


nOnYJHIPHbIE JlEKl..llil1 no MATEMATMKE

A.C. COJIO,nOBHHKOB

CllCTEMbI
JII1HE:HHhIX HEPABEHCTB

H3JlATEJIbCTBO «HAYKA»

MOCKBA



-.... .. .
.LIITLE MATHEMATICS .LIBRARY

A. S. Solodovnikov

SYSTEMS
OF

LINEAR
INEQUALITIES

Translated from the Russian
by

Vladimir Shokurov

MIR PUBLISHERS

MOSCOW



First published 1979

Revised from the 1977 Russian edition

Ha auesuucxou Jl3blKe

© 113,UaTeJIhCTBO «HaYKa», 1977

© English translation, Mir Publishers, 1979



CONTENTS

~.

~~ 7

1. Some Facts from Analytic Geometry 8

~ 2. Visualization of Systems of Linear Inequalities In Two or Three
" . Unknowns 17
I -

3. The Convex Hull of a System of Points 22

4. A Convex Polyhedral Cone 25

5. The Feasible Region of a System of Linear Inequalities in Two
Unknowns 31

6. The Feasible Region of a System in Three Unknowns 44

7.. Systems of Linear Inequalities in Any Number of Unknowns 52

8. The Solution of a System of Linear Inequalities 'by Successive
Reduction of the Number of Unknowns 57

9. Incompatible Systems 64

10. A· Homogeneous System of Linear Inequalities.
The Fundamental Set of Solutions 69

11. The Solution of a Nonhomogeneous System of Inequalities 81

12. A Linear Programming Problem 84

13. The Simplex Method 91

14. The Duality Theorem in Linear Programming 101

1.5. Transportation Problem 107





Preface

.. First-degree or, to use the generally accepted term, linear inequal­
ities are inequalities of the form

ax + by + c~ 0

(for simplicity we have written an inequality in two unknowns x
and y).The theory of systems of linear inequalities is a small but
most fascinating branch of mathematics. Interest in it is to a consider­
able extent due to the beauty of geometrical content, for in geomet­
rical terms giving a system of linear inequalities in two or three un­
knowns means giving a convex polygonal region in the plane or a
convex polyhedral solid in space, respectively. For example, the
study of convex polyhedra, a part of geometry as old as the hills,
turns thereby into one of the chapters of the theory of systems of
linear inequalities, This theory has also some branches which are
near the algebraist's heart; for example, they include a remarkable
analogy between the properties of linear inequalities and those of
systems of linear equations (everything connected with linear equations
has been studied for a long time and in much detail).

Until recently one might think that linear inequalities would for­
ever remain an object of purely mathematical work. The situation
has changed radically since the mid 40s of this century when there
arose a new area of applied mathematics -linear programming­
with important applications in the economy and engineering. Linear
programming is in the end nothing but a part (though a very impor­
tant one) of the theory of systems of linear inequalities.

It is exactly the aim of this small book to acquaint the reader
with the various aspects of the theory of systems of linear inequali­
ties, viz. with the geometrical aspect of the matter and some of the
methods for solving systems connected with that aspect, with certain
purely algebraic properties of the systems, and with questions of
linear programming. Reading the book will not require any know­
ledge beyond the school course in mathematics.

A few words are in order about the history of the questions to
be elucidated in this book.

Although by its subject-matter the theory of linear inequalities'
should, one would think, belong to the most basic and elementary
parts of mathematics, until recently it was studied relatively little.
From the last years of the last century works began occasionally to
appear which elucidated some properties of systems of linear inequal­
ities. In this connection one can mention the names of such mathe-

7



maticians as H. Minkowski (one of the greatest geometers of .the
end of the last and the beginning of this century especially- well
known for his works on convex sets and as the creator of "Minkow­
skian geometry"), G. F. Voronoi (one of the fathers of the ."Pe­
tersburg school of number theory"), A. Haar (a Hungarian mathe­
matician who won recognition for his works on "group integration"),
HiWeyl (one of the most outstanding mathematicians of the first half
of this century; one can read about his life and work in the pamph­
let "Herman Weyl" by I. M. Yaglom, Moscow, "Znanie", 1967).
Some of the results obtained by them are to some extent or other ref­
lected in the present book (though without mentioning the authors'
names).

It was not until the 1940sor 1950s,when the rapid growth of applied
disciplines (linear, convex and other modifications of "mathematical
programming", the so-called "theory ofgames", etc.)made an advanced
and systematic study of linear inequalities a necessity, that a really
intensive development of the theory of systems of linear inequali­
ties began. At present a complete list of books and papers on inequal­
ities would probably contain hundreds of titles.

1. Some Facts from Analytic Geometry

r. Operations on points. Consider a plane with a rectangular coordi­
nate system. The fact that a point M has coordinates x and y In
this system is written down as follows:

M = (x, y) or simply M(x, y)

The presence of a coordinate system allows one to perform some
operations on the points of the plane, namely the operation of
addition of points and the operation of multiplication of a point by a
number.

The addition of points is defined in the following way: if M 1 =
(Xb Yl) and M2 = (Xl, Y2), then

M1+M2 = (Xl + X2, Yl+Y2) .
Thus the addition of points is reduced to the addition of their
similar coordinates.

The visualization of this operation is very simple (Fig. 1); the
point M 1 + M2 is the fourth vertex of the parallelogram construc­
ted on the segments OM 1 and OM2 as its sides (0 is the origin of
coordinates). M 1, 0, M2 are the three remaining vertices of the
parallelogram.
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The same can be said in another way: the point M 1 + M 2 is
obtained by translating the point M 2 in the direction of the segment
OM lover a distance equal to the length of the segment.

The multiplication of the point M(x,y) by an arbitrary number
k is carried out according to the following rule:

kM = ikx; ky)
The visualization of this operation is still simpler than that of the
addition; for k > 0 the point M' = kM lies on the ray OM, with

Fig. 1

OM' = k x OM; for k < 0 the point M' lies on the extension of
the ray OM beyond the point 0, with OM' = Ikl x OM (Fig. 2).

The derivation of the above visualization of both operations
will provide a good exercise for the reader*.

!J

o

!I
k/1 (k>O)

#
71

:c 0 :JJ

'/(/1 (k<O)
Fig. 2

The operations we have introduced are very convenient to use
in interpreting geometric facts in terms of algebra. We cite some
examples to show this.

* Unless the reader is familiar with the' fundamentals of vector theory.
In vector terms our operations are know to -!!lean the following:
the point M 1 + M 2 is the end of..!he vector OM 1 + OM 2 and the point kM
is the end of the vector k x OM (on condition that the point 0 is the
beginning of this vector).
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(1) The segment M 1M 2 consists of all points of the form

s l M 1 + S2 M2

where Sb S2 are any two nonnegative numbers the sum of which
equals I.

Here a purely geometric fact, the belonging of a point to the
segment M 1M2, is written in the form of the algebraic relation
M == slM 1 + S2 M 2 with the above constraints on Sb 82.

o
Fig. 3 Fig. 4

To prove the above, consider an arbitrary point M on the
segment M 1M 2. Drawing through M straight lines parallel to OM 2

and OM 1 we obtain the point N 1 on the segment OM 1 and the
point N 2 on the segment OM 2 (Fig. 3). Let

the numbers SI and S2 being nonnegative and their sum equalling 1.
From the similarity of the corresponding triangles we find

ON t M 2M ON 2 M 1M

OM
I
· = M

2M 1
=81' oM·~-= M

1M2
=S2

which yields N 1 = 81 M i - N 2 = S2 M 2· But M == N 1 + N 2, hence
M==SIMt +S2M2. We, finally, remark that when the point M
runs along the segment M 1M 2 in the direction from M 1 toward
M 2, the number S2 runs through all the values from 0 to 1.
Thus proposition (1) is proved.

(2) Any point M of the straight line M 1M2 can be represented as

tM l + (1 - t)M2

where is a number.
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In fact, if the point M lies on the segment M 1M2, then our
statement follows from that proved 'above. Let M lie outside of
the segment M 1M2' Then either the point M 1 lies on the segment
MM2 (as in Fig. 4) or M 2 lies on the segment MM t • Suppose,
for example, that the former is the case. Then, from what has
been proved,

M 1 = sM + (1 - s)M2 (0 < s < 1)

I
I

A /
I

I/ ~---
I _---- s8
~--

o

Fig. 5

Hence

~
I

I,,
I,
~B

" _---- 0.i->:
- sB

Fig. 6

M = !M1 - ~M2 = tM1 + (1 - t)M2s s
where t = lis. Let the case where M 2 lies on the segment MM 1

be considered by the reader.
(3) When a parameter s increases from 0 to 00, the point sB

runs along the ray DB * and the point A + sB is the' ray emerging
from A in the direction of DB. When s decreases from 0 to - 00,

the points sB and A + sB run along the rays that are supplementary
to those indicated above. To establish this, it is sufficient to look
at Figs. 5 and 6.

It follows from proposition (3) that, as s changes from
- 00 to + 00, the point A + sB runs along the straight line
passing through A and parallel to DB.

The operations of addition and multiplication by a number can,
of course, be performed on points in space as well. In that case,

* The point B is supposed to be different from the origin of coor­
dinates O.

II



by definition,

M 1 +M2 = (X l +X2, Yl +Y2, ZI +Z2)

kM = (kx, ky, kz)

All the propositions proved above will obviously be true for
space as well.

We conclude this section by adopting a convention which will
later help us formulate many facts more clearly and laconically.
Namely, if .:K and !£ are some two sets of points (in the plane
or in space), then we shall agree to understand by their "sum"
.~ +!I! a set of all points of the form K + L where K is an

arbitrary point in ;t{" and L an arbitrary point in ,po

f(
P

I
I

I
I

I
I

I
d
o

~
I I

I I
/ I

I I

~
Fig. 7
~

Fig. 8

Special notation has been employed in mathematics for a long
time to denote the belonging of a point to a given set .. namely,
in order to indicate that a point M belongs to a set .~ one
writes MEJIt (the symbol E standing for the word "belongs").
So % +!R is a set of all points of the form K + L where
K E gand LE!.e.

From the visualization of the addition of points a simple rule
for the addition of the point sets .~ and !£ can be given.
This rule is as follows. For each point K E.ff a set must he
constructed which is a result of translating 2 along the segment
OK over a distance equal to the length of the segment and
then all sets obtained in this way must be united into one. 1t is
the latter that will be .:ff +P.

We shall cite some examples.
1. Let a set % consist of a single point K whereas !.e is any

set of points. The set K +!R is a result of translating the set Ie
along the segment OK over a distance equal to its length (Fig. 7).
In particular, if !t! is a straight line, then K +!£ is a straight
line parallel to fLJ. If at the same time the line f{~ passes through
the origin, then K +!£ is a straight line parallel to fP and passing
through the point K (Fig. 8).
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2. ~ and 2 are segments (in the plane or in space) not
parallel to each other (Fig. 9). Then the set ~ +!£ is a paral­
lelogram with sides equal and parallel to :ff and !£ (respectively).
What will result if the segments ~ and !:R are parallel?

3..% is a plane and !:R is a segment not parallel to it. The
set $' + Ie is a part of space lying between two planes parallel
to % (Fig. 10).

Fig. 9 Fig. 10

4. ~ and 2 are circles of radii t i and 1"2 with centres PI
and P2 (respectively) lying in the same plane n. Then .K + f£ is
a circle of radius r 1 +'2 with the centre at the point PI + P2
lying in a plane parallel to It (Fig. 11).

2°. The visualization of equations and inequalities of the first
degree in two or three unknowns. Consider a first-degree equation
in two unknowns x and y:

ax+by+c=O (1)

Interpreting x and y as coordinates of a point in the plane, it is
natural to ask the question: What set is formed in. the plane by
the points whose coordinates satisfy equation (1), or in short what
set of points is given by equation (I)?

We shall give the answer though the reader may already know
it: the set of points given by equation (1) is a straight line in the
plane. Indeed, if b -#0, then equation (1) is reduced to the form

y= kx + p

and this equation is known to give a straight line. If, however,
b = 0, then the equation is reduced to the form

x=h

and gives a straight line parallel to the axis of ordinates.
~
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A similar question arises concerning the inequality

ax+by+c~O (2)

What set of points in the plane is given by inequality (2)?
Here again the answer is very simple. If b -#0, then the inequali­

ty is reduced to one of the following forms

y ~ kx +- P- 'or y ~ kx + P

It is easy to see that the first of these inequalities is satisfied by

Fig. 11

all points lying "above" or on the straight line y = kx + p and the
second by all points lying "below" or on the line (Fig. 12). If,
however, b = 0, then the inequality is reduced to one of the
following forms

x ~ h or x ~ h

the first of them being satisfied by all points lying to the "right"
of or on the straight line x = h and the second by all points to"
the "left" of or on the line (Fig. 13).

Thus equation (1) gives a straight line in the coordinate plane
and inequality (2) gives one of the two half-planes into which
this line divides the whole plane (the line itself is considered to
belong to either of these two half-planes).

We now want to solve similar questionswith regard to the
equation

and the inequality

ax + by + cz + d = 0

ax + by + cz + d ~ 0

(3)

(4)
of course, here x, y, z are Interpreted as coordinates of a point
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•
in space. It is not difficult to foresee that the following" result will
be obtained.

Theorem. Equation (3) gives a plane in space and inequality (4)
gives one of the two half-spaces into which this plane divides the
whole space (the plane itself is considered to belong to one of
these two half-spaces).

Proof Of the three numbers a, b, c at least one is different

II

.,/

0
cYt-~

~~

Fig. 12

from zero ~ let c # 0, for example. Then equation (3) is reduced
to the form

z = kx + Iy + P (5)

Denote by !e the set of all points M (x, y, z) which satisfy (5).
Our aim is to show that !£ is a plane.

Find what points in ,;e belong to the yOz coordinate plane.
To do this, set x == 0 in (5) to obtain

z = ly + p (6)

Thus the intersection of ..P with the yOz plane is the straight line u
given in the plane by equation (6) (Fig. 14).

Similarly, we shall find that the intersection of !R with the xOz
plane is the straight line r given in the plane by the equation

z = kx + p (7)

Both lines u and l' pass through the point P(O, 0, p).
Denote by 1t the plane containing the lines u and v. Show

that 1t belongs to the set !f.

In order to do this it is sufficient to establish the following
fact, viz. that a straight line passing through any point A E V and
parallel to II belongs to fe.

First find a point B such that ORlllI. The equation z == ly + P
"gives the straight line u in the -"Oz plane; hence the equation z == /y
gives a straight line parallel to II and passing through the origin
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(it is shown as dotted line in 'Fig. 14). We can take as B the
point with the coordinates y = 1, z = I which lies on this line.
_ An arbitrary point A E V has the coordinates x, 0, kx + p. The

point B we have chosen has the coordinates 0, 1, I. The straight
line passing through A and parallel to u consists of the points

A + sB = (x, 0, kx + p) + s(O, 1, l) =
= (x, S, kx + P + sf)

where s is an arbitrary number (see proposition (3) of section 1°):

z
!I ~

~ ~
~%

0 /$
z>h /

/// !I
x=h

Fig. 13 Fig. 14

It is easy to check that the coordinates of a point A + .,,-B
satisfy equation (5), i. e. that A + sB E 2. This proves that the
plane 1t belongs wholly to the set !R.

It remains to make the last step, to show that 2 coincides
with 1t or, in other words, that the set !R does not contain any
points outside 1t.

To do this, consider three points: a point M (xo, Yo, zo)
lying in the plane 1t, a point M' (xo, Yo, Zo +'E) lying "above"
the" plane 1t (E> 0), and a point Mil (xo, Yo, Zo - E) lying "below" 1t

(Fig. 15). Since M E 1t, we have Zo = kx., + Iyo + P and hence

20 + E > kx., + lyo + P
20 - E < kx., + 'v« + P

This shows that the coordinates of the point M' satisfy the
strict inequality

z> kx + ly + P

and the coordinates of the point Mil satisfy the strict inequality

z < kx + ly + P

16



.Thereby M', and Mil do not belong to fR. This proves that !£
'coincides with the plane 1t. In addition, it follows from our
arguments that the set of all points satisfying the inequality

ax + by + cz + d ~ 0

.is one of the two half-planes (either the "upper" or the "lower" one)
"into which the plane It divides the whole space.

. y

Fig. 15 Fig. 16

(1)

2. Visualization of Systems of Linear Inequalities
in Two or Three Unknowns

Let. the following system of inequalities in two unknowns
x and y be given

at X +,b1Y + Ct ~ 0 }
a2x + b2y + C2 ~ 0
............
a.,»+ bmy + em ~ 0

In the xOy coordinate plane the first inequality determines
a half-plane Il b the second a half-plane 02, etc. If a pair of
numbers x, y satisfies all the inequalities (1), then the correspond­
ing point M(x, y) belongs to all half-planes TIt, TI 2 ... , TIm
simultaneously. In other words, the point M belongs to the
intersection (common part) of the indicated half-planes. It is easy
to see that the intersection of a finite number of half-planes
Is a" polygonal region :/t. Figure 16 shows one of the possible
regions :/t. The area of the region is shaded along the boundary.
The inward direction of the strokes serves to indicate on which
side of the given straight line the corresponding half-plane lies;
~e same is also indicated by the arrows.
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The region .X'" is called "the feasible region of the system (1).
Note from the outset that a feasible region is not always bounded:
as a result of intersection of several half-planes an unbounded
region may arise, as that of Fig. 17, for example. Having in mind
the fact that the boundary of a region % consists of line
segments (or whole straight lines) we say that .Yt is a polygonal
feasible region of the system (1) (we remark here that when

!I

Fig. 17

a region % is bounded it is simply called a polygon*). Of course
a case is possible where there is not a single point simultaneously
belonging to all half-planes under consideration, i. e. where the
region .;t' is "empty" ~ this means that the system (1) is incom-
patible. One such case is presented in Fig. 18. I

Every feasible region ..ff is convex. It will be recalled that
according to the general definition a set o.f points (in the plane
or in space) is said to be convex if together with any two
points A and B it contains the whole seqment AB. Figure 19
illustrates the difference between a convex and a nonconvex set.
The convexity of a feasible region .~. ensues from the very way
in which it is formed; for it is formed by intersection of several
half-planes, and each half-plane is a convex set.

Lest there be any doubt, however, with regard to the convexity
of ..*", we shall prove the following lemma.

* Here to avoid any misunderstanding we must make a reserva­
tion. The word "polygon" is understood in the school geometry course
to designate a closed line consisting of line segments, whereas in the litera­
ture on linear inequalities this term does not designate the line itself but
all the points o] a plane which are spanned by it (i. e. lie inside or on
the line itself]. It is in the sense accepted in the literature that the term
"polygon" will be understood in what follows.

18



,; ·.Lemma. The intersection of any number of convex sets is
:a convex set.
.. ' 'Proof Let :7l

1
and :ff

2
be two convex sets and let % be

their intersection. Consider any two points A and B belonging
to :K (Fig. 20). Since A E:ff1, BE % 1 and the set % 1 is convex,
the segment AB belongs to :/C l' Similarly, the segment AB
belongs to %2' Thus the segment AB simultaneously belongs to
both sets :ff1 and % 2 and hence to their intersection %.

Fig. 19

Fig. 20

This proves that % is a. convex set. Similar arguments show
~Jhat the intersection of any number (not necessarily two) of convex
:~ts is a convex set.
t· Thus the locus of the points whose coordinates satisfy all the
.inequalities (1), or equivalently the feasible region of the system (1),
~s a convex polygonal region :/C. It is a result of intersection of
:'(,11" halfplanes corresponding to the inequalities of the given system.
i> Let us turn to the case involving three unknowns. Now we
~
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are given the system

alx + bi }' + C1Z + d1 ~ 0

a2x + b2y + C2Z + d2 ~ 0
(2)

amx + bmJ' + CmZ + d.; ~ 0

As we know from Section 1, each of the above inequalities
gives a half-plane. The region determined by the given system

B

t'\ \

~ \A

Fig. 21 Fig. 22 Fig. 23

will therefore be the intersection (common part) of In half-planes,
and the intersection of a finite number of half-planes is a convex
polyhedral region %. Figure 21 exemplifies such a regiorr for m = 4.
In this example the region % is an ordinary tetrahedron (more
strictly, .% consists of all points lying inside and on the boundary
of the tetrahedron); and in general it is not difficult to see that
any convex polyhedron can be obtained as a result of the
intersection of a finite number of half-planes.* Of course, a .case
is also possible where the region .'K' is unbounded (where it
extends into infinity); an example of such a region is represented
in Fig. 22. Finally, it may happen that there are no points
at all which satisfy all the inequalities under consideration (the
system (2) is incompatible); then the region % is empty. Such a
case is represented in Fig. 23.

* Here we must give an explanation of the kind given in the Iootnot.
on page 18. The thing is that in the school geometry course "polyhedron"
refers to a surface composed of faces. We shall understand this term in a
broader sense, i.e, as referring to the set of all points of space spanned by
the surface rather than to the surface itself, the set of course including
the surface itself but only as its part.
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Particular attention should be given to the case where the
. system (2) contains among others the following two inequalities:

ax + by + cz + d ~ 0
- ax - by - cz - d ~ 0

which can be replaced by the sole equation

ax + by + cz + d = 0

The latter gives a plane 1t in space. The remaining inequalities (2)

Fig. 24

will separate in the plane It a convex polygonal region which
will be the feasible region of the system (2). It is seen that
a particular case of a convex polygonal region in space may be
represented by a convex polygonal region in the plane. In Fig. 24
the region % is a triangle formed by the intersection of five
half-planes, two of them being bounded by the "horizontal"
plane 1t and the remaining three forming a "vertical" trihedral
prism.

By analogy with the case involving two unknowns, we call
the region % the feasible region of the system (2). We shall
emphasize once again the fact that a region $" being the
intersection of a number of half-planes is necessarily convex.

Thus the system (2) gives a convex polyhedral region :K in space.
This region results from intersection of all half-planes corresponding
to the inequalities of the given system.

If the region % is bounded, it is simply called the feasible
polyhedron of the system (1).

21



3. The Convex Hull
of a System of Points

Imagine a plane in the shape of an infinite sheet of plywood to
have pegs driven into it at points At, A 2 , ..., Ap • Having made
a rubber loop, stretch it well and let it span all the pegs (see the
dotted line in Fig. 25). Then allow it to tighten, to the extent
permitted by the pegs of course. The set of the points spanned by
the loop after the tightening is represented in Fig. 25 by the shaded

/-------,
/' ,

;I" '\
/ \

/ \
I \
I ,, ,
\ ~I
\ I
\ /
\ /, //

...... /

' ........_-~-..",..",/

Fig. 25 Fig. 26

area. It appears to be a convex polygon. The latter is called the
convex hull of the system of the points At, A 2 , ..., Ap•

If the points At, A 2 , ... , A p are located in space rather than in the
plane, then a similar experiment is rather hard to put into practice.
Let us give rein to our imagination, however, and suppose that we
have managed to confine the points Af, A 2, ... , A p in a bag made
of tight rubber film. Left to its own devices, the bag will tighten
until prevented from doing so by some of the points. Finally, a time
will arrive when any further tightening is no longer possible (Fig. 26).
It is fairly clear that by that time the bag will have taken shape
ofaconvex polyhedron with vertices at some of the points At, A 2 , ... , A p•

The region of space spanned by this polyhedron is again called the
convex hull of the system of the points Af, A 2, ... , A p •

Very visual as it is, the above definition of the convex hull is not
quite faultless from [the standpoint of "mathematical strictness". We
now define that notion strictly.

Let AI' A 2 , ... , A p be an arbitrary set of points (in the plane
or in space). Consider all sorts of points of the form

slA l + szA z + ... + spAp (1)
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where Sb 52, ... , 5 p are any nonnegative numbers whose sum is one:

S., 52, ... , Sp ~ 0 and St + 52 + ... + sp = 1 (2)

Definition. The set oj' points 0.[ the form (1) with condition (2) is
called the convex hull of the system oj' the points Ab A2 , ... , Ap

and denoted by

<A., A 2 , ... , Ap )

-, To make sure that this definition does not diverge from the former,
first consider the cases p == 2 and p == 3. If p = 2, then we are given
two points Al and A 2 . The set <Ab A2>,as indicated by proposition
(1) of section 1, is a segment A IA2 .

If p == 3, then we are given three points A b A 2 and A 3 . We show
that the set (A h A 2 , A 3>consists of all the points lying inside and
on the sides of the triangle A 1A 2A 3 .

Moreover, we prove the following lemma.
Lemma. The set <Ab ... , A p _ b A p>consists of all segments joining

the point A p with the point." of the set <A I, ..., A p -- 1>.
Proof. For notational convenience, denote the set <A I, ... , A p - 1>

by J{p--l and the set <Ab ..• ~ Ap _- 1, Ap>by o/Hp.

Consider any point AE~,I{p. It is of the form

A = StAt + ... + Sp--t A p_- 1 + spAp

where

SJ, ... , 8p ~ 0, 8 t + ... + 8p = 1

If oS" == 0, then A E "VII" _ I; thus the set ./~) _ I is a part of .il/). If s" == 1,
then A == A1'; th us the point Ap belongs to ~/H,}. So ./"'r contains ~/H" - I

and the point Ap • We now show that any segment A' Ap where
A I E ./1"_ I belongs wholly to -/~),

If A is a point of such a segment, then

A == tA' + sAp (t, s ~ 0, t + s == 1)

On the other hand, by the definition of the point A' we have

A' == ttAt + ... + lp_-tAp-t

(tJ, ..., t p-- 1 ~ 0, t 1 + ... + tp--t = 1)

hence

A=tttAt + ... +ttp--tAp--t +sA p

Setting til == Sb .. 0'l tl p - 1 == Sp-b S == SI" we have (1), (2). This proves
that A E o/I~). So any of the above segments belongs wholly to ,~/~,.
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where

Now it remains for us to check that the set .~ does not contain
anything but these segments, i. e. that any point of J1p beLongs to
one of the segments under consideration.

Let AEJtp- Then we have (1), (2). It can be considered that sp ¥= 1,
otherwise A = Ap and there is nothing to be proved. But if sp '# 1,
then 51 + ... + Sp_l = 1 - 5p > 0, therefore we can write down

[

51
A = (51 + ... + s ,) Al + ...

ti : 51+ ... + 51' _ 1

5p , ] A... + - AI' _ 1 + sp I'
51 + ... + 5p _ 1

The expression in square brackets determines some point A'
belonging to uH. _ l' for the coefficients of AI, ..., AI'_ 1 are nonnegative
in this expressfon and their sum is one. So

A = (SI + ... + sp-I)A' + spAp

Since the coefficients of A' and Ap are also nonnegative and their
sum is one, the point A lies on the segment A' Ap • This completes
the proof of the lemma.

Now it is not difficult to see that the visual definition of the
convex hull given at the beginning of this section and the strict
definition which follows it are equivalent. Indeed, whichever of the
two definitions of the convex hull may be assumed as the basis,
in either case going over from the 'convex hull of the system AI' ...,
A p - l to that of the system Ab ... , A p _ b A p follows one and the
same rule, namely the point Ap must be joined by segments to
all the points of the convex hull for Ab ... , A p - l (this rule is
immediately apparent when the convex hull is visually defined and
in the strict definition it makes the content of the lemma). If we
now take into account the fact that according to both definitions
we have for p = 2 one and the same set, the segment A tA 2, the
equivalence of both definitions becomes apparent.

The term "convex hull" has not yet been quite justified by us,
however, for we have not yet 'shown that the set <Ab A2 , ... , Ap )

is aLways convex. We shall do it now.
Let A and B be two arbitrary points of this set:

A := SIAl + s2A2 + + spA p

B:= ttAI + t2A 2 + +.tpA p

24-
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~~:Aily point C of the segment AB is of the form
:~t..

C = sA + tB

where

S, t ~ 0, s + t = 1 (4)

which gives

· C = s(slA l + ... + spAp) + t(tlA l + ... + tpA p) =
= (SSl + ttl)A l + ... + (ssp + ttp)A p

'fPe numbers preceding At, ..., Ap as coefficients are nonnegative
and their sum amounts to one (which follows from (3), (4)). This
means that the point C belongs to the set <A'b A2 , ... , Ap ) , i.e.
this set is convex.

At the same time it is easy to see that <A b A2 , ... , Ap> is the
least of all convex sets that contain the starting points AI, A 2 , ... , A p,

viz. that it is contained in any of these sets. This statement follows
directly from the lemma proved above and from the definition of
a convex set.

.This explains the name "convex hull" and at the same time
provides yet another explanation of the fact why the set <A}, A 2, ... ,

A p ) can be obtained using the method described at the beginning of
the section. For the set spanned by a rubber loop (or film) after
the latter has tightened to its limit around the system of the points
.Ab A 2 , ... , A p is exactly the least convex set that contains the
indicated points.

4. A Convex Polyhedral Cone

Let's begin with a definition.
•I~" A convex polyhedral cone is the intersection of a finite number
oj.half-spaces whose hi'll/ulary surfaces pass through a common point;
the fatter beinq culled the vertex of the cone.

We shall first of all point out how the notion of a convex
polyhedral cone is related to systems of linear inequalities. We shall
confine ourselves to a particular case, namely a case where the
vertex of a cone is the origin of coordinates. This means that all
boundary planes pass through the origin, and the equation of a
plane passing through the origin is of the form

ax + by + cz = °
(the absolute term in the equation must be equal to zero, otherwise
(Q~ 0, 0) will not satisfy the equation). Thus a convex po-
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lyhedral cone with the vertex at the origin ;51 the feasible region
oj' a system of homogeneous inequalities:

at X + b1y + CIZ ~ 0

a2x + b2y + C2Z ~ 0

a.;» + hmy + cmz ~ 0

The reverse is true of course ~ the feasible region of a homogeneous

s

Fig. 27

system of inequalities is always a convex polyhedral cone with the
vertex at the origin.

An example of a convex polyhedral cone may be provided by
a convex region in space whose boundary is a polyhedral angle
with the vertex S, a kind of infinite convex pyramid without a base
and extending unboundedly from the vertex (Fig. 27 represents one
of such pyramids which has four faces). Other, less interesting cases
are possible ~ for example:

1. A half-space (Fig. 28, a). In such a "cofie" the role of the
vertex may be played by any point S E 1t, where 1t is the boundary
plane of a given half-space.

2. The intersection of two half-spaces whose boundary planes
intersect along a straight line I (Fig. 28, h). The role of the vertex
may be played by any point S E I.

3. A plane. It is clear that any plane 1t in space can be
considered as the intersection of two half-spaces lying on different
sides of IT (Fig. 28, c). In this case the role of the vertex may
be played by any point SEn.

4. A half-plane (Fig. 28, d). The vertex S is any point of the
boundary litle.
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:.: 5. A straight line. Every line 1 in space can be obtained by
·.intersection of three half-spaces whose boundary planes pass
through I (Fig. 28, e). The vertex S is any point of the line I.

:~
L!!!!£J//

(a)

(f)

IlllllJIfl!IlJ
(c) (d)

(lI)

Fig. 28

.6. An angle (less than 180°) in an arbitrary plane 1t (Fig. 28, j).
One can obtain an angle by intersecting the plane 1t with two
half-spaces (precisely how?).

7. A ray (Fig. 28, g). A ray can be considered as the intersection
of a' straight line and a half-space. The vertex S is the beginning
qf the ray.

8. A point. This "cone" can be obtained by taking the common
part of a ray and the corresponding half-space (Fig. 28, It).

Of course, the enumerated examples 1-8 diverge (to a greater
or lesser extent) from the usage of the. word "cone", but we are
compelled to reconcile ourselves to this if we are to preserve the
general definition of a convex polyhedral cone given at the begin­
ning of this section.

We now try to show in a few words that the sets pointed out
above exhaust aLL polyhedral convex cones in space.
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Let p denote the number of half-spaces whose intersection is the
cone % under consideration. If p = 1, then our statement is valid,
for then % is a half-space. A simple argument which is left to the
reader shows that, if our statement is valid for a cone which
results from intersection of p half-spaces, it is also valid for a cone
formed by intersection of p + 1 half-spaces. It follows according
to the principle of complete mathematical induction that our state­
ment is valid for any p.

Convex polyhedral cones possess many interesting properties. It
is beyond the scope of the present book to go into these
subjects, so we shall confine ourselves to a few simplest propositions.

We introduce one more definition or notation, if you please.
Let B1, B2 , ... , Bq be an arbitrary set of a finite number

of points (in space). The symbol (B1, B2 , ... , Bq) will denote a set
of points 0.1' the [orm

r.B, + t 2B2 + ... + (IRq

where t r- t2, ... , ttl are arbitrary nonnegative numbers.
What is the geometric meaning of the set (B 1, B2 , ... , Bq)?

It is clear from the definition that it is the sum of the sets
(Bd, (B 2 ), .•. , (Blf); we must first see, therefore, what is the
geometric meaning of the set (B), i.e. of the set of points
of the form tB, where t is any nonnegative number and B a fixed
point. But the answer to the last question is obvious: if B
is the origin, then the set (B) also coincides with the origin;
otherwise (B) is a ray emerging from the origin and passing through
the point B. Now we remark that the sum of any set and the origin
is again the same set; hence it is clear that when studying the sets (B 1,

B2, ... , B) we shall lose nothing if \-1'e consider all the points
B b B2 , ... , Btl to be different from the origin. Then the set (B., H2 ,

..., B) wilt be the sum o.f the rays (B1) , (B2 ), ..., (H).
The last remark makes the following lemma almost obvious.
Lemma. The set (B 1 , •••, B, _ I' B'/) is a union of segments

joininq each point of the set (B l' ..., B(I_ 1) with each point of
the ray (B,).

The strict proof of the lemma is carried out according to the
same plan as the proof of the similar lemma of Section 3;
the reader is advised to carry it out independently.

It is easily deduced from the lemma that (B., B2 ) is an angle,
a straight line or a ray (Fig. 29, (I, b, c). It is then readily
established that (B., B2 , B3 ) is one of the following sets: an
infinite trihedral pyramid, a plane, a half-plane, an angle, a stra-
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ight line or a ray. Now it becomes clear that there must exist
a close relation between the sets (B 1) , (B 2 ) , ... , (B q) and convex
polyhedral cones. Such a relation does in fact exist. For greater
intelligibility we shall formulate the corresponding propositions as
two theorems.

Theorem 1. The set (B., B2 , ... , Be) either coincides with the whole
of space or else is a convex polyhedral cone with vertex at
the origin.

o~
~

(a)

o

(b)

Fig. 29

That the set (B i- B 2 , ... , Bq) can indeed coincide with the whole
of space is shown by the following example. Consider four points
Bb B2 , B3 , B4 lying in such a way that the rays (B 1), (B 2 ), (B 3 ), (B4 )

form pairwise obtuse angles (Fig. 30). Each of the sets (B., B2 , B3 ) ,

(B b B 2 , B4 ) , (B., B 3 , B4 ) , (82 , B3 , B4 ) is an infinite trihedral
pyramid with vertex at the origin. The set (B 1 , B2 , B 3 , B4 ) apparently
contains all of these pyramids ~ and the union of the pyramids
coincides with the whole of space!

Theorem 2. Any convex polyhedral cone with vertex at the oriqin
is a set of the [orm (B., 8 2 " , .. , 8 q) ,

The proof 0.1" Theorem 1 will be carried out on general lines.
We shall take advantage of the method of complete mathematical
induction, The statement of the theorem for q = 1 is obvious. Now
we suppose that the theorem is valid for sets of the form (B 1, ,.. , B )
and, guided by this fact, prove it to be valid for the seis
(B b ... , Bq, Bq +.),

According to the induction hypothesis, (B b , .. , B() is either
the whole of space or a convex polyhedral cone in it. As to the
first case there is as a matter of fact nothing to be proved in it,
for then (B1, .. " BI./' Bq + I) is' also the whole of space, Let the
second case occur and (8 1, ... , B) be a convex polyhedral
~one. $', According to the lemma, the set (B., .." Bq, Bq + J)
IS a union of segments joining each point of the set .K with
each point of the ray (B q + I)~ and, as shown earlier, any convex
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polyhedral cone g is either an infinite convex pyramid or one of
the sets 1 to 8. Having considered the above union of segments
for each of these cases, it is not difficult to make sure (check
it for yourself) that either it coincides with the whole of space
or is again a convex polyhedral cone. Thus the theorem is true
for sets of the kind (B 1 ) and for (B 1 , , Bq" B + I) as well, as soon
as we suppose it to be valid for (B b , Bq) . Hence it follows that
the theorem is true for any q.

o

Fig. 30 Fig. 31

Proof of Theorem 2. Let ~. be a convex polyhedral cone with
vertex at the origin O. As already stated, X is either an infinite
convex pyramid or one of the sets 1 to 8.

Let g be a pyramid. We choose a point on each of its edges
to get a system of points Bb B2 , ... Bq. We state that the
set (B b B2 , ... , Bq) is exactly %.

To prove this, consider a plane 1t intersecting all the edges
of the pyramid .7t. We get the points B{, 82, ..., B~ (Fig. 31).
Apparently,

(1)
~

where. kJ, k1 , ... , kq are nonnegative numbers.
Now suppose B is a point of the pyramid different from the

vertex O. The ray DB intersects with the plane 1t at a point B'.
It is obvious that B' belongs to the convex hull of the system
B{, Bl, ..., B~ and hence

B' == sIB{ + s2B:5. + ... + sqB;

where Sb S2, ... , Sq are nonnegative numbers whose sum is one.
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(1)

Now taking into account (I) we have

B' = S"tklBl + S2k2B2 + ... + s"kqBl/

and if in addition it is remembered that B' = kB (k > 0), we
find that

where

sk
t i = T (i = 1, 2, ..., q)

"thus we have shown that any point B of the pyramid .K belongs
to the set (B 1, B2 , ... , Bq) . The converse (i.e. that any point of the
set (Bf, B2 , , B

JJ
) belongs to %) is obvious. So .K coincides

with (B b B2, , li'l)'
The case where X" is one of the exceptional sets 1 to 8 can be

proved without much trou ble and is left to the reader.

5. The Feasible Region of a System
of Linear Inequalities in TWtJ Unknowns

Our task now is to give an effective description of all solutions
of a system of linear inequalities. In the present section we shall
deal with systems involving two unknowns x and y. In spite of
.the fact that the number of unknowns is not large (only two),
we shall try to carry out the analysis of these systems from
.general positions, i. e. so that the results obtained may be easily
extended to systems in a larger number of unknowns.

The solution of any system of linear inequalities is in the long
run reduced to the solution of a number of systems of linear equations.
We shall regard the solution of a system of linear equations
as something simple, as an elementary operation, and shall not be

I confused if, to realize the proposed method, we have to perform
this operation many times.

10
• The necessary lemmas. Given a system of inequalities

Qt X + hI}' + Cl ~ 0

U2 X +.b 2 y + C2 ~ 0

It IS found ad visable to consider side by side with it the
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corresponding system of homogeneous inequalities

atx+btY~O

a2x + b2 y ~ 0
(2)

a.»: + bmy~ 0

as well as the corresponding system of homogeneous equations

a1x + b1y = 0

a2x + b2 y = 0 (3)

amx + bmy = 0
We denote the feasible region of the system (1) in the xOy

coordinate plane by %, that of the system (2) by :ff0 and that of the
system (3) by !e. Obviously, !e c:YC0, where the symbol c stands for
the words "is contained in'?'.

Lemma 1. The following inclusion holds

:Yl + :Yl0 c :Yl
i. e. the sum of any solution of a given system of inequalities.and any
solution of the corresponding homogeneous system of inequalities is
again a solution of the given system.

Proof Let A be an arbitrary point of :YC and let B be an
arbitrary point of %0. Then the following inequalities are valid

atxA + blYA + Cl ~ 0 atxB + b1YB ~ 0

Q2X A + b2YA+ C2 ~ 0 a2x B + b2YB~ 0
and

amx A + »;», + em ~ 0 amxB+ bmYB ~ 0

Adding each inequality written on the left to the corresponding
inequality on the right we have

al(xA+ x B) + b1(YA+ YB) + Cl ~ 0

a2(xA + x B) + b2(YA+ YB) + C2 ~ 0

* One should not confuse the symbol c with the symbol E introduced
earlier. The latter is used when speaking of the belonging of a point to a set.
If, however, one wants to record the fact that one set is a part of another,
the symbol c is used.
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(5)

These inequalities imply that the pair of numbers x, + X B, YA .+ YB'
the coordinates of the point A + B, is a solution of the original
system (I), i.e. that A + Be.x . Thus the lemma is proved.

Lemma 2. (1) If' a ray with the beginning at the point A belongs
wholly to the set .~. and P is an arbitrary point 0.1" the ray,
then P - AE~K·o· .

(2) If' a straiqht line belongs wholty to PH'"' and A, Pare
two arbitrary points of the line, then P - A E P.

P
I
I
I
I

, I
I I

.t I
I .......~
I .............. B=P-A
/ ->, ..............

t,...,.........

o

Fig. 32

Proof of (1). Denote the point P - A by B. The ray under
consideration consists of points of the form

A + sB (4)

where s is an arbitrary nonnegative number (Fig. 32). Any of these
points is, according to the premises, a solution of the system (1), i. e.

Ql(X A + SX B) + btCVA + sYn) + Cl ~ 0
Q2(X A + SX B) + b2(YA+ SYB) + C2 ~ 0

Qm(X A + SX B) + bn,(YA + SYB) + em ~ 0

Consider, for example, the first of these inequalities. It can be
written down in the following form

(atXA + b-v: + Ct) + s(atXH + btYB) ~ 0

Since this inequality holds for any s ~ 0, the coefficient of s must
clearly be a nonnegative number:

QtXB + b1YB ~ 0
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Similarly, consideration of the remammg inequalities (5) leads to
I

(l2 XB + b2YB~ 0

whence we see that the point B belongs to the set %0.
The proof 0.1' (2) is carried out in a similar way. The straight line

under consideration consists of points of the form (4) where s is
an arbitrary number. Therefore inequalities (5) are valid for any
value of s. Hence it follows that in each of these inequalities the
total coefficient of s must be equal to zero, i, e.

alxR + b1YB = 0

a2xB + b2YR= 0

Therefore B E!P. Thus the lemma is proved.
It is easy to see that Lemmas 1 and 2 are valid for systems

involving any number of unknowns.
2°. The case where the system 0.1' inequalities (1) is normal. Consider

again the system of inequalities (I) and the corresponding system of
homogeneous equations (3). The latter system has an obvious
solution x = 0, y = 0 which is called a zero solution. In order to
investigate the system (1) it turns out to be important to know if
the system (3) has any nonzero solutions either. In view of this
we introduce the following

Definition. A system of linear inequalities is said to be normal
tf the corresponding system of linear homogeneous equa~ons has only
a zero solution.

In other words, a system of inequalities is normal if the set Ie,
the feasible region of the corresponding homogeneous system of
equations, defined above contains only a single point (the origin
of coordinates).

The concept of normal system is meaningful with any number of
unknowns, of course.

It is not difficult to show that a compatible system of inequali­
ties is normal if' and only if its [easible reqion .ff contains no
straight lines.

Indeed, if the system is normal, i.e. the set .P contains only
the origin of coordinates, then the region .:ff does not contain any
straight lines, which follows directly from the second statement
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of Lemma 2. If the system is not normal, then the set !£
contains at least one point B different from the origin of coordina­
tes. Of course, all points of the form kB, where k is any number,
also belong to f£ *. But in this case, whatever the point PE%
(and such a point is sure to exist for the system is compatible
and the region :*'" is therefore not empty), the set of all points of the
form P + kB (where k is any number) belongs, according to Lemma
1, to %. We know that the set is a straight line. So when

A

(6)

Fig. 33

a system is not normal, the region % contains a straight line.
This completes the proof of the above proposition.

In this section we shall study the feasible region of the system
(1) under the supposition that the system is compatible (the re­
gion :Yt is not empty) and normal.

From the fact that the region .X'" does not contain any straight lines
it first of all follows that it must necessarily have vertices. The
term "vertex" is understood by us in the following sense (close
to the intuitive understanding of the word "vertex").

The vertex of a region $' is a point of the region which is
not an interior point for any segment which lies wholly in .~. In
other words, the vertex is a point AE.% which has the following
property: any segment belonging to .~ and passing through A must
have its beginning or end at this point (Fig. 33, a and b, where
the. point A is one of the vertices; in Fig. 33, b the region
:K is a segment).

We now explain at greater length why the convex set % we are
interested in has vertices. If .~ lies on a straight line, then it is
either a separate point, a segment or a ray, and the existence
of vertices is evident. If % does not lie on a straight line, however,

* If the numbers x, )', z; the coordinates of the point B, satisfy a
homogeneous system of equations, then the numbers kx, ky, kz, the
coordinates of the point kB, satisfy this system too.
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(6)

lIt X + hI)' + ('1 == 0

(l2 X + b2y + ('2 == 0

consider the boundary of this set. It consists of segments and rays
(,ff' does not contain any whole lines). The end of any of these
segments and the beginning of any of the rays will evidently be the
vert ices of ,1/'.

One can find the vertices of the region .*"' without much trouble.
Notice first of all that in the xOy coordinate plane the ith inequality
of the system (1) corresponds to the half-plane whose boundary
line l, is given by the equation

ajX + biY + Ci == 0 (i == 1., 2., ... ., 111)

Evidently, the point A of the region ,R" is a vertex if and only
if if belongs to two dijjerent boundary lines.

Let us agree to caIJ regular any subsystem of two equations of
the system

provided it has a unique solution (x,y),
From the above description of the vertex now results the following

method of finding the vertices of the region .~',

111 order to [ind all the rertices one should find the solutions
q( all reqular subsvst ems C?( the system (6) and pick out those
which sati.~f.l' the oriqinal system (1).

Since the number of regular subsystems does not exceed C,;" the
number of combinations of 111 things 2 at a time, the number of
the vertices of the region ..R" cannot be greater than that either.
So the number q{ the rertices is finite.

Remark. It follows from the above that. if the region .Y{" of the
solutions of a normal system has no vertex, it is empty ._- the l

system has no solutions (it is incompatible),
Example 1. Find all the vertices of the region .1/ given by the

system of inequalities

.\.-+ Y+l~O}'
x - 2y - 2 ~ 0

2.\ - Y - 4 ~ 0

On solving the subsystems

x + y + I == O} x + y + 1== O}
x - 2y - 2 == 0 2x - y - 4 == 0

,x - 2y - 2= O}
2x- y-4==O
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(all of them prove regular) we find three points:

(O~ - 1), (1, - 2). (2~ 0)
of which only the second and the third satisfy all the inequalities
given, So it is the points

At(l, -2) and Az(2, 0)

that are the vertices of the region .N".
Let us return to the system (1), Let

AI'I Az, ''''1 AI'

be all the vertices of the region ..K, The set (A 1. A 2 ,· ... A1'), the
convex hull of the system of points AI' A2 , .. ·• AI)' also belongs
to .~' (for .K" is a convex region !). But in that case. according
to Lemma 1, the set

<At'l A2 , .. ,~ AI') + '#'0

belongs to .H" too. We shall show that as a matter of fact this
sum coincides with .j('~ that we have the following

Theorem, 11' the system of incqualit ies is normal, then

(7)

where A 1. A 2,'''' A I) are all the vertices (?I' the region .ff',

Proof, Let P be an arbitrary point of the region .H" different
from the vertices of the region. The line AlP intersects the convex
region .ff either along a segment A 1 A (Fig, 34) or along a ray
with origin at A 1 (Fig, 35), In the second case P - Al E.ff'o
(Lemma 2), hence PE A 1 + .ff'o. In the first case we reason as
follows, however. If the point A lies on the bounded edge AiAj of
the region .K (as in Fig, 34), then P belongs to the convex hull
of the points A l' Ai' Ai: if, however, the point A lies on an
unbounded edge with origin at vertex Ai (Fig. 36), then, according
to Lemma L we have A E Ai + '*"0 and thereby PE (A r- Ai) +
.%'0' Thus in all cases the point P proves to belong to the
set <AI' A 2 , .. . . AI» + ·#'0' Thus the theorem is proved,
Since we are already familiar with the method of finding vertices, the
only thing we lack for a complete description of the region .:N" is the
ability to find the region $'0' The latter is the feasible region of the
homogeneous normal system (2) which we now proceed to describe.

3'-:. 711£1 homoqeneous normal system 0.1' inequalities (2). Each of the
inequalities (2) determines a half-plane whose boundary line passes
through the origin of coordinates. It is the common part of these
half-planes that is ..*'°0 ,



Among the boundary lines there are in this case at least two
different ones' (for the system (2) is normal !). Hence %0 either
coincides with the origin of coordinates (x = 0,' y == 0), or is a ray
with vertex at the origin of coordinates or an angle smaller
than 180c with vertex at origin. If we know two points B1 and
8 2 lying on different sides of the angle (Fig. 37)~ then all the

Fig. 34 Fig. 35

Fig. 36

o

Fig. 37

points of the .mgle may be written down in the form

B == tlB I + t2 8 2 (8)

where t 1 and t2 are arbitrary nonnegative numbers ~ and to find
the points Bland B2 is not difficult at all, if it is remembered
that each of them (i) belongs to .ff0, i.e. satisfies the system (2),
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and (ii) lies on the boundary of .~0, i.e. satisfies one of the equa­
tions (3). If .ff0 is a ray, then instead of (8) we have

B = tB t (9)

where B 1 is any point of the ray (different from the origin) and t is
an arbitrary nonnegative number.

II

o

(10)

.(t 1)

Fig. 38

Example 2. Find the region ·:W'o of the solutions of the system

x + y ~ O}
x - 2y ~ 0

2x- y~O

as well as the region .ff· of the solutions of the system in Example 1.
Solution. The system (10) is normal; for the unique solution of

the corresponding homogeneous system of equations

x + y = O}
x - 2y == 0

2x - Y = 0

is (O~ 0).
Choose a point satisfying the first equation of (11) (but different

from (0. 0)), the point C( - 1, 1)~ for example. We make sure by a
simple check that the point C does not satisfy all the inequalities
(l0), therefore, neither the point itself nor any point of the ray OC
(different from the origin 0) belongs to .ffo- On considering the
point - C (i.e. the point (1, - 1)) we find that it belongs to
$"0' So B1 = (1, - 1). The second equation is satisfied by the point
(2~ 1)~ it is also a solution of the system (10), so that B2 = (2, 1).
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The region .ff0 consists of the points (Fig. 38)

II B 1 + /2 B2 = /d1. - 1) + t 2(2, 1) = (t 1 + 212 0 - I. + t 2)

where I} and [2 are arbitrary nonnegative numbers.
Turning to the system of inequalities of Example 1 we notice

that it is (10) that is the corresponding homogeneous system. From

II

o

1/

o

(1,2)

.x

Fig. 39 Fig. 40

the theorem proved above we have

.~. == (At, A 2>+ ~~·o

where Al (1, - 2) and A 2 (2, 0) are the vertices of the region .ff.

So .~. consists of the points (Fig. 39)

s(l, - 2) + (1 - s)(2, 0) + (11 + 212 , - 11 + (2 ) =
=(2-s+t 1 +2t2 , - 2s - t 1 +(2)

where s is any number in the interval [0, 1] and t 1, t2 are any
nonnegative numbers.

Example 3. Find the feasible region of the system

2.\- \'~O}
-4'\ + 2y ~ 0

x + J! ~ 0

Proceeding as in Example 2 we find only a single ray:

B==t(l, 2)=(t, 2t) (t~O)

(Fig. 40).
Example 4. Find the feasible region of the system

2x - y ~ O}
x+r?O

-3.\ + v~ 0
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111 this case none of the equations

2x - Y == 0

x+.V==O
-3x + y == 0

has solutions (except (0, 0)) which would satisfy all the given in­
equalities. The region '.*"0 consists of a single point (0, O)~ the
origin of coordinates.

Fig. 41

4(). The case where the system qj" inequalities (1) is not normal.
This means that the feasible region !.I,) of the homogeneous system
of equations (3) contains something else besides the origin of coordi­
nates. Therefore. all the equations (3) determine the same straight
line in the plane. and that line is !.I).

According to Lemma 1 the region .N" contains together with each
of its points P a straight line P + 2/ (a line passing through P
and parallel to 9/). Consider a straight line .-T not parallel
to !L). If we know which points of the line .-T belong to
the region .K'-- denote the set of these points by .1('.'l- - then we
shall be able to find the region .Y(' itself. for then .ff = ·Y(·.i- +. !/)
(Fig. 41).

The equation of the straight line !.I) is (/IX + h1.\' = O. One of
the coefficients a I or b1 of this equation is different from zero;
let hI i=- 0, for example. One can then take as a straight line -T not
parallel to !/,1 the y-axis (its equation is .\ = 0). In this .case the set
.j{'.J- -- now denote it by .N"\, is the part of the y-axis contained
by .11'. To find this set one should put .v = 0 in the system (1).
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(12)

Then we have the system of inequalities

bty + Cl ~ 0

b2 y + C2 ~ 0

bmy + c; ~ 0

in one unknown y which is easy to solve *. Notice that the set .X"ymay
be either an empty set (then .ff is also empty) or a point, a segment or
a ray (but it cannot be the whole of the y-axis, for otherwise ff would­
be the whole of the plane, which is impossible). On finding this set we
shall know the region -*" itself, for •

'~=%.r+fe (13)

(if !I! is not parallel to the y-axis).
Example 5. Find the feasible region .:ff of the system

x+ Y-l~O}
-x- y+2~O

2x + 2y + 3 ~ 0
I t is- easily seen that the system is not normal and that 9) IS the
straight line

x+y==O

(not parallel to the j-axis). Setting x = O~ we have the system

y - 1 ~ O}
-y+2~O

2y + 3 ~ 0

from which it is seen that .ff r' the intersection of $' with the
j-axis, is a segment with the ends C 1(0, 1) and C2(0, 2). So .:ff
is a set of points of the form (Fig. 42)

(0, y) + (x, - x) == (x, y - x)

where x is arbitrary and y is any number in the interval from
I to 2.

* Notice that the system (12) (viewed as a system of inequalities
in one unknown) is now normal. Indeed. if otherwise, the corresponding
homogeneous system would have a nonzero solution j"; but then the sys­
tem (3) would have the solution (O~ y*) not belonging to !fl.
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In conclusion we shall briefly discuss a theorem which follows from
the results obtained above. In the two-dimensional case we are consi­
dering (i.e. where everything takes place in the plane) this theorem is
not particularly striking and it would be right to regard it as a
starting point of the extension to the "n-dimcnsional" case to be
studied in Section 7.

II

Fig. 42

Theorem. Any inonempt vv coniex polyqonal reqion .ff in the plane
can be represented as the sum

<A h A z, ..., A p ) + (B}, B2 , ... , Bq} (14)

The augend of the SUlTI is the convex hull of a system of points A l'

A2 , ... , A p , and the addend is a set of points of the form
t iB, + {2 Bl + ... + tqBq, where f t - t2~ ... , tq are arbitrary nonnegative
numbers.

The theorem can be proved in a. few words. Consider a system
of inequalities giving .ff. If the system is normal, then equation
(7) holds; bearing in mind that in this equation '%"0 is one of the
sets of the form (BJ, B2 ) , (B.) or (0) (the origin of coordinates),
we find that in the case where the system is normal our statement
is valid. If the system is not normal, then equation (13) holds from
which it also follows that .~ is representable in the required form
(why?).

Notice that if all points A 1, A2 ,... , AI' coincide with the origin 0,
then the set (A., A2 ,... , Ap> also coincides with 0; then only the
addend is left of the sum (14). When the points B 1, B2 ,..., Bq

coincide with 0, the set (B 1, B2 , ... , Bq) also coincides with 0 and
only the augend is left of the sum (14).
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The converse theorem also holds, though with some reservation.
Theorem. Any set q!' the jorm

<A1, A2 ., ... ., Ap ) + (BJ., B2 , ... , Bq)

in the /J/ane i.\' either the vchol« plane or SOI1U! coni-ex polvqonu! reqion
in it.

The proof is fairly obvious. The addend, i.e. the region ·.f(·o ==
(B1, B2 ..... B£/). is either the whole plane. or a half-plane, or an angle
(smaller than 180':'), or a ray, or a point (the origin of coordinates),

Fig. 43

whereas the summand .;t" 1 = <AI' A 2,'''' A /,) represents a convex
polygon. The set ·.f("1 + ·;r"o can be obtained by translating ·*"0 to
the segments OK 1 (where K 1 is any point of ·$'1) and tak ing the
union of the sets obtained (Fig. 43). It is easily seen that this produces
either the whole plane (this is the case if '.#'0 is the whole plane)
or some convex polygonal region in it.

6. The Feasible Region of a System
in Three Unknowns

After the detailed analysis given in the preceding section we are
now in a position to minimize the required theory when considering
systems in three unknowns.

Along with the original system

at"' + b.: + c1z + dl ~ O}
.; ~ h,~y'~ ;'m'z '+' (im'; 6 (1)
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as in Section 5. we again consider two more systems:

a 1.\ + h I.l' + (' I': ~ O} (2)

(/wx + hl!1J' + Cm : ~ 0

and

(3)

We shall again denote the feasible region of the system (1) by .j('~

that of the system (2) by '#'0 and that of the system (3) by
-!:fJ. To use the previously introduced terminology, .j(' is some con­
vex polyhedral region in space and .f(~o is a convex polyhedral cone.
As already noted, Lemmas 1 and 2 of Section 5 remain valid here
too.

I ". The case where the system (?l inequalit ies (1) is normal. Here
the region .R" docs not contain any straight lines and hence has
at least one vertex, Indeed, if .f(' lies in the plane (and, as noted in
Section 2, such a case is possible). then .fl' is a convex polygonal
region in the plane which contains no straight lines and, as explained
in Subsection 2:-' of Section 5, must, therefore. have vertices. If the
region .K' does not lie in the plane, however, consider its boundary.
This consists of faces each of which, being a convex polygonal
region containing no straight lines, must have vertices ~ and it is easily
seen that a vertex of any face is simultaneously a vertex of the
region .$".

Converging in the vertex A of the region .%' are at least three
boundary planes for which the point A is the only common point.
Indeed, if this were not the case, all the boundary planes passing
throught A would either coincide or have a common straight line.
But in that case a sufficiently small segment passing through A and
lying in the common boundary plane or on the common boundary
line would belong to .~'. which is contrary to the definition of a
vertex. .

This compels us to make some obvious changes in the method of
finding vertices described in Subsection 2' of Section 5. That is~

now we should say that a reqular subsvst eni is a subsystem of
three equations of the system

(/t
X + b1.\' + Ct

Z + lit = O} (4)

amx+ hmr+ CmZ + dm = 0
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(5)

rather than two, provided the solution (x, y, z) of the subsystem is
unique. When a regular system is understood like this, the method
of finding vertices remains exactly the same as before, namely:

To find all the vertices 0.( -the region .~., one should find the
solutions o.f all the regular subsystems o.f the system (4) and pick
out those which satisf» the original system (1).

The theorem of Subsection 2° of Section 5 also remains valid;
the changes to be made in the proof of the theorem are obvious. The
remark that a normal system has no solutions if the region %
has no vertices also remains valid.

Example 1. Find the vertices of the region .K given by the system
of inequalities

2x+ y+ z-l?:O

x + 2y + z - 1 ~ 0

x + y + 2z - 1 ~ 0

x+ y+ z-I~O

Here the corresponding homogeneous system of equations IS

of the form

2x+ y+ z=O

x + 2y + z = 0

x + y + 2z = 0

x+ y+ z=O
Solving it we see that the unique solution is (0, 0, 0); so the
system (5) is normal.

To find the vertices we shall have to consider all the subsystems
of three equations of the system (4):

2x + y + z - 1 = 0 } 2x + y + z - 1 = O}
x + 2y + z - 1 = 0 x + 2y + z - 1 = 0

x + y + 2z - 1 = 0 x + y + z - 1 = 0

2x + Y + z - 1 = 0 } x + 2y + z - 1 = 0 }
x + y + 2z - 1 = 0 x + y + 2z - 1 = 0

x+ y+ z-I=O x+ y+ z-I=O
On making the required calculations we find that all the subsys­

tems are regular and that their solutions are the points

(1/4,1/4,1/4), (0, 0, 1), (0, 1, 0), (1, 0, 0)
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of which the first does not satisfy the system (5) and the remaining
three do. Therefore, the vertices of the region .~' are the following:

At(l, 0, 0), A2(0, 1, 0), A 3(0, 0, 1)

2°. The normal homoqeneous system of inequalities (2). Each of the
inequalities (2) determines a half-space whose boundary plane passes
through the origin of coordinates.

Here a single point, the origin of coordinates, is the intersection
of the boundary planes (the system (2) is normal !). In other words,
the set .~0, the feasible region of the system (2), is a convex polyhed­
ral cone with a single vertex. It follows from the enumeration of
convex polyhedral cones given in Section 4 that in our case X °
is either an infinite convex pyramid, a flat angle, a ray or, finally,
a single point (the origin of coordinates). Omitting the last case for
the time being, we have in all the remaining ones

go"= (B1, B2 , .o., Blf)

where Bf, B2 , ..., B
li

are some points chosen one at a time on
each edge of the cone .Yl 0 (see Theorem 2 of Section 4). One can
find such points from the following considerations. Each of them
(i) belongs to ,K0, i. e. satisfies the system (2), and (ii) belongs to the
line of intersection of two different faces, i. e. satisfies disproportion­
ate * equations of the system (3).

If it is found that the only point satisfying conditions (i) and
(ii) is (0, 0, 0), then the region '.*"0 coincides with the origin of
coordinates.

Example 2. Find the region .~0 of the solutions of the system

2x + Y + z ~ 0

x + 2y + z ~ 0

x + y + 2z ~ 0

x+ y+ z~O

(6)

and, further, the region ,:H' of the solutions of the system in Exam­
ple 1.

Notice first of all that the system (6) is connected with the system of
inequalities (5) of Example 1; namely (6) is a homogeneous system
corresponding to (5). Hence the system (6) is normal.

* We call the equations ax + by + c: = 0 and a'x + b'y + cz = 0 "dispro­
portionate" if at least one of the equalities a/ a' = b]b' = c] <. fails ,to hold;
in this case the corresponding planes intersect along a straight line.
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Here the system of two disproportionate equations can be set up
in six different ways:

x + 2).) + Z = O} 2.'( + Y + z == O} 2x + J.' + Z ~ O}
x + )' + 2z == 0 x + y + 22 == 0 X + Y + z = 0

2x + Y + z = O} x+ 2y + Z = O} x+ J' + 2z == O}
x + 2y + z = 0 x + Y + z == 0 .x + y + z == 0

For each of these six systems, choose two nonzero solutions: (x, y, z)

and (- x, - y, - z]. For example.,one can take (3, - 1, - 1) and (- 3,
1, 1) for the first system ~ inequalities (6) are satisfied only by the
first of these solutions. Hence we have the point B1 == (3, - 1, - 1).
Proceeding in similar fashion with the remaining five systems we
find the pain ts B2 = (- 1, 3, - 1) and B 3 == (- 1, - 1, 3). So the
region ·$'0 consists of points of the form

t 1B1 + t28 2 + t 3B3 ==
== (3t 1 - 12 - t3 , - t 1 + 3t 2 - (3, - t 1 - ' : + 31 3 )

where t b t 2 , 13 are arbitrary nonnegative numbers.
We now turn fa the system of inequalities (5) of Example 1.

As already noted, it is (6) that is the corresponding homogeneous
system. Therefore, the region .K is of the form

(A h A 2 , A 3>+ ·~o

and consists of the points

SIAl + S2 A2 + S3 A3 + t1B 1 + t28 2 + (3 83 ==

== 81 (1, 0, 0) + S2 (0, 1, 0) t 83 (0, 0, 1) +
+f1 (3, -1, -1)+t2(-1, 3, -1)+t3(-1, -1,3)=

= (SI + 3f l - t2 - t3 , 82 - t 1 + 3t 2 - f 3 ' .) 3 - t 1 - I z + 31 3 )

where the nurnbers tI, :2, tJ ~r~ arbitrary nonnegative ones and
Sh 82' S3 are nonnegative and sum to unity.

3°. The case where the system (~I' inequalities (1) is not normal. This
means that the feasible region c/' of the homogeneous system of
equations (3) contains points different from the origin of coordinates.
Since !.{.J is the intersection of planes, two cases are possible:

1. ;p is a straight line. According to Lemma 1 the region .X"
together with each of its points P contains a straight line P + !R.
Consider some plane .Y' which is not parallel to !£. If we know
which points of the plane .f belong to the region .ff -denote



the set of these points by "~·.F - - we shall be able to find the
region .ff itself, for then .ff == .ff..;;- + 2 Y

•

But, whatever the straight line .f.{/ may be, one can always choose one
of the coordinate planes, xOy, xt): or yO.:, as the plane .f
not parallel to it. Assume, for example, that if is not parallel to the
yOz plane. Take this plane to be .-j-. Then the set .K.1- - denote
it now by .K,. _- is the part of the vO.: plane contained in .K
(Fig. 44). To rind this set, one should ~put x == 0 in the system (I),
We then have the system of inequalities *

!I
Fig,44

b1y + CIZ + d1 ~ O}
billY + cl11Z + dill ~ 0

(7)

(9)

(8)

which can be solved using the method of Section 5.
On finding the set ·~.r,z we shall be able to write down

~ ='~.r,: +!£

(if the straight line !P is not parallel to the yOz plane),
which is the complete description of the region .ff.

Remark. If it is found that the set .*,'r.z is empty, so is .K.
This means that the system (1) is incompatible.

~:~!??t'!!'} 3. Find the region .~ of the solutions of the system

-2x+ v+ z- i iG'}
- 3x - y + 4z - 1 ~ 0

- x - 2y + 3z ~ Q

* It is easily seen that the system (7) is now normal (see a similar
footnote on page 42),
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(10)

Consider the corresponding homogeneous system of equations

- 2x + J.' + Z = O}
-3x - y + 4z = 0

- x - 2y + 3z = 0
Solving it we find that the third equation is a consequence of the
first two, so that the system is reduced to the first two equations.
The set of its solutions ,p is the straight line along which the planes

-2x+y+ z=O
and

- 3x - y + 4z = 0

intersect.
Choose some point B on the straight line !.P different from the

origin of coordinates. To do this, it is enough to find some
three numbers x, y, z (not vanishing all together) which satisfy
the first two equations of the system (10). Take 1, 1, 1, for
example. So Ie is the straight line 0 B, where B == (1, 1, 1).

It is easy to see that the straight line !P is not parallel to, say,
the yOz coordinate plane. Setting x = 0 in the system (9), we have
the system I

y+ Z-l~O}
- Y + 4z - 1 ~ 0

-2y + 3z ? 0

in two unknowns y and z, which is normal. One can find its
feasible region e.*"r.= using the method of Section 5. On making the
required calculations we find that % r.r is a set consisting of a
single point A(3/5, 2/5) (in the yOz plane). Hence the sought region
$' consists of all the points of the form

A + tB = (0, ~, ~) + t(l, 1, 1) == (t, ~ + t, ~ + t)

'!:h~re t is any nonnegative number (the region % is a straight
line parallel to !e).
2. !:e is a plane. Then take as a secant set ..~ some straight line
not parallel to this plane; in particular, one can take one of the
coordinate axes. Assume, for example, that the z-axis is ·not parallel
to .P ~ take it to be .'7. To find the set ..*"_, the part of the
z-axis contained in .~, one should put x = 0, y ==- 0 in the system (1).
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We then have the system of inequalities

Ct Z + d1 ~ O}
cmz + dm ~ 0

(11)

which is solved without much difficulty *. On finding the set $"z'
we shall be able to write down (Fig. 45)

% = %= + 2 (12)

(if the plane !P is not parallel to the z-axis), which is the complete
description of $'.

Fig. 45

Remark. If the set .~z is found to be empty, so is %.
The system (1) is then incompatible.

ExampLe 4, Find the region % of the solutions of the system

X-Y+Z+l~O}
-x + y - Z + 2 ~ 0 (13)

Here the corresponding homogeneous system of equations is
of the form

x-y+z=O}
-x+y-z=O

* The system (11) is normal.

(14)
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The second equation is a consequence of the first ~ therefore, the
feasible region of the system (14) is the plane !I! given by the equation

x-y+z=O

It is easy to see that this plane intersects the z-axis in a single
point and hence is not parallel to the z-axis. Find the set .Yf._.

Setting .x = 0, y = °in the system (13)~ we have the system ~

Z+l?O}
-z+2?O

from which it follows that

(15)

So .ff is the set .ff_+ P consisting of the points of the form
(0, 0, z) + (x, y, - x- + y) = (x, J', Z - x + y) where x and yare
arbitrary and z satisfies the inequality (15).

We conclude this section by formulating two theorems which gener­
alize the last two theorems of Section 5 to the three-dimensional
case. The only change we should make for this purpose in the
formulations of the above-mentioned theorems of Section 5 consists
in substituting the word "space" for "plane".

Theorem. Any inonemptyi convex polyhedral region in space can he
represented as the sum

(A h A2 , ... , At» + (B1, B2 , ... , B()

Theorem. An." set q{ the .!C)17n

(AI' A2 , ... , A p ) + (B I , B2 , ... , Bq)

in space is either the whole of space or some convex polyhedral
region in it.

The proofs of both theorems follow almost word for word those
of the corresponding theorems in the two-dimensional case. Their
elaboration is left to the reader.

7. Systems of Linear Inequalities
in Any Number of Unknowns

In the foregoing sections we concentrated upon systems of inequa­
lities in two or three unknowns. This was dictated mainly by two
circumstances. Firstly, these systems are simple to investigate and
allow one to keep entirely within the framework of "school"
mathematics. Secondly, (which is more important in .the present
case) solutions of such systems have visual geometrical meaning
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(as points in the plane or in space). However, more common in
applications (in linear programming problems, for example) are
systems of inequalities involving 11 > 3 unknowns. To pass them
by in silence would greatly water down the presentation of the
question. Therefore, we shall try to at least outline the situation
for any 11 > 3.

To visualize linear SystCITIS of inequalities in 11 unknowns we
must turn to the so-called n-ditnensional space.

We shall begin with the definition of relevant concepts. con­
fining ourselves only to the most essential.

A point (~I' n-dimensional space is defined by an ordered set of 11

numbers

Xl, X2, "" XII

called the coordinates of the point. Such a definition is motivated
by the fact, fundamental to analytic geometry, that a point in
the plane is described by a pair of numbers and that in space
by a triple of numbers. In what follows instead of saying "the
point M has the coordinates '\1, '\2, .... .\".... we shall write M =

(Xl, X2, ... , x,,) or simply M(.\l' '\2, ... , XII)' The point (0.0, .... 0) is
called the oriqin (!I' coordinates or just the oriqin.

We shall first of all point out what is meant by a "segment"
in n-dimensional space. According to Section 1. in ordinary space
a segment M 1 M 2 can be described as a set of all points of the form

slMt+s2 M 2

where Sb "2 arc any two nonnegative numbers whose sum is one.
Going from three-dimensional space to n-dimensional space \VC adopt
this description as the definition ql' a seqnient . More strictly, let

be two arbitrary points of n-dilnensional space. Then we say that
a seqment M' AI" is (/ set q( all points of the [orm

sM' + s"M' ==

= (s'x~ + s''x", s'x; + s"x~, ..., S'X'/1 + Sf'X:) (1)

where s. s" arc any two nonnegative numbers with a sum of
one. When ."i' == 1, s" == 0 we have the point M', when
s' = 0, S" == 1 we have the point M". These are the ends of
the segment M'M". The remaining points (they are obtained when
s' > 0, s" > 0) are called the interior points of the segment.
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Of other concepts pertaining to n-dimensional space we shall need
the concept of hyperplane. This is a generalization of the concept of
plane in ordinary three-dimensional space. Here the prefix "hyper"
has quite definite meaning. The fact is that in n-dimensional
space various types of "planes" are possible, viz. one-dimensional
"planes" (they are called "straight lines"), two-dimensional "planes",
etc., and finally (n - Ij-dimensional "planes"; it is the last that are
called "hyperplanes".

Definition. In n-dimensional space, a set 0.(points M (xJ, X 2,'''' x)
whose coordinates satisfy the equalion of 1he first deqree

a1x 1 + Q2X2 + ... + a.x; + b == 0 (2)

where at least one of the numbers ai' a2,"" all (coefficients of the
unknowns) is different [rom zero, is called a hyperplane. For n = 3 the
equation (2) assumes the form a1xl + U2X2 + a3x3 + b = 0, which
is none other than the equation of a plane in ordinary space
(where the coordinates are denoted by Xl' X2' X3 instead of x., y, z
as usual). .

With respect to the hyperplane (2) the whole of n-dimensional
space is divided into two parts: the region where the inequality

a1x t + Q2 X2 + ... + a.x; + b ? 0 (3)
holds and the region where we have

a1x 1 + Q2X2 + ... + QlrXIl + b ~ 0 (4)

These regions are called lialf-spuces. Thus every hyperplane divides
the whole of space into two half-spaces for which it is a common
part.

The concept of a convex solid is also generalized to the n-dimen­
sional case. A set of points in n-dimensional space is said to be
convex if together with any two of its points M' and M" it contains
the entire segment M'i\1" as well.

It is easily shown that any half-space is a convex set. Indeed,
let the points AI' (4', X2,,,., x,:) and M" (x~, x~,..., x::) belong to the
half-space (3). We prove that any point M of the segment M'M"
also belongs to that half-space.

The coordinates of a point At1 are written in the form (1) or, equiva­
lently, as
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(5)

Substituting into the left-hand side of (3) we have

at(s.x; + (1 - s)x~) + a2(sx2 + (1 - s)x~) + ...
... + an(sx~ + (1 - s)x~) + b =

= ~{alx[ + a2 x2+ ... + anx,:) +
+ (1 - s)(alx;' + a2x~ + ... + a,rX::) + sb + (1 - s)b

(we have replaced the number b by the sum sb + (1 - s)b),
which is equal to

s[atXi' + ... + a.x', + b] + (1 - s)[atx~ + ... + a.x"; + b]

Each of the two sums in square brackets is nonnegative since
both points M' and M" belong to the half-space (3). Therefore
the entire expression is also nonnegative (for s ~ 0 and (1 - s) ~ 0).
This proves that the point M belongs to the half-space (3),
i.e. that this half-space is convex.

From the above it is easy to understand what geometric
terminology should correspond to a system of linear inequalities
in n unknowns. Given the system

atX t + a2x2 + + a.x; + a ~ 0

btxi + b2X2 + + b.x; + b ~ 0

('tXt + C2 X2 + ....+ c.x, + C ~ 0

each of the inequalities determines a certain half-space while all the
inequalities together determine a certain region .% in n-dimensional
space which is the intersection of a finite number of half-spaces.
The region % is convex, since so is any of the half-spaces that.
form it.

I II n-dimensional space, by analogy with the three-dimensional case,
a region which is the intersection of a finite number of half-spaces
is called a convex polyhedral region or, ~f the intersection is a bounded
set, simply a convex polyhedron. Here the words "bounded set" should
be understood in the sense that the coordinates of all the points
of a region under consideration do not exceed in absolute value
a certain constant c:
[x 11 ~ c,... , lxlll ~ c for all points of a given region.

Thus, in n-dimensional space, a set o.fpoints whose coordinates satisfy
the system (5) is the convex polyhedral region % resultinqfrom intersec­
tion of all half-spaces correspondinq to the inequalities of the given
system.



Note again that if the region is bounded, it is called a convex
polyhedron.

The methods of actual description of the region .ff which have
been considered for systems in two unknowns in Section 5 and for
systems in three unknowns in Section 6 can, with appropriate changes,
be extended to the case of 11 unknowns. We shall not go into
this, however, for it would require rather much space. Besides, with
a large number of unknowns these methods are not efficient,
requiring as they do, too cumbersome calculations.

It is remarkable that the general theorems on the structure of
convex polyhedral sets in three-dimensional space remain fully valid
in n-dimensional space, although requiring more elaborate proofs.
We shall restrict ourselves only to the formulations of the theorems and
to the essential explanations.

Theorem 1. TI,econvex hull ofany finite system ofthe [Joints AI' A2'"''

Ap is a convex polyhedron.
For better intelligibility we shall emphasize that here a relation is

established between two differently defined types of sets, viz.
between the convex hull of a system of points A b A 2 , ... , Ap which
is designated as <AI' A 2 , .•. , A p> and defined as a set of all
points of the form

where 8 1, S2,"" S are any nonnegative numbers whose sum is one,
and convex polyhedra, i. e. bounded regions resulting from inter­
section of a finite number of half-spaces.

In two- and three-dimensional spaces the validity of Theorem
1 is obvious (at least from the visualization of the convex hull),
while in the multidimensional case it is not obvious at all and re­
quires to be proved.

Theorem l ' (the converse of Theorem 1). An]' convex polyhedron
coincides with the convex hull 0.1' SOHl€! finite system of points.

In fact we can state even more: a convex polyhedron coincides
witlt the convex hull ofits vertices. The definition of a vertex is the
same as in the two-dimensional case (a vertex is such a point of a
polyhedron which is not an interior point for any of the segments
belonging wholly to the polyhedron). It can be shown that the
number of vertices is always finite .

.Theorem 2. An_~~ set o] the.:[orm (Bl~ Bb ..... B£/) either coincides
with the whole of space or IS some ('O/H'l!X polyhedral cone 'with
t ertex at oriqin.

We remind that the symbol (Bb B2,... , B ) designates a set of all
Ii .....
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points which can be represented in the form

uB, + t 2 B2 + ... + {£jB'1

where t l' t 2'''.' 1(1 are any nonnegative numbers. A convex polyhedral
cone is defined as the intersection of a finite number of half-spaces
whose boundary hyperplanes have a common point (the vertex of the
cone). The validity of Theorem 2 in three-dimensional space was
established in Section 4 (Theorem 1 of Section 4).

Theorem 2'. Any convex polyhedral cone witl: vertex at oriqin can
be represented as (B t- 8 z,..., B,,).

The validity of the theorem for the three-dimensional case was
proved in Section 4 (Theorem 2 of Section 4).

Theorem 3. Any convex polyhedral region can be represented as
the sum

<AI' A z., ..·, Ap) + (8 1, B2 , ... , B)

Theorem 3'. Any sum of' the indicated form is either the whole
of space or some convex polyhedral reqion in it.

8. The Solution of a System
of Linear Inequalities

by Successive Reduction
of the Number of Unknowns

From his elementary algebra course reader is familiar with the
method for solving systems of linear equations by successive reduction
of the number of unknowns. For systems involving three unknowns
~, y, z the essence of the method can be described as follows.
\ From each equation of a given system, one finds the unknown z
~d terms of the unknowns x and y. The obtained expressions

.containing only x and y) are then equated to one another. This
'eads to a new system, a system in two unknowns x and r. For
example, the following was the original system '

2x - 3.\' + z = - 1)

x - v + 22 == 5 ~ (1)

4:r - z = 5 j
then, on solving each of the equations for - we have

Z==

2x + 3y - 1
I I 5

··2-.\'+ ·2-"+ 2

4)' - 5

(1')
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after equating the expressions in the right-hand sides (it is enougr
to equate the first of the expressions to each of the rest in turn
we have the system

- 2x + 3y - 1 = - ~ x + ~ y + ~} (2:

-2x+3y-l= 4y-5

in two unknowns x and y. The system (2) can be handled in the
same way. From the system of equations (2) we find

y= ~x+~} (2'

y = - ~x + 4

after which we get the equation

3 7
5 x + -5- == - 2x + 4

involving now one unknown x. On solving the equation we fine
x = 1, after which from the system (2') we find y = 2, and finallj
from the system (1') we have z == 3.

It turns out that something of the kind can be done with an
system of linear inequalities. Solving a system of inequalities in 1

unknowns Xl"'" x
l1

- I' XII is thus reduced to solving a system ('
inequalities in n - 1 unknowns x b"" X,,_ l' then the resulting systen
can be reduced to a system in 11 - 2 unknowns Xl,'''' XII _ 2 and f

on and on till we come to a system in one unknown Xl, ar
solving a system in one unknown is quite an elementary task. In th
way we get an opportunity of finding any solution (at least
principle) of the original system of inequalities.

So suppose a system of linear inequalities in 11 unknowns Xl~ .v,
... , XII is given (for reference convenience it will be referred to a
"the system (S)" in what follows).

A number of questions arise in discussing the system (~

Is it compatible? If it is, how are all of its solutions to be found
When are systems of inequalities incompatible? Answers to all thes
questions will be given in this and the next section. Here it is fount
very helpful to connect to each system of inequalities a new systen
in which the number of unknowns is less by one than in th
original system: this new system is called concomitant.

We proceed to describe it.
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Consider any of the inequalities of the system (S). It is of the form

alXt + a2x2 + ... + Q"Xn + a ~ 0 (3)

If an = 0, leave the inequality unchanged. If an < 0, transfer the
term a"Xn to the right-hand side of the inequality and divide both
sides by a positive number - all to get the inequality of the form

bcc, + ... + bn - 1 X n-l + b ~ x,

In the case of an > 0, transfer all the summands but anXn to the
right-hand side of the inequality and divide both sidest>y an to
get the inequality

x, ~ Ct Xl + ... + ("n-l X n- 1 + c

, So on multiplying each of the inequalities of the original system
by an appropriate positive number we get the equivalent system
of the form

P, ~ x;

P2 ~ x,

r, ~ x,

x, ~ Ql
.\.

X" ~ Q2 (D
),

s, ~ Qq

.. R 1 ~O

R 2 ~ 0

vhere Pb"'~ Pn: Qb'''~ Qq, R1, ... ~ R, are expressions of the form
'ltXl + ... + (I,,-I.\"n--l + a (not containing x,,)*.

*Of course, if the system (S) has no inequality in which (Ill < O. then the
.ystern (T) will not have the first block. Similarly, if there are no inequali­
ies with an > 0, then the system (T) will not have the second block.
-inally. if (S) has no inequalities with a; = 0, then the third block will
'e missing from (T).
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In shorthand notation the system (T) can be written down as

r; ~ x" ~ Qfl }

Ry ~ 0

where ':J. is any of the numbers l , 2,.... p. P is any of the numbers
1, 2,..., q. and y is any of the numbers 1. 2...., r.

Along with the system (7) consider the system

P-J ~ Qp} (S')
Ry ~ 0

(where ':1 is any of the numbers 1, 2...., p, P is any of the
numbers '1, 2,..., q, and y is any of the numbers 1, 2,..., r)

in 11 -1 unknowns Xl,"" X" -- 1*. Let us agree to call this
system CO/1C0I11itUl1l (with respect to the original system (5)
or to the equivalent system (T)).

There is a close connection between the solutions of the systems
(5) and (5') which is expressed in the following

Theorem. I] the ralue ql' the last unknown x, is discarded /i·0111
any solution of the SYS(CI11 (5), then H'e yet a certain solution (?l the
concomitant system (S').

Conoerselv, [or an)' solution 0.1' the C0I1C0/11ilallf system (S') it is

possihle to find such a value of the unknown XII 011 adjoininq which
we qet a solution 0.1' the oriqinal system (5).

The first statement of the theorem is obvious (if a set of values
of the unknowns satisfies the system (8), then it does the system Cf) too ~

but then all the inequalities of the system (S') hold for the same set too).
We prove the second statement.

Let

Xl = x?.,..., X,, __ I == X~,_ I

be a solution of the system (S'). Substituting into the expressions
Pb ·.. , Pfl' Qt. ..., Q(J' R b ·· · , R,., we get some numbers P~,...,
P~, Q?~ ... , Q~, R? ..., R? The following inequalities must hold
for them

r': ~ QO (4)
':J /"'"' r~

(ct being any of the numbers 1. 2,...., p. and B any of the

* If the first or the second block is found to be missing from the system (7),
then (S/) will consist only of the inequalities R( ~ O. If the third block is
missing from (7)., then (S') will have only inequalities 1'''./ ~ Q

W
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numbers I .. ')
.:..,...~ q) and

(5)

(y being any of the numbers 1, 2~ ..., r).
The first group of the above inequalities (i.e. (4)) shows that each

of the numbers Q?...... Q? is not greater than any of the numbers
Po 0 . I 0

t , ... , P ". But In such a case there must be a number XII which
lies between aIJ the numbers Q?....., Q~ and all the numbers P'[,
..., P~:

P; ~ x~ ~ Q~

where a. is any of the numbers l. 2,..., p, and ~ is any of the
"numbers L 2,.... q (Fig. 46). These inequalities together with the

x%
o )( 0 0qo .p.D pO
2 4 2

Fig. 46

00

pO p..0
1 3

inequalities (5) mean that the set of the values of the unknowns

Xl == x?., ..., X n -- 1 == X~ __ 1., X n == X~

is a solution of the system (T) and hence of (S). Thus the theorem
is proved.

The following two additions to the theorem will play an important
role below.

1. A system (S) (?( linear inequalities is compatible U" and onlv f( so
is the concomitant system (S'). This is a direct consequence of the
theorem proved.

2. AII the solutions (!j' the oriqinal system (5) can he obtained in
the [ollowinq \va)'. One must adjoin to each SO/lit iO/1 x?.. x~ __ 1 Qf
the ('011('0111itaI11 system (S') any (!l the numbers x~ lyiiu; between all
the numbers QV, ..., Q~ and a/I the numbers p?.. ..., P~. As a matter
of fact this proposition was proved during the proof of the theorem.

We shall say a few words about the geometric meaning of the
theorem proved above. Suppose that (S) is a system of inequalities in
three unknowns .x.. j', z, The concomitant system (S') is a system
in two unknowns x.. j. Denote by .f{' (5) the feasible region of
the system (5) (it is a certain set of points in space) and by -R"
(S') the feasible region of the system (S') (a set of points in the plane)
In geometric terms the theorem proved has the following meaning.

The reqion -1(' (S') is the proiect iO/1 ql the reqion -ff (5) OJl the
xOy coordinate plane.
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So for an arbitrary system (5) of linear inequalities' involving
unknowns x., x 2, ... , XII we have constructed a new, concomitant system
(5') involving the unknowns Xl, X2' ... , X n--l' and for the system
(5') one can in turn construct the concomitant system (S") (in­
volving the unknowns x ,, X2, ... , X n -- 2), for the latter system one can
construct the concomitant system (5"') and so on.
Continuing the process we shall. after a number of steps, come
to the system (S'1/ - 1I) consisting of inequalities in one unknown x..
It follows from Proposition 1 stated above that the system (S) is
compatible if and only if so is the system (S(II - I)), and answering
the question concerning the compatibility or otherwise of a system
in one unknown presents no difficulty. Thus it becomes possible
for us to learn by quite simple calculations whether the system (S) is
compatible or not.

Suppose that the system is compatible. Then the problem arises
of solving the system or, speaking at greater length, of indicating
all 0./' its solutions (all sets of values of the unknowns which satisfy
the inequalities of the given system). We shall adopt the point of
view (though it may at first appear to the reader strange) that the
system (S) is solved if the systems (S'), (S"), ..., (s(n- 1») are constructed.
We shall presently see what explains such a point of view but first
we shall introduce a

Definition. A set of values of the first k unknowns

x?, xg, xr
is called feasible if it can be extended to the solution of the
original system (5), i. e. if there exist numbers x~ + 1, ... , x~ such that
the set x?, ..., x?, x~ + 1, ... , x~ is the solution of the system (S).

. Once the systems (5'), (5") and so on are constructed, we are in
a position:

1) to find all feasible values of the unknown x 1 (from the system
(Sl~1 - I)));

2) to find for any particular feasible value x? all compatible
values of the unknown x 2, such that together with x? they form a
feasible set (they are found by substituting x? into the system (s(n- 2»));

3) to find for any particular feasible set x?, x~ all compatible
values of the unknown X3 (they are found by substituting x?
and x~ into the system (5(11 - )))) and so on.

It is in this sense that one should understand our statement
that the system (5) is solved if the systems (S'), (S"), ..., (s<n- 1»)
are constructed.
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(6)

Ex ampIe. We solve in the above sense the system

7x + 2y - 2z - 4 ~ 0

-x- y- z+4~O

- 2x + 3y + z - 1 ~ 0

5x - y + z + 2 ~ 0

On solving each of the inequalities for z we write down the
system in the form

7
2x+y-2~z

-x-y+4~z

z ~ 2x - 3y + 1
z ~ -5x + y - 2

The concomitant system is of the form

7
2 x + Y - 2 ~ 2x - 3y + 1

ix + y - 2 ~ -5x + y - 2

- x - y + 4 ~ 2x - 3y + 1

- x - y + 4 ~ - 5x + y - 2

- or, after the cancelling of the terms,

~x + 4y - 3 ~ 0

17
TX ~O

- 3x + 2y + 3 ~ 0

4x - 2y + 6 ~ 0

On solving each inequality for r we write down the system in
the form

y~-~x+~!
y~ ~.x-~

2x + 3 ~ y

x~O

(7)
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The concomitant system is of the form

2x + 3 ~ - ~x + ~

2x + 3 ~ ~ .x - ~

x~O

it IS eq uivalent to one inequality

x~O (8)

. Thus the original system is compatible. According to the point of
view we have adopted the systems (8), (7), (6) provide the solution
of the set problem ~ namely, inequality (R) shows that there exists a
solution (x, )'~ z) of the original system involving any nonnegative
x. If a particular value of x is chosen, then from the system (7)
one can find the feasible values for j', If particular values for
x and y are chosen, then from the system (6) it is possible to
find the feasible values of z.

Set x = 1, for example ~ then from the system (7) we have the
following inequalities limiting y:

5~y~.~

Take, for example, y = 4. Setting x = 1, y = 4 in the system (6)~ we
have the following inequalities limiting z:

11 ~·--1- ~.::.

-l~z

z ~ - 9

z ~ - 3

or simply

-1~z~-3

Setting, for example, Z = - 2~ we have one of the solutions of
the original system: x = 1~ y = 4, Z = - 2.

So far we have been dealing mainly with such systems of inequali­
ties which have at least one solution (which are compatible). As
far as incompatible systems are concerned, studying them may on
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(1)

the face of it appear a needless pursuit: besides it seems implausible
that one should be able to relate any interesting theory to such systems.
In fact everything is quite different. The properties of incompatible
systems are not only of interest in themselves, but also give key
to the understanding of a variety of important facts. Thus the main
linear programming theorem (the duality theorem, see Section 14) is
in the long run derived from some properties of incompatible systems.

Consider an arbitrary system of linear inequalities. For notational
convenience consider for the time being that the number of unknowns
is three, although everything stated above equally applies to systems
in any number of unknowns.
So we are given the system

(Itx+hly+ctz+dl ~O

(l2 X + h2 J' + C2 Z + £1 2 ~ 0

a,»: + hillY + CII/Z + diu ~ 0
Multiply both sides of the inequality of (I) by a nonnegative

number k1, both sides of the second inequality by a nonnegative
number k2 and so 011. and then add the obtained inequalities
together to come as a result to the inequality

(kta! + k2 {J2 + + k/l/l/1j)X +
+ (k1b1 + k2h 2 + + kllJhllJ)Y +
+ (klel + k2C2 + + kllrm)z +
+ kid. + k2d2 + + kill/III ~O (2)

which will be called a combination (~f the inequalities of (1).
It may happen that a certain combination of the inequalities of

(1) is an inequality of the form

o x x + 0 x y + 0 x z + d ~ 0 (3)

where d is a strictly negative number (division by Id I then leads
to the inequality - I ~ 0). I t is clear that no set of values of the
unknowns satisfies such an inequality. therefore in the case under
discussion the system (1) is incompatible (it has no solutions). It is
quite remarkable that the converse proposition is also valid: namely,
if the system (1) is incompatible, then a certain combination of its
inequalities is of the fonn (3) where d < o.

We shall now prove this proposition in the general form (i.e. for
systems in any number of unknowns), but first let us introduce the
following definit iOI1. Let us agree to say that the inequality

ax + by + cz + d ~ 0
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is inconsistent if it is not satisfied by any set of values of the unknowns.
Obviously, any inconsistent inequality is of the form (3) where d < 0
(prove this !). The proposition to be proved can now be" formulated
as the following theorem.

Theorem on incompatible systems of inequalities. If a system of
linear inequalities is incompatible, then a certain combination of these
inequalities is an inconsistent inequality.

The proof is made by induction on 11, the number of unknowns
in our system.

When 11 = 1 the system is of the form

Qt X + hI ~ 0

a2x + b2 ~ 0
(4)

{lm X + b; ~ 0

One can suppose that all the coefficients aI, a2,'''' am are nonzero.
Indeed, if for example, at = 0, then the first inequality is of the form
o x x + b1 ~ 0 ~ if the number hI is nonnegative, then such an ine­
quality may be discarded; if b t is negative, however, then the first
inequality of our system is inconsistent and there is nothing to prove.

So let us suppose that none of the numbers aI' a2,'''' am is zero.
It is easy to see that these numbers are sure to contain both positive
and negative numbers. Indeed, if all of the indicated numbers had the
same sign, were they positive, for example, then the system (4) would
be reduced to the form

hI
,

x~ - ._- I£11

h2

.\~ --
,
:-

(/2 l

h
in I

.\~ .- ------

)a
III

and would hence be compatible.
Assume for definiteness that the first k numbers of QJ, a2,"" Qk are

positive and the remaining 111 - k are negative. Then the system (4)
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is equivalent to the system

(5)

Choose the largest among the numbers - (bl/a.),..., - (bk/ak)~ let
it be - (bil ad, for example. Then the first k inequalities of the system
(5) can be replaced by a single (first) inequality. Similarly choose
the smallest among the numbers - (hI.: + 1/at; + I)"'" - (bml am)' the
remaining m - k inequalities of the system (5) can then be replaced
by a single' (last) inequality, Thus the system (4) is equivalent to
the system of two inequalities:

h
III

and its incompatibility means that

ht
- ---- > -

(/1 (/11/

From (6) we have

(6J

(7)

(it should be remembered that (/1 > 0 and (I", < 0). If the first inequal­
ity of (4) is now multiplied by a positive number - (I", and
the last inequality by the positive number a I' then after addition
we have the inequality

OxX+(hmal-hlam)~O (8)
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which is by virtue of (7) inconsistent. For systems in one unknown
the theorem is thus valid. We now assume that the statement of the
theorem is valid for systems in 11 ---: 1 unknowns and under this
assumption establish its validity for the case of J1 unknowns.

So suppose an incompatible system of linear inequalities in n un­
knowns Xl' X 2, ... , "PI is given; keeping to the notation of the previous
section we call it H~ystem (Sf'. We construct the concomitant system
(5') for it; the latter will be incompatible after (5). Since the 'number
of unknowns in the system (S') is 11 - 1, the hypothesis of induction
applies to it. This means that a certain combination of inequalities
of the system (S') is an inconsistent inequality. But it is easily seen that
each inequality of the system (5') is a combination of inequalities
of (5); indeed, if we simply add up the inequalities P; ~ x" and
xI/ ~ QBof the system (S), we get P'"J. + XII ~ x" + Qr~ or P'"J. ~ Q0' i.e. one
of the Inequalities of the system (5') (sec Section 8, systems (n and
(S') ). Hence it follows in turn that a certain combination of inequali­
ties of the original system (5) is an inconsistent inequality. Thus
the theorem is proved.

The theorem on incompatible systems of linear inequalities is
just one of the man ifestations of the deep analogy existing between
the properties of systems of linear inequalities and those of systems
of linear equations. Let us try to substitute the word "equation"
for "inequality" in the formulation of the theorem. We shall have the
following proposition:

I] a system q( linear equations is incompatible, then a certain combi­
nation of these equations is an inconsistent equat iOI1.

It turns out that this proposition is also ralid. It is called the
Kronecker-Capelli theorem in a somewhat different formulation and
is proved in linear alqebra (this is the name of the part of mathema­
tics which studies linear operations, i.e. such operations as addition of
points or multiplication of a point by a number in n-dimensional
space). For the above to be better understood, however, it is necessary
to introduce clarity into the concept of combination. A combina­
tion of equations is constructed in the same way as a combination
of inequalities, the only difference being that one is allowed to
multiply the given equations hy an)', not only nonnegative, numbers.
As in the case of inequalities the word "inconsistent' refers to an
equation having no solutions. It is easily shown that an inconsistent
equation must certainly be of the form

o x Xl + 0 X X2 + ... + 0 X x, + b = 0 (9)

where b is a nonzero number (division of both sides by h gives
the "equation' I = 0).
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Especially important is one particular case of the theorem on in­
compatible systems of inequalities, namely, the case where a given
system contains the inequalities

X 1 ? O, X 2 ? O, xl/?O (10)

Denoting-the rest of the system by (S)~ one can say that the problem
is to find all 1l01111(!~Ja! ire solutions of the system (S) (i.e. the solu­
tions satisfying conditions (10)). I f the problem has no solutions, then
according to the theorem just proved a certain combination of in­
equalities of the system (S)~

(lI XI + Q2.'(2 + ... + aI/xII + a? ° (11)

yields in conjunction with a certain combination of inequalities of
(10),

r
"IX. + "2.'(2 + ... + knxn ): °

(k 1, k2 , ... , k; are nonnegative)

the inconsistent inequality

°x Xl + °X .\2 +... + °X x, + c ? 0

where (' is a nonnegative number. Hence

al == -k. ~O, (l2== -k2~O, ..., 0n== -kn~O,

a<O

We shall formulate the result obtained as a separate proposition.
Corollary of the theorem on incompatible systems. lf a system of

inequalities has 110 uonneqatire solutions, then a certain combination
0./' these inequalities is Oil inequality q!' the form (11) where all the
coefficient» aI- (/2 •. ··• a; ~ 0 and the absolute term a < O.

10. A Homogeneous System
of Linear Inequalities.

The Fundamental Set of Solutions

In Section X we have discussed a rnethod for finding solutions
of systems of linear inequalities. In spite of its having many obvious
merits the method fails to give answers to some questions; for
example. it does not allow one to review the set of all solutions
of a given system of inequalities. It is to this end that this and
the next section of our book arc devoted. The main difficulties, it
will he seen, arise in considering homoqeneous systems which arc dealt
with in the present section: the general case (i.c. the case of a
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nonhomogeneous-system of inequalities) is examined in Section 11.
There is no need here to confine ourselves to the case .of two or
three unknowns, from the outset we shall consider a system of any
number of inequalities in any number of unknowns. For the reader's
convenience our account is broken down into a number of points.

1°. A linear function of n arguments. The general form of a ho­
mogeneous inequality in n unknowns is

atXt + a2x2 + ... + a.x; ~ 0

Consider separately the expression in the left-hand side of the in­
equality

(1)

It is called a linear junction. The role of the arguments is played by
11 variables Xh X2,'''' XII' One can assume, however, that function
(1) depends on one rather than 11 arguments; this argument is
the point

of n-dimensional space.
Let us agree from now on to designate function (1) as L(X) for

short:

L(X) = a1xl + U2X2 + ... + QIIXII

if we are given several functions like this instead of one, we shall
designate them as Lt(X), 4(X), etc.

We establish the following two properties of a linear function.
1.

L(kX) = kL(X)

where X is any point and k is any number.
2.

L(X + Y) == L(X) + L( Y)

where X and Y arc any two points.
Property 1 follows in the obvious way from the equality

at(kXt) + (l2(kx2) + ... + ulI(kx,J =.

= k(atxt + (l2 X2 + ... + allx ll)

We now prove property 2. Let

X == (Xl .. .\"). XI!) and Y.:::: (Yl, J'2- ..., Yn,)
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(2)

Then

L(X + Y) = (l1(X 1 + )'t) + (J2(X2 + Y2) + ...
... + allCx lI + YII) = (atX t + a2x2 + .oo + a"x'l) +

+ (alYt + Q2Y2 + ... + (I'IYII) = L(X) + L( Y)

2°. Some properties o.f the SO/Llt;011.~ 0.( a hotnoqeneous system
of linear inequalities. Given a homogeneous system of In linear in­
equalities in n unknowns

atXt + (l2 X2 + + a.x; ~ 0 (the first inequality)

b,», + h2X2 + + h"x lI ~ 0 (the second inequality)

('IXt + ('2X2 + ... + c,x; ~ 0 (the 111th inequality)

Designate the left-hand sides of the inequalities as L 1(X), L 2(X),...,
Lm(X) to rewrite the system as

L1(X) ~ 0

~(X) ~ 0

where

x = (X., .\2,"" x,,)

We establish the following two propositions.
1. If' the point X is a solution (?I' the syst etn (2) and k is any

nonneqatire number.. then the point kX is aqain a solution of the
system (2).

2. lf X 'and YarC! tl-VO solutions q( the systel11 (2) .. then X + Y is
again a solution q( the system (2). "
. Both propositions follow readily from the properties of a linear

function proved in sect. 1 . Indeed, suppose i is any of the numbers
l , 2..... , m. WcIiave

(for k ~ 0 and L;(X) ~ 0) as well as

L.; ()~: + Y) = i, ()() + i, (Y) ~ 0

(for i, (X) ? 0 and L;(Y) ?: 0).
Propositions 1 and 2 immediately yield the following consequence.
1/ certain points X l' .-\ 2 ..... X'I are solutions (d' the system (2).



then so is any point 0.1' the [orm

f..:1X 1 + k2X2 + ... + kflX,) (3)

where k b k2 , ..., kp are nonnegative numbers.
Indeed, by virtue of Proposition 1 each of the points k 1XI'

k2X 2, ... , kl'X" is a solution of the system (2) but then by virtue
of Proposition 2 so is the sum of the points. Let us agree to call any
point of the form (3), where k b k2 , ... , k ; are nonnegative numbers, a
nonnegative combination of the points X 1, X 2,.'" X,). Then the above
consequence will allow the following statement.

A nonnegative combination ofany number 0.[ solutions o] the 1101110­

qeneous system (2) is aqain a solution of this system.
3°. TIle fundamental set of solutions. We introduce the following

definition.
A set of a finite number of solutions

X b X 2 ,•.. , X;

of the homogeneous system (2) is said to be the [undamental set
of solutions if any solution X of the system can be given by the
formula

(4)

where k 1, k2,".' kp are nonnegative numbers. I t follows that in this
case formula (4) In which k 1, 1<2'''.' k,) are any nonnegative numbers
gives a review of all solutions of the system (2). Hence it is clear
that the problem of finding the fundamental set of solutions is
one of primary importance in the investigation of the system (2).
The development of an algorithm which would allow the fundamental
set of solutions for any system (2) to be found using quite simple
operations is what we set ourselves as the final object.

4°. Construction o.l the fundamental set [or a system consist inq qf
one inequality. Construct the fundamental set of solutions for the
inequality

(5)

where the numbers aI' a2,'''~ aI/ do not vanish together.
To do this, consider along with inequality (5) the equation

1I1.\1 + (12.\2 + ... + {II/XII == 0 (6)

The properties of a linear function proved in sect. 1" readily yield
the following two propositions:

1. If .X· is some solution of equation (6) and k. is any number,
then kX is again a solution of equation (6).
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2. If X and Yare two solutions of equation (6), then X + Y
is again a solution of equation (6).

The proof of the propositions is left to the reader.
According to the premises there are some nonzero numbers among

a1, U2,"" an" Set all =1= 0, for example.
Then the equation can be written down as

x" = - -f-(a1Xt + 02.'(2 + ... + (111_ ,X'l_ ,) (6')
II

Setting Xl = 1, X2 = 0,..., x
l1

_ , = 0, we find from the last equation
that x, = - (aI/an)' Thus the point

X I = (I, 0, .... o. - ~J

is a solution of equation (6). Proceeding in a similar way one can
obtain the solutions

( (12)X 2 = 0, 1, ..., 0, - a::

X"--l = (0,0, .... I, _ a~_~~)

Now let

x = (CXh r:i2, ... , Cln -- h Cln)

be any solution of equation (6). According to (6') we have

( £II) ((/1) ( (1"...-1)=~1 --- +'1.2 -_ .. +···+Cl.n -- 1 ----
an a; a"

Considering the point

Cl1X 1 + r:i2 X2 + ... + ~n--lXn--l =

= ell (1, 0, ..., -- ~;:) + el2 (0, I, ..., -~:) + ...

... + 'J.." . I ( 0, 0, ..., I, _ (/';,. I )

, 1/ /

(7)

con vinces us that its coord inates coincide with those of the point X.



Therefore the following equality is valid

X = ~lXl + (12 X2 + ... + r1n -- 1X n -- 1

We now add one more point

X n = -(Xl +X2+· .. +Xn -- l )

(8)

(9)

to the points Xl, X 2, ... , X n _ 1 constructed earlier. It follows from
the properties of the solutions of equation (6) referred to at the
beginning of this subsection that the point X n is also a solution.
Now it is easy to prove the fact that any solution X qf equation (6)
is a nonnegative combination of the solutions X 1, X2, ... , X'i _ I' XII"

Indeed, let ':J. be a positive number exceeding any of the
numbers let 11, lel21, ..., \C1 n _ II· It follows from (8) and (9) that

X = ((11 + ri)X 1 + (r12 + et)X l + ...
... + (o, - 1 + ex) X n - 1 + crXn

which proves our statement.
For brevity of further writing denote the left-hand side of

equation (6) by L(X). Choose some solution of the equation
L(X) = 1 and denote it by X n+ l : We state that the set 0.1" points

x., Xl, ..., X n -- 1, X m X n + 1 (10)

is the [undamental set l?1" solutions [or inequality (5).
Indeed, each of the points satisfies inequality (5). Now let X'

be any solution of the inequality; hence L(X') = a where a ~ O.
Then the point

X::=X'-aX n + 1

satisfies inequality (6) for

L(X) = L(X') - aL(X n + 1) = a - a x 1 = 0

If we now write down

X' = X + aXn + 1

and recall that the point X is a nonnegative combination of the
points .~ 1.... ' ,X

II
_ I" .I\'/1 it will be clear that X' can be represented

as a nonnegative combination of the points (10).
Consider a specific example. Suppose it is required to construct

the fundamental set of solutions for the inequality

- 2Xl - 4X2 + X3 ~ 0 (11)
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in three unknowns Xb X2' X3'

First of all we write down the equation

- 2Xl - 4X2 + X3 = °
and solve it for one of the unknowns, X3, for example:

X3 = 2x 1 + 4X2

We now successively set one of the unknowns Xb X2 (contained
in the right-hand side of the equation) equal to 1 and the remaining
unknowns to zero, and get the solutions

Xl = (1,0,2), X 2 = (0, 1, 4)

As X 3 we then take the point

X 3 = - (X 1 + X 2) = ( - 1, - 1, - 6)

and finally t~ke as X 4 one of the solutions of the eq uation

- 2Xl - 4X2 + X3 = 1

X4 = (0, 0, 1), for example.
The points Xl' X 2, X 3, X 4 form the fundamental set of solutions

for inequality (11). The general solution is of the form

X = ktX 1 + k2X 2 + k3X 3 + k4X 4 =
= k1(1,0,2) + k2(0, 1,4) + k3 ( - 1, - 1, - 6) + k4(0, O, 1)

or

Xl = kt - k,

X2 = k2 - k)

X3 = 2k1 + 4k 2 - 6k3 + k4

(12)

J~IIJX) ~ 0

where kb k2 , k3 , k4 are arbitrary nonnegative numbers.
5°. The rearrangement o.f the structure oj' the fundamental set of

solutions when another inequality is added to the system. In order to
learn how to construct fundamental sets of solutions, first consider
a problem like this.

Suppose we are given the homoqeneous system

L 1(X) ~ °
L 2(X) ~ 0

of linear inequalities. Suppose [urther that l-ve know the jundamental
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set of solutions

X b X 2, ..., X p

[or that system. It is required to construct the fundamental set 0.1'
solutions [or the syst etn resultinq [rom the addition oi' another
inequality

L(X) ~ 0 (13)

tv (12).
The solutions of the system (12) are precisely all nonnegative

combinations of the points X 1., X 2"'''~ X ll • We must pick among
these combinations those which would satisfy inequality (13) and,
what is more, constitute the fundamental set of solutions for the
system (12), (13).

All points Xl" X 2, ... ., ){ p can be divided into three groups
with respect to the function L(X)., the left-hand side of inequality (13):
the points for which L(X) > 0., the points for which L(X) < 0., and
finally the points for which L(X) = O. We designate the points of
the first group as X ~., X ~.,...., X ~\ ~ the points of the second
group as X -I, X -2., ... ., X-·,., and those of the third group as
XY., .Y~ ...." .){~).

Thus

Xi . ..., xt~ Xi-., ..., X/-, Xp., ... , x?
are the same points .Y 1'1 X 2, ... ., X,) except that they are located
perhaps in a different order.

All the points X.: (Ci = 1...., k) satisfy inequality (13) of course,
and so do X~,) (y = I. ..., x). As to the points X1;- 03 = I. .... I) none
of them is a solution of inequality (13). However, of each pair

X~, X p
(one "plus" and one "minus" point) one can form a nonnegative
combination

aX~ + t.x; (14)

so that it should satisfy the condition I~X) = O. To do this one
should take

(/ == -- L(X ,-\ ). b == L(X -,+)

Indeed, the numbers £I and h arc positive and besides

L,(«x .~.- -+- t.x I~-) == alJ()( ~~f-) +- hL(X I~-) ==
.=: - l ..( -,y 1\- ) L;(~Y '/~) + L,(X.~-) L(X I-i) :=: 0
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Denote the point (14), where a and b have the values indicated
above, by X~r~:

X ~I~ == - L(X I~-) X ~+ + L(X ~+) X p- (16)

The answer to the set problem is given by the following
Theorem. 171e points

xt~ ... ~ xt~ X?~ ... ~ X.?, X?, X?2' ...~ Xl)l (17)

(there are k + s + 1\1 points here in all) form 1he [undatnental set
of solutions. .Il)1· the system (12), (13).

To prove the theorem, we first establish the following lemma.
Lemma. An.\' nonneqatire combination (~l the points X ,,+ and X~­

can he represented as a nonneqatire combination of the [Joints X:,
X~,~ or else as a 1l0111U!?Jat ir« combination (?F 'he points X /\', X~,\.

Proof of the lemma. Let

X - -x; + dX~-

be a nonnegative combination of the points X~: and X,~-. Along
with X consider the point

X~J~==aX~+ +hXil

where the numbers a and h arc given by formulas (15). Compare
the two ratios, cia and dlb. If the first is greater than the second,
then, setting d/h = A, cia = A+ Jl where J.l > O~ we have

X == (Aa + Ila) X: + 'AhXp == 'AX~Jl + Jla,,~:

i. e. the point X can be represented in the form of a nonnegative
combination of X: and X~~. If the above ratios are equal,
then X = AX~p. Finally, if cia < dlb. then, setting cia = A, e1lh =
A + J.l where Jl > 0, we have

X == AX~~ + JlbX~-

Thus the lemma is proved.
Proof of the theorem. Notice first of all that each of the points

(17) satisfies the system (12), (13). To prove the theorem, all that
remains therefore is to check the following: if some point X is
a' solution of the system (12), (13), then it can be represented in
the form of a nonnegative combination of the points (17).

Being a solution of the system (12), the point X can be represented
.as a nonnegative comhination of its fundamental points Xl' X 2,'''' X fl:

X == «,»; + ... + (lk X: + h.Xi- -t- ...
... + h/X/- + ('IX\) + ... + ('sX~) (lR)
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where all the coefficients ah"" (1", hh'''~ bI' Ch"" C, are nonnegative.
If all the numbers bb"" b, are zero, then there is obviously

nothing to prove. Suppose therefore that there are strictly positive
numbers among those indicated above. Note that among al~'''' at.:
there are also strictly positive numbers, for otherwise we should have

L(X) = htL(X1) + ... + h,L(X1- ) + c1L(X?) + ...
... + csL(X.~)

which is impossible since X satisfies inequality (13).
Suppose for definiteness that (11 > 0 and hI > O. Making use of the

lemma we can replace the sum (It X t + b1X 1- by a nonnegative
combination of the points X ~. X? r or of the points X ~ . .IV? l : If
such a replacement is madc in the expression for the point X,
then the total number of nonzero coefficients of X t ...., X k+' Xl,""
X ,- will decrease at least by 1. If at the same time it is
found that not all of the coefficients of Xl,'''' X 1- are zero in the
newly obtained expression for X, then we again replace one of the
sums of the form aX ':1+ + hX p- by a nonnegative combination of
the points X;, X~(l or that of the points X ~, X~J}; as a result the
number of nonzero coefficients of.X t,..., X:, Xl,"" X 1- again
decreases at least by 1. We continue in this way till an expression
is obtained for the point X in which all the coefficients of X 1- ,...,
X 1-- are zero. We then come to the equality of the form

X = a'tXt + ... + a~X: + Ld~I}X~I~ +
'l,J}

+ C t X? + ... + csX~

where all the coefficients on the right are greater than or equal to
zero. But this is exactly the required representation for X. Thus
the theorem is proved.

6;). The existence and [he method ./01' the construction 0./' the [unda­
mental set 0.1" solutions. Let us consider an arbitrary system of homo­
geneous linear inequalities. For the first inequality of the system we
can (using the method described in sect. 4'-) construct the fundamental
set of solutions. On adjoining to the first the second inequality
we can, on the basis of the theorem of sect. 5':. construct the
fundamental set of solutions for the system consisting of the first
two inequalities. We then adjoin the third inequality and so on until
we have the fundamental set of solutions for the whole of the original
system of inequalities. This proves the existence, and at the same time
points out the method for the construction, of the fundamental set
of solutions. .
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(20)

Of course, if in a given system of inequalities there is a subsystem
for which one can at once point out the fundamental set of so­
lutions, then that subsystem should be taken as the starting point;
successively adjoining to it the remaining inequalities one will arrive
after a number of steps at the desired fundamental set.

Example. It is required to find for the system

L1 (X) ~ - 3x 1 - 4~2 + 5X3 - 6~4 ~ O} (19)
L2(X) == 2Xl + 3X2 - 3X3 + X4 ~ 0

all nonnegative solutions, i.e. all solutions which satisfy the con­
ditions

Xl ~ 0

X2 ~ 0

X3 ~ 0

X4 ~ °
To put it another way, it is required to find a general solution of
the system (19), (20).

It is easily seen that for the system (20) the fundamental set of
solutions will be the set of the points

X 1 == (1, 0, 0, 0),

X 3 == (0, 0, 1, 0),

X 2 == (0, 1~ 0, 0)

X 4 == (0, 0, 0, 1)

(indeed, any solution (ri h t:t2' Ct.3, (14) of the system (20) can be repre­
sented in the form (Xl X 1 + ::l2X 2 + rt3X 3 + Ct.4 X 4)' Adjoin the first ine­
quality of (19) to the system (20) and" using the theorem of sect. 5c

"

construct the fundamental set of solutions for the system obtained in
this way. For computational convenience make the following table:

Lt(X)

Xl t 0 0 0 -3

X 2 0 I () 0 -4

X 3 0 0 1 0 5

X 4 0 0 0 1 -6
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Indicated in each row of the table is one of the fundamental
points of the system (20) and the value of the function L1 (X) for
that point. It is seen from the table that the only point of X: type
is .Y J. that the points of X I~· type are ..Y I_ X~. X 4 ~ and that
there are no points of .X~ type in this case.

Find the points of X~~~ type. They are

X~l == 3X 3 + 5X 1 :=: (5,0,3,0)

X~2 = 4X 3 + 5X 2 == (0,5,4,0)

X~4 == 6X 3 + 5X4 == (0,0, 6, 5)
To avoid making further writing more complicated, designate these
points as Y1, Y2 , Y4 (respectively) and write Y3 instead of X 3'

.. The points Y3' Y1 , Y2 , Y4 form the fundamental set of solutions
for the system consisting of (20) and the first inequality of (19).

Adjoin the second inequality of (19) to that system and make
the following table:

Lz(~
Y 0 0 J 0 -3J

Y 5 0 3 0 11

}" 0 5 4 0 32

Y 0 0 6 5 -IJ4

It is seen from the table that the role of the points yo: is now
played by I"J - }": and that of the points li>- by r.;. }~. and that
there are no points of Y?, type.

We find points of y~!~ 'type:

1/0 - 3 }T1 + }'3 == (15. O. 10. 0) == 5 ( 3. O. 2~ 0)13 -

};03 == 3Y2 + 3YJ == ( o. 15, 15~ 0) == 5 ( 0, 3, 3, 0)

Y?4 = 13 Y1 + Y4 == t65, 0, 45, 5) == 5( t 3~ 0, 9. I)

};04 :=: J 3 Yz + 3Y~ == ( O. 65~ 70, 15) == 5 ( 0, 13. 14, 3)
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.ofsolutions for the system (19), (20). The general solution is of the form

X = aYl + bY2 + C113 + d~3 + e114 +.l~4 ==
= a (5, 0, 3, 0) + b (0, 5, 4, 0) + 5('(3, 0, 2, 0) +
+ 5d(0, 3, 3, 0) + 5e(13, 0, 9, 1) + 5j'(0, 13, 14, 3)

where a, b. c, d. e,.f are any nonnegative numbers.
Setting a == kf, b == "2, 5c == k3~ 5d == k4 , 5e == /(5, ~r= k6 , we have

for X the representation

X = 1\1(5, 0, 3, 0) + k2(0, 5, 4, 0) + k3(3, 0, 2, 0) +
+ k4(0, 3, 3, 0) + ks(13, 0, 9, I) + k6(0, 13, 14, 3) (21)

where k b k2 ,•.. , 1\6 are any nonnegative numbers.
To conclude this point, we note that having proved the existence

of the fundamental set of solutions for any homogeneous system of
linear inequalities we have thereby proved Theorem 2' of Section 7
on the structure of any convex polyhedral cone.

11. The Solution of a Nonhomogeneous
System of Inequalities

Now that we have learnt how to construct the general solution of
a homogeneous system of inequalities it won't be difficult to solve
a similar problem for an arbitrary, i.e. nonhomogeneous, system of
inequalities.

Let

(11."(1 + Q2 X2 + + QW\ /1 ~ a

hlXl + b2 X 2 + + b.x; ~ b
(1)

(2)

be an arbitrary system of linear inequalities in 11 unknowns
X b X2""~ -\~. Along with it consider the homogeneous system

(ltXI + (l2X2 + '0' + awxn - at ~ 0

b,«, + h2 X 2 + ... + hI/XII - bt ~ °
('tXt + C2 X2 + ... + ('11."(/1 - ct ~ 0

in n + 1 unknowns Xl' '\2,".' X/l~ t.
There is a relation of certain kind between solutions of the systems
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(1) and (2) in that if x r- X2,"., X"' is a solution of the system
(2)'1 with t > 0, then the numbers

.x-" = x, (3)

(4)

will constitute a solution of the system (1).
Indeed. consider, for example, the first inequality of (2). It holds

for the numbers Xl, X2,'''' X n, 1, i.e.

alx l + (l2X2 + ... + a.x; ~ at

On dividing both sides of the inequality by a positive t we have

al~xl + (l2·X2 + ... + a/Ix" ~ a

but this means that the set of the numbers ,Xb .X2,"" ,x
lI

satis­
fies the first inequality of (l). A similar argument goes through
for any inequality of (2), whence our statement.

It is easily seen that any solution of the system (1) can be
obtained by the above method. Indeed, if ,Xl' X2,'''' xJ1 is some
solution of the system (I), then the numbers Xl == .x 1'1 X2 == X2,.",
XI/ == .X

II
, t == I satisfy the system (2) and at the same time equalities (3)

are valid.
Thus, in order to find all the solutions .xb ,X2,"" .tn of the

system (1) one should find all the solutions of the system (2)
for which t > 0, and transform each of them according to formulas
(3).

Example. Suppose it is required to find all the solutions of the
following system

- 3Xl - 4X2 + 5X3 ~ 6

2Xl + 3X2 - 3X3 ~ - 1

Xl ~ 0

X2 ~ 0

X3 ~ 0

Proceeding as pointed out above, write down the following
auxiliary homogeneous system

- 3x 1 - 4x 2 + 5x 3 - 6t ~ 0

2Xl+3x2-3x3+ t~O

Xl ~ 0

X2 ~ 0

X3 ~ 0
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(5)

Adjoin to this system the inequality t ~ 0 (for we are interested
only in such solutions for which t > 0) to get the system (19), (20)
of Section 10, the only difference being that we write t instead of
X4. The solution set of this system is, as shown in Section 10 (see
(21) of Section 10), given by the formulas

Xl == 5k 1 + 3kJ + 13ks

X2 == 5k2 + 3k4 + 13k6

x, == 3k 1 + 4k 2 + 2kJ + 3k4 + 9k s + 14k6

t == ks + 3k(1

where k1, k2 ,•.. , k6 are any nonnegative numbers. Since we are
interested only in solutions for which t > 0, it should be assumed that
at least one of the numbers k.; k6 is nonzero (strictly positive). We now
find the general solution of the system (4) from the formulas

5k1+3k3+13k s
Xl == - -k

5
+ 3-k-

6
- -

_ 5k2 + 3k4 + 13k6X 2 - -----.---------
k5 + 3k6

_ 3k 1 + 4k 2 + 2k3 + 3k4 + 9k s + 14k6X3 - --.--- - ...- .....--.--_.--------
ks + 3k6

It should be emphasized once again that in these formulas k1,

k2 , ... , k6 are any nonnegative numbers, at least one of the numbers
ks, k6 being other than zero.

Having established that solving the system (1) by the above
method reduces to solving the homogeneous system (2) we have prov­
ed Theorem 3 of Section 7 on the structure of any convex polyhedral
region. This may be illustrated by the example of the system (4). Set

k~ = _k_i --- ( 2 3 4, A:
s

+ 3k(i i = L , , )

since the numbers k1, k2 , k 3 , 1\4 are arbitrary nonnegative, so are
the numbers i; k2, k3, ~. Further set

k5= ..~~---- kf, = ~~_6-
ks + 3k6 ' k 5 + 3k6

the numbers k; and 1\6 are nonnegative and constrained by the
condition k; + k~ =: 1. Formulas (5) can now be written down in the
form of a single equality

(Xl. X2, '\3) = k;(5, 0.3) + k~(O, 5,4) + k3(3, 0,2) +

+ k~(O. 3, 3) + k;(t3, 0,9) + kf,(O, .j~.,!;) (6)
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We introduce the notation:

X 1 = (5. O. 3). X 2 = (0, 5, 4), X 3 = (3. O. 2)

X 4=(0. 3. 3). X 5 = (13. O. 9). X' = (0 13 ~)
6 ' 3' 3

Bearing in mind the above restrictions on k{, 1\;', k3, 1\';' as well
as on 1\5' /.:.6. equality (6) can now be interpreted as follows:
the solution set of the system (4) is (X b X 2, X 3, X 4) + <X5, X 6)'
Thereby the statement of Theorem 3 of Section 7 is proved for
the system (4).

12. A Linear Programming Problem

Linear programming is a relatively new field of applied mathema­
tics which developed in the 1940s or 1950s in connection with
the tackling of varied economic problems.

As a rule problems occurring in economics, and in production
planning in particular, are problems of finding the 1110sf profitable
variant. Each of them calls for an answer to the question as to how to
use the limited available resources to obtain the utmost effect. Until
recently the only method of solving such problems has been by ordi­
nary rough calculation, estimating "by sight", or else by looking
all the possible variants over to find the best. The situation is
changing now. Over the past few decades the complexity of produc­
tion has increased to such an extent that it has become impossible
just to look the variants over. The factors influencing decisions have
turned out to be so numerous that in some cases the number of
variants is running into milliards. This has drastically increased the
interest in mathematical methods in economics. Besides, the process
of "rnathematization of economics" has been promoted by the devel­
opment of computing technique, in particular by the advent of
electronic computers.

Let us consider some examples of linear programming problems.
Example 1. A factory turning out items of two types has an

assembly shop with a production capacity of 100 items of the first
type or 300 items of the second per diem ~ at the same time the
quality control department is capable of checking at most 150 items
(of either type) per diem. It is further known that items of the first
type cost twice as much as items of the second type. Under these condi­
tions it is required to find such a production plan (so many items of
the first type and so many items of the second per diem) which
would ensure the largest profit for the factory.
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The desired prod uction plan is specified by means of two nonne­
gative integers x, y (x being the number of-items of the first type and
y that of the second) which must satisfy the following conditions *:

3x + y ~ 300: x + y ~ 150
2x + y is maximal

In other words, from among the nonnegative integer solutions
of the system

3x + y ~ 300}
(1)

x + y ~ 150

one should pick the one imparting the largest value to the linear
function

.1'== 2x + y

Given an xOy rectangular coordinate system, the solution set of the
system (1) will be represented by the shaded polygon of Fig. 47.

to

II

Fig. 47

* The first condition comes from the assembly shop. Indeed, it can turn
out three items of the second type instead of one of the first. Hence, in
terms of second-type items the shop's entire production is Jy + .l' articles:
this number must not exceed 100.
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From the same figure one can see that the point P (75, 75), aile
of the vertices of the polygon, is the solution of the problem.

Indeed, consider a straight line 2x + y = c where c is a certain
number. Denote the line by lc. As the number c increases, the line
Ie shifts "upwards" (at the same time remaining parallel to its initial
position). The largest value of c at which the line Ie still has
points in common with the shaded polygon is that value of c at which
the line passes through the point P. Hence at this point the function
2x + y attains its largest value (in comparison with its values at the
rest of the points of the polygon).

The example discussed is certainly very primitive, still it gives an idea
of the nature of linear programming problems. In all of them it is
required to find the maximal (or minimal) value of some linear function
of n variables

on condition that all these variables obey a given system of li­
near inequalities (which must without fail contain the nonnegativity
constraints on the variables: Xl ~ 0,..., X" ~ 0). In some problems (such
as in the example above) an additional requirement is imposed on the
variables, that they should be integers.

Example 2 (diet problems. There are several kinds of food at one's
disposal. It is necessary to compose a diet which would, on the one
hand, satisfy the minimal human body requirements for nutrients
(proteins, fats, carbohydrates, vitamins, etc.) and involve the smallest
expenditures, on the other.

Consider a simple mathematical model of this problem.
Suppose there are two kinds of food, F 1 and F 2, which contain

the nutrients A, B"! C. It is known how much nutrient of one or another
kind is contained in 1 lb of F I or F 2; this information is presented
in the following table.

A B C

1"1' 1 lb a 1 hI C 1_. .---

F 2, t Ib (12 h 2 ('2
-- --- ------ ~----

In addition to tbcse data we know that a, h. c are daily requirements
of hum.:» body f~'!" -LB.: ~:'c'sp~>~~;~ !";'-'~ ;~rid th~:.r St .. "2 arc costs



(2)

of 1 lb of F1 and F2 (respectively). It is necessary to compute the
amount Xl of the food F 1 and the amount X.z of the food F 2 so that
the required amounts of the nutrients should be ensured with minimal
expenditures on the food.

Obviously the total cost of the food will be

S==StXl +S2X2

The total amount of the nutrient A in both kinds of food is
alXl + a2x2· It must not be less than a:

lllXl + a2x2 ~ II

Similar inequalities must hold for Band C: b1Xl + b2X2 ~ b.
CIXl + C2 X2 ~ c. Thus we arrive at the following problem.

We are given the system

UtXt + Q2X2 ~ a, }

btx 1 + h2X2 ~ h

('tXt +'C2X2 ~ C

of three linear inequalities in two unknowns Xb X2 and the linear
function

S == StXl + S2X2

It is required to pick from among the nonnegative solutions (x r­
X2) of system (2) such a solution that the function S attains the
smallest value (is minimized). Various problems can be reduced to
such schemes, viz. alloy problems and problems in fuel-oil blending,
feed mix problems and problems in fertilizer mixing, etc.

Example 3 (transportation problems. Coal mined in several deposits
is shipped to a number of consumers, to factories, power stations,
etc. It is known how much coal is mined at each of the deposits,
say, per month and how much is required by any of the consumers
for the same term. One knows the distances between the deposits and
the consumers as well as the traffic conditions between them; consi­
dering these data one can calculate the cost of transporting each ton
of coal from any deposit to any consumer. It is required that the
transportation of coal should be planned in such a way under these
conditions that the expenditures on it shall be minimal.

Assume for simplicity that there are only two deposits D 1 , D 2 and
three consumers ('b C 2 , C 3 . The amounts of coal at D 1 and
D 2 are (11 and (12 respectively: let the requirements of ('b C 2 , ('3

be b., hz, b3 respectively. Let us suppose that the total stocks of
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coal are equal to the total requirements:

Ll1 + a2 == b I + h2 + b3

such an assumption is quite natural. Finally, the numbers ci;(i = 1,
2; .i= 1, 2, 3) are given, denoting the costs of transporting a' ton of
coal from D; to C, The problem is to find the six numbers

where Xi; is the amount of coal due to be shipped from D, to C/
For the convenience of reviewing we make the following table:

To C I To C2 To C 3
Amount
shipped

From D I XII XI2 X13 QI

From D2 X21 X22 X23 U2

Amount
b l b2 h3delivered

The total amount of coal shipped fr.un n must be at ~ hence
we have the condition

XII +XI2+ XI3=al

A similar condition must hold for D 2 :

X21 + X22 + X23 = a2

The total amount of coal delivered to C 1 must be hI; hence

Xl1+ X21=b 1

Similarly we get the conditions

X 12 + -'"22 = b2 "! Xl3 + X23 = b3

We assume that the cost of transportation is directly proportional
to the amount of coal conveyed, i.e. transportation of coal from
D, to C j costs Cij.\ij' The total cost of transportation will then be

S == ('11 Xl1 + ('12 X12 + C13X13 + C21 X21 + C22X22 + C23 X23

Thus we arrive at the following problem.
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(3)

Given the system

XII +'XI2 + X13 = a,

X21 + X22 + .X23 = a2

Xtt+ X2l=b t

Xt2+ X22=h 2

Xl3 + X23 = h3

of five linear equations in six unknowns and the linear function
S, it is required to pick from among the nonnegative solutions

of the system (3) such a solution that the function S attains its
smallest value (is minimized).

The problem can certainly be formulated in a more general
form, i.e. with any number of deposits and consumers. It was given
the name of "transportation problem ~~ and was one of the first to be
successfully solved using linear programming methods.

We have considered in a simplified form three linear programming
problems. Despite the diversity of their subjects the problems have
much in common in their formulations. In each problem one seeks
the values of several unknowns, it being required:

(i) that these values should be nonnegative ~

(ii) that these values should satisfy a certain system of linear equa­
tions or linear inequalities;

(iii) that at these values a certain linear function should attain
a minimum (or maximum),

We remark that condition (ii) seems to be a disjoining rather than
a uniting condition. for in one case the unknowns must satisfy equa­
tions and in the other they must satisfy inequalities. But we shall see
later that one case is easily reduced to the other.

I t is problems of this kind that linear programming is concerned
with. More strictly, linear profjral1l1niny is a branch of'mathematics
which studies methods offtnduu; 'he minimal (or maximal'; calue oj' a
linear function of several variables provided these sati.~f\' a finite J111IJ1­

her of linear equat iOI1S and inequalities. The number of variables
and that of condit ions (equations or inequalities) may of course
be arbitrary. In actual problems these numbers may be very large
(some ten or several tens or even rnore).

Let us put the above verbal statement down in strict terms of
formulas. The general mathematical statement of a linear prog­
ramming problem looks as follows.
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Given a system (?f linear equations

(/11)(1 + (l12X2 + + (l1w\1/ = ~I

(/21 X1 + a22x2 + + Q2IJX '1 == b2

and a linear .1101(:1 ion

.1'== Ct X l + ('2 X2 + ... + ('l/xl/

Find a nonneqatiue SO/LIt ion

Xl ~ 0, X2 ~ 0, ...~ .\1/ ~ 0

(I)

(II)

(1 II)

q{ the system (I) such that the [unction] aSSll111l!S the minimal ralue (is
minimized).

The equations of (I) are called the constraints of a given problem.
Strictly speaking, conditions (III) are also constraints: it is not
customary, however, to call them so since they are not characteris­
tic of a qicen problem alone, but are common to all linear program­
ming problems.

Of the three examples considered above only the last (the
transportation problem) corresponds, one would think, to the state­
ment just given. The remaining two look slightly different since
all the constraints they contain have the form of inequalities and
not of equations. It is possible, however, using a simple method,
to make inequality constraints go over into the equivalent constraints
given in the form of equations.

Assume, indeed, that the constraints of a given problem contain
the inequality

(4)

We introduce a new, so-called additional, unknown x n + 1 connect­
ed with the unknowns x ,. X2''''~ XII by the equation

(ll X t + (l2 X2 + ... + (II/XII + b == XII t- I

Inequality (4) is obviously equivalent to the nonnegativity condi­
tion on XII -+- l' If an additional unknown is introduced for each
of the inequalities contained in the system of constraints for a given
problem, requiring in addition that all additional unknowns should
be nonnegative, the problem will assume standard form (I), (II),
(lII) although involving a larger number of unknowns. We demon­
strate this method using the diet problem as an example. The
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system of constraints consists of three inequalities in this problem,
so we introduce three additional unknowns X3, X4, xs.
As a result the constraints assume the form of equations:

atXl + a2X2 - X3 = a}

b,x, + b2x 2 - X4 = b

CtXt + C2X2 - Xs = c

It is required to find among all the nonnegative solutions of this
system such a solution which minimizes the function

S = SIX. + S2X2

Certainly, what we are essentially concerned with in the required
solution are the values of x 1 and x 2.

It is frequent for a linear programming problem to require that
the maximum, and not the minimum, of a linear function .r should
be found out. Since max j" = - min (-.n (establish this for yourself),
one problem is reduced to the other if.r is replaced by - f

We have shown that a linear programming problem having inequa­
lity constraints can be reduced to a problem with equation constraints.
It is highly interesting that the converse should also be possible, i. e.
any linear programming problem can be stated in such a way that
all constraints will assume the form of inequalities. We shall not
dwell on this, however. ,f

In conclusion we shall make a few remarks concerning the adopted
terminology. Any nonnegative solution of a system of constraints
is called feasible. A feasible solution yielding the minimum of a
function j' is called optimal. It is the finding of an optimal solution
that is our goal. The optimal solution, if any, is not necessarily unique;
cases are possible where there may be an infinite number of optimal
,solutions.,.

13. The Simplex Method

Actual linear programming problems tend to contain a large
nu.,tber of constraints and unknowns. It is natural that solving such
problems involves a large number of calculations. This difficulty is
overcome with the help of high-speed computers. The algorithm a
computer programme is based on may be connected with a specific
class of problems. Thus. for example, there are very simple algorithms
for solving the transportation problem which are conditioned by
'the peculiarities of its system of constraints. There exist however­
.general methods as well which allow a solution of a linear prcg-
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ramming problem to be found in a visible number of steps. The
first and foremost of them is the so-called simplex method with some
of its modifications *.

I", A descript ion oi' the simplex method. So let us consider a
linear programming problem. Given a certain system of linear equa­
tions in 11 unknowns '\1, .\2, .... .\/1 and a certain linear function j, it
is required to find among the nonnegative solutions of the given
system such a solution which minimizes the function [.

To begin working by the simplex method it is necessary that the
given system of equations should be reduced to a form such that
some r unknowns are expressed in terms of the rest, the absolute
tenus in the expressions beinq nonneqaticc. Assume, for example,
that 11 = 5 and that the unknowns expressed in terms of the rest
are x t- X2, -'"3. Hence the system of constraints is reduced to the
Iorm

(1)

where

(2)

Is it really possible to reduce the system to such a form and how
is this to be done? This question will be considered later on (see
sect. 2~'). The unknowns Xb '\2, X3 in the left members of the
system (1) are called basic and the entire set {Xl, '\2, X3] which
for brevity we shall denote by a single letter B is called a
basis: the 'remaining unknowns are called nonbu:...ic or jree?", Sub­
stituting into the original expression for the function .1' the expres­
sions in terms of the nonbasic unknowns of (1) for the basic un­
knowns, we can write down the function I itself in the nonbasic ,
unknowns X4' .\5:

.1'= c + ('4.\"4 + ('5.\5

We set the nonbasic unknowns equal to zero

.\4==0, .\5==0

* The name of the simplex method has nothing to do with the essence
of the matter and is due to a casual circumstance.

** The latter name is due to the fact that when finding the solutions of
the system (I) (irrespective of a linear programming problem) these unknowns
may be a...signed an:' val ucs.
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and find from the system (1) the values of the basic unknowns:

x 1 == o; X 2 == B, x 3 == Y

The resulting solution of the system

(c, B~ y, 0, 0)

will, due to (2), be feasible. It is called a basic solution corresponding
to the basis B = {xr- x2, '\3} . For the basic solution the value of the
function .F is

r == C.113

The solution of a linear programming problem by the simplex
method falls into a number of steps. Each step consists in going over
from a given basis B to another basis B' so that the value of./' should
decrease or at least not increase: .t~J' ~.t~. The new basis B' is derived
from the old basis B in a very simple way: one of the unknowns is
eliminated from B and another (a former nonbasic) unknown intro­
duced instead. A change in the basis involves a corresponding
change in the structure of the system (1), of course. After a certain
number k of such steps we either come to a basis BUd for
which .fHu';l is the desired minimum of the function .1' and the cor­
responding basic solution is optimal, or else find out that the
problem has no solution.

We illustrate the simplex method by some examples.
Example 1. Let a given system of constraints and a function .f

be reduced to the following form:

XI = 1 - X4 + 2X5 '1

X2 == 2 + 2X4 - Xs

X3 = 3 - 3X4 - X5 \

,F== X4 - -'"5

Here the unknowns Xl, X2, .\3 form the basis. The corresponding
basic solution is

(1, 2, 3, 0, 0)

the value oi] is 0 for this solution.
We find out whether the solution is optimal. Since .\5 has in ,f a

negative coefficient, we may try to decrease the value oi ] by
increasing x 5 (while retaining a zero value for .\4)' Care should
be taken in doing so" however, since changing x , wil11ead to changes
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in the values of Xb X2, X3 and it is necessary to see to it that none
of them become negative.

There is no such danger for Xl, since increasing x 5 results
in the increase of Xl' Examining X2 and X3 we find that X s can
be increased to 2 (at most, otherwise X2 will become negative) which
yields Xl == 5, X2 = 0, X3 == 1. As a result we have a new feasible
solution (5, 0, 1, 0, 2) in which the number of positive unknowns
is equal to three as before. The value oi] for this solution is
equal to - 2.

The new basis now consists of Xb X5' X3' To make appropriate
modifications in the system of constraints, it is necessary to express
these unknowns in terms of X2, X4' We begin with the equation
for X2 (the new nonbasic unknown) solving it for X5 (the new basic
unknown):

Xs == 2 + 2X4 - X2

we then express X b X3 and .f:

Xl == 1 - X4 + 2(2 + 2X4 - x 2)

X3 == 3 - 3X4 - (2 + 2X4 - Xl)

.f == X4 - (2 + 2X4 - Xl)

Thus the problem is reduced to the form

Xl == 5 + 3X4 - 2X2 }

X5 == 2 + 2X4 - Xl "

X3 = 1 - 5X4 + X2 r
.1'= - 2 - X4 + Xl

The new basic solution is

(5, 0, 1, 0, 2)

the value of j' for this solution is equal to - 2. This completes the
first step of the process.

Let us see if it is possible to decrease the value of J' still
further. The coefficient of .\4 in the expression for f is negative,
therefore it is possible to try to decrease j by increasing X4' (without
changing .\2 = 0). There is nothing in the first and the second
equation to prevent it, and it is seen from the third that .\4 can
be increased to 1/5 (at most, for otherwise X3 will become negative).
Setting X4 == 1/5, X2 = 0, we have Xl == 28/5, Xs = 12/5, X3 == 0. As a
result we arrive at a new feasible solution (28/5, O~ 0, 1/5, 12/5).

The new basis now consists of Xb XS, X4' The equation for .X3 (the
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X3 ==- 1 + Xl - X2}
X4 = 2 - Xl + 2x2

.1== -Xl -X2

new nonbasic unknown) is solved for X4 (the new basic unknown):

1 1 1
X4 = 5 - SX3 + SX2

and the resulting expression is substituted into the other equations.
As a result the system assumes the form

28.3 7
X 1 = ·'5- - "5 x 3 - 5x2

t 2 2 ~ 3
X5 = -~~.- - S-X3 - S-X2

J I y + 1
X4==-S-S-"3 S-X2

and the following expression is obtained for the function I:
11 1 4

.f ==- - '''5' + ·s x J + 5x 2

The new basic solution is

(28/5, 0, 0, 1/5, 12/5)

the corresponding value oif being equal to - 11/5. This completes
the second step of the process.

Since in the last expression for the function j' both unknowns
X3 and Xl have positive coefficients, the minimum oi] is attained
when X3 = X2 = 0. This means that the last basic solution (28/5, 0,
0, 1/5, 12/5) is optimal and the required minimum r is equal to
- 11/ 5 ~ thus the problem is solved. .

In the example analysed the process has terminated in finding
an optimal solution. Yet another termination of the process is possible.
To illustrate it, we solve the following example.

Example 2.

Here the basis is formed by the unknowns X3' X4' The basic
solution is of the form

(0, 0, 1, 2)

the corresponding value of the function .r being equal to O.
In the expression iot] the coefficient of x 1 is negative, therefore

we try to increase Xl (without changing 'X2 = 0). The first equation
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does not prevent us from doing so. and it is seen from the second
equation that x 1 can be increased only to 2, which yields X3 = 3,
X4 = O. The new feasible solution is (2. 0, 3~ 0): for this solution
the value oi] is equal to - 2.

The new basis now consists of X3' Xl' We solve the second
equation for x 1 and substitute the resulting expression into the first
equation and [. The problem assumes the following form

.\3 = 3 - .\-+ + -\2}
X 1 = 2 - X 4 + 2x2

.1' = - 2 + .\,1 - 3.\2

The new basic solution is

(2, 0, 3, 0)

the corresponding value oi] being equal to - 2.
In the last expression iot] the coefficient of X2 is negative. We

want to see how much we can decrease the value of f by increasing
X2 (while keeping X4 = 0). For this purpose we look over the X2 terms
in both equations of the system and notice that both coefficients
of X2 are positive. Thus X2 can be increased without limit while
keeping .\"J and .v 1 positive, f taking arbitrarily large absolute nega­
tive values. So min .r= - o; (it is said that the function .r is not
bounded from below) and there exists no optimal solution.

As is seen from the above examples, each successive step in the
simplex method is based on the choice of a negative coefficient for
some nonbasic unknown Xi in the expression iot ]. If it turns out
that there are several negative coefficients, one may choose any of
them. This introduces a certain amount of arbitrariness into the com­
putations. The arbitrariness does not necessarily end here, however;
it may happen that increasing xi to the extreme makes several basic
unknowns vanish together. Then it is possible to make any of them
Xi exchange roles with x), i.e. to make Xi nonbasic and, on the contrary,
introduce Xi into the basis.

It would .of course be possible to eliminate the arbitrariness by
introducing some additional agreement. There is no particular need
to do it, however. In fact some arbitrariness is even helpful. for it
varies the computation process and hence allows one to seek such
a sequence of steps which would lead as quickly as possible to the
solution of the problem.

2:;. Finding the first basis. In the previous subsection we described
the procedure for solving a linear programming problem by the
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simplex method. We required as a preliminary condition that the sys­
tem of constraints should be reduced to the form *

XI = Cl + Clr+IXr+! + + Cl"X I1 '1

X2 == P+ Pr+ IX,, + I + + P"X" ~ (3)
.................. (
x, = Y+ Yr+ IX,,+ I + ... + YW"<II J

where (1, ~ 0, ~ ;?; 0, ..., y ~ °~ then we say that the unknowns x I.,

X2' ... , x, form the basis.
In many linear programming problems the basis can be directly

perceived, and in others it has to be found. We shall consider one
of the methods of finding the basis generally known as "the method
of an artificial basis".

We shall analyse an example to illustrate the method.
Example. Given the systern of constraints

!X1 - 2~2 + 2X3 - -'"4 - tx s = -4}
Xl + 3.X2 - 2X3 + X4 + 3x5 = 5

It IS required to solve it for a certain original basis.
Let us first of all transform the system so that the absolute

terms of the equations should be nonnegative. To do this we should
multiply both members of the first equation by - 1. We
get the' following system

- 2Xl + 2X2 - 2X3 +.'(4 + 7xs == 4} (4)
-Xl + 3X2 - 2X3 + X4 + 3xs == 5

We now introduce auxiliary, or artificial, unknowns J'., yz (one
for each equality) in the following way:

Yi == 4 - (- 2Xl + 2X2 - 2X3 + X4 + 7X S)} (5)
Yl == 5 - ( - Xl + 3Xl - 2X3 + X4 + 3X5)

Obviously all solutions of the original system (4) can be obtained
by taking all the solutions of the system (5) which satisfy the
conditions Yl = 0, Y2 == 0, and keeping only the values of Xl'"'' Xs

in each of those solutions.
The unknowns Yl, yz form the basis in the system (5).. Suppose

that starting from this basis we succeed in going over to another

* Or to a similar form where the left members contain some other r
unknowns rather than Xh X2,"" x.~ the remaining 11 - r unknowns must
enter into the right members. }
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basis which contains no artificial unknowns. Then omitting the terms
containing Yl and Y2 from the resulting equations (or, equivalently,
setting Yl == 0, Y2 == 0) we get a system equivalent to the original
system (4); this system being solved for a certain basis.

It remains to decide how to transform the unknowns Y., Y2 of
the system (5) into nonbasic unknowns. It is remarkable that we
should be able to use the simplex method for this purpose too;
namely, using this method we shall work out the problem of mini­
mizing the function

F = Yl + Y2

under constraints (5) and the conditions x 1 ~ 0, ..., Xs ~ 0, Yl ~ 0, Y2 ~ o.
Here the premises under which the simplex method begins to work
are satisfied since the system (5) is of the required form (it has
the original basis J'b yz). In some steps we arrive at the desired
minimum. Since F ~°and hence min F ~ 0, two cases are possible:

1. min F > O. This means that the system (5) has no nonnegative
solutions for which Y1 == 0, Y2 == °(otherwise min F == 0). Therefore
the original system (4) "Jill have no nonnegative solutions in this case.
Hence it will follow that any linear programming problem with such
a system of constraints is insoluble.

2. min F = 0. Suppose that in this case (x?, ..., x~, y?, y~) is an
optimal solution. Since y? + y~ == min F = 0, we have y? == 0, y~ == O.
It follows that (x?, ..., x~) will be a nonnegative solution of the original
system (4).

Thus in the case q(min F = 0 the system ofconstraints (4) will have
at least one nonnegative solution.

Further, if on accomplishing the process (i.e. when min F == 0 has
been attained) it is found that the artificial unknowns Yb Y2 are
among the nonbasic ones, we have achieved our object-we have
separated the basis from the unknowns Xl ..... 'XS. If, however, it becomes
clear that some of the unknowns .vI, yz still belong to the basis, then
some further transformations are required.

So we solve the problem of minimizing the function

F = Yl + Yz = [4 - (- 2Xl + 2X2 - 2X3 + X4 + 7xs)] +
+ [5 - ( - Xl + 3X2 - 2X3 + X4 + 3xs) ] =

= 9 + 3Xl ~ 5X2 + 4X3 - 2X4 - lOxs

In the expression for F the coefficient of X4 is negative, we there­
fore try to decrease the value of F by increasing X4' Comparing the
coefficients of X4 and the absolute terms in the equations of (5) we
find that X4 can be increased only to 4, Yl then vanishing. The
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new basis consists of X4, Y2. We solve the first equation for X4 and
substitute the resulting expression into the second equation and
'into F. The problem takes the form

X4 = 4 + 2XI - 2X2 + 2X3 - 7x s - YI"'t

Y2 = 1 - Xl - X2 + 4xs + Yl! (6)

F = 1 -' Xl - X2 + 4x s + 2YI
This completes the first step of the process. As a result we have
succeeded in making the unknown Yl nonbasic.

In the new expression for F the coefficient of x I is negative. Looking
at equations (6) we see that x 1 can be increased only to 1, Y2 then
vanishing. The new basis consists of X4, Xl. On transforming equa­
tions (6) and the expression for F (transforming the latter is now
optimal. however) we have

X4 = 6 - 4X2 + 2X3 + X s + YI - 2Y 2}

Xl = 1 - X2 + 4x s + YI - Y2 (7)
F = YI + Y2

Thus as a result of the second step the artificial unknowns J'r- Y2 have
become nonbasic. Eliminating from equations (7) the terms having
Yb Y2, we get

(8)

Y3 = 6Xl + 6X3 + 6X4 + 4xs +"2Yl

F = 7X1 + 5X3 + 17x4 + 9xs + 5Yl

X4 = 6 - 4X2 + 2X3 + X5}
Xl = 1 - X2 + 4xs

This means that we have separated a basis in the original system
(4). Thus the problem is solved.

As already noted, when applying the simplex method to finding
the minimum of the function F equal to the sum of the artificial
unknowns, it may happen that by the time the process is over (i.e.
when min F = 0 has already been attained) some of the artificial
unknowns still make part of the basis. These unknowns can also
be transformed into nonbasic ones by simple methods which we
shall demonstrate using an example.

Suppose, for example, that after a certain number of steps the
problem has assumed the following form

1 1 3 3 1 1
Xl ="2 - "2 X 1 + "2 X 3 - 2X 4 - 2x s - "2 Y1

Y2 = Xl - X3 + l l x, + 5xs + 2Yl
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We see that the function F has already attained the minimum
equal to zero, it may therefore be omitted from further considera­
tions. The unknowns V2 and Y3 are still part of the basis. But
the absolute terms in the equations for Y2 and Y3 are zero and not
by chance, for min F = 0 implies that in the resulting basic solution
Y2 = 0 and Y3 = O. We now make use of this circumstance to make
Y2 and )'3 leave the basis. To do this we observe that there is a
negative number among the coefficients of the unknowns Xl,"', Xs

in the equation for )'2: it is the coefficient - 1 of X3' We make
the replacement X3 +-+Y2 (we make the unknown X3 basic and make
Y2 become nonbasic). To do this we solve the second of the equations
for X3 and substitute the resulting expression for .\3 into the other
equations. Since the absolute term in the second equation is zero, as a
result of such an operation the absolute terms in the equations
will remain unchanged (and hence nonnegative),

We get:

153
x:, =- - + .v J -t- I 5x4. + 7x 5 ~ .....Y J -- Y2 }

~ 2 ~

X3 = X, -+ I iX4 1- 5x, -I- 2Y1 _u .\~2 .

\'3 = 12\1 -L 72X4 + 34x 5 .i, 14Yl -- 6Y2 _

(9)

Now we have no negative coefficients (of Xl' .... xsl in the equation
for .\'3, therefore we shall not be able to make J'3 nonbasic. But
we should not be much annoyed at this. For if some numbers Xl'

'0" X 5 satisfy the original system of constraints. then r l' .\'2 and y]
must be zero. Thus .

12x1 + 72x4 + 34xs ~ 0

Since here all the coefficients of the unknowns have the same
sign, this must yield

Xl=: .'C~ = X 5 =: 0

these equalities are thus consequences of the original system of
constraints and the conditions Xi ~ 0 (i == L... ~ 5). If we regard them
as satisfied the system (9) reduces to

I ~}X2 t :: 2

.Y.~ ~= 0 .

So subject to the nonnegativity of the unknowns the given system
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(I')

of constraints allows only one solution:

1
X2 = 2' X3 = 0, Xl = 0, X4 = 0, Xs = 0

14. The Duality Theorem
In Linear Programming

There are so-called duality theorems in various branches of mathe­
matics. Each of them allows the constructing for any statement
in a given theory, according to a certain standard rule, of another
statement in such a way that the validity of the first statement
automatically leads to the validity of the second. A remarkable
example of a duality theorem is met in linear programming too.

Suppose a certain linear programming problem is given; we shall
call it the originaL problem. or problem A, below. The constraints
are given in the form of inequalities. So we have the system

at tXt + (ltZ X2 + + aInxn + b, ~ 0

a2t Xt + a22x2 + + a1nxn + b2 ~ 0 (1)

amixi + amZx 2 + ... + amnxn+ bm ~ 0

of m linear inequalities in n unknowns and a linear function

f= CIXI + C2 X2 + ... + c.x;

We must pick from all nonnegative solutions (Xl ~ 0, X2 ~ 0,...,
x, ~ 0) such that the function!attains the largestvalue (fis maximized).

We connect with problem A another problem which we call a dual
problem relative to problem A or probLem A'. It is stated as follows:
given the system

allYl + aZlY2 + ,- amlYm + c l ~ 0

a12YI + a2zY2 + + am2Ym + C2 ~ 0

QlnYt + {lZI1Yz -t- ... + amnYm + c; ~ 0

of n linear inequalities in 111 unknowns and the linear function

<p = b1Yl + bzyz + ... + bmYm

It is necessary to pick all nonnegative solutions of the system (1')
such that the function <p attains the smallest value possible (rp
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is minimized). Comparing problems A and A' we notice:
1. That the coefficient of the jth unknown in the ith equation

of the system (1') is the same as that of the ith unknowns in the jth
equation of the system (1);

2. That the absolute terms of the inequalities in each of the prob­
lems coincide with the coefficients of the unknowns in the linear
function of the other problem;

3. That in the system of inequalities of problem A the inequalities
are all of the ~ 0 type, it being required in the problem that the
maximum off should be attained. On the contrary, in the system of
inequalities of problem A' the inequalities are all of the ~ 0 type,
but in return it is required in it that the minimum of <p should
be attained.

One of the main theorems in linear programming, the so-called
duality theorem, states the following.

Duality theorem. If an original problem is solvable, so is its dual,
the maximum of the function f being equal to the minimum of the
function q>:

max f=mincp

We shall prove this theorem by reducing it to the question
of compatibility of a certain system of inequalities.

To make the proof more convenient to follow, we break it down
into several stages.

Stage 1. Lemma. If x?,..., x~ is some nonneaatiue solution of the
system (1) and yY,..., y~ is some nonneqatiie solution of the system
(1'), then for these solutions the values of the functions f and q> are
connected by the inequality

10 ~ <Po

Proof We consider the inequalities of the system (1) where the
values x?,..., x~ are substituted for Xl,"', Xn" We multiply the first of
the inequalities by y?, the second by y~, etc., and then add all the
inequalities obtained:

(allY~x? + ... + amnY~x~) + b1y? + ... + bmY~ ~ 0

(one should bear in mind that we are multiplying the inequalities
by nonnegative numbers, therefore the signs of the inequalities
remain unchanged). In the same way, we multiply the first inequal..
ity of the system (1') by x?, the second by xg, etc., and then add
the resulting inequalities together:

( 0 0 + + 0 0) + - 0 + + 0 ~ 0allY1Xl"· a,mlYmX n C1Xl"· C,;K- II "'"
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In both cases the brackets contain an expression equal to a sum
of terms of the form aijy?xJ over all i = 1,..., m, j == 1,..., n. Hence
the two expressions in brackets coincide. But then

o o~b 0+ b 0C 1X 1 + ... + CnX 11 -....;::: 1y 1 ... + mYm

or fo ~ <Po. Thus the lemma is proved.
Stage 2. Reducing problems A and A' to the solution 0.[ a certain

system of inequalities.
Consider the following "combined" system of inequalities:

----+----- .'-_.' ------

(S)

~o

It is seen that it is made up of the system (1), the system
(I') and the inequality .1'- <P ;::o. The unknowns of the system
(S) are Xb'''' XII' .\'1'"'' J'1lI (there are 11 + m unknowns in all).
We first of all establish the following fact.

I] the system (S) has nonneqatiue solution x?,..., x?" y?, ..., )'I~' then
the numbers x?,..., x~ give a solution to problem A and the numbers
y?, y~, a solution to problem A', with ./0 == <Po.

We shall linger on this proposition a little longer to emphasize
the principal role it plays. What is remarkable about it is that
a linear proqramminq problem, i.e. a maximizat ion problem, reduces to'
solving a certain system uf linear inequalities without any maximiza­
tion requirements. In fact, the solution of the system (5) (in the
range of nonnegative values of unknowns) is of course not a bit
easier than the solution of the original linear programming problem
(problem A)~ however, the very possibility of such a reduction is
very curious.

Now we prove the above statement. First of all, it is clear that
the numbers x?,..., x?, are nonnegative and satisfy the system (1); simi­
larly the numbers y?, ..., YI~ are nonnegative and satisfy (1'). More­
over, these numbers satisfy the inequality

10 ~ <Po
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(following .from the last inequality of the system (S)). On the
other hand, by lemma we have

fo ~ <Po

Hence, fo == <Po·
Further, if Xb"" xn is some nonnegative solution of the system (1),

then by the lemma we again have

r« <Po
Comparing this and fo == <Po we get f ~jo, whence it follows that
fo is the maximal value of f

Similarly, if YJ,..., Ym is some nonnegative solution of the system
(1'), then by the lemma we have

fo ~ <p

comparing this and fo == <Po we get <Po ~ <p, i. e. <Po is the minimal
value of <po This proves the above proposition.

Stage 3. Completing the proof Now it remains for us to show
the following: if problem A has a solution, then the system (S) has a
nonnegative solution. For then, as shown above, fo == <Po, i. e.
max f == min <po

We shall argue .following the rule of contraries, i.e. we shall
suppose that the system (5) has no nonnegative solutions. For this
case we have the corollary of the theorem on incompatible systems
(Section 9). True, this corollary refers to a system consisting of
inequalities of the ~ 0 type and our system (S) has inequalities
of the ~ 0 type. But this is easy to mend by writing the system
(8) in the form

- alnYt - ... - amnYm -- en~ 0

- allYl - ... - am l Y m - Cl ~ 0
(S')

('tXt + ... + CnXn

So suppose that the system (S') has no nonnegative solutions.
J.ccording to the corollary of the theorem on incompatible systems,
there will occur nonnegative numbers k1,..., km, 11,"" In' S "(m + n + 1
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numbers all in all) such that *
a11k 1 + ... + Q II1 I k ll1 + CIS ~ 0\
.,k1•~ : •••~ ~1Il~kl:l'~ .: ~ '0J
- ailit - ... - alnln - b,« ~ O}
.~ ~/I:1il .~ .:. ~'a:n~ln' ~ b,~s'~ 0

b1k l + ... + bmkm- Cllt - ... - cnln < 0

(2)

(2')

(3)

We first of all show that the number s is nonzero. Indeed, suppose
this is not the case, i.e. that s == O. Consider some nonnegative
solution x?,..., x~ of the system (1). Arguing in the same way as we
did in proving the lemma, we find that

(a11k1x? + ... + amnkmx~) + b1kt + ... + bmkm~ 0

But the parenthesis ~ 0 (this results if we multiply the first, inequality
of (2) by x?, the second by x~ and so on, bearing in mind s == 0, and
then carry out addition). Hence

btk t + ... + bmkm~ 0 (4)

after which it follows from (3) that

elll + ... +cnln>O

Further, by multiplying inequalities (2') (where s = 0) by an arbitrary
positive number A we get

altAlt + ... + QlnAln ~ 0
(5)

amlAlt + ... + amnAln~ 0

If we now add to each inequality of (1), where Xb"" x, are
substituted for by x?,..., x~, the corresponding inequality of (5), we
find that the numbers

x? + All,'''' x~ + u,

* The numbers k., ..., k , I., , I , S are precisely those numbers by which
we multiply the first, sec'8nd, , n(nl + 11 + 1)th inequalities of the system
(S') to get (after addition) the inconsistent inequality alxl + ... + a.x; +
+ dlYt + ,.. + a;;z)',:J + d ~ O. where at, .... {In. 0'1,".' a;", ~ 0 and d is a negative
number.

105



also constitute a nonnegative solution of the .system (1). For this
solution the value of the function .f is

CiX? + ... + cnx~ + A(Ctlt + ... + cnln}

and since the parenthesis is strictly positive, the value oif increases
indefinitely with A. This means that maxj = OC', i. e. that problem A,
contrary to the premises, has no solution.

Thus s is nonzero. It then follows from (2) that the numbers
k1/s,... , k"Js are a nonnegative solution of the system (1), from
(2') that the numbers Ills, ..., I,/S are a nonnegative solution of
the system (I '), and from (3) that for these solutions <p - f < O.
But this is contrary to the lemma. So on supposing that the system (S)
has no nonnegative solutions, we come to a contradiction. Such
solutions are therefore certain to exist, which proves the duality
theorem.

Example. Find the maximal value of the function

.f= 2X2 + 12x3

Xl - Xl - -'"3 + 2 ~ 0 }
-Xl - Xl - 4X3 + 1 ~ 0

Solution. Let us call the set problem problem A. The dual problem
(problem A') must be stated as follows: find the minimal value of

the function

provided the variables Xl, X 2, X 3 are nonnegative and satisfy the
inequalities

<p = 2."1 + V,

provided the variables .\'1, .\'2 are nonnegative and satisfy the inequali-
ties .

(6)
Yt -.\'2 ~ O}

- Yt - Yz + 2 ~ 0
- .Vl - 4yz + 12 ~ 0

Problem A' can be solved graphically by representing in the
y 10 Y2 coordinate plane the feasible region of the system (6). This
is done in Fig. 48. It is seen from the same figure that the
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Fig. 48

function <p attains its smallest value at the point (0,3), one of
the vertices of the region. This value is equal to 3. By the duality
theorem the maximum of the function J must also be equal to 3.

15. Transportation Problem

In Section 12 we have considered a number of specific linear prog­
ramming problems. Of special interest among them is the transpor­
tation problem, above all due to its practical significance. There
is voluminous literature devoted to this and similar problems. One
must say that the methods of solving the transportation problem
are rather instructive. They demonstrate the indubitable fact that when
solving any special class of problems general methods (say the
simplex method) should be employed with caution, i. e. one should
consider in full measure the peculiarities of the given class of
problems.

10
• Stating the problem. We remind the reader how the transpor­

tation problem is stated in the general form. There are some, say
m, source points (suppliers)

AI, A2,· .. , Am

and so many, say n, destination points (consumers)

B b B2 ,· .. , B;

We use a, to denote the quantity of goods (say in tons) concentrated
at point A;(i = 1, 2,..., n1) and hj to denote the quantity of goods
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expected at point B, (j = 1, 2,..., n). We assume the condition

at + az + ... + am = hI + b2 + ... + b;

implying that the total stock of goods is equal to the summed
demand for it. In addition to the numbers a.; bj , we are also given
quantities cij denoting the cost of transporting a ton of

I goods from point Ai to point B j • It is required to. develop
an optimal shipping schedule, i.e. to compute what quantity of goods
must be shipped from each source point to each destination point
for the total cost of shipments to be minimal.

So our problem has mn nonnegative unknown numbers xij(i = 1,
..., m; j = 1,..., n) where xij is the quantity of goods to be shipped
from Ai to Rj • Lest we should complicate the things with cumber­
some expressions, we take specific values for In and n, namely,
m = 3 and n = 4. So we shall assume that there are three source
points, A., A2, A 3 , and four destination points, B., B2, B3 , B4 • The
unknown quantities Xij can be summarized in a table called the
transportation table:

Table 1

r
I

tion I
Source point To e, To B 2 To B3 To B4 Stocks

point

From Al XII X12 X 13 X14 al

From A 2 X21 X22 X23 X24 a2

From A3 X3) X32 X33 X34 Q3
-

Requirements hl b2 h) b4

Since the "total weight of the goods shipped from A 1 to all
consumption points must be equal to at, we have the relation

XII + X12 + Xl3 + Xl4 == at

Similar relations must hold for the points A 2
unknowns of our problem must therefore satisfy

XII +XI2+ XI3+ XI4==a J }

X21 +X22+ X1J+x24==aZ

xJJ +XJ1+X33+ x34=a3
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(3)

(2)

But we should also bear in mind that the total quantity of
goods delivered to 8 1 from all source points must be equal to bb i.e.

Xlt + X2t + X3t = b,

Similar relations must hold for the points B2~ B3 • 8 4 , This leads
to the equations

.~11 +.~21 +X31 =b1.1

.\12 + )\22 + X32 = b:

XI3~-X23+X33=b3J

Xl4 + .\"24 + X34 = b4

Notice that equations (1) and (2) are very easy to remember.
Indeed, the ith equation of the system (1) implies that the sum
of the unknowns in the lth row of the transportation table is
equal to a.; we shall call equations (1) horizontal for this reason.
Similarly, the jth equation of the system (2) records the fact that
the sum of the unknowns in the jth column of the transportation
table is equal to hi; because of this we shall call the equations
of the system (2) uertieal.

We ship Xi; tons of goods from point Ai to point B., the cost
of transporting one ton being cu' Hence transportation from Ai to
B, costs t w\ ;; and the total cost of transportation will be

S == L <».

where the symbol ~ put before c:;xi; signifies that the quantities
1.1

ciiX ii must be summed over all i = I. 2~ 3. and all .i =- L 2, 3. 4 (there
will be 12 summands in all).

We thus corne 10 the following linear programming problem.
Given the system of equations (1), (2) and the linear function

(3). Find amonq [he nonneqat ire solutions q{ the system such that
minimizes the junction (3).

The transportation problem can be solved by the simplex method
like any other linear programming problem. Because of the special
structure of the system of constraints (1), (2) the general procedure
of the simplex method is, of course. greatly simplified when applied
to the transportation problem. Here we present a method for solving
the transportation problem called the method ofpotentials. It is a vari­
ant of the simplex method specially adapted for solving the transpor­
tation problem.

2°. Finding the first basis. As we know, the work by the simplex
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method is preceded by a preparatory stage, that of finding the first
basis. In the case of the transportation problem there is a very
simple and convenient method of finding the first basis called the
northwest corner rule. The essence of the method is best explained
by considering a specific example. Suppose we are given three source
points, AI" A2 , A3 , and four destination points, Bb B2 , B3 , B4 , the
stocks and requirements being equal to the following quantities:

at == 60, (12 = 80., {l3 == 100
b, == 40, b2 == 60, b, = 80, b4 == 60

These data are tabulated in Table 2 below.

Table 2

8 1 8 2 B3 84- Stocks

AI 40 60

A 2 80
.-----

A., 100

Requirements 40 60 80 60

Let us try to satisfy the requirements of the first destination
point B t using the stocks of the first source point At. This can
be done in this case since the stocks lit = 60 are greater than the
requirements hi = 40.

We therefore enter the number 40 in the cell x 11' The require­
ments of the point hi will be found fully satisfied, and therefore
the B, column may be temporarily excluded from consideration. It ts
now possible to consider that we have come to new Table 3
which has three destination points, B2 , B3 , B4 , and three source
points, A 1, A2 , A3 , the stocks at A I being a'l = 60 - 40 = 20. Note
that in Table J the sum of all requirements is as before equal
to the sum of all stocks.

We apply the same method to Table 3 and try to satisfy the
requirements bJ, = 60 of the point B2 (it assumes the role of the
first point in Table J) using the stocks a', = 20 of the point AI' It
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is obvious that we can satisfy these requirements only partially since
b2 > at .

Table 3

B2 B3 8 4

At 20 20

A2 80

A3 100

60 80 60

We enter the number 20, this being the maximum of what can
be transported from A 1 to B2 , in the cell x t 2. The requirements
of B2 will be reduced to b;' = 40 and the stocks of A 1 will be found
fully exhausted. In virtue of this the A t column of Table 3 may be
temporarily removed. Thus we come to Table 4 which has only two
source points, A 2 and A 3 , and three destination points, B2 , B3 , B4 ,

now.

Table 4

B2 B3 8 4

A 2 40 80

A) 100

40 80 60

In a similar way we continue to reduce successively the resulting
tables until we satisfy the requirements of all the destination points.
In virtue of the condition of the problem all the stocks of the
source points will be found exhausted *.

We get the following values for some of the unknowns in the

* When "new" stocks are equal to "new" requirements, either the row or
the column may be excluded at will from the table.
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course of reducing the 'tables:

Xli = 40, X12 = 20, X22 == 40, X23 == 40,
X34 == 60

On entering them in Table 2 we get Table 5.

X33 = 40,
(4)

Table 5

B1 B2 B3 B4
---r---.----

Al 40 20
--

A 2 40 40

A 3 40 60

Let us agree to refer to those cells in Table 5 which have the
values of unknowns entered in them as basic, and to the remaining
cells as vacant. If we consider that the values of the unknowns
Xij which correspond to the vacant cells are zero, then the result­
ing set of all the unknowns yields the feasible solution of our
problem. Indeed, it is easy to verify that the sum of the values
of the unknowns in each row of the table is equal to the
stocks of the corresponding source point and that in each column,
to the requirements of the corresponding destination point. Therefore
equations (1), .(2) are satisfied. It now remains to remark that the
values of all unknowns are nonnegative.

In the general case, i. e. when there are any number m of source
points and any number n of destination points, the method we have
described allows us to fill m + n - 1 cell in the table. Indeed, in
every step we fill exactly one cell, after which one row or one
column is deleted from the table; there is one exception, where the
table consists of a single cell on filling which we exclude at once
both the row and the column. Since the 'number of all rows is m
and the number of all columns is n, it is clear that the number
of all steps and hence the number of filled (basic) cells is m + n - 1.

We now show that the system of constraints (1), (2) can be solved
for the unknowns corresponding to the basic cells. Hence it will follow
that these unknowns may be assumed to be basic and the remaining
unknowns corresponding to the vacant cells in the table to be non­
basic.

To prove this, we join the basic cells with a broken line in the order
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they arose in the procedure described above. There will result a
broken line of the following form for the example considered:

X23 X 2'"

It is not difficult to see now that the unknowns occupying the
basic cells can be expressed in terms of the unknowns occupying
the vacant cells. The expressions are found in consecutive order:

first for x 11, taking the first vertical equation;
then for x 12, taking the first horizontal equation;
then for X22' taking the second vertical equation;
then for X23' taking the second horizontal equation;
then for X33, taking the third vertical equation;
finally for X34' taking the third horizontal (or the

fourth vertical) equation.

So we have found the basic set for our problem:

Xl b X12, X22, X23, X33' X34

This does not complete the solution of the set problem since
the expressions for the basic unknowns in terms of the nonbasic
ones still remain to be found. But these expressions will not be
required in explicit form at the next stages of solving the transpor­
tation problem.
3°. Solving the problem by the method of potentials. The finding
of the first basis is but a preparatory stage of solving the problem.
When this stage is over, all the unknowns are found broken down
into two groups:

X kb basic unknowns, and x pq, nonbasic unknowns

No actual expressions for the basic unknowns in terms of nonbasic
ones will be needed. As to the function S (the total cost of
transportation), it is obligatory to know its expression in terms of
nonbasic unknowns. In other words, it is necessary to express the
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function S as

S = LSpqX pq + S (5)
p,q

We shall show how to find coefficients Spq of nonbasic unknowns.
We assign to each source point Ai a certain value a.i (i = 1, 2,..., 111),

the "potential" of point A j . , Similarly, to each of the destination
points Bj we assign a value Pi (j = 1, 2,..., n), the "potential" of
point Bj" We relate these values 'as follows: for every basic unknown
X k1 we 'work out an equation

rJ.t; + ~/'= Ck/ (6)

where ck/ is used as before to denote the cost of transporting
a ton of goods from a point At.: to a point R I• The set of the equa­
tions of the form (6) worked out for all basic unknowns X k1 forms
a system of linear equations. This system has m + n - 1 equations
(as many as there are basic unknowns) and m + 11 unknowns n., Pi
(as many as there are source points and destination points taken
together). It can be shown that this system is always compatible,
it being possible to arbitrarily specify the value of one of the un­
knowns and then unambiguously find the values of the remaining
unknowns from the system.

Let us fix some one solution (Cib"·' C1.m' Pb..., ~n) of the system of
equations (6) and then calculate the sum Cip + Pq for each nonbasic
unknown x pw We denote this sum by C~Jt/:

Clp + ~q = C;q

and call it indirect cost (in contrast to the real cost cpq) . It then
turns out that in the expression (5) that interests us the coefficients
of nonbasic unknowns are equal to

(7)

Formula (7) will be proved in the next section.
If all the variables Srq are nonnegative, then the initial basic

solution will be optimal. If, however, there are negative variables,
say spa 0' among them, then we go over to the next basis. It will
be recalled that this step begins with reasoning as follows. We shall
increase x p q (keeping the other nonbasic unknowns zero). If in
doing so vJeareach a moment when one of the basic unknowns,
say xk I ' vanishes, we go over to a new basis by eliminating the
unknowon x

k
I from the old basis and introducing instead x .

• !.:l (J h basi I f h . ppqoGoing over (0 t e new asis comp etes one step 0 t e Simplex
method.
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So far we have presented only some of the considerations ne­
cessary for the understanding of the method of potentials. As
to the actual solution of the problem, it can be best explained
by considering a specific example.

Example. We are given three source points, AJ, A 2 , A 3 , with the
stocks

at = 60, a2 = 80, a3 = 100

and four destination points, B}, B 2 , B3 , B4 , having the requirements

b, = 40, b2 = 60, bs = 80, b4 = 60

The values cij (costs of transportation from Ai to Bj per ton of
goods) are given by Table 6.

Table 6

1 2 3 4

4 3 2 0

0 2 2 1

Solution. We begin with the finding of the first basic solution.
lt this case the northwest corner rule leads to the result shown
In Table 7 (cf. the example of the previous subsection). We denote

Table 7

40 20

40 40

40 60 I

this solution by { for short. The value of the function S is as
follows for it:

LCif~ij = 1 x 40 + 2 x 20 + 3 x 0 + 4 x 0 + 4 x 0 + 3 x 40 +

+ 2 x 40 + 0 x 0 + 0 x 0 + 2 x 0 + 2 x 40 + 1 x 60 = 420

To find the potentials it is necessary to solve the system of
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equations

C(l + ~1 = Cl 1 == 1
ell + ~2 = e12 == 2

r:J.2 + l32 = e22 = 3

rt2 + ~3 = C23 = 2

(13 + P3 = C33 == 2
C(3 + ~4 = C34 == 1

any solution of this system suiting us. As already noted, the value of
one of the unknowns can be specified arbitrarily. Setting (Xl = 1, we
find successively:

~1=O, ~2=1, C(2=2, ~3==O, '''J.3=2, B4=-1
We then compute the indirect costs (;q:

C!3 = ~l + B3 == I'
('1'4 = ~l + P4 == 0'
(

' 1 __ N +- A _"
21-J...2- PI-L

C~4 = '1.2 + ~4 ::= l'

C;1 = ':13 + PI == 2'

C32 == ':1.3 .+ pz ~ 3'

It is rnore convenient to carry out the above computation
using Table 8 in which we first enter only the values of Ckf for
all the basic cells. Assuming ~ 1 == 1 and proceeding according to the
above rule we compute the potentials t1.k and PI and, on entering
them into the corresponding cells, \VC get Table 9. \Ve then find the
indirect costs C;,q ~ entering them in the corresponding cells we get
Table 10.

2
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Table 9
<,

.............. f3
CJ.

0 1 0 -1

1 1 2

2 3 2

2 2 1

Table 10
<,

'.

CJ. ~ 0 1 0 -1

1 1 i. I 0'

2 2' 3 2 I'

2 2' 3' 2 1

In fact, the three elementary stages we have considered could be
united into one.

We now compute the differences Spq = Cpq - C;q. In this case

51 3 = 3 - l' == 2,

514 = 4 - 0' == 4,

s2 1 = 4 - 2' == 2,

824 = 0 - l' == - 1,

83 1 = 0 - 2' == - 2,

532 = 2 - 3' == - 1

Hence the function S expressed in terms of non basic unknowns
assumes the form

S = 420 + 2X13 + 4X14 + 2X21 - X24 - 2X31 - X32 (8)

Among the coefficients of the unknowns in the right member there
are negative ones, the coefficient X3., for example. It is therefore
possible to decrease the value of S by increasing X31 (while
preserving the zero values of the remaining non basic unknowns).

117



We set X31 = p. Since the sums of the values of the unknowns in
the rows and columns must remain unchanged, it is necessary to
add p to or subtract it from the values of the basic unknowns
in the following manner:

Table 11

40-p 20+p
r- ,
I I 4o-p 40+p
I

L____ ,
I I

P t J40-p 60L __ -----
We had to compensate for the addition of p to X31 by subtracting
p from x 11 and in turn to compensate for this by the addition of
p to x 12 and so on until we came back to X31.

We stop here to make a remark concerning Table 11. Going in the
table from cell to cell in that sequence in which we compensate
for p we get a closed broken line consisting of alternating horizontal
and vertical links: the broken line is dotted in Table 11. One
of the vertices of the broken line is in a nonbasic cell (X31 in
this case) and the rest are in basic cells (not necessarily in all of them;
thus there is no vertex in the cell X34 of Table. Ll). This broken
line is called a cycle or, to be more exact, a recalculation cycle
corresponding to a given nonbasic cell.

As is seen from Table 11, the condition that the unknowns should
be nonnegative allows r to be increased only to 40. We set p = 40;
three basic unknowns, Xl h -"22 and -"33, then vanish together. We
choose one of them, X22, for example. So we introduce the unknown
X31 into the basis and make the unknown -"22 nonbasic. The new
basic solution will be as follows:

X
2

0 60

80

40 0 60

the value of the function S for it being

420 - 2 x 40 ::= }40
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tin (8) we set X31 = P = 40 and assume the values of the remaining
unknowns to be zero). Going over to the new basis completes one
,Step in the procedure. We have succeeded in decreasing the value of
'the function S by 80 units.

'To sum up, by the beginning of the first step we had been
given an initial basic solution X. The step itself consisted in going

1

over to new basic solution X and included the following stages:
:2

(1) finding the potentials rl k, PI and the indirect costs

C;£l = «, + B4

(2) computing the differences Sp4 = Chi - C~4; .

(3) choosing a vacant cell corresponding to a negative difference
s and constructing the recalculation cycle for this cell;

pQ(4) finding the new basic solution and the new value of the
function S.

Notice that had all the differences Spli proved nonnegative, that
would have meant that the basic solution X was optimal Then

1
stages (3), (4) would have become unnecessary. Thus the nonneqatiiiity
of all differences Spq is the criterion for terminating the procedure.

Let us return to the example under consideration, however. The
next step begins with finding the potentials, indirect costs and comput­
ing the differences Sp4" The corresponding computation will look as
follows:

~ 0 1 2 1

1 1 2 3' 2'

0 0' l' 2 I'

0 0 I' 2 I

S13 ~ 3 - 3' = 0

S14 == 4 - 2' = 2
S21 = 4 - 0' = 4

822 = 3 - l' = 2

S24 = 0 - I' = - 1

532 = 2 - l' = 1

119



There are negative differences among Spq: S24 = - 1. We fix on
the cell X24 and construct a recalculation cycle for it:

0 60

80- P P

40 O+P 60- P

We conclude from the examination of the cycle that p can be increased
only to 60. Setting p = 60, we arrive at a new basic solution:

0 60

20 60

40 60

The value of the function S is

340 - 1 x 60 = 280
for this solution. Going over from X to X completes the second

2 3

step in the procedure.
The third step again begins with computing the potentials, indi­

rect costs and differences Spq. We have

~ 0 1 2 0

1 1 2 3' l'

0 0' l' 2 0

0 0 l' 2 0'
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S13 = 3 - 3' = 0
S14 = 4 - I' = 3
S21 = 4 - 0' = 4

S22 = 3 - l' = 2

S32 = 2 - I' = 1
S34 = 1 - 0' = 1



Now the differences SPII are all nonnegative. This means that the
last basic solution X is optimal and the corresponding (smallest)

3

value of the function S is 280.
Thus the optimal solution of the problem has been found:

{

XIZ = xZ4 = X33 = 60, XZ3 = 20, X31 = 40;

the remaining xij are zero.
In conclusion we show once again, but now only schematically,
the plan of solving the transportation problem:

Finding the first basic solution

I
Finding the potentials r:J.k, ~l

r

Computing the i~direct costs c' pq

I
Computing the differences

Spq = cpq - C~q

(the coefficients of nonbasic unknowns in
the expression for S)

I
Choosing a negative difference sPlIl/o and
constructing the recalculation cycle for

the corresponding vacant cell

r

Finding a new basis

Note. If the differences Spq are all nonnegative, then the last basic
solution is optimal.

4°. Justifying the method of potentials. The formula

Spq = cpq - <: (7)
allowing the function S to be expressed in terms of non basic
unknowns is the pivot of the solution method described above.
Deriving this formula requires a "deeper study of the transportation
table and we have agreed to discuss it separately. We shall do
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it now. To that end we return to the study of Table 11

Table 11

40-p 20+p
r- -,
I

t L ___ ,
I

4O-p 14o+Q
I IL_

-~-- .. 40-p 60P

which contains the recalculation cycle for the cell X31' We used
this table to find p and thereby go over to a new basic solution.
But the table allows still another problem to be solved: it helps
to determine what are the coefficients of the unknown X31 in the
expressions for the basic unknowns.

We first of all make the following remark. If the values of nonbasic
unknowns are indicated, then this unambiguously determines the
values of the basic unknowns. But it is just Table 11 that gives
an idea of what happens to the values of basic unknowns when
the nonbasic unknown X31 is assigned a value p (while assuming
the remaining nonbasic unknowns to be zero). The study of the table
shows that x31 enters the expressions for the basic unknowns having
the following coefficients:

-1 In Xlt

+1 in Xt2

-1 In X22 (9)

+1 In X23

- 1 in X33

In the rernainmg basic unknowns (namely, in X34) ~31 has the
coefficient O. We see that when making the round of the cycle the
coefficients involved alternatively assume the values + 1, - 1.

It now remains to answer the question: What coefficient has
X31 in the expression for the function S in terms of nonbasic
unknowns? Well, this expression

S = 420 + S13Xt3 + S14Xt4 + S21 X21 + S24X24 +
+S31 X31 +S32X32

is produced when the basic unknowns in the original expression
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for S

s = ~ cijxij (i = 1, 2, 3; j = 1, 2, 3, 4)

are substituted for by their expressions in terms of nonbasic ones.
In the given case it is necessary that Xl b X12, X22.' X23' X33' X34

should be substituted for by their expressions in terms of X13' X14,

X21' X24, X3b X32- In virtue of (9) the total coefficient of X31 will
be

:Hence
I

831 = C31 - (C'll + ~l) + (crl + f32) - (cr2 + ~2) +

+ (el2 + ~3) - (C'l3 + ~3) = C3t - (C'l3 + ~1)

or

831 = C31 - C~l

:~ut that is just formula (7) (for the given case). The reasoning that
has led us to the last equality is sufficiently demonstrative, and
!here is no need to repeat it for the general case.
"( We conclude by saying a few words about other methods of solving
~e transportation problem. The method of potentials discussed
·'bove tends to be used in hand computation since one of its stages,
n~mely that of constructing the recalculation cycle, is difficult to
realize in the computer. With a small number of suppliers and
Cbnsumers (within some ten) this method leads to an optimal solution
~n. a reasonable time. If, however, the number of suppliers and that
.bf· consumers are large enough (and this is what happens in appli­
.c~ions, where these numbers are of an order of hundreds), resort­
;.~g to a computer is inevitable. Algorithms computer programmes
i_e based on considerations other than those underlying the method
r~( potentials. The interested reader can find more about these
~.lgorithms in special literature devoted to the transportation
;problem.
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METHOD OF SUCCESSIVE APPROXIMATIONS

N. VILENKIN, D.se.

This book explains in a popular form the methods of appro­
ximation. solutions of algebraic, trigonometric, model and

other equations.
Intended for senior schoolchildren, polytechnic students, ma­
thematics teachers and for those who encounter solutions of
equations in their practical work. In the course of exposition

some elementary ideas about higher mathematics are
introduced in the book. About 20 solved exercises are

included in the appendix.
The book has already been translated into Spanish and

French.



BASIC COMPUTATIONAL MATHEMATICS

v. DYACHENKO, D.se.

The present text covers the most elementary concepts and
ideas underlying modern computational methods for solving
problems in mechanics and mathematical physics. It also deals
with the construction and investigation of appropriate compu-

tational algorithms.
The presentation is simple and does not require that the
reader have a substantial mathematical background. The text
is designed for students of natural-science departments of colle­
ges and universities. It will also be of interest. to a broad range
of physicists and engineers serving as an introductory course

in computational mathematics.



FUNDAMENTAL THEOREM OF ARITHMETIC

L. KALUZHNIN, D.se.

This booklet is devoted to one of the fundamental proposi­
tions of the arithmetic of rational whole numbers - the
unique factorisation of whole numbers into prime multipliers.
It gives a rigorous and complete proof of this basic fact. It
is shown that uniqueness of factorisation also exists in arithrne­
tic of complex (Gaussian) whole numbers. The link between
arithmetic of Gaussian numbers and the problem of represent­
ing whole numbers as sum of squares IS indicated. An example
of arithmetic in which uniqueness of expansion into prime
multipliers does not hold is given. The booklet is intended for
senior schoolchildren. It will help to acquaint them with the
elements of number theory. It may also be useful for secondary

school teachers.



INDUCTION IN GEOMETRY

L. GOLOVINA, D. se. and I. YAGLOM, D. se.

This booklet deals with various applications of the method
of mathematical induction to solving geometric problems and
was planned by the authors as a natural continuation of I. S. So­
minsky's booklet "The Method of Mathematical Induction"
published by Mir Publishers in 1975. It contains 37 worked

examples and 40 problems accompanied by brief hints.





The book tells about the relation of systems of linear

inequalities to onvex polyhedra, gives a description of the

set of all solutions of a system of linear inequalities,

analyses the questions of compatibility and

incompatibilityl; finally, it gives an insight into linear

programming as one of the topics in the theory of

systems of linear inequalities. The last section but one

gives a proof of duality theorem of lienar programming.

The book is intended for sensior pupils and all amateur

mathematicians.
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