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PREFACE.

The present treatise is founded upon Legendre’s TraiM des

Fonctions EUiptiques, and upon Jacobi’s Fundamenta Nova, and

Memoirs by him in Crelle’a Journal

:

comparatively very little

use is made of the investigations of Abel or of those of later

authors. I show how the transition is made from Legendre’s

Elliptic Integrals of the three kinds to Jacobi’s Amplitude,

which is the argument of the Elliptic Functions (the sine, co-

sine, and delta of the amplitude, or as with Gudermann I write

them, sn, cn, dn), and also of Jacobi’s functions Z, II, which

replace the integrals of the second and third kinds, and of the

functions 0, H, which he was thence led to. It may be re-

marked as regards the Fundamenta Nova, that in the first part

Jacobi (so to speak) hurries on to the problem of transformation

without any suflBcient development of the theory of the elliptic

functions themselves
; and that in the concluding part, start-

ing with the developments furnished by the transformation-

formulas, he connects with these, introducing them as the

occasion arises, his new functions Z, II, 0, H : there are thus

various points which require to be more fully discu.ssed. Not

included in the Fundamenta Nova we have the important

theory of the partial differential equation satisfied by the

functions 0, H, and, deduced therefrom, the partial differential

Digitized by Google



IV PREFACE.

equations satisfied by the numerators and denominator in the

theories of the multiplication and transformation of the

elliptic functions; these I regard as essential parts of Jacobi’s

theory, and they are here considered accordingly. For further

explanation of the range and plan of the present treatise the

table of contents, and the first chapter entitled ‘‘General Out-

line,” may be consulted. I am greatly indebted to Mr J. W.

L. Glaisher of Trinity College for his kind assistance in the

revision of the proof-sheets, and for many valuable suggestions.

Caxuridof, 1876.
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ERRATA. -

p. 4, linos 7 and 14, for argnment rtad amplitude,

p. 64, line 14, for theso read there.

p. 65, second formula, for an (u 4- r) + an (u - c), read cn (u + r) + cn (u - v).

p. 71, line 12, for 2K' read 2iK', and line 17, for 4A" read UK',

p. 107, lino 3 from bottom, for =— _ read f --- -

.

' l4-nsn*u Jol + nsn’u

p. 113, line 4 from bottom, for n(u,a)==II(a, u) read II (u, a) - II (a, u).

p. 116, bottom lino, for S, = -—
\ read Je, .

p. 119, lino 9, for J read —7—
2 ^/- p

p. 226, top line, dele of the three functions of nu.

p. 281, No. 371. It might have been proper to state explicitly that the square •

brackets denote infinite products obtained by giving to m the values

0, 1, 2. ..to infinity.

p. 285, line 8 from bottom, for No. 372 read No. 373.

p. 288, bottom lino, before p. 93, iiuert t. I.

p. 308, bottom line, for No. 306 read No. 307.

p. 328, line 3 from bottom, /or -b,*F(a,b) read 6,).

Legendre’s earliest systematic work on Elliptic Integrals is

Exercices de Calcul Integral sur divers ordres de Transcendanles, et

stir Us Quadratures, Paris, t. l., 1811 ;
t. ill., 1816, and t ii., 1817 :

the later work is the Traite des Fonciions Elliptiques et des IrUegraUs

Exderiennes, Paris, t. i., 1825 ;
t. ii., 1826, and t. ill., 1828—32;

the greater part of Legendre’s own results on the theory of Elliptic

Integrals, contained in the first’ volume of the Fonciions Elliptiques,

had been already given in the first volume of the Exercices. Jacobi’s

work is the FundamerUa Nova Theorioe Functumutn Ellipticarum,

Konigsberg, 1829 : the Memoirs in Crelle's Journal extend from

1828 to 1858, some of them, in connexion with the FundametUa

Nova, being published shortly after the date of that work. The

Memoirs by Abel, published for the most part in the earlier

volumes of CrelU’s Journal, 1826 to 1829, are collected in the

(Euvres Completes de N. II. Ahel, par B. Ilolmboo, Christiania, t. 1 .

and II., 1839, except the great memoir on Transcendent Functions,

presented to the French Academy, and published, Metnoires des

Savans Elrangers, t. vil., 1841. A new edition of the works is in

preparation.
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CHAPTER I.

GENERAL OCTLINE.

Origin of the Elliptic Integrals. Art. Nos. 1 to 11.

1. We consider the integration of a differential expression

Rdx

Vx'

where .B is a rational function of a;
;
X & rational and integral

quartic function of x, with real coefficients*: the values of the

variable x are real, and such that X is positive, or V^real.

2. This can be by a real substitution in place of x
1 + ®

(that is a substitution where p and q are real) reduced to the

form

Rdx

^/i (1 ± mid) (1 ± nx’)
’

where .B is a rational function of the new x
;
m and n are real

and positive; and the signs are such that the function under

the square root is not — (1 + mad) (1 + nad),

* The refereoees here and eUevhere to reality, and an; references to sign

or nomerical limits, are regarded as in general bolding good : it vill be nnder.

stood, however, that imaginary values might be admitted thronghont, and the

varioos theorems presented in a more general bat less definite form : and there

will be occasion to refer to and employ each extensions of the original real

theory.

C. 1
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2 GENERAL OUTLINE. [I-

3. The rational function R is the sum of an even function

and an odd function of the differential expression is thus

separated into two parts; that depending on the odd function

may be integi-ated by circular and logarithmic functions (as

appears by making therein the substitution ‘Jx in place of r);

and there remains for consideration only the part depending

on the even function of x: or, what is the same thing, we may
take R to be an even function of x (that is a rational function

of

4. This being so, we can by a real transformation in
C “i" Cfi3/

place of a;’ transform the differential expression into the form

Rdx

V - k‘x‘
’

where iJ is a rational function of the new
;

k' is real, positive

and less than 1 (and therefore also k, assumed to be the jwisitive

root of i’, is real, positive and less than 1).

5. In the last-mentioned expression x' may be included

between the limits 0, 1, or it may be >^; but in tlie latter

case, we can by the substitution in place of x transform the
KJC

expression into one of the like form in which the new a? lies

between the limits 0 and 1 : we therefore assume that a:’ lies

within these limits.

6. By decomposing R into an integral and fractional part,

and the fractional part into simple fractions, and by integrating

by parts, the integration is made to depend upon that of the

three terms

dx .T* dx dx

Vl - a;*. 1 -AV’ Vr^?. 1 - a". 1 -
’

where ti is real or imaginary.
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1 ] GENERAL OUTLINE. .1

Or, what is the same thing, the three terms may bo taken

to be

(1 — (fx dx

(l + nx“) Vi^x’.l-^v’

that is

Vl - fcV dx dx

Vl -X*. 1 -AV’ ’
(1 + wjO Vl - x’.l - iV’

7. Writing herein x = sin and putting for shortness

these are
d(f>

Vl — if sin’ (^ = A (fc, <f))f

A (i, (^) and ’

and we have thus the three kinds of Elliptic Integralt: viz.

these are

first kind

second kind

third kind

E{k,i>) =jA(k,<f>)d4>,

d<f)

(1 + n sin’^) A (k,
<f>)

’

the integral being in each case taken from
<f>
= 0 up to the

arbitrary value
<f>.

It would of course be allowable under the

integral sign to write for tf> any other letter 6, taking the

integral from 6 = 0 to 6 =
<f>.

8.
<f>

is the amplitude, k the modulus, n the parameter.

The amplitude is a real angle; as already mentioned, the

modulus k is positive and less than 1 ;
whence also 4', = Vl — k\

called the complementary modulus, is real, positive and leas

than 1. MoreoverA(4, <^), = Vl — 4’ sin’^, does notbecome = 0>

nor consequently change its sign, and it is taken to be always

positive. The parameter n, as already mentioned, may be real

or imaginary; it is in the first instance taken to be real; and
it will appear that the case where it is imaginary can be made

1—2
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4 GENERAL OLTLINE.

to depend upon that in which it is real. Supposing it to be

real, there is a distinction according as it is negative and greater

than 1 (viz. in this case the denominator l+«sin*^ becomes

= 0 for a real value of <j>) ;
or else as it is negative and less

than 1, or positive.

9. Instead of the complete notation A (t, <j)), we frequently

express only the argument, and write simply A<t> ;
and simi-

larly F<f>, E<p, for F{k, <^), &c. respectively: viz. in these

c.ases it is assumed to be understood what the unexpressed letters

k, or k and n, are. We may in like manner express only the

modulus, or the parameter, and write A^•, II (ti, k), IT7i, or flA

&c., but there is less frequent occasion for this, and the nota-

tions when used will be explained.

10. The integrals, taken up to the value - of the argument,

are said to have their complete values, and these are frecjuently

denoted by means of a subscript unity; thus F^^k, = F^k,

or simply and so EJc, E^, &c.

11. The three elliptic integrals are not on a par with each

other
;
but they depend, the second and third kinds upon the

first kind
;
or we may say* that they all three depend on the

differential expression there is for each of them

an addition-theory depending on the integration of the differ-

ential equation

d<f>

E{k,i>) ' A{k.yfr)

not for the first kind a theory depending on this equation and

for the other two kinds like theories depending on the equations

A (k,<f>)d4> + A {k,f)dyfr = 0,

rfi
.

dijr _
( 1 + n sin’<^) A (k, <p) (I n sinS/r) A (A,

’

respectively : these last are equations not admitting of algebraic

integration, anti which do not present themselves in the theory.

And the like as regards multiplication and transformation.

* The statement is xuado provisionally: the three kinds, as will appoarj

de(>eud each of them on the functions sn u, cn u, du u.
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GENERAL OUTLINE. 5!•]

12 ,

Tlte Addition- Theory. Art. Nos. 12 to 14.

The dififerential equation

dx
.

dtj = 0,

where Y is the same quartic function of y that is of a:, admits

of algebraic integration : and in particular this is the case with

the equation

^
Vl-a'.l-A’*’ v'l-^.l-A:*^

’

and in this last equation we may take the constant of integra-

tion, say m, to be the value of either of the variables x, y, when

the other of them is put = 0.

Writing x = sin y = sin yjr, m = sin /i, we obtain for the

differential equation

d^ d-ijr

A-yjr

= 0,

an algebraic integral such that the constant of integ^ration ft

is the value of either of the variables
<f>, yfr when the other of

them is = 0 ;
viz. this is an integral involving the sines and

cosines of
<f>,

(and ft), but which (as being algebraic in regard

to these sines and cosines) is spoken of as an algebraic integral.

13. The integral in question, say the addition-equation,

may be expressed in (among others) the various forms

cos ft = cos 0 cos^ — sin
<f>

sin ^Aft,

cos = cos yfr cos ft -t- sin ^fr sin ftA<l>,

cos \lr= cos
<f>

cos ft -t- sin
<f>

sin ftA-\lr,

1 — cos’ 4>
— cos’ •<lr

— cos’ ft + 2 COS
<f>
COS COS ft

— /fc’sln’<)isin*'^sin*/*=0,

* sin /* = sin ^ COS ^Ai|r + sin cos ^A^ ("^)*>

'cos^ = cos ^ cos'^ — sin sin i^A^A'»^r (-^),

Aft = A(j>A-\^ —k’sin(f> sinifr cos<f> cosy^ (-h),

• Tlio notation hardly requires explanation ;
the (H-) shows that the function

is a fraction the numerator of which is written down, and the denominator of

t
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6 GENERAL OUTLINK [I-

where in each case there is a denominator

= 1 — A* sin*
<f>

sin*

and sin tf> = sin /j, cos ylrA-\fr
— sin ifr cos /xA^

cos
(f>
= cos fi cos + sin /I sin ’^A/xA'vfr

A ^ = A/x Ai^ + k’ sin /x sin cos /x cos

where there is a denominator

= 1 — ^•* sin* /X sin’ ijr,

and in these last formul® we may interchange
<f>,

yjr.

14. It is to he remarked that considering fi as variable we

have
d\}r dfi

A<f> Aifr A/x
’

viz. the addition-equation is (not the gcncnil, but) a particular

integral of this diflerential equation. Writing this equation

under the forms

(l(f> dfi dyjr dyfr dfi d<f>

A(j) Afi Ayfr
’ A^ Afi Aif> ’

we naturally regard the integral equation, any form of it which

gives /X in terms of 0,'^, as an addition-equation : and any form

of it which gives 0 or in terms of /x, and or
<f>,

as a sub-

traction-equation. The resulting notion of subtraction may be

regarded as included in that of addition, and it will hardly be

necessary again to refer to it.

(-).

(-),

The Addition of the three kinds of Elliptic Integrals.

Art. Nos. 15 to 17.

15. We .assume throughout tj), yfr, p to be connected by the

foregoing addition-equation : recollecting that this is an integral

(taken with the constant determined as above) of the differ-

ential equation -f = reverting to the definition of

which IB afterwards atated : it is, I think, a very UBefnl one generally, but there

is in Elliptic Functions an especial need of it, from the frequent occurrence

therein of groups of complicated algebraical fractions having the eame de-

nominator.
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GENERAL OUTLINE. 7»•]

the function F(j>, it at once appears that for the first kind of

elliptic function we have

Fif) + Fy^ — Ffi = 0

(viz. yjr, fi being connected a.s above, the integrals F<f>, Fy^, Fn
satisfy this relation) ; this is the addition-theorem for the first

kind of elliptic integrals.

16. It can be shown that for the second kind

E<f) -(- Eyjr — Eft, = A’ sin ^ sin sin /t

;

and that for the third kind

— Il/i =— tan"'
Va

n Va sin ft, sin sin

' 1 -I- 71 — a cos fi cos (ft cos yfe
’

I + n — n cos fi cos <f>
cos yfr + n \— a sin fi sin ^ sin y^

1 + 7t — 71 cos fi cos
<f)
cos — 71 V— a sin sin sin

*

where a = (1 + t») ^1 +—
j

,
and n being real, the first or second

form is real according as a is positive or negative.

17. The mode of verification is obvious; in fact, repre-

senting either of the last-mentioned equations by U=0, and

considering Z7 as a function of the variables yjr, we have

dU=-^d.ft + :^^dyfr

d<f)

so that to sustain the assumed equation Z7= 0, we must in

virtue of the addition-equation have identically

dU ,, dU. -

viz. this equation, if true at all, can be nothing else than a form

of the addition-equation: or what is the same thing, the

addition-equation will be reducible into the last-mentioned

form: which being so, it gives dU=0, and thence by integra-

tion U= const., and then determining the constant by the con-
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8 GENERAL OUTLINE. [I.

dition that for <fr = 0 the value of
<f>
h = /i, the value of the

constant must come = 0 ;
and in this manner we must from the

addition-equation arrive at the required equation U=0.

The Elliptic Functions am ;
sinam, cosam, A am ;

or sn, cn, dn.

Art. Nos. 18 to 27.

18. We have spoken of ^ as the amplitude of F<f> ;
or writ-

ing F<f> = u, then
<f>

is the amplitude of u ; say
<f>
= am m, and

then sin
<f>,

cos
<f>,

A<^ are the sine, cosine, and delta of am w, say

these are

sin . am u, cos . am u, A . am u,

which may also be written

sinnrau, cosam u, Aamu,

or as an abbreviation

sn u, cn u, dn u.

19. But in adopting the last-mentioned forms we introduce

a new mode of looking at the functions
;

viz. sn u is a sort of

sine-function, and cn u, dn u are sorts of cosine-functions of m ;

these are called Elliptic Functions

;

and we may develope the

theory from this p>oint of view. Observe that the fundamental

equation is u = F<f> or d(f> = A^ du : this may be written

d sin ^ = cos
(f>
A^ du, or since sin

<f>
= snu, this is

d sn u = cn u dn u du : say sn' u = cn u dn u,

moreover cn* u = 1 — sn’ «,

dn* u = 1 — ^* sn’ u,

and differentiating and substituting for sn' u its value, we find

cn' u = — sn u dn u,

dn' u = — Id sa u ca u,

and as above

sn' u = cn u dn u,

which five equations constitute a foundation of the theory.

Observe also that sn 0 = 0, cn 0 = 1, dn 0 = 1, sn {— u) = — sn u,

cn ( — ti) =’cn M, dn ( — u) = dn u.

Digitized by Google



GENERAL OUTLINE. 9!•] 20.

But this theory is already furnished by the addition-

equation
;

viz. starting from the equation F<f> -t- Fyft = F/j,, then

writing F<f> = v, = v (and therefore 0= am «, •^ = am c) we
have F/i = u + v ot = am (m -f ») : the equations which deter-

mine sin fi, cos fi, AfjL in terms of the sin, cos, and A of ^ and yjr

give the sn, cn and dn of u + v in terms of those of m and v :

viz. these equations are

sn (u + ») = sn w cn » dn c + sn o cn « dn M (-f-),

cn (m + 1>) = cn u cn o — sn u dn m sn v dn o (-r),

dn (u + v) = dn « dn » -r sn « cn m sn r cn o (-^),

where the denominator is

= 1 — A* sn’ w sn’ v,

and we may on the left-hand sides write rt—v instead of u -f- tJ,

changing in each of the three numerators the sign of the

second term.

21. These equations may be obtained independently: viz.

in any one of them differentiating the right-hand side in regard

to u and substituting for sn’ u, cn' u, dn' n, their values, we obtain

.a symmetrical function of u, v
;
hence the same result as would

have been obtained by differentiating in regard to v : the ex-

pression in question is thus a function of u+v; and writing

therein o = 0, w^ find it to be the sn, cn or dn (as the case may

he) of w -f- V ;
which proves the equations.

22. We thus see that F is an inverse function, the direct

function being sn
;
and that cn, dn are connected therewith as

the cosine with the sine. It may be remarked that there are

six quotients, sn -h cn, sn dn
;
cn sn, dn sn

;
dn cn, cn dn,

which are in some sort analogous to the functions tan, cot : if

all these functions had to be considered, appropriate notations

would be— ,
&c. 1

viz. = — w, &c.‘l . These are not required

:

cn \ cna cn / ^

it is however in some of the formula; convenient to have a

symbol for the single quotient sn -f- cn : and considering this
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as standing for sin . am -r cos . am, it is = tan . am, and we accord-

ingly write it as tn : viz. we have ^ = tan . am u, = tn u.° J cnu

23. In further illustration suppose that the theory of the

circular functions sine, cosine, was unknown, and that we had

defined Fx to be the function

/.

dx

Vl — a;*

Then taking the variables a:, y to be connected by the differ-

ential equation

dx dy

Vl -y’
= 0

,

and supposing that z is the value of y answering to a: = 0, we

have
Fx-^ Fy = Fz.

But the differential equation admits of algebraic integration

:

and determining in each case tlie constant by the condition

that for x — 0,y shall be = z, the algebraic integral may be

expressed in the two forms

X I —y' + y Vl — = z,

ary — Vl — a:’Vl — y* = Vl — z’,

so that either of these equations represents the above-mentioned

transcendental integral
;
and we have thus a circular theory

precisely analogous to the elliptic theory in fts original form.

But here the function Fx is the inverse function sin‘’a-, and

the last-mentioned two equations are the equivalents of the

equation

sin"'j! + sin"'y = sin"'z,

whence writing sin"'® = w, sin“'y = v, and therefore x= sin u,

y = sinv, z = sin (u v)

:

also assuming Vl — sin’u = cos u, and

therefore Vl - sin“t) = cos u, and Vl — sin“ (« + r) = cos (m + r),

the equations in question become

sin (m -f v) = sin « cos j; + sin v cos u,

cos (it + 1’) = cos 1/ cos t) — sin M sin i’,
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I.] QBNEBAL OUTLINE. 11

and it is clearly convenient to use these functions sin, cos in

place of F, denoting as above sin"‘.

In the theory of the circular functions we have an

addition-theory, which gives rise to and may be considered as in-

cluding a subtraction-theory: and this leads to a multiplication-

and division-theory: viz. we find from sin «, cos«, the functions

sin or cos mi, sin or cos — m; we have similarly for the elliptic

functions sn, cn, dn a multiplication- and division-theory. These

will be considered in detail; they are referred to here only for

the sake of the remark that there is for the elliptic functions

a “transformation-theory” which has no analogue in the circular

functions, viz. we determine in terms of the functions of u the

like functions with an argument and a new modulus \ in

place of the original k: the transformation is of any integer

order «, and there is, for each ^alue of n, a relation called the

modular equation between k and the new modulus X. And it

is convenient to notice that in the multiplication-theory the

sn, cn and dn of )i«, and in the transformation-theory the same

functions of
,
are fractions having a common denominator.

so that in each case there are three numerators and a denomi-

nator which come into consideration.

25. The circular theory gives rise to a numerical trans-

cendant tt, viz. ^ = ^31 41 5!). ..is a quantity such that sin ?= 1,

cos ^ = 0, ^ being the smallest positive value of the argument

for which the two functions have these values: and in developing

r TT

the theory from the integral I—, -
-— would be the complete

J \ I —X* A

function defined from the equation

TT _ f ' d.v

2
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12 QENEEAL OCTLINt [I-

Moreover the circular functions are periodic, having for their

common period four times this quantity, =27t: viz. we have

sin

cos
(w+27t)= «.
' ' cos

20. Corresponding to ^ we have in elliptic functions in the

first instance the complete function F^, also denoted by K,

viz. is a real positive quantity defined by the equation

ri d<f>

Vl — biu"^
’

or, what is the same thing,

f‘ dx

where K is of course not a mere numerical transcendant, but

a function of A: : .K” is such that we have sn = 1, cn.K’ = 0,

dn = Ic. Writing v = K, we obtain simple expressions for the

sn, cn, dn of « + K, and thence for those of « + 2K and u + 4A'

;

viz. it ultimately appears that the sn, cn and dn of m + 4/K are

the same as the sn, cn and dn of « respectively: or the functions

have a real period iK.

27. But the form of the integral suggests the consideration

of another quantity

d.e

this is a complex quantity transformable into the form

f' dx
. f

dx

J 0
* i, - /tv

'

f:

viz. K' being the same function of the complementary modulus

k' that K is of k, the value is = A" + iK'.

We have

sn {K + I/O =
J,

,
cn (/T+ iK') = ,

dn (/T+ iK') = 0,

and then forming the sn, cn and dn of « + /T+ iK

,

&c. it ulti-

mately appears that the functions of u -f 4 {K -|- iK) are equal
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to those ofM respectively: viz. there is a second period 4 (K+iK').

But as above seen 4A' was a period, and thus the periods may

be taken to be 4A' 4iA'' respectively—only it must be borne

in mind that K, K-\-tK' have, A', %K' have not, analogous re-

lations to the elliptic functions. This is the theorem of the

double periodicity of the elliptic functions.

Further theory in regard to the third kind of Elliptic Integrals

:

Addition of Parameters, and Interchange of Amplitude

and Parameter. Art. Nos. 28 to 31.

28. We may differentiate an algebraic function

sin
<f>

cos
<f>
R (sin’

<f>)
A {k, <p),

where R (sin* <fi) denotes a rational function of sin* ^ ;
and

thereby obtain an expression involving two or more terms

of the form . /,—it with different values of n.
(1 + n sin"

<f>)
A (k,

<f>)

Conversely, integrating such expression we obtain an equation

containing two or more terms of the form II (n, k,
<f>),

that is

elliptic integrals of the third kind with different jiarameters.

In particular there may be two parameters only; viz. these

being n, n', then we have either nn = fc* or (1 + n) (1 + n
)
= i'*

:

the resulting formulae are useful for the reduction of an integral

of the third kind to a like integral where the parameter is of

one of the standard forms cot’ — 1 + i'’sin’ d, — Id sin* 6.

29. There may be three parameters
; the theorem is in this

case a theorem for the “ addition of the parameters.” To explain

this, suppose that two of the parameters are — Id sin’y?, — Id sin’g’

(this, if p, q are taken to be real, is a particular aasumption,

limiting the generality of the result
;
but allowing them to be

imaginary, it is no restriction) : then the third parameter is

— Ai’sin’r, where the angles p, q, r are connected together by

that very relation which is the addition-equation for the integrals

of the first kind, Fp -k Fq — Fr = Q (rather it is, in the first in-

stance, Fp Fq + Fr = const., reducible to the last-mentioned

particular form) : the theorem then gives II (— Id sin’ r, k,
<f>)

in

tenns of II {—Id sin* p, k,
<f>)

and II (— Ai’sin’g, k,
<f>) ;

and it

is in this sense a theorem for the addition of parameters.
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14 GENERAL OUTLINE. ['•

30. The theorem leaths to an expression for an integral of

given imaginary parameter in terms of two integrals of real

parameter, one of them of the form — sin’^, the other of the

form cot“\ or — 1 + ^’’sin’X.

31. There is a further theory of the “ interchange of am-

plitude and parameter:” ditlereutiatiug the two sides of the

equation

II («, k,
<l>) =1^^ ^

in regard to n, and, after multiplication by a fafctor, conversely

integrating in regard to this variable, we obtain

y(l+«)(l +^')ll(n,l-,<^)

cxpres,sed as a sum of certain integrals in respect to n. Ex-

pre.ssing this parameter in one of the standard forms, for instance

n = — k^ sin'0, the integrals in regard to n become integrals in

regard to 6, viz. these are the elliptic integrals F{k, 6), E {k, 6)

and an integral of the third kiiul II [n, k, 6), where the para-

meter n is = — k' sin*^ : that is »i = — k“ sin’t^, n = — E sin'<f>.

We have a relation between the integrals II (a, k,
<f>),

II (n, k, 6
)

;

this relation [involving also F {k,
<f>),
E {k, <}>), F{k, 6), E {k, ^)]

is a form of the so-called theorem for the interchange of ampli-

tude and parameter : those belonging to the other two forms

of parameter n — cot'd and ji = — 1 -I- sin"6 are less elegant,

inasmuch as in the $ functions the modulus is k' instead of k.

The second and third kinds of Elliptic Integrals expressed in

terms of the argument u; new Notations. Art. Nos. 32 to 34.

32.

The introduction of u, = F^, as the argument in place

of If, in fact supersedes the consideration of the elliptic integral

of the first kind : by introducing u as the argument in the

integrals of the second and third kinds, we obtain

E {k. <!>) = (1 - E sn« w) du, n {n, k,
’
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which functions changing the notation might be called E {k, u)

and n {n, k, u) respectively. But it is found convenient to con-

sider somewhat different functions
;
viz. in place of the integral

of the second kind Jacobi consider

where E, K denote the complete functions EJe, F^k respec-

tively ; Zu is of course a function of k, so that its complete

. . K
expression is Z [k, it) ; it is = — ^,it E {k, u), differing from

E {k, u) by a multiple of it.

Zu = it(

38. As regards the third kind, the parameter is taken to

be = — A’ sn’ft (to meet every ca.se a must not be restricted to

real values) and the function considered is

n («, a) = f
J

fl

sn« cn a dn a sn’ii du

1 — Id su*a sn^i
’

[being of course a function also of k, so that its complete ex-

pression would be n («, a, A;)] : viz. writing n = — k' sn’o, this

is in fact a multiple of

/,

34. The advantage of the new forms is very great ; thus

the addition-theorem for the second kind of integral is

Zu + Zv — Z {u + v) = F sn u sn v sn (it -f v)

and that for the third kind gives in like manner the value of

n (w, a) -f- n (w, a) — n (« -f », «)

in terms of the functions of it, v,u + v: the theorem for the

addition of the parameters gives a very similar expression for

n (it, a) -I- n («, i>) — n («, a + b),

and the theorem for the interchange of amplitude and para-

meter is in fact a relation between II (it, a) and II (a, «).
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1C GEXEIUL OUTLINE. [I.

The Functions 0i<, Hu. The q-formulm. Art. Nos. 35 to 42.

3.5. From the function snit we derive a new function 0u
by the equation

*rr

{K, E denoting as before the complete functions F^k, EJc)

:

this

may be regarded as one of a system of four functions, 0u,

0 (m + K), 0 (u + iK'), 0 (tt + K+ tK’)
;
or writing

wfy*"gtw )

IIu = — ie ** © (u + tiir'),

the functions may be taken to be 0u, 0 (m + K), Hu, II(u + K).

36. The function Zu is at once expressed in terms of 0«
0'm

and its derived function 0'u
;

viz. wo have Zu =
0M

The function H (u, a) has a simple expression in terms of 0,

viz. we have

n (u, a) =
0'a

, ,«^- + ilog
0 (u — a)

0(u + a)

'

37. Writing herein m+ a for u, we have

n(«+a,o) = (« + a) log-^
;

and for the values a=\K, JfA", the function

n (u + a, a) is expressible in finite terms by means of the func-

tions logsnu, log enu, logdn?« respectively: the resulting equa-

tions give, after all reductions, the formulae next referred to*.

38. The functions sn u, cn u, dn u are found to be fractional

functions, the three numerators and the denominator being the

four functions above spoken of
;

viz. we have

snu = -^Hu-^, enu = H{u+K)-=r

,

\k V k
dnu= VA:'0(«+A')-j-,

where denom. = 0u.

* Hub IB not Jacobi’s method nor perhaps the most direct or natural \ra; of

obtaining the (ormnlie in question : but the connexion of the formuhe with the

expression for n(i<,o) is very noticeable.
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39. These functions H, 0 are in fact doubly infinite pro-

ducts
;

viz. writing for shortness

(to, to’) = 2mK +

[in, to') = [2m + 1) iT + 2m’iK",

(to, to') = 2mK + (2to'+ 1) ilC,

[in, in) = (2to -I- 1)AT+ (2to'-I- l)**^r'

;

then, disregarding certain constant factors, we have

Hu +
{

[m,m)}

H[u + K)=

e« = +
I («*,»»))

0(«-hA')=
1 K«Oi

where (except that in the first product the simultaneous values

TO = 0, to' = 0 are to be omitted) to, to' have all positive or

negative integer values, including zero, but under the following

condition, viz. taking /*, fi to denote each of them an in-

definitely large positive integer, fi being also indefinitely largo

in comparison with /*', so that /x' -i- fi = 0, then

to +/JL,

H-' » + m'.

^-1 ,, + M.

+/*'

for TO the limits are m = —

„ to' „ „ to' = -

„ TO „ „ TO = -

40. Giving to to all its values, and reducing by means of

the factorial expressions of sinar, cosar, the expressions become

singly infinite products of circular functions such as

7T
sin^ [u -t- 2m'iK’)

;

or writing = r, these are expressible as products or series

C. 2

Digitized by Google



OENEHAL OUTLINE.18 [I-

involving cos 2x, or the multiple sines or cosines of x, with co-

w_K-

cflScients which are functions of the quantity q, = e~
;

viz. we
have thus the ^-formulae which Jacobi obtains in quite a dif-

ferent manner (from a transformation formula, by writing therein

- for u, and taking n infinite), and which in fact led him to

the functions II and 0. The formulae are very remarkable

as well in themselves as from their origin, and the connexion

which they establish between Elliptic Functions and the theory

of Numbers : as a specimen take here the identity

[\ + 2q + 2q'+2q*+.. }*=l + 8

which not only shows that every number is the sum of four

squares, but affords the means of finding the number of decom-

positions.

41. The four functions ©a. ©(w-t-AT), Ha, 7/(« + A') con-

sidered as functions of , and ^ = ^^^h of them

satisfy the partial differential equation

(P(T . dcr

d?~
= 0.

This equation, not given in the Fundamenta Nova, but ob-

tained by Jacobi [Crelle, t. III. p. 306, 1828), is, in fact, an imme-

diate consequence from the expressions of the functions as scries

in terms of q (= e"”) and u
;
but it is also obtainable from the

finite expressions of these functions.

42. There is no proper addition-equation for the functions

II, 0 : the nearest analogue is the system of equations

ft/ ^ \
//’a 77'w

©(«-t-l')0(«-V) = -
,

II[u + v) II (u — v)
H'ufi'v — ©’aZT’u

0^0
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involving, it will be observed, the as well of u—v as of

u + v. But these formulae show, what follows also from the

double-product expressions, that these functions have a multi-

plication-theory
;
and the double-product expressions also show

that they have a transformation theory.

The Numerators and Denominator in the multiplication and

transformation of the Elliptic Functions. Art. No. 43.

43. We are thus, in the multiplication and in the trans-

formation of the elliptic functions, led to expressions for the

three numerators and the denominator of the functions of nu,

or of (ante, No. 24), in terms of the functions Zf, 0; and

by the aid of the above-mentioned partial differential equation

we obtain partial differential equations satisfied by the nume-

rator- and denominator-functions in question : thus, considering

the denominator only, and writing for convenience x = fk>iau,

a = Z-l-^, v = n, in the case of the transformation of the

order sn^^,\-j, but=n’in the ca.se of multiplication snn«;

then the denominator, considered as a function of x and a,

satisfies the partial differential equation

(1 - ax'+ X*) + (v - 1) {ox - ^

j/ (v — 1 )
x*2 — 2i' (a* — 4) .

(Jacobi, Crelle, t. IV. p. 185, 1829.) As regards the transforma-

tion formula, it is to be observed that X, qua function of k, must

consequently be considered as a function of a, and the expression

of 2 as a function of x, and of a directly and through X, is so

complex, that not only the equation is practically useless, but

it is difficult to verify it even in the simple case of a cubic

transformation : but as regards the multiplication formula, the

equation is very convenient for the deti'rinination of the actual

o o

\
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expression of « as a function of x and a, or, what is the same

thing, of sn« and k. The equation requires some change of

form to adapt it to the three numerators respectively : and the

resulting equations are in like manner practically useless for

transformation but very convenient for multiplication.

Concluding Remarks. Art. No. 44.

44. The foregoing outline is purposely very brief as to the

theory of transformation, and as to the ulterior theory of the

third kind of Elliptic Integrals
;
as to the.se it is completed by

the outlines prefi.xed to the chapters on these subjects respec-

tively, and generally the outlines or introductory paragraphs to

the several chapters may be consulted : as thus extended, the

outline is intended to cover the whole of the present treatise up

to the end of chapter xi., and also chapter xii., which contains

the reduction of the differential expression Rdx *JX to the like

expression with the radical in the standard form Vl — a:*. 1 — k‘a?,

as mentioned at the beginning of this outline. The remaining

chapters, xiii. to xvi., I regard as supplementary
;
the outlines

or introductory paragraphs will explain what the contents of

these are
; I only remark here that chapter Xiii., relating in

fact to Landcn’s transformation, belongs to the elementary part

of the subject, and might have been brought in at a much
earlier stage; the only reason for deferring it was the con-

venience of using the form of radical Va’ cos* -I-
6* sin’ (^, in-

stead of the standard form Vl — A*sin’<^
;
generally whatever

relates to the non-standard form of radical is given in these

supplementary chapters.
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CHAPTER II.

THE ADDITION-EQUATION: LANDEN’S THEOREM.

45. As already mentioned the addition-equation is the

integral of the differential equation

A<t> A^fr ’

(A^ = Vl — sin*^, &o.) the constant of integration, fi being

t he value of either variable when the other is put = 0. Of the

proofs which are here given several are only verifications of the

theorem assumed to be known : but the first one is a direct

investigation. The fifth proof (Jacobi’s by means of two fixed

circles) leads so naturally to Landen’s theorem, that, although

Ijelonging to a different part of the subject, I have given it in

the present chapter.

First Proof (Walton, Quarterly Math. Joum. t. xi. pp. 177—178,

1870). Art. No. 46.

46. Rationalising the differential equation, we have

d<f>*
— = — A’ (sin* ^ — sin’ •^<f^*),

or, as this may be written,

(cf^* - dyp-') (cos’ if>
- cos’ i/r)

= — A* (sin’ <f>d^^*
— sin’ (cos’^ — cos*'*^).

The left-hand side is

= — sin
{<f> + {d<f> + d^jr) sin

((f>
— yjr) (dtf>

— dyfr),

= - d cos (<fi + ^fr) . d cos
(<f>
— yfr).
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or putting * = cos
<f>

cos y = sin
<f>

sin and therefore

cos
(<f) + -\lr) = x — y, cos — = x+ y,

this is = — djd.

The right-hand side, omitting the factor — Id, is

(cos 0 cos tjr) (sin tf>d-<fr + sin ^d<f>)

X (cos — cos yjr) (sin (pd-^jr — sin ijrd<f>),

where the first factor is

= cos sin >yd<l> -t- cosi^ sin + sirup cos t/xislr + sin y/r cos-\lrd<f> ;

viz. writing this under the form

cos <p sin yjrdrf) -f cos yp sin (pdyjr -f sin
(f>

cos <p (cos*'^ + sin*'^) dyp-

+ sin cos {cos'(f> sir\'<j>) d<f>,

it is =dy + xdy — ydx
;

and similarly the second factor is

= — dy + xdy — ydx.

Hence, restoring the factor — fd, the right-hand side is

= [rfy* - - ydx)*],

or the differential equation is

dy’ — da? = Id [dif — (xdy — ydx)*\
;

(ly
viz. writing herein ^ = P>

- 1 = *’ [p’ - (y - px)*]

;

or we Lave

(y-P^r=f + J (1 -f), = P Wc' - 1) p'-hi}.

which is an equation of Clairaut’s form; or taking y as the

arbitrary constant, the integral is

y = 7* -t- V(^•’' - 1) 7* - 1,

that is

sin
(f>

sin yfr = y cos
(f>

cos
V'' + — 1) 7* — 1.
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Let ft be the value of corresponding to the value 0 = 0,

then writing 0 = 0, 0' = /t, wo have

7 cos /X
^
V(t’— 1) 7* -f 1 = 0,

giving 7*Z:’ (1 — sin’/x) = 7*A* — 7* + 1, that is 7* (1 — I? sin’/x) = 1.

or 7 =^1 whence
|

-
1) 7* + 1 = and substituting,

wo obtain

cos /X = cos 0 cos 0r — sin 0 sin ^rA/x,

the required addition-equation.

Second Proof (Jacobi, Crelle, t. vili. p. 332, 1832). Art. No. 47.

47. Assume a + b cos<f> cos yjr + c sin 0 sin

=

0,

then differentiating we have

(— b sin 0 cos0 c cos 0 sin d(f>

+ (— 6 cos 0 sin -f c sin 0 cos i/r) d^jr = 0

;

say this is Md^ + Ndyjr = 0.

But we have

Jf’ + (6 cos 0 cos i/r -I- c sin 0 sin 0r)* = J’ cos’0- + d sin’0-,

N* -f- (b cos 0 cos 0r -f c sin 0 sin i^)’ = P cos’0 -f c’ sin*0,

that is

J/‘ = — a* + b* cos’ yfr + c’ sin’ tfr =b’ — a’— (6* — c*) sin’0-,

K' = — a’ + b' cos’0 -f- c’ sin*
<f>
= b’ — a' — {b’

—

c*) sin’0,

and the differential equation thus is

<^0
,

^0' ..Q.

Vi* — a’ — (i* — c*) siu‘0 Vi* — a* — (i* — c*) siu*0 ’

viz. an integral of this equation is

a + b cos 0 cos i/r -f c sin 0 sin \Jr = 0.

But observe that the differential equation contains the single

6* — c’ '
. be

constant ^ j ,
the integral equation the two constants -

,
-

,
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24 THE ADDITION-EQUATION. [II.

which of course cannot be expressed in terms of
6*-c*

6*-o”
but

only in terms of this and an arbitrary constant, say ft. Hence

the assumed equation is the general integral of the differential

equation.

t* - c*
To complete the investigation write ^ = i*, and assume

^
= — cos fi, then tlie equation

^
= A*, or c’ = t* — (6* — a*) A’

becomes c’ = i’ (1 — A* sin’/i), or say c = — JA/i : substituting

these values of a and c, the equation becomes

— cos -I- cos ^ cos — sin ^ sin ^A/t = 0;

viz. we have

cos fi = cos ^ cos ^fr — sm(|> sin ‘^A/i,

as the integral of the differential equation^ = 0.

And it is clear that /i is the value of either variable corre-

sponding to the value 0 of the other variable.

Forms of the Addition-Equation. Art. Nos. 48 and 49.

48. We have

(cos /u — cos
<f)

cos yjf)' — sin* if> sin* A*^ = 0

;

or expanding and reducing

1 — cos‘<f> — cos'yjr — cos’/i -I- 2 cos
(f>

cos cos

— A’ sin’^ sin’ sin* /i = 0,

which is symmetrical in regard to the three quantities : hence

we have also

(cos if)
— cos

fj.
cos 1^)* = sin* /x sin’ ifr A’lp,

(coeifr — cos /A cos if>)’ = sin* ^ sin*
<f)

A’lfr,
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II.] THE ADDITION-EQUATION. 2a

mul extracting the square roots, it appears that the signs on

the right-hand side must be -I- ; we thus have

cos
(f>
— cosfi cos = sin /a sin yjr A<f>,

coayjr— cos fi cos (ft
= sin /a sin

to which join the original equation

cos fi
— cos (ft cos = — sin sin ifr A/jl.

49. From the rationalised equation, writing sin'/t= 1 — cos* ft,,

we obtain

(1 — A* sin*<^ sin*i/r) cos’/a — 2 cos ^ cos cos ft

= 1 — cos’(^ — cos*'^ — i* sin*^ sin’^,

that is

[(I — A-* sin*<^ sin*’^) cos /a — cos (ft cos i|r]’

= (1 - A* sin*^ sin*'^) (1 — cos* (ft
— cos* tfr

— A* sin*^ sin’i/r)

+ cos*^ cos*

which is easily seen to be

= sin* (ft sin* yfr A*(f> A’yfr ;

and then extracting the square roots, the sign on the right-

hand side is —
,
and we have

(1 — A* sin*<^ sin*^) cos ft= cos (ft cos yfr
— sin ^ sin yfr A(f> Atfr,

which gives the value of ft in terms of <ft and

Combining with this the equation

cos ft — cos ^ cos yfr = — sin (ft sin yfr Aft,

we have the value of Aft : and if from cos ft we proceed to find

the value of sia*ft, we have

(1 — A* sin*^ sin*'^)* sin’/a = (1 — A* sin* ^ sin* ^)*

— (cos (ft cos y^ — sin sin yfr A(ft Ayfr)*,

which is readily found to be

= (sin (ft cos yfr Ay^ -1- sin cos ^ A(ft)’

;

and extracting the square roots, the sign on the right-hand
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26 THE ADDITION-EQUATION. [II.

side is -f : we have thus the formulae

sin fjk = sin cos yfr Ayjr -f sin >fr cos

cos fi = cos
<f)

cos yjr — sin (j) sin yjr A<f> A^jr,

A/x = A(f> Ai/r — k* sin <p sin ijr cos
<f>

cos (-^)

where the denominator is

= 1 — sin* (j) sin*

And we have in like manner

sin
<f>
= sin fx cos Ai/r — sin yfr cos /x Afx, (^)

cos <j) = cos/x cos -v/r sin /A sin ijr Afx Ayfr, (-h)

A(f) = Afx A-\jr + A;* sin /* sin yjr cos fx cos (-r)

where the denominator is

= 1 — sin* jx sin’ ->jr.

And we may in these formulae interchange
<f>, ->fr.

(^)

(-)

Third Proof of the Addition-Equation (a verification).

Art. No. 50.

60. Writing the equation in the form

cos fx cosec
(f)

cosec - cot ^ cot — A/x,

then differentiating the left-hand side the coefficient of d<f> is

— cos /X cosec
<f>

cot
<f>

cosec i/r + cosec’ (/> cot

= -—n—=—r (<^os dr — cos u cos <f>),sin
<f>
sm yjf

' ^

which in virtue of the form

cos — cos /X cos
<f>
= sin/x sin

<f>
Ai^,

is
sm/x_

sin
(f>

sin
^

'

and similarly the coefficient of d-\^ is

Sin 9 em y ^
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il] the addition-equation. 27

so that omitting the common factor, the differential equation

becomes

d<pAyfr + = 0,

which is right.

Fourth Proof (Legendre, Traitd des Fondions Elliptiques,

t. I. p. 20, by a spherical triangle). Art. No. 51.

51. Consider a spherical triangle ABC, obtuse-angled at

C, such that the sides CB, CA are =
(f>,

respectively, and

c

that the cosine of the angle C is = — A/r. This being so, the

equation cos/i — cos^ cos^ = — sin0 sin'^ A/i shows that the

side AB is =fi (so that by sliding the constant arc AB, = p,

along the two fixed sides CA, CB, we obtain the different

values of
<f>, yfr which satisfy the relation in question). And

the other two equations cos
<f>

— cos p cos •^ = sin /i sin ijr A<f>,

and cos — cos /t cos ^ = sin /r sin A<^, show that cos A = A<f>,

and cosjB = A’^: so that the sides a, b, c of the spherical tri-

angle are
<f>,

\jr, p respectively, and the cosines of the opposite

angles A, B, G are A^, Ai/r, — A/i respectively.

Now considering the consecutive position A'B of the

side AB, and letting fall on AB the perpendiculars A'p

and B'q, the equation A’B' = AB gives Ap = Bq, that is

A A' cosA = BB' cos B, or db cosA da cos B=0] viz. this is

the differential equation d<f>A->^ + d\lrA<f> = 0.
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28 THE ADDITION-EQUATION. [II.

Fifth Proof (Jacobi, Crelle, t. III. p. 376, 1828, by two fixed

circles). Art. No. 52.

52. Consider two fixed circles as shown in the figure, and

suppose that we have

Radius of larger circle = R,

„ smaller „ = r,

Distance OQ of centres = D.

Write moreover

A R-D r

whence easily

Digitized by Google



II.] THE ADDITION-EQUATION. 29

viz. k and
fj,

are given functions of R, r, D: and it may be

noticed that

(li + U) r

Imagine now a variable tangent AB, and assume

IA0L = 2<(>, LB0L = 2^,

then letting fall on AB the perpendicular OG, we have

£AOO = Tr — {<j> + -\lr), LQOG = <j)
—

-*lr;

and thence projecting A 0, OQ on Q3f, we have

R cos -t- i/r) + D cos ((^
— i/r) = r

;

that is, (iZ -t- B) cos ^cos-^ — (_R — D) sin ^ sini/r = r,

or what is the same thing

cos if) cos ifr — sin <p sin A/t = cos fi,

which is the integral equation.

Also AM* = AQ^-MQ'
= R' + B* + 2DR cos 2if) — »*

= (R +BY-j^-iDR sin*<f>

= [{R + I))*-,^]A^<f>.

And similarly

Now varying the tangent let the new position be A'B')

then clearly AA' : BB' =AM : BM ;
that is

d<f> :
— = AM : BM,

or .

AM'*' BM̂
= 0 -

It j r ” >

viz. substituting for AM, BM their values, we have the required

differential equation

# 4.^-0
Aif) A>fr

corresponding to the above integral equation.
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30 THE ADDITION-EQUATION. [II.

Landen’s Theorem, from the foregoing geometrical figure.

Art. Nos. 53 to 5G.

53. Suppose that the largo circle and also k remaining

constant, the small circle is varied; that is, let r,D vary subject

to the foregoing condition

it is readily shown that the radical axis of the two circles re-

mains unaltered. In fact, taking the centre of the larger circle

as origin and the axis of x vertically downwards, the equations

of the two circles are

**
-fy — .fi* = 0,

{x - Df -t- y’ - *•’ = 0,

and thence for the radical axis

2Da:-.B*-Z)*-fr’ = 0, or x= > ~ •

which is constant. In particular the smaller circle may reduce

itself to the point F (one of the limit-circles of the original

two circles, or what is the same thing an antipoint of their

points of intersection, viz. that antipoint which lies within the

smaller circle): and then taking the distance OF=h, W'e have

or what is the siime thing

h{l{^ + D*-r*)=D{I{‘-^F).

54. Reverting now to the original two circles, if in the

figure L -d OG = a> {= tt —
(f>
— ifr) and LQOO = x(—’P~ '^)> then

obviously A A' cos AO = A Mclx, that is E.2d(f> sma> = AMdx;
or what is the same thing 2AGd(f> = AMdx', hence the equa-

dd) ddr
, , , .

tion 2 1/
~ “

7717
completed into

d(f) _ d\fr _ dx
AM~~ BM^UG'
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II.] THE ADDITION-EQUATION. 31

and observing that AO* = AO* — Off* = £*- (Z) cos ^ - r)’, the

c<iuation is

d(f) _ — d-ijr _ dx V(Z? -I- J))* — r*

“ A^, yjO
~ 2V cos x^rj*

'

We have OP = , and thence OP =D— — , whence from
cos X co.s X

the triangle OAP, in which the angles A, P are =
<f> + \lr — iw

(that is
2<f> — x — i’’’’)

and hv + x respectively, we have

^~c^ -cos(2<^-x)=P : cosx;

that is D cos — r = — P cos (2^ —

which is an integral equation corresponding to the above differ-

ential equation

d<f> _ dx (P + D)* — r*

^ (^’> 2 V — (I) cos x~'"'T

Writingnow/. ..IP0= then;)^=0 — ^TT, 2<^—

—

0-l-ATr,

and the integral and differential equations become respectively

Psin d — r = Psin (~<f>— 0),

and _ dO-JlD-^ Itf^*
*

^(k,<f>) 2 VP" — (Z) sin 0 — r)’

.5.1. Suppose now that the smaller circle reduces itself

to the point F, then retaining 0 to denote the angle in this

state of the figure, we must in place of I), r write S, 0 ;
and

the equations become

S sin 0 = P sin (2if> — 0),

d<f> _ d0{R + B)
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32 THE ADDITION-EQUATION. [II.

or writing herein
ji’

X sin 0 = sin (2^ — 6),

where in virtue of the relations k* — . find X =
-f, ,

we
I ii -f o) ri

have fc*=

;

{It + a)*

,
and therefore also ^ and X =

1 +X 1 -hit"(1+X)‘

5G. The result would have come out more simply by con-

sidering ab initio the smaller circle as replaced by the point F-.

viz. the chord AB would then pass through the point F, and

the points M, Q each coincide with F: but it was interesting to

consider the theory in connexion with the original figure of

the two circles.

The theorem gives, it will be observed, a transformation of

the difiercntial expression into an expre.ssion

•

A {k, ^ A (X, ey

involving a new modulus X; viz. considering X as derived from

1 — k'
k by the equation X = -— ,

then we have between the two
A As

variable angles
<f>,

6 an integral equation X sin 0 = sin (2<^ — 6)

answering to the differential relation ^ ^ :® A {k,
<f>)

A {k, 6)

or since if>, 6 vanish together this last is equivalent to

= + e).

The integral equation gives X tan 0 = sin 20 — cos 20 tan 6,

that is

sin 20
tan 6 =

X-)- cos 20
’

whence sin 6 =
sin 20 sin 20

Vl + 2X COS 20 -f X‘ ’ V(1 -f- X)* - 4X sin’0
’

observing that
4X = f and 1 -f X =

(1+X)

sin 5 J (1 k')

l+k‘

sin 20

Vl — i"* sin’0

7 ,
tliis is
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II.] THE ADDITION-EQUATION. 33

Sixth Proof of the Addition-Equation. Art. No. 67.

57. The rationali-sed equation in <p, yjr, may be written

sin’/i — cos‘(f> — cos*ifr -f- 2 cos
(f>

cos ifr cos

— .sin’/i (1 — cos’</>) (1 — cos'yfr) = 0;
viz. this is

k'* sin*|i — A’/a {cos'(f> -t cos’i/r) 2 cos fi cos <p cos

— E sin’/i cos’<^ cos'ijr = 0,

or as it may also be written

k'* sinV . — A'/j. cos'ij)

-b 2 {
• cos

fj,
cos

(f>
•

}
cos ^}r

-f- {— A‘fi • — k’ sin*/i coa’tf>j cos'yfr = 0 ;

viz. the left-hand side is a quadriquadric function of cos
<f>,

cos yfr:

say tlii.s is w, and represent it successively under the forms

A' -f 21) cos -f- C" cos‘<f>, and A 2.C cos yfr+C cos'y/r, where

of course A', B', C are given functions of cosi/r, and A, B, G
arc the like given functions of cos ^ : we have

;j-^-=2((7'c0S<^-(-i?’).
d cos <p

but the equation m = 0 gives {O' cos (^ + Ef = {B’* — A' C’),

whence = 2 fB'' — A'C', or what is the same thing
d cos

<f>

^=— 2sin<^VB'‘— A'C'.andsimilarly =—2sinyjrVB'—AC:

wherefore the diflerential equation is

VB' - A'C sin
<f> d<f> -{ fB‘ — AC sin yfr dyfr = 0 ;

we have

S'—AC= cos‘fi cos'^ H- {k'' sin’/i — A’/t cos'<f>) (A’/x -p k' sin’/x cos’^)

= Psin’/xAV

f (cos’/x -I- krk’' sin‘^ — AV) cos'(j>

— E sin’/x A'fj, cos*(f>,

c. 3
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34 THE ADDITION-EQUATION. [II.

and coefficient of cos'<p is

1 — sin’/x -I- kfk'' sinV

-1-1- sin*/x — k* sin*^,

= (fc^-zt’^sinVAV;

wlience the value of B* — AC is

sm'fjL A'fi [i-'* (i-* — k"*) cos'<f> — k^cos^(j>],

= sinV A’/a
.
(1 — cos‘<f>) {k"^ + k' cos’<^),

= .sin’/x A’/x sii\‘(f> A’(^

;

that is

'J li* — AC = sin /X .sin ^ A/x A<^
;

and similarly

‘fb’* — A'C' = sin /X sin A/x ^rfr,

whence the foregoing result is

d<f) A>|f -I- A^ = 0,

the required differential equation.

It may be remarked that this, like the third proof, ante,

No. .50, is a verification, the difference being that we use the

rationalised integral equation instead of the original irrational

equation: and that they are each of them closely connected

with the second proof, ante, No. 47, although this is less in the

form of a verification.
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CHAPTER III.

MISCELLANEOUS INVESTIGATIONS.

The present chapter contains, in relation to the first and

second kinds of elliptic integrals, various matters not very

closely connected which it w'as convenient to give here before

going on in the following Chapter IV. with the main theory

:

the contents will be seen from the headings of the several

articles.

Arcs of curves representing or represented by the elliptic

integrals E (k, F {k, (j>). Art. Nos. 58 to G2.

58. The elliptic integral of the second kind occurs

naturally as representing the arc of an ellipse ; viz. taking the

equation of the ellipse to be ^
~ satisfied on

writing therein x = asm<j>, y = b cos
<f>

(observe that
<f>

is the

complement of the eccentric anomaly, or say of the parametric

angle) : we then have dx = a cos
<f>

d(p, dy= — b sin : and thence

ds' = (a* cos’</> + 6’ sia‘(f>) d<j>^

= [a* — (a’ — 6*) sin’^] d<f>',

Va’ - 6’

so that taking k = — (= excentricity) we have

ds = aA {k,
<f>) d<f>,

and thence s = aE {k, <j>),

the. arc being measured from the extremity of the major axis :

the length of the quadrant is = aEJe. In the case of the circle

3—2
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3G MISCELLANEOUS INVESTIGATIONS. [III.

the length is a/?,0, —aA-Tr; and, as the minor axis diminishes, k

increases and diminishes, until ultimately for the indefinitely

thin ellipse i- becomes = 1, and s = aE^l, = a.

59. We ma}’ also represent the arc of the hyperbola: taking

X* V*
the equation to be expressing x, y in terms of

the piirametric angle ji, that is writing ,r = a sec w, y = b tan u,

we have rfx = a sec u tan it du, dy — h sec*« du, and thence

ds = -
’I
V// + d‘ sin’u,

cos (t

which does not immediately express the arc s by means of an

elliptic integral ; to obUiin can expression of the required form

as.sume

a h
k = and therefore k' =

Va*+i’ \'a^ + b*

(A- = reciprocal of the eccentricity); and consider an angle tf>

connected with u by the eijuation t&n u = k' tiui tf>

:

the expres-

sions of X, y in terms of <j> are

X = — A<f>, giving dx --

cos
(f)

°

y = bk' tan tf>, „
' dy =

alA sin d<^

codtf) A<^
’

bk' d(f>

cos^tf

[A(^ is written for shortness to denote A {k,
<f>)

and so presently

Ftf), Etj) to denote F{k,
<f>),

E {k,
<f>)

respectively] : and thence

cos’‘</) A</>
’

a value which of cour.se may also be obtained from the fore-

going expression of ds in terms of du.

We obtain by differentiation

d . ^<f> tan 4> = + A-^)

and couvcnsely, integrating from zero, we have

AA tan
<f>
= A-'”

- Ar” Ftf> + E<j>.^ ^ JCOH(f>A<p
^
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III.] MISCELLANEOUS INVESTIGATIONS. 37

whence substituting for tlie integral and observing that
^

>

we have

s = * {tan — F<f>\

,

where (see figure) s denotes the arc AM measured from the

vertex A of the hyperbola.

60. As regards the geometric signification, observe that for

the point M on the hyperbola, the construction of the angles

M, is as follows, viz. drawing the lines NQ, Fli,=b and bk'

respectively, aud joining the.se with the point M, then /_Q= u,

/_E=
<l>.

To obtain a dilfereut construction for the angle
<f),

with centre C and radius CA (= a) describe a circle, and

drawing from M the tangent MT, and the radius CT, we have

MT' = X* + y’ — a* = ^ y*, that is MT —
;

hence

measuring off from T the di.stance TG = b, and joining GM,
the angle MGT is = <^. Moreover the perpendicular CZ on
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\ a* y*
the tangent at M i.s given by —

I*
>

substituting

for X, y tlieir values in terms of
<f>

we fitul CZ=a cos(f>; hence

if 1' be the intersection of this tangent with the circle, we

have also /_YCZ = <}>. Further MZ^ = x' + y" — a' cos' (j>

;

or

since x' + y' = a' + b' tan'<f>, this is

MZ' = a’ sin’<^ + b' tau'<f>,

= a' ta.n'(j> ^os'<f> + ,
= o* tan*^^ — sin’ ,

a' tan'
<f>^

k'^
A'<f>;

or finally MZ= ^
tan

<f>
A^.

Hence the formula is

s = MZ+"^ {k''F<f> - E<i>),

or what is the same thing

MZ- MA =
^

{E<f> - k''F<l>),

the quantity on the right-hand side being

viz. it is in fact

= ak
'cos’ (j)

A(f>

it is clear positive,

A.s
<f>

approaches !)0” the point M goes off towards infinity,

and the j)oiiit Z tends to coincide with C

:

hence writing

= 00°, we obt.'un

IC-IA = l{E,-E'F,)

(where I represents the point at infinity on the curve or the

a.symptote) a.s the expre.s.sion for the excess of the length of

the a.symptote over the arc of the curve.

Gl. It is less obvious how to find a curv'e the arc of which

shall exprc.ss the elliptic function of the first kind. Legendre
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remarked that in the particular case k = the solution was

afforded by the lemiuiscate (x* + y’)’ = a’ (x* — y*). Observe

that the curve is a horizontal figure-of-eight, the extremities

being given by y = 0, x = ±a, and the branches at the origin

being inclined to the axis of x at angles = ± 45°. The equation

is satisfied on writing therein

x = a cos Vl — J .sin*<^,

y = sin cos <j>

(in fact these values give x' + y* = a* cos'
<f>,

x' — y' = a' cos*
<f>)

.

and hence determining the element of arc ds, ='^dx‘ + dy', we
have

dx = (- i + 8*“’
<t>) <^4>. ^ (1 - 2 sin*<^) d(f>,

whence attending to the identity

sin’<^ (- 3 + sin’(^)’ -I- i (1 ~ i am'<f>) (1 — 2 sin°<^)* =

we have

or finally

whence

' 1 — J sin’<^

ds = -^ d<t>

V2 Vl — i sin*<^’

s denoting the arc measured from the extremity x = a, y = 0

((^ = 0) to the point belonging to the value
(f>

of the parametric

angle. The same result may be obtained by means of the

polar equation r* = o* cos 26, introducing instead of 6 the

variable ^ connected with it by the equation sin 0 = ,^2 sin 0.

At the origin we have
<f>
= 90°, and the length of the quadrant

= - F f-LV
V2 ‘ W2/

of the curve is thus — j-.

.

Digitized by Googlc



40 MISCELLANEOCS INVESTIOATIONS. [ill.

It thus appears that the leminiscate serves to express the

1
function F of modulus

/o’V2

02. For the general repre.sentation of the function F ijc,
<f))

Legendre used the sextic curve

X = h sin (1 + \m siu’^),

y = bh cos tf> {I + m — cos'<f>),

where, k being the inotlulus, the values of h, m arc

1 - 2X;* ,U*
/i =

and it is then easilv found that

/F
s = F (fc, (j>) — sin

<f)
cos ^ A {k, tf>),

where observe it is not the arc s, but the difference of this arc

and an algebraic function, which is equal to the function

F{k, (p): and the solution is not an elegant one.

6.3. A very beautiful solution was obtained by Serret

(improved upon by Liouville), Liouv. t. X, 184.5, pp. 2.57 and

.3.31: and I have found that the theory atimits of further

development : I re.serve the whole investigation for a sub-

8e<[uent chapter, remarking here that Serret’s solution was

suggested to him by a different treatment of the leminiscate
;

viz, the equation of the curve is satisfied by

^ + i

'

1 + i
y = a

z — z

1 + 3-'

values which le.ad to

11 j 1 7 1 2a’ , , 7 a 'J’ldz
(in = (U + ay = = az

,
or as = —

,

1 + s V 1 + 3*

so that the arc is expressed as a multiple of

(h

Vi

/ (h

•\'l -f?’
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III.] MISCELLANEOUS INVESTIGATIONS. 41

which is an expression in the nature of an elliptic integral.

To compare with the former solution observe that we have

j ^ V2
cos<^ =

sin tf>
=

Vl + z'

1 — Z"

Vl+'s*’

ami thence

d<f> =

V 1 — .1 sin (6 = — ..
,^ ^ V2Vl + z‘

d<f>\^2(l+z>)dz

1+z*^
ami

2(/z

v^l — ^ sin'^ Vl + z*

2[arch of the Functions F{k,
(f>),

E {k, ipi). Art. Nos. 64 to 70.

64. To gain some idea of the march of the functions Fif>, E<f>,

we may, taking
<f>

as abscissa, trace the curves y = , y = A<f>:

the areas of these curves included between the axis of y and

the ordinate corre.sponding to the abscissa
<f>

will of course re-

present the values of the integrals F<f>, E<f>.

65. If k = 0, then A<f> = 1, and the curvc.s y = A<f>, y = ,

each reduce themselves to the line y= 1. Here of course

F(f> = E<f) = <f>.

If k > 0, < 1, which is the standard ca.se, then the curve

y = A<j> is an undulating curve lying wholly below the line

y = l, and the curve y = an undulating curve lying wholly

above this line. As
(f>

increa.ses from zero the functions F(f), E<j>

each continually increase from zero, the function F<f> being

alway's the larger; and it is moreover clear that for a given

value of
<f>,

as k increases the function F<f> increases and
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42 MISCELLANEOUS INVESTIGATIONS. [III.

E(f) diminishes, and conversely as k decreases then F<f> dimi-

nishes and E<f> increases. In particular k = 0, F, ,
= A' = ^tt.

and also A, = Jtt, so that as ,k increases from zero, or K
increases from Jtt, and E, dimini.shes from Jtt.
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III.] MISCELLANEOUS INVESTIGATIONS. 43

6G. We see moreover that for each of the functions F<f>, E<f>

{k havinjj a given value) it is sufficient to know the values of

the functions for values of <j) from 0 to Jrr : in fact we have

F{—a) = — Fa, Fir = 2F^, and then

Fa = Ftt — F {tt — a), = 2F, — F (ir — a),

giving the values from a = tt to and

Fa = Ftt + F{a — 'iT), = 2F^ + F (a — ir),

giving the values from a = tt to 27t
;
and so on. Or what is

the same thing we have in general

F {mir ± a) = 2mF^ ± Fa,

and similarly E (nnr + a) = 2mE, + Ej.

67. If i*= 1 there is an entire change in the form of the

curves, viz. the curve y = A<j> becomes y = cos <^, which is a

curve lying as before wholly below the line y=l, but which,

instead of being included between this and the line y = 0,

passes below the last-mentioned line, and is in fact included

between the lines y = -fl, y = — 1. And the cur\'e y =
1

becomes y = , , where the ordinate becomes infinite for
^ cos (p

= we have then between the values ^ir, |7r a branch lying

wholly below the line y = — 1, the ordinates at the limits being

= — X

,

then from to .^tt a like branch lying wholly above

the line y = -(- 1, the ordinates at the limits being each = -f oo
;

and so on.

Observe that in this case E<p^J cos <pd<j> = sin tf>, so that

E^ = 1, and, completing a former statement, we may say that

as k increases from 0 to 1, E, decreases from ^ir to 1.

We have also Fd> = (---^ which admits of finite integration,^ jeos^ “ ’

viz. we have F<f> = log tan (Jtt -f ^<^),

(observe that log tan is here the hyperlwlic logarithm of the

tangent,) and in particular F^ = x (a value agreeing with the

form of the curve), so that, completing a former statement, we
may say that as k increases from 0 to 1, F, increases from

to »

.
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44 MISCELLANEOUS INVESTIGATIONS. [ill.

(58. Tills ca.se (corresponding to tlie extreme walue k = I

of the modulus) Is one of great interest : writing

M = F<f) = log tan (^TT +

we have <f>= amplitude u (for this particular value ^•=1), or

as' it is convenient to write it
(f>
= gud u (read Gudcrmannian

of u, after Guderraann, by whom the fonn wa-s specially con-

sidered), and then sin
<f)

— sin gud ii,

cos <}> = A<f> = cos gud u,

or as we may for shortness write them

sin<^ = sga, cos
(f>

— = eg u
\

viz. we have here the two new functions sg, eg, replacing the

sn, cn, dn of the general case.

09. We have in a subsequent part of the subject to consider

K' '*1'

the expressions ,
and q = e a

;
and it is convenient to notice

here that
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0II II K={-7T, A" = X

,

A"

V2 >
11 II II II II

fc=l; 1! 8II II II0II

viz. as k increases from 0 to 1, diminishes from oo to 0 andA
q increases from 0 to 1 . The annexed figure shows the curve

K'
x-=k, y= -p

.

It shows also a construction which will pre-

sent itself in the sequel : viz. considering an abscissa x - k, and

the abscissa; a; = X, a: = 7, which belong to the double ordinate

and the half-ordinate re.spectively
;
then if F, F' be the com-

plete functions to tha modulus 7, and A, A' the complete

functions to the modulus X, we have it is clear

r_K'
l'~ K' K~ A'

70. Conversely if X be such that ^ = 2

less than k
;
and similarly if 7 be such that ^

K
K
K

, then X is

F'
= yr ,

then

7 is greater than k : and not only so, but if, starting from k, we

repeat this process of the double ordinate so as to obtain a series

of moduli X, X,,X, ... then we approximate very rapidly to a

modulus = 0 : and similarly if, starting from k, we repeat the

proce.ss of the half-ordinate so as to obtain a series of moduli

7, 7i , 7j
. . .then we approximate very rapidly to the modulus = 1.

And the like conclusions follow if n denoting any number

greater than 1 (say n a positive integer = or > 2), we have

A' A"
A " A'

’

A"

K
V
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Properties of the Functions F{k, </>), E (k,
(f>),

but chiefly the

complete functions Ff, Ef. Art. Nos. 71 to 7S.

71. Starting from the expressions

y ik, ,
E (k, </,) = |a (k, 4,) d<p,

when k is small we may under the integral sign expand in

a-sceuding powers of k, and then integrating from 0 to Jir

by the formula

/:

• «"j. JJ.
1 . S...2n — 1 7T

sin =
0 2.4...2/1

obtain the formulie

Kk = i-rr (l + k^ + J k* + 2!;
k> +•••).

or what is the same thing, introihicing the notation of hyper-

geometric series

f (,, A 7, -) - 1
+

’
; ^

these are Ff= . F( A, J, 1, A-*),

EJc = !i-rr.F{-l i, l.n

72. Suppose k is very nearly 1, k' is small and we have

A: = 1 — \k"‘-, to find the value of FJc we may w'rite

d4>
FJc = [

*' -
7
=.--:^ + f

*

Jj,-, vcos’^ + k'‘ sin*</> J 0 Vcos’
<l>
+ k'^ sin’(/>

’

where e may bo taken an indefinitely small quantity which is

nevertheless indefinitely large as regards k'. This being so,

writing in the first integral — u in place of
(f>,

since through-

out the iutegial u is small, the integral becomes f ,° ^ ./.Vr + iV
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.... 1
,

ke + \/k* + . . . , . .

which IS = log , or neglecting k m regard to

1 ‘’A-e tie

k€, this is log^ ,
or say = log . In the second integral

k' sin
<f>

is throughout small as regards cos
(f>,

and the integral is

r*»-* d<f>

, ,
cos ^

’=/;

which is = log tan (^tt — Je), or what is the same thing =log- .

Hence we have

= log
I' + 7

>
= l“g

I'
>

as an approximate value of F,k, k being nearly equal to unity.

73. The functions F {k,
(f>),

E {k, <p), considered as func-

tions of k, satisfy certain differential equations.

Write for shortness E, F to denote the functions E{k,
<f>),

F {k,
<f>),

and A to denote A {k, (p). Then

dE fk ain*(pd(f> dF _ Ck siii' <pd(f>

dk'"~J A • dk ~J ’

and writing herein sin’ </> = ^ (1 — A), the two expre.ssions de-

pend on the integrals
> j

A<f<^, ^

:

the two first of the.se

are F, E respectively : as regards the third of them, we have

d sin
<f)

cos
<f>

1-2 siu’</> + k’ s\n*<f>

dp A “ A’
’

or what is the same thing

,j d sin p cos p A‘ - k' _ ^ k‘
^ dp A “^“A”

and thence by integration

Cdp _ I „ Id sin p cos p
J A’”i?^ A-^’A
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48 MISCELLANEOUS INVESTIGATIONS. [•».

The foregoing expre.ssions of
,
thus become

dE 1 .

7//t= h

dF ^ ^ h -sin
<f)

CO.S (/>

dk~kk''^ ^ k'^

whence also

F= E- k
ilE

dk ’

and in particular if <#> = ^7t, and E, Enow denote the complete

functions .Eli*, F^k, then

Let E', F' denote the complementary complete functions

EJe, FJe ;
then observing that ^ ^ l*ave

^^-,^k^E'-FF').

74. If we now consider the expression EF' + E'F — FF',

and form its differential coefficient in regard to k, this (sub-

stituting therein for
,
&c. their values) is found to be = 0

:

the expre.ssion in question is therefore = a constant
;
and if to

find its value we take k to be indefinitely small, then writing it

under the fonn [E— F)F + E'F, and observing that F' is equal

4
to the indefinitely large quantity log ^

,

but that this is multi-

plied by the indefinitely small quantity E—F, = — \trF, and
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consequently that the product is = 0, there remains only the

second term E'F, which is = itr (viz. for k = 0, we have E'= 1,

F= Jtt) ;
we have therefore

EF' + FTF-FF' = i^TT-,

or writing this at full length,

i',/t . F^k' + EJc’ . Ffi - FJc . FJc' = Att,

a relation between the original and complementary complete

functions EJc, FJc, EJc, F,k'. [Later on, instead of these quan-

tities we write K, K\ E, E', and the equation is

EK' + EK-KK'=\ir:\

75. The equation in question has recently been proved

in a very elegant manner by Mr J. W. L. Glaisher, Messenger

of Mathematics, t. iv. 1874, p. 95. Writing for convenience

it’=c, k'^ = c, and u = EF'+ E'F— FE, then from the defini-

tions of the functions.

Jj \ 1 - a:M - cxM -yM - c'f

where, and in what follows, the integrals in regard to x, y re-

spectively are taken from 0 to 1. Differentiating with regard

to c, observing that dc = — dc, and reducing, we have

2
dw _ rj’y — + cx* - eg' -t- cFy* — cx'y

^

5c “ JJ (1 _ 1 _ (1 _ ca;M _ c'y>)»

where the numerator is

dxdg.

hence

= (l_x«)(l_cy)-(l-y*)(l-e.r‘);

dll fdl —x^dx̂ r_(l-cy)f/y

fdl —
_?/ d// f (1 — cx*) dx~ ‘

(1 -cy)* J (1 - (1 - c.r»)'

= j)f —p'q suppose,

,
rV 1 - a:* dx _ f (1 - cx*) dx

^(l-ca^)^ (1 - a:’)^ (1 - caO*

and p’, q arc the like functions with c in place of c.
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We have

_ r[(l — X*) + (a:* — cx*)) dx

~j
(1 - x’)* (1 - ex”)*

f x*dx

“''^iVl-xM-cx*

/— X \1 x^\ rvl — x*dx

where the second tenn, taken between the limits, vanishes
;

and we have therefore 2
' +/»,= 2j>. And similarly q' = 2j>';

hence

= = 0 ;

hence u is independent of c, and putting c = 0, we find that its

value is = ^tt, and the theorem is thus proved.

70. Reverting to the equations

F = E-k^, E =

and from these eliminating successively E and F, we find

ixs.^F \-'Rk‘ dF sin.^cos0_
^ k dk

^
A*

'

d‘E \ — Id dE „ sin
(f>

cos „
^

5X-’' ^k^ dk'^^ A
^

and in p.articular if <^ = \ir, and E, F now again denote the

complete functions EJe, FJe, then

ddF 1 - 3^•’

^Z-F-0
did"^^ k dk

(PE 1 - k'

dk‘ k dk "•
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We have consequently a particular solution of each of the

differential equations

.

1 ~ dy
,

dk^ ‘ k dk

„ ,t.d^z \—k'‘dz -

and we can in terms of the foregoing expressions obtain the

complete integrals of these equations; for this purpose, trans-

forming to a uew variable connected with k by the equation

+ k'* = \, it is easily found that the transformed equations are

n _ z.'*i 4. L~ ^y _ „ - 0
dk'^ i-'

’ y~^’
dk'

n 7 -t\
(\+k'*\dz

where the new equation in y is as regards k' of the same form

as the original equation in regard to k : hence, FJc being a

particular solution, another particular solution is FJc ;
and we

have the general solution y = aFJc -1- a FJc. And moreover,

observing that the ecpiation in E is satisfied by the value

it appears that the equation in z must be

satisfied by the value z = k'‘ viz. this is

= k'*{aF^k + dF^k’} +

reducing by the formulm

^Jc
dk

j^^(E^k-k'^F,k),
dk'

j^^(E^k'-EF,k'),

this is z = aEJc-\-a! {FJc' — EJc): where, instead of a, a’, wo
may of course write y8, ^ ;

we have thus

y = a.FJc + o!FJc',

s=/8Z:/--t-/9' {FJc'-EJc'),

4—2
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'

as the complete integrals of the differential equations in y, z.

And more generally the equations being

n l.*\ .

sin <f>coa(f>

^ k dk A*

,, , dL'‘z 1 — dz sin <6 cos d> .

a - !.•)
jii

+

—

M + ‘— A
-®

then, to obtain the complete solutions, we must to the expres-

sion for y add the term F {k,
<f>),

and to that for z the term

E{k,<f>).

77. To obtain developments for FJc, EJc when k is nearly

= 1, or k' is small, observe that FJc is a solution of

t\, dy ^

-dk'-y^^'

having, when k' is small, the value log p : and conversely,

that a solution of the differential equation sati.sfying the fore-

going condition will be the required value of FJc. Such a

solution \a y =P log -p Q, where P — 1 and Q are each a func-

tion of the form Bk'* + Ck'* + .... Substituting in the differen-

tial equation, we have first

rf’P
.
1 - .%•’^

~k' dk''
P= 0,

and then

and the first equation then gives

p = i-P,^’r+-2!^^;p‘-P..., = p(i, I i,r).

Represent this for a moment by

1 4 mje * "P 7)1Jv * + &c..
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and assume for convenience

Q= — — ...

Substituting these values, the equation to be satisfied is found

to be

r it" k'* k'^ k'*

1IIo - 8m, -12m, — IGm, - 20m, ...

+ 4m, + 8m, + 12m. + ICm, . . .

+ 2 + 2m, + 2m, + 2m, + 2m, ...

— 2m,yl, — 12m,.d, — SOm^..!, — 56m,j'l^ — ..

+ 2m,.d, + 12w^l,+ 30m,.d, + 5Cm,.d^ ...

— 2m,.d,— 4m,J,— 6m,.d,— 8m,J,— 10mj.d, ...

+ fim,yl, + 12m,^l,+ 18m,.^l, + 24m,vl, ...

+ 7»,J,+ w,.d,+ w,.i-l,+ v\A^...
viz. this gives

2— 4w, — 4m,.^1, =0,

6m, — 8m, — 16m,.d., + 9m,.d, = 0,

10m, — 12m, — 3C7/i,.d, + 25m,.4, = 0,

14m,— ICm, — 64»n,i'l, + 49m,.^l, = 0,

&c., &c.;

or, obseiTing that 4m, = 1, lGj/i,= 9m,, 3Gm, = 25m,, &c., we

have
2— 4m, = 4m, ..(4,,

6»n,— 8m, = 9m^(A,— AJ,

10m, — 12m, = 25m, (.^1, - AJ,

14m, — IGm, = 49m, (A^ — A^,

&c., &c.

;

6 -
I
= 9 (^.-^,),=|,

10-|" = 25(^,-^), =|.

14-^ = 49M.-JJ,=^,

&c., &c.

;
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or finally
l.i2 ’

^>“
1 . 2

^
3 . 4

’

i

2 2
^'•“1.2 "^3. 4 '5. 6'

>1
2_ 2 _2^

&c., &c.,

and thence

F,k = log ^

r.3\5» ,./ 4 2 2 2 \

+ 2».4*.g‘ 1.2 3.4 5.6J

+ &c.,

where the limit of the subtracted scries is = log 4, or 1‘38629...

From this we obtain EJe by the formula

EJe = k’'FJc - k' (1 - k”)^ F,k

:

leading to

E.k=l

+H'”4-o)

+ &c..
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where in the several subtracted series, the numerator of the last

fraction is 1, but the other numerators arc each 2 : the limit

of the subtracted series is as in the former case = log 4, or

r38629...: hence in the two ca.ses respectively the successive

4,

partial series converge to log^, — log4, = — logA;'. We have

thus the values of F^k\ EJe for k nearly = 1, corresponding in

a remarkable manner to those previously given for the case of

k small.

78. Kummer has given, Crelle, t. XV. (1836) p. 83, the

following general formula; in relation to hypergeometric series,

2cF(Jot, J. 5
*)

= F(a,/9,i(a + /S + l), i(l+?)}+^{«.Ai(«+/3+l). i (!-?)}

;

2djF(i(*+l),K^+l). I 3’}

= i?’{a,/3,K« + /3 + l). K1+3)}-^’KA ii^+^+1), i(l-3)l;

where c, d are constants to be determined : as regards c, \mting

q = 0, we have at once c = jP{a, y9, J (a + /3 + 1), ^) : as regards d,

imagining the series on the right-hand side expanded, taking

their difference and dividing by q, and then writing ^' = 0, we
find 2d=F' {a, y3, + ^ + 1), i], where in general F' (a, /3, y, m)

dj

denotes -y-F (a, /3, y, x), writing therein x = m.
ax

Taking now a = /3 = i ;
and q = l — 2k', whence

we find

2cF{i, I i, 5*) = F{k. i, 1, r) + F(i, i. 1, k'). = {F,k'+F,k) -

^dqFil I i y*) = F{1 i, 1, k") - Fii. 1 1, k'), = {F,k'-F,k) -^
in virtue of the expression for FJe, F,k' obtained ante. No. 71.

Hence, conversely

F,k = McFil i, i. q') - dqF{l I 3, ^)\,

i7r{cF(i, J, i. q*) Jr dqF {I, J, ], q')] ;
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viz. tlio complete functions F^k, FJc are here expressed by
means of two series, each proceeding in powers of gr, = 1 — 2^^.

Writing k = k' -.=

,

whence y = 0, w’e find

V 2

dd>

i sin*<^
’

and with a little more difficulty =\tr -=r F^ and we

have thus the expre.ssions for FJc, FJc given by Jacobi, Fund.

Xova, pp. 67 and 68.

The Gudermannian. Art. Nos. 79 to 8.5.

79. It has been already remarked that, for k = 1, the

function F[k, <p) bocomc.s = log tan (^tt + and that instead

of the general function am u, we have the gudermannian gd u,

giving ri.so to the two functions sin gd u and cos gd u, or say

sg « and cgu. We have in regard to these a theory correspond-

ing to that of the functions of ama (sn«, enw, dna), discu.s.sed

in the following Chapter: and it is convenient to consider in

the first instance the special case in question, k= 1.

80. Starting from

F<h = log tan (Jtt + ^<f>)
= u,

where as a definition <j>=gdu, or what is the same thing,

we have

u = log tan {Itt + i gd m)
;

e” = tan(Jir + igd«)
1 + tan igda _ cos igdu + sin ^gda
1 — tan^gda cos ^gda — sin igda

1 + sin g«l a _ cosgda

cosgdu 1 — singda’
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sin gd u or’Sg i

and

cos gd w or eg M = ^

e* - e~“ — t sin i'« sinh It

~ cosh It
’
= tanh «,

e“+e-“’
“ cos ia

*

1 1 1 = sech u.

c“ + e-“
’

cos iu
* ~ cosh u

’

(where sinh = i(e“ - c-“), and cosh it, = i (e“ + e'“). ‘denote the

hyperbolic sine and cosine of u

;

and similarly tanh w and

sech It denote the hyperbolic tangent and secant of it).

It may be added that

cg’tt + sg’M=l.

and further gd'w = eg u, sg u = eg* it, eg' u sg u eg it,

jilso sg tu = i tan it, eg tu = sec u.

81. The equations may also be written

sgit = — » tan lit, sin iu = i tgit,

1 . 1

eg It =
cos ta

tgit = — i sin tu,

cos tu =
eg It

tan tu = t sgM

;

(ter « denoting tan gd u) which may also be arrived at as follows,

vil considering the angles 0, ^ connected by the equation

cos 0 cos </) = 1 ,
or as it may in various forms be written,

sin <^
= — t tan 0,

1
sin 0 = i tan (f>,

1
cos 0 = —— .

,

cos 9
tan0= I sini/).

cos 6 = —
a ,

' cos t/

tan ^ = — i sin 0,

td^
then ws0d0 = iixc'<i>d<f>, that is or

0 = i log tan {{v + i<#>)

;

whence assuming
<f>
= gd« we have 0 = iu, and thence the fore-

going relations.
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82. Wc easily obtain tlie addition-equations

8g(« + r) =.sg«sgy, (-r)

cg(u-t-t;) = cgucg!.', (-^)

where denom. = 1 + sgu sgu

;

viz. if for a moment e“ = a, e’ = then

«’-l 2a /9*-l 2^
iS’+r

and substituting these values, the e.vpressions for sg(M-|-t?),

/ s a’lS* - 1 , 2
cg{u + v) come out respectively : which

proves the formulce.

83. To deduce the equations from the general formulae for

sn (« + v), cn (u + v), dn (u + v), (see next Cliapter,) observe that

putting k = 1, and consequently sn = sg, cn = dn = eg, the.se be-

come

sg (m -h r) = sgu eg*e -f sg a eg’ u, (-=-)

cg(u-t-v) =cgMCgv^— egnsguegesge, (-^)

where denom. = 1 — sg’u sg*y.

Here in sg(«-f v) the numerator is sg«(l — sg*i>) + 8gy(l— sg’w),

which is = (sg!t + sgy) (1 - sgu sgy), and in cg(u-f v) the nume-
rator is = cgu egy (1 — sgu sgy), and the denominator is

= (1 -t-sgusgy) (1 -sgu sgr); whence, throwing out the factor

(1 — sgusgy), we have the formulae in question.

8-t. It is easy to derive the formulae for the sg and eg of

the sum of any number of functions. Writing for convenience

sgu = a;, cgu=Jl^\ =x', sgy = y, cgv=JT^, =/, the
foregoing fonnulae may be written

sg(u-f y) = x-t-y, (-r)

cg(u-fy) = xy, (-=-)

where denom. = 1 + xy ;
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III.] MISCELLANEOUS INVESTIGATIONS. 59

and then introducing a new angle w, and writing sgw — z,

cgw = z
,
we find

sg(« + v+w)=x + y+z + xyz, (^)

eg (it + « + w) = xyz, {¥)

where denom. = \
-\r xy + xz + yz \

and so when there is a fourth angle w, sgw = t, cgw = t', we have

sg(tt + v+w + w) = a: + y + 3 + t+ xyz + xyt + xzt + yzt, (-^)

eg (m + y +w + w) = x’y’z't', {¥)

where denom. = 1 + xy xz + yz + xt -k- yt zt xyzi ;

and so on, the law being obvious.

85. If the angles of all ofthem =?/, retaining x to denote eg «,

and putting for x its value = ^(i + «)(! — x), we have

sgnit = i{(l + a:)"-(l-a;)"}, (-=-)

cgnu= (l + a;)l"(l-<r)J", (-)

where denom. = ^ {(1 + a;)* + (1 — a:)"}

;

and observe that, n being even, the expressions are rational, but

n being odd, the numerator of cgnu contains the factor J\ — x*.

The formulas are valuable for their own sake
;
and they afford

very convenient verifications of formulie relating to the general

functions sn, cn, dn : viz. putting in these 1c— 1, they must of

course reduce themselves to the far more simple formulae for

j
sg. eg.

The foregoing values of sgw, egu, give

«’“+ 1 e’“ + l
’

that is
6""*' =

e" + I
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60 MISCELLANEOUS INVESTIGATIONS. [III.

and again,
24iCe“— e““) _l+sinut cos iMi‘+ sin ^wi

e“ + e~“ ' cos ui ’ cos ^ui— sin ^ ui
’

1 + tan ^m _

1 — tan i Ml
’

that is = tan (Jtt + iui),

or what is the same thing,

i gd M = log tan (Jtt + ii/i)

;

with which compare tlie original equation

u = log tan {\ir + i gd m).

If in the firet of these for u we write
^
gd u, it becomes

0 g^«) = log tan (Jw + igdu),

that is t gd 0 gd = «,

a remarkable property of the function gd u
;
there is no ana-

logue to this as regards the general function amu.
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CHAPTER IV.

ox THE ELLIPTIC FUNCTIONS Sn, CD, dn.

W E now commence a systematic development of the theorj'

of the elliptic functions properly so called, the functions sn,

cn, dn.

Addition and Subtraction Formulae. Art. Nos. 86 to 93.

8G. The fonnulae are

sn (u + v) = .sn « cn » dn v + sn p cn m dn u, (-r)

cn (w + r) = cn « cn w — sn k dn u sn t> dn v, (t-)

dn (u + r) = dn li dn D — sn u cn u sn v cn v,

where denominator

= 1 — Z:’ su*u sn*e;

and
sn (u — r) = sn It cn V dn e — sn V cn u dn u,

cn (u — p) = cn u cn w + sn it dn u sn v dn c, {—)

dn (m — i’) = dn « dn D + sn u cn u sn o cn v, (-r)

with same denominator

= 1 — sn*n sn’e.

As remarked in Cliapter I., these are gis’en by the addition-

equation, or they may be deduced from

cn’it = 1 — sn’u, dn’tt = 1 — su*u,

sn'it= cn « dn M,

cn'?t= — snitdiiit,

du'it= — sn It cii It.
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02 ON THE ELLIPTIC FUNCTIONS sn, cn, dn. [iV.

87. Putting for shortness snu = x, sn ti = y, these are

sn{u ±v) = X Vl — y’ Vl — ±yVl — Vl — XV, (-h)

cn (m ± r) = Vl — ic* Vl — y’ T ay Vl — k’x‘ Vl — l/y*,

dn (« + f) = Vl — iV Vl — + i-’ay Vl — x’ Vl — y’,

where denominator

= 1 - kVi/\

88. Represent for a moment the last-mentioned numera-

tors and denominator by A + A\ B ± R, C ±C, and D, viz.

xl = X Vl — y’ Vl — A-’y", .4' = y Vi — A-*x*

B = vr^* B’=-xy Vl - Av vr^Ay,

c = vr^y vi-A-y, c' = - AVy vi^ vr^,
= 1 - AVy’

,

then we have evidently

BD (a + f) -l- sn (m — t>) = 2A, (--)

sn (tt + «) - sn (u — i’) = 2A'. (--)

cn (« + t^) + cn (m — v) = 2B, (--)

cn (a + «')
- cn (u — «') = 25', (--)

dn (m -V) -1- dn (u -f v) = 20. (--)

dn (» - du(w — *0 = 2C, {--)

where throughout

denominator = D.

89.

But there are other formula? depending on the pro-

perty that the rational functions A'— A'*, B* — B^, C'—C*
contain Z) as a factor. In fact writing

P = ^-y\

Q = \— a? — y* + AVy*,

.ff=l-A*x*-A’?/* + A’x’y’,
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IV.] ON THE ELUmC Fl’NCTIONS sn, cn, (In.

we have A*-A' = PD.

• I? -B'*= QD,

C'-C'* = RD-,

and thence sn (u + v) sn (u — ti) = P, (^)

cn (m + v) cn (« — u) = Q, (-)

dn (it + ti) dn (u — v) = R, (-)

whore denominator = D.

I write down at full length the first of these as it is a

formula of frequent occurrence,

sn (« + v) sn (m — v)
— (sn’ it — sn*v) -f- (1 — k' su’w sn’t?).

90. We may deduce a variety of other formula', for instance

[1 + sn (it + f)] [1 + sn (m - 1’)]

= (D + 2^+P)-Z);
where the numerator is

1 — + 2x Vi — 2^ Vl — k'x/‘ + a:’ — y*,

= (Vl -y* + a:

91. To complete the theory we consider the cxpre.s.sions

,s=vi^vr:v.vvr=y Vl-i:y, S'= -k''xy,

r=.T Vl -iv vr^, T =-y vr:^vr^
c/=x Vi^Vl^^^, yVT^’Vi^^.

It then appears that each of tlie functions sn, cn, dn of

u±v can be expressed in a fourfold form as follows

:

r) =
zl + ^’ P IT+ U' T-r

sn (u + " D ~ A-A'"~ B-B' ~C-C
B + B' U-U’ Q S+S'

cn (it + r) =
D A-A^^'B-B' ~c-c

dn(u
C+C" T + r S-S' R

+ t>) =
D ~ A-A'''B-B' C-C
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with the like formulie changinjj .simultoneously the sign.s of v,

A', B, C, S', T', IT. Any equations obhiined by comparing

clififerent values of the same function arc of course identities:

thus we have ^ n > — A'' = i'Z) as

above, &c. Again

{n + B )(C- C) = D{S+ S'), {B - B) {G+ €') = D{S- S'),

or what is the same thing,

BC - BC = DS, - BC + B'C = DS', &c„

with various other identities.

92. By selecting the proper c.Kprc.ssions wo obtain at once

formula; involving diflfereut functions of u + v and u — v re-

spectively : thus let it be required to find the product

sn (« + c) cn (it — r)

;

these are expre.ssions for the factors involving B — B' in the

denominator and the numerator re.spectively, viz. we have

sn (« -I- v) cn (it -v)= ~ jj- .

=
D ’

or what is the .same thing, the value is

sn It cn « (In v + sn v cn v dn it

1 — i’’ sn“ It sn* w

Similarly,

cn (it + f) sn (it - r)
- —

- ,

and by combination of these formulm, we obtain

‘>fT
sm [am (it + v) + am {ti - c)] = ,

2U'
sin [am (it + «) — am 'u — r)] = “

.
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93. Altliough the formula! are so numerous that they

cannot be remembered, and in the manner just explained any

one of them may be obtained with extreme facility, yet for

convenience of reference I reproduce the whole series of 33

formulae given Fund. Nova, pp. 32—34. We have throughout

denom. = 1 — A* sn’u sn’y.

(1) to (21).

sn (« + v) + sn (it — i;) = 2 sn It cn w dn v. (-)

sn (it + v) + sn (u — v) = 2 cn It cn i;, (-)

dn(M+u) +dn(u— It) = 2 dn It dn li, (^)

sn (u + ») — sn (m — v) = 2 sn u cn It dn it, (^)

cn (m — r) — cn (it + v) = 2 sn M sn « dn u dn v, (^)

dn (it — r) — dn (it + v) = 2A* sn « sn li cn It cn v, (-)

sn (it + v) sn (w — v) = sn’it — sn’i), (-)

1 + A’ sn (it + v) sn (it — v) = dn*i; + A* sn’it cn’ii, (-)

1 +^ (it + u) sn (u — v) = cn’i) + sn’it dn’ii. (^)

1 + cn (u + v) cn {u — v) = cn’it + cn’r, (-)

1 +dn(u + ii) dn(M — d) = dn*it + dn’ii, (-)

1 — A* sn (it+ r) sn (it — i;) = dn’it + A’ sn’ii cn’it, (-)

1 — sn (it + v) sn (it — v) = cn’it + sn’v dn’it, 'H
1 — cn (it + 1>) cn (it — li) = sn’it dn’ii + sn’ti dn’it, (-)

1 — dn (it + v) dn (it — v) = A* (sn’ it cn’ i; + sn* li cn’ «). H
{1 + sn (it + ti)) {1 + sn (it — »)} = (cn 1? + sn It dn i;)’.

jl + sn (it + »)} {1 T sn (it — f)} = (cn it + sn V dn it)’, (-)

(1 + A sn (u + li)} (1 + A sn (if — i')] = (dn V + A sn It cn n)’,

}1 ± A sn (it + ii)) (1 + A sn (it — li)
j
= (dn u ±k sn v cn u)’, (-1

{1 ± cn (if + «)} (1 ± cn (it — d)} = (cn It + cn li)’. H
{1 ± cn (it + v)j {1 + cn (it— li)} = (sn It dn li + sn li dn it)’ . (^)

C. 5
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(1 ± dn (« + »)} {1 ± dn (u— v)}

{l ± dn (it + !>)) (1 + dn (it— d)}

sn (u + v) cn (it — v)

sn (u — 1>) cn (it + v)

sn (it + v) dn (it — t;)

sn (it — v) dn (it + v)

cn (it + d) dn(it — »)

cn (u — v) dn (m + v)

sin {am (it + r) + am (it — i;)}

sin (am (it + v) — am (it — v)}

cos {am (u + e) + am (u — »)}

cos (am (it + w) — am (« — e)}

(22) to (33).

FUNCTIONS sn, cn, dn. [iv.

= (dn It + dn «)*, (h-)

= (sn It cn K T sn « cn it)’, (-^)

= snit cn It dnu + snt; cnu dnu, (-^)

= snit cnu dnu — snu cnu dn«, (4-)

= snit dnw cnu + snu dnu cnit, (4-)

= sn It dn It cnu — sn« dn« cnu, (4-)

= cnu cnu dnu dnu— A’’ snu snu,(4-)

= cnu cnu dn It dn u+ snu sn u, (4-)

= 2 sn u cn u dn u, (4-)

= 2 sn u cn u dn u, (4-)

= cn’u — sn’u dn’u, (4-)

= cn*u — sn'u dn’u, (4-)

The Periods ^K, UK'. Art. No. 94.

94. The theory of the periods depends on the equations

1
sn 0 = 0, sn K =1

,

sn (K + iK') = ^

,

cn {K+iK')='^

dn(A"+iA")=0;

cn 0 = 1 ,
cn A” = 0

,

dn0=l, dnK = k',

wliere K, K' arc the complete functions Fk, Fk'.

To prove these observe that writing

_ I"*
dx

“ ~
Joy/1 -x\l- iV ’

we have snu = f, cnu = Vl — f*, dnu = V'l-t’^,
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whence writing f= 0 we have the first triad of formula:, and

writing f = l the second triad. For the third triad, writing

f = ^ ,
we have

.'o Vl - a:* . 1 -

1

dx

‘(HI

J,

and to transform the integral we write s=0;
,

whence

X =

dx =

1

Vl-fcV’

k'*zdz

or multiplying

_ 1

k’z

1 _ vr-*v
Vl-l-v k'sJl-z''

dx idz

i
“

\^i Ha H??’
so that the integral is

('

\L vr- ?: 1 - H’ ~
’

and the value of u is =K + iK', Hence writing u = K +il{\

^ — observing that the value of Vl~f’ is

k'.

I V1-/.-V
5—2
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68 ON THE ELLIPTIC FUNCTIONS sn, cn, dn. [IV.

viz. that it is = ,
we have the required formulae

+ = cn(K + iJi") =~. dD(K + iH'') = 0.

Property arising from the transformation. Art. No. 95.

95. In the foregoing relation between x and z, write for

a moment a: = sin<^, z = sin;n;, the differential equation is

d<^ _
Vl — k' sin’i^ Vl — siu*;^;

’

whence, assuming sin(^ = sn(y, k), sin;^ = sn(M, k'), this is

dv = idu, or we have v = iu + const. But we have simultane-

ously a: = 1, z = 0 ;
and for a;= 1, v = K, and for z = 0, u is

= 0 : hence the constant is = K, or we have v = iu +K •. con-

sequently x = sa{iu-\- K, k), z = sn (?/, A;'). Substituting in the

integral equations between x, z, we have

sn {hi K, k) =
dll («, tc)

’

cn (iM + K, k)
— ik' sn (m, k')

dn {u,~k’)
’

dn (i'h + K, k) =
k' cn {u, k')

dn («, k')

which arc equivalent to the equations obtained in the next

art icle.

Jacobis imaginary transfoi~mation. ‘Art. No. 9G.

96. Write sin <6 = t tan i/r, whence also cos d> = — - ; , and^ cosy

sin y = — 1 tan </> ;
con.sequently d<p = ,

!»nd

d<j)

\ I — P »ni(p

id'^

\ 1 — k'^ sin’y
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Hence, putting sin
(f>
= sn (v, k), sni^ = sn («, k'), we have

dv = idu, or since v, u vanish together v = iu; that is

sin
<l>
= sn (I’w, k), sin = sn («, k').

The integral relations between fp- give

sn (tu, k) =
i ^ n (m, k '

)

cii {u, k')

cn (»'«, k)
1

cn («, ic)

'

dn {iu, k)
dn (u, 1c)

cn (tt, k')

It may be observed that in this transformation writing

(f,
= ill we have ^ = gd u. It is to be further observed that

writing sin 'jr = y, and as before sin we have

= = *

Vl-y’ Vi'-il-V’

that is - = k'z, which exhibits the relation between this and

the transformation in the preceding article.

Functions of u + (0, 1, 2, 3) K + (0, 1, 2, 3) iK'.

Art No-s. 97 to 99.

97. It is easy from tlie foregoing values of the sn, cn, dn

of K and K + %K' to obtain the values given in the following

table ; for instance we have

sn (« + /f) = sn K cn u dn « h- 1 — k'‘ su’ A' sn'u,

= cn « dn M dn'ii,

= cn M -=r dn u

;

sn (u — F) = — cn u dn «, &c.

Similarly finding sn (a + A' + I’A"), and in the resulting

formula; substituting u — K for u and reducing, we have

sn(« + i‘A’); and so in the other cases.
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Functions of «+ (0, 1, 2, 3) K + (0, 1, 2, 3) iK'.

+ 0A’ +K + 2ir + 3jr

0Q U enu (-7-) -sn M - enu (.7-)

enu -i' Bn u (.^) - cn u i' sn tt (-T-)

dnu (-) dnu (H-)

denom.sduu denom. = dnu

1 (-) dnu {-7-) -1 (4-) — dnu
-t dnu (-r) -ik (^) i dnu {-r) ik (4-)

- ik cn u (-=-) ak' en u
( 7 ) -ikenv (.^) ikk' en « (-i-)

deDom.==/: 8nu donom.si; enu denom. I- sn u denom. = i enu

sn u cn tt (-r) - 8D U - en u (-^)

-cuu k' sn u (4-) enu - Ir' sn u (-T-)

- dnu -i-* (-) -dnu -k (4-)

denom.=dnu denom. = dn u

1 (-H dnu (H-) -1 (-) - dnu (H-)

t dnu {-T-) ( + )
-• dnu -if (4-)

ik enu - ikk' sn u it cn u (-T-) -ikk snu (4-)

donom. = enu denom.=::I.-cnu donom. snu denom. si enu

where the arrangement hardly requires explanation : the table

shows for instance that

sn {u + iK')= 1, (-)

cn (u + iK’) = — t dn «, (-)

dn (u + iK') = — ik cn w. (-)

where denom. = k saw,

it sometimes, as here for dn (w + iK'), happens that there is

in the numerator and denominator a common factor k, this

is of course to be omitted.

98. The table, writing therein m = 0, gives the values

of the functions of mK+ vi'iK', In particular, where there

is a denominator k sn m, the functions become infinite : it

is necessary to attend to the ratios of the.se infinite values,

and the convenient course is to wTite — = I, where I i.s

k sn u

regarded as a definite infinite value. The tabic thus gives
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sn iK' = I,

cn iA" = - il,

(In xK' = — xkl,

sn 3tAT' = I,

sn(2iT+ iK')=^~ I,

cn (2/r + iK) = il,

dn(2A'+ xK') = -{kI,

sn(2A' + 3«A’)=- I,

cn 3tA' = il, cn (2A + 3»A^ = — il,

dn3«A"= ikl dn(2A' + 3iA”)= iki.

W<3 may from these reproduce the original formula: which

involve u
;
thus

, snitf— !;/*) + / cnwdnu
,(« + .A)= 'sn

I

— kl* sn u _ 1

— sn’u ’ A: sn tt
’

and so in the other cases.

99. The table shows that the functions have 2A, 2A' as

half-periods : we in fact deduce

sn (w + 2mA+ 2m'iA’) = (—)" sn u,

cn( „ „ ) = (-)’"^'cnu,

dn( „ „ ) = (-)"' dnw;

whence taking m, m each even it appears that 4A, 4A' are

whole periods
;

viz. that increasing the argument by

4mA -1- 4mVA',

the functions are severally unaltered.

Duplication. Art. No. 100.

100. Writing v = u, we deduce the functions of 2«, or say

the duplication-formula:. We have

sn 2u = 2 sn u cn u dn u, (^)

cn2» = cn*u— sn’udu’M, =1 — 2sn*u •f^’sn’M, (-r)

dn 2m = dn’u — A,-* sn*u cu’m, = 1 — 2A,-’ sn’w i’ sn‘u, (-:-)

where

dcnom. =1 — A,-*sn‘«;
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or if for convenience we wTite

sn « = ar,

cn M = Vl — **,

diiM = Vl —

then tlie formulse are

sn2it = 2a;Vl— a;*Vl — L*x‘, (^)

cn 2a = 1 - 2,c’ + iV, (^)

dii2a = l -2^V + ^•V, (h-)

where denom. = 1 — A-V.

It may be abided that

1 — cn 2m= 2a:* (1 — A*a:*), =2 sn’u dn*M, (-^)

l + cn2«= 2(1— X*) , =2cn*«,

1 — dn 2m = 2A-’x’ (1 — x*), = 2A’ sn*M cn*M, (-r)

l+dn2M= 2(1-AV)
,
=2dn’«, (-=-)

the denominator being as above 1 — A*x* or 1— A-’sn*M. And
we thence deduce

811* M = 1 — cn 2m, (-r)
«•

cn* M = dn 2u + cn 2u, (-h)

dn’M = A'’ + dn2M + A* cii2m, (-r)

where denom. = 1 + dn 2m.

IHmidiation. Art. Nos. 101 to lOG.

101. In the expressions for the functions of 2m, writing

instead of m, we liavc the functions of u expressed in terms

of those of \u, and from these equations can obtain the ex-
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pressions of the functions of Jk in terms of those of u. Thus,

writing for a moment x= snjM, we have

snu = 2a:V'l—

—

(-r)

cn M = 1 — 2x* + l^x', (-r)

dn M = 1 — 2^•’x* +

denom. = 1 — l^x*.

The last two equations may bo written

(1 — cn «) — 2x* + (1 + cn «) x' = 0,

(1 — dnu) — 2A’x* + ir* (1 + dnu) X* = 0,

and from these eliminating x* we have a?, that is sn’^^/, ex-

pressed rationally. Obtaining from it the expressions of cn’^u

and dn’Jw, we have

sn’ Jm = dn u — cn u, (-7-)

cn’ Jtt = A'* (1 -1- cn u), (4-)

dn*Jm = A'* (1 + dn u), (4-)

where denom. = A"* + dn u — A* cn «.

102. But, ante No. 100, it appears that wo have also the

expressions

sn’ = 1 — cn «,

cn’ = dn M -t- cn u,

• dn’^u = A'* -f- dn tt -I- A’’ cn u,

where denom. * 1 + dn u.

In passing to the expressions of sn^«, cn Jm, dnj«, the

radicals must of course be taken with the proper sign.

We deduce the following special formulas:
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on = cn = dn =

iK
1

'Ji+e

vp
Vi + iy

VF
j

IK
1

ViTiP

V/F

~Vi + i'
VF

iK+ iK'
I tVF

-i'Jk'
\/i-v Vi-F

iK+ iK' vrrp
•VF
Vi~F

«Vf

\iK'
i

yJk

Vi +i

Vi
vr+i

K+\iK
1

Vi
ivr^i

Vi
ViTi

\iK'
i

"v^ Vi
-vrri

K+^iK'
1

yJk

fVrTi
Vi

-VfTi

kK+iiK'
V2Vi

l-iVF
V2 Vi

^(VT+F-iVlTF)
V2

\K+\iK' _I+iVi
V2 Vi

VP
- iVl+F + tVl-F)
V2

iA'+JiiT'
V2 Vi + A - Vl - i)

~
V2 Vi

1

-^{ViTF+tVrVFj

}A'+ \iK'
V2Vi‘'^^ + * + ‘''^l-i>

i-iVii

V2 Vi
j

1
vr+i' - < Vi - i

J

where for the last set of formulte we may substitute

:

sn* = cn*=s dn2 =

iA'+JiA”
1

(i + ii-')
I'i'

i
F(i'-a:)

{A+jiA" ti'

i
F(F + ii)

IA'+S'A:' l(i-a')
it’

k
F(F+ti)

1

ik'

k
F(F-ii)
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103. We find

sn (« + ^K)

75

sn (u + iiK')

1 k' sn M + cn tt dn u

Vi + fc'
l-(l-/t') sn”!*

’

1 dn M + (1 -1- k') sn u cn H
_

-JC+ k' cn it + sn M dn « ’

1 (1 + k) sn It 1 cn u dn u

4k 1 -f- X sn^u
’

1 /(I + k) sn u + i cn M dn u

vx- V (1 + k) sn w — i cn u dn u

/^ + tk' — ik' sn M -f cn it dn u

/ k 1 — X (X -1- ik') sn’u
’

fk + ik' cn w + (X — ik') sn u dn « _

V k dn + X sn u cn u ’

sn (u

where the first expressions are those given at once by substi-

tution in the general formula for sn (u + ti).

104. To identify the two expressions of sn(u+i.ff), writing

for convenience sn it = a;, observe that in the first expression

the denominator is 1-(1-^')V, and multiplying this by

1 + (1 - k') tc‘, the product is 1 - 2*’ + iV. Anc^ tlm second

expression the denominator is Vl — x” + a; Vl — which

multiplied by — gives —

= same value, 1 - : reducing in this manner the two

expressions to a common denominator, the numerators would

be found to be equal. Similarly as regards the two expressions

of sn(u + \K+ we have

{1 - k {k + ik') x*}(l - * {k - ik’) *') = 1 - 2A:V + fcV,

and

{ + kx 'J\ - *’) (Vl^F? - kx -J\-A •

= 1 - k'x' - k‘x‘ (I - a^), = same value.
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[IV.76 ON THE ELLIPTIC FUNCTIONS sn, cn, dn.

As regards the two values of sn (u + ^K'), we have

{
(1 + 1) a: + i ((1 + k)x- i \/r^ vr^^}

= (1 + it)* + (1 - a^) (1 - = (1 + kaT)\

and the identity is at once established.

105. We deduce without difficulty from the second formulae;

sn*(u + JA”)
1 dn It + (1 4- k') sn u cn «

1 + &' dn u + (1 — sn u cn u
’

sn’(tt+ iiK')
1 (1 + k) sn u + t cn u dn it

k (1 + k) sn M — 1 cn u du It
’

sn
'/ . 1 ir 1 •r"\ k + tk cn tt + (i — li-) sn It dn M
(M+lA; + iiA; =—;— =

;' ^ ^ ' k cn It + (A + )
sn u dn It

to these may be joined the formulae obtained by considering

ii + JA”, &c. as the halves of 2it + Ai &c., sec No. 102, viz. we
thus have

sn’ (it + J^T)
dn 2« + k' sn 2u

k' + dn 2u ’

sn’(u + i»A’')
1 i sn 2it + i dn 2it

k ,sn 2it — i cn 2u
’

sn’(it+JA-+iiW') =
J,

k cn 2it + tk'

cn 2u + ik' sn 2 it

‘

106. Observe that in the first expression the denominator

multiplied by 1 — i-*x* is

k' (1 - *V) + 1 - 2i-*x* + ^•*x^

= 1 + it' - 2^V + (1 - it') ifx‘,

= (1 + fc') (1 - (1 - ^->T -

In tlic second expression, multiplying the numerator and

denominator by sn 2it + i cn 2it, the expression becomes an

integral function (sn 2ii, cn 2it, dn 2it)*; having therefore a de-

nominator (1 — i^x*)’, = (1 4- kx‘f (I — Xx*)*.
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IV.] ON THE ELLIPTIC FUNCTIONS Sn, cn, dn. 77

In the third expression the denominator multiplied by
1 — A*** is

1 - 2x> +AV + 2iA’x - A-’x*.

= [ik'x + Vl - AV 1‘,

= (i'A' sn u + cn M dn u)*;

by aid of these remarks the identifications can be easily

effected.

Triplication. Art. No. 107.

107. Writing v=2u, and using the duplication-formulaj,

we obtain the functions of 3m. These are easily found to be

sn 3m = 3x — (4 + 4A"*) x* + 6A’’x‘ — A*x“, ' (-^)

cn 3m = (1 — 4x* + 6A“x* — 4A*x* + A‘x*) Vl — x*, (-^)

dn 3m = (1 - 4A’x* + CAV - 4AV + AV) (-r)

where

denom. = 1 - 6AV + (4A-’ + 4A‘) x' - 3AV.

And we may add

^1- sn3M = (l+x) {l-2x +2AV-AVj’, (^)

1+ sn3M = (l-x) {l+2x - 2AV - A-”x‘}’, (-)

1 - A sn 3m = (1 + Ax) { 1 - 2Ax + 2Ax> - A-'x*]*, (-)

1 + A sn 3m = (1 — Ax) {1 + 2Ax — 2Ax’ — A*x*}‘, (-=-)

the denominator as above.

The duplication and triplication formulae possess various

properties which are in fact particular cases of those for the

multiplieation by any even or odd integer n

:

and it will be

convenient to defer the consideration of them until other in-

stances of the formulae arc obtained.
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78 ON THE ELLIPTIC rUNCTIONS sn. CD, dn. [TV.

Multiplication. Art. Nos. 108 to 116.

108. It has been seen how the functions of 2w and 3« are

obtained : to consider the general question of determining the

functions of nu, suppose n=p-¥q, and imagine that the functions

olpu, qu are known. We may write

sn pu = A^ (-). sn qn = A^ (-).

cn pu = B^ (-), cn qu = B, (^).

dnpu = (7, (-). dn qu = C, (-).

denom. = D,, denom. = Z>,.

The addition-formula give

sn (p j) w = A,D,B,C, -(- B,C,AJ), (•-),

cn (p -i- y) u = - A,C,A,0,

dn(p + q)u= C^D, C,D, - fc*A,B,A,B^ (-,-),

where dencm. = — k'A/A*-,

and the functions on the right-hand side are consequently pro-

portional to B^, G,^, respectively. We have A^=x,

£^= Vl — <7,= Vl — D^= 1 ;
and hence writing p = y = 1,

we find four values which have no common divisor, and which

may therefore be taken for the values of A,, B^, f7,, i>, re-

spectively ; viz. we thus obtain

A, = 2.x Vi - .c’ Vl - /IV,

i?, = l-2x’ H-irV,

r, = 1 - 2k\' ^ *V,

/),= ! -^-V,

the foregoing duplication-formulae. And similarly, writing

p = 2, q = \, we obtain the triplication-formulae. But at the

next step, if we write p = q = 2 we obtain four values, and if

we write p = 3, J = 1 we obtain four other values of higher
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IV.] ON THB EIXIPTIC FUNCTIONS Sn, CD, dn. 79

degrees; these are of course proportional to the former ones,

and they contain a common factor, throwing which out they

would "coincide with them. And so in general, for a given

value of p + g the degrees are lowest when p, q are as nearly

as possible equal : that is p + j even, when p = q, and p + q
odd, when p~q = l: or what is the same thing, the proper

partitionmonts are 4 = 2+2, 5 = 2 + 3, 6 = 3 + 3, &c. Taking

the functions thus obtained for the values of C^,
we may write

p + y odd; p-q = \.

^p+« = A-
A,C,A,C„

D^=2?;z),* -l^a;a,\

p + q even p = q-

=2A,B^C^„

B„ =b;d;~ a;c;,

=c;d;-i^a;b;,

=d; -k^A;.

109. The calculations for the cases 4 and 5 may be per-

formed without difficulty: but for 6 and 7 they become very

laborious: the results have however been calculated by Baehr,

Grunert’s Archiv XXXVI. (1861), pp. 12.5—176, and for con-

venience of reference I reproduce them here, partially verifying

them as afterwards mentioned. The whole series of formul®

for the cases n = 2, 3, 4, 5, 6, 7 are as follows

:
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sn2u = cn2u= dn2u= denom. = 1 •• cn2u 1 + cn 2u 1 - dn2u l + dn2i(

1 = !-*> = !-*» =1-IV
into

1

into into into into

2 1 ^
i

^ 2 2

-2*» - 2I-5j->
]

2x> 2I-»x»

+ iV -i-V

(^) (-) (H (^) (-^) (-)

snSus
X

into

cn3i( =
Vl^

into

dn3« =

into

denom. = I - an 3ii =
(1+*)

into Bq. of

l-isn.Su =
{l + lT)

Into Bq. of

3 1 1 1 1 1

-(4 + 4i»)x« -4i» 0 -2x -2/fc*

+ 6k‘x* + 6it»z:* + GI»x< 0

0 -iihf -ik'jif + {ik* + if)2f + 2/4j:> + 2Ia*

-k*x> + I-*i* + i-*x« -3k*n? - I-»i*

(-5-) (-) (-5-) (-) (-5-)

sn4u=

into

cn4u = dn4u = denom. =

4 1 1 1

-(8 + 8i*) *« -8 3^ -8I-» a-5 0

+ 20i> ** + (8 + 201^) z* -1- (201-5 -h lyjjjj - 201-5 X*

0 - (241-5 +32I-‘)*» -(32I-5+ 24I-*)i« + (3245 + 32I-‘) X*

- 20t‘ 3? i(5W+ia^)3? f (161-5 + 641-*) *» -(16i5 + 681-* + 16i“)a:«

+ (8fc* + 8P‘)*"> -(24X-' + 32I^)x'» -(32Ir‘+ 24P')*J» + (32I-* + 32A*) x‘“

— 4jt* x'* + ( 8i<-h20t*)*>» + (20I-«+ 8i*jx'5 - 204.5 X'5

- 8i« x'* - 8i-» x'* 0

+ e> *'« + i» x'« + i» ,1«

(-5-) (^)
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sn5u=£ into cn 6i*=Vl-z’ into dn into

x« 5 1 1

z* -(20 + 20i») - 12 - 12t>

z* + 16+94i:» + 16i< + 16+60i* + 60i« + 16i*

z* -( 80i» + 80i*) - 80i*-140i< - I40i> - 8014

z* - lost* + 335i* + 160i« + 16014 + 336i«

z>» + 360i* + 360f -264i*-454i<'-64i» - 6414 - 464X4 - 264i*
z>« -(240i* + 780i« + 240I*) + 208i* + 608i« + 208i<' + 208H + 508X4 + 208X-*

z>« + 64i‘ + 560li» + 560i» + 64i*'' - 64IJ-464i*-264i» -264i«-464it»-64i‘»
~(160i*+445i8 + 160i'») + 160i<' + 335i» + 336X4 + 160i'»

z'» + 140t»+ 140i'« - 140i« - 80it'» - 80X4 - IXOf:'"

z*> - 60i>* + 50t>» + 16t>* + 16X4 + 50i>»

z« 0 - 12i‘* - 12X-'»

z" + it‘« + t'» + X'»

(-) (-H

l-t8n6u = (l-z) into l-l sn6u = (l-ibc) into
sqnare of square of Denom. =

z» I 1 1

zi - 2 - 2i 0

z> - 4 - 4X* - 60X->

z* +10X4 + 10i + 140i» + 140X-*

z* + 6X* + 6X4 -(160X4 + 445i-<+160X-«)

z» -12X4- 8X4 - 8X: - 12X4 + 64i* + 660X-‘+560X* + 64i»

z4 + 4X4- 4X4 - 4X-*+ 4X4 - (240X4 + 780X» + 240i*)
xi + 8X4 + 12X4 + 12i»+ 8X4 + 360X-* + 860i«
** - 6X4 - 6X4 - 105X4
*• -lot* -lOi* - (SOX-^+OOi'O)

*"> + 4i* + 4X4 + 161« + 94XJ» + 16X>*

z*' + 2i* + 2X4 -( 20X4« + 20X»)
zU _ m - X4 + 6X>«

(H-) (^j

In the Tables which follow, some obvious abbreviations are

made use of. Thus wo must read in the table for sn6«

6 + (- 32 - 32i^ a;*+ (32 + 208** + 32i‘) x‘ - &c.,

and in that for snTw,

7+ (_ 56 - 56ifc*) ** + (1 1 2 + 532^•• + 1

1

2k*) x* - &c.,

the numerical coeflScients in this last case being printed to

the middle term only, — 56: for (— 56 —56), and + 112 (+ 532)

for (+ 112+532 + 112), the expressions being symmetrical as

here shown. The numerical coeflScients of denom. 7w are in

a reverse order the same as for sn7tt, and those of dn7« the

same as for cn 7«, but in a reverse order, as is sufficiently indi-

cated in the tables.

c.
‘

6
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3, 3,' 3(' 3<‘ 3i‘ a; 3,’ 3i ^ 3. I, 3.

S o C9 O GOw o *-« o «D
ec CO CO lO ?o ec eo^ ^ M ©» ^ '«f‘

+ I + I + I +
S COODCOGDCDOTfC)
<O^CDt« 9 -^COCOe4Otoccoiccudoco
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C0 O^C0 &0 *C^U9>0 00 '^a>C0^•^O'OOCOOO'^'^rH^ OJ (N N 1-H

l + t + J + l + l + l + l

COC^QeaCOOQp^GptACD
S «0®«OCOU$OtO'^0*H

2 2 2 2 3,-^-

3. s. a. a; a; 3.' aT C \ J .

2,a,-ia;a;a.'a.'3.‘a;i^.^.^.

^ I -i* I I
-
1
-
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i-< « C« «« «H

l + i + i + i + i + r + i
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= s'S,
. ^

oe-2
s’ s'

='
5,

s. s<‘ 5; i ^ ;^. 7-
s'

8 8 tj-

& 5; 5; S,' 5.' C =1
=< 2. =-_3. -1

^

-

i i 3.' 1 Si' 3(' 3i 2i I. Ij i ^ ^ ^ ^

S<3iS<S<SiS<SiSi2*2i2«2*2i2*2(

= 5, 2, s.

,n ^
3j '^“i<«5<'*^^^»-22S2£22SS

3< 3,
a» Si 2* Si x' g- S

a, s,' a,'
Si' Si sT s; 5,' s; sT a,' 3, =«. =*. =1 =1 \

^,HrHrtSiZEi2i3i3e3e3i5<ai2e2<2e2i3i2i2i2i§<S<
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CO O 00 -1*

CO O O^ iD
C- <N COo CO
CO 00

iMtoO OJOCOOOCO
eoco*^ eo-^eoookOwCO OiOC^OOOC

.-4 f-H CO —I OJ ^
1-< t-

C>» CO CO 1-H

+ 11 I + I + I

S C^OW-^OODCOOC**eoeot^coQoocoO<M
»o CO *.o oi 00 c*» *-o eq o
-1« U5 C5 '5 ® CO O C5 t-O 00cococosoo^cocoe^

5>> rH ^
+ I + » I + I + I +

••C'l'i'OlcOOXi'^’-fCOC^O-fClOQ'^'^QCOcOtOO
CO ^ CO I-- >0 5*> 00 O ct C ‘O I* S 01 <X C*1 CO o
«5 «-H CO CO O 0> CO *0 O CO to » »0 OC' CV O ‘-0 CS CO rHo>i-oao*-H»»*ooo>-T**H»o®p^eo*^cOiH,-i^c^^oj oiooto^co

I + I+ +I + I + I + I + I I + I + I + I+ {

% ^ li 1, "N i 1, T) 'H "s i ®N ^ T, i I Ti I 1i I

Digitized by GoogI



IV.] ON THE ELLIPTIC FUNCTIONS Sn, CD, dn. 85

Digitized by Google

~)

denom.

ut

BuprA.

denom.

at

sapr^.
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1 - Bn7u = (l + ac) into square of 1 - l’sn7ti= (l + itv) into square o!

7? 1 1 1 1

- 4 1 - 4 k

- 4 1 - 4 F
+ 8+ 28 1, t’ + 28+ 8 i, F

X* - 14 P - 14 F
x^ -84-56 k\ k* - 56- 84 k. F

+ 112+ 28 t*. i-* + 28 + 112 F, F
+ 64 + 204+ 32 F, F + 32 + 204+ 64 k, F. F

*“ -144-305- 16 k\ k*, k* - 16 -.305 -144 F, F, F
X* - 32-200-128 I-*, F, F -128 - 200 - 32 F, F, F
x'» + 64 + 456 + 368 F, F, F + 368 + 456+ 64 F. F. F
,11 + 112+ 66 k*.lfl + 56+112 F, F
x'* - 224 - 644 - 224 F. F, F - 224 - 644 - 224 i-*, F, F
x» + 60 + 112 F, F + 112+ 66 F, F
x’‘ + 308 + 456 + 64 F, F, F« + 64 + 456 + .368 F, F, F
,ia -128 - 200 - 32 F, F, F» - 32-200-128 F, F, F
,i« - 16-305-144 F, F, -144 -.305- 16 F, F, F»
x'f + .S2 + 204+ 64 F, F, F» + 64 + 204+ 32 F, F. F'
,18 + 28 + 112 F, F» + 112 + 28 4^, F»
x"* - 50- 84 F, F* -84-66 F, F>
x-o - 14 F» - 14 F«
x’l + 28 + 8 k'“, F* + 8+28 F, F>
x»t - 4 ill - 4 F»
,M - 4 F« - 4 F>

+ 1 F« + 1 F»

(-T-) (leuom. ut Hupr^ (~) denozu. ut siiprA.

110. It will be ob.served that the forms are essentially

different according as n is odd or even.

Wh en n is odd, the numerators and denominators, say Vl(a'),

B{x), C{x) and D{x), are of the forms

*(1, aOi'*’-”,

(1, x’)4"‘*-’'v'l~?.

(1, Vl ^)tV,

( 1 ,

viz., the <legrees are ri‘, — 1.
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But, n even, the forms are

a: (1, x‘)i(»*-4)vr^vrro

,

( 1 ,

(I,

viz., the degrees are n’— 1, n’, n*, n*.

Tlie rational functions (1, x*) presenting themselves in tlie

foregoing forms may be called £'{x), C\x), D\x) : the

degrees in a? are i(n’-l), ^(a*— 1), ^(a’-l), 1) or

^(m*— 4), Jn*, jn’, according as n is odd or even.

111. Whether n is odd or even, if we change k into ^ and

X into kx, the functions A’, D' each remain unaltered, while

the functions U, C are interchanged : thus

n = 2, A' becomes = 2

B = 1- 2i-V+ilV,

C II
= 1- 2 , , 1

X + X
,

B II
= 1

= 3, A'

&c.

II
= 3- ^4 + ^t)Fx* + |,l-V

And the same is the case with the functions A, P, C, D,

except that A is changed into kA.

112. But there is another change, x into the effect of

which is different according as n is odd or even.

If n be odd, then disreg.-uding a monomial factor k"xfi, the

change x into ^ interchanges A', D' and also interchanges
KJC

B , C : thus-
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n = 3, A' becomes 3 - (4 + 4i-*) + 6k‘ - k*^

,

B’

D'

= - ( 1 - + (4fc* + ^k')3? - 3k'

;

” ^ “ k^? k'x*
~

k'x*
'

= (
1 - 4i-*x* + 6/fcV - 4/tV + fcv)

;

= ^1 - 4cc* + Gk^x' - Wx’ + *V)
;

" ^ kh + ic' ’

= - (.3 - (4 + 4^•’)x’ + GfcV - k'j/j

.

If passing to the functions A, D we write down the general

formula, this is

D (x) = (—)4(»"U &*(»’+') A
I
implying

Z>(^^) (x)
;

and we thence deduce

D(.)D(£j.kAi.)A(l).

that is .1 i? (1) = 1 .. [k A(x)^D (x)l.

viz. the change of x into
,
- changes sn nu into i— — : and
kx ° k sn nu

making this change nn cn nu and dn nu considered as functions

of sn nu (=Vl— sn’nu and Vl — fc*sn’nu respectively) it is

obvious that the effect must be to interchange the numerators

of these functions, that is, the functions B and C or B' and G'

as above.
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113. K n be even, the effect, to a factor prhs, is to leave

the four functions unaltered; thus n = 2,

A becomes = 2,

C „ 1 - 2^•^ + i-* (1 - 2iV +

/>'
.. 1 -

Hence, n being even, we cannot in either of the above ways

€ffect an interchange of the functions A, D so as to derive one

of them from the other, and it is in fact clear that they are

essentially different functions. It is to be observed that A' is

always a composite function, viz. writing n = 2p we have

A, = 2A,B,C,D„

which is a product of rational functions into Vl — Vl — :

the numerator-function A’(x) in the above values of sn 4u and

sn 6m might therefore be expressed as a product of lower

integral functions of x*: in particular n = 4, we have A{x)

= 4a: (1 - 2s^+ ifx*) (1 - 2/fc*x*-|- l^x*) (1 - ifc*x‘) v'l^i’x*.

As regards the denominator D{=D') we have

j),^D;-k^A;.

which when p is odd, and therefore A^ and 2), each rational,

breaks up into four rational factors (rational, that is, as regards

X, hut involving the radical VA). But if p be even, then

A, = A',x‘/l -x“ Vl —k‘x‘, and the form is

D, = D,* - A*x‘ (1 - (1 - i-’x*)* A',*,

which breaks up into two rational factors only. That is, n being

the double of an odd number the denominator is the product

of four rational factors, but n being the double of an even

number it is the product of two rational factors only : thus

n = 2 X>(x) = 1 - A*x*,

n = 4 Dix) = (1 - k‘xy - 16ifx* (1 - x^’ (1 - i*x*)’.
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Although for many purposes the expressions thus obtained

in the case in question (n even) would be in their original form

more convenient than the completely developed expressions,

yet for other purposes and in particular for the calculation of

the functions of a higher uneven value of n these last are the

more convenient.

114. When n is odd the numerator of l±sn«u is a

rational and integral function of the order n*, containing the

factor 1 + a: or 1 — a:, and the other factor being the square

of a rational and integral function of the order — 1): the

two formulae are derived one from the other by merely chang-

ing the sign of x : say they are

D(x)-A(a;) = (l±*){P(a:))*,

P(a:)-|-yl(ar) = (l+ir)[P(-a;)}*,

giving when multiplied together

LP{x) - = (1 - x^) \P{x) P{-x)]\

viz. the left-hand side is P*(a:), =(1 -x*) {P'(x)}’; and conversely

the equation (1 -x’) {.4'(a:)}* = P’(x) - yl*(x) implies that the

factors D{x) —A{x), I){x) +./4(x) are of the forms in question.

As regards the sign ± it is to bo observed that D{x) — A (x)

contains the factor 1 - (—)“"'”x ;
viz. in the numerator of

1 — sn n«, n = 3, 7,...or 4p -1- 3, the factor is 1+x, but n = 5, 9,

...or 4p + 1 the factor is 1— x. The reason is obvious;

?i = 4^ -b 3, 1 — sn na vanishes for m = — K, that is sn m = x = — 1

(but not for w = -b A”), while, n = 4p -b 1, 1 — sn »iu vanishes for

u = K, that is sn u = x = 1 (but not for u = — K)

:

we have in

fact sn (4/> -b 3) = sn 3K = - 1, but sn (4p + 1) A = sn AT = + 1.

The like considerations apply to the numerators of

1 ±kmnu: the single factor is 1 ±kx, viz. for 1—kmnu this

is 1 - {-)*^'-"kx.

115. In the case n even, there are given (a = 2) fonnula;

for 1 ± cn 2m, 1 ± dn 2«, and from the.se may be deduced

analogous formula; for 1 + cn tiu, 1 ± dn nu, but I have not
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thought it worth while to write these down for the cases

4 and 6. We in fact have

1 — cn 2pu= 2sn’pu dn’pu. (-^)

1 + cn 2pu = 2cn*^u, (-)

1 — dn 2pu = 21:’ sn'pu cn'pu. (-)

1 + dn 2pu — 2dn' pu. (-)

denom. = 1 — 1’sn‘^u,

substituting for the functions of pu their values we

i-cn2pu= 2a;c;, (-)

1 + cn 2pu = 2B^D', (^)

\-dn2pu = 2k^A,'B^, (-)

1 + dn 2pu = 2 C'D', {-)

where denom. = as for the other 2p«-functions.

116. We may in the raultiplication-formuliE write /: = 0,

viz. we then have a; = sinu, and sn mi, cn nu, dn nu = sin nu,

cos nu, 1 respectively : this however affords a verification only

of the terms not multiplied by any power of k. A more

complete verification is obtained by writing k=\, we then

have * = 8g«, Vl— and Vl— fc’a:* each =cg«; and sn nw,

cn nu, dn nu = sg nu, eg nu, eg nu respectively. Recalling the

formula

sg nu = J{(1 + a:)" -(1- a;)-}, H
eg nu= (1-*^*", (-r)

denom. = i((l +a:)* + (1 — a;)"], (h-)

the terms of the fractions require to be each multipHetl by

(1 — viz. the formula then are

sgnu = 4{(l+!T)"-(l-a:)"l (1 - H
- eg nu= (l-a:*)*"’, (-^)

denom. = 4|(1 + xf + (1 - x)’J (1 -

Thus n = 3, the formula are

sg 3u = * (3 + *•) (1 -a:*)’, = .t (3 - 8x* + 6a:* + Ox* - x"), (^)

eg 3u = (1 - X*)* Vl^x*, = (1 - 4x’+ 6x‘- 4x‘+ X*) Vl - x^ (--)

denom. = (1 + 3x*) (1 -a:*)’, = (1 + Ox’ — 6x* + 8x* — 3x’),
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agreeing with the foregoing values of sn 3u, cn 3u, dn 3u on

putting therein A= 1.

Factorial-Jbrmulce. Art. Nos. 117 to 122.

117. In the expressions for the numerators and denomi-

nator of the functions of nu, the rational functions of may be

decomposed into their simple factors. This may be effected

d priori by considering what are the values of x (that is sn u)

which make these functions re.spectivcly vani.sh. But in the

particular case n = 2, it may be done d posteriori, by means of

the duplication-forraulse, and the formulm obtained for the

dimidiation of the periods.

Write

(m, m) = 2mK 2nt' iK',

{in, m') = (2m + 1) if + 2m' iK',

(m, in) = 2mK + {2m -p 1) iK',

{in, in') = (2m + 1) if + (2m' + 1) iK'.

Then, using
{ }

to denote a product, as explained by the

appended values of m, m', we have

sn 2u = 2r\fl -x’ Vl-/fcV, (-)

cn 2u =3 1 + ® 1
(-)

m = 0, 2

COp m' = 0, 1

dn 2u =

.

i'"

*
\ (-)

m = 0, 2

sn i(m, m')j
'

m’ = 0, 1

denom. = •!

1

X 1 m = 0, 1

sn J {m, in)) m' = 0, 1.

118. Thus in cn 2u the product is

^ejk) ^
s'^TP' +^))
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which is

93

sn'iz)

= {l-(l+/:')a^} {l-(l-fc>*j,

= l-2a;* + fc*j:‘.

So in dn 2u the product is

+ sn(iA + itA')) 8n(SA+ itA'))

BnCiA + iiA')) siTp-TpA'))
’

which is

= (^ + sai^K+ ^iK')) " sn a K+iiK'))

sn (iA+ §iA"))
“ 8n(JA + 5rX'))

’

= (l - Jfca^ (i - 2i')) (l - ia* (i + 2fc')) ,

= 1 — 2]^a^ + ifa:*.

And in the denominator the product is

^ iiA") sn fix)

+ ^A'+fiX)) 0 sn(A + iiAo)
’

which is

= (1 - {‘Jkx) (1 + iVX-x) (1 + Vix) (1 - •Jho).

= {l + kj*)(l-kj?).

= 1-fcV.

119. Considering next the case where n is an odd number,

= 2p + 1 suppose.

Digitized by Google



94 ON THE ELLIPTIC FUNCTIONS Sn, Cn, dn. [iV.

write as before

(m, m) = 2mK + 2»i'iA”

(;7i, m) = (2wi + 1) A"-!- 2niiK',

(m, wO = 2otA’ + + 1) I’A",

(w, w') = (2m + 1) A’+ (2m' + 1) lA"’;

then the distinct values of sn
^

{vi, m') are those obtained by

giving to m the values -p, - (p-l), ... - 1, 0, 1 ... p-, and to

m' the same values; viz. there are in all (2p + 1)*, =n* values

of sn - (m, m).
n '

For take p, p values of the form in question, any other

values are p + n6, p + n& {6 and 6' integers).

^
(m, w') = i

[p, p) + {6, ff),

where [6. ff) = 26K+ 2ffiK'. Hence

sn i (m. m) = (-)»+*' sn
J

(/i, p')
;

which, when 0 + ^ is even, is

= sin i
{p, p),

and, when ^ + 0' is odd, it is

“ - sin 1 {p, p-),

which is = snl(-p,-p’),

where —p, —p are of the form in question.

One of the foregoing values is sn^ (0, 0), =0; and if we

exclude this there remains a system of w’ — 1 values.
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120. Consider next the distinct values of sn-(jn, n»').
n

Suppose in the first instance that m, m! each extend from

— (^ + 1), —p, ... — 1,0, 1 ...^ (viz. that each has n + 1 values).

I call the values — (p + 1), p extreme values and the others

intermediate; so that m, vi have respectively 2 extreme and

« — 1 intermediate values. We have in all a system of {n + 1)'

terms, viz. these are

tn, m both extreme

m extreme, m mean

m' extreme, m mean

m, tn both mean

4

2 /1-2

2n-2
«* — 2/1 + 1

n’ + 2n + 1

Now ffi, m both extreme the values are sn (f /f i t'K'), and

these are e.xcluded from don.sideration.

If m is extreme, m mean, the values are

( , TT .

2?«' + 1 -T-A
sn ( + A H — lA 1

,

say for shortness sn(±ir+a), that is sn(AT+o) and sn(— A’+a),

where a has ^ (n — 1) pairs of equal and opposite values.

But sn (A’’+ a) = — sn (—K+ a), = sin(A— a) ;
hence sn (A'+ a)

has i (n — 1) values; similarly sn (— A + a) has ^ (n — 1) values;

or sn (± A + a) has (a — 1) values.

And in like manner, m being extreme, the value is

= sn (± iK' + = sn (± iK' + y9),

which has (n — 1) values. We have thus in all

(/I - 1) + (/I - 1) + (// - 1)*, = n* - 1 values.

And as for sn i (?/i, m'), it may be shown that these are all

the values.
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121. Consider in like manner sn - (in, m ) : here m has the
n' '

values — (p + 1), — p, ... —1, 0, 1, ...p, say —(p + \),p are ex-

treme values and the others mean; and m has the values

— p, ... — 1, 0, 1, ...p, say 0 is the extreme value and the

others mean. The cases are

m, m' both extreme 2

m extreme, in’ mean 2n — 2

m mean, m extreme n — 1

TO, to' both mean n* — 2n + 1

exclude

reduce to n — 1

is n — 1

n’ - 2n + 1

n’+ n

or number in resulting system is = n’ — 1.

n* -1

And so sn - (m, in) has same number = n* — 1 of values,
n

'

122. We now obtain, n odd,

sn nu = TUB 1 1 .f
^

I
sn - (to, to')

cnnit = Vl— ** jl 4-
'

^

^

I
sn - (m, to')

dn n« = Vl - |l + '

^

^
]

I

sn - (to, to')J

(-)

(-)

(-)

where denom. = h +
^

I
sn - (to, ih')

the number of factors being in each case «*— 1, viz. the values

of TO, to' arc those belonging to the several systems of (n*-l)
values as above explained.
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New Form of the Factorial-Forviulae.

Art. Nos. 123 to 126.

123. The formulae may be presented in a different form

:

observing tliat to each term 1 + — in the numerator or denomi-
a

nator there corresponds a term 1 — and combining together

the pair of factors, also making an easy change of form, we have

sn nu= 7JX (l —
sn* - (m, to')

n

i=V'l-ai' 1-

j

8n*(A'-i(TO, TO')j|

= Vi - k‘x' |l — k* sn’ (to, to')

j
«’| ,

(-r)

=
|l — sn’

^
(to, to') a:*|

,

denom. = < 1 — i’ sn’ - (to, to') a:* >

,

1
'

f

where as regards the values of to, to' observe that these are

TO = 0, to'= 1, 2... i(n — 1);

TO = 1, 2, ... ori(n — 1), to' = 0, ± I, ± 2 ... ± ^ (n — 1)

;

viz. there are in all (n — 1) + ^ (n — 1) n, =J(n’— 1) combi-

nations.

124. Restoring for x its value snu, and observing that

j
sn’u

sn*a _ sn (u + a) sn (u — a)

1 — F sn’tt sn’a sn a sn (— a)
’

and combining all the constant factors (that is factors indepen-

dent of m) into a single factor A, we find

sn nw = A sn H jsn ^ (to, to')J sn — - (to, •
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or as this may be written

sn ji» = ^ |sn
|^“
+ “ (’’h ’

where m, m' have now each of them all the values

0, i 1| i 2 ... + ^ (h — 1).

Proceeding in the same manner with the other equations,

we have, with the same limits for («!, m), the .system

sn nw = .4 |sn
j^«
+ i (vi, >

cnnu = B jen + ~ (i”> ’'‘Oj
|

•

dnnw = C |dn + ~ (”*> W)]},

where the coefficients A, B, C have to be determined. The
values are

^ = B = [lj ,

C=(l)
,

125. To show this, write in the formul® ri +K in place

of u. Observing that we have

sn (nu + nK) = (— an (n« + K),

cn (nu + tiK) = (— cn (nw + K),

dn (nu + n.K’) = dn(«M + /f),

and that the products on the right-hand sides contain n’ terms,

n* — 1 being evenly even, or (— +, we obtain

(_)«»-!) = A
|cn “ + - (w. in')

[dn M i (m, ni)
n '
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agreeing with the original equations if only

(-)•'»->!
^
=

1 _ h'v?~\n
V~ ’

but these reduce themselves to the two independent equations

/iNnS-l
c«=(i)

,
n = {-y--»AC.

The change of u into u + i'K' gives in like manner two inde-

pendent equations, one of which is

A' =

and we thus have A, B, C subject to an indetermination of

the signs of A and C.

126. But it may be shown that the signs of A, B, C are

-f-, +. For this purpose recurring to the original

equations and writing therein m = 0, we find, observing that

then =n, cn«=l, dnM = l,
sn u

n = .4 jsn
^
{m, m')| , 1 = B cn

^
(m, m')| , 1 = C dn i (m, m')|

,

where in each case the combination m = 0, m'=0 is to be

omitted, viz. the products each contain n*— 1 terms. Grouping

7—2
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together the opposite terms sn a, sn (— a), &c., and recollecting

that —
1) is even, we may write

n= A jsn’ - (m, m') -,\ = B jcii’ - (m, rn')l, 1 = (7- dn’- (rn, in’)

and we may in each product consider separately the —
1)

terms in which tn is = 0, the ^(n — 1) terms in which m is = 0,

and the i(n— 1)’ terms in which neither m nor in' is = 0. As
regards these last we may con.sider that m has any value

whatever from 1 to J(» — 1), and m' any value wdiatever from

+ 1, to ± J(n — 1); uniting together the terms which belong to

the same value of in but to opposite values of in' these are

conjugate imaginaries and their product is positive : hence the

whole third product is positive. Taking next the terms for

which m' is = 0, each term is real and positive; hence the whole

first product is positive. There remains only the second pro-

duct
;
viz. as regards A this is |sn’ i (0, wi')|

,
where vi has the

values 1, 2, ...^(n — 1). Each term is the square of a pure

imaginary, viz. it is real and negative; and the sign is thus

But as regards B the product is jen*
^

(0, m')|
,
where

each term is positive (since cn ^ (0, m) is real) : hence the

product is p<}sitive. And so as regards C the product is

jdn’
^

(0, 7n’)| ,
which is in like manner positive. Hence in

the three cases respectively the sign of the first product is

(—j*^’*"*^ +, +. And the required quantities A, B, C have

these signs accordingly
;
wherefore w'e have

A = (_)u-n A-iin.-,, s

^

^

(

1
)

.

as mentioned above.
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Anticipation of the douUy-infinite-product Forms of the Elliptic

Functions. Art. No. 127.

127. In the formulae No. 122 for u write-, then a; = 8n^,

= -when « is very large. Moreover when ni, m are finite, then

in like manner sn^(m,m') is = i(7n, m'): and substituting these

values and writing »i = oo we obtain the following formula :

sn« = «|l+^^-^,)}, H

cnu= + (-r)

dn U = + y--—--
: [ ,

(-r)

I
(m, )J

denom. = 1 1 + ,

where m, ni have each of them every integer value from

— M to + 00
,

the simultaneous values ni = 0, m' = 0 being

excluded from the numerator of sn u. I defer the further

consideration of these formulae, only remarking that not only

they are not as yet proved, but that, in the absence of further

definition as to the limits, they are wholly meaningless.

Derivatives of snw, cn u, dn u in regard to k. Art. No. 128.

128. We have seen. Chap. III. No. 73, that

dF 1 , , ,j k sin 6 cos
<f>

TA ’

where F, E, A stand for F\k, <j>), E{k,
<f>),

A{k,
<f>)

respectively.

But we have u = F, giving sn w = sin
<f>,

cnu = cos
<f),

dn u = A
;

also

E = J„^d<f> =/,dn*u du, = f„du(l — k' + k’ cn’u) = *u + k'jjcn'u du.
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and therefore E— k'*F= k'J^cn'u du ;

hence

dF k { . , , sn u cn «)

^=PV»cn«d«--^--|.

But snw = sin<^, viz. considering snu as a function of u, k,

where u, = F {k,
<l>)

is a function of k and
<f>,

we have sn m,

a function of
<f>

only without k; and we hence obtain

d sn u dF dsnu
du dk dk

that is

d sn u

~dk~
~ ,

dF— cn u dn « -rr .

ak

or finally

d sn u

uk

k k— cn M dn M /,cn’tt du + ^, sn u cn’u,

and thence

denu
sn u dn M /,cn’« du — sn’u cn u,

dk

and

ddnu F k
sn u cn It cn* u du — sn’ u dn u.

dk

And it will be convenient to repeat here from Nos. 73 and

74 the following formula?, in which we now write K, K', E, E
for the complete functions FJe, FJe', EJe, EJe ;

d^
Uk

dE
~dk

p(A'-A"),

'^T. = iL(E-k'’K),
dk~kk'*''^ dk~ kk

giving EK' + E’K- KK' = W.
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CHAPTER V.

THE THREE KINDS OF ELLIPTIC INTEGRALS.

129. In the present and following Chapters we revert to

the notation of the elliptic integrals F<f>, E^, 11^, bringing up

the theory to the point at which it is expedient to introduce

the elliptic functions sn u, cn m, dn u

:

and explaining the

resulting new notations.

The Addition-Theory. Art. Nos. 130 to 134.

130. Wo have throughout
<f>, yfr, y, connected by the

addition-equation : regarding herein as a constant, this gives
J 1 J •

= 0 : hence if be any function of
<f>,

ijr, fi, such that

in virtue of the addition-equation we have

_A^-^AVr = 0,

or (what is the same thing) if this last equation be a form

of the addition-equation, we hence derive + = 0,

that is d 17= 0, or by integration U= funct. y. : and if moreover

the function U is such that it vanishes for
<f>
= 0, ^jr fi, then

the constant of integration, funct. /i, is = 0 ;
and we have f7= 0

as a consequence of the addition-equation. For instance the

function U= -J- — Fy,, satisfies the conditions in question,

and we thus have

F<^ + — Ffi = 0,

as the addition-theorem for the first kind of elliptic integrals.
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131. Again we have

E<f> + Eifr — Eft. — E sinif) sin'^ sin/* = 0

as the addition-theorem for the second kind of integrals. In

fact the equation to be verified is

(A^ — jfc’sin'^cos^sin/ii) A(f>- (A^v/r — Ar’sin^cos>/rsin m)av^ = o.

that is

A'<f> — A^yjr + !,•* sin fi (sin
<f>

cos yfr Ayfr — sin ^ cos
(f> A<f>) = 0;

which in virtue of

_sm<f)Cos-\frA‘\f/ + sinylrcoa(f)A<ft
smfx

j sin*i^
’

and the identity

sin’^ cos'yjr A’^ — siu*<|f co&*<f> A'<f>

= (sin*^ — sin*'^) (1 — 1;* siu’e^ sin*>/f),

reduces itself to

A'<f>
— A’i/r -I-

^* (sin*<^ — sin’i/r) = 0,

which is an identity.

132. Again for the third kind of integrals, wanting

.i ^ T, n sinAsindrsinu
a = (1 + «) (l + -) . -S=r7 ^ ~r'

'V »/ 1 + n — »t cosip cosy cos/ia,

and for convenience retaining

f dR / I
^ j, 1 , l+R-J~i

j 1 aR* \ i/a 2^/—a 1— Ri/—a

according as a is positive or negative^
, to denote the one or

other of these expressions as the case may be, then the addition-

theorem is

ii* + n+-iV-/, ".,-0.
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In fact the equation to be verified is hero

1 ]_ dR\

^(l + n sin*<^) A<f> 1 + afil’ J<f>]
A<f>

1 1 ^1
(1 + n sin’>^) 1 + ali‘ difr

Ayfr^O,

where, writing R=-q, we have

1 ^
i + aiJ’d^“Q‘ + oP’

1 dR 1

Q' + aP"

and the equation thus becomes

|l + n sin’ ^ 1 + n'sin’
^

But in virtue of the addition-equation, as shown in the next

No.,

Q* + oP* = (1 -h n sin’^) (1 -I- n sin’^) (1 q- n 8in’^|r),

and the equation to be verified thus becomes

(1 -f n sin’/t) n (sin’i/r — sin'(j>)

133. In regard to the expression for ^ + aP*, observe that

this is

= (1 n — « cos/a cos^ cos •\/r)’ -f- n’a sin’/isin’<^ sin'yjr,

or putting herein cos cos i/r = cos /a -|- sin ^ sin ‘^A/i, this is

= (1 n sin’/a — n cosfiAfi sin sin n’a sin*^ sin’^ sin’i^,

= (1 + n sin’/i)’ — 2 (1 -f n sin’/a) n cos /lA/t sin^ sini^

+ n’ |^(l-sin’/a) (1 -I-’8in’/t)-f ^1 +n-f ^
sin’/aj sin’(^sin’>/r,

= (1 + n sin’/a) jl -f- n sin’/a — 2?i cos/aA/a sin^ sin-^

(n’ -I- nk* sin’/a) sin’<^ sin’'^;.
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But we have

(1 — sin’^) (1 — siu’i/r) — cos’/i — shi'<f> sin’^ A’/x

= 2cos/xA/t sin sin

or what is the same thing,

2 cos/xA/x sin^ sim/r = sin’^ — sin’^ — sin*'^ + k’ sin’^ sin*<^ sin*'^,

and substituting this value within the
( ]

we obtain the above

expression for Q* + oP*.

134f. We have

— = (1 + n — NCOS /X cos A cos^) n sin /X cosA sin dr
(i<f> d<f>

— n cos/x sin^ cosi/r . n sin/x sin
<f>

sin'<^,

= n sin/xsini/r {(1 + n) cos0 — n cos/x cos->fr (cos’</> + sin*^)}

= n sin/x sin>/r [cos^ + n (cos</> — cos/x cosi/r)],

that is

—P^= nsin/xsiu'</r (cosi^ + nsin/xsiui/rA*/)),

and similarly

Q —P^= M sin /X sin^ (cos^ + n sin/x sin^A-^).

The equation to be verified is thus

(1+n sin*/x) (sin’i/r — sin'^) =sin/xsim^(cos^ + nsin/xsiu'^A<^) A^
—sin/xsin(^(cos'v/r+ nsin/xsin^Ai/r) A-^,

breaking up into the two equations

sin*-^— sin’<^=sin/x (sin-^ cos^Ai^— sin^ cosi/rA'^),

and sin’i/r — sin*<f>=sm*yjr A'<j) — sin*^ A*‘>jr,

the former of which is equivalent to the equation which gives

the addition-theorem for the second kind of integrals, and the

latter is obviously true.
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New Notations for the Integrals of the Second and Third

Kinds. Art. Nos. 13-5 to 137.

135. If in the equation K<l> = j^\tf>d<f> we write sin^ = snu,

and consequently d<j> = dnudu, A(/> = dni(, the value of E<f> be-

comes = J„dn’«d«, or what is the same thing /^(l — sn’w) du.

Jacobi, changing the original signification of the functional

symbol E, calls this En, viz. he writes

Eu = /„dn*i/du,

the effect being to throw the addition-theorem into the form

Eu + Ev — E{u-\-v) = sn « sn v sn (u -f v).

He further considers in place of Eu a new function Zu, differ-

ing from it only by a multiple of u, viz. we have

Zu = Eu-^u, = w
^1
—

where E is the complete integral of the second kind. Sub-

stituting for E its expression in terms of Z, we thus have

Zu + Zv — Z {u + v) = E sau sav sn{u-¥ i').

136. If similarly in the equation II<i= f 7
-

,

we write sin<^ = sn«, and therefore value of II<^

becomes = f
-— ; and if, channinq the notation, this w

J „1 -f-n sn’ji
’ ' j j >

called IIm, we should have

du

ere

IIm =
1 + » sn’tt

’

or what is the same thing,

„ f—n sn' udu
1I« - M =

I
.

j . 1 -I- 71 sn 77
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108 THE THREE KINDS OF ELLIPTIC INTEGRALS. [V.

The effect would be to change the addition-theorem into

where R = n sn«i snv sn(u -ft’)

1 + n — n cu u cn a cn (a -t- v)
'

137. Jacobi makes however a further change of notation,

viz. expressing the parameter n in the form — i'sn’a*. he

omits from Ha the term u and multiplies the remaining term

by a constant factor; he writes in fact

II
fc’ sna cna dna sn'udu

1 — /d sn“a sn'u

The full advantages of the change will appear in the sequel,

but it is convenient to mention here that the addition-theorem

takes the form

n (a, a) -1- n (e, d) - II (a -f v, a)

= i log
1 — Ar’sna sna sn {u + v — a) sna

1 -t-A'snu sna sn(a+ a-t-a) sna'

The Third Kind of Elliptic Integral. Outline of the further

Theory. Art. Nos. 138 to 147.

• 138. We have a theory for the addition of the parameters,

including in it a theory of the reduction of the parameter to the

forms — 1 -f- fc'* sin’0, and — Id sin*0 respectively. This is de-

rived from the consideration of the function

_ sin
(f)

cos
<f>

~ (l -(- ? sin’
<l>)
A ’

where f is an arbitrary constant. Taking also p an arbitrary

constant, we obtain

du _d^ 1 — (2 -f f) sin’ -t- (1 25’) Id sin’^ — sin*<^

1+pur' A (1 -t-5sin’(^/(l — A’sin’e/)) -l-/>sin’^(l — sin’i^)
’

* BcgarJini; a as real, this would imply that the parameter is negative

and in absolute magnitude < A’ ; but a is regarded as susceptible u( imaginary

value.?, and the other forms of parameter are thus included.
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and putting the denominator

= (1 + n sin’<^) (1 + n sin’<^) (1 + wi sin’<^),

and decomposing into an integer part and partial fractions, we

have

dst d(f) {1 A A' B
l+pCT* A If l+nsin’^ l+n'sin*(^ l+msin’‘<^]’

wlience integrating from
(f>
= 0,

yin« + .dTIn' + BTlm + ^
F k

dvr

+ pvr'

where the integral on the right-hand side is

1,-1 1 ,
1 -I- isr V— p= - tan 'w Vp, or —— log ^ .r

,

Vp "V — p
r—vry/—p

according as p is positive or negative.

139. There are two particular cases, f = — 1, that is

vr = —
, and f= 0, that is or = in each of which

one of the terms, say BUm, disappears, and the formula takes

the more simple form

AUri + A'Un +CF=(
, ,

j 1 -t- pvr

establishing a relation between only the two functions Tin, Hn'.

In the first of these the parameters n, n are connected by the

relation nn' = k': in the second by the relation

(1 + n) (1 -f- n) = k’*.

Hence by the first relation the function Hn, where n is positive

or negative, but in absolute value greater than 1, is expressed

by means of the function Hn', where n (having the same sign

as n) is in absolute magnitude less than Id: in particular n
being negative and greater than 1, that is, between (— 1, — oo),

n will be between 0 and — k'. If n be positive and greater

fc'*

than 1, then in the second relation n', = — 1-| will be
n 4 1

negative and between —1, — k'

:

and it thus appears that the
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110 THE THREE KINDS OF ELLIPTIC INTEGRALS. [V.

only values of n which need be considered are the negative values

between (0, — 1) : viz. we may have n between (0, — A-’) say

n = — A* sin*^, or else n between (— A’, — 1) .say n = — 1 + A'* sin’A

Obsene that in the former case a, = (! + «) ^1 is negative,

and in the addition-theorem we have a logarithm; in the second

case a is positive and we have a circular function (the inverse

function tan"'). This leads to the consideration of two kinds

of functions 11, viz. n = — A* sin’^, logarithmic functions, and

n = — 1-|-A'‘ sin*0, circular functions: there is a convenience in

taking « = — A’ sin*^, as a universal form, allowing 0 to assume

imaginarj’ values.

140. Recurring to the general form

Ann + A'nn' + Bnm + lF=
i J 1 -t-pisr

we may consider herein n, n' as arbitrary quantities, tn as a

determinate function of n, it is in fact obtained by means of

a quadratic equation. Taking n, n to be real the value of m will

in certain cases be imaginary : and conversely taking m to be a

given imaginary quantity it is possible to determine real values

for M, n': and thus the function Dm of a given imaginary

parameter is made to depend upon two functions Iln., Iln' of

real parameters. This may be effected in a different manner

:

viz. taking »i, n to be conjugate imaginaries w'e obtain two real

values of in, and thence two formulae each involving the con-

jugate imaginary functions ITn, Ibi': the combination of these

would lead to the expressions of Iln, ITn' in terms of the two

real functions II m,, 11m,.

In cither of the ways just referred to we in effect obtain an

expression for the function of the third kind ITn, of imaginary

parameter, in terms of tw’o functions with real parameters : but

it wdll presently appear that the solution admits of a very con-

siderable simplification.

141. Introducing in the formula for n, n\ m the values

— A-’sin’p, — A:'sin*5',
— A-’sin*^, the relation between n, n', m

gives a relation betw'een p, q, 6, viz. this is found to be

A' (1 — A-*sinpsin q sin 6) = Ap Aq AO,
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being in fact equivalent to the relation

Fp + Fq — F6 — F^ = 0,

or (what is the same thing) p, q, 9 being connected by this

equation, and writing llyj, &c. in place of II (— sin’p), &c.,

we have between the three functions the foregoing relation

Anp+A-n,i-me*\F.j^,.
142.

It is natural in place of 9 to introduce a new angle 9"

such that F9 + F^ = F9', the relation between j), q,
9' being con-

sequently the algebraical relation answering to Fp+Fq—F9'=0.
The function H9 can be expressed in tenns of 11^, and the

resulting equation is found to he

£2^ (Hp -F) + £227-^? (Uq-F)- [U9' - F)
sinp ^ siny ' siny ' '

= k* sinp sin j sin 0'. 4- J log
[A -t- F sinp sin qsm<j>

.

5] A'

[A' 4- F sinp sin j sin (^ . .B jj.
’

where A, B, A', B are certain functions of 9' and

143.

This equation assumes a very simple form on writing

therein sin^ = sn?f, sinp = sna, siny = snJ, and therefore (by

reason of Fp + Fq — F9' = 0) sin0' = sn(a 4-6): and by introduc-

ing Jacobi’s notation for the function II
;

viz. making the

changes in question the three terms on the left-hand side are

to a common factor prfes II (m, o), !!(?«, 6), II(«, a4-6): the

logarithmic term is considerably simplified and the final equa-

tion is

n («, a) 4- n (if, 6) — n (u, 04- 5)

=A,-*snasn6 sn(a4-6).u4- ilog
1 — lr“snwsnasn6sn(a4-6 — 1<)

i 4- F sn !< sn a sn 6 sn (a 4- 6 4- «)
’

viz. we thus see the theorem in its true point of view as a

theorem for the addition of the parameters.

144.

We also gain a further insight into the problem of

tbe determination of the function II>i with an imaginary value
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of n: viz. any .such value is expressible in the form — ^*sn’(a+W),

where a and b are real
;
the function Iln, or say II (u, a + bi),

is then made to depend on the two functions II (w, a), II (u, bi),

which have each of them a real parameter, viz. in the second

function the parameter is n = — ^*sn*W, which is a real positive

quantity.

we

145. There is another theory, the interchange of amplitude

and parameter. Starting with the equation

n = f
j„(l + nsm'<f>)A

have depending on the integral f which
dn ^ ^ ® J (1 +nsm*^)*A

is expressible in terms of F, E and II. The terms involving

and n combine together into a term IlVa, where as
dn ° dn

before a = (1 + n) ^1 +^ ,
and we have this term equal to a

function of n, <^, where
<f>

enters through the functions sin<^,

cos^. A, E, F, but which is algebraical in regard to n, viz. the

actual equation is

d

+ ^Asin^cos^

k"

1

a nVa

1

(1 +n sin*(^)Va’

o = (1 + «) ^1 + as just mentioned ; so that integrating i

f dn
regard to n, we have II va depending on the integrals

/ „t^y~ ’

r dn r

J?

dn

n*

V

a
’

pr; these are really elliptic integrals as

(1 + n sin*<^) Va
'

at once appears by writing therein n = — k’sia'ff (viz. we thus

adopt for the parameter n the before mentioned form —k^aln'O),

reducing the integrals to the forms

r de fd0 f sin'OdO

J sin’tf A0

'

}A0’
.

I (1 — i-’sin’^sin’^jA^’
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^ «

or ultimately to the forms

fA0dff, and f v, - ,y. fS'
J A0 ^ J (1 — kr siQ

<f>
Bin 6)A0

viz. the first two of these are F0 and E0, and the last is the in-

tegral of the third kind II (n, 0) with parameter n', = — /dBin'<f>:.

the final result is

cot0 A0 {n {«, <f>)
— F<fi] — cot<f> A(j> {II (n, 0) — F0\

= E0 F(f>— Ekf) F0,

which is the equation for the interchange of amplitude and

parameter.

146. If as before ^ = snu, 0 = sna, then using Jacobi’s

notation, the functions on the left-hand side are II (w, a),

n (a, w)
;
and the functions E<f>, E0 are in the same notation

Eu, Ea : the equation therefore is

n (u, a) — n (a, u) = uEa — aEu,

or what is the same thing

n (u, o) — n (a, u) = uZa — aZu.

Fund. Nova. p. 146.

147. The foregoing outline of the theory of the elliptic

integral of the third kind brings up the theory to the point

immediately preceding the introduction of Jacobi’s function

B : viz. his functions II («, a), Zu arc in fact each of them

expressed in terms of the new transcendent 0, by the equations

0'it n («, a) — uZa + ^ log
0 (tt — a)

0 (« + a) '

the second of these leads at once to the just-mentioned equa-

tion n (ti, a) = n (a, u) = uZa — aZu (interchange of amplitude

and parameter); and by means of this theorem we can from

cither of the addition-theorems (for the amplitudes, and the

parameters re.spcctively) at once derive the other theorem.

C. 8
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Reduction of a given imaginary quantity to the form
8n (a + /8t). Art. Nos. 148—152.

148. By what precedes it appears that there is an advan-

tage in bringing the parameter to the form — A* sn*a : this

however cannot always be done so long as a is restricted

to be real: but we have to show that it can be done, ad-

mitting imaginary values of a: or what is the same thing,

that a given real or imaginary quantity n can always be ex-

pressed in the form — A:*sn’(a-|-/8t): that is can always

be expressed in the form sn(a-(-/8t): and the theorem thus is,

that taking as usual the modulus A; to be a given positive

real quantity less than unity, then any given real or imaginary

quantity whatever can be expressed in the form sn (a + R%).

149. It is to bo observed that m and y being given real

quantities, the former of them equal to or less than ±1, we can

find the real values a, R such that a;= sna, ly = snt/3 : in fact

these equations ^ve

K = sna, y
sn (/9, k')

cn09,*y

and as a passes continuously from 0 to i J?, sna passes from

0 to ± 1, that is through every real value x whatever between

these limits
;
and similarly as /8 passes continuously from 0 to

± iK', passes from 0 to 1 oo
,
that is, through every

real value y whatever.

Hence writing

\ + fti = sn(a -I- R%l

_ X Vl -I- y’. 1 + Idf + t'y V 1 — a;* . 1 —

, - a; Vl -I- v’- 1 + y — od —Idsd
^ = ^ =—TTW~
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or what is the same thing

X* (1 + = *’(!+ y’) (1 + lef),

(1 + k^xYY = y (1 - *•) (1 -

and it only remains to be shown that being any given

real values whatever, those equations are satisfied by real values

of X, y, that of x not greater than ± 1 ;
or what is the same

thing, that the two curves have real intersections within the

limits a: = + 1.

150. This is at once seen by tracing the curves; the first

curve has one or other of the two forms shown by the dotted

lines
;
and the second curve has the form shown by the con-

tinuous line (the curves are obviously symmetrical as to the

four quadrants, and only a single quadrant is drawn): and

there is thus in each quadrant a real intersection for which

®< ± 1. The original irrational equations show that x, y have

the same signs as X, /i respectively : there is thus for any given

8—2
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values of X, /i a single intersection satisfying the condition in

question.

151. But we may further develope the analytical theory:

for this purpose instead of the original equations, consider for

greater simplicity and symmetry the equations

\{ah-xyY = ahx{a-y) (b-y),

fj.
(ab — xyY = aby (a — x){b— x).

Each of these represents a quartic curve passing through the

points (a, b), {b, a), and the two curves have besides at infinity

10 common points, 5 on the line x = 0 and 5 on the line y = 0:

there remain therefore 4 intersections. To find these assume

xy = aba>, the equations become

\ (1 — a>y = X + ay — {a + b) a>,

fi {1 — w)* = o)x + y — {a + b) a,

giving X, y linearly in terms of a. Solving the equations there

is a factor 1 — w which divides out (o> = 1 is in fact a solution

answering to the two points (a, b), {b, a) ), and the equations

then become

(X — fia) (1 — to) + (a + &) a) = (1 + <b
)
x.

[ft,
— Xa>) (1 — «a) + (a + &) w = (1 + 6)) y,

and multiplying together these values and for xy writing aba,

we have a quartic equation in a
;
this is a reciprocal equation,

Rolv.ablc by a quadric
;
or if for greater convenience we write

e = ,
then 6 is also determined by a quadric equation

;

and putting

-A — a* — 2a (X + ya) + (X —

B = J’-26(X + /a) + (X-M)’,

we find
ifl -h?

that is 9, =
(0 — 1 _ a — b

<u + l -JA— •Jli’
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and then after some reductions

=^ (tt + ^ ~ /^ + V.d) (i + X — /* + “JH),

_ (a — b) — fi) + b^A — a^B
^ Vl-^B-a + b ’

= ^ (a — X + ^ + VA) (6 — X + /4 + Vif),

and changing herein the signs of VA, *JB, we have of course

the coordinates of the four points of intersection: it will bo

observed that A and B being real, these are all real or all

imaginary.

152. To return to the original problem we must

for a,b,\, fi, X, y,

write 1
, p, X’, -jj?, a?, -y*,

whence if now

A = l- 2 (X*-/t*) + (X* + /*•)*.

{A and B being therefore, as is easily seen, each real), and

choosing the root for which the radicals have the sign —
,
we

have

!^= |j^(l + X’ + /t’-V2)^p+X* + /t’- V.B^,

!< - (1 -V -
(

i -V- - V3)

,

where a? is positive and less than 1, y* is positive. By the

original investigation it was in fact shown that there was one

such set of values of (j’, y’), and admitting this it is easy to
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see that the set just written down (wherein has its least

value) must be the set in question : but it must admit of being

shown independently that these values of x', y* do satisfy the

conditions in question.

We have thus, by means of the quantities sna, =x and

sn ij3, = I'y, determined analytically the functions a, /8, which

are such that sn (a + /3t) = X + fii, a given imaginary quantity

;

it may be remarked that the solution, although under a some-

what different form, is substantially identical with that given

by Richelot, Crelle, t. 4-5 (1853), p. 225.

In the remainder of the present chapter we work out the

foregoing theories.

Addition of Parameters, and Reduction to Standard Forms.

Art. Nos. 153 to 172.

153. We have

n (n, ifc, <#>) = f ,

j,(l -I- n sin’0) Vl — A? sin*^

or expressing only the parameter, and writing for shortness

Vl — i*sin’^ = A,

n - f ^
.1,(1 +n sin*^) A'

Consider the function

_ sin <j> cos
<l>~

(T + C sin’‘(/)) A ’

where is a constant. Taking also p a constant, we form the

equation

der _d<f>l — (2 + sin’^ + (1 + 25') Id sin'<^

I + ped A (H- 5 sin*^)’(l — A;* sin’0) +p sin’i^ (1 — sin'^)
’

where the denominator, being a cubic function of sin*<f>, may be

put = (1 -t- n sin*<^) (1 + n s\n‘<f>) (1 -1- »» sin*^). The expression

which multiplies is then a fraction with this denominator.
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and breaking it up into partial

part p ,
and we have

fractions there is an integral

d<l> (I A A' B
l+pisr* 1 + nsin*^ 1 + n'sin’^ l+msin*^)’

whence integrating from <^= 0, we have

illln + .4'IIn' + Sllni + ^
F = >

where the integral expression on the right-hand side is re-

tained to stand for

tan"* cr Vp, (ft
positive)

Vp

or i log ^ , (p negative)

;

1 — IT V— p

and we have thus an identical relation between three functions

n each with the same modulus k and amplitude if>, hut with

the parameters n, n', m respectively.

164. The relations between these quantities and the values

of the coefficients A, A', B are given by the equations

nnm= — k*^,

(1 + n) (1 + n) (1 + to) = k'* (1 + ?)*,

(Jf + n) (fc*+ n") (A^* + to) = - ***>,

or, what is the same thing,

n + n + TO = — Id + p,

nn +m{n + n')= ?* — 2A*f— p,

nnm=^ —

Hence considering n, n as given, we have

1 _ fc’?*
a.

7in (1 + n) (1 + n )

’
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or, what is the same tiling,

- i + ") + »')

n n

and then w =—
nn

p = -(i* + «)(A:*+n')^‘,

and then further

A = {a’ + (2 + f) n’ + (1 + 2^) k*n + fi-’} -i-n {n - n) (« - m),

= {n’ + (2 + ?) n'* + (1 + 2?) fn' + ffc’} -=- n' (n - n ) (n - m),

B = {m* + (2 + f)
m’ + (1 + 2f)

A*w + fi-’} -f- m (wi — n )
(m — n').

The reduction of the general formula is somewhat laborious;

there arc two important particular cases which it is as well to

discuss separately : these are

j, ,
/ tan A\

1 t. A / sin
<f>

cos <f>\

A J’
r=o(^= \

The Case f = — 1, o = tan 0

155. We have here

m = — 1,

nn = fc’,

(** + n)(&*+n')= /tv,

which last equation may be written

(A;» + n)(^* + ^’)=AV,

or what is the same thing,

P*=(l +”) (l + ^). =“•
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We then have

^ = {»*+n*-i’n-4-’}-^n(n-n')(n+l), =1.

and similarly .4' = 1 ;
also jB = 0 ;

so that the parameters n, n'

being connected by the relation nn' = we have between the

two functiona II the relation

Iln + Iln' = f+
f drsr

Jf+aw” (/r

viz. a being positive, the integral, substituting therein for w
ills value, is

1 , Va tan d>

=v;'“ -a—'
aiul a being negative it is

_ ^
1

A + V— a tan
(f>

a — V— atan0

The Case f= 0, ta- =
sin<^ coacf)

loG. The general expressions are not immediately ap-

pbcable : they give vi = 0 and then
^

I’"'® terms

1
,

B
z and j ^ ,

,

6 1+msm^ are together equal to a determinate constant,

f*
the value of which, =

,
can be found by writing in the first

P
instance f= 0 : the formula becomes

i+ptj* \ p'^l+nsin*<^ l + «'sin’^/ A'

f,
P J 1

+ pw* \ p

or what is the same thing

(Ztj

p j 1 +pw’
* (/') and, next page, (y') are the formula: thus desiguate<l, Legendre,

Traiti det Fonctioiu EWptiijutt, Chap. xr.
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where

THE THREE KINDS OF ELLIPTIC INTEGRALS. [V.

n + n' = —

«»'= -p,

.
_n* + 2n + A:* .,_n'’ + 2«' + A;*

n (n — n) ’ n (n' — «)

We have therefore n + «' + nn'= — k‘, or what is the same thing

(
1 +«)(! + «')=&'*,

which is the relation between n, n. And then writing

._{n+iy-k2
7i{n-n) •

and substituting for A'* its value we find

A =
,
and similarly A' =—

.

Moreover writing for p its value the formula becomes

+ 1 „ w' + 1 . A* f dvr ,

lln +— ,-IIn+- ,F= , r—j, (g)n n nn Jl — nnvr* '

which is the relation between two functions II.

157. The two formulse (/^ and (g') enable us to perform

the reduction of functions of real parameter. We may consider

the four cases

I. n positive, = cot’0

;

Vi
sin 6 cos 0

II. n negative and between 0, — A*, = — A*sin’0;

V— a =cot0 A(A, 6).

HI. n negative and between — A* and — 1, = — 1 + A^sin’^;

A'* sin ^ cos 0

-~Kw:'er'

IV. n negative and between — 1, — cc
,

= —
;

V— a = cot 0A (A, 0)

;
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where in each case the value is annexed of Va or V— a

as the case may be. Observe that in the cases I. and III. a is

positive, or the function iS circular : in II. and IV. a is negative

or the function is logarithmic.

158. It is very noticeable how the formula; (/*) and (^f')

give each of them a relation between two circular functions or

two logarithmic ftinctions, but not in any case a relation

between a circular function and a logarithmic function. Treat-

ing n, n' as coordinates, we shade by vertical lines the spaces

for which »i is circular and by horizontal lines those for which

n' is circular: the two curves nn' = A’and (1 + n) (1 + /i') = k",

are then hyperbolas lying wholly in the spaces which are either

cross-shaded or else white, viz. the corresponding values n, n

are both circular or both logarithmic.

Di.; : d I . GtH>gK:
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159. In the formula (/'), taking n =— wc have° siu »

71 = — li^sm'0, anti thence, substituting for a its value,

1 , A + cot0 A(A:, 0) tan^
“ 2cot0A(/t:, 6) A-cot0A(A-,0)tair^

’

or as this is better written

_ p 1 . cot <}> A{k,
<f>) + cot 6 A(A, 0)~

2 cot 0 A(fc, 0) cot (j> A(A", <p)
— cot 0 A{k, 0)

'

This equation shows that a logarithmic function of parameter

which is negative and in absolute magnitude greater than 1,

may be reduced to depend on a like function where the

parameter is negative and in absolute magnitude less than fc*.

The first-mentioned kind of logarithmic functions presents the

difficulty that the function under the integral sign becomes

infinite in the course of the integration ^viz. for the real value

sin’(^ = — ^
^

: we therefore always consider the reduction as

made, and attend only to the case where the parameter is of

the form - A:’ sin’ft

160. The formula {f) gives also a relation between two

circular functions of positive parameter, viz. writing therein

n = cot’0 we have = A-* taii’0. And the relation is

n (cot’^) + n (A-‘ tan’0) = -t-

sin 0 cos 0 A {k\ 0) tan ^
A {k’, 0) A (A-,

<l>)
sin 0 cos 0

which in fact serves to reduce a circular function of positive

parameter greater than k to a like function of parameter less

than k ; but the original form

tan-
\nj sH a ’

is for this purpose equally if not more convenient.
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161. The formula {g') gives in like manner a relation

between two logarithmic functions, or two circular functions

:

as regards the first case observe that if n, n' are both negative

they are both in absolute magnitude greater than 1, (viz. 1 + n,

1 + n' are each negative)
;
and we have thus a relation between

two logarithmic functions with parameters of this form
;
but

such functions being excluded from consideration, the formula

is not written down. There remains the case where the para-

meters (being by supposition logarithmic) are each negative and

in absolute magnitude less than A*: viz. writing n = — k'sm'0,

n = — 1^ sin* the relation between the parameters is

(1— i-*sin*0) (1 — i* sin’ X) = or what is the same thing

(cos’ 0 + /c’ sin* ^ (cos’ X +/:'* sin* X) = i'*, or as this may be

written (1 + 4'’ tan* ^ (1 + tan’ X) = fc'* (1 + tan*0) (1 + tan’X),

whence finally the relation is 1 = i-'tanXtan0, (answering it will

be observed to the transcendental relation F6 + F\= /’,).

We then have

1 + n_ 1 +fc'*tan’0
, t *

-A-’tan*^
, -p(-l-tan X), -

and completing the substitution, the formula becomes

cos*5 n (- A* sin’0) + cos’X II (— A* sin’X)

=F+ J sin 6 sin X log
^

A(/> — A* sin 6 sin X sin
(f>

cos <^\

,A(/) + A’ sin 0 sin X sin
<f>
cos

<f>)

where as above 1 = A' tan 0 tan X. The formula enables the

reduction of a logarithmic function of parameter — A-*sin*0

in absolute magnitude greater than (1 — A') ^or for which

tan 0 > to a like function of parameter in absolute
wkJ

magnitude less than (1 — A') ^or for which tan 0 < •

But it is convenient, not using the formula, and tlierefore

without thus restricting the value of 0, to retain — A’sin*^ as

the expression for the parameter.
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162.

In the .same formula {g) if the parameters are both

circular they may be taken to be n = cot’0 and «'=—!+ fc’*sin’0

;

and the formula becomes

IT ^ ON ^ cos’ 0 ,n (cot* 6)
-
-i“7,

» n (- 1 + * * Sin’0)

^•’sin*0 p^sin0co.s0^ sin ^ cos ^ A(fc', 0)
’

sin’ 0
^ ~K \k', 0) A(&,^)

which is a formula for the reduction of a circular function of

positive parameter cot* 0 to a circular function of negative

parameter — 1 + I;'’ sin' 0.

163.

The above formula

co8*0 n (— k* sin*0) + cos’X II (— k* sin’X)

„ t • ^ 1 /AA — A:* sin 0 sin X sin 6 cos AN= F+ A sm 61 sm X log —rr-=

—

tt - - - =—v ^
\A0 + At sin 0 sin X sin

<f>
cos </>/

may be written under a slightly different form ; viz. expressing

it first in the form

cos’0 [n (- A-* sin’^) + cos’X [n (- i* sin* X) - F]

= (1 — cos’0 — co.s’X) F+ ^ sin 0 sin X log fi,

and dividing the whole by sin 0 sin X
;

then reducing the

coefficients of the several terms by means of the relation

1 = A' tan X tan and finally restoring the value of il under

a slightly altered form the equation becomes

cos 0A0r^, „ . m COsXAXrrr/ u • n m—r-
75— [II (- F mv0) - FI + — . ^ [IT (- A’ Bin’X) - F]

sin ^ sin X ^

n, , /N n 1 1 Ai> — k^cosX cos 0 sin A cos AN
= r? cosXcos^ . F+ i log . T i^ °\k A(j) + ^ cos X cos 0 sin ^ cos (f>Jk'

where as before 1 = k' tan X tan 0.

164.

If to fix the ideas we consider herein X as positive

and less than ^tt, then writing 0' = 7r — X, the relation between

0, ff will be A' tan 0 tan 0' = — 1, (0 and & each positive but
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0<i7T, O'

>

Substituting for \ its value nr — O'
the

formula becomes

cos 0^0
sin 0

[n {-A;’sin’0)-f’]-
cos ffA0'

sin O'
[n(-ifc*8in*0')-^]

^ n m r- 1 ^ A(f) + COS 0 COS sin <i COS A= - --7 COS 0COS 0 . F+ i log ,7-r^ a O' I 'i »k ° k A<p — k COS 0 COS 0 sin 9 cos
<f>

which is a form used in the sequel.

The general Case resumed.

165. Returning now to the general equation

AYln + A'lin' +BUm +\F=
f J 1 +pvr

write n = — k‘ sin’p,

n' = — h^ sin’ q,

m = — k‘‘ siq* 0 ;

then introducing these values we have

5'= — sin^ sin g sin 0,

k*
p — ~j^ cos’p cos’ q cos’ 0,

A'* (1 + f)’= (1 —^ sin’p) (1 — A:* sin’ q) (1 — i’ sin’ 0)

;

or writing this last under the form

A' (1 + ?) = Ap

we have fc' (1 — i’ sin p sin gf sin fl) = Ap Ag AO

as the relation between the parametric angles p, q, 0. This

is in fact equivalent to the transcendental equation

Fp-\-Fq — F0 — F^=^ 0,

and it suggests the introduction into the formula in place of

0, of a new angle O', such that F0 + F^ = Fff and consequently

Fp-^ Fq— Fff = 0.
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128 THE THREE KINDS OF ELLIPTIC INTEGRALS. [V.

166. But let us first express B in terms of the original

angles^, y, ft We have

_ m* + (2 + 1;) m* + (1 + 2g)
~ m {m — n) {m — n')

’

the numerator is

— Z:* sin* 0

+ (2 — sin 0 tinp sin y) A* sin* 0

+ (1 — 2A* sin 0 sinp sin q). — k* sin* 0

— A* sin 0 sin^ sin q,

= — A* sin 0 [sin 0(1 — 2 sin* 0 + 7c* sin* 0)

+ sin p sin y (1 — 2A* sin* 0 + A* sin* 0)],

= — A* sin 0 [(sin 0 + sin/? sin q) cos'0 A*0

— A'* mn*0 (sin 0 — sin/? sin g)],

and the denominator is

— A" sin’ 0 (sin* 0 — sin’/?) (sin* 0 — sin* q),

whence

J

_

cos’ 0 A’0 (sin 0 + sin /? sin q) — 7;'* sin’^ (sin 0 — sin p sin q)

A’ sin 0 (sin’ (9 — sin’ />) (sin’ 0 — sin* j)

167. The relation between ft
0' may be written under the

forms

sin ^ —

COS0=

cos ft

Aft
’

A' sin ft

“ Aft~’

sin ft=

cos ft = —

COS0

^Aft’

A' sin 0

Hence in the last-mentioned expression of B, the nu-
merator is

A'*sin’ft/' COS0' . \ A'*cos*ft/cosft . . \

A‘ft~r " Aft V + “A^ft
“ p yj >

which is

A'*
= [A'* sin’ ft (— cos 0'

-f sin /? sin q A0')

+ cos’ ft A’ 0' (cos ft -f sin /> sin q Aft)].
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But in virtue of the relation between p, q,
6' we have

cos ff = cosp cos g' — sin/j sin q Ad’,

or the numerator is

k"*= [i'* sin’ ff (cos p cos g — 2 cos ff) + cos’ ff A’^ . cosp cos g],

k"*
say this is = n.

Then we have

12 cosp cos q = (cos’ ff A’ 0' + A” sin’ ff) cos’pcos’g

— A'’ sin’ ff

.

2 cosp cos q cos ff.

But

1 — cos’p — cos* q
— cos’ 0* — A* sin’p sin’ q sin’ Q'

= — 2 cos p cos q cos ff,

say R sin’^' — cos’p — cos’ = — 2 cosp cos g>cos ff,

where i2 = 1 — A-* sin’p sin’ q.

Hence

n cosp cos q = (cos’d" A’d' + A'* sin’d") cos’p cos’ q

+ A'* sin' ff {R sin’ ff — cos’p — cos’ q),

= (1 — 2A* sin’ d" + A* sin* ff) cos’p cos’ q

+ A"* sin’ ff {R sin’ ff — cos’p — oos’ q),

= cos’p cos’

2

+ sin’ ff [— 2A* cos’p cos’ q — k'* (cos’p + cos’ g)],

+ sin* ff [A* cos’p cos’ g + A'*(l - A’ sin’p sin’ g)],

which is

= cos’p cos’

g

— sin’ d" (cos’p A’ g + cos’ g A’ p)

+ sin*d' A’pA’g,

= (cos’p — sin’ d' A’p) (cos’g — sin’d" A’g),

so that numerator is

A"* 1
= xrs — (cos’p - sin’ ff A’p) (cos’ g - sin’ d' A’ g).A a cosp cos g' ^ 1 a/-

c. 9
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168. Denominator is

cos 6'
, cos* 0'\ / . o coa'ff\—M P--AWJ ^ A*^' j

’

P rnsi (y
= « (cosV - sin> AV) (cos’^ - sin’j A*^'),

= — (cos’ p — sin’ ffA’yj) (cos’ q
— sin* 6' A'q

)

;

which is

whence

^ =U
-k'

k' cosp cos q cos ff
’

Write

M= -M -k'

then

sin ff cos /) cos q\ k* cos p cos q cos 6.,)

cosffAO \ sina /

and similarly

sin/?

Sin q

169. The equation is

yinn + AUn' + i?n«i + p /*=
,

,

C J I + pw

or since

• Wc have

A A li — \

f= - k* sinp Bin 9 sill 9,

COB 0'

= 1‘sinpsinf
A9'

and hence this equation is

-id" jeospA/)
^
cosqAj

^
L^sin 9'

k’ sin 9' COB}) cos q i sin}) sinq cos 9'A9

= 1 . ^
k’ sin p sin q cos

9'

'

an identity which may be verified.
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this is

A{Un-F} + A’(nn-F) + B{nm-F)-i-F=jj^^,,

that is

cospAp

sinp
(Hp _ F) (nj -F)- (n^ - F)

din

+ pw’M
where Tip, &c. are written in place of II (— Id sin’;>), &c. We
have

J/ =
-k' k' .

Tj 7i , P- — cos « co.s 7 cos
AT cosp cos 7 cos 0 ^ A:

*

hence

Jill + pur* ^ J/A? cos/) cos 7 cos 0 ^
^

k'

,
A’* cosp cos /cos 0 sin ^ cos

lo
siii»~^)A

°
,

A"* cos p cos q cos 6 sin
<f>
cos

(f>

'

k' (T+?.siu'<^)^

and the formula thus becomes

S2^_P^P (np - F) + (H/ -F)- (ne - F)
siup ^ siuq ^ sma '

k*
= cos/) cos q cos 6 . F

,
. A’(l + f sin’

<f>)
A<j) — k* cos p cos q cos 0 sin

<f>
cos if>

^ ® A'(l + { sin" A<f> + Id cosp cos q cos 6 sin
<f>

cos ^
‘

170. Representing, for convenience, the logarithmic term

by ^ log Q, so that

A-'(l— A-’sinp sin/sin^sin’^) A<^— A’cospcos/cos0sin^cos(^

A'(i — A’sinp sin/sin^sin’<^) A^+A’cospcos/cos0sin(/)Cos^
’

P-Q= suppose,

9—2
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we have, ante No. 163, writing ff for X, and — 0 for 0 (thereby

passing from the relation F, = F\ + F0 to the actual relation

F,=Fff-F0),

CO8 0A0,„rt rr, COS0'A0'-^-(U0-F)--^^ (IT^ — F) = —
-p

cos^cosF.F

,
, FA(f)4i'’cosFco80sin<icos<i / , , R + S ^+ ^ FA^^XWl^n^cos,/, r ^ irrs >

and using this to introduce into the formula

(OF - F)

in place of

Sin 0 ' '

the formula thus becomes

{Up-F)+ (Us -F)- (Uff - F)
sinp bin q

= y
(cosp cos q-cosff) cos 0.F+1 log

'

where the coefificieut of F on the right-hand side is

/J

y
sin p sin q AF cos 0, =1^ sinp sin qsinff

,

171. Introducing into the logarithmic terms ff instead of

0, we have

r. ^ T . ,5 sinn sin o cos F . , ,P- <2 = F U + /c*— 8in*</)j A<#>

k'k'— sin 0
'

cosp cos 2 sin ^ coa<f>,

or, multiplying by Ad' and omitting the factor k', say

P— Q=(Aff-fA’sinpsin^cosd'sin*^)A^—^•’bind'cospcos^sin^cos^,

= [AFA^ — sin d" coaff aia
<f>

coa
<f>]

+ A:’sind'8ini^ C08 (^ [(cos d'— cosp cosd), =- sinp sinjAd"]

-f- A* sinp sin q cos ff sin’ ^A0,

= Ad”A<^ — A’ sin ff cos ff sin
<f>

cos
<f>

+ k* sinp sin q sin ^ [cos ff sin i^A^ - cos
<f>

sin ffAd]
;
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and similarly

P+Q~ AffA4> + sin ff cos ff sin
(f>
cos

<f>

+ fc* sinp sin q sin if> (cos ff sin if)A(p + cos ^ sin ffAd').

Also

n Cl j « A I
sin ff cos ff sin d> cos <4

Jt + S = kA4> + ^

^

or, multiplying by Aff and omitting the factor say

R + S= AffA(f> + P sin ff cos ff sin tf> cos <f> ;

and similarly,

P — S= Aff Aif> — fc* sin ff cos ff sin t}> cos

172. Write for shortness

Aff A<f> — k* sin ff cos ff sin ^ cos
<f>
= A,

Aff A<f> + k^siaff cos ff sin
<f>
cos A',

cos ff sin <f>A<j> — cos
<f>

sin ff Aff = B,

cos ff sin <f)A<f> + cos
<f>

sin ffAff = B,
then the logarithmic term is at once expressible in terms of

these quantities, and substituting in the formula, we have

(np - +^2^ (% - F) - (n^- - F)
sinp ^ singr ' ^ sinw ' -

'

. . . «, r, ,, FA + A* sin n sin <7 sin <4 . FI A'= Arsmpsinosinp .F+Alogr-n—

—

r—n\-r i^ ^ +Fsinpsin jsin(^.i?] A ’

which is in fact the formula connecting the three functions

Tip, Hq, Hff, or in the original notation

n {- sin’p), n (- Fsin’y), H (- it’sin’ ff)
;

the angles p, q, ff being, it will be remembered, connected by

the algebraical equivalent of the equation

Fp + Fq — Fff = 0.

173. This apparently complicated formula is wonderfully

simplified by introducing into it Jacobi’s notation; viz. writing

sinp=sna, singr=sn4; and therefore sin0'=sn(a+4)
;

also

sin<^=sn« ;
then omitting a common factor 1 — i’ sin’ ff sin*

<f>,

we have
A = . dn (a + 4 + u),

A'= dn (a + 6 — u),

— F = sn (o + 6 — «) dn (a + 6 + m),

B'= sn (a + 4 + «) dn (a + 4 — «),
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and the formula becomes

n (tt, a) + n (u, J) - IT (h, a + 6) = i’sno snt sn
(
046). u

^
1 — sn a sn ft sn (fi 4 i — m) sn u

+ a
j ^ gjj g,j ft sn (a + ft 4 m) sn M ’

viz. it is in fact a formula for the addition of the parameters.

Interchange of Amplitude and Parameter. Art. Nos. 174 to 18G.

174 . Starting with

n = f
j,(l4nsin»<^) A’

and taking throughout the integrals in regard to
<f>
from this

inferior limit 0, we have

f — j! sin’<^</<^

~
J (I 4 « sin* A)* A ’

dn
^ dn J (I

f .»n
"'j(l 4 H.sin*</)/A

But writing a = (1 4 n) ^1 4- ^ j
we have

jj j(i 4 n sin <^) A 1 4 n sin </> nj A
/ 24^ 3^•^

f
d<f>

^ n rd) J n 4 n sin* (/>) A
’

as may be verified by differentiation: or since

pj (1 4 n sin*<^)^ = (A:* 4 n) F- iiE,

, 2 4 2t* 3fc* 1 /., F-\ 1 /,
1 4— h - 2a — n 4 — = - — 'I 7- .

n V? M V ^

this is

(1 4 n sin’ ^)’ A 1 4 n sin’ tf> m’ n
^ f d<f>

^ J (1 4 a sin’

viz. we have

d<f> A sin ^ cos ^ ^ « \ / p
I
C* 'a* 1 t .. J. ... ' *

4 -f2a-n\
d'x

* dn
IT.

2a r r d<#> _ jjl ^ A «n cos <!>
_F p

n
I j fl 4 « sin* A i 1 4 n sin’

<f>
a’

1

_ (/’_ i:) _ 7 n.
H ' dll
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175. This equation may be written

2 j^ ^ ^ iP_ 1 (J^_ .E) - n ,

an 1 + n sin*
<f>

n an

or, what is the same thing,

2%m + nda = ^ sin <(, cos d>— F^-(F- E)- ,

viz. multiplying each side by this is

J . n Va = iA sin A cos
<f>
— ^^ ^ ^ (l+nsin’^)V« n’Va

-HF-E)-^-,
' n va

where of course a, = (1 + n) ^1 + ^j
, is regarded as a funetion

of ».

Integrating each side we have

n Va = C+ i A sin (^cos f - i Ff[-^-’ ^
^./(l+nsin’^)Va In’Va

-i(F-E)f-^,
JnVa

where the constant of integration may of course be a function

of i',
<f>,

but it is independent of n.

The formula is simplified by representing the parameter n
under any one of the foregoing forms cot*^, — 1+V’sin’^,

— i"* sin’ 6. The last is the most interesting case, but it is proper

to consider them all three.

First case, n = cot’ 6.

176. Here

, 2 cos ^ A (k', 0)

sin tt sin 0 cos 0

and the equation becomes

sin 0 cos ^ j cos’ 0 A (V, 0)
' ^

iA (V, 0j

... , f co.s’ 0 d0
A sin cos

J ^ cos’ 0) A (V. 0) ’
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where the integrals in regard to 6 may be taken from the

inferior limit 0.

The integral

and we have

J cos

do sin* 6 sin 6
' 6 A {k\ 6) cos 6

Moreover, writing cot’
<f>
= n we have

cos’ 0 dO

^{k',e)-E{k',e).

A sin ^ cos
(.sin’ 0 + sin" 0 cos’ 0) A (k', 0)

_ A sin ^ f
d0

j^(.k': f
) j(l +n Bin’

d0

cos
(f) JA (k\ 0) sin <p cos

A sin
</> ^ + ^ .

n {n, k', 0).
COS 9

^ ' sin ^ cos (j>
^ '

e)A{k’.0)'

Substituting these values and for greater clearness writing

n [n, k,
<f>),

A (k, (j)}, F (k,
<f>),

E {k, </>) instead of II, A, F, E,

putting also for G its value = ^tt, determined as presently

mentioned, the formula is, (n = cot’ 0, n = cot’
<f>)

n (n, k. <}>) + \ n in', k'. 0)
bin 0 cos 0 ' sin tf> cos tf>

' > ’ /

(t) Leg. p. 133.

>) F{k\ 0)

+F {k. <}>) F{k', 0)-F {k, <^) E {k\ 0)-E (k. 4>) F ik', 0).

177. If in the formula, instead of ^tt, the term had been C,

tlien G is independent of 0, and by the symmetry of the

formula it must be independent also of
<f>:

it is thus an

absolute constant : to determine its value take 0, tp each

indefinitely small: then

F (k, 4>) =E {k, 4,)
= <p. F ik\ 0) =E {k\ 0) = 0,

1
1
(h, k, 0) = = "p </) v7i = 0 tan'* ^

,

j 1 + H 8ia 4>\ n
“
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and similarly

n {n, k', 6) = <f>
tan~‘ ^

:

we have therefore

(7= tan"*
^ +

tan'* ^ , =i7r,

which is thus the value of C.

178. Write
<f>
= ^ir — a>, w being indefinitely small: then

n = cot’
<f>
= tan* &> = to* is indefinitely small, and therefore

rr 7.' o\-f f d0 ,fsia*dd9

^vn.' o\ _.fBin'edd-F(k,0)-„j—
,

and thence

n k', 6) - F(.k'. ff)sm <p cos <l>

' » > 7
(.Qj. ^

\ • y

= — (-4^ - sin4 F {k’, 0) iT/v 'm
’

cos
<f>

\sin ^
Tj \ ’ I

pQg ^ sin 9 j A (« , 0}

The coeflficients on the right-hand side are

1/1 • cos<fc , n <a’

cos <p\sm
<f> ^

J

sin 9 cos 9 cos 9

viz. writing cos ^ = a>, these each contain the factor o>, and the

function on the left-hand side is thus = 0
;
hence the equation

becomes

+ F,kF(kf. 0) - FJcE{k', 0) - EJcF{k', &),

viz. wc have thus an expression for the complete function

n, (n, k) in terms of the functions of the first and second

kinds.

179. If in this equation wo write — in place of n, and
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assume also — = cot’ X, so as to write X in place of 0, we
n

have

n. (- , l) = A (k', X)
sm X cos X \n J ' cos X \

+F,kF(k', X)-F^kE{k', \)-E^kF{k',\).

180. Adding the two eejuations together, we have

. n, (n, k) + n, (- . k)
sin p cos p ' smXcosX * \,n /

(sin^ . sinX . ,,, , J= 7T + Fk !— A (A' , 0) H— A (A'
,
X) [

‘ (cosfl
' ' cosX ' 0

+ A;A-{/^(A-', 0)+F(k', \)-E(k\ e)-E(k’, X)}

-E,k[nk'.0) + F{k',\)}.

But in virtue of cot’ 0 cot’ X = A-', or k tan 0 tan X = 1, we have

F{k',0) + F{k',\) = Ffi',

E (A', 0)+E (A', X) = EJe + A-’’ sin X sin 0,

and further

. ^ COS0 ^ A-sin0 A/I. k
sin X - , cos X

^

.

A (A-'. X) _ A (A-’, 0)
^

sin X cos X sin 6^ cos
’

sin X A (A-', X) _
cos X

hence the equation becomes

Va|n.(n,A-) + n.(^, A-)

. , sin 0 A<k', 0)

COS
0 =

= 7T + FJc (V2 (sin’ 0 + sin’ X) — A'’’ sin 0 sin X}

+ F,k(F^k' - EJe') - EJcFJc'.

181. But we have

1 - sin’ 0 - sin’ X = co.«’0 - ^ j

cos’0 _ A'*sin’0 cos*0

A’ (A-'. 0) A\k'7W~ ’
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V.] THE THREE KINDS OF ELLIPTIC INTEQRALS. 139

that is

k* — k*
sin’ 0 + sin’ \ = lH or Va (sin* 0 + sin’ X) = Va + -^ ,

sin X sin 0 =
sin 0 cos ^ _ 1

whence on the right-hand side the second term is FJc Va,

or the equation may be written

Ja |n,(n, k)+U,
(I’

, t) = -rr+FJcF^k'-FJcEJc'-EJcFJc',

which is in fact a consequence of two former results

and
FJcFJi' - FJcEJi’ - EJcFJi = - i-zr,

viz. the equation is hereby reduced to the identity J7r=7r —

Second case, n = — l + k'' sin’ 0.

j
— k'^ sin 0 cos 0 dti eijn \ n *

182. Here ^
= ^d0 ^ (k , 0).

and taking as before the integrals in regard to 0 from the

inferior limit 0, the general equation, ante No. 175, becomes

/;'’sin0cos0 „ r i fTT P '1 f

-A (i'.W'
" = ^

^J(l -r sin’

... .r d0.A(k',0)
+ A sin cos

<!>

J

0)i

Wo have

and

.IA"(A;', 0)

d0. 1 sin 0 cos 0^

(T-it”sin>0)»"^^
^ X-’-

'
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k'' tan* ^ = n',

moreover, writing

we have

. r ^{k', 0) dd As\n4>fA(k', 6)d9
sin 9 cos 9

j ^ ^ j 1 + n' sin* d

= - F(k\ 0) + . /Sin 9
>> '

/ giQ ^ cos 9

«#>

n(n',/fc',(9).

Making these suhstitutions, and writing also A (ifc, instead

of A, &c., the formula becomes

(n = — 1 + A;” sin* 6, n = k'* tan*

A:'* sin 0 cos ^ r
~^ (k',6)

— ^ P-

— ^ -7 [n (n', k', 0) - cos’ (A F(A-', 0)]

+ FC*; .^) F (F, 6)-E [k, 4>) F{k', 0) - F(k, 4>) E (F, 0).

the value of the constant C being here = 0, since the two sides

each vanish for 0 = 0.

183. Write
(f> = ^ir — a>, ® being indefinitely small; it is

to be shown that

A(F i>) [n {n, F, 0) — cos*(^F(A-', 0)] = \ir,

equation becomes

[II, (n, k) — FJc] (m') Leg. p. 138.

sin
<f>

cos 0

which being so, the equation becomes

F* sin 0 cos 0

A(F,0)

= i7T + F,A:F(F, 0) - F,A:F(F, 0) - F,kE(k', 0),

giving the value of the complete function H, (n, A-) for the form

in hand n = — 1 + F* sin’ 0.

184. As regards the subsidiary proposition, observe that

. /fc”

(f,
= ^TT — CO gives n = F’tan’

<f> (= F’ cot* co), that is —r=cot*
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V.] THE THREE KINDS OF ELLIPTIC INTEGRALS. 141

= tan’o>; so that from the first formula in No. 160, writing

therein k' for k, and interchanging 0 and
<f>,

we have

n (n'. k', 0) + n (tan* w, k', 0) = F{k\ 0)

sin
<f>

cos
<f> ,

A (k,
<f>)

tan 0

A {k, <P) sin ^ cos ^ A (i', 0) ’

but tan <0 being indefinitely small,

n (tan* 0), k', 0)^F {k', 0) + w’ M,

where M is finite : the equation thus is

n K, i', «) + »• Jf . ttn-
,' ' a{k, <p) sin 9 cos 0 A (A , 0)

that is

^ (”'> *'• J = tan-* -

A >sin <pcoa<f>
' ' Bin<f> cos <p sin ^ cos ^ A (A;

, &)

or putting herein <j> = — to, then since
cos

<f>

vanishes, and

the function under the tan"* becomes infinite, we have

-^p^U(^n,k',0) = i7r,
sin (p cos 0

' *

whence the required relation.

Third case, n = — k' sin’ 0.

r- ^ 2i-*sin*0
, ,

185. Here ,jx = tA {k, 0) cot
A~(k~0) ’

general formula becomes

~^{k,0)U = C + (F-E) f—. .

sin d ^ '.JA(k,0) J sm 0 A (k, 0)

,
. . , , f k^8in'0d0

+ A sin ^ cos ^ —,y-.
J(\ — kr sin 0 sin <

d0

’^)A(Ar,tf)’

where as before the integrals in regard to 0 may be taken from

the inferior limit 0. Since in the present case the modulus as
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regards both the
<f>

and the 6 functions is k, we may instead

of A (Jc, 6) write simply A^ and so Fd, Ed. We have

and moreover writing n' = — k^ sin’ then

/ ^-’sin’^d^ _ / k^sWddO
J(1 —k^shi'0sin’ (f>)A0 J (1 + n's'm'dj Ad

whence the formula becomes (n = — i-* sin’ 6,n = — k? sin* <j>)

,

cot e Ad [n (n, - Ftfl = (nO Leg. p. 141.

cot
<f> A<f> [n (n', 6) -Fff\ + Ed F<j> - Fd E<f>,

the constant in this case being evidently = 0.

18G. Writing (/> = Jtt we have

n.n - =^/ (F,Ed - E,Fd), (p) Leg. p. 141.

which is the value of the complete function IT,n, or say of

n, (n, ^•), for the form n = — F sin’ d.

The formulaj marked {i'), {k'), (V), {m), {«'), (j)') arc those

given by Legendre, Traitd des Functions Elliptiques, t. I.

ch. XXIIL, in the pages severally referred to.
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CHAPTER VI.

THE FUNCTIONS H (m, a), Zu, 0M, Ell.

The functions referred to all depend on the modulus Tc,

which may be expressed when necessary; as regards H («, a)

this is seldom required, but the other functions will be fre-

quently written Z{u,k), 0(u,lj, so as to put the

modulus in evidence.

Introductory. Art. No. 187.

187. The function H («, a) has already been defined a.s

=/,

1-* sn a cn a. dn a sn’a du

1 — A,"* su’ a sn’ u
'

and the several properties already obtained for the function

n («, k,
<f>)

admit of being tran.slatcd into this new notation.

But in the present chapter the theory is established in a

different manner, by expressing this function II («, n) in terms

of the new function ©«. This function &u may be considered

as originating from the function Zu, which has already been

mentioned as introduced in place of the function E(k,
<f>),

viz.

writing E to denote the complete function EJe, we have

Z« = u(l-g — k' sn*M (ht.

or, what is the same thing.

E
K u + J, dn’ada.
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144 THE FUNCTIONS II (u, a), Zu, &U, Eu. [VI.

The new function 0w is in fact

/WK /2fc’jtk'K -41“’+/,**

where the exterior factor is fixed upon for reasons

which will appear: the original function Zu is thus expressible

in terms of the new function 0« and its derived function, viz.

we have Zu = ^^, but the employment of the symbol Z as

a separate notation is nevertheless convenient.

The function 0« is one of a series of four functions, 0m,

& {u + iK'), €^{u + K),&(u +K + iK'); but it is found con-

venient instead of 0 (u -I- iK') to introduce a new function

Eu, and write the four as 0u, Eu, 0 (m -t- K), E(u + K).

The following article is in the nature of a lemma.

Values of + a, a) in the three cases a = ^ iK', a = \K,

a = + \iK' respectively. Art Nos. 188 to 190.

188. We have

du

'

TT / . i* sn a cn a dn a sn* (m + a)

-pryTi.- a .

first if o = i iK', we have

sn i iK, cn A iK', dn J iK = , Vl + k,
wk *Jk

1/ .1 •ir’\ 1 (1 + A-) sn w -f- 1 cn wdnw , . „

The right-hand side of the foregoing equation is therefore

a fraction, the numerator of which is

ik (1 + k) [(1 -t- A:) sn u + i cn M dn «],

its denominator being

k [(1 + A) sn M — t cn M dn m] + A [(1 -f h) sn m d-

1

cn u dn m].

Digitized by Google



145VI.] THE FUNCTIOXS IT (w, o), Zu, ©U, Ilu.

viz. this is = 2k (1 + k) sn «, a mere multiple of sn u : and wo
thus have

/I n (. + 1 (A-, i .-A-) . 1
.• (1 +

1)
{i + ™

,

or observing that ^ 1q„ ^ integrating so that° sn u du° o a

the value may vanish for « = — | fA", we have

n(« + ifA", iiA'') =

i i (1 + k) (u + 1 fA”) - i log sn u + i log .

189. Secondly a =\K,

sn i ir, cn i K. dn i A'=- ^
, VF,

Vl + A: Vl+A:

, , , 1 dn a + (1 + A- ) sn M cn u
sn* (m + * A^) = —p p:

,^ * ' 1 + i' du M + (1 — )
sn M cn M

and then

d
du

? TT / 1 r.- 1 T-V . T fN (1 + sn « cn u]
-n(a + iA';iA) = i(l-*')jl + 5^

}.

_ wi 7'\ . 1
i’snwcnM

or observing that

d , , — A:* sn M cn M
^logdn« =—

,

and integrating so that the value may vanish for u = — J K,

we have

n (« + i A', J AO = J (1 - i A) - i log dn a + J log VF

190. Thirdly a = ^ A'+ ^ iK\

sn (i A' + J iK'), cn (i A- + i iK'), dn (J A”+ i lA")

= \J—

I

,, , ,, ,
A- + 7X-' cn a + (A; — »F) sn a dn

c. 10
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146 THE FUNCTIONS IT (it, fl), Zu, Su, IIu. [VI.

and then

^ n (it + i AT+ J iK', ^ 7i + J iA
')

au

(fc - ti') sn It dn itl

+ + ^ (jlT— }'

. ,, , sniidnu

whence observing that

d ,
— sn It dn It

-7- log cn M = ,

' du ° cn w

and integrating so that the value may vanish for

u = -\K-\iK',
we have

n (u + i 7T+ i tA”, i A-+ i iK’) =
/- ik'

i {k + ik') (it + i A ->r\iK’) - i log cn u + i logy —^

.

The Function Zu. Art. Nos. 191 to 196.

191. We now proceed to consider the function Zu: it has

already been, ante No. 131, seen that we have here the addition-

equation

Zu + Zv - Z (it + i') = k‘‘ sn It sn 1; sn (it + i>).

192. Starting from the equation

Zu = - J.U + dn’it du,

and writing herein itt for it and k' for k, we have

E' .

Z (At, k') = - til + i dn’ (tit, H) du,

dn It

cn It

(In’it

^which observing that dn (tit, i'') = written

. f (In’it , \

J-cn’it J

E'.^
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147VI.] THE FUNCTIONS II (m, a), Zu, 0M, Hu.

and it is to bo shown that we have

„ snitdnM mi
,Zu = -^,r,r, + iZ(iu,k).

cnw 2AA ^ '

I stop to remark that ii being indefinitely small this equa-

tion is

which is tme in virtue of

E E'_ 7T

A-'''a:' 2KK'-

that

193. To prove the theorem, we verify without diflSculty

d snMdnw , , dn*M
-j = dm« + , 1

;

du cn u cn u

we have therefore

du cn a

or integrating from w = 0,

d sn !« dn u , , , , , . ,— = dir u + dn’ (lu, k
)
— 1,

1 M dn 1

cn u
=

Jo dn’ u du + /„du* (iw, k') du — u.

But the integrals in this formula are

E E'
= Zu+-j^u and — tZ {iu, k') + j^u

respectively, and substituting these values and reducing by

E E' - _ 7T

¥KK' ’

we have the required formula

„ snwdnw mi ...
Zll = ^-ry, . ^ + iZ (lU, k ).

cnit 2AA ' '

194. Writing in this equation «= iK', and observing that

Z{-K',k'):=-Z{K',k') = 0,

10—2
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148 THE FUNCTIONS II («, a), Zu, 0U, Hu. [VI.

since Z {K', k') Is what Z{K) becomes on writing therein k' for

k, we have

_ , . sn iK' dn iK tV—5CT— ar
which is infinite, =kl, if / is the infinite value of sni’^T'.

Writing in the addition-equation m = v — ^iK', we have

2Z [\iK') = Z{iK') + sn* i iK sin iK,

saiKAniK ,, iv= r™ h At sn A sin %K —
stj. ,

cn tA 5JA

• « X CD %K^ • •

or substituting for sn’ J iK its value =

. .™ (dn iK fc* (1 — cn iK)\ iv
= i3E7r

+ -TTd^.:A:'-}-

where the first term is

sin tK (dn %K + k* cn iK + k'^)

cniK{l + dniK)

and substituting herein for sin iK, cn iK', dniK their values,

= /, —il, —iki respectively, and then making I infinite, the

term is = t (1 -b k), and we thus obtain

It will be recollected that

.• Z{iK)=i{l-k'),

and wo thence by the addition-equation find

195. Starting from

E
Zu = — j^u+j„ dn’u du,
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we have

Z{u + a) = — + (** + ®)

= -^ (m + a) + /,
dn’ (u + a)du + J,“

dn*« du,

E
= - J^u + j^dv? {u + a) du + Za,

that is

dn' (u +a)du = -^n + Z (u+ a) — Za.

And similarly, observing that Z(—a)= — Za, we have

E
dn’ [u — a) du = Z {u — a) + Za,

whence

/, dn’ (m + a) dM -/o dn’ (m - a) dit = Z (u + a) - Z(m - a) - 22a.

196. We find without diflSculty

d cn u dn m _ _ cn’w _ ^
du sn u sn’ u

= dn’ (m + i'E') - dn’ u,

and thence

cn u dn u _ ^ du-f dn’udu,
snu

= C+Z(u+iJr)-Zu.

To determine the constant, write u = - i t^T, we have

dn = <7 + 22(i iK'),
sn J iK
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or substituting for the functions of it'/f' their values, this is

i{l+k)=C-^ +

and therefore

hence the equation is

C =
2K'

cnjtdnu itt _= + Z[u + tK )
— Zu.

sn M 2A ' •'

The Function 0«. Art. Nos. 197 to 199.

197. The definition has been given at the beginning of

the present Chapter.

0it is obvioiisly an even function, 0 (— «) = 0u
;
and we

have 00 = •

We have

. /‘Ik'K ij.z(i»)du

and therefore also

Ziiu, k )du

198. From the equation

_ snwdnw vu
,Zu =• „ I'ir' + ^Z hu, k ),enw 2Aa ' ^

multiplying by du and integrating from w = 0 (observing that

sn u dn u d . . ,= — T- log cn «), we have
cn u du '

TTU^

/, Zudu = - log cn u - + t7, Z {iu, k'),
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and taking the exponential of each side and expressing the

values in terms of © we have

199. From the equation

SD u 2.K

wc deduce in like manner
iVm

ZK 1
©It =Ce^ © {« + iK'),

su u

and, in order to determine the constant, writing herein

u = — \iK', wc find

nfC

C = — sin ^tK' e *^ =— 1= e

nK'
4X

Jk

whence the equation is

©u = -
'

an equation which will presently he proved in a different

manner.

Expression o/Il («, a) in terms o/©». Art. No. 200.

200. Wc have

2 sn w cn o dn a
sn (w + a) + sn (it - a) =

j „ gjj« „
>

sn
2snacn«dnw

(« + a) - sn (it - a) =
j _ ^

-

.

• TTiifl is in effect Jacobi’s lormola, Fund. Nora, p. 163 (6), viz. iutcrebanging

therein k and F, it becomes

that is

or substituting lor 9 (0, k'), 0 (0, k) their values, this is the lonnula ol the text.
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and thence

,, , ,, , 4 sn a cn o dna sn M cn w dn tt

sn (u + a)-sn (»-a)= — .

_ 2
(Z sn a cn a dn a sn’ u

da' 1 — I:’ sn’ a sn* u ’
.

as Is at once verified from the relation sn w = cn w dn u.
da

The equation may be written

— i dn* (m + a) + i dn* (w — a)

_ d i* sn a cn « dn a sn* M _ d* _ , .

da' 1 — Z;*sn*asu*M
’ ~ du*

whence multiplying by du and integrating from u = 0,

— ^ /,dn* (u + a) da + ^ (“ “ ®) ~ ^

or, what is the same thing,

^Tl {u, a) = Za + ^ Z{u — a) — ^ Z{u + a).

#
*

Substituting herein for Z{u — a), Z {u + a) their values

B' (m— a) B' {u + a)

B (m — a) ’ 0 (u + tt)
’

multiplying by da and integrating from « = 0, we have

n (u, a) = uZa-t-i log ^ ,

where for Za we may of course substitute its value, = .

ITie Function Bu resumed. Art. Nos. 201 to 206.

201. We have

d rr , \ ^"’snacnodnfl sn’« ,
tZ

, , .j t » ij-n (w, a)=—^—TY—i i ,
= - J

j-log{l-&’sn*asn’u),
du ' ’ ' 1 — fc' sn a sn M ^ da ° ' ‘

that is

0'tt B'(M-rt) B'(tt + a) fZ , ,, , , .

2 7^- + TYH 1
— -7^7 ( -~-r log (1 - « sn a sn it),

©o 0 (m — o) 0 (m + n) tZa
® ' '
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or what is the same thing,

^log0(!t-a) + ^log0(M + a)

= 2^1og0a + ^log(l — t’sn’osn'w).

Integrating in regard to a we have

0(it — a) 0(a + o) = C&a (1 — fc* sn* a sn* u),

where of course the constant of integration C may be a function

of u. To determine it write a = 0, we have

0*M = C'0*O = C?^,
7T

and then the equation is

0(a - o) 0 (k + a) = 0* M 0’ a (1 - A* sn’ a sn’ u).

202. Writing the differential formula under the form

i* sn a cn a dn a sn’ u

K sn a sn u

if we herein interchange a, u, this becomes

sn M cn u dn M sn’ a

1 — sn’ a sn’ u

= Za+^Z{u — a) — ^Z(u + a),

,
u, this becomes

= Zu — \ Z {u — a) — \ Z {u a),

and adding the two together we have

Zu + Za — Z{u + a) = i’ sn u sn a sn (u + a),

viz. we thus reproduce the addition-formula for the function Z.

203. Starting with

n / \ -7 11 ^ (« + «)n (u. a)=u.Ztt-i log^-^l^y

and writing herein w a in place of u, we have

n (w-f-tt, a) == (w-f-o) Za-j log —

wo have in the present chapter found the values of II (a + a, a)

in the several cases o = J iK', a = i K, a = h K+ ^iK'.
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204. First a=^ iK', we liave

J t‘ (1 + k) (m + i j’A") — i log sn u + i log

= Z(i ,-A") (u + ^ IA") - h log
,

that is

log sn w = (i (1 + k) - 2Z(4 lA")) (u + J i7i')

which substituting for 2T(i t'A") its value becomes

= 2A'(“

— i 0 (m + 1 A”')

Vk 0« »

or writing the first term under the form — (F' — 2f«), and

taking the exponentials of each side,

-7^(K'-!!(«) — i0(m + iA")
sn« = e ** .-7= — £,

Vifc

205. Secondly a = ^ K, we have

J (1 — k') (u + ^ K) — ^ log dn M + i log Vfc'

= Z(h K) («+ J A') - J log ,

that is

log dn u = (1 - k' - 2Z{1 A’)] (m + A K)

, fy, . 0 (it + K)
+ logVfc +log—

where the term in « + A K vanishes by reason of the value of

Z (J K), and passing to the exponentials we have

0tt

20G. Thirdly a = ^ A'+ i t'A", we have '

J {k + ik') (m + i A'+ J iK') — J log cn it + J log y/z7^

= K+ I lA") (u + )iK+h iK’) - i log
0 (it + A'+ lA")

0it
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log cn « = (i' + ii' — 2Z(i/v + (« + ^K+ i iK')

/Z7y/ fi(u+K'+{K')
•l»gV-r +'»8—e„ ’+ 1

or substituting for Z(IAT+JiA") its value, the first term is

2^ (m + h iK'), which is = — ^j^{K' — ^iu) +^ : hence

passing to the exponentials and observing that

lir

€ ^

we have

(IT-2.U)
cn M = c

lu) /k' © (u

V k

+ A'+tA”)
©M

Recapitulation. Art. No. 207.

207. We now see that the elliptic functions sn u, cn u, dn u,

that the elliptic function of the second kind considered a.s a

function of u, and for convenience replaced by Jacobi's Zu, and

that the function of the third kind considered under Jacobi’s

form n (m, a), are all of them expressed in terms of the single

function 0 («), and the i'-functions K, K', viz. that we have

sn M = e
** *"**

• 0 (u + iK'), (.^)

cn M = e= «
k'

dn M =

denom. =

j
0(« + A'+fA"), (-)

-Jk' 0(« + AT), H
©a,

viz. these are fractional functions having the common denomi-

nator 0U, and having also ©-functions in their numerators; and

further that

II (m, a) =
©'a

, ,

«e„ + Uog
© (u — a)

_

© (h -I- a)

'
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and conversely that 0a is a function derived from sn u by the

equation

0M =

(involving the i*-function E, Legendre's k ).

And we have also proved the formula

0u = 0 (Vu, k'),
enu

or as this may also be written

0 (»'«) = sj e cn (tw, k') 0 {iu, k')

;

and the formula

(« + a) 0 (« — «) = 2]^^
©’a (1 — i;* sn* « sn* a).

The Function Hu. Art. Nos. 208, 209.

208. If introducing for convenience a new function 7/u*

we write

/fa = - © (u + iK'),

and therefore also

n{u + K)=-ie © (« + A'+ iK'),

-i^ur-siu)

,

= e ‘%{n + K),

• If instead of Jacobi’s G, II wo use tho four functions Qu, 0,u, Q,u,

respectively, then G,u, 0,«,

0,u,

GjU

are the numerators, and 0u the common denominator, for tho three eUiptio
functions sn, on, dn u. The four functions G„ 0„ 0,, 0 have been tabulated
under the superintendence of Mr J. W. L. Glaisher, and are in course of
publication.

Digitized by Google



157VI.] THE FUNCTIONS II (u, a), Zu, ©U, Hu.

then the formuhe for the elliptic functions become

where

sntt = —^Uu,
V/t

cn

dn u = •/ic 0 (m + K),

denom. = 0w.

(^)

(-)

(-)

It hence appears that Ha is an odd function of u, which for

/^kicK
u indefinitely small becomes = ^

209. Combining with

0 (m + a) © (m — o) = 0’a (1 - sn’ « sn* a),

the equation

sn (m + a) sn {u — a)
= sn’ M — sn’ a

1 — sn’ u sn’ a ’

and attending to the expressions of sn u, sn a in terms of H, 0,

we have

Zr (m + a) i7 (« - a) = (.H'u 0’a - H'a &u).

The Function II (ti, a) resumed. Art. Nos. 210 to 215.

210. We deduce the addition-equation for the function of

the third kind II (u, a), viz. we have first

n (u, a)+n (v, a) — n (u + v, a)

0 (« — o) 0 (y — rt) 0 (m + « + a)
— 5 © (it -f. a) 0 (y -P a) 0 (it -t- y — o)

(= i log n, suppose),

where the logarithmic term containing the functions 0 may

be in three different ways made to depend on the functions sn.
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211. First we have

0 (m - a) 0 (y - «) = 0’ i (m - v) 0' (i (if + y) - a)

{1 — sn’ i (if — y) sn’ (A (w + y) - a)},

0 (if + a) 0 (y + a) = i (w - y) 0’ (i (w + f
) + «)

(1 — F su* A (if — y) sn’ (^ (u + y) + a)),

0a 0 (if + V - a) = 0’i (« + y) 0* (A (« + y) - a)

(1 — sn’ ^ (if + v) sn’ (J (« + y) — a) }.

0a 0 (if + y + a) = 0’ J (if+ v) 0’ (^ (u + v) + a)

[1 — A-* su* A (if + y) sn’
(A

(if + y) + a)},

and taking the product of the first and fourtli expressions

divided by that of the second and third, we have

ll-i-’sn’A (M^)sn’(A(it+y)-a)} (l-A-’sn’A(M+iOsn’(A(u+y)+^^^

““ {l-^’su’A(M-y)sn’(A(M+y)+a)l ll-A’’sQ’M«+»’)s'iXK«+'-0-a)j‘

212. Secondly we have

0’ (u - a) 0’ (y - a) = 0’0 . 0 (if - y) 0 (a + y - 2a)

{1 — A'* sn’ (if — a) sn’ (v - a)},

0’ (if + a) 0’ (y + a) = ©’0 . 0 (a - y) © (a + y + 2a)

.i- {1 — A* sn’ (if + a) sn’ (y + a)),

©’a©’(if + y-a) =©’O.0(if + y)0(if+ y-2a)

[1 — A* sn’ a sn’ (u + y — a)],

0’a 0’ (if + y + a) = ©’0 . © (u + y) © (« + y + 2a)

{1 - A’ su’ a sn’ (if + y + a)},

and then in like manner we obtain

/ j l^A-’“sn’ (if + a).sn’(y“TiI)!lT^_*’

.

^ = V
[
1^ A-’ sn“(if - a) sn’ (y - a)} |1 - A’su’a sn’ (if + v +a))|

'

213. But, thirdly, from the form originally obtained for the

addition-equation, the same quantity should be

1 — /c’ .sn a sn u sn v sn (ii -I- y — a)
^ ~

1 -f- A’ sn a sn u sn v su (if + 1> -f a)

The transformation is effected as follows

:
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We have

}1 — sn’ J (it + v) sn* i (it — r)} sn « sn v

= sn’ J (it + i>) — sn’ i (u — v),

{1 — k' sn’ i (it + 1>) sn’ (i (« + t>) — «)} sn a sn (it + u — a)

= sn’ J (it + v) — sn’ (i (it + ti) — a),

and taking the products of the two sides each multiplied by

— k\ and adding a common term on each side, we have

[l — k'sn'^{u+ v)sn'i{u-v)] (l-^•’sn’|(M+»)sn’(J(lt^-tl)— a)}

X [1 — i’ sn a sn It sn V sn (it + w — o)

}

= jl-/,-’sn’4 (it+ ii)sn’i (it- ti)} {l-A.-’sn’i (it+t;)sn’(J(it+ti)— a)l

— ^•*{sn’i (u + v)-sn’J (it-i>)j {sn’i (it+i')-sn’(J (!t + u)-a)},

= 1 + sn* J (a + r) sn’ J (it - v) sn’ (H“ + ~ ®)

— k’ sn* i (it + d) — sn’ ^ (it - v) sn’ (J (it + v) - a),

= [l-i’sn*i(ti+v)} {l-7t’sn’i(it-ii)sn’(i(it+r)-a)]*.

Changing the sign of a we have a second like equation, and

dividing one by the other, we find the required equation

{1 -^-’sn’i(it+i;)sn’(4(H+ii) -a)} (l-7:’8n’^(it-i>)sn’(^ (it-Hi) + a)}

( 1 - i’sn’ i (it + v) sn’ (i (it+v) + a)} [1-^’sn’ i(u-v) sn’ (^ (a+«) - a)}

1 + k’ sn a sn it sn v sn (it + r + a)

1 — k‘ sn a sn it sn v sn (it + ti — a)
’

214'. The conclusion is

II (it, a) + n (v, a) - n (it + i’, a) = ^ log H,

where fl is expressed in the three forms just obtained.

215. In the equation

n («, a) = u2(t + i log ^ “j .

* The identity, writing tliercin

II, II, e for J (H - r), I (« + r), J (u + f) - a,

bccomca

, , , .
II (1 - I’an’ii »n*r|

1 - sn (n + ,0 sn (« - u) sn (n H v) sn (n - e) = ^ su» »1 |l - ‘
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interchanging « and a, wo obtain (observing that 0 is an even

function)

and thence
n (if, a) — n (a, «) = iiZa — aZu,

which is the theorem for the intercliange of amplitude and

parameter.

And we hence deduce

n (u, a) + n (u, b) — II («, a + 6) =

n {a, «) + n {b, u) — n (a + 6, u) + u [Za + Zb — Z{a + 6)}.

Hero on the right-hand side by tbo addition- theorem the

first term is = J log H', where fl' is the same function of a, b, n

that n is of V, a: we have thus il' in three forms one of

which is

_ 1 — Z:’ sn a sn 6 sn (a -f- 6 — w) sn u
1 -P sn a su 6 su (a -f- 6 -f «) sn M ’

and the second term is, by the addition-theorem for Z,

= k^snasnb sn (a -f- b) u ;

wo have therefore

n (u, a) -1- n («, 6) — n («, a -I- b)

= sn a sn i> sn (« -I- 6) tt -P J log fl',

which is the theorem for the addition of parameters.

Multiplication of the Functions ©w, Hu. Art. Nos. 216, 217.

216. From the equation

0 (u -P i’) © (« - f) = ^ *^)>

we deduce

0(2u)= ^;"(l-i-’sn^«),

0 (3«) = (1 - k' sn* u sn’ 2u),
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and it is hence easy to see that 0nu-i- 0"* (u) is a rational and
integral function of sn’w of the degree ^n’ or | (n*— 1) (that is

n’ or n” — 1 in sn a) according as n is even or odd. More pre-

cisely we may say that ©nu .

©”*"* 0 -r-
0"’« is such a function,

reducing itself to unity for sn u = 0; and it thus appears that

considering sn nu, cn nu, dn nu as expressed in terms of sn « by

the multiplication formulae, in such wise that for a = 0 the de-

nominator is = 1, then this denominator will be

= 0nM.0"’-^O-5-0»V

217. And it hence of course follows that the three numera-

tors are

= -^fl'nM.0"‘‘*O--0*’M,
Vi

= H(nu + JT) 0“’-^ 0 - ©"^ a,

= Vi' 0 (na -t-
©•*' 0 ^ ©"’a,

respectively. It will appear in the sequel how we thence

obtain the expressions of these numerators and denominator.

c. 11
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CHAPTER VII.

TRANSFORMATION. GENERAL OUTLINE.

218. The theory of transformation is considered in the first

instance in regard to the differential expression ^which, for

the elliptic integrals, has the particular form

and then to the elliptic functions sn, cn, dn.

dx
^

Vl

Case of a general quartic radical fX. Art Nos. 219 to 222.

219. Consider the differential expression where P is a

given rational and integral quartic function of y. Write herein

y = p where U and V arc rational and integral functions of x,

one of them of the order p, the other of the order p or p — 1

:

such a fraction is said to be of the order p. It is to be shown

that the coeflScients oi U, V may be so determined as to lead

to an equation

Mdy _ dx

Vt~7x’
where X is a rational and integral quartic function of x, and

Jf is a constant. We have

ds- ^inr-ru)d., (tr.r-f, ^
r-l(F, V)-,
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where considering F as a homogeneous quartic function of

(1, y), then (V, U)* is what this becomes on writing therein

V, U in place of 1, y respectively: viz. (V, U)* is a homogeneous

quartic function of U, V, and therefore of the order in x\

VU'— VU, 'iS V, U are of the same ortlerp, would at first sight

appear to be of the order 2p — 1, but in this case the coefficient

of vanishes and the order is really =2p — 2; viz. whether

the orders of U, V are p, p or p, p — 1, the order of VU'— V'U
is = 2p — 2. The foregoing values give

dy {VU'-V'U)dx

220. It is at once seen that if ( V, U)* has a square factor

(x — a)* then x — a divides VU'— VU. Similarly if {V, U)* ha-s

2p — 2 such factors, or if it is = T*X, where T* is of the order

4y> — 4 and therefore X of the order 4, then the product T of

the roots of the square factors divides VU' — VU, and since

VU'—VU and T are each of the order 2p — 2 the quotient

{VU'— VU)-i-T must be an absolute constant M~'. But in this

(^e we have

Mdy _ dx

an equation of the required form.

221. Regarding U, V oa being each of them of the order p,

the expression y. contains 2p + 1 constants, and in determining

Cf, F so as to satisfy the condition
( V, U)* = T*X we deter-

mine 2p— 2 of these : there thus remain three arbitrary con-

stants: this is a.s it should be, for if the required condition is

satisfied by any particular values U, V, it will also be satisfied

by the new values obtained by writing in the fraction y, in

place of X, the function
^ ^

with three arbitrary constants.

We may by such linear transformation make either U or V
to be of the order p — 1, or if we please begin by assuming this

11—2
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to be so. But we cannot have either U or V oi an order

inferior to — 1; for if this were the case VU'— V'U would be

of an order inferior to 2p — 2, while in fact it divides by T which

is of the order 2p — 2.

Considering Y" as a given quartic function of y, the function

X is obtained as an arbitrary linear transformation of a deter-

minate quartic function of a;: or what is the same thing, it is a

quartic function containing a single parameter which cannot be

assumed at pleasure, but is a determinate function of the coeffi-

cients of Y, different according to the different values of the

number p : which number is termed the order of the transform-

ation.

222. It is to be observed that we cannot have any other

really distinct transformation of the differential expression

into the form with the same radical •J

X

and a con-
vA'

stant value of M : for suppose that such transformation existed

;

say by writing y = Function (a) we could obtain

where Z is the same quartic function of a that Jf is of

I XT i 1 dy M~'dx N"'dz .

X and iV IS a constant: then ,
=

—

-r—~, that is

s’Y dX VZ

equation is integrable algebraically when

M, N are commensurable, that is proportional to integer

numbers m, n
;
and from the form of the integral we infer that

the equation is not integrable algebraically unless M, N are

commensurable : hence N, M must be commensurable or the

last-mentioned equation must be of the form
; and

vA' vZ
we have thus a known algebraical relation between the quanti-

ties X, z such that by means of it we can pass from one to the

other of the transformations y = ^, y=Funct. («): the two

transformations woultl on this account be regarded as not

essentially distinct the one from the other.
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dx
The standard form -^=== . Art. No. 223.

223. The theory applies in particular to the case of a diffe-

rential expression of the form

Vl-yM-Xy’

viz. this by a transformation of the form y=y, of the order

n, can be converted into one of a like form in regard to x, that

is we obtain a relation

Mdt/ _ dx

where, i or X being given, the other of them and also the value

of the multiplier M are each determined, not uniquely but

by means of an equation called the modular equation, between

k and X: more precisely, if k or \ be given, the other of them

may be taken to be any particular root of the modular equation,

and then the coefiScients of U, V, and the multiplier M, are

determinate functions of k, X.

Distinction of cases according to the form of n.

Art. Nos. 224 and 225.

224. In the case where n is a composite number = qr, the

modular equation breaks up, and the transformation in fact

decomposes into distinct transformations. That this mag be

the case is clear d priori, viz. if we have z = a rational

function of x of the order q, giving rise to a relation

Mfiz _ dx

Vl - zM - fz"
“

1 - fcV
’

and y = y a rational function of z of the order r, giving rise

to a relation

Mfiy _ dz

Vi-y.i-xy~Vi-zM-Pz’’
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then for z substituting its value in terms of x, we have clearly

y = y a rational function of x of the order qr, giving

_ dx

Vi -y*.i -\y
~ ’

but to show that the case is of necessity so would require

further investig^ation, and the question is not entered upon in

the present work.

Assuming the property in question, it appears that the

transformations belonging to the several prime numbers need

alone be considered
;
viz. the eases n = 2 and n an odd prime = p.

The case n = 2 presents certain peculiarities.

225. n = 2. There are in this case two distinct rational trans-

>

formations, oue of them of the form y — (viz- here y

1—k'
vanishes with x), for which the new modulus is X, = i

X T" W
d 1)01^

and the other of them of the form y = r-i > for whieh the
^ c + de*

2 *Jk
new modulus is y, = ^ : tliese will be considered.

It is to be observed that for the case in question n = 2,

\ and 7 correspond respectively to the real moduli X and X,

belonging to the case n, an odd prime, as presently mentioned :

1 A' K' r'
viz. we have the equations

2 A ~^~ ^ precisely corre-

sponding to the equations i X ~ ^ ~ ^ afterwards men-

tioned. But in the case of n an odd prime, X, X, are roots of

one and the same irreducible equaition: moreover (as afterwards

appears) y, = sn xj and y, = sn , X,j are each given

in terms of x, = sn u, by a rational transformation of the form

y = ^ where y vanishes with x : whereas in the present case
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ti = 2, the corresponding functions

167

y, =sn(l+A;’M, X), y, = sn (1 + A u, 7)

are (as will be seen) given in terms of x, = sn «, the former

by an irrational, the latter by a rational transformation, y in

each of them vanishing with x.

Instead of at once proceeding to the case of n an odd prime,

we take in the first instance, n any odd number whatever.

n on odd number: further developmeiit of the theory.

Art. Nos. 226 to 231.

226. We have here the formula

a: (1,

viz. the numerator is an odd function of the order n, and the

denominator an even function of the order n — 1. We may
proceed somewhat further in the determination of the form

:

for this purpose take P, Q even functions of x, such that

P + Qx is of the degree ^ (n — 1) : for instance

n = 3, P+ Qx= a+ ^x, ord. P = 0, ord. Q = 0,

n = 5, P+ Qa: = 0 + )9a: + ord. P = 2, ord. Q = 0,

n = 7, P+ Qa;= a + /3a; + ya;* + fix’, ord. P = 2, ord. Q = 2,

n = 9, P+ Qx = a + /8x + 7x* + fix* + ex*, ord. P = 4, ord. Q = 2,

and so in general; viz. n = — 1, the orders of P and Q are

each = 2y — 2, but n = 4p + 1, order of P is = 2y and that of

<2 is = 2y — 2.

227. This being so, assuming

1 — y _ (P— Qx)* 1 — X

TT^ = (PT^)’TT^’
we see that

_x(P*+2P(?+g’x*)
y' P*+2PQx’+Q*x’ ’

is a function of the above-mentioned form
;
and not only so; but
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forming the equations

l-y = (P-G*)*(l-x). (-)

l+y=(P+«x)*(l+^), (-)

whete
denom. = P* + 2PQi? + (^3?, •

we see that 1 — y and 1 + y have each of them the required

property of having in the numerators a square factor of the

proper order.

228. It is next to be observed that the functions P, Q may
be so determined that the expression for y remains unaltered

when we simultaneously change x into
, and y into ^

.

fex \y

To see how this is, write for shortness

ajVll, **)

N, D being as above functions each of the order ^(n— 1)

in a:*. We have

and considering the coeflBcients, say of N (1, x*), as given,

we can at once determine those of D (1, x') in such manner

that, ft being a constant, we have .identically

l) = ftP(l,a:‘).

In fact the coefficients of D will be those of N taken in the

reverse order and multiplied each by the proper power of k.

This being so, we have

and this identical equation, writing ^ for x, becomes

W(l, a*) = ftx-'p(l,

whence identically
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Suppose that writing ^ for x, y is changed into y, then

fcv)
y =

or multiplying by y and reducing by means of the result just

obtained, we have

_ n’

viz. writing ^ ^
have ^ thus we may simul-

taneously change x, y into ^ ,
the theorem in question.

229. Or, in a somewhat different form, the theorem is

at once seen to hold good provided we have

for then, making the change in question it becomes

1 1 (l-ifcVa;^(l-A-»6*x»)...

Xy = Mk' (ab...r

which is in fact the original equation provided only

X = Jf*/t"(aJ...)*.*

We thus in effect determine X as a function of k (viz. these

are connected by an equation called the modular equation), and

then the coeflScients of P, Q are determined in terms of k, X.

230. The required condition being satisfied, we may in the

formulae which give 1 — y, 1 + y make the same change; and it

is easy to see that the resulting formulae will be of the form

l-\y^iP'-Q'x)\l-kx), (-)

l + Xy=(P + Q'*)‘(l-hA:a;), (-)

k» 1
• Comparing with the former equation we have jj=AT(a4...)*.
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the denominator being of course the same as before: hence the

required condition as to the square factor is also satisfied by

each of the functions 1 — Xy, 1 + Xy; and the integral relation

between y, x leads thus to the required differential equation

Mdy _ dx

Vi -y . 1^^^ “ Vi - *•.

231. Supposing that n is not a prime number it will be the

product of two or more odd primes, and the transformation will

break up into distinct transformations each of which may be

separately coasidered. We therefore now assume n an odd

prime: the modular equation is in this case an irreducible

equation of the order n + 1, so that k being g;iven we have

n + 1 different values of X; and corresponding to each of them
we have a distinct formula of transformation. This modular

equation is conveniently expressed as an equation between the

two quantities u = i/k, and v = ^\, viz. it is an equation of the

form (u, v)=0 where («, v) is a rational function ofthe degree n+

1

as regards each of the quantities («, v) separately. It is to be

added that being as usual positive and less than 1, there are

two and only two real values of X’ (which values are also posi-

tive and less than 1) : and corresponding to them there are two

real transformations: but this is a property which may in the

first instance be disregarded.

Application to the Elliptic Functions. Art. No. 232.

232. We have in what precedes a purely algebraical theory

of transformation: in particular, in the case where the order

n is an odd number, if in the formulae we write y = sin;^

X = sin <t, the differential equation becomes ^ .

^{\x) ^ (*. 4>)

and further assuming sin x = sn (r, X), sin
(f>
= sn (u, i), then

it becomes Mdv = du, giving (since u and v vanish together)

whence x = sn{u,k), y = sn^^,xj: and the theory

Digitized by Google



Vll] TBANSFORMATION. GENERAL OUTLINE. 171

is an algebraic theory of transformation, serving to express

sn in terms of sn {u, k).

The theory may be completed algebraically without much
diflSculty in the cases ?i= 3, 5, 7; but there is great difficulty in

doing this generally for larger values of n: and it is in fact

completed by Jacobi, not algebraically but transcendentally,

by expressing X and the coefficients of the transformation by

means of the sn, cn and dn of (*” integers),

or say by means of the functions dependent on the n-division of

the complete functions K, K'.

n an odd-prime, the ulterior theory*. Art. Nos. 233 to 235.

233. In particular when n is an odd-prime, there are as

already mentioned two real transformations
;
a first transforma-

tion from I; to a smaller modulus X, invoMug the functions of

—
;
and a second transformation from I: to a larger modulus X,

w

%K'
involving the functions of . And in these two cases (taking

K, A, A,, K', A', A’ for the complete functions to the moduli

k, X, X,, k', X', X,' respectively) the modular equation is replaced

A' j^' '

by the equations = X“”a
transcendental equations contain the relations between the

original modulus k and the now moduli X and X, respectively.

• Observe that X, heretofore used to denote any one whatever of the a+

1

roots of the modular equation, is in what immediately follows nsed to denote a

particular root, and X, another particular root, the roots belonging to the first

and second real transformations respectively. In Nos. 237 et teq, X is again

used at the beginning to denote any root, and fX) a determinate root correspond-

ing thereto, these are taken to be first the particular roots (X, X,), and secondly

the particular roots (X„ X). It would, abstractedly, be advantageous to reserve

X as the symbol of any root whatever, using X,, X, for the particular roots : but

this would have ocoaaioned a very frequent alteration of Jacobi's notation.
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234. The equations just referred to are obtained from the

following

:

._K .,_K’
^ nM’

^ ~ M’
K'

which present themselves in the theory. As regards these

equations it may be observed here as follows

:

235. The first transformation is a relation between

sn , A-
j ,

sn («, i), and it leads to the equation A = .

Effecting on the transformation-equation Jacobi’s imaginary

substitution, we obtain from it a complementary first transform-

ation, giving sn in terms of sn (u, k'), and this leads

K*
to the equation =

Similarly the second transformation is a relation between

sn^^, sn (?i, A:), and it leads to the equation A, = ^,
Effecting on the transformation-equation Jacobi’s imaginary

substitution, we obtain from it a complementary second trans-

formation, giving sn in terras of sn (u, k'), and this

* K'
leads to the equation A,' = —

, or recapitulating,

first transformation gives A = ,

K’
complementary first „ ~ >

second A - ^

complementary second „ A| = ,

the chief object of tbe complementary transformations being in

fact the deduction of these second and fourth equations.
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Connexion with Multiplication. Art. Nos. 23G to 241.

236. The theory of transformation is connected in a very

remarkable manner with that of multiplication. This is the

case as well for an even as an order number n, and indeed

the connexion will be exhibited in the case, « = 2, of the

(^uadiTC transformation, but here one of the transformations is

j and it IS convenient to restrict the attention to the

case n an odd number, where the transformations are both

rational ;
or rather (this being the only case which has been

completely developed) we may at once take n to be an odd-

prime.

237. This being so, starting with the transformation-equa-

tion y = -^ of the order n, which gives

' iWy ^ dx

VT- y'T i Vl — a^. 1 -

w'e may imagine a new variable z connected with y by a

p
transformation-equation ^ ~ q

same order n (P, Q

rational qnd integral functions of y) giving

Ndz ^ dy

Vi^^p.i^wv
where (X) is not of necessity the same function of X that X is of

k, but a like function
;
viz. X, k are connected by the modular

equation, and changing herein k into X and X into (X) we have

the relation between X, (X). And we have then « a fractional

function of x such that

MNdz _ ^
P . 1 - {xyz' VI -xM - A:’P

238. It is a property of the modular equation that we may

have (X) = k, and further that when this is so MN=- : the last-

mentioned equation then is

dz ndx

VF- «*Tl Vl -X*. 1

Digitized by Google



174 TRANSFORMATION, GENERAL OUTLINE. [VII.

viz. X being aa before taken = sn (u, k), we have a = sn (nu, 1:)

;

and the relation between z, x then gives sn {nu, i) as a function

of sn (m, ifc), viz. the expression is a fraction, the numerator being

an odd function of the order n* and the denominator an even

function of the order n* - 1 ;
this is in fact the expression of

sn(nM, k) in terms of sn (u, k) given by the multiplication-

equation. Observe that for obtaining in this manner the trans-

formation a; to a (or sn (m, k) to sn {nu, K)), the transformation

* to y may be any one at pleasure of the different trans-

formations, but that regarding it as given we must combine

with it a determinate transformation y to a, the resulting

transformation ® to a being of course independent of the

selected xio y transformation : there are thus as many ways of

obtaining the final 'x to a transformation as there are trans-

formations X io y. In the case n an odd-prime, this may be

considered more in detail.

239. Selecting the root X of the modular equation we have

a real transformation (Jacobi's first transformation) y= ^giving

(Jfreal)

Mdy dx

Vl-yM-\y
and selecting the root X, of the modular equation we have a real

transformation (Jacobi’s second transformation) y—^ giving

(M. real)

Mfiy _ dx

vi -V . 1 - xy ” vn^:i-/fcv
Now X is in fact the same function of k that k is of X,; this

at once appears from the before-mentioned relations

A' K' K' A'
A~^K’

U. .

Hence taking z such a function of y, X as is of x, k, the
^

' I

differential relation between z, y is

Ndz dy
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and consequently, MN Ijeing = -
,
we have

dz ndx

Vl — a’. 1 — A*** Vl — a:* . 1 — Ida?

U
240. Or again, taking z such a function of y, X, as ^ is of

X, k, the differential equation between z, y is

N^dz

Vl-y*.l-X,y’

and consequently, being = i, we have in this case also

ndx

Vl-

dz _
?

.

r~ A'z*
“ V 1 -*M - /tv

’

so that in each case, x being = sn (m, k), we obtain the same

value « = sn (nit, k)

:

viz. in the first case we pass by a first and

then a second transformation from k through X to A;
;
and in the

second case by a second and then a first transformation from k

through X, to k.

241. As regards the equations MN = i, M^N^ = these

follow from the before-mentioned equations

Jlf =
K_

tiA’

viz. N being what JW, becomes on changing therein k, X, into

X, k, and AT, what M becomes on changing k, X into X,, k, we
derive from these

N=— N =
K' ‘ nK’

and thence the equations in question.

A' K'
Jacobi in connexion with the equations a ~ ^
= -

-fF remarks, Fundamenta Nova, p. 59, that if n be a
A, n A I r »

composite number =n'n", then, in the transformation of the

order n, there i§ corresponding to each real root of the modular
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u K'
equation a relation of the form ^ ~ ^ • whence in particular

A' ]{'
if n be a square number, the equation is -r- = ^ , viz. we thenA K.

have \ = k, showing that in the case where n is a square number
there is among the transformations of the order n one which

gives the multiplication by V n.

He further remarks, p. 75, that \ being any root whatever of

the modular equation there exist equations of the form

aK + ibK'
oA + ty3A' = -

fiM

a'A' + i^A =
a’lC + ib'K

nM
where a, a', a, a are odd numbers, b, b', /3, /3' even numbers,

such that aa' +W = 1, aa + = 1 : and (same page in a foot-

note) as follows: “Accuratior numerorum o, a’, b, b',&c. determi-

natio pro singulis ejusdem ordinis transformationibus gravibus

laborare difficultatibus videtur. Immo h®c determinatio, nisi

egregie fallimur, maxime & limitibus pendet, inter quos modulus

k versatur, ita ut pro limitibus diversis plane alia evadat. Id

qupd quam intricatam reddat qusestionem, expertus cognoscet.

Ante omnia autem accuratius in naturam modulorum imagina-

riorum inquirendum esse videtur, quae adhuc tota jacet quaestio.”

That some such equations exist may be inferred without diflSculty

from the general formulae of transformation, but the strict proof,

and certainly the determination in question, would depend upon

investigations out of the field of the Fundamenta Nova. The

property is used by Jacobi to show that the proof which he

1 XX^ dk
gives of the equation M' — - ^ , where \ denotes in the

first instance the real root, applies to the case of any root what-

ever.
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CHAPTER VIII.

THE QUADRIC TRANSFORMATION, n=2; AND THE ODD-PRIME

TRANSFORMATIONS n = 3, 5, 7. PROPERTIES OF THE
MODULAR EQUATION AND THE MULTIPLIER.

24:2. The case n = 2, although very analogous to the case

n an odd prime, presents, as remarked in the preceding

Chapter, some essential differences ; there are analytically dis-

tinct transformations relating to the two new moduli \ and 7
respectively, viz. these are not roots of one and the same

irreducible modular equation : and it is an irrational trans-

formation which in some sort corresponds to one of the real

transformations in the other case. There is an d priori

necessity for this: viz. as sn2u is not a rational function of

snu, we cannot have here two rational transformations leading

to the duplication: the duplication mu.st arise from the com-

bination of a rational and an irrational transformation. It

should be noticed that the case may be studied quite inde-

pendently of, and in fact previous to, the general theory ex-

plained in the preceding Chapter.

The Quadric Transformation. Art. Nos. 243 to 258.

243. It has been shown geometrically that, considering

a new modulus \ connected with k by the equation X =
>

and establishing between 0 the relation X sind = sin(2<^ — 0),

or, what is the same thing,

sin 0 _
Vl— ^’sin’^

12
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we have between <}>, 6 the differential equation

(1 + h') <i,f> de

“A(\, ^)-

Writing herein sm(j> = x, sin6 = y, the relation between y, x i.s

{\+h')x'J\.—a?
y =

this is in fact the first form of quadric transformation, and

(as is about to be shown) it is connected with a second

, (1 + k) X
form y= .

Modidar relations.

244. From the original modulus k we derive two moduli

7 ,
these form a decreasing series y, k, X, the relations

between them being

2 -Jk
,

2 Vx
" ~1 +X’

, \-k 1 - X
~l+k’ ^=1TX’

1+7’ 1+&”

and the corresponding complete functions F, F, K, K', A, A’,

arc connected bj the equations

(i+x)A-K=i.^r,

i(l+X)A' = K' =j^F

whence also

+ /

i^'=K' = 2^'
* A K r

•

First and Second Transformations.

245. We pass by a quadric transformation from the

differential expression
dx

toVl-»M-AV Vl-yM-xy
or
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- ^
, >

viz. in the former case the transformation is

VI -y*. 1-7*31’

from [x, h) to (y, X), in the latter case from {x, k) to (y, 7).

The first form is

(1 + k') X Vl-x»

Vl-iV
Here, taking throughout, denom. = 1 - we have

1- y’={l-(l + i>»}*

i-xy={i-{i-k’)xr (-).

Vl-y’.l-X’y*= 1 - ac* + )IV (-).

^
^ Vl-ajM-if*’

and therefore

+ X) dy _ 2dx

vT^. i~xy “ vi - **. 1

(-).

As ar passes from 0 to
, y passes from 0 to 1, and as

X continues to increase to 1, y diminishes from 1 to 0 ;
we thus

obtain the relation 2.(1+X)A = 2K, that is (1 +X)A = K,

which is one of the above-mentioned integral relations.

246. The second form is

(1 + k) X
y l-t-fe’

•

Taking here. denom. = 1-1- kx^, we have

1 — y = (1 — a:) (1 — kx) (-).

1 -f- y = (1 -1- a:) (1 -1- kx) H.
l-yy = (l-x'^ky (-).

l + yy = (l + x Vk)* (-).

consequently

Vl-y*.! _yy = (1 _ jb;’) Vl - a:M -AV (-),

and rfy = (1 k) (1 - kx^ dx (-).

12—2

Digitized by Google



180 QUADRIC TRANSFORMATION. [VIII.

in which two formulas

denom. = (1 +
and we have therefore

dy _ + k) d.v

Vi-y. r~7y If'-j. 1

Hero X and y increase simultaneously from 0 to 1 : hence

taking the integrals between these limits we have another of

the above-mentioned integral relations, F = (1 -|- k) K.

Comphmentary Transfarmations.

247. If in the first form we effect Jacobi’s imaginary trans-

tX iY
formation, that is write x = -7=^ and y= , , then

. Vl-A’ ^

dy idY

and

Vi -y\ 1 - xy Vl - Y\ 1 - X'” y*
’

dx idX

Vl - 1 - /fc*** Vl - A*. 1 - VA" ’

and the differential relation is therefore changed into

_(l-hX)rfF 2dX

Vl^ F*. 1 -X”i^ “ Vl - AM^V’A* ’

the integral equation is changed into

F • (1 + V)^
Vl -“F* “ Vl^ A*. 1 -F>A‘

’

viz this is F-

^

VIZ. tins IS *“1+VA*’
which integral form gives therefore the Ia.st-mentioned differ-

rential relation : observe that this integral form is what the

second form becomes on writing therein A”, Y for x, y, and for

k the complementary modulus k'.

Moreover since X, F increase simultaneously from 0 to 1 ,

the differential equation leads to (1+X)A' = 2K', which is

another of the above-mentioned integral relations.
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248. Similarly, if in the second form we effect Jacobi’s

imaginary transformation, then the differential equation is

changed into

dY (l+iO(i-Y

- y*P ~ Vl -
’

the integral relation between x, y is changed into

Y (l+A:)

Vizrp ^-(l + ^•)P ’

leading to Y=_(l+ifc)XVl-A’'

which integral form gfives rise therefore to the last-mentioned

differential relation: observe that this integral form is what

the first form becomes on writing therein X, Y for x, y, and

for k the complementary modulus k'. Moreover as X passes

from 0 to ,
1-

,
F passes from 0 to 1, and as X, continuing

V 1 + *

to increase, passes to 1, F passes from 1 to 0: the differential

equation gives therefore 2F' = (1 + k) K', which completes the

set of integral relations.

The Duplication Theory.

249. We may in two different ways combine the two

transformations, and thus in two different ways obtain a

“ Duplication by two quadric transformations."

First duplication (through X). Writing

(l^X)y (l-ffc')xVl~:^

i + Xy’
’ y ^/\-k^j^

’

we have by what precedes

dy 2 dx dz

1 -xy 1 + >• Vl - »*. 1 -AV 1 Vl 1-XV ’

and therefore
^

dz _ 2(Zr

VT^ri^X’? ~ Vl
’
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where, from the assumed integral equations,

250. Second duplication (through 7). Writing

_ (i + 7)yVw
Vl-7>/ ’ ^ 1+fcc*

’

we have by what precedes

(1 +k) dz _ 2(fy
“ Vi -'F.IVt*!/’

’

(1 + i:) <fe

vi-y.i-y/ “ Vi^.i-itv ’

and therefore

<f£ 2Ag

Vl - a*. 1 - rs* “ Vl-a;*.l-i^*
’

and the two integral equations give, as in the first duplication,

_ 2® Vl — ** Vl — ftfid
^ •

251. In the first duplication, assuming a: = sn (m, k),

y = sn («, X), a = sn (w, k), and observing that m, v, w vanish

together, we obtain v= (1 + k') u, w = 2u, and the formulte are

a; = sn (m, k),

y = sn (TTW u, X), =
,dn («, k)

a = sn (2 m, k).
(1 + X) sn (1 + k' u, X)

1 + X sn’ (1 + 4' u, X
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and sinnilarly in the second duplication the formulae are

a; = sn (u, k),

y = sn (1 + ku, 7)
= (1 + k) sn (u, k)

l+ksa’‘(u, k)
’

« = sn (2m, k)
(1 + 7*) sn (1 + k-u, 7) cn (1 + ku, 7)

dn (1 + ku, 7)

Transformations of the Elliptic Functions sn, cn, dn.

252 . Take the first and second y-formuloe as they stand.

In th'e first «-formula change k, \ into X', k', and for u write

^ (1 4- k') u. In the second z-formula change k, 7 into 7’, k',

and for u write i (1 + k) u, observing that J (1 + y) (1 + fc) = 1.

We thus obtain the formula}

:

sn (1 + ^•'u, X) =

sn (1 + i M, 7)
_ (1 + k) sn (m, k)

1 + /: sn*(u, k)
(from second y-formula).

sn (from first z-formula),

, (1 + k) sn(it, k') cn(M, k')

sn(l + ku,y)= (from second z-formula),

and we may complete the system by adding the values of the

functions cn, dn.

253 . We have thus the formulae

:

gn = cn = dn =

(1 + k'tt, X) (1 + fcO u <ta u 1 - (I + k') m’ u 1 - (1 - iU) sn’ »

(i + k«, y) (1 + t) gnu enudnu 1 - jfc sn’

u

(TTk'a, y) (l + iOsniU CDj u dn,

u

1 - f sn,’ It

(iT*u, 7') (l + X)9n,uon,« I - (1 + fc) sn,’ 11 1 - (1 - i) sn,’ u

-}-dnu

T-(I + Jisn’M)

-i-diii

«
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where in the first and second lines sn u, &c. denote (as usual)

sn(w, k), &c.: and in the third and fourth lines sn,u, &c. de-

note sn(«, k'), &c.

Third and Fourth Transformations.

254. In what precedes we have a complete theory, or say

“ the standard theory,” of the quadric transformation, but wc

may add a third and fourth form.

The third form is

:

_ Ij- 2*’

^ “
1 + \ - 2?u:*

•

Here, denom. = 1 \ — 2\a?, we have

\-y =2(1-X)x* (+),

1+y =2(l-h\)(l-x») (-),

l-\y = X" (-r),

l-^Xy=(l-^X)•(l-^V) (-),

and thence, denom. = (1 + X — 2Xx’)’, we have

Vl-y.l-xy = 2X" (1 + X) X

dy = — 4X'*xd!x,

and consequently

(1 + \)dy _ 2dx

Vi - y.i - xy
“ ~

writing x = sn (?<,!:), y = sn(r, X), we have du = — rfw.

255. To connect with the standard form, observe that

-f- X
= — (1 -f k') du, that is, v=C—{\+ k') u, or (since for x = 0 we
have y = l, that is for u = 0 we have r = A) the value is

i; = A — (1 -I- k') u, and the integral equation is

1 -I- X — 2 sn*(M, k)
sn (A — 1 -t- k' u, X) =

1 X — 2X sn’(u, k)

'

or, what is the same thing,

1 — (1 -t- k') sn’(M, k)
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but the left-hand side is = cn (1 -f- k'u, \) dn (1 + k' u, X), and

substituting herein the values of the two terms from the table

No. 253 the formula is verified.

256. The Fourth form is

_ 1 -(- Ax*

^ 2‘Jk.x

Here 1- y = - (l-atVA)’ (^)-

1 + y = (1 -f X VA)* (-).

1 u 1 1 1 1: (-).

1 -
1
- 7y= 7(1 -t-x) (1 -t Ax) (-).

where denom. = 2 VAx,

and hence

Vl ~y. 1 — 7*y* = — 7 (1 — Vl — X*. 1 — (-^),

dy =-2>^k{l-kx')dx
(
4-),

where denom. = ikid.

Consequently

dy _ (1 -I- k) dx

Vl— y’. 1— Vl — X*. 1 — A:’**

257. To connect with the standard form, putting x = sn (m, k),

y = sn (v, 7), we find v = C + (1 -|- A;) m, and then, since x= 1 gives

y —
^ ^

,
= -

,
we have F -1- iT' = (7 -f- (1 -i- A-) K, or since

2 Vk 7

(1 -f A:) K = r, this gives C= t'F', and therefore v = 11" -f 1 -f- ku

and y = sn (iT' + 1 + A: tt, 7) : wherefore the equation is

1 + A- sn’(u, k)
sn (fT' + 1 -f ku, 7) =

2 VA sn (tt, A)

The left-hand side is

1

7 sn (1 •+• ku, 7)

1 -f A sn*(tt, A^

7 (i + A) sn (tt, A)
’
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or, what is the same thing, =—A*’"
^ which is right.

2 VA; sn (u, k)

258. Making in the third form Jacobi’s imaginary trans-

f iX iY .. lY l+k'X*

Vl-A» Vl-r* Vl-y
, 1 + kX* ...

giving 1'=
1
-;-- . viz. this is thefourth form, writing therein

2 \ k'X
X, I'for X, y, and for k the complementary modulus k'.

And similarly making in thefourth form Jacobi’s imaginary

Y 1-1+1- A’
givingtransformation, it becomes

Vl-y» 2 v1-A'V1-A'*’
1 + \' — 2A'^’1"=-— viz. this is what the third form becomes
1 +\ -2X A”

on substituting therein X, Y for x, y, and for \ the comple-

mentary modulus X'.

259. The cases n = 3, 5, 7 are worked out in accordance

with the general algebraical theory e.xplained in the preceding

Chapter. In the case « = 3, it is to be observed, that the

process introduces a single indeterminate quantity a, in terms

of which the moduli k, X are e.xpre.ssed
;
the resulting form,

containing only this parameter, is an interesting and valuable

one, but it is nevertheless proper to obtain the modular equa-

tion, and express the formula in terms of the two quantities

u, V connected by this modular equation. I have in regard to

this same case a = 3 gone into some details to connect the

fonnuloc with the transcendental ones depending on the trisec-

tion of the complete functions, as obtained from the general

theory for the case of an odd-prime.

The Cubic Transformation. Art. Nos. 260 to 262.

260.

giving

We write

l—y _ /I— ourV 1—x
1+y \l+aa-/ !+»’

_ X {2a + 1 + a*.r*}

^“T+a(a + 2)a;’'
’
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and then the conditions in order to the change x, y into

1 1

a’ = n,

^••(2a+l) = ^a(a + 2),

It is moreover clear that r? = 2a + 1.M

261. We have at once everything expressed in terms of a,

viz. we have first fl = a*, and thence

and then

where

and thence

a»(2 + g)

2a+l

l_ 2^ = (l_aa;)’ (1-a:), (-).

1 -l-y=(l-l-aa;)’ (1-l-a:), (-).

l_Xy = ^l_^'x^ (l-fcr), (-).

1 + = ^1 + ^
icj (1 + kx), (-).

denom. = 1 + a (a+ 2) a:’.

dy _ (2a + 1) fir

Vl-y'.r^9 ~ 1~J??
’

the factor 2a + 1 being obtained directly from the consideration

that, X and y being small, y = (2a + 1) x. The modular equa-

tion is here replaced by the two equations

„ g*(2+a)
^ “ 2a + l

which in fact determine \ in terms of k. We obtain

a)’ ,^_(l+«)(l-a)»
2a+l (2a-t-l)*

’
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188 CUBIC TKAXSFORMATION. [VIII.

and thence

2a + 1 ’ 2a + 1

hence •JhX + VA:'X' = 1, which is a form of the modular equation.

We have—

=

a*, that is writing i/k = u, ^\ = v, we have

m’ ,, a (a +2) . ,, a (a + 2)
a = — . Moreover VA'\. =—7—-7^, that is mV=

, or
t; 2a + 1 2a + 1

(substituting herein for a its value),

. M»Qt» + 2t.)

v(2a' + v)’

or u (a’ + 2i') = i>* (2u* + 1»),

that is w* — n* + 2i<y (1 — M’y*) = 0,

which is the modular equation, expressed as an equation be-

tween M = i/k, and v =

262 . Introducing into the equations w, v in place of a we
have

y = {
(« + 2a’) ya: + aV} (-r-),

1 + y= (v + a’a:)’ (1 + a;) (-^),

1 - y = (y _ w'a;)* (1 - «) (-f),

1 + y*y = y* (1 + uvx)* (1 + ti*x) (-^) ,

1 — y*y = v‘ (1 — vvxy (1 — u*x) (-^),

w'hcrc the denominator is in the first instance obtained in the

form y’ + a’ (a’ + 2y) a;*
;

or, altering this by means of the

modular equation, we have

denom. = y* {1 + vu* (y + 2a’)
;

and then

vdy _ (y + 2a*) dx

Vl - y’
. 1 - ~ Vl - ®*7l -^aV
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The Quintic Transformation. Art. Nos. 263 to 267.

263. We write

1 —y _ (1 — a;) (1 — flu: +
1+ y ~ (i+ ~x) '

a: [(.2a + 1) + (2ay9 + 2/3 + a*)
giving y i4.(2^ + 2a + a‘)a:’‘+(/3‘ + 2a/3)a:‘

*

And then the conditions in order to the change x into

/S’=n.

it* (2a/3 + 2/3 + a*) = fl (2a + 2/3 + a*).

^•‘(2a+l) =n03’+2a/3),

where ft’= ^

.

A>

It is moreover clear that -ri= 2a + 1.M

u
264. Assuming I: = u‘, \= v\ we have ft’ = -f ,

and thence

u‘
/3=Vft = — . Substituting these values the last equation be-

V

comes (2a + 1) uv* = u’ + 2au, that is

2a» (1 — = u (u* — u*), or 2a = .

The second equation becomes

(v‘ - m’) (2/3 + a’) = u’ (1 - m’d) 2a,

^ u’ (v*-u*) (1 -u’v)

V 1 — «y’ ’

that is

whence

2^ + „*=“’ 7i*),
V 1— MU

« (
1 — uu* )

_ u* {v* — u’) (1 + u’v)

V 1 — uv’
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100 QrriNTIC TRANSFOIIMATIOX. [vm.

And dividing this value by the value first obtained for 2a,

we have

„ _ 4u’(l + u’i!) _ u {v* —
w’ + «* ’

~t;(l-un*)’

whence — (u* + ?<*) (w*— u*) + 4«« (1 — uv*) (1 + u’y) = 0,

or, what is the same thing,

tt*— n* + 5«*y’ (it* — + 4«jj (1 — u‘«*) = 0,

the modular equation.

265. We then have

v — u‘
2a+l=-

» (1 — ud’)
’

vu* (v — u‘)^ m'"
/3‘ + 2aj8 = -

l-uu*

and hence

_•»(» — tt‘) a; + m’ (v' + »<’) (t) — u‘)a/‘ + (1 - «»’) x'
^

V* (1 — mu’) + mu’ (o’+ m’) (u — u‘)a? + i?m* (u — u’) x*

'

or if we please

a, + !iV\
1-y 1-g / 2(1 -mu’)

^ ^ ^
\

' 2(1 — MU
)

V '

leading to

u (1 — mu’) dy _ (u — u’) dx

vi -yri -u"7 ~ vT^a:‘.V-uv

2G6. If from the original equations we eliminate k, fl, we
obtain

(a*+ 2cq9 + 2/3)’ (2a + /3) - (a‘ + 2a + 2/9)’ (2a + 1) /9 = 0,

viz. this is

2a’ (1 - /8) (a’ - 2^ (1 + a + /9)}
= 0.
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But a=0 gives simply y = x\ 1— /3 = 0 corresponds to

1: = \ = 1, and does not give a transformation; rejecting these

factors, we have
a'-2/9(l + a + /9)=0,

viz. if a, /8 are connected by this equation, and

1 — y _ \ — X /I — ax + ySa;’\*

1+y l+a:Vl + (w + /SxV
’

then there exist values of M, k, X, such that

M dy dx

u 1 o z»
/S’(2a + 2;8 + a>)

. .VIZ. we have ^=2a + l, « = 7s oToo ,“tr . or, what is theM (2ap + 2/3 + a)

same thing, k =— ——

-

and ^ ^ : this is of course only

another form of the theorem.

267. It is worth while to consider the case /9 = 1 : as

already mentioned this gives i-* = X*= 1 : we have

1— y_l— a;/l — ara; + x*\*

1+y l+aiVl+aa: + a?)
'

giving y =
_ a; f2a 4-

1

+ (a’ + 2a + 2) /r* + ar*}

^
1 + (a’ + 2a + 2j^”+(’2aTT7a:*

’

and calling the denominator D, we have thence

1 -y’= ^{l-x^{l + (2-0 a:*+a:T-

Moreover dy =^ (1, 3?)*dx, but the numerator (1, a:’)' con-

tains, not the square, but only the first power of l-|-(2—a*)x*+a:*;

we in fact find

dy =^ {2a+l + (-a*- 4a+2) a;’+(2a-f-l)a!*} [1 + (2— a’)a:’+ x‘\dx,

and consequently

dy _2a-|- 1 + {-a’— 4a-t- 2) aj*-!- (2a + l)a;* dx

l + (2-a’)a:'‘+a;‘ ‘l-a;*’
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192 SEPTIC TRANSFORMATION. [VIU.

viz. the factor which multiplies ^ is not a mere constant

;

and wo have thus no quintic transformation.

The Septic Transformation. Art. Nos. 2G8 and 2G0 .

268. We write

1 — y _ 1 — a: /I — ax + Sx* — y3?\'

1+y 1 +* \1 +oa:+ y3a;’ + 7x7
’

and thence the conditions in order to the change x, y into

1 1

kx’ \y
are

7
* =^

(yS* + 2/37 + 2<»7) = n (2/9 + 27 + a*),

k*
{
2S + 2a/9 + 27 + a’) = n

(/
9* + 2a/3 + 27 + 2zy),

k^{l + 2a)=n(f + 2Sy),

where fl’ = —

.

Writing as before k = u*, \ = v*, we have

u
n = —y, and thence 7, = Vll

M

V
' Moreover, by taking x and

y each indefinitely small we obtain at once 1 + 2a= ,
and

substituting these results in the last of the four equations we

find 2/3 = tt’v* pj
: and the second and third equations

l^^cotnc

v‘{S‘+ 2/87 + 237) = u‘ (2/8 + 27 + a’),

w’w* (2/8 + 2a/3 + 27 + a*) = /3* + 2a8 + 27 + 237,

in which equations a, /8, 7 are to be considered as given

functions of u, v, M: the equations therefore determine the

relation between u and v (the modular equation)
;
and they

also determine the multiplier J/ as a function of u, v.

269. The final results are simple: but it is by no means

easy to deduce them from the equations, or even to verify

them, when known : we have

(1 - „») (1 _ „") = (1 _ mf.
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or, as this may also be written,

(t) — tt’) (u — v’) + 7uv (1 — uv)’ (1—UV + u’vy = 0,

for the modular equation: and then M is given in either of the

two forms

1 7u (1 — ur) (1 — «« + «*«*) 1, _ u (1 — uv) (1 —UV+ u’«*)

values which are identical in virtue of the last-mentioned form

of the modular equation. And then as above

2a=^-l, 2/3 =«v(;1-^), y = ^,

which are the values of the coeflScients a, 0, 7.

Forma of the Modular Equation in the Cubic and Quintic

Transformations. Art. Nos. 270 to 273.

270. In the cubic transformation, the modular equation is

originally given as an equation of the fourth order between

(m, v) : but we thence easily derive equations of the same order,

4, between (m*, t;*) (m*, v*), and (u\ t/‘) : the forms are
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HL 1 u* w* u’»

1 +1

«« - 16 + 12

r* + 6

r” + 12 -16

1.16 + 1

1 u® «'« «»*

1 + 1

v« -266 + 384 -132

t,16 + 384 -762 + 384

v« - 132 + 384 -256

+ 1

271. Hero I. is the original form u* — v* + 2uv (1 — w*tr) = 0.

II. may bo written (1 — «’) (1 — i/*) = (1 — n^v')*. Jacobi ob-

tains this, Fund. Kova, p. 68, as follows: we have

(1 — M*) (1 + r*) = 1 — u*v* -I- 2w» (1 — u'lf)

= (1 - mV) (1 + vv)', = (1 — uv) (1 + uv)\

(1 + M<) (1 -«;•) = 1 - uV - 2uv (1 - «’«*)

= (1 - u'v*) (1 - «v)’, = (1 + ««') (1 -

whence the form. Writing

= „•
, it" = 1 - u‘, X’ = v', X" = 1 - v\

the equation is A:'*X" = (1 — VlX)‘,

or, what is the same thing,

VA’X-tVA:X =1,

the irrational form obtained ante, No. 261.

III. may bo wittcn (tt* — v*)‘— 16 (1 — «*) (1 — = 0
:

.

which form can be at once derived from II. under the form

(1 — M*) (1 — n®) = (1 — u‘v‘)\ by writing therein

1 — tt*r* — — («* — V*) -f- 2uv.
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vni.] THE MODULAR EQUATION. 195

IV. may be written

- r?)* = 128 uV (1 - u“) (1 - v‘) (2 - m’ - d“ + 2hV) :

or say

{k^- xy = 128 i-V (1 - k^) (1 - A*) (2 - A* - \* + 2A*X’).

Fund. Nova, p. 67, viz. this is the modular equation expressed

rationally in terms of A*, A*. Writing, with Jacobi, = 1 — 2A“,

Z = 1 — 2A*, it becomes

(2-0* = 64(1-j*)(1-0(3 + 30.

272. In the quintic transformation the modular equation

is originally given as an equation of the order 6 between u, v :

this may be expressed as an equation of the same order 6

between (»<’, v*), («*, v*), (u“, v'), viz. the four forms are

L 1 U li* h" a«

1 + 1

l» 1 + 4

1

+ 5

r«
I

V* -5

-4
1

r« 1

i

j

n. 1 t<* II* u'»

1
1

+ 1

v’ -16 + 10

v‘ + 15

v» -20

+ 15

+ 10 -16

+ 1

13—2
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19« THE MODULAR EQUATION. [VIII.

1 li* «'• yl« «*•

1 i

1

+ 1

**
i

- 256 + 320 - 70

r»
i

!

-640 + 655

c»|
i

+ 320
1

-660
1

+ 320

,.16

1

+ 656 - -640

,.60 - 70 + 820 -256

+ t
1

1

1 «» *« u« „40 tl*

i

+ 1

- 66536 + 163840 -138240 + 43520 - 3590

+ 163810 - 133120 - 207360 + 133135 + 43620

- 138240 - 207300 + 691180 - 207360 - 138240

+ 43.520 + 133135 - 207360 -133120 + 163840

- 3590 + 43520 - 138240 + 163840 - 66536

+ 1

273. Here I. is tlie original form

M* — r* + (m* — v') + 4nv (1 — u^v^) = 0.

II. may be written (?/* — «’)' — 1 GitV (1 — u*) (1 — = 0.

This Jacobi obtains, Fund. Nova, p. 69, directly as follows:

writing the modular equation in the form

(i/’ - (•*) [n* + 6hV + V*) = — (1 — u‘c*),

from this we deduce

(«’ - f’) (m + y)‘, = (« - r) (m + vY, = - 4wi- (1 - w*) (1 + v*),

(?t* - t-’) (w - v)\ = (w - t')‘ (f/ + r), = - 4uf (1 + M*) (1 - v‘),

and tlicncc the form in question.
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197VIII.] THE MODULAR EQUATION.

' The form IV. may be transformed into:

(tt* — V*)’ = 512 into

1 tl® 0*4 u»

1 + 128 -820 + 270 - 86 + 7

-320 + 260 + 406 -260 - 86

1^16 + 270 + 405 -1350 + 405 + 270

- 86 -260 + 406 + 260 -320

pM + 7 . - 86 + 270 -820 + 128

and thence into:

(u»- «»)* =512 mV (1 - M*) (1 - V*) into

1 u® U«4

1 + 128 -192 + 78 - 7

-192 -252 + 423 + 78

+ 78 + 423 -262 -192

0*4 - 7 + 78 -192 + 128

which is the modular equation expressed rationally in terms of

u*, V*, = t*, X.’. K we herein write q = \ — 2A:’, f = 1 — 2X*, this

becomes:

(2 - f)‘ = 256 (1 - g*) (1 - 0 into

1 1 9’ 9‘

1 + 406

i + 486 - 9

P + 406 -270

1* - 9
1

+ 16

which is- equivalent to the form given Fund. Nova, p. 67. The

equation may also be written

(g
- 1)* = 256 (1 - g’) (1 - i*) [\^l (9 - qlf + 9 (45 - ql) (g - f)*}.
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198 THE HODULiLR EQUATION. [VIH.

Properties of the Modular Equation for n an odd prime.

Art. Nos. 274 to 277.

274. The cubic, quintic and septic transformations supply

illustrations of ceilain properties of the modular equation for

any odd prime value of n. It may be convenient to mention

here that the equation has been further calculated for the odd

prime values 11, 13, 17 and 19, by Sohnke, in the Memoir,

Equationes modulares pro transformatione functionum ellipti-

carum, Crellc, t. xvi (1830), pp. 97—130; the results are given

in a tabular form in my Memoir on the transformation of

elliptic functions, Phil. Trans, t. 164 (1874), pp. 397—456.

The degree in u, v respectively is = w + 1.

275. The equation remains unaltered if for u, v we write

therein — u, —v respectively.

Connected herewith we have an important property not

explicitly noticed by Jacobi. In general an equation F{u,v) = 0

of the order v in u and v respectively can be transformed into

an equation of the order 2v, in m’, respectively; viz. the

transformed equation is

F (u, n) F (- u, f) F(u, -v) F(- u, -v) = 0,

where the left-hand side is a rational and integral function

of tt’, V* of the order 2v in these quantities respectively. But

as regards the modular equation, since F {— u, — v) = F (u, r), and

therefore also F (—u,v) = F {u, — v), the transformed equation

may be written F{u,v)F(ii, — v) = 0, and it is thus an equa-

tion in r’ of the order v, = n + 1, only. It has just been

seen how in the cases n=3 and n = 5, we obtain equations

not only in («’, i>“), but also in {u*, v*) and in (u‘, v"), of the

same order, 4, 6, in these (juantities respectively: and the same

thing might easily be shown in the case n = 7.

276. The modular equation remains unaltered when for

M, V wo write therein t;,
(—)**" '*

« ;
viz. n = 3 or 5, (v, — w), but

n = 7, (r, m) in place of (m, v). Taking the C(iuation in
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(u*, V*), («*, V*) or (m®, «') this merely means that the equation

is symmetrical as regards the two variables, but as regards

the original form as an equation between (u, o), we have, as just

stated, « = 3 or 5 (mod. 8) a skew symmetry, but n = 1 or 7

(mod. 8) a complete symmetry.

The above change u, v into {«, (—)

*" changes the mul-

tipher M into
^

if appears that, given the

expression of the multiplier in terms of (m, v), we can deduce

the modular equation: thus, n = 3,

whence (2u*+ v) — m) — 2uv = 0,

the modular equation. And so also, n = 5,

, , V (1 — uv’) 1 — u (1 + «’»)

whence 5uv (1 — mu') (1 + u’v) — (u — u") (w* + m) = 0,

the modular equation.

277. The modular equation remains unaltered on changing

therein u, v into
^ ^

respectively.

The modular equation also remains unaltered on changing

therein k, \ into A', X' respectively, that is u®, u“ into 1 — u*,

1 — V*; this appears from the equations expressed in terms of

j = 1 — 2^“ and Z = 1 — 2\’; viz. by the change in question q, I

are changed into and the equation remains unaltered.

Two Transformatiom leading to Multiplication. Art. No. 278.

278. It appears from the property stated in No. 27G that

we can hy a twice-repeated transformation obtain a multiplica-

tion, thus, n = 3,
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_ » (« + 2u*) X + «V
^ (y + 2u!') **

gives

dy V + 2u*

Vl-yM-vy « Vl-a;*.l-ttV’

and writing (v, — u) for (m, t), and
{
2

, y) for (y, x),

_ M (u — 2y*) y + /y*

u* + tt'y* (u — 2y“) y’

gives

dz tt- 2u* <fy

Vl— — uV “ Vl — y*. i — «‘y*’

dx= -8
V1 — . 1 — u*x*

279. Similarly, n = 5,

_ y (« — u*) X + M* (w* + y*) (v — u*) X* + (1 — wy*) x
^ y* (1 — ud) + wy* («* + y’) (y — «*) x’ + uV (y — u‘) x*

gives

<fy _ V — M* f/x

vTryTT^^ ~
V (1 - «»”) Vl -x*.l^V ’

and

_ u{u + y*
) y - y* (it’ + y*) (a + y°

)
y* + y'° (1 + u^’y) y*

~
tt’ (1 + «’y) - w’y (“’ + y”) (« + O / + “V (“ +

gives

dz _ u + y* <fy

Vl -z'.l- u^z* ~ w (1 + «’y) Vl - y*^ 1 -d/

’

wlience
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The Multiplier M. Art. Nos. 280 to 284.

280. The above-mentioned values of M. lead to con-M
venient expressions of nif*; thus

u (2tt* + v)

n = 5, 5AT =
V u v‘ 1 —
« tl — u’ 1 -I-

'

„=7, 7JP—
M (» — U’)

It will be shown that we have in general

_v {I— if) du
” kic* d\* u (1 — tt*j do

’

or, what is the same thing, if
<f>
= 0 be the modular equation,

then

d(f) d<t>

a formula which is here to be verified in the three cases n = 3,

n = 5 and n = 7.

281. In the case n = 3, we have

V 2o* — tt

also

^
0 -t- 2tt* 3u

du 2if — u + 3uV
dv 2u* V — 3aV ’

and the equation becomes

2o” — M _ 1 — 0* 2o* — M -t- 3uV
2u* -h 0 i — u* 2w’ 0 — 3«V

But writing 3 = fraction
° «o

the numerator becomes = (2o* — «) (1 + it’o* -f- 2it’i’), and the
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denominator = (2m* + ti) (1 + «’«* — 2«t;‘) : and the equation

thus is

1 - w’ 1 + «V + 2m‘u
^ ~ 1-tt* 1 + uV-

But we have

l-tt"=(l + tt*) (1 -w‘ + 2m« (1-tt’t;*)},

= 1 — uV + u* — + 2ui; (1 + m‘) (1 — M*w*),

= 1 — mV + 2u'« (1 — M*u’),

= (1-mV) (l + MV+2M‘t)),

and similarly

1 — = (1 — M*w*) (1 + mV — 2uu'),

which proves the theorem.

282. In the case n = 5 we have

V (1 — MU*) _ M + u’

V — M* 5u (1 + M*»)
’

and the equation becomes

(1 — mu”) (m + u”) _ 1 — u” du

(u — m‘) (1 + M*u)

The modular equation may be written (by No. 273)

(«* _ „•)« = 16 mV (1 - m”) (1 - u”),

whence differentiating and midtiplying by m’ — w*, and reducing,

we have

6mu (1 — m") (1 — v”) {udu — vdv)

= M (a* — u”) (1 — m”) (1 — 5u"; dv (m* — u*) (1 — u”) (1 — 5 m”) du,

or, as this may be written,

u (1 — tf") (5 m* — m'° + v’ — 5m"u’) du

= M (1 — m") (5u* — «" + >' — .'m’u”) dv, •

tliat is

v_ dM l_^u* _ 5u*-u'°-f m*- .5m*u”
_

udvl—u* 5m* — m'” + — 5uV’
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or, observing that from the modular equation, we obtain

5«* - m'" + u’- OM*e* = (1 - uV) (o’ + 5tt* + 4u*o),

5o’ - v” + «’ - ouV = (1 - tt’o*) («’ + 5w* - 4uo“),

this is

V 1 — v’ _ «’ + 5o’ — 4mo‘

u c/u 1 — li* o’ + 5m’ + ’

and the equation to be verified is

o (1 — uo’) (tt + o’) _ M* + 5o’ — 4«o‘

M (o — m''; (1 + «’o) o’ + 5m’ + 4m'o
‘

283. Write

A = u + i^, B=u(l + u’o), C=v — rjf, = o (1 — ui^),

then we have

u’ + 5o’ — 4mo“ = uA + 5oi?,

o’ + 5 m’ + 4m’o = o (7 + 5u

and the equation becomes

AD _uA + bvD
BC ~ vCTbuB ’

or, what is the same thing,

0 A CD + 5u ABD = u ABC + 5v CBD:

but from the modular equation oBD = AC, and substituting

this value and throwing out the factor AC, the equation

becomes vD +uA = uB+v C, which is true since each side is

= m’+o“.

284. In the case n = 7, we have

.
. _ 0 (1 — uv) (1 — vv + m’u’) « — o’

~ 0 — u’ 7m (1 — MO^ (1 — MO + m’o’)
’

and the formula is

_ M ^ 1 - o’ du

0 — m’ 1 — m” io
'
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Starting from the modular equation

we have

^^ ’

and thence

= - o’ (1 — uo)' + (1 - 0*) U (1 — Uf)’,

= (1 — wo)' (w — o’).

And similarly

(1-uo*) (o-w*);

whence

1 — 0
*

1—u‘dv’ -d-og^d-
the formula in question.

Further theory of the Cubic Transformation.

Art. Nos. 285 to 294.

285. The cubic transformation may bo considered from

a converse point of view. Writing a: = sn (u, k), * = sn (3«, k),

we have

(I - **aV) (1 - (1 - (1 -
’

where

a = sn

7 = sn

iK
3

’

iK + 4i‘A"

/8 = sn
‘hilC

, S = sn
-4A' + 4iA'

3
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these being the roots of

3 - 4 (1 + it*) *• + 6ifa:‘ - tV = 0

;

and it is to be shown that this relation between z, x may he

decomposed into two transformation equations between (y, x)

and (z, y) respectively.

286. We take these to be

J(‘-S)

giving respectively

MJy _ fie

Vi-y‘.i -\y
~ ’

and

dz
'

33fffy

where observe that a, which enters into the relation between

4K
y, X, being as above the real root sn ,

the equation between
O

y, X is a first .transformation, and consequently that the relation

between z, y ought to come out a second transformation.

287. Writing

we have

that is

and similarly

Vl-a*=cu^, vl-i-’j’=dn^,
O o

(a ir
*3 ="H^^"”3>)

= -®n-3--

2 = - (1 - 1-^).
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206 FURTHER THEORY OF THE CUBIC TRAJTSFORMATIOJf. [VIII.

Also

5,
^iK' + \K UK'-^K /9*-a’= sn sn

^

,

7 +

and tbence

^ 2/3 Vl - a* Vl - - /3 (1 - fcV)

l-^V/3“ l-iV/3* ’

^ + (7 + 8) =
iV/3(a*-/9^

0/ . SN ,
s._-a*(l-A^a*;8’)

^(7 + S)+7S l_^V^ ’

that is

/9 + 7"1"^ ^a*/S7S,

7S + 8/3 + /97 = — a*,

or, what is the same thing,

78 8/3 /37
“ ’

1 1 1__ a’

~$yh’

and, moreover, since

5
(‘-3

= 3 - 4 (1 + **)*'' + 6/lV - /,-V,

we have

f
M\ aV

288. Determination of y= , leading to

Mdy _ dx

VI - wM - x*«’
“
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VIII.] FURTHER THEORY OF THE CUBIC TRANSFORMATION. 207

We determine M so that a: = 1, y = 1 shall be correspond-

ing values, viz. we have

m[^ a‘) „ 1-a*

and then (ileiioin. = I - i'aV), writing

l-y=(l-fc’aV)-J(
< av

{-) 9

, V f /I ,\ X* 1

(-)
i/a*J

1

the term in
{ }

is taken to be a perfect square, = (‘

suppose, viz. this being so we have

2 1-itV/ 1

f- 1-0* r/ Vl-a’/'

1 1_ _ l-/cV
/*“ MJ' l-a"’

which agree; and then

H.

whence also

l+y = (l+^)^l+^) (-^)-

y

We next determine

shall be changed into

X, so that X being changed into

— : we thus have

kx

1 1 1 —
\j,^MWx ’

9
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208 FUETHER THEORY OF THE CUBIC TRANSFORMATIOlf. [VIII.

or, multiplying by y,

1 _ 1

that is

ka.,- •

Observe that, a being real, wc have 1 — a* < 1 — fc’a*, and hence

X < k‘, viz. we pass from a modulus to a smaller modulus X.

And then the expressions for 1 — y and 1 + y lead to

l-Xy = (l-ix)(l-*/r)* (-),

l+Xy = (l + ib;)(l+i/x)*

so that we have the required equation

Mdy dx

Vl -y“ . 1-xY*
“

289. Modular equation.

Next, for finding the modular equation, we have

orVxX--^-“*)
(l-/fcV)” 1-AV ’

wherc the term in
{ }

is

1 _ 4jt*a* + Gi‘a* - 4JfcV + it”a"

- + 4AV - G^V + Wa*- k'a\

= (1 - fc’) (1 + fc” + /fc‘ - 4 (^•‘ + k') a* + GiV - iVJ,

= (1 - *’) {(1 - i-*)’ + k^ [3-4(1+ Ar*) a’ + 6AV- k'a’]}.

that is

X' =
, or Vx'A' =

(1-AV; 1 - A-V
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VIII.] FURTHER THEORY OF THE CUBIC TRANSFORMATION. 209

and hence

that is

VxA + Va'A;' = 1,

the required equation.

290. We have next {d being arbitrary)

(denom. as before = 1 — i’a’*’).

And taking

a— ^ 1 **

Jf a’’
’

and similarly

(-).
1378 V aV

(-).

=('-i)(^-?)H)
(t-).

(-);

1 1

= (1 — k^x) (1 — hfx) (1 — khx) W.
= (1 + k^x) (1 + kyx) (1 + kix) W;

consequently

1 - (1 - (1 - i'W) (1 - ^7V) (1 -
'

We have

n 1 /SyS , 1 <x‘W* _ j::3 .^ “ ifV ^ “
J/’ a"

’
“ ’

c. 14
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210 FURTHER THEORY OF THE CUBIC TRANSFORMATION. [VIII.

l)ut \ = JiPl£‘a*, hence X0* — X*^= — whence,

putting for shortness M. = —
-n-r:

,

=—^ ,
wo have° a“(l— «^a) ail

„ - 3B* 3

iV^‘ a’-if'
•

291. It is to be shown that 6 is connected with X as a is

with k\ viz. that we have

3 _ 4 (1 + X*) ^ + 6X*^- X‘fl* = 0.

Substituting for 0*, X’^ and Xfl* their values, the expression on

the left-hand side is

= - {(27 - 18iV - k*o!) A'lf - 4a«

(.4 = 1 — a*, .B= 1 — i’a’), viz. the term in
{ j

is a function (1, o’)'

the coefficients of which are

27,

-54-54*’,

27 + 90*’ 27**,

- 4 -18*’ -18**- 4**,

- 2*’ -46**- 2*“,

14** + 14*',

- *‘-|-10*'-

- 2*'

-

2*',

-

and this is equal to the product of 3 — 4 (1 -f *’) a’ + G*’a* - **a®

by a function (1, a*)*, the coefficients of which are

9.

- 6 - 6*-’,

1-4*’+ **,

2*’ + 2**.

**,
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VIII.] FURTHER THEORY OF THE CUBIC TRANSFORMATION. 211

viz. this other factor is = [3 — (1 + k') o' — The first

factor vanishes and we have thus the required relation

3-4
(
1 +\') 6\’^- \*e^=o.

1 ByB
We have ^ = — -r?

—^ ,
where a, 78 are all real but is a

a

pure imaginary, hence also 0 is a pure imaginary. Now the

equation in z, y corresponds with the difierential relation

dz _ 31fdy

vi -?. 1 - iv ~ vnYTi^;^*
’

and we thence see that d must denote one of the quantities

4A 4iA' 4A + 4iA' -4A+ 4iA'sn^.sn—^,sn — ^
,
sn ^ ;

and, being as just shown, a pure imaginary, it clearly denotes

4 (’A'
sn - -

, viz. the transformation from 2 to y is a second trans-
O

formation.

Writing now

N I, W
1-V^y ’

we may determine N so that corresponding values shall bo

2 = 1, y = — 1 (or 2 = — 1, y = 1), viz. this will be the case if

2 = '

1 = -ihil
1

,
or say N= i-e'

0*{1-X’^)
’

and the value of N thus determined will be = g-jj . To verify

this we have to prove the equation »

0’(l-X*^) = 3iV(l-d‘).

Substituting for 6̂ , X0* and M their values, the equation is

(- a* (5’ - + ^AB (2?
- = 0,

(.4 = 1 - a’, 5 = 1 - iV, as before).

14—2
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212 FURTHER THEORY OF THE CUBIC TRANSFORMATION. [VIII.

We have B — I^A = 1 — i*, and the term J5’— k*A^ contains

this same factor. Omitting the factor in question, l—l?, the

term in
{ j

is

= - a* (I + - 3iV + fcV) + 3 {1 - (1 + fc*) a* + iV],

viz. this is

= 3 - 4 (1 + i-*) a’ + 6iV - JfcV.

which is = 0, and the theorem is thus proved.

292. Starting from the equation

l-v%* ’

where 1,-1 are corresponding values of z, y, and

3 - 4 (1 +\’)^ + 6X’^-XV = 0
,

we have

II 1 1 ^St

(-).

(-).

= (1 - Xy) (1 - Xyy)’ (-).

= (l+M(l+^i7.v)’

where denom. = 1 — X'S'y',

viz. in ol)taining the above wc have

tliat is

l+^=l-V^y + 3d/y(l--^‘) (^),

= (1 - y)
|l + (3i/+ 1

) y + (-).

w.

-= = 3J/+1,
.7

1 _ .3.1/

a‘~ ~(P
’

_ 1 -X’^
1-^ ’

" 1-^ ’
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VIII.] FUBTHEK THEORY OF THE CUBIC TBANSFORMATIOX. 213

which agree. We have therefore

dz _ 2Mdy
~ Vl -y’. 1

’

and the proof is thus completed.

293. The investigation would have been very similar if, in

the formula

a had denoted any other root of the modular equation, or, what

is the same thing, if a were replaced hy any other root /3, 7 or 8;

there would have been in each case a corresponding equation

in {z, y) giving by its combination with the assumed equation

the triplication. In particular if the root had been then the

equation in x, y would have been a second transformation and

the corresponding equation in {z, y) a first transformation. But

if the root had been 7 or 8, then in either case the equation in

(x, y) and the corresponding equation in {y, z) would have been

each an imaginary transformation.

294. Returning to the quantities a, y9, 7, 8, which denote

4f/T 4/ir + 4rA" -4A'+4t7r
sn—

,
sn— sn ^ , sn ^ ,

respectively the two equations obtained in No. 287 belong to

a system which may be written

a*= . . . — /Sy — yS8 — 78,
j

Idu'fiyB = . — ^ — 7 — 8,

/S’ = . — B7 + a8 . . + 78, = a . +7 — 8,

7’ = afi . — a8 . + jS8 . , ,
Ida/iy'B = a — yS . +8,

8’= — a/8 + 07 . +fiy . . ,
fc’a/878* = a + /3 - 7 . .

But a’/3*7’8’ = — p , or if for shortness s = iV3, then we may

s •

write a/878 = — p or Ida^yB = — s, and the last set of equations

becomi's
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214 FURTHER THEORY OF THE CUBIC TRANSFORMATION. [VIII.

81.— P— 7— S = 0,

a + S/3 +7-8 = 0,

a— /8 + S7+S = 0,

a+ /3— 7+sS = 0,

which must be equivalent to two equations only: in fact the

equations may also bo written

2a . +(s-l)7+(s + l)S = 0,

2/9-(s + 1)7+(s-1)8 = 0,

— (s— l)a +(s + l)/9+ 27 . =0,

-(s+l)a -(s-l)/3 . +28 = 0,

which linearly determine any tw'o of the quantities in terms of

the remaining two, for instance a and ^ in terms of 7 and 8

:

but then, substituting for a and /9 their values, the fliird and

fourth equations are satisfied identically.

A General Form of the Cubic Transformation.

Art. Nos. 295, 296.

295. Consider the two quartic functions

A' = (a, h, c, d, e) [x, 1)‘, X' = {a, V, c, <T, s') (x, 1)*,

we may imagine the variables x, x' connected by a cubic

transformation so as to give rise to a differential relation

Mdx dx

VA" ~ 7x’
and this being so the modular equation will be given as a

relation between the absolute invariants of these two quartic

functions, viz. writing as usual I, J

{= ae — 4tbd + 3c*, ace — ad^ — h'e+ 26cd — c’, respectively)

for the invariants of X, and similarly J' for those of
jt

A", then the absolute invariants are fl = 1 — 27 ,
and

./'*

n'=l-27p.
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Supposing the function U linearly transformed into

1 — a:* . 1 — and similarly U' linearly transformed into

1— y*. 1— Vy*: then it has been seen that the relation be-

tween V can be obtained by the elimination of a from the

equations

a»(2 + o)

1-1-22 ’ (1-1-22)”

or, what is the same thing, writing — /9 = ^

connected by the equation

22/8 -l-a-f/9-l-2 = 0,

and then — a’/8, X’= — 2/8*.

The theory of linear transformations gives

„ 108F (1 - fc*)* _ 108X* (1 - \y“ “
1U-* -I-

1)’ ’ ~ (X* + 14V -1- 1)’ ’

the question therefore is between these equations to eliminate

a, /8, i"*, X’ so as to obtain a relation between fl, II'.

29G. By considerations which I cannot now recall I was

led to assume

,, .
(l-^22)(2^-a)(l-a)« (1 -h 2/9) (2 -h /8) (1 - /8)«

(1-1- 4a -I-
a')" ^

(1 -I- 4/3 -1-/9*/

The equation between a, /8 gives

14-2/9= -3-=-(l-f22),

2-f/3= 32-^(14-22),

1-/8= 3 (1 4- a) -r (14- 2a),

1 4- 4/3 4- /? = - 3 (1 4- 42 4- a*) -f (1 4- 2a)*;

and we thence have

27a(l4-a)«
^

2 (14-42 4-0')“’

viz. in virtue of the identity

(1 4- 2a) (2 4- a) (1 - a)‘ 4- 27a (1 4- a)‘ = 2 (1 4- 4a 4- a*)’,

we find a'4-/3’ = l.
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216 THE MULTIPLIES RESUMED. [VIII.

We then have

A’ = a»(2 + o) + (l + 2a),

i«_l = (a_l)(a + l)*-(l+2a),

fc‘+ 14A-'+l=a*(2+a)*+14i» (2+a) (2a+l)+ (2a+ 1)*,

)

= (a’ + 4a + l) (a' + 3a*+ lGa* + 3a’ + l) J

'

and consequently

108 a' (1 + 2a) (2 + a) (a - ir (a + 1)’*

“ (a- + 4a + If (a* + 3a* + 1 6a’ + 3a* + 1/
’

But

a' = i (1 + 2a) (2 + a) (1 - a)‘ ^ (a* + 4a + 1)’.

and thence

1 - a'= (1 + 4a + ay - i (1 + 2a) (2 + a) (1 - a)*l _
= -<^a(l + a)‘ r

1 + 8a'= (1 + 4a+ a7 + 4 (1 + 2a) (2 + a) (1 -a)‘)
.

=9(a‘ + 3a* + lCa* + 3a* + l) r ”

whence

^ 64a' (1- a')*

(l + 8a')>
'

and similarly

64/9’ (1 -/S')*

(1 + 8/9')*
’

where a' + /8' = 1. Writing a = 1+6, and therefore = ^ — 6,

we have

(5 + 80)* fi = 4 (1 + 20) (1 - 20)*,

(5 - 80)* fi' = 4 (1 + 20)* (1 - 20),

and the elimination of 0 from these equations gives the required

relation between fl, Cl'.

Proof of the Rpiation

297. The proof depends on the formula for the differentiation

of the complete functions referred to at the end of Chap. IV.
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We deduce

dkK K^kk^'

and similarly, if A, A' are the complete functions in the first

transformation, we have

d A' _ ^TT

'd\A A’?a''

But

and we thus obtain

rfX _ ndk d\, K* _ dk
“ kic^ir • XK'*

• •

K
But we have also A = —tt, that is — =nM\ and conse-nM nA’

quently

nJlf.
d\ _ dk

XX’
or say nJ/’ =

XV*^
kk’'dX’

or writing k = u*, X = «*, this is

nM'
V (1 — V*) du

u (1 — «') dv

'

298. M is given as a rational function of (m, v), the same

function in the first and in every other transformation; and if we

imagine ^ expressed from the modular equation as a rational

function of («, v), and substitute these values ofM and ~ , the

resulting equation must he true in virtue of the modular equa-

tion, viz. it must contain as a factor the modular equation.

And this being so, it follows conversely that the expression of

^P, viz.

XX”

d\’

holds good, not for the first transformation only, hut for every

transformation of the order n.
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218 THE MULTIPLIER RESUMED. [VIII.

299. Jacobi, Fund. Xova, p. 74, effects the generalisation

from different considerations. Writing in the first instance

Q= uK + IK', Q = dK + b'K’, where a, b, d, b’ arc constants,

he finds

d Q' _ -Jit {ah' — db)

dk Q'k-k'‘
’

and similarly i{ L = aA + y3A', L' = a'A + )3'A', where a, /3, d, ff

are constants, tl»en

d IJ _ ^7T (a/ff — a'/S)

d\Z~ ’

viz. these correspond to the formulae of the last No. with only

Q, Q', L, L' in place of K, K', A, A' respectively. But then

using the equations

aK + xbK'
ouV + iySA =

o'A' + ryS'A =

nM ’

a'K' + ib'K'

7iM

where ad 4- bb' = 1, oa' + /3y9' = 1, (sec end of Chap. VII.), the

equations become

or since
<7

Q

iQ'

_

knirdk jK _ \irdX

L' 0
2^

, j
= nM, we have as before nJ/* =

XX'*dk

kk'^itX •

Differential Equation satisfied by the multiplier M.

Art. No. 300.

300. We have, No. 76, writing K instead of F,

and similarly if X, A belong to the first transformation.

These equations may he written

d (kk'*dK\
7 7^ „ d iXX'*dA\

dX\~d)ir)
-XA = 0.
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But M= that is iT = MA, or substituting in the first

equation

+S {“" ;a + (' - "} + ® - “•

which multiplied by M may be ^yritten

+
dk[ dk )

= 0 .

But 3P =
W'dk
nkk"‘dK’

whence the second term is

^ 1 /XK'*dA\

n dk\ dK ) ’ ndkd\.\ d\ )
’

z. this is = : the whole equation thus divides by A, and

it becomes

nr {ji'i d^^k nit\ dif , ,,1 1 \d\ _M + (1 - - Ul\ + j
. 0.

lOC^dJcWe have M* =
.
^“‘1 if we use this equation to eliminate

^ ,
we obtain

|u-'’
dk' dk

-W/| .
1

kk'

a differential equation of the second order satisfied by the mul-

tiplier M considered as a function of k. {Fund. Nova, p. 77.)

Observe that this equation contains n, viz. it depends on the

order of the transformation.

It is in the proof assumed that X belongs to the first

transformation : but it may be seen as in No. 298, (or we may
as in No. 299 by using Q, L in place of K, A respectively

show) that the theorem is true for any root whatever of the

modular equation.
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220 DIFFEREKTIAL EQUATIOW FOK MODULUS X. [VIII.

Differential Equation of the third order satisfied by the modulus X,

Art. Nos. 301 to 305.

301. If we use the same equation hP = to elimi-

nate M from the foregoing differential equation, then since the

terms of

all contain the factor which occurs also in the remaining

term - of the equation, this factor divides out, and we ob-
n ak

tain an equation involving k, X, but independent of n: viz.

observing that the equation in M may be written

M

and putting for convenience M* = i fl*, that is
71

/XX'Vi

V kk'dx’

the equation in question is

or, what is the same thing,

where is a given function of k, X, and X is any root whatever

of tlie modular equation.

302. In this form dk is taken to be constant (that i.s, k

to be the independent variable), but taking dk, dX to be each

variable (in effect k, X to be functions of a new variable), the

equation may be written

^

[dkdikk-^dil) - <Tk . kk'^dil] - klV + = 0,
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and after all reductions we arrive at Jacobi’s form

3 ((rfi-)’ - {dxy (cf*)’} - 2dk d\ {dk <TX-dK d‘k)

+ (*)•W W -(^9’w} = 0.

303. It may be remarked that if

= dp, that is p = log
I

,

1 , ^
and therefore 1;’ = , .

- , i* =
^ ,

kk' =
1+e^’ l+e»’

= dq, that is 2 = log ,

e** 1 C*
and therefore X’ = , X’= , XX' = ,

we have

4’

and the equation then is

it .

which is readily converted into

2pq' {q'p"-p'q"') - 3 ’Q
4 (pq)*

/
g' V y / e* V /

U + e^y •^’“U + e^y 'p' ’

where p', p", p'" and q, q", q", are the derived functions of p, q
with respect to the independent variable.

304. The equation in No. 301 is easily verified in the case

1 — A'
of the quadric transformation : we have here X =

thence find fl
=Y^^- >

equation takes

the form

V2 ffc d r,„.. d ( >J2W V2i]
,

2fl-fc')>_„

1 + k' tfc’ dk' L dk' \l + k')} 1 + ifc'j Jfc' (1 + jfc’)l

“ '
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viz. dividing by 2, and reducing, this is

1 f* d I
, 0

1+*' ) 1+ A'J

But the first term is

1 -1+2^-' + *'’ k
]

{1+ky 1 +4

“i'(l+A:')*
(-1+A:'),

and the equation is verified.

*:'(l + ik')*
’

In the case of the cubic transformation, the equation in

Jacobi’s form No. 302, might be verified (although not without

some diflScuIty) by means of the expressions. No. 2G1,

aV2 + a>

l + 2x ’

of the moduli fc, X in terms of a parameter a : but the verifica-

tion in the next following case of the quintic equation would

apparently be very difficult. Jacobi remarks that if a method

existed for finding the algebraical solutions of a differential

equation, then, by means of the foregoing differential equation

alone, it would be possible to obtain the modular equation in

the transformation of any order n whatever: but, the mere

verifications being so difficult, it does not appear that anything

can be done in this manner in regard to the modular equations.

A relation involving M, K, A, E, G. Art. No. .305.

305. Immediately connected with what precetles we have

a result which will be useful in the sefiucl: wc liave

that is

k

E ,, dK „_di.+_ = o.
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and similarly if A, G are the complete functions to the modulus

X (A = F^\, as before, 0 = E^X), then

dX

X X\ A A
Hence establishing the equation

dX
X

GdX
,

dA _ dk Edk
_
dK

and observing that M=- -r and therefore , we° n A M K A
obtain

<fX GdX dM_ dk Edk
X~X:*a~~m~T~W^k’

viz. this is

XX'*
fx'*-^-

XX'*AV) dk /

r A if ifxl
r

or, eliminating dk, dX by the relation , this is

nif‘1 A 'M'dx]~ K’

which is the result in question. Observe that is the total
u\

differential coefficient, viz. if if is taken to be a function of k, X,

then in the differentiation, k must be treated as a function

of X. The equation, as involving not only K, A hut also E, G,

is in its actual form only true for the first transformation, and

it does not readily appear how it should be modified in the

case where X is any root whatever.
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CHAPTER IX.

JACOBl’S PARTIAL DIFFERENTIAL EQUATIONS FOR THE FUNCTIONS

U, 0, AND FOR THE NUMERATORS AND DENOMINATORS IN

THE MULTIPLICATION AND TRANSFORMATION OF THE ELUP-

TIC FUNCTIONS sn u, cn u, dn u.

Outline of the Results. Art. Nos. 306 to 309.

306. The functions 0m, Hu have an important application

to the theory of multiplication, and theoretically a like one to

the theory of transformation. To explain this, recalling the

formulae

Vft sn a = Hu [¥),

;y/|cnu = H(u + iir) (^),

^dnu = 0(u + iT) (-i-);

where denom. = 0u,

and considering first the case of multiplication, it hais already

been seen that considering the expressions of

Visn MM,

in terms of sn u, the three numerators and the denominator of

these functions are respectively

=Unu 0*’‘'O, J3'(nu+ A') ©“’’'O, © (nu + K) ©•’"’O, 0nu ©*'’"’0,

each divided by ©* m : where for shortness ©0 is written instead

of its value =
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307. The corresponding formulsB in the transformation of

the order n are that considering the expressions of

Vxsn(2^,\), \/^cn^J.\), _L^dn(J,x),

in terras of sn u, the three numerators and the denominator are

respectively =

^(1 • >) ® (^ + A. >^) e."‘’o.

each divided by 0"m; where for shortness 0,0 is written in-

stead of its value = • tlie proof need not be at present

considered. Observe that for u = 0 the denominator is

e,-o *0-0, =("}-.

Now the functions 0«, Hu, 0(u+ .K'), H{u + K), each

satisfy as will be shown a certain partial differential equation

which in its most simple form is —4^ = 0, where the

irK' mt
variables are to, = ,

and v, =^ ,
Jacobi, CreUe, t. III. (1828)

p. 306. And we hence deduce a partial differential equation

satisfied by the foregoing numerator- and denominator-functions,

as well in the case of transformation as in that of multiplica-

tion : viz. if, in the case of multiplication by n, we write v = n*,

but in the case of the transformation of the n*"* order v = n,

then (in one of several forms) this equation is (Jacobi, CreUe,

t. IV (1829) p. 185)

(l-o** + s.‘)g-Kv-l)(ecr-2a:-)^

+ 1> (v — 1) **« — 2i/ (a* — 4) 0,

in which equation the variables are x, = VA sn «, and a, = A + ^.

c. 15
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308. The form is specially applicable to the denominator

of the three functions of nu, for this is a rational and integral

function of k and sn’ u, which when we introduce therein x,

= VisnM, becomes a function of x and k, which is unaltered

when k is changed into and is therefore a rational and

integral function of x and a : and it is for the like reason

specially applicable to the numerator of •Jkswim when n is

an odd number. But the form is not in other cases the most

convenient one
;

for instance as regards the numerators of

cn u, dn «, these do not thus become rational in

regard to <x, and it would be bettor to have k ns a variable

in place of a
;
and in the case where the numerator contains

as a factor an irrational function cn u, dn u or cn u dn w of

snw, it is proper instead of z to consider z divided by such

irrational factor, that is tho other factor, rational in regard to

sn M. But making the suitable modifications the formula is for

multiplication a very convenient one : viz. we can by means

of it actually determine the numerator- and denominator-

functions.

309. But for transformation the formula is practically use-

less; for observe that \ is therein regarded as a function of k, that

is of a; viz. the modular equation must be taken to be known.

Supposing that it is known, we cannot even then determine by

means of it the numerator- and denominator-functions; for in

seeking a solution by the method of indeterminate coefficients

the coefficients of the several powers of x would be functions of

(m, v) not only unknown, but in fonn indeterminate (as admit-

ting of modification by means of the modular equation):—and

even when the actual expression of z as a function of (x, u, v)

is known, as of course it is for the cubic, quintic, &c. transforma-

tions, it is, from the complexity of the modular equations, by no

means eas}' to verify the formula: the proce.ss is in fact one of

difficulty even in the case of the cubic transformation n = 3.

This of course in no wise diminishes the interest of the result;
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and the investigation of it being substantially identical in the

two cases of transformation and multiplication, it is proper not

to separate them.

Partial Differential Equation satisfied by 0it.

Art. Nos. 310 to 312.

310. It is to be shown that the function

*r, =0„,

satisfies the differential equation

du'

We have

d<T

du

V KJ du

E

dk

d^ff

da
dk

= ^f^dudn'u--^u^a,

= |m ^k'* — + k'f^du cn* ?t| a,

=
l^dn’ “ ~^ + 1“ * ~^ +1d j^du cn’ m|

J
a,

r r 1 d.Kk' . t d E . j
i [2^'*' dk ^ Ji:

+ /o /o
«J

‘

311. The success of the process depends on a transfor-

mation of the double integral

JoduJ„du u.

We have, see No. 128,

^ dn « =^ sn M cn u /, cn’ udu —^ an* u dn u,

whence

^ dn’ a= —^ jsn’a dn’w — I-*sn « cn li dn u/, du cn’uj

,

s= —^ |sn’Mdn’u+ i i* cn’ uj/,<?ucn’M|

,

15—2
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and thence

du du^ dn* u = -p |/,
du/, du sn’ « dn’ u

+ i fc*/, du (cn’ u /, du cn* « — /, du cn* u)
|

,

= — -^, J^dufgdu (2 sn* u dn’ u — ^•’cn* u)

+ Ji*(/odMCn*u)’|.

But we have

sn* u = 2 (cn* u dn* a — sn’ u dn* u — &* sn* u cn* w),

= 2 (k'‘ — 2 sn’ M dn* u + A’ cn* u),

or multiplying by du* and integrating twice

sn* « = i'*u’ — 2/„ du du (2 sn* u dn* u — A:* cn* u),

whence at length

/„ d?< /. du^ dn* u = - i Aru* + i^, sn* u - du cn* u)*,

the required value of the integral.

312. Resuming the investigation, we have

^ _E-E
fz.’. 1^ _ r^’l

d^• M' ’ dJi-E~a-’r Va: V /r-j’

and hence

di-
=

2“H:'*{f
- “ + (*'* - 1)’

(^* j
'

Substituting the foregoing values of ^

^

cliflferential equation, the several terms destroy each other, and

we thus have the equation in question.
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Same Equation satisfied ly IIu, 0 (« + K), K),

Art Nos. S13, 314

313. The equation

du* ““V AT/dtt" Wc

is satisfied by <r = 0m
;
write for a moment « + iK = v, then the

equation

K) dv dk

is satisfied by er, = 0», = 0 (m + iK ’)
;
and transforming to the

variable u, we have

that is

d^ _ d<r, cP<r, _ (f*<r d<r, _ Ar, dtr, dv

du dv ’ du* dtf ’ dk dk ^ dv dk’

da^ _ da^ d’a^ _ Ar, _ d£j t’d/?"'

<fo du ’ dv* du* ’ dis dk dv dk '

whence the equation is

d
^ - [2 (. + <K') -g + sa- ^ S'

- 0.
du'

which is at once reduced to

dti

It is easy to show that this equation is satisfied by <r,=e

Q suppose.

Hence, assuming <r, = Q<r, we find

2 dQ
or observing that

^ ^ ^ original equation

in a : hence this equation is satisfied by

irtfin-AT

<r=—ie 0(u + iA’'),

that is by 0- = Hu.
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314. Write for a moment v,+ K=v, the equation

- 2w (a" -^ + 2U-'* ^‘ = 0

is satisfied by <r, = 0r or Hv, that is = © (u + iT) of ZT(u+ K).

But transforming to the new variable u, we have

du

that is

dj^

dv

dv

(fV, d'ff. dr.

du* dv*
’

dk

d*<T, d*ff dr.

dv* Ihff ’ die

dk dv dk ’

da,

'dk du dk

_d<7 K
~ dk l-r V k) Id

as the values to be substituted in the difierential equation

;

viz. this becomes

d'a,

du'

the original equation with <r, for <r. We thus see that the

equation in c is satisfied not only by the values 0m, IIu, but

also by the values 0(« + J5T), H(u + IT), or, what is the

same thing, by the denominator (0«) and the numerators of

cn u and -r:^ dn m.

\k'

Differential Equation satisfied ®

Art. Nos. 315, 316.

315. Considering now the new modulus X and the multi-

plier M in the first transformation (of order n) write ^ »

and consider the equation

d'e. c A /. G\ d(T, , - d(T.
. 2v (X" - - 2XX’ = 0,

\ A/ dv «X

(G = E, (X), the same function of X that E is of k) satisfied of

course by

<r, = © (o, X), H (f, X), © (r + A, X),. II(y + A, X).
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Transforming to the new variables w, k, we have

1 rfcr, (fo-, _ 1 dV, ^1 _ _ Ji.^ </<r, <?<r,

du^Mdv’ du'
" IP “ 1/“ d* ’

and thence

dv ~ du
• dd‘~ du‘’

d(T^ _ /d<T^ u dM d<r\ dk

d\ \d& M dk du) d\’

do-, dk
^

u dM d<r^

dk dK M dX. du

and the equation thus becomes

tTo-, 2m f / „ _ G \ _ XV’ d^ 2X^ dl- do, ^
a; 1/ dXj dit i/‘ dxdi

316. We have

1

IP'

XX"

1/ ATP

AX'* dk = nkk",
I/‘ dX

and the equation thus is

dV, — 2nu ,

1

^> + 2nitit'’^ = 0.
at;' du dk

Hence, writing o for (o,, the equation

d’o

du*
— 2nu — 4- 2nifcjfc'* —

du d&
= 0

is satisfied by

0IIb x),'0 (jy
+ A, x). n(-

317.

nnd

Kew form of the two Differential Equations.

Art. Nos. 317, 318.

The connexion of the two equations

fi- 2n. Cd’-f)^+ 2«ii-'g . 0,
du' A AVdw
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maj be established in a different manner thus: writing in

the first equation

irK' 'mi

then observing that

we have

dtr _ IT da d*<T TT* t/*<r

d^~2Kdl’

da _ V E\ da it* da
dk~W\ ~K)^~ iK-kk’' do, ’

and the equation becomes

d‘a . da
dw* da.

= 0,

satisfied by <r = 0u, &&

318. Writing in the second equation

nirK' _ nmi
~K~'

this is in like manner transformed into the same equation
dV da
dv‘~^dd,^^'

tt K*Hence whatever function of^ and ^ satisfies

nlCthe first equation, the same function of ^ and satisfiesK K
the second equation. Let \ bo the modulus in the first trans-
formation of the order, and A, A' the complete functions,

^ ^ and A-^, that is = , nu u
and ^ — or the

second equation is satisfied by the same function of — ,
—

.

M A
Hence the first equation being satisfied by <7 = 0m, &c., the
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second equation is satis6ed by

Partial Differential Equaiims satisfied by the Numerators

and Denominator. Art. Nos. 319 to 327.

319. Start now with the equation

d*2 a (i '%
D\ dS - , , ,, ci2 _

rfu* k) du dk
~

satisfied by S = 0 , &c.

And assume

2 = (Zi')"*'"’*' &U.Z,

say for shortness this is

= (7n<r" . z,

(where <r denotes 0« and consequently satisfies the equation

- 2*“ -1)
«•»-

fi
+

(r-gn.-]

-*(n-l)

,

We find

dz

du
2tUT*-'~-2nu{

du

+ $2nitrflff"=0,
a«

where in the coefficient of x yre write for ^ its value
du
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thereby changing this coefficient into

1 dO, -l(n-l)
or in the term ^ -jr substituting for fl its value = {Kh')

ilX (XfC

this is

Hence dividing the whole equation by f2<x" it becomes

d^z

d^d

du adu '‘r K)

, , s f 1 /dcr\* „ _ E\ 1 da-

+ 2U-
1 da- kk' d

a dk

+ ^^-.2n*r=0.
dk

kk' d _,,)

-Kdk^^l

320. Recurring to the investigation in regard to the func-

tion a, = ©u, we have

whence

Also

2i-fc”
^ =^ - dn’ M + (yfc'> - jy

- k‘ (/, cn* «)*,

^ ^ — I _~ Kdk^'^ K'
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Adding these several quantities, the coeflScient of n (n — 1)

«

is 1 — dn* M, = i-* sn’ u : the coefficient of ^ has also been
dv.

found
;
and the equation thus becomes

(/„cn*«(fu) ^ + n (n — 1) i’sn*«. « + 2nA:i:'’^ = 0,

which equation is consequently satisfied by

_/2A'AY"-’» 1 „/« \ .

321. It is to be further remarked that if we had started

with

— 2n*u(k'*— -- + 2n*kk'*^~ — 0
du*

” “r k) da ^ dk~^’

which equation is obviously satisfied by 2 = 0 (nu), &c., and had

then assumed

2 = (Jw)‘ (iriV* 0"’
(tt) . «,

we should at every step of the investigation have had n* in

place of n, and should finally have arrived at the equation

d^z dz

du*
^ + 2n* A* (/„ cn’ u du) ^ (”* — 1) sn* u . *

+ 2n*A-i'*^ = 0,

which equation is consequently satisfied by

/2A-'A'\*«"’-” L-(%T
322. It will be convenient to include the two equations in

the common form

dz tdz
+ 2v i* 0,cn* M rfu)~ + p (i;- 1) i* sn’ u . z + 2vkk'' = 0,
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where for the transformation equation v = n, and for the multi-

plication equation v = n*.

323. Write in this equation x= ‘Jksa u.

We have

ic = VA cn u dn u (fw + n di,

if for a moment

n = ^.(Vi8nu),

= sn u + V/fc {i sn « cn’ u — i cn u dn tt /, cn’ u du],

= +
-^

cn uj—p-cnudnuj,cn «a«,

= ~
^.^^^8

nu(l + ^•*- 2A*sn*u) - cn udn u J.cn’uda,

and hence

dz
j = VA cn « dn M 5-

,

du dx

dz _dz ^ dz

where on the right-hand side is the new value of this

differential cocflScient, viz. that belonging to the assumption

« = a function of x, k, or (as we may express this) « = z (x, k).

And thence also

^ = A:cn*« dn*tt^ -f ^ (enu dnw)
dd

— k cn’u dn’tt

da?

d*z

da?

dx du

dz— "/ic suu (1 + k’

—

2ifc* sn’tt)^
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Substituting, the equation becomes

^ . h cn*u dn*tt
cur

+$ .
— ‘Jk snu (1 + i* — 2A* sn*u)

+^ . 2i/i* VA cnu dnu/g cn'u(2u

+ 1) A*sn’u

+^ {k VA sn u (1 + A* — 2A* sn* u) — 2fA* VA cn a dn u /, cn’udaj

+ ^.2«/AA'*= 0,
dk

where the term involving the integral disappears, and two
other terms combine together; viz. the result is

cn*u dn*«

+^ (v— 1) VA snu (1 + A* — 2A* sn*u)

+ z .V (v — 1) A*sn’u

tlx

+ “y.2.-AA'’ = 0,
dk

in which equation snu should be replaced by its value
VA?

Introducing at the same time in place of A the quantity

0,
= A + ^ , the equation becomes

(l-oa;*+x‘)g + (v-l)(aa:-2a0|

+ v(v-l)**z-2v(a*-4)^ = 0,
ud

where I recall that the variables are a; = VAsnu and a = A + i .
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Tho equation is satisfied by the numerators and the denomi-

nator of Vxsn(J, a), /v/j.cn(j, x), ;^-,dn(J. x)

in the transformation of the order n, or {v = n*) by tho nume-

rators and denominator of “Jk snnu, cn nu, dn nu.

324. As already remarked, the formula is not practically

useful in the transformation-theory, hut it is so for multipli-

cation. As regards this last theory it has been observed that

although with respect to tho denominator-function, and tho
numerator of sn nu when n is an odd number, there is great

elegance in taking as above the variable to be >Jk snw, and
in introducing a in place of k, yet that for the other functions,

this is not the case, and it seems better to have as the variables

f, =snu, and k. The transformation is of course easily effected,

viz. writing f = -p , we find
\k

dz _ 1 dz

dx ^Jk

dz _dz f dz

dk~dk~^'d^'

where on tho right-hand side is the value belonging to

d*z 1 d^z
the assumption z = « (f, k). Hence also ^ = j -jej , and

ewT k af
the equation, finally restoring therein x in place of f, becomes

g (1 -xM - Arx») g [(2.i* - 1 - X - 2 (v - 1) i*x’J

+ z . i; (V - 1 ) iV + 2i/Z: ( 1 - i-O = 0 ;

viz. X is here =sna, and the equation is satisfied by the

numerators and denominator of s/k snnw, a /

y

ennu, dn«u.
\ k tj

k'
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We may of course get rid of the exterior factors, and thus

obtain a system of four equations, viz.

(1 - a:M - A-V) +^ [(2vA’ - 1 - A-*) a: - 2 (v - 1) A*<|

+ z {(».’-./) A-V + ^} +|| . 2vk (1 -A-*) = 0;

where .4 =i/(l — A**), equation satisfied by numerator of sn nu,

A = v
, ,, „ „ cn nu,

, „ „ „ dnnw,

A = 0 j I. » denom. of each function.

32.5. For instance n — 2, v = 4, the equations are

(1 -xM - A-’a:’) +^ {
(7A-*- 1) a: - 6AV}

,
4(1-A-^

^ 0

satisfied by «=xVl —xM — A-’x”,

= 1- 2x* + A-V,

= 1-2AV + AV,

= 1 —A-’x*, respectively.

As to the first equation, observe that writing for the moment

X= (1 — a;* , 1 — we have s = x VAf, and thence

1-2(1 +A-‘)x* + 3A-’x*

dx '

^ = ^^,{(-3-3A-’)x+(2+14A'’+2A*)x*+(-9A-’-9A*)x'’+CA*x’J,
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327. But we may further develope the Rystem of formulm.

Wlien n is even the numerator of ku»iu contains the factor

Vl —al. 1 — i'V; and when n is odd the numerator of cnnw

contains the factor Vl— a:*, and that of du»m tlie factor

Vl— iV: and we may in the several cases find the differen-

tial equation satisfied by the other, or rational, factor. There

is no diflSculty in the investigation : the results are, n even,

(1 - . 1 - JtV*) +^ {(- 3 -t- (2p - 3) k^)x C) iV}

+ z {(„ _ 1) _ (^ + 1) i-* + (v - 2) (r - 3) iV] -1- 2^ {k - k') ~ = 0,

satisfied by numerator of sn nu omitting the factor

Vl - . 1 — iV: for e.xample, n = 2 (v = 4) the equation is

(1 - . 1 - i’aO +^ - 3) X - 2i-V}

+ r {(8 - at*) + 2/,-V} + 8 (A: - F) = 0,

satisfied by 2 = x:

and, n odd,

(1 - x» . 1 - A-V) +^ {(- 3 + (21/ - 1) X -h (- 2./ + 4) AV}

+ 2 (i/ - 1 ) {1 + (./ - 2) AV} + 2./ (A - A’) = 0,

satisfied by numerator of cn nu omitting the factor Vl — a?
;
for

example, n = 1 (»< = 1) the equation is satisfied by 2 = 1

;

(1 -xM - AV) +^Jj{-l + (2p- 3) A-*) X -1- (- 2,/ + 4) AVj

4 2 (^ - 1) A-* (l-H (./ - 2) X*} + 2./ (A - A')
* = 0,

satisfied by numerator of dn nw omitting tbe factor VI -AV;
for example, n = 1 (j/ = 1) the equation is satisfied by 2 = 1.
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Verification for the Cubic Transformation.

Art. Nos. 328 to 33.5.

328. To show how the formal® apply to the case of trans-

formation, suppose n = 3 ;
then writing

x = fksa[u,k), y= VXsn ,

we have y = .

l+Z,(„ + 2«’)a;>

Hence multiplying numerator, and denominator by a factor A,

the denominator is

writing x = 0, and observing that in this case the denominator

should be ~ is the same thing
~\J

3i'Jf’
or say J = y^we find A

329. We have

X’’ i-»’(»; + 2u*)*

v‘
•

or observing that the modular equation may be written

— m) (u -t- 2m") = m (u — u*),

this is

X” 1-v* _ (1 + mV -2m»‘)u’ (»-«’)’

riT “ 1 - m’ • (tr’ - «)’ ’ (1 + mV+ 2u‘«) (u* - u)’

'

but from the same equation we hav'e

(1 + uV-2mm‘)u’ = («’-«)’,

(1 + u’u* + 2tt‘«) M* = (t) + u*)*,

. . fV —
whence the fraction is = { —;—

- )

,

\v -1- uV

16—2
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or we have

,
and therefore A = » /— “

.

kM v + m” V f + M’

It thus appears that we have the function

satisfying the equation

+ 2 (c X - 2x=) + (1 - ,x* + x‘) - 6 (a’ - 4) = 0.

or, what is the same thing, the equation

Writing the foregoing value of s in the form A+Bx’, the

equations to bo satisfied by the coefficients A, 7iare

3.l + a- + ;,)B+3rJf.0.

330. We have k = u', k'^ = 1 — a", and in general, for any

function H of (h, v)

.,,<Ul 1 — w' frffl fZn 1 — v’ 2«’ + I’l

^ dk" \d^ Tv l“u" ’

1

4 a’ (2y’ - u)

1 - uh '

4«’ (2y* - «)

|(l-u")(2y>- a) + -0(iV+
y) ^j.

|(1 +aV + 2a‘y)(2y’-a)^?

+ (l + aV-2af‘) (2a’ +v)
(in

dv >
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or if, as will be convenient, we write

M* = a, V* = /3, «r = d, then

1-^’
^ dk~

dil
(l + 2a0 + ^) {^?-6)u-£

+ (l-2/3d + 0*)(2a + 0)t>^^| .

/V
331. In particular i( n, = A,=

tT+ m’
’

log ^ J log {v - it*) - i log (v + u’),then

and thence

1_^ I '«* _ — Su’w

A du V — k' v + tt* ’ v‘ — a'
’

1 rfvl _ i i _ tt*

A dv ti — u’ ti+it*’ «*— u“

Hence

(- 3 (1 + 2a9 + (2« - «)

+ {i-20e + e^(2x+e)} a.

„ , w’w ^ ^ , ,DUt * <! — I ^ j » ftUu tiiG luouiilar CQUilttonV~~UV— UVp—CLU *

is a — y9 + 20 - 20* = 0 ;
whence /? — a0* = (a + 20) (1 — 0*) : hence

1 - 0* it*» 0*

4a (2/5 -0) - it*
“ 4a {2^ - 0) (a + 20)

’

and consequently

,.,dA 0*

dk 4a (2/3-0) (a + 20)

Also

-3(l+2a0 + 0*) (2/3-0)

+ (1-2/30+0*) (2a+0)j^.

.B= " (!i + 2«*)^, =-(2a + 0)^.
u a

332. Hence the first equation to be verified is

30*
4 (2a + 0) + ,

;

(2/3-0) (a + 20;
{-3(l + 2a0 + 0*)(2/3-0)

+ (1-2/30 + 0*) (2a +0)1=0.
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We have

(2a + 0) (2/9 - <9) = 4^ - (2a - 2;Q) 0 - 0*, = 3^,

by the modular equation
;
hence the equation is

4 (a+ 2^ -3 (1 + 2a0 + fl*) (2/9- 0) + (1 - 2/30 + 0’) (2a + 0),

viz. this is

6a - G/3 + (12 - 16a/3) 0 + (8a - 8/9) 0*+ 40’ = 0.

But from the modular equation /3 = a + 20 — 20’, on substi-

tuting for /3 this value the equation becomes

- 16a’0 - 32a0* + 32a0’ + 160* = 0,

viz. this is — a* — 2a0 + 2a0’ + 0* = 0,

which is in fact the equation 0* = a/3, = a (a + 20 — 20’).

333. For the second equation, writing for convenience

B = QA, this is

f7.4
or if for the term 3k’*

. Q we substitute its value from the

first equation, = — QB, that is = — Q’A, then throwing out the

factor A, the equation becomes

which should therefore be satisfied by Q=% + 2uv

:

viz. this is

3 + («‘ + <2 - Q’ + {(1 + 2a0 + 0’) (2^ - 0) «

'/Q

dQ
du

= 0 .+ (1- 2/90 + 0’) (2a +0)t)-”‘

or, what is the same thing, it is

8 . (»+
i.) 8 - « + {(I (•«-«; (- 1+ «)

+ (1 - 2/30 + 0’) (2a + 0) (^
+
0)1

= 0.
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We have <? = ^ + 20, and tlien
o

3 + (a‘+l)(2-(2* = ^(l-0O’(2a + 0)*,

viz. this will be the case if

3J+ (a» + a)
(^

+ 20
)
-a*

(|
+ 20)’= (1 - 0^’ (2i + 0)*,

or since ® + 20^ = 0* + 2a0 it is

3i’ + (a* + 1) (0* + 2a0) - (0* + 2a0/ = (1 - 0’)’ (2a + 0)’,

which is to be verified.

334. The equation 0* + 2a0* — 2a0 — a’ = 0 gives

3a’ = (-0’+2a)(0 + 2a),

thereby reducing the identity to

-0» + 2a + (a*+l)0-0’(2a + 0) = (l-0‘)*(2a + 0),

that is

0(a*-0*) + (l-0»)(2a + 0) = (l-0’)* (2a + 0),

or a’-0’ =(-0+0’)(2a + 0),

viz. this is a’ = — 2a0 + 2a0* + 0*, the equation in question.

The equation is thus

(1 -- 0*) (2a + 0)* + 2 {(1 + 2^^ +^ (2/3 - ^) (- 1 + ^)

+ (1 - 2/90 + 0^ (2a + 0) (I
+

0)1 = 0,

or multiplying by 2(2<9 — 0] and observing as before that

(2a +0) (2/9-0) = 30*, this is

20* (1 - 0^ (2a + 0) + a |(l + 2a0 + 0*) (2/9 - 0) ^ + 0
)

+ (1 - 2/90 + 0*) (2a+ 0) (^
+

^)}
= 0,

or, what is the same thing, it is

20 (1 _ 0*) (2a + 0) + {(1 + 2a0 + 0') (2/9 - 0) (a - 0)

+ (1 - 2/90 + 0“) (2a + 0) (a + 0)j = 0.
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Multiplying out, this is

(2x* + 2ay3) + 6 (Ga - 2/3) + ^ (4 - 8i/3) - 4/9^ = 0.

or, what is the same thing,

a’' + 3.^ + 20’ + /9(a-0-42^-20’) =0,

viz. substituting for /8 its value, this is

a’ + 3a0 + 2^ + (a - ^ - 4aff' - 2^’) (a + 20 - 20") = 0,

or working out it is

2a" + 4^0 - 4a"0" - 1220" - 20" + 820" + 40* = 0,

viz. this is

(a’ + 2a0 - 220" - 0*) (2 - 40") = 0,

which is right.

SS.V The foregoing differential equation, written in the form

is further considered in my two papers “On a differential equa-

tion in the theory of Elliptic Functions,” Mensenger of Mathe-

matics, vol. IV. (1874) pp. G9 and 110, and in the last of them
it is shown that the equation can be integrated generally; the

process is, by the assumption

to transform the equation into a linear equation of the second

order

k dk 1 - 4
’

0;

we have a particular solution of the original equation in Q,

and therefore a particular solution of this equation in z\ whence

by a known method, the general solution can be obtained.

The result is expressed in terms of a variable

% = r+i.^
sjo.

where a is given in terms of k by the equ.ation, ante No. 2G0,

i + 'll
'
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CHAPTER X.

TRANSFORMATION FOR AN ODD AND IN PARTICULAR AN ODD-

PRIME ORDER: DEVELOPMENT OF THE THEORY BY MEANS
OF THE n-DIVISION OF THE COMPLETE FUNCTIONS.

The algebraical theory of the transformation has been

explained : in the present Chapter it is shown how, by means

of formula; depending on the 71 -division of the complete

functions, the prescribed algebraical conditions are satisfied

;

and that we thus obtain the actual expressions of the trans-

formed functions sn
,
&c.

The general Theory. Art. Nos. 336 to 341.

336. We have n an odd number; m, m any positive

integers having no common divi.sor which also divides n
;

mK + m'iK'
<“= :

n

s a positive integer extending from 1 to J(n — 1); and when

any expression depending on .7 is enclosed within
[ ], this

signifies that the product of the h{n— 1) terms is to be taken.

The formulie for the new modulus \ and multiplier M are

a.ssumed to be

X = k' [sn {K — 4sq>)]*,

M= (-)^'*'‘’[sn{A’'-4so))]’--[sn4,7a>]*,

and we then assume between y and x a relation expressed in

the several forms:
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250 TRANSFORMATION FOR AN ODD ORDER. [X.

II [l—
1_

su’4sa)j H.

l-y=(l- x) fl 1 (-),
[_

sn [K— 4esco)

l+y = (l+ x) 1 •

^
sn (A'— isa)

(-).

1 — = (1 — kx) [1 — kx sn {K — 4so))]’ (-^),

1 + X^ = (1 + kx) [1 + kx sn {K — 4s<o)]* (-r),

where denom. = [1 — A:* sn’ 4^&> . x’].

It has of course to bo sho'wn that the different expressions of

y as a function of x are consistent with each other: but as-

suming that this is so, it at once follows that

f7y _ 1 dx

VT-if. 1
“
5? Vi-xM-iV ’

and conse<iuentIy that, writing x = sn («, k), we have

337. We start from the equation

+ (!+*) [+s„(A'-4j

and show that, X and M being assumed as above, this value of

y leads to the other equations of the system.

In the first place, it is clear that the assumed expression of

1 gives for y a value of the form
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and if we show that y is =0 for a: = + an 4to, and = oo for

x= ~ ^ ,
{t any integer from 1 to J(n — 1),) then writing a

fC SU "rCtO

in place of t, clearly the actual value will be

Moreover, if in the assumed expression of write

a:= 1, we find y = 1 : hence the last-mentioned value of y must

for a: = 1 reduce itself to y = 1 ;
and we thus find

0
[_

sn" 4so)
[1 — !•* sn* 4atu]

;

viz. C = " [cn . 4«»]* -i- [sn 4sq> . dn 4so>]’

;

or, what is the same thing,

C = [sn {K - 4sor)]* -i- [sn 4su]’

;

viz. C= M; and the required expression of y is thus shown to

r 1 “ It

be true. Combining it with the assumed expression of
j

we at once obtain the required expressions of 1 — y and I -fy.

338. It then appears that the change of ar into changes
fi>JC

y into — ; viz. writing ^ for x the expression for y becomes
KU fC*C

Mkx
1_

l^x’ sn’ 4s<uJ J
’

viz. this is

1 ri — I'’sn’4.?&>.a:’1 r a^ "1

ilkx
[_

sn* 4seo J |_su’ 4sa) — x^j
’

or, what is the same thing,

1 [1 — !•’ sn’ 4.^a> . a:*]

Mkx [7? sn* 4«a>] [sn* 4sa)] ['-4 -
1

'

L sn 4^0)J
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or finally it i.s

1

this is

M‘k’ [su 4s<u]‘

viz. observing that X = iPk" [sii 4:sa)]‘

,

_ J_

Lastly, in the cxpre.ssions for 1 — y ami 1 +y, making the

above changes x into and y into and combining with
rCX

the value of _y, we obtain the required cxpre.ssions for 1— Xy,

1 + Xy
;
and the system of formula: is thus completed.

339. We have to prove the subsidiary theorem, viz. that,

starting with the assumed value of —

-

,
the values of x for

° 1 +y’

which y becomes =0 and = x respectively are as .stated above.

And for this purpose it is to be shown that, x being taken

= sn u, the formula may be written

1 — y [1 — sn (»/ + 4s'm)]

1 + y [1 "t 4* 4s co)J

s' being any positive integer from 0 to n — 1, and the [ ]’s de-

noting the product of the n — 1 terms accordingly.

For suppo.se this proved, then changing u into n + 4a>, each

factor is changed into that which immediately follows it
;
except

only the last factor 1 T sn(M + 4(n — l)(u), which is changed into

1 +8n{H + 4«a)); but, ay being as above, we have.sn(u + 47io))=sn«;

or the Lost factor becomes 1 T sn n, viz. this is the first factor :

hence the value of the product is unaltered.

340. Now for M = 0 we h.ive x = 0, and therefore (from the

original assumed value of y = 0: hence also y = 0 for

u = 4a), 8o) ... 4 (n — 1) ay, that is for x = sn 4a>, sn 8co, ...

sn 4 ())- 1) (a: or since in general sn 4(« - <)<a = — sn 4<a>, we
have y = 0 for x = i sn 4to, + .sn 8o>, ... + sn 2 (n — l)co.
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Similarly for tt = iK' we have x = cc

,

and therefore y = ac :

hence also for u = iK'+4!(o, i7i'+ 8&).. iA"+ 4(n— l)o>,

that is x = sn{iK' + ico), ... sn (?A" + 4 (?i — Ijo))
;

or, what is

the same thing, a; = sn (iA" f 4a>) . . . sn (tA" + 2 (/i — 1) <u) say

for ® = sn (lA" + 4s<a), which is =;. “tt"' hence y = 0, and

y = ao
,
respectively for the required series of values.

341. To prove the formula

1 — y [1 — sn (« + 4s' 6))]

1 + y [1 -I- sn (u + 4s'o»)]
’

we have in general

{1 + sn (^^ + o)) {1 +sn (u - a)} ^ cn*a = |l + sn^A''^}

(l-sn(M + a)}{l -sn(«-a)]^cn’a
)|

H.

where denom. = 1 — fc’ sn* it sn* a.

Hence

{1 - sn (m + a)l [1 - sn (a — a)} _
{1 + sn (u + a)j jl i- 811 (u + a)]

I sn (A'— a)J I
^ sn (A' — a)j

'

Write herein successively a = 4a>, 8tu,...2 (n — 1) at: take on each

side the product of all the terms, and multijily each side of the

resulting equation by V ; then observing that“'1 +snu ®

sn (u — 4so>) = sn (u + 4 (n — s) a>),

and supposing as before that s' has every integer value from

0 to n — 1, the equation becomes

[1 — sn (u + 4s'(u)] -r [1 + sn (u + 4s'&))]

= (1 - sn
«)

[l - J
V (1 + sn u) [l +

viz. writing snM = a?, the right-hand side is (1 — y)-i- (1 -Hy): and

the equation in question is thus proved.
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Additional Formulw. Art. Nos. 342 to 347.342.

We may in addition to the foregoing formulas write

Vl-xy = [1 - Ida* sn* (AT- 4sw)] (•-),

where as before

denom. = [1 — i'V sn* 4s<u].

And of course writing a: = sn «, the values of y, Vl — y*, Vl —^y
are sn (^.x)

.
cn g, x) .

dn (J. x)
•

343.

The expressions for y, Vl — y*. Vl — ^-’y*, writing

therein x = sn u, may be transformed in the same manner as

the expression for (1 — y) h- (1 +y). We have for instance

sn (u + o) sn (u - o) = - sn’ a ^1
- -5- (1 - sn’ a sn’ m),

and hence writing successively a = 4<a, 8o>,...2 (n — 1) w, and
proceeding as before we find (s' = 0 to n — 1 as before, or, what

is the same thing but is rather more convenient, s' =— J (« — 1)

to + J (ra - 1),)

f-l
[sn (u + 4s w)] [sn 4s&>]’,

[cn (u + 4s’o))] -f- [cn 4so»]’,

[dn (m + 4s'<a)] -i- [dn4s»]’.i

and similarly

344.

From the former expression of Vl— X’y’ putting

therein y = 1, we deduce a value of X', which (observing that

dn(Af-4so,) k'
,— ^ —
) may be written

dn 4sa) du 4s<u
'

X' = k'" -i- [dn 4so)]*,
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and combining herewith the values of X, M we obtain various

formulae in regard to the new modulus and the multiplier:

if
=

y/^^; = [cn4H’.

y^. = [sn (^r-4H]‘,

^ V ~
’

Vj7if""^ = [dn(ii'-4sa))]*.

345. We may now write down the system of formulae

\ = k* [sn (K — 4sft))]*,

X' = k'" -r [dn 4sta]*,

M= [sn («•- 4s<u)]’ [sn isa>]\

sn

= [sn (m + 4s'<»)],

cn
/ tt \ r,

sn’ It

sn’ {K — 4so>)_

= [<='1 (“
+ '*«'")]•

an
,
X^ = dn w [1 - k' sn’ (if - 4sw) sn’ it] (-r),
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1 - sn
(

“
.
x) = (1 - sn u) [l -—

^ J (^).

1 + sn
,
x) = (1 + sn

«)
[l + (-^).

1 — X sn
, X^ = (1 — sn u) [1 — i: sn (JC — 4so)) sn i/]’ (^),

1 + X SD
^

, X^ = (1 + i- sn m) [1 + i sn (/l — 4seo) sn m]’ (-r),

Denom. = [1 — i'* sn' 4sa> sn’ u].

346. To obtain a different group of formula', observe that

the ccpiation between y, x may be written

a; [a;’ - sn’ 4so)] - ^ y p -
^J = 0,

which is of the form x {a^,
1)^*" * — (x’, 1)^* =0, where the co-

efficient of the highest power a;" is = 1

;

and that the roots of this equation are

X = sn «, sn (m + 4<u) . . . , sn (u + 4 (n — 1) lu)

;

whence we have the identity

X [a? - sn’ 450,] - sn
(

“
,
x) [x’-

^J
= [x — sn (tt + 4s'0,)]

;

and comparing the terms in x""* we have

2 sn (u + 4s' o>) =
(;^g

’ ;

and similarly

•l(n-J)

2 cn (a + 4s'o>) = cn .

i(n-J)

2 dn (u + 4s'o>) = — dn x)
,

2tn(a + 4s'o,)=
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in all which formul® a' extends from 0 to n — 1, or, what is the

same thing, from — J (» — 1) to + \{n — 1).

In the first equation the left-hand side may be written

= sn u + S [sn(tt+ 4a<u) + sn (m — 4ae»)}
;

a = 1 to J(n— 1),

viz. this is

= snu + S
2 cn 4aa) dn 4so) . sn u

1 — A* sn“ 4so) . sn’ u
’

and mak’ng the like changes in the other equations we find

\
kM^

kM

J(n-l)

cn

(-)

M
\

k'.

-dn

= sn tt -
f., ,

cn 4aa) dn 4a<u
)

(
1 — sn* 4a<u sn’ uj

’

Or-)
= cn w (l+2X, ./".t" . 1.

{
1 — AT sn 4a<u sn u)

iw-)
= dn W'[1+2V 1

1

= tnu f, ,

dn4sa)cn’u
]

1 cn’ 4so) — dn’ 4sw sn’ uJ

347. The last formula, which is of a different form from

the others, depends on

tn(u -f a) + tn (m — a).
sn (m -f a) cn (« — a) + sn(u — a) cn (u + a)

cn (w + a) cn (« — a)

where the numerator, = sin {am (u + a) -I- am (u — a)), is

= 2 sn u cn u dn a,

and the denominator is

=• cn’a — dn’a sn’tt, (-r)

the common denominator,

= 1 - fc* sn* a sn’ u, disappearing.

17
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The 2o>-formula!. Art. No.s. 348 to 351.

The above may be called -Iw-formulaj : we may change

them into 2o»-formulie. For this purpose observe that the

scries of values

sn {u + 4o)), sn (« + Ho>) ... .sn (u + 2n —1
)
a>

is in .a different order

= (—)"su(m-2o)), .sn(M + 4o)), (-)"sn(«-Go))... + sn(u + n - 1&»),

where the last term is sn(u + n — Ito) or (—)" sn(« — ?» — Im),

according as « — 1 is evenly even or oddly even.

To prove this, write 4< + 2t‘ = 2n, then

« + 4to — (m— 2t'w) = 2«ot), = 2mK + 2m iK',

•whence sn (u + 4to) = (—)"* sn (u — 2l' a>). If n — 1 be evenly

even, =4i», then giving t every value from 1 to — 1), it is

less than n, and the term is retained in its original form
;
but

giving t the remaining values from J(?»+3) to J (n — 1), the

corresponding values of t' are from 1 to J(n — 3), and the terra

sn (u + 4(t<)) is changed into (—)" sn (it — 2t'a>). So if n — 1 be

oddly even, =4i<— 2, then giving t every value from 1 to

:J(n— 3), 4< is less than n, and the term is retained in its original

form; but giving t the remaining values from \ (n+ 1) to J(n— 1)

the corresponding values of t' are from 1 to | (n — 1), and the

term sn(it + 4<ti)) is changed into (—)“ sn (« — 2<’tu). We have

thus the theorem.

349. Repeating the result, and writing down the analogous

results for cn and dn,

series .sn(M + 4ta), sn(u + 8ca)... sn (u + 2n — loj)

is in a different order

= (-)” sn (« — 2to), sn (w + 4<o), (—)” sn (u — Geu)...

+ sn (tt + n — lai);
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series cn(M + 4o>), cn (m + Sw)... cn (u + 2» — Ico)

is in a different order

= (-)”“' cn(«-2<B), cn(M + 4a)), (-)-"“'cn(M-6<a)...

± cn (u ± /t — lay)

;

series dn(« + 4et>), dn(w + 8a))... dn(u + 2n— la>)

is in a different order

dn (u — 2<o), dn (it + 4(a), dn (i« — G(b)...

+ dn(it + n — lea).

3-)0. It will he at once seen that these fornmhe, on writing

therein u = 0, give for the scries of sn, cn, dn of 4ea, Sea, &c.

the several values

sn 2ea, sn 4ea, sn 6ea... f sn (n — 1) as,

cn 2ea, cn 4ea, (-)"^'
' cn 6ea... + cn (n — l)ea.

dn 2ea, dn4ea, (-)"' dn Gea... + dn (n — l)ea.

The results are also required for u = K: as to this, observe

that in general

sn(A'+a) = — sn (— /T + a) = sn(A’— a);

cn (Ar+ a) = — cn (— ir+ a) = — cn (A'— a)

;

dn(A'+a)= dn(—/f + a)= dn(A’— a).

Hence we see that

series sn (A' + 4ea), sn (A" + Sea)... sn (A’+ 2/» — lea)

is in a different order

(—)" sn [K + 2ea), sn {K + 4ca), (—)" sn (
A”+ 6ca) . .

.

± sn (A+ n — lea)

series cn (A+ 4ea), cn (A + Sea) ... cn (A+ 2n — lea)

is in a different order

cn (A+ 2ea), cn (A+ 4ea), (_)»»'"> cn (A+ 6<a)...

± cn(A+ n — lea) ;

17—2
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series dn (AT+4<<)), dn (/T+ 8o))... dn(.K'+

2

ti— Iod)

is in a different order

dn {K + 2w), dn {K+ 4o)), dn (A'+ 6<u). .

.

± dn (A'+ n — l<a)
;

in each of which formulte we may for o> write — w.

3.51. It will be observed that in the formula; which con-

tain only snM, cnu, dnu (i.e. which do not contain sn(u + 4./<»)

&c.) and squared functions such as sn*4s<u, &c., the change of

form is effected simply by writing 2<o instead of 4a’ : in the

other formula; there are signs to be changed, and it is safer to

retain the 4(a-formulaB, making the change of form only if and

when it is required.

We have thus

;

\ = k" [sn {K — 2so))]‘,

V = [dn 2sa»]^,

M = [sn [K— 2sft>)]’ -r [sn 2so)]’,

“(I'

“Ctf'

dn
, \^

= dn w [1 — i-* sn’ {K- 2so)) sn’u] (-r),

denom. = [1 — fc* sn* 2sa> sn’w]
;

but I do not write down the other formulae in their 2o)-form.

The change from the 4a>- to the 2o>-formulae is, as will

appear, a very essential one, and it is important to take notice

of it
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X.] TRANSFORMATION FOR AN ODD ORDER. 261

n an odd-prime; the Real Transformations, First and

Second. Art. No. 332 to 359.

TIT 1 mK +miK . , ,

352. We have co = , where m and m are
n

positive and negative integers having no common divisor which

also divides n. It is convenient to take n an odd-prime: there

are here n-(-i distinct transformations corresponding to n-fl

values of « which may be taken to be

K K + iK' K+2iK’ K+(n-l)iK'
_

n
•

n ’ n ’ n
* n

*

or to be

K iK' K + iK' 2K-\-iK' (n — 1) A’-f tAT'

n ’ n
’

?l
* n ' n ’

or again to be

K iK K±iIC
n’ n ’ n ’ n

Two of these transformations are real : the former of them

corresponding to the value <a = ^ ,
and called the first trans-

formation, is a transformation to a modulus X which is le.ss

than k
;

the latter of them corresponding to the value

iK'w= -
, and called the second transformation, is a transfor-

n
mation to a modulus X, which is greater than k.

First Transformation, u>= -^ (to a smaller modulus X).

353. The general formulae apply at once to this case, but

it is convenient to slightly alter them by omitting the factor

which presents itself in M. This comes to writing

(— in place of y: so that in the new formulae x = l, in

place of giving y = l, gives y 1, or say y=±l, the

upper sign answering to an evenly even value of n — 1 and the
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lower sign to an oddly even value of n — 1. It will be convenient

to give the formulaj a.s well in the ioi- as in the 2<u- form.

In the forinuliB which contain ± or + the upper sign is to

be taken when ii—l is evenly even, the lower sign when it

is oddly even.

3.5-1. For the conversion of 4<b- into 2(u-formula‘, observe

that the series

/ 4K\ ( HK\ ( 2(w — 1)A’’\
sn (^u +— J

,
sn (^u +—

j
... sn ^ j

is in a different order

/ 2/i\ / +A’N ( GA'N

/ (n — 1 )
A'\

« )’

es

/ 47v\ / HK\ f 2(t? — DA'N
+ cn(^u+—J... cn^« +— --j

the series

cn

is in a different order

and the series

dn(« + ^-), dn(« + ?^)... dn(a+2>r^)-^)

is in a different order

= dn (w - dn (« + ^) . dn

dn(a±(”-M).

In all the formulm s has the different integer values from

1 to J («—!)> !»nd s' the different integer values from — ^(n— 1)

to+^(n — 1); or as regards the 4iu-form\doe, we may consider

s' as having the different integer values from 0 to («— 1).
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iK’

[X.

Second Transformation, <o =— (to a larger modulus Xj).

iK'
3.56. Write in the general formula.' <o = : the formulaj

n

in the first in.stance present themselves in an imaginary form :

these are given as well in the as in the 2ia- form. For the

conversion observe that the series

/ 4)A:'\ / HIK'\ ( 2(n-]

\ n J \ n J V n

2(n —

is in a different order

/ 2i’A”\ / 4iK\ / GiK\
= snlu-

j
,

sn
j

, sn {^n -
)

...

a— j:

/ 4iA"\ ( HiK\ ( 2(n-l)iVr\
(«+-„ )’ ‘'n“

+ 'rr)- n)
ferent order

/ 2iK'\ ( ,

4fA”\ f G1K\

the series

cn

is in a dififerent order

± cn

and the series

(«

is in a different order

= - dn (a - . dn (» + ^^ )
.
- dn

±dn(«±(^A)'A).

357. There is a further change of form to be made in some

of the foiTnulflP. Wo have kfmv =— . and thence
sn + iK )

’

2siK' 1 1— i sn
« 'MK'\ (n-2s)iK''

su ( ih sn ' -

V « / n
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Putting for a moment n — 2s = 2t — l, we see that s having

the positive integer values 1 to J(a — 1), t ha.s the same scries

of values in a reverse order; whence finally writing s instead

of t, — k sn ^ has the same values as , ,
^

.
1 1 p , , or say

n (2s-l)iA '

the series

— k sn
2ifC

is in the reverse order

1

,
4//T

,
(»-l)fA"

• A- sn .... — A- sn —
n 11

1

sn
77T’

sn
.•hTT’"

sn
(/! - 2) iK'

’

and similarly k sn (^K — ~ lias tlic same values as

We have moreover

,
2>iK’ {n-2s)iK' (11-2.1) iK'ken- - = tdn h sn ^

71 n

,
2«A" (n-2.i)iK' (7i-2.»)fA"

dn = cn sn 1 ,
n n n

which may be similarly transformed by putting therein

n—2s= 2t — \,

and finally s instead of t, as above.

In all the formulfe s has the different integer values from

1 to \ (n — 1), and s' the different integer values from — J(n— 1)

to 1): or we may in the 4&)-formulaB consider s' as

having the different integer values from 0 to (i\ — 1).
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The Second Transformation under a real form.

359. The formula? may be presentetl in a real fonn by

means of the transformations,

sn (lu, k) = ;' ' cn («, k )

cn {iu, k) = —

,

' ' cn[u,k)

dn(iu, k) =

sn {K— tu, k) =

dn (u, k')

cn (u,k')
’

cn (tu, k) _ 1

dn (lu, k)
’ dn (u, k') ’

Writing for shortness sn', cn', dn', to denote the functions

to the modulus k', we have for instance

/ u ^ \ sn M r, sn* « n

n

-r j^l + A* tn'* sn’
mJ ,

&c.;

but I do not think it worth while to gfive the entire series of

equations.

Two relations of the Complete Functions.

Art. Nos. 360 and 361.

360. In the first transformation, taken in the 2o>-form,

(observe that this is essential)

sn u p- sn’u ~1

U’ ; -~M L
sn’

n

Digitized by Coogle



X.] TRANSFORMATION FOR AN ODD ORDER. 273

On the left-hand side the least real and positive value for

which sn^-jy,X^ vanishes is ^^=2A, and on the right-hand

iK K K
side it is u =— : hence we have J/A =— or —

n n n .1/

3C1. In the second transformation

sn
f n sn r, sn’ it 1 , ,

n

On the left-hand side the least real and positive value for

which sn vanishes is ”-= 2A,, and on the right-hand

side (since here the only factor which can vanish is sn m) it is

u = 2JC: hence iI/,A, = if or ^ =A,.

if K
Observe these equations, A and =A,.

^ nM M,

The Complementary and Supplementary Tranffomnations.

Art. Nos. 362 to 367.

The first complementary transformation.

362. Start from the 6rst transformation : this may be pre-

sented in the form

Writing herein iu instead of u, and recollecting that

tn {tu, k) = i sn (it, k'),

the equation becomes

c.

.<1=1 to J (n — 1
)

;

18
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274 TRANSFORMATION FOR AN ODD ORDER. [X.

- 1^1
- *'• sn* *') sn*(«, io] ;

or, since clearly the outside multiplier must be = ^
*

this is

sn
fu snfw.fc'ir, .

sn*(M,t') I

- 1^1
+ Jk" tn* , fc) sn* (u, *')] •

This is the first complementary transformation giving

in terms of sn (tt, A:'). Observe that its form is

analogous to the second transformation.

The second complementary transformation.

363. Start from the second transformation ;
this is

• The formula is . which of course may be

2»ir

(

2 'iT
*

" / cn

r 2»K"|’

[gn'H^]’= (-)*'‘-'L^: also x/^=[d“¥] ’

whence the formula becomes

L'”tJ
which is right.
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Writing herein iu instead of u, and recollectins that, as
before,

tn {iu, k) = { sn (u, k'),

the equation becomes

sn U’ V V

r

X l^sn (u + , *') sn ^ , *')] ,

s=l to i (» — 1)

;

A'T 2sA'V , ,„r, sn’(u,k') 1-Vvh—
-r j^l - /fc” sn* sn’ (u, ^•')

J
:

where the outside multiplier must ^ =jy- • The formula

is therefore

sn (- x'^l
sn (u, k') r, sn’ (u, k') 1

U/.’ V

1^1
— k'’ sn’ sn’ (u,

fc’)J ;

which is the second complementary transformation giving

sn^^.X,'^ in terms of sn(«, observe that its form is

analogous to the first transformation.

364. Writing the first complementary transformation in

the form

/ tt , A sn (m. k') r, ,

sn’ (u, k') ~\
, ,

and considering the least real positive value of u for which the

two sides respectively vanish : these are on the left-hand side

18—2
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M = 2A', and on the right-hand side u = 2K': hence we have

MA'=K’ or A' =
K'

M'
Similarly from the second complementary transformation,

/ M ^ A sn («, k') r, sn’ fw, k') "I . .

the least real positive values for which the two sides vanish are

2^=2A, and M= whence J/,A. = -- or A.

365. We have thus obtained the equations

y_K'

to be taken along with the foregoing equations, No. 361,

^~nJI j/,‘

Eliminating M and we obtain

K' a:A' r
a =

”a:’ ” AA A,

the first of which is an equation between \ and k, and the

second is the same equation between k and X, : and it thus

appears that X is the same function of k that k is of X,. The
equations show that X is less than k, and X, greater than k.

The first supplevientary transformation.

366. In the second transformation

sn* u
sn

sn u r. sn* 11 1

U.’N
sn — — *-

1

sn,
(2.9- l)iVr_

M n

change k into X, and therefore X, into k : writing for a moment
A^, as the new value of M, the formula becomes

sn
/u A sn («, X) r

,
sn’ (it, X)

U’ V ~
1

^ ,/2s(:.V \
' 1 l_ sn*(—— ,XH

Digitized by Google
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r, _ sn’Qf, \) ]

• 'll

Change also u into
;
then obsen ing that

M. =
,
and therefore K, = or n =

‘A,’ ‘A nM MN^

the equation becomes

/ w \
1 {nu, k) = nd/sn

( ,

\J

277

sn

Cr^)~\.\rv 1

which is the first supplementary transformation.

Combining herewith the first transformation,

xV sn u r_ sn’w 1

ll/’ ) ,
2sK '

sn* *-

sn

we see that the two together lead to an expression of sn {nu, k)

in terms of sn {u, k).

The second supplementary transformation.

367. In the first transformation

sn
/u \ sn uf, sn’w ”1 F, ,, ,2sK ,^ l-A-’sn— sn«

.

change k into X,, and therefore X into k : writing for a

moment N as the new value of M, the formula becomes

sn
/u _sn(n, X,) r sn°(»,X,) ~|

U’J- ^

-r 1 -X,’sn’^=^, X.^su’(«,X,)
;
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change also w into
; then observing that

M=~., and therefore N =
.
that is n = -r^-

,

A A nM^ J/,A

the equation becomes

. r- sn* , X,
j

sn (««, k) = nJf. sn
,
X.) [l -

^[l_X,.sn*(?^-,X.)sn*(J^,X.)],

which is the second supplementary transformation.

Combining herewith the seoond transformation,

/ M . \ sn (u, k) r sn*« 1

A3iT'N-T7rL'‘Il^Jsn
I

sn' - —

-

n

sn* u
" ,(-2s-l)ik‘ ’

sn

we see that the two together lead to an expression of sn (nu, k)

in terms of sn (w, k).

The Multtplication-foTTnulce. Art. No. 368.

368. For the actual determination of the multiplication-

formulae, observe that the first supplementary transformation

may be written in the form

sn («u, k) = \/ ^
j^sn -h

^ ,
x)

j
,

8= - J (n - 1)

to + J (n - 1)

;

or, what is the same thing.

sn (nu, = [sn
[J -h . x)] ,

m'= — i (n — 1)

to +i(n- 1).

But the first transformation gives

*n
(
J, x) = Vxh (“ ^ '

1
1

^
-E,

1
+

II

o
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( ,

277lK’\1 wi=-i(n-l)
Vi:[“(“+ «-)J'

and writing herein for «. ^ becomea

M 2m tK' _ M
,

Zm'tA’

and the formula is

i(n-i) /y 2?n.'iA' .N /A'r / SniX" 2TO'iiT'\"|

V - V s: L“
(“+— + HJ

where on the right-hand side m has the last-mentioned values.

Giving herein to m' the different values from — J(n. — 1) to

+ i(n — 1) and multiplying the results together, observing that

we obtain

4(n-i)[- 2»n'tA' /Pf / 2mK 2m'tK'\]H [»(if+— -’‘jj-v x?r("+—+— )}
•

or, the left-hand side being = (—)^'"~”>y/^sn(nu, i), the

formula is

1/ n 1/-1 11 f ( 2mX’ 2m'iK'\\
sn nu = (-)»<-» *4 "''*> |an -

where on the right-hand side the
{ )

denote the double product

obtained by giving to m, m' respectively the values — i(n — 1)

to-f-i(”“l)> or say the values 0, ±1, ±2, ,..±J(n — 1).

And in the same way

/ 2mK 2m'iK'\]

Uv ( \ n n J)

( 2mK 2miK'S\
n(u-F + f\kJ 1 \ n n J)

and dn nu = |dn -|—

—

which are the formulae obtained Chap. IV.
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CHAPTER XI.

THE 2'-FUNCTI0NS : FURTHER THEORY OF THE
FUNCTIONS II, fe).

"309. In the present Chapter we start with the transforma-

tion of the order n in the form of the first suj)plementary

transformation, whereby the functions sn {nu, k), See. are given

in terms of sn • writing first for n, we make n = »,

and (as will appear) we thus obtain the elliptic functions sn (u, k),

Sec., as fractions, the numerators and denominators being re-

spectively obtained in terms of the circular functions of

viz. as products depending on these functions, and involving
IT A''"

also the quantity e ^
, which is put = q

:

the elliptic func-

tions have been already in Chapter vi. expressed as fractions

by means of the functions H, ©: and identifying the two ex-

pressions, we obtain the expressions of these functions as series

involving powers of q, or say as j’-series.

Derivation of the q-formulce. Art. Nos. 370 to 378.

370. The first supplementary transformation is
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XI.] FURTHER THEORY OF THE FUNCTIONS //, 0. 281

we write herein - for u, and make n infinite, This gives

in virtue of A=

and =

and the equation becomes

„_2A” A' _7tK'

TT ' n 2A'
’

2A' . vusna=-sm2^ 1 -

,

mt -1

2K
. .siirK'

sin K
1 -.

I

ITU

I
(2s — 1 )i7tA"

2K

This is one of a g^roup of formula; obtained in the same

manner.

371. The formula: are

IK . nru
sn M = — sin „ ^

IT 2AT
1-

. ,7TM n

. .viiirK'
sin

cn M = cos 2K

x
fTU -I

2A"

cos
,vnirK'

K

dn it =
sin

1 -.
2A'

cos
(2m— l)tVA'

I

2K

l-snM = ^l-sn^)

, /, ‘tTU\
1 + su u = ( 1 + sn ^J

sn
THt -1

!-
cos

sn

2K
•miirK'

ir~ -I

7TU n

!+•
2A'

cos •

miirK’

~K~ -

w.

(-).

(-).

w.

Digitized by Coogle



282 THE g-FUNCTIONS: [XI.

1 — i sn u =

1 + i sn M =

denom. =

sn
wtt

1 -.

cos

! +

2K
{2m — l}iirK'

|

2K
tru

YKsn

cos
(2m—\)iTrK'

|

2K

, 7m
sn

1 --
2K

sn'
2K

W.

372. We obtain in like manner another group of fonnulse,

in which also m has the values 1, 2, 3... to infinity,

7T . 7TU

^sin'

cos
2K

, {2m— l)tTrK' 1 TTU )’

%TT 7TW ^ i fcnu= ;t^cos^2((-r'(

2K ““ 2K

{2m-\)xTvK'
sin

2K
^.(2wi-l)t7rZ' . , 7TU I

J ITT . ,7m
dn u = 1 +^ 2^ ^

/ (-)"-* cot

I . ,(2m-
\sim^——

-

(2m — 1) vjtK'

1) vkK' . , TTM /
'

K Yii'

The deduction of this last formula presents some peculiarity:

writing + instead of the formula originally presents

itself in the form

(_)- sin cos K
. ,(2m— liiTrA" . , ttu
sm ^ sin

2^
)
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viz. the npper or lower sign must here be taken according as

the number of terms in the series is even or odd. To get rid

of this variable sign, write in the equation u = 0, the equation

becomes

, TT w ^
^(_)« sin eos

8in'
, (2w — 1) iirK'T )

and subtracting this from the general formula, each side of the

equation is affected with the same sign ±, which sign may
therefore be omitted : whence, observing that in general

sin a cos a sin a cos a

sin" a— sin* x sin" a

sin’x cot a sin" a:= sm a cos a —j

.

,
r r =— ,

.

,

sin a (sin a — sin x) sin a — sin x

it is at once seen that we thus obtain the result first written

down.

All the formulae assume a more convenient form by writing

therein u =^-, viz. we have thus sin^^=8inar, and conse-
7T Zit

quently the elliptic functions sn^^^, &c. expressed in terms

of sinz.

373. Introducing now the quantity

we have

q, =e
*K'
"k

. mitrK' 1
sin K 22"

cos-
miirK' 1

K-=;(2"+2^)= 2j"

, sin’z , ,
42*"sin*z 1 — 2o*" cos 2x + o*“ .

1 i

sm K
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and in the resulting formulas the right-hand sides contain as

factors certain function.s of q, which functions are afterwards

determined sus will presently appear. Supposing this done, the

formula: of the first group are

r sin X [1 — 22’’" cos lx -(- q*”], (-t-)

cn-—

=

j,^/qcosx [l-(-22*" cos 2x-!-2*''], (^)

dn?^= Jk’ [l-t-22*"-‘cos2.r-f-2‘”-^, (-h)

I [1-22" sin * + 2*”]’. W
1 -t sn = 2\/ j. ^2 (1 + sin-<^)[l + 22" sinx + 2*"]’, (-h)

[l-22"'*sinx + 2*""T. H
[1 + 22’"‘*sin X -f 2*"’’]’, (^)

where

denom. = [1 - 2q^~' cos 2x -|- 2*""*]

;

and the formula of the second group are

2Kx 2tt

27ia^2 1

7T Jk

fk'

7T V k

2Kx_
Jk’

7T

J-
7T V k

F
7T V k

2Kx
Jk'1

=5

7T

2Kx_
7T

Jk'

sn - =T^> sin a;
7T kA

2Kx 27t f, . ,
cn = i^j^cosx^ (^(—

)

xyf
" (1 - 2q^-' cos 2a- + 2*""'') ’

7T

j 2hx 47t . ,
1 — dn = ,, sm'

7T K

1 - 22
""^' cos 2x + 2*'

1 + 7
’"“

{-r'qvf ^ ^

1

[
1 - 22

’‘"‘"‘
cos 2a -I-

2‘"''j ’

2A'j
and to those Jacobi has joined an e-icpression for am

, that
7T

. 2Aa . .

IS sin sn : viz. the equation is

.in- (.„ . ± » + 2S H- tan- <'-+7^2.,',
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XI.] FURTHER THEORY OF THE FUNCTIONS II, ©. 2H3

where the sign is — or +, according a.s in the calculation of

the series the number of tenns taken is odd or even. Writing

herein = 0, the formula becomes

a; = + a; + 2S tan'* (tan x),

where the sign is — or + as before, a particular formula, the

truth of which is evident at sight: and subtracting this from

the general fonnula, we convert it into

sm ‘sn = a: + 22 |(-)“ tan - tan*' tan a:|

,

or, what is the same thing.

a form of the formula, free from the discontinuity, and in which

the' series is convergent. Differentiating in regard to x and

using a formula — = 1+42 ,
which will be proved

7T 1 — O'

^Kx
further on, we obtain the foregoing e.xpression for 1 — dn ;

7T

and conversely by the integration of this we obtain the last-

a“* (

s

2AV
mentioned fonnula for sin' ‘

|
sn

V IT

374. In completion of the investigation of the formul®

of No. 372, ohscr\’e that writing

5=[i+rr.
,

(-)

^=[l + 5«-‘]*, (^)

where denom. = [1 — 3*“']*

;

the fonnul® obtained in the first instance arc

sn = - - sin a: [1 — 2j cos 2x + q ], (—

)

IT IT

cn?^= n cosa: [1 + 2y’” cos 2x + ./"], H
'IT
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dn = (7 [1 + 22*^> cos 2x + q*’'-*], (-)
7T

where denom. = [1 — 2g*“"‘ cos 2x + g*"^.

Writing in the first and third of these x = we find

whence C = ^k', and B = 2^k'AK

375. To determine A, write for a moment U in place of

e**, then we have

_2Kx AKU-U-' [l-q*^lT]\\-q*^U^]

IT

~
7T i £/-*]’

which, observing that

U-U-^=U{l-U-^, —
may be written

2Kx AK Z7[l - [1 - y*— fj"*]

7T 7Tl

AKl
7T» U [1 - 2*"-* [1 -

„ . ittK' 2Kx .

h or a; write x+ ^ni^-, sn becomes
7T

or

sn
/2Kx 1

k sn

U is changed into ^U, and taking the second formula we have

1 AK \ [1 - <7*"“fnn
2Kx iri qh U [1-2™ IT] [I - q'^-^'U-^]

'

k sn
7T

Hence multiplying, we find

1 fAK\* 1 , AK 'Jq
T = ) whence = -,7.

;

k \ IT ) Jq’ 7T Jk
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and therefore

C= Jk';
KJk'

and substituting we have the foregoing formulae for sn, cn, and

dn of
IKx

376. We also obtain various other j-fonnulae.

Multiplying the expressions for B, C we have

2'Jq.k' [l-9‘""‘]‘

V& [l+ 2”]‘ ’

and observing that

[l + 2"] = [1-2-]’ "[l-2’-‘]’

we find

[1-2-? =^.
and thence, using the foregoing value of A,

r,
Zkk’K*

which two formulae give

[l-2^T[l-2‘-] = v/-t--

4>-/kk'^K’‘
[l-2“]‘

and to these may be joined

[1+2-T

’

=2^

[1+2-]*

[1 + 2-]*

_k
^Jk'^q'

•Jk

2*72
’
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377. If for shortness we write :

a = [1 + ?*"*'], whence a/9 = [1 + j"], 7S = [1 - j”],

^ = [1 + j*"], and 8/87 = 1 •

;

7 =[1

then the foregoing formulae give

2j!^K ^

The equation + gives 7“+ 16;//S*= a", or written

at length

{(1 - ?)(1 - 2“)(1 - 7’)- }" + 16? {(1 + ?’)(! + q*) (! + ?«)...
}*

= {(1+?)(1 4 ?»)(! + ?"}...)*;

a remarkable identity.

• This is in fact the formula [1 + 5 >»] =^^_A_ proved No. 37G: it occurs

in Euler’s Memoir, D<* 1‘artitinnr Ximernrttm (1750), Op. Min. Coll. p. !).S.
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378. It will be noticed that we have obtained expressions

, IKx
,

2,Kx ,. 1 r 1- v •

for sn - -
,

cn , dn
,
as rational fractions having a

7T 7T 7T

common denominator, the three numerators and the denomi-

nator being each of them a y-function, (5
' = e" ), involving

circular functions of x respectively. Imagining x replaced by

its value we have snw, cnw, dnu expressed as rational

fractions, the three numerators and the denominator being

each of them a ^-function involving circular functions of .

We have already obtained for sn u, cn u, dn u fractional ex-

pressions having a common denominator 0 «, and in their

numerators //u, If{u+K), 0(w + A’’) respectively; and it thus

appears that these functions must be, to proper factors prbs,

multiples of the y-functions of respectively : viz. the

factors to multiply the ^-functions must be of the form

AU, BU, CU, DU where U is an unknown function of «,

but A, B, G, D are known constants or exponential factors

;

and the theorem at once suggests itself, that the two sets

of functions differ only by these factors A, B, C, D, or

what is the same thing, that U is a mere constant, which

may be taken = 1. But Jacobi in fact directly identifies

0 -with a j-function of x ^that is, 0u with a g-function of

i^) ’
investigation of some complexity but of very great

interest.

0, H expressed as q-functions. Art. Nos, 379 to 383.

379. We have

, _ , 2Kx
7T _ [1 — 29”*“* sin * + 9*"**'

, ,
2A'x ” [1 +2o”‘"*sina; +

1 + A: sn
TT

]

c. 19
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290 THE J-rUNCTIONS: [XI.

Taking the logarithm of each side, and expanding the loga-

rithms of the factors on the right-hand side, after some obvious

reductions we obtain

. 2Ax
~

7t
^ ^

4^"'* sin (2to- 1)t

+
(2m-l)(l-5=->)-

IT

or, writing the series at full length,

4^9 sin X 4,,/^’.sin3x
,

4^/^sin5x

3(1 -2») + 5(1 -j“)

Differentiating each side in regard to x, we find without

difficulty

2k

K

7T _ q cos X ^Jq* cos 3x ^Jq* cos 5x

2Kx

dn
2I^x \-q \-q' +

1 -/
• &c.,

or, observing that the left hand is

2kK [ 2Kx\ 2kK 2K /tt \— "(^~j’ -—“1? (»-*)•

Jind writing ^tt — x in place of x, this is

2kK 2Kx _ \Jq sin x
^
^Jq* sin 3x

, 4^/ sin 5x— sn “
>1 +—= «— +—=

1
—

TT 7T I"? + &c.

380. It is this formula which leads to the Identification

just spoken of; viz. squaring the two sides we obtain after all

reductions

=^^{K-E)
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XI,] FUBTHER THEORY OF TEffi FUNCTIONS H, 0. 291

whence, from the definition of Zu, ante, No. 131,

„/2Kx\ _ A sin 2a: y* sin 4a: o’ sin 6a:
| _

7T Vw/ |l-2’'*’l-gr* 1-J*
*"'1’

and if we again multiply by dx and integrate from a: = 0,

2/T / f2Kx\ j (1— 2^cos2a: + ^)(l— 22*cos 2a:+ 5*)...

{(1

that is,

f2k'K
/2JTa:'\ _ V TT

\ 7T / ~ |(l-y)ll-j*)...J

(1 — 2y cos 2x + 5’*) (1 — 2<^’ cos 2a: + j*). .
.

;

or say

® [1 - 22-“ cos 2a: + j*--]

;

^Kx
viz. we have obtained this value of 0 from the definition

7T

381. We have to prove the theorem for the squaring of the

right-hand side of the equation

2kK 2Kx 4Vysinaj
_

4V9’sin3a:
,
4V^sin5a:

_
" sn "

1 I 1 • ^ 4 5 t

7T IT 1 — 2 1“2 1“2

Forming the square and reducing by the substitution

2 sin mx sin nx = cos (m — n)x — cos (wi + n) x,

the square is

= A + A' coa2x + A" coa 4a; + A'" cos 6a:...

,

where

.md moreover

j
8g'

.

al'*'= 8 {2S<” - C"’l,

19-2
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[XI.

where

(1 - j) (1
- + 1 - 9».l -

2*-« + 1- q\ I -q
+ •••

_ g
1-g" 1-2 +1-2* +1-2* + -

^t*+l -.*+*

1 _ g*»+t 1 «"+•1-2-^* 1-2
g’

f i_ . g!_
I

g**~*
1

l-g” [1-2 1-2’'"‘^1-2*"‘T

+ ...

and

C*' =
l-2.1-2’*'‘'''l-2*-l-2‘"'*^l-g‘-l-g'

f

... + 2

1-2"*’M-2

__2! _g_ + _ ?1_
1-2 "^l-2’

...+

+

1 - 2”'‘

2—I L 4.

+ 1 + 1 ...+1

whence

= _?gL +_^l_g_ .
g‘_ .__gn 1 .

1 _ 2“" 1 - 2” U - 2 1 - g* 1 - 2’"''*J

’

l-Q*"’

viz. each coeflGcient (except A, which is an infinite series) has

this finite expression, and we have

/2fc/ry ZKx
^ |

22 Cos 2x 42’cos 4x 62 cos 6a: 1

\ TT / w
[ 1— 2’ 1~2* 1~2°

J

382. To find the value of

A =8 ^

^

+ 4- &c I
''ui- 2)«+o- 2T^ r
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multiply by dx and integrate from 0 to \ir, we have

,2Kx, . .

or what is the same thing,

A = -^-k'
fK

I
sa’ udu;

J 0

viz. from the equation

ZK = 0=.K(l-^'j-k*l^sn’ udu.

47TA = ^AK-£),
7T

we have

and the proof is thus completed.

293

383. Write for shortness

V 7T

where, ante, No. 357,

then the relation obtained is

e = 0.[l- 22
’--' cos 2x + g*--*],

which is the required expression for 0, leading as mentioned

above to the corresponding expressions for the other functions.
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Cl I

t: i(M t: <Cl

+ +

01

tq
<s> D

— 1|>«
'^1>

t r
CM

II II II II + + +
t<|b
0^ i

iqU l^lb o
H

fl
00

OS 1

fl
CP

0^ 1

fl

fl
4>
'V

09
Oo

09

8 I

I +
M

I

i

+

+

+

0u

Cl

1

H

OI

II

U:
Cl I

fl

w
+

(N

O'!

r C
4* +

CO «
8 8

+ I

i:Ui>

k*5 d
1= k N I

1

fl

'oS

Cl

Gj

k9l

Cl I

tt!

S
XI
o
a>

m
8

b?M

t: Id
+

(^j cb

d I

bid
+

d I

(Z>
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XI.] FURTHER THEORY OF THE FUNCTIONS E, 0. 295

or omitting the second and fourth equations which are in-

cluded in the first and third respectively,

H sin a; [1 — 22*” cos 2x + 2*"].

© [1 — 22
*""' cos 2a; + 2*"’*]-

Eew developments of the functions H, 0.

Art. Nos. 384 to 388.

384. We have identically

[1 — 22
*""*

cos 2x + 2*”'*]

[l-2’“]
(1 — 22 + ^2* ^ ~ ^2

* cos 6a: + . .
. },

2^q sin a: [1 - 2f“ cos 2a; + 2
*"]

= {2^/2sina: — 2.y2*sin3a: + 2.^2“siu 5a;-...};

and hence observing that

O
/W1
V •7T

[1 - 2*”] ’ [1-2*”‘-7.[1-2*”J
.
= 1

,

we find

0
j
= 1—22 cos 2x + 22* cos 4a;— 22* COB 6a: + ...

,

H = 2.^2 ® “ 2 .^2
’ 3a: + 2,f^ sin 5* — &c.,

which are the expressions of these two functions developed in

cosines and sines of multiples of x.

385. For the direct proof of the identities we require the

development of [l-f2’“”'*]. that is of (l+2a)(l+2’*) (1+2**) •••

in powers of t. Assuming it

= 1 + Aa + 2?a* C7a* + . . .

,

if for e we write q*z, and multiply by 1 + qz, the result is
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296 THE g-FUNCTIONS: [XI.

= l+qz into (1 + j’z) (1 + ;
viz. this is the original

function. Wc thus have

(1+Jz + J5z’+Cz*+...)

= (1 + qz) (1 + Aq'z + Bq*z* + C(^z* + ...) ;

that is, j1(1 — j’) = g, J5(l — 2*) = 2
*.4

,
— =

and thence

[1 + q*-'z] = 1 + 4 + i i + -*• ^ 1 ~Y l-j. 1—

3

1 — 3 . 1 - 3 . 1 - 2
*

In a very similar manner it is shown that

1 =1+-^ ^
I

^
[1 — 3"*^] 1 — 3 I — 3Z 1 — 3 .I — 3

*
1 — 3Z.I — <fe

I

?*
5! + ...

1 — 3 .

1

— 3*. 1 — 3
* 1 — 32 .

1

— 3*z . 1 — 3
*«

386. Starting with the equation

ri + «--2i = 1 + -?i- + + 3'^ +

we have similarly

[
1 +

=

1 -2^. + riT? 3riiY+---

.

and these two are to be multiplied together; the product will

be an infinite series of the form

.Bj + 5, (z + 2 ') + B^ (2
* + 2"*) + . .

.

,

where B^, B,, B,... are functions of 3 given in the first instance

as infinite series, which however admit of summation by

means of the last formula in No. 385, viz.

-
^

= 1 +„?_ + I *•

[1 — 3
"2

]
1 — 3 I — 32 1 — 3 .I — 3

*
1 - 32 .I — 3*2

1 -3. 1 -3*. 1 -3* 1 -32. 1 -3*2. 1 - j'z
’

this, putting therein 3’ instead of 3 and 2=3*", becomes
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Xl] rURTHEE THEORY OF THE FUNCTIONS H, 0. 297

[1 _
= 1 +

1 - 2
* 1 - 2

“^ 1 - 2
'- 1 - 2

”” 1 - 2
'

»n+6 't' •••>

>ir«4

^ 1 -jM -gM - 2* 1 - 2“"^. 1 - 2*"^*. 1 - 2

where of course [1 — 2
**^] denotes 1 — g*". 1 — q*'**. 1 — g'

387. Effecting the multiplication of the first-mentioned

two expressions, we have

[1 - g*"-* {z + z-') + 2
*“-*] = B, + B,(z+ a'*) + i?. (a* + a^) + &c.,

where in general

|l+
f +1-2M-, I +g-'^l-gM-g* 1 - g'"”. 1 - g*

that is by the last formula

2"* 1 _ g"’

“
1 - gM -2‘...l-g” [1 - g”'^"] ’ ” [1 - s*"] ’

and we have consequently

[l-g“-*(a-f-a“’)-l-2’”-*]

= 11 +5 (* +O + 2*(*' + a”) + 2’(«’+O + •••}•

388. This equation, writing therein — e** for a, becomes

[1 — 22
***' cos 2x -1-

2^"*"*]

= 11 “ % cos2x + 22* cos 4a:- 22’ cos 6a:-(- ...}

;

and if in the same equation we write qz for a it becomes

(l+a-‘)[l+2*"a][l-l-2’"a-']

= [TT^ ^1*^ + a'^ + 2* (a* + z'*) -t-2*(a‘ a'*) + ...];

viz. putting here — for a, or say a* = ^.e**, we have

sin X [1 — 22*“ cos 2x -|- g*"]

= —

^

2
»~] l®i°® “ g’sin 3x-t- g'sin fix -g” sin fix+ ...j

;
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or what Is the same thing,

2^ sin a; [1 — 22*’" cos 2x + 2*”]

= ^*"]
sin a; — 24/2* sin 3a; + 2.^2*®*^ ~ ”•!•

Double factorial expressions of II, 0. General theory.

Art. Nos. 389 to 395.

• f^Kx\
389. Reverting to the expressions of 0 f

) as

2-products, and writing x =
,
the 2-products thus identified

with the functions IIu and 0a respectively, presented them-

selves at the commencement of this Chapter as mere constant

multiples of the expressions

sm
2K

sin

1 -
2A'

. fSiiiK'
sin

j

Bin

1 -

I

7T«

2K
. , (2s — l)i’7r/f'

Sin’ i
i,

(s= 1 to 00 ),

so that Hu, 0u, are constant multiples of these expressions

respectively
;
and since 00 = follows that the com-

plete values are

- v/^

'2k'K 2K . mi
1

2A'

IT
' ir

' 2K . .sittK'

-

sm ^ J

2k'K r

1

. , TTW -I

7T • «(2s-l) ittK'

2K J

It is important to examine the meaning of these formulae.

Consider the function which enters into the expression of Hu
;

or writing for greater convenience m' in place of s, say
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8in
7TU

Ik
1 -

,
tru

2K

sm*
,m ITT.

K
(m' = 1 to «: ).

390. Observing that in general

sin* u — sin’o = sin (m + a) sin (u — a)

,

this (disregarding for the moment a constant factor) is

m’tirK"\

[

. (tru

where m' has every positive or negative integer value (zero in-

cluded) from — 00 to + 00
;
say from — to + /*', ^’ = oo

.

Now we have

(s = 1 to « ),

which writing for x, becomes

7m 7T r, M* "1

or disregarding a constant factor,

8m^=[it + 2mir],

where m has every positive or negative integer value, zero in-

cluded, from — 00 to + 00
;
say from — ft to n, ft— oo

.

Assuming for a moment that it is allowable to write herein

u + 2m'iK in place of u, we have

sin^ (u + 2m'iK') = [« + 2mK+ 2m'xK''\,

m as above, and consequently the numerator is

= [« + 2mK+ 2ffi'iX']

,
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m, m each extending from — oo to 4- oo as above. As regards

the omitted constant factor, it is clear that snw-j-u reduces

itself to unity for u indefinitely small, and the formula thus

becomes

2K . tru
I 1-

. , ITU

sin
snr

~K
“ 2;«A'+ 2mtA"j ’

m, m as before, excepting that the set of values m = 0, m’ = 0

(having been taken account of in the factor u) is to be omitted.

391. But when in the sine-formula we write u ImiK'
in place of u, we assume that u -f 2m'iK' is indefinitely small in

regard to the extreme values ±fi of m (viz. the infinite product

a: ^1 — ^1 — ... taken to the term 1 — approximates

• £C

to sin X only on the assumption that — is indefinitely small)

:

of course this is so when vi is finite, but m acquires the values

±/M •, in order to sustain the assumption we must suppose that

fi is indefinitely small as regards
;
or say that fi =

Hence in the last-mentioned equation the limits of the

doubly-infinite product are m = — /x to tn = -t-/x; tn = — fi to

m' = + fi \ II, II each infinite
;

but i/ -i-n = 0. Putting for

shortness 2mK + 2m'iK' = {vi, m) the equation is

2K . 7T«

V^‘“2A

sin

1 -

TTW

2k
. , sittK'
sm —

K
which is one of a group of four formulae.

1 +-“
-I

392. Writing for shortness as in Nos. 39 and 117,

(m, m') = 2mK + 2m iK',

{m, m) = (2m -1 1)A -1- 2m iK',

(m, Si') = 2mK -f (2m' + 1) tk',

(m, m') = (2m 1)A -1- (2m' +1) i
A',
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these are

2/r . TTU
sm

1 -

TTtl ^

2A'

. , sittK'
sm

Bin

1-

vu
2K

, siirK'
cos —^

-

sm"

1 -

7TU

2A

cos
, (2s— l)i7rA'

sm"

1 -

K
7TM

2A'

. , (2s — l)t7r/f*
sm*^

,

(m, m')}
’

where on the right-hand side the limits are to be taken so that

{m, m), &c. may have equal positive and negative values, or

say, as regards

m, from m = —
fj,

to +/i,

^ ,1

m' „ „ +fi',

» » =-/*'-! „ -f/x';

viz. m, m have all positive and negative integer values between

these limits (both inclusive) respectively : but as regards (m, vi)

the combination (0,0), (which is separately taken account of in

the exterior factor m), is to be omitted
: fi, ft are each infinite,

but ft -i- ft = 0.

393. The values of the Jacobian functions H, 0 thus are,

as mentioned No. 39,
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limits as just mentioned. It is on account of the unsymmetrical

condition fi ^/j, = 0 in regard to the limits that H, 0 have a

perfect periodicity as regards 4iK, but only an imperfect

periodicity as regards UK '
;

viz. as regards this quantity the

functions are only periodic to an exponential factor prfes. The
resulting expressions of the elliptic functions are, as mentioned

No. 123,

sn u = tf

denom. = |l +

where as regards 4dK', although the’ numerators and denomi-

nator are not separately periodic, they acquire by the change

equal factors, and thus the quotients are periodic as well in re-

gard to 4iiK' as to 4iK.

394. We may state the general theory thus : consider the

doubly infinite product

^ a + mil + m'n'}
’

where m, m have within infinite limits every positive or negative

integer value whatever.

To avoid difficulties, it is assumed first that Cl, Cl' are in-

commensurable, (for if they had a greatest common measure

A the function would be an infinite power of the single product

1 -I-

^
^ ^ positive or negative integer; secondly, that

tlie ratio fl : fl' is imaginary, for if it were real there would be

an infinity of factors for which mCl + m'Cl' is indefinitely near to

any given real value whatever. The function a mCl + m Cl'

can at most vanish for a single sot .of values of m, m
;

viz. it

(m, m')]
’

(l + . (-)
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will do this if o = — — X'fl', being positive or negative

integers; and we must in this case replace the product by

a + + m'n']
’

and exclude from the product the combination of values m = \,

m' = X'; but this makes no real difference in the theory, and we
need only attend to the other case, that in which a+mfi+m'fi'

does not vanish for any integer values of tn, m. Thirdly, that

the limits are such that to each given value of a+ nifl + ni'fl'

there corresponds an equal and opposite value
;
or what is the

same thing, regarding m, m' as rectangular co-ordinates, then

that the product is extended to all integer values of m, vi lying

within a closed curve having a centre at the real point given by

the equation a-fmn + m'n'=0, (viz. if a = -XQ -X'H', then the

co-ordinates of the centre are m = X, m' = X'). Say this is the
“ bounding curve,” we may regard the linear magnitude of this

curve as proportional to a parameter C, in such wise that C
being indefinitely large, each radius vector of the curve (mea-

sured from the centre) is indefinitely large. Upon the foregoing

suppositions, regarding the bounding curve as given in its form

(for instance, if it be a circle, or a square, or again a rectangle

with its sides in a given ratio, &c.), then as C increases and

ultimately becomes infinite, the product in question

^ a + mil + ’

tends to and ultimately attains a certain definite value; but

this value is dependent on the form of the bounding curve.

395. There is, however, a relation between the values of

the product for different forms of the bounding curve; viz.

this is

where A,, A

^

denote the values of the integral

Ih
dm dm'

' (a + mil 4 mil')*

taken for the two forms of the bounding curve respectively.
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In particular let the bounding curve be the rectangle

m = X + /t, m' = X'±/A', and let the product, when

be called II,, and when cc be called II. ; then if II

be the product for any other given form of the bounding curve,

we have

where J9,, are constants depending on the form of the

bounding curve
;
and observing that II, has the period 2fl, or

say n,(u + 2fl) = n,?(, while II„ has the period 2fl', or say

n* (u + 211') = n„u, we obtain

n(u+ 2n) = n, = eM.0(«+0)n„,

n(M+2n') = e5s.
0'(»+mnu',

which shows that the function IIu is not perfectly, but to an

exponential factor prfes, periodic in regard to the two quantities

2fl and 2fl' respectively. See as to this theory my papers,

Camb. and Dub. Math. Jour. t. IV. 1845, pp. 257—277, and

Liouville, t. x. 1845, pp. 385—420.

Transformation of the function H, 0. {Only the first trans-

formation is here considered.) Art. No. 396.

396. The equation

. , rru

0u 1 -
2/r

. , (2»l — l)t7rA"
sm tK

, (m = 1 to 00
),

putting therein ^ >
X for «, k, and attending to the relations

A =^r, A' = xr .
becomesnM M

0
sin

1 -

I

TITTM

Tk
. . (2m— ilmVA’’'
““ 2Z

,
(m = 1 to « ),

and we may hence deduce an equation of the form

e
(
J .

x)
= ^ [0 (« + 2s'i0]. i („ _ 1) to + i (n - 1).)
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XI.] FURTHEK THEORY OF THE FUNCTIONS II, 0. 305

In fact, di.«regarding con.stant factors we have

0 + 2m — 1 iK’) sill — 2m — 1 1A") ,

or, what is the same thing,

® (i’ Tk f/T)] ,

if m has now all positive or negative integer values from
— w to 00 ; and similarly

0u = |^sin^^(M+ 2ot-
;

and if in this last equation, we write for u, u + 2s'A", giving

to s' all the values from — ^(n — 1) to +^(n — 1), and multiply

the resulting expressions
;
then by aid of a known trigonometri-

cal formula, we sec that has a value of the form in

question. Writing m = 0, we obtain at once the value of A,

and the equation becomes

0 (s
, x)

.
[e 0 (0, X) * 00 [e-

)]

;

and similarly

which are formulae for the transformation of the functions

H, 0.

396*. The theory of the transformation of the functions

IIu, 0(1 might be derived from the double factorial expre.ssions

given in No. 393; it is, however, somewhat difficult to carry

out the process, and I propose only to give a general idea of it.

Disregarding a constant factor we have

® (j/* ^)
= + 2»u1/AT(2m' +‘l) ixl/Aj

’

c. 20
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which, substituting for JlfA and J/A' their values — and K',
n

and writing for convenience I in place of m, becomes

0
^^A'+(2w’ + l)iA"j

where on the right-hand side I, m have every integer value

whatever from — oo to -f oo
; grouping these according to the

remainder of the divLsion I by n, we separate the right-hand

side into n factors, each of which is a ©-function with the

original periods K, JC •, thus writing l= mn + s, where s' has

any one of the values 0, 1, and 711 has any integer

value whatever from —00 to 00
,
the factor corresponding to

a given value of s' is

u +—
~ r ^ 2ink + (2m' + 1) »A'

|

2s'K

viz. disregarding the constant divisor, the factor is

and we thus have 0 expressed as a constant multiple of

the product of the n factors 0 -I- in like manner

II is a constant multiple of the product of the m factors

11
^

11 + * liaving in each case the values 0, 1, 2,...« -1,

as above.
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Numerator and Denominator fnnctioTis.

Art. Nos. 397 and 398.

397. The results obtained No. 396 may be written

e
(J , x

)
- e

«
[e (« + ?^) e (,.

-

into constant factor as above,

into constant factor as above.

We then have

2sK\„/ 2sK\© ( M + —^j ® (
“

1
® —

—

IP
2sK

and

©’« IPii n \
~ Wo V~ Wu 2sK)

n

I5)‘^
©’(/ /, 7/*m n

“©’'OA ~W^' jj,2s^J

n

Wn (^ sn’w ^
“ ©'0 V ~

,
2sK) ’

and wc thence obtain

©"'0© (^-^
,

-^ ©"« = ^ 1 - sn’« sn’
,\M J ©0 L ” J

At ’“»
^

sn ?/ 1
sn JL

1

,2s7fJ-
su - -*

n

20—2
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398. Now in the function, see No. 855,

/r /w ^/X8n^^^, sn'ti 1 r, ,, j

n

multiplying the original numerator and denominator each by

(0 X'l

—
Q

-

,

SO that the denominator shall for « = 0 reduce itself

areto — the numerator and denominator
© 0 [kAJ

0 , H ,
xj ,

each multiplied by ©*"'(0, X) and divided

by ©"«; and in like manner the numerators of J\ sn X^ ,

common denominator

(constant factor as just mentioned) arc

each multiplied by ©*'*
(0, X) and divided by @*h

;
viz. writing

0,0 in place of 0(0, X) we have thus the theorem stated

Chap. IX, No. 306.
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CHAPTER XII.

REDUCTION OF A DIFFERENTIAL EXPRESSION
Rdx

7x'

399. In the present Chapter, working out the steps of the

processes referred to, Art Nos. 1 to 11, we show how the dif-

ferential expression is by the substitutions — for x,
wX 1 + a:

and
a + hx*

c + dj^
for ®*, reduced successively to the forms

Rdx Rdx

V ± (1 ± WiC*) (1 + nx*) ’ Vl— »*. 1— i'V’

but for greater clearness we consider the substitutions under

the forms and =
1 + y c+dy*

Reduction to the form
Rdx

V ± (1 ± mid) (1 ± nd)

Art. Nos. 400 to 407.

400. We start with an expression

Rdx

where iZ is a rational function of x, X a quartic function with

real coeflScients, and which is therefore the product of two

factors ?+ 2ijx + 6d, \ + 2/tx vd, with real coeflScients : the

values of x are real, and such that X is positive or 'JX real.
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310 BEDUCTION OF A DIFFERENTIAL EXPRESSION. [XII.

401 . Writing x ^ we liave

dx =
{q-]i)dy
(1 + y)’

’

and the two factors of X become respectively

P^:^tl?(l+y)’+2i;(l+y) ip + qy) >re{p + qtj)'],

!> (1 +yT +-p0-+y){p+qy) + v{p-\- qy)'],

so that representing for a moment the functions in
( j

by M, N
respectively, the differential expression becomes

^ {q-p)^dy

VifiV
’

where'MN is a quartic function of y.

402. To make the odd powers of y disappear in the func-

tion MN, we write

K + v{p + q) + 6pq=^.

\ + p{p + q) + vpq = 0,

for p, q being thus determined, then

= ? + 2i;p -b 6p' + (S’ -b 2)75- + ^q*) y*>

N,=\ + 2fip -b J5»’ + (X. -b 2/j,q -b vq^) y*,

will be functions of y* only.

The two equations give p + q and q^q rationally, but in

order that the resulting values of p, q may be real, the values

oi qj + q and pq must be such that (p + q)*— 4iq)q, ={p — j)’, is

positive.

403. If the roots of the equation A'= 0 are not all real,

that is, if they are either all imaginary or else two real and two
imaginary, we may take the equation \ + 2px + i;x*= 0 to have

its two roots imaginary, and write therefore \v > p.*. But this
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XII.] BEDUCTION OF A DIFFERENTIAL EXPRESSION. 311

being so, the second of the two equations in p, q written in the

form

y + “(;> + ?) + (p + 2)’

=

gives

(p-2)’=(p + 2 + v) +
4 (Xv — fj^)

? ’

so that p + q being real,
( p — g)’ is positive, or p and q are real.

404. If the roots of the equation A’’ = 0 are all real, let

their values be a, /3, 7, 8 ;
then assuming

^+2rjx + 93?=6{x—oi){x—P), and \+ 2/ix+i<a;’=p(a;—7)(a:— 8),

the equations in p, q become

a^-i(a + ^)(p + g) +pg = 0,

78-i(7+8)(p + g) +pg = 0;

whence

p + g =
2 (gff - 78)

a + /3 —

7

— 8
’

a/8(7 + 8) — 78 (a + y9)

(a + ^ - 7 - 8)
’

and thence

\{p-qf =
(a-7)(a-8)0-7)(;3-g)

(a + y3_7_S)«

which is positive if we take for a, /3 the greatest two roots or

the le.ast two roots, or the two extreme roots, or the two mean

roots; viz. we thus have (p — g)* positive, and therefore p and

g real.

40.5. The rational function R is the sum of an even func-

tion and an odd function of y : the differential expression is

thus divided into two parts ; that containing the odd function

may be integrated by circular and logarithmic functions (as at

once appears by making therein the substitution Vy in pl.aco of

y), and there remains for consideration only the part depending
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312 REDUCTION OF A DIFFERENTIAL EXPRESSION. [Xll.

on the even function of y, or, what is the same thing, we may
take R to be an even function of y, that is, a rational function

of X*.

40G. [It may be remarked that in the case where the

function A' has four real factors, say that the value is

• X OLX= (x — a) (x — /9) {x — 7) (x — S), then writing y‘ = -
—^ ,

or,

what is the same thing, x =

x-a = (a-/9)y’(-r-), x-/3=(a-/3) (h-),

x -7 = a- 7 -(^- 7)y* (-i-), x-S = a- S-(^-S)y (^),

where denominator is =1 — y*; also </x = 2 (a— /3)y(7y 1/*)’,

and we thence find

dx

Jx— a . x — jd. X
_ _ _ 2(7//

7.X-3

where the radical on the right-hand is in the required form

;

but in the case where the expression is we have thus in
V\

place of iZ a function of y*, so that no part of the integral is

directly reducible to circular or logarithmic functions, and the

form of the result would appear to be more complicated than

if wo had begun by the linear substitution upon x.]

407. Restoring x in place of y, the conclusion is. that the

original differential expression may bo replaced by one of the

form

Rdx
VJ/A'

where iZ is a rational function of x*, and M and N are each

of them a real function of the form A -f lix?

• Tbo above is the invectipation given in Legendre's Chap, ii., and the result

is 03 stated : bnt Legendre in his loUoving Chap. lit. only nsBiimcs that the radical

is reduced to the form \7a + (it* + 7it*, and ho considers (as his first case) that in

which the equation o + /Sr;= + yi*=0 gives imaginary values of i®, that is where
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XII.] REDUCTION OF A DIFFERENTIAL EXPRESSION. 313

The function MN may have the several forms

+ (1 + »!**) (1 + nx'),

where m and n are positive ; but we may assume that the signs

are not such as to make the function (1 + vu^) (1 + nx')

;

in fact X assumed to be positive for at least some real value of

the original x, cannot he by a real substitution transformed into

an essentially negative function.

Reduction to the standard form
Rdx

Art. Nos. 408 to 412.

408. Retaining for convenience MN to signify

+ (1 ± mx') (1 + na^,

we have to show that-^.*^* can by the substitution x'=
^

VJJN c + df

be transformed into
Sd//

where S is a rational
Vl -y\l-

function of i/*, and h' is positive and <1: and since by the

substitution in question R is changed into a rational function

of f, the theorem will it is clear hold good if only we have

\dx dy

fMN Vl-yM-/ty’

where X. is a constant. On account of the definite form

of the expression on the right-hand side, it is rather more

o + /Sx’ + 7** is of the form X’ + 2X^*» cos 9 a case which ho further con-

siders in Chap. xi. The idea seems to bo, that since in the case in question

there are no odd powers of the transformation ®— of Chap. ii. is un-

necessary
;

if, however, wo do make this substitution, we obtain under the

radical sign a now quartic function without odd powers: the substitution is

found to bo ® = s/\ hi Chap, ii.), and the radical is thereby

reduced to the form m’ (1 -(•pV) (1 + which is the fourth case of Chap. m.

Digitized by Google



314 BEDUCTION OF A DIFFERENTIAL EXPRESSION. [XII.

couvenient, writing the relation between a*, y* in the form

V*= to transform this into the form on the
^ b-dx’ '

left-hand side. The last-mentioned equation gives

, (be — ad) xdx
y^y=~(^dxy-‘

1 _ — fix’

y V— (t 4- cx’
’

1 ‘Jb-dx^

Vl— y* V6 +a — (J-t-c)®*’

1 ^
Vl-iy Vi-|-^^a-((Z + ^•’c)x‘’

and we thence have
dy__

[be — ad) xdx

•Jb — dx*. — a -) ex’. b + a—{d-‘rc)3d,b + Ida — (c^ + k*c)a?

Here in the denominator one of the four factors must reduce

itself to a constant, and another of them to a multiple of x*, in

\dx
order that the second side may be of the required form -7^--.^ ‘ VJAV

409. For instance, if i -t- (i = 0, d-\-h'‘c = 0, that is, 6 = — a,

^•’ = — -, then the relation between w’, x* is 2/’ =^—r-^, and
C d

the differential formula, after some easy reductions, becomes

dj! _ ^
'/M-iy

dx

1 -f- - X* . 1 — - x’
V a a

or writing for greater convenience o = 1, then wo have
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, 1 — ca:*

,
leading to the dififercntial formula

1 dx

JcJ\ — if

.

1 — 1^^ V 1 — ex* . 1 + da?
’

d
where — this implies c positive, d negative and in

ab.solute magnitude less than c ;
and we have thus a formula

applicable to the case MN={\ —ma?) (1 — nx*)
;
viz. assuming

VI > n, we may \vrite c = m, d = — n, and the relation then is

y* = = j ,
or, what is the same thing, x* =

,
giving

ji ““ TUa 7?i> ““ ^yr

1 dy _ dx

— J\ ~ ma? —

where . A more simple formula giving this same rela-

tion is 35* = — .m

410. We thus obtain transformations applicable to the

several forms of MN, viz. numbering the cases as in Legendre’s

Chap. III., but for the reason appearing in the foot-note p. 312,

omitting his first case, we have

2®. MN= (1 + Tax’) (1 — nx*), x<-,
' n

3“. J/iV= — (1 -I- mx*) (1 — nx*), *>-,
n

4“. MN= (1 + mx*) (1 + nx*), m>n,

5®. MN= (1 — MX*) (1 — nx*), m>n, x from 0 to or
vm

from to 00
,

vn

6®. .^LV= — (1 — jnx*) (1 — nx*), m>n, x from to
vm Vn
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' and writing for shortness F= 1 — 1 — the formulae are

2". A-* =
m

7» + n
* X* =

dx

‘d'MN~

A

Vt7»

dy

VY ’

/W XX 1

y* dx A dy
X --

m + n — nty* Vtt* VY’

Qo P — n 1 dx _ A dy
0 • w + n

*
•C

n(l-y*)’ 4MN~ Vn VY’

4"
A’ =

Trt —

n

i y* dx 1 dy

7rt 1 + y” Vt» VY’

5“. A-* =
n y! dx 1

m *

ni
’ Tmn~ “dm VY’

Z-’ — m — n 1 dx 1 dy
1) « A» —

n ’

•C —
7t)y* 7?‘

411 . Itiis to be added that if in the expression - 7̂-
;
we have

in which case writing y= (y*— 1) (Ay — 1) the radical

is still real, then assuming y = 7^ ,
we have = — where^ V r Vif

Z= (1 — a*) (1 — AV), and as y passes from
^

to 00
, * passes

from 1 to 0. Hence, replacing y or s by the original letter x,

the conclusion is that in every case the differential expression

dx

(1 + nut*) (1 ±
place of x' be reduced to the form

can by a real substitution inC+Dx*

dx

V(i^’‘)(r-AV)’

where the variable x extends between the limits 0 and 1.
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Further investigations. Art. Nos. 412 to 417.

412. Reverting to the investigation, Art. Nos. 400—407, •

but abandoning the condition that the transformation shall be

real, it is clear that we can by such a transformation reduce the

difierential expression to the form

Rdx

Vl — X*. 1

where, however, k* is not of necessity real, or if real and positive

not of necessity less than 1 : it is interesting to inquire further

into this question, and to show how the modulus k of this in

general abnormal form is determined. The process in fact

was by a substitution in place of x, or say by a linear

transformation performed upon x, to transform the quartic

function X into a quartic function Y containing only the even

powers of the variable; the solution of this problem depends

on a cubic equation which is solved rationally when we know

any decomposition of the function X, Y into quadric factors

;

and it was in order to have such rational solution of the cubic

equation, and with a view to obtain real transformations that

we commenced by assuming the function A”" to be decom-

posed into factors of the form (f -I- 2t]x + Oj^) (X + 2/m: -|- vx*) or

6(x—a){x — R) (x — y){x — B). But analytically it is more

elegant to deal with the undecomposed quartic function, as

was done by me in a paper in the Camb. and Dub. Math.

Journal, t. I. (1846), pp. 70—73, and I here reproduce the

investigation.

413. Let the two quartic functions

P (a, b, c, d, e) (x, y )*,

F={d.b’,e',d:,e){x,yy,

be linear transformations one of the other, say the second is

derived from the first by the substitution

X,
3/
= Xx' + fiy, \x + /i,y.
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Theu writingm = — \fi for the determinant of substitution,

we have

xdy — ydx _m {x’dy’— y'dx)

• • V I V
or writing u = -

, m = ,X X

and therefore

xdy — ydx _ du xdy — ydx' _ du'

“V? 7U' 7lf'’

where U = (a, b, c, d, e)(l, k)‘,

U' = {a, b', c, d', e) (1, a')*,

the differential equation becomes

du du'
,
- = w 7_= ,

•jij >jjr

viz. wo have this from the transformation
\ + y.u

\ +

The functions P, P

'

arc obtained the one from the other by

the foregoing linear substitution ;
viz. if I, J are the invariant.^

of P, viz.

I — ae — ibd + 3c’,

J = ace — ad' — h'e + %cd — c',

and by /', J' the corresixmding invariants of P’
;
then we have

between the coefficients of the functions and the coefficients of

transformation the relations

./'• J'
I

'

= m'l, J' = «iV, whence
Y*'

414. Supposing now

[7 ' = a' (1 + pit’’) (1 + qu'*),

or V = 0, d' = 0, Gc' = a {p + (/), e' = a'2>q.
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we have /' = {p* + 2
’ +

J' = sh°'’^(.p+ q) i^*pq -/ - 2*)

;

and thence =
{p‘+^+upqy r '

or, as this may also be written,

108;?^ (p — qY 27J*

»> + «•+IW “
^ r •

{p‘ + ^+l^pqY P ’

which determines the relation between p and q. Also

m _ /p’ + 2
’ + 14;37y

so that the differential equation is

7P* + 2
*+ 1^P?V _

^ V 12/ ) ‘Vt+ pu‘‘. 1 + qu^

415. If in particular p = — \, then witing also — j in place

of q, this is

du _ (q* + 14y + l '\l

7ju~\ 12/ ) vr^'*7r^5u'>’

where q is determined by the equation

1087(1 ^7P

(7
‘+ 147 + 1 )’ ^ P

Writing for shortness

27P _ 27
^ P 4J/’

the equation in q becomes

{q‘ + 147 + 1)’ - lG.1/7 (7 - 1)‘ = 0,
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or, as this may be written,

J
- ] 6.1/ (ji - = 0

;

VIZ. writing q^ — q
>je -\

, this is 0* — il/ (0 — 1) = 0, which

determines 6, and then

?
= 7 + ^ + 4. N/g + 3

"
0-1

416. Suppose 5 = a is one of the values of q, the equation

becomes

(7* +147+1)’ (a’+14z + l)*

7(7- 1)‘ ' «(a-l)’
'

= if a =^
/3‘(/9‘-l)‘

Now if 2 = Q:j:^) I
tlien

• U.1A 16 (/S’ +14/3^+!) _85(l+;3’)
^ + 147 + 1 =—(Y+ y9)’

^ =
"”(i + /3)‘

’

which satisfy the equation : hence also identically

.,v. , „Y/8’+14/9’+l)’
(7’+147 + l)’-g(7-l)

or the values of q take the form

04 I (L^V (ijL^iV
U+/3/’ u-zs^’ ii+^v;-

(Compare Abel, CEuvres, t. i. p. 310) ;
viz. when by a linear
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substitution performed on the variable u, we reduce the ex-

pression — to the form
V U

du

the squared modulus q of the resulting form is determined by

p
a sextic equation depending upon the absolute invariant

of the original quartic function U, and such that its several

roots can be expressed in terms of any one of them in the

manner just appearing.

417. Jacobi, in the Fund. Nova, pp. 6—17, treats the ques-

tion ofreduction in a somewhat different manner, giving it as an

illustration of his general theory of transformation, explained

ante. Chap. VIL He proposes to transform the expression

__Jy ^

<») {y -$){y-i){y-^)

'

d.v

1 -ArV’

a -f a ar -f- a x

b + b'x->rb"ar

Writing for shortness U, V for the numerator and denomi-

nator of this fraction respectively, it follows from the general

theory that there will be such a transformation if only

{TJ-aV)(,U-pV){^U-rfV){U-bV)

= idoF) (1 -f- nix)* (1 -f- nx)*,

K, m, n being constants
;
and he is thence led to assume

U — aF= .4 (1 — a:) (1 — kx),

U -^V=B{\+x){\ + kx),

U — '^V= C [\ + mx)*,

U-hV=D{\^nxy,
where A, B, C, D are constants, one of which may be assumed

at pleasure. Having found C-i-D equal to a fraction, he

c. 21

into the form

by a substitution

Digitized by Google
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assumes C and D equal to the numerator and denominator of

tliis fraction respectively, viz.

C=Va — y./S — 7 , D = Va — S.y9 — S;

and he then further finds

y-i
-

g
—

Jk--
.^a — y.ff-S— i^a— S.0 — y
,ya^7.j8 — fi + ^a — 5 . /S —

7’

M= i0-7. /3-i - ^a-8. /9-7l*.

which completes the system of values.

Moreover, m= — n = Jk, and consequently the expression of

y in terms of x may be written

y-7 ^

/

I + xjk\*

y~^ Ja— 8 . B\l — xJkJ

The results, adapted to give real transformations, and for the dif-

ferent limits of the integrals, are given in the tables I., ll., ill., it.,

pp. 12 to 17.

418. It is somewhat remarkable that Jacobi fails to re-

mark, as coming under his form « = ^ ^ the before-b+bx+oa,
d Sx*

mentioned transformation y = ^ ,
which in fact reduces

the expression

J2
/-a.y-/S.y-y.y-S

2dx

to the form

which is =

Ja — y—(Ji—y)af.a — B — (fi
— B)a^’

dx

Mjl-x* . 1 -^0̂
;
and this is the more singular,
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that the transformation at which he arrives may be separated

into the two transformations ^ that is v = \ r . which
y — o ^ 1 -a*

is a transformation of the form in question, and the further

(

X q* ^/c\
=

I ,
which is unnecessary,

l-aVjfc'

in so far as the quartic function of z is already a function

without odd powers, at once reducible to the standard form

1 — a* . 1 — It^z\ At the conclusion of his investigation Jacobi

remarks that the inverse substitution ,.pL<‘y+f/_ ,e.d.b+by + b ^
also to very elegant results. I have not investigated the

formulse.

It may be added that, applying the transformation

_ o + a'

X

+ a"a^

b + b'x+ b"a?

• dic
to a differential expression

,
_ -
— of the standard

form, so as to obtain a new expression of the like form with a

different modulus, there are in all eighteen such transforma-

tions, viz., six wherein the equation of transformation is of the

form

a + d'a?

6+6'x”

four where it is of the form

ax

and eight where it is of the form

a + dx -t- d'a?
y = m i ; TTj.
'' a — ax + a ar

See as to this Abel’s letter to Legendre (1828), (Euvres, t. ii.

p. 256.

21—2
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CHAPTER XIII.

QUADRIC TRANSFORMATION OF THE ELLIPTIC INTEGRALS OF

THE FIRST AND SECOND KIND : THE ARITHMOTICO-GEO-

METRICAL MEAN.

419. Writing for greater convenience <
f>^

in place of 0, and

A, in place of X, it has already been shown, aiite No. 243, that if

1 —
A:, = and sin

<f>^
= sin (2<^ — <f>^, then

or what is the same thing, F {k,
<f>)
= ^{1 + A;,) F{k^,

But there is as regards this transformation a peculiar con-

venience in adopting, instead of the standard form of radical

Vl — A;*sin’^, a new form Va' cos' tp + b' sin’
<f>

(where a is

taken to be >6) ;
and I write in the present Chapter

F(a, = f
^ -

,

J Vo cos
<l> + b am

<f>

E (o, h, 4>)=fd<f> Va’ cos* if) + b' sin’

where the integrals are taken from zero.

Obviously

Va* cos’ <j) + b* aia* if) = V^a* — (a* — 0“) sin* ip, =aVl — A:’sin’<^

if fc* = 1 — ^ Z'whence also A:' = ; and the two functions are
a’ \ a/

’

thus = a~'F(k, if>) and aE(k, if)) respectively.
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Geometrical Investigation of the formula of Transformation.

Art. Nos. 420 to 423.

420. I reproduce the original geometrical investigation of

Landen’s transformation in the new notation, as follows

:

Taking in the figure P a point on the circle, 0 the centre,

Q any other point on the diameter AB,

QA = a, QA = b, IAQP=4,„ LABP=^4>,

and therefore [_A OP = 2^,

A

we write

we have then

OA=OB=OP=a^; OQ = a^-b, =^{a-b), =c^^, ,

QP sin (/>,
= a, sin 2<^,

QP cos
(f>^
= o^ + o, cos 2^

;

and QP‘, =c,* + 2c,a,cos2«^ + o,’,
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326 QUADBIC TRANSFORMATION [XIIl.

= i{a* + b*)+i(a'-V)coa2^,

= i («’ + i') (cos‘
<f> + 4>) + h (a* - ^‘) (cos’

<t>

- sin’ ^),

= o* cos* ^ + i’ sin’
(f> ;

. .
n, sin 2<f>

that is, sin ©, = , „ n « . »

' Va* cos’ <#) + 6* sin’
<f>.

c,jf a, cos 2<f>

‘ Vo’ cos’ ^+6’ sin’

and thence

. .. o,’ (o cos’d. + 6 sin’ <^)’

o.*co8’^,+ J. sin d».= ’a’cos’^ + i’sin’d.”-

421. We hence find

. .. i(a-&)sin2d. .

' ^ ^ Vo cos d>
+ i Bin d>

,oi js aco3’<^ + 6sin’d>
.

cos (2d>

-

4>j =—^ ^ ;v
' rz

»

Vo’ cos d> + sin

and then further

cos (2^ — ^i) = ^ cos’
<f>
+ 6,’ sin’ ip.

Considering the point P consecutive to P, we have

PQdip^ = PP' sin P'PQ, = 2o,V^ cos {2<f>
-

^,)

;

viz. substituting for PQ its value, we have

2d<}> Voj’ cos’
<f> + b* sin’ = Vo’ cos’

<f>
+ 6’sin’^

;

that is,

2d<f> d<f>,

Vo’ cos’ d> + P sin’ ^ Vo,’ cos’ + 6,’ sin’
d>,

’

the required difierential relation : and by integration

P(o, 6, <^) = iP(a„
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XIII.] OP THE ELLIPTIC INTEGRALS. 327

422. Moreover

. , , 4a* sin* A cos* A
sin A, = .

*
-j-

i
— r. •”* a cos if> + b sin

<f>

Write for a moment

X — a* cos* ^ + 6* sin*
<f>,

then X—a*= (6* — a*) sin* tf>,

X— 6’ = (o* — 6*) cos*
(f>,

(X— a’) (X— 6*) = — 4 (a — J)*o,* sin* ^ cos*
<f>

;

and therefore

(X — a*) (X— i*) + X(a — 6)*sin*(^, = 0, that is

X*+ X [- (a* + b’) (sin*
<f>,
+ cos* </>,) +(a- fi)* sin* <f>J + a*6* = 0,

or, what is the same thing,

(X—
{ J (a* + 6*) cos* + o6 sin* ^,})*

= i (a* + 6’)* cos* + (a* + J*) ab cos’ sin* + a’t* sin*

— a’6* cos* — 2a‘i* cos* sin* — a’6* sin*

= J (o*— J*)’ cos* ab (a — J)* cos* sin*

= 4c,* cos* 0, (a,* cos* + b’ sin* ^,)

;

viz. restoring for X its value, we have

o* cos* ^ + J* sin*
<f>

= i((^ + i*) cos* <^, + o6 sin*
<f>^ + 2c, cos Va,*cos’ <j>,+ b* sin’

= 2 (a,*cos* + b* sin*^,) - 6,*+ 2c, cos 0,Va,’ cos’ <^,+ 6,* sin“</),,

which is another form of the integral equation.

423. Write this in the form

(a* cos’ ^ + 6* sin*
<f>)

-h Va,‘ cos’ + b,^ sin’ =

2{va,*cos‘^, + 6,’8in’<^,

—

I Vo,’ cos* + 6,’ sin'
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then combining with

2 </<^) (14>^

Va’ C08*
<f)
+ b‘ sin* <p Vo,’ cos’ lf>^ + i,’ sin’

<f>^
’

we have

d(f> Va’cos’ (f> + b’ sin’
<f>
=

IVa' cos’ + 6,“ sin’
<f>^

and thence by integration

E (a. h,j>) = E (a.
,

- i 6,’ (a.
, <#>) + sin

and ante. No. 421, we have

F{a,b,(j)) = iF{a^,\,<j)J,

which are the required transformation equations corresponding

to the relation

sin
<f>^ =

a, sin 2(f>

Vo’ cos’ (p + sin’ <p

Eedwtion to Standard Form of Radical.

Art. Nos. 424 to 42-3.

424. The two angles correspond to each other as follows,

^ = 0
,

= 0,

<#> = tan-’^, ^, =K
^ = iir, = 7T,

viz. ^ passing from 0 to Jtt, passes from 0 to tt; and for

<P = i‘ir the functions of are consequently the doubles of the

complete functions
;
we thus obtain

E(a, b) = 2E{a„ b,)-b,'F{a. b).

F{a, b)= F(a„ b,),

where E(a, b), &c., denote the complete functions.
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425. Recollecting that i-* = 1 — , whence = -
;
and

Clt d

assuming also i\‘ = 1 — —, ,
w'c have

- ^-i J ^ ^
.

that is k, = as before, and the formulae become

£(k, <!>) = ^E(k„ <!>,)- {k„ 0.) + 5 sin .

Ur U.U <*

F{k,<f,) = ^^Fik„<l>)-,

or, what is the same thing,

E{k,
<f>)
= U^ + k')E(k„ ,^J+i{l-i>in^.,

where

sin <^,
= i (1 + k') sin 2<f>

VI — i’sin’i^

but it is convenient, in the first instance at any rate, to retain

the formulae in their original form.

Continued Repetition of the Transformation.

Arts. Nos. 426 to 429.

426. In the same manner ais a^,b^,c^ were derived from

a, b, we may from a^, b^ derive o,, J„ c,, find so on inde-

finitely : viz.

<i, = J(« + ^)i 6, = V^, c, = i(«-J).

a. = i(a. + 6,), 6, = V^, C, = i(a,-6,);
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it is easy to see that, as n increases, a. and h, will approach

(and that very rapidly) one and the same determinate limit,

which from the mode of obtaining it from the two original

quantities (o, h), is said to be the “ arithmetico-geometrical

mean” of these quantities, and is represented by M (a, b) : and

of course c, will rapidly approach the limiting value zero.

But for a, = we have

K> i>) = ^ («.. K- = i

and in particular

^ {««. O =O • i’T, E (a„ JJ = a,
.
{v.

427. Considering first the complete function F {a, b),

we have

F{a. b) = f’(a„ 6.) ... = F{a^, bj = ^M{a. b).

viz. the complete function is given as ^ir into the reciprocal

of the arithmetico-geometrical mean of a, b.

428. Considering next the incomplete function F (a, b,
<f>),

the equations

sin = a, sin 2<p

Va’ cos’
<t> -t- b‘ sin*

<f>

, sin^,=
a, sin

2<f>

Va,’ sin’^i + b‘ sin'
, &c.

show without difficulty that as n increases, continually

approaches a value, =2* into a determinate magnitude, say

M {a, b,
<f>):

in fact n being large and therefore o,_,, a,

approximately equal, we have very nearly sin <(>^
= sin

2<f>^ ,

,

that is ^, = : the limit in question M (a, b, 0) is of course

to be calculated from a, b, if> by means of the equation itself

= 2*i/ (a, b, : and it is to be remarked that for
<f>
=

the value of
<f>^

is = 2*
.
jw, so that M (o, b,\it) = ^tt.

The equations F{a, b,
(f>) = i jF’(a„ = ... then give

F(a. b,
<f>) 2* ~ 2* ' a

~ 3/ (a, b, <f>)

M{a,b) •
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Or if we cbooee to combine tbis with

F{a,h)=^ir^M{a,h),

then

F{a,h.<t,) = \M[a.h.i,)F{a,h).
7T

429. Considering next tbe 2^-formula, tbis may be written

[E (a, h, 4>) - a'F{a, b, <j>)] = [E (o„
<f>,)

- a*F{a„

+ F(a„ 6., <^,) (a,* - i a’ - 4 J.*) + c. sin

where in tbe second line tbe coefficient of is

— i (a*— 6*), = - a,c,, or tbe equation is

[E{a, b, <t,)-a^F{a, b. ^)] = [E(a„ 6..
- a,^F{a„ 6..

- ^,) + c, sin

And bence observing that as n increases

E (a„

continually approaches to zero, we obtain

E (a, b, <}>) - a’i?’(o, b,<f>) = - {2a,
c, + 4a,c, + 8o,c, ...} F {a, b,

<f>)

+ c, sin ^, + c, sin ^, + e, sin

Or substituting for F (a, its value

E(a. b. 4>) = {a* - 2a.c. -4a.c, - ...]

+ (c, sin + c, sin + c, sin

and in particular if ^ = Jtt , then = ir,<f>^ = 2ir, &c.,

M (a, J, iir) = Jw

as before, and the equation becomes

E(a, b) = (o’ - 2a,c, - 4a,c, — .,.} Jw-r Jf(o, b).
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Reduction to Standard Form, of Radical.

Art. Nos. 430 to 431.

430. Introducing the modulus Ic, viz. writing b — ok', and

ultimately a = 1, the formula for F (a, b) becomes

viz. the complete function is given as = Jtt into the reciprocal

of the arithmetico-geometrical mean of 1 and the comple-

mentary modulus.

Gauss has given the formula

^ 1 • 1 *

1 ^ -

Writing this under the form

i/(iTjfcT7i -X) “ 2' ‘
4‘*‘ + "•

we at once connect it with the formula last obtained : viz. the

right-hand side is

2 . 2 1 jpi ^

“ w = w r+ jfc.
~ (i + k;)M{i, k') •

Or the equation is

AT (1 -
1
- 1 - = (1 + fc.) M (

1
, A’) = (1 + i-.) M (l,

;

which is obviously true, since in general

M{a,b) = 0M[^,
I).

The formula for F {a, b, gives in like manner

it')
’

which is a formula for the numerical calculation of the function

F{k.,l>).
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431. Proceeding next to the function E, we have

2ajC, 4a,c,
|

ilf (1, i-',

+ sin
J

sin sin
<f>, +

Hence forming the equations

or
*

a,c,
* ” o,c,

* •

c.^

a 1 + A,
’

^=-
1 + X'j * a 1

*

a. 1

,
&c.

a, 1 + A;, ’ o, 1 + A, ’ a 1 + A,
’

the equation becomes

E
{,
k. = {1-j^ fc»(i

+

p-,+p.a,+p.aa+-)]

+ sin sin 8in<^,

+ &C.,

or observing that

1 A
that is — A

1+A, 2VAV 1 + A, 2VA,’

1 _ K 1 _ AVA,

1+A, 2VA,’ ” 1 + A, .1 + A, ~
4VA,’

1 _ K 1

l + A, 2VA,’
” 1+A..1 + A,.1+A, ~~T7k\

&c.

the last line may be written

+ A
{J VA, sin (^, + i A,A, sin ^ VA,A,A, sin ^, + . .

.
}.

In particular, if
<f>
= ^Tr, the equation becomes

£.A= (1 - iA*(l + i A, + i A.A, + iA,A^. )} Jtt - Af (1, A')

;

or if we please,

i:,A = (1 - U-*(l + JA, + i A,A, + i A,A,A, + ...)) Ffi.
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Application to Integrals of the third kind.

Art. No. 432.

432. The transformation is applicable to elliptic integrals

of the third kind, but the results are not of any particular

interest. Writing down the equations

2dif> ^
Va* cos’

<f> + b' sin* <j> Va,’ cos’ ^, + 6,’ sin’
’

a’ cos* <^ + h* sin’ ^
(a*cos’ ij> -f-6’sin’^) {cos*<f> + sin’ <^) + 4»,o,’sin’^ cos’^

^“
1 + n, sin’

’

the expression on the left-hand of this last equation is

ocos’^ + bX sin’^ ^aAT cos’^ + b sin*<j>’

BX

where

a’ cos*
<f>
+ b* sin* ^ (a* -f- i’ -t- 4i»,o,*) sin*

<f>
cos*

= (a cos* (}> + bX sin*
<f>)

cos* ^ j I

that is

= ^.(«.*+c.’+ 2n,a,*);

whence

= ^(l + «.)fc,’ + n,o,*);
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that is X= p {o,*+ c,’ + 2n,a,* + 2o, 7(1 +«J (c,*+ n,a,*)},

^ {“.* + c.’+ 2«.a.*- 2a, 7(1 + nJ (c,’ + n,a.*)}

;

and then

. (aX—V)X j, a —

and wo have

<(aX-b)X 1 {a-hX)X 1 )

I Jl*— 1 a cos*<^+5Xsin’^ JT’ — 1 aX cos’^+ 6 sin’

^

2d<^

Va* cos* ^ + 6’ sin*
<f>

(1 + n, sin* ^,) Va,* cos* + 6,* sin’
’

whence, integrating, the function

f
J (1 + n, sin* (j>^ Va,’ cos* <j)^ + 5,* sin*

<f>^

is expressed as the sum of the two elliptic integrals of the

third kind having a common modulus but different parameters.

Numerical instance for complete Functions E^, F^, and

for an incomplete F. Art No. 433.

433. As a numerical instance take (as in Legendre’s

example, 1. 1, p. 91),

72
,

a= l, J = ^72 + V3 = cos75'* (whence 4 = sin75°), tan^= ;

we have

a h e k V 0

(0) l-OOO.OOOO 0-268,8190 0-965,9268 0-268,8190 47» 8' 81"

(1) 0-629,4095 0-608,7426 -370,6906 0-688,7908 0-808,2866 62» 86' 8"

(2) 0-669,0761 0-565,8688 -060,3834 0-106,0200 0-994,3636 119» 66' 48"

(3) 0-667,4724 0-667,4701 -001,6037 0-002,8260 0-999,9969 240® O' 0"

(<) 0-667,4718 0-667,4713 -000,0011 0*000,0020 0-999,9999 480® O' 0"
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first as to the complete functions we have

J*, =?.l =2768,061

i = a.c, = -233,2532

+ 2a,c, -068,6686

+ ia,c, -003,6402

+ 8a^c, -000,0051

= -305,5671

agreeing with Legendre’s values F^= 2-768,0631, £',= 1076,4051,

and thence i -305,5671.

Also, we have F (k, .
<f>^,

or since i 30° = Jir,
it

this is FQc,
<f>)
= I F^ = 0-9226877 : it is in fact easily verified

that the assumed value of
<f>

is such as to give exactly

F{k,<j>) = iF,

The notion of the arithmetico-geometrical mean was esta-

blished by Gauss in the memoir “ Determinatio Attractionis

&c.” Comm. Gott. Rec. t. iv. (1818), but his later researches in

relation to the subject were not publi.shed until after his death,

Werke, t. iv. pp. 361—403 ;
a table is given p. 403, of the values

of the arithmetico-geometrical mean Af(l, sin tf) and of its

logarithm, 0 = 0° to 90” at intervals of 30'.
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CHAPTER XIV.

THE GENERAL DIFFERENTIAL EQUATION
dx _ dy

Integration of the differential equation.

Art. Nos. 434 to 436.

434. In the present Chapter, writing

X= a + J® + ex’ + da? + ex*,

Y=a + hy + cfJfdy*->r ey*,

I consider the differential equation

Jx JY
435. A direct process for finding the algebraical integral

as follows was given by Lagrange.

Assume
dx .— dy ,

—

^ = JX, and therefore ^ ~ v V;

.d’x
then 2 = 6 + 2cx + 3dx* + 4ex*,

2 = 5 4 2ey + Sdy* 4 ;

and if p = x + y, q = x — y, then

whence

c.
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which is integrahle as it stands and gives

or substituting for q, ^ and p their values

which is the general integral, G being the constant of integra-

tion.

436. To further devclope this result observe that we have

x+ r-2/xT=
G {x-yY ‘r d{o^ - - xif tf) 6 (a:* - 2x’y -|- y'),

that is

2,/X?=
2a + S (x+ y) + c(a^+ y') - G{x - y)* + dxy (a; + y) + 2ex*y*

;

or say

Jky=
o + J6 (a: +y) + ic (a^ +y’) - JC (x -y)‘ + {dxy (x + y) + * =

whence squaring and transposing

(a + {b{x + y)+ {c (x* + y’) - i C (x - y)’ + {dry (x + y) + ex’/}’

— (a + 6x + ca^ + dx* + ex*) (a + 6y + c/ + dy’ + ey*) = 0

;

* Write z=sin 0 ,
y=sin 0 , (o, b, e, d, <) = (!, 0, 0, t’), Uie equation

becomes

cos 0 COS 0A0A0=1 - J(1 + t*)(sin’0 + sm’0) - JC(sin 0 -sin 0)’+I-*sin*0 Bin’0 ;

and to introduce fi instead of C we must write

cos/iAm= 1 - J(l + 1’) sinV- iU sin’ll,

that is JC sinV = 1 - J(1 + it”) sinV - cos /lAn.

The equation thus is

1 - 5(1 + 4’)(Bin’0 + sin’0) + 1’ sin’0 siu’0 - cos 0 cos 0A0A0

“ ^
{1 - 5 (1 + i-’) sinV - cos /lA/i}:

this is of course a form of the addition equation, and could be verified as such

by substituting for cosn, sin /x, An their values in terms of 0, 0 : but the form
is not a convenient one.
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viz. this is

- C{x -y)‘ (a + (j: + y) + Jc (x' + tf) + ^dxy {x + y) + exY],

+oM -1 =0,

+ ab.x + ij —x — y =0,

+ ac.a^ + y* .— 3^ — y‘ =0,

irad.xy{x + y) =-(•«- y)‘ (* + 3^).

+ a«.2xy -a;*-y* = -{x-yf {x + yf,

+ 6’-i(*+y)’ = + H«-y)’.

+ Jc.i(a: + y) (x’ + y*) -s^y-xy' = + H*-y)’ (« + y).

\-ld.\xy{x + y)* -icy*-x‘y =-^xy{x-yy,

+ be.x‘y*{x+y) -xy*-x*y =-xy {x-y)* {xJt-y),

+ c*. J(»’+y‘)’ = + i (a!-y)'(a;+y)‘.

+ cd.\xy{x-^y) {x' + y*) -x?y‘ - s^y* =-\-^{x-yY xy{x + y),

+ ce . 3^y* (x* + y*) — x*y^ — a?y* = 0,

+ c?.}x*y(x + y)’ -a?y^ = + \{x-y)‘ x'y*,

+ £fe.«y(x + y) -xY~^y* =0,

+ e’ . x*y* - x*y* =0, = 0

;

viz. the whole equation divides by (x —y)’. Omitting this factor

it is

iC\x-yY
- 0 (a + (x + y) + ic (x’ + y*) + ^dxy {x + y) + exy},

- ad{x+y)

-ae(x+yY

+ ^6c (x + y)

- ^bdxy

-bexy{x + y)

+ ic’ {* + .'/)’

+ icJxy (x + y)

+ KA’ =<^-

o.> v>
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or what is the same thing, it is

(
— Ca +^6* )

+ (a; + y) (
—^Gb— ad + ^bc )

+ (a^ + y*) (
^C* —^Cc—ae +Jo’)

+^ (“iC* — 2ae - + ic* )

+ a^y (a; + y) (
—^Cd — be + ^cd)

4- a;’y* (
— Ce + )

= 0.

Tliis may be written

(a + 2ha: + ga;’)

+ 2y (h + 2ba; + fa:’)

+ (g + 2fa: + ca:*) = 0,

where the several coefficients have the values

a= 6’-4a(7,

b = — 2ae — ^bd + ^c’ — i (7’,

c = cC — AeC,

f = cd— 26e — Cd,

g = — 4os + c* — 2 Cc + C*,

h = be — 2ad — Cb.

The result shows that the complete integral of the differen-

tial equation is an equation « = 0, where u is a symmetric

quatlriquadric function of (x, y) ;
that is, a symmetric function,

quadric in regard to each variable separately.

Further development of the theory. Art. Nos. 437 to 446.

437. This may be verified almost instantaneously: starting

from
u = (a 2ha: + gx*),

+ 2y (h 4- 2bx + fx*^,

-I- y* (g + 2fx -1- ex’) = 0,

we may write

« = A+2%-l-C'y’ = A'-l-2Z?'x+ C'x’ = 0,

A, B, C being given quadric functions of x, and A', B, C
the same quadric functions of y.
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Then differentiating

But

g
= 2((7y + i?) =2jB^-AG,

^ = 2 (Cx + B') = 27JT'‘ - A' C,

since u = 0 gives {Cy + B)' =1? — AC,

„ {C'x + B'y=B'‘-A’C'.

and the differential equation thus is

dx dt/

JB‘-AG JB*-A'C
= 0.

= 0
,

This will coincide with

dx dy

7IY JY
if only the quadric functions A, B, C arc determined so that

B‘ —AG=6X (which of course implies B* — A'C' = 6Y). We
have in all six disposable quantities a, b, c, f, g, h, that is five

ratios
;
and the equation in question

(h + 2ba: + f.c’)’ — (a + 2hx + gx*) (g + 2fx + cx*) = 6X,

establishes four relations between the five ratios, and thus

leaves one indeterminate ratio serving as a constant of integra-

tion : wo in fact satisfy the equations by means of the before-

mentioned values of a, b, c, f, g, h, which contain the arbitrary

constant C

;

viz. we then have

(h + 2bx -I- fx’)’ — (a + 2hx + gx*) (g + 2fx + ex’)

= 4 [a(f* + b‘‘e — bed + {— iae + bd + {C — c)’] C] X.

As a partial verification, observe that the equation

— ^
or eh’ — of ’ = g (ea — oc), = (e6* — ad*) g,

is satisfied identically.
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438.

Regard u as a function of (7 ;
we have

«= 6* +2C
+ (2Jc - 4ai) (a; + y)

+ (c'— 4o€) (iC*+ 2^)

+ (— 8ae — 2bd + 2c*) wy

+ (2cd — 46e)a-_y (x + y)

+ rf* x*y

-2a +C*.(x-y)*

-b{x+y)

- c (x* + y*)

- dxy (x + y)

- 2ex’y*

say this is

then we have

w = X + 2^1C V 0* 9

/**— Xv = 4(1*. . . + 4c*x‘y‘, = 4JfY :

viz. calculating fx'—Xv, it will be found to have this value.

439.

Now starting with the equation m = 0, and treating

it as before, except that we now regard (7 as a variable
;
that is,

forming, and then reducing, the equation

we obtain

du

dx
(fx + |(fy +

du

W dC=Q,

Ydx + Ji&Xdy + JX YdC=0,

or, what is the same thing.

dx dx dC _ _

where (C = ad* + V‘e—bcd + C[— 4:ae + bd+ ((7- c)"},

a cubic function of C.

440.

Write

C = § c — 2(i)

;

then

® = ad* + h'e — bed + {— iae + bd 4- (|c + 2(»)*] (Jc — 2q>)

~ — 8ct)* 4~ (Sae — 2bd 4" g c*) (o

4- (- §occ 4- ad* +b*e- I bed 4- ^ c").
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But the invariants of a + hx + ca? + da? + ex* are

7= tI, (1206-3^ + 0,

J= 4, (72oce - 27o<f - 27i’e - 2c> + %cd)
;

whence

® = — 8 (q)* —" 1(0 + 27) f

= 2»V2 J(o*~ 1(0 + 27, = 2*727^, suppose,

dC= — 2d«tf

;

or the differential equation is

dr
,

da) _ q,

JxJY ij2ja ’

viz. writing for G its value 3c - 2a), the corresponding integral

equation is

w = \+ 2/i (|c- 2a)) + V (3 c
— 2a))’,

= \ + |c/i + Jc’v + 2a) (— 2/1 — |cv) + a>*. 4v, = 0;

or substituting for X, /i, v their values and reducing, this is

J* — foe +2a)

+ (3 Jc - 4od) (a: + 1
/)

+ (3c’-4oe) (x’ + 3
/*)

+ (- 8oe - 26d + V’e*)

+ (3cd-46e)afy(r + y)

+ (d* - fee)

+ 4o +a)*.4(x—^)*=0

+ 26(x + y)

+ 3c(x’ + yO

+ §ca^

+ 2dxy(x+y)

+ 4ea^^

where the left-hand side is quadric in each of the variables

x,y,(o\ as there is no arbitrary constant, this is only a parti-

cular integral.

441. Wo may by a linear substitution performed on the (o

bring the third radical Vfi to a like form with the other two

radicals.
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Write for convenience

a + hx-\-ca? + da? ex' = e(x -a){x- — —

then the substitution may be taken to be

2« = ie{-/37-7a-ay3+ 2a(a+/3 f7)- 3S'l I

which, as will appear, makes the radical Vfl to depend on ‘JZ,

where Z= a+bz + cz* + dz^ + ez'. Some preliminary formulae

are required.

442. Reverting to the formulae which contain (7(= Jc — 2<o),

assume
C, = e{fi + y){a+B),

C, = e{y + a) (/3 + S),

C, = e{a + ^) (7 + S);

then we have

(C-C,){C-C;)(C- C^ = C[[C-cy-iae+bd} + o(P+b'e -bed,

viz. C^, (7,, (7
,
are the roots of the equation (C = 0.

Hence writing for C its value =30— 2w, we have

(S c- 2® - (7
,) (§ c - 2® - CJ (§ c

- 2« - CJ

=s — 8 — To) + 2e/}

= — 8 (® — ®,) (® — ®,) (w — ®,) suppose.

We have = =j^(2c- 5C^

= Je (2/37 + 2aS — o^S — /8S — 07 — 78)

;

or putting

.<4 = (^ — 7) (a — 8) = 0/3 + 78 — /8S — 07,

R = (7— a) ()8 — 8) = ^y+ 08 — 78 — /3a,

C= (o -/3)(7- 8) = 7a+/38 -o8 - 7/3,

we have w, = Je(5 —

(

7); or forming the analogous equations

®, = Je(i7 -f7),

®, = Jc(C-yl),

o), = ie(A-B).
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443. Now writing as above

2o)= ^e{-/3Y-7a-a/3+2S(g+^4-7)-3y) + ^^”~^^^j^J~g^^^'y~
-^

}

then if « = a, /3, 7 we have {a=w,, «„w, respectively: thus

writing «= a wo find

Geo= e {— /Sy — 7a — a/3 + 28a + 2Sy3 + 287 — 38’

+ 3y97 - 38/3 - 387 + 38*}

= e{2a8 + 2/87-(a + 8)(/3 + 7)l, =Cw,,

and so for the others.

Hence

2 (w - w,) = - e (iS - 8) (7 - 8) ,

2 (a) - o),) = - e (7 - 8) (a - 8) ,

2 (w - 6)^ = - e (a - 8) (^ - 8) ;

and therefore

8 (o) — 6),) (o) — a),) (a) — a>J, = 8 (a>’ — /a> + 2J),

= -{(a-S)(/3-8)(7-8)}V^^;

or say

(a-5)(/3-S)(7-S)c
(^- 8)“

But from the expression for a>

28a, =- (a-8)(/9-8)(7-8)e^^.

whence

or the equation

dz

Tz'

dx dy dt»
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346 THE GENERAL DIFFERENTIAL EQUATION. [XIV,

is by the substitution

2o)= § e {-/3y-7a-o/3+28(a+y3+7)-3S’}
g — o

transformed into

dx dy^ dz

4Y Tz
= 0

;

and if in the equation between x, y, <u we write for (u the above

value, we have the corresponding integral equation between

X, y, z. (This w'ill bo presently given in the particular case

a = 0, No. 445.)

444. But we may in a diflferent way make the transforma-

tion from to = a + + cu’+ dw' + eu*. Take as
vfl V IT

before I, J for the invariants, 27 for the Hessian, and <I> for

the cubi-covariant,

H = -^ {(8ac — 35*) u“+ (24ad— 4Jc) u + (48oc + Gbd — 4c*) «*

-I- (2ibe— icd) u’ + {See — 3d*) u*).

(— 8a*d + 4oic — h* )«»

+ (— 32a*e — 4a6d + 8oc* — 22*o) u

+ (— 40aJe + 20ocd + 56*d )«•

+ (
20ad* — 20/i’e )«•

+ ( 40ode— 206ce+ 55d* )u*

+ (
32ae* + 4Jde — 8c*e + 2cd*) a’

+ ( 86e* — 4cde +d* )u*}

then identically JU* — IJPII + 427* = - <[J*,

, . 2/7
whence assuming <o =

-jj ,

we have

ci>* — 7o» + 2J

=

2<&* iV2<I>V//
,
or say VH =
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XIV.] THE GENERAL DIFFERENTIAL EQUATION, 3+7

From the expression of o> we find

and hence

where the multiplier of is a constant. We in fact have\U
Un -V'H = ^ {Sa*d - iabc + V) + &c.

= -24>;

that is ^ = 2tV2.^;
Vn *J1j

and the equation ^ = 0 is thus converted into
,

Vj: Vf tV2Vn

dx dy 2du .

VX VF Vff

It is to be noticed that the above transformation o> =

leading to 2iV2 is really a transformation of the order
vh vu

4, degenerating into a multiplication by (V4, =) 2. For it was

shown above that is by a linear substitution transformable

into
dz

445. Reverting to the relation between (x, y, a>), loading to a

relation between z, y, z, suppose in order to simplify that a = 0

;

that is, assume X = Jx + cx’+dx^+ ex‘, = e x(x-a) (x-/8) (x-7),

the value of 8 being thus zero.

Then the integral of

dx dy dco _
VX VF
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becomes

6’ + 2&c(x+y) + c’(x* + y’) + {2<?—2hd)xy

+ (2cJ — ^he)xy (x + y) + d^x'y^

+ 2 {- J(x + y) — c(x*+y*) — dxy{x-\-y) — 2exy} (§c- 2<a)

+ (x-y)’.(§c-2a,)*=0.

say this is

X + 2/i (I c— 2o>) + V (f C — 2a>)* = 0,

and writing herein

2q) = Je(-^7-7a-a/S) + ^^, =-\c-\,
S 8

that is §c — 2a> = c + -,
z

the equation becomes

\z' + 2fi (c^* + Jz) + V (C2 + i)’= 0 ;

or substituting for fi, v their values

J’ (x* + y*+ a’ — 2ya — 2ax — 2xy)

— 4Jc xyz

— 2hdxyz {x +y + s)

— 4Je xyz (ys + «x + xy)

+ (d* — 4ce) x’y’z’ = 0

;

viz. this is a particular integral of

yfX Vf Vif
0

.

where X=hx + cx^ + da? + ex*, &c.

44G. It would bo easy to verify this by writing the integral

equation successively in the forms

u^A + 2Bx+Cx^=^A'->t2By + C'y' = A’\ 2B"z + C"z'

;
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XIV.] THE GENERAL DIFFERENTIAL EQUATION. 349

we then have 1?—AC, B"'—A''C' proportional to

YZ, ZX, XY respectively.

Write h, c,d,e = 1, 0, —I, 2J ;
then X becomes x—Ia^+ '2.Jx*,

which putting therein - instead of a: is i (li—Ix + 2J)
;
writing

SC sc

similarly -
,
- for y, z, and putting finally

X=a^-Ix + QJ, Y=f-Iy+2J, Z=2’-/z + 2,/,

we have P
— 8J{x + y + z)

+ 2I(i/z + zx + xy)

+ yV+ «*«’+ a’y’— 2xyz (a; + y + a) = 0,

as a particular integral of

dx dy dz -

VX VT V2:
’

this can of course be directly verified in the same manner.
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CHAPTER XV.

ON THE HETERMINATION OF CERTAIN CURVES, THE ARC OF

WHICH IS REPRESENTED BY AN ELLIPTIC INTEGRAL OF

THE FIRST KIND.

Outline of the Solution. Art. Nos. 447 to 449.

447. In Chapter III. it was seen that the Icmniscate was

a curve such that its arc represented an elliptic integral of the

first kind : but the problem of finding such a curve is obviously

an indeterminate One
;
we have to find x, y functions of z,

such that

for this being so then, writing z — sin
<f>,

the arc of the curve,

measured from the point for which a = 0, will be s = A" {k,
<f>).

Similarly if a, a are conjugate imaginaries, and x, y are

functions of z, such that

dz'
dj:’+ dy' = -f

z —a .z— a

then the expression for the arc of the curve is

» — f

a form in the nature of an elliptic integral of the first kind,

and which can in fact be made to depend on elliptic integrals.

448. A very general mode of satisfying the equation is

to assume

dx + idy
(z — a)” (z + a)"dz
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for then x, y being real functions of z, we liave also

dx—idy =
(a-a)"(z + a)*(fz

(z-a)”-^*(z + or*’

and multiplying, we have the relation in question.

The above expression of dx + idy as a multiple of dz is

not in general integrable, but it is to be shown that if one

of the indices m, n, say m, is a positive integer, and provided

a single relation is satisfied between a, a. (the form of this

equation depending on vi, n) then that the expression is into-

grable algebraically : viz. we obtain by means of it an alge-

braical (imaginary) value of x + iy
;
this of course gives x, y

equal to real algebraical functions of {x, y), and thus determines

a curve, the arc of which is expressed by the formula

8
dz

449. The form of the relation between the (a, a) is a very

remarkable one, viz. writing f= >
tiicn the relation is

this is an equation of the order m in £ giving for ?, m
values which (a being within certain limits) are all or some of

them real and less than unity, and the corresponding values

of a, a are then conjugate imaginary values, in accordance with

the original supposition.

Thus if »n = 1, the equation is (?~ 1) = that is

(n -1-
1) S’- n = 0 or f '> which, n being positive, is positive

and less than 1 ;
if m = 2, it is ~ ~ viz.

this is

(n + 2) (n + 1) S*- 2 (n-H) nS-h n (71 - 1) = 0,

or (« + 2)? =n±\/jj^-
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If n is positive and less than 1, one value of f ; if n be greater

than 1, each value of f; is positive and less than 1. It is to

be observed that if n is integral, and less than m, the equation

as above obtained contains the factor f""", and throwing this

out sinks to the degree n
;
the equation may in fact be written

indifferently in the forms

(l)
"f

the degree being m or n whichever is least. The values of ^
are in this case all of them positive and less than 1.

General Theorem of Integration. Art. Nos. 450 to 457.

450. The foregoing result depends on a general theorem

of integration which is as follows: taking 6 any positive in-

teger, the integral

J «”"(« +p + g)""‘‘

has an algebraical value provided a single relation subsists

between j>, g, m, n: viz. writing

([,«]/ +[«]?’)*

to denote

[m]
*p**+ f M*'* W’ + ... + [«]*?“.

where as usual [m]* represents the factorial

«» (m — 1) ... (wi — 0 + 1),

the required relation is

([»t]p’+ [«] gY=0.

451. If in this theorem, m being a positive integer, wo
take 0 = m, and writing u = z — a, take p = rt + a, g = a — a,

we have the integral

r(z - a)" (z + a)" ilz

J{z-af*' {z + a}'*'

having an algebraical value, provided there is satisfied between

a, a, m, n the relation

{[m](a + a)‘+[n] (a-«)*r = 0.
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Or taking as before
,
we have ?- 1 =

,

and the equation may be written

{[m] r+ [«](?- 1))" = 0,

which is the before-mentioned equation in thus, m = 2 , the
equation is

[2]* ?•
-t- 2 [2]' [n]« f (f- 1) + [n]« (f- 1)‘ = 0,

that is, 2^ -I- 4n{r (f- 1) + (n‘ - n) (f- 1)* = 0

;

or (n*-n)(r-2?-l-l) + 4.n(r-?) + 2r = 0,

which is (n-t-2)(n + l)^-2(n+l)nf+n(n-l) = 0
,

as above.

452. To prove the general theorem, write for shortness

U=(u+j>)”*"-‘^' (u+p + q)-\

The integral then is

/u-

U {u + q)* dll

* (w +^) (w -I- p + y)
’

which wo assume to be

= Uu-” (A+Bu+ Cu* ... + AV-»),

say it is = UQ.

This will be the case if

UO' + U'O =
U {U’ + qY

or what is the same thing,

Zq+Q'= •

viz. substituting for U' its value, this is

[(»» -1- n - 0 + 1) (u + p + j) - n (ft + p)] Q

+ (« h i>) t« + + q)
Q' =

c. 23
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dQ
where Q' denotes ~ . The question therefore is to express

that this differential equation has an integral

Q = (^ + i?« + ... + AV-i).

Substituting this value and equating coefficients, we have

between the 6 coefficients A, Ji, C ... K, a. sy-stem of 0 + 1

equations imjjlying one relation between the quantities

m,n,p,q: and this condition being satisfied, the coefficients

A, B ... K will be completely determined, or we have for Q an

equation of the form in question.

453. For instance, if 0= 1, the equation is

[mu + + w + n y} (? + {«’+ M (2;; + q) +/ -frpq] Q' = ,

to be satisfied by Q—AuT^: this gives

\mp + (ni + n) y + mu j
Au'"'

+ {p‘+2^Q + {~P + 2 )
w + “’) •

- mAu'^''= qu~”''+ u"",

that is

{
-m{p^+])q)A - q]

u~"
{
[mp + {m + n) q] A — m [2p + 5) .^1 - 1 }

«"*'
(

+ - mA
}
= 0,

viz. the equations are

m(p'‘ + pq) A+q — Q,

[mp — ny) .4 + 1=0,

whence eliminating A we have m [p^ + pq) — q (mp — nq) =0,
that is + Jij* = 0, as the required relation in the case in

band.

454. Similarly if 0 = 2, the differential equation is

[m— Ip + ni + n—

l

2 + »i — 1 m]Q

+ [;)’ + pq + u [2p + 2) + «’J
Q' =

,
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455. Tho series of equations are

6—l,0=\,mp—nq
I

q,m.{p'+pq)

6=2,0= 1, m—\p—nq, 1

2q, m—i[p'+pq), m+lp—n—lq
»w(p’+pg)

6=^,0=\,vi—2p—nq, 1

3y, «i-2 ip'+pq), mp-n~\q, 2

-
1 (

p’+
pq), m+2p~n^q

?’> • rn(p‘+pq)
i

0=4,0= 1, 1

^q,m—5{p'+pq),m—lp—n—lq, 2

• m-2{p‘+pq),m+lp-n-2q, 3

*?’>
• wi-l(p’+pg),m+3^-^^f^

3 • • • • rn{p‘+pq).

23—2
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456. Expanding the several determinants the equations

are, for the case 6 = 1,

[»»]>(;’+!?) • =(Hp’+W2*)*. = 0

-l(j[m]p-[n]5r)

for the case 6=2

[w]y(p+g)‘ =([m]p’+[n]9’)‘, =0

-2[«t]Xp+j) q ([m-llp-M?)'

+1

for the case 6=2

[m]Yip+qy =(H/+W2’)’. =0

-3[m]y(p+9)*9([m-2]p-[j»]9)‘

+3[m]‘p ip+q) 2’([m-l>-[n]|7)’

-1 9’(Wi>-W2)’

for the case 0=4

[m]Y(p+qy =([«]/+[«]2*)’.

-4[m]*p’’(p+9)*9 ([m-3]p-[n]9)'

+C[m]y(p4-9)V([«i-2]/>-[«]?)’

-4[«i]'p ip+q) q’ ([w-l]p-[n]9)’

+1

and so on. The notations ([m] p — [?i] q)', ([ni] p — [n] 9)’ have

a signification analogous to ([m] p’ + [n] g*)', ([m] p* + [n] g’)’, &a
already explained: for instance

(W P - [«] ?)* = [»«]’/- 2 [m]' [n]‘ pq + [«]• q\

457. To show how the reduction is effected, consider for

instance the second determinant
;
this contains terms multiplied

by 1, 2g, 9’ respcictivcly

:

the first is

1 . - 1 (p’ + pg) . m (p* +P9), = 1
.
[m]*p* (p + j)* J
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the second is

2g.-m(p’+p2){(wi-l);)-w^]=-2[m]'p(2>+j)2([m-l]2)-[n]g)’;

the third is

2*(m— 1^ — n^) {(m+ 1^3 — n — Ij) — (»» — 1) {p^+pq)\

=
2* {(m*- m)p‘- Imnpq + (n*— n)2*], =2*([wi] p - [«] (Z)*-

And similarly the third determinant is composed of terms

in 1, 32, Sy*, which are the four terms in the first reduced

expression of the determinant: and so in other cases. These

first reduced expressions give without difiiculty the final forms

([m]p* + [w]2’)*, (M/+[«]3')’i &c-

458. Writing 6 = n, and z — a, a — a, a + o for v, p, q re-

spectively, we have the originally mentioned theorem in regard

to the integral

/(a — rt)" (a + a)* dz

J|a^)"^‘Xa-t-a)"'^‘
’

and thence, as already mentioned, the expressions of x, y
as functions of a parameter a such that the arc of the curve

is given by the formula

_ f

®“iVa*-a’.a‘-a*’

viz. as an integral in the nature of an elliptic integral of the

first kind.
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CHAPTER XVI.

ON TWO INTEGRALS REDUCIBLE TO ELLIPTIC INTEGRAXS.

459. An in where P is a quintic function

of X, is not in general reducible to elliptic integrals; but Jacobi

has shown {Crelle, t Viii. (1832) p. 41C) that ifP has the par-

ticular form

P = a; (1 — x) (1 + Kx) (1 + \x) (1 — k\x),

then the integrals [% = , that is the two integralsHP °

“/xdxr dx . / vxd
J •/x. l—X.l+KX.l+\i.r.l—K\x’ j ^1—X.l+KX.l +\x.1 — k\x

arc reducible to elliptic integrals: and that by means of the

theory an elliptic integral of the first kind f-p - ,

J vl —lc‘

where k is a complex imaginary quantity, say k = sin (a + /8e),

can be reduced to the form O + IIi, where O and U are real

integrals of the above-mentioned kind.

Investigation of the Forrnulce. Art. Nos. 4(50 to 463.

460. Considering the integral

—
j
-— — -— , = f 7^ for shortness,

J fx vi — x . l -f *x.i q- Xx.i — kKx j VxX

viz. X used to denote

1 — x . l + Acx . l -
t
- Xx.l — k\x

;
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write

ON TWO INTEGRALS &C. 369

h =V/c + Vx c =V« — Vx (-r),

h'= 1 -V/ix (H-), c'= 1 +V;ix

denom. = Vl+/c.l+X;

and therefore 6’ + = 1,

c’ + c'*=l.

. (
y + c) sin 4>

Assume Va: - + Vl - c” sin*’^
’

= for shortness,

w’e have

(1 + KX) (1 + Xx) = (5 + cy + {k + \){B+ cy (y + c')’

+ k\ (6' + c')* sin*^ (-^),

(I - x) (1 - /cXx) = (5 + cy - (1 + K\) (B+ cy {b' + c'y sin*<^

+ kX (b' + c'
)
* sin* <}> (^),

denom. = {B+ C)'

;

which after all reductions become

(1 + Kx) (1+Xx) = • 4 (i?+ C)\

(1 - x) (1 - kXx) = . 4 (.B+ cy 005“
<f>,

4

4 cos'<f>

{B+cy

461. We have in fact

c'-y
c

and thence

+
6'”'^’

*^“(c' + y)’

y + c* * +

X

y + c" “r+^ ’

, (, /c'-yv] y + c‘
* + + (c'T6')|y^’

and (1 + Ac) (1 + X) =
(TT7?'

2 cy + c*)

ly+c')*’
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360 ON TWO INTEGRALS REDUCIBLE [XVI.

Hence observing that

k\ (6’ + c')‘ sin*</) = (6" - o'*)* sin*<^, = (H’ - C*)’,

we have

(B+ C)* + (k + \) {B + Cy (b‘ + o')’ sin*^ + kX (b' + c')‘ sin*<^

= (H + C7)‘ + 2 (6’ + o’) {B + Cy sin’0 + (Z?* - (7*)«,

= (H + (7)* {(H + C)* + 2 (6* + c*) sin’<^ + (H - C7)’}

= 2 (H + Cy {H* + C* + (i* + c*) sin*.^}

= i(B+C)\

Also

(® + C’)* “ (1 + (B + cy (b’ + c'y Rm*<f> + kX {b“ + c’)‘ sin’i^

= {B+cy -2 (j" + c'*) {B + cy sin'^ + (
2?* - cy

= {B+ cy
(
(B + (7)* - 2 (6’* + c^) sin*^ + (H - C7)’)

= 2 (27 + cy {B* + (7* - (6" + o'*) sin*</.]

= 4 (B + (7)* cos*^,

and we have thence the fonnulce in question.

462. Moreover from the equation

/—_ (i' + c') sin

B"hTC
’

we have

_ (i' + c') cos 4>

2 Vi" (B+C7)*

_ (J' + c') cos

“ (B + C)*Ba

|b + 27 + sin’^ (2(/,

|(B* + i’ sin’^) (7+ (27*+ c* sin*^) b| d<f>

_ {b' + c) cos
<f> d<f>

(B + (7) BC
'•

and combining herewith the foregoing equations

Vl+iw;.l+\a!=
^

,

X/ 4* (/
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whence also

TO ELLIPTIC INTEOBALS,

we have therefore

463. Moreover

and thence

{b' + c'Y sirx*<h

d<p

this is

= i (&' + c')» sinV
sC{B^-Cr)

Or since

jB’ — C’= —(&’ — sin’^, = {IP — o'*) 8in*<^,

•Jxdx
, (6'+cT B-C

VZ
“

* {h’ - c')
• BG

_Ac{+bJ(i n

viz. we have the two equations

\fxdx
j

(c + by f\ 1 \ T

.

where Z= ^/l — x.l+*a:.l+X».l — kKx^

B = Jl — b* sin’^,

(7 = Vl — c“ sin’<^,

and as above

f- {b' + c') sin
(f>

W+G '

361

VZ=Vl — ».l + *a:.l+X«:,l — k\x= :
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362 OIC TWO INTEGRALS REDUCIBLE [XVI.

* fWe thus see that the two integrals in question I -t- -
,

J\xX

I——— depend upon the two elliptic integrals of the first kind,
i \X

f <f<f>

f
’</>

which is the theorem in question.

sin*

Further Developments. Art. Nos. 464 to 468.

464. We may express ^ as a function of x; viz. the last

equation gives

j I
C_ jli' + c )jin<l>

Vx

and thence ff+C'- ^ _ 2BC,
X

and (g- C*)* - 2 {1P+ (7*) = 0

;

or since as before !? — €* = (i'* — c'*) sin’^, the whole equation

divides by (b’ + c')* sin’<^, and throwing out this factor it becomes

{b' - c'Y sin*.^ - 2 (g + C*)
^

^ = 0,

that is

(b' — c')’ X* sin’^ — 2x {2 — (6* 4 c’) sin*<^j 4 (b' 4 c')* sin*^ = 0,

viz. sin’^ l(b' 4 c')’ 4 2 (i»* 4 c*) x 4 (6' — o')’ x’j = 4x;

that is

4x
"" (b^y 4 2 (6* 4 c*)^ (6' - c')* {?

4.r

(6-4cT,
,

2(b~
(b'+cy

X 4

(1 4_«) (1 4 X) X

1 4 KX . 1 4 Xx '
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XVI.] TO ELLIPTIC INTEGRALS,

hence we may write

363

sin’<^ = l + /e.l+X.a: (-;),

cos*<p =1 — X .1 — k\x (-r),

(-).

C^={l+J^xf (H-),

where denom. = 1 + /tx . 1 + Xa;.

465. It may be remarked that writing

i+ex={{B+cy+e(b’+ cy sin* ^j + (.b+ c)*

= {2 — (J* + sin’
<f>

+ e{b'+ c'Y sin’ ^ + 2BC]^{B + C)\

and endeavouring to make the numerator a square, it will

be the square of

Vl + 6sin ^ Vl + c sin ^ + Vl — 6sin Vl — csin^,

or else of

VT+ b sin ^ Vl — c sin <}> + Vl — 6 sin Vl + c sin
;

viz. in the first case we must have

2 — (6’ + c*) sin’ tf> + 6{b' + c')’ sin* <j> = 2 + 2bc sin’
<f),

that is

- (6’ + o’) + 0 {V + c'Y = 26c, 01 0=
,
=>c:

and in tho second case

2 - (6’ + c*) sin’ tf>+9{b'+ c')‘ sin* (j> = 2 — 2bc sin’
<f>,

that is

-(6’+o’) + 0(6' + c')’ = -2ic, or =X.
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364 ON TWO INTEGRALS REDUCIBLE [XVI.

Hence the two equations are

l+Aca;={Vl+68in^Vl+csin^+Vl—Jsin^Vl—csin^l*-r (2?+C')*,

l+Xa:=[Vl+6sin</)Vl— csin</)+Vl—&sin^Vl+csin^)*-^(5+(7)*,

leading to the before-mentioned equation

l + /tx.l-|-\a: = 4-i-(i?+ C)*,

but there are no analogous values of 1 — x, 1 — /ex to lead to

1 — X . 1 — kKx — 4 cos’ (j>-^{B+ C)\

4G6. Write now

b = sin (a + ^), c = sin (a — /S),

and therefore

b' = cos (a -I- c' = cos (a — /9)

;

wo hence obtain

_ 2 sin a cos ® ^
2 cos a cosB

2 sin /3 cos a

2 cos a cos /3

= tan a, •Jx = -

= tanj8,

D + 0

— sin’ (a + B) sin’
<f>,

C=ijl— sin’ (a — /3) sin’
<f>,

JC=(l-x) (1 + xtan’a) (l+xtan*/8) (1 - x tan’a tan*/9),

and therefore

dx o /I
. J7 J

\!xdx cos’acos’yS /I 1\

~1jY'
^

sin a Bin /3 U ~ c)

Writing this last equation in the form

tan a Uu /3 = cos a cos 0 d4>.
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we have

TO ELLIPTIC INTEORALS. 365

2 cos a cos yS^ (1 + a: tan a tan /3),

2 cos a cos /8 (1 — a: tan a tan yS).
^ vxX

If in these equations we write yS» for
y
3, .X” continues a real

function, viz. we have

X= (1 — a:) (1 + a: tan’ a) (1 + x tan’ ySi) (1- x tan’ a tan’
;

and the formulae are

/— 2 cos a cos Bi sin <6
va: =

F+lT
rise to

2 cos a cos
y9» (1 + x tan a tan /8t),o VXA

2 cos a cos yS»^ (1 — x tan a tan ySi),

VXA

where observe that B+ C,

= ^/l — sin’ (a + /8t) sin’ <^ + Vl — sin’ (a — y3t) sin’
<f>

is real
;
viz. these formulae give the values of

f d(f>
f d(f>

Jvi — sin’ (a + ySt) sin’ ^
’ iVl — sin’(a — ySt) sin’0

’

in terms of the integrals

fVxdx

VX

We may change the form by writing tan ySt = i sin y,

whence

we thus have

cos y9i = , sin y3 e = » tan 7

:

cos 7
'

* = tan’ a, \ = — sin’ 7,
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366 ON TWO INTEGRALS REDUCIBLE [XVI.

/- _ 2 cos a sin
<f>

J3 +C’

A’’= (1 — ic) (1 + a; tan* a) (1 — a; sin* 7) (1 + a; tan’ a sin* 7),

2 cos a

cos 7

d<}> _ dx~
VxA (1 + IX tan o sin 7),

2 cos a

cos 7

d<f>

~C'

dx

7̂ (1 — ix tan a sin 7),

and observing the equation

sin’
<f>
= (1 + <) (1 + X) X _ 1 X cos’

7

(1 + Kx) (1 + Xx) (cos* a + X sin’ a) 1 — x sin’ 7
’

we see that to real values of ^ there correspond values of x
which are positive and less than 1, and that as x passes from

0 to 1, sin’<^ passes from 0 to 1
, or <j> from 0 to 90", X being

thus always real and positive.

Writing sin^=y, the relation between if>, x gives a re-

lation between x, y : viz. this is

Vx = _
(*' + c') y

^l-by+s/l-cy’

or what is the same thing

, (1 + Ac) (1 -I- X) X^=
(l+xx)(l + x:r)

’

viz. this is a quartic curve
;
and introducing 2 for homogeneity,

or writing the equation in the form

y* (2 -I- Kx) (2 -I- Xx) - (1 + x) (1 + X) X2* = 0
,

we see that

x = 0, 2 = 0 is a fleflecnode, the tangents being 2 -f- xx = 0,

2 -I- Xx = 0 ;

y = 0
, 2 = 0 is a cusp, the tangent being y = 0

;

x = 0
, y = 0 is an ordinary point, the tangent being x = 0

;

hence the curve, as having a node and cusp, is bicursal.
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xvl] to elliptic integrals. 367

407. The transformation of a given imaginary modulus

into the form sin (a + /9i’) presents of couree no difficulty;

assuming that we have A: = e +fi, then we have to find a, /3

such that e+/t = sin(a + /3»), or writing sina = f, sin

=

117,

to find f, 7} from the equations

these give e“ = + fi;*, /* = »?’-

whence e* +/* = f* + »?*, and thence easily

r = i{ l + e»+/*-Vvl,

^‘ = i{-l + e’+/* + Vv),

where V=l+e*+/‘-2e* + 2/*+2e’/*.

If as above sin = i tan 7, then tan 7= 17 ,
or the equations

give = sin a, and 17,
= tan 7.

468. The integrals reducible to

elliptic integrals when the quintic function P has the fonn

P = a: (1 — a:) (1 + kx) (1 + \x) (1 + /c + X + /c\ x),

as shown by Prof. M. Roberts in his “ Tract on the Addition

of Elliptic and Hyper-elliptic Integi'als,” Dublin, 1871, p. 63

;

and in the Note, p. 82, to the same work, a simple demon-

stration is given of the theorem (due to Prof. Gordan) that the

like integrals, wherein P denotes a sextic function the skew

invariant of which vanishes, are reducible to elliptic integrals.
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ADDITION. FURTHER THEORY OF THE LINEAR AND QUADRIC

TRANSFORMATIONS.

The Linear Transformation. Art. Nos. 469 to 473 .

469 . We consider the transformation of the differential

expression

(lx

— a.x — (3 ,x — y.x — S

where the new variable y is given by an equation of the form

xy + Bx + Cy + D = 0 .

The coefficients B, C, D might be expressed in terms of any

three pairs of corresponding values of the variables x, y, say

the values a, yS, 7 of x, and the corresponding values a', 0, y
of y :'but it is better to consider in a symmetrical manner four

pairs of corresponding values, viz. the values a, /3, 7, S of a: and

the corresponding values a', yS', 7', S' of y. We have thus four

equations from .which B, C, D may be eliminated, and we
obtain the relation

oa', a, a', 1 = 0,

A /y. 1

:

77', 7. 7’. 1

'

SS', S, S', 1
j

which in fact expresses that the two sets of values (a, y8, 7, S)

and (a', ^ , y, S') correspond homographically to each other.

470. Writing for convenience

a, b, c, f, g, h =B -y, y - a, a - yS, a - S, /3 - S, 7 - S,

a,b',c',f,g,h' = ^-y, y'-a, a'-yT, a' -S', ^'-S', 7'- S',
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ADD.] LINEAR AND QUADRIC TRANSFORMATIONS. 369

80 that identically

af-\-hg-k-ch=0, a'f + lig' + c'h' = 0
;

then, as is well known, the relation in question may be ex-

pressed in the several forms

af •. hg \ ch = a'f : h'g' : c'h'

;

or, what is the same thing, there exists a quantity N such

that

°‘/L = = ,V*

af bg ch

471. The relation between (ar, y) may now be expressed

in the several forms,

y-g' _ p a:-g y-f! _ .V ~ 7 _ p a? ~ 7

y — S x — h'y — h' ^ X — B ’ y — S x — S'

and writing for (x, y) their corresponding values, the values of

Q, R are found to be

p _h'h _c’g ^ _c£ _ah
_ p _ ^ .

bK ~cg"^~ If ~
ah'

’ ^~ag'~ bf ’

and we thence obtain

fPN'=f‘QR,^QX*=g’^RP, h'E^'*=h'^PQ, '/PqR

472. Differentiating any one of the equations in {x, y),

for instance the first of them, we find

fdy fPdx

and then forming the equation

Vy — 'x'.y—R'.y — y ^P (JR •Jx — a . x — /3 . x — y

(y — h') v'y — h' (* — S) •Jx — B
’

or if we please

“fy — a'.y— B'.y—y'.y — B' _ JPiJH Jx — a.x— ^ .x — y .x — B

c. 24
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370 FURTHER THEORY OF THE [add.

and attending to the relation/'PN* =f*QR, we obtain

Ndy _ dx

•Jy—CL.y — ^.y — '^'.y — S “i/x— a.x — R.x— y.x — S*

which is the required formula
:

(a, /9, 7, 3) and any three, say

(«', ff', 7'), of the other set of quantities are arbitrary, and the

values of S', N in terms of these are given as above.

473. It is proper to remark that in this and similar

formulae the sign of the multiplier N may be assumed at

pleasure; only, this being so, the radicals VA' and ^ Y of the

formulaj are not in general both positive
;
we have between the

radicals a relation of the form F\/X= + G“JY {F, G rational

functions) wherein the sign ± has a determinate signification
;

in fact the last-mentioned relation combined with the differ-

ential equation gives ± XG dy = Fdx, which equation sub-

stituting therein for ^ its value, obtained by differentiation as

a rational function of (x, y), is a rational equation equivalent,

when the sign is taken properly, to tlie given rational equation

between the variables (x, y). The sign ± of the equation

F "JX = ± G “J Y might have been assumed at pleasure, and

the sign of N would then have been determinate
;
but this is

less convenient

Transformation of a form, into itself Art. No. 474.

474. The homographic relation is satisfied by writing

therein

«'> 7 .
^ = («. A 7. 8), (/3, a, S, 7), (7, S, O', R), or (S, 7, R, a)

;

these values in fact give

a, V, C 1 f y ^ f ^ >

0. c, /. 9> b.

/. -9’ — c, a, —b, — h,

-b. h, -a, -g, c.

-a, 9> — b, —f, b, -c.

respectively, so that in each case

0'/' : h'<j : c'h' = af : by : ch.
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We have thus four solutions of the equation

dy dx

— a.y— fi.y—y.y—

B

Vas — a.x—~fi .x — y.x — B’

viz. these are

y— a _ a

y — B X — B
’

y — /3_ /3 — Bx — a

y — y y — a X — B’

y — y _ y — B X — a

y — /8~ a — x — B’

y — B_ 0 — B.y — Bx — a

y — a. y-a.a — 0x-B’

the first of them being the self-evident solution y = x.

In particular there are four solutions of

that is

dy _ dx

>/l — y*. 1 — s/l— a^.l— iV’

viz. these are y = x, y = — x, y = andy=—~

,

respectively.

Application to the standard form. Art. Nos. 475 to 477.

475. Considering now the equation

Ndy dx

.
. ^ kM

or, writing N=—
,
say

M dy _ dx

2
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if in the general form we assume

a, 7,
8=1, - 1, ,

then we have in any one of the twenty-four orders

a', P, 7 . 8 = 1
,

- 1 .

i, -i;

and since, for any one of these orders, \ will be deteiTnined by

a quadric equation, it would at first sight appear that there

might be in all twenty-four pairs of solutions, belonging to

forty-eight different values of \, M. But the solutions corre-

sponding to two orders in which ^ 7 are interchanged, are

equivalent
;
and moreover y = if>(x) being a solution belonging

to determinate values of \, then we have, belonging to the

same values of X, M, the four solutions y=<f> (x), y = ^ (- x),

y = ^ (/^)
have thus only three pairs of

solutions, or say six solutions, belonging each to a different set

of values of X, M
;
and which correspond to the three orders

o’, 7'. =

1-1 - --
*’ X’ X’

1
,

1

X’
1

,
-

X’

1 1 -1 - 1 .

X’ X'

476. Forming for each of these the equation which de-

mines X, say in

the three equations

tennines X, say in the form ^ ^ ,
we have successively

a+x)’_ /l-l-it,* 4X

4X Vl-Jfci ’ (1-t- x/

s

/I -f VA-y /1-iVA-y /I

Vl -
’

Vl + »V)t/ ’ Vl

• [i-kj ’
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The corresponding values of N are derived from the equa

tion N*

values

^ ,
viz. wc thus obtain for -j-

,

that is for M, the
aj fc

l+X t(l+\)
l+^’ 1+* ’ 1+k’

viz. substituting for \ its values, these are

j
1 2t 2. 2 j _ 2i

’ (1 + VX-)‘ ’
(1 - V^)‘ ’ (1 +V VA/ ’

(1 - i VA;)’

477. The six transformations

f7x

v'l-yM-\y
then are

y =
A

“ Vl-x’. 1 -1

X =

fcV ’

M =
r 1

X, k.

r—
*

'

1.

1 1 1

x' k' *’

1 "4 k 1 — X ^k 2t

1 — Jk 1 +x Jk’ \l+Jk)
'

\\+Jkf
1 — Jk 1 + xjk /I +Jk\^ 2i

1 + Jk 1 — « Jk' Ki - jk)
’

li-Jky’

1 + ijk 1 — ixjk . /I - tjk\' 2i

1 — iJk 1 +txjk' \l + ijk)
’

(1 + iJky’

1-t Jk \+ixJk (\+iJk\' 2C

1 + ijk 1 — ix Jk
’

\\-iJk)
' (l-ijkf

where it is to be remarked that the last four transformations

are included under the form

1 + a 1 - .
- M 2i

^ 1 — a 1 + aj;
’ 'U+J’ "(T+a/*

where a is a fourth root of k*. These are in fact Abel’s results

referred to No. 410.
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The Quadric Transformation for the standard form.

Art. Nos. 478 to 482.

478. Reckoning the number of linear transformations as

six, that of the quadric transformations is reckoned as eighteen
;

viz. these are Abel’s eighteen transfonnations referred to No.

418. Taking as before the differential relation to be

Mdy _ dx

we have, Four transformations

y = x = Af=
t y

{\^k)x 2-Jk 1

1 + kx*
’ 1+k’ 1 4*’

(1 - ;!•) a: 2i Vk 1

1 -Au;*
’ T-k’ 1-*’

2-Jkx 1 + k 1

l+kjd ’

2Vfc’ 2VA’

2i-Jkx 1-k 1

l-kx‘
’

2i VA-’ 2iVifc’

Six transformations

y = \ =

1 + AV 1-A i

iV/fc’ 1 + ^'

-1+fcr* 1 4 A t

1 + kx*
' l-A:’

l-(l + A-')a^ 1-A-' 1

14*" 14*"

1 - (1 - k') 3? 1 4 A' 1

1 -(! + *>” 1 - At'
’ r^A'’

— Qc + dc) + ik^
(Jc-ik) + ika^

’

k' — ik

If+lk ’
k 4" tk

1

Qe — ik) 4 ik x*

— ijc 4* 4“ tk X*
*

k' 4 ik

F-VA-’
— A 4 ik'

;
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480. Aad lastly, Eight transformations

_ J/k l4 fcr*+a;V2^N/rT&
^ Vi + A — 1 + a:V2v^AVl + A’

, /Vr+A-V2vAV
,

2i

lvi+A + V2 VAj ’ iViTA+V2 VA)*
•

Do. with — Jk for Jk,

>1 ti ® ^A )i

„ -*.^A

Do. with ^A for ^k and — A, ^1 — A for A, >/ 1 + A,

V^

j» »»

Ln* V*

V2
” ”

ZLk±ijk
J2

” ”

— 1 — t tlT

If ft

ft ft

481. The last formul®, writing for shortness, /3 an eighth

root of 16A’, and a= are included under the form

a4)3 1 + a/9x + ]/3*a:*
~

^ “ a- /8 1 — 0/8x4 \o4^/
’

if =
2f

(« + /3)*’

and the verification may be effected as follows : we have

l4 y = 1 —0/3x4 J/3*x*4^3^ (1 + + (0>

= + H.

1— y = 1 —0/9x4 iy3*x’— (1 + 0^x4 (•^)»

=-^(l + *)(l + i/9‘^) (-).
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1 + Xy = 1 - a/3» + l^x' + (1 + a^x + i/3*x*) (-r),

- «•

1 - Xy = 1 - afix + (1 + a^x + M,

= (-).

where

denom. = 1 — a/3x + i/S^as*.

Hence

4»’a/9
vTi-yM-xy= (i - vi i -*v (..),

•where A’ is written instead of its value ^

:

and moreover

(-).

in which two fonnulae the denominator is equal to the square

of its above-mentioned value; we hence tind the required

formula,

Mill/ _ dx

. 1 - X>’
“
Vl -y'

. 1 -'iV

'

where M has its proper value
2t

482. It is, as regards all the formul®, convenient to remark

that the value of M may be verified by taking x small
;
thus, if

«-hen X is small the equation for y becomes y = $x, then ob-

viously jJ/= i
;

if the equation becomes y = ± 1 + /9x", then we

have and so in other cases.
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ADD.] LINEAR AND QUADRIC TRANSFORMATIONS. 377

Combined Transfoi-mations : Irrational Transformations.

Art. Nos. 483 to 487.

483. By combining two linear transformations, we obtain a

transformation which is linear, and as such is a transformation

belonging to the system; viz. it is either one of the six trans-

formations, or it is at onc^ reducible to one of these. Similarly,

by combining a quadric transformation with a linear one, we

obtain a transformation which is quadric, and as such is equiva-

lent to one of the sy.stem. For instance, changing the letters,

if with the quadric transformation

(1 + k)x

r+kx^ '

1 +k dx ^
2 v/^

VI -xM - aV “ V
I

’ i + k

’

we combine the linear transformation

_ 1 -I- Vi' 1 — a: Vi

^“F-Vi l+xVi’

giving

we have z a quadric function such that

and this must be one of the series of quadric transformations.

We in fact find

2i{i + k) °

VF-z’.l-xV
^

vr-/.'i-Y‘/

— - d
(l-l-VF*

^ dx
_ _

/I - Vix*

Vl-y'.l-V'y' Vl^. i -i’x”' u-i-vj’

Vi =
1 -V^
1 + V7

’
and thence \ = 1+7’

(1 + Vi)‘ _ -

1

2»(l + i) 1-1-7’

x'Jk =
1 - y V7

1 -hy V7’

1 4- V7 1 — ,y V7
or X--;

,

'

1 - V7 1 -I- y V 7
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and thence

_(l4-/:)x _l+7l-7y*
+ “ 1 - 71 + 7/’

or, wliat is the same thing,

1 = -J+W’
\z — 1 + 7/ ’

giving
1+7 dz

Vl-i‘.l-AV V1-/.1-7V
,
where X

1-7
1 + 7

’

which ^with z in place of — —
j

is one of the series of quadric

transformations.

484. If we combine two quadric transformations we obtain

in general an irrational transformation : viz. neither of the two

variables is a rational function of the other of them, but the

two are connected by an equation : for instance, if the two

transformations are

_ 2^/^

giving

giving

then we have here / + ^’ = 1
; + ^= 1

,
giving ^ -

,

that is = if 7', = v^l — 7', is the comple-

-^^dz
dx 1 + 1:

Vi-^’.i-xv Vl

y=

1 - k
dy

— 1 + ka?

1 +lV ’

dr

Vt-/.l-// ^/l-x•.l-^V

1 ^

1 + ifc
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ADD.] LINEAR AND QUADRIC TRANSFORMATIONS. 379

mentary modulus to 7 ; also — = t-^ ” 2i\'k *7

is

—
, ,
and the relation

7

dy

or, what is the same thing, changing the letters, the trans-

formation arrived at is a;’ + y*= 1
,
giving

vr-y.i-Ay
dx

X =
ik

k”

which is at once verified, since from the assumed relation

x’ + ^’ = 1 we have

dx — dy

V1 — x' V 1 —
’

Vi - = jfc' Vi - \y

.

48.5. Observe that the equations which define the two

new variables y, z in terms of x are in general of the form

A C
y = B' ‘=T>'

where A, B, C, D are quadric functions of x. Writing these

equations in the form

y X z •. \ = AD : BC \ BD,

then regarding (y, z) as the co-ordinates of a point of a plane

curve, these expressions of y, z in terms of the arbitrary para-

meter X show that the curve in question is a unicursal curve,

and, being of the order four, it is a trinodal quartic
;

viz. the

equation <f>(y,z) = 0
,
obtained as above by combining any two

quadric transformations, being a solution of the equation

Mdz _ dy

Vr^Tl-Vl* ” .1-7’/
’
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we have tlie theorem that this equation
<f>

(y,z) = 0 represents

a curve which is in general a trinodal quartia It has been

seen how in one case the curve is a circle.

48G. It appears to he a conclusion of Abel’s, that if for

any given values of (\, 3/) the equation

Mdy dx

admits of an irrational solution, then there is always an integer

number n such that the equation

Mdt/ _ ndx

- \y ” vT-

admits of a solution y= rational function of x. So that, in

fact, the general problem of transformation reduces itself to

the problem of rational transformation. For instance, as just

seen, the equation

-v<iy dx

has the irrational solution y = Vl — x*; the equation

2dx

Vl

has a solution y = rational function of x. To verify this, ob-

serve that the first equation is satisfied by y = cn u, x = sn u

(which are such that y = \/l — x*) : hence the second equation

is satisfied by the values y = cn 2m, x = sn m
;
we have cn 2u a

rational function of sn m, ante No. 100, and writing therein x

for sn u we obtain

_l-2.r»+IV
^ 1 - /Gv

as a rational solution of the second equation : the solution can

of course be at once verified.
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487. It appears from the formulae given No. 94, inter-

changing therein {z, x) and also k, k', that the equation

— idz _ dx

-Tv
“

has the irrational solution z = hence the equation
At 1 — k X

— idz
__

2dx

7T-vT ~

has a solution z = rational function of x ; viz. the first equation

being satisfied by x = sn «, e =
,

the second equation is

satisfied by x = sn u, z — being a rational func-

tion of sn u, see No. 100, replacing sn u by x, we find

_ 1 — Idx*
* “ r^2W-fl*x‘

as a rational solution of the second equation.
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The flKure* refer to the pecee; where the reference eitendi to the whole or the hnlk of »
Chepter, the Chapter ia aUo referred to. A beedinx "Function,'* with diriiioni

fix it). ..(181 hu been introduced.

Abel, linear and quadric traneforma-

tiona 320, 823, 873, 874: irrational

tranefunnation, 380.

Addition, see Function, (2). ..(9).

Arc o( curve

;

repreecnting integrals K^k, <t>),F{k,^)

(ellipse, hyperbola, lemniscate) ^
determination of curves the arc of

which represents elliptic integral of

^at kind, 3^ (Chap. xv.).

Aritlunetico-geometrical mean, 330.

Baehr'a formulie for multiplication of

sn, cn, dn, 29.

Circular functions, illnstration by re-

ference to, 10,

Definitions and Notations, 1 (Chap. Ij.

elliptic integrals F (k, <!>), E (1, ^
n (n, k, 4>), .3.

amplitude, modulus, complementary

modulus, parameter, S.

complete functions F,l, £,1, 4.

elliptic functions am, sin am, cos am,

A am, or sn, cn, dn, 8,

K, K', 12,

£u, Zu, II(u, a), Ifi,

Ou, Hu, Ifi.

Differential equation;

addition-equation, 6, 21 (Chap. ii.l.

satisfied by F {k, ^E(J^ d>), or by

£,k, E^k, 47, 50,

satisfied by multiplier, 218.

of third order, satisfied by modulus

in transformation of nth order,

220

Differential equation, continued.

Partial, satisfied by Q, H. <Sc., and

the numerators and denominators

in multiplication and transforma-

tion of sn, cn, dn, 221 (Chap. ix.).

special equation, 248.

equation dj: -i- ,JXz=dy -i- S32
(Chap. XIV.)

Dimidiation, 72, see Function (71.

Duplication, 71, see Function (7).

by two quadratic transformations,

IRl.

Doubly infinite products, see factorial.

Euler, partition formula, 288.

Factorial formules, 92, 07.

doubly infinite product forms, 101,

298.

Function

;

Jidx
(1) — reduction to standard form

V-Y
309 (Chap. XII.).

d<6 dip

(^ addition -equation

21 (Chap. II.).

(3) F{k, ^), march of function, 41

.

properties as function of k, 48.

addition, 103.

quadric transformation, <tc., 325.

imaginary modulus sin (a -(-/Si),

365.

(4| £ (1-, ^ Sec also infra,

march of function, 41.

properties as function of k, 46.

addition, 104.

quadric transformation, Ac. ,
325.
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Fncction, continued,

n (n, h, ^ See also infra,

addition, 104.

outline of farther theory, IPS.

redaction of parameter to form

sn (a + ^i), 114.

addition of parameters, and redac-

tion to standard form, 1 1H-

interchange of amplitude and

parameter, 134.

gdu, sgu, cgu.

addition and other properties, SiL

(71 sn ^ cn u, dn «, fil (Chap. it.).

addition and sabtraction formuUe,

61.

periods iK, 4i/r, 66.

imaginary transformation, 68.

fnnctions of u -(- (0, L 2, 3) .ff

+ (0, 61L

daplication, 21.

dimidiation, 22.

triplication, 22.

multiplication, 2S.

factorial formulte, 92.

new form of same, 92.

anticipation of doubly in&nite

product forms, IQl.

connexion with 9u. IIu, 155. 156.

quadric transformations, 163.

n.tbic transformation, 249 (Ch. x.).

(8) Eu, Zu.

connexion with £ (k, </>), 107.

addition, 107.

connexion with 6u, 113.

farther theory, 146.

(9} n(u, o), 142 (Chap. VI.).

connexion with n (n, 1, ^ UH.

connexion with 6u, 113.

values of n (u + a, a) for

o = Ji£', \K, 4£+4iJr, 144.

n (h, o) expressed in terms of 0u,

151.

addition of amplitudes, 167.

interchange of amplitude and

parameter, 1.50.

addition of parameters, 167.

(10) e», Hu, 142 (Ch. VI.), 224 (Ch. n.).

properties of 6u, 160, 162.

Function, continued.

(10) continued.

connexion with sn, cn, dn, Zu and

n (u, a), 165.

Hu introdneed, 1.56.

multiplication, 160.

partial diflerential eqnations, 227.

^ 12 expressed as q-fnnetions, 289.

development in g-series, 295.

double factorial expressions, 298.

transformation, 304.

(11) numerators and denominator in

multiplication and transforma-

tion of sn, cn,dn, 224(Chap. rx.).

connexion with 0«, Hu, 161.

partial differential equations, 233.

veri6cation for cubic transforma-

tion, 243.

connexion with functions 0, H,
307.

(12) 7-functions, 280 iChap. xi.).

derivation of the q-foimuhe, 280

0, K expressed as 7-fanctions.289.

(13) The general equation-^ =
' Jx Jr'

332 (Chap. iiv.).

Lagrange’s integration, 837.

further theory, 340.

Gauss, the arithmetico- geometrical

mean, 329. 336.

Glaisher, proof of Legendre’s relation

between complete functions Fjk,

Ac., 49.

tables of theta functions, 156.

Gordan, integral reducible to elliptic

functions, 367.

Gudermann, 44, 66.

Gudermannian, 66 ;
see Function (f^

Imaginary, reduction of given, to form

sn (a + ^<), 114.

Imaginary transformation, Jacobi’s, 68.

Integrals involving root of a quintic

function and reducible to elliptic in-

tegrals, 358 (Chap. xvi.).

involving root of a sextic function,

362.

Integration, general theorem of, 352.
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jMobi, 18, 19. 23. 28. 66. ISl. 176.

218, 2^ 22^ 22^ 32L

Knmmer, formolie in bypergeometrie

writs, 55.

Landeu’s theorem, ^ 32S.

Lagrange, integration of differential

equation dx-i- = dy + *Jy, 337-

Legendre, proof of addition-equation

by spherical triangle, 27j bis rela-

tion between complete functions, K^,

E,', t\, t'l ; formula relating to

third kind of elliptic integral, 118.

121. 134

;

reduction of differential

expression to standard form, 312.

Lionville, formula for are of curre, iib

Multiplication;

of sn, cn, dn, 78. 86.

tables, SO.

from two transformations, 199. 278.

Multiplier;

in cubic, &e. transformations, 201.

XX** ijh

Jacobi's relation niP = -jr ,, . 21B.
tAT-‘ d\

differential equation satisfied by, 218.

relation between M, K, A, E, O, 222.

Modular equation or relations;

linear transformation, 320.

quadric transformation, 178.

o<ld'prime transformation, ^ 198.

273, 27fi.

cubic transformation, 186, 198. 204.

quintie transformation, 190, 193.

septic transformation, 192.

Mo<lular equation

:

properties of, 198: differential equa-

tion of third order satisfied by the

transformed modulus, 220
; verifica-

tion for quadric transformation, 221.

Notation (-r-) explained, 5.

Numerical instance for complete fnne-

tions^ /"..and for incomplete f’.aaS.

Bicbelot, representation of given imagi-

nary quantity in form sn (a -P /Ji), 118.

Itoberts, M., integral reducible to el-

liptic functions, 367.

Serret, formula for arc of curve, 46.

Tables of the theta functions, 156.

Transformation

;

general outline, 162 (Chap. ni.).

linear transformation of integral,

310, 368.

quadric, 112 (Chap, vni.), 821, 374.

cubic, 18C, 193, 204,^ 243.

quintie, 189. 195.

septic, 192.

two transformations leading to mul-

tiplication, 199.

odd or odd-prime, by the n-division

of the complete functions, 249

(Chap. X.).

multiplication foimuliB obtained

from two transformations, 278.

of functions H, ^ 304.

Landen’s theorem, ^ 325.

combined, and irrational, 377.

Triplication, 77 : see Function (7).

Walton, proof of addition-equation, 21.
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Thucydldea. The History of the Peloponueainn War. By Richard
Bhilloto, M.A. Book 1. Seo. Cs. M. (Book II. tn (As press.)

Greek Testament By Henry Alford, D.D. 4 Vols. 8vo. (Sold
Mpaiately.) Vol.l.lf.Ss. Vol.U.lf.4s. Vol.lll.18s. VoL IV. Part 1. 18s.;

Part 11. 14s.; or in one Vol. S3s.

LATIN AND GREEK CLASS-BOOKS.
AaxiUa Latina. A Serin, of ProgressiTo Latin Exercises. B;

Rot. j. R. B.%(ldelo7, M.A. Fcap 8td. 2i.

Latin Prose Lessons. A. J. Church, M..A. 2nd Edit. Fcap, 8to.
2i. (W,

Latin Exercises and Grammar Papers. By T. Collins, M.A. Foap.
Svo. 2i. fkt.

Analytical Latin Exercises. By C. P. Mason, B.A. Post Svo. 3,. 6d.

ScalaGrteca: a Series of Elementary Greek Exercises. ByRev.J.W.
DsTla, M.A., aad R. W. Boddeloy, M.A. 8rd Edition. Fcap Svo. St. iSd.

Greek Verse Composition. By O. Preston, M.A. Crown Svo. 4r.6d.

By the Rev. P. Fhost, M.A., St. John’s CoiiEOE, Caudridoe.

Ecloge Latina; or, First Latin Reading Book, with English Notes
and a Dictionary. ISth Thousand. Fcap Svo. 2t. 6d.

aterials for Latin Prose Composition. Sth Thousand, Fcap Svo.
2t. SU. Key, 4t,

A Latin Verse Book. An Introductory Work on Hexameters and
Pontameters. fith TTiouaand. Fcap Svo. St. Key. 6t.

Analecta Grseca Minora, with Introductory Sentences, English Notes,
and a Dictionary. iSth Thotuand. Foap Svo. St. Orf.

Materials for Greek Prose Composition. 2nd Edit, Fcap. Svo. ‘it.Srf.

Key, St,
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By the Rev. F. E. Gretton.

A First Cheque-Book for Latin Verse-makers. U.

A Latin Version for Masters. *U.

Beddenda; or Passaifes with Parallel Hints for Translation into
Latin Prow and Verse. Crown 8vo. U. &d,

Beddenda Beddita (see next page).

By H. a. Holdes, LL.D.

FoUorum SUvula. Part 1. Passa^ea for TraoRlation into Latin
Elegiac and Heroic Verse. Cth Edition. Poet 8ro. 7i. 6d.—— Part II. Select Passages for Translation into Latin Lyric
and Comic Iambic Verse. 3rd Edition. PewtSTO.

Part III. Select Pass^es for Translation into Greek Verse.
3rd Edition. Poet 8ro. 8r.

Folia Silvule, eive Kologfr Poetarnm Anglicomm in I.atimun et

Onecum convLTsae. 8to. VoI. 1. 10«. 6d. Vol. II. 12«.

FoUorum Centuris. Select Passages for Translation into Latin ami
Oreck Prow. Post 8to. 8*.

TRANSLATIONS, SELECTIONS, &c.

Many of the following books are well adapted for school prizes.

iSacbylns. Tranalated into English Prose by F. A. Paley, M.A.
'.^d Edition. 6vo. 7«. 6d.

Translated by Anna Swanwick. Ciown 8vo. ‘i ?oU.

Folio Edition, with Tbirly-tliree Illustrations from llftx-
man'a deaigna. 21. 2m.

Anthologia Grteca. A Selection of Choice Greek Poetry, with Notes.
By Rot. P. 8t. John Thai-keray. Fcap 8ro. 7$. 6rf.

Anthologia Latina. A Sielection of Choice Latin Poetry, frotn Nirvius
to B«>eibiua, with Notes. By Rev. P, St. John Thackeray. Pcap 8vo
Hi. M.

Aristophanes: The Peace. Text and metrical translation. By
B. B. Rogors, M.A. Fwap 4to. 7m. M.

• The Wasps. Text and metrical translation. By B. B.
Roger*, M.A. Fcap4to. 7f. fid.

Corpus Foetarum Latinorum. Edited by Walker. ) vol. 8vo. 18*.

Horace. The Odes and Carmen Sirculare. In English verse by
J. Conington, M.A. 5th edition. Festp 8vn. 6«. fid.

' The Satires and Ep!*^tlea* In English verse by ,1. Coning-
toD, M.A. 8rd edition, fii. fid.

— Illustrated from Antique Gems by C. W. King, M.A. The
teit rerleed with Introduction by H. A. J. Munro, M.A. Laivo Svo. II. li.
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MTtiC Ktonenses siv? Curminvin Etoite Conditonm Delectvs. By
Riohur l Ok««. 2 vuls 6vo. 16<.

Propertina. Vert.- Irnnslations from Bonk V., with revised I.alin

Text. By F. A. Paley, M A. Fcap 8?o. 3#.

Plato. Qorp m. Translated by E. M. Cope, M.A. Hvo. 7i».

Philebus. Translated by F. A. Paley, M.A. SmnllBvo. 4a.

Thea*telus. Translated by F. A. Paley, M.A. Small Hvo. 4*.

— Analysis and Index of the Dialogues. Hy Dr. ])ay. post
8v». ti.

Beddenda Reddlta; Passages from English Poetry, with a Tjitin

Vor»* Tmnslation. By F. E. Orettnn. Crown 8vo.

SabrlBee Corolla in bortnlis Regia' Seholne Snlopiensii conlexnemnt
trc« vln floribnii legendis. Editin tortia. 8vo. 8#. dd.

Sortmn Carthnaianimi Floribus trium Seciilomm Contextual. By
W, H. Brown. 8to Hj».

Theocrituii In English Verse, by C. S. Calverley, M.A. Crown 8vo.
7t. Od.

TranslaUons into English and Latin. By C. S. Calverley, M.A.
Post 8 ct>. 7#. Cd.

'

into Greek and Latin Verso. By R. C. Jeljh. 4to. cloth

nUt. TOi. tki.

Virgil in English Rhythm. By Rev. R. C. Singleton. Large crown
8to. Tj 6d _

REFERENCE VOLUMES.
A Latin (V»Dimar. By T. H. Key, M.A. Olh Thousand. I’ostSvo. 8«.

A Short Latin Grammar for Schoola. By T. H. Key, M.A., F.R.S.
8th Edition. P(.«t 8to. 3«. Gd.

A Guide to the Choice of Claasical Books. By J. B. Mayor, M.A.
Crown 8ro. 2i

The Theatre of the Greeks. By J. AV. Donaldson, D.l). Post Hvo.
St.

A History of Roman Literature. By \V. S. TrnflVl, Professor at the
Univorvity of Tubingen. By W. Wagner, Ph.t>. 2 vol«. Demy 8vo. 21<.

Students Guide to the Dniversity of Cambridge. Revised and cor-
rected. Srd E^itUoii. Pcflp. 8vo. C«. Cd.

CLASSICAL TABLES.
Greek Vesbs. A Catalogue of Verbs, Inegular ami Defective; their

leading formathms, tonttea, and inflexions, with Paradigm* for conjugation,
Rules fi-r furmatiou of tenses, Ac. &c. By J. 3. Baird, T.C.D. 2s. (W.

Greek Aceeots (Notes on). On Card, C</.

Homeric Dialect Its Leading Forms and Pecnliunties. By J. S.

Baird. T.C. D. Is. 6d.

Greek Accidence. By the Rev. P. Frost, ALA. Is.

Latin Accidence, By the Rev. P. Frost, M.A. Is.
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Latin VenlfloaUon. I >

ITotablUa Quedam ;
or tho rrinripal Ti nsea of most i>f tlie IireRiilar

Or«ck Vorbs and Elcmoutaiy Greek, LaUh, und Preiudi Conetmctlo))*.
New edition. fUt.

Ricbmond Rules for tbe Ovldlan Distich, &e. Br J. Tate, ^t.A. 1*. fti/.

The Principles of Latin Syntax, lx.

CAMBRIDGE SCHOOL AND COLLEGE
TEXT-BOOKS.

A SfrUs of EUvumtary Treatisesfor thr of Sl-uimts in thr Univer.
cities, School^ and Candidates for the EutAic

Examinations. Fcap ttro.

Arithmetic. By Rev. C. Elsee, M.A. Fcap. 8vo. 7th Edit. .11. 0rf.

Slementa of Algebra. By the Rov. C. Elsee, M.A. 4th Edit. is.

^tbmetic. By A. Wrigley, M..\. 3r. (Id.

A Progressive Course of Examples. With Answers. By
J. Watson. 11. .4. 3rd Editiou. 2.. tkt.

An Introdnction to Plane Astronomy. By P. T. Main, M.A. 2nd
Edition. 4i.

Conic Sections treated Geometrically. By W. H. Besant, M.A.
Snd Edition. 4«. ad.

Elementary Statics. By Rev. H. Goodwin, D.D. 2nd Edit. 3<.

Elementary Dynamics. By Rev. H. Goodwin, D.D. 2nd Edit. 3s.

Elementary Hydrostatics. By W. H. Besant, M.A. Tth Edit 4i.

An Elementary Treatise on Hensnratlon. By B. T. Moore, M.A. is.

Tbe First Three Beotions of Newton's Princlpia, with nn Appendix ;

and tho Ninth and Eleventh Sections. By J. H. Bvano, M.A. Stb B>!ltion,

by P. *1. Uain, M.A. 4s.

Elementary Trigonometry. By T. I’. Hudson, M.A. 3s. (Id.

Osometrical Optics. By W. S. Aidis, M.A. 3i. 0d.

Analytical Geometry for Schools. ByT.O.Vyvyan. 3rd Edit. 4s. Od.

Companion to tbe Greek Testament. By A. (7. Barrett, A..M. 3nl
Edition. Fcap 8vo.

An Historical and Explanatory Treatise on the Book of Common
Prayer. By W. O. Hunipbry, B.l). 6Ui Edition. Fcap. Sto. 6d.

Music. By K. C. Banister. 4t)i KiHUod. 5x.

Oiher$ iu Prepurativn.

ARITHMETIC AND ALGEBRA.
Principles and Practice of Arithmetic. By J. Hind, .M.A. 'Jth Edit.

4s. Sd.

Elements of Algebra. By J. Hind, M.A. 6lh Edit. 8ri>. Ids. ftd.

Ses aiso foregoing Series.
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GEOMETRY AND EUCUD.
Text Book of Geometry. By T. S. Aldis, il.A. Small ftvo. is. 6d.

Pari 1. is. M. Pan II. 2l.

The Elements of Euclid. By H. J. Hoso. Fcap. 8vo. 4a. Bd.
Exorcises •eparatcly,—— The First Six Hooks, with Commentary by Dr. l>&rdner.
loth Edition. 8vn. 6s.

The First Two Books explained to Beginners. By C. P.
Mmod. B.A. 2nd Edition. 8vo. 2». 6eC.

The Enunciations and Figures to Euclid’s Elements. By Rev. J.

BroAM, D.D. 3rd Kdition. Fcap. 8vo. 1«. On Cards, lu case, 6s. 6d.
Without the Pijrarcs. Cd.

Exercises on Euclid and in Modem Geometry. By J. McDowell, B.A.
Crown 8to. 8t. 6d.

Geometrical Conic Sections. By W.II.Bcsant,M.A. SndKdit. 4s.6r/.

The Geometry of Conics. By G. Taylor, M.A. 9ndEdit. 8vo.

Solutions of Geometrical Problems, proposed at St. .Tobn’s College
from ]K30 tn 1840. By T. Gaskin, il.A. Svo. ISi.

TRIGONOMETRY.
The Shrewsbury Trigonometry. By J, C. P. Aldoue, Crown hvo. 2s.

Elementary Trigonometry. By T. P. Hudson, M..t. lli. (Id.

Elements of Plane and Spherical Trigonometry. By .T. Hind. M.A.
fith Kdition. 12mo. (lit.

An Elementary Treatise on Mensuration. By B. T. Moore, M.A. r».

ANALYTICAL GEOMETRY
AND DIFFERENTIAL CALCULUS.

An Introduction to Analytical Plane Geometry. By W. P. Tumhull,
M.A. svo. ia>.

Treatise on Plane Co ordinate Geometry. By M. O'Brion, M.A. 8vo.
Vs.

Problems on the Principles of Plane Co-ordinate Geometry. By W.
Walton, M.A. Svo. Idf.

Trilinear Co-ordinates, and Modem Analytical Geometry of Two Di-

monsions. By W. A. ^ hiiwortti, M.A. 8ro. Ids.

Choice and Chance. By M'. Whitworth. 2nd Edit. Cr. Svo. fi».

An Elementary Treatise on Solid Geometry. By W. S. Aldis, M.A.
2nd £>litioD, revised. 6vo. 6s.

Geometrical Illnstrations of the Differential Calculns. By M. B. Pell.

8vo. 2s. $d.

Elementary Treatise on the Differential Calculns. Bv M. O’Brien,
M.A. 8vo. IOj. 6d.

Notes on Boolettes and OUssettes. By W. II. Benant, M.A. 8to.
is. M.
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MECHANICS & NATURAL PHILOSOPHY.
Elementary Statics. By H. Gomlvin, D.D. Fcap. Sto. 2nd Edit. 3(.

Treatise on Statics. By S. Kamshaw, M.A. 4tb Edit. 8vo. 10«. 6d.

A Treatise on Elementary Dynamics. By W. Garnett, B.A. Cr.Sro. 6.t.

Elementary Dynamics. By II. Goodwin, D.D. Fcap.8%0. 8nd Edit.
Zt.

Problems in Statics and Dynamics. By W. Walton, M.A. 8vo. lOr.Sd.

Problems in Theoretical Mechanics, By W. Walton. 3od Edit,
rovitovl and enlarged. Dctny 8vo. 10#.

An Elementary Treatise on Mechanics. By I’rof. Totter. 4th Edit,
revised. 8#. Gti.

Elementary Hydrostatios. By Prof. Potter. 7». 8rf.

By W. H. Besant, M.A. Fcap. 8ro. 7th Edition. 4».

A Treatise on Hydromeohanlcs. By W. H. Besant, M.A. 8to. New
Edition in the pra$.

A Treatise on the Dynamics of a Particle, rnparing.

Solutions of Examples on the Dynamics of a Rigid Body. By W. N.
QrifBo, U.A. 8vo. t$. 6<f.

Of Motion. -An Elementary Treatise. By J. R. Lunn, M.A. 7«.6if.

Geometrical Optics. By W. S. Aldis, M.A. Fcap. 8vo. !l.t. Orf.

A Chapter on Fresnel’s Theory of Doable Refraction. By W. S.

Aldls, H.A. Sto. 2>.

An Elementary Treatise on Optics. By Prof. Potter Part I. 3rd Edit.
»>. M. Part II. 12<. fkL

Physical Optics
;
or the Nature and Properties of Light. By Prof.

Potter, A.M. e». 6<l. Part II. 7i. «d.

Heat, An Elementary Treatise on. By W. Garnett, B.A. Crown
8»o. 2#. 6d.

Figures IIlnstratiTe of Geometrical Optics. From Sofaelbach. By
W. B. Hopkins. Folio. Pintos. 10#. G<2.

The First Three Sections of Newton's Principia, with an Appendix

;

nnd the Ninth nnd Eleventh Hections. By J. U. Evans, H..\. 0th Edit.
E<iitcd by r. T. Main, M.A. 4«.

An IntrodncUon to Plane Astronomy. By P. T. Main, M A. Fcap.
8vo. Cloth. 4#.

Practical and Spherical Astronomy. Hy R. Main, M.A. Bvo. 14s.

Elementary Chapters on Astronomy, from the “ Astronomie Phy-
sique" of Biot. By H. Goodwin, D.I>. 6vo. 3#. 6d.

A Compendiom of Facts and Formula in Pure Uatbematics and Natural
Philosophy. By O. R. Sroslloy. Fcap 8vo. 8#. M.

Elementary Course of Mathematics. By H. Goodwin, D.D. fith Edit.
8vo. 16#.

Problems and Examples, adapted to the Elementary Course of
IfatheiDstics." 3rd Edition. 8vo. 3«.

Solutions of Goodwin's Collection of Problems and Examples. By
W. W. Hntt, M. A. 3rd Bditton, rsTised and enlarged. 8vo. 9«.
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Eltmantaxy Examplee In Pare Hathematlc*. Hj- J. Ta.vlor. Svo.

7». Pd.

Mechulical Enclid. Hy late \V. Wliewell, P.O. Mh Edition. 5i.

IfachaniCB of ConstrueUon. With nninerous Examples. Br S. Fen*
wick, F.U.A.8. 8to. 12#.

Table of Anti Logarithms. By II. K. Filipowski. ^rd Edit. 8vo. I5i

Mathematical and other Writings of R. L. Ellis, M.A. Bvo. 10«.

Notes on the Principles of Pure and Applied Calculation. By Rev.
J.rbftlUs, M.A. nomySvo. 15#.

The Mathematical Principle of Physics. By Rev. J. ChalUs, M.A.
Damy 8vo. 5#.

HISTORY, TOPOGRAPHY, &c.

Borne and the Campagna. Itj R. Rum. Kl.A. With Eighty-fire fine

Engravings and Twenty aix Uapa and Plana. 4to. SL S«.

The History of the Kings of Borne. Ry l>r. T. H. Dyer. 8vo. 16s.

A Plea for lavy. Ry T. H. Dyer. Svo. Is.

Boma Begalis. By T. II. Dyer. Nto. it. fid.

The History of Pompeii
;

its Riiildings ami Antiqiiilies. Ry T. H
Dyer. Srd Edition, brought down to 1874. Post 8vo. 7#. W.

Ancient Athens: its Histoiy, Topopr.'iphy, and Romaina. By T. H.
Dyer. Huper*royal 8vo. Cloth. It. .%#.

The Decline of the Roman Repnblic. By G. Long. 0 vola. Hvo.
14#. each.

A History of England dming the Early and Middle Ages. By C. H.
Pcaraon, M.A. 2nd roviaed and enlarged. 8vo. Vol. I. I0«.

Vol. II. 14#.

Historical Maps of England. By C. H. Pearson. Folio. 2nd Edit.
reviacd. ^\t. Od.

A Practical Synopsis of English History. By A. Bowes. 4th Edit.
8to. 2#.

Student's Text-Book of English and General History. By D. Beale.
Crown 8to. 2#. W

Lives of the Queens of England. By A. Strickland. 6 vols. poet 8vo.
5#. each. Abridged edition. I vol. 6#. (Vi.

Ootlines of Indian History. By A. W. Hughes. Small post 8vo.
34. fid

The Elements of General History. By Prof. Tytler. New Edition,
brought down to 1S74. Small |K«t 8vn. 3$. 6J.

Atjases.

An Atlas of Classical Geography. '^4 Maps. By W. Hughes and
O. Long, M.A. New Edition. Imperial Svo. 12#, t>J.

A Grammar School Atlas of Classical Geography. Ten Maps selected
from the above. New Rdition. Imperial 8vo. 5#.

First Classical Maps. By the Rev. J. Tate, M.A. -ird Edition,
luiporial 8vo. 7#. Od.

Standard Library Atlas of Classioal Geography, Imp. 8vo. 7«. Od.
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PHILOLOGY.

Hew Siotionary of the EngUsb Laaguage. (Combining Explanation
with Etjrmolcv}'. and oopioualy illustrated by Quotations fram the beet
Aathorltiee. By Dr. Ricnardson. New Edition, with a SuupleiQcnt. 8

ole. 4to. 41. 14«. 6d. ;
half rusaia, 5/. 16«. 6d. ; rtiaada, 61. 12«. Buppla-

ment separately. 4to. lit.

An Svo. Edition, without the Quotations, 15f. ; half nissia, 20«. ;
runia,

34«.

A Dictionary of the English Language. By Dr. Webstar. Be-edited
by N. Porter and C. A. Goodrich. With Dr. Mabn’a Rtyrnology. 1 vol.

3u. With Appendices and 70 fuldittonal pages of lUustrationa 3U- 0<t
,

*• Tbs but MtacricAL English Dictionary rxtant."^Quarterly Review.

The Elements of the English Lasgoage. By E. Adams, Ph. D.
14th Edition. Post 8vo. 4ir. Qd.

Philological Essays. By T. H. Key, M.A., F.R.S. Svo. 10a. Cd.

Langaage, its Origin and Development By T. H. Key, M.A., F.B.S.
8to. 14i.

Varronianua A Critical ami Historical Introdoction to the Ethno-
graphy of Ancient Italy and to the Philological Study of the lAtln
LAugnagc. By J. W. Donaldson, D D. 3rd Edition. Svo. lOi.

Synonyms and Antonyms of the English Langaage. By Aichdeacon
Sinitb. 2nd Edition. Post Svo. S$.

Synonyms Discriminated. By Archdeacon Smith. Demy 8vo. I0.i.

A Syriac Grammar. Bv G. Phillips, D.D. drd Edit., enlarged.
Svo. 7#. (kl.

A Grammar of the Arabic Langaage. By Rev. W. .T. Beamont, M.A.
limo. 7i.

DIVINITY, MORAL PHILOSOPHY, «sc.

Novum Taatamentum Grecum, Textus Su>phanici, I5A0. Ciirante
P. B. Scrivener. A M., LL.D. lOmo. 4«. 6d.

/?y the $ame .Author.

Codex Basse Cantabriglen^. 4to.

A Full Collation of the Codex Sinaiticus with the Received Text of
the New Testament, with Critical Intixxlnrtioo. 2nd Edition, revised.

Fcap. Svo. 5».

A Plain Introduction to the Criticism of the Mew Testament With
Forty Facsimiles from Ancient Maimscrlpts. Now Edition.' Svo. IfU.

Six Lectures on the Text of the New Testament For English Readers.
Crown Svo. 0«.

The New Testament for English Readers. By the late H. .Alford,

D D. Vol. I. Parti. 3rd Edit 12a. Vol. I. Part II. 2nd Edit 10«. Scf.

Vol II. Pan I, 2nd Edit. 16#. Vol II. Part II. 2nd Edit. 16#.
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The Greek Testament By the late H. Alford, D.D. Yol. I. Cth
Edit. It Ai. Vol. II. etb Edit U. U. Vol. III. 6th Edit. 18«. Vol. IT.
P*rt I. 4th Edit. 16i. Vol. IT. Part II. 4ta Edit. 14«. Vol. IV., It. 12«.

Companion to the Greek Testament By A. 0. Barrett, M.A. 3rd
Edition. Fcap. 8vo. 6#.

'

Hints for Improvement in the Authorised Version of the New
Teatament. By the late J. Scholofield, M.A. <th Edit. Feap. 8to. 4«.

Liber Apologetiotu. The Apology of Tortullian, with English
Notea, by H. A. Wciodhani, LL.D. 2nd Edition. Rfo. 8«. 6d.

The Book of Psalms. A New Translation, with Introductions, &C.
By Rev. J. J. Stewart Perowne, D.D. 6vo. Vol. 1. 3rd Edition, 18«
Vol. II. 3rd Edit. I6a.

> Abridged for Schools. Crown Bvo. lOa. Od.

The Thirty-nine Articles of the Church of England. By the Ven.
Archdeacon Welcbmad. New Edition. Fcap. 8vo. Interleaved, Sa.

Pearson on the Creed. Carefully printed from an early edition.
With Aualyala and Index by B. Walford, M.A. Poet 8vo. 5t,

An Historical and Explanatory Treatise on the Book of Common
Prayer. By Rev. W. Q. Humphry, B.D. 6th Edition, enlarged. Small
poet 8vo. 4$, Od.

The New Table of Lessons Explained. By Rev. W* G. Homplvry,
B.D. Fcap. 1«. 6d.

A Commentary on the Gospels for the Sundays and other Holy Days
of the Chriatian YciU*. By Rev. W. Denton, A.M. New Edition. 3 vola.

8to. 54$. Sold separatoly.

Commentary on the Epistles for the Snndays and other Holy Days
of tbo Christian Ye.ir. 2 vole. S0«. Bold soparatoly.

Commentary on the Acts. Vol. I. 8vo. 18x. J'ol, JI. in prrparatioti.

Jewel'sApology for the Church of England, with a Memoir. 32mo. 2x.

Notes on the Catechism, By Rev. A. Barry, D.D. 2nd Edit.
Fcap. 2$.

Catechetical Hints and Helps. By K»t. E. J. Boyce, M.,1. .3rd

Edition, revised. Fcap. 2t. Gd.

Examination Papers on Beligioos Instruction. By Rev. E. J. Boyce.
Sewod. li. 6d.

The Wlnton Church Catechist Questions and Answers on the
Teaching of the Church Catechism. By the late Rev. J. S. B. Monsell,
LL.D. 3rd Edition. Cloth, 8a.

;
or in Four Parte, aewed.

The. Church Teacher's Hannal of Christian Instruction. By Rev.
M. F. Badlor. 3rd Edition. 2«, 6d.

Brief Words on School Life. By Rev. J. Kemptboroe. Fcap. 3s. C<f.

Short Explanation of the Epistles and Gospels of the Christian Tear,
with Questions, Bo3ral32mo. 2s. 6d.

; calf, 4s. M.

Butler's Analogy of Beliglon ;
with Introduction and Index by Rev.

Dr. Steere. New Edition. Fcap. Ss.
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Bntler’s Three Sermoss on Human Nature, and Dissertation on
Virtue. Bjr W. WliewoU, D.D. 4th EditLoo. Fcap 8vo. 2i. 64.

Lectures on the History of Moral Philosophy in England. By W.
Whewoll, D.D. Crown 8vo. 8#.

Elements of Morality, including Polity. By W. Whewell, D.D. New
Edition, in 8vo. 1^.

Astronomy and General Fhydcs (Bridgewater Treatise). New Edi»
tion. 6*.

Kent’a Commentary on International Law. By J. T. Abdj, LL.D.
8vo. 16j.

A Manual of the Boman Civil Law. By G. Leapingwell, LL.D. 6ro.
12#.

FOREIGN CLASSICS.

^ sgrifs for use in SchooUy with EnglUh Notes^ gramnnUieml and
exj)la^tory^ and renderings of di^cmlt'idiomatic expreuione.

Fcap. Hih).

BchiUer's Wallenstein. By Dr. A. Bachheim. i^nd Edit 6«. 64.
Or tho Lager and Plooolomlni, 3«. 64. Wallenatein’a Tod, 8«. 64.

Maid of Orleans, By Dr. W. Wagner. 3#. 64.

Maria Stuart By V. Kasiner. In the press.

Goethe's Hermann and Dorothea. By E. Bell, M.A., and £. Wdlfel.
2#. 64.

German Ballads, from Uhland, Goethe, and Schiller. By C. L.
Bielefeld. 8#. 64.

Charles XII., par Voltaire. By L. Birey. 3rd Edit. 3.<. Od,

ATentnres de Telemaqne, par Fdndlon. By C. J. Delille. 2nd Edit.
4<. 6d.

Select Fables of La Fontaine. By F. E. A. Oasc. New Edition. 3<.

ncdala, by X. B. Saintine. By Dr. Dubuc. 4tb Edit. 3#. Od.

FRENCH CLASS-BOOKS.

Twenty Lessons in French. tVith Vocabnlary, giving the Fronnn-
eUtion. By W. Brebaer. Poat 8to. 4t.

French Grammar for Public Schools. By Rev. A. C. Clapin, M.A.
Foap. 8ro. 2ndEdit. 2#. 64. Separately, Part I. 2#.; Part II. 1#. 64.

Lc Nouveau Tr^sor; ur, French Student's Companion. By M. £. S.

16th Bdikien. Foap. Sto. It. 64
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F. £. A. G48r’B FbEMCB Couube*

First Frsncli Book. Fcap. 8vo. New Edition. 1«. Od. *

Sscond French Book. New Edition. Fcap. Bvo. 2a. Cut.

Key to Firat and Second French Hooks. Fcap. 8vo. 3*. 6d.

French Fables for Beginners, in Prose, with Index. New Edition.

ISrao. 2s. *

Select Fables of La Fontaine.* New Edition. Fcap. 8to. Ss.

Histoires Amusantes et instmetives. With Notes. New Edition.

Fcap. Svo. 2s.

Practical Guide to Modem French Conversation. Fcap.*8vo. 2* (W.

French Poetry for the Toung. With Notes. Fcap. 8vo. 2*.

Materials for French Prose Composition ;
or. Selections from the beat

Eq^UbU Proae Wrllcra. New Editlnn Feap. Svo. 4s. W. Si

Prosatenrs Contemporains. With Notes. Hvo. New Edition, roised.

4l.

Le Petit Compagnon; a Frencli Talk Book for Little Children.
lOmo. 2s

.

M.

An Improved Modem Pocket Dictionary of the French and English
Lanjfuoges. 20th Thousand, with addiiiuutt. ICmo. Cloth. 4«.

Modem French and English Dlctionaiy. Demy Bvo. In two voI».

Vol. 1. F. and E. !&«.; Vol. II. B. and F. ICU.

Gombebt’b Fiiekch Draxa.

Being a Selection of the heal Tragedies and Comedies of Moli^re,
Racino, Ooroeillo. and Voltaire. With AnrumenU and Notes by A.
Ooiobert. New Edition, reviaed by F. £. A. Oaao. Fcap. Sto. la. «acb

;

•owed, 0(2.

CoMTaara,
HouiaB;->Lo Bfiaantbropo. L'A^are. Le Bourgeoia Oentilbomma. Le

Tartufie. Le Maliulc Imogmairo. Lea Femmee SaTantes. Lea Fourberioe
do Bcapia. Los Prioiexiae* Ridicules. L'Ecole dee Femmes. L'Boole dee
Marla. Lo Hedoclu molgr^ Lul.

Racixk :~PbMrc Esther. Athalio.

P. CoRXCiLLe ;^Le Cid. Horaos. Cinna.

VoLTAiEK Zaire.

0th4rs iit preparation.

GERMAN CLASS-BOOKS.

Materials for German Prose Composition. By Dr. Buchheiin. 4th
BdiUon, reviaed. Fcap. 4i. M.

A German Grammar for Puldic Soho<^la. Bv the Rav. A. C. Olapin
aad P. Hall Hullar. Peap. 2s. M.

KoUebors Der Gefangeno. With Notes, by Dr, W. Siromberg. U.

Digitized by Coog(e
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ENGLISH CLASS-BOOKS.

Tb« Elements of the English Iiangnage. B7 E. Adams, Fh.D. 14th
B<iition. Poet 8to. 4«. 6rf.

The Bndiments of EngUsh Grammar and Analysis. By E. Adame,
Ph.D. New EditioD. Pcap. 8vo. 2#.

By Rkv. C. P. Mason, B.A. London.
FirstNotlottSofGrammarfor Young Learners. Fcap. 8vo. Clotli.

First Steps in English Grammar, for Junior Classes. Demy l8mo.
New l^ition. 1«.

Ontlines of English Grammar for the use of Junior Classes. Cloth.
U. M.

English Grammar, including the PrincipleH of Grammatical Ana-
lysiit. 20th Edition. Poet 8vo. St. Stf.

The Analysis of Sentences applied to Latin. Post Hto. l.t. 6d.

Analytical Latin Exercises: Accidence and Simple Sentences, dec.

-

Poet 8vo. St. w.

KdHed/or Mirldlc~Clost Examination.
With Notes on the Analysis and Pnreing, nud Explanatory Remarks.

Milton' BiParadise Lost, Book I. With Life. 3rd Edit Post Hvo. 2s.

Book II. With Fiife. 2nd Edit Post Hvo, 2s.

Book nr. With Life. Post Hvo. 2*.

Goldsmith's Deserted Village. With Life. Post 6vo. Is. %d.
Cowper’8 Task, Book II. With Life. Post 8vo. 2s.

Thomson’s Spring. With Life. Post 8yo. 2s.
— Wlntw. Post 8vo. 2s.

Practical Hinto on Teaching. By Rot. J. Menet, MJk. 4th Edit.
Crown 8to. Cloth, 2s. M. ; paper, 2s.

Test Lessons in Dictation. Pa^r cover, lx. 6d.
QnestioDB for Examinations in EngUsh Literature. By Rev. W. W.

Skeat. 2s. Cd.

Drawing Copies. By P. H. Dolamotte. Oblong 8vo. 12s. Sold also
in parts at Is. cock.

Poetry for the School-room. New Edition. Fcap. 8vo. Is. W.
Select Parables horn Natore, for Use in Schools. By Mrs. A. Gatty.

Fcap 8vo. Cloth. Is.

School Record for Young Tjadies’ Schools. 6rf.

Geographloai Text-Book; a Praclicai Geography. By M. E. S.
12mo. 2s.

The Blank Maps done up separately. 4to. 2s. coloured.

A First Book of Geography. By Rev. C. A. Johns. B.A., F.L.S
Ac. lllustratol. 12mo. 2s. 6d.

Loudon’s (Mrs.) Entertaining Natnralist. New Edition. Revised by
W. 8. Dallas, F.L.S. 5s.

Handbook of Botany. New Edition, greatly enlarged by
D. Wooster. Fcap. 2s. W.
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Tbe Botanist’s Fookot-Book. With a eopiona Index. Bjr W. R.

HayvarJ. Crown Sro. Oiotli Ump. 4<. M.

Experimental Chemistry, fonnded on the Work of Dr. StSokhardt.

Bj C. W. H«aton. Poii 8to. U.

GAmbrtdgeshln Oeology* Bjr Ta O. Bonneyp F.G.S. &c> Sro. 3j.

Double Entry Elucidated. By B. W. Foster. 7th Edit. 4to. 8«. Od.

A New Manual of Bookdceeping. By P. Crellin, Accountant Crown
8TO. 84. Orf.

Picture BcboohBoolre. Tn simple Language, with nnmerons OIus-
tratlooa. BoyallSmo.
Brhool Primer. 6A<-4ohool Reader. By J. Tlllaerd. It.—Poetry Book

for Schools. U.>^Tbo Li/e of Jooeph. lj.»Tho Soripturo Panblos. By tbe

lUv. J. E. CUrko. U—The ScriptuTO Mlroclee. Tiy the Her. J. E. CUrke.
I4.—Tlie New Teetemeot History. By the Rer. J. O Wood, M.A 1r.—The
OM Tcetement History. By the Rev. J. O. Wood, M.A. U.—The Story of

Bunyen's Pilgrim’s Pnagreee. Is.—The Life of Christopher Odumbos. By
Sarah Crompton. Is.—Tho Ufe of Meitln Luther. By Sarah Oromptoo. Is.

By TUB UtTB Horaox Qiukt.

Aiithmetlo for Young Children. Is. 6d.—— Second Stage. ISmo. Ss.

Exereises for the Improvement of the Senses. Ibmo. U.
Geography for Young Children. 18mo. 3s.

Books for Young Readers. In Eight Parts, limp cloth, 8<f. each

;

or extra blDdicg, Is. each.
Part 1. contains aim^ etortee told in monocyllables of not more than four

letters, which are at the aame time eufficient^ intereethig to pi eeerre the
attention of a ohQd. Part II. exerCiesi the pupfl by a siaiUar method in
•lightly longer easy wordiK *iiri tnnatnlnr porU consist of storiee

l^r^iiated In difflculty, tximl Iheleamer is tau^t to read with ordinary

BELL’S READING-BOOKS.
FOR BCBOOLB AND PAROCUIAL LIBRARIKB.

The populari^ which the Series of Reading>booka. known ee ** Books for

Toung Readers.’^has attained Is a suffldeut proof that teachers and pupils

alike approve of the use of interesting tiorlcs, vnth a simple plot In plaoeof the
d^ oombinatton of letters and Ryliabieaf making no impresaioa on the mind,
of which elementary reeding-books generally oonalst.

Tbe publishers have therefore thought it advtsablo to extend the application
of this principle to books adapted for mure advanced readers.

Nmp Ready.

Mastennan Ready. ^ Captain Marryat. Is. Qd.

Parables from Nature (selaoted). By Mrs. Qatty. Reap. dvo. Is.

Friends In For and Feathers. By Gwynfryn. Is.

Robinson Craaoe. 1 1 . Od.

Andersen's Daniah Tales. By E. Bell, MA. Is.

7a prtjiaration

Oar Village. 67 Miss Mitford (selections). aV
Grimm's German Tales. (SeUotions.) > 4^ ^

— .... ' fVr;*
London ; Printed by JoBV BnuNeswATS, Oaatle St. Leiocriter 8q.
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