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Infinite series are an important tool in the mathematics of
science, and this book is designed to provide students with
a self-contained first account of the theory. Although the
treatment is elementary (diagrams and illustrative
numerical examples are used throttlﬁhout), the necessary
basic concepts, particularly that of the limit of a sequence
of numbers, are developed and discussed fully. The second
chapter introduces infinite series themselves, convergence,
the standard convergence tests (comparison, ratio,
integral tests, etc.), absolute convergence, power series, and
multiplication of series. The third chapter deals with some
further topics, including the numerical evaluation of the
sum of a series, integration of power series, Dirichlet’s
test, and series of complex numbers.
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Preface

Tms book is intended primarily for students of science and
engineering. Its aims are, first, to present the fundamental
mathematical ideas which underlie the notion of a convergent
series, and secondly to develop, as far as the small space allows,
a body of technique and a familiarity with particular examples
sufficient to make the reader feel at home with such applica-
tions of infinite series as he is likely to meet in his scientific
studies.

I do not believe that these two aims are mutually antagon-
istic. It is true that a certain sophisticated skill is necessary
for the construction of proofs of even quite elementary theorems
involving, for example, the definition of the limit of a sequence,
and that the acquisition of such skill would take more time
than the non-specialist mathematician can spare. But this does
not mean that either the fundamental definitions or the state-
ments of the theorems cannot be clearly understood by the
non-specialist; on the contrary, it is essential that they should
be understood.

Accordingly it has been my policy to lay more emphasis on
the illustration of basic ideas by numerical examples, than on
formal proofs; the latter have often been relegated to small
print, or omitted (such omissions are noted in the text). In par-
ticular the idea of convergence itself is directly involved in the
practical problem of numerical calculation of the sum of a
series, and I have devoted some space to this topic, tradition-
ally neglected in elementary books on series.

It is a great pleasure to acknowledge my debt to my col-
Jeagues at Manchester, and especially to Dr. W. Ledermann,
for their constructive comments at every stage.

J. A. GREEN

The University,
Manchester
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CHAPTER ONE
Sequences

I. INFINITE SEQUENCES

A sequence is any succession of numbers a,, @, ag .. .;
these numbers are called the ferms of the sequence. A finife
sequence @y, dy, . . . , @y is one which has only a finite number
of terms, but we shall be interested mainly in ¢nfinite sequences
whose characteristic property is that they have no last term.
For example, the sequence I, 2, 3, . . . of the positive integers
is an infinite sequence; so is the sequence 1, —4, §, —%, . ..
whose nth term is (—1)*+1/n.

If we want to describe an infinite sequence, it is obviously
impossible to write down all its terms. Instead we must give,
as in the last example, a rule for calculating the nth term a,.
This rule for the ‘general term’ may take the simple form
a,=f(n), where f(1) is some easily evaluated function of #; in
the two sequences just mentioned, for instance, we had a,=n,
and a,=(—1)"*!/n, respectively.

It is often useful to write (a,) as an abbreviation for the
sequence a,, d,, @, . . . whose nth term is a,.

Example 1. Take any fixed number x. Then (x") is the
sequence x, %2, %5, . . ..

Example 2. a,=n* (s any fixed number) is the general term
of the sequence (#*)=1", 2%, 3%, ... For s=r1 this is just the
sequence (n) of positive integers.

Example 3. Take a,=r1, for all #. This defines the sequence
(1)=1, 1, 1, . . . all of whose terms are equal to 1. (Notice that
it is ot necessary that all the terms of a sequence should be
distinct.)

Example 4. Another example where the terms are not all

I
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SEQUENCES

distinct is the case x=—1 of Example 1. This sequence con-
tains only the numbers ¥ and —1, alternately, viz. —1, I,
o T S

On the other hand many of the sequences which occur in
practice are defined recursively; this means that a rule is given,
by which the nth term a, can be computed when the earlier
terms are known.

Example 5. If a,,,=%V/2a,, we can calculate a,., as soon as
a, is known. The value of @, must be given to start with, and
then any number of terms can be worked out in succession.

If a,=1 we have a,=VZ.1=Vz, a="V 2V/2, a‘='\/2‘\/2'\/5,
etc., or in decimal notation (a,)=1, 1414, 1-682, 1-834,
1915, . . .

Example 6. A similar ‘recursive formula’, but involving
two previous terms, is @,4,=0'2a,,,—0'1a,. Here we need
to be given @, and @, to start with, and then the subsequent
terms can be found. For instance, taking a,=o0, a,=1, we
get a;=0'2a,—012,=0°2, @3=0'2a3—0'I0,=—0"06, a;=02a,
—0lag=—0'032, efc.

2. SUCCESSIVE APPROXIMATIONS

One very important way in which sequences make their
appearance in practice, is where the numerical solution of some
problem is attempted by finding successive approximations.
These approximations form a seguence whose terms approach
the number which is being sought. To take an elementary ex-
ample, suppose that it is required to find the numerical value

of V/2; that is to say, we are looking for a positive number 4
with the property that A2=2. By the usual ‘square root pro-
cess’ of elementary arithmetic, we learn how to make a sequence
of (better and better) approximations to 4. The first approxi-
mation given by this process, which we might call 4,, is 1. At
the next stage we get a,=1-4, then a,=1-41, a,=1'414, and so

on. None of the terms I, I'4, I'41, 1414, . . . of this sequence is
equal to 4. But they approach or ‘tend to’ 4 =1/, in the sense
2

GRAPHICAL REPRESENTATION OF A SEQUENCE

that if we go sufficiently far along the sequence, we get numbers
which differ from 4 by as little as we like. It should also be

2 1414
I
24  1°00
281 _400
281
2824 11900
11206

604

noticed that, in practice, this is all we require. For in any given
practical application, in which for some reason the value of V/2
is required, all that is really necessary is its value correct to a
certain number of decimal places, and this we can secure by
working out a finife number of steps of the square root process.
It is this idea of a sequence which ‘tends to’ a limiting value,
which we shall discuss in the next paragraphs.

3. GRAPHICAL REPRESENTATION OF A SEQUENCE

It helps in understanding this notion if we can represent
sequences graphically. We shall do this in either of two ways;
first we can simply mark the values of a,, a,, 43, . . . as points
on a single axis or scale. It is advisable to write above each
point the name of the term to which it is equal (and a given
point may correspond to many terms). For example, the

sequence (1— E) =0, 4, %, 1, . . . is represented in Fig. 1
n

% Q9 939059
1 1 1 1 11 1
o I
FiG. 1

while the diagram for ((—1)")=—1, 1, —1, 1, . . . has only two
3




SEQUENCES

points, each of which serves for infinitely many terms of the

sequence.
a|=a3=05=uou- az=a4=06=.u‘

1 1 [

el (o] +1

Fic. 2

Although this representation is very compact, it may be pre-
ferable to display the sequence more fully. Our second method
of depicting a sequence (a,) is to draw a ‘graph’, regarding a, as
a function of #. However this graph is not a continuous curve,
but consists merely of a succession of isolated points, because a,
is supposed defined only for #=1, 2, 3, . . . Fig. 3 shows the
graph of ((—3)"), for which a,=—3}, a,=1, a5=—1, a,=71s,
etc. For this sequence, it is not possible to give a real meaning

1
z

-
8
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S
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--E x

Fi16. 3

to the value of a, for general (non-integral) values of n—for
example we cannot define ag,=(—3)%2 without using complex

numbers. But even in a case, such as a,,=1—-£ (Fig. 4), where

4
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it would be possible to “fill in” the intermediate values, we re-
frain from doing so, on the grounds that it is only the infegral
values of # which interest us at the moment.

II
xxxxxx

Fic. 4

4. THE LIMIT OF A SEQUENCE

Figures 3 and 4 display very clearly the fact that these
sequences are ‘tending’ to ‘limits’ or limiting values, as #
becomes large. It is clear, for example, that as # increases,
(—3)" becomes more and more nearly equal to o, and that

I—-:-;r becomes nearer and nearer to 1. We express this by saying

that (—3)" lends o 0 as n tends to infinity, and that 1—% V
lends to T as n fends lo infinity, respectively. The precise 3
definition of this kind of statement is as follows.

Definition. A sequence (z,) tends to a limit 4 as » tends to
infinity, if, given any positive number 4, however small, we can
find an integer N, such that all the terms a4, of the sequence
after the N,th lie between 4—h and A+h.

Notation. We write ‘a,—>A as n—> o0’ (read ‘a, tends to 4 asn
tends to infinity’), or sometimes lim a,=A. Occasionally the

Ti—p0
phrase ‘as # tends to infinity’ is omitted, for shortness; then we
should write simply a,—> A4, or lim a,=A. We can think of the
terms a,, as ‘approximations’ to A. If certain ‘limits of tolerance’
-} are allowed, i.e. if we are satisfied when a,, lies within / of 4

5
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n
>

Nh

Fic. 5

on either side, then (according to the Definition), @/l the terms
a, after a certain one (which we have called the N;th) must lie
within these limits. Further, this must continue to be true,
whatever value % has—e.g. if we set a narrower tolerance %,
say (with k<Ck), it must again be true that all the terms after
a certain point are within the new limits (but of course it would
usually be necessary to go farther along the sequence; i.e. the
number N, such that all the terms after the N,th lie between
A—Fk and Ak, would usually be larger than N,).

Example 1. To prove, directly from this definition, that

1 ; I
a,=I——>1 as n—>c0. The term g, differs from 1 by -,
% n

Take h=o0-001 as an example; clearly a, lies between 1—o0-001
and 10001, if # has any value >1000. Therefore N, =1000
would satisfy the conditions in the definition, for the special
value h=0-001. This is not enough: we must prove that an N,
can be found corresponding to any A. This however is quite
easy; take N,=the first integer greater than 1/h. Then it is
clear that a, lies between 1—#4 and 14, whenever n>N),.

Example 2. We prove next that 2"—o0asn—> 0, if —1<5<1,
(This includes the case x=—14 depicted in Fig. 3.) Let ¢ be the
numerical value of x, disregarding the sign. Then the numerical
value of 2" is ¢" (for example, the numerical value of (—3)" is
always (})", although (—3)" is negative if # is odd). Now ¢"<#
if n log ¢<< log h. We must remember that log ¢ is negative,
because ¢< 1, and when we divide an inequality by a negative
number, its direction is reversed. Thus # log ¢< log % is equiva-
lent to # > log i/log c. Therefore if N, is the first integer
6

e T——

THE LIMIT OF A SEQUENCE

greater than log %/log ¢, then #" lies between 0o—% and 04, for
every #>>N,. Since such an N, can be found for any positive &,
the conditions of the Definition are satisfied (with a, =", and
A=o0). (Another proof, not involving logarithms is given in
Example 6, p. 17).

In the case = —1}, we must take ¢=1, and log ¢=—o-3010.
Thus N, may be taken to be the first integer greater than
log &/(—0-3010). For example, log (0-001) = —3, and so Ny=T0,
the first integer greater than —3/—o0-3070. This shows that (—3)n
lies between +o0-001 and —o-oor1, for all #> 10,

Example 3. Another useful limit is 7°—>0 as #—> o, if s<o.

For example, the sequence (1) =1, }, 1, 1% ...tendstoo
as fi—>ao.

Put s=—k, 5o that k>o. Then n'= <k if w¥*>7, ie. if
n
1
n> )\"/}:I Therefore the conditions of the Definition will be satis-

fied by taking N,=first integer greater than :/ %

Example 4. The ‘constant sequence’ (a)=a, 4, 4, a, . . . , all
of whose terms are equal to a fixed constant a, has a as limit,
according to our definition. For whatever value % may have,
all the terms are between a—% and a+-h.

Example 5. Any number can be written as a decimal, which
may of course be an infindte decimal. This is equivalent to say-
ing that the number is the limit of a sequence of finite decimals;
for example 7=3-14159265 . . . is the limit of the sequence
3, 3’1, 3'14, 3141, . ...

A number which can be expressed as the quotient of one integer
3 =26

by another (such as 3 Ts & etc.) is called a rational number, Not
every number_ is rational; for example it can be proved (this is not
easy) that = is mof rational. However every number is the limit
of a sequence of rational numbers. For example, x is the limit of

t_he uence 3, ‘I=§E, -1 «_—ﬂ . -_—‘H
seq’ 3 3 1034 100,3341 moo,...,whose

7
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terms are all rational, Obviously the same argument could be
applied to any number. (It should be remarked that there are
always many different sequences of rational numbers tending to
any given number.)

5. OTHER TYPES OF SEQUENCE

Not every sequence has a limit, as can be seen by considering

the following examples.

Example 1. (#)=1,2,3,4, -+

Example 2. (—n?)=-—1, —4, —0, —16, . ...
Example 3. ((—2)")=—2, 4, —8, 16, . ...
Example 4. ((—1)")=—1,1, —1,I,....

In none of these cases does @, tend to a limit A. In (1), for
example, the terms become larger and larger without limit; we
say that ‘(a,) tends to 4-co as n—>co’—a statement which is
not covered by our definition on p. 5, because we assumed
there that 4 was an ordinary number. The precise definition of
the phrase ‘(a,) tends to 4 co as #—>c0’, or, as it is usually
written, ‘a,—>- co as n—>0’, is as follows:

A sequence (a,,) tends to - co as n—c0, if, given any number
K, however large, we can find an integer N g such that all the
terms a, after the Ngxth are greater than K.

0 1
%

x
K X

o
z
v

FiG. 6

Example 5. #*—>-+00 as #—>c0, if s>0 (cf. Example 3,
p- 7)- &

i

RULES FOR CALCULATING LIMITS
For given any K (which we may assume is positive), we have
w>Kif n> VE. Although VK will not usually be an integer, we

just take N g =the first integer greater than v/K, and the condition
of our definition is satisfied.

Example 6. x"—>-4c0 as n—>o0, if ¥>1 (cf. Example 2,
p. 6).

For 7> K provided that » log » >log K, and this time log >0,
because x>1, so that we may divide by log # without reversing
the direction of the inequality. Therefore 4" > K if n >log K/log #,
and thus we may take Ng to be the first integer greater than
log K /log x.

By analogy, we say that a sequence (a,) tends to —o0 as
n—>00 (written a,—>— o0 as n—>c0), if, given any number L,
we can find an integer Nz such that all the terms a, after the
Nyth are less than L. This is equivalent to saying that
—a,—>-+oo. For instance the sequence (—»?) in Example 2
tends to —co.

We often write lima,=-00, as an abbreviation for
‘a,—>-co as n—>o0’, and similarly lim a, =— co. But it should
be remembered that ‘--o0’ and ‘— 0’ are not numbers, and
cannot be treated as if they were. Some reasons for this caution
will appear in § 7.

To complete the classification of sequences, we say that a
sequence which does not (i) tend to a limit 4 (ii) tend to < o0,
nor (iii) tend to — o, is an oscillating sequence. Such sequences
are, from our point of view, ‘irregular’, although they comprise
a very wide class. Examples (3) and (4) (e,=(—2)" and
a,=(—1)") are both oscillating sequences.

6. RULES FOR CALCULATING LIMITS

If (a,) and (b,) are two sequences, and if a,—>A4 as n—>c0,
while b,— B, then the ‘sum’ sequence (a,+b,) =a,-+b;, ay-+b,,
...tends to A+B.

Naturally this statement requires rigorous proof, using the
definition of § 4. We shall not, for reasons of space, give this preof,
s.5.—B 9




SEQUENCES
but it is really just a precise formulation of the following idea : a,
can be made as near A4 as we like, by making # large enough; simi-
larly b, can be made as near B as we like. When a,, is very near to
A, and also b, is very near to B, then a,+b, must be very near
A +B. That means that we can make a,-}-b, as near 4 +B as we
like, by making » large enough.

In the same way we have rules for differences and products:

Rule 1. If a,—>A and b,—>B as n—>oo, then a,+b,—>A+B,
a,—b,—>A—B, and a,b,—>AB. Furthermore, if c is any con-
stant, then ca,—>cA (this is the special case b,=c of ab,—>AB).
Example 1. Find lim (14 (3)"). Take a,=1 (this defines a
constant sequence, see Example 4, p. 7) and b,=(})". We know
that @,—>1, and b,—>0 (Example 2, p. 6); therefore a,+b,
=1+ (})"—>1+0=1.

Example 2. (1-|— )(2—-;2)—»(1-}-0) (2—o0)=2. (We use here

s
mn
the fact that ~=»-1and %*—*n“ both —-0 (Example 3, p. 7)).
%

Rule 2. If a,—>A, and b,—>B, as n—>o0, and if each lerm
b, 70, and also Bs£o, then a,/b,—>A/B.

We omit the proof of this rule. The conditions b,5%0 and Bs£o
are obviously essential, if the expressions a,/b, and 4 /B are to
have any meaning.

Rule 3. Leét (a,), (b,) be two sequences.
(?) If a,—>+ o, or if a,—>— o, then 1/a,—>0.
(#3) If a—>-+ o0, and b,—>a finite limit B, then a,+b,—>- c0.

(##3) If a—>— o0, and b,—>a finite limit B, then a,+b,—>— 0.

(#v) If a,—>+ 0, and b,—>a positive limit B, then
anb—>-- 0.

(v) If a—>+ o0, and b,—>a negative limit B, then
a,b,—>— 0.

We shall not give formal proofs of these facts, but the reader
should try in each case to understand the general principles in-
volved. For example (i) if @,—> + o, it means that a,, is very large,
for large values of n; hence 1 /a, is very near o. In (i), the term b,

IO
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is near to B, for large #, while a,, is very large. Even if B is a large
negative number, the sum a,, +b,, can be made positive and indeed
as large as we like, by making » large enough. Therefore

@y +by—>+ 0.

Example 3. (n+£}=2, 2}, 3%, 4}, . .. tends to 4o, For
@, =n—>+ co, while b,,-=5—+o.
n

Example 4. 4—n-- (})"—>—co. For this is the sum of a term
—n, which tends to — oo, with a term 4-}(3)", which tends to
the finite limit 4.

Example 5. (n--l-I)/(?S’+I)=”(I+?_I$)/ﬂe(pr%)

() (2 e

Example 6. (n2+41)/(302+n+1)
=§(1+£§)/(I+£—+i)—>§.1/1=§, as 71—> 00,

3n 3n?
Example 7. a,—=(1—n?)/(142n). Take a factor (—n2) out of
the numerator, and a factor 2n out of the denominator; we get

= ., " I~i~l . The factors in the two last
2 n? 2n

brackets both tend to 1 as n—>c0. Therefore, for large #, a, will
be very nearly equal to (—E) (in the sense that a,/ (-—g) will

be very nearly 1). Therefore, since —2 clearly —»— o0,

a,—>»—co as well.

Example 8. Rational functions of n. A polynomial in n is a

function of the form cy+cp— =2+ ... 4cn-4-cp where

Co» €1 « + « » Gy aTe CONstants, If ¢,520, his called the degree of the

polynomial, and ¢, is called the leading term. A rational func-

tion is the quotient of one polynomial by another; e.g. the

functions in Examples 5, 6, 7 are all rational functions of 7.
II



SEQUENCES
Let (a,) be a sequence whose nth term is a rational function of

o ep b e ) We can wiite

o T e A

this

a,,=;"”:.{x+°"—“‘ A b %}/
o G N Cy N

{r+ T .. +dm'}'
The terms in the brackets both tend to 1 as n—>00. Thus for
large n, a, behaves like the quotient of its leading terms, in the
sense that the ratio of a, to this quotient c;n*/din* tends to
1 as n—>c0. Thus for example, if A<k, then cn/dn*

=(c./dk)”k%—ro as n—>co, and therefore a, also tends to o.

If h=k, then a,—>c;/d;, and if h>Fk, then a,—>-- co or to — o0,
according as c¢;/d, is positive or negative.

It is sometimes useful to notice the following rule.
Rule 4. If a,—>A and b,—>B as n—> o, and if a,<b,, for all
n, then A <B.

This is almost obvious. But it should be remarked that if a, <b,
for all n, it is not necessarily true that 4 <B-—all we can be sure of

is that 4 <B. For example, 1 — -:; < 1 for all #, butlim (I -i)nl.

7. SOME DANGEROUS EXPRESSIONS

It is as well to remember that Rules 1 and 2 are not intended
to apply to sequences which tend to 4 oo or — 0. Nor should
it be expected that expressions such as co— o0, 0/0, 0/ have
any definite meaning. In general, we must accept the fact that
‘0" cannot be treated like an ordinary number, and that division by
o is impossible. The following examples make the position clear.
Example 1. If we take two sequences (a,) and (b,), which both
tend to -4 o0, we might expect the quotient a,/b, to have
‘oo/c0’ as limit. Consider, however, the following three ex-

12
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amples (i) a,=n?, b,=n, (ii) a,=n, b,=n, (i) a,=n, b,=n>
In each case, a, and b, both tend to + 0. But in (i) &,/b,
=n—>-+c0, in (ii) a,/b,=1, which —1 as #—>c0, and in (iii)
a,/b,=1/n—>0. What value are we to give to ‘co/c0’? Our
answer is that we do not give any meaning at all to this expres-
sion; we simply avoid it. (It might be remarked that we could
construct examples like the three we have just mentioned, in
which a, /b, has any given positive number we like as limit, or
again, in which a,/b, has no limit at all, but oscillates.)
Example 2, The situation with ‘0/0’ is the same. Consider the
following three examples: (i) a,=1/n, b,=1/n® (ii) a,=1/2,
b,=—2/n, (iil) a,=1/n?, b,=1/n. In each case, a,—>0 and also
b,—>0, as n—>c0. But for lim (a,/b,) we find (i) 4 oo, (i) —3,
(iii) 0. Thus ‘0/0’ cannot be given any meaning; it is another
expression which has to be avoided.
Example 3. ‘c0o—00.” Take (i) a,=n, b,=n?, (i) a,=n+4
b, =n, (iii) a,=(—3})"+n, b,=n. In each case a, and b,—>-+}c0
as n—>00. Thus if ‘co— oo’ has any definite meaning, we should
expect to find it by considering the limit of a,—b&, in these
examples. However in (i), lim (2,—b,)=lim #(1—n)=—o00, in
(ii) lim (a,—b,) =4, while in (iii), a,=b,=(—4)"—>0.

The reader should not imagine that, for example, a,=

has no limit because it ‘becomes 00:- =

o041
What the discussion above does show is that we cannot calculate
limits by ‘substituting n=co’. We must work instead by apply-
ing Rules 1, 2 and 3 to reduce the given expression to a com-
bination of functions whose limits are either known already, or
can be found from first principles, i.e. from the definitions given
in §§ 4 and 5.

n+4+I
ni4-1

on ‘substituting n=c0".

8. SUBSEQUENCES
If (a,)=a,, a,, a;, . . . is a sequence, then any infinite succes-
sion of its terms, picked out in any way (but preserving the
original order) is called a subsequence of (ay).
13
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Example 1. a,, a,, a;, ag, . . . is a subsequence of (a,). Its nth
term is a,,.

Example 2. ay, a,, a,, @y, - - . is the subsequence (a,2) of (a,).

Example 3. An important type of subsequence is that ob-
tained by removing a finite number of terms from the beginning
of (a,), but leaving the rest of the sequence unchanged. For ex-
ample a, ag, @, - . . is the subsequence obtained by omitting
the first six terms of (a,). The nth term of this subsequence is
Agqne

The behaviour of a subsequence is very easy to describe, in
the cases where (a,,) tends to a (finite) limit, or to 4 co or — co.
We have the following rule.

Rule 5. If a,—>A as n—>c0, then any subsequence of (a,) also
tends to A. Similarly, if a;,—> -+ co(— o) then any subsequence of
(a,) also tends to + co(—c0).

For example, if a,—>-4, it means that, given /, we can be sure
that all the terms a,, after some point are within 4 of 4. But if this
is so, then all the terms of the subsequence (which are just some of
the terms of (a,)) are within % of A4, after this point.

Example 4. The sequence (x™*")=22, x%, 212, 420, . .isa
subsequence of (x"). Therefore it tends to o, if —1<<x<1, since
™0 in this case.
Example 5. (see Example 3). If (a,)=a,, a,, a;, . . . tends to
A as n—>co0, then any sequence obtained by removing a finite
number of terms from the beginning of (a,) tends to the same
limit. For example, the sequence (a,.,)=a,, as, a,, . . . —>A.
It is also clear that the introduction of a finite number of new
terms at the beginning does not alter the limit of a sequence.
For example, we know that (1/n)=1, §}, }, 1, . . . tends to o.
Then the sequence 42, —4, 5011, 8,1, 4, 4, }, 3, . . . , obtained
by putting in four extra terms at the start, still has limit o. In

1When we say that (a,) tends to a finife limit, this means that
ap—>»some number 4, as defined on p. 5. The word ‘finite’ is introduced
to distinguish this from ‘ay—» -+ 0’ and ‘a,—>— o', but it should be
remembered that these have quite different definitions from ‘a,—>A'
(p. 8).
14
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fact, the behaviour of a sequence, of any type, is unafiected by
removing or inserting or altering a finite number of terms.

Example 6. An interesting exercise in the application of the
principles of this section is the following. Let a,=sin #x, x being
a fixed angle which is not an integral multiple of  radians (if
x is a multiple of z, then a,=o for all #). We shall prove that
(a,) does not tend to a limit. For suppose, to the contrary, that
a;—>A as n—>co. Let b,=cos nx. Put a=(n+-1)z, f=x in the
trigonometric identity sin («+f)—sin («—p)=2 cos a sin f;
this gives @, ,3— @, =2b,; sin %, hence b, .3 =(ay ;2—a,)/2 sin x.
Now if a,—>4, it follows (Example 5) that a,,,—>4 as well.
Therefore b,,,—>(4—A4)/2sin x=0, as n—>c0. Therefore
b,—>0 also (for (b,) =Dy, by, bs, . . .is obtained by simply adding
one extra term &, to the beginning of (by,.4) =bs, bs, - . .). Con-
sequently the subsequence (b,,)=bs, by, bg, . . . has the same
limit 0. But by,=cos 2nx=2 cos? nx—1=2b,2—1. Take the
limits of both sides, and we get a contradiction 0=2-0%—T.
This can only mean that our original assumption that (a,) tends
to a limit A, is false. (We have proved only that (,) does
not tend to a finite limit. However it is trivial that (a,) does
not tend to 4+ o0 or —co either, since —1< sin nx< I for
all n.)

Q. MONOTONE SEQUENCES AND BOUNDED SEQUENCES

(a,) is called an increasing sequence if a, <a, ., for all #; that
is, if @, <a,<az< ... Similarly, a decreasing sequence (a,) is
one for which a,>a,,, for all #; thus ¢, >a,>a;> ... A
sequence which is either increasing or decreasing is sometimes
called a monotfone sequence.

Example 1. (n), (r—i) are increasing sequences.

Example 2. If (a,) is increasing, then (—a,) is decreasing, and
vice versa.

A sequence (a,) is bounded above if there is a number H such
that a, <H for all n. It is bounded below if there is a number &
such that a, >G for all n.

15
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Example 3. () is bounded below, but not above. (Every term
is »0).
I

Example 4. (I—;) =0, 4, %, 1, %, . .. is bounded above and

below. For 0<I-—-’—t <1, for all n.

We come now to an important general principle.

Fundamental Theorem on Monotone Sequences. (i) If an
increasing sequence (a,) is bounded above, then it must tend to a
finite limit. (i3) If the increasing sequence (a,) is not bounded
above, then a,—>-+ o0 as n—>co.

Simalar resulis hold for a decreasing sequence (b,): if (b,) s
bounded below, then b,—>a finile limit; if (b,) is not bounded
below, then by—»—co. (T'his means, it is impossible for the in-
creasing sequence (a,,) Lo oscillate or tend to — co, and it is impos-
sible for (by,) to oscillate or tend to + c0.)

Let us represent the terms a, by points on a line. Each a,, is to
the right of all the preceding terms, because (a,) is an increasing
sequence.

Case (ii) is illustrated by Fig. 7. For any given number K we
must have a,> K for some n (otherwise a,< K for all #, and that
would mean that (a,) was bounded above). Then, because the

a @ @ a,05990¢q

1 1 1 1 Ledahienll bl
]

K

W

FiG. 7

sequence is increasing, all the subsequent terms are >K. This
shows that a,—>-co.

In case (i), there is some number H such that a,<H for all n
(Fig. 8). A rigorous proof that a, tends to a limit is beyond the
scope of this book, but we can see how this comes about, as follows.

q Q, Q3 94059

o I 2 KRR
Fic. 8
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All the points a, are to the left of H. There must be some greafest
integer m, which has points of the sequence to its right. In Fig. 8,
m=2, and all the a, after a, are between 2 and 3. Similarly, there

must be a greatest one among the numbers 2-0, 2°1, 2°2, . . ., 2'9,
s %Y 9%
L] ¥ : L] L ] : L] - L] ‘. H L L] Ll :
20 Al8 30
Fic. 9

which has any points a,, to its right. In Fig. 9, which is an ‘enlarge-
ment’ of the relevant part of Fig. 8, this ‘greatest number’ is 2-7.
All the a,, after ag lie between 2-7 and 2-8. In the same way, we
should find that all the a, after a certain one lie in a particular
interval of length o-o1; between 2-71 and 2-72, perhaps. We can go
on with this process as long as we like. The result is a certain
infinite decimal 4 (which in our case starts off 2:71...), and 4 is
the limit of the sequence. For all the a, after a certain point are
within as small a distance as we like of 4.

Example 5. a,=1 —;I; is increasing, and bounded above. As we

have already seen (Example 1, p. 6), 4, does tend to a limit,
namely I.

Example 6. Let x be a number between o0 and 1. Then (") is
a decreasing sequence (since x"*!=zx.ax"<a", for all #), and it
is bounded below, because 2" >0 for all #. Therefore it must
tend to a limit, X, say. Now (x"+1) =22, %3, . . . must have the
same limit X (Example 5, p. 14). But (#**1) can also be ob-
tained by multiplying every term of (x") by the constant x. It
follows by Rule 1 (p. 10) that its limit is xX. Hence 2X=X,
from which (x—1)X =0, and, since we know that x—13%o, it
follows that X =o. This is of course the result which we had
already found in § 4 (Example 2, p. 6).

I0. THE FUNCTIONS x", n* AND 2%"

We first collect for reference some of the results obtained in
this chapter.

17
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(i) 2"—>0 as n—>c0, if —1<x2<1 (Example 2, p. 6),
"> 00 as n—>c0, if x>1 (Example 6, p. g).
To complete the list, we remark that

#"—>1 if x=I (for the sequence (x") is then the constant
sequence (1)), and

x" oscillates if x <—1.

(ii) n*—>0 as n—>o0, if s<o (Example 3, p. 7), and

n*—>- 00 as n—>co, if s>0 (Example 5, p. 8).

There is also the trivial case s=o, which gives the constant
sequence (n%=(1); thus %1,
Functions of the type n*s. Consider the sequence whose nth
term is a,=n3(})" =n3/2". This can be regarded as the quotient
of the two functions #® and 2", which both tend to + oo as
n—>c0. As we saw in § 7, the expression ‘co/c0’ gives us no
indication of what the limit of (a,) might be, or indeed of
whether it has a limit at all. On the other hand, it is always
worth while to consider some numerical values—these often
give an indication of the behaviour of a sequence, although any
guesses arrived at in this way have to be verified by a rigorous

argument based on our definitions.
" I 2 4 10 20 50
e 1 8 64 1000 8x 10 1-25 X 10%
an 2 4 16 1024 1-05 X 10 I X 10M8
ni/2® | o5 2 4 10 76X 10~% 1-1.X 10—1

These rough values suggest that, starting with # =10, the values
of 2" soon become very much larger than those of #® (although
they are smaller for some initial values of #) and that in fact
n®/2"—>0 as n—>c0, This is confirmed by the following general
result: if y>1, then n*/y"—>0 as n—>co, for any value of s.

First, if s <o, then both #* and (1 /y)"—>0, so that their product
7*/y" tends to o, If s=o0, then #*/y"=(1/y)", and again this tends
18
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to zero. We may assume now that s>o. Because y >1, the 2s-th

2s
root of y is also >1, and so we can write it in the form V/y =141,
where ? is a positive number. If a, =7"/y", then, taking 2s-th roots

25

of each side, vV ap=Vn/(Vy)*=Vn/(x+8)" By the binomial
theorem (see p. 25) (x+4#)"=1 +M+¢”2:-I—)¢'+ -+ + +#" which
is greater than #¢ (for all the terms in this expression are positive).
Therefore v an<V/n/nt=1/t\/n. Take 2s-th powers of both sides;
this gives a, <1/(¢*n)’. We can make 1 /(#s)* as small as we like by
making # large enough. Thus a, (which is always >o) can be made
as near o as we like by making # large enough, and this shows that
G—>0.

This can be expressed in a slightly different way by saying:
#*'x"—>0 as n—> o0, if 0<x<1. For if 0o<x<1, then y=1/2>1,
and we can apply the previous case, writing #'2"=n*/(1/x)"
=n'/y". Furthermore, if —1<x<o0, then the numerical value
of n*x" (i.e. apart from sign) has the same as that of #%", where
¢ is the numerical value of x. Thus #°4"—>0 as #—>o0 in this
case also. To summarize:

(ili) #*4™—>0 as n—>co0, for any s, and any x such that
—I<y<IL.

Example 1. The result #*/y"—>0 (in the case s>0 and y>1)
can be interpreted as meaning that, although #* and y* both
tend to - 0o, y™ does so ‘faster’ than #*. This is true even if s is
very large and y is only slightly larger than 1. For example, one
would at first sight imagine that %199 was very much larger
than (1-0001)", and of course this is so for a finite number of
values of n. However eventually (1-0001)" is much larger than
71990, and the quotient #1909/(1-0001)"—>0 as n—>co.
Example 2. Find lim (n5— (1:5)"). We can write a,=n5— (1:5)"
=(1'5)*{n®/(1'5)"—1}. The expression in the brackets {} tends
to 0—1=—1, while (1'5)"—>+ 0. Therefore a,—>— oo (Rule
3 (v), p. 10). (In a less precise way, one could say that (1:5)"
tends to - co faster than 75, as in Example 1, and that there-
fore for large n the term #% is negligible in comparison with
—(z5)")
19
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IXI. SOLUTION OF EQUATIONS BY ITERATION

There are several ‘iterative methods’ for solving equations;
that is to say, methods whereby the solution is obtained as the
limit of a sequence of successive approximations. We shall de-
scribe here the simplest of these methods, for details of others
the reader is referred to books on numerical methods (e.g.
Whittaker and Robinson, Calculus of Observations, Blackie
& Co.).

Suppose that f(x) is any continuous? function of #. Take any
number x,, and define the sequence (x,) recursively by the rule
%n41=f (%), for every n. Thus x,=f(z,), %3=f(*,), etc. Suppose
that x, tends to a limit a, as #—>c0. Then f(x,) must tend to
f(a),* but on the other hand, f(x,) =Xy, and (x,,,) has the
same limit as (x,) (Example 5, p. 14). Therefore a=f(a). In
other words, if x, tends to a limit, then this limil is @ root of the
equation x=f(x).

The sequence (x,) does depend on the starting value ,. If we
take a different #,, the resulting sequence might tend to a differ-
ent limit & (which would, by the same argument as before, be
another root of =f(x)), or it might have no limit at all. Itis
necessary to devise a working procedure which can guide us in
choosing a ‘good’ x,.

It will usually be possible to fix the positions of the roots
approximately (e.g. by drawing a rough graph). Let f*(x) denote
the derivative of f(x). We have then the following
Criterion. Suppose (i) that there is known to be a root a of x=f(x)
somewhere between x=u and x=f, and (i1) that there exists a posi-
tive number k<1 such that o <f’(x) <k, for all x between o and p.
Then the sequence (x,)) defined by x, =a, Zns1=f(%,), tends to a as
n—>co. Furthermore, the difference between the nth term x,, and
a is less than k"=|f—a|,? for any n.

! See e.g. P. J. Hilton, Differential Calculus, in this series.

#We are using here the fact that f(#) is a continuous function. The
characteristic property of a continuous function can be expressed in just
this way: that if a sequence (xp) tends to a limit a, then the sequence
(f(xn)) of function values must tend to f(a). All the ordinary functions
of elementary mathematics are continuous,

* We remind the reader that | g— «| is the numerical value of the
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Example 1. Let f(¥)=V2x. The equation z=f(x) can be
solved easily in the ordinary way; its roots are =0 and x=2,
The derivative is f'(x)=}.2.x7#=1/V2%, so that o<f"(x)
<1/V'2, for all x between 1 and 3, say. We can apply the
Criterion (with a=2, e=1, f=3, k=1/V/2). It shows that the
sequence defined by x;=1, x,.,="V 2x, (some of the terms of
this sequence are given in Example 5, p. 2) tends to 2 as
fn—>c0.
Proof of the Criterion. For the purposes of this proof, we shall take
< f. The case f >« is easily treated on exactlythesar?ehfles. }Ne
assume that f(#) can be differentiated, and that its derivative f*(x)
is continuous. For such a function the ‘mean value theorem’ of the
calculus! applies. This says that if # and a are any numbers, then
fla) —f(x) =(a—=#)f’(£), where £ has some value between # and a.
If @ and # are both between « and §, then so is & and hence
o< f’(§)<k. Therefore if z<a,
o<fla)—f(»<(a—x)k . . g

Put ¥=x,(=«) in (1), remembering that f(x,)=2x, a.nd that
f(a) =a. This gives o<a—=zx,<(a—x,)k. Next put #=%, in (1),
remembering that f(#,) =x,; we have o<a —2,;< (a —x,)k. _Sl.noz'a the
previous inequality tells us that a—x,<(a—x,)k this yields
o< a—#x,;< (@a—#)k% Continuing in this way, we find

o<a—x,< (a—x)k",

for all n. Now a—=x,<fi—a (see Fig. 10), so that

T T T 11 h
X.=o< X,_ xs 3‘0 B

Fic. 10

o<a—x,<(f—a)i™,
for all n. As n—>, k"~'—-0, because & <1. Therefore #, must
tend to a. :
Working procedure. Suppose the equation to be solved is
given in the form F(x)=o. This can be put in the form x=f(x)

difference f— «, disregarding the sign. Notice that it is not assumed that

x<p. ) A )
"giae e.g. P. J. Hilton, Differential Calculus, in this series.
2I
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in many ways, e.g. by taking f(x)=x-cF(x), with any non-zero
constant for ¢. We must (1) locate the root a required as nearly
as possible, i.e. find « and f§ between which ¢ lies, and (2) choose
¢ so that the Criterion applies to f(x) =x-}-cF(x). This technique
is illustrated below.

Example 2. Calculate ¥/2. The equation to be solved is
x3—2=0, equivalent to ¥=f(x) =x--¢(¥®*—2). (1) To locate the
root. We soon find that a=+/2 lies between =12 and f=1-3,
for (1-2)®=1-728<2, while (1-3)®=2-197>2. (2) Choose ¢ so
that o <f'(x) =1+ 3¢x* <k(k<1), for all x between 1°2 and 13.
A suitable value is c=—o0-2, for then f’(x)=1—06x2 which
decreases from 0-136 to 0-026 as x varies from 12 to 1:3. Thus
o <f'(x) <k=0-136, for all x between 1-2 and 1°3.

According to the Criterion, a=%/2 will be the limit of the
sequence defined by x,=1-2, %, ., =f(*,) =%,—0-2(%,3—2). The
first four terms are x,=1-2, %,=1'2544, X3=1-2596, x,=1'2590.
The accuracy of these approximations can be estimated from
the formula o <a—=x, <(f—a«)k"~1=(0-1)(0-136)"* (see p. 21).
In particular, %, differs from a=%/2 by less than (0'1)(0-136)?,
which a rough calculation shows to be less than 0:0003. In this
way we have proved that ¥/2 is between x,=1-2599 and
%4+0-0003=1-2602, which guarantees that the first four signi-
ficant figures of V2 are 1-260. Greater accuracy can be secured
by taking larger #.

EXERCISES ON CHAPTER I

1. Write down the first five terms of each of the sequence defined
below (use decimal notation).
(i) ag=1—(02)". (ii) @, =1 —(—o0-2)", (iii) @, =(n?-+1)/(n +1).
(iv) 3p=VA+1—Vn. (v) @y =(—1)""n. (vi) @, =(sin nz/2)".
(vii) 40 =3/8y 8,=—1. (vill) 26, ,=0,, +a,(a,=1,8,=2).

() Gpiy =g+ @)% G=1. () Gpa=r(ay+ay+ . . . +aq),

G, =1.
2. l\r;ake graphs (see § 3) for the sequences (i) to (vi) of Exercise 1.
22
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EXERCISES ON CHAPTER 1

. State, in the cases (i) to (vi) of Exercise 1, whether (a,) tends

to a limit 4, or to + o, or to — 0, or if (a,) oscillates.

. How large must 7 be, for (})" to be less than (i) o-o1, (ii) T0—*%?
. How large must » be, for (1-1)® to be greater than (i) 10%

(ii) 10%?

. Find lim a,, for each of the following a,. (Note: lim a, may be

+ o0 o — o). (i) 2 — (0-2)". (i) 2 +(—0-2)™. (iii) (n +1)/(n* +1).
(iv) (4+4n)/(3n—2). (v) (2+n+n?)/(x 442+ 50%).
(vi) (x+n?)/(z2—3n%). (vi)) (»*+1)/(n*+1).

(vii) (=1 /(2 +2). () 2%+ (”) tx}{ A +()}

(xi) (3" +1) /(2" +1). (xii) (2"+1)/(2"++1). (xiii) 2"n%/5".
(xiv) (1+2%)/(x—n). (xv) (n—2")/(n*~3").
(xvi) (5"n*+1)/(5"*+ 5 +1).

. Find a number N such that »?/2" <o-oor if n>N.
. For what values of b is a,=(n+b)/(n+1) increasing?
. Show that (b,) = (cos nx) does not tend to a limit as n—»- 0,

unless # is an integral multiple of 2% radians. (See Example 6,
p- 15.) &

Let a,=V#(¥>1). Show that (a,) is (i) decreasing, and (i)
bounded below, and hence prove that a,—»a limit 4 as n—-co.
Find the limit 4 of Exercise 10, by considering the sequence

2

azy).

Apply the method of Example 2, p. 22 (§ 11) to find the (real)
root of the equation #*+¥—1=0,



CHAPTER TWO
Infinite Series

I. FINITE SERIES

A "series’ is the sum of the terms of a sequence. For example,
if ), %4,, . . . ,uyisafinite sequence, the sum w;+u,+- . . . “+uy
is the corresponding finite series. A convenient notation for

N

Uyttigt ... Uy is z #,. For instance, we could write

n=1

N
14224 ... +N?as Z n®. (Notice that we could write it

ne=1

N
equally well as Z r® or Z 5% the ‘summation variable’ (n, or
r=1 g=1
7, or s, respectively) is sometimes called a ‘dummy variable’,
because it does not appear when the series is written out in

&

full) More generally, Zun,, denotes the sum wy-upy,,

+ “o +“N'

Some special finite series will be useful to us later on.
Example 1. If the general term w, of a finite series can be
expressed in the form f(n) —f(n-1), for some suitable function

N

f(n), then it is very easy to calculate Z ty,. For sytuy+ . . .

iy =(f() /(@) + (&) —FEN+ ()= W)+ .. +UV)
—f(N+1)) =f(x)—f(N+1).

For example, n=—-§n(n—1)-|—§n(;:+1)=f(n)—f(n+1),
where f(n)=—3in(n—1). Therefore z n=I+424 ... +N

=}N(N+1).

n=1
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N
Example 2. The sum of the series Z 1/n(n-4-1) can also be
fi=1
evaluated in this way. For u,=1/n(n4-1)=(1/8)—(1/n-+1).
N

Therefore Z 1/n(n-1) =I_N—I|-I'
n=1

Example 3. The geometric series. The series T-+x+224 ...
N
+a¥= Z 4™ (notice that a term 2°=r is included) is called

a (ﬁnite;-g‘;ometﬁc series.
Lee S=14xtat+ ...+ 14",
then xs= x+x'+ e +xN+xN+l'

and by subtraction, (1—)S=1—x"*3, Therefore
S=(I—xN+‘)/1—x

provided that x3£1. If =1, then S=1-+1+ ... 41 (thereare

N+1 terms here)=N--1.

Example 4. The binomial theorem of algebra is an ‘expansion’
of the polynomial (¥+y)® in the form of a finite series. For the
theorem states that for any positive integer a,

(x+y)°=§n(:)x"y“-’-.

where (a) B L a=nhT) o n>1, and (a) =I.
”n LS e s e 0

2. INFINITE SERIES

If 1, uy, s, . . . is an infinite sequence, with n_th term u,,
then the ‘sum’ #,+u,+u;+ . . . of all the terms is called an

infinite series, and we denote this series by 2 #,. For ex-

n=1
@

ample, Z£=x+§+§+}+ ... Often it is convenient to

fim ]
§.8.—C 25
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start a series with some term u,, other than %, and we write

-+

then z U =Upg+Upriy+Uprse+ « . . In particular, we may

= M
L

include a term %, at the beginning, for example Z P =x0} 2t
n=()

+x%4 ... =I+424224 ... When it is clear from the context
where the series starts, the abbreviated notation Zu, is often
used.

Evidently we cannot just ‘add up’ an infinite number of
terms in the ordinary way, and in fact it is not obvious that this
kind of sum has any meaning at all. The following two examples
show how an infinite ‘sum’ might arise.

Example 1. A recurring decimal is one of the most familiar
infinite series. For instance, the statement that }=0'3=0-3333
. . . really means that } is the sum of the infinite number of
terms 0:3+4-0'034-0'003-+0'0003}- ..., which we could also

express in our notation z 3/(xo)n.

nm=l

Example 2. Achilles and the tortoise. In this famous problem,
it is supposed that a race is staged between a tortoise, on the
one hand, and Achilles on the other. Achilles can run  times as
last as the tortoise (m>>1), so the tortoise is given a start, say
of one minute. Thus the distance between the positions 4, and
T, of Achilles and the tortoise, respectively, at the moment
when Achilles begins to run, is the distance which the tortoise
can cover in one minute; we may as well take this as our unit of
length. It takes Achilles only 1/mth of a minute to reach 7,
(Achilles’ position 4,), but the tortoise has by now advanced

A o s |
To 1 ' Tz_"f; u
| m m?
F1G. 11
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a further distance 1/m, to T'y. Achilles covers the stretch 7,7
in 1/m*th of a minute, but the tortoise is now at T, a distance
1/m* away. The ancient paradox was this: How can Achilles
ever overtake the tortoise, since he reaches each new position
T, only to find his opponent leading, by the small—but positive
—distance 1/m"?

The answer is that the whole infinite sequence of stages T\T;,
T,T,, T,T,, . . .takes place in a finife time, or equivalently, the
total distance T T+ 71T+ T,T3+ . . . is finite, even though
it is composed of an infinity of parts. At the end of this finite
length a point U is reached where the runners are level. After
that, Achilles takes the lead. The distance T,U is given by the
infinite sum 1-(x/m)+(1/m)*+ ..., and we shall see in § 5
how to evaluate this.

3. CONVERGENT AND DIVERGENT SERIES

If we want to find the ‘sum’ of the infinite series Z Uy,

; - n=1
(assuming for the moment that such a thing exists), it is natural
to begin by working out the ‘partial sums’ s;=u,, sy=u,-+u,,
Sg=14--1y-|-#5, and so on. This gives a sequence of partial sums
Sy, Sa, Sg, » » - , Whose nth term is s, =u,+uy+ . . 4-u,; we can
regard these partial sums as approximations to the ‘full’ infinite

sum Z u,. If this sequence of partial sums does tend to a limit
h=]l

S as n—>oc0, then S is what we take as the sum of the infinite
- ]

series z =t +tg-+ug+ . . . If, however, s, does not tend

=]

to a limit, we must take it that the sum of the finite series
2 ta simply does not exist. Series of the first type are called

fime]

. convergent-series;-and those of the second type, which have no

sum, -are-ealled divergent series, We repeat these definitions;
" they are essential for all tf€ theory which follows.
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1. The series Z Uy =thy 1o} 13- . . . is convergent if the
n=1
sequence $;, S,, Sz, . . . of partial sums (the nth partial sum
being s,=u;+1y+ . . . +u,) tends to a limit S as #—>c0. The
number S is then called the sum of the series.

II. The series Z #, is divergent if the sequence of partial
w1l
sums does not tend to a limit as n—>co (that is, if s,—>+-c0, or
if s,—>— <0, or if s, oscillates]:

4. SOME EXAMPLES OF INFINITE SERIES
By far the most important, as well as one of the simplest

series, is the infinite géometric series (i) Z =Tty 22| x?
n=()

. (x is a constant). The nth partial sum (i.e. the sum of
the first # terms) is s, =1+x+4+22+ . . . +a2" 1=(1—2") /(1—2)
(if x5£1), or s,,=n, if x=1 (see Example 3, p. 25). If —IZx<1,
we know, from the last chapter (see § o, p. 18) that a®>o0 as
n—>co, and therefore s,=(1—a%)/(1—x)—>1/(1—%) as n—>co.
Hence

If —1<x<1, the geometric series Z A" is convergent, and ils
=0
sum is 1/1—=x.

If x has any other value, except x=1, then 2™ does not tend
to a limit as #—>c0. Therefore s, does not tend to a finite limit
as n—>co0, which means that the series is divergent. It is also
divergent in the case x=1, for then s,=#, which —+4-c0.
Hence

If x<—1, or if x>1, then Z x" is divergent.
ti=0
Example 1. The recurring decimal 0:3=0-3-+0-03--0-003--
.. =0-3{14(0'1)4(0°1) %+ . ..}. The series inside the brackets
converges and has sum I/(x—o0'1)=1/09=10/9. Therefore
0-3=(0-3) x4t =}. '
2

SOME EXAMPLES OF INFINITE SERIES
Any recurring decimal can be expressed as a fraction by this
technique: e.g. 0135=0135135135 . . . =0'135{1-}(0-001)+
(0r001)%+4- .. .}= 135 TR 135 Vi S
1000 I—0-00I IODO 999 999 37
Example 2. In the problem of Achilles and the tortoise, we

met the series T-F(1/m)+(1/m)*+ . .. =z (x/m)". This is
n=0

convergent, because I/m<1x, and its sum is 1/(x—(1/m))

=m/(m—1). This is the distance T,U from the start to the

point U where Achilles overtakes the tortoise.

(ii) Zx/n(n+1)=—+ +-2 4 ... is another series

Lt Iz 23 34
whose partial sums can be easily evaluated. For we saw in
I
E 1 th ==, ., =
xample 2, p. 25, that s,= _2+ o +n(n+x)

g # Therefore s,—>I as n—>co, and it follows that the

o
infinite series Z 1/n(n4-1) is convergent, and its sum is 1.

ne=l

(iii) 2 1/n=1+%+3+1+4 ... is sometimes called the
n=1
‘harmonic series’. There is no simple formula for the partial
sum §,=I1+4+34%+ ... +1I/n, nevertheless we can prove that
the harmonic series is divergent, as follows,
_ Consider sg=1-+3+(}+4)+(3+3+7+12), which we bracket
m the manner shown. Clearly (}+3)>3+3=1, and 3 +3+%
+3)>%+3+4+31=1. Therefore sg>1+4}+4-+3=35. Similarly
313—53+(§+T‘o'+rr+ +w)>ss+(11+n+n'+ - +1%)
>§+3=4%, and we ﬁnd that sg>%, sg>%, and, in general
sg*>k—_:- This shows that we can make so* as large as we like,
by making % large enough; in other words the subsequence
S2, g Sgy + - . Of (s,) tends to +4co. By Rule 5 (p. 14), (sn)
29
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cannot tend to a finite limit, for if it did, any subsequence of
L]

(s,) would tend to the same limit. Therefore z I/n is
we=l

divergent.

5. SOME RULES FOR CONVERGENT SERIES

We give next some simple rules.

Rule 6. If z Uy, Z v, are two convergent series, with sums

n=] Bl
0

S, T respectively, then Z (1t -+v,) converges and its sum is S+T,

f=1
L

z (#a—2,) converges and its sum is S—T, and if ¢ is any

fe]

o
constant, then z cu,, converges and its sum s cS.

fis=]

Lets,=u; +uy+ ... +u, andletf,=v,+v, +u; « « +v, Then,
for example, s,+4, is the nth partial sum of z U, +0,. Since
su—>S and #,—>T as n—» o, it follows that s, -T-t.l.-—hs +T, and

@
therefore Z(u,,+v,) converges, and has sum S+T. The other
cases can ’i):lestablished in a similar manner.

Example 1. The series Z A"=x-1x2+23+ ... ean be ob-

i1
)

tained by multiplying the series z m=1+x+224 ... by

n=0

: L I :
the constant z. Therefore its sum is x. (—), if —1<2x<1.
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Example 2. By subtracting 2 4" from Z ", we find, in the

n=0 =0

case that «x, y are both between —1 and 1, that Z (xm—y™) is

n=0

convergent and has sum
(1/1—2)—(1/1—y) =(x—y)/(1—2)(1—).

Rule 7. If z 7 2 v, are two convergent series, with sums
n=1 n=]1

S, T respectively, and if u, <v,, for all n, then S<T.
For it follows that s, <{,, all #. Therefore S=lim 5, <lim #,=T.

Rule 8. Let z #, be a convergent series, with sum S.

fn=]l
(?) If a finite number of terms are removed from the series, then
the resulling series is still convergent, and its sum is S—P, where
P is the sum of the terms removed.

(¢8) 1If a finite number of terms are added to Z u,, then the
n=1
resulting series is still convergent, and its sum is S+P, where
P is the sum of the terms added.

(-]
A sketch of the proof of (i) is as follows: let Z u,’ be the new

el
series, and let s, be its #th partial sum. It is clear that s’ +(sum
of the removed terms)=a partial sum, say s, ;, of the original
serics. Since (Su44) =%g41, Sp41, - - - iS a subsequence of (s,), it has
the same limit S as (s,). That means that s,’+P—>S, whence
Sp—>S —P. (ii) can be proved similarly.

Example 3. The series x+24- . . . of Example 1 can be ob-
tained by removing the first term of the series Z =1+%

n=u

+x%+ ... This gives an alternative proof that the sum is
(t/1—%)—1=x/1—2.
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Remainder of a series. It is useful to have a name for the infinite
«©

series Z Up=Upni1+UNsat o .., which starts after the
n=N+41

Nth term of the series Z u,; we call it the remainder after N
ne=]

terms. (An alternative notation, which is quite equivalent,

would be 2 #y+n) Rule 8 tells us that if the original series

fis=1
[-+] o
Z u, is convergent, then the remainder Z #,, is also con-
n=1 n=N-1

vergent, for it is obtained by removing the first N terms of

o

Z #,. Furthermore, the sum Ry=uy -+t y.o+ . . . is equal
n=1

to S—(ty+uy+ ... +uy)=S—sy. We have therefore the
formula

S=SN+R.N1

which holds for all N. It is often possible to find an ‘estimate’
for Ry even when we cannot calculate its value exactly, and
this is essential if we wish to compute S numerically; for ex-
ample if we can prove that R; lies between o and o0-001, then
we know that S is between sz and s;+0-001. In other words, we
can get to within 0-0orx of the full sum S, by using the partial
sum sz This question will be discussed in Chapter 3.
Example 4. If Z u, is convergent, then Ry—>0 as N— 0.
n=1

For we have Ry=S—sy for every N, and sy—S as N—c0
by the definition of S. Therefore Ry—>S—S=o.

6. A TEST FOR DIVERGENCE

The following very simple test can sometimes be used to
show that a series is divergent.
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Test 1. 4 series 2 U, 1s divergent if its nih term u,, does not tend

Na=1
lo zero as n—>c0.
For if s,=u,+#s+ . . . +4,, then we have %,=s,—s,_;.

If the series Z u,, were convergent, then (s,) would tend to a
n=l

limit S, hence (s,.,) would also tend to S. (Note: s,_, is not
defined for #=1; we have to think of this sequence as starting
with n=2.) Therefore #,=s,—s,_;—>S—S=o0. It follows that
if u,, does not tend to o, then X, is not convergent, i.e. it is
divergent.

Example 1. z n/n+1=34+§+3+ ... diverges, because

fies |
Up=n/n-}I—>1.

Example 2. Z (—1)" diverges, because #,=(—1)" does not
n=0

tend to a limit at all.

Example 3. Z 2™/n18 diverges, because u,=2"/n'® does not

n=1

tend to zero as n—>co (it tends to - co, see p. 18).

Warning. Test 1 can never prove that a series is convergent.
It is possible that #,—>0 even for a divergent series, for ex-
L-+]

ample we saw (§4 (iii), p. 29) that Z 1/n is divergent,
fi=1

although the nth term 1/#—>0 as n—>co.

7. THE COMPARISON TEST
One of our main tasks is to find ‘convergence tests’; that is,

tests which enable us to decide whether a given series Z U, is

=l

convergent or not (without necessarily finding its sum). Test 1
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is a very easy preliminary test, but it is of no use for proving
that a series s convergent; it can only tell us that certain series
are divergent.

In this paragraph, and in §§ 8, 9, we shall be mainly con-
cerned with series whose terms are positive (or at any rate non-
negative, i.e. positive or possibly zero); we reserve the notations
P qn for the terms of such series. The nth partial sum s,=p,

+pat ... 4P, of a series Z pn of positive terms is an
n=1

increasing sequence, For s, =5Sy+Pnsq >Ss all #. Therefore,

by the Fundamental Theorem on p. 16, (s,) either tends to

a finite limit or to 4 co. This fact makes series of positive terms

easier to deal with.

Test 2. Comparison Test (first form). Let i P D qn be two

series of non-negative terms (i.e. pn>0, af‘l‘; lq..>:: Jor all n).

D 70 < for ol o, ok B, G A S

:(2';) If po >, for all n, and if g, diverges, then Zp,, diverges
0.

As we have said, the sequences (s,) and (4;) of partial sums
Sp=P1+Pat « .« +Pw ta=01+q2+ . - . +4n are both increasing.

(i) If Zq, i 13 convergent it means that t,—> a limit 7. All the {,
are < T. But p,<q, for all #, hence 5,<?,<T, for all », i.e. (s,) is
bounded. Therefore (s,,), being a bounded increasing sequence, must
tend to a limit, S, say (see p. 16), and so Zp, converges. Inci-
dentally the sum S of Ep,, is < the sum T of Xg,, by Rule 4, p. 12.

(ii) If =g, is divergent, the sequence (#,) must tend to -+ .
However we are given that p,> g, for all #, hence s,> 1, for all »,
and thus s, must tend to + o as well. Therefore Xp, is divergent.

Example 1. Z 1/V/n. We ‘compare’ with Z 1/n, which is
n=1 n=1

divergent. Since 1/Vn>1/n, for all # (because Vn<n), part
34
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(ii) of the Comparison Test shows that Z 1/Vn diverges as
n=1

well.
Example 2. In general, the series Z 1/n* diverges, tf s<1. For

=]
if s<1, then #*<n, for all #, hence 1/#* >1/n, for all #. Thus
21/n* diverges, as before.

Example 3. Z 1/n* is convergent. The idea is to compare this

n=1
©

with the series z 1/n(n-+1), which we know (§ 4 (ii), p. 29)
fs=1

is convergent. A direct comparison of #th terms is unsuccess-

ful (for 1/n%>1/n(n+1)), but on the other hand 1/(n+1)*<

1/n(n+41), for all # (because (n+1)*=(n-+1)(n+1) Sn(n-+1)),

and thus by part (i) of the Comparison Test, the series

Z: /(n+ 1)==_+3g+42+ ...... is convergent. Our series
n=1

> a/mt=tdot +4i. ... is obtained from this
fi=1

adding the single extra term 1, and so it converges also (Rule 8).

o
This does not, of course, tell us what the sum S of 21/»' is,

f==1
but only that it exists. We can however notice that

S=Zx/n’=x+21/{n+1)’<: +Z:/n(n+1}=x +1=2,
See als;-:g‘ll, Chapter 3 (p. 60).
Example 4. i 1/n is convergent, if s >2. For if s>z, then
n® >n? for all :;,Blllence 1/n* <1 /n?, for all n. By the Comparison
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Test, since Zx/n? is convergent, then Z1/#* must converge as
well.
o

Z 1/(3"+1). It is clear that 1/(3"+1)<1/3"

ne==(

Example 5.

=(})", for all #. Since the geometric series Z (3)" converges,
@ n=0
Z /(3"+1).
=0
The following modification of the comparison test is often
easier to use than the first form, although it is less general.

so does

Test 3. Comparison Test (second form). If Z Dus 2 q, are
ne=1 nes=l

two series of positive terms, and if p,/q,—> a non-zero (finite)

limit C as n—>c0, then either Zp, and Xq, both converge, or both

diverge.

By the definition of a limit (p. 5), we know that, given any
positive k, there exists an integer N, such that p,, /g, lies between
C—h and C+h, if >N, Take for & any number less than C
(e.g. $C), and write N, =N, for short. Suppose that Zg, is con-
vergent. We have p, /g, <C+h, hence p, <(C+h)q,, for n=N+1,

o

N+2,.... Now g, is convergent (Rule 8), therefore

n=N+1
@

(C+h)q, is convergent, and so, by the Comparison Test (1st

n=N+1
)

form), z P, is also convergent, It follows (by Rule 8(ii)) that
n=N41

o
z Pp itself is convergent. Similarly, if Zg, is divergent, we can
n=1

prove that Zp,, is divergent as well, by comparing it with £(C —/)g,,.

Example 6. This test makes the convergence of £1/5n* much

easier to prove. Take p,=1/#% and ¢,=1/n(n-+1). Then
36
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Pn/qn=n(n+1) /n==1+;::—>1 as n—>o0. Since Zg, converges,

so does Xp,,.

Series 2‘45,‘, where Pn=(5h‘-""+ v e +f-'1”+co)/ (dgﬂk-l- o
-+dn-+d,) is a rational function of #, are easily handled by

Test 3. We have only to take g,=n»"~*; then Pn/gn_)}% (s
k
p. 12).
Example 7. 2 (n*—1)/(2n*+-n+-1). Take g,=n3-d%=n-1,
1

which we kno:v- gives the divergent series Zn~1=X1/n. Then
Pn/Gn=n(n*—1)/(2n*4-n+1)—>} as n—>co. Therefore Tp,
diverges also.

Example 8. 2 (3n®+-n+1)/(n°+1). Take g,=n?-S=1/n3.
- )

From Exan-:ple 4 above, Xg, converges. We find that

Pn/Gn=(31°+n4-n%) /n%+1)—>3 as n—>co. Hence by Test 3,

Zp, is convergent.

It will be noticed that Test 3 could not be used, for example for

w0
the series 2(4 —n)/(*+1), in which all the terms after the
n=1
fourth are negative. However it is possible to modify Test 3 by
allowing one of the two series involved to have negative terms, as
follows:

Test 3. If Zu,, is any series, and if £q,, is a series of positive terms,
and if #,/q,—> a non-zero limit C (which might be negative) as
n—> o, then either Zu, and Zg, both converge, or both diverge.

The proof remains unchanged if C>o. If C <o, we simply con-
sider £(—w,) instead of Zu,; this does not affect the convergence.
Using Test 3" we may discuss any series whose n#th term is a rational
function of #, even if its terms are not all positive, For the ‘known’
series Zg,, can always be taken to be of the form X#?, which hasonly
positive terms. Thus if u,=(4—n)/(n?+1), take g, =n1~2=1/n,
Then g, converges, %,/g,~» —I as n—> o, and therefore S, also
converges.
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8. THE RATIO TEST

The next test depends, essentially, on a comparison of the
given series with a geometric series. We shall describe it first
for series of positive terms, and give later (p. 47) a version
suitable for series which contain negative terms.

Test 4. Ratio Test (positwe terms). Let Z Pn be a series of

=l
positive terms, and suppose ihat P, 1 /p—> a limit L as n—>co.
Then (1) If L<1, the series Zp, is convergent, and (i) If L>1,
the series is divergent. If L=1, this test fails, and the question of
the convergence of Zp,, must be investigated by some other method.
(i) Suppose L<1. By the definition of the limit (p. s5), it must
be possible, given any &, to find an integer N, such that p,,,/p,
lies between L —h and L +h, for every n>N,. Take h=}(1 —L),
so that L+h=4}(1+L) <1, and write N, =N, for short. We have

PNu/PN<L+h, pNsa/PNy <L +h, etc. Thus

PNin PNz PNia
N. % B s P2 L +h)"=
P PNyn—1 PNys PN PN < +R" PN,
for all m. The series

a

D PNl AR mpay (14 (L 4B LR .. )
fi=]

is convergent, because L +4 <1. Therefore by the Comparison Test
w

(st form), z PNin=PNy1+PNia+ ... i also convergent. By

=]

L-«]
Rule 8, the full series Z Py is itself convergent,

n=l

(ii) Suppose that L>1, then we can find N such that
Pnsa/Pa>L—h for all n>N; we take k to be §(L —1) this time, so
that L —h=4}(L+1)>1. Now p,.,/p,>1, for n> N, implies that
Pni1>Pp for a3 N, ie. (p,) is an increasing sequence. Since the
Pn are all positive, it is impossible for them to tend to zero.
Therefore Ip,, diverges, by Test 1.
ow

Example 1. Z

n=0

1/n! is convergent. (n!=1.2.3... (1—1).n

38
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if # is a positive integer, and ol=1, by definition.) Take
Pa=1/nl, then P,.1/Pp=n!/(n+1)!=1/n4+1—>0 as n—>co.
Since this limit L=o is less than 1, the series converges. (Note:
Pn is actually the (n+1)th term of this series, since we start
with a term p,. This makes no difference, for the limit of
(Pas1/Pn) is the same as that of (Pn,e/Pnsa))-
-]

Example 2. Z n¥" (¥>0). Here p,41/Pp=x(n+1)%/n?

=]
2
= 1+3 —>x, as n—>00. Therefore Zn%x" converges if x<1,
n

If x=1, the ratio test fails. However, for x=1 the series be-

comes 2n?, whose nth term tends to +- co0, and which therefore
diverges (Test 1),

Example 3. z 2/n? (x>0). Here poyy/pp=1n/(n+1)?

n=1

2
=x/(1+;:: —>x as before. Therefore the series converges if

if <1, and diverges if x>1. When x=1, the ratio test fails.
But in this case the series becomes X1/2* which converges, as
we have seen (p. 35).

Q. THE INTEGRAL TEST

Suppose that it is possible to express the nth term of a series
Z $, in the form p,=f(n), where f(x) is a continuous function

n=l
defined for all x >1 (and not just for integral values x=n), and
satisfying the following conditions:

(@) f(x)>o, for x>1, and

(b) f(x) is decreasing as x increases from I.
Example 1. The series Z

el

pn=f(n), where f(x) is the function 1/x*. Conditions () and
(b) are satisfied.

1/#* (s>0) is in this class. For
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The graph y=f{(x) is a curve of the form suggested in Fig. 12.
i

Let F (t)=J. f(x)dx; this is the area under the curve between
i

vl

)’*r(x)

IR e

&N >
- SR ERARRERORY L - T

Fic. 12

x=1 and x=t. Let s,=p,+Po+ . . . ++Pn, the nth partial sum
pa- The area of the shaded part of Fig. 12 is

i

of the series Zl

d-pet oo +Pa=S,—p; (for the width of each shaded
f;ctf:fgle is 1, and their heights are f(2)=ps, f(3)=ps, etc.).
This area is less than the area of the curvilinear region F(n),
and F(n) is, in turn, less than the sum of the larger rectangles
in Fig. 12. Their heights are py, ps, - . . , Py Tespectively.
Thus

S“—ﬁ1<F(ﬂ) <Sp-1

The sequence (F(n)), like the sequence (s,), is an #ncreasing
sequence. It is possible that F(n) tends to a finite limit 4, as
n—>c0. This limit 4 would represent the total area under the
curve y=f(x), to the right of the line x=1.

Example 2. In the case f(x)=1/4*, F(n)= j' :dx/x":I—;I'.

As n—»co, this —1. Therefore the area A4 in this case is I.
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On the other hand, if we take f{z) =1 /%, we get F () = J it
1

= log,n, which —-+ 00 as #—>c0. This means that the area
under the curve y=1/x to the right of x=x is infinite.

When this area 4 is finite, we have s,—p,<IF(n)<A, for all
n, so that s,<p,+4 or all #, i.e. the sequence (s,) is bounded
above. Since it is also increasing, it must tend to a limit S, and

that means Z P is convergent. Incidentally it follows by
fiem ]

taking limits of the terms in the inequality s,—p, <F(n) <s,

(see above) that S—p, <4 <S, i.e. S lies between 4 and 4 +p;.

If, on the other hand, F(»#)—>+- c0 as n—>co, we see from the

inequality s,_,>F(n), or equivalently s,>F(n+1), that

s,—>+ oo also. In this case, therefore, z Py diverges.

fl=1

We have now established the following

Test 5. (Integral Test). If the nih term p,, of the series z ba can
=1

be expressed in the form p,=f(n), where f(x) is a c:imimm-us

Sfunction of x satisfying conditions (a) and (b) (p. 39) then

(?) Z P converges if rf(x)dx tends to a finile limit A as n—> o0,
fi=1 1

and the sum S of the series lies between A and A-+py, while
g n
() > po diverges if j f(x)dx tends to +o0 as n—>co.
=] 1
Example 3. Consider the two functions 1/4? and 1/x (Ex-
n
ample 2, above). Since J. dx/x*—>1 as n—> o0, we deduce that
1

o0
1/n® converges and that its sum S lies between 1 and

n=]
n

I+p,=2. On the other hand, J dx/x—»- 00 as n—>00, and
1
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-+
therefore z 1/n diverges. (We have of course already proved

n=1

these facts by independent methods.)

o

Example 4. More generally, take the series Z 1/5* (s>0).
ne=1
Put f(x)=1/+*, which satisfies conditions (4) and (b). The

integral rdx/x‘ has the value ﬁ{ -,:_1} (we are assuming
A T

here that s3<1; the case s=1 has been dealt with in the previous
example). Now 1/a*"%—>0 as n—>o0, if s—1>0 (see p. 7),
while if s—1<0, then 1/#*~1—>+ c0. Therefore X1/#* con-
verges if s>1, and diverges if s<I.

To summarize our knowledge of this type of series (see also
Examp}.e:, p‘ 35)

z 1/n* converges if s>1, and diverges if s <I.

n=1

-+
Example 5. Z Va3 fan®+n/V 1401, Let p, be the nth
el
term of this series. We can use the principle employed in
Examples 6, 7, 8 (p. 37). The quotient of the leading terms of

the numerator and denominator is V7®/V 7n“=%n—‘“.

Therefore if g,=n"%4=1/n%%, we have p,/g,—>1/¥/7 as
n—>co. The series X, is convergent, by what we have just
proved, and hence Zp, is also convergent, by Test 3.

Example 6. Euler's constant. Sometimes the method used in
proving the integral test can give useful information even about
divergent series. For example, consider the sequence (,) whose
nth term is a,=s,—F(n). From the inequality s, ,>F(n)
(p. 40) we see that a,=s,_y+p,—F(#n)>p,>o0, for all #; i.e.
(a,) is bounded below. We shall prove next that (a,) is a de-
creasing sequence. FOr @y—aqyy=(sa—Sns)—(F(1)—F (n+1))
==—pp 41} (the area under y=f(x) between x=n and x=n--1).
In Fig. 13, the shaded rectangle has area py,4, and it is clear
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N

that this is less than the corresponding area under the curve.
Therefore @,—a,,,>>0, i.6. @,>>a,,,, for all . It follows from
the Fundamental Theorem that (a,) tends to a finite limit.

In the case f(x) =1/x, this limit has the value 05772 . . .and
is denoted by ¥ (Euler’s constant). Thus

(1+34+3+ . . . +1/n)—logn—>y=05772 . .., as n—>0
This means that, although we can give no simple formula for
the finite sum 14+3-+3+ . . . +1/a, it is approximately equal
to log,n+4-0'5772 . . . , for large values of .

10. SERIES WITH POSITIVE AND NEGATIVE TERMS.
LEIBNIZ'S TEST

We have dealt so far mainly with series £p,, whose terms p,
are all positive. For such a series, the sequence (s,) of partial
sums is an increasing sequence. If, however, we take a series

such as 1—3+3—3+ ... =) (—1)"*/n, which has both

positive and negative terms, then the sequence (s,) will not be
increasing. The partial sums of the series mentioned start off
$;=1, §,=0°5, $3=0-833 . .., §,=05833 ..., 5=07833 ...
In fact, this series is convergent, as we can prove with the help
of the following test.
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Test 6. (Leibniz's Test, or Alternating Series Test.) The series

Z (=1)""a,=a,—ay+ay—a,+ ... is convergent provided
ne1

(?) (a,) is a decreasing sequence, and (i7) a,—>0 as n—>co. (A
series whose terms are alternately positive and negative is
called an alternating series.)

Because (ay,) is decreasing, a,—a,,>o for all #. Consider the
siquence (Sep—1) =Sy, S3 S5 ...Of the odd partial sums of

(—1)"+1g,. This is decreasing, since
ne=]
Sanq1 ~San—1= —@gp +0yn 4, <O,
for all #, and bounded below, because
Sen—1= (8 —@y) +(a3—a,) + . . . +(@gp—3—Bap-g) +83p-1>0
for all #. Therefore (sy,-,) tends to a limit, S’, say. Similarly, the
sequence (sg,) =Ss, Sy, Sg, - - - is increasing, since
Sania—San =0gpn 4y —Gp43 >0,
for all #, and also bounded above, for
Sgn =0 — (a3 —83) — . . . —(Bypg—83py) —Qy,< @y,
for all n. Therefore (s,,) tends to a limit, say S”. Now
San—1—S2n =%2n,
and (a,,), being a subsequence of (a,), tends to o. Thus
1 5’ =lim Sap—y =lim (San+83p) =S +o0,
ie. §’=5". Denote by S the common value 5’ =S", Then both the
even and the odd terms of the sequence (s,) =s,, s,, 53, 5, - - . tend

to the same limit S, and so (s,) itself tends to this limit. Therefore
the series converges.

3, s: 5553 5,

T 'l.ll |_’
o ) I

Fic. 14

Example 1. The series Z (—1)"/n=1—34+3—1+.
=]
convergent. For this is th:e case a,=1/n, which certainly satis-
fies the two conditions (i) and (ii) of Leibniz’s test. (We shall
44
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prove in the next chapter (Example 1, p. 67) that the sum is
log, 2=0-6931. .

Example 2.2 (—1)*1/(2n—1)=1—}+3—%+ . .. is con-
n=1

vergent, since (a,)=(1/(2n—1)) also satisfies both the condi-
tions (i) and (ii). (We shall see in the next chapter (Example 3,

p. 68) that its sum is 1‘:)

II. ABSOLUTE CONVERGENCE

It is convenient at this point to recall the following defini-
tion: if # is any number, then |x| (the ‘modulus’ or ‘absolute
value’ of #) is the numerical value of #, disregarding its sign.
For instance, | —3|=3, |4|=4, |o]=o.

This can be expressed more formally by saying |#| =z, if x> o,
while |#|= —z, if x<o0.

Example 1. If R is a positive number, |1| <R means the same

as — R<x<R.Similarly |x—a| <Rmeans thata—R<x<a+R.
Example 2. |xy|=|x| |y|, for any two numbers x and y. This
generalizes to n factors, |%,x, . . . %, =|%,||%,| . . . |%,]. In par-
ticular, putting x;=%,= . . . =%,=x, we have [x"| =|z|",
Example 3. [tissometimesuseful tonotice that |x+y| <|x|+|yl,
for any x and y. In fact, |x-+3]| =|#|+|y| if » and y both have
the same sign, but if they have opposite signs (and neither is
zero) then |x-+y|<|#|+|y|. The reader should check this by
trying a few cases. In general |%;+23+ . . . +2%,] <|%| | %)
. +|#,|, for any # numbers z,, %Xy, . + . , Zp.

Suppose now that Z u,, is a series, some of whose terms #,

n=1
o

are negative. We can make the series of absolute values Z |ual;

=1

the terms of this series are all positive or zero. Now it is possible
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that Zu, is convergent, but that Z|u,| is divergent. An example
of this is provided by the series I—4+3— ..., which was
shown to be convergent, by Leibniz’s test. However the series
of absolute values 14343+ . . . is divergent (p. 29).

On the other hand, the following statement is true: If the

series z |t4n| is convergent, then the series Z %, 15 also conver-
ne=1 fle=]

gent. A series Zu,, for which Z|u,| is convergent, is called an
absolutely convergent series. Our statement can then be phrased
as follows: Every absolutely convergent series is convergent. The
proof is given below. Sometimes a series which, like 1—}-}
= ..., is convergent, but not absolutely convergent, is called
a ‘conditionally’ convergent series.

o o

Suppose that Z %, is a series, such that Z [#44] is convergent.
=1 ne=]1
Write @, =}(un +[t4g]), bp=1(ltta] —t4,). If 1, >0, then
ap= *{“u +uy,) =y,
while b,=}(u, —u,) =o. If %4<0, then a,=4(u, —u,) =0, and
bp=3(—tty—1,) = Uy

So in either case a, and b, are >o. Further, |#4nl=a,+b, and
Up=a,—b, Since Z|u,| is convergent, and a,<a,+b,=|u,|,
it follows from the comparison test (first form) that a, is con-

vergent. Similarly £b, is convergent. Hence Zuy=X(a, —b,) is also
convergent.

= LTl
E: . E ) it g e A
xample 1 ,.-1( )" /nt—x 2=l+3=I 4’-{— is abso-
lutely convergent, since the series of absolute values is £1/22,

which is convergent. Hence 2 (—1)"*1/n? is convergent.
fi=1

(This could also have been proved using Leibniz’s test.)

Example 2. Z %z_x is convergent (for any fixed value of x).

fi=1
For let u,=(sin nx)/n?, then [t40] =|sin1 mx| /2.

POWER SERIES

i d x, hence |u,| <1/n%,
Now [sin nx| <1, for any values of # and x, _ g
for all ﬁl. Hence X|u,|converges, by the companson_tes}t. Th&ret
fore Zu, is convergent as well. We have proved in fact tha
2 (sin nx)/n® is absolutely convergent.

Example 3. If a series Z u, is absolutely convergent, and

fi=1

if i |#,4] has sum T, then the sum S of Z u, has absolute

fi==]1

=]

i the sums of the

less than or equal to 7. For let 4, B be
gc? gen?:z Ya,, b, used in the proof above. The sum T
of T |u,|=Z(an+b,) is A+B, and thesum S of Zu,=X(a,—b,)
is A-—-F?. Now A and B are both positive (or zero), hence

|S|=|4—B|=|4+(—B)| <A +|—B|=A+B=T.

Test 7. Ratio Test (general form). Let Z u,, be a series none of
fn=]
terms ,, 1 ymit L as
is zero, and suppose that |u, .1 /1,|—>a limit
ihf::o Tke:”(:') If L<x, then Zu, is absolulely convergent (and
hence is convergent), while (i5) If L>1, then Zu,, is dmergeﬂzt}.u If
L=1, the test gives no information about the convergence of Zit,.

i t. Hence Zu,
If L <1, we have by Test 4 that Zju,| is convergent. H
is absolutely convergent. If L> 1, we must argue-mther dlﬂerentlj_r,
for the fact that X|u,| is divergent does not 1m_ply that Zu, is
divergent (take e.g. u,,-(—:)"+1/n_}. However.nlf tﬁ.i;, we thc:l;
ly the argument on p. 38 (with p,=|u, ow

Tuplr-—};-+ - asgun—)- . Therefore u,, cannot tend to zero, and so
21’:, is divergent by Test 1.

Some examples of the use of this test are given in the next
section; its application raises no new difficulties.

I12. POWER SERIES

A series of the form Z Ca¥t=Co+C1x+€x% 4 . . ., involv-
nl) : - s
ing the powers of a variable z, is called a ‘power series’.
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constants ¢, ¢y, ¢y, . . . are called the coefficients of the series;
they can be positive, negative or zero.

Z x"=1+42+x%4 ... is a power series. So is
n=0

S 1 a8
> =/ L L

n=0

Example 1.

Let Z ¢ux" be a given power series. A number R such that

n=0

the series is absolutely convergent when |#| <R, and divergent
if |#|>R, is called the radius of convergence of Z ¢ax™. For

example, the radius of convergence of the geo:h-:tric series
I+x+x%4 ... is 1, for it converges if |1|<1, and diverges if
|%]>1 (p. 28). In a great many cases the radius of convergence

?al:; be found by using the ratio test, as in the examples which
ollow.

[-+]
Example 2. Consider Z 2"/nl. To apply the ratio test, take
n=0

#,=x"/nl (we must remember that this will be negative, if
x<<0 and # is odd). Then [ty ./t =|%| /(n-+1)—>0 as n—>co.
Therefore the;l serles converges absolutely, for all . In such a
case we say the radius of convergence is infinite. (This series is
called the exponential series, and its sum, written exp(x) or ¢,
is a function of x called the exponential function. See also
Example 2, p. 52.)

Example 3.2 nala"=142421324- 3123 | . . Here |y |
n=0

=(n+1)|%|, _which tends to 400 as #—>oo, unless x=o.

Although this case ‘L =-- o0’ has not been covered in our state-

ment of the ratio test 7, it is easy to adapt the argument which

was used for the case L>I to prove that a series for which

POWER SERIES

lim |t4,,41/#, =+ 0 is divergent. In particular, 2

n=1
vergent for all x, except x=o0, and therefore R=o0 for this
series. Naturally a power series with zero radius of convergence
has little interest for practical purposes.

& 2
Example 4. The logarithmic series. 2 (-—-1)"+1x"/n=x—%
e

nlx® is di-

3 4
+5T - W/t =| =/ 3| =l o/t 1), s
n—> 0. Therefore the series converges if || <1, and diverges
if || >1. Thus the radius of convergence is 1. (We shall see
(p. 67) that the sum of this series is log,(1+%).)
Example 5. The binomial series. By putting y=1 in the bi-
nomial theorem (p. 25) we obtain the finite series (1-4x)*

= (:)x". Now the ‘binomial coefficient’ (:) can be de-

fined, even when a is not a positive integer, by the usual for-

3y b . =iin))
mulae (:)=a(a I:[).z. (a ”” 3 (if n>o0), (:)=I. How-

ever, in this case the series Z (f:)zn will be infinite, because
n=0

the coefficients (: are all non-zero, unless a is a positive integer

or zero. This infinite series which we get by using a value of a
which is not a positive integer or zero is called the binomial
series. To investigate its convergence, we observe that |u,, /1|

(vio)/ ) s

n41
binomial series . (:)"" —rtart 8Dy

I.2
ne0
absolutely if |x| <1, and diverges if |x|>1; in other words its
radius of convergence is 1. (The sum of this series is in fact
(1+42)?, for any value of a. See p. 71.)
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|x|—>|%|, as n—>o0. Therefore the

converges




INFINITE SERIES
Example 6. The sine and cosine series. The two series

(i)"Zu (—:)ﬂx“/(zn>r=x—’;—:+’;—‘—2_‘;+ o il
(i) Z (=21 (o)t ms—2 +’;—:—§}+ 4

are closely related to the exponential series. For (i) we find
|#n.+1/40| =22/ (2n+1) (211-2)—>0 as #—> 0, and again, for (ii),
|#n.41/1n| =22 /201(21+4-1)—>0 as n—> co. Therefore cach of these
series converges absolutely for all values of ¥, i.e. they have
infinite radius of convergence. (It is shown in text-books on the
calculus that the sum of the series (i) is cos %, and the sum of
(ii) is sin #; in each case % being in radian measure.)

o
Example 7. It is possible to prove that eVery power series zc.x"
n=0
has a radius of convergence R (which may be infinite). However it
may not be possible to find R by the ratio test. For example, the

Z % x\3 x\8
series Zc,,x":-x +(§) +x’+(;) +x'+(;) + ... would give
ne=0

|1 /10| =(3)"*|2|, if n is even, and [ i1 /1] =2"| 2|, if n is
odd. It is clear that |u, ., /u,| does not tend to a limit as n—> 0,
and therefore the ratio test cannot be applied. On the other hand,
the series converges absolutely if |¥| <7, by the comparison test
(Test 2) (for |u,|<|#|", all #, and Zlx|" is convergent if |¥|<1),
while if |#| > 1, the nth term u,, does not tend to zero and therefore
Zc,#™ diverges (Test 1), Thus this power series has radius of
convergence I.

Interval of Convergence. If R is the radius of convergence of the

power series z c,a", then the interval —R<xz<R is called
fi=0

the snterval of convergence of the series. The values =R and

x=—R are called the end-points of the interval of convergence.

In general the ratio test gives us no information about the con-

vergence of Zc,x" at these end-points, and there is no universal
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«converges ubsolutely-»
diverges dive:gu
. . >
=R o) R X
FiG. 15

rule; some power series converge at one end-point only, some at
both, and some at neither.

Example 8. The end-points of the interval of convergence of
the logarithmic series (Example 4) are =1 a.n'd x=—1. At
%=1, the series becomes 1—}+3—3}-+ ..., which is conver-
gent (p. 44). At x=—1weget —1—3—3}—%}— ..., that is, tl',!e
harmonic series with the sign changed throughout. This is
divergent.

I3. MULTIPLICATION OF SERIES

w o
Let Zu,=u°+u1+u,+ R Z Vp=Up+ V405t ...
= n=1
be two iJgﬁnite series. If we try to multiply these togetl}er we
get an infinite number of products of the form #,v;, which we
can arrange in an ‘infinite square’ as below.

Uyl oty Mols |  Mgls Uy

Wy, Y WU | Wy

Usly ugthy HUgly | “,0 S
1,0, Uly 30, avs
n.vf/ [N WUy Uy U, cuve

T1G. 16

We should expect the product (wg+6-+tg+ . . )(ve+v,+vy
5
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..) to be the sum of all these terms. To make this sum
appear as an ordinary infinite series, we arrange the terms as
follows: w4, (“1”o+“o:1) + (4g¥0+ 1410y +14g09) - (15001450,
2,0+ UugUg)+ . . . =Z @y, Where @, =u,vy+1, 10,41, .0,

n=0
+ +#g0,. The terms w,, w,, w,, . . . of the ‘product series’
Ew,, are the sums of the terms on the successive ‘diagonals’ in
Fig. 16.
Z v, are both abso-

n=1{

lutely comwrgent series, with sums S, T respectively, then the pro-

The Multiplication Theorem. If

duct series Z w, defined above is absolutely convergent, and its
n=0
sum is ST.

o o

Example 1. The series Z X" 2 y" are both absolutely con-
" ne=0 n=0
vergent if |x| and |y| are less than 1, and their sums are 1/1—%

and 1/1—y, respectively. The product series is Z w,, where

n=0

0=y Iyl A a0y, Thus 1/(1—2)(1—3)
.._I+(x+y)+(x’+xy+y*)+(x'+x’y+xy’+y’)+ - The
S‘pecla.l case x=y gives 1/(x-x)’=r+2x+3x’+4x’+

Example 2. Let exp(x) stand for the sum of the series

Z x"/nl (see p. 48). We have seen that this series converges

n=0

absolutely for all x. Therefore exp(x) exp(y)=(” x"/nl)
=0

("-0 y"/n!)zz w,, where

n=0
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00 o ke 0 ki ¥
w“—ﬁ+(ﬂ—x)!11+(n—2)!zl+ LE |

Remembering that the binomial coefficient (’:_) equals
nl/rl(n—r)!, we have w,=$(x"+(’;)x"-ly+ (:)x"-l‘yl+ i

+57) =2 (x+)" Therefore exp(x) exp(y)= > —

ne=0
=exp(x¥+y). From this fundamental ‘functional equation
exp(x) exp(y) = exp(x-}y) it is possible to deduce the properties
of this very important function exp(x) (cf. P. J. Hilton,
Differential Calculus, in this series).

To prove the Multiplication Theorem, consider the nth partial
sums s, ¢, g, of the three series Zu,, Tv, Zw,, respectively. For
example, g5 =w,+w, +w,+w;+w, is the sum of all the terms in
the ‘triangle’ above the diagonal line in Fig. 16. This triangle can
be divided into a square and two smaller triangles, as shown. The
sum of the terms in the square works out to be

(149 16y +1t9) (Vg + 0y +05) =S54ty
Therefore g=ssts+A4 +B, where A =uvy+u,vy +14,7, and
B =130, + g0y +140,.

We know that Zu,| and E|v,| are convergent, because we have
assumed that Zu,, and Zv,, are absolulely convergent. Suppose that
S* and T* are the sums of Z|u,,|, Z|v,| respectively, and let L, = |1,]
+ |tpsal + . . . be the remainder after » terms of Zju,|, while
M, =|v,| +vpul+ - - . is the corresponding remainder of Zjv,|.
Now (sce Example 3, D. 45) []< [wollvsl +[ttollval + halivs] <
(Itol + heal)(lvsl + [vgl) < S*M,, and |B| < [ugllvgl + [ayl|vel
+ [tg]jva] < (lvgl + lva])(It65] + J2eg]) < T*L,. Therefore |g5—sgls| =
|4 +B|<|A4| 4 |B| < S*My+T*L,. In general, we find in exactly the
same way that g, —Sulml<S*M,+T*L,, where m={n, if n is
even, and m=4(n—1), if n is odd.

Now the remainders L,,, M, tend to o as m—>-  (see Example 4,
p. 32). Therefore |g, —Spl,l—>0 as n—>o (for naturally m—-co
as #—» ), i.e. gp—Sputy—>0 as n—> . However, by definition
S—>S and #,—>T as m—»> , and hence ¢, =Spuln+(Gn—Smim)—>
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ST +0=ST as n—» 0. This proves that Zw, is convergent and
that its sum if ST, as required.

To prove that Zw, is absolutely convergent, we must show that
Z|w,| is convergent. Now we may apply what we have just proved,
to the product of the series Zju,,|, X|v,|; the resulting product series
LW, is convergent, and W= u,|[vg] +[tn-1l[vs] + . . . +[tég||0]-
But |wp| =tV +tyqty+ . . . +2%,|<W,, for all #. Therefore
Z|w,| is convergent, by the comparison test.

I4. NOTES ON THE USE OF THE CONVERGENCE TESTS

The first thing we want to know about a series Zu,, is whether
it is convergent or not. The following notes are intended to give
some advice on choosing the convergence test most suitable to
the series on hand.

(1) As a rough guide, the rafio test should be tried whenever
#, contains either (i) factors with # in the exponent, e.g.
sy, =na"t! or u,=(2"+n)/(5"+4n°%) or (i) factors containing
factorials of functions of #, e.g. 1/al, n?/(2n+1)!. Case (i) in-
cludes all power series. (This is not to say that the ratio test will
work in all these cases, but it is worth trying first.) Only the
general form (Test 7) need be remembered, because the earlier
version (Test 4) comes to exactly the same thing, when the
series Xu, has only positive terms.

Warning. It is essential to find the limit L of |u,,,/u,| first,
and then see whether L<1, >1, or =1. It is no use sayi
‘|#g 41/14) <1 for all n'—this is not the same as ‘L =lim |, ,,/t%,)

is <1'. For example, the series z 1/n is divergent, yet
nm=l

Uy /thy=n/n-+1<1 for all n. In fact L=lim n/n+1=1, so

that the ratio test cannot be applied in this case.

(2) If u, is a rational function of # (p. 37) the ratio test is
always useless (it will give L=1), but, in compensation, the
comparison test (Test 3, or its modified form Test 3") will
always be successful. The same applies to any series Zp,, where
Pa is @ quotient of roots of polynomials, e.g. p,="VI-+n+n?/
Vi4n'4-gn’. Such series ‘behave like’ the series whose nth
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term is the quotient of the leading terms in the numerator and
denominator of p,,; thisquotient is (apart from a constant factor)
a power #°, for some fixed s. So we take Zg, to be Z»* (thisis a
‘known’ series; we found that Xa* converges if s<—1, and di-
verges if s >—1, see p. 42). For example in the case mentioned
above, the quotient of the leading termsis V/n2/V/gn? =}n-17/6,
Take ¢,=n"1"/%, We can verify that p,/g,—>} as #—>c0,and
therefore, since g, converges, so does Zp,, (Test 3). See also
Examples 7, 8 p. 37, and Example 5, p. 42.

(3) Although the ratio test will very often determine the

interval of convergence of a power seriesz cqx™, it will not be
n=0

sufficiently sensitive to determine whether the series is conver-

gent at the end-points. Often Leibniz’s test can decide this ques-

tion at one of the end-points.

(4) We have only used the #mfegral test to investigate the
series X1/#* (sce also Exercise 14 at the end of this chapter).
However the idea of comparing an infinite sum with an integral
is one which is greatly exploited in the more advanced theory
of series. See also Example 6, p. 42, and Example 2, p. 50.

EXERCISES ON CHAPTER II
1. Show that 143454 ... +(2N—1)=N?
N

2. Find Z 1 /n(n +1)(n +2).
=)
3. Prove thathin nx sin }x=}cos (n—3)x —}cos(n +3)». Hence
calculate Z sin nz,

fn=1

@™
4. Prove that Z I/n(n+1)(n+2) converges, and find its sum.
ne=1

(See Exercise 2.)
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N
5. Calculate s,=2 na-1, (Differentiate the formula

n=1
1+x+20+ ... 2% =(1 —2¥+1) /(1 —#) with respect to x.)

w
6. Using Exercise 5, prove that an"f—l converges if -1 <x <1,

n=1
and find its sum. (Alternative methods are given in Example 1,
P- 52, and Example 2, p. 71.)

7. Express as fractions (i) 0148, (i) 0-61, (iii) 0-72i2.

8. Calculate the first 6 partial sums of (ijz (o-2)m, (ii)Z{ —o02)",

n=0 n={
Find also the sums of these series, using the formula
S=1/1—~%.

9. Find whether the following series are convergent or divergent

10,

(all sums are from n=1 to ). (i) Zn (i) Z1/(2n+1).
(iii) Z2"/(n®+1). (iv) E(n—1)/(n® 45 —3). (v) Z{G)n +”i'}_
(vi) E(n +2")/(n2"). (vii) (2n2+1) /(208 —1).

(viii) Z(n +1)/(n+2)2". (ix) E(2" +n)/(3%+n?).

() EVI4n a7 Vitat il (xi) Sn(n+1)/Vai(in 1),
(xii) E{(x —2n)/VI+8n% ), (xiii) S(n!)2/(2n)l.

(xiv) E(x +2") /(1 +n2"). (xv) Z(—1)"*1/n2,

(xvi) B(—1)"1/ V. (xvii) B(—1)"*1v/7,

(xviil) B(—1)" 1l /", (xix) E{1 —(—2)"}/{1 +2"}.

(xx) Z{r—(—2)"}/{x+3"}. (xxi) E{(—0)"+n}/{ml +1}.
(i) T —2) ="

Find the radius of convergence of each of the following power

series. (i) > #"/n. (ii) Z{—l)"x"/(n+1). (iii) Z(

x)"
Ne=] fiws ) n=0 3

(iv) z . (v) Z (n+1)2" /(2" 4n). (vi) Z (2m) 1™/ (1),

ns=() n=0

(vii) Z (n®+2")a", (viii) Z #/(n! +1).

ne=( fis=0)
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12,

13.

14.

EXERCISES ON CHAPTER I1

0
Investigate the convergence of Zu‘x", for all values of s
n=1
and .

By multiplying the series for r/r—x and 1/(1—2x)? {se_;e
Example 1, p. 52), find a power series for 1/(1 —#)% What is
the radius of convergence of your series?

Show that hg;(+:x)=x+{x +H2 (13424 ..

|#| <1.
o

Prove that Z

H=1

1/(n+1) log (n + 1) is divergent. (Integral test.)

8.8.—E 57



CHAPTER THREE
Further Techniques and Results

I. NUMERICAL CALCULATION OF THE SUM OF A SERIES

After a series Z #,, has been proved convergent, there still

ne=1l

remains the problem of calculating the sum S. We know that
the partial sum sy of the first N terms of the series is an
approximation to S, for S is, by definition, the limit of sy as
N—>oc0. However, different convergent series may differ very
much in their ‘rapidity of convergence’, we may find inone case
that s, differs from S by less than 0-0001, for example (so that
we get to within 0-0001 of the true sum S by adding up only the
first five terms of the series), while to obtain the same accuracy
in another case might require thousands of terms. It is essential
to have some way of estimating by how much each partial sum
sy differs from S; then we can tell in advance how many terms
of the series must be added up, to get an answer within a pre-
scribed amount of the full sum S.

We have seen (p. 32) that S=sy--Ry, where Ry is the sum

of the ‘remainder after N terms’ z Up=UN 3T UNigT coee
n=N+1

If we could calculate Ry exactly, then of course we could find
S exactly. But usually we can only ‘estimate’ Ry, which means
that we prove (for a given N), that Ry lies between two num-
bers @ and b. This tells us that S=sy- Ry lies between sy-+-a
and sy-+b. If @ and b are very close together, we obtain in this
way a good estimate for S.

The three examples which follow illustrate some of the ways
in which this estimation of Ry can be carried out. It is also
interesting to notice how the three series differ in rapidity of
convergence.
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Example 1. The number e is defined to be exp(1), i.e. the sum

of the seriesz t/m=14+~4+24+ X1 .. The remainder after
o il a2l 3l
N terms is

HIJ_ - . X
Ry N (N *

| & I
T o *E{I""Nﬂ

I I I I
R T A '}<ﬁ{x+(N+1)+(N+I)’+ it }
The series in the brackets is geometric, and its sum is

I N+1 . - ; S
I/(I_N_-{—I)z_ﬁ_' It is obvious that Ry is positive,
N+1

and so we have the estimate o<Ry<——-.
N<§N

9 ____.I__ . . I I P
8.8l 7168<0 0002. The partial sum SSHI+F+E

+.ne +% works out to be 2-71825..., and therefore

For example,

0<Rs<

e==sg+ Ry lies between sg+-0 and sg-}-0'0002, i.e. e lies between
27182 . ..and 27184 ... This proves that the value of e
correct to four significant figures is 2+718, and we could obvi-
ously get any higher degree of accuracy required, by taking N
large enough.

Example 2. If a series z £ can be proved convergent by the
n=1

integral test, it is always possible to derive an estimate for Ry

by comparing this with an integral. Suppose that $,=f(n),

where f(x) is the function described on p. 39. Let 4  denote the

area under the curve y=f(x) to the right of the line x=N; this

- . - o
area is finite, since we are assuming that I f(x)dx—- a finite
1

limit 4, as #—> 00 (p. 41). In fact, Ay is the limit of r Fl0)dz,
N

as #—>0o. By considering the sum of the shaded rectz;ngles in
Fig. 17, we see that Ry=py;+Pyia+Priat - - - isless than
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yli
J= f(x)
& N N Ni2 x>
Fic. 17
Ay, while the sum py+py.1+Pniet - . . =py+Ry of the

larger rectangles is greater than A . From these two remarks
we get the estimate 4 y—py<Ry<Ay.

Asan example, take the series Z;:—s Here 4 y= lim J.n dx/x?

n=1 n—+w J N

R o o O ¢ I s A ¢ I
l=1]m —— = o —— e
m(N ”) ¥ and py e Therefore N N’<RN<N'
and consequently S=sy-+Ry lies between sN-{-%—A% and

s N+;_J' The difference between these two numbers is 1/N2; thus
if we want a value which is guaranteed to be within o-0x1 of the
true sum S, we may take N=10. Now s‘°=1+z%+ T +1lo’
=I'549 . .., therefore S lies between s;44-0'1—001=1-639...
and s;+0-1=1'649 . .. (The value correct to three decimal
places is 1645, but we should have to take more than 30 terms
to obtain this accuracy, by this method. A much better esti-
mate for Ry can be found by approximating to the curve in
Fig. 17 by trapezoidal figures, instead of by rectangles.)

Example 3. Let Z (—1)""g,=a,—a,+az—a,+~ . .. be an
n=1

alternating series, such that (a,) is decreasing and tends to zero
60

BSTIMATING THE REMAINDER OF A POWER SERIES

as n—>oo. It follows from Leibniz’s test (p. 44) that the series
is convergent. It is also clear from the discussion on p. 44, and
from Fig. 14, that S<sy, for all odd N, and S>sy, for all even
N. For every N, S lies between sy_, and sy, and consequently
lRNl<]3N_sN—1| =ay. Thus —ay<Ry<o if N is odd, and
o< Ry<ay, if N is even, i.e. the Nth partial sum sy is within
ay of S, for every N. For example, the Nth partial sum of the
series I—4-+4—4%+ . . . is within 1/N of the sum of the series.
This estimate compares unfavourably with those of the last two
examples; to be sure of a value within o-o1 of the true sum, for
example, we should have to add together the first 100 terms.

2. ESTIMATING THE REMAINDER OF A POWER SERIES

Many important functions such as exp(x), sinz, cos %,
(142%)%, log,(1+x) can be expressed as the sums of power series
(see § 12, ch. II). The general problem of ‘expanding’ a given
function f(x) in a power series (that is, of finding a power series

c,x" such that f(x) is the sum of this series for all values of
n=0
x inside the interval of convergence) is dealt with in books on
the theory of functions. We shall adopt a different point of
view, in that we shall suppose here that the power series

Z c,¥" is given, and see what information can be derived
ne=0
concerning its sum f(x).

For a number x within the interval of convergence, the series

Zc,,x" is absolutely convergent (by definition of the interval
n=0

of convergence). The remainder after N terms is Ry(x) =cyx¥
+ena@¥ 4oy ¥ 24 | . This might be either positive or
negative, but we consider its absolute value |Ry(x)|, and we
know that |Ry(x)| <lewx|+|cnsa?™ |+ |easax™ ¥4 . . . (see
Example 3, p. 45). It is important to have an ‘estimate’ for
Ry(x) for two reasons: (i) for numerical computation—very
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often a power series provides the most convenient way of cal-
culating the values of a function f(x), and (ii) for theoretical
purposes; for example in deriving a new series by integration
(see § 3). The technique for estimating the remainder of a power
series is to compare the remainder series with a suitable geo-
metric series. The following examples illustrate this.
Example 1. Geometric series. This is one of the rare cases where
the remainder can be calculated exactly. For R y(x) =a¥--aV+1
+ ... =x¥(142+224 . . )=2"/1—2, provided that |z|<T.
In fact this also follows from the formula sy=1+x-+2%+ ...
+ V1 =(1—2¥) /(1 —2x) =(1/1—2) — 2" /(1—x)(see Example 3,
p. 25). This gives the identity (which holds for all x except x=1)
S =1tatatt .. +xN-1+i
I—% —X

Example 2. Expomnﬁal series. The remainder after N terms

xN okl csa X
T )

of the series s Ry(x)=
Therefore

R0 <5

!xlN Ix|N+1 o ]xlN+’ W
(NI (N2

xI L - - I
R FE R A T }

le”f 4, 4 }

NIL N+:'(N+x)" A
The series in the last brackets is geometric, and provided that

|#| <N+-1, it converges and has the sum I/(I-—FIE_LE). There-

fore we have the estimate

Rxtal<BL /{z—ELY

(If x>0, we can see at once that Ry(x)>0. So in this case we
N
have a rather better estimate o<Ry(x) <f-ﬁ / {1:— ﬁ})

ESTIMATING THE REMAINDER OF A POWER SERIES
Suppose, for example, that we want to calculate exp(—1) to

4 decimal places. Our estimate gives |R.(—§)[<(§—)!’ / {1—%},

which a rough calculation shows to be less than 0-00003. On

the other hand sg=1—}+(})*/2!—(3)%/3!4-(3)*/4!—(3)°/5!
=0'6065T . . . Therefore the full sum is between ss—0-00003
=0'60648 and sg-0'00003=0'60654. It follows that exp(—3})
=0'6063, correct to 4 decimal places.

Example 3. Binomial series. The remainder after N termsof the

seriesZ(:)x" is R (%) =(;)x5'+ (N:'I)xN+1+ (N:—z)xNH
=0

e a—N{fa a a—N

-+ ... Noticing that (N+I) N+I( ), (1\1,4_2)2@_.._E

a;li-;!(;r)' etc., we have

ay, N la—N|, |a-—-N||a—N—Ih 2
R <| ()i s v P
We shall consider first the case ¢ >—1. If this is so, then
|a—N| <N+1, |a—N—1| <N+2, etc., and therefore |Ry(x)|

<)
we have the estimate
[Ry(x)| <

|4 ¥{x+|]+|#]*+ . . .}. Thus for |s]<1,andif s >—1,

%)

N >I However we find in this case that

a—N|_|[a—N—1|_|[a—N—2
}N+:|: >| N1z %>| N3 =>..., and thus |Ry(x)|

<|(§) |x|N{z+|“_N|lx|+|“"N Plaget . . } Therefore if

IN4-x[ " " |N+1f
|x‘ll;—:§|<r, we have that | Ry(x)| < (;) |x|N/{z- ;‘v;_'ﬁ'hq}_

As an example, let us calculate /2, correct to 6 decimal places.
63
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Divide the equation 2 X 8%=1024=10%X 1-024 by 8° and then
take cube roots; onme finds V2=32x (1+40024)"3. Now

L
(1-+0-024)/3 is the sum of the binomial series Z(’)(o-ozag}".

(s

(0-024}‘/0-976-—— 3 o 3 :4(0-008) 4/0-976

(0-024)%/{x—(0-024)}

_BEDEHE-D
1.2.3.4

><IO‘11<2><10-° The partial sum s;=1-}(0-024)

4096

—'.r(O 024)’+n-(0 024)%=1-00793685 . . . Therefore (1-024)%/3
lies between s,—0°00000002=1 00793683 . and s+
0°00000002=100793687 . . . It follows that ¥2z=1-25X%
(1-024) /2 lies between 1-25992103 and 1-25992109. This proves
that its value correct to 6 places of decimals is 1-259921.

3. INTEGRATION OF POWER SERIES

Suppose that Z Cax"=Cytcyx--cox®4- . . . is a power series
n=0
with radius of convergence R, and that f(x) denotes its sum, for
|#] <R. If Ry(x) is the remainder cya¥4cy #4114 ..., we
- have the equation
J@)=cot-extex®t ... Foy 2N 14 Ry(#).
Replacing, for convenience, the variable x by ¢, and then
integrating this formula from ¢=o0 to #=x, we find

z 2 3 T
[roacproZiet ... von G+ [Ryto2e @

T
If it is possible to prove that I Ry (t)dt—>0 as N—> o0, then we
0

2 3 = +1
can show that the seri il N et Sle el Ly
escox+c,2-{-c,3+ Zc,,”+11s
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convergent, and has sum -r_f (#)dt. For equation (1) shows that
0
rf(t)dt —the Nth partial sum of this series+ j'R w{f)dt. There-
0 0

tare if I.R v(di—>0 as N—>co, it means that the Nth partial

sum ofz c,.

n=0

tends to J' ()it as N—>co.,

«8
The process of getting the series c9z+t:1;+c,—5+ ... from

CoF6%+cex®+ . . . is called ‘integrating term by term’, There
is a general theorem that
If z c,x" is a power series with radius of convergence R and

n==0

sum f(x), then the series Z g abtamad by integrating il

term by term has the same mdms of convergence, and its sum is

L ().
We shall not attempt to prove this result here. However it is
possible in many important particular cases to prove quite easily
L4
that the ‘integrated remainder’ I R y(f)dt does tend to zero as

0

N—o0 (provided that |#|<R). This, by what we have said
above, gives a proof of the theorem just stated, for the par-
ticular series on hand.
(i) The series for log (1-+%).* Replace x by —# in the formula at
the end of Example 1, p. 62. We shall also replace N by . This
gives

I

1+t 14+t

1 Unless the contrary is explicitly indicated, ‘log’ stands for ‘loga-
rithm to the base ¢'.
s.s,—E* 65
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FURTHER TECHNIQUES AND RESULTS
Integrate both sides from ¢=o to ¢=x, giving
L
—=]
jl T i ik
xl

'
a=x—.x_+
2 3

oo (=12 §+(—1)“L,,(x) 2)
where L,,(x)=ft"dt/(x+t). Any attempt to evaluate this in-

0
tegral directly would lead back to the starting point. However
we can make an estimate for L,(x), as follows,

g

€
14t

P

o ho Al rs

Fic. 18

Take first the case o<<x<C1. If £ is between o and #, then
1+¢ 21, so that /14-¢<t" (see Fig. 18). Therefore L,(x) (re-

presented by the shaded areain Fig. 18)is < rz"dt=x"+1/n+r.
0
Now suppose that —r1<x<o. Introduce a new variable
#=—1, so that L.(x)=I i"di/1--¢t becomes (—I)"“ru"du/
0 0

1—u, where y=—x (=|x]). If % is between o and y, then
1—4>1—y, and hence #"/I—u<u"/1—y. Consequently

I'mdﬂftl—u) <ru"du/(1—y)=y"+1/(n+r)(x—y). There-
0 0
fore |L,(%)| <||"+/ (”“)(I_A’é"’ if —1<x<0.

INTEGRATION OF POWER SERIES

It is now clear that L,(x)—>0 as #—>0, if —1<x<1. For
x%+1/(n--1)—>0 as n—>c0, if 0 <r <1, 2nd |xr+1/(n+1) (T —|2])
—>0, if —1<x<0. Therefore

i T = S S erges if
(a) The series x—--z--i-;— .o —'Z’( 1) -~ converg
—1<x <1, and its sum is log (1--%).
Going back to the original formula (2) we have also

() tog (149) =35+ 5— ..+,

where 0 <L,(x) <x"+1/(n+1), if 0 <x<1, and |L4(%)| <|#["*'/
(n+1)(x—|*]) if —1<2<0. : :

This second statement gives estimates for the rema.tgder of
the logarithmic series, which can be used when calculating the
sum for particular values of x.

Example 1. Put x=1, and we have I—{:+1}—];+ ‘e
=log(1+-1)=log,2. The case x=—T1 gives the divergent series
—1—3—%—...
(ii) The series for tan~1x. Starting again with the formula at the
end of Example 1, p. 62, we replace x this time by —#2. The
resulting identity

I —1y2n-2 YL
—— =88, . . (=T U (—1)

1+42 1+
is integrated from ¢=o0 to ¢=x. This gives
j.£=tm‘lx
ki 3 45 x2n—1
255 o — DT,
=S TS HEDT, O

z
where T,(x) =J- endt/1-+HE2,
0

T,(#) is the area under the curve y={"/1 -+#%, between £=0
and {=x. Because this curve is symmetrical about the y-axis,
T,(—#)=T (%), for any , so it is enough to examine the’case
#>0. Suppose in fact that o <x6-;1. For any value of ¢, 1+#* 21,
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therefore £2%/1+£2 <t™. Tt follows that T, (x)= J “tndt/(1+82)
0

<I {*ndt=x*"*1/(2n+-1). This tends to zero as n—> oo, since
1]

0 <x <I1. By the symmetry which was mentioned above, it fol-
lows also that T,(x)—>0 as n—> o0, for —1 <x <0. Therefore

2041

AW =
(a4) The series x_x__’_x__ P =Z (—z)"x 7 converges

when —1 <2 <1, and 1ts sum is tan-lx (‘ Gregory s Senes )it
Going back to the equation (3), we have also the formula
which exhibits the remamder. namely

(6) tan"x—x-——+—— A +(—:)~-1

"Ta(x),
where o <T,,(x) <x"""‘/ (2n+1), if x>o, and 0>T,(x)
>—|x|2+1/(2n+-1) if x <o.

Example 2. Leibniz's series. Put x=1, and we get 1—}+3—1
+ oo =E. In theory, this provides a means for calculating .

However this series, although convergent, is so slowly conver-
gent that the amount of work required to secure even a modest
number of decimal places of # would be prohibitive.

Example 3. A more rapidly convergent series for z is
F=tan~(z/v/3)= S

1/3 59088 v
From (b), the remainder after # terms is (—1)*T,(1/4/3),

and  0<T,(1/v/3) <(1/4/3)*+/(2n+1) =1/(2n+41)3"/3.
For example, T7(1/4/3) <1%/3"4/3 = 1/320854/3 < 1/50,000

=000002. This means that % lies between s, and s;—o0-00002

(we must remember that the remainder is (—1)"T,,(1/4/3), i.e.
! The value of tan-1# referred to here is the ‘principal value’, defined
as follows: f=tan-x is the angle between —E and +§ such that

tan f=x». (Radian measure must be used.)
68
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for n=7,it is —T(1/4/3)). The sum s, of the first 7 terms of the
series works out to be 0:523612 . . . , and therefore 0'523592.. .

<§<o-5z3612 v ea,le 3T4155. .. <A<3'I4167...

Example 4. The integral Ie"‘ dt is one which cannot be ex-
pressed in terms of the ‘elementary’ functions (log, exp, sin,

=
cos). However it is possible to work out the value of | e="dz,
0

(_")'=I—t’+£‘/z!

for any #, by integrating the series z
f=0

—1%/3!4 . .., which has sum exp(—t’) or ¢*, We find that
® o e 4 _a;: x_!_— x2n+1
L‘ R i Z( et
It can be verified, using the ratio test, that thl.S series converges

for all . It has been used to make tables of values of rc“' dat,
0

which are used extensively by statisticians.

Example 5. The binomial series for e=—1} is Z (_i)x", and

its sum is (x+2)7, if l:c|<I (see Example 3, 1: 71). Replace

x by —% this gives (1—#*)~i=1/4/(1—1) =142+

(_%){_’%);_tg}g | ( ‘H( 'f)( %)(_‘s)a_l_ At the coefficient
‘ 3

U AR T

(214 ).I

of £2" being 299 = Multiply numerator and de-

T.2, 3
nominator by 2.4. 6 . (2m)=nl2", and this becomes
(2n)!/(n!) 222", Integrating the series from ¢=o0 to {=x, we find

_(en)! a2

2 =Ly This
I&/V(I %) =sin-lx= 2 e g o Il <)
series can also be used to oompute:-:, for example putting x=1/2

we have sm“( ) Z (ﬂl)’(zfsz:-):!t)z““
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4. DIFFERENTIATION OF POWER SERIES
o
If the power series Z Cu™=Co-+-C X+ o303+

ne(

differentiated ‘term by term’, the new series ¢,-2c,%-+3c,x®
o
+...= Z ne,x"~1 results. There is the following general

ti=(
theorem, analogous to the theorem on integration:
-]

If Z ca¥™ has radius of convergence R and sum f(x), then the

n== )
o

series ch,,x"‘l obtained by differentiating it term by term has

n= i)
the same radius of convergence, and its sum is f'(x) =§/‘ (#).

We shall not give the proof of this result, It is n:nportant
however to notice that a proof is necessary; the theorem is by
no means obvious, as might appear at first sight. There are
cases where term by term differentiation of a series (other than
a power series) destroys its convergence.

Example 1. We saw (Example 2, p. 46) that Z sn;'::x is con-
n

=l

vergent, for all x. Differentiating term by term, we get

Z mi"x, which is divergent for x=o. Differentiating again

ne=]

gives 2 (—sin#x). When # is an integral multiple of 7
=l

radians, all the terms of this series are zero, but for all other

values of x, it is divergent, because the nth term #,=—sin nx

does not tend to zero as n—co (see Example 6, p. 15).

Even for a power series, we cannot be sure that the differ-
entiated series will be convergent at the end-poinis of the inter-
val of convergence, even if the original series was. For example,
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DIFFERENTIATION OF POWER SERIES
x* 2 . y
the logarithmic series x———+—- . . converges if —1<<x <.

Differentiating this gives the geometnc series I—x-%%—

(tlus is not surprising, since we originally obtained the loganth-
mic series by integrating this geometric series!), which does not
converge for x=1.

Example 2. The series 14x-+x242%4 . . . has sum 1/(x—x)
and radius of convergence 1. Therefore the series 1-2x-4342%

+... =,.Z.1 nx*~1 has sum %(1/(I—x))=1/(1—:c)’, for
|¥]<1. We have already proved this in a different way (Ex-

ample 1, p. 52).
Example 3. The Binomial Theorem for arbilrary exponent.

Write /() for the sum of the binomial series Z (:)x" (1] <1).
nesi)

Differentiating, we get

f'(#) =§: ﬂ(:)-‘t‘""‘=(‘:)+2(:)x+3(;)x=+ ..., hence
f'(%) o =(“)x+z(“)x=+ o

Adding, we have (1 x)/'(x) =a+ Z{(’H I](n+1)

fims ]

o () i = ()

- n(;:) = (:) {a—n4n}= a(:). Therefore (1 4 2)f'(%)

3 1ol d
=> (;‘:)x'-=af(x), i, f(0)/f(9) =a/(x-+1), or 2 flog /(x)}
ne=l
=a/(1+x). Integrating both sides, we find that log f(x)
=a log(x+%) -k, where % is some constant. By putting x=o0
(which reduces the binomial series to the term 1) we get k=o,
therefore log f(x) =a log(1+x), that is, f(x)=(1+2%)%
7T :



FURTHER TECHNIQUES AND RESULTS
Example 4. The exponential series 1+x+§+§+ . « . TEPTO-
duces itself on differentiation. This establishes the well-known
property of the exponential function, that dix(exp(x)) =exp(x).

5. CAUCHY'S CONVERGENCE PRINCIPLE

If 2 %, is a convergent series, then the partial sum
n=

Sa=t;+%y+ . .. +u, tends to a limit S, the sum of the series,
as n—» 0. By the definition of a limit (p. 5), this means that,
if any positive number % is given, it is possible to find an integer
N, such that s, is between S—j and S+-4, for all n>N,; or,
equivalently, that |S—s,|(=|s,—S|) <A, for all n>N,. There-
fore if m, n are two integers both >N, then |Sm—Sa] =|(S—s,)
+(Sm—S)| <|S—su|+|spu—S| <h+h=2h. If, in addition, we
suppose that m>n, then s,,—s, is the sum Yo ttnigt o oo
%, a sort of ‘excerpt’ from the series.

It is convenient to make slight changes of notation: put
k=2h, and write M, for N,, then we can say:

If z #, is a convergent series, then for any positive number
Rl
k, however small, we can find an integer M, such that |u,,,
+Uniat ... +u,| <k, for any m, n which are both >M,.
The converse of this theorem is of fundamental theoretical
importance; it was discovered by A. Cauchy (1789-1857).

Cauchy’s Convergence Principle. Suppose that Z U, 1s any

-] o
series, with the property that, given any positive numb';r k, however
small, it is possible to find an integer M, such that

!“n+1+“n+l+ oo | <k,
whenever m, n are both >M,. Then Z Uy 15 convergent.
fie=]
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DIRICHLET’S CONVERGENCE TEST

This is not normally used as a fes¢ of convergence, in the way
that for example the ratio and comparison tests are used, be-
cause it is usually difficult to estimate the sum #, ;%54
+ ... +u, However it is used to derive other, more special
tests (such as Dirichlet’s test, in the next section) which are
easier to apply.

The proof of Cauchy’s principle is beyond the scope of this book.
Howevzr it can be rzughly explained as follows: we know that
Upgr+Uniat oo FUm=Sm—Sp l_ies between —k and +&, fo:a;ll
m, n>M,. Therefore all the partial sums s, after s, (we can take
n=M ,+1 if we like, for definiteness) lie between sp—hand s,,-+k.
If we take k to be very small in relation to the accuracy required,
this means that the partial sums s, for m>n are _prat_:ucally' (e.g.
up to a certain number of decimal places) 151d1stmgulshable from
$y. Thus s, would, up to this number of d-ecnnal places, represent
the full sum. In this sense it would be possible to calculate the sum
S to any required degree of accuracy.

6. DIRICHLET'S CONVERGENCE TEST

Test 8 (Dirichlet’s Test). Let (ay), (bs) be two sequences such that
(¢) The sums t,=by+bg+ . .. b, are baun.ded, i.e. there exists
a number H>>0 such that |t,| <H, for all n, (i5) The sequence (@)

is decreasing, and (iii) a,—»0 as n—>c0. Then the series z azb,
‘ n=1
converges.

s ite
Proof. Take any positive number k. For any m, ﬂ:(m >n) wri
Ry n=0p41bpsy +8nssbnyat « -« +ambm. Our aim is to find gn
intéger M, such that |Ry, | <k, whenever m, n>M,. If wecan do
this (for an arbitrary positive &), then it will follow from Cauchy’s

o

convergence principle that Z a.b, converges.

1
By (iii), a,—>0 as n—> no.” We take M to be an integer such that
a, <k /2H, for all n>M,. Such an integer M, must exist, by the
definition of the statement a,—»o (p. 5); the reason for the
curious number %/2H will appear shortly.
Remembering that b4, =%,4, —f, we have
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FURTHER TECHNIQUES AND RESULTS

Rm.s"‘“uﬂ{‘uu—'n) +“u+|(‘u+s— FITY b NS ( SE

+am(tm —tmay) = b +"!!+l(“u+l_an+l) +fn+a{‘3n:£ ‘—a:u]m .
+ oo ey (@ney —@m) + Gt Now a,,, —a, ., ni2—Gnyg o« -
@m—1—anm are all > o, because (ay,) is a decreasing sequence (condi-
tion (ii)). Incidentally, conditions (ii) and (i) together imply that
all the a, are >o. Therefore 1R, nl < [nl@n g3 + 1) (@ iy — Bscs)

+ltntal(@nts —Bnsa) + - -+ +limss](@mmy —Gp) +[tmlam, aNd since
each |‘ni <H (bY (3))1 we have 'Rm,n|<H{a‘u-H +{an+l _an-!-sj
+@nta—Gnig)+ . . . +(Amey—ap) +am}=2Ha,y,. 1f now

m, n>M,, it follows that a,,, <k/2H, and therefore
k
IR,,....|<2H3,,+, {ZH.E-:k.

anmple 1. Leibniz's test (p. 44) is a special case of Test 8. For
if we suppose that (a,) is a decreasing sequence which tends to
zero, and that b, =(—1)"~1, then the conditions (i), (ii) and (iii)
are all sa.tlsﬁecl For {,=1—1}1— ... F(—1)*1=0 if n is
even, and is 1 if » is odd. Thus |¢,| <z, for all #. Therefore the

series Z (—1)"*a, converges, whenever (a,) is a decreasing
n=1

sequence which tends to zero—and this is just what Leibniz’s

test states.

Ex_am_ple 2. Suppose that b,=cos nx, where x is any number
w}.uch is not of the form 2kx (k integer). It is easy to verify the
trigonometric identity 2 cos nx sin 3x=(2 sin }x)b, =sin (n+3)x
—sin (n—%)x. From this, (2 sin §x)t,=(2 sin }%)(b,+by+ . . .
+b,)=—sin ix-i—s}n (n+13)x. Now [sin 6] <z, for any 6, and so
we deduce that |2 sin §4||¢,| =| —sin §x+-sin (#+3)%| <|—sin }x|
+[sin (n4-})2| <1+1=2, and hence (since sin dxs20), |4
<|cosec }#], for a.li #. Thus ¢, is bounded. Consequently any

series of the form Z @y, Cos nx 1s convergent, if (a,) is a decreas-
- - n-o

g sequence which tends to zero, except possibly when % is an
wnbegral multiple of 2n.

Example 3. We can prove similarly that |sin x4-sin 224 . . .
~+-sin nx| .<|oose'c 12|, when x is not of the form 2= (k integer),
by starting with the identity 2 sin nx sin x=cos (n—})x
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EXERCISES ON CHAPTER I11
o
—cos (n+1)x. Therefore the series Z a, sin nx is convergent,

=]

provided that (a,) is a decreasing sequence which lends to zero.
(This holds for any value of ¥, because when x is an integral
multiple of 2z, the terms of the series are all zero.)

Example 4. As an example, we can see that the series

w @

z - = Z S are both convergent if 0<s <1, except,

n* n'

=] fi=]
"'m the case of the first series, when x is an integral multiple of
2z, For (’%) is clearly a decreasing sequence which tends to
zero. (Both series converge if s>1; for in that case they both
coi'nx <1/#%, all #, and X1/n*

4 h = |cos nx
converges since s>1I, enoez P
fne=l
parison test. When s <1 this argument fails, and the more
sensitive test is necessary.)
w

Series of the form z (@, cos nx-}+b,, sin nx), the coefficients

converge absolufely. For e.g.

converges, by the com-

n=0

a,, b, being given constants, are called trigonomelric series.

EXERCISES ON CHAPTER III

1. Show that the remainder after N terms of Z 1/n4 lies be-
n=l

g S s (see Example 2, p. 60). Hence prove

NN an N , P- 60).

that the sum of this series lies between 1-081 ...and 1083 ...

(Take N =35.)

tween
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1
1fn I/n I
- b et he gt Bl T
tween u(z tan :') and a(z tan I:) N a,{g;-o).

o
Prove that the sum of Z 1/(n*+4-64) lies between 0-183. ..
and 0'193 . . . (Take N:=61.)
. Show that exp(o-1) lies between 11050 and 1-1052, using the
estimate for the remainder of the exponential series given on
p. 62. (Take N=3.)
. (i) Show that é® =1 -, with an error which is less than 0-0001
if |#|<o-or.

(ii) Show that V1 +7=1+}#, with an error which is less than
00003, if |¥|< 005 (see p. 63).

/5
- Verify that 10 X 5% =8° —1518, whence w‘/m"'g(l St ) .

) 32768

Use 4 (ii) above to prove that {'/10 lies between 1-5846 . . .
and 1-5856...

2 3
. (i) Show that log(x -x)——s—%—%--— L —1€x <,
r 5
(ii) Showthat}log(-:—-i:;) =x+§+g +...0f —1<x<I.

(iii) Find a power series expansion for log(1 +#+#?), valid

when —1<x<1.

. Use the estimate for the remainder of the series for tan—!

which is given on p. 68 to prove that tan—! o'z lies between

0'197395 . . . and 0:197397 . . . (radians). (Take #=3.)

. Find the radius of convergence of the series for sin—1 (p. 69).
w

3 ShowthatZ(—:)”a“cosnxisconvergent,if (a,) is a decreas-
=1

ing sequence which tends to zero, and if # is not an odd

multiple of z. (Replace # by #-+a in Example 2, pP- 74.)
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ANSWERS TO EXERCISES
Chapter 1:

1. (i) 08, 0-96, 0-992, 09984, 0-99968. (i) 1-2, 0-96, 1-008, 09984,
1-00032. (iii) 1, 1-6667, 25, 34, 4:6667. (iv) 04142, 0°3179, 2-2679,
02361, 02134. (V) I, —2, 3, —4, 5. (vi) 1, 0, — 1, 0, 1. (vii) —1,
— 3, —1, —3, — 1. (vii) 12, 15, 1-75, 1-625. (iX) 1, 1-5, 1-75, 1875,
19375 (x) 1, 1, 1, I, T. . ¢

3. (i) ap—>1. (ii) ap—>1. (iii) ap—>+ 0. (iv) ay—>0. (Write an in the
form (Va4 1— ‘\/E)(‘Vﬂ+1+_\/u)/(‘\/u+1+‘\/;}-{(u-l-z}-u)/
Vat14+Vu=1/(Vn+1++Vn). The denominator —>+ .) (v)
osc. (vi) osc. 4. (i) m>5. (i) #>13. 5. (i) u>.?_3. (ii)‘n> 145.

6. (i) 2. (i) 2. (iii) o. (iv) % (v) 3. (vi) — 4. (vii) 1. (viii) o. (ix) 4 c0
(x) — 8. (xi) 4 oo. (xii) 4. (xiii) 0. (xiv) — 0. (xv) 0. (xvi) +c0.

7. N>19. 8. b<1. T X

12. Using the recursive formula #pi1=xp— 0-4(4n®+p— 1), and
taking »,=0'6, one has x,=0'6736, ¥;=0-68191, x,=068231,
#;=0-68234.

Chapter II:

e T BT T T A x{cos }x—cos(N+4)x

% *(N+:)(N+z) 3. } cosec x{cos }. (N+3)x}

3 5 {1— (N+1)2¥ 4+ Na¥ +1}/(1— z)%

1/(1— ). 7. ) o (i) 9. (i) 1.

(i) 1, 1-2, 1-24, 1248, 1-2496, 1-24992. S=1-25. (ii) 1, 0'8, 0-84,

0-832, 0-8336, 0-83328. S=§=083333 . . . , 5

9. (i) div. (ii) div. (iii) div. (iv) div. (v) conv. (vi) div. {wg] conv.
(viii) conv. (ix) conv. (x) conv. (xi) div. (xii) conv. (xiii) conv.
(xiv) div. (xv) conv, (xvi) conv. (xvii) div. (xviii) conv, (Test 6).
(xix) div. (xx) conv. (xxi) conv. (xxii) conv. :

ro. (i) x. (ii) 1. (ii1) 3. (iv) 1. (v) 2. (vi) . (vii) . (vii]) co. )

11. conv. |*| <1, div. |#|>1, for all 5. For #=1, conv. s<—1, div.

s>»—1. For ¥=—1, conv. s<o (Test 6), div. s>o.

PRoEN

12. 1432463210434 . . .= Z }(n+1)(n+2)2". Radius conv.=1.
=y
Chapter II1:
-]
- 2t 243 2% b ot =3 )
6. (iii) x+;— T-I—:-}-—s‘—?-l- aieis =Zc,‘x", where ¢ 5 un:

n=1|
less » is a multiple of 3, while c,.-:-—-; if # is a multiple of 3.
(Express 1-{-x+2? as (1—2%)/(1—2).)
1.
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Absolute convergence, 46 Rational function, 11
value, 45 Recurring decimal, 28
Achilles, 26 Remainder of a series, 32
estimation of, §8
Binomial scries, 49, 9, 71
theorem, 25 Sequences, 1
Bounded sequence, 15 bounded, 15
constant, 7
Cauchy's convergence principle, 72 finite, 1
Comparison test, 34, 36 geaeral term of, 1
Convergence, 27 graphical representation of, 3
15
interval o, so infinite, 1
principle, 72 limit of, §
See also Tests of convergence monotone, 15
Cosine serics, 50 of approximations, 3
oscillating, 9
Decimal, recurring, 28 recursively defined, 2
Differentiation of series, 70 sub-, 13
Divergence, 27 Series
absolutely convergent, 46
Equations, solution by iteration, 20 alternating, 44
Estimation of remainder, 58 binomial, 49, 69, 71
Euler's constant, 42 conditionally convergent, 46
Exponential series, 48, 52, 62, 72 convergent, 27
cosine, 50
Finite sequence, 1 divergent, 27
series, 24 exponential, 48, 52, 62, 72
finite, 24
Geometric series, 25, 28 grometric, 25, 28
Gregory's series, 68 Gregory's, 68
harmonic, 29
Increasing sequence, 1§ infinite, 25
Infinite sequence, 1 Leibniz's, 68
series, 25 logarithmic, 49, 65
Integral test, 41 multiplication of, 51
Interval of convergence, 50 of absolute values, 45
Iteration, 20 power (see Power series)
remainder of, 32
term, 11 sine, 50
Leibniz's series, 68 sum of, 27
test, 44 75
Limit, 5 Sine series, 50
Logarithmic series, 49, 65 Subsequence, 13
15 Term of a sequence, T
Multiplication of series, 51 Tests of convergence,
alternating series (see Leibniz's test),
Oscillating sequence, 9 comparison (first form), 34
comparison (second 36
Partial sum, 27 Dirichlet's, 73
Power series, 47 Integral, 41
differentiation, 70 Leibniz's,
integration, 64 ratio (positive terms), 38
remainder, 61 ratio (general form), 47
Product series, 51 Tortoise, 26
Trigonometric series, 75
Ratio test, 38, 47
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