggregation and
dissociation.

An almost exactly identical treatment of the problem was
given by Willard Gibbs.*

The following table contains the densities of peroxide of
nitrogen observed at various temperatures by Deville and
Troost,{ the pressure being one atmosphere throughout, and also
the values calculated from equation (387).

Aggregation of NOg
Temp. Density Density Temp. | Density Density

°C. (observed)| (calc.) °C. |(observed)| (calc.)
183-2 1-57 1-592 80-6 1-80 1-801
154-0 1-568 1-697 70-0 1-92 1-820
135-0 1-60 1-607 60-2 2-08 2:087
121-56 1-62 1-622 49-6 2-27 2-256
111-3 1-65 1-641 39-8 246 2-443
100-1 1-68 1-676 36-4 2:53 2:5624
90-0 1-72 1-728 267 2:65 2:676

Continuity of Liquid and Gaseous States

232. At very high temperatures, the series (381) reduces to its
first term, so that ¢ = 1, and there are no molecules in permanent
combination.

At lower temperatures h is greater, so that not only is 4 greater,
but the exponential e-*limV*+2¥} in which it will be remembered
that the index is always positive, is also greater. The relative
importance of the later terms of the series (381) is therefore
greater. Finally, we reach values of the temperature for which 4
has so great a value that the series (381) becomes divergent.
According to our analysis the molecules tend to form into clusters
at this point, each containing an infinitely great number of mole-
cules, and, ultimately, into one big cluster absorbing all the
molecules. By the time this stage is reached the analysis has
ceased to apply, as the assumption that the molecular clusters are
small, made in § 230, is now invalidated. It is, however, easy to

* Trans. Connecticut Acad. 3 (1875), p. 108 and (1877), p. 343;

Silliman Journal, 18 (1879), p. 277. Also Coll. Works, 1, pp. 56 and 372.
t Comptes Rendus, 64 (1867), p. 237,

1KT 19
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give a physical interpretation of the point now reached: obviously
it is the point at which liquefaction begins, and the collection of
molecular clusters is a saturated vapour.

The series (381) may be regarded as a power series in ascending
powers of 4. Thus for a given value of %, say &, there is a single
value of 4, say A4,, such that the series is convergent for all values
of 4 less than A4, and is divergent for all values of A greater than
Ay In other words, corresponding to a given temperature, there
is a definite density at which the substance liquefies. This of course
is the vapour-density corresponding to this temperature. As
increases, A4 will clearly decrease, and conversely, so that a
increase of pressure is accompanied by a rise in the boiling-poin
of the substance.

Since 4 depends on v, the relation between corresponding\‘
values h,, 4, which has just been obtained may be cxpressed in

the form
fob, Ty=0, ... (388)

expressing the relation between v and 7 at the boiling-point of a
liquid.
The Critical Point

233, For very small values of /, v, and v become identical, so
that the series (381) cannot become divergent. Thus for very high
values of T' equation (385) can have no root corresponding to a
physically possible state. If T, is the lowest value of 7' for which
equation (385) has a root, then 7', will be a temperature above
which liquefaction cannot possibly set in, no matter how great the
density of the gas; in other words, 7, is the critical temperature.

Ordinary algebraic theory tells us that there must be two
coincident values of v given by equation (385) to correspond to
the critical temperature 7, agreeing with what is already known
as to the slope of the isothermals at the critical point.

Pressure, Density and Temper?zture

234, It will now be clear that when a gas or vapour is at a tem-
perature which is only slightly greater than its boiling-point at
the pressure in question, it cannot be regarded as consisting of
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single molecules, but must be supposed to consist partly of single
molecules and partly of clusters of two, three or more molecules.
If m is the mass of a single molecule, and if v,, v, v, ... have the
same meaning as before, the density is given by

P =m(vy+2vy+3v3+...).

In calculating the pressure, each type of cluster must be
treated as a separate kind of gas, exerting its own partial pressure.
We accordingly obtain for the pressure, as in § 230,

_ 1 _PRT Vl+V2+V3+...
P=gphtvtyat.) =0 (v1+2V,+3va+...)'

From a comparison of this equation with equation (383),
remembering that v,, v,, ... are functions of 7'and p, it is clear that
necither Boyle’s law, Charles’ law nor Avogadro’s law will be
satisfied with any accuracy.

235. The observed deviations from the laws obeyed by a per-
fect gas must of course be attributed partly to aggregation, as has
just been explained, and partly to the causes which have already
been discussed in Chap. 111. The two sets of causes are not, how-
ever, altogether independent; so that it is not sufficient to con-
sider the effects separately, and then add. The state of the question
is, perhaps, best regarded as follows.

The effect of the forces of cohesion is too complex for an exact
mathematical treatment to be possible. We have therefore, in
Chap. 1 and the present chapter, examined their effect with the
help of two separate simplifying assumptions. In Chap. i,
following Van der Waals, we regarded the gas as a single molecular
cluster containing an infinite number of molecules; and in re-
placing the whole system of the forces of cohesion by a permanent
average force, we virtually neglected the effect of any formations
of small clusters inside the large cluster. In the present chapter,
on the other hand, we have been concerned solely with the forma-
tion of small clusters, and have disregarded the large cluster
altogether. The former treatment, because it failed to take account
of the formation of small clusters, led to the erroneous result
(equation (71) and §45) that the internal pressure is proportional

19-2
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to the temperature; the treatment of the present chapter, be-
cause it fails to consider the clustering of the gas as a whole, has
led to the erroneous conclusion that the internal pressure is
identical with the boundary pressure. The situation may then be
summed up by saying that the treatment of Chap. o considers
only the tendency to mass-clustering, while that of the present
chapter considers only the tendency to molecular-clustering.

So long as the deviations from the behaviour of a perfect gas
are small, the two tendencies may be considered separately, and
the total deviation regarded as the sum of the two deviatio:
caused by these tendencies separately. On the other hand, as w
approach the critical point the phenomena of mass-clustering an:
molecular-clustering merge into one another, ultimately becom-
ing identical at the critical point. The two effects are no longer
additive, for each has become identical with the whole effect.

It must be borne in mind that we have only found an exact
mathematical treatment of either effect to be possible by making
the assumption that the effect itself is small. In other words, so
far as our results apply, the effects are additive. It may be noticed
that the deviations from the laws of a perfect gas, which were
discussed in Chap. 1m, fell off proportionally to 1/T and 1/7T%, -
whereas the deviations discussed in the present chapter vary
much more rapidly with the temperature.

Calorimetry

236. The formulae which have been obtained for the specific
heats will be affected to a greater or lesser degree by the possi-
bilities of molecular aggregation. For in raising the temperature
of the gas work is done not only in increasing the energy of the
various molecules, but also in separating a number of molecules
from one another’s attractions. This latter work will involve an
addition to the values of C, and C, such as was not contemplated
in the earlier analysis of §§ 220-223. We should therefore expect
the values of C, and C, to be in excess of the values obtained from
our earlier formulae, throughout all regions of pressure and tem-
perature in which molecular aggregation can come into play. For
instance, the specific heats of nitrogen peroxide have been



CALOBIMETRY AND MOLECULAR STRUOTURE 293

studied by Berthelot and Ogier,* who give the following values
for C:
? From 27° to 67°C., O, =162,

»  27° to 100°, 146,
w  27° to 150°, 1-115,
»  27° to 200°, 0-85,
w  27° to 300°, 0-64.

The excess in the values of C, at the low temperatures may be
reasonably attributed to the work required to separate molecules
of N,0, into pairs of molecules of NO,.

Steam provides a further illustration of a somewhat different
nature. Wet steam is steam in which large molecular clusters
occur, dry steam is steam in which the molecules are all separate,
and our quantity ¢ measures what engineers speak of as the dry-
ness of wet stcam. For the value of vy for wet (saturated) steam,
Rankine and Zeuner give respectively the values 1-0625, 1-0646.
The value for dry steam is about 1-:30. If we used the formula

— 1 - 2
Y=1304p

for the calculation of n, we should come to the conclusion
that 3+ 36 had the value 32 for wet steam, and 6:6 for dry
steam.

The large value of 34 in the former case is fully in keeping with
the existence of large clusters of molecules, so large that each has
about 32 degrees of freedom.

DissooraTIiON

237. A treatment gimilar to the foregoing may be applied to
the problem of dissociation. The former molecules must be re-
placed by atoms, and the former clusters of molecules by single
molecules.

Let us consider a gas in which the complete molecules are each
composed of two atoms, distinguished by the suffixes 1, 2. Asin

* Bull. Soc. Chimie [2], 37 (1882), p. 434; Comptes Rendus, 93 (1882),
p. 916; Ann. d. Chim. et de Phys. [5), 30 (1883), p. 382; Recueil de
oconstanies physigques, p. 108.
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equations (399) and (400) the laws of distribution of dissociated
atoms and complete molecules are

T, = Ae~E,,

Ty = Be~hE,,

Tl’ - ABe—WE,+E,+'P),
where ¥ is the potential encrgy of the two atoms forming the
molecule. The analysis will be simplified, and the theory suf-
ficiently illustrated, by regarding the atoms as point centres of

force, of masses m,, m, respectively. Thus we obtain as the laws of
distribution of velocities for the dissociated atoms

Ae~tme dy dydw
Be-tmae* dy dy dw} oo (389)\
and for the complete molecules
—p-Ta™_
ABe~MmtmiC dudvdwe mrm’ o dadBdy dmrtdr.
...... (390)

This latter law is arrived at in the same way as the law (378),

except that the scheme of transformation of velocities must now
be taken to be

myu+myu’

= mytmy

this being the transformation already used in §109.

238. Although the mathematical analysis is similar to that of
the aggregation problem, there is an important difference in the
physical conditions. The law of distribution (390) is limited to
values of the variable such that

’
s, a=1u—u,etec.,

s pay oy

m,+mg
is negative; as soon as this quantity becomes positive the molecule
splits up into its component atoms. Now in the case of molecular
aggregation, the attraction between complete molecules is not
great, so that ¥ is a small negative quantity, and the range of
values for V is correspondingly small. In the case of chemical
dissociation ¥ is a large negative quantity, and the range for V
is practically unlimited.
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An estimaie of the value of ¥ can be formed from the amount

of heat evolved when chemical combination takes place. For
instance, when 2 grammes of hydrogen combine with 16 grammes
of oxygen to form 18 grammes of water, the amount of heat de-
veloped according to Thomsen’s determination is 68,376 units—
sufficient to raise the temperature of the whole mass of water by
3600° C. The value of V necessary for dissociation to occur is
therefore comparable with the mean value of ¥ at 3600° C., and
these high values of ¥ will be very rare in a gas at ordinary tem-
peratures. The exclusion from the law of distribution (410) of high
values of V will therefore have but little effect either on the law of
distribution or on the energy represented by the internal degrees
of freedom, and we may, without serious error, regard the law of
distribution as holding for all values of V.

In such a case, it appears that the molecule may be treated
exactly as an ordinary diatomic molecule, supposed incapable of
dissociation, but possessing six degrees of freedom, three trans-
lational degrees represented by the differentials dudvdw, and
three internal degrees represented by the differentials da dgdy.

Since there are six degrees of freedom, the value of ¥ will be as
low as 1} if potential energy is neglected, and will be even less if
potential energy be taken into account. We have, however, seen
that for diatomic molecules ¥ is fairly uniformly equal to 1%, and
this shews that the ordinary diatomic molecule must not be
treated as consisting of two atoms describing orbits in the way
we have imagined.

We are here brought back to the difficulties which have already
been encountered in § 225 in connection with the specific heats of
gases. The solution of these difficulties is not provided by the old
classical dynamics but by the new quantum dynamics. We
accordingly leave the question at this stage; it passes out of the

scope of the kinetic theory, and so beyond the range of the present
book.
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MAXWELL'S PROOF OF THE LAW OF DISTRIBUTION
OF VELOCITIES

As already mentioned, Maxwell’s original proof of the law of distribu.
tion of velocities was given in a paper he communicated to the British
Association in 1859, Except for a slight change of notation, the form in
which it was given is as follows.* |

“Let N be the whole number of particles. Let u, v, w be the com
ponents of the velocity of each particle in three rectangular directions
and let the number of particles for which u lies between u and v+ du be
Nj(u) du, where f(u) is a function of « to be determined.

*“The number of particles for which v lies botween v and v+ dv will be |
Nf(v) dv, and the number for which w lies between w and w + dw will be
Nf(w) dw, where f always stands for the same function.

“Now the existence of the velocity u does not in any way affect that of
the velocities v or w, since these are all at right angles to each other and
independent, so that the number of particles whose velocity lies betwoen
uw and u4du, and also between v and v+dv and also between w and

w+dw is
Nf(u) f(v) f(w) dudvduw.

If we suppose the N particles Lo stert from the origin at the same instant,
then this will be the number in the element of volume dudvdw after unit
of time, and the number referred to unit of volume will be

Nf(u) f(v) f(w).

“But the directions of ithe coordinates are perfectly arbitrary, and
therefore this number must depend on the distance from the origin alone,
that is

f(u) f(2) flw) = $(u? +v* + 7).
Solving this functional equation, we find
flu) = Ceav,  d(ub+v?+w?) = Cledl'+o'sul)

This proof is now generally admitted to be unsatisfactory, because it
assumes tho three velocity components to be independent. The velocities
do not, however, enter independently into the dynamical equations of
collisions between molecules, so that until the contrary has been proved,
we should expect to find correlation between these velocities.

* J, C. Maxwell, Collected Works, 1, p. 380,
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THE HTHEOREM

In Chap. 1v (§ 87) we discovered certain steady states for a gas, but it
was not proved that a gas would necessarily attain to one of these steady
states after a suflicient time. The following proof of this was originally
given by Boltzmann and Lorentz.

With the notation alrcady used in Chap. 1v, let M be defined by

H:f/]fxogfdudvdw, coneni(@)

in which the integration extonds over all possible values of %, v, w. Thus
H is a pure quantity and not a function of u, v, w; it doponds solely upon
the law of distribution of velocities and thercfore romains unchanged so
long as this law remains unchanged. Hence a necessary condition fora
steady state is givon by dH/dt = 0. We proceed {o evaluate dH/dt in the
general case.

After an interval dt, tho value of f log f corresponding to any specified
values of 4, v, w will of course have changed into

[
flog f+-2 (flog f) di
or, what is the same thing, into

flogf+(1+1ogf) L .

Hence tho increase in H, which may be written ‘idE_I dt, will be given by

W = { f f f (L+loghH & dudvdw} ...... ()

or, substituting the value of &f/dt from equation (306),

5= vff[ff/f (14log f) (Jf'—=ff)Vo? cos 6 dudvdwdu’ dv’ dw’ dw.

Since H depends on molecules of all classes (4, B, C, ...) equally,
formula (c) necessarily remains true if we interchange the roles of mole-
cules of classes A and B. We then have the same equation, except that,
as the first factor inside the integral, 1+ 1log f” replaces 1+log f. Adding
together these two values for dH/dt, we obtain

2 f f { f [ / f f (2 +log JF") (T} — 1) Vo* cos 6 dudvdwdw’dv’ dw’ do.
ceeenrd)
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This equation expresses dH /dt as the sum of a number of contributions,
one from every possible class of collision. The typical class of collision is
taken to be class @, in which

u, v, w, u, v, w
become changed into
u, %, @, W, ¥, W,
If we use the same equation, but take as the typical collision one of
class £, in which
, %, w, @, v, W
become changed into
4, v, w, v, v, W', |

we obtain, as & still different form for dH/dt,

2— = v/[/[[/ff(2+log]f ) ff' —]T")Va? cos 6 dudsdwda’ dv’ dw’ dew.

...... (e)
As in § 86, we may replace the product of the first six differentials on the \
right hand of this equation by dudvdwdu’dv’dw’, and if we add this
modified value of dH/dt to that given by equation (d), we obtain

4—_vf f f / f / f f (logff’ —ogfF") JF’ —£f")Vor® cos 8 dudvdwdu’ dv’ dw’ do.

...... )

Now (log ff'—log Jf) is positive or negative according as ff’ is greater
or is less than ff’ and is therefore always of the sign opposite to that of
77’ —ff. Hence the product

(log ff’ —log ff') (FF' = ff")

if not zero, is necessarily negative. Since V cos 8, the relative velocity
along the line of centres before impact, is necessarily positive for every
type of collision, it follows that the integrand of equation (f) is always
either negative or zero. Hence equation (f) shews that dH/d¢ is either
negative or zero.

Hence as the motion of the gas progresses, H continually decreases
until it reaches a final state in which dH/dt = 0. We have seen that every
contribution to dH/dt on the right of equation (f) is negative or zero.
Thus in the final steady state, every contribution is zero. In other words,
we must have

M =Jr

for every type of collision, bnngmg us back oxaotly to the solutions we
discussed in § 87.
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THE NORMAL PARTITION OF ENERGY

In §§ 210, 211 we found that the most probable partition of energy

(Ey, E,, Ey, ...) was given by the equations (355)
d log Fl(Ex) dlog F:(Ez) dlog Fy(E,) _
dE, d, ~ ~ b, =gy @)

where B, + Ey+ Ey+ ... = E, the total energy of the system.

In the most general partition of energy, let us write, as in § 211,

P =log F\(E,)+log Fy(E,)+log Fy(E,) + ....

For any partition of energy E, +€,, By +€;, Ey+¢;, ..., adjacent to the

most probable, the value of P is
P=2Xlog F\(E,+¢)

= 2log F\(E,)+ Ze, &%’dﬂﬂz a
1

d? log F\(E,
gﬁ B )
If the total energy remains the same, we have Ze, = 0, so that the
second term on the right vanishes, and the equation reduces to

d®log F\(E,
P=P,+}Ze ——5E?11—1’+ ...... ()
where P, is the value of P for the most probable partition of energy.
In the special case in which E,, E,, ... consist of s,¢, ... squared
terms, this assumes the form

P-Py=-2—5 (RT)'+§Ea'(RT)“ veere(d)
It has already boen seen that the only stationary value of P is given
by €, =¢; = ... =0. This makes P = P,, and an inspection of the right

hand of equation (d) shews that this value is a true maximum.

As we recede from the value €, =€ =... =0, it is clear that P~ P,
becomes finite as soon as €, becomes comparable with /5. RT, €; with
Jt.RT, and so on. For such values of ¢,, €,, ... the first term on the right
of equation (d) is infinitely greater than any of the succeeding terms, and
the value of P— P, reduces to
e'l
P—P,= s(RT)‘ veres(€)
For values of €,, €, ... greater than these P — P, becomes equal to — o0

From equations (350) and (362), the general value of W, is

W,=ePdE\dE,..., ... (f)
while the whole value of W, + W, will be

W+ W, =/f e deydey ... )
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Thus the whole value of the integral (g) comes from a small range
of values surrounding the values €, =€ =...=0; i.e. the values of
E,, E,, ... given by equations (a). Thus the integral (g) reduces to the
right-hand member of equation (f), the small range dE, being comparable
with \/s. RT, the small range dE, being comparable with /t. RT, and so
on. These small ranges are of course small in comparison with the whole
values of E,, E,, ...; thus dE, is comparable with E,/\s, dE, with E,/./t,
and so on.

With such values for the small ranges dE,, dE,, ..., the value of
W,+ W, given by equation (g) becomes identical with the value of W,
given by equation (f). Thus we have W,/W, infinite, shewing that the
partition of energy now under consideration is a normal property of th
system.

The proof that the remaining parts of the system, if any, in which
the energy is not of this type, will necessarily tend to the partition of
energy given by equations (e) is more difficult, since the sign of the terms
on the right of equation (c) must necessarily be a matter of uncertainty
so long as the form of the energy-function remains unspecified. It is,
however, clear that the arrangement of the loci F, = cons., E, = cons,,
ete., in the phase-space must, in every case, be of the same general type
as that in the simple case just considered, from which we may infer that
P — P, must, in the more general case also, be of negative sign. It again
follows that W,/W, must be infinite, so that the most probable partition
of energy as expressed by equations (e) is now seen to be a normal
property of the systemn.

We accordingly see that every system must pass to a final state in
which W, and therefore also the entropy, is & maximum. In this way
we obtain an analytical proof of the second law of thermodynamics,
which may now be regarded as being on a mathematical, instead of on a
purely empirical basis.
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THE LAW OF DISTRIBUTION OF COORDINATES

We fix our attention on a part of a dynamical structure, this part
consisting of N similar units, which we may think of as molecules for
definiteness, each unit possessing p degrees of freedom, and thercfore
having its state specified by 2p quantities ¢,, @y, ... @g,, these being co-
ordinates of position and their corresponding momenta, as in § 205.

Imagine a generalised space of 2p dimensions constructed, having

b1 Bp - Do

as orthogonal coordinates. Then the state of any molecule of the system
can be represented by a single point in this space, namely the point
whose coordinates are equal to the coordinates @, @, ... @y, specifying
the state (i.e. velocity and positional coordinates) of the molecule. The
states of all the molecules can be represcnted by a collection of points in
this space, one point for each molecule. We want to find the law according
to which these points are distributed in the space.

Let 7 denote the density of points in this space—the quantity which we
are trying to find—so that

rdg,dg, ... ddy, -

will be the number of points (or molecules) such that ¢, lies betwoen
¢, and @, +d¢,, ¢, between ¢, and @, +d@,, and so on.

Let us now suppose the whole of this space divided up into n small
rectangular elements of volume, each of equal size w, and let these be
identified by numbers 1, 2, 3, .... Let us fix our attention on a special
distribution of points, which is such that the number of points in
elements 1, 2, 3, ... are respectively a,, a,, a, .... Let any distribution of
points giving these particular numbers a,, a, a,, ... be spoken of as a
distribution of class A. Similarly any distribution of points giving
another set of numbers by, by, by, ... may be spoken of as a distribution
of class B, and so on.

Each point in the original generalised space will correspond, as in § 206,
to a complete distribution of points in the space now under consideration.
The distribution corresponding to some of these original points will be
a distribution of points of class A, corresponding to others it will be a
distribution of class B, and so on. We proceed to evaluate the volume,
say Wy, of the original generalised space which is such that the points
in it represent systems for which the distribution of coordinates is of
class A.

This volume is readily seen to be given by

NI
Wi= et ""fff---dxxdx.dx..... verer(B)
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In this expression the first factor on the right hand represents the
number of ways in which it is possible to distribute the N points repre-
senting the N different molecules, between the n different elements,
subject only to the condition of the final arrangement being of type A.
The remaining factor, say A, given by

=w"f[ wdxidxsdxs- .. veennn(€)

represents the volume of the genecralised space which corresponds to
each one of these arrangements, X,, Xs X3» --- being coordinates of parts
of the system other than the N molecules under consideration. If we
write i
N!

alaylay!...’
and use a similar notation for a system of class B, ete., then the volume!
Wi, Wj, ... are given by

=A0,, Wy=A0p, etec. ... (e)\

According to the well-known theorem of Stirling, the value of p! whcn\
p is very large approximates to the value
—_— p ?
Lt p!=./2pm (E) .

On taking logarithms of both sides, this becomos
Lt log p! =4 log 27 +(p+3) log p—p.

Taking logarithms of both sides of equation (d), and using this value l
for log p!,

0‘=

log 6, =log N! —'2': log a,!

=(N+3)log N—} (n—1)log 2n-')':: (@, +3) log a,.

If we put )
el na,
Ko= 2 (a+} log 3", ere )
this gives as the value of 6,
0,4 = n¥+in (2 N)-Hn-D g-FXa, ceren(9)

Since W, = Ad,, ete., it is clear that W, is proportional to e~¥%a,

The most probable partition of energy is obviously obtained by
making W, a maximum, and therefore K a minimum, for different values
of a,, a,, .... For the variation of K,, as given by equation (f), we find

K=1 {log RS B } da. e *)
N s=1

The variations day, éa,, ... are not independent. They are necessarily

connected by two relations, and in some cases by more. Of the two

relations which are certain, the first expresses that the total number of
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molecules remains equal to the prescribed number N, and is therefore
expressed by the equation

Z da, =0, )

. a=1
while the second relation exprosses that the total energy of the N
molecules is equal to the allotted amount E;. Let ¢, denote the energy
associnted with a molecule represented by a point in cell 1, so that ¢, is
a function of ¢, @, ... Py,, the coordinates of tho first cell. Let €, be the
energy associatod with a molecule represonted by a point in cell 2, and
so on. Then the total cnergy of the N molecules, when the distribution
of coordinates is of class A, will clearly be a, +az€,+ ..., 80 that we

must have
a=n

2 ea,=E,,
-1

und on variation of this we obtain the relation

Z €,6a,=0. -
=1

Any other relations there may be will be derived from equations of
similar type, expressing that the total of some quantity 4 summed over
all the molecules will have an assigned value. The integral equation will
be of the form

Z.'l[l,,a., =M,

and the corresponding relation betwcen the quantities da,, da,, ...
will be

X'I,u,b‘a, =0 .. (k)
Py

In many problems there will be six equations of this type, the different
u’s representing three components of linear momentum, and three com-
ponents of angular momentum. We may, however, be content to take
cne relation as typical of all, and shall suppose it to be given by the
cquations just writton down.

Following a well-known procedure, we now multiply equations (z),
(4), (k) by undetermined multipliers p, g, 7, and add corresponding mem-
bers of these equations and equation (k). We obtain

_a-n 1 na, l
6K_.£ {1+2a_,+10g N +1r>+qe,+1-,u,l da,,

and the maximum value of K is now given by the equations

1 L 1og ™

1+2a.+log.1v+p+ge'+rp,‘=0, (=12, ...n)

Since a,, @y, ... are all supposed to be large quantities, the term 2%«
s
may be neglected, and we obtain

na, = e~ (1+P) gt iin),



304 APPENDIX IV

If 7 is the quantity defined in expression (a), the value of a, will be
7w, where 7 refers to the sth cell. Equation (I) becomes
Tr= E e-(l'l-')e—(lﬂ'l‘ﬁ),
nw

which is true for all values of ¢;, ¢y, ... ¢,,, since equation (l) was truc
for every cell. Changing the constants, this equation may be rewritten

7 = Ceeg-tnprtrapst. ),

in which the one typical quantity x is now replaced by the actual series
of quantities g, 4y, .... Using this value for 7, the law of distribution
of coordinates (cf. expression (a)) is seen to be given by

Ce-Dee-trtstrapyt I dg dg, ... dey,. |

From the result obtained in Appendix 11, it follows that this dist: I'-
bution of co-ordinatos is infinitely more probable than any other, md%
oxpresses a normal state of the system.

If there is no potential energy, there will be three co-ordinates z, y, 2
fixing the position of the molecule in space, and these will not occur
except through the differential dzdydz. Thus the chance of finding a
molecule in a small element of volume dzdydz, however chosen, will be
proportional simply to dzdydz. This provides the justification for the
assumption of molecular chaos introduced in § 82.
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TABLES FOR NUMERICAL CALCULATIONS

The follqwing tables will be found of use for the various numerigal
calculations which are likely to be needed in connection with kinetic
theory problems. The values of {(z) are from a table by Tait in the paper
already referred to (p. 145). '

Yz
z z8 e 2 “eda Deﬁnecg by
N equation (159),
p. 140
0-1 0-01 0-99005 0-11246 0-20006
02 0-04 0-96080 0:22270 0-40531
0-3 0-09 0-91393 0-32863 0-61784
0-4 016 0-86214 0-42839 0-84200
0-5 0-25 0-77880 0-52050 108132
0-6 0-36 0-69768 0-60386 1-33907
0-7 0-49 0-61263 0-67780 1-61819
0-8 0-64 0-562729 0-74210 1-92132
09 0-81 0-44486 0-79691 2-25072
1-0 1-00 0-36788 0-84270 2-60835
1-1 1-21 0-29820 0-88021 2-99582
1.2 1:44 0-23693 0-91031 3-41448
13 1-69 0-18452 0-93401 3-86538
1-4 1-96 0-14086 Q95229 434939
15 2-26 0:10540 0-96611 4-86713
1-6 2:66 0-07730 0-97635 5-41911
1.7 2:89 0-05568 0-98379 8-:00570
1.8 3-24 0-03916 0-98909 6-62715
1-9 3-61 0-02705 0-99279 7-28366
2-0 4:00 0-01832 0-99532 7-97536
2-1 441 0-01215 0:99702 8-70234
22 4-84 0-00791 0-99814 9-48467
2-3 5-29 0-00504 0-99886 10-26236
24 576 0-00315 0-99931 11-00547
2:5 6-25 0-00193 0-99959 11-86402
26 6-76 0-00116 0-99976 12:86798
2.7 7-29 0-00068 0-90987 13-80734
28 7-84 0-00039 0:99092 14.782256
29 841 0-00022 0-99906 15-79265
3.0 9-00 0-00012 0-99998 16-83830

—
]
L]

20
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INTEGRALS INVOLVING EXPONENTIALS

In making Kinetic Theory calculations, we are frequently confronted
with integrals of the type

fu" eAdy, L .(i)

where 7 is a whole member. Such an integral can be evaluated in finite;
terms when 7 is odd, and can be made to depend on the integral

f “eAvdy, .. (i)
° |

when, 7 is even. In each case the reduction is most quickly performed by '
successive integrations by parts with respect to u2 Tables for the
evaluation of the integral (ii) have already been given in Appendix v.

When the limits of integration are from = 0 to u = oo, the results
of integration are expressed by the formulae

At --(2¢c—1)
[ ueAdu = 2A+l \/ X’

2K+1 g—Aut =
/0 urlg—Avidy — )(x+1

The following cases of the general formulae are of such frequent
oceourrence that it may be useful to give the results separately:

- IN/T - 1
—~Rimul P R AL —hmu?t, =
joe "‘d/u—2 o’ foe muty du o’

- . 1 m o koo 1
fo e—hmu uadu_a ot fo e—hmu “adu‘yﬁ—v
© 3 / m [" 1

—hmud, 4 = - —hmulg,b -
foe "'"udu_s,v JiEms? 'oc “aubdu s
- 16 /7 (= 3

~hmus g8 oy — 2o _m —hmud g gy = 2
foe mtutdu =36 A/ i fnc midu =

Each integral can be obtained by differentiating the one immediately
above it with respect to Am. In this way the system can be extended
indefinitely.
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a-coefficient of Van der Waals, 67, 81

Absolute scale of temperature, 26

Absolute zero of temperature, 29

Accommodation, coefficient of, 192

Adsorption of molecules by a solid, 54,
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Aggregation, molecular, 283

Air, ratio of specific heats of, 57, 278

Assumption of molecular chaos, 105, 304

Atmospheres of planets, 42

Atomic dissociation, 293

Atomic theory, 2

Avogadro’s law, 30

Avogadro’s number, 30, 31

b-coefficient of Van der Warls, 66, 82
Boiling point, theory of, 190
Boundary, effect of, on law of distribu-
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density at, influenced by cohesion,
67, 292
Boyle’s law, 13, 19, 53
deviations from, 63, 201
Brownian movements, 7, 24, 31, 218, 222

Calorimotry, 33, Chap. Xr (p. 273); eee
also Specific heats
Capillary tubes, flow of gas in, 167
Carbon-dioxide, isothermals of, 91, 92
Carnot’s law (C,,-C,), 35
(thermodynamics), 25
Chaos, molecular, 105, 304
Characteristio opalescence ‘st critical
point, 274
Charles’ law, 29, 654
Chemical affinity, 2569
Clausius, equation of state, 100
virial, 70
Coefficient of slip at a solid, 169
Cohesion, 4, 62, 66, 82, 291
Collisions, between elastio spheres, 21,
107, 131
between molecules with law ur—?, 76,
172, 233, 242
in a gas, dynamics of, 22, 106, 132,
237, 242
in a gas, law of distribution of re-
lative velocities in, 134
in & gas, law of distribution of
velocities in, 145

SUBJECTS

Collisions, in & gas, number of, 131
in outer space, 33, 49
Conduction, of heat in a gas, 47, Chap.
vo (p. 185), 249
of heat in a solid, 194
of electricity, 194
Conductivities, ratio of thermal and
electrical, 196
Continuity, hydrodynamical equation
of, 225
of liquid and gaseous states, 88, 289
Correlation, between velocity and posi-
tional coordinates: absence of
correlation assumed in statistical
method, 105; justification, 304
between components of velocity:
absence assumed by Maxwell,
116, 296; justification, 304
Corresponding states, law of, 97, 89
Critical point, 92, 96, 274, 200
Critical pressure, 93
Critical temperature, 93
Critical volume, 93, 94

Dalton’s law of pressure, 19, 29
Degrees of freedom, 253, 280
of a molecule, 254, 280
Demon, sorting, of Maxwell, 271
Density, exact definition of, 108
fluctuations of, 103, 272
Diameter of molecules, see Size
Diatomic gases, 279, 281, 293
Dieterici, equation of state of, 68, 87,
94, 95, 96
Diffusion of gases, 15, 198, 222, Chap.
vir (p. 198), 249
numerical values, 213
Diffusion, pressure, 218, 251
Diffusion, thermal, 218, 251
Dissipation of planetary atmospheres,
42

Dissociation, 293

Distribution, laws of, se¢ Law

Doppler effect, 130

Dynamical system, general motion of,
25

4
Dynamics of collisions, see Collisions

Effusion of gases, 58
Electricity, conduction in solids, 184
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Eleotrons, charge on, 131
in & gas, 44, 138
in a solid, 55, 194
Energy, distribution of, 299
Entropy, 25, 267, 268, 300
Equalisation of temperature, 15, 267,
270
Equations of state, 98
Equipartition of energy, 21, 43, 263
Evaporation, 8, 15, 90

Final state of a gas, 259, 268
Freedom, degrees of, 253, 280
Free electrons, in a gas, 44, 138, 143
in a solid, 194, 197
Free path, 43, Chap. v (p. 131)
caloulation of, 43, 135
numerical values, 48
of electrons, 44, 138, 143, 197

Ges-thermometry, 78 ff.

Gaseous medium, statistical mechanica
of a, 260 ff.

Gaseous state, 9, 289

Generalised space, 256

H-theorem, 297
Heat, conduction of, 47, Chap. v
(p. 185), 2490
mechanical equivalent of, 34
mechanical nature of, 5, 14, 120
specific, see Specific heats
Hydrodynamical equations of a gas, 226

Ideal gas, 54
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