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ADVERTISEMENT.

Tae substance of the present volume was originally pre-
pared as part of a course of lectures for the students of mathe-
matics in Harvard College. But at the request of some of my
pupils, and especially of my friend Mr. J. D. Runkig, I have been
induced to undertake its publication. The liberality of my
publishers, the well-kknown firm of Lirrie, Brown & Co., who gen-
erously gave directions to the printers, that no expense should be
spared in its typographical execution, seemed to impose upon me
an increased obligation to perform my portion of the task to
the best of my ability. I have consequently reéxamined the
memoirs of the great geometers, and have striven to consoli-
date their latest researches and their most exalted forms of
thought into a consistent and uniform treatise. If I have,
hereby, succeeded in opening to the students of my country a
readier access to these choice jewels of intellect, if their bril-
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liancy is not impaired in this attempt to reset them, if in
their new constellation they illustrate each other and concen-
trate a stronger light upon the names of their discoverers, and
still more, if any gem which I may have presumed to add, is
not wholly lustreless in the collection, I shall feel that my
work has not been in vain. The treatise is not, however,
designed to be a mere compilation. The attempt has been
made to carry back the fundamental principles of the science
to a more profound and central origin; and thence to shorten
the path to the most fruitful forms of research. It has,
moreover, been my chief object to develop the special forms
of analysis, which are usually neglected, because they are only
applicable to particular problems, and to restore them to their
true place in the front ranks of scientific progress. The
methods which, on account of their apparent generality, have
usually attracted the almost exclusive attention of the student,
are, on the contrary, reéstablished in their true position as
higher forms of speciality.

BENJAMIN PEIRCE.




LIST OF SUBSCRIBERS.

J. 1. Bowditch, (10 copies), Boston.
John D. Runkle, (5 copies), Cambridge.
Chauncey Wright, (2 copies), , “
C. H. Sprague, (2 copies), Malden. ,
W. C. Kerr, Davidson College, N. C.
George Eastwood, ) Saxonville.
Charles Phillips, Chapel Hill, N. C.
Joseph W. Sprague, (2 copies), Rochester, N. Y.
J. M. Chase, Cambridge.
R. H. Chase, ‘ “
Sharon Tyndale, “
Isaac Bradford, “
John Bartlett, (3 copies), “
Gustavus Hay, Boston.
F. J. Child, Cambridge.
William C. Bond, for Observatory of

Harvard College, (2 copies), “
J. E. Oliver, (2 copies), Lynn.
C. W. Little, Cambridge.
N. Hooper, Boston.
C. F. Choate, (2 copies), Cambridge.



X LIST OF SUBSCRIBERS.

J. P. Cooke, Jr.,

B. A. Gould, Jr,,

Joseph Winlock,

H. L. Eustis,

Joseph Lovering,

C. Gordon,

Jared Sparks,

A. Brown,

William G. Choate,

J. F. Flagg, Jr.,

A. E. Agassiz,

William G. Pearson,

Charles Sanders, (2 copies),
Theophilus Parsons,

John Erving, Jr.,

Charles H. Mills,

Edmund Dwight,

Edward Everett,

J. H. C. Coffin,

T. S. Hubbard,

Mordecai Yarnall,

James Major,

James Ferguson,

R. B. Hamilton,

Stephen Alexander, (2 copies),
James Walker,

William Chauvenet, (4 copies),
Washington Observatory, (5 copies),
Thomas Hill,

Waltham Rumford Institute,
Charles Avery,

Cambridge.

[
[
[
“
““
43
«

43

Washington, D. C.
Cambridge.

(/1
&
(49
[19
Boston.
[4

(3

Annapolis, Md.
Washington, D. C.

[ [
3 «
« &«

Syracuse, N. Y.
Princeton, N. J.
Cambridge.
Annapolis, Md.
Washington, D. C.
Waltham.

3

Hamilton College, N. Y.




LIST OF SUBSCRIBERS.

" John Paterson,

Albany State Library,
State Normal School,
George R. Perkins,

A. D. Bache, (4 copies),
American Nautical Almanac, (5 copies),
J. W. Jackson,

Robert S. Avery,

A. W. Smith,

J. M. Vanvleck, (2 copies),
Sarah Watson,
Smithsonian Institution, (25 copies),
George W. Philfips,

H. Bailliére, (3 copies),

E. S. Snell,

John F. Frazer,

N. Fisher Longstreth,
Fairman Rogers,

E. Otis Kendall,

Ira Young,

P. H. Sears,

W. F. Phelps,

Edward L. Force,

Didactic Society of University of N. C,,
F. B. Downes,

W. G. Peck,

Elias Loomis,

John Tatlock,

Edward Pearce,

James Mills Peirce,

C. W. Eliot,

Albany, N. Y.

« (43

« [

Utica, N. Y.
Washington, D. C.
Cambridge.

Union College, N. Y.
Washington, D. C.

Middletown, Conn.
« «
Nantucket.

Washington, D. C.
Salem.

New York City.
Ambherst.
Philadelphia.

(43
({1

&«

Dartmouth College.
Boston.

Albany.
Washington, D. C.
Chapel Hill, N. C.
Racine, Wis.

West Point, N. Y. -
New York City.

Williamstown College.

Providence, R. I.

Cambridge.

[

xi



xii LIST OF SUBSCRIBERS.

F. W. Bardwell,
Charles L. Fisher,
William Dearborn,
Sidney Coolidge,
L. R. Gibbs,

J. D. Crehore,

J. G. Cogswell, Astor Library,

Wolcott Gibbs,
Triibner & Co., (25 copies),
William S. Haines,
Alexis Caswell,
George M. Hunt,
Charles C. Snow,
B. Westermann,
W. H. Cathcot,

S. C. Huntington,
Edward King,

A. G. Harlow,

C. A. Cutter,

R. T. Paine,

C. F. Sanger,
John B. Tileston,
J. M. Sewall, .
B. S. Lyman,

C. H. Davies,
Isaac A. Hagar, .
F. H. Smith,

Cambridge.

«

Boston.

“

Charleston, S. C.

Newton.
~ New York City.
(4 (13
London.

Providence, R. 1.

(44 [
Stuyvesant, N. Y.
Brooklyn, . Y.

New York City.

Urbanna University, Ohio.
Pulaski, Orange Co., N. Y.
New York City.
Cambridge.

«
[
&«
«
[{3
43
[11

&«

University of Virginia.




ANALYTICAL TABLE OF CONTENTS.

CHAPTER T.

MOTION,

Sxetron
1. The universality of motion, .
2. The spiritual origin of force, .

FORCE,

Paax | SEorIoN

1
1

AND MATTER.

Pagr
8. The inertia of matter, .

CHAPTER 1I.

MEASURE OF MOTION AND FORCE.

I THE MEASURE oF MoriON.
4. Uniform motion, . . . .
5. Velocity defined, . . .
6. Formula of varying velocity (2,,), .

II. Tae MEASURE oF FORCE.
7. Force and power, .
8. The force is proportlona.] to the ve-
locity, . . . .

2
2
2

. 2-8

8

9. The mass defined, . . . .

10. The inertia of a body, . . .34

III. ForRCE OF MOVING BoDIES.
11. The power is proportional to the

-

square of the velocity, . .
12. The power is half the product of the
force by the velocity, .

18. Formula of varying force, .

CHAPTER III.

FUNDAMENTAL PRINCIPLES OF REST AND MOTION.

I. TENDENCY TO MorTiON.
14. The total force of a system of bodies
is the exact equivalent of the sum
of its components, .
15. The fundamental principle of equx-
librium,
16. The measure of the tendency m any
form of motion, .
17. Formula for the measure of the ten-

. 5-6

dency to a proposed motion, ex-
pressed by virtual velocities (7,5), 6-7

1lI. Tae EqQuaTioNns oF MorioN AND REsT.
18. The equation of motion (8,,) and that
ofrest (8%), . . . . .17-8
19. These equations can be decomposed
into as many partial equations as
there are independent elements, . 8-9



xiv ANALYTICAL TABLE OF CONTENTS.

CHAPTER 1V.

ELEMENTS8 OF MOTION.

I. Moriox OoF TRANSLATION.

20. A point has three independent ele-
ments of motion, from which any
other elementary motion can be
obtained by the formula (105), 9-10

21. Translation and rotation, being almost
universal, are the most important
forms of motion, . . . 10-11

22. Definition of translation, . .11

23. Parallclopiped of translation,. . 11

II. MoTiox oF RoTaTION.

24. Definition of rotation, . . .12
25. Projection of rotation upon any axis, 12-13
26, 27. Parallelopiped and parallelowram
of rotations, . . . 18-14
28, 29. Llcmpntary rotatlons pro_)ccted
upon a given direction, . . 14-15
30, 31. Theorem of two systems of rectan-
gular axes (155), . . . 15-16

III. CoMBINED MoTIONS OF ROTATION AND
TRANSLATION.

2. Decomposition of a rotation into a ro-
tation about a parallel axis and
a translation in a perpendicular
plane, . . . 16
33. Combination of rotatnons about par-
allel axes, .
84. Equations of the axis of combmed
parallel rotations, . . . 16-17
85. Combined equal rotations about par-

allel axes, . . .17

86. Combined. rotations about opposite
axes, . . . . . . 17-18
87. Combined rotations which are equiva-

lent to a translation, . . . 18.

|38 A couple of rotations, .

89. Combination of rotation and transla-
tion, . . . .

|40. Analysis of every po%nble motion of

18

18

| a solid, into a screw motion, . 18-19

1 41. The instantaneous axis of rotation, .
I 42, Special mode of conceiving the motion
of a solid by means of the surfaces
described by the instantaneous
axis, .
48. Case in which the surfaces of §42 are

44. Case in which the surfaces of §42 are

45. General case reduced to that of §44,

combined with translation, .
46. Axes of greatest curvature of the coni-
cal surface, . . . .

47. Decomposition of the rotation into
rotations about the axes of great;est
curvature, . . .

48. Relations of the velocities of rotatlon

49. Relations of the rotations when the
surfaces are cylinders, . . .

IV. SreciaL ELEMENTS OF MoTION AND
EqQuaTioNs oF CONDITION.

51. The equation of condition for depend-

19

19

developable, . . . .19-20

cylinders orcones, . . . 20-21

21

21

22

to that of the instantaneous axis, 22-23

23

16 50. The independent elements of position, 24

| ent elements, . . . . 24-25

| 52, 58. Elimination by the method of mul-
i 54. The variation of the equation of con-

dition expressed by means of the
| variation of the normal to a cor-

tipliers, . . . . .25

26

responding surface, . . . 26-27



ANALYTICAL TABLE OF CONTENTS.

Xv

CHAPTER V.

FORCEBSB OF NATURE.

I. THe PoTENTIAL, LEVEL SURFACESs, Posi-
TIONS OF EQUILIBRIUM, AND THE Pos-
SIBILITY OF PERPETUAL MoTION.

55. The fixed laws are not incompatible
with the spiritual origin of force, .

56. Fixed and variable forces, . .

57. The relation of the forces of nature to
form expressed by the potential, 28-29

68. The dependence of the power of a
system'upon its form, . . .

59. Limits of motion of a system, .

60, 61. The potential is a maximum or a
minimum for the position of equi-
librium, .

62. The relation of stabnhty of ethbnum
to the maximum or minimum of
the potential,

63. There are as many posmons of stable
as of unstable equilibrium, with ref-
ercnce to each element of equi-
librium, . .

64. The necessity of the potentml in t.he
fixed forces of nature, and its rela-
tion to the possibility of perpetual

28
28

29
29

29-30

30

30

motion, . 31
65. The level surface and its ﬁmte extent, 82
66. The direction of attraction is perpen-

dicular to the level surface, . 32

67. The law of attraction determined by
the distance apart of two infinitely
near level surfaces. Level surfaces
do not intersect each other. The
continuity of the potential of nature, 32
68. The trajectory of level surfaces termi-
nates in a maximum or minimum, $2-33
69. The limits in space of the constant
potential coincide with those of the
discontinuity of the potential or its

derivatives, . 88
70. There is no force or mass throughout
a space of constant potential, . 88

71. The potential of nature and its deriva-

tives are finite and continuous
throughout a space which contains
no mass, . .

72. A portion of space, for which the po-
tential of the fixed forces of nature
is constant, is completely bounded
by a continuous mass, . . 383-34

78. The potential of nature for tempora-
rily fixed forces may vanish for an ,
infinite extent of space, . 84

74, 75. The computation of the dlﬁ'erence
of the potential for two points by
the formula (844), . e

33

34

II. CoMPOSITION AND RESOLUTION OF
Forces.

76. All the phenomena of nature depend
upon combined fopces, . . .
77. The projection of a force in a given
direction, . .
78. The action of a combmatlon of forces
in any direction, . 85-36
79. The parallelopiped of forces, 36
80, 81. The resultant of forces, and its al-
gebraic expression (37,), . - . 36-37
82. The tendency of a system to a motion
of translation, . . 87-38
83. The moment of a force, . 388
84. The projection of a moment, . . 38-39
85. The parallelopiped of moments, . . 39
86. The moment of a force measures its
tendency to produce rotation, .
87. The positive direction of the axis of a
moment, . .
88. The resultant moment measures the
total tendency to produce rotation,
89. The resultant moment of forces which
act upon a point is the moment of
their resultant, .
90, 91. The moments for parallel hnes,
92. The resultant moment for different
points, .

85

35

39

39

39

40

40

40



xvi

93. A couple of forces, . . 40
94. The moment of a couple is constant
for all points of space, . . .

95. The tendency of a system of forces to
produce translation and rotation
may be reduced to a resultant and
a resultant couple, . . . 4041

96. It may be still further reduced to
two forces, .

97. The resultant and the resultant
moment may alw: a)s coincide in
direction, . . .

98, 99. If the forcesare in the same plane,
orif they are parallel, the combined
equivalent is either a resultant or a
resultant moment, . . .

100. Analytic determination of the com-
mon direction of the resultant and
resultant moment (43,), . 4243

101. The special reduction of forces re-
quires special forms of analysis, .

40

41

41

42

43

III. GRAVITATION, AND THE FORCE or
STATICAL ELECTRICITY.
Gravitation, and its elementary po-
tential, . . . .
Statical e]ectncnty, and xts element-
ary potential, . 4344
Law of distribution of electricity, 44

Potential of gravitation and electric-
ity (43), . . . 4445
LapLACE'S equation for the determi-
nation of the potential (46;), . 45—46
The law of attraction of gravitation
or electricity (46y),

102.
438
103.

104.
105.

106.

107.
46

108-112. THE ATTRACTION OF AN INFI-
NITE LAMINY, . . 46-48
108. The potential of an infinite lamina, 46-47
109. The level surfaces of a uniform lamina, 47
110-112. The attraction of a uniform la-
mina (48,) and (48,), . . 47-48

113. Porsson’s MopiricAaTION OF LaA-
PLACE'S EQUATION FOR AN IN-
TERIOR PoINT (49,), 48-49

114-124. THE ATTRACTION OF AN IN-
FINITE CYLINDER, . 49-54

ANALYTICAL TABLE OF CONTENTS.

114. The form of the potential of an in-
finite cylinder (505),. . . 49-50

“115. The level surfaces of an infinite cyl-
inder, .

116. Form of the attmctlon of an mﬁmte
cylinder (50,.,), .

117-120. The attraction of an mﬁmte cyl-
inder upon a distant point (51y),
G2, - - . . .50-52

121-128. The attraction of a circular cyl-
inder (53,), (543), (54;), (546), 52-54

50

50

125, 126. RELATION OF THE POTEN-
TIAL TO ITS PARAMETER, . 54-55

127, 128. ATTRACTION OF A FiINITE
PoiNT vPON A DisTANT MaAss.
Tue CENTRE OF GRAVITY, . 55-56

129-132. THK ATTRACTION OF A SPHER-
ICAL SHELL (56y), (574), (57),
¢8), . - . 56-58

133-147. TuE AcTiON AND REACTION
OF A SURFACE OR INFINITELY
THIN SHELL OF FINITE EXTENT.
Tue CHASLESIAN SHELL, . 58-69

The total action of a surface normal
to itself, . . 58-59

That of a plane, . . 59

GAUss’s theorem relative to lhe angle
subtended by a surface (60,), . 59-60

Gavss’s and CHASLES'S theorem up-
on the normal action of masses up-
on a surface (61y), . . . 60-61

Any level surface must inclose masses
of matter, . . . . 61-62

The potential of a closed surface
which i3 level to itself is constant
for the inclosed space, .

The maximum limit of the potennal
is within the mass,. . .

In a gravitating system there is no
point of minimum potential,

The attraction is constant upon all
the scctions of a trajectory canal
by a level surface, . 62-63

Condensed view of the laws of attrac-
tion, and their relation to the pro-
pagation of heat, . 63-64

133,

184.
185.

136.

137.

138.

62
139.
62
140.
62

141.

142,




ANALYTICAL TABLE OF CONTENTS.

1438. Correspondence of the Chaslesian
shells upon different level sur-
faces, . . . . . . 64-63
144. The ratio of the mass of a Chaslesian
shell to the inclosed mass, . .
145. The law of altraction of a Chaslesian
shell (67,), (67), . . . 65-68
146. The surface which is level to itself is
a Chaslesian shell, . .
147, Chaslesian shells upon the same sur-
face are similar, . . . .

85

68

69

148-177. THE ATTRACTION OF AN

ELLIPSOID, . . . 69-88
148. The Chaslesian elhpsmdal shell, 69-70
149. The Newtonian shell, . . 70

150. IvorY’s corresponding . points of
ellipsoids, . . . . . 70-71
151. The corresponding elements of New-
tonian shells are proportional to
the shells, . . . . . 7172
152. Homofocal Newtonian shells, . . 72
153. Corresponding projections of corre-
sponding radii vectores of Newton-
ian shells, . . . . . 72-78
154. Difference of the squares of corre-
sponding radii vectores, N £
155. Distance of corresponding points, . 73-74
156. The external level surfaces of ellip-

soidal Chaslesian shells, . . 74
157. The attractions of homofocal Newto-
nian shells, . . . . . 74-75

158. The attraction of a Chaslesian shell
upon a point of its surface (76), 75-76
159. The attraction of a Chaslesian shell
upon an external point (76,), . 76-77
160. There are three surfaces of the second
degree which pass through a given
point, and have given foci, of which
one is ellipsoidal, and the other two
are hyperboloidsof different classes,
161. The common intersection of the two
hyperboloids cuts all homofocal
ellipsoids in corresponding points, 77-78
162. The three surfaces of § 60 cut each
other rectangularly, . . . 78-79
168. The common intersection of the two
hyperboloids is a transversal to the

¢

"

e

Xvi

level ellipsoidal surfaces of the
same foci, . .

164. DuPIN’s theorem that oﬂkogonal sur-
JSaces cut each other in the lines of
greatest and least curvature, . 79-80

165. Hyperboloidal Chaslesian shells, . 80

166, 167. The attraction of an ellipsoid
on an ezternal point (82y), (83,), 80-83

168. LEGENDRE'S formula for this attrac-
tion (83y), . . . . .

169. The expression of the attraction by
elliptic integrals (84;,), (851s.01), 83-85

170. Analytical theorems with reference
to the attractions (86‘_11), . . 85-86

171. The attractions expressed as deriva-
tives of a single function (86x4), . 86

172. The equation for limits of integra-
tion (87%), . .

178. The condition that the attrwted pomt
is upon the surface of the ellipsoid,

174. The case in which the attracted
point is within the ellipsoid, .

175. The attraction when the density of
the ellipsoid varies so that the com-
ponent Chaslesian shells are homo-
geneous, . .

176. The. attraction of a homogeneoua ob-
late ellipsoid of revolution, . 87-88

177. The attraction of a homogeneous pro-
late ellipsoid of revolution,

79

88

87
87

87

87

88

178-218. THE ATTRACTION OF A SPHE-
ROID. LEGENDRE'S AND La-
PLACE’S FUNCTIONS, . 88-116

178. JAcoBr's method adopted in the in-
vestigation of the LEGENDRE and
LAPLACE functions, . .

179-188. Investaganon of the ﬁmda.mental
equations (89,,), (90,), (904),(905),
for the determination of the ele-
ments of these functions, . . 89-90

184, 186, 187. The relation of the suc-
cessive elementary coeflicients, and
their derivatives (91y), (92,,-93y),

91-93

185. The Eulerian Gamma integral. See
note, page 356, . . . . 91-92

188, 189. The elementary functions of

88



xviil ANALYTICAL TABLE OF CONTENTS.

LeGENDRE which vanish (93y),
94,), - . . 93-94

190. The general vnlues of the elementary
functions for positive powers (94,), 94

191. The elementary functions for the
. power of negative unity (95y,), . 94-95

192. The elementary functions for nega-
tive powers (97,), . . . 95-97

193. Development of the distance of two

points according to the powers of
their radii vectores, . . . 97-98

194. The values of LEGENDRE'S or La-

PLACE'S functions in this develop-
ment (99;), . . . .98-99

195, 201. Development of the potential
of the spheroid, . 99, 102-108
196. General form of these functions (100,), 100

197. Poisson’s theorem for these func-
tions, . . . . 100-101

198. General theorem for development by
these functions, . . . . 101

199, 200. LAPLACE’s theorems upon these
functions, . .. 101-102

202. Development of the potential of the

spheroid for an external point

when the origin is the centre of
gravity, . . . . 108

203. The homogeneous ellnpeold which

coincides in the first two terms of
the development,. . . 108-107

204. Development of the potential for an

external point which is external to

the spheroid as well as to the cor-
responding homogeneous ellipsoid, 107

205. The determination of the axes of the

corresponding homogeneous ellip-
soid, . . . . . 107-108

206-209. Determination of the potential

for a point which is quite close to

the spheroid in Porsson’s form of
analysis, . . . . 108-112

210. The attraction of a spheroid in the
° direction of the radius vector, . 112

211. The potential of the homogeneous

spheroid for an external point,
112-113

212. The potential of the homogeneous
spheroid for a point of its surface, 118

218. Potential of the spheroid which dif-
fers little from the ellipsoid, . . 118
214, 215, 216. Potential of a spheroid
which is nearly a sphere, . 113-115
217. Potential of a spheroid for an in-
teriorpoint, . . . . .116
218. The discussion of the convergence
of the series referred to subsequent
volumes, . . . . . 116

. IV. EuastICITY.

219. Nature of the phenomena of elastic-

ity, . ... o116-117
220. Linear expansxon of a body, and

ellipsoid of expansion, . . 117-118
221. Principal axes of expansion, . . 118
222, Surface of distorted expansion, 118-119
228. Surface of distorted expansion re-

ferred to principal axes, . . 119
224, 225, 226. Rotative effects of expan-

sion, . . . . 119-120
227. Total expansnon of abody, . .120
228. Linear expansion for small disturb-

ance, . . . . 120-121
229. Reciprocal expumve ellipsoid for
small disturbance, . . . . 121

230. Reciprocal expansive ellipsoid re-
ferred to principal axes, . . 121
281. Case in which the reciprocal expan-
sive ellipsoid becomes hyperboloid-
al or cylindrical, . . . 121-122
232. Total expansion for small disturb-
ance, . . B . 122
233. Rotation forsmall duturbance, . 122
234. Directions of maximum, minimum,
and mean rotation, . . 122-128
235. Combination of mean rotations, . 128
236. Rotation for small disturbance re-
ferred to principal axes, . . 123
287. Compression without mean rotation, 123
238. Rotation without compression, . 123-124
239. The discussion of the elastic force
reserved for special chapter,. . 124

V. MopiFyine Forces.
240. Modifying forces defined, and di-
- vided into stationary and mov-
ing, . . . .. . 124




ANALYTICAL TABLE OF CONTENTS. i

241. Relation of stationary modifying
forces to equations of condition,

124-125 | 248. Moving modifying forces, .

XixX

242. Mode of action of modifying force,
125-126
. 126

CHAPTER VI.

EQUILIBRIUM OF TRANSLATION.

244. The conditions of equilibrium of
tranglation (127,), . .
245. The conditions of equilibrium of
translation are the same as if all
the forces were applied at a single
point, . . .
* 246, Conditions of ethbnum of trans-

. 127

127-128

lation when there is a fixed sur-
face, line, or point, . . . 128
247. The equilibrium of & material point
wholly included in translation, . 128
248. In the equilibrium of translation each
force is equal and opposite to the
resultant of all the others, . 128-129

CHAPTER VII.

. EQUILIBRIUM

249. The conditions of equil.ibrium of
rotation, . . 129

250. When the ethbnum of rohtlon is

universal that of translation is in-
volved, . . . . . 129-130

251. Equilibrium of rotation about parallel
axes, . . . . . 180

2. Axis for which the remltant moment
vanishes, . . . . . 130

OF ROTATION.

253. Equilibrium of rotation when there
are two fixed points, . . . 180
254. Relation of the centre of gravity to
equilibrium of rotation of parallel
forces, . . . . 180-131
255. Internal forces neglected in the con-
ditions of equilibrium of transla-
tion or rotation, or action and re-

action, are equal, . 181-182

CHAPTER VIII.

EQUILIBRIUM OF EQUAL AND PARALLEL FORCES.

L MaxiMA AND MiINIMA OF THE POTENTIAL.

256. Gravitation taken as the type of these
forces. The level surfaces are hor-
izontal planes, . . . .182

257. Relation of the maximum and mini-
mum potential to equilibrium, 132-183

258. The equilibrium of translation of
gravitation requires stationary mod-
ifying forces,. . . . .183

259. The resultant moment of gravity
vanishes for the centre of grav-
ity, . . .

260. Position and magmtude of a mngle
modifying force in a gravnta.hng
system, . . . 188

261. Position and magmtude of two mod-
ifying forces in a gravitating sys-

188

tem, . . . . . . 188



XX

262. The change of the intensity of grav-
ity does not affect the position of
equilibrium, . . . . .184

IL THE FUNIGULAR AND THE CATERARY.

263. The funicular defined, . . . 134
264. The funicular with one fixed point,
134-185
265. The funicular with two fixed points, 135
266. The point of meeting of the lines of
extreme tension of any portion of
the funicular, . . . . 185-186
267. The vertical projections of the ex-
treme tensions with reference to
the distance from the centre of
gravity, . . . 186
268. The inclination of the fumcular to
the horizon, . . . 186-187
269. Point of change in the funicular
from ascent to descent, . . 137-138
270. The equation of the funicular (188,,), 138
271. The general equation of the cate-
nary (138y),. . 188
272. The catenary of uniform cl:ord (l 39,), 139
278. The uniform chord referred to rec-
tangular coordinates (1894.4), -
274. The tension of the uniform chord
a1s9,),. . .
275. The tension and thlckness of a cate-
nary of given form (140.,,),. . 140
276. The catenary of uniform strength
(140gg), - .. .140
277. The catenary for umfonn support of
weight (141,,), . . 140-141
278. The elastic catenary (141y.4), . 141
279. The catenary upon a given surface
(1420, . . . .141-142
280. The pressure of a catenary upon a
surface (1424), . . . . 142
281. The point at which the curvature of
the catenary upon a surface van-
ishes (148,), . . . 142-148
282. The catenary upon a vertical cylin-
der (148), . . . 148
288. The catenary upon a verucal surﬁwe
of revolution (143,), . 148

-

139

189

ANALYTICAL TABLE OF CONTENTS.

84. The case of a horizontal catenary
upon a surface of revolution (143,),
143-144
285. Direction of the catenary upon a sur-
face of revolution (1445), . . 144
286. The catenary upon the vertical right
cone with a circular base ; its equa-
tion (145,,), and analysis into dis-
tinct portions, . . . 144-146
287. The finite portion of the catenary
upon the vertical right cone ex-
pressed by elliptic integrals (147,),
146-147
288. The general expression of the arc of
the spherical ellipse by elliptic in-
tegrals (1494), . . . 147-149
289. The expression of the catenary upon
the vertical right cone by the arc
of the spherical ellipse (150,), 149-150
290. Cases in which the catenary upon
the vertical right cone returns into
itself, . . . . 150
291. The infinite portlons of the catenary
upon the vertical right cone ex-
pressed by elliptic integrals (1504),
ast), . . . . .150-151
292. The finite and infinite portions of the
catenary may be expressed by the
aid of reciprocal spherical ellipses,
(151" n), . . .
293. Case in which the ﬁmte porhon is
circular (151gy), - . .
294. Case in which the catenary upon the
vertical cone degenerates into a
strmght line,. . . .
295. The investigation of the mﬁmte por-
tion of the catenary upon the verti-
cal right cone, when the finite por-
tion disappears (152y), (153;), 152-158
296. Case, recognized by BOBILLIER, in
which the catenary upon the verti-
cal right cone becomes an equi-
lateral hyperbola upon the devel-
oped cone (1534), . .
297. The catenary upon a vertical elllp-
soid of revolution, its cquation
(1545), - - . . 154
298. The cases in wh:ch there are two

151

151

152

158



ANALYTICAL TABLE OF CONTENTS.

portions of the catenary upon the

vertical ellipsoid of revolution, or

one portion, or when there is no
cataenu'y . . 154-155

299. The cases in which the two portions

of the catenary upon the vertical

ellipsoid of revolution are similar

(1564), (157, ). This case was

recognized by BoBILLIER for the
sphere, . . . . 155-157

800. Expression of the conshmts by means

of the limiting values in the general

expression of the catenary upon

the vertical ellipsoid of revolution,
157-159

801. Integral of the differential equation

xxi

of the catenary in the general case

of the vertical surface of revolu-

tion (159), . - .. 159
802. The catenary upon the vertical

equilateral asymptotic hyperboloid

when the inclination to the merid-

ian is constant, . . . 159-160
803. The definition of the catenary upon

any vertical surface of revolution

by means of the equilateral asymp-

totic hyperboloid, . . . . 160
304. The general case of the catenary

upon the equilateral or asymptotic

hyperboloid (161,), . . 160-161
805. The limiting point at which the cate-

nary tends to leave the surface, . 161

CHAPTER IX.

ACTION OF MOVING BODIES.

806, 307. CHARACTERISTIC FUNCTION,
162-163
806. MAUPERTIUS’S action of the system
and HAMILTON’S cRaracteristic
Sunctions (1624), . . .
807. Ezpenditure of action by a moving
system (163)), . . . 162-168

808. PriNCIPLE OF LiviNg FoORCES OR
LAw oF POWER, (163,) .

162

168

809-312. CaNoNicAL FORMS OF THE
DIFFERENTIAL EQUATIONS OF
MorTiON, . . . . 163-166

809. LAGRANGE’S canonical forms of
equations of motion (164,),  163-164

810. Equations of motion expressed in rec-
tangular cobrdinates (164,), 164, 165

811, 312. HAMILTON'S modifications of LA-
GRANGE'S canonical forms (1654),
(166, . . . . 165-166

818-815. VARIATIONS OF THE CHAR-
ACTERISTIC FUNCTION, 166-167
818. Derivatives of the characteristic func-

tion with reference to the elements of
motion, . . . 166-167

814. Derivatives of the characteristic
function for the rectangular ele-
ments of motion, .

815. Hamilton’s method not apphcable
when the forces involve the veloc-
ity, . . .« . . .167

167

816-818. PRINCIPLE OF LEAST ACTION,
167-169
816. Demonstration of the principle of least
action, . . . 167-168
817. MAUPERTIUS'S a prwn deduction of
the principle of least action, .
818. Deduction of the dynamical equa-
tions from the principle of least
action, . . 168-169

168

819-822. PrINCIPAL FUNCTION AND
OTHER SIMILAR FuxcrioNs, 169-170
319. HAMILTON'S principal function and
its use (169;), .« . . 1869
820-322. Other functions suggested by



.

xxun

HAMILTON, instead of the charac-
teristic function (169), (170, ),
169-170

823-325. PARTIAL DIFFERENTIAL EQUA-

ANALYTICAL TABLE OF CONTENTS.

TIONS FOR THE DETERMINATION
OF THE CHARACTERISTIC, PRIN-
CIPAL, AND OTHER FUNCTIONS
OF THE SAME CrLAss (171;4),
(171g-172), . . . . 171-172

CHAPTER X.

INTEGRATION OF THE DIFFERENTIAL EQUATIONS OF MOTION.

826. JAcoBI's discussion of differential
equations important to & full de-
velopment of the problem of me-
chanics, . . . . . 172

1. DeTERMINANTS AND Fuxcrioxar De-
~ TERMINANTS.

827. Gauss’s determinants (178y,), . 172-173
828. Reversal of the sign of the determi-
nant, . . B . 178
829. The equality between the elements
for which the determinant van-
ishes (173), . . . . 173-174
880. Reduction of the forms of the deter-
minant when certain elements van-
ish (174 m9), - « - -
881. An element can be taken out as a
factor when all the elements of a
certain class vanish (174y, 5), -
832. Two elements can be taken out as a
factor, by an extension of the pre-
ceding principle (1755¢), . .
833. By the ultimate extension of this
principle, the determinant is re-
duced to the continued product of
its leading terms (175,1), . .
834. The complete determinant expressed
by means of the partial determi-
nants (175g ¢1), . .
835. Deduction of all the pa.rtlal detenm-
nants from one, . . 175-176
836. Conditional equations for the par-
tial determinants (186, 15), . 176
387. Expressions of the determinant and
of the partial determinant by par-

174

174

175

175

175

tial determinants of the second or-
der (1364, ), . 176
338. Mutual relations of the partial deter-
minants of the second order, and
corresponding reduction of the ex-
pression of the complete determi-
nant (177 ), . . . 176-177
339. The solution of linear equations by
the aid of determinants (177y, y), - 177
840. Ratios of the unknown quantities
when the second members vanish
(178y),. . .. .178
841, 342. Determinants found from the
partial determinants taken as ele-
ments (1795), (180,), . 178-180
343. The variation of a function of the
elements, and of the determinant
(1804%), . . . . 180
344. The variation in a special case of
symmetrical elements (180y,x),
@asty), . . . . 180-181
845. Inverse solution of equatlon, with the
corresponding variations (181,,,,), 181
846. Determinant of compound functions
of two systems of elements (181),
(182y), . . 181-182
847. Cases in which the number of com-
pound elements is not more than
equal to that of the simple elements
of each system (182,, ), . . 182
848. Case in which the compounded sys-
tems are identical (183, ,), . 182-183

849-873. FUNCTIONAL DETERMINANTS,
183-198
849. Definition of functional determinant,




ANALYTICAL TABLE OF CONTENTS.

and its relation to previous propo-
sitions (183y), . . . . 188

850. Case in which the functional deter-

minant is the product of two de-
terminants (183;), . . 188

851. Case in which the functional deeer-

minant is a continued product of
derivatives (184;), . . 184

852. The determinant of mutually de-
pendent functions vanishes, . . 184

853. A dependent function is constant in

finding the functional determinant,
184-185
854. Simplification of the functional deter-
minant by successive substitution, .
855. The functional determinant of inde-
pendent functions does not vanish, 185

856. The functional determinant of com-
pound functions, . . . 185-186

357. The inverse and direct function-

al determinants are reciprocals
(1871), - - . 186-187

858. Relation of inverse derivative to par-
tial functional determinant (187,), 187

859. Variation of functional determinant
@as8), . . . . .187-188

860. Variation of inverse functional de-
terminant (188;), . . . 188

861. Mutual relation of the partial func-

tional determinants and variations
of the functions (188,,), . 188

862. Transformed expression of the func-
tional determinant (189,), . 188-189

863, 864. Functional determinant of im-
plicit functions (189y), (190,), 189-190

865. Determinant of partial functional de-
terminants (191,), . . . 190-191

866. Determinant of partial functional de-
terminants of inferior order (1914), 191

867, 368. Determinants of mixed partial

functional determinants (192y,,,),
191-192

869, 370. Sum of products of mixed par-
tial determinants (193, 5,), . 192-198

871. LAGRANGE'S equations for determi-

nant of partial derivatives (194;),
o 198-194

872. Substitution of the functional deter-

185

XX111

minant of the function or its higher
derivatives for the first derivative
(194), - - . . 194-195
878. Determination of a sysfam of funo—
tions for which the functional de-
terminant is given (192, 4),. . 195

874-875. MUuLTIPLE DERIVATIVES AND
INTEGRALS, . . . . 196-198

874. Transformation of multiple deriva-
tives from one set of variables to
another by méans of determinants
197), . - . .196-197

875. Multiple integrals t.ra.nsposed into a
sum of linear integrals (198,), 197-198

II. S:MULTANEOUS DIFFERERTIAL EQUATIONS,
AND LINEAR PARTIAL DIFFERENTIAL
EQuATIONS OF THE FIRST ORDER.

876. An integral of simultaneous differen-
tial equations (199,), . . . 199
877. The solution of a linear partial dif-
ferential equation (200,), . 199-200
378. Relation of the integral of simulta-
neous differential equations to the
solution of a linear partial differen-
tial equation, . .
879. Transformation of linear partml dif-
ferential equations so as to reduce
the number of variables, . 200
880. A solution can always be obtained
by series (2015), . . . 200-201
881. The number of independent solu-
tions of a linear partial differential
equation, ..« . 201-208
882. Any function of the solutions is a so-
lution, . . . . 203
383. General and part:cular gystems of
integral equations (2034 5),. . 203
384. Each equation of a general system of
integral equations is an integral, . 204
385. Relations of a particular system to
the integrals, .. . 204
886. That portion of the equatlona of a
particular system which does not
involve arbitrary constants is itself
a particular system, . . . 204

200



xxiv

887. The conditional equations to which
the arbitrary constants of a general
system must be subject, for a par-
ticular system (203y,), . . 204-206
888. Process of deriving a system of in-
tegral equations from one of its
. components, . . . . . 208
889. Test that a proposed equation is not
an integral, . . . 206
390. Superfluous constants lead to new
integral equations (207,,), . 206-208
891. The system of integral equations in
which the initial values are the ar-
bitrary constants, . . .
392. An integral equation in whxch the
initial values are the arbitrary
constants may be changed to an-
other integral equation in which
the initial values are the varia-
bles, . . . 208-209
398. The integral equation whlch expresses
the value of an initial value of the
variable, transformed to one which
expresses the value of the variable
(209ux), - .
394. Differential equatxons of hxgh orders
reduced to the first order when
they are given in the normal form
@104), - - . 209-210
395. Reduction of differential equations
to the normal form, . 210-211
896. Case in which the order of differen-
tial equations admits of reduction
211-212
897. One normal system transformed to
another, . . . . . 212-218
898. Normal systems transformed so as to
contain only two variables, . 218-214

208

209

399-481. THE JACOBIAN MULTIPLIER
OF DIFFERENTIAL EQUATIONS,
214-281
899. Definition of Jacobian multiplier, . 214
400. The functions of the multiplier are
the independent solutions, ., . 214
401. The linear partial differential equa-
tions by which the multiplier is de-
fined (215,), . . 214-215

ANALYTICAL TABLE OF CONTENTS.

402. The common differential equation

which defines the multiplier (2186;),
215-216

403. The multiplier expressed by a deter-
mlnant (2]6“), . . 216

404. The multiplier expressed by a deter-
minant of implicit functions (216,;), 216

405. The multiplier expressed by the in-
verse determinant (216,), . 216-217

06. The ratio of two multipliers is a so-
lution (217y), . . . .217

407. Case in which unity is a multiplier
@), . . . . .27-218

408. Determination of the multiplier when
its solutions are known, . . 218

409. Determination of the multiplier when

the solutions have the forms of the
initial values of the variables, . 218

410. Case of greatest simplicity in the de-
termination of the multiplier, 218-219

411. Substitution of the arbitrary con-
stants for their equivalent functions, 219

412. Reduction of the form when one of
the variables is a solution, . 219-220

418. Transformation of the multiplier with
the change of variables (211,,), 220-221

414. Corresponding transformation of the

equations for the determination of
the multiplier (221n), . . . 221

415. Transformation when the element of

differentiation remains unchanged
(2614.4), . .221
416. Transformation vnth a partml change
of variables (222,), . . . 222
417. Transformation when the common
element of differentiation is a va-
riable, . . .
418. Transformation when part of the
new variables are solutions, and
the multiplier is unchanged (222,,),
419. Transformation when part of the
new variables are solutions and the
element is unchanged, . . 222-228

420. Transformation when all the new
variables are solutions (223,), . 228

421. The multiplier of differential equa-

tions of a higher order expressed in
the normal form (222,4), . . 228

222

222




ANALYTICAL TABLE OF CONTENTS.

422. Case in which the multiplier of dif-
ferential equations of a higher or-
der is unity (223y), . 228
423. Equation for the multiplier of dtﬂ'er-
ential equations of a higher order
when they are not in the normal
form (2245),. . .
424. Case in which the equatlon for the
multiplier admits of reduction
(225, ), - .
425. Case in which the glven equatlons
cannot be reduced to the normal
form without differentiation, . . 225
426. Direct determination of the functions
involved in the equation of the mul-
tiplier from the given equations,
225-226
427. Determination of the factor for the
passage from the multiplier of the
given equation to that of one of
the simplest forms of normal equa-
tions (228,), . . 226-228
428-431. PRINCIPLE OF THE LAsT MUL-
TIPLIER, . . 228-281
428. The Jacobian multxplxer comcldes
with the Eulerian multiplier when
there are two variables (229,), 228-229
429. JacoBr’s principle of the last mul-
plier, . . . 229
4380. By the principle of the last mullzplwr,
when the element of variation is not
directly expressed in the given equa-
tions, either the two last integrals
can be obtained by quadratures, or
the last integral can be obtained with-
out integration, . 229
431. The principle of the last mulhpher
when a portion of the variables are
not involved in the remaining de-
rivatives, and the remaining de-
rivatives satisfy a given equation,
280-281

224

225

432441, PARTIAL MULTIPLIERS, . 231-285
432. Definition of the partial multipliers
(281y), . . . . 231

d

XXV

438, 434. Defining equation of the partial

multiplier (231), (232,), . 231-282
485. Determination of the signs in the for-

mation of the multipliers (232,,), . 232
486. Case in which the partial multiplier *

is the Jacobian multiplier, . 282
487. Case in which the partial multiplier

is the Eulerian multiplier amplified

by LAGRANGE, . 232
438. Every partial multiplier correspond.v

to an integral of the equation, . . 283
489. The deduction of an integral from

the Eulerian multiplier (2834), 233-284
440. Transformation of the partial multi-

plier when there is a change of va-

riables (239y,) . 239
441. Transformation and reducuon of

the partial multiplier when the

solutions are adopted as new vari-

ables, . . 284, 285

R

ITII. INTEGRALS OF THE DIFFERENTIAL EQUA-
TIONS OF MoOTION.

442. General mtegmls of the equations of

motion, . . . . 285

443-451. TRE APPLICATION OF Ja-
coBI'S PRINCIPLE OF THE LasT
MuLTiPLIER TO LAGRANGE'S
CanoxicaL Forwus, 286-241

443. Lagrange’s canonical forms consti-
tute a system of normal forms

444. A Jacobian multiplier is always
known in equations of motion when
the forces do not involve the veloc-
ities (287), . .. . 236-287

445. The principle of the last multiplier ex-
pressed as a dynamical principle, . 287

446. The Jacobian multiplier when the
equations of motion are expressed
in rectangular codrdinants (238,,),

237-238

447, The conditional equations expressed
in the multiplier of the equations
of motion (239y), . . . 238-239

448. The transformation of the multiplier
by the introduction of the original

236



xxvi ANALYTICAL TABLE OF CONTENTS.

elements instead of the rectangular
cobrdinates (440,), . . 289-240
449. The Jacobian muitiplier of the equa-
tions of motion when there are no
=~ equations of condition; it is unity
when the coordinates are rectangu-
lar (240,), . . . . . 240

450. The equations of condition considered
as forces in the expression of the
multiplier (241;), . . . 240-241
451. The multiplier is unity when the dif-
ferential equations of motion are
expressed in HAMILTON'S form, . 241

CHAPTER XI.

MOTION OF TRANBLATION.

452. The motion of the centre of gravity
is independent of the mutual .con-
nections, . . . 241-242
453. The motion of the centre of gravity
depends upon the external forces, 242

454-752. MoTioN OF A PoIiNT, . 242-438
454. The differential equations of the mo-
tion of a point (243,), . 242-243

455-459. A POINT MOVING UPON A
Fixep LINE, . . . 248-244
455. By the principle of the multiplier, the
motion is expressed by integrals by
quadratures (243, &), . 243
456. The velocity dependent solely upon
position, and not upon the interme-
diate path, . . . 243-244
457. Case in which the motion is limited,
in which case the oscillations are
invariable in duration, . . 244
458. If the path returns into itself, the
period of circuit is constant, . . 244
459. Expression of the multiplier when
the forces and equations of motion

involve the time (2444), . 244

460—477. TrE MoTION OF A BopY UPON
A LINE WHEN THERE 18 NO Ex-
TERNAL FORCE. CENTRIFUGAL
Fogce, . . . 245-254
460. Upon a fixed line th.h no external
force the velocity is constant, . 245
461. Measure of the centrifugal force
(245y), . 245

462. Total pressure upon a line where
there are external forces, . . 245
468. The centrifugal force cannot be used
as a motive power, . 245
464. The acceleration of a body upon a
moving line (246,), . . 245-247
465. Upon a uniformly moving line the
relative velocity of a body acted
upon by no force is constant, . 247
466. The acceleration of a line moving
with translation is a negative force

acting upon the body, . . . 247
467. The same proposition applies to any
line, . . . 247-248

468. Case in which the llne rotates uni-
formly about a fixed axis (248,), . 248
469. The time of oscillation of a body up-
on a uniformly rotating line is
constant, . . . 248-249
470. The period of clrcult of a body upon
a uniformly rotating line is constant, 249
471. Case in which the motion of the body
vanishes at the axis of rotation
(249),. - . 249
472. Motion of a body on a umformly
rotating straight Tine (2504, 30, n),
@1, . . . . 249-251
478. Motion of a body on a uniformly ro-
tating circumference of which the
plane is perpendicular to the axis
of rotation (251.), (252, 11, ),
(2534 1. n), . 251-253
474. Motion of a body upon a mtatmg '
line which is wholly contained up-




ANALYTICAL TABLE OF CONTENTS.

on the surface of a cylinder of revo-
lution of which the axis is the axis
of rotation (253,), . .
475. Case in which the rotation of the cyl-
inder is uniform, . . . . 254
476. Case in which the curve is a helix
(254), . . .. . 254
477. Case in which the acceleration is
uniform (254y%), . . . . 254

258

478-482. MoTioN oF A HEavY Bopy
UPON A FIXED LINE. THE Sim-
rLE PENDULUNM, . . . 254-256
478. The motion of a heavy body upon a
fixed line (254sm), . . . . 254
479. When the line is contained upon the
surface of a vertical cylinder, 254-255
480. When the line is straight (255,), . 255
481. When the line is straight and no ini-
tial velocity (255,), . . . 255
482. When the line is the circumference
of a circle; oscillations of the sim-
ple pendulum (2554), (2565, 14,3, ),
255-256

488-502. MoTioN oF A Heavy Bopy
UPON A MOVING LINE, . 257-270
483. When the line has a motion of trans-
lation (257,), B 1
484. When the translation is uniformly
accelerated, it is equal to a constant
force, . . . . . 257
485. When the line is straxght, and the
law of translation is given; in
what case this path is a parabola
(2575, m), (258, 1), 257-258
486. When the translation of the line is
uniform and direct; gain of power
(258x), (259 w), - . 258-259
487. When the line is the circumference
of a vertical circle (2595, (260y, 5,),
(261g81w), - - - . 259-261
488. When the line rotates about a verti-
cal axis (261,), . 261
489. When the line rotates umformly
* about a vertical axis (262,), . 261-262
490. When a straight line rotates uni-

XXvi

formly about the vertical axis
(2624),. . . . 262
Direct integration of the lmear dif-
ferential equation in this case into
the form given by VIEILLE (262y),
Case of § 490, in which there is an
impassable limit (2624 4), (263y),
262-268
493. Case of §490, in which there is no
limit (26804), . . . . 263
494. Case of § 490, in which there is a
possible position of immobility
(264,1), - - . . 264
When the clrcumference of a circle
rotates uniformly about a vertical
axis; the point of maximum and
minimum velocity defined by an
hyperbola (265,), . . 264-265
Case of § 495, in which there is no
motion upon the ine, . . . 266
Case of § 495, when the minimum
velocity vanishes (2674), . 266-267
‘When a parabola of a vertical trans-
verse axis rotates uniformly about
its axis (268y,n), . . . 267-269
Case of §498, when the minimum
velocity vanishes (269,), . .
When the axis of rotation is not ver-
tical, and when the rotation is uni-
form (269,4), . . . .
‘When a straight line rotates umform-
ly about an inclined axis (270s),
269-270
502. Rotation of a plane curve about an
inclined axis (270y), . 270

491.

262
492.

495.

496.
497,
498.
499.
269
500.

269
501.

508-534. MoTioN OF A BopY UPON A
LINE IN OPPOBITION TO FRIC-
TION, OR THROUGH A RESISTING

Meprom, . . . . 270-315
503. The resistance of a medium, . 270
270

504. Expression of the resistance,

505. Resistance of a medium to the mo-
tion of a body upon a fixed line
(271,5), .21

506. Motion of body upon a ﬁxed line
through a resisting medium with-
out external force (271y 1), . . 271




Xxxviu ANALYTICAL TABLE OF CONTENTS.

507. Case of § 506, when the law of resist-

ance is expressed as a quadratic

- fanction of the velocity. Change

of sign of the resistance (271g),
(272 w), - - . . 271-278

508. Case of § 506, when the resistance
is friction upon the line (278,), . 278

509. Case of § 508, when there is no ex-
ternal force (273,), . . . 278

510. Case of § 509, when the fixed line is
the involute of the circle (274,), . 274

511. €ase of § 509, when the line is the
logarithmic spiral (274,), . . 274

512. Case of § 509, when the line is the
cycloid (274), . . . 274

518. Case of § 506, when the resnstance of

the line is constant, and the resist-

ing medium moves with a uniform

velocity, and the resistance is pro-
portional to the velocity (275;), 274-275

514. Case of §513, when the line is

" straight, and there is no external
force (275, %), - - . 275-276

515. Motion of a heavy body upon a fixed

straight line, when the resistances

are friction, and that of a moving

medium which resists as the square

of the velocity (276y), (277, %),
(278,), (279, 15, ) (280y,), 276-280

516-534. TuE SiMPLE PENDULUM IN

A RESISTING MEDIUM, . 281-315
516. The small oscillations of a pendulum

against ffiction and the resistance

of a medinm which is proportional

to the velocity (2814.4), . . 281
517. The oscillation after many vnbra-

tions (282,), . . . 282
518. The time of osclllatlon compared

with that in a vacuum (282, 5), . 282
519. The arc of oscillation (283.), . 282-283
520. The law of diminution of the arc of

oscillation and of the maximum of

velocity (2835), . . . 283
521. The oscillations of the pendulum

if the resistanceis as the square of

the velocity (2844 n), . . 284-285

522. The arc of oscillation in the case of
§521 (2855), - . .285
528. The arc of oscillation in the case of
§ 521 is the same as in a vacnum
(28615 10m), - - . . 285-286
524. The oscillations of the pendulum
when the law of resistance is ex-
pressed as a function of the time
(28%), - . . . 286-287
525. The oscillations of the pendulum,
as affected by those produced in
the medium (28844), (289y0),
(290), (291,), . . . 287-291
526. The oscillations of the pendulum as
affected by the portion of the me-
dium which becomes part of the
pendulum (2914 4), . . 291-292
527. Constants of the formulse of the oscil-
lations of the pendulum in a resist-
ing medium arranged for applica-
tion to experiment (292y1.y), - . 292
528. Approximate form for the best exper-
iments in which the friction is in-
sensible (292y4), . . . . 292
529. The French system of weights and
measures adopted in the examina-
tion of experiments, . . 292-298
580. Discussion of NEWTON’S experi-
ments upon the pendulum in air
(2981500, m3), - - -+ 293-204
581, Discussion of DuBUAT’S experi-
ments upon the pendulum in air
and water (295¢7 1316); . - 294-295
532, Discussion of BoRDA’S experi-
ments upon the pendulum in air
(29650 nasvas)s -+ - - 296-297
538. Discussion of BESSEL'S experi-
ments upon the pendulum in air,
(2931.0. 1315, 90-22, M)1 (29911-1:. u\-u)’
(2990, wur)ye - - - 298-811
534. Discussion of BAILY'S experiments
upon the pendulum in air, . 311-315

535-559. Tnk TAUTOCHRONE, . 816-327

585. Definition of the tautochrone, . . 815

536. The case of the tangential force of
the tautochrone when it can be ex-




ANALYTICAL TABLE OF CONTENTS.

pressed as a function of the arc
C(817), - . . . .816-317
The equation of the tautochrone un-
der the action of a fixed force
G1%),. - . . 817
The tautochrone which rotates uni-
formly about a fixed axis when
there is no external force (8175), . 817
The case of § 538, when it is a plane
curve (818, ;), . 817-818
The cycloid is the tautochrone of a
free heavy body in a vacuum
(3184), . . . .318-819
The tautochrone of a heavy body in
a vacuum upon a glven surface
(319y),. . . 819
The tautochrone of § 541 when the
surface is a cylinder of which the
axis is horizontal, and the equa-
tion of the base is (319), (320;),
319-820
The tautochrone of § 542 upon the
developed cylinder (820,), . . 820
The tautochrone of §542, when it
passes through the lowest side of
the cylinder (82041, ), . 820-321
The differential equation of the tau-
tochrone of § 542 referred to rec-
tangular coordinates (321,y), . 321
The tautochrone of § 542, when the
base of the cylinder is a cycloid
(321), (822,), . 821-822
The tautochrone of a heavy body
upon a surface of revolution of
which the axis is vertical, and the
meridian curve is that of (319,.),
(322y), . 822
The tautochrone of a beavy body
upon a vertical cone of revolution
(3224), (323,), . 322-328
The tautochrone of §548, which
pasges through the vertex (323;), . 328
The tautochrone of § 547, when
the meridian curve is a cycloid
(328, . - : . 828
551. The tautochrone upon a plane when
the force jis directed towards a
point in the plane, and propor-

537.

538.

589.

540.

541.

542.

543.

544.

545.

546.

547.

548.

549.

550.

XXix

tional to some power of the dis-
tance from the point (323,), . 823
552. The tautochrone of § 551, when the
force is any function of the dis-
tance (324y0),. . . 323-324
558. The polar differential equation of the
tautochrone in the case of §552
(S2455), . . 82
554. The differential equatlon of t.he tau-
tochrone of §552 in terms of the
radius of curvature and the angle
of direction (324,), . 824
555. The tautochrone of §552, when it is
the involute of the circle (325,), .
556. The tautochrone of §552, when it
is a logarithmic spiral (323),
825-826
557. The tautochrone of § 552, when the
force is proportional to the dis-
tance from the origin when it is
not infinite, it is an epicycloid
(3%64), (327), . 826-827
558, Cases included in § 557, near the
point of greatest velocity, . 827
559. The tautochrone in a resisting me-
dium postponed to case of holo-
chrone, . . . . . . 827

560—604. THE BRACHISTOCHRONE, 328-854
560. Definition of the brachistochrone, . 328
561. The investigation of the free brachis-
tochrone (328), . . . .828
562. The brachistochrone when the act-
ing forces are fixed (3284 ), . 328
563. The pressure upon the brachisto-
chrone is double the centrifugal
force (329,), . . 328-329
564. The point of contrary flexure in a
brachistochrone, . . 829
565. The conditions of the braclnsto-
chrone introduced by the general
method of variations, . .
566. When the force is directed towards
a point, the free brachistochrone
is a plane curve, and its plane in-
cludes the point of attraction, . 829
567. When the forces are parallel, the
free brachistochrone is a plane

829



XXX

568.

569.

570.

571.

572,

578.

574.

575.

576.

578.

579.

580.

curve, and its plane is parallel to
the direction of the forces, . 829
When there are no forces the brachis-
tochrone is the shortest line, . 329-380
The equation of the brachistochrone
when its force is central (330,), . 33
The brachistochrone of § 569, when
the force is proportional to the dis-
tance; it is a spiral or an epicy-
cloid (381, ), - . 330-331
The equation of the brachistochrone
when the forces are parallel (3315),
331-382
The brachistochrone of a heavy body
is a cycloid (332,), . 882
The brachistochrone of § 571, when
the force is proportional to the dis-
tance from a given line (332,),
(333,), . 332-833
The centrifugal force in the brachis-
tochrone upon a given surface, . 838
Simple case of a brachistochrone
upon a given surface, including
that of a meridian line upon a sur-
face of revolution, . 383-334
The brachistochrone upon a surface
of revolution when the force is di-
rected to a point of the axis, and
expression of the projection of the
area upon the plane perpendicular
to the axis (3344 ), . 834-385

0

. The derivatives of the arc and of the

difference of longitude in the case

of § 576, taken with reference to

the arc of the meridian (335;;), .
The derivatives of the same quanti-

ties taken with reference to the

latitude (331,;,), . . 885
The surface upon which the brachxa-

tochrone may make a constant

angle with the meridian; it may

be used to define the limits of the

brachistochrone in any case of

§ 576 (3354), (336;), . . 885-336
The limiting surface of § 579 is a

paraboloid of revolution in the case

of a heavy body, of which the axis

is directed downwards. Investiga-

335

ANALYTICAL TABLE OF CONTENTS.

tion of the other brachistochrones
upon thissurface (336y), (3374 11, %)
(388'. 1,18, IQ-I))? (339., 18, ’)’ (8407. N)’

836-340

581. The brachistochrone for a heavy
body upon a paraboloid of revolu-
tion of which the axis is the upward
vertical (310y), (341,), .

The brachistochrone of a heavy body
upon a vertical right cone (341y),

(342‘_" 15, g), (3433, 15,19, 98, ﬂ)’ (844’)’

582.

. 340-341

341-344

588. The brachistochrone of a heavy body
upon an ellipsoid of revolution of
which the axis is vertical (344,,),
(34515, 1), (34650,10,2): -

The tangential radius of curvature of
the brachistochrone of a heavy body
upon any surface (347,),

When the force is parallel to the axis,
and proportional to the distance
from a plane which is perpendicular
to the axis, the limiting surface of
§ 579 is an ellipsoid or an hyper-
boloid, . . .

When the force is propomonal to the
distance in § 576, the limiting sur-
face of § 579 is an ellipsoid or an
hyperboloid, . .

Investigation of the hmmng surface
of § 579 when the force is propor-
tional to the square of the distance
in § 576, . . . .

The normal pressure upon the brach-
istochrone when the length of the
arc is given (347y),

The equation of the brachistochrone
in the case of § 569, when the length
of the arc is given (3484 ,), . .

590. The equation of the brachistochrone

in the case of parallel forces when
the length of the arc is given
(8484, 1),
591. The equation of the brachlstochrone
in the case of § 576 when the
length of the arc is given. The
investigation of the limiting sur-
face (3484, »), (349;),

584.

585.

586.

587.

588.

589.

. 844-346

. 346-347

347

347

347

. 847-348

348

. 348

. 848-349




ANALYTICAL TABLE OF CONTENTS. xxx1

592. The normal pressure in a brachisto-
chrone when the total expenditure
of action is given (349,), . . 349
598. The equation of the brachistochrone
in the case of § 576, when the to-
tal expenditure of action is given
(349, 5); - .. .849
594. The equation of the brachistochrone
in the case of parallel forces when
the total expenditure of action is
given (349y), (350,), . . 849-350
595. The equation of the brachistochrone
in the case of § 576, when the to-
tal expenditure of action is given,
and the investigation of the limit-
ing surface (350 19,1), - - . 350
596. The brachistochrone in a medium of
constant resistance (851, 1), 850-351
597. The expression of the multiplier of
the equation for the element of
length of the arc when the force is
central in the case of § 596 (851,), 851
598. The expression of this multiplier
when the forces are parallel (3514,), 351
599. The equation of the brachistochrone
of a heavy body in a medium of
constant resistance (851yx), . . 851
600. The brachistochrone in a medium,
of which the resistance is a given
function of the velocity (3525515 %), 352
601. The equations of § 600 when the
forces are parallel (35244), . . 352
602. The brachistochrone of a heavy body
in any resisting medium, and in the
case of the resistance inversely pro-
. portional to the velocity, and di-
rectly proportional to the square of
the velocity, (85844 x,35), - . 858
603. EULER’S error in regard to the nor-
mal pressure of a brachistochrone
in a resisting medium, . . . 853
604. Singular difficulty in the special de-
termination of the brachistochrone
when its form is given. Special
example of such an investigation
(354y), . . . . . .854

605-624. THE HOLOCHRONE, . . 854-364

6035. Definition of the holochrone, . . 854
606. The force along the curve of the
holochrone when the forces are
fixed (355,,), . . . 354-355
607. The holochrone for a heavy body
(355y), - .. .85
608. The force along the holochrone when
the time of descent admits of de-
velopment according to integral
ascending powers of the arc

(35515), - . 855
609. Given function of the 1nmal value of

the potential (857, ), . . 356-857
610. Case of § 609 when the forces are

parallel (357,), . . . 857
611. Case of § 609 when the forces are

central (357,), . . . 857

612. Case of § 609 when the time is devel-
oped according to powers of the
initial value of the potential (358,), 358

618. Case of § 609 when the curve of ap-
proach to the point of maximum
potential is given, and the whole
time is a given function of the
maximum potential (358;;), . . 858

614. Case of § 609 when the time of os-
cillation is constant, which is a cu-
rious species of tautochrone inves-
tigated by EULER for heavy bodies
(3584), .o . 858

615. The holochrone is mdetermmate
when the forces may depend upon
the velocity, but there is a con-
dition which must be satisfied
(359y), - . . 358-859

616. The case of § 615 when the force
along the curve may be separated
into two parts, of which one is fixed
and depends upon the arc, while
the other depends upon the veloc-
ity, has been largely discussed with
little success and much animosity. . 359

617. The case of § 615 transformed to LA-
GRANGE'S most general form of the
tautochrone (859), . . . 859

618. The case of § 615 transformed to LaA-
PLACK'S general form of the tauto-
chrone (360,), . . . . 860




xxXil

619. The case of § 615 transformed to a
third form equally general with
those of LAGRANGE and LAPLACE
(360,,), . 860

The case of § 615 wben the assumed
equation consists of three parts,
which are functions respectively
of the arc, the time, and the veloc-
ity (360s), . . . 860

Transformation of the precedmg Sform
to a familiar formula of La-
GRANGE (861,), . 860-861

Case in which the form of §621 co-
incides with that of §616, which
sustains the correctness of Fox-
TAINE'S strictures; and this holo-
chrone is essentially tautochronous
(362y), - . 361-362

Case of § 615, wblcb includes La-
GRANGE's formula (362;), (363,),

© 862-363

Case of §621, in which the force
along the curve has the form given
in §616, with the addition of a
term which is the product of the
square of the velocity by a function
of the arc (363y), . . . 863-364

620.

621.

622.

628.

624.

625-639. THE TACHYTROPE, . . 864-368
625. Definition of the tachytrope, . . 364
626. Application of §615 to the tachytrope, 364
627. Case in which the time is not in-
volve.l in the assumed equation of
§ 615, and the force has the form
of §616 (364,), . . . . 864
628. Case of a heavy body in which the
tachytrope is a cycloid (3644 5),
(365), . . . 364-365
629. KLINGSTIERNA'S case of the tachy-
trope in a medium which resists as
the square of the velocity, which
was solved by CLAIRATUT (365,),
630. Case of § 627, when the velocity is
uniform (363,), . . .
631. Case of the tachytrope when the
forces are parallel, and the as-
sumed equation of §615 does not
involve the time (366,), . 866

365

ANALYTICAL TABLE OF CONTENTS.

632. Case of §6381, when the velocity
has a constant ratio to that in a
vacuum (366, ), . . . . 366

638. Case of §627, when the forces are
central, and the assumed equation
is expressed in terms of the veloc-
ity and the radius vector (366,,), . 366

634. Case of § 633, when the velocity has

a constant ratio to that in a vacuum
(3665), (367), . . . 866-367
Case in which the velocity in a given
direction is a given function of the
arc and the distance in that direc-
tion (367,), . . . . .867
Case in which the velocity in a given
direction is uniform (367,), . . 867
637. Case of § 636 for a heavy body
(3675 1) . . 867
Case of § 637 when tbere is no re-
sisting medium ; for a horizontal
direction the w:bytrope is a para-
bola, and for a vertical direction
it is the evolute of a parabola
(368, 0um), - - . .868
The tachytrope of a heavy body when
the resistance is proportional to the
velocity (3684), . . . . 868

635.

636.

688.

639.

640-646. THE TACHISTOTROPE, . 369-870
640. Definition of the tachistotrope, . 369
641. The tachistotrope in a medium of
which the resistance is a given
function of the velocity (369,,4), -
642, The normal pressurc on the tachis-
totrope when the resistance is pro-
portional to a power of the veloc-
ity (3695), . . . .
6438. The tachistotrope is a etrmght line
when the resistance is constant, . 370
The tachistotrope for parallel forces
3709, . . . . .87
The tachistotrope of a heavy body
B00w), - .. .870
The tachistotrope of a heavy body
when the resistance is that of
§ 642 (370,), . . 870

369

369

644.
645.

646.

647-655. Tur
TAUTOBRAYD,

BARYTROPE AND THE
. 870-878




ANALYTICAL TABLE OF CONTENTS.

647. Definition of the barytrope and tauto-
baryd, . . . 870
The barytrope when the force has
the form of § 616 (870y), . . 870
The barytrope and tautobaryd of a
beavy body (871s,), . . . 871
The barytrope and tautobaryd when
the resistance is constant; this in-
vestigation is applied to a heavy
body (871is1mn), (37%), - 871-872
The barytrope against which there
i8 no pressure is the curve of free
motion (872,,), . 872
When the curve of the barytrope is
given, the relations of the fixed
force and resistance, . . . 872
These relations in the case of pamllel

648.

649.

650.

651.

652.

653.

forces (372, 3), . 872
654. The relations of §653 apphed to the
circle (872), (373;), . 872-378

655. The relations of § 653 applned to a

cycloid (873 ), . . 878

656-662. THE SYNCHRONE, . 873-874
656. Definition of the synchrone and its
dynamic pole, . 878
The synchrone for a constant time,
373-374
The synchrone in a resisting medium
without force, on a path of given
form is the surface of a sphere, . 874
The synchrone for a uniformly ro-
tating straight line without exter-
nal force is a surface of revolution, 874
The synchrone for certain fixed
forces upon straight lines is a sar-
face of revolution, . . 874
The synchrone of a heavy body with-
out resistance (374), . . 874
The synchrone of a heavy body in a
medium which resists as the square

657.

658.

659.

660.

661.

662.

of the velocity (374y), . . 874
668-670. THE SYNTACHYD, . . 875-876
663. Definition of the syntachyd, . 875

664. Investigation of the syntachyd, 875
665. In-the case of § 658, the syntachyd
coincides with the synchrone, . 875

[

ves

XXX

666. In the cases of §§659 and 660, the
syntachyd is a surface of revolu-
tion, . 375
667. When the actxon is that of ﬁxed
forces, the syntachyd is a level sur-
, . . . . . .815
668. The syntachyd for a heavy body
moving upon a straight line against
a constant friction and through a
medium of which the resistance is
proportional to the square of the
velocity (875,.), . . 875
669. The syntachyd in a case like t.lmt of
§ 668, but in which the resistance of
the medium is proportional to the
velocity (376,), . 875-876
670. The syntachyd for any body with
the resistances of § 668 (376,), . 876

671-735. A POINT MOVING UPON A
FIXED SURFACE, . . 876423

671. The motion of a point upon a fixed
surface (877), . . . 876-877

672. The centrifugal force of a body

against a surface (377y), . 877
678. When the force is normal to the sur-
face, the path is the shortest line, . 377

674. When the velocity is constant, the
body moves upon the intersection
of the given surface with a level
surface, . . 877
675. When the velocxty is a gwen func-
tion of the parameter of the level
surface, the equation of a second
surface upon which the body
moves, . . 877
676. When the force is du'ected toward
the origin, the area described by
the radius vector is proportional
. to the time. The polar equation
of the path (878,), . 878
677. When the force of § 676 is a.ttractnve
and inversely proportional to a
power of the distance, and the ve-
locity is that obtained by falling
from an infinite distance, the polar
equation of the path admits of sim-
ple integration ; in gravitation the



XXXIV

path is a parabola; for a force in-
versely proportional to the cube
of the distance, it is a logarithmic
spiral; for a force inversely pro-
portional to the fourth power of
the distance, it is an epicycloid ;
for a force inversely proportional
to the fifth power of the distance, it
is the circumference of a circle ; for
a force inversely proportional to
the sixth power of the distance, it is
the trifolia; for a force inversely
proportional to the seventh power
of the distance, it is the lemniscate ;
for a repulsive force proportional
to the distance, it is an equilateral
hyperbola (379), . . 879-380
678. Case in which the integration of
§ 676 is simple (380,),. . . 880
679. Case of § 678 for a force of four terms
one of which is constant, and the
others are respectively proportional
to the distance and to its inverse
square and cube (381, 5, 5),
(38240),- . . . 880-382
680. Case of § 678 for a force of four
terms which are inversely propor-
tional to the second, third, fourth,
and fifth powers of the distance
(3821w 1)y - ..
681. Case of § 678 for a bmoxmal form of
the radical of (378,), (383,,), .
682. The general forms of force of § 676
which admit of simple integration
consist of two terms, of which one
is inversely proportional to the
cube of the distance, and the other
is proportional to the distance or
inversely proportional to the square
of the distance (8883,;), . . 888
683. The term, which iz inversely propor-
tional to the cube of the distance, does
not increase the difficulty of integra-
tion, and the effect of this term may
be disguised in the constants (383y,),
383-384
684, Case of no force and of a central
force inversely proportional to the

382

383

ANALYTICAL TABLE OF CONTENTS.

cube of the distance (384, 51, 1),

(3855 6.20)y - . 384-385
685. Case of a central force proportional
to the distance, . 885-386

686. Case of § 685 combined with a force
inversely proportional to the cube
of the distance (386,.,,), . . 886
687. Case of a central force inversely pro-
portional to the square of the dis-
tance, . . . 886-887
688. Case of § 687 t,ombmed with that of
§ 684 (387,0), (388y4), . 387-388
689, Case of § 688 with the force of
§ 684 (388,), . . 888
690. The general laws of force for wluch
integration may be effected by el-
liptic integrals, each consisting of
four terms, with a total variety of
six cases (389, ,), - . 388-389
691. Second case of the first form of § 690
when the force consists of terms
of the form of § 679 (390y4),
(89119.14), (3922)/(3936, 19.8), (3945.11),
(3941, 2), (3964, (39711), (3970.01),
(398, p.s), (399,41), . . 389-399
692. First case of the first form of § 690,
when the four terms are respec-
tively proportional to the distance,
to its third and fifth powers, and
to its inverse cube (399 15 mau),
(400, 4), <« . . 899-400
698. Case of § 692, in which the force is
proportional to the fifth power of
the distance, . . . . . 400
694. Case of §692, in which the force is
proportional to the cube of the dis-
tance, . . . . 401
695. Third case of the ﬁrst form of §690
in which the four terms are in-
versely proportional to the cube
root of the distance, to the fifth and
seventh powers of the cube root,
and to the cube of the distance
(40110 a), - - . 401
696. Case of §695, in which the force is
inversely proportional to the cube
root of the distance, . 401402
697. Case of §695, in which the force is




ANALYTICAL TABLE OF CONTENTS.

inversely proportional to the fifth

and the seventh powersof the cube

root of the distance, . . 402
698. Fourth case of the first form of § 690,

in which the four terms are inverse-

ly proportional to the square and

cube of the distance, and the third *

and fifth powers of the square root .

(402, ), (408,), . . . 402403
699. Cases of § 698, in which the force is

inversely proportional to the third

and fifth powers of the square root

of the distance, . . . . 408
700. First case of the second form of § 690,

in which the four terms are inverse-

ly proportional to the second, third,

fourth, and fifth powers of the dis-

tance (408y), (404,), - . 403404
701. Case of § 700, in which the force is

inversely proportional to the fourth

power of the distance, .. . . 404
702. Case of § 700, in which the force is

inversely proportional to the fifth

power of the distance, . . 404405
703. Second case of the second form of

§ 690, in which the four terms are

proportional to the distance, and

inversely proportional to the third,

fifth, and seventh powers of the

distance (400,., 18,18)» . 405
704. Case of § 703, in which the force is

inversely proportional to the sev-

enth power of the distance, . 405-406
705. Third form of central force, in which

the integration can be performed

by elliptic integrals (406. v, n), . 406
706. The potential curve for defining the

limits of the path described under

the action of a central force (407,,), 407
707. The term of the potential, which cor-

responds to the force of § 686, may

be omitted in the potential curve

of§706, . . . . 407
708. Potential curve in which the path can

only consist of a single portion, 407-408
709. The portion of the potential curve

which corresponds to attraction and

repulsion, . . . . . 408

XXXV

710. Form of the path for a central force
in the vicinity of the centre of ac-
tion, . . 408-409
711. Character of t.be pat.h for a central
force at an infinite distance from
the centre of action, . . . 409
712. Graphic determination of the incli-
nation of the path to the radius
vector, . .
718. The equation of the pat.h for parallel
. forces (410,), . . . 410
714. The path of a pmJectlle is a para-
bola (410y), . . 410
715. The equation of the curve for par-
allel forces referred to rectangular
coordinates (410y), . 410
716. The potential curve for parallel
forces, . . . 411
717. Case in which the foroe of§713 is
proportional to the distance from
a fixed line (411,4), . 411
718. Case in which the force of §718 is
proportional to the distance from
any fixed line divided by the
square of the distance from an-
other line (411,), . . . 411
719. The motion of a body upon a surface
of revolution when the force is cen-
tral, and the centre of action is
upon the axis of revolution (412,,),
411-412
720. Derivatives of the arc and of the
longitude in the case of §719
(412030 3501), + - . 412
721. Case of § 719, in which the path of
the body makes a constant angle
with the meridian. The surface of
revolution which defines the limits
of the path (412), (413;), . 412-413
722. Limiting surface of revolution for a
heavy body (413;), . . . 418
723. Motion of a heavy body upon a verti-
calright cone (41441, sn), (4155.44),
(41550 ), (416),. . . 418-416
724. Motion of a heavy body upon a verti-
cal paraboloid of revolution of which
the axis is directed downwards
(41610 mu), (4175 )y, - 416417

. 409



XXXV1

725. Motion of a heavy body upon a ver-
tical paraboloid of revolution of
which the axis is directed upwuds
(417g4), . . 417

726-735. THE SPHERICAL PENDULUM,
418428
The path of a spherical pendulum
(418, 0), . 418
Relation of the lnmt.s of the path of
the pendulum (4184.4), . 418
The time of oscillation for different
lengths of pendulums, . 418419
Case in which the path of the pendu-
lum is a horizontal circle (419, 1, n),
(4204 ), . 419-420
The time of a complete revolution in
the case of § 729 (420,), (421,),
420-421
The path of the pendulum when
it is nearly a horizontal circle
(4214 14), . 421
The path of the pendulum when it is
nearly a great circle (4214, »), 421422
The path of the pendulum when it
passes nearly through the lowest
point of the sphere (422, 1), . 422
Limits of the arc of vibration of the
pendulum, . . 422
The azimuth of the pendulum (423.,, =)
422-423

726.
727,
728.

729.

730.

781.

782.

788.

734.

785.

786-752. Tax MoTION OF A FREE
PoINT, . . 424-433
736. The acceleration of a free point in
any direction (424,), . 424
737. The rotation-area with reference to
the moment of the force about an
axis (424y), . . 424-425
788. The potential for a central force pro-

789.

740.

741.

742.

748.

744.

745.

746.

747,

748.

749.

750.

751.

752.

ANALYTICAL TABLE OF CONTENTS.

portional to the distance. The
path is a conic section (425,), . 425
The area for forces directed towards
a line is proportional to the time, .
The path for the case of forces di-
rected towards a line investigated
by means of the peculiar coordi-
nates of the distances from two
fixed points of the line (426, z),
(427,), (428y), - . 425428
The special cases of §740 may be
combined into one by addition, . 428
Cases in which the forms of § 740
are expressed by elliptic integrals
(4285.0), . 428429
Case of § 740, in which there are two
forces which follow the law of
gravitation, . . 429
Case of § 740, in wlnch thore is
one force proportional to the dis-
tance, . 429
Case of § 740, in wluch thene is one
force inversely proportional to the
distance from the fixed line, . 429430
Restriction of the law of force for
motion upon a given curve, . . 430
BoNNET’s theorem for combination
of forces which produce a given
motion (430y), . . . 430
General value of the potentlal for
§ 746 (431,), . . 431
Cases in which the curve of § 746 is
a pmbola (431“ 1.'““), . . 431
Case in which the curve of § 746 is a
conic section (432,4,), . . 432
Case in which the curve of § 746 is a
cycloid (4824 4), . . 432
Case in which the curve of § 746 is a
circle, or in which the surface of
free motion is a sphere, . . 432438

425

CHAPTER XII.

MOTION OF ROTATION.

758. Rotation-area defined. Principle of
the conservation of areas, . 433-434

754.

The parallelopiped of rotation-
areas, . . . . . .4%




ANALYTICAL TABLE OF CONTENTS.

755-797. RoTATION OF A SorLip Bobpy,

4384-458
755. The moments of inertia and the in-
verse ellipsoid of inertia, . 484-436

756. Rotation about a principal axis pro-
duces no rotation-area about the
other principal axes, . . 436
757. The plane of maximum rotation-area
is conjugate to the axis of rotation, 436
758. The ellipsoid of inertia, . . 436
759. Position of the axis of maximum ro-
tation-area with reference to the
axis of rotation in the direct and
inverse ellipsoids of inertia, . 436437
760. EULER’s equations for the rotation of
asolid (487 w), - . . . 487
761. The equation of living forces in the
rotation of a solid (488,,), . 437-438

762-769. RoraTIiON OF A SoLip Bopy
WHICH 18 S8UBJECT TO NO Ex-
TERNAL ACTION, » . . 488448

762. The velocity of rotation of this solid
is proportional to the correspond-
ing diameter of the inverse ellip-
soid (438), . . . . .

763. The velocity of rotation about the
axis of maximum rotation-area and
the distance of the tangent plane
at the extremity of the axis of rota~
tion: are invariable. PoinsoT’s
mode of conceiving the rotation
(439), . . . . . 438439

764. Permanency of the instantaneous axis
and of the axis of maximum rota-
tion-area in the body (439,), (440),

439-440

765. Surfaces of the instantaneous axes
in space (442,), . . . 440442

766. The velocity of the instantaneous
axis in the body (442,), . 442

767. Case in which the axis of maximum
rotation-area describes the circular
section ; corresponding spiral path
of the axis of rotation (442, y.),

442443

768. Case in which the ellipsoids of iner-

tia are surfaces of revolution, . 448

438

xxxVvil

769. The analysis of this case may be ex-
tended to that of a solid rotating
about a fixed point without the ac-
tion of external forces, . . . 443

770-783. THE GYROSCOPE AND THE
Toe, . . . . . 443-451

770. Motion of a solid of revolution about
a fixed point (444,), . . 443444

771. The rotation about the axis of revo-
lution is uniform, . . . . 444

772. The motion of the gyroscope (444n),
(445.0), - - . . 444-445

778. The motion of the gyroscope ex-

pressed by elliptic integrals
(44643), - - - . 445—446

774. When the velocity of rotation van-

ishes, the gyroscope is a spherical
pendulum, . . . . . 446

775. Case in which the gyroscope de-
scribes a horizontal circle, . . 446

776. Major BARNARD’S case of the gyro-

scope in which the initial velocity
of the axis vanishes, . . . 447

777. Case in which the azimuthal motion

of the axis is reversed during the
oscillation, . . . . . 447
778. Case in which the axis of the gyro-

scope becomes the downward ver-

tical during the oscillation (448;),
447448

779. Case in which the axis of the gyro-

scope becomes the upward vertical
during the oecillation (448,,), . 448

780. Case in which the velocity of the axis
vanishes for the upward vertical, . 448

781. Case in which the axis constantly

approaches the upward vertical
without reaching it (449,), . . 449

782. The theory of the top (444,), (445,),
(449), - . . . . 449450

788. Friction in the case of the gyroscope.
The sleeping of the top, . 450451

784-791. THe DeviL oN Two STticks
AND THE CHiLp’s Hoopr, . 451456
784. Theory of the motion of the devil
on two sticks (4525 1,), . . 451452



x oee

785. The axis of the devil cannot be-
come vertical in the general case
452),. - - . . .452

786. Case of the devil in which there is
no rotation-area about the vertical
axis, and in which the axis of the
devil may become horizontal, 452458

787. Case of the devil in which there is
no rotation-area about the vertical
axis, and in which the axis of the
devil cannot become horizontal, . 453

788. Case in which the axis of the devil
may become horizontal with a gyra-
tion about the vertical axis; and
the corresponding case when it
cannot become horizontal, . 453—454

789. Case in which the axis of the devil
may become vertical, . 454

790. Theory of the body rolling upon a
horizontal plane (4555, 4), . 454455

ANALYTICAL TABLE OF CONTENTS.

791. Peculiar motion of the hoop when it
is nearly falling, . . . 455-456

792-794. RoTARY PROGRESBION, NUTA-
TION, AND VARIATION, . 456457
792. Definition of nutation, progression,
and variation of axes, . . . 456
798. Accelerative forces which produce
nutation, progression, or variation, 456
794. Cases of these various actions, . . 457

795-797. RoLLINé AND SumNg Mo-
TION, . . . . . 457458
795. General theory of rolling motion

(457g), . - . . . . 457
796. General theory of sliding motion
(458,), . . . . . 457438

797. Theory of sliding with friction ; case
in which the sliding disappears, and
the motion becomes that of rolling, 458

CHAPTER XIII.

MOTION OF BYSTEMS.

798. Principles of power, translation and
rotation applicable to all systems, .
799. Forces of different orders, disturb-
ing forces and perturbations, . 458-459
800. Division of the system into partial
systerns, N . .. 459

458

801-805. LAGRANGE’S METHOD OF PER-
TURBATIONS, . 459462
801. Method of the variation of the arbi-
trary constants (460), . . 459460
802. Combination of divers modes of vari-
ation (461,,), . 460461
808. Derivative of the disturbing force
with reference to an arbitrary con-
stant (461y), (462,), . 461-462
804. Special case in which the arbitrary
constants are the initial values of
the variables (462y, 1), - . 462
805. Variation of the constant of power
(462w),. . .. . 462

806-808. LApLACE'S METHOD OF PER-
TURBATIONS, . 462-465
806. Direct integration of the disturbed
functions which are equivalent to
the undisturbed arbitrary con-
stants, . . 462463
807. Special case of frequent occurrence
in planetary perturbations, . 463—464
808. Perturbations of a projectile, . . 464

809-818. HaxsenN’s METHOD OF PER-
TURBATIONS, . 465469
809. The first principle of this method, and
the expression of the time as an in-
variable arbitrary constant (465,), 465
810. The principle of § 809, applied to the
case of § 808 (465,54), . . . 465
811. The principle of § 809, applied to the
case of §807, and especially when
the disturbing force has a simple,
periodic form (465y), (466, ,), 465—466




ANALYTICAL TABLE OF CONTENTS.

812. The second principle of this method

or the application of the perturba-

tions to the element of time, so that

one of the functions may involve

no other element of perturbation
(466x),. . . . . 466467

818. Additional perturbation in the case

of §812 of any other function
(467),. . .. 467

814. Other forms of the perturbauon in
the first approximation (467,), . 467

815. Case in which the function of § 812

does not involve the velocities,
467-468

816, 817. Case in which the initial values

of the functions of §§ 812 and 813

are simply related to the arbitrary
constants, . . 468
818. The further development of the

methods of perturbation is reserved
for celestial mechanics, . . 468-469

819-824. SMALL OSCILLATIONS, . 469-472

819. The theory of small oscillations is re-
duced to the integration of a sys-
tem of linear differential equations

(469,,), - . 469
820. The superposition of small oscllla-
tions, . .. 469-470

821, Integration of, the equatlona of 5820
(47049), - - . . .470

XXX1X

822. Admissible forms of small oscillations
correspond to stable elements of
equilibrium (4704), . 470471

823. Independent elements of oscillation

471y, . . .. 471472

824, Oscillation and wbmhon pervade

the phenomena of nature, . . 472

825-830. A SYsTEM MOVING IN A Re-
8ISTING MEDIUM, . . 472475

825. Equation for the determination of

the JAcOBIAN multiplier in such a
system (4724), . . . 472478

826. The factors of the multiplier corre-
spond to different laws of resistance, 478

827, Cases in which the multiplier is
unity, . 474

828. The multiplier when the resxstance is
proportional to the velocity, . 473-474

829. The multiplier when the resistance

is proportional to the square of the
velocity, . . . . 474

830. Equatlon of power fora system mov-
ing in a resisting medium (474,5 5)), 474

831. Motion of the centre of gravity in a

resisting medium (474g, ), (475,),
474-475

832. The rotation-area in a resisting me-
dium (475,04), - . . 475

888. THE CONCLUSION, . . 476477

APPENDIX.

Note A. Ox THE ForcE or MoviNGg
Bobiks, . . . . 479-480

LisT OF ERRATA,. .

. 483-486 | ALPHABETICAL INDEX,. .

Note B. Ox THE THEORY OF ORTHO-
GRAPHIC PROJECTIONS, . . 481

. 487-496






ANALYTIC MECHANICS.

CHAPTER 1

MOTION, FORCE, AND MATTER.

§ 1. Morron is an essential element of all physical phenomena ;
and its introduction into the universe of matter was necessarily the
preliminary act of creation. The earth must have remained forever
“ without form, and void;” and eternal darkness must have been
upon the face of the deep, if the Spirit of God had not first “moved
upon the face of the waters.”

2. Motion appears to be the simplest manifestation of power,
and the idea of force seems to be primitively derived from the
conscious effort which is required to produce motion. Force may,:
then, be regarded as having a spiritual origin, and when it is
imparted to the physical world, motion is its usual form of mechan-
ical exhibition.

8. Matter is purely inert. It is susceptible of receiving and
containing any amount of mechanical force which may be commu-
nicated to it, but cannot originate new force or, in any way, trans-
form the force which it has received.

1 -



CHAPTER IL

MEASURE OF MOTION AND FORCE.

L

 MEASURE OF MOTION.

§ 4. Unmiform Motion is that of a body which describes equal
spaces in equal times.

5. Velocity is the measure of motion. In the case of uniform
motion it is the distance passed over in a given time, which is
assumed as the umt of time, and, in any case, it is at each instant
the space which the body would pass over, if it preserved the same
‘motion during a unit of time.

6. 1If the space described by a body in the time ¢ is denoted
by s, the expression for the velocity » is, in the case of uniform
motion,

<<

ﬂlh

If the differential is denoted by d and the derivative by.D, the

expression for the velocity is, in any case,
) ‘ v= %: = D,s.

IL

MEASURE OF FORCE.

7. Experiments have shown that the exertion which is re-
quired to move any body, is proportional to the product of the
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intensity of the effort into the space through which it is exerted.
This product is, then, the proper measure of the whole amount
of force which is necessary to the production of the motion ;
long established custom has, however, limited the use of the
word force to designate the wnlensify of the effort, and the whkole
amount of exertion may be denoted by the term power. Hence, if
the power P is produced by the exertion of a constant force 7,
acting through the space s, the expression of the force is

8

But if the force is variable in its action, the expression of its

intensity at any point is
dP .
| F == D,P.

8. It is found by observation that the force of a moving body
is proportional to its velocity. Thus, if m is the force of a body
when it moves with the unit of velocity, its force, when it has
the velocity v, is mv.

9. Different bodies have different intensities of force when
they move with the same velocity. The mass of a body is its
force, when it moves with the unmit of velocity; thus, m in the’
preceding article, denotes the mass of the body.

10. The force communicated to a freely moving body, by a
force which acts in the direction of the motion, is found to be the
product of the intemsity of the acting force, multiplied by the
time of its action. Thus, if the mass m, acted upon by the con-
stant force F, for the time 7, in the direction of its motion, has
its velocity increased by v, the addition to the force of the mov-
ing body is

. my = Ft.
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In case the acting force is not constant, the rate at which the
force of the body increases is

mD,vy —= F.

1I1.
FORCE OF MOVING BODIES.

11.  The power with which a body moves is equal to the product of
one half of s mass mulliplied by the square of s velocity.

For if the body, of which the mass is m, is acted upon by
the force F, until from the state of rest it reaches the wvelocity
v, the power P, which has been communicated to it, and which it
consequently retains, must, by (3,) * and (4;), give the equation

D,P=mD,v.
The derivative of P relatively to Z, is by (2,,)
D,P=D,P. D,;s=vD,P—=mvD,v.
The integral of this equation is
P = imi?,
to which no constant is to be added, because the power vanishes
with the velocity. (Nofe A.)

12. Hence the power of a moving body is equal to one half
of the product of its force multiplied by its velocity.

* The form of reference here given is by means of numbers, of which the leading
number refers to the page, and the secondary number, which is printed in smaller
type, refers to the place upon the page, estimated from the top of the page, in lines of
equal typographic interval. Printed marks, corresponding to these intervals, accom-
pany each copy of the work. Thus, (314) denotes the cquation which is at the 14th
typographic interval from the top of the third page.
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13. It is convenient to refer the measure of force to the
unit of mass as a standard. Thus, if Fis the force exerted upon
each unit of mass, the force exerted upon the body of which the
mass is m, is mF. With the ), used in this sense, (4;) becomes

Dyoy=PF.

CHAPTER IIL

FUNDAMENTAL PRINCIPLES OF REST AND MOTION.

L
TENDENCY TO MOTION.

§ 14. A system of moving bodies may be regarded mecharically as a
system of forces or powers, which must be the exact equivalent of all the
Jorces or powers which, by simullaneous or successive communication to the
bodies, are united in is formation.

This results from the inertness of matter, and its incapacity to
increase, diminish, or vary in any way, the power which it contains.

15. It also follows from its inertness, that matter yields instan-
taneously to every force, and cannot resist any tendency to the
communication or abstraction of power. With a system which is
at rest, there can consequently be no tendency to the communi-
cation of power.

16. The. tendency of any body or system of bodies to move
in any given way is easily ascertained. It is only necessary to sup-
pose the system moved with the proposed motion to an infinitesimal
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distance. The product of the corresponding distance, by which each
body of the system advances in the direction in’which each force
acts, multiplied by the intensity of the force is, by § 7, the corre-
sponding power which the force communicates directly to the
body, and through it to the system.

The whole amount of power which s thus communicated by all the
Jorces to the system, or rather s ratio to the wnfinitesimal element of the
proposed notion 13 evidently the measure of the tendency of the system lo
this proposed motion.

It must be observed that, when a body moves in a direction
opposite to that of the action of the force, the corresponding product
is negative, and must be used with the negative sign in forming the
algebraical sum, which represents the whole amount of power com-
municated to the system. ‘

17. By a skilful use of the principles of the preceding sec-
tion, all the elementary tendencies to motion in a system may be
determined, and, therefore, all the elements of change of motion in
the system which is actually moving, or all the conditions of equi-
librium in the system which is at rest. Thus, let

my, My, My, &c., denote the masses of a system of bodies;

Fy, Fi, FY, &c, the forces which act upon each unit of m, ;

F,, F;, FY, &c., the forces which act upon each unit of my ;

&e. &c.

df1, 0f1, Of7, &c., the distances by which m, advances in the
direction of the forces F}, Fy, FY, &c., in consequence of
any proposed motion ;

ofy, 0f3, 0f7, &e.; dfs, &c., the corresponding distances for the
other bodies and forces of the system ;

=’ the sum of all quantitics of the same kind, obtained by
changing the accents;
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=), the sum of all quantities of the same kind, obtained by
changing the underwritten numbers;

=}, the sum of all quantities of the same kind, obtained by
all admissible combinations of both changes.

The power communicated to the system by the proposed
motion through m;, m,, &c., is

='m Fy0fy = my (Fy 0, + F10f] 4 &e.)
Z'maFy0fy = my (F39f3 + F10f; + &c.)
&e. &ec.;

and the whole power communicated is

=m0y = =, ='mFydf;
= z,ﬂnlﬂd\fl + E,ﬂ?z.nd.fz + &c.

This is, therefore, the complete measure of the tendency in the
system to the proposed motion, or of the change of motion which
the moving system would experience in the direction of the. pro-
posed motion. But by a simple change in the values of df;, Jf7,
o2, Ofz, &c., the téndency' to any other proposed motion may be
measured ; and, in the same way, all the elements -of the change of
motion may be definitely ascertained.

1L

EQUATIONS OF MOTION AND REST.

18. If, instead of the given forces, each body were acted upon
by a force in the direction of its motion, and of such an intensity as
to produce the exact change of velocity which it undergoes, this
new system of forces would precisely correspond to that actually
imparted to the moving bodies, and would be the exact equivalent
of the given system of forces. Let
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vy, vg, 5, &c. denote the velocities of the bodies;

038y, ds,, J85, &c., the distances by which, in consequence of
the proposed arbitrary motion of the preceding section,
the bodies advance in the actual direction of this motion ;

and then from (4;)

D,v,, D,vy, D,vs, &c., are the intensities of the new forces
relatively to the unit of mass.

The whole power communicated by the new system of forces
with the proposed motion becomes, then,

=D, v, 08 = my D, v,08, + mgD, 1,03, - &c.,

and it must, therefore, be equal to the expression (7,) of the
power communicated by the given forces. Hence,

1m P 0fy = = my D,v,03,,
or by transposition
=, my(D,v,08,— Z'F,0f;) =o.
When the system is at rest, this equation becomes
=imF\df, =o.

19. The equation (8) in the case of motion, or the equation
(8y) in the case of rest, although it appears to be a single equation,
involves in fact as many equations as there are distinct elements of
motion or rest in the system of bodies. For every such element
gives a different set of values of df,, df7, 0/, &c., ds,, d3;, &c., which,
substituted in (8;) or (8y), produce a corresponding equation.
These equations, therefore, involve all the necessary conditions of
motion or rest in every mechanical problem. All that remains,
then, is to determine, by geometrical analysis, the various elements
of motion or rest, and to integrate and interpret the algebraical

L=
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equations, into which (8,) and (8,) are finally decomposed. The
Mbcanique Analytique of the ever-living Lagrange contains the general
forms of investigation with unequalled elegance and perspicuity.
But the special modes of analysis, which are peculiarly adapted to
the illustration and development of particular problems, have been
too much neglected, and the attention of youthful explorers is
earnestly invited to this unbounded field of research.

¢

CHAPTER 1V.

ELEMENTS OF MOTION.

L

MOTION OF TRANSLATION.

§20. A single material point may be moved to an infinitesimal
distance in any direction, which may be defined by either of the
methods known to geometers, by the reference, for instance, to the
directions of three mutually perpendicular axes. By the known
theory of projections, (Nofe B,) the distance by which the point
advances in the direction of its actual motion, or in any other direc-
tion, may be fully determined from the distances which it advances
in these three directions. The three distances, moved in the direc-
tions of the axes, which are simply the projections of the proposed
motion upon the three axes, are the three independent elements of

" motion which completely define the elementary motion of the single point.
2
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Thus if

Jp denotes the proposed elementary motion, if
2 5, 2, denote the angles which this motion makes with the

three mutually perpendicular axes, called the axes of z,
Y, and z, and
0z, dy, dz, the projections of dp upon the axes,

the expressions for these projections are,

dr=cos?.dp,
— p
Jy = cos y.d‘p,
dz=cos?.dp.
If, in general,

1; denotes the angle which the directions of p and ¢ make
with each other, the distance by which the point
advances, in consequence of the proposed motion, in
the direction of f is, by the theory of projections,

o P
of = cosf.(?p

= cos-g.d‘x-{- cos{.d‘y-}-cos{.d‘z
= X3, cos £ 0z ;
in which
=, denotes the sum of all the similar terms obtained by pro-
ceeding from one axis to each of the others.

21. The most important of all the elementary motions of a
system of bodies are those which, being independent of the peculiar
constitution of the system, may be common to all systems. Such
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motions must be possible, even if the bodies which compose the sys-
tem, do not change their mutual positions, but are so rigidly fixed
that the whole may be regarded as one solid body. It will be
shown that there are but two distinct classes of such motions,
namely, those of ¢ranslation and those of rofation.

22. The motion of ¢ranslation is that by which all the points of
a body, or system of bodies, are transported through the same dis-
tance in the same direction. The projections of an elementary
translation upon three rectangular axes are given by equations
(104933), while (10y), is the expression of the distance by which the
system, or any one of its bodies, advances in any direction, such as
that of f, by reason of the proposed translation.

23. Any number of different elementary translations may be
supposed to be given at the same time to a system, and the result-
ing motion will be such an elementary translation, that its projec-
tion, estimated in any direction, will be the sum of the projections
of the elementary translations estimated in the same direction.

Two coéxistent elementary translations may be combined geo-
metrically by setting off from any point two lines of the same
length with the elementary motions, and in the same direction with
them; and if a parallelogram is described upon these two lines as
sides, the diagonal, which is drawn from the given point, will rep-
resent in distance and direction the resulting elementary transla-
tion.

In the same way the geometrical resultant of the combination
of three elementary translations may be represented by the diago-
nal of a parallelopiped described upon the lines which represent the
component translations. But this parallelopiped vanishes when the
three lines are in the same plane.



II.

MOTION OF ROTATION.

§ 24. The motion of rofation is that by which all the points of
a body or system of bodies turn about a fixed line in the body,
which line is called the azis of rofation. If one stands with his feet
against the axes of rotation, and his body perpendicular to it, and
faces in the direction of the rotation, the positive direction of the
axis of rotation is, in this treatise, regarded as lying upon his right
hand, and its negalive direction upon his left hand. It will be found
convenient to represent a rotation geometrically by a distance pro-
portional to the elementary angle of rotation, set off upon the posi-
tive direction of the axis of rotation from any point taken at pleas-
ure in the axis. If

06 denotes the elementary angle of rotation, and r the distance
of a point of the body from the axis of rotation ;

700 is the elementary distance through which the point moves
in consequence of the rotation.

The form in which the subject of rotation will be here pre-
sented, is not greatly modified from that which it has finally
assumed in Poinsot’s admirable exposition of the & Theory of the
Rotation of Bodies,” as it is printed in the additions to the Connais-
sance des Temps for 1854.

25. When a body rotates about an axis, it s, tn consequence of this
rotation, stmultaneously rotating about any other axis which passes through
the same point, with an angle of rotation which 13 represented by the pro-
Jection upon this new azis of the line which represents the original angle of
rotation.

For by the angle of rotation 8 about the axis 0OA (fig. 1), the
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point P of the axis OB, which is at the distance
r—=PM

from the axis 04, is moved through the distance r4. Although
every point of the axis OA is actually at rest, it has with respect to
P, a relative motion, which is the negative of that of P. A rota-
tion &’ about the axis OB gives the point &V of the axis 04, which
is in the plane drawn through P perpendicular to OB, and at the
distance

¥ —= PN

from the axis of OB, a motion through the distance #4’ taken nega-
tively. This rotation is, then, the same with that which the actual
rotation produces about the axis OB, if

r'8 = r,
or g—l= :—/= cos MPN
= cos AOB;

that is, if ¢’ is equal to the projection of § upon OB.

26. Three stmultaneous elementary rotations about three axes, which
pass through the same point, and are not in the same plane, are equivalent
to a single rotation about the diagonal of a parallelopiped, of whick the three
lines representing the rotations are the sides, and the length of the diagonal
represents the angle of elementary rotation.

For the algebraic sum of the projections of the sides of the
parallelopiped upon any line perpendicular to its diagonal is zero,
and, therefore, there is no rotation about any such line. Hence the
diagonal is stationary, that is, it is the axis of rotation. The whole
amount of rotation, being the sum of the partial rotations about the
diagonal which arise from the several rotations about the sides, is
represented by the sum of the projections of the sides upon the
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diagonal, which is, by the theory of projections, equal to the diago-
nal itself.

27. In the same way, two simultaneous rotations about the
sides of a parallelogram may be combined into a single rotation
about the diagonal. In short, stmullancous elementary rotations about
axes which cut each other may be combined in the same way as elementary
translations.

28. To investigate the distance by which a given rotation
causes any point of a body or system to advance in a given direc-
tion, as that of f; let

04 be the elementary angle of rotation about the axis’of p and
»’ the perpendicular let fall from the point upon the axis
of rotation.

Let a line be drawn through the given point, parallel to the
projection of f upon a plane, which is perpendicular to the axis of
rotation, and let

¢ be the perpendicular let fall upon this line from the point in
which 7’ meets the axis of rotation ; and
6

f the angle which f makes with the direction in which the
point is moved by the elementary rotation.

The distance by which the point advances in the direction
of fis

— 0 080 —cos? sin?
6f__.r’cosf.d‘é_rcos',smf.66

= Qsin;’..d‘é,

in which ¢ should be taken positively when the point is moved
towards the positive direction of £,

29. 1If three rectangular axes are drawn through any point
of the axis of rotation, and if
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dé,, d6,, 36, are the projections of d¢ upon these axes, the dis-
tance by which the point (2, 7, 2) is moved in the direc-
tion of the axis of z, is

0z =008, — 209,
= (ycos? — zcosg) 0

= (cos” cos? — cos” cos ) rdd
y z z y

= (cos” cos? — cos " cos?) cosec T .70
Y z o Y r

= (cos " cos? — cos” cosP) 790
y 2 z y

= cosg.r'd‘é

There are similar expressions for the distances by which the
point advances in the directions of the axes of y and 2, which may
be found by advancing each of the letters z, 7, 2, and « to the fol-
lowing letter of the series.

30. The two last members of equation (15;) divided by /04
give the following theorem ;

0 '

— d
COS z— Ccos y

r__
cos z Cos z

cos’;,

in which the direction of 4 is that of the perpendicular to the com-
mon plane of # and p, and it is taken upon that side of the plane
for which, a positive rotation about it, would correspond to a
motion through the acute angle from #’ to p.

31. 1If there were another system of rectangular axes, 7/, y/,
and #, equation (154) applied to them would give

o __ Yons ¥ YoosZ
cosz__cosycos z —CO8 7 cosy.

In this equation each of the letters z, y, 2, and » might be
advanced to the subsequent letter of the series, as well as each letter
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of the series 7/, g, #, and 2. In this way eight other equations
might be found similar to equation (155).

IIL

COMBINED MOTIONS OF ROTATION AND TRANSLATION.

32. An elementary rolation, combined with an elementary translation
tn any direction, which 18 perpendicular to the axis of rolation, i3 equivalent
to an equal elementary rotation about an azxis which is parallel to the orig-
nal axis of rotation. The position of the new axis 1s defermined by the con-
dition that each of @s points i3 carried by the original elementary rotation as
Jar as by the elementary translation, but in an opposite direction.

For the given motions cancel each other’s action upon each
point of the new axis, and leave it stationary; while the original
axis advances with the elementary translation by the exact dis-
tance which corresponds to the elementary rotation about the new
axis. The common plane of the two axes is perpendicular to the
direction of the translation.

33.  Any simultaneous elementary rotations about axes parallel to each
other are equivalent to a single rotation, equal to their sum, and about an axis
parallel to the given axes, combined with an elementary translation equal to
the motion which any point of the new axis reccives from their simullaneous
action.

This is a simple deduction from the preceding proposition.

34. Let there be three rectangular axes, such that the new
axis of rotation may be that of z ; let

%1, %1, %3, Y2, &c., be the points in which the original axes cut
the plane of zy ; and let

d4,, d0;, &c., be the elementary angles of rotation about these
axes.

e e ————— e e g—————— p— p— — ——

= ey~
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The elementary rotation about the axis of 2z is
(’ A = 2 1 d 61 .

The elementary translations in the directions of the axes of z
and y are by (12,)
0zy= =,y,04,,
6!/0:—'211'1661.

The distances through which any point (2, g, z) is carried for-
ward in the directions of the axes, are
0z=02,—ydd==,y,06,—y=,00,
0y=0y, 4200 =—Z=,2,00,+2=,00,.

The points are, therefore, at rest for which

O — axo—yaé = 213/1661—!/ 21661,
0 = 6y0+z66 =—21z,d‘01 +x21661’

These are, thercfore, the equations of the axis of rotation, an elementary
rolation about which, equal to the sum of all the elementary rotations, is
equivalent to the combination of all the elementary rotations.

35. 1If the original elementary rotations are all equal, and if
there are 1 axes of rotation, the equations (17,) and (17,) become

680 =mndd,,
0z= (Zlyl—n!/) 661,
0y=(—Z=12+nz) d6,.

The equations (17,4) give for the single axis of rotation

=24

n b

_zl x,
-——-'_‘1“—.
36. If any of these rotations are about an axis lying in the

opposite to the assumed direction, they may be regarded as nega-
3
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tive.rotations about axes having the same direction as the assumed
one, and may be combined algebraically in the preceding sums.

37. When the second member of equation (17;) vanishes, the
resulting rotation disappears, and the given elementary rotations
are equivalent to the elementary translation defined by equa-
tions (17;). - .

38. Two equal rotations about axes, which are parallel, but
have opposite directions, constitute a combination which Poixsor
has called a couple of rotations.

A couple of elementary rotations s, therefore, equal to an elementary
translation in a direction perpendicular to the common plane of the azes,
and equal to the product of the distance between the axes mulliplied by the
elementary angle of rolation.

39.  Auy simullaneous elementary motions of rolation and translation
are equivalent to a single elementary rotation about an azis, combined with
an elementary translution in the direction of the azis of rotation.

For each rotation may be resolved into a translation and a
rotation about an axis passing through any assumed point. But all
the elementary rotations about axes passing through the same point
are equivalent to a single rotation about an axis passing through
the point, and all the translations are equivalent to a single transla-
tion. The single translation may be resolved into two translations,
of which one is parallel, and the other perpendicular to the single
axis of rotation. The translation, which is perpendicular to the
axis of rotation, combined with the rotation, is equivalent to a sin-
gle rotation about an axis, parallel to the single axis, and, therefore,
having the same direction with the remaining translation.

40. Every possible molion of a rigid system or body is equivalent to
a combinalion of the motions of translution and rotation.

This is evident, if it can be shown that, by such a combination
of motions, any three points, 4, B, and C, of the system, can be ecar-

T e ——— e —— —— —_— e J
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ried to any positions, A, B, and (’, in which it is possible for them
to be placed. For three points of a rigid system not in the same
straight line completely determine, by their position, that of the

whole system. Now, by a translation of-the system, equal to that
by which 4 might be directly moved from A to A’, the point 4 is
actually brought to the position A”. By a subsequent motion of -
rotation about an axis, which is perpendicular to each of the lines
AB and A B, the point B may be moved to B’; and then by a
rotation about A’B’ the point € may be carried to ¢". Hence the

whole motion is accomplished by one translation and two rotations.

Every elementary motion of a rigid system must then be
. equivalent to a single rotation about an axis and a translation in
the direction of the axis of rotation. This motion is perfectly rep-
resented by that of the screw, whose helix causes it to advance in
the direction of the axis about which it is tarning.

41. During each instant of its motion, a rigid system rotates
about an axis, which is called the instantancous azis of rotation. This
axis is generally varying its positioa in the system and in space
from one instant to another, which renders it difficult to form.
a distinct conception of the nature of the corresponding motion of
the system.

42. In attempting to conceive of the motion of a rigid system,
it is expedient, at first, to neglect the translation in the direction of
the axis of rotation, and to assume that the motion is solely that
of rotation. The successive positions of the axis of rotation in the
system form by their union a surface which turns with the system;
and its successive positions in space form another fixed surface. In
the motion now considered, the moving surface rolls on the fixed
surface without sliding, and carries the system with it.

43. If the axis of rotation does not move perpendicularly to
itself eaeh of these surfaces is evidently a developable surface, and



— 20 —

in the act of rolling the line of retrogression of the one falls upon
that of the other; so that these two lines are of the same length,
Upon the surfaces, developed into a plane, the two lines of retro-
gression will be precisely alike.

In combining with this rotation the translation in the direction
of the axis of rotation, the surface, generated by the instantaneous
axis in the moving system, remains unchanged. But the fixed sur-
face, generated by the instantaneous axis, is changed; it is still a
developable surface obtained from that in which the translation is
neglected, by adding to each element of the arc of-the curve of
retrogression, the elementary translation in the direction of the axis
of rotation. In the actual motion, the moving surface rolls upon
the fixed surface, and glides simultaneously in the direction of the
line of contact, so as to keep the curves of retrogression constantly
in contact.

In this genecral case, the whole length of the arc of the fixed
curve of retrogression is equal to that of the moving curve aug-
mented by the whole amount of translation in the direction of the
axis of rotation.

When the elementary translation is equal to the elementary
arc of the moving curve of retrogression, but lies in the opposite
direction, there is a corresponding cusp in the fixed curve of retro-
gression.

A poind of inflection in the curves of retrogression generally cor-
responds to a change in the direction of the rotation. A similar
combination of the translation with the rotation can be introduced
into the general case of motion.

44. When either of the surfaces of the instantaneous axis is
a cone, the curve of retrogression is reduced to a point which is the
vertex of the cone. When both of the surfaces are cones, there is no
translation in the direction of the axis.
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When either of the surfaces is a cylinder, both surfaces must
be cylinders; and the lines of retrogression, removing to an infinite
distance, cannot be used for guiding the motion of translation.
- But in this case, a section may be made of one of the cylinders per-
pendicular to its axis, and in the actual motion the moving cylinder
will move so as to keep the point, in which the perimeter of this
section touches the other cylinder, upon a curve properly drawn
upon that cylinder.

45. The general motion of a rigid system may be conceived as
a translation, equal to that of any one of its points assumed at will,
combined with a rotation about an instantaneous axis of rotation
passing through the point. If the translation is neglected, the rota-
tion is effected as in § 42 by rolling a cone, of which the assumed
point is the vertex, and which carries the system with it, in its
motion, about a fixed cone, of which the same point is the vertex.
The translation may be simultaneously effected by moving the two
cones in space, with a translation equal to that which belongs to
" their vertex in the actual motion of the system.

46. For all the points of the instantaneous axis in each of its
positions, the corresponding centres of greatest curvature of either
of the conical surfaces which it describes, are all upon the same
straight line passing through the vertex.

In the case of the right cone, or of the right cylinder, the axis
of revolution is the line of the centres of greatest curvature. In all
these investigations the plane may be regarded either as a cylinder
of infinite radius, or as a cone, of which the angle at the vertex is
equal to two right angles.

47. The elementary rotation of the system may be conceived
as decomposed into two elementary rotations about the lines of the
centres of greatest curvature as axes of rotation. By the rotation
about the line, which unites the centres of the fixed surface, the
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instantaneous axis receives its elementary motion in space, and is
carried to its proper position upon the fixed surface. By the rota-
tion about the line which unites the centres of the moving surface,
the system receives that additional rotation which is required to
turn the moving surface into that position in which it may have the
proper line of contact with the fixed surface. Each of these rota-
tions produces a sliding of the moving upon the fixed surface; but
as the sliding produced by the one is just equal and opposite to that
produced by the other rotation, the two rotations cancel each
other’s action in this respect, and there is no sliding in the
combined motion, but a simple rolling of one surface upon the
other.
48. Let

o, be the acute angle which the instantaneous axis of rota-
tion makes with the line of the centres of curvature
of the fixed surface ;

a,, that which it makes with the line of the centres of cur-
vature of the moving surface, this angle being positive
when the two lines of the centres are on opposite
sides of the instantaneous axis, and negafive, when
they are upon the same side ; _

d o the elementary angle by which the instantaneous axis
changes its direction ;

06, the elementary angle of rotation about the line of cen-
tres of the fixed surface; and '

d4,, the elementary angle of rotation about the line of cen-
tres of the moving surface.

Since the instantareous axis must be carried forward by the
rotation about the fixed axis, and backward by the rotation about
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the moving axis just as far as its actual change of position, its ele-
mentary angle of change of direction is

0w =104, 8ina,=04,.sina,,.

But the combination of the two rotations about these axes
gives the actual rotation about the instantaneous axis, and there-
fore,

06 =104,.cos ;4 d4,,.cosa,,
= (cot a;}-cote,,) dm

— sin (ar 4 @, ) dw
sin @, sin &,

49. When the surfaces described by the instantaneous axis are
. cylinders, let ' .

¢-and ¢, be the respective radii of greatest curvature of the
fixed and moving surfaces at any point of their mutual
contact ; and

d p the elementary distance which the instantaneous axis moves
in a direction perpendicular to itself.

The conditions of the motion of the instantaneous axis give the
equations

0p=10,06,=30,00,;

in which the upper sign corresponds to the case where the lines of
the centres of curvature are upon opposite sides of the instanta-
neous axis, and the lower sign to that in which they are upon the
same side. The rotation about the instantaneous axis is

36=206,4 24,



IV.

SPECIAL ELEMENTS OF MOTION AND EQUATIONS OF CONDITION.

50. The variation of each independent element of position of
a system gives an independent element of motion. But the ele-
ments of position are various, and must be selected in each case
with special reference to the problem under discussion. It often
occurs that parts of the system are rigidly connected; such parts
are themselves rigid systems, and subject only to motions of trans-
lation and rotation, and, therefore, none but such elements are
required for the investigation of their motions.

Points of the system are sometimes restrained to move upon
given surfaces, and, in this case, it may be expedient to introduce
elements of position dependent upon the principal lines of curva-
- ture of these surfaces, or elements, in reference to which the sur-
faces are peculiarly simple or symmetrical. Points of the system
may be compelled to preserve simple geometrical relations to each
other, which may suggest appropriate elements of position to the
skilful analyst; or he may find indications to direct his choice in
the very nature of the motion itself.

51. It is often desirable to adopt a combination of elements
of position which are not wholly independent of each other, but are
subject to certain mutual restrictions. These restrictions, when
they are expressed algebraically, are called eguations of condition.
They may assume the differential form of equations between the
elem'entary motions; or they may be finite equations between the
elements of position, in which case they may be reduced by differ-
entiation to equations between the elementary motions.

By means of the equations of condition, as many of the ele-
_ ments of motion may be determined in terms of the rest as there
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are equations of condition; and the remaining elementary motions
may be regarded as independent of each other.

62. Instead of introducing into the equations (8,) and (8y) of
motion and rest the special values of ds,, ds,, &c., 9, 9%, &c., for
each particular element of motion, their general values may be
found in terms of all these elements. When the elementary
motions are wholly independent, their coefficients in these equa-
tions give, when they are equalled to zero, the same equations
which would have been obtained by the special investigations.
But when the elements are not independent, all, except the inde-
pendent elements can be eliminated by means of the values given
by the equations of condition.

The equations (8,5) and (8,) of motion and rest, on account of
their differential form, are necessarily linear in reference to the ele-
mentary motions; and the differential equations of condition are
likewise linear. The proposed elimination may therefore be con-
ducted by the method of multipliers. By this process each differential
equation, multiplied by an unknown quantity, is to be added to the
given equation of motion or rest. The unknown multipliers are to
be determined by the conditions that the coefficients of the elemen-
tary motions, which are to be eliminated, become equal to zero.
Since the remaining elementary motions are independent of each
other, their coefficients must also be equalled to zero. In the sum,
therefore, obtained by the addition of the equations, each of the
coefficients of the elementary motions is equal to zero. The num-
ber of unknown quantities is increased in this process by that of the
unknown multipliers ; but, because there are as many equations of
condition as there are multipliers, the whole number of equations,
including the equations of condition, in their finite form, is just
sufficient to determine the values of the multipliers and of all the
elements of position.

4



63. Let

be one of the equations of condition in its finite form; and let its
differential form be B

(’Ll p—— 0.
Let also,

1 be the unknown multiplier by which it is to be multiplied.

The sum obtained by adding the similar products of all the equa-
tions of condition to equation (8,5) or (8y) is

Zlml (D,l'lasl — Z,Ivl(vl) + llt’Ll = 0,
1m Fiofy 4+ =1 4L,0L, =0,

which is the equation of motion or rest, and in which the general
values of ds,, df;, &c, are to be substituted, and the coefficient of
each elementary motion is to be equalled to zero.

64. Each equation of condition becomes the equation of a
surface, to which any one of the points whose elements of position
occur in the equation is restricted, provided that, for the moment,
the variations of all the other elements are neglected. Since the
point is restricted to move upon the surface, it cannot move in the
direction of the normal to the surface. Let a system of three rec-
tangular axes be adopted, and let

N be the normal to the surface.

Its variation, arising from the variation of coirdinates, which may
be regarded as the elements of position of the point, is

ON = =,dzcos y.

If the equation of the surface is (26,), with the omission of the num-

— -
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bers written below, which may be neglected in the general discus-
sion, its variation is

0L==,D,Lix.
Let, then,

M*=X=,(D,L)%

and the angle, made by the normal with one of the axes, is given
by the equation

z_ D.L
€os = —~;
which substituted in (265) gives
__ %D.Ldz__ 3L
ON="F0— =1

Hence the equation of condition with its multiplier may be writ-
ten in the form
ML=1MIN=0;

and this form may be substituted in the equations (26,) and (26,;)
of motion and rest.

—p————



CHAPTER V.

FORCES OF NATURE.

I

THE POTENTIAL AND ITS RELATIONS TO LEVEL SURFACES, THE POSITIONS OF
EQUILIBRIUM, AND THE POSSIBILITY OF PERPETUAL MOTION.

§ 55. It appears, at first sight, to be inconsistent with the
assumed spiritual origin of force, that the principal forces of nature
reside in centres of action, which are not thinking beings, but parti-
cles of matter. The capacity of matter to receive force from mind
in the form of motion, contain and exhibit it as motion, and commu-
nicate it to other matter, under fixed laws, is not, however, less diffi-
cult or more conceivable than the capacity to receive and contain it
in a more refined and latent form, from which it may become mani-
fest under equally fixed laws. It is only, indeed, when force is thus
separated from mind, and placed beyond the control of will, that it
can be subject to precise laws, and admit of certain and reliable
computation. '

56. The laws of the development of power in nature are of
two classes. In the one class, the forces depend solely upon the
relative positions of the bodies, and may be called fized. In the
other class, the forces depend, not only upon the positions of the
bodies, but also upon their actual state of power, especially upon
the velocities and directions of their motions; and these forces may
be called variable.

57. The most fruitful and enlarged view of the fixed forces of
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nature, and one which peculiarly corresponds to their laws of action
so far as they have been observed, is to regard them as the mani-
festations of the dynamic situation of the bodies which exhibit them.
The dynamic situation depends solely upon the masses and posi-
tions of the bodies; it is a condition of form, and its research is a
problem of pure geometry. The algebraic function which embodies
the idea of the dynamic state is called the pofential. Its complete
investigation and determination involves the solution of all the
problems which can arise in regard to the power and the conditions
of force of all systems, whether they are at rest or in motion, so far
at least as the fixed forces of nature are concerned.

The amount of power of a system is not to be inferred from its
situation, although there is a certain measure of power appropriate
to that situation. It is this latter power which is expressed by the
potential of the system, and expressed as a function of all the ele-
ments of position, by which the situation is defined.

68. The power of a moving system increases or decreases with the
power which belongs to s situation, and the increase or decrease of s power
43 measured by that of s potential.

69. Hence, if a system moves from a state of rest, its power is
constantly equal to the excess of its potential over the initial value
of the potential ; and it can never arrive at a position in which the
potential would be less than its initial value. No systeni, indeed,
can move to a situation in which the potential would be diminished
more than the initial power of the system.

60. When a system is in a permanent state of rest which the
actual forces do not tend to disturb, its dynamic condition is such,
that the power of the system is not changed by a slight change of
position. Hence,

The potential of a system which is tn equilibrium, 13 generally a mazi-
mum or & mimmum. The exceptional case of a condition of indiffer-
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ence rarely occurs in nature; but even this case may be philosophi-
cally regarded as the combination of a maximum and minimum, or
as the result of several such combinations.

61. When a moving system passes through a position of equi-
librium, or a position which is one of equilibrium in reference to
the element of position with which the system is changing its place,
the power of the system is either a maximum or a minimum, or in
a condition of indifference.

62. When a system, in a state of rest, is placed very near the
position of equilibrium, it cannot tend to move away from the posi-
tion of equilibrium, if the potential of that situation is a maximum
relatively to the element by which the system is removed from
it; and it cannot tend to move towards the situation of equili-
brium, if the potential is a minimum for the same element. On
this account the equilibrium is sfable, in reference to those elements
for which the potential is & maximum, and it is unstable in reference
to these elements, for which the potential is a minimum.

63. As when a function changes in consequence of the change
of any one of its variables, the maxima and minima succeed each
other alternately ; in the motion of a system, the positions of stable
and unstable equilibrium, relatively to the element of change of
position, succeed each other alternately. Situations of equilibrium
of indifference may be interposed without disturbing the order of
succession of the situations of stable and unstable equilibrium. If
the system returns to its initial position, it must have passed
through an even number of such situations of equilibrium, rela-
tively to the element of change of position, half of which must have
been positions of stable, and the other half positions of unstable
equilibrium. In general, these situations will not be positions of
absolute equilibrium, but only such in reference to the changing
element of motion.
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64. Fixed forces might easily be imagined different from
those of nature, and in the action of which the power of a moving
system would depend upon its previous situations as well as upon
its actual position. With such forces the increase or decrease of
power of a system would vary with the path which it pursued in
moving from one situation to another, and would be greater by one
path than by another. The change of power for each element of
any given path, would still be computed by the process of § 17,
and thence the whole change of power would be obtained by inte-
gration. If the motion of the system were reversed, and it were
carried back through the same path to its initial position, its initial
power would be restored. If, of two courses, by which a system
could move from one situation to another, it were forced to go by
that through which it would arrive, with the greater power at its
final position, and if it were then made to return to its initial posi-
tion by the other path, it would return with an increased power;
if it were again to move through the same circuit, it would again
return with an equal additional increase of power; and, by succes-
sive repetitions of this process, the power might be increased to any,
even to an infinite amount. Such a series of motions would receive
the technical name of a perpefual motion, by which is to be under-
stood, that of a system which would constantly return to the same
position, with an increase of power, unless a portion of the power
were drawn off in some way, and appropriated, if it were desired, to
‘some species of work. A constitution of the fixed forces, such as
that here supposed, and in which a perpetual motion would be pos-
sible, may not, perhaps, be incompatible with the unbounded power
of the Creator ; but, if it had been introduced into nature, it would
have proved destructive to human belief, in the spiritual origin of
force, and the necessity of a First Cause superior to matter, and
would have subjected the grand plans of Divine benevolence to
the will and caprice of man.
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65. A surface, for each of whose points the potential has the
same value, may be called a level surface. A level surface may be
drawn through any point in space.

Since the potential of every finite system of nature vanishes
for an infinitely distant point, aZ the level surfaces of nature are finite,
and, returning inlo themselves, include a space which they wholly surround,
with the exceplion of those level surfaces for which the potential is eero.

66. A material point, placed upon a level surface, has no ten-
dency to move in the direction of the surface, because there is no
increase of power in such direction. Tke tendency of a material point
to motion 13, thercfore, perpendicular fo the level surface upon which it is

placed.
67. If two level surfaces are drawn infinitely near to each

other, a material point, placed upon either of them, tends to move tn the
direction, from the 3urface of the less polential lowards the other, with a
Joree which i3 measured by the quotient of the difference of the potentials of
the two surfaces, divided by their distance apart.

Hence, if the surfaces are, throughout, at the same distance
apart, the disposition to motion is everywhere the same.

If the surfaces were to intersect each other, the tendency to
motion in the line of intersection would be infinite ; but, since there
is no such infinite tendency to motion in nature, each level surface of
nature must be wholly included within every other level surface, within which
any portion of i 13 included. For the same reason, the potential in nature
18 always a conlinuous function.

68. Within each level surface of nature there must be a point
or points of maximum or minimum potential. A continuous
curved line, drawn perpendicularly to each of the level surfaces
which it intersects, represents a line of action or tendency to
motion, and every such trajectory must finally terminate in one of
the included points of maximum or minimum potential. Each of
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these points may then be regarded as a centre of action, towards, or

from which, all motion tends along the various trajectories, accord- -

ing as the point is that of a maximum or a minimum potential.

69. If the polential has a constant value for any portion of space,
this same constant value must extend throughout all that space, including
this portion, for which the potential and all its derivatives are finite and con-
tinuous functions. KFor, in order that the potential may be absolutely
constant for any finite extent, however small, all its derivatives
must vanish. But it follows, from Taylor's Theorem, that the
difference of the value of the potential for any portion of space, for
which it is continuous and finite, as well as all its derivatives, is a
linear function of its derivatives at any point of that space. The
difference of the potential, therefore, vanishes, when all the deriva-
tives vanish and the potential is constant.

The portion of space, for which the derivatives are originally
assumed to be constant, must be a solid, having the three dimen-
gions of extension, in order that this theorem be applicable.

70. Throughout any such portion of space, in which the
potential is constant, there can be no tendency to motion in any
direction. In such extent, therefore, there can be no mass of
matter, for it is contrary to experience that there should be matter
where there are no dynamical phenomena.

71. In all the observed laws of material action, the potential,
which belongs to the action of each particle of matter, is finite and
continuous, as well as all its derivatives, for the whole extent of space
exterior to the particle. Hence, the potential and its derivatives,
for every system of nature, are finite and continuous functions
throughout any portion of space which contains no material mass.

72. Hence, it follows, that for every finite sysiem of nature, any
portion of space, in which the potential is constand, must be finile, and
bounded on all sides by material masses. This portion of space cannot

5
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extend to infinity, because, if it were to have such an extent, the
finite mass, which would be its inner limit, would exhibit no
external indication of force ; whereas, it is obvious that no matter
can ever have been observed, except by such a manifestation of its
existence.

73. There are forces in nature which are temporariy fived, and
for which the potential may vanish throughout all space exterior to
the limit in which the centres of action are contained.

74. The difference between the values of the potential for any
two points may be computed by supposing & unit of mass to move
from one point to the other upon any line taken at pleasure, and
determining the change of power which it receives from this
motion. The change of the potential may be computed for each
force separately, and, in making the partial computations, it is
sufficient to suppose the unit of mass to move from the level
surface of one point to that of the other, and one of the perpen-
dicular trajectories may be taken for the path of this motion.

75. 1If, in any system,

F, F, &c., are the forces;
5,.f, &c., the directions in which they act ; and
L2 is the value of the potential ;

the general expression of the potential for any point of the
system is

Q — ='[Fdf,

in which the limits of integration extend from the values of £, /7, &c.,
which correspond to the position of the point, to infinity. The
expression for the tendency to motion in any direction, as that of
P is

D,Q = D,=fFdf.
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IL

COMPOSITION AND RESOLUTION OF FORCES.

76. No phenomenon is observed, in which a single force acts
freely by itself. In all cases, various forces are combined; and it
is important, therefore, to ascertain what are the dynamical results
of such combinations.

77. A single force acts, at each point, perpendicularly to its
level surface, with an intensity which is measured by the derivative
of the potential, taken with reference to the element of direction of
the force. The intensity of its action, in any other direction, is
measured by the derivative, with reference to the element of that
direction. If another level surface is drawn infinitely near the one
which passes through the point, the action in any direction is
inversely proportional to the length, intercepted by the surfaces,
upon a straight line drawn in the given direction. But the surfaces
may, for this purpose, be cousidered as reduced to their parallel
tangent planes at the given point; and the length, intercepted
between two parallel planes, upon a straight line, is proportional to
the secant of the angle which the line makes with the perpen-
dicular to the plane. Hence, the action of a force in the direction
of any line, is proportional to the cosine of the angle which it
makes with the direction of the force.

If, then, upon a straight line drawn in the direction of a force,
a length is taken to represent the intensity of the force, the action
in any direction is represented by the projection of this length
upon that direction, or by using the word force for the representa-
tive of the force, the proposition becomes, that the action of a force in
any direction 18 the projection of the force upon that direction.

78. When several forces act upon a point, their total action in
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any direction is the algebraic sum of their projections upon that
direction.

79.  When three forces, which are not in the same plane, act upon a
point, their combined action 3 equivalent lo that of a single force, which 13
represented in magnitude and direction by the diagonal of the parallelopiped
constructed upon the three forces.

For the algebraic sum of the projections of the forces upon any
direction perpendicular to the diagonal, is zero, while that of the
projections upon the diagonal is the diagonal itself.

- 80. Al the forces which act upon a point, are equivalent to a single
Sorce, which 13 called their resultant. For a single point can only tend
to move, with a certain intensity, in some one direction, however
various may be the forces which act upon it; and any such
tendency to motion can be produced by one force acting upon
the point.

The actions of all the forces in three directions which are
perpendicular to each other, can be found by § 78; and these three
partial forces can then be combined by § 79 into one force which
will be the resultant. But the following method of finding the
resultant illustrates the use which may be made of the level
surfaces.

81. In considering the action of a force upon a fixed point in
space, the variable character of the force for other points of space
may be neglected, and its level surfaces may be regarded as parallel
planes perpendicular to the direction of the force. Thus, it may be
assumed that

Ff is the potential of the force F, which acts in the direction
of f; for
D,(Ff) = F, is the intensity of the force ; and
Ff = a constant, or
J = a constant,
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is the equation of a plane perpendicular to /. Hence, the potential
of all the forces which act upon the point, is

2 = Z'Ff.
If then

P, is the resulting force resolved in the direction of ¢ ; if
2 is the direction of the resultant, and
P is the resultant ;

the value of either of these forces is represented by the formula
P, =DRQ=Z='FD, f= Z'Fcos{.
But, by putting
P=x,(D.9)=3.P,

the condition that p is perpendicular to the level surface, for which
the potential is constant, gives

D R
L

P,
y J— —
cos; = =7

Hence the value of the resultant is

P=DQ2=Z=.,D,2D,x

P}
==.D,10 cosi’:E,f
_ %Py I’

— L T L
= L=y/(=,P2).

82. By an elementary motion of translation, each point of a
system is carried to the same distance in the same direction ; the
potential of the system is changed, therefore, precisely as if all its
points were united in one, and all the forces applied at this point.
The tendency of a system to any motion of translation, i3, then, the same as
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that which would arise from the action of a single force, equal to the
resultant of all the forces, supposed to be applied at the same point.

83. The moment of a force, with reference to a point, is the product
of the force multiplied by its distance from the point. The moment
of a force, with reference to a line, is the product of the projection of
the force upon a plane perpendicular to the line multiplied by the
distance of the fonce from the line.

The moment of a force, with reference to a line, may be
represented geometrically by a corresponding length taken upon
the line, and the name of the moment may be given to its geomet-
rical representative.

The moment of a force, with reference to a point, is the same
with the moment, with reference to the line, which is drawn
through the point perpendicular to the common plane of the point
and the force. :

84. The moment of a force, with reference to a line passing through a
point, i3 equal to the projection upon the line of the moment, with reference lo
the point. For the moment, with reference to the point, is equal to
double the area of the triangle, of which the base is the force, and
the altitude is the distance of the force from the point; and the
moment, with reference to the line, is equal to double the area of
the triangle, of which the base is the projection of the force upon
the plane perpendicular to the line, and the altitude is the distance
of this projection from the line. But the latter of these triangles is
the projection of the former upon the plane, and its area is equal to
the product of the area of the former triangle, multiplied by the
cosine of the angle of the planes of the two triangles. But the
lines upon which the moments are represented, being respectively
perpendicular to these planes, have the same mutual inclination.
The moment, with reference to the line, is, therefore, equal to the
product of the moment, with reference to the point, multiplied by
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the cosine of the mutual angle of the moments; that is, it is equal
to the projection upon the line of the moment, with reference to
the point.

85. Hence it follows that the moments of forces, with refer-
ence to points, may be combined by the same processes in which
the forces themselves are combined, and that all the moments, with
reference to a point, may be combined into one resultant moment.

86. The tendency of the force F, of which the potential is
Ff, to produce an elementary rotation, 44, about a line p, is

D,(Ff)=FD,.

But if
¢ is the distance of . from p,
(144) gives
D, f= QSin.l;-;
the projection of # upon the plane perpendicular to p, being
Fsin .1;" ,

the tendency to rotation about p becomes

¢ Fsin® = the moment of ¥ with reference to p;

that is, the moment of a force, with reference to a line, 13 the measure of #s
tendency to produce rotation about that line.

87. The direction of the positive moment must be assumed to
be the same with that of the axis, about which the tendency to
rotation of the force is positive.

88. The resultant moment of all the forces of a system, with reference
lo a point, i3 the measure of their tendency to produce rotation about that
point. Hence, the one force, of which the moment is equal to the
resultant moment, has the same tendency to produce rotation.
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89. The resultant moment of all the forces which act upon a
point, with reference to any line or to any other point, is the same
with the moment of their resultant. For the point upon which the
forces act tends to move in the direction of their resultant, with a
force equal to its intensity, and its moment is, therefore, the
measure of the tendency to motion.

90. The moment of a force, with reference to a line p/, is
equal to its moment, with reference to a parallel line p, increased
by the moment of an equal and parallel force, acting at any point
of the line p. For the distance of the original force from the line
2,18 equal to its distance from the line p, increased by the distance
from p’ of the parallel force passing through p.

91. Hence the resultant moment of any forces, with reference to a kne
P, 18 equal to their resultant moment, with reference to a parallel lne p,
tncreased by the moment, with quererwe to p', of equal and parallel forces
acting at any point of the line p.

92. The resullant moment of any forces, with reference to a point O,
18 equal to their resullant, with reference to a point O, increased by the
moment, with reference to O, of equal and parallel forces acting at 0. For
this proposition is true for each pair of the parallel axes of two
parallel systems of three rectangular axes, of which the points O
and O are the respective origins.

93. A couple of forces is a system of two parallel and equal
forces which act in different lines.

94. The moment of a couple of forces has, for every point of space,
the same value, which is equal to the moment of ome of them for any point of
the other. For two forces, equal and parallel to them, applied at any
point, destroy each other’s action, and their resultant vanishes.

95. The tendency of a couple of forces to produce rotation
about a point, is the same as that of any system of forces, when its
moment is equal to the resultant moment of the system, with
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reference to the point. But the couple has no tendency to
produce a translation; whereas the resultant of a system of equal
and parallel forces, acting at the point, has all the tendency of the
gystem to produce translation, but none to produce rotation about
the point. Hence, the three forces, of which one i3 the resultant of the
equal and parallel forces acting ot a point, and the other two constitute a
couple, of which the moment i3 the same with the resultant moment, with
reference to the poind, fully represent any system of forces in their tendency
to produce rotation and translation.

96. Since the position of the couple of forces is quite arbi-
trary, one of the pair may be taken to act at the same point with
the resultant of all the forces; and, by combining it with the
resultant, the system of three forces may be reduced to two.

97. A point can always be found in space, for which the
moment of a given force has any assumed magnitude, and any
direction which is perpendicular to the force. Because the distance
of the point from the force, which is one of the factors of the
moment, may vary from zero to infinity, and its direction from the
force may be that of any perpendicular to the force.

Hence, if the resultant moment, with reference to a point O,
of any system of forces, is decomposed into two moments, of which
one has the same direction with the force, and the other is per-
pendicular to it, another point O’ can be found, for which the
moment of the resultant, acting at 0, is, in amount and direction,
the negative of that component of the resultant moment for O,
which is perpendicular to the resultant. For the point O, there-
fore, the resultant moment, coincides in direction with the result-
ant itself; and of the three corresponding forces which represent
the tendency of the system to produce rotation and translation, the
plane of the'couple is perpendicular to the direction of the result-
ant.

6
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98. If all the forces lie in the same plane, for any point of the
plane the moment of each of the forces is perpendicular to the
plane, and, therefore, the resultant moment is perpendicular to the
plane. But the resultant of the parallel and equal forces acting at
the point must, if it does not vanish, lie in the same plane, and be
perpendicular to the resultant moment. If, then, the resultant does
not vanish, a point of the plane can be found for which the result-
ant moment vanishes.

99. 1If all the forces are parallel, the moment of each of them,
for any point, lies in the plane which is drawn through the point
perpendicular to the forces. But the resultant of the parallel and
equal forces, acting at the point, has the same common direction
with them, and is, therefore, perpendicular to the resultant moment.
If, then, the resultant does not vanish, a point can be found for
which the resultant moment vanishes.

Hence, if all the forces of a system ke in the same plane, or if they are
all parallel to each other, their tendency to produce translation or rotation is
equivalent, either o that of a single force, or to that of & couple of forces.

'100. If of any system of forces, and for a point O

M is the resultant moment,
R the resultant of equal and parallel forces acting at O,
M, and R, the projections of M and R upon the direction
of p, .
and if the same letters accented denote the same quantities for the
point @', and if '
2,9, and z are the rectangular coirdinates of ¢ with reference

to O,

the value of the moment of the forces for either_ of the axes
passing through O is,

M,— M,—zR, +yR,.
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But if the direction of the axis of z is assumed to be the same with
that of R, these moments become

M::=M+yR’
M;=M,—zR,
M=M,.

The codrdinates of the points, for which the resultant moment has
the same direction with the resultant, are
—_ M N
y=—752=7%"

101. The number of forces which is required to produce any
of the special effects of a given system of forces, is usually much
less than the whole number of those which actually concur in
their production. The mode of analysis, by which the requisite
forces may be ascertained, is, in most cases, quite as simple as that

by which the effects of rotation and translation have been investi-
gated.

IIL

GRAVITATION, AND THE FORCE OF STATICAL ELECTRICITY.

102. Grawvitation is, among all the forces of nature, conspicuous
for its universality, and the grandeur of the scale upon which it is
exhibited. '

Each particle of matter i3 an elementary cendre of action for the force
of gravitation, and all the level surfaces for each particle are spherical
surfaces, of which the particle is the centre. The value of the potential for
any particle, 13 inversely proportional to the distance from the particle, and
Jor different particles it is proportional to the mass of the particle.

103. Another force which seems to be equally universal with
gravitation, and of which gravitation has been, perhaps justly,
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regarded as a residual force, and which is subject to the same law,
in respect to distance from each elementary centre of action, is that
of statical electricdy. This force, however, is endowed with duality,
and consists of two forces, of which one has a positive, and the other a
negative potential. Both forces are usually combined with equal
intensity, in the same centre of action, so as to neutralize each
other’s influence, and thus lie dormant. Witk each of these the poten-
tial is positive in reference to electricty of the other kind, and negative with
reference to that of the same kind. The tendency to motion, arising
from one kind of electricity, is exactly equal and opposite, then, to
that which arises from the action of an equal intensity of the other
kind, distributed in the same way.

104. The action of electricity upon the mass of a particle
is indirect; the direct action is upon the electricity associated
with the mass. In most bodies the electricity yields with more or
less facility to this action, leaves the particle with which it is
originally combined for another particle, and finally assumes such a
Jorm of distribution within and upon the body, that the tendency to motion
shall nowhere exceed the resistance to motion. Bodies in which there is
no resistance to the motion of electricity are called perfect conductors;
while those in which the resistance is infinite are called perfect non-
conductors.

105. Let

dm denote the mass of a particle of matter in the case of
gravitation, or the value of its potential at the unit of
distance, in the case either of gravitation or elec-
tricity ;

do, the element of volume of the mass ;

k, the density of the matter, in the case of gravitation, or
the intensity of the force of electricity, compared
with the unit of intensity ;
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J/, the distance from the particle ;
d{2, the value of the potential for the particle ;
the expression of the potential for the particle is

_dn_ ko
d2=TF=7
The general value of the potential for the whole body is

a=f}=[}

106. With reference to a system of three rectangular axes,
let :

z, y, 2, be the codrdinates of the point in space, for which the
potential is £2, and

£, m, , those of the particle.
Adopt also the functional notation

=Z=,D'=D%4 D} D
The derivatives of f and /! are

D.f=cosi =27

7
1o __Ll—(z—§*__sin?;
D= =T
Dl__lDf__ cos ¥
TR =T

i
gl 1 14 2 g ___ —sin?*; 4 2cos??
DR =—LDif + A (D.f) =TI 2,
__—148cos?*;
=—"F
Hence
V=3
=%

1_—849mamy (.
Fp=—p =0
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and, therefore,
yd2 =0,

This last equation, which is called LaPLACE'S equation, only
applies to that extent of space for which the derivatives of the
potential are continuous functions, that is, where there are no
centres of action ; but, where there are centres of action, it requires
a modification which will soon be investigated. The integration of
this equation, combined with peculiar considerations in special
cases, gives the value of the potential for all the problems of
gravitation or statical electricity.

107. The tendency to motion, resulling from the gravitating or
electrical action of a particle of matter, being normal lo the level surface, i3
directed in the straight line drawn to the particle. Its intensity is the
derivative of the potential, and expressed by the equation.

DdR —— i’j-;’-‘.

The force of the gravilating or electrical action of a particle of matter,

13, therefore, inversely proportional to the square of the distance from the

particle. I is aftraction in the case of gravitation, or between electricities
of opposile kinds, and repulsion between electricities of the same kind.

ATTRACTION OF AN INFINITE LAMINA.

108. The investigation of the potential of a lamina of uniform
density, and included between two infinitely extended planes, is
simplified by the consideration, that it must have the same value
for all points of space which are at the same distance from either
surface of the lamina. Because all such points are similarly situ-
ated with reference to the lamina, on account of its infinite extent.
Hence, if either surface of the lamina is adopted for the plane of y 2,
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the derivatives of the potential, with reference either to Y or z
must vanish, and LarLAcE’s equation becomes

FrQ2=0D'2—=0.

The integral of this equation gives the value of the potential,
for a point external to the lamina, or upon its surface,

2 =Az+4 B,

in which 4 and B are arbitrary constants.

109. The level surfaces are the planes determined by the
equation (47;), when £2 is the constant value of the potential for
the level surface.

110. The action of the lamina upon any external point, is in
a direction perpendicular to either surface, and #s force of attraction
or repulsion i3 constant upon all points, for it is given by the equation

D, 2=A.

111. The values of A and B in any special case must be
ascertained by direct integration. The integration indicated in
(45;), gives an infinite value of the potential, whereas the integra-
tion of its derivative, with reference to z, gives A itself, in a finite
form, which shows that the infinite portion of the potential belongs
to B. The integration for finding the derivative of the potential is
effected by putting

e=s Bin;:
= the projection of f upon the plane of yz.
a = the thickness of the lamina;
whence
f=(z—§)sec,

o= (z— §)tan;,
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do=qdqd§d’g‘,
(o — E\2aim EaendZ IT 7Y
= (z—1%) sin csec fdfdedé.
kD, f keos?

=LA =)L

D Q2=

This value of A4 corresponds to a positive value of z, but for a nega-
tive value of z its sign must be reversed.

112. For a point situated within the lamina, a plane may be
drawn through it parallel to the superficial planes, and dividing the
lamina into two partial laming, of which the thicknesses are z and
a —z. Hence, the value of the derivative of the potential is

DQ2=—2nkz+ 2nk(a—2)
=2nk(a—2z).

POISSON’S MODIFICATION OF LAPLACE'S EQUATION FOR AN INTERIOR POINT.

- 113. The modification which is required of LaPLACE'S equa-
tion, in order that it may be applicable to any point of an acting
mass, must be the same for all cases. For it would not be needed,
if the point of action were contained within any extent, however
small, of void space. It depends, therefore, exclusively upon the
infinitesimal portion of matter at the point, and is unaffected by
any variations in the form and extent of the acting body. It need
be investigated, then, in only a single case. Now the derivative
of (48;5) gives

D O —_Ank,

which substituted in LaprLAcE'S equation gives for an internal point
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of the infinite lamina,
V !2 _— 4 nko,

which is, therefore, the required modification of this equation.
This modified equation, in which %), denotes the value of % at the
point of action, is applicable, as remarked by SturM, even when the
point is exterior to the body. This.same geometer has observed
that, by supposing the valne of £ gradually to shade off from its
value within the body to zero, this graduation occurring within an
infinitely small extent, so as not sensibly to interfere with the
actual phenomena of nature, the potential and its differential coeffi-
cients may become continuous functions. It wmust be further
observed, however, that this imaginary graduation must extend
throughout all space, although # must have an infinitesimal value
where there is no portion of active force ; for if it were to vanish
throughout any finite portion of space, however small, the reason-
ing of § 69, would prove that all the derivatives of the potential
were not finite and continuous.

ATTRACTION OF AN INFINITE CYLINDER.

114. The investigation of the potential of an infinite cylinder
is simplified by the consideration that its value must be the same
for all points situated upon the same straight line parallel to one of
the sides of the cylinder. If this direction is adopted for the axis
of 2z, the derivative of the potential, with  reference to 2z, must
vanish, and Larrace’s equation becomes

FQ=(D*+4 D)2 =0.
The integral of this equation is

R =F(z+y/-3) + F(z— V=),
7
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in which & and %, are arbitrary functions, and must be determined
for each case by special considerations.

115. The level surfaces are the cylindrical surfaces, of which
(49y) is the general equation, if £2 has the constant value belonging
to that surface.

116. The attraction in the direction of the axis of z is

D2 = (z4yV=1) + Fi(z—av-0),

in which the accents denote the derivatives of the functions, with
reference to their explicit variables.
The attraction in the direction of the axis of y is

D,2=[F(z+W) — Fle— W)W
The whole action is, then,
VI(D.) 4 (D)2 = 2/[F (v + 5)- Tz — )]

117. When the point of action 18 so far from the cylinder that the
square of the lLinear dimensions of the base can be neglected, in comparison
with the square of the least distance of the point from the cylinder, the
problem can be greatly simplified.

Find in this case a line parallel to the axis of 2, of which the
codrdinates ¢ and b, with reference to the axes of z and g, are
determined by the equations

fm(g—a)=o=L§—am,
fm(n—b)=0=fmv)—bm.

This line may be called the azis of gravity of the cylinder, and
its position is wholly independent of the directions of the axes of
z and y. For the conditions by which this axis is determined will
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give, with regard to any other axis of z, with reference to which
the notation is distinguished by the subjacent numbers,

ﬁ,(ﬁx—m):j;(’é—a)cos:l +./:n(y_b)°°szl=0'

If the axis of gravity is, then, assumed for the axis of z, the
equations (50, 5) become

JE=[n=0,
JSSr=LS Som=o

118. Since, from the nature of the cylinder, the functions
which are here to be integrated are independent of {, these

equations give
L Jre=] [ =0

119. Let the perpendicular from the point of action upon the
axis of z be assumed for the axis of z, and let

or

J, be the distance of the point of action from the projection of
any particle of the cylinder upon the axis of 2,
¢ the distance of the particle from the axis of .

The conditions of the problem under consideration give
==+ =f1—2s8 4 ¢
=r3(1—%),
1_ 1oy =hy_ 1 sk
=) =5+

zt

1_r1
2=) 7=l.nt).n

=Latlzld =l
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so that the polential is the same as if all the parlicles of the cylinder were
united in their projections upon the axis of gravily, when the point i3 al a
sufficiently great distance from the cylinder.

120. By letting

XK denote the intensity of the action concentrated upon
each point of the axis of gravity when the cylinder
is projected upon it;

the value of the whole action of this axis is

[ Kz 1
D= [ Fi=—Eaf i
in
2K
T -;i }0008;:’:-—--;-,

or the potential is
2 = —2Klogz + B,

in which the arbitrary constant B is infinite.

121. When the base of the cylinder 1s the space which s contained
between two concentric circles, the axis of gravity coincides with the
geometrical axis, the potential is, from the symmetry of the figure,
the same in all directions from the axis, and its value only depends
upon the distance from the axis. Let the axes be the same as in
§§ 117 and 119, except that the point of action is in the plane of
z y, but not in the axis of z, and let

r == the radius vector of the point of action, and
¢ = the base of the Naperian system of logarithms.

The potential is a function of », and does not involve the inclination
of r to the axis of z. Hence

D=0 = 0.
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But by (49)
2= %(rcﬁf__‘) -|—9?1(rc—f V-_‘) ;
whence

D:Q = [@"( 'V_l) _—-9’1(7' V—)rc qﬁ_o

‘5’(r V_) = ‘23‘1(rcmw:-l)rc—:‘\/__1

But the two members of this equation are functions of two different
and independent variables, which are

Vo -rVo1,

re and re 5

and

and, therefore, neither can be contained in the value of the other,
so that each of them disappears from their common value, which is,
therefore, constant. With regard to any variable whatever, there-
fore, this equation gives
rFr=rFr=2A,
g r= %lr —

ﬂlb.

’

and, by integration,
Fr = Alogr 4 B,
F,r = Alogr 4 B;.

The value of the potential is, then, if the two constants are com-
bined in one,

2= Alog(rc V—)+ Alog(rc )+ B,
= 2A4logr 4 B,

and the action upon the point is in the direction of r, and its
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value is
po=24

122. When the point of action is upon the axis, it is plain,
from the symmetrical nature of the cylinder, that the action is
cancelled in each direction, and in this case

a9=¥=m

whence
A=0.
For every point within the tnner cylindrical boundary of this cylindrical
shell, the action, therefore, vanishes, and the potential i3 constant.
123. When the point of action is without the cylinder, the
constants are found by the condition that when the distance is very
great, the value must be the same as that of (52)5). Hence

A=—K,
that is, the action upon every point, without the circular cylinder, i3 the
same as if the whole mass of the cylinder were concendrated upon s axis.
124. No other case of the infinite cylinder is of sufficient

interest to divert the current of the work from the finite masses
of nature.

®RELATION OF THE POTENTIAL TO ITS PARAMETER.

125. The varying value of the potential from one level
surface to another, depends upon the law of the change of surface,
and may be represented as a function of a variable, which may be
called its parameter. Let '

A denote the parameter of the potential, and adopt the func-
tional notation

O = Z.(D.)" = (D) + (D,)* + (D1
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The derivative of the potential gives

ng =D2.!2D21,
DiQ =D32(D,A)?*+ D, 2D
rR2=D3Q0OA+4 D, Q2p)—=—4nk,

which is a transformation given by Lawmz.
126. For a point of void space, this equation gives

DR

1
7ip = Di(log D, 2) = L4

o
by which the potential may be determined for given forms of .

ATTRACTION OF A FINITE POINT UPON A DISTANT MAS8S. CENTRE OF GRAVITY.

127. In every finite mass there is a point called the centre
of gravify, of which the codrdinates are determined by equations, for
each axis, which are similar to (50y_g). This point is independent
of the positions of the axes, for these equations give for any other

axis
L(El —a)= Ez(j;(ﬁ —a) coszl) =0.

If the centre of gravity is adopted for the origin of coirdinates,
these equations are reduced to (515_5).

128. When the point of action is so far from the attracting
mass, that the squares of the linear dimensions of the mass may be
neglected in comparison with the square of the distance of the
point from the mass, the formula becomes

1= E, (s b = 38— 20+ 8
=ri40?— =, (228) =1 — =, (22F)

—[i=[ (426D
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=[:+=G[3)

1"

that is, the polential of a finite point, for a mass which is so remote that
the square of the knear dimensions of the body may be neglected, in compari-
son with the square of the distunce of the point from the body, is the same as
if the body were concentrated af ils centre of gravily.

ATTRACTION OF A SPHERICAL SHELL.

129. In the case of a shell of homogeneous matter, contained
between the surfaces of two concentric spheres, the value of the
potential must, from the symmetry of the figure, depend exclu-
sively upon the distance from the centre; and for the same reason
this centre is the centre of gravity. If the centre is adopted for the
origin of covrdinates, the parameter may be assumed to be the
radius vector, or any function of it. Putting, then,

A=r?=2 27
derivation gives
D=2z,
Div=2;
OA=4=_2'=4r1=141,
FAL=6.
Hence, (55;) becomes
D, (log D,2) = — :%.

The integral of this equation is, by the introduction of the arbitrary
constants A and B, ’
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130. When the point of action is at the origin, the value of
the potential is easily obtained by direct integration. Let in this
case

0o and ¢, be the internal and external radii of the spherical
shell, )

mq and m, the masses of two homogeneous spheres of the same
density with the shell, and of which the radii are respect-
ively ¢, and ¢,; and

dy the elementary solid angle of which the vertex is at the
point of action.

The mass of the shell is
m=my; — my = 47:1:(@{—@8),
and the element of mass
dm=kodydo.
The value of the potential is, therefore,

—[(1_
= M’—k-/;-/;e
=ik [ (o1 —e) = 2mk (o1 —0})

—3 "_‘_1_"2)
01 0/’

131.  When the point of action is in the interior void space of the
shell, the constants of (564) must have the same values as at the
origin, where » vanishes. Hence, for this space, the constants are

A=0,
— 3__ o) — (T2 M0
B=2xk(et— o) =#(T—29).

The value of the potential in the interior void space is, therefore,

constant, and there i3 no tendency to motion in any direction.
8
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132. For an exterior point, the potential vanishes when r is
infinite, while for a point at a great distance from the origin, its
value is, by § 128, the same as if the whole mass were concentrated
at the origin, The value of the constants in this case are then

B=0,
A=—m;
and the potential is
Q="
—

Any exterior poind 13, then, atiracted by a homogeneous spherical shell,
precisely as if the whole mass of the shell were concendrated upon is centre
of graviy.

ACTION AND REACTION OF A SURFACE OR INFINITELY THIN SHELL
OF FINITE EXTENT. CHASLESIAN SHELL.

133. An infinitely thin shell may be reduced to either of its
surfaces, upon which all its acting force may be concentrated, and
the intensity of the action at each point of the surface will be the
product of the corresponding intensity of the force of the shell,
multiplied by the thickness of the shell, and the element of the
surface must be substituted for the element of volume of the shell.
Let then,

do be the element of the surface,

NV the exterior direction of the normal to the surface,

k the concentrated intensity of action at any point of the
surface,

dy the elementary solid angle subtended by the element of the
surface at the point of action ;

the expression of the element of the surface is

do =f’dqzsec§.
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Hence

—kdz,u:—ﬂ;,—llcdo.

The second member of this equation denotes the action
exerted by each element of the surface in a direction normal
to fhe surface, and towards the interior of the surface. If, there-
fore, the intensity of action is constant over the surface, the action
normal to the surface is proportional for each element of the
surface, to the solid angle subtended by the element, and ke fotal
amount of the action, normal to the surface, exerted by any continuous extent
of the surface, i3 proportional to the whole solid angle subtended by the
boundary of the surface. :

134. If the surface.is a plane, the direction of the normal is
invariable, and the total amount of normal action exerted by any
portion of the plane is the same with tke projection of the whole action
of this portion of the plane upon the perpendicular to the plane, which i3
therefore proportional to the solid angle sublended by the portion of the
plane at the point of action.

135. If the surface returns indo dself so as to include a space, which
18 called a closed surface, and if the point of action 3 situated within the
inclosed space, the whole angle sublended s the entire extent of four right
angles ; whereas, if the point of action 18 exterior to the closed surface, the
whole angle vanishes ; but & 13 two right angles when the point i3 upon the
surface. For, however the point of action is situated, if a line is
drawn from it so as to cut the surface more than once, the
successive angles which the line makes with the exterior normal,
will be alternately obtuse and acute as the line cuts into the
surface or out from it. The last angle, or that of which the vertex
is most remote from the point of action will always be acute. The
normal actions of two successive elements, therefore, upon the same
line, and which subtend the same solid angle, are equal, but of
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opposite signs, so that they cancel each other’s effect in the total
sum of the normal forces. But if the point of action is without the
surface, the first angle is obtuse upon each line, and as the last
angle is acute, the whole number of intersections is even, and each
normal elementary action is cancelled by another, and the whole
sum vanishes. If the point of action is within the surface, the first
angle is acute, if there is more than one; and there are an odd
number of intersections for every direction in which a line can
be drawn; for each direction, therefore, one, and only one, normal
action remains uncancelled, which is proportional to the elemen-
tary solid angle ; and the whole sum is that of the entire extent
of four right angles But, if the point of action is upon the
surface, and a tangent plane to the surface is drawn through it;
every line which is drawn from the point upon the exterior side of
the plane must cut the surface an even number of times, if it cuts
at all, precisely as if it were drawn from an exterior point; but
every line which is drawn upon the interior side of the plane cuts
the surface, as if it were drawn from an interior point; the total
sum, then, of the uncancelled elementary solid angles includes those
for all directions which are upon the inner side of the plane, that is,
it is equal to two right angles. This elegant theorem, given by
Gauss, is expressed analytically in the form

47 for a point interior to a closed surface,

f _.00;16 = < 2# for a point upon the surface,
g 0 for an exterior point.

136. The expression (59,) represents the component in the
direction of the external normal to & surface, of the action upon the
element of the surface of a mass £ concentrated at the point which,
in that expression, was the point of action. The integral of this
expression is the whole amount of such resolved action, and by
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(60,,) its value is

— 4nk when the mass £ is interior to the surface,
— g;.’s_ﬁ = — | k ==< — 27k when the mass  is upon the surface,
7 ¥y 0 when the mass % is exterior to the surface.

Neither of these values depends upon the position of the acting
mass further than it is interior or exterior to the suiface or upon
the surface. 1If, then,

M; = all the mass interior to the surface,
M, = all the mass upon the surface,
M, = all the mass exterior to the surface;

the expression for the total action of the sum of all the masses upon a closed
surface, resolved for each element in the direction of the external normal, is

— 4 M, — 27 M, ;

and if all the masses are exterior to the surface, this sum vanishes. If the
closed surface i3 one of the level surfaces of the system of bodies, this sum
expresses the total atiraction of the masses upon the surface. 'This impor-
tant theorem is due to Gauss, and, independently to CmasiEs, in
almost its full extent, as well as most of the following deductions.
It is applicable, even if the surface have sharp angles, because the
extent of surface occupied by such angles is zero.

137. If the closed surface is one of the level surfaces of a
system of bodies, but not the outer boundary of a space in which
the potential is constant, the potential must at each point, by § 67,
increase in passing from the interior to the exterior or the reverse,
so that in this case the sum (61,) does not vanish. But the term
of this sum, which depends upon the mass at the surface, may be
neglected at will ; for the whole mass of a true geometrical surface
is absolutely nothing. Hence, every level surface must inclose masses of
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matter, unless & be the owder material boundary of a space in which the
polential i3 constant.

138. When any masses lie upon the closed surface, the geo-
metrical surface may, as Gauss observed, be arbitrarily assumed as
being just exterior or interior to the masses, or passing through
them. If, therefore, all the masses are so distributed upon a surface that i
becomes iself a level surface, the potential i3 constant for all the inclosed
space, and there 18 no tendency to motion throughout this space.

139. Around every point of maximum or minimum potential
a level surface of infinitesimal dimensions may obviously be drawn;
and, therefore, every point of mazimum or minimum potential must be dself
a centre of action, and cannot be a void space.

In an inclosed space, therefore, no poink can be found for which the
value of the potential exceeds the limits of value which are found upon the
inclosing material surface; and in no point of unbounded space has the
potential so great a value as tls greatest value upon the exterior surface of
the finite masses. This inference was drawn by Gauss.

140. In a system of bodies, of which gravitation is the only force,
there can be no point of absolute mirimum potential. For if about a point
of maximum or minimum potential, as a centre, an infinitesimal
sphere is described, there can be no point within the sphere, either
of maximum or minimum potential, with reference to the matter
external to the sphere. But, with reference to the matter of the
sphere itself, the centre must be a point of maximum potential, and,
therefore, cannot be a point of minimum potential, with reference
to the combined action of all the masses.

This theorem is equally applicable to an aggregation of elec-
tricity, all of which is of the same kind, that is, which is komogeneous
when the point of action is assumed to be of the opposite kind of
electricity.

141. If any extent of level surface is assumed at will as a
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base, and if trajectories, like those of § 68, are drawn through each
point of its perimeter, their union forms a canal. The same canal
cuts a base, like the assumed base, from each level surface which it
intersects. Of any canal, then, which i3 not extended so far as to include
portins of the alfracting masses, the attractions upon all the bases are equal.
For the whole amount of action, resolved in the direction of the
external normal, at each point of action upon the closed surface,
formed by the faces of the canal and the two terminating bases,
vanishes, because there is no included mass. But there is no action
perpendicular to the faces, that is, in the direction of the level sur-
faces; whereas the whole action upon the bases is normal to them.
The actions upon one base are in the directions of its external
normals, while those upon the other base are in the directions of
the internal normals ; but these actions balance each other in the
algebraic sum, and, therefore, their absolute values must be the
same. This theorem belongs to CrasLEs, but the brief demonstra-
tion is original.

142. In the following simple view of this whole subject, many
of its propositions are condensed into a small compass. Each centre
of action may be regarded as a fountain from which a stream is
perpetually flowing in every direction, with an amount of discharge
proportioned to the intensity of the action. The quantity which
flows from each centre, for an instant, through any given elemen-
tary surface, may easily be shown to be in exact proportion to the
force with which the surface is attracted by this centre perpendicu-
larly to itself and against the current; and that which is true for
each centre is also applicable to the combined action of all the
centres. Upon a space, then, in which there is no spring, the
amount which is flowing out must constantly be equal to that which
is flowing in ; while from a space which contains springs, the amount
which is discharged must exceed the inward flow by all which is
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supplied by the fountains. These propositions are equivalent to
those of § 136, and it may be shown by an easy argument that
LapLACE'S equation, with its modification, is merely the same propo-
gition applied to the element of space.

* By the additional hypothesis, that, to preserve the uniform
flow of the stream, its density must decrease in each element of
the stream with the distance from the origin, so as always to be
inversely proportional to the distance from the centre, the potential
represents the density of the combined streams, and the level
surfaces become surfaces of equal density. The aggregate current
of the combined streams is also equivalent to a single current in a
direction perpendicular to the level surfaces, and having a velocity
proportionate to the rate of decrease of density. But this is the
well known law of the propagation of heat, when there is mno
radiation, and hence arise the analogies between the level and
isothermal surfaces, and the identity of the mathematical investi-
gations of the attractions of bodies and of the propagation of heat
which have been developed by CrastEs.

143. If an infinitely thin homogeneous shell is formed upon each level
surface of a system of bodies, having at each point a thickness proportional
lo the datlraction at that point, the portion of either of these shells, which i
tncluded in a canal formed by trajectories, bears the same ratio to the whole
shell, which the portion of another shell included in the same canal bears to
that shell, provided there i3 no mass included between the shells. For if the
bases of the canal are infinitely small, they must be reciprocally
proportional to the intensities of the actions upon them, because the
whole amount of action upon the different bases is the same. But
the thicknesses of the shells are proportional to the intensities of
action, and, therefore, the products of the bases multiplied by the
thicknesses, or the volumes of the portions of shell included in the
same canal, bear a constant ratio to each other. Since the ratios
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are constant the infinitesimal volumes may be added together, and
their sums, which are the volumes included in a finite canal, are in
the same ratio, and these sums may even be extended so as to
include the whole of each shell. Hence the volume of each portion
is the same fractional part of the volume of the shell to which it
belongs ; and, as each shell is homogeneous, the mass of each por-
tion is the same fractional part of the mass of the whole shell. The
conception of these shells, and the investigation of their acting and
reacting properties was original with Caasres, and it will be con-
venient, as it is appropriate, to designate them as Chaslesian shells.

144. The volume or mass of a Chaslesian shell has a simple
ratio to the attracting mass included within it, dependent upon its
own density and thickness. For each infinitesimal element of its
volume or mass is proportional to the product of the element of the
surface multiplied by the thickness of the shell, and the thickness at
each point is proportional to the attraction at that point. The sum
of all the elements, therefore, of either volume or mass, that is, the
whole volume or mass, is proportional to the sum of all the attrac-
tions upon the whole surface. But, by § 136, the sum of all the
attractions upon the surface is proportional to the included mass, if
there is no mass at the surface. If, then,

p is the volume of the shell,

k its density,

h the modulus of its thickness, or the thickness which corre-
sponds to the unit of attraction ;

this ratio is included in the equation

o ke
M, Eh A
145. If a Chaslesian shell which 13 wholly external to the acting
masses of the system 13 assumed to be vself the atiracting mass ;
9

=4,
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1. The potential of the shell is constant for all infertor points, there
8 no tendency to motion within &, and @8 own ouler surface 3 s level
surface ;

2. 1Iis external level surfaccs are the same as those of the original
masses of the system,.and the aliraction of the shell upon a point external to
tiself has the same direction as the attraction of the original masses.

To demonstrate these propositions, let

£2, be the potential of the shell for any point, and

L2 the potential of the original masses for each point of the
shell ;

the value of the element of the potential of the shell is

dQ,:’%‘.

Hence,
ag, _ ki
ko w

In passing along the canal of the trajectories to another shell,
the ratio of du to u is, by § 143, constant, whence

a2, __ _ kduDyf
Dy ko wfroe
But
D,f =D, NDyf =— D, Ncos ,

du=hdo DyS2;

~

and, therefore,

dpD,f = —hdo DyQ D, Neos'y = — hdo D, Rcos,

D df, kD, Rcoslde
AT, — 'z .
[ wf

The integral of this equation for the whole surface of the

—
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shell is

2 khD, 2 [ cos
D...‘:.._Lf .
A p JoS?

1. For an internal point this equation becomes, by §§ 135
and 144,

D2 __4nkiD, @ kD,
A p VA
the integral of which is
kp 82
2, = -Lff,

to which no constant need be added, because, when the dimensions
of the shell are infinite, £2 and £2, both vanish, since all the points
of action are infinitely remote from the centres of action. This
equation expresses that the potential of each shell has the same
value for all internal points, and, therefore, there is no tendency to
motion within the shell, and the surface of the shell must be level,
with reference to its own action.

2. For an external point, the equation (67,) becomes, by
§ 135,

2 __
D, = 0.
Hence, by integration,

% — a constant,

which constant, however, depends for its value upon the position of
the points of action; but since it has the same value for all the
shells to which the point is external, the potential is constant for
the same series of points external to one shell for which it is
constant through the action of another shell ; that is, all the shells
have the same external level surfaces. But the external level
surface, which is nearest to any shell, differs infinitely little from
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the level surface of the shell itself, and, therefore, the surface of
each shell is a level surface for every included shell. Hence, the
external level surfaces of a shell are the same with those of the
original masses, and the attraction of a shell upon an external point
has the same direction with the attraction of the original masses,
and is normal to the level surface passing through the point. This
theorem is due to CHASLEs.

146. Every infinitely thin shell, of which the surface 13 level, from the
action of the shell itself, must be a Chaslesian shell. For, if another shell
is constructed upon this level surface, which is the negative of the
Chaslesian, one, namely, which is repulsive, instead of being attrac-
tive, or the reverse, and the whole mass of which is equal to that of
the given shell, the two shells, having the same level surfaces,
exactly cancel each other’s action throughout all space. The
elements of mass of the two shells must then be absolutely equal,
but of opposite signs at every point. For, if they were unequal at
any point, that point might be made the centre of an infinitely thin
circular element of the combined shells. From the symmetry of its
figure, a level surface for the action of this element alone might be
made to pass through its perimeter, and which could inclose no
other mass than the element itself. But such surface cannot be
level for the remainder of the combined mass of the two shells, and,
therefore, the value of the potential upon this surface for the
combined masses of both shells, including the circular element,
cannot be constant. This want of constancy in the potential is
contradicted by the fact that the shells balance each other’s action
everywhere. There cannot, therefore, be any such want of con-
stancy, nor any point for which the element of mass of the given
shell is not absolutely equal to that of the Chaslesian shell, although
it is of a contrary sign. But reversal of the sign.of the action of
the mass does not interfere with the Chaslesian characteristic of the
shell.
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147.  Two Chaslesian shells, which are constructed upon the same
surface, only differ in their density and their modulus of thickness. For
the density of either of them may be increased or decreaséd until
the value of its potential at the common surface shall be equal to
that of the “other shell. If] then, its action be reversed, the value
of the potential for the combined shells will be zero both at the
surface and at an infinite distance from the surface; and it cannot
have any other value in the intermediate space, otherwise, there
would be points or surfaces of maximum potential exterior to the
acting masses. The combined surfaces have, therefore, neither
external nor internal action, and the reasoning of the preceding
article demonstrates that the component shells are identical, except
in regard to their signs.

ATTRACTION OF' AN ELLIPSOID.

148. An infinitely thin homogeneous shell, of which the inner and
outer surfaces are those of similar, and similarly placed, conceniric ellipsoids,
8 a Chaslesian shell. For, if upon the longest axes of these ellipsoids,
as diameters, two concentric spheres are constructed, each sphere
may be compressed into the corresponding ellipsoid, by reducing
all the cobrdinates from the centre, as origin, parallel to either of
the two shorter axes of the ellipsoid in the ratio of the longest axis
to this shorter axis. But all points, which are originally in the
same straight line remain upon a common straight line after this
uniform compression ; and all distances which are measured in the
same direction are reduced in a common ratio. But the thick-
nesses of the spherical shell, measured upon any straight line at the
two points where this line cuts the shell are equal; so that the
thicknesses of the ellipsoidal shell, measured at the two points
where the reduced line cuts this shell, are also equal. If, then, at a
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point assumed at will, as the vertex, within the ellipsoidal shell, an
infinitesimal cone is constructed and extended in each direction
from the vertex, till it intersects the shell, the relative masses of the
two included portions of the shell are proportional to the squares of
their distances from the vertex; and, therefore, their attractions
upon the vertex are equal, but in opposite directions. Hence, the
action of any portion of the shell upon an internal point is balanced
by the action of the opposite portion, and there is, consequently, no
tendency to motion within the shell from its own action. The
surface of the shell is thus proved to be a level surface, in respect to
its own action, and, by § 146, it can be no other than a Chaslesian
shell.

149. This proposition may be enlarged to a theorem given by

Newron, for a finite shell, of which the inner and outer surfaces are-

those of similar and similarly placed concentric ellipsoids. Such a
shell may be called a Newfonmian shell, so that the infinitely thin
Newtonian shell is a Chaslesian ellipsoidal shell. But the New-
tonian shell may be subdivided by similar and similarly placed
concentric ellipsoidal surfaces into an infinite number of Chaslesian
ellipsoidal shells, each of which is inactive with reference to an
internal point. Hence, the whole Newtonian shell exerts no action upon
an internal point.

150. An ellipsoid may be converted into any other similar,
and similarly placed, concentric ellipsoid by a process similar to that
by which the sphere in § 148 was changed to an ellipsoid ; that is,
by increasing or decreasing the covrdinates of each point, taken
from the centre as origin, and parallel to either axis, in the ratio of
the corresponding axes of the two ellipsoids. The points of the two
ellipsoids, which correspond in this process, have been called by
IvoRY corresponding points. By this process, any Newtonian shell
may be converted into another concentric and similarly placed
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Newtonian shell, and at the corresponding points there will be
corresponding elements of volume.
151. The corresponding elements of volume or mass of two corre-

sponding Newlonian shells are proportional to the volumes or masses of the
shells. For if

4,, A,, A, are the semiaxes of the outer ellipsoidal surface of
one shell,

B,, B,, B, those of its inner ellipsoidal surface,

¢ its volume,

m its mass, and

n the ratio of either axis of the inner surface, divided by the
corresponding axis of the outer surface ;

and if the same letters accented denote the same quantities for the

corresponding shell, the construction of the shells gives for each
axis

-Bz = nAz,
xz o
4, 40
and n—=n;
and by differentiation,
de A,
dd — 4

The volumes and masses are by well-known theorems of
geometry
m—Fko=4nk(A, A A,— B,B,B,)
=4nk(1—n?)4, 4,4,
m =Ko’ =§nk (1 —n)A 4,4,

The ratios of the elements of volume and mass are, then,

L‘i __ dxdydz __ A, A, A, g
dd = dddydd — A A4, o’
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dm __kde __ ko __ m
dm' — kdd ~ kd~ w'"

162. If the outer surfaces of two corresponding Newtonian shells have
the same foci, their inner surfaces must also have the same foci. For if

&2 is the difference of the squares of the corresponding axes of
the outer surfaces,

the condition of the identity of foci gives the equations
= A — AP — A — A= A2 — A2
Hence, for each axis, there is the equation
.B?,— .B;’ = n’(A,’ -_ A;z) = n’e’,

go that the foci of the inner surfaces are also identical.

153. If the radius vector, from the centre of any point of an ellipsoid,
18 projected upon the radius vector of another ellipsoid which has the same
Joci, and if the radius vector of the corresponding point of the second ellipsoid
18 projected upon that radius vector of the first ellipsoid, which corre n
direction to the projection tn the second ellipsoid, the two projections are
inversely proportional to the radii vectores wpon which they are projected.
For if

¢ is the radius vector of the first ellipsoid upon which the
projection is made, and
&, 7, {, are the coordinates of the extremity of ¢ ;

the equations of the corresponding points give, for each axis,

«

1 2,
A;’

x
4’ 4,

k3
A,
whence

§_¥
z-

b



or
o =tz.
But if
2 is the projection of #/ upon ¢, and
7’ the projection of r upon ¢/,

these projections are

v 75 __ S @)
p—rcose ==,
s/ ’ -
r —'rcos zz“j — Z@¥) =2;(:f’,);

¢ e
whence
4

N

e
154. The difference of the squares of the radis vectores from the
cenlre, of two corresponding points upon the surface of two ellipsoids which
have the same foci, 13 equal to the difference of the squares of their semiazes.
For the equations of these surfaces are

=,z _.12

o =1

z Ali
The difference of the squares of two corresponding radii
vectores for points at the surface, is

rP—1t==, (zz_z’i)=2‘[z2(l—%’)]
=="5 A‘, = ’E.%
= &2,

165. The distance of any point upon the surface of an ellipsoid,
Jrom a point upon the surface of another ellipsoid which has the same foct,
i8 equal to the distance of the two corresponding points of the ellipsoids from
each other. For if

10
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J is the distance of the point of which

z, ¥, 2, are the covrdinates, from the point of which
¥, 7/, {, are the coirdinates, and

J' the distance of the corresponding points;

the values of these distances become, by (7344) and (73,,),

fr=rit*—207
fr=rtt et —20p
=ri—e? (74?2 —2¢%
=1t ¢ — 20 =1
whence
f=r
156. The external level surfaces of an ellipsoidal Chaslesian shell are
those of ellipsoids which have the same foci with the outer surface of the
Chaslesian shell. For if

L, is the potential of the given shell for any point of the
external ellipsoidal surface of the same foci, and

£2; the constant value of the potential of the corresponding
Chaslesian shell, constructed upon the external ellipsoidal
surface, for any internal point, and, therefore, for any
point of the surface of the given shell;

the equations (72,) and (74,,) give

_ff_fﬂ
2= mf ./;mf mff

The value of £2, is, therefore, constant for all points of the
surface of the external ellipsoid, so that this is one of the level
surfaces of the given shell.

187. The attractions of two corresponding Newtonian shells, which have
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the same foci, upon an external point, have the same direction, and are propor-
tional to the masses of the shells. For the infinitely thin shell, this
proposition is a simple corollary from (745). But the finite shells
can be subdivided into corresponding infinitesimal shells, and the
masses of the corresponding elementary shells will be proportional
to the masses of their respective finite shells. The attractions of
the corrésponding elementary shells upon an external point, there-
fore, coincide in direction, and are proportional to the masses of the
shells; and, therefore, the components of all the corresponding
attractions have the same common ratio, and coincide in direction.
But the componeénts of all the elementary attractions constitute the
attractions of the finite shells themselves. Several special cases of
this theorem were first given by MacLAURIN, but the general form
was first demonstrated by Laprace, and afterwards more rigorously
by LeENDRE, and # includes the case in which the inner surfaces are reduced
to the central point, and the shells become ellipsoids, having the same foci.

158. The attraction of any Chaslesian shell upon a point at its
surface is, from its construction, perpendicular to the surface, and
proportional to the thickness of the shell at that point. The attrac-
tion upon the whole surface is, therefore, proportional to the mass
of the surface, which corresponds to § 136. Hence, if

d N is the thickness at any point, and
p the perpendicular from the centre upon the tangent plane at
that point,

the attraction of the ellipsoidal Chaslesian shell at the point is
4nkdN—= 4nlcdrcoslf

d
— 47k rcos "
r P

dA,
4, °

=47Ikp
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The component of this action in the direction of the axis of z is
4nk p - cos N

If, moreover, the equation of the cllipsoid is

L 2:2—’ - 1 — 0’
the general theory of contact gives
2. (zD.L)
rP=yan
N__ DL —_ pD.L
% =yaD T LEDD)”
Hence,
D L—-—A,,
!
}DL = ZAC,
22D, L= 22,A, 2,
cosN ’:4,,

and the attraction in the direction of the axis of z of the ellipsoidal Chasle-
sian shell upon a poind af its surface is

159. The attraction of an ellipsoidal Chaslesian shell upon
any external point is obtained by describing the corresponding
Chaslesian shell, for which this point is upon the outer surface, and
the attractions of the two shells for this point have the same direc-
tion, and are proportional to their masses; so that the attractions
in any direction are proportional to the masses. If, then, the
accented letters refer to the outer shell, the attraction of the inner
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shell is

d A,

47’[]&‘%})’2&‘? = 47[sz p”dA,

JAVA, "

160. The condition that the outer surface of the exterior shell

passes through the attracted point, is expressed by the equation
2
=, :;%—, =2, ﬁ? =1.

This is an equation of the third degree when it is reduced to
its simplest form. But there are two other surfaces which can be
drawn through the given point, and which depen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>