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SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA

INTRODUCTION. 1

This memoir is genetic in its intent, in that it aims to set forth the present
state of the mathematical discipline indicated by its title: not in a comparative

study of different known algebras, nor in the exhaustive study of any particular

algebra, but in tracing the general laws of the whole subject. Developments
of individual known algebras may be found in the original memoirs. A partial

bibliography of this entire field may be found in the Bibliography of the

Quaternion Society,
2 which is fairly complete on the subject. Comparative

studies, more or less complete, may be found in HANKEL'S lectures,
8 and in

CAYLEY'S paper on Multiple Algebra.
4 These studies, as well as those men-

tioned below, are historical and critical, as well as comparative. The phyletic

development is given partially in STUDY'S Encyklopadie
6

article, his Chicago

Congress* paper, and in CARTAN'S Encyclopedic
7
article. These papers furnish

numerous expositions of systems, and references to original sources. Further

historical references are also indicated below. 8

In view of this careful work therefore, it does not seem desirable to review

the field again historically. There is a necessity, however, for a presentation
of the subject which sets forth the results already at hand, in a genetic order.

From such presentation may possibly come suggestions for the future.

Attention will be given to chronology, and it is hoped the references given
will indicate priority claims to a certain extent. These are not always easy
to settle, as they are sometimes buried in papers never widely circulated, nor

is it always possible to say whether a notion existed in a paper explicitly or

only implicitly, consequently this memoir does not presume to offer any authori-

tative statements as to priority.

The memoir is divided into three parts : General Theory, Particular Sys-

tems, Applications. Under the General Theory is given the development of the

subject from fundamental principles, no use being made of other mathematical

disciplines, such as bilinear forms, matrices, continuous groups, and the like.

'Presented, in a slightly different form, as an abstract of this paper, to the Congress of Arts and

Sciences at the Universal Exposition, St. Louis, Sept. 22, 1904.

' Bibliography of Quaternions and allied systems of mathematics, Alexander Macfarlane, 1904, Dublin.

'HAMKBL 1. References to the bibliography at the end of the memoir are given by author and

number of paper.

CAYLET 9. 'ST0DT8. STUDY 7. 'CABTAN 3.

BEXAN 2, GIBBS 2, R. GRAVES 1, HAOEN 1, MACFABLANE 4.

1 5



6 SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA

We find the first Buch general treatment in HAMILTON'S theory
1 of sets. The

first extensive attempt at development of algebras in this w:iy was made by

BENJAMIN PEIRCES
. His memoir was really epoch-making. It lias been critic-

ally examined by HAWKKS", who has undertaken to extend Peirce's method,

showing its full power
4
. The next treatment of a similar character was by

CARTAN", who used the characteristic equation to develop several theorems of

much generality. In this development appear the semi-simple, or Dedekind,

and the pseudo-nul, or nilpotent, sub-algebras. The very important theorem

that the structure of every algebra may be represented by the use of double

units, the first factor being quadrate, the second non-quadrate, is the ultimate

proposition he reaches. The latest direct treatment is by TABER", who

reexamines the results of PEIRCE, establishing them fully (which Peirce had

not done in every case) and extending them to any domain for the coordinates.

[His units however are linearly independent not only in the field of the

coordinates, but for any domain or field ]

Two lines of development of linear associative algebra have been followed

besides this direct line. The first is by use of the continuous group. It was

PoiNCARE 7 who first announced this isomorphism. The method was followed

by ScHEFFERS
8
,
who classified algebras as quaternionic and non quaternionic.

In the latter class he found "regular" units which can be so arranged that

the product of any two is expressible linearly in terms of those which

follow both. He worked out complete lists of all algebras to order five

inclusive. His successor was MoLiEN 9

,
who added the theorems that quater-

nionic algebras contain independent quadrates, and that quaternionic algebras

can be classified according to non-quaternionic types. He did not, however,

reach the duplex character of the units found by CARTAN.

The other line of development is by using the matrix theory. C.S. PEIRCE"
'

first noticed this isomorphism, although in embryo it appeared sooner. The

line was followed by SHAW u and FROBENICS 13
. The former shows that the

equation of an algebra determines its quadrate units, and certain of the direct

units ;
that the other units form a nilpotent system which with the quadrates

may be reduced to certain canonical forms. The algebra is thus made a sub-

algebra under the algebra of the associative units used in these canonical forms.

FROBENIUS proves that every algebra has a DEDEKIND sub-algebra, whose

equation contains all factors in the equation of the algebra, This is the semi-

simple algebra of CARTAN. He also showed that the remaining units form a

nilpotent algebra whose units may be regularized.

It is interesting to note the substantial identity of these developments,

aside from the vehicle of expression. The results will be given in the order

of development of the paper with no regard to the method of derivation. The

references will cover the different proofs.

> HAMILTON 1. B. PBIRCE 1, 3. HAWKES 2. HAWKES 1, 3, 4.

CARTAN 2. TABER4. ' POINCAKE 1. SCHEFFEBS 1, 2, 8.

IOC. 8. PEIBCEl, 4. "SHAW 4. "FHOBENIUS 14.



INTRODUCTION 7

The last chapter of the general theory gives a sketch of .the theory of

general algebra, placing linear associative algebra in its genetic relations to

general linear algebra. Some scant work has been done in this development,
particularly along the line of symbolic logic.

1 On the philosophical side,
which this general treatment leads up to, there have always been two views
of complex algebra. The one regards a number in such an algebra as in

reality a duplex, triplex, or multiplex of arithmetical numbers or expressions.
The so-called units become mere umbrae serving to distinguish the different

coordinates. This seems to have been CAYLEy's 2 view. It is in essence the

view of most writers on the subject. The other regards the number in a linear

algebra as a single entity, and multiplex only in that an equality between
two such numbers implies n equalities between certain coordinates or functions

of the numbers. This was HAMILTON'S S

view, and to a certain extent GRASS-

MANN'S.* The first view seeks to derive all properties from a multiplication
table. The second seeks to derive these properties from definitions applying
to all numbers of an algebra. The attempt to base all mathematics on arith-

metic leads to the first view. The attempt to base all mathematics on algebra,

or the theory of entities defined by relational identities, leads to the second

view. It would seem that the latter would be the more profitable from the

standpoint of utility. This has been the case notably in all developments

along this line, for example, quaternions and space-analysis in general.

HAMILTON, and those who have caught his idea since, have endeavored to form

expressions for other algebras which will serve the purpose which the scalar,

vector, conjugate, etc., do in quaternions, in relieving the system of reference

to any unit-system. Such definition of algebra, or of an algebra, is a develop-
ment in terms of what may be called the fundamental invariant forms of the

algebra. The characteristic equation of the algebra and its derived equations
are of this character, since they are true for all numbers irrespective of the

units which define the algebra; or, in other words, these relations are identically

the same for all equivalent algebras. The present memoir undertakes to add to

the development of this view of the subject.

In conclusion it may be remarked that several theorems occur in the course

of the memoir which it is believed have never before been explicitly stated.

Where not perfectly obvious the proof is given. The proofs of the known
theorems are all indicated by the references given, the papers referred to con-

taining the proofs in question. No fuller treatment could properly be given
in a synopsis.

1 C. 8. PEIRCE 1, 2, SCHROEDER 1, WHITEHEAD 1, RUSSELL 1, SHAW t.

l, 9. See also GIBBS 1, 2, 3. * HAMILTON 1, 2. *GBASSMANN 1, 2.





PART I. GENERAL THEORY.

I. DEFINITIONS.

1. EARLY DEFINITIONS.1

1. Definitions. Let there be a set of r entities, ei .... er ,
which will be

called qualitative units. These entities will serve to distinguish certain other

entities, called coordinates, from each other, the coordinates belonging to a given

range, or ensemble of elements; thus if a 4 is a coordinate, then a
t
e4 is different

from a
i
e
i ,

if i :/, and no process of combination belonging to the range of a
i

can produce a<e, from ai ei
. Thus, the range may be the domain of scalars

(ordinary, real, and imaginary numbers), or it may be the range of integers, or

it may be any abstract field, or even any algebra. If it be the range of integers,

subject to addition, subtraction, multiplication, and partially to division,

then by no process of this kind or any combination of such can a
i
e
i become

a
t ej. These qualified coordinates may be combined into expressions called

complex, or hypercomplex, or multiple numbers, thus

r

a, = 2 a
i
e
i

i = l

In this number each a
i
is supposed to run through the entire range. The units

eif or \e
i ,

are said to define a region of order r.

2. Theorems :
2

(1) (a+6)e,= ae( -f- bef ,
and conversely, if + is defined for the range.

(2) e
t
= e

{
=

,
if belongs to the range.

r

(3) 2 a
1
e
1
=

0, implies a
t
=

(i
= l....r)

<=i
r r

(4) If 2 a
i
e
i
= 2 b

i
e
t ;

then a
t
= b

if
i = l .... r, and conversely.

1 = 1 <=i

Theorems (3) and (4) might be omitted by changing the original definitions,

in which case relations might exist between the units. Thus, the units + 1

and 1 are connected by the relation + 1 + ( 1)
= 0.

Algebras of this character have more units than dimensions.

3. Definitions. A combination of these multiple numbers called addition

is defined by the statement r

a + ft
= 2 (a, + 6) ei

1, WHITEHBAD 1. Almost every writer hat given equivalent definitions. These were of

coarse more or less loosely stated.

WHITEBEAD t.

9



JQ SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA

In quaternions and space-analysis the definition is derived from geometrical

considerations, and the definition used here is usually a theorem. 1

4. Theorem. From the definition we have

a + /3
=

/3 + a a + (/3 + y)
= (a + /3) + y

when these equations hold for the range of coordinates. If subtraction is

defined for the range, it will also apply here.

5. Theorem. If m belongs to the range and if m a is defined for the range

(called multiplication of elements of the range) then we have

r

vn a, = 2 (w <7()
e

t

6. The units are called units*, or Haupteinheiten
3
,
and the region they

define is also called the ground
* or the basis

6 of the algebra. The units are

written also(l, 0, 0, . . . .
), (0,1,0,.... ),.... (0,0,...-!), the position of the 1

serving to designate them. The implication in this method of indicating them

is that they are simply ordinary units (numbers) in a system of n-tuple numbers,

the coordinates of each n-tuple number being independent variables. This view

may be called the arithmetic view as opposed to that which may be called the

vector view, and which looks upon the units as extraordinary entities, a term

due to CAYLEY. There are two other views of the units, namely, the operator

view, and the algebraic view. The first considers any unit except ordinary

unity to be an operator, as (1) or the quaternions i,j, k. The second con-

siders any unit to be a solution of a set of equations which it must satisfy and

as an extension of some range (or domain, or field); or from a more abstract

point of view we consider the range to be reduced modulo certain expressions

containing the so-called units as arbitrary entities from the range. Thus, if

we treat algebraic expressions modulo i
z + 1, we virtually introduce V 1

into the range as an extension of it.
7

7. Definition. We may now build a calculus 8 based solely on addition of

numbers and combinations of the coordinates. This may be done as follows :

Let the symbol / have the meaning defined by the following equations : if

a = 2 a
t
ei % = 2 x t

e
t

=i <=i

then

. a

It is assumed that the coordinates a, cc,
are capable of combining by an associ-

ative, commutative, distributive process which may be called multiplication,

so that ttjXj is in the coordinate range for every a, and xt ,
as well as

'HAMILTON 1, 2, GBASSMANN 1, 2, cf. MACFABLANE 1. 'GRASSMANN 1.

WIEB8TBA88 2. TABBB 1. 'MoLIENl. DEDKKIND 1, BEBLOTT 1.

'SiiAw 18. "See 8 21 f r difference between a calcului and an algebra.



DEFINITIONS 11

Evidently

Also if i

= 2 e
t
/ . e

t
.

I . ei ei =:l

8. Theorem. We have

9. Definition. We say that a and are orthogonal if 1 . a = 0. The units

Cj. . .
., er therefore form an orthogonal system.
If / . = 0, is called a nullitat.

10. Theorem. Let

and

t 2 Cy

Then, we have

where C^ is the minor of c
i}
in

Further 2a, C'

(
= !.... r)

cv\

,, Et

If/', refers to the E coordinates just as /to those of the e's,

since 2 (7y Gik
= or 1 as & :/ or A; =/, and

|

c
i} \

z = 1.
= i

Hence /is invariant under a change to a new orthogonal basis.

11. Definition. Let the expression A . aj .... am _ a A^. -fim represent

the determinant

ft ft ft ........ ft,

/
! ft /aj ft /<*i ft ....... /aj /?

/ a3 ft /a2 ft / 2 ft ...... /a2 /?,

ft

In particular
J. . a, ^ft ft = ft /a, ft

-
ft / ttl ft

1 . aj _Aa2 .Aft ft = |

/ aj ft ,
/a2 ft |

= / . a3 -Aa

= /. ft^ft Aa^s
These expressions vanish if c^ .... am _ l

are connected by any linear rela-

tion, or ft . . . . ft, by any linear relation, or if any a is orthogonal to all of

the /3's. If any ft say ft, is orthogonal to all the a's,

/ . ai Aa2 am J.ft ft,
=

and
---- 5m= ft/ai J.a2

---- a . . .

.ft,
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12. Theorem. A . aApy + A . PAya + A . yAvp =
7 . aApAyt + I . pAyAab + I . yAaApt =

PI aa, = ala-P AaAap

AOL, ApiPsIdzPa Aa
lAp1pl Ia.2p2+ Aa 1Ap2p3 Ia2Pi

y I . aApAa.p = al.aApAyP + /37. aApAay + Aa.pAa.py

13. Theorem. In general

= 2 . Aa,! AP$2 Ia.z Aa3 o.m -\ Apa .-/?

= 2 . A . a1
....an _ 2 Apl

.. .-P.-1

Signs of terms follow rule for Laplace's expansion of a determinant. Develop-

ments for Aav Aprf and higher forms are easily found.

14. Theorem. If the notation be used

then

A
^12....f

731. fi
....

8 _ 1 8 o

8 _ 2 ^g _ 2 7^g _ 1 J.-!

It follows that
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Omitting /I and

A 23
21

3

A<

The forms ^ . . . A . . . . may all be developed in this manner.

The form A
j^V ; ; ;},

where ,.... *, /, . . . . y, are two sets of n

subscripts each chosen from among the r numbers 1 ....
r, may be looked

pon as determining a substitution of n cycles on the r numbers, the
tiphers /\ + 1^a + 1>

. - . -/^r^ furnishing the other r n numbers, that
is,

the whole term determines the substitution

f ----
*r, *1

Un+1 ---- jr,jl ---- /
which must contain just n cycles. It is also to be noticed that t

t =jt

The terms in the expansion of A.^ . . . .*, A^ofll . . . . ^ are
! terms corresponding to the r\ substitutions of the symmetric groupf order rl. The sign of each term is positive or negative according as the

number of factors / in front of the A
\ \

is even or odd. Certain theorems
are obvious consequences but need not be detailed.

15. Definition. Let Q(a{3) be any expression linear and homogeneous in
the coordinates of a and

{3.

Also let

be formed. This is called the Q-th bilinear *

16. Theorem. If e( is any other orthogonal system,

Hence Q . ft is independent of the orthogonal system.
It follows at once that

I. = (r-s) I. ^

Q % may also be written Q . v by extending the definition of V,
the

coordinates of being *, . . . . Xr , that
is, V = 2e,A

' M'AULAT 1.
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17. Theorem. By putting subscripts on the zeta-pairs we may use several.

Thus

=
(
r -2)(r-l)p

= (r-2)(r-l)
P. = ('

-
3) (r 2

)

In general

Jf, ^,. ..?. ^... ?. = (.- 1) (-
/?, 4& . . . , a, . . . X, 4, . . . p, . . . p, =

(r ) (r s l)...(r < + 1) /.

If s + < > r this vanishes
;

if s + t = r, we have

/ . a.!

(-l)t(r )...(r-

18. Theorem. If /a
f p
= i = 1 ---- m 1, then

p= ^1 . aj. .a.., -4ft.. --ft,

where
/?_,-, (y^ 1.... wi) is arbitrary. For, if we take the case where

m 1 = 3, we have for ft, ft, ft all arbitrary, the identity

j
a2 0.3 .4ft ft ft p

= ft 7ai ^4a2 a3 Jft ft p ft /a
a ^la, a3 J./?! ft p

+ ft 7aj ^4a2 a s 4ft ft p p/aj -4a2 a3 ^4ft ft ft
Hence

p 7aj -4a2 ix 3 -4ft ft ft = ft 7aj Au^ a3 -4ft ft p ft /aj 4a 3 4ft ft p

+ ft /a, ^Ia2 a3 4ft ft p
4a] a2 a3 Jft ft ft p

Since /ajp^O 7a,p = Ja3 p
= 0; therefore identically

7aj ft 7ai 4a2 a 3 4ft ft p /c^ft/aj^a.jag.lftftp -f 7x, .^/aj -4<x.a3 4ft ftp
=

with two similar equations for a2 ,
a3 . Therefore, since ft, ft, ft are arbitrary

/ttj -4 2 3 -4/3] ft p
= /j Aat a s -4/?i ft p

= A^ 4a s a3 -4ft ft p

or else, for any ft, ft, ft,

7a
a -4a2 3 4/?j ft ft =
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This is impossible, hence

p /ttj Aa2 cc3 4ft ft ft = Aa.! a2 as 4ft ft ft p
-
^ajccocxg 4ft ft ft (p + ccft-l- . .

.)
= A*! cc2 a3 4ft ft ft ft

or p
= Aa-i GC2 a3 4ft ft ft ft

where ft, ft, ft, ft are arbitrary. A similar proof holds for the general case.

This calculus would enable us to produce a theory of all bilinear functions

Q (a p),
a.id thus the so-called algebras.

1

19. Definition. A subregion
2 consists of all hypercomplex numbers which

can be expressed in the form a = o^pj + cr2 p3 + .... + a
4 p4

wherein plf p2 ,

.
, PJ

are given, linearly independent, numbers of the range of the algebra.

20. Theorem. An unlimited number of groups of m independent numbers

can be found in a region of m dimensions. 3
Any group is said to define

the region.

21. Definition. The calculus of these entities is called an algebra, if it

contains, besides addition, another kind of combination of its elements, called

multiplication. Tlie algebra is said to be of finite dimensions, when it depends
on r units, r being a finite number. Of late the term finite has been applied

to algebras the range of whose coordinates consists of a finite number of

elements.

Multiplication is usually indicated by writing the numbers side by side,

thus, a/3 or a./?. Upon the definition of multiplication depends the whole

character of the algebra.
4 The definition usually given is contained in the

statements:
r r r

if a = 2 a
i
e

t
#= 2 fy % y = 2 ck ek then a. /3

= y
< = 1 j=\ k=l

l....r

if ck = 2 . a, . bj . Yijk (i = 1, 2 r}

The constants yljk are called constants of multiplication. If multiplication

is defined in this manner the algebra is called linear. The products a
i
.b

i
are

defined for, and belong to, the range of coordinates. The constants of mul-

tiplication also belong to the range, and their products into a
4 fy are defined

for, and belong to the range. Algebras whose constants are such that

y'jik
= yyA are called reciprocal. If

yi'jy
= /y* , they are parastropliic.

22. Theorem. If multiplication is defined as in 21, then

a.(/? + y) = a./3 + a.y (a + /?) . y = a. / + /?./

(a + (3).(y + b)
= a.y + a.b + @.y + p.$

This is usually called the distributive law of multiplication and addition. An

algebra may be linear without being distributive.
6

WHITKHEAD 1, p. 123. 2 Cf. WHITEHEAD 1, p. 123. 3 Cf. GIBBS 2, MACFARLANE 4, SHAW 1.

SHAW 9. GDiCKsoN 7.
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23. Definitions. In the product a/3, a is called the facient* or the left

factor, or the prefactor ;

2
(} is called the/aciend,

1 or right factor, or postfactor?

The latter names will be used in this memoir.

If there is a number a<, in the algebra, such that for every number of the

algebra, a, a a = a = Ooa, then cto is called the modulus 3 of the algebra.

If we have a a = a c^a : a we may call a a post-modulus.
If we have ct a = a a . a : a we may call a a pre-modulus.
In defining an algebra, the existence of a modulus may or may not be

assumed. When for all numbers a, /8, we have a /?
=

/? a, the algebra is

called commutative.

When for any three numbers a, /?, y we have a . ((3 . y) = (a . ft) .. y,

the algebra is called associative.*

24. Theorem. If an algebra is linear, the product of any two numbers

is known when the products of all the units are known. These products
constitute the multiplication table of the algebra.

25. Theorem. In an associative algebra the constants of multiplication

satisfy the law
r r

8= 1 8=1

26. Definitions. If a . a = a2 = a, then a is called idempotent.

If am = 0, m a positive integer, then a is called nilpotent, of order 6 m 1.

If a/3 = 0, then a is pre-nilfactorial to /2, which is post-nilfacturial to a.

If a/? = =
(3 a, then a is nilfactorial to ^3, and /3 to a.

27. Definition. The expression /. a ft is sometimes called the inner or

direct product* of a, /2 and written a- /?. Further, the expression

Q (a (3)
= 2 a< 6, . e

t
I e

} ()

is called the dyadic of a /#, and written a /3. It is thus an operator and not a

product at all. The use of the term product in similar senses is quite common
in the vector-analysis, but it would seem that it ought to be restricted to

products which are of the same nature as the factors. GIBBS, however, insisted

that any combination which was distributive over the coordinates of the factors

was a product.
7

There is no real difference between the theories of dyadics, matrices, linear

vector operators, bilinear forms, and linear homogeneous substitutions, so far as the

abstract theory is concerned and without regard to the operand.
8 If we

1 HAMILTON 1, B. PEIRCB 3. TABER 5.

'SCHEFFERS 1, 8TODT 1, who calls it one (Elns), identifying it with scalar unity. Some call it Haupt.
einhelt. Cf. SHAW 1.

B. PEIRCB 8. * B. PEIKCE 8. GIBBS 3. ' GIBBS a.

KuoiiENirs 1, and any bibliography of matrices, bilinear forms, or linear homogeneous substitutions.

Cf. LAURENT 1, 2, 8, 4. See Chap. XXX this memoir.
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denote the operator Q (a/3) by <>, then the bilinear form 2cy ar
4 ^ may be written

I.p<f>a or I.aqip, where <p (or <>')
is called the conjugate, the transverse, or the

transpose of $. Besides the ordinary combination of these operators by

"multiplication" STEPHANOS 1 defines two other modes of composition which

may be indicated as follows in the notation developed above :

(1) Bialternate composition iu which

fy . $2 is equivalent to
-gj-

CK Ip'Ap" Afr a'

ft . $2 ---- $ is equivalent to r C,...., Ip'Ap"
----

p
(8)

<7j...., indicates that the sum is to be taken over all terms produced by permut-

ing in every way the subscripts on the <>'s.

(2) Conjunction, which corresponds to the multiplication of algebras,

and is equivalent to taking fa and fa on different independent grounds
el , . . . e

r> e[ . . . .
e',,,

whose products e^e\ define a new ground

y
= <i (i=l .... r,j=l .... 7-0

1...T !...!'

Thus fa X $2
= 2 2 eg

5

cg> eik Ie
jt

i,j k,l

2. DEFINITIONS BY INDEPENDENT POSTULATES.

28. Definition. Three definitions by postulates proved to be independent
have been given by DiCKSON.2 The latest definition is as follows:

A set of n ordered marks a
l
.... ar of F (a field) will be called an n-tuple

element a. The symbol a = (a1
.... ar) employed is purely positional, with-

out functional connotation. Its definition implies that a = b if and only if

a
1
= b

1
---- a r

= br .

A system of -tuple elements a in connection with n3
fixed marks yijk

of F will be called a closed system if the following five postulates hold.

Postulate I: If a and b are any two elements of the system, then

s =
(ofj + 6j . . . ar + 6r)

is an element of the system.

Definition : Addition of elements is defined by a e b = s.

Postulate II: The element = (0 .... 0) occurs in the system.
Postulate III: If occurs, then to any element a of the system corre-

sponds an element a' of the system, such that a e a' = 0.

Theorem: The system is a commutative group under .

Postulate IV: If a and b are any two elements of the system, then

p = (pi .... pr) is an element of the system, where

I..F

Pi = 2 t^ bk yiki (i=l ---- r)
7 K

Definition: Multiplication of elements is defined by a b =p.

1 STIPHANOS 6. * DICKBOM 5, 8.



18 SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA

Postulate V: The fixed marks y satisfy the relations

r r

(s,t,k,i=l ---- r)

Theorem: Multiplication is associative and distributive.

Postulate VI: IfTj .... rr are marks of-Fsuch thatTi^ + . . +rra r
-=.

for every element (a 1
. . . . ar) of the system, then TJ = . . . . rr

= 0. [This

postulate makes the system r dimensional'].

Theorem : The system contains r elements c (
= (an .... a<r),

i = 1 . . . . r

such that |ay |

: 0.

Theorem: Every r-dimensional system is a complex number system.
Generalization: If the marks a

1
.... a

ri belong to a field F^; and if

cr
ri + j

.... a
fl + rt belong to a field F2 ;

. . . .
,
if a corresponding change is made

in postulate VI
;

if further yiki
=

0, when j, k, i, belong to different sets of

subscripts, then we have a closed system not belonging to a field F. 1

3. DEFINITIONS IN TERMS OF LOGICAL CONSTANTS.

29. This definition is recent, and due to BERTRAND RUSSELL. By logical

constants is meant such terms as class, relation, transitive relation, asymmetric

relation, whole and part, etc. Complex numbers are defined in connection

with dimensions, or the study of geometry. The definition in its successive

parts runs as follows :
2

30. Definition. By real number is meant any integer, rational fraction,

or irrational number, defined by a sequence. These have been discussed

previously, in the work referred to.

A hypercomplex number is an aggregate of r one-many relations, the

series of real numbers being correlated with the first r integers. Thus, to the

r integers we correlate al} o2 .... ar ,
all in the range of real numbers. This

correlation is expressed by the form

a
l
e

1 + a2 ez + . . . . + a r er

The order of writing the terras may or may not be essential to the definition.

The e indicates the correlation, thus ^ is not a unit, but a mere symbol, the

unit being Ie
1

. The remaining definitions, addition, multiplication, etc. may
be easily introduced on this basis.

Theorem : Hypercomplex numbers may be arranged in an r-dimensional

series.

31. A like logical definition may be given when the elements belong to

any other range than that of
"
real

" numbers.

4. ALGEBRAIC DEFINITION.

32. The preceding definitions are of entities essentially multiplex in

character. The units either directly or implicitly are in evidence from the

'Cf. CAKSTKNS 1. B. RUSSELL 1, pp. 3T8-S79.
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beginning. It seems desirable to avoid this multiplicity idea, or implication,

until the development itself forces it upon us. Historically this is what hap-

pened in Quaternions. Originally quaternions were operators and their

expressibility in terms of any independent four of their number was a matter

of deduction, while HAMILTON always resisted the coordinate view. The fol-

lowing may be called the algebraic definition, since it follows the lines of

certain algebraic developments.

33. Definition. Let there be an assemblage of entities A
t ,

either finite or

transfinite, enumerable or non-enumerable. They are however well-deiined,

that is, distinguishable from one another. Further, let these entities be subject

to processes of deduction or inference, such that from two entities, A t , Aj, we
deduce by one of these processes, passing from A

t
to A

j} the entity Ak ; which

we will indicate by the expression

J.i OAj = A,,, (J.j, Aj any elements of the assemblage)

A different process 0' would generally lead to a different entity A'k ;
thus

A, OA, = A'k

(These processes may be, for example, addition e, and multiplication ).
It is

assumed that these processes and their combinations are fully defined by
whatever postulates are necessary. Then the entities A, and the processes

O, 0'. ... are said to form a calculus, and the assemblage of entities will be

called a range.

34. Definition. Let there be given a range and its calculus, and let us

suppose the totality of expressions of the calculus are at hand. In certain of

these, 3/i, Mz
. . . . Mr ,

let us suppose the constituent entities A
t>
A

},
. . . . are

held as fixed, and that we reduce the totality of expressions modulo these

expressionsM ; that is, wherever these expressions occur in any other expression,

they are cancelled out. Then the calculus so taken modulo M is called an

algebra.

For example, let the range A be all rational numbers. Let the expres-
sions M be

Then an expression like 4 8 may be written 4i + 4 + 4 8 = 4i; an

expression like x2 + 9 becomes a? + 9 (9 + 9/
2

)
= x2

9/
2

;
which may be

factored into (x + 3/) (x 3/) or (x + 3/) (x + 3i/).

In this manner we have a calculus in which will always appear the

elements i,j (or/ and/
2 as we might find by reductions). Modulo i + 1 and

/
2
-f 1, certain expressions become reducible, that is factorable, which other-

wise cannot be factored. We call the expressions xi, xj, xj
a
,
in this case,

where x is any rational number, negative numbers, imaginary numbers, and

negative imaginary numbers. We consider i and/ as qualitative units, although

perhaps modular units would be a better term.
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35. It is not assumed necessarily that there is but one entity A
t
for any

given expression, for we may have two expressions alike except as to the

elements that enter them. Thus we might have

M

36. Definition. In any case we shall call the expressions M the defining

expressions of the algebra, and the elements A
t (such as i, j) entering them the

fundamental qualitative units.

37. Postulates :

I. It is assumed that the processes of the calculus are associative.

II. It is assumed that the processes which shall furnish the defining

expressions shall be those called addition
,
and multiplication 9.

III. It is assumed that the process , multiplication, is distributive as to the

process ,
addition. That is

A+ (Aj A k)
=

(J.j A^ (A t
Ak)

38. The commutativity of multiplication is not assumed. Further, the

general question of processes and their relations is discussed, so far as it bears

on these topics, in XIII, hence will not be detailed here.

It is evident according to this definition that an algebra may spring from

an algebra. Hence the term is a relative one, and indeed we may call a cal-

culus an algebra if we consider that the calculus is really taken modulo

A
i
OA

j
Ak A.O'Aj A'^ etc.

That is, the equalities or substitutions allowed in the calculus make it an

algebra. The only calculus in fact there is, is the calculus of all entities

AI, Aj, Ak> etc., which permits no combinations, that is, no processes, at all.

From AI, AJt
.... we infer or derive nothing at all, not even zero. The calculus

of symbolic logic is thus properly an algebra.

Any definition of an algebra must reduce to this definition ultimately,
for the multiplication-table itself is a set of r" defining expressions. That is,

we work modulo 1

39. Definition. If the range of an algebra can be separated into r sub-

ranges, each of which is a sub-group under the process of addition
;
so that

an entity which is the sum of elements from each of the sub-ranges is not

reducible to any entity which is a sum of elements from some only of the

sub-ranges; then the algebra is said to be (additively) r-dimensional.

'Cf. KBONECKEK 1, where this view is very clearly the basis for commutative systems.
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40. It is to be noted that an algebra may be r-dimensional and yet have

in it r -j- s distinct qualitative units. Thus, ordinary positive and negative

numbers form an algebra of two units but of only one dimension. Ordinary

complex numbers contain four qualitative units, but form an algebra of two

dimensions.

The defining expressions determine the question of dimensionality. For

example, let the defining expressions be

e 61

'i + e\ + 1

whence we may add
i _2 i ~t ~t 2 I

We have here two more defining expressions than are needed to define an

algebra of six units, hence the algebra becomes four-dimensional. The

problem of how many defining expressions are necessary to define an algebra

of r units has never been generally solved even for such simple algebras as

abstract groups. If the algebra is finite of order r, a maximum value for the

number is r2 . But a single expression may define an infinite algebra.

Nothing, so far as known to the writer, has been done towards the study
of these algebras of deficient dimensionality.

H. THE CHARACTERISTIC EQUATION OF A NUMBER.

41. Theorem. Any number in a finite linear associative algebra which

contains a modulus, e
,
and whose coordinates range over all scalars, satisfies

identically an equation of the form A' () = 0, and equally an equation of the

form A"() = 0. In each case, A'() or A"() is a polynomial in of order r,

the order of the algebra.
1

The function A'.
,
called the ^ire-latent function

2 of
,
has the form

A' =

2 .

The function A" .
,
called the post-latent function" of

,
has the form

A" .
=

2. or,

'The relation between this equation and the corresponding equation for matrices is so close that we

may Snclnde in one set references to both: CAYI.EY 3; LAOUBKRE 1; B. PEIRCK 1, 3
;
FROBENIUS 1, 2;

SYLVESTER 1,2,3; BUCBHEIM 3; SOHEFFEKB 1,2,3; WBYR 1,5,8; TABER 1,4; PASCH 1
;
MOLIEN 1;

CARTAN 2; SHAW 4.

*Cf. TABER 1.

2
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In each case 2 stands for 2 . These functions may be expanded according to
<=i

powers of
, taking the forms

In certain cases (viz., when the algebra is equivalent to its reciprocal) these

two become identical. (The absence of a modulus does not add to the

generality of the treatment.) These equations exist for all ranges of

coordinates.

42. Definition. The coefficients m( and m{' are respectively the pre-ecaJar
and the post-scalar

1 of
, multiplied by r; that is, if we designate the scalar

of by S .
,
we have

m{'

If we indicate .* by Sit we have by well-known relations from the theory
of algebraic equations

Si 1 00
rS2 r/Si 2

S3 rS2 rSt 3 ....
i\m i

=

Theorem: The symbol S obeys the laws

(a, any scalar) S . eQ = 1

43. Definition. The number V. % == S'. % is the pre-vector
3 of

,

and the number V". = S". is the post-vector
3 of . By substituting

these for in the identity for m
i
in 42 we arrive at various interesting and

useful formulae.

44. Definition. If the two equations A'. =
0, A". = are not identical,

the process of finding the highest common factor will lead to a new expression
A . which must vanish. When the two equations A'. =

0, A". = are

identical we may also have satisfying an equation of lower order; let the

lowest such be

This single equation is called the characteristic equation of
,
and A . is the

characteristic function of .* [The pre-latent equation was called the identical

equation by CAYLEY, characteristic by FBOBENIUS and MOLIEN, and this lower

'TABHB 2, S, 4, 6. Cf. FKOUENIUS 14, 4. FBOBEHIUS called nij tbc Spur of {.

TABB 2, 8, 4, 6. Cf. TABBB 2, 3. See references to 41.
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equation has been called
"
Ranggleichung

"
by MOLIEN,

"
Grundgkichung

"
by

WEYR, identical equation and fundamental equation by TABER, characteristic

equation by SCHEFFERS, and in some cases it is the reduced characteristic

equation.]

45. Theorem. The characteristic function is a factor of the two latent

functions.1

46. Definition. The order of the characteristic function being r'=r, it may
be written

(-?i Ow
($ fff *Y> Pi + + ft.

= r'

The scalars gl
.... gp are the p distinct latent roots of . The exponents

(tt
....

fip are the p sub-multiplicities of the roots of . The factor gi
e is

the latent factor
2 of the root gt

.

WEIERSTRASS called
( <7ie ), and powers, elementary factors (elemen-

tartheiler), particularly the powers: AM-i k^. _ lti
. . . . k

lt 4
. See MUTH 1 for

references to this subject, or WEIERSTRASS 1; KRONECKER 2, 3, 4; FROBENIUS,
Grelle 86, 88

; Berliner Sitz-ber. 1890, 1894, 1896.

47. Theorem. For a fixed integer i (l< i ^ p), there is at least one solution,

<T, (a : 0) for each of the equations

A solution of the &-th equation is a solution of those that follow. If

is a solution of the k-ih of these equations, then among the solutions of the

k+ 1-th equation, which include the solutions of the previous equations, some
are linearly independent of the entire set of solutions aikt of the k-ib.

equation.
3

Theorem: The solutions of these equations for different values of i are

linearly independent of each other.4

48. Definition. The number

z = &- ft *)* (?~" 1

is the i-th latent of ^ ^
it corresponds to the root gt . There are thus p latents of .

49. Theorems. The product of Z^ and any number of the algebra is either

zero or else it is a number in the region of solutions of the equations in 47.
6

We may symbolize this by writing Zi \a\
= \^\ The region {,} is called the

i-th pre-latent region of . There are correspondingly post-latent regions of .

1 TABEU I
; WEYKS; MOLIEN 1; FKOBENIUS 14. 2 TABKBl; WHITEHEAD 1.

'TABEBl; WHITEHEAD 1; CABTAN 2. *TABKB!; WHITEUEAD 1
;
SIIAW 4. * SHAW 4.
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The p latent regions of together constitute the whole domain of the

algebra.
1 It is obvious that the Z's are such that if i ^.j,

Z
i
Z}
= (Z(

c )"i Zi

50. Theorem. 3 The p pre-(post-) latent regions are linearly independent,
that is, mutually exclusive, and together define the ground of the algebra.

Each latent factor annuls its own latent region but does not annul any part

of any other latent region. The t-th pre-latent region may jiot
contain the

same numbers as the t-th post-latent region. The dimensions of the t'-th pre-

latent region are given by the exponent of the i-th latent factor as it appears

in the pre-latent equation. The pre-latent equation contains as factors only
the latent factors to multiplicities ^4', such that

Likewise the post-latent equation contains as factors only the latent factors to

multiplicities u(' such that

tfZ* (<!.....*)

51. Theorem. 3 The pre- (post)- latent region | 4 }
contains

(t t
sub-latent

regions jSu}, {2^}, -, {2iM( f, where each sub-latent region includes those

of lower order, say ^2 4fc }
includes jSjjt/} if &'<&.

The region |2} is such that
( gi^of \%ik\ = 0, DUt in {[ is a* least

one number aik for which ( gt e$~
l oik ^: 0.

52. Definition. For brevity let
grt

e =
4 ; then, in

j ( [, 6ft annuls

certain independent numbers which no lower power of 4 annuls. Let these

be wli in number, represented by
Cli Cli EU
11 21 ...... ^>ui

Of course any wn independent numbers linearly expressible in terms of these

would answer as well to define this region, so that only the region is unique.
Then each of these multiplied by 6

t gives a new set of wn numbers independent
of each other and of the first set. Let these be

In general we shall have for the products by powers of
{
a set of numbers

linearly independent of each other,

Ah H Cli
f A = ....

\s =1 ....

1 TABKR 1
;
WUITEHEAD 1 ; SHAW 4.

'TABERl; WJIITEDEAD!; SHAW 4; WETB8; BUCHHEIM S, 7, 9.

'See preceding references.
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The region made up of, or defined by, these numbers will be called the first

pre-shear region
1 of the i-th latent region. It may be represented by j-5Tuf.

Let there be chosen now out of the numbers remaining in the i-ih latent region,

i% linearly independent numbers which are annulled by that next lower power
of 0j, say (j. i2 ,

which annuls these w2i numbers, but such that 6%-* does not

annul them and such that 0i2 + 1 does not annul any number which 0f3 does

not also annul. These numbers and their products by powers of Qi give rise

to the second pre-shear region, (n < ^<)

>
I = 2t I

I A . . . .
i2
-

2i =

We proceed thus, separating the i-th latent region into c
t
shear regions,

j-Tijf, ----
, \X^l, containing respectively fa = ^a) ^ wu ,

----
, [tici

w
cii

linearly independent numbers, with

There is a corresponding definition for the post-regions.

53. Theorem. 3 The pre- and the post-latent equations are (using accents

as before to distinguish the two sets of numbers)

n 0, "'#*'=<) /= 1 ..,. c
4

'

1=1

54. Theorem. If all the roots gi vanish, ^ is a nilpotent, and for some

power [i
we have * = 0.

Further, for every number there are exponents (UJ, $, such that

^<r = = <r?""' to = l*, ^' = f

If ^ and a are of the same character,
3

(aa) then for any power nk ,
**'* a

and cr ^"* are nilpotent.

The product may not be nilpotent if is of character (a/3) and a of

character (/3a). If the product is not nilpotent the algebra contains at least

one quadrate. If an algebra contains no quadrates, "* a and cr^* are nilpotent

for all values* of a and
(ik .

55. Definitions. When the coefficients in the pre-latent (post-latent)

equation vanish in part so that

m
j
= j>r (i!>

then is said to have vacuity
6 of order ^Q. There are n'Q zero-roots, and one

or more solutions of the equations

cr = <r = ...... *'o <T = ^,
< ^

'SHAW 4 2 SHAW 4. 'See 59. *CABTAN3; TABER 4. 'SYLVESTER!; TABER 1.
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The solutions of %a = define the mill-region of . The number of inde-

pendent numbers in this region (its dimensions) is the first nullity of
, say &j.

The & 3 independent solutions of 2
<r = 0, tr : 0, define the first sub-null-

region of
,
of second nullity 7^; proceeding thus we have 1

The vacuity of course is given by the equation

pi = k, + ....+ 7<vo

The characteristic equation, it must be remembered, contains
%*"> as a factor;

the pre-latent equation "'",
the post-latent

>". The partitions of pb which

satisfy the inequalities above give all the possible ways in which the sub-null-

regions can occur.

56. Theorem. 3 Bach latent factor, <, is a number whose pre-latent (post-

latent) equation will contain f', and whose characteristic equation will contain

f. The nullities of 4 are given by the equations

t = or

L = or

The vacuity pi
= pn wlt -f (i ia

wn + ..... +^
57. Theorem. The number may be written 3

wherein the numbers x
( ^ (i

= 1 ..... p) satisfy the following laws :

= =x1 if i

The numbers x
t
and ^> (

are all linearly independent and belong to the

algebra, at least if we have coordinates ranging over the general scalar field.

58. Theorem. 4 Let h
tl ft + ..... + 7i

ifl(1 _! (fr"""
1 = 4>t ;

then if F(x)
is any analytic function of x, F1

(x) ..... its derivatives,

i

"STLVESTEB 2; TABER 1
; BuCBBE!M9; WUITEUEAD 1.

*62. 'STUDY 6; SHAW 7. 8 HAW 7. Cf. TABER 1
; SYLVESTER 3.
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59. Theorem. The different numbers of the algebra will yield a set of

idempotent expressions e .... ea ,
such that if i if:/, i, j = 1 . . . . a

e? = e
i

e
i
e
j
=Q = e

i
e

i e = e!+ ---- -f ea

and hence the numbers of the algebra may be divided into classes {-Zap}, such

that if
a(3

is in the class \Za ^\, then

e $ap e
t *S a *0 t S

The subscripts a, (3 are the characters 1

(pre- and post- resp.) of
a(3

. In this

and similar expressions ^ = when x : y, &xy = 1 when x = y.

60. Theorem. The product of
a/3

and
Y , is given (when it does not vanish

on account of properties not dependent on the characters) by the equation
3

The numbers aa form a sub-algebra, (a = 1, . . .
., a).

61. Theorem. Let the characteristic equation of have q 1 distinct roots

which are not zero, and let v -1 be the lowest power of in this equation.
Then if

we have 3

1=1

9-1

62. Theorem. 4 If e ^ 2 xi} then e = 2 xt + x
q ,

where xq belongs to

the root zero and

Theorem : It also follows, that, if

then F
t % = xi

63. The use of the two sets of idempotents of
,
the pre- and the post-,

enables us to find partial moduli, which are not necessarily invariant, and the

modulus, which is invariant.

For example, let us have the algebra

Then

^00
v Co &>

ea

~
"l I ^2

' IIEITEHS 1, 2, 3; CAKTAN 2; HAWKES 1; SIIAW 4. Cf. B. PEIUCE 1, 3. FKOBENIUS 14.

* See references to J 59. 8 TABEK 4. TABEK 4.
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If we put =
! + 3, we find

fa + <?3)
= fa + *s) . *s = . e3 =

hence the characteristic equation ( e,,)
=

0, and by til, 62,

*i = *3 = e2 ea o
= * i + *2

These determine the same algebra (in the sense of invariant equivalence)

xj

x2 eg

e,

and the partial moduli are not the same as before, being e
1 , e% in one case,

e
\ + est % ea i the other.

64. Theorem. If
{ is any number in the t'-th pre- (post-) region of

,
and

if <r is any number of the algebra, then
(
a (a 4) is a number wholly in the

i-th pre- (post-) region.
1

Consequently the numbers in the i-th pre- (post-)

region form a sub-algebra.

65. Theorem. Let the numbers defining the i-th post-latent region of be

#, where

j = 1 ---- C
t

8=1 ----
ttfo

We have of course
ZH fi KJi?t vt t + l

so that
p'i rji ftt-1?st ?1 PI

Then by 64 the product of any number a gives

v a ki rki
Z, . tt ttc ? ur

Hence when these coefficients a are known we know the product of a into

any number of the form %{\, for

where 2 ^t + { _i must be zero if v + t 1 >/uu-.

66. Theorem. If T is any number of the algebra which satisfies the equation
t . 0*= 0, where t . 6?~

l

$. 0; then t must be in the region ( 13) 2^, and

in no lower region.
3

67. Theorem. If t is any number of the algebra, and if <r, 8 lies in the

region S'/ but in no lower region, then tai% lies at most in the region 2'/,
and may lie wholly in lower regions.

4

> SHAW 4. * SHAW 4. 3 SuAW 4. SHAW 4.
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68. Theorem. Let 2'1 be the region to which . 6(lLn~ reduces the whole

i-th post-latent region, and generally 2
<s be the region to which .

("u~ 8) reduces

the latent region. Then if r is any number of the algebra, and a48

any number
of the region 2'*, then

re'8 = '<r
te

,
a number of the region 2** or lower regions.

1

69. Theorem. If aft is a number common to both regions 2" and 2 lt ,
then

t . <r = 'a\l }
a number in the same regions.

2

70. Theorem. Let
Sl be the region {%}, (s

= 1 WH)

.ea= ,0a 01 fla-1
* *- a + 1

~
' '

~

then %
=

%. ,_ a + 1 belongs to the regions 2''*ii~
a + 1 and 2,- .._<, + ! Then if T

V *

1$

is any number, r . j = { S$ .... S$& }
for all values of t subject to

the conditions

This may also be expressed in the following statement :

where y = [ii>c ,
and ^ belongs to S^ v + 1} and %$ belongs to

Hence
^ / ^ ,

that is

> ,
|

Or finally,
3
if ^ < ^, then pik ly>t

if
f
tik~

>̂
flii)

then
fiik = y =

It is to be remembered also that

It is evident that the products into & determine all the other products.

71. Theorem. Since the units of the algebra may be the numbers $, as

these are mutually independent and r in number, it follows that among the n3

constants of the algebra, y, which the coefficients a reduce to in this case, there

are many which vanish and many which are equal. The units may be so

chosen in any algebra that the corresponding constants y become subject to

the equations for the coefficients a in 70 [but this choice may introduce

irrational transformations].

"SHAW 4. 2 SHAW 4. SHAW 4.
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72. Theorem. Since the idempotents for
, viz., xlf x2 ,

.... x
]>} may be

used as prc-inultipliers as well as post-multipliers, the units $, and therefore

all units, may be separated into parts according to the products

xa . Bi (a= 1 . . . .
jp)

As these parts are linearly independent, and as the i-th region is defined

already by the units
*',,

it follows that the independent units derived by this

pro-multiplication must also define the region, and as the shear regions were

unique, their number for each shear remains the same as before. We may
use a new notation, then, indicating the pre- as well as the post-character of

,

and at the same time uniting j and 8 into a single subscript, thus the units are

ftt'-l IV rv \ ftt"-lvf Vu't' %v"t") "i"

where

U" Wlv , + . . + Wj,, .,/ + 8 U1 = Ww + . . . . +Wj,i V, + S

73. Theorem. Let us return to the equation in 70, in the new notation,

If f is confined to expressions belonging to the region ]!}, then letting T"
be any such number,

Too o JJo _ V ,,00 oo I V n oo o o
i ui ^ a

i ^*i T a xi %x v

^X>y>^ V = 1 + l"o /ou
If we let

(TV = 2 zr
a
^] =

i,
. ..,,. + w2a+ .... -f wCaa

then

rj" . <rj
a = 2 aJ5 z;

a a
^i + terms for which y > 1

Hence if we let rj be in turn each unit a
in this region, we shall find

from crj" by the process used in the beginning of the problem, certain numbers

idempotent so far as this region is concerned, and which will be linearly

expressible in terms of ^ 4l . These new x's are linearly independent and

commutable with *, since, if x'a is one of them, xa x'a = x'a = x^x . Hence
xa must be the sum of them. We might therefore have chosen for a number
which would have had these idempotents, and we may suppose that the

number has been so chosen that no farther subdivision of the idempotents
is possible.

1

74. Theorem. It is evident that, as the expressions in the i-th latent region
of form a sub-algebra, we may choose one of them

{ just as we choose
,

'Cf. MOLIKN 1.
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and using it as a post-multiplier, divide this i-ih latent region itself into sub-

regions corresponding to the latent regions of ^ in \%t \.
Each such sub-region

becomes a sub-algebra. We may evidently so proceed subdividing the whole

algebra into sub-regions until ultimately no sub-region contains any number
which used as pre-multiplier has more than one root for that sub-region.
This root may then be taken as zero or unity. If then the sub-region be

represented by a
l ,

az
. . . .

cr,., ,
we have for every number

<* = 2 Xj aj T = 2 % Cj (j= L .... r1

)

fa=-gf + r' t1 a = g r
1 + T"

Hence if x
t

is the partial modulus for this region defined by

1 .2
x, =

we must have a = g x
t -+ S^ -f- other terms whose post-product by v is zero.

Multiplying every number then by x
t

. ()
we arrive at a sub-sub-region

which gives a sub-algebra whose modulus is x
( ,

and such that if a is its

character, every number in it has the character

'

(a a)

This algebra is a PEIRCE algebra. Its structure will be studied later. The
PEIRCB algebra is the ultimate subdivision by this method of the algebra in

general and its structure really determines the main features of the structure

of the general algebra.

75. An algebra may contain an infinity of units, in which case it may
not have an equation at all. Thus the algebra may have for units

00

so that p
= 2 xi

et
i=0

It may very well happen then that
p<r
= ta has no solution. The theory

of such algebras will be developed in a later paper.

76. Theorem. Let the general equation of a number be

Let us put
*

mi -f- cr = 0. Then we may eliminate from these two
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equations, by using determinants, arriving at an equation in terms of a of

order r. Thus we have

or



Hence

or

THE CHARACTERISTIC EQUATION OF A NUMBER

"i(p*i) 9 !*
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2 9 =

-/-' 2.7.ef (pe<) + <7

r - 2 7. e, Ae, A(fei) (pe,)
. . . . =

This, however, must correspond to the general pre-latent equation of
p,

and

therefore

Thus

Therefore

m[ = 2 . 7 . e
i (pe4)

m'z = 2 . 7. e
4 J.e,- -^.(pe^) (pe.,-)

.

81. Theorem. We have at once
r

2' . = (m{ p)
. a = 2 .

(<r
7 . e, (pe,.) (pe,)

7.

r

= 2 . A . e
i As (pet)

etc.

2 ! w^ = 2 . 7. e* (p
. %'ek)

= 27 . eft (pe,)
7 . e

}
Ae

i Aek (pe4)

= 2.7. (pe,)
eA 7.

= 2 . / .
(pe,)

= 2 . 7. e^e,

Aa

Since "
. a = (2 p ^')ff

>
we have

At'l ft V A
}(,

'
" "

i,i

In general, we find

y O -"^ ^ -A6| 6^ Cg (pe,)
----

(pe.)

82. Theorem. If we use the notation of the -pairs, these become

(XT
= (pO / fr

In this form, the independence of the expressions m and ^ from any particular

unit-system is shown.

83. Theorem. Let us write further

">'
(pi , pa p.)

=
71 /& ^2 f.^(pi ?i) (pz ?) (p. .)

Then, from the properties of the ^'s, this form will reduce to

m
'(fi, , p.)

=
8 \ [,' (p,) m( (p2)

. . . . m[ (p.)

- 2 . w{ (p,) (m{ (p,)
. . . . m[ (pg _j p.) + ]
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according to the rule: Insert m[ before every selection of p's
taken according

to the partitions of s, giving each term of s h factors the sign ( )
h
,
and

writing in each factor the product of the
p's

in every order possible when the

p of lowest subscript is kept first in the product. For example, if s = 3, we

have the partitions 3 = 1 + 1 + 1 = 1 + 2= 3. Hence,

'

(pi, ps, pa)
=

yj [TOI (pi) ij (p3) m[ (p,)

'i (pi) TO; (p., p3) ml (p2) ml (fl p3) m( (p,) m[ (p, p2)

+ TO/ (pi p2 p3 + p, p3 p2)]

We note that

TO' (pa pi,
....

p, p/)
= TO'

(pr p p,,
. . . .

p.)

If s = r + 1, this form must vanish identically.

84. Theorem. If we put

X (pi p*)
<* =

-,
A i ,

^ <r
(pi 1) (pa 2) (p. f )

o .

then, if ^ stands for [# (p^] (a), 12 for [% (fl p.,)] a, etc.,

z(pi-- ?.)*
=

,!
L&-;fe- **(<*) 2 ;&;& &-!,.

The rule is the same as for the preceding expression of m', thus

% (Pi, P*, PS)
* = [%! %2 %3 fa)

85. Theorem. If m
sit fo ,

. . . .
, Sl

is the function 2 . yj' g^ $' ,
summation

over all permutations of 1, 2 ....
tf,
then

"V

86. These numbers m and functions are called invariants of
p,

or of

PI, PS
.

., as the case may be, since they do not depend on any particular

system of units. It is obvious that any function of plt p2
....

pt , containing

only -pairs, is an invariant 1 in this sense.

87. Theorem. If
p a = 0, then tf . a = Wj a, p #' . a = Wj p

a =

(1
. a = 7/j s . a

In general, if p a = # a, then

If p <Xi
=

<jr dj + a3 p
a3
=

<7
a2

Similar results may be found for the other latent regions of
p.

' Cf. M'ADLAT 1.
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m. THE CHARACTERISTIC EQUATIONS OF THE ALGEBRA.

88. Theorem, Of the units taken to define the algebra in the preceding

chapter, certain ones will be of pre-character a, post-character (3. Let the

number of such be represented by na? . Then the total number of those of

post-character ft will be

n'p = "13 + 2 + + P

The number of pre-character a will be

1 = nal + na2 + + nap

89. Theorem. We may state the general multiplication theorem again in

the following form, being any number :

Y " T *P *f*
S Z}lc * ai'jk'-k S/f

where
V k>0

In this equation each coefficient a is a linear homogeneous function of certain of

the coordinates x of
, namely those of type x (^ where *" combines with

*ft without vanishing.

90. Theorem. If we multiply into each unit, and form the equations

resulting from the pre-latent equation
1 of

, say A' . =
0, we have at once,

because the units have been chosen for the post-regions of a certain number
,

The orders of these determinant factors are n", n'z . . . . n"
ty

their sum

being equal to r.

91. Theorem. An examination of the determinant A[ shows that it may
be divided into blocks by horizontal and vertical lines, which separate the

different units ',, *&,,, .... according to the power of 0i which produces the

units, the order being
ft,,.-^

There are
/za columns and rows of blocks. But, from the properties of the

coefficients a, the constituents in the first block on the diagonal are the only
constituents in any block on the diagonal. Hence we may write 2

Af = A.'," Ai'^2 .

92. Theorem. The determinants A
t
-

8 ,
s = 1 .... c

t>
are irreducible in the

coordinates of
,
so long as is any number. For, if one of these determinants

were reducible, then the original separation by idempotents could have been

pushed farther as this separation was assumed to be ultimate no farther

reduction is possible.
3

I On the general equation tee STUDY 3, 3; SFORZA 1, 2; S< IIEHKEKS 1, 2, 3
; MOLIBN 1; OAKTAN -J;

SHAW 4; TABEK 4
;
FKOHENIUS 14.

' SHAW 4. Cf. CABTAM 2. * Ct. CARTAN 2.
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93. Theorem. Confining the attention to A'fk ,
let the units

jj
whose pro-

ducts by give A^., be A in number, with the pre-characters ct= 1, ....,/,

/< h. The coordinates x appearing in the coefficients a, must be of the form

a;*"
1
"1
'. It follows that if be chosen BO that all coordinates x not of thes^e

characters
(ctj

a2), a 1} a2
= 1 /, are zero, then the value of A(* will not

be affected. The aggregate of such numbers, however, obviously constitute a

subalgebra which includes xa ,
a = 1 /. These numbers, say

"1<l2
,
when

multiplied together yield a pre-latent equation ^aa= 0, which must be a power
of A

(

'

A., and therefore irreducible. It follows that if we treat this subalgebra
as we have the general case, we shall find but one shear making up the whole

of each latent region. Consequently the units of this algebra take the form

They may be so chosen that

The partial moduli are evidently
1

03 a3 04
~"~

^05 a3 ^ttj 04

.,., (!=!..../)

94. Theorem. Since any unit a " may be written e^
a " it follows that no

expression e
aia

"* can vanish, else

,, -
<xf/3 - ,, af/3 - n

eaa, ^aja eaa u

Hence if there is one unit "", there are all the units 2

^.^ = "' (a,= l ..-./)

95. Theorem. The units of the algebra may therefore be represented by
the symbols

e(fl p f(k)

tat e
fly

C
yi

where the numbers e[^ and e(^ are such that

4$ 4V = ** ^ i?

The numbers e
fy
form an algebra by themselves, such that its equation consists

of linear factors only,
3 as

*,=(8?-fl

96. Definition. An algebra whose equation contains only linear factors

will be called a SCHEFPERS algebra. If, further, it contains but one linear

factor, it will be called a PEIRCE algebra. If it contains factors of orders

higher than unity, it will be called a CARTAN algebra. An algebra consisting
of units of the type e (^ only, will be called a DEDEKIND algebra.

4 The degree

of an algebra is the order of its characteristic equation in .

1 MOLIEN 1 (nrspriingliche systeme); CAUTAN 1, 2; SUATV 4; FROKENIUS 14.

' CARTAN 2; FKOBENIUS 14.

CABTAN 1, 2. On the "multiplication" of algebras by each other, see CLIFFORDS; TAKER 1;

SCHBFFEHS 3. Cf. TAKER 4; IlAWKES 1, 2; FROBENIUS 14.

0n classification see SCBEFPERS 8, 4; MOI.IBN 1, 2, 3; CARTAN 1, 2; SHAW 4; B. PEIRCE, 1, 8.
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97. Theorem. Let the algebra be of the' Scheffer's type. The irreducible

factors of its pre-latent equation are all linear
;
hence in the latent post-region

of any root of
,
the shears are of width unity only. The units defining the

i-ih region become

"#t a.= l ---- p j = 1 ---- Ci t=l ----
[itj

Pil >/"(2 ---- >Pic
i

The product of into any unit is
1

Y t - V n (.) P&i
S Cjl

- * a
j'j k'-k Zj'k'

where

98. Theorem. If we remove from this algebra all idempotent units, the

remaining units form a nilpotent algebra of r p dimensions. The equation
A' = reduces in this case to a determinant whose constituents on the

diagonal and to the right of the diagonal all vanish, hence it is evident that

the product of any two of its numbers is expressible in terms of at most

r p 1 numbers. Let the original units be <pp+i, $p+2 $ Then the

products $ti$t, do not contain a certain region defined by a set of units

The products of these ^ units (which constitute the region fj,
let us say,)

among themselves and with any other units, are linearly expressible in terms of

0,+M-t (t
= 1 r p hj

Similarly any product <>
(l $ (>> ^>(s

can not contain a region ez ,
defined by

Hence {*,}.{[, I
e2f-tah and {^}-i%f depend only on $p+t ,

t >h1+ h
1 .

Proceeding thus, it is evident the domain of the nilpotent algebra may be

separated into regions defined by classes of units which give products of the

form

W-N = M (*>,*>/)

In particular, the units of the Scheffer's nilpotent algebra may always be

chosen so that, if they are v\it ^ . . .
., then

*7i rij
= 2 yi)k r\k (* > *,

It is also evident that for any r p + 1 numbers
t we have

&& r-p+l
=

The 3
products of order I form a sub-algebra of order r',

r' < r I + 2

1 SHAW 4, 5. ^SCHEFFERB 3
;
CABTAN 2

; SHAW 5
; FROBENIUS 14.

3



3g SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA

99. Theorem. In any Cartan algebra the units may be so taken as to be

represented by = 1 . . . .

The laws of multiplication
1 are

= V V' -

100. Theorem. Returning to the Scheffers algebra, if we retain only its

nilpotent sub-algebra and the modulus, we shall have a Peirce algebra.

equation of this algebra will contain but a single factor and the pre- and post

characters of its units may be assumed to be the same. The nilpotent 6 becomes

the sum of the nilpotents 6, + 2 - - - + Op . The product of into any uni

may be written 2

101. Theorem. Let the characteristic equation of any number be

*_
/j .

-' + ...-+ ( )

m
/m =0 (

m = r)

where /, is a homogeneous function of the coordinates of order i. Differen-

tiating this equation, and remembering that d is any number, we arrive at m

general equations connecting 1, 2, . . .
-,
m numbers of the algebra: as

These; equations are the second, third, etc. derived equations of the algebra,

according as they contain two, three, etc., independent numbers &, &,

etc These equations lead to many others when the scalars of f are intro-

duced.8 The new coefficients /,(,,.... ,,)
will be called the scalar charac-

teristic coefficients of order i for .... ,, They usually differ from the

coefficients m.

102. Theorem. The general equation of r numbers of the algebra of order r

is written (2 representing the sum of the r\ terms got by permuting all

subscripts)

*(Sl {&.. W -2K &>&& ' ?r) + 2(, (?1, f.) - ^3 W-
+ ( l^m,. ?,?,... ^=

1 CABTAN 3.
, SHAW4)8 . TABBR,2,3. SHAW*.
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In this equation, omitting the subscript 1, so that WJ = ?TJ
I

m a (, =m$t
. m m = m

These formulae follow from the identities

sm
!

and

We arrive at the formulae directly by differentiating

1 000
d>! 2 00

/, . \ fi $? *$i 3
s!

mtf

103. Theorem. A study of the structure of all algebras of the Scheffers

type gives us the structure of all algebras of the Cartan type, as we may pro-

duce any Cartan algebra by substituting for each partial modulus of the

Scheffers type a quadrate, and then substitute for each unit of the algebra a

sub-algebra consisting of the product of this unit by the two quadrates which

correspond to its characters. 1

104. Theorem. Each Scheffers algebra may be deduced from a Peirce

algebra by breaking the modulus up into partial moduli, accompanied by

corresponding separations of the units. For, if all partial moduli of a Scheffers

algebra are deleted from the algebra, leaving only the modulus, and a set of

nilpotent units, we have a Peirce algebra. Any Peirce algebra may be con-

sidered to have been produced in this manner, so that to any Scheffers algebra

corresponds a Peirce algebra, and to any Peirce algebra correspond a number

of Scheffers algebras.

105. Theorem. If the characteristic function of an algebra be

A?' .... A**P=
wherein A

t
is a determinant in which

,
the general number of the algebra,:

occurs only on the diagonal, and the other constituents are linear homogeneous
functions of the coordinates of

,
and if we substitute for where it occurs ^,

'CABTAM 2. Cf. MOJ.IKN 1; SIIAW 4.
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any arbitrary number of the algebra, then the resulting expression may be

written C ($)
= Af (40 AX' (4) A<> W- This expression will vanish only for

wherein #>, has the meaning given in part II, chapter XIX, art, 3.

Thus the algebra whose characteristic equation is

gives the expression

This expression vanishes when and only when

?1
=

ccoi * + x,( a2i + i *u

^r, = XH ^22 + 00 ^n + aoi ^-21 + xio ^12

^2
= ^O ^33

That is, the expression is factorable into (^ 5i) (i>

As a corollary, the expression

= qlt Kqlt
or g2 ;

wherein

2s)-

aoo

a

n-10

is factorable in the matric range of gj , Kq\ Kn

IV. ASSOCIATIVE UNITS.

106. Definition. The multiplication formula in 100 may be used to intro-

duce certain useful new conceptions. It reads

Let us consider an algebra made up of units which will be called associative

units, represented by %nt ,
such that

%tjk Zj'k'
=

C^jji Zik' + k

where
c= 1 if ^i>& = lit & k>0 i>J if =

c = if
i*i = k <^ jU{ (ij,

Since there is a modulus e
,
and since

/Jt
,

- ^e , every unit
/fc

, is expressible

as a sum of these units^ multiplied by proper coefficients, and every number

is expressible as a sum of the units with proper coefficients. Hence, we may

express in the form
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The Peirce algebra is expressible therefore as a sub-algebra of the
algebra of the associative units whose laws of multiplication

1 are

where

p t > Tt! i & >

c=l if

c = if

* >/ when ld=

= >/ when A; + Id =

107. Definition. An expression of an algebra in terms of associative units
will be called a canonical expression. In many cases the associative units are
the units of the algebra, in part at least, but the units of the algebra will

frequently occur as irreducible sums of these units with certain parametric
coefficients. This theorem extends C. S. PEIECE'S theorem that every linear
associative algebra is a sub-algebra of a quadrate

2 of order i
2

.

108. Theorem. The Scheffers algebras derived from this Peirce algebra
have partial moduli of the form

When each partial modulus e
t is of the form *,, the Scheffers algebra coincides

with the algebra of which the Peirce algebra is a sub-algebra. Such Scheffers

algebras will be called primary algebras. The units in any Scheffers algebra
are separable into classes according to their characters, those of character j
having in their expression units A of the type

or

109. Definition. The units of a Scheffers algebra are separable into those
of characters, (aa), and those of characters (a/3), a : 0. Those of characters

(aa) constitute the direct units. Those of characters (a/3) are the skew units.8

110. Theorem. The pre-latent (post-latent) equation must contain the
factor

(a,.,. ) to that power which is the sum of the multiplicities belonging

The characteristic equation will contain (aito ) to that power which equals
the maximum multiplicity

4 ^4)
.

111. Theorem. A Cartan algebra will have for a canonical expression

where the units X and X' are independent of each other.

1 SHAW 4, 5. C. S. PEIBCE 1, 4. 'SCHBFFEHS 3. SCHEFFERS 3; SHAW 4.
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112. Theorem. We may obviously combine these forms into still more

compound expressions as

Such numbers are evidently associative, and could be considered to be the

symbolic product of algebras with only one a.

113 Theorem. Returning to the equations of the algebra 108, we see

they evidently depend on those associative units which are of weigh

The equations are

characteristic : = A . = A?" A$ . . API
p

pre-latent : = A'. = n . A,'
=1

post-latent :
l = A". =n . At

J

114. Theorem. The number A^O can not contain any
associative^unit

of

the form ?.MO ,
where the constituents of Aj are of the form 2 ow , 0>

jl
= l gi* The factor A f () is the i-th shear factor of .

115. Theorem. The product A, . A, can not contain any associative

unit of the form ?.,,,,,
or ^,. The theorem may be extended to the

product of any number of shear factors.
2

116. Theorem. The product (A^)
1" can not contain any associative unit

of the forms

117. Theorem. The third subscript in ?.*, /,',
is called the weight of ;

Every number may be written in the form

= (a) + (6) 4- + (" a i 0, 6 > a

The weight of is the weight a of its lowest term . The weight of the product

of two numbers is the sum of their weights.

118 Theorem. The terms <0) constitute an algebra. This may be called

a companion algebra, and may or may not be a sub-algebra of the given

algebra.
8 The quadrate units of an algebra evidently belong als

companion algebra.

119. Theorem. To every transformation of the units of a companion alge-

bra corresponds a transformation of the units of the given algebra.

'CARTiH 2 'SHAW 4.

Cf. MOI.IEN 1. "Begleltende" systems Include these comr nlon algebras, and may or may not

algebras of the given algebra.
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the {* terms may always be taken according to the simplest form for the
companion algebra.

1

120. Theorem. If the general equation of an algebra is

fmiS*- 1 + m,^ .... =Q

and if when = Sxt
e

t we put V = . e
(^- ,

then V - m, = gives r equa-

tions, not necessarily independent, from which the r coordinates may be
expressed linearly in terms of r, arbitrary numbers. These determine the
nilpotent system; or from the r-r, coordinates which vanish, the DEDEKIND
sub-algebra.

2

121. Theorem. Since V = ?/?v, and /fv . p
= therefore

V .
, (p)

= V /& (&) = <f2 . /& V - /

But /. (, ,)
=

njj (^)} therefore we have

Ihis can vanish only if

Again,

= = 1 . .

hence
, (p)

= -
(?, ^

= 2 e
{ [7.

r

: 2 2 OT

This vanishes
if, and only if,

or

2 sr m
ej)\

=

These are the equations referred to in 120. The method used here has
obvious extension.

an

1 Cf. SHAW 5. 2 CARTAK 2.
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V. SUB-ALGEBRAS. REDUCTIBILITY. DELETION.

122. Definition. A sub-algebra consists of the totality of numbers such

that
= 2z, e

{
i = 1 .... r1

, r'< r

for which1

?i 2
= 2 . as,'*'/ yot et ,/,& = ! ---- y

123. Theorem. In a Scheffers algebra all units with like pre- and post-

character (aa) define a Peirce sub-algebra.
8

124. Theorem. The Peirce sub-algebras formed according to 123 define

together the direct sub-algebra. The characteristic equation of this sub-algebra

does not differ from the equation of the algebra.
3

125. Theorem. The quadrates form a sub-algebra, the semi-simple system
of CARTAN,* called a DEDKKIND algebra.

6

126. Theorem. All units in a Cartan algebra with characters chosen from

a single quadrate form a sub-algebra, the product of the quadrate by a Peirce

algebra. Its equation has but one shear factor.

127. Theorem. All sub-algebras of 126 determined by the different

quadrates form the direct quadrate sub-algebra. Its equation does not differ

from that of the algebra.

128. Theorem. All numbers which do not contain quadrate units form a

sub-algebra called the nil-algebra (Cartan's pseudo-nul invariant system).
4

The units of this system are determinable to a certain extent (viz. those which

also belong to the direct sub-algebra of 127) from the equation of the

algebra. The other units are not determinable from the characteristic

equation of the algebra.
8

129. Definitions. All numbers
,
which are expressible in the form

t
r'<r

form a complex. The entire complex may be denoted by E1} Ez , etc., E= Ea

denoting the original algebra.*

The product of two complexes consists of the complex defined by the

products of all the units defining El into the units defining EZ) indicated 7

by

An algebra E is reducible when its numbers may all be written in the

On the general inbject see STUDY 1, a, 8
;
SCHEFFBRS 1, 2, S, 4, 7

;
B. PEIRCE 1, 8

;
HAWKES 1. 3.

'ScHirrKBsS. CARTAN 2. 'SHAW 4. 4 CARTAN 2. ' FROBENIUS 14.

EPSTIEN and WBDDEBBUBN 3. ' KTSTEEN and WEDDEBBCBN 2
;
FBOBENICS 11.
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form =
i + 2 where ^ belongs to a complex Elt 2 to a complex E2> such

that,
1

E1 .E1
= E

i E,.E2
= E2 .El

= Ea .Ez
= E2

An algebra is irreducible when it can not be broken up in this way.
When reducible into a complexes we may write

130. Theorem. An algebra is reducible into irreducible sub-algebras in

only one way.
2

131. Theorem. The necessary and sufficient condition of reducibility is

the presence of h numbers e
l

. . . . eh ,
such that if is any number,

2

= e <%= e ea ef = e^eai
=0 a = 1 ---- h a

,

132. Theorem. The characteristic function of a reducible algebra is the

product of the characteristic functions of its irreducible sub-algebras.
2 The

order is the sum of the orders of the sub-algebras, and the degree is the sum
of the degrees of the sub-algebras.

133. Definitions. The region common to two regions, or the complex
common to two complexes Elt

E2 ,
is designated by EK . If the complex E{

is

included in the complex E2 this will be indicated by
3 E

l = Ez .

The reducibility used by B. Peirce is defined thus, E is reducible 4

,
if

E= E
1 + E2 E\<El El< Ez

E
l
E

2
< EK Ez Ev

< E
1S

An algebra is deleted by a complex Ez if the units in E2 are erased from

all expressions of the algebra, including products. The result is a delete

algebra, if it is associative. It may not contain a modulus however.6

134. Theorem. Let the product of <r be given by the equation
I....T

fr = 2 x
i yj Yak *= 2 x'k ek

i, ^, A: k 1

If the units may be so transformed that the product may be expressed by
means of the equations

l....r'

x( 2 xjytyqt =!....'
i, k

1....T

x'
t,= 2 Xj yk Yvjk i'=r' + 1 ---- r

then the units e
l
____ er,, define a delete algebra,

6 called hereafter a MOLIEN

algebra. If an algebra has no MOLIEN algebra, it is quadrate.

'See references 122. SCHBFFEBS 3, 4. EPSTEKN and WEDDEBBURN 2.

<EP8TEKN and WEDDERBCBN 2. On the definitions of reducibility gee EPSTEEN and LEONARDS;
LEONARD 2.

'SCHEFFERS 3, 4; HAWKE8 1, 3. Of. MOLIEN 1
J
SHAW 5.

MOLIIN 1. This Is Molien's " begleltendes
"

system.
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135. Theorem. A MOLIEN algebra of a MOLIEN algebra is a MOLIEN algebra

of the original algebra. Two MOLIEN algebras which are such that the co-

ordinates of the numbers of the two algebras have q linear relations, i. e., whose

numbers are subject to q linear relations, possess a common MOLIEN algebra
of order q, and conversely. If the MOLIEN algebras of an algebra have no

common MOLIEN algebras, then the numbers in the different MOLIEN algebras

are linearly independent.
1

136. Theorem. If the complex of the linearly independent numbers of the

form <r a% be deleted from an algebra, the remaining numbers form a

commutative algebra.
1

137. Theorem. If the commutative algebra of 136 contains but one unit

the original algebra is a quadrate.
1

138. Theorem. If the delete algebra in 136 contain more than one unit

it may be further deleted until the delete contains but one unit. This unit

will belong to a quadrate algebra which is a delete of the original algebra.
1

139. Theorem. The scalar of any number contains only coordinates which

belong to the units in the commutative delete algebra.
1

140. Theorem. The pre- and post-latent functions of a delete algebra are

factors of the corresponding equations of the original. The characteristic

equation of the delete is a factor of the characteristic equation of the original.
1

141. Theorem. The two equations of a quadrate delete algebra are powers
of the same irreducible expression.

1

142- Theorem. An algebra is a quadrate if its characteristic equation is

irreducible and if the scalar of any number contains only coordinates belonging
to the units of the quadrate (which may be a delete algebra).

1

143. Theorem. The irreducible factors of the characteristic equation of an

algebra are the characteristic functions of its delete quadrate algebras.
1

144. Theorem. The number of units of a delete quadrate is the square of

the order m, of its characteristic equation. If they are e
ii}

then

e
fj
ea = jk

ea i, j, k, I= 1 m

The delete quadrate is also a sub-algebra of the original.
2

145. Theorem. If, in a Scheffers algebra, the product of into and by the

units er ,
er _ l .. . .er_ r] , vanishes, provided is not a modulus or a partial

modulus, then the algebra may be deleted by the complex of e, er _ n . The

' M..UI:N 1.

'MOLIBN 1. Molien points out that the units may be classified according to their quadrate character,

thus approaching Cartan's theorem, 99.



SUB-ALGEBRAS. REDUCTIBILITY. DELETION 47

delete algebra will have an equation with all the factors of the original algebra,
but each appearing with an exponent less by unity for each deleted direct unit

belonging to the factor. 1

146. Definition. The deficiency of a Peirce algebra is the difference between

its order and its degree.
2

147. Theorem. The units of a Peirce algebra may be so chosen that, if it

is of deficiency 8, one unit may be deleted, giving a delete algebra of deficiency
5 1, which is a sub-algebra of the original.

2

148. Definitions. An algebra E is semi-reducible of the first Itind when it

consists of two complexes, Eli
Ez such that,

3

.Ei.Ei<-Ei E,EZ <EZ EZEI
<EZ E2E2 <E2

An algebra is semireducible of the second kind when it satisfies the

equations
4

E2E2 <E2

If in any algebra

then E2 is called an invariant sub-algebra.
5

149. Theorem. If E has an invariant sub-algebra Es ,
the algebra K pro-

duced by deleting Ez is a delete of E, called complementary to 8 Ez .

150. Theorem. If E
l

is a maximal invariant sub-algebra of E, and if there

exists a second invariant sub-algebra E., of E, then either E is reducible or Ez

is a sub-algebra
5 of

",
.

151. Theorem. If Ei and Ez are maximal invariant sub-algebras of E, and

if E12 : 0, then En is a maximal invariant sub-algebra of both El
and E2 .

6

152. Theorem. A normal series of sub-algebras of E, is a series E1}
Ez ,

....

such that-E
1

,,
is a maximal invariant sub-algebra ofES _ 1 (E = E). IfKly Kz ,

....

are the corresponding complementary deletes, then apart from the order the

series Klt KZ}
.... is independent of the choice of Elt Eif

. . . .
5

153. Theorem. Let as be the order of Es ;
la ,

the difference between a
s _j

and the maximal order of a sub-algebra of E
s _ 1

which contains Et ; 1c,=a,_i at .

Then the numbers ?],?, are independent of the choice of the normal series

apart from their order. A like theorem holds for ltlt
Tcz ,

. . . .

5

154. Definition. An algebra which has no invariant sub-algebra is simple.
6

'SCHEFFEKS3. 5 STARKWEATHER I. " EPSTEKN 1, 2.

4 EPTEN 1. " EPSTEEN and WEDDBRBURN 2.
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155. Theorem. The complementary deletes Klt Kz ,
.... are all simple.

1

156. Definition. The series E, P]} PZj
.... is a chief or principal series

when P, is a maximal sub-algebra of P,_i which is invariant 1 in E.

157. Theorem. The system of indices of composition is independent of the

choice of the chief series, apart from the sequence.
1

158. Theorem. An algebra is irreducible if its quadrates may be so arranged

Qii Qs- QP that there are skew units of characters (21), (32) .... (pp I).
2

VL DEDEKIND AND FROBENIUS ALGEBRAS.

159. Definition. A DEDEKIND algebra is one which is the sum of quadrates

Qi, Qt Qh- Its order 8
is r = $ + .... + tc.

160. Theorem. A DEDEKIND algebra has a sub-algebra of order h, whose

numbers are commutative with all numbers of the DEDEKIND algebra. No
other numbers than those of this sub-algebra are so commutative.*

161. Theorem. A DEDEKIND algebra is reducible and the sub-algebras are

found by multiplying by the numbers ea ,
a = 1 .... A, in terms of which the

commutative sub-algebra may be defined. [ea e3
= S^eJ."

162. Theorem. The characteristic equation of a DEDEKIND algebra is

A! Aj . . . Ah = 0. The pre- and post-equations
B are A]"

1 A 2 .... A"* = 0.

163. Theorem. If a DEDEKIND algebra has only linear factors in its equation

it is a commutative algebra.
5

164. Theorem. The scalar of ea is given by the equation

The scalar within a single quadrate, Qt) may be indicated by St . For any
number we have 5

S.S = SSt .$ i = I .... h
i

165. Theorem. An algebra is a DEDEKIND algebra when in the general

equation, mZ) the coefficient of r~ 2
,
contains each coordinate in such a way

that the equations

,-=!.... r

give
c

a-j
= . . . . = xr

=

1 EPSTIEM and WEODERBURN 2. *SCHEFFEBS S, 4.

>Cf. FHOBENIUS 14. CARTAN 2. This Is Cartan's semi-simple algebra.
4 FROBENIUS 14. He calls tUese invariant numbers. 5 FROBENIUS 14.

CARTAS 2, see 5 121. Evidently \m,(ei ,ej)\
:0.
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166. Theorem. If A t is the determinant shear factor corresponding to the

quadrate Qit
then S( . A

4
= for all numbers of the algebra, and if e

i is the

partial modulus of this quadrate,
1

& A; = A; ei ==

The i + 1 scalar coefficient of any numbers vanishes
;

i. e.

roftifo, &) = <>

167. Theorem. If A
4 (a) = A

t (5) then for a determinate number 2 c

c~ l ac = b

168. Definition. A FROBENIUS algebra is one which can be defined by r

numbers o^ . . . . or which satisfy the equations

= 1 ---- r

The multiplication table of these units defines a group, and any group of finite

order or infinite order may be made isomorphic to a FROBENIUS algebra.
8

169. Definition. Two units o
i}

o
}
are conjugate if for some determinable

unit ok ,

o
i
= ok oj ok

- 1

If we operate on Oj by all units of the algebra, Oj . . . . or) we arrive at r
f

different units as results. These are said to constitute the t-ih conjugate class.

There will be k of these classes. Also rt is a divisor of r.

170. Theorem. For each unit in a conjugate class we have (as q,
is the

modulus or not) :

S . OjfcOjO^
1 = S . Oj-= 1 or

171. Theorem. If the sum of all the units in the <-th conjugate class be Kt)

then for any unit

K
t
o
i
= o

i
K

t
i=l ---- r

There are k different numbers Kti Kt
. . . . Kk .

172. Theorem. The k numbers K
t ,

t = 1 . . . . k constitute a commutative

algebra of k dimensions, that is

i

K
t
Ku = Ku Kt

= 2 Ctvv Kv t,
u = 1 . . . . k

D = l

173. Theorem. We have (according as o
t

is not or is the modulus) :

S . K
t
= -- S . So^ of

1 = r
t
S . o

t
= or r

t

174. Theorem. A FROBENIUS algebra is a DEDEKIND algebra of k quadrates.

The k numbers K
t
determine the k partial moduli, one for each quadrate.

'FROBBMUS 14. SHAW 4. 2 FROBENIUS 14. Other theorems appear in Chapter XIX, Part II.

J FKOBEtuus 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18; DICKSON 1, 2, 3, 4; BOKNSIDE I, 5; POINCAKE 4; SHAW 6.
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The widths of the quadrates being represented by wt ,
i = 1 . . . . k, we have

175. Theorem. It follows that if we take scalars

176. Theorem. Let the scalar of o
t
in the quadrate i be represented by

wo
t ,
ors (

l\ then
* *

177. Theorem. We have

/j \ J\-i QH /j 6{ (fii
7* . O \ OL 7"^

8
1

Hence
r = icf J + j^tfj" +....+ t4i*>

01 (/'- o''J I i/-- o'2) I i j/-'- o'*") i
^ O 3*^ el/i o- p tt o o ;

~
. . . ~j~ tt/^ Oj 7 i * Ki

If we write for w?j sj
the symbol ^', (called by FROBENIUS the i-th

characteristic of Oj)
we have

where A is the determinant l^i
1

', yjj? JC
(

^\ and
A,- is the minor (including

sign) of Wj. This determinant A evidently cannot vanish.

Also vP

and

178. Theorem. Hence

,(1) o(2) (*)
'ft *ft

. 6A

179. Theorem. For all values of a, b

or

or

= 2

r

V
where 2' takes oc over the rt values in the conjugate class

1 of ob .

Alr>2 t/i 111 *<" *WAISO J
t iv

j
6a sa

u=l

'See references to 168. These apply to theorems following. *BDRNSIDE 5.
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180. Theorem. 2 . Sw . oa or
1 Sw ob =~ Sm oa

6=1 W\

181. Theorem. 2 . Sw . oa ob
*

6=1

182. Theorem. 2 Sw ob . S<f> ob
l =

6=1

183. Theorem. 2 S (t> oa o^
1 Sw oc ob = ~

6=1 w
i

184. Theorem. 2 #(<)
. <tf ob

l oa ob =
a, 6=1

185. Theorem. If G! is an independent generator of the group of units,

o . . . . or_1} and if we form the t-th LaGrnngian of ol7 that is,

/u = i (1 + "X + o2'

of +..-.+ o(n"- 1"o
l

^- 1

)

where a is a primitive m 1
-th root of unity, and m

l
is the order of Oj (oj

1 = o
)

then for any number of the algebra, ,
we have a product

/

such that all numbers of the algebra are separable into m
1 mutually exclusive

classes of the forms (where it is sufficient for to be any one of the units o$

when the group is written in the form o,-of).

/ (*=!.... OTl )

For %fUl we have 1

/K/ = ?/it ^/it./i. = o t
186. Theorem. If o3 is a second independent generator, then we may

determine the equations of o.zfu (t= 1 ....
?/2j).

The latents Zif determined

as in 48, used as right multipliers, separate the numbers of the algebra into

mutually exclusive classes, such that if these latents are fuu ,
then (if

w :
',

t $. t')

S fltu fltu = b/ltu Wltu flt'u'
=

This process of determining latents by the independent generators may be

continued until they are in turn exhausted.

187. Theorem. The ultimate latents are scalar multiples of independent

idempotents of the forms
JlJ*},,

where i = 1 . . . . w
t ;

s = 1 . . . . k. Multiplication

right and left by these idempotents will determine every quadrate unit
/l^'0j

i, j = 1 . . . . te
( ;

= 1 . . . .
Tc,

in terms of the c generators o1
. . . . oc .

188. These results may be extended easily to cases in which the

coefficients of the units o
t
are restricted to certain fields.

' SHAW 6. This reference applies to 186, 187.
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VH. SCHEFFERS AND PEIRCE ALGEBRAS.

189. Theorem. Every Scheffers algebra with h partial moduli has h sub-

algebras, each with like pre- and post- characters.

190. Theorem. The general equation of a Scheffers algebra of h partial

moduli is of the form1

*

191. Theorem. Every number of a Scheffers algebra satisfies the general

equation of its direct sub-algebra, which is

This equation is the intermediate equation of the algebra.

192. Theorem. The characteristic equation of a Scheffers algebra is

n^-friso
193. Theorem. A Peirce algebra may have its units taken in the form 2

.0' s = 1 p t =
/*

1

194. Theorem. Units containing
{

,
t > 0, may be deleted, and the

remaining numbers will then form a companion delete algebra, called the base

of the Peirce algebra.
3

195. Theorem. Any Peirce algebra may be made to serve as a base by

expressing its units in terms of associative units of weight zero.
3

196. Theorem. The product of two units follows the law*

z fit' z fit'
1

yj, t: fit'" fn > ti A. ft'" s" " ~ ^ u <v"l" '<< t'" 5S'" = * r I

197. Theorem. A Peirce algebra of order r, degree r, is composed of the

units 5

e
l
=~ ^110 CZ

~
^-111 e3 = ^112 er ^11 r 1

These have been called by Scheffers, STUDY algebras.

198. Theorem. A Peirce algebra of order r, degree r 1, is composed of

the units

el
=~

^-110 ~T ^220 e = ^210 "T O/.jg r_2 3
= Am + (I /-J2 r_2 6t = /. 112

. . . . 6r= /,u r _j

TAHTANS. 'SHAW 5. Cf. STRONG 1. S 8HAW 5. < SHAW 5. Cf. SCHEFFEBS 3
;
CARTAN 2.

*B. PEIRCL 3
;
SCHEFFEBS 8

; HAWKKS 1
;
SUAW 5; STCDT 3.
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This is reducible, if a and 6 do not vanish, to the case of a == I = b.

If a = 0, we may take b = 1 or 0. If b = 0, we may take a = 1 or 0.

When r= 4, either a = 1, 6 has any value
;
or a = 0, b = 1

;
or a = 0,

6 = 0.

If r = 3, a = 0, 5 = O.
1

199. Theorem. A Peirce algebra of order r, degree r 2, is of one of the

following types.
2

Only the forms of eQ) elt ez , 63, ei are given since in every
case

r-J = 11 r-4 er-\ 11 r- 3

The /I will be omitted in each case.

When r > 6.

(1). * = (110) + (220) + (330), type of algebra (t,
i
2
, /, /.

(11). ^ = (210) + (320) + (13 r 2)

"

fc

=
2) e3 =

(13). e1

e,

(14). ^

(2). %

(21). e,

(22). ei
=

(210) + (320) + (13 r 2) C3
= (310)+ (12 r 2)

+2(13r 2) 'e4 = (112)

+ (320) e2 =(310) e3 = (111) + 2 (13 r 2) e, = (112)

(110) + (220), type of algebra (i,j, ij,j*. . . .y-)

(210) + (12r 3) ez = (211) + (12 r 2) 63 = (ill) + (221)

= (211) + (12 r 2)3)

+ 2(12r 2)

(23). ej= (210) + (12 r 3) e2 = (211) + (12 r 2)

es = (111) + (221) + 2 (12 r 3)+2c(12r 2)

e4 = (H2) + 4 (12 r 2) c = if r : 8

(24). ^ = (210) + (12 r 3) + (12r 2) es
=

(211) (12 r 2)

C3=(lll) (221) 2(12r 3) e4 = (112)

(25). ej = (210) + (12 r 3) e
2
= (211) (12 r 2) e3= (111) (221)

(26). 1

eg

(27). ^

(28). e!

(29). e
1

2) e2 =(211) A= or 1 if r : 7

2 (2 c)-(12r 3)
-

4
= (112) + 4 (11 r 2)

(210) + (12 r 3) e2 = (211)
-i-

(12 r 3)
'-'

e3 = (111) (221)

2) e2 =(211) e3= (ill) + (221) + 2 (12 r 3)

e4 = (H2) A=0 or 1 ifr:7

(210) + (12r 2) ^ = (211) e3 = (111) + d (221) e4 = (112)

'B. PEIRCE 3; SCHEFJERS 3
;
SHAW 5. ' STABKWBATHEB 1. Ct. SHAW 5.
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(2a). ,
= (210) ,

(20). e,
= (210) + (221) + (12 r- 2) ^ = (211) e8 =(lll) e4 = (112)

(2y). 1
= (210) + (221) e,= (21l) e,= (lll) e4= (H2)

(23). e,
= (210) ,

= (211) C3
= (lll)+ 2(12r 2) e4 =(112)

). e, = (210) + (12r 2) ez = (211) e,
= (lll)+ 2 (12r 2) 4

=

(3).
= (110)+(220) + (330), type of algebra, (i,j, k,1t.... If-*)

(31). ei
= (2lO)+(!2r 2) ^=(310) ea =(lll) e4

(32). e,
= (210) e,B

= (310) es = (lll) c4

(33). ,
= (210)+sr(13r-2) ez = (310)+ (12 r 2) e8=(lll) e

4

(34). e,
= (210)+ (13r 2) ej= (310)+ (12 r--2)

e8 = (lll)+ 2(12r 2) + 2(l3r 2) e4=(H2)
(35). c,

= (210)+(13r 2) e^, (310)+(12 r 2)

e8 =(lll) + 2(l3r 2) e4

(36). c,
= (210)+ (!2r 2) (13r 2) e2= (310)+ (l2r 2) e.,

e4 =(H2)
(37). e1 = (210)+ (12r 2) e2= (310) 63 = (lll)+ 2 (13r 2) e4

(38). e,
= (210)+ (l2r 2) ^ = (310) ea= (111)+ 2(12 r 2) c

4

(39). e,
= (210) e2 = (310) e,,

= (111)+ 2(13 r-2) 4

When r = 4, 5, or 6. These cases may be found in XX.

200. Theorem. A Scheffers algebra of degree r 1, which is not reducible,

must consist of two Study algebras, with one skew unit connecting them. 1

201. Theorem. A Scheffers algebra of degree r 2, which is not reducible,

must consist of

(A) Three Study algebras, Elt E2 ,
Ea ,

with skew units (12), (23);

(B) One Study algebra, and one algebra of deficiency unity, with one

skew unit connecting them
;

(C) Two Study algebras, joined (1) by two skew units (12) (12), or

(2) joined by skew units (12), (21).

202. Theorem. A Peirce algebra whose degree is two, is determined as

2 if_ 1 _ /g j._ rj

follows : for m < - we may take

that EEl
= ^=

The remaining units are such that

* <? = modulus, k=l ---- m

or in brief 1

3.
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One class of Peirce algebras of degree two, and order r, may be con-

structed from the algebras of degree two and order less than r, by adjoining
to the expressions for the algebra chosen for the base other terms as follows :

let the units of the base be e
i
.... e

}
. . . . written with weight zero, say em , e^;

then the adjoined unit (deleted unit) being er-l = X
111; we have for new units

and a
tj a^ for all values of

i, j.

The second and only other class involve units of forms /\,ul + . . . . and are

given by
e
Ut
= e

iO + 21 ^181 4* + !2

/o
= * + oif X,n + . . - +<

e,
= /tm GI /Igzi 02 ^-331

- Oj , Oj = or 1

and
aji'
= a^' for all values * of t, y, /fc.

203. Theorem. A Scheffers algebra of order r, degree two, consists of two

partial moduli Ano +^ + . . . -f- ^m , mi0 and %mi + 1 , mi + i, n + ---- + ^rr0 ,

and r 2 skew units as follows 2

^nti + 2 10. ... ^rlO ^2 mi + 1 ^3 mt + 1 . . . . ^Hii ni + 1

204. The subject of the invariant equations of Peirce and Scheffers

algebras is under consideration. Some particular cases are given later.

'SHAW 5. 'SCHEFFERS 3.
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Vin. KRONECKER AND WEIERSTRASS ALGEBRAS.

1. KRONECKER ALGEBRAS.

205. Definition. A commutative algebra is one such that every pair of

numbers 4 , ^ in it, satisfy the equation i

1

&& = &&
206. Theorem. An algebra is commutative when its units are commutative.

207. Theorem. The characteristic equation of a commutative algebra can

contain only linear factors, if the coordinates belong to the general scalar range.

208. Theorem. If the characteristic equation of a commutative algebra

whose coordinates are unrestricted has no multiple roots it is reducible to the

sum of r algebras each of one unit, its partial modulus. Such algebra is a

WEIERSTRASS algebra.
2

209. Theorem. If the characteristic equation of a commutative algebra

has p distinct multiple roots, it is reducible to the sum of p commutative

Peirce algebras. Such algebra is a KRONECKER algebra.
8

210. Theorem. The basis of a commutative Peirce algebra is a commuta-

tive algebra.

211. Theorem. A KRONECKER algebra may contain nilpotents, a WEIER-

STRASS algebra can not contain nilpotents.
4 A WEIERSTRASS algebra has

nilfactorials.

212. Theorem. If the coefficients are restricted to a range, such as a field

or a domain of rationality, the algebra may not contain either nilfactorials or

nilpotents. Such cases occur in the algebras built from Abelian groups. This

case leads to the general theorem : If the equation of the algebra is reducible

in the given coordinate range, into p irreducible factors, the algebra is

reducible to the sum of p algebras and there are nilfactors. Each irreducible

factor belongs to one sub-algebra. If an algebra has an irreducible equation
in

,
the general number, such that the resolvent of this equation and its first

derivative as to does not vanish, then all its numbers may be brought to

the form

f = & e +M + M' + M'+ + &,-!*
1"- 1

where i is a certain unit of the algebra, and &.... 6r_, belong to the range.

If the resolvent vanishes for either a reducible or an irreducible equation,
there are riilpotent numbers in the algebra.

6

'References for certain commutative algebras follow in the next article. On the general problem see

STUDY 2; FROBBNIDS 2
;
KRONECKER 1

;
SHAW 4.

'See references for 215, also KRONECKBR 1.

MOORE 1. KRONECKER 1. MOORE 1
;
KRONECKER 1.
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213. Theorem. lu canonical form the adjoined unit is of form

8 = 1 8 = 2

There are as many terms of a given weight k as there are basal units

with subscripts that appear in terms of weight k.

214. Theorem. The units of a commutative Peirce algebra may be taken

of the form.

where ^=0 . . . .

(i t ;
and where {"

+ 1

j
for i< m, is linearly expressible in

terms of higher order.

2. WEIERSTRASS ALGEBRAS.

215. Definition. A WEIERSTRASS algebra is a commutative algebra satisfying

the conditions <>==,;& and whose degree equals its order,
1 and whose

coordinates are real.

216. Theorem. Numbers whose coefficient mr
= are nilfactorial ("divisor

of zero "). The product of a nilfactor and any number is a nilfactor. There

are no nilpotents in the algebra.
8

217. Theorem. There is at least one number g, such that e
, g, g

2
. . . .g

r~l

are linearly independent. The latent equation resulting may be factored

into r linear factors, the imaginary factors occurring in conjugate pairs.

218. Theorem. A WEIERSTRASS algebra is reducible to the sum of r' algebras

of the form

xi x?= Xi x
t Xj= i,j= 1 . r1 r = r' + r"

and whose coordinates are scalars, which appear in conjugate forms if

imaginary (r" is the number of algebras admitting imaginaries). Hence the

algebras may be taken to be of the form

with real coefficients
;
or finally we may take the r1

algebras as r' independent

ordinary complex algebras.

219. Theorem. Nilfactors are numbers belonging to part only of the

partial algebras. If
i, 2 ....n naa coordinates in the first n algebras but not in

the other r1

n, + i.... r
< has coordinates only in the algebras from the

n + 1-th to the r'-th, then

' WEIERSTKASS 2; SCHWARZ 1; DEDEKIND 1, 2; BIBLOTI 1; HOLDER 1; PETERSON 2; HII.HEKT 1;

STOLZ 1
; CHAPMAN 3. The sections below are referred to Berloty.

'The presence of nilpotents would lower tbe degree.
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IX. ALGEBRAS WITH COEFFICIENTS IN ARBITRARY FIELDS.

REAL ALGEBRAS. DICKSON ALGEBRAS.

220. Definition. An algebra is said to belong to a certain field or domain

of rationality, when its coordinates are restricted to that field or domain. In

particular an algebra is real, when its coordinates are real numbers. 1 The

term "finite" algebra is used also to mean algebras whose coordinates are in

an abstract (Galois) field.

221. Theorem. The coefficients of the characteristic and the latent equa-
tions of an algebra are rational functions of the coordinates in the domain

fl
(z<y),

which is the domain of the coordinates and the constants 2

y.

222. Theorem. If new units are introduced by a transformation T rational

in lx ,
the new units are rational in II,,; the hypercomplex domain ft

(I ,}
is

then identical with the hypercomplex domain !(,,,/) Further, if lx contains

II,, it also contains l
y,.

223. Theorem. If S . is defined for any domain, then S . is invariant

under any transformation of the units of the algebra and is rational in I1AY .

224. Theorem. In any domain there is an idempotent number or all

numbers are nilpotent.

225. Theorem. In a Peirce algebra every number = + ^, where is

a multiple of the modulus, and \ is a nilpotent rational in lt , y
. This

separation is possible in only one way. We may choose by a rational trans-

formation new units such that

The characteristic equation of is F . %= *

[^i^]"'
1

,
where F. is rationally

irreducible in Qxy .

226. Theorem. In any Scheffers algebra, we may choose by transforma-

tions rational in nxy ,
the units >? which are nilpotent such that

227. Definition. A real algebra may be in one of two classes, the real

algebras of the first class are such that their characteristic equations have no

imaginary roots for any value of
,
the general number; the second class are

such that their characteristic equations in have pairs of conjugate imaginaries.
3

228. Theorem. Every real quadrate is, if in the first class, of the form

(1) e
ti
ekl = jk eii i= 1 ---- p

If of the second class, it is of order 4/>
2
,
and is the product of Q and an

algebra of the first class (1).

1 Dirk -ox 5; TABEH 4. Hamilton restricted Quaternions to real quaternions, calling quaternions with

complex coordinates, blquaternioni.

'TABBR 4. The succeeding sections are referred to Taber 4. This paper contains other theorems.

CARTAN 2. This reference applies to $8238-832.
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The algebra Q is Quaternions in the Hamiltonian form

eo, ', j, k, ij= ji = k, etc.

229. Theorem. Every real Dedekind algebra is the sum of algebras,
each of which is of one of the following three types :

(1) Real quadrates of first class;

(2) Real quadrates of second class ;

(3) The product of a quadrate of first class and the algebra e
,
e
l}
where

230. Theorem. Every real Scheffers algebra of the second class is derivable

from one of the first class by considering that each partial modulus belonging
to a complex root of the characteristic equation will furnish two units for the

derived algebra, say

e1 = x1 + xs es =(xl xi)'/l
That is, the direct sub-algebra consists of direct nil-potent units and of the

sum of algebras of the forms

o or e
, ei (e?

=
o)

All other units are chosen to correspond ;
thus

>j,a furnishes two units, ^ and

)7^, corresponding to x,, V' 1 xg .

231. Theorem. A Cartan real algebra is primary, and has a Dedekind

sub-algebra according to 229, the other units conforming to this sub-algebra

in character, and giving multiplication constants y which are real
;
or it ia

secondary, and has a Dedekind sub-algebra consisting of the algebras in 229

multiplied by real quadrates of the first class, the other units conforming as

usual.

232. Theorem. Every real irreducible (in realm of real numbers) com-

mutative algebra is of the types of 230. It is a Peirce algebra then, the

modulus being irreducible ; or else it has two partial moduli which give an

elementary Weierstrass algebra, and hence are irreducible in the domain of

real numbers.

233. Theorem. The only real algebras in which division is unambiguous
division (in domain of reals) are (1) real numbers

; (2) the algebra of complex
numbers e$ eg = ef e^

= e e^
= e

v
e (3) real quaternions.

1

234. Definition. A. DICKSON algebra is one whose coordinates are in an

abstract field.

235. Theorem. The only DICKSON algebras (associative) which admit of

division are those whose coordinates are in the Galois (abstract) field, and

whose qualitative units are real quaternions or sub-algebras of quaternions.
2

'FBOBBHICR 1; C. 8. PBIRCK 4; CARTAN 2; ORISSEMANN 1.

' WBDDEBBUBX 4. See also Dlckson and 7.
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X. NUMBER THEORY OP ALGEBRAS.

236. Definition. The number theory of an algebra is the theory of domains

of numbers belonging to that algebra. Algebras usually do not admit of

division, unambiguously, hence the term domain is taken here to mean an

ensemble of numbers such that the addition, subtraction, or multiplication of

any of the ensemble give a result belonging to the ensemble. The first case

which has been studied is that of quaternions, which admits division.
1

237. Definitions. An infinite system of quaternions is a corpus if in this

system addition, subtraction, multiplication, and division (except by 0) are

determinate uniquely.

A permutation of the corpus is given by \f^\ if through the application

of this substitution, every equation between quaternions in the corpus
remains an equation. Hence

f(a + b) = f(a) + /(i) /(a*) =/(a) .f(b)

If n is the corpus of all quaternions we have the substitutions

(i) <? ()<?-'

(2) /(a) = a a1 ia a2 ip a8 i
y a, /?, y is a permutation of the

indices 1, 2, 3.

238. Theorem. If R is the corpus of rational quaternions, then a id

rational when OQ, a\ t a,, a3 are rational. The permutations for the rational

corpus are q ( ) q~
l

,
and (a, {3, y}.

239. Definitions. If
p
= i (

1 + *i + 4 + *s)>
and q = &o p + &i *i + ^2 *z

+ &g i3 ,
where k

, ftfc,'ifc,.|
are any integers, q is said to belong to the integral

domain J.

If the cooi Jinates of q, J &Q, i k^ + lclt i & + 1%, J k -\- k% are integers,

q belongs to the sub-domain J .

An integral quaternion is one which belongs to J.

An integral quaternion a is pre-divisible (post-divisible) by b if a = be

(a= c5) for some integral quaternion c.

If e and e"1 are both integral, e is a unit. It follows that

There are 24 units:

240. Theorem. If a = vc
t
then a = c1 v only if v= re or

: r^e, where
= 1 + !, and r is any real integer.

1 HCBWITZ 1. Of. LIPSOHITZ 8. The first reference applies to all sections following to $257.
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241. Theorem. If a and b are integral quaternions, b : 0, we can find

?> c
> qt)

cl so that

a = qb + c a = bq1 + c1 N(c)< N(b) ^V(c,)< N(b)

242. Theorem. Every two integral quaternions a and b, which are not

both zero, have a highest common post-factor of the form

d = go. -\- hb (g, h, integers)

and a highest common pre-factor of the form

di = agl + bhi (g1 , A, , integers)

243. Theorem. The quaternions 0, 1, p, p
2 form a complete system of

residues modulo .

244. Theorem. A quaternion belongs to J if it is congruent to zero or 1

(mod )

245. Theorem. IfN . a (=N . K a) is divisible by 2
r

,
then a = r b where

b has an odd norm.

246. Theorem. The following quaternions form a complete system of

residues, modulo 2:

1, h, h, *a Ofl+ 1 + ti 1 + i

247. Definition. A primary quaternion is one which is congruent to either

1 or 1 + 2p (mod 2). Every primary quaternion belongs to J .

Two integral quaternions are pre- (post-} associated, if they differ only

by a pre- (post-) factor which is a unit.

248. Theorem. Of the 24 quaternions associated to an odd quaternion b,

only one is primary.

249. Theorem. The product of two primary quaternions is primary.

250. Theorem. If b is primary then when

(1) 6=1 (mod 2), K. b is primary,

(2) 6= 1 +2p (mod 2), K. b is primary. .

251. Theorem. If m is a positive odd number, the m4

quaternions

?o + 3ih + &*2 + q3 h (qo, Ju &, ?3
=

0, 1, 2 ---- m 1)

form a complete system of residues modulo m.

These quaternions are holoedrically isomorphic with the linear homo-

geneous integral binary substitutions :

x[
= axl + 0xz x'z

=
yxl + Sx2 (mod m)

N(ab (3y)
= N.q (mod m)

252. Theorem. The number of solutions of N(q) = (mod m), q being

prime to m, is ;n
3n

(l
- -^ (l +
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The number of solutions ofN (q)
= 1 (mod m) is m8

II ( 1 - -
j\

These form a group Grm which is holoedrically isomorphic to the group of the

linear homogeneous binary unimodular integral substitutions, modulo m.

253. Definition, n is a prime quaternion when its norm is prime.

254. Theorem. There are p 4- 1 primary prime quaternions whose norm

equals the odd prime p.

255. Theorem. If N. c=plt

q
k then = 7^7% 7lhxl

xk where

n
t ,
xt

. . . are primary prime quaternions of norms p, q, etc.

256. Theorem. If m is any odd number, there are $ (m) = 2 . d (sum of the

divisors of m) primary quaternions whose norm equals m.

257. Theorem. The integral substitutions of positive determinant which

transform a| + icf + zjj + a| into a multiple of itself are given by the equations

y = ax(3 y a . Kx . ft

where a, /8 are any two integral quaternions which satisfy the conditions

a/3= or 1 (mod).
258. Definition. The general number theory of quadrates has been studied

recently by Du PASQUIER.
1 A number in a quadrate algebra he calls a tettarion.

It is practically a (square) matrix or a linear homogeneous substitution. An
infinite system of tettarions is a corpus, if when a and (3 belong to the system,

a /?, a . /?, j3 . a, a : (3, /3"
1

. a belong equally to the system. A substitution

of a tettarion r = /(T) for a tettarion r is indicated by [r, /(T)]. A permuta-
tion is a substitution such that when a is derived from n tettarions o^. . . -an by

any set of rational operations, so that a = R(al
. . . -an), then /(a) = a is

derived from aj .... a, by the same set of rational operations, so that

a = R (!-... an )

259. Theorem. The substitution [a, /(a)] is a permutation of the corpus

\K\, if the tettarions /(a) do not all vanish, and if

/(<* + 0) =/() +/() /(/?) = f(a) /(ft)

for any two tettarions a, /8 in \K\. The tettarions /(a) also constitute a

corpus.

260. Definition. An inversion of the corpus is a substitution such that not

all/(r) are zero, and also for any two tettarions a, (3 we have

/ (a + 0) = /(a) + /(/?) /(a) = /(/?) /(a)

[T, T] is an inversion, where r is the transpose of r. If [a, /(a)] is the most

general substitution of the corpus, [a, /(a)] is the most general inversion.

261. Definition. Two permutations of the form

[a, /(a)] and [a, ? . /(a).r 1

]

where q is any tettarion which has no zero-roots, are said to be equivalent. All

equivalent permutations constitute a class.

i DC FASQUIEK 1. This reference applies to $$258-897.
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262. Theorem. The substitution tat~ l
is a permutation of the corpus Q

of all tettarions of order s; where t is a tettarion such that N(t)= 0, N (t)

being the s-th or last scalar coefficient in the characteristic equation of t. The
coefficient N(t) is called the norm oft.

263. Definitions. A tettarion is rational if all its s
2 coordinates are rational.

All rational tettarions form a corpus \R\. All tettarions whose coordinates

belong to a given domain of rationality constitute likewise a corpus. A
rational tettarion is integral if all its coordinates are rational integers.

The integral tettarion a is pre- (or post-) divisible by the tettarion (3 if

an integral tettarion y can be found such that a = (3y (or a = y/3). A unit

tettarion e is an integral tettarion which is pre- (post-) divisible into every

integral tettarion. When N(e) = + 1 we call e a proper unit-tettarion
;
when

N(e) = 1 we call e an improper unit-tettarion.

264. Theorem. Let av = h + e, where h is the modulus of the quadrate,
that is, is scalar unity, and ev is one of the s

8 units defining the quadrate ;
and

1....8

let T = 2 t
i}
e

if
be any integral tettarion ;

then among the tettarions

^=a^r (z=l,2 )

there is always one such that a certain pre-assigned coordinate, say t
(

jj\ is not

negative, and is less than the absolute magnitude of any other coordinate of t
of the form ty (k= I . . .

.s, k^i), provided tv 3= 0.

265. Definition. A tettarion 2
#<,

ey in which all coordinates for which

i > k (or i< k) vanish, is said to be pre- (post-) reduced. They constitute a

sub-corpus. Tettarions of the forir 2 <eH are both pre-reduced and post-

reduced. The components t
it (i
= 1 ....) in a reduced tettarion r vanish only

when t has zero-roots.

266. Theorem. If t is any integral tettarion, a proper unit-tettarion s

may be found such that e .t (or t . e) is a pre- (post-) reduced tettarion, in

which, of all the coordinates t
it)

at most only tM can be negative. This co-

ordinate is negative only if N(r) < 0.

If T is any integral tettarion, we may find a pair of proper unit-tettarions

fj and E2 such that ei fez is of the form 2 du e
ti (i

= 1 ....
),
and among the

coordinates at most only cZM is negative, and du is divisible by d
i _ li_ 1 . The

coordinate dig is negative only when N(T) is negative.
1

If a = Si /? 2 ,
a and f$ are said to be equivalent.

267. Theorem. Every proper unit-tettarion e is expressible in an infinite

number of ways as the product of integral powers of at most three unit-

tettarions. These three may be

o = * + ea

Pa = 2ekk + e
lj

e
ji (k = 1 ...., k

i,
k

y = 6Z\ + 32 + "I- ,-! 18

'Cf. KHOMBCKIK: Crelle 107, 135-186; BACHMAN : Zahlentfuorie IV Tell, 294.
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268. Theorem. Every integral tettarion t is equivalent to a tettarion of

the form 2 t{i eu . The coordinates less T are the shear factors of the character-

istic equation of T. The norm of T, N(r), is the product of these coordinates.

Two tettarions are equivalent when they have the same shear factors and the

same nullity.

269. Theorem. In order that a, be a factor of T = ctj
. . . . a, . . . . a B it is

necessary and sufficient that the nullity of a4 be not higher than that of T, and

that each shear factor of a,, or combination of shear factors, be divisible into

the corresponding shear factors of r. If an integral tettarion T is a product

of others, then every combination of shear factors of t is divisible by the

corresponding combination of shear factors of any one of these others.

270. Definition. Two tettarions t and er are called pre-associated. The

association is proper or improper according as N(e) = + 1 or 1. Associated

tettarions form a class. The simplest representative of a class will be called

a primary tettarion.

A pre-primary tettarion
p
= 2py ey satisfies the following conditions :

= and

for all i<O' and *f Pa ^ ; i and / have values 1 . . . . s subject to the con-

ditions stated.

271. Theorem. A primary tettarion cannot have a negative norm. Pri-

mary tettarions with zero-roots are infinite in number, but the number of

primary tettarions of a given norm m :. is finite.

272. Theorem. If m = II p" ,
where pi is a prime number, and if %(m)

is the number of distinct pre-primary tettarions of norm m, then

-
1) (P

a+*-

273. Theorem. If T is any integral tettarion and in is any integer (: 0)

then an integral tettarion a may be found such that T= W<T or else <r= ma + a

wherein a is an integral tettarion and <
| N(a) |< |

m'
\

.

274. Theorem. If a and ^ are two integral tettarions of which 5 has not

zero-roots, then two integral tettarions (3 and y may always be determined

such that either

a = (3S and y = or a = fit + y and 0<\N(y)\<\N(8)\

By this theorem a highest common pre- (post-) divisor may be found by
the Euclidean method for any two integral tettarions.

275. Definition. An infinite system of tettarions which do not all vanish

is a pre- (post-) ideal if when t
i
and tj belong to the system, yr( ,

t
i t} also

belong to the system, where y is any integral tettarion.
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276. Theorem. If ^ tn are integral tettarions, which do not all

vanish, then the totality of tettarions yi TJ -f .... yn TB where y\ yn run

independently through the range of all integral tettarions, is a post-ideal.

The tettarions TJ . . . . rn are said to form the basis. An ideal with one

tettarion in its basis is a principal ideal. It is designated by (vy) or (yr).

Two ideals are equal if they contain the same tettarions.

277. Theorem. Pre- (post-) associated tettarions generate the same prin-

cipal post- (pre-) ideal. If two integral tettarions without zero-roots generate

the same p.-incipal post- (pre-) ideal they are pre- (post-) associated.

278. Theorem. Every pre- (post-) ideal generated by rational "integral

tettarions which do not all have zero-roots is a principal ideal.

279. Definition. Nul-ideals contain only tettarions with zero-roots.

280. Theorem. An ideal which is both pre-ideal and post-ideal cannot be

a nul-ideal.

281. Theorem. Every n given integral tettarions a, /?..- p which do not

all have zero-roots possess a highest common divisor ^ which is expressible in

the form

. + 8n or 8

wherein 8t (i
= 1 . . . . n) are definite integral tettarions. Every pre- (post-)

divisor of 5 is a common divisor of a ....
(i

and conversely. Moreover 8 is

determined to a factor which is a post- (pre-) unit-tettarion.

282. Theorem. If a and /? have no common pre- (post-) factor, then two

tettarions y, 6 may be found such that

ay + 06 = I or ya + 0/3
= 1

If a and fi have a common factor these equations cannot be solved. If a and

($ have a common divisor which is not a unit-tettarion then -^(a) and N(/3)

have a common divisor other than unity. The converse of this theorem and

the theorem imply each other if one of the tettarions is real, that is, of the
8

form a 2 eu .

283. Definition. An integral tettarion which is not a unit-tettarion nor has

zero-roots is prime if it cannot be expressed as the product of two integral

tettarions neither of which is a unit tettarion.

284. Theorem. The necessary and sufficient condition that n is a prime
tettarion is that its norm N (it) is a rational prime number. There are

different primary primes of norm p.

285. Theorem. If <5 is an integral tettarion of the form 2 di{
e
ti

and if

N(b) ==p
a

rj

b
. . . .t

n
,
where p,q.-...t are distinct primes, not including unity,

then (5 can be factored into the form
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where n
l

. . -na are primary prime tettarions of norm p, xj. . . -xt are primary

prime tettarions of norm q, . . . r
l

. . . .rn are primary prime tettarions of norm

t,
all being of the form

286. Definition. An integral tettarion is primitive if its coordinates have no

common divisor other than unity. It is primitive to an integer m when its

coordinates are all prime to m.

Every primary tettarion is also primitive.

287. Theorem. Let y be a primitive integral tettarion and

where p, q. . . .t are the prime factors of N(y). Then y can be decomposed in

only one way into the form

where e is a unit tettarion, and Ttj-.-.Tt,,, are prime tettarions of norm p,

x
1

. . . .
,
are prime tettarions of norm q, . . . . TI . . . . T^ are prime tettarions of

norm t. The product of each I successive factors is primary, where

1= 1 ---- at (i
= 1 ---- n)

288. Definition. If alt az
. . . .ae are s integral tettarions of equal norms

JV(ai) = N(as) . . . . = N(a,), and if c^ a2 . a8
= N(ai), then these tettarions

are semi-conjugate.

289. Theorem. A product of any number of prime tettarions of forms

2du eu is a primitive tettarion of the same form if among the factors no of

them are semi-conjugate.

290. Theorem. A product of primary prime tettarions 7^.... nn ,
where

^(*0 == Pi (*
= 1 ---- n) pi being distinct primes, is always a primitive

tettarion.

291. Definition. Two given tettarions a and ft are pre- (post-) congruent to

a modulus y, if their difference a /# is pre- (post-) divisible by y. This con-

gruence is indicated by
a E= /3 (mod y, pre)

or

a= /? (mod y, post)

There is then an integral tettarion such that

a P= yZort;y

292. Theorem. If a and (3 are pre- (post-) congruent modulo y, they are

also pre- (post-) congruent for any tettarion post- (pre-) associated with y, as

modulus.
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293. Theorems. If a= t (3= r then a = /? (mod y)

If a = T /3= <r then a/?=r<r (mod y)

If a = /? then ra= T/3 (mod y, post)

If a= /2 then ar= @r (mod y, pre)

Ify$=='4'y a= (3 then aq>= @^ (mod y, post)

If a= /?
= 5 yj3

=
%y then 0a= 5/3 (mod y, post)

294. Definition. Two tettarions a, /3 are congruent as to a rational integer

m : 0, when a /? is divisible by m, indicated by a= /? (mod m}. In this

case for each pair of coordinates we have aw= 5w (mod m). A complete

system of residues consists of m"
2

tettarions, obtained by setting each coordinate

independently equal to each one of a complete set of residues modulo m.

295. Theorems. A tettarion congruence modulo m, a rational integer can

be divided by an integral tettarion
,
without altering the modulus only if

N(%) is prime to m.

A sufficient condition for the solubility of the congruence a = (3 (mod m)

by an integral tettarion is that N(a) is prime to m. If this condition is ful-

filled the congruence possesses one and only one solution (mod m), namely,

= r (3 (mod m), where r is a root of r . N(a)== 1 (mod m).

296. Definitions. A tettarion with zero roots and nullity s r is pseudo-
r

real if it is of the form dn 2 ei( ,
r <C s. A tettarion with zero-roots, of the form

1=1

2 <y e^ where <y
= for/= /+!...., is singular or non-singular according

as its rank is less than or equal to r. The product of the first r latent roots

of a tettarion of this kind is called its pseudo-norm N'. A tettarion of the type

2 t
tl
en is never singular. When a tettarion is singular its pseudo-norm is zero.

297. Theorem. If a and ^ are two integral tettarions in which coordinates

of the form l^
= for./= r + 1 ....*, and if a is pre-reduced, ^ is pseudo-

real, and =
0, then two tettarions of the same type and

>?, may always be

found such that either

a = ji. >7
=

or y .

a = + a

where the pseudo-norm of a satisfies the conditions

If T and /3 are two integral pre-reduced tettarions of the same type as

a, (i above, and /? is non-singular, then there are always two other pre-reduced

tettarions of this type and ? such that

*= qP >7
=

r = g/? + ^ and 0< |

JV' fo) |< I #'(/?) |

Every non-singular post-ideal based on tettarions of this type ia a princi-

pal ideal.
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XL FUNCTION THEORY OF ALGEBRAS.

298. Definition. In 58, chapter II, we have for any analytic function of
,

This definition gives a complete theory, if the roots may be treated as known.

Other definitions are given below. 1

00

299. Definition. 2 av ^" defines an analytic function of
,
if the roots of the

i

09

characteristic equation of converge in the circle defined by 2 a,z*, where 2 is

an ordinary complex number.
+ 00

2ay

v
defines a function of

,
if %~

l

exists, and if the roots of the char-
OJ

00 OO

acteristic equation of converge in the circles
2 of 2 a z' and 2 a z~".

i i

300. Definition. Let

/=2et/i (x1
---- xr) t = l ---- r

and let

dx = 2 e
t
dxi

Then

df=
l ' r

P- . dxk et
= f . dx = dx . '/

i,k O*k

If
-ft =yt, then / is an analytic function 8 when /' , y = y .'f.

301. Theorem. The algebra must contain for every number u, a number
v such that uy = yv for every y.

302. Theorem. In a commutative algebra the necessary and sufficient

condition of analytic functions is

= 2

303. Theorem. The derivative of an analytic function is an analytic func-

tion. If two analytic functions have the same derivative, they differ only by
a constant.

304. Theorem. An analytic function is a differential coefficient, only when
the algebra is associative, distributive, and commutative.

305. Theorem. If and v are analytic, uv and are analytic.

1 FKOBBNIUF 1
;
BUOEHBIM 7

;
SYLVESTER 4

;
TABKB 6, 7. WatB 7.

SCHBFFBBS 8. Applies to 300-306.
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306. Theorem. If /(px) = f(x), then /(*) is a constant.

307. Theorem. For a WEIERSTRASS commutative algebra, let a
t ,

b
t be in

the i-th elementary algebra, and

a = 2 a< b = 2 b
t

Then a J = 2 (a< 6^ ab = ^,a i bi -r = 2 -

If 6
(
=

0, for i= 1 ij,

and if a
{
=

0, for i = 1 . . . .
i\

^ j-m

then

if b is not a nilfactor.

> ,

V '
,. i

b
- s

~&7
l>tl

In any other case the division of a by b gives an infinity^

308. Theorem. The sum, difference, product, and quotient of two poly-
nomials is formed as in ordinary algebra.

309. Theorem. The number of solutions of an algebraic equation of degree

p is N=.p*
r

,
when each elementary algebra is of order two.

If rj of the elementary algebras are of order one, and r rj of order

two, N=pr
.

In any case the number of infinities and roots is p
r

. The number of roots

is infinite if,
and only if,

the coefficients are multiples of the same nilfactor. 2

310. Theorem. A polynomial F(^} can not vanish for every value of

unless its coefficients all vanish.

Two polynomials equal to each other for every value of
,
must have

the coefficients of like powers of equal.

311. Theorem. If an algebraic polynomial F(<^) is divided by ',

'

being a root, the degree is reduced to (p 1) andj*
r

(p l)*
r
roots have

been removed.

In ordinary complex algebra r= 2, ptr
(p l)

tr = 1.

312. Theorem. If two polynomials have a common root, ', they have a

common divisor '.

313. Theorem. If F(%) is differentiated as if were an ordinary quantity,

giving F 1

(), then the necessary and sufficient condition that there is a system
of roots of F(), having just p equal roots, is that F' () has at least one

system of roots of which p 1 are this same equal root, and that no system of

roots of F'(%) has this root more than p 1 times. F(%) and F' () have

therefore the common divisor
( ')

P~ 1
-

314. Theorem. It is not always possible to break i>p-4W\ into partial frac-

tions.

'BiBLOTTl. Applies to 18307-315. 1 WEIEB3TBA8S 2.
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315. Theorem. If is considered to be written in the form = 2z i x< ,

where t = 1 . . . . r,, and z, is any real or complex number, the whole theory of

functions of a complex variable may be extended to numbers which are not

nilfactors. If there are nilfactors, meromorphic functions must be treated

specially. We have

316. The treatment ofquaternion and biquaternion differentials, integrals,

and functions may be found in the treatises on these subjects and references

there given ;
references are also given at the end of this memoir. The general

principles of such forms may easily be extended to any algebra. Differentia-

tion and integration along a line, over a surface, etc., may also be found in

the appropriate treatises.

The problem of extending monogeneity to functions of numbers in

quadrate algebras has been handled recently by AuiONNE. 1 His results are

as follows :

Let be any number in an algebra, and let H be a number whose

coordinates are functions of those of . The index of monogeneity N is the

minimum number of terms necessary to write ds. in the form 2 <T4 . d . r
t ,

r g
wherein a, and t, are functions of . If we write v = 2 e,-^ ,

we have in all
1=1 oxi

cases d-H I. dv H = T(d). The Jacobian of the coordinates of H is

then mr(T).
1....C

If now we put T = 2 wkl Kkl ,
where Kkl -=ek ()el ,

we may find the

scalars wkl uniquely if the algebra is a quadrate.
2

For, indicating quadrate

units by a double suffix, and writing n2 =
r,

T = 2 W-jklKukl (Kujci= eii(} ekl)

and if we operate on e
ik
and take /. ea () over the result,

1....T

If we put *P = 2 wkl . ek Ie
t (), or in the case of a quadrate,

then the rank, that is, n v, where v is the nullity of *P, is the index of

monogeneity, N. N is invariant for a change of basis.

The transverse of f corresponds to iaterchanging a
t
and <rt . For

l....n 1....H

ijkl ijkl

and /Cjy TeK = t%tf
.

> AUTOHXB 5, 0. > H rsoouFr 1.
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have

Let P ()
= 2 e

t / (et () ), the g forming a -pair. Then P = P, and we

M
= 2 ? 2 e, Je, () . /

(e, e, e
t
ek

= 2 to 2
,
/c

( () . 7f (c(

Hence PT =- T P = PT if * = *, and conversely. Again PT = PH/Vi
therefore if PT = TP we have

PH/v =
Operating on d%, we have

rf . PH = V^P
Hence if YI

= P^, /H^>? is an exact differential. Thus if f is self-transverse,

/Hefy is an exact differential and conversely.

When JV= 1, we have H in one of the four following types :

I. H = KA + M

II. B = 2 Z (a) e

III. H 2 % Z
(flu

(K, A, M, constant)

(Z arbitrary)

(Z arbitrary)

IV. U =
'

t= '<b[I.a(en %) f.a ()]> and "b, *!n PJ are arbitrary scalar

functions of <
;
a is any constant number.
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XH. GROUP THEORY OF ALGEBRAS.

317. This part of the subject is practically undeveloped, although certain

results in groups are at once transferable to algebras. A considerable body
of theorems may thus be got together, especially for the quadrates. For

example, the groups of binary linear homogeneous substitutions lead at once

to quaternion groups, ternary linear homogeneous substitutions to nonion

groups, etc. It is to be hoped that this branch may be soon completed.
1

318. Definition. A group of quaternions is a set of quaternions <fr qn ,

such that

?r< = i 2i&=9* ,y=i

nti is a positive integer, and Je has any value 1, 2....W. The quaternions

give real, complex, or congruence groups according as the coordinates are real,

complex, or in an abstract field.

319. Theorem. To every quaternion q = w + xi + yj + zk corresponds
the linear homogeneous substitution

1 + xV 1

1 w
+ x 1\

z V I/

and conversely. The determinant of the substitution is T'q. To the product
of two quaternions q, r, corresponds the product of the substitutions.

320. Theorem. To every group of binary linear homogeneous substitutions

corresponds a quaternion group, and conversely. To every group of binary
linear fractional unimodular substitutions corresponds a group of quaternions

multiply isomorphic with it, and to every quaternion group corresponds a

group of binary linear fractional unimodular substitutions, the latter not

always distinct for different quaternion groups.

321. Theorem. To every quaternion of tensor Tq corresponds a Gaussian

operator Tq . q () q~
l = 6fq ,

and conversely.
If q.r = s, then G

q
. Gr= G,.

Hence groups of these Gaussian operators are isomorphic with quaternion

groups, and conversely, but the isomorphism is not one-to-one.

322. Theorem. To every unit quaternion q, there corresponds a rotator

R
q
= q () q~

l

,
and conversely, the same rotator corresponding to more than

one quaternion.

Likewise a reflector
(
= q () q~', and conversely.

Further, for any fixed quaternion a admitting of a reciprocal, there cor-

responds the a-transverse of q,

1 Cf. LAUEENT 8, 4.
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Thus if qr = s,

R
q
.Rr

= R
s R

q
.Rr

= - R, .

Thus to every group of quaternions ql . . . . qn , corresponds the rotator group
R

qi
. . . . R

qn ;
the reflector group R

gi ,
R

3i
. . . . R

q,;
and the transverse

groups T ( .... T {

. If a = 1, the transverse group is the group of conju-

gates ;
and if /Sa = 0, we have a group of transverses in the matrix sense.

323. Theorem. If we consider that q and q are to be equivalent, q= q,

then the ro.ation groups give the quaternion groups as follows:
2r

To Cn corresponds &ir
,

r = 1 . , . .n

Dn corresponds 7ci, i, r = 1 . . . -n

T corresponds 1, i,j, k, (1 ij =b
Jc)

corresponds 1, is, fi, k?, J(l i / fy

i) r=l, 2, 3

, 7 zh . 7 2h A; e (i + 2/ cos 72) k 5

7 corresponds ftr, ^ 5
,

- V 1 + 4 cos* 72
o
?t' 2h"

Ars j(l H- 2 & cos 72)7<nr h h1 h" = 1 5
4 cos2 72

324. Theorem. To the extended polyhedral groups correspond the follow-

ing five quaternion groups :

To C'r corresponds the group lc^
,
of order r, (k any unit vector,

n = 1 ---- r).

To D'r corresponds the group Tel i
h
,
of order 4r, (Sik= 0, i

2 =
1,

n= 1 ---- r
;
h = 1 ----

4).

To T' corresponds the group of order 24 : 1, i
t /, &,

i( i t y &).

To (7 corresponds the group of order 48: 1, i, y, =fc &,

i (
i t y A) W2 (

i
) i vs (

i y)

To /' corresponds the group of order 1 120 : A;T, jkv,

W Vi+tf
where

n,s = l ____ 5 n + s= 1, 2 (mod 5) u = 2 cos 72= 5
(

1 +</5)

1 Ct STBIHQH^M 3.
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325. Theorem. Combinations of rotations and reflections give the poly-

hedral and the crystallographic groups. Thus we have correspondences :

Cr =k*?Qk-* n=l.... r

DT = kr()k-*? i()i~
l =!.... r

T -I kQk-
1

tO*'
1

/()/- (lijk)()(lijk)-1

0=1 ;()-' yoy-1 &0&- 1 (iijk)()(iijk)-*
(i ) o (i t)-

1

(i /) o (i i/)-
1

(i *) o (i *)-'

(t y) o (
; y)-' (y t) Q (y *)-' (i i) Q (* i)-

1

/ = #()Ar yOy"
1

( + 2 cos 72 &)()(i+ 2cos72A;)-
1

and their combinations.

C'r = [ A;^
1

() k~
r

-r]
h h=1....2r

OIL OL

C1

^'
= &v () /C~T 7i () A;"

1 and combinations A = 1 .... r

C'r
" = kr () Tc~"r - i () i"

1 and combinations h = 1 . . . . r

D'r =.
[ k

r~
() k'^] i

()
i~l and combinations h = 1 ---- 2>-

OIL OX

Z)^' = ^T () &- 7 -
^() k~

l
i () i"

1 and combinations A = 1 .... r

2& 2A
D'r

"= A;F () 4~ 7 a () a"
1

i ()i
-1

a_L/c and combinations A = 1 .... r

/Tif ____ /TT /jj

T' = T [ (t y) () (i y)-
1

] and combinations

a = o o
r i i

326. Theorem. If S. e = s, e
m=l

;
then the product of each group in 324

into the cyclic group of e, gives a group of quaternions.

327. Groups of quaternions whose coordinates are in an abstract field,

remain to be investigated.

328. Theorem. The continuous groups
1 of quaternions are as follows:

(1) All quaternions.

(2) All unit quaternions.

(3) Quaternions of the form w + xi + y& ;
Si $ = = $*.

(4) Quaternions of the form w + y&; (^may=y+ V Ik).

(5) Quaternions on the same axis, w + art.

(6) Scalars, w.

(7) The quaternions <
c+1

3 (1 + V^l ) + V i (1 \^l i) + y$,
t arbitrary.

(8) The quaternions el +
(9) The quaternions l-f-j

(10) The quaternions f + 1

i(l + V^~l i) + t
c
i (1 V^

1 SCHEFFKKS 7.
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XTTT. GENERAL THEORY OF ALGEBRA.

329. While this memoir is particularly concerned with associative linear

algebra, it is nevertheless necessary, in order to place the subject in its proper

perspective, to give a brief account of what is here called, for lack of a better

title, the general theory of algebra.

The foundations of mathematics consist of two classes of things the

elements out of which are built the structures of mathematics, and the processes

by which they are built. The primary question for the logician is : What are

the prime 'dial elements of mathematics ? He proceeds to reduce these to

so-called logical constants :
l

implication, relation of a term to its class, notion of

such that, notion of relation, and such further notions as are involved in formal

implication, viz., propositioned function, class, denoting, and any or every term.

To the mathematician these elements do not convey much information as to

the processes of mathematics. The life of mathematics is the derivation of

one thing from others, the transition from data to things that follow according
to given processes of transition.

For example, consider the notions 3, 4, 7. We may say that we have

here a case of correspondence, namely to the two notions 3, 4 corresponds the

notion 7. But by a different kind of correspondence, to 3, 4 corresponds 12;

or by other correspondences 81, or \/3, and so on. Now it is true that in

each case here mentioned we have a kind of correspondence, but these kinds of

correspondence are different, and herein lies the fact that all correspondences
are processes. Equally, if we say that we have cases of relations, that

3, 4, 7 stand in one relationship; 3, 4, 12 in another, etc. these relations are

different, and the generic term for all of them is process. The psychological

fact that we may associate ideas together, and call such association, corres-

pondence, or relationship, functionality, or like terms, should not obscure the

mathematical fact, which is equally psychological, that we may pass from a

set of ideas to a different idea, or set of ideas, a mental phenomenon which we

may call inference, deduction, implication, etc. We therefore shall consider

that any definite rule or method of starting from a set of ideas and arriving

at another idea or set of ideas is a mathematical process, if any person

acquainted with the ideas entering the process and who clearly understands

the process, would arrive at the same goal.

Thus, all persons would say that 3 added to 4 gives 7, 3 multiplied by 4

gives 12, etc., wherein the words add, multiply, etc., indicate definite processes.

330. Definition. A mathematical process is defined thus :

I. Let there be a class of entities \a\.

II. Let there be chosen from this class n 1 entities, in order a^, cr2 . . . an_l .

III. Let these entities in this order define a method, F, of selecting an

entity, an ,
from the set.

Then F(a l , a.,
. . . . an_ 1} an) is said to represent a mathematical process.

'B. RUSSELL 1, p. 106.



76 SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA

The entities a, ---- an _j are called the first, second ..... (n l)-th

facients of the process. The entity an is called the result. Occasionally this

process has been called multiplication, Oj . . . . a^jbeing called factors.

331. The class of entities \a\ may be finite or transfinite. If transfinite

they may be capable of order, and may be ordered, or they may be chaotic.

It is not known whether there is any class incapable of being ordered, or not.

The number n may be any number, finite or transfinite, of a CANTOR

ordinal series of numbers.

332. Definition. Let us suppose, in the process F(ait a2 . .. -a,,^, a,,), that

an is known, but ar [lr<n 1] is not known. We may conceive that by
some process F, t

we can find ar ,
the order of the known terms being, let us

where ilt % -! are the subscripts 1, 2....r 1, r +!.... in some

order, so that

*"cK, v <****, >)

F, is called & correlative process, the (T-correlative of F. The process Fis uni-

form when, for all correlative processes, ar is determined uniquely.

333. Theorem. There are for F, n! correlative processes, including F.

We may designate these by the substitutions of the symmetric group on n

things ;
so that if we have

F(alt az ,
aa ---- an)

then we also have

where a is the substitution

/I, 2, 3....n>
V 7 t\ vi . f .) . '

;
.

1| 7 O

334. Theorem. Evidently the (^-correlative of the (^-correlative ofF is the

ff3-correlative of F, where

We write, therefore, F,ri ^-i
= F,t

-i = F^-i .

The correlatives thus form a group of order n ! .

335. Examples.

(1) Let o8 be tax-payer, o^ be boy, az owner of a dog, then

F (av az a3)
: a boy who owns a dog pays taxes.

Fay (a i <h aa}
' the possession of a dog by the boy requires payment

of the tax.

^(13) (
ai <h aa)

' the tax on a dog is paid by the boy.

^(23) (
a

i a2 aa) : the boy pays taxes on the dog he owns.

-^(izs) (
a

i az as) : the tax paid by the boy is on a dog.

^(183) (
a

i
aa "3) : the dog requires that a tax be paid by the boy.

(2) Let a
lt a?, aa be numbers

; ^(^0203) mean a3 is the ax power of 02.
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Then F(K) (a 1 a2 a3) means a3 is the log u2 power of the exponential of a
t

.

Fas> (aj a2 3) means
! is the quotient of Ioga3 by log a3 .

F
(2a) (ajO^ag) means a2 is the ax root of a3 .

FQSS> (
a

i
a2 as) means a

a is the log a3 power of the exponential of .

ai

-^<i32, (ai
a2 as) means e^ is log 3 on the base 2 .

336. Theorem. The correlatives of F fall into sub-groups corresponding to

the sub-groups of the group Gnl .

337. Befinition. It may happen that in a given process, F, we may have

simultaneously for all values of Oj .... an_j

^(a^a-j....^) (1)

F(atl ,
a

tl
....an) (2)

Since we must have from (l) F,-i(ail,ail
an) we must identify F and

F,-\ t
or as we may write it, F Fv-i . The correlatives will break up then

into groups where m is the order of the substitution cr. We call thesem c

cases limitation-types of F.

Examples. For F(^ a2) we have but one case : F= F
(12)

.

For F(a l
a2 03) we have five types :

(1) F=F(tS).
This is the familiar commutativity of ordinary algebra.

It follows that

-M13)
==

-^(23) -M133)
=

-^(132)

(2) F- F(m ,
whence F,w = F(m} , F^ = F^

(3) F= Fm ,
whence Fw = F09t ,

F
( ,, }

= F(m
(4) F= Fim = F{mt ,

whence Fw = F
(}3)
= F

(SJ}

(5) F= F(K>
=

(̂13)
= FW, = -^(123)

=
-^(132)

For F(a l a^, a3 a4) we have twenty-nine types corresponding to the sub-

groups of the group G^, :

(1) F= Fm (2) F= Fw (3) F= F(U)

(4) F= Fm (5) F= FW (6) F= F
(m)

(7) F=F(lz) (34) (8) F= Fan (24) (9) F= Fw (23)

(10) F=FIW) =Fiao (11) F=Fim)=Fattt (12) F=F(m
j

=F(M)

(13) F= F
(234)

= F(2t3) (14) F = F(ltw
= F

(13} (24)
= F(HW}

(15) F= F(mt)
= Fm (31)

= ^H23) (1*) F F
(1343)

= F(W (23)
= .^i^)

(17) F= F(K)
:= F

l3l)
= J^ i8) (34) (

1 8
)

.F= ^13,
= ^24)

=
(̂13) ,24)

(19) F F
(H}
= -F

(23)
=

^(,4, (23) (20) F= Fm (34)
= F

(IS) (24)
=

^Jjj (33)

(21) F= F
(K}
= F

(13}
= F

(23)
= F

(123}
= Fggq

(22) F= F
{K}
= F

(lt)
= F(W = F

(12t)
= F

(IK)

(23) F= Fm = Fw := ^34,
= F(m)

= F
[li3}

(24) ^= F
(23}
= F

(U)
= Fm = F(m = (̂2431

(25) F= F(13)
= F

(2it
^ Fm (24)

=
-^(1234)

==
f(l2) (34)

=
^(1432)

:=
*<Mj (23)

(26) ^= /"(J2)
= ^34)

=
-?''(12)(34)

=
-^(1324)

==
-^(13) (24)

==
-^(1423)

==
-^(U) (23)

(27) F= Fw = ^(23)
= ^12) (34)

=
-^(1423)

=
-^(H) (23)

=
-^(1324)

=
-^(13) (24)
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77'
J7* r TJT n TJT

-^(131) ^(143) ^(234) ^(243)

(29) F=&\\

338. Theorem. It is evident that every group defines a limitation type for

an operation F of some degree.

339. Definitions. Suppose that in a process all the elements but two are

fixed, and that these two vary subject to the process. Then the ranges of

values of these two are said to form an involution of order one. If all but

three elements are fixed, the ranges of these three form an involution of order

tvoo. Similar definitions may be given for involutions of higher order.

An involution of order r is often called an implicit function of r -j- 1

variables. The symbol consisting of the process symbol and the constant

elements is called an operator.

If in any involution of order one the two elements become identical so

that they have the same range, for any given set of constant elements, then

this set of constant elements constitutes a multiplex modulus for the process.

For example, in multiplication F .(ab = b) when a is 1. A similar defini-

tion holds for higher involutions.

If in any involution of order r, the constant terms determine an involu-

tion whose terms may be any elements of the set, then the constant terms

constitute a zero for the process. For example, if F . (Oa = 0), for all a, is a

zero for multiplication. An infinity is, under this definition, also a zero.

We have seen that there co-exist with any process ^certain other correla-

tive processes on the same elements. These give us a set of co-existences

called fundamental identities; but we may have co-existent processes which

are not correlatives. In the most general case let us suppose that we have

F' .an aK a
lni

F" .a2l a!S a 2n,
F(r

-
]) .ar+lil ar_1>2 a r_lt n

r_i

and that when these processes exist, then we have F^ . arl a^. . . .arnr .

We say that F(r) is the implication of the r 1 processes preceding. We
enter here upon the study of logic proper. For example, if the processes are

F' . ab F" . be F'" . ac

we have the ordinary syllogism.

We may symbolize this definition by the statement

d) F 1 F" Jf (r-l) Mr)
n l *4

* nr\ -*
tlr

and we see then that the form is again that of a process 3>.

We can not enter on the discussion of these cases beyond the single type
we need, called the associative law.

Let F be such that for every a, b, c, we have

F. abd F .dee F . beg then F. age

then Fis called associative. The law is usually written ab . c = a . be

Processes subject to this law are the basis of associative algebras.
1

I Cf. SCHBOEDEB 1; RUSSELL 1, 2; UiTHAWAT 1.



PART II. PARTICULAR ALGEBRAS.

XIV. COMPLEX NUMBERS.

340. Definitions. The algebra of ordinary complex numbers possesses two

qualitative units, e = 1, and e
lf such that

$ = e e1 eQ= e1 = e e1 ef= e = 1

The field of coordinates is the field of positive and negative numbers. The
field naturally admits of addition of the units or marks.

341. Theorem. The characteristic equation of the algebra, as well as the

general equation, is

or
'

xe y
y xe <

Hence for any two numbers

or

(T xa tit 4- xx' + i/i/ =
The characteristic equation is irreducible in the field of coordinates, but

in the algebra may be written

% e
i f xeo + Vei =

The numbers ^ xe + ye^ and K%= = xe yet are called conjugates.

Hence ^
2

2x^ + os + r/

2 = has the two solutions
, ^"^, or (^ ^)

5" are its factors.

342. Theorem. If several algebras of this kind are added (in the sense

defined by SCHEFFERS) we arrive at a WEIERSTRASS commutative algebra.

343. Theorem. If the coordinates are arithmetical numbers we must

write this algebra as a cyclic algebra of four qualitative units

^0 e
l ^2 e3

where

q = e2 &i
= e3 e1

= e

In this case the units e and 2 are n t independent in the field, and com-

bine, by addition, to give zero,
1 and the algebra is of two dimensions.

STUDY 8, and references there given; BEMAN 2; BELLAVITIS 1-16; Bibliography of Quaternions.

79
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XV. QUATERNIONS.

344. Definition. Quaternions is an algebra whose coordinate field is the

field of positive and negative numbers, and whose multiplication table is

0*6=1)
'.,

et ^8

345. Theorem. The characteristic equation is

* 2* + *? + a? + ** + *f =
The characteristic function of is

If we define the conjugate of by

then the characteristic function factors into
( ) ( -#)

346. Theorem. The first derived characteristic function of and a is

This vanishes for .- _ v __ v/

or
<r =

347. Definition. The scalar of is # = a- = i (^ + ).
The tensor of is

given by (7'0
2 =^ = ^-

348. Theorem. We have

2 FFr F^ + 2 ' =

if =
f, and T=

';
or if g= ^, r = ^; also ^' = S&'.

r
349. Definitions. The versor of is 17^ = -, The vector of is

350. Theorems, f = S$ +

If ^=0 = /& a = Va ^ = F^

and F . F<r = Fa 7^ + 2 . FerF
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Also

Also

- Va

If a, /?, y are vectors,

F . a 7/3y = ySafi

If 5 is a vector,

= aS{3yo + (3Syab +

2 F .

- ' S .

. 7<r .

. V

7 . a/?y
= a/?y

ftb
= ValJSyb +

+ ySafi

If a,

Then

c, d, e are quaternions, let us use the notation

B . ab = 1 (06 ba) B'. ab = bSa

B .abc = S . aBbc V(aBbc + bBca + cBab)

B . ab = B . ab = V . Va Vb = B . ba B.bb=0
S . aBbc = S . VaVbVc= SbBac= etc.

B . abc = B . bac = etc.

S . aBbcd = S. bBacd = etc.

eS . aBbcd = aS . eBbcd bS . eBcda + cS . eBdab dS . eBabc

= Sde . Babe + Sae . Bbcd She . Bcda + See . Bdab

c d e

B . abBcde = Sac Sad Sae

Sbc Sbd She

B'(BabcBatf) = Be/SaBbcd + B/dSaBbce + Bde SaBbcf
B (BabcBdef) = BefSaBbcd B'/dSaBbce B'de SaBbcf

b

B (Babe Bde/ Bghi) =
a

SaBdef SbBdef ScBdef

SaByM SbBghi ScBghi

|
Sao1

, SbV, Sec
1

1

= SBabc Ba'b'd

| -Sao', SW |

= SB'ab B'a'b1 SBab Ba'V

\ Saa', Sbb', Sec1

,
Sdd'

\

= SaBbcd Sa' Bb'c'd'

The solution of the equation a
1p -\-paz -=.c is

p = (a* + 2 c 2)

351. Definition. If the coordinate field contain the imaginary V 1, we

may have for certain quaternions the equation (f = 0, whence q = yd,
?=

0,

and y is any scalar. In this case there is an infinity of solutions of the equa-
tion in the algebra.
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Also if g
1 2x g + S

= 0, then q = x + yO.

The nilpotent is always of the form a + V 1 (3, where

Since <v/ 1 will not combine with positive or negative numbers by

addition, we may eay that this algebra is in reality the product
1 of real

quaternions and the algebra of complex numbers, giving the multiplication

table

e e
1 e% es et es et e^

e sj

6j ^O

eo e
i

e
l

e

ee e^

e6 e^

with equations of condition

e + e4 = ex + c6 = e, + es=
This algebra HAMILTON called Biguiternions.

63 + e7 =

352. Definition. The algebra Xuo ,
X120 , ^Q, Jlgzo also is a form to which

real quaternions may be reduced by an imaginary transformation.2 By a

rational transformation this becomes

^-110 + ^220 ^110 ^220 ^210 + ^-120 ^210 ^120

References to the literature of quaternions would be too numerous to give

in full. They may be found in the Bibliography of Quaternions. In particu-

lar may be mentioned the works of HAMILTON, TAIT, and JOLT.

1 That is, any unit may be represented by a double symbol of two Independent entitles, the two sets

of symbols combining Independently.
' B. PBIROE 8.
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XVI. ALTERNATE ALGEBRAS.

1. ALGEBRAS OP DEGREE TWO, WITH NO MODULUS.

353. Definition. An alternate algebra is one in which the defining units

are subject to the law
e
i
e
j / *{ i ^ 3

The product e
i
e
i
=

e\ is variously defined. In the simplest cases el is taken

equal to zero.

354. Tueorem. When 4 Cj -\- e^
e
t
= 0, i, j= 1 . . . .

r, we have

e?
= i=l r

2 =
o, <T + a = all values of

,
a

CTT = all values of
, <r,

t
For

(2 art e<)
2 =0 (2 a:, ,) (2 y( e) = (2 y( e,) (2 xt ,)

and 1

<T . T= . T<T = t . <T = T . (T =

355. Theorem. We may therefore select a certain set of r m h units,

e
1

. . . . cr_m_, whose products e
i
e
j (i, j= 1 . . . .r m A) are such that at

least one for each subscript does not vanish
;
we may then choose for the next

m units the m independent non-vanishing products of the first r m h

units; finally, the last h units may be any numbers independent of each other

and the first r A units. We must have 2

or

(r m h)
2

(r + m h)>0

2. GRASSMANN'S SYSTEM.

356. Definition. The next type of alternate numbers is that of GRASSMANN'S

Aitsdehnungslehre. In this case there are m units which may be called funda-
mental generators of the algebra, et . . . . em . For them, but not necessarily for

their products, the law e
i e^ -f e

t
e
t
=

(i, j =. 1 . . . .m) holds. They are

associative, and consequently the product of m -j- 1 numbers vanishes. There

are r = 2m 1 products or units, e{ ,
e

t
e
}>

e
i
ej ek> etc.

This algebra uses certain bilinear expressions called products, which do

not follow the associative law, and also certain regressive products, which do

not follow this law, and which are multilinear expressions in the coordinates

of the factors.
3

1 SCHBFFF.RS 8. Cf. CAUCHT 1, 2, 8; SCOTT 1, 2, 3. 'ScHEFFKnsS.

References are too numerous to be given here. In particular see Bibliography of Quaternions;

GRABBM&NH'S works; SCHLKOEL'S papers; HYDE 1, 2, 8, 4, 5, 6, 7, 8, 9
;
BEMAN 1; WHITBHBAD 1. Cf.

WILSOH-GIBBS 1
;
JAIINKR 1. Works on Vector Analyti* are related to this subject and the next.
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3. CLIFFORD ALGEBRAa

357. Definition. A type of alternates of much use, and which enables all

the so-called products of the preceding class to be expressed easily, is that

which may be called CLIFFORD'S Algebras. Any such algebra is defined by m
generators e1

. . . .em with the defining equations

e? = 1 e
l
e
i + e

j
e
i
=

i, j= 1 ---- m
;

i :/
e

i
.e

j
e

lc
= e

i
e
j
.ek i,jt

Tc=\ ---- m
The order '

is r = 2m .

358. Theorem. If m = 2m', m' an integer, the CLIFFORD algebra of order

2m = 4m
'

is the product of m 1

quaternion algebras. If m = 2m' -j- 1, m' an

integer, the CLIFFORD algebra of order 2
W = 22m/ + 1

is the product of m' quater-

nion algebras and the algebra
2

359. Definition. Since any product such as

e
ii
e
i,

' ' e
li

' e
i,

'

may be reduced by successive transpositions to a product of order two lower

for every such pair as e
tl

. . . .e
il}

it follows that in the product of n numbers
m

1- ? where 4
= 2 Xy>, we may write

f,&...-k=F..i....,+ F._,. &..... + ....

<t(n + l)= 2 Vn-Zis SI' 'Sn
=

The expression Vn_ 2g is the sum of all expressions in the product t
>.

which reduce to terms of order n 2s. Evidently when n is even, the lowest

sum is a scalar, V
;
when n is odd, the lowest sum 8

is V^

360. Theorem. To reduce to a canonical (simplified) form any homo-

geneous function ofN of the m units, consisting of terms which are each the

product of a scalar into n of the units (of order n, therefore), we proceed thus :

Let q be the given function. Then by transposing the units, we may
reduce q to the form

q=-q'il + q

where i, is any given unit, and q' (of order n 1) is independent of q" (of

order n) and of j. We find easily

4 = Vn -iqii q" h = Vn + j q^
Therefore

V
1 . qq' =V,q 7m _ 1 q^ = a

1 = <J> (ij)

The linear vector function 4> is self-transverse, has therefore real, mutually

orthogonal axes. These are the units to be employed to reduce to the canon-

'For this class see Bibliography of Quaternions; in particular CLIFPOBD'S works; BEEZ 1
;
LIPSCHITZ 1;

JOLT fl, 12, 25 ; CATLKT 6, 7.

JOLT 8.
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ical form. For example, if q is of order 2, and the function is the general

quadratic for N units, there are i N(N 1) binary products. Then

If tj is an axis of this equation so is w
1

. Hence the quadratic takes the form

where p = J N or J (N 1) as Nis even or odd.1

361. Definition. Let K change the sign of every unit and reverse every

product. Then if q is homogeneous, of order p,

Hence K , qf
= qp &s p= or 3 (mod 4) or == 1 or 2 (mod 4).

Let /reverse the order of products, but not change signs, thus

/. gp = qp if p = 0, or 1 (mod 4)

/.
<7P
= qp if p= 2, or 3 (mod 4)

Let J change the signs of units but not reverse terms.

362. Theorem. K.pq Kq,Kp I.pq = Iq.Ip I = JK= KJ
J=K1 = IK K=UJI P JZ KZ -

363. Theorem. Let p be of order 2, q of order 3
;
then

Pz <h ^i Pa 2s+ ^3 Pz 9s + ^6 Pz 9s

Hence, taking conjugates,

and

This process may be applied to any case.

364. Theorem. Let

q.Kq=q'*-q
z -(q'q-qq')

Hence

q.Kq = Kq.q if q' q"
-
q" q

1 =
Let the parts of q be (according as their order =0, 1, 2, 3 mod 4)

5 = ? + Sto + 2(8) + 9(8)

Then

<l 9" 2(0) ?U) + ?(3) ?() + 2(0) 9(3) + 9(3)

and the condition above reduces to

9(P) 2(i) 9(D 9<o)
=

9(2) 9(3> 9(3) 9(2)

or

(2(0 2a) 9(2) 9(3))
=

2(2) 9(2) 9(0) 9( 9(3) 9(3) 9d)

(0) 9(2) 9(D 9(3))
==

'JOLT 6. This reference applies to the following sections.
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When this is satisfied

qKq = F
(0) (9(2, q?n 9<1, + q,) + 2 F

(8) (glC) ?(3l

This is a scalar if F
l0)
= F and F

(8)
= 0.

365. Theorem, q . Iq = Iq . q if

= = F 8
-

366. Theorem. Let P=iqpq~
1

,
where 9 is any number, possibly non-

homogeneous. Then P=FU) ./
> if qKq and qlq are scalars.

But F
(1) may not =Fj. For example, let

q = cos . tj ij + sin u . ia it ib it

q~
l = cos .

! tj + sin u . i% i4 i6 i6

q* =. cos* u + sin2 u + 2 sin u cos u ^ 2 ta t4 1'5 1,

P
=

*i, *z, s, *<, *s, *6, then

P = q
2
t
1 q\ q*i3

- q\ - q\ - g%

which are of the form F
(J)
= F, + F6 .

367. Theorem. An operator q()q~
l can be found which will convert the

orthogonal set ili iz . . . .in into any other orthogonal set j\,jz Jn ] namely,

where

, f,
v . . . . = 1, 2 .... n s ^.t ^.u^ . . . .

If jp^"
1 = pop~

l for all values of
p,

a vector, then 9 is a scalar multiple
of p. q may be written

9l2?3i 921 1,21

where 2Z= n or n 1 as n is even or odd, and

9!2
= cos \ 13 + ij i2 sin ^ u^, etc.



BIQUATERNIONS OR OCTONIONS 87

XVH. BIQUATERNIONS OR OCTONIONS.

368. Definition. Besides HAMILTON'S biquaternions, two algebras have

received this name. One is the product of real quaternions and the algebra

d; e = e = ef, e e
1
= e^ = 6^, the other is the product of real quater-

nions and the algebra
1 C2 : el= eQ , e$ e

l
= e

l
e = e

l , ef = 0.

369. Definitions. Let fl2 =
;

let q, r be real quaternions ;
1 is commu-

tative with all numbers ; 5 = o + a;
;

r = a + y. Then the octonion Q is

given by
Q = q + fir

We call q the axial of Q, fir the converter of Q. The axis-direction of Q is

UVq. The perpendicular of Q is m = V. ao~ 1
. The rotor of Q is Vq ;

the

lator is Fr; the motor, Vq + flFr. The ordinary scalar is Sq; the scalar-con-

verter is n5r
;
the convert is /Sr.

We write

Q = SQ = S, Q + S2 Q
S. Q = Sl

Let q, F, Q be the conjugates of q, r, Q, also designated by Kq, Kr, KQ.
We define

KQ = Kq + Htfr, or Q = q + lr

The tensors of 5 and r are
7^-, TV

;
the versors, Uq, Ur :

The augmenter of is TQ= Tq(\-}-l8rq-^}=Tl Q. Tz Q=T Q (1+ fltQ).

The tensor of Q is 7^ Q.

The additor of is T2 Q=l + flSrq'
1

.

The /HtfcA of is tQ = $ . rj"
1

. 7^ Q = 1 +
The twister of # is UQ = Uq (1 +
The versor of @ is U^ Q = Uq.

The translator of Q is Uz Q = l + l

Hence

g = 7; g . 7^ . fT, g . f72 g

370. Theorem. Octonions may be combined under all the laws of quater-

nions, regard being given to the character of H.

371. Theorem. If Q, R be given octonions

/^l I r> ... "V" f\ D __ TT
g -f- xi ^ JL V" *

and if e is any lator; then if

q = Q + ClMsMQ R' = R + ClMeMR
X' X + CIMeMX Y'= Y+ HJfeJ/F

then

+ R' = X' Q'R'= Y'

'CLIFFORD 1, 4
;
M'AOLAT 2, which applies to sections following; COMIIKBIAC 1, 2; STUDY 4, 5



88 SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA

Hence if k /\ , /\

the application of $, to all octonions gives an isomorphism of the group of all

octonions with itself.

372. Theorem. If Q = <pf
. Q', or q + fir= $, (tf + Clr1

),
then

q
1 = q r1 = r M(p Mq)

373. Definition. The axial

qQ
= q + fl (Mq)-

1 MMqMr = x + o +
is called the special axial of @, and

G) / 0)

is called the special convertor-axial of $.

374. Theorem. We have

where
J fl =(l+l
rQ
=

1
1 + M . (Mr [Mq-

1

) ()\(rM.(Mr [Mq]
~ l

) Mq)
= $11 ,- J (

r + M uMaa'1

)
=

<pM ea,-i (Sr or1

Soa)
That is

Q = $jr.-i Q', where ' = 3 + fl (/Sr o"1

-5bd)

or

Q'= q + H [^r (Ifj)-
1

>S% Jfr]

375. Theorem. Any octonion may be considered to be the quotient of two

motors. That is,
if Q be an octonion it may be written Q = BA~* or QA = B,

where A and B are a pair of motors.

376. Theorem. Q~
l = q~

l
l q~

l r q~\ when q $. 0.

377. Definition. The angle of q is the angle of Q.

378. Theorem. Q () Q~
l

produces from the operand a new operand which

has been produced from the 6rst by rotating it as a rigid body about the axis

of Q through twice the angle of Q, and translated through twice the transla-

tion of Q.

379. Theorem. If A and B are motors

and

d = Tw, 6 = L

Hence axis M . AB is
, pitch =p ~\- p' + dcoiO
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If A and B are parallel, we determine M'

. AB by

89

Again S . AB = S. at p + Q.
\ (p + p') Sat

s.AB=(p
'd tan

tAB=p
m

For the sum we have

A + B = jl

where p" + *' = (p a, + p'P + w /3) (a, + (3)~
l

or

p" =S(pa 1 +tfP) (a, + P)~
l a Man P. (a, + p)~*

w' = u,S@ (ai + {3)-
1 + (p p

l)Mal p.(al + /?)~
2

380. Theorem. If A, Bt
C be three motors, and if d and 6 are defined as

in 379 for A, B, and likewise e, ty are corresponding quantities for M. AB
and C, then

tSABC= tA +tB + t C+ d cot 6 e tan $

Hence if we have three motors 1, 2, 3, and if the distances and angles

are: for 23:^, 0,; for 31 :d^ t 8 ;
for 12:d3 ,

63 ,
and for 1 and d

1 :el , ^j 2 and

d^:ezt $2 ;
3 and d3 :e3 , $3 ,

then

di cot BI e
l
tan ^ = d% cot 2 ez tan $a

== da cot Q3 e3 tan (^3

381. Theorem.

T
l (QR....)=T1 Q.Tl

R.... t(QR . . . .)
= t tR

and

382. Theorem.

tM. (MAB) C=tA + tB + tC+ d cot 6 + e cot
<J>

383. Theorem. If E is coaxial with A, B, C, then

ES.ABC=AS.BCE+BS.CAE+ CS.ABE
= MBC.SAE+ MCA . SBE + MAB . SCE
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384. Theorems.

If \LJLk, then
A = t SiA jSjA k SkA

or

A = isQ.iA-jsQ.jA ks&kA QisiA QjsjA ClkskA

If

A = xi + yj + zk + Ifli + mlj + nlk
and

&= J^ +/3- + k S- + n i -j- + a/Jc + Mei-dl
' J om n dn ox ' J

dy
}

dz

then

(9.dA$)= d()
$ is independent of i,jt

k.

If J. is a lator, s . A* = 0.

If A is not a lator

a . A2 = 1tAM\A = 1tAT\A s(TQY = 2< . T\ Q

385. Definitions. The motors Alf A2 ....An are independent when no

relation exists of the form

!
A

1 -f . . . .
-f- xn An= 0, [ajj

. . . . xn scalars]

If independent, the motors x^A l -f- +xnAn =-'S.xA form a complex of

order n, called the complex of A
t

. . . .An . The complex of highest order is

the sixth, to which all motors belong.
Two motors A

lt
A2 are reciprocal if sA t

A t
= 0. The n motors A^ . . . . An

are co-reciprocal if every pair is a reciprocal pair ;
in such case A

l
is reciprocal

to every motor of the complex A 2 . . . .An ,
and every motor of the complex

A
1

. Ar to every one of the complex A r + 1
. . . An . The only self-reciprocal

motors are lators and rotors. Of six independent co-reciprocal motors none

is a lator or a rotor.

386. Theorem. If A, B, C are motors, S. ABO= if and only if

(1) Two independent motors of the complex A, B, G are lators, or

(8) XA + YB + ZG 0, where X, Y, Z are scalar octonions

whose ordinary scalar parts are not

all zero.

387. For linear octonion functions and octonion differentiation reference

may be made to M'AULAT'S text.1

'M'AULAT 8.



TRIQUATERNIONS AND QUADRIQUATERNIONS 91

. TRIQUATERNIONS AND QUADRIQUATERNIONS.

388. Definition. Triquaternions is an algebra which is the product of

quaternions and the algebra
*

o2 = (/ = 1 o^ = //G>
= u

389. Definition. If r= w + p + u (w1 + pt ) + p (w2 + p2)
= q + og-j + ^5.,,

where 5, ft, ?2 are ordinary quaternions, then we write and define

r = w + (G>M>! + up*.) + (pwa + p + op^ = G .r + L . r + P.r=w + l + p
where

Gr . r= w = S . q
L . r = (iw2 + p + op!

= (U^ + Fj + (^Sq1} called a linear element ;

P .r owl + ^/p2
=

ttSq! + fi Vq.z ,
called a plane.

Further, we write

L.r = ((iw2 + o/3) + (p 4- up! o/3)

where we determine /? by the equation

then we define

m = (p w2 + u/3), called a point

d=
(p + op, o/3), called a line

L .r = m + d

We define further

L .r m rf, the conjugate of L . r

390. Theorem.

O.ll'=G.l'l L.IV = L.l'l P. IV = P.Z7

G.Ip =0 L.lp = L.pl P. lp = P. pi

G.pp' = G.p
>

p L.pp' = L.p'p P.pp'

391. Theorem.

G . md = G . dm = P .md = P . dm L . md = L.dm =

392. Theorem. Lr . Lr = m? d9 I"1 =
2 I

393. Definitions. T. r = VM^+ II- i?

If

Fj3
= P .r u/Sj!

= uP . r

or

P .r = Sqlt if F& =
394. Theorem. Let

A = ic
2 + ?r p

2 = qq -f qz q%

B = 2 (wTm TLpd) = qq2 + qs q
then

r-1 = (^
2- &) [(A-f

1 COMBEBIAC 3. This reference applies to the following sections.
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395. Definition. Let

m = (ix + of m' = (uo + op'
e = a + o/3

Then we define

7 . m, m' = a-
p' aro p + "-fyp'

S .c, m =
ft (x /3 + ap) + otf/Sp

. m, m', ro"=
(
F. m, m') m" = S . m V . m', m"

396. Theorem. V . op, op'
=

oZ/pp' . op, op'
=

o(7pp'

S . c, m:= S . m, c V . m, m' = FWJ', m

G .c S .c, m = L .c S .c, m = JPc2
. m P .c S . c, m = S . c, Lcm

{? . S. c, m . m = L. S .c,m ,m-=.V.m >
Lcm P.S.c,m.m = Q

Q- .m V.m, m'= Z, . m Fm, n'= P.mV. m, m'= /S
1

. m, Zm m'

397. Theorem.

' =
Fpp' + o [ F(pp{ + p, p') + a-i pl

- x
pl]

S'O PI 2*0 Pi

398. Theorem. Gpp' = Tp Tp' cos (p,p') Lpp'= Tp Tp' S sin (p,p')

399. Theorem. I = 0a- + p + opt p = ;ua + uw Glp =
Lip = (iSfa + a: a + o

(trp + Fpj a)

Let 0, o, o' be units satisfying the multiplication table

u. co o'

1 0) o'

o 2 (^ 1)

o' 2(0+1)

and let the quadriquaternion* A be defined by the equation

A= o-

where q, qlt q2 , q3 are real quaternions. The units
(i, o, o' are commutative

with q, qlt q2 , q3 . If ^= 0, A becomes a triquaternion.
We may write A as the sum of three parts each of which may be found

uniquely :

A=(?.A + L.A + P.A
where

G.A = S.q
L.A= V.q + fiS.qt + wF. ?3 + o'F. qa

P. A =pV.qi + uS.q2 + u'S. qa

Then the formulae of 390 above hold for quadriquaternions as well as for

triquaternions, if I= L . A, p = P . A, etc.

1 CoMBEBIAC S.
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XIX. SYLVESTER ALGEBRAS.

1. NONIONS.

400. Definition. Nonions is the quadrate algebra of order 9, corresponding
to quaternions, which is of order 4. In one form its units are l

^110 ^120 ^130 ^210 ^220 ^230 ^310 ^-820 ^380

401. Theorem. The nonion units may be taken in the forms (irrational

transformation in terms of o, a primitive cube root of unity)

^0 == 1 ^\A\I T ^220 ~H ^330 * - ^110 I ^220 ~T <"> ^-330 * ==
^110 H~ u ^-2

J = ^120 + J =

whence 2

-

402. Theorem. If

Then
S. ^ = a-o

S .J ^ = 3T

<?.
= 2 z

S.i $=
S . if $

a, 6 = 0, 1, 2

Hence

and if

therefore

S .

+ a-os 2/oi + 0X122/21 +

= S . di S .

l
o" t^y*w (?+j=8) (mod 3)

ws
*ii 2/22 + *si 2/12

= S .

403. Definition. IfS.fy=0 S.j*<l> =
define

a, 6, c, d = 0, 1, 2

a,6>C,d,e,/=0, 1,2

S.j=0 then we

404. Theorem. We may write 9 in the form <p
= a + bi -\- ci

2
(at least if

has not equal roots); whence, if y is chosen,
3 so that /S;'=0, S.ji = Q,

jH = 0, we have

K =*-* = a + o2
bi= a ci

z

' SYLVESTER 3, 4
;
TABER 2

;
C. S. PEIRCE 6

;
also the linear vector operator in space of three dimensions,

Bibliography of Quaternion*, in particular HAMILTOK, TA.IT, JOLT, SHAW 2; also articles on matrices.

' SHAW 7. This applies to $ 402-403. Cf. TABBB 2.
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405. Theorem. Iff is to be such that S.j' = 0, Sij
1

0, Si z
j' = 0, and

if/ is Huch that S .j= 0, Sij= 0, Sij
9 =

0, we may take

3' = v + ft v f

whence

/ = 2aj a2 + 2ft y2 o* + 2ft yj o + i (ft a2 -f u2

ft a2 + aj ft u + a, ft)

+ '*
(i yi -f- ai y "2 + "2 yi + a? yO +

and if ^.y
2 =

0, Sij
K =

0, /8iV = then

aj 0.5 + u /32 YI + 2
i^i /a

=
/^i "2 + " a, /?2

= aj y2 4- u a2 y,
=

whence

and

That is

Hence

and

a2 : ^2 : y2
= ai : o2

/?, : oy, or as
=

/32
= y2

=

>' = (i + ft t + /! i*)j
=

j(tti + tf ft i 4-

V 1 ,' + ft * + y, i
2
)-

1 =
(a, + o2

ft i 4 ay, t
8

)/-
1

/

( + u + )/-! =y(a + U + ci*)/-
1

It is thus immaterial what vector/ we take to produce the conjugate

except that we cannot discriminate between K$ for one vector and Kf>$ for

another, if the second is equivalent to the square of the first. We may
therefore omit the subscript/ and write simply Kt

K2
.

406. Theorem. From $ = a + li + ci 2 we have

<j>

3 3a
<?>

2 + .3 (a
8

be) $ (a
8 + b3 + c* 3 abc) =

or

S . $
S . i

2

$
S . i

S . <

S . i*

S . i

407. Theorem. 1

T3 $ = T3 K<i>
= T3

408. Theorem. If a - 1 + t + i
2
,
where $ = SxaZ) i

a
j
b
,

S . aj$
S . a 2

S . j
S .

~ 2

=

1 Cf. TABKB 2.
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Hence

aj + y~
2
ay

2
) $ = S (a + Ka.

Sajty

80.3*$

409. Theorem. 1
>
3 + f

=
where

Also

410. Theorem. If

then

, n)

=(nt)>
[/(, o) + if, (6, o) + tV2 (0, o)] [/o (>?, 0) + if,

If ^>: and ^>2 have the same unit
t,

,, o) +

2)
=

;= 0, 1, 2

s (>7/ o)]

= a + U + ci
2 = a

The functions /A satisfy the addition formulae J

, 0) = o*/t (0, 0) 6,0)=/ (0, 6)

h if, (o
2

0, o/? ) + r/2 (co

2

0, ojy)]

*-' = (T**)~* [/ (- 0,
-

>?) + */, (-0, -?) + *
2
/2 (-0. ->?)]

^>
p =

( 7a <?))
p/3

[ / (i'S) P'n) + */i (^0, ^) + *!/2 (^0> J9'?)]

411. Theorem. The characteristic equation of
q>
= 2 xoft i

a
y

6

may be

written

o xlt -f- o2
a"22 ^oo + w xio + w2x20 ^>

a;01 -|- o xu + u?
a:21

^

i TABEB 2.
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The general equation is the cube of this, but may also be written

ABC

where

GAB
BOA

A--
a-oo

*a>

l*io

=

B= \

xi\

x01

u2
.cu

J2 #02 .

412. Theorem. The cubic in
<J>

has three roots, corresponding to which, in

general, there are nine numbers, in three sets of three each, such that each

set is multiplied by a root of the cubic when multiplied by q> ;
if these are

fu, PIS, fa', Pa, P22, PZS; Pai, Pas, P&, then gk being the root corresponding to

the &-th set,

$ P
= 9k Pki

413. Definition. The transverse of < = 2o-ab i
a
j*, as to the ground defined

by t, j, is

$ = 2 a.,/-
1 ' = 2 xah 6)-

4
V-*

If $>
= $, $ is self-transverse.

414. Theorem. We have <jb$
=

transverse. Again ^nj*
=

4tf>-

For

hence

Also

^ = 2 2/C(1

thence

= 2 oi

= 2x,

= ^, so that
<J>$>

and ^ are self-

-
1

415. Theorem. We have

When

= i 2

=
f

'For farther theorems and applications see JOLT 1, 2, 3.
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2. SEDENIONS.

416. Definition. Sedenions is the quadrate of order 42
. Its units may be

expressed by

^yo , y= i 4

It may also be expressed by units of the form 1

where a, b, c, d = 0, 1, and

Jih = hh hh= hh h h = h h hh =Jt h

ji i*
= H/I /i y = yg /i

* = y!
=

s
= ji = i

417. Theorem. Sedenions may also be expressed in the form

e
<t

1 *110 "^ ^220 "H ^330 "f" ^-440 * ^110 "t" ** 1 ^-220 ^330 *?

y=^UO + ^230 +-^340+ ^410 ^ob = ^f
a, b = 0, 1, 2, 3 ji = V^l y

418. Theorem. If

419. Definition. If /S'.y=0and

S.j<l> = o =
then we define

420. Theorem. We may write generally (that is, when $ does not have

equal roots, and in some cases when it has equal roots)

$ = a + bi + ci
8 + <& 3

Whence

7f<jf>
= a + bii ci

2
dii

3

K*$ = a bi + ci* di 3

Ks
<}>

a Id ci
2 + da 3

Accordingly
2

a =

K*$ tK 3
<}>)

421. Theorem. Theorems entirely analogous to those for nonions (see

402-415) may be written out.

422. Definition. The transverse of <p
= I,xab i

a
j

b
,
as to the ground defined

by i,j, is defined to be

I8TI.VK8TBB 8; TABBB 2; C. 8. PEIKOE 6; SHAW 8. *Cf. TABEB 2.
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3. MATRICES AS QUADRATES.

423. Definition. A matrix (as understood here) is a quadrate of any order;

that is, a SYLVESTER algebra, usually of order >42
. Its units are called vids 1

if they take the form

*,
=

424. Theorem. The general quadrate may be defined by the r n2 units

e^ a, b = 1 ---- n

such that

where
n

'= 2
1=1

J ^120 + ^230 + + ^n-1. n, 4~

271 271
i
= cos |- V 1 ein

n n
If*

a, b = 1 . . . n

c, d = 1 . . . . n

ja+cy&+d a, J, c, d = 1 . . . . n

425. Theorem. .\.<p nz XQQ o j t <2>
*

&a}t ^ ^Y' ~~ ^ T^

426. Theorem. Since every quadrate in the second form may be reduced

to the first form, it is easily seen that $ satisfies the identity (characteristic

equation)
ar^ $ 2 xsl

2 wXo

a;'sn-l

2 w*arra_2

V ,,(n 1)
*., (J J

=

n-l

in each term 4 2 represents 2
i-O

427. Theorem. We may write

<> = 2 t
a
^ /S^ i~*

<^> a, o = . . . n 1

If a = 1 + t + i
2 + . . . . + i

n~l

,
then the identical equation is

Sajf

Saj"-
1

*

a

aj
n-i

=

i LAGUEKRE 1; CAYLET 5; B. PciBCBS; C. 8. PBIBCB, 4, 8
; STEPHANOS!; TABKK 1

;
SHAW 7; LAO-

KENT 1, 2, 8, 4. On the general topic see Bibliography of Quaternion*.

SHAW 7; LAURENT!. 'TABER3.
(' \Ti.EYS; LAOUBRBE 1 ; FROBENIUS 1, 2; \VnYit8; TABEII 1

;
FASCH 1 ; BUOHHEIM 8; MOLIEN 1

;

STLTISTBB !; SHAW 7; WHITEHEAD 1, and Bibliography of Quaternion*.
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428. Theorem. $ may be resolved according to the preceding theorem

along any units of the form given by i, /, as

j ,v' jib1

& a'b> * 3
If j be such that

S.j'Q = 0,j
n =l s = l ---- n 1

then < may be written in the form

4>
=

oo + 2 arob i
a
j

b a=l ---- n l 6 = ----n1
429. theorem. Whatever number /? is, /?' $ /3~~* has the same characteristic

equation as <. Hence if this equation is

not only is $ a solution, but equally /3'

430. Definition. When

j
n =l S.j

s$=0 s = l ---- n l

we shall call j
t

^>j~
t =: K 1

,q> the t-ih conjugate of
<J>.

If
<^)

is in the form of 428,

K< .$ =cc00 + 2;a;o6 a>
ot

i
a
y

6 a= 1 ---- n l; 6 = ----nl
Hence K* . $ is the same function 1 of w'*' that <> is of i.

431. Theorem. We have at once

$ + K. $ + 2.$ + ---- + Kn~ 1

.$ = nS$ = 77?!

(^ + K.$ + ----
)
z = n\Sz

.$ = ?,.Ki>

q>K
t

$ s,t
= ----nl

and since

$
2 + (K$)

2 + ....= tf + K. <f + .... = n . S . $*
therefore

VZK'tyK'ty^n* S*$ nStf= 2m2 s,t = ____nl, s $. t

Similar equations may be deduced easily for 3 ! nj 3 ,
and the other

coefficients.

= g -fa

432. Theorem. If $ . a = ga, then

K^ .j
t o

also if

fo
-

g) a, = (72 ...... ($> 0)"-
1

or,
= <TU (* 0)"oi =

then

*-*'
a, =cr & - " = 0-

433. Theorem. If the roots of <> are such that each latent factor ($ gt)

occurs in the characteristic equation of
^> to order unity only, then $ may be

written

<J>
= cr + a, i + ---- n-i t"" 1

>Cf. TABKR2.
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and

<?> oy* = (er + a\ + a_i) . o.j'

$ . A/' =(a +u-'a1 + .... a- 1 ~ l >

a^Jj'aj'

Hence the latent regions of K l

q> are simply those of q> transposed. This

does not necessarily hold when the latent factors enter the characteristic

equation to higher powers. We might equally say the roots ofK l

q> are those

of $ transposed (cyclically).

434. Definition. The transverse of $ with respect to the ground deGned

by i,/is

1 we call $ symmetric or self-

0) (x, y real)

It is evident that $>
= $.

If
<jf>$
= 1 we call <p orthogonal. If

transverse. If

$ = 2 (fl5y + V 1

and if

then ^>
is real if ^>

=
<>, unitary if ^ = 1, hcrmitian if ^ = <p.

435. Theorem. The transverse of ^ is ^. Consequently <><jb
= ^,

and ^> = ^>.

436. Theorem. We may write the equation of <p, if

$ = a + U + d z + + Jd n
~ l

.<> S.i S. * .... ^.i"- 1

So that

S . i . . . . S .

=

^ =
n<S<p

=
a, > = n

It follows that if the characteristic function of be formed, it may be

written

By differentiating this expression in situ the characteristic function for

..,, may be formed in terms of fy . . . . $. This function will vanish for

or for

(i= 1 n 1)
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XX. PEIRCE ALGEBRAS.

437. In the following lists of algebras, the canonical notation explained
above is used. In the author's opinion, it is the simplest method of expres-
sion. The subscripts only of the A will be given; thus (111) + a (122) means

Jlm +aXi22. For convenient reference the characteristic equation is given.

The forms chosen as inequivalent are in many cases a matter of personal taste,

but an attempt has been made to base the types upon the defining equations
of the algebra. The designation of each algebra according to other writers 1

is given.

The only algebra of this type of order one is the idempotent unit

438. Order 2. Type
2

(>?, i) : (x y^ e.z)
2 =

The product of = x
1
e1 + xz ez,

o = yi e
l + yz e

2
is

f <r = e^ fay, + as, ft) + % (xz yt )

The algebra may be defined in terms of any two numbers
, *, if

*
: 0,

so that we may put a in the form a = x -f y^.

439. Order 3. Type
3

(rt , i,
t
2
)

: (x x3 ea)
8 =

The general product is

& = <?! (a-jy3 + xzyz + avjft) + ez

The algebra may be defined in terms of
, , ^, if f ^ 0, ^ ^ 0.

(x ^63)2=
(220) e2

The algebra is definable by any two numbers
,

whose product does

not vanish. The product of <r may be written

Hence

Also we may write the algebra (>?, ', o'), where ^', cr' are nilpotents,

?ci = = o'?.

440. Order 4. Type
6

(YJ, i,
t
2
,
i
3

)
: (x x& =

*
4
= (110) e3 = (lll) e2 = (112)

If f = ? + 7^, then the algebra is defined by

1 Enumerations are given by PIMCHEBLB 1
;
CATLBT 8 ; STUDY 1, 2, 3, 8; SCHEFFERS 1, 2, 8; PEIRCE 3

;

ROHR 1; STARKWEATHEK 1, 'i; HAWKES 1, 3, 4.

'STDDTlI; SCHEFFER9 II,; PEIKCEflj. 'STUDY III; SCHEFFERS III, ; PEIKCBOj.

<8TUDTV; SCHEFFERS III
3

.
' STUDY V ; SCHEPFEBS IV, ;

PEIRCE o
4

.

7
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Type (n, i, j, y
2
)

: (x-xt erf =
e
4 =(110) + (220) 3> =(210) + a (122) ez = (1 11) + b (122) e

1
= (ll2)

<r = S% . So + a S + %Sa + a, (x, yz + a x3 y3 + b x2 ya)

or

7 . Va = e
l (xz y2 + a x3 y3 + b x^ y3)

Hence
7. Va-- Va . 7 = r v = be

1 (xz ya

We have two cases then : (1) when 6=0, (2) when

We may determine ef
= elf from

When a = 0, this gives us only one case of a2 = e
l

.

When a ^ 0, we may take e = e^ as well as e|
= e^ whence, if a =

If a
rf: 0, we may put a = 1

Finally, then, we have l

=
(1 11) + (122)

y, v) :

(220) e3 = (210) e2 = (ill) (221)

x
4 ys) + ez (x, yi + x< yz )

Defined 2
by , <r,

such that
( 7^)

2 = =

Type
8

(>7, , y, &) : (*
-

* e4)
3 =

e4 =(HO) + (220) + (330) e3
= (210) e2 = (310) c,

= (lll)

7^ 70 =
Defined by any three independent numbers.

441. Order 5. Type
4

fo, i,
i
2
, i\ *) : (a a:6 e6)

5 =
e6 = (110) e4 = (lll) 63 =(112) ?g =(H3) ^ = (114)

Definable by any number for which
( 7)4

: 0.

'STUDTlX is (7, i, j, j') (3) if e'
3
= (210) - (111) + (e-l)(123), e, = (111) + 2(132). SCHEFPEKS IV, is

the same. PBIRCB b
t
and b'

4
reduce to this form. STUDY X and SCHEFFEKS I \\ reduce to (2); STUDY XI

and SOHKFFBRS IV, reduce to (1); SOHEFFEKS IV, reduces to (4) if A = 1, otherwise it reduces to (8).

'STDorXIV; SOHEFFERS IV
8 ;

PEIBCE dt .
3 SiUDYXVI; SCHEFFEBS IV,.

ScnErFEB8 V
t ;

PEIBCE a,.
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(x

(220)

6(123)

= (210)
= (11 2)

a(!23)

ei
= (113)

(1) b : 0, we may take 5 = 1.

(2) b = 0, we may take a = 1, or

(3) 6 = = a.

2
fy, , y, #, y

2
)

:

C5= (110) + (220)

(1)

(2)

(3)

(4)

(5)

<?,
= (110) + (220) +(330)

e8 =(310) 63 =(111)

3 = o

= (210) + 6 (221) -f c (122)

,
= (211) e,

= (210) 63 =
= (210) 63 =
= (210) + (122) ea =
= (210) + (221) e3 = (111) (221) + e(122)
= (210) -I- (122) e8 = (lll) + d(221) + e(l22)

(*

= (210) + (320)

=

5
= (110) + (220) + (330) e4 =(210)+a(122) +

= (111) + e(l22)

6(132)

(H2)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

63= (310) + (132) e2 =(lll) Cj
=

e4 = (2lO) <?3
= (310) + (132)

e4
= (2lO) ea =(310)

e4
= (210)+ (122) y(!32) e,= (310) + y (122) (132) e2 =(lll)

e4
= (210) + (122) (132) e3 = (310) + (122)

e4 = (210) (132) eg
= (310) + (132)

e4 = (210) + (l +^2

)(122) e3 =z(310)
e4 = (210) + (122) es =(310) e2 = (ill) 2(122)
e4
= (210) + (122) e8 = (310) + 2(122) (132)

e2 =(lll)- 2(122)
e4 = (210) (122) + (132) ea = (310) i(122) (132)

62
= (111) 2i(l32)

V 4 Is in (1), 4
= (210) + (123)

-
(112), e, = (111) + 2 (123) ;

SCHKFPERS V, is (2); SCHEF-

PERS V, is in case (1), o = 0, et = (210) - (112) ;
SCHEFFERS V, is (3); PEIRCE 6, is in (1), j= (111) (128),

t = (112), I =(113), m = (210) + (123) + (112); PEIRCE c, is in (1), j
-

(111) - (123), * = (112), I = (113),

m = (210) + (112).

SCHEFFEBS V,5
is (1) ; ,

= (111) + A (221), 3
= (210); V,, is (3) with d = -

1; V
18

is in (5); V,, is in

(2) or (4); PEIRCE d
s

is in (5); 6
is in (4); /, is in (1); g&

is in (5); A
5
is in (3); <

6
is in (1).

'SCHEFFBRB V
le ; PEIRCE jj.
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Type (n, i, y, If, 1): (x x6 e,)
=

(1)' 5
= (110) +(220) + (330) + (440) g4 = (210) (131)

,= (310) + (121) ^.= (410) e,
= (Hl)

(2)
f e6 = (110) + (220) + (330) + (440) e4

= (210)

^=(410) e
1

442. Order 6. Type* fa, i, f, i",
i
4

,
t
5

)
: (x x& ee)

8=

Type (v, i, j, j\ f, y
4

) : (*
- ^ ^)

5 =
e6 = (HO)+(220) e6 =(210) + a(!24) e4 = (ill) + 6(124)

(1) o=l=6 g. = (210) + (124) 64 = (111) + (124)

(2) a = 0,6 = 1 e5 =(2lO) et = (ill) + (124)

(3) a = 0=6 e6 =(210) e4 = (lll)

^/^ 5

(>?, , y, v, y
2
, y

8
) o*

-

(1) eB = (210) + (122)+ 2V 1(221) e,
= (111) + (221)

(2) .
= (210) 4

= (111) + 2(123)

(3) eB
= (2lO) + (123) e4 = (lll) + 2(123)

(4) eB = (210) e4

(5) 5=(210)+(221) e4

(6) cB = (210) + (123) e4

(7) e,= (210)+(221) et = (111) + (123)

(8) 6
= (210) 4=(1")

(9) e5
= (210) + (!23) *=(H1)

(10) C5= (210) + (122) e4 = (lll) (221) 2(122)

(11) e6= (210) + (122) c4 =(lll) (221)

(12) e6 = (2lO) + (123) e4 = (111) (221) 2 (122)

(13) e,= (210) c4
= (lll) (221) 2(122)

(14) e6 = (210)+ 2(1 T \/"^T)(221) + 4\/
r

^I(l22)+ (123)

2(1

(16) eB = (2lO) + 2V 117! (221) + (122) 4
= (111) + (221) + 2 (123)

(16) eB = (210) + 4 (221) + (123) 4
= (ill) + (221) + 2(122)

(17) e5 = (2lO) + 4(221) e4 = (ill) + (221) + 2 (122)

(18) eB = (210) + 4(221) + (123) e4 = (111) + 4 (122)

(19) e8 = (210) (m l)(22l) i (wi + 1) (w 3) (122)

(221) +2 (122)

1 SCBBFFEBS V,, . SCHEFFERS V,, . 'PEIRCEa,.
4 PEIBCE 6

6
is (1) ;

C
6
1$ (2).

These are \n order STARKWEATHER 4, 8, 9, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 27, 29, 3D, 32, 33.

Also PEIRCE aa
t
and w

6
are in (4), ad

6
in (5), z,

in (6), o/8 in (8), a
6
in (9), in (11).
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Type
l

(rlt i, i
2

, j, j
s

, j
3
) (

x xs e,)
4 =

(1) e5 = (210) + (320) e4 = (310) e, = (lll) e2

(2) e, = (210) + (320) + (133) e4= (310) + (123) e3

63
= (112) e,

=
(3) e,= (210) + (320) +(133) e4 = (310) + (123) e3= (111) + 2 (123)

(4) e6 = (2lO) + (320) c4 =(310) e3= (111) + 2 (123)
ea = (112) !

= (113)

Type
-

(rt , i, j, k, W, If) (x
-

x, erf =
(1) e6 = (210) e4 = (310) e3 = (lll) e2 = (112) ^ = (113)

(2) c6 =(210)+(123) 4
= (310) e3 = (HI) c. = (H2) 6, = (113)

(3) e6 =(2lO) 4
= (310) e8 = (lll)+

(4) e8 = (2lO)-(133) e, = (310) + (123) *
e3 =(112) ei

(5) eB =(210) e4 = (310) 6^= (111) + 2 (133)
e2 =(112) ei = (ll3)

(6) e5 = (210) +#(133) e, = (310) + (123) k
= (lll)

(7) eB = (210) + (133) et (310) + (123) eg = (ill) + 2(123)
e2 =(112) ei

= (H3)
(8) e6 = (210) + (133) + (123) e4 = (310) + (123) ea = (ill) + 2(133)

e2 =(112) ^

Type (?i *,j, y, f, y
2
) "3 = i

( 66)
8 = o

eB = (210) + i(l -u) (221) lu(122) e, = (111) + u (221) i (1 o) (122)

e3 =(21l) + i(l o)(222) eg
= (112) + w2

(222) e1==(212)

(>?, i, j, k, ik, k 2

) (x xe e,)
3 =

(1) e5 = (210) e4 = (310)+ (132) ea = (111) + 6(122) + c(132)

e2 =(211) J
= (112)

(2) e
5
= (210) + (122) et = (310) + (132) ea = (ill) + Z>(122) + c (132)

^ = (211) c,
= (112)

(3) eB = (210) +a(122) e4
= (310) + (122) + (132)

e3 = (111) + 5(122) + c(!32) e2 = (211) ^ = (112)

(4) e6 = (210) 4
= (310) + (122) +(132) e3 = (111) + 6(122) + c-(l32)

(5) e6 = (210) + (132) e4 = (310) (122) e3 =(lll) ea =(211)
(6) 6

= (210) e4 = (310) e3 =
(7) eB = (210) 4

= (310) e3 =

1 These are In order STARKWEATHER 3, 5, 28, 10.

1 These are in order STARKWEATHER 1, 2, 6, 17, 18, 24, 25, 26.
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Type fr, ', >, &, I, ?) ( *e *)
8 =

(1) ,
= (2.lO)-a(132) e<= (310) + a(122) c3 = (410)

^ = (111) + a (122) + a(132) + a(142) e,
= (112)

(2) ................ e2 =(lll) + a(122) + a(l32) ........

(3) ................ e,= (lll) + a(122) + a(142)

(4) ................ e2= (lll) + a(132)

(5)
................ e2 =(lll) + a(142)

(6) ................ C2= (1H)

(7) B =(210) 4 =(310) e8= (410)

%= (111) + (122) + (132) + (142) e,
= (112)

(8) ................ e2 = (111) + (122) + (132)

(9) ................ e2 = (lli) + (122)

(10) ................ e2

(7, *', /, ^, ^, *0 (* ^ e
e)

Z =

(1) e5= (210) (231) ei =(310) + (22l) e3 = (410)

%= (111) + (281)
-

(231)+ (241) i
= (211)

(2) ................ c2 = (111) +(221) + (231)

(3) ................ 6,= (111) + (221) + (241)

(4) ................
fc
= (lll)+(221)

(5) ................ e2 = (lll) + (241) ........

(6) ................ .
= (!!!)

(7) ^ = (210) 4
= (310) ^

(8) ............... e2 = (111) +(221) + (231)

(9) ................ |
= (111) + (221)

(10) ................ e,= (111) ........

Type (n, i, j, k, I, m) (x x6 e6)
2=

e6 =(210) e4 = (310) 63= (410) et = (510) e,
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XXI. SCHEFFERS ALGEBRAS.

443. The following lists include algebras of order less than seven, with

more than one idempotent. Reducible algebras are not included, nor are

reciprocal algebras both given.
1 The idempotents are ?; direct units ,/ ---- ;

skew units e.

444. Order 3, Type
2

fa ; >?2 ; 3,,)

e3 = (110) e2 = (220)

445. Order 4. Type
3

fa; >?2 , i; eJ2)

(x , e
fl) (a;

x3 e )
=

)

z3 e
) (x x, erf =

Type* fa; q2 ;
e.a ,

e'21) (x a^Co) (a; a;4 e )
=

f (990} p (9tO\ f f911\C3 ^ \^iti\J)
Co ^^1UI ^

I ^11 )

'is) (% ^3 ^oj (" ^4 GO)
^^ (

es= (220) e2 =(121) e! = (211)

446. Order 5. Type
6

(^ , i, i
2

; >;2 ,
e21) (a; 4 e ) (a; a e

)

3 =
eB =(HO) e4 =- (220) e3 =(lll) e2 = (112) ^ = (211)

'-

1

(nit "; %t 3 > a) (* ** e
)

3

(a a;5 e )
2 =

Type 2 (a a;
4 e ) (a x6 e )

2 =
e4 =(220)

(2) e5 = (110) e4

(3) e6 =(HO)+ (220) e4 =(330) e3
=

(210) ^ =
Type

9
(J7j ,

i
j ^ ; % ,

e21) (
a4 e ) (x 6 e )

2=
(I)c5

= (110) e4 = (220) e3= (122) e, = (210) ex =(112)
(2) e5 = (110) e4 = (220) c3= (122) e,

=
(211) a

= (112)

Type
10

(>?! ; >?2 ; e^ , 41 , 4( ') (x xi e ) (x x& e )
=

e6 =(110) e4= (220)+ (330) + (440) e3 = (211) e2= (310) ^= (410)

Type
n
fa ; % ; B , e^ , ^Jf) (* x4 ^,) ( x6 e )

=
c6 =(110) e, = (220) + (330) e3 =(12l) e2 = (211) e1 = (310)

Type
12

fa; %; tja', %i, si) ( s) (* ^eg) ( x6 eu)
=

e6 = (110) e,= (220) ^=(330) e2 = (221) ^ = (311)

Type fa ; ^; rj3 ; &K, e&) (x x^e^ (x x4 <? ) (X X^CQ) =
e4 = (220) ^ = (330) e2 =

'For algebras of order seven see HAWSES 4. "These are in order SCHEWEBS Vut V,,, V, 4 ;

>STUOT IV; SCUEFITKHS III,. HAWKBS (V) a,,, 2lt , 1,.

STUDY VII; SCHEFFEBS IV,. 'These are in order SCHBFFBBS V,,, V,,; UAWKES (V) 8,, 3
8 .

8lODT XV; SCHEFFEKS IV,. "SCHEFFEBS VM ;
HiWKBS (V) 5.

STUDY XIII; SCHEFFEBS IV,. "SCHEFFEBS V,,; UAWKES (V) 6.

SCHEFFEBS V,; UAWKES (V) 1,.
"SCHEFFEBS V 9 .

TgcHEFFBBS V, J HAWKE9 (V) 4. > SCHEFFEBS V,.
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447. Order 6. Type
l

(?, , i, t, i
8

; >?2 ;
etl ) (x x6 e ] (x xt e )<

=
<?8
= (220) e4 = (22l) es =(222) e2 = (223) e1==(210)

(TI i /i iy
*

; ^2 ; a) (x * fo) (a *6 o)
8 = o

(1) e, = (220) + (330) e,= (110) e4 = (320) e,= (221) e2 =(222)

(2) e8 = (220) + (330) fc
= (110) e4 = (320) + (232) 4 = (221)

e2 = (222) e!
= (212)

(3) e,= (220) + (330) e5 = (llO) e4
= (320) + a(232)

63 = (221) + (232) = (222) e, = (212)

(4) e6 =(220) + (330) e,= (110) e4
= (320) e,

= (221) + (232)

. e2 = (222) e,
= (212)

Type
a

(j?i , i , /i , ih ; >?2 ; 2i) ( ) (x x6 efl)
2 =

e,= (110) e
6
= (220) + (330) e4 = (221) (331) % = (320) e2 =(32l)

(7i *i,J\, ki'y *l2'> ^1) (x X8 e
) (x x5

eu)
2 =

e,
= (HO) eB = (220) + (330) + (440) e4

= (320) e8= (420) g=(221)

Type
8

(>7j , t\ , i? ; >72 ,
*2 5 %) (* ^6 e

)
3
(a x6 eo)

s =
eg =(220) e,

= (HO) 4
= (221) e3 =(lll) e,= (112), ^ = (122)

Type (>?! , h , /i ; >?2 , H ! zi) (
z as e )

2

(z e e )

8=
ee =(330) e6 = (110) + (220) 4

= (331) <%
= (210) 62

= (ill) ^ = (311)

Type
7

(17, \, i\] m 5 u, ) (* 5 o) (* *t o)
8 =

(l)e,= (110) e5= (220) + (330) + (440) e, = (221) + (430) e3 =
e2 = (310) e,= (410)

(2) ee = (HO) e5 = (220) + (330) +(440) e4 = (22l) e8 =
e2 =(310) 4= (410)

Type
8

(>?i , h , i ; T2 ; , %) ( za e
o) (z ^5 e

)

s =
(1) e6 = (330) + (440) CB = (110) + (220) e4 =(l32) e3 = (310) e, = (lll)

(2) ................................ 4
= (142) ..................

Type
9

(>?!, il} j\ ; YIZ ;
e2l , c^) (x x, e

) (x x6 e )
2 =

(1)4 =(110) b=(220) + (330) + (440) + (550) e4 = (320) + (540)
es = (221) (%=(410) C!

(2) .................................... e4 =(320)

'IIAWKB8 (VI) 1 4 1. HAWKE8(VI) 1,6.
' IUWKE8 (VI) 3, 1, 8, 2.

In order HAWKES (VI) 1
4 3, 1, 4, 1, 2,

-. HAWKKS (VI) 2, 1. HAWKES (VI) 4, 1, 4, 3.

HAWKES (VI) 1, 5. HAWKES (VI) 2, 2. HAWKES (VI) 3
4 3; 3, 4.
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Type
l

(j;i , ij , j\ ; % ;
e
21 ,

eJ2) (x a-, e
fl) (* x5 e

)

2 =
(1) <?6

= (330) + (440) e, = (110) + (220) + (550) 4
=

e2 =(210) e1 =
(2) 4

(x a;6 e
)

8

(x o-B e )
2 =

=
(1) e,

= (440) e
5
=

(2) e6 = (440) e5
= (110) + (220) e4 = (lll) e3 =(441) e2 = (240)

e
1
= (24l)

*= (110) + (220) +(830) 4= (111) e,
= (441) ^ = (340)

(>7i , h I >?2, H !
ei2 , n) (* a-e e

)

3

(x x8 e )

8 =
(1) e, = (330) + (440) e,

= (110) + (220) e,
= (310) + (421)

3, = (131) + (240) e3 = (441) ^ = (111)

(2) ................ 63 = (240) ....................

(3) ..... e,
= (310) e3 = (131) + (240) ....................

(4) ................ 63= (240) ..................

( V7 1 *
V?

* f r Pi II7**^^~ "Y (* I I
/J* 'T* /-

1
i

-^~ rt

(1) e6 =(440) e
5
= (110) + (220) + (330) e4 = (lll) ea = (340)

(2) e6= (550) e5= (110) + (220) + (330) + (440) e4 =
e2 = (250) ^ =

(3) .....................................

........ e
l (450)

Type
B

(>?i , i ; >7 i ! , zi) (a; 6 <%) (*
-

aJs ^o)
2 =

(1) eg = (440) + (550) ,
= (110) + (220) + (330) e4 =(530) *8 = (140)

(2)

........ !=(240)

6

(>7t
l
'i : >?2 i a ,

ea , B) (^ *8 o) (as ^6 o)
2 =

eg = (440) + (550) eB = (110) + (220) + 330) 4
= (410) e3 =(14l)

Type
7

(>7i ; >/2 ; ,' e^ , 4", eJJ) (x x6 e ) (x z
5
e

)
=

e
6 =(110)+ (220) + (330) + (440)+ (550) e4 = (460) e

3
= (360)

e2 = (260) != (160)

' HAWKBS 4, 2, 4 4 4. HAWKES (VI) 5
4 2, 7

4 1, 7
4

2.

HAWKES (VI) 54 1, 5 4 3, 54 4. HAWKKS (VI) 8, 1, 8
4
3.

HAWKES (VI) 6
4 1, 6, 2, 6, 3, 6

4
4.

s HAWKES (VI) 8
4

2.

' HAWKES (VI) 9
4

.
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e,= (110) + (220) + (330) +(440) e5= (560)+(660) c4 =(460) e8= (360)
C2= (260) e,= (510)

Type
*

(>7i ; rit ;
e'K e'^ e^e) (x x, q,) (x x5 e

)
=

e,= (440) + (660) + (660) e6= (110) + (220)+ (330) e4= (630)

eg = (530) e, = (260) gj
=

(140)

Type
*
fo ; i, ; 72 5 *7s 5 i2, ) (x x

4
e

) (x x6 e
) (x xa e )

2 =
6
= (110) e5= (220) e4 = (330) 3= (313) 2

= (323) ^ = (333)

Type
*

(>?j, ij ; >?2 ; >?8 ; e^ t e^) (x x4 c ) (x x6 eo) (x x6 e )

! =
<?B
= (220) e4 =(330) e3= (212) % =(232) ^ = (331)

e6 =(220) e4 = (330) e3 = (231) % =(312) ej=(332)

Type* (>?!, ij; >?2 ; ?3 ;
e21 , egj) (x x4 e ) (x x6 e

) (x x6 e )

3=
e8= (110) eB =(220) e4= (330) e3 =(l2l) e2 = (23l) ei=(331)

Type'- fa; 72 ; >?3 ;
ea ,

e13 , .#) (xx4 CQ) (x xB eo) (x x,,^) =
e, = (HO) eB =(220) e4 = (330)+ (440) e8 =(31l) e2 = (420) e! = (32l)

Type
8

(>7i ; v;2 ; >?3 ; e^, e13 , e^) (x x4 e ) (x x6 ec) (z x6 e )
=

(1) ee = (HO) eB =(220) e4= (330) e3 =(312) e3 =(23l) ej
= (322)

(2) e3= (211) e2 = (320) ei=(311)
(3) e2 = (32l) e

1
= (31l)

(>7i J >?2 5 *7a ;
e
\z,

eu> %) ( x4 e
fl) (x x6 e^) (x x6 e )

=
eB =(220) e4= (330)+ (440) e3 = (420) e2= (130) ej

= (321)

Type
10

(YII ; >72 J >7s 5 i2> sa i %) (x x4 e ) (x x6 e ) (x x
fi
e

)
=

e6= (HO) e
B =(220) c4 =(330) e^ (211) e2 = (131) ^ = (321)

> HAWKBS (VI) 10
4

. HAWKES (VI) 2, 2. HAWKES (VI) 4,, 9, 1, 9, 2.

HAWKEB (VI) 114 . HAWKES (VI) 7,. HAWKES (VI) 5,.

HAWKES (VI) 1, 2. ' HAWKES (VI) 3, .
' HAWKES (VI) 8,.

HAWKES (VI) ,.
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XXII. CARTAN ALGEBRAS.

448. Quadrates. The units in this case have been given.

Dedekind Algebras. These have been considered.

<?2
= (120) e3 = (210) e4 =(220)

e6 = (l30) 67 = (230)

Order1
7. ^=

e5= (330)

Order 8. Type Q1 x (>?, t)

This is biquaternions.

Type* Q, + (?, t) +

X
X3 x

2=0

x

(110), (120), (210), (220), (330), (331), (131), (231)

Order 12. Triquaternions.

Order 16. Quadriquaternions.

It is not a matter of much difficulty to work out many other cases, but

the attention of the writer has not been called to any other cases which have

been developed.

1 SCHEFFERS Q, . 8 SCHEFFERS Q3 ,





PART III. APPLICATIONS.

XXm. GEOMETRICAL.

449. The chief geometrical applications of linear associative algebras have

been in Quaternions, Octonions, Triquaternions, and Alternate Numbers.

These will be sketched here very briefly, as the treatises on these subjects are

very complete and easily accessible. What is usually called vector analysis

may be found under these heads. There are two other algebras which find

geometrical application in a way which may be extended to all algebras.

These will be noticed immediately.
1

450. Equipollences. The algebra of ordinary complex numbers

has been applied to the plane. To each point (x, y} corresponds a number

2 = x + yelf The analytic functions of z (say /(z) where df . z =/' (z) . dz)

represent all conformal transformations of the plane ;
that is, if z traces any

figure G! in the plane, /(z) traces a figure C2 such that every point of C^ has

a corresponding point on C2 and conversely, and every angle in Cl
has an

equal angle in C2 and conversely.
2

451. Equitangentials. The algebra

h

has also been applied to the plane. The analytic functions of z represent the

equisegmental transformations of the plane, such that /(z) converts a figure

into a second figure which preserves all lengths.
3 To z= x + et y corresponds

the line cos x + ? sin x y = 0.

452. Quaternions. Three applications of Quaternions have been made to

Geometry. In i\\e first the vector of a quaternion is identified with a vector

in space. The quotient or product of two such vectors is a quaternion whose

axis is at right angles to the given vectors. Every quaternion may be

expressed as the quotient of two vectors.

1 See Bibliography of Quaternions. Also the works of HAMILTON, CLIFFORD, COMBEBIAC, GRASSMANN,

GIBBS and their successors.

"BELLAVITIS 1-16
;
SCHEFFERS 10. 'SCHEFFERS 10.

113
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The following formulae are easily found :

(1) If a is parallel to {3 V . a(3 =
(2) If a is perpendicular to {3 S . afl =
(3) The plane through the extremity of 5, and perpendicular

to a is
S(p 5) a =

(4) The line through the extremity of a, parallel to /3 .... V(p a) (3
=

(5) Equation of collinearity of a, ft y V(a /?) (/? y) =
(6) Equation of coplanarity of a, ft y, 5 S(a /?) ((3 y) (y 5) =
(7) Equation of concyclicity of

", ft, y, 5 V(a-[3)({3-y) (y 3) (3 a) =
(8) Equation of cosphericity

of a, ft y, 5, S(a~P) (/3-y) (y-3) (3
-

e) (-) =
(9) The operator q()q~

l turns the operand () through the angle which is

twice the angle of q, about the axis of q. The operand may be any expression,

and thus turns like a rigid body. These operators give the group of all

rotations.1

(10) The central quadric may be written Sptyp
= 1 = gp

z + 2 $\p Spy,

where
<J>

is a linear vector self-transverse function
;

/I and p are the cyclic

normals
;

i and k being in the direction of the greatest and the least axes, and the axes

are given by gt
= p , gz

=
-p-, ga

= 3-. Conjugate diameters are given

by SatyP = S0$y = Sy$a = 0.

(11) For any curve, p
=

<(<), any surface, p
= q>(t,u) or

7^(p)
= 0.

/7~

<?p
is parallel to the tangent of a curve, V ~.j~mr~ is the vector curva,-

cPp
ture, Udp S y,

l\ 3 is the vector torsion, a = Udp is the unit tangent,

/3
=

7Tdp rf
2

p Udp is a unit on the principal normal, y = UVdp d s

p
is a unit

on the binormal. For a surface ^(p)
= 0, ^F is the normal, $(p p ) V-^o ==

is the tangent plane.
2

The second application
8 of quaternions to geometry is by a homogeneous

method. In this the quaternion q is written q = /Sq(l + p),
and q is regarded

as the affix of the point p
with a weight Sq = w.

10. HAMILTON'S works, TAIT'S works, JOLT'S works.

This application may be followed in JOLT 30, 11, 25; SHAW 3; CHAPMAN 4; see also BRILL 1.
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We write also

A . q Ars = r
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The plane through the point 04 a containing the vectors

Oj ajj and ot] (j 0.5)
is oj q + <H + 2a =

(8) If

Oj = . 7Tec, a2
= 7Fec, and a = oj a

then the equation of the plane through a containing the vectors c, e is

dip -\- pa 2 + 2a =
(9) The plane through c, d, e is given by the same equation with

ai = UV(cd + cfe + e5) a2
= UV(ed + de + ~ec]

a = i (
ai

c "t" Caz)
= "

(10) The normal to the plane is ajO.

(11) The point of intersection of the two planes

o-ip + pa2 + 2a = = ^p + pfa + 26

is

3 a a3 -- (* b

(12) If the two planes through the origin (aja2 0) (/^]/32 0) meet in a

line through the origin, it is necessary and sufficient that

The cosine of the dihedral angle between the planes is /Sbtj Pi = /Sou
|

They are perpendicular when this vanishes.

(13) The two planes (aja2 2a) (/?!/32 2&) meet in a straight line if

ax b b a.z + /?! a a /?2
=

Let

then if /= ^ :
;
the equation of this line is

x 2 Fai*=^
(14) The two planes meet in a point at infinity if m = and /+ g :

;

they meet in a line at infinity if

Pi = aj & = =fc a2

(15) The perpendicular distance between the planes (aja2 2a) (ajo^ft)

is in magnitude and direction aj (a 6).

(16) The vector normal from the extremity of c to the plane (a.l az 26) is

iaj(2a + ajC -f- ca2)

(17) The vector normal from the origin to the intersection of

ob bci

j _ g
,

(18) Two planes meet in general in a point or in a straight line. Through

any common point transversal planes may be passed meeting the two in two
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straight lines u, v and forming with them equal opposite interior dihedral

angles. The angle between these lines u, v is the isoclinal angle of the two

planes. Two planes have maximal and minimal isoclinal angles if there exist

solutions c + a\u and c + fi[v of their equations such that

/Sa 1 uv=Q $ft uv = Suv
zf: S^ u ft v

The planes of these angles and these only cut the given planes orthogonally.
The lines u and v are given by

i M = w' = d! (yi y2) (yx y2) 03

A = ' = ft (yi y) (yi y) ft

(19) There are no maximal and minimal isoclinal angles if any one of

the four conditions is satisfied :

ft = O! ft = a2

In this case the isoclinal angle is constant for all variations of 0.

(20) Two planes are perpendicular and meet in a point if

Sai ft = /Shtjft $. or 1

Two planes are perpendicular and meet in a line if

Two planes are hyperpendicular if every line in one is perpendicular to every
line in the other. In this case

Sett ft = So* ft = 1

that is

ft = i ft = =F 2

If two planes are parallel

i
= ft 2

= ft

453. Octonions. The following are the simpler results :

(1) The vector from to P is a rotor
p
and may be transferred anywhere

along its own line. It is not equal to any parallel rotor. Rotors from the

same point are added like vectors, p + e being the diagonal of the parallelo-

gram whose sides from are p
and e.

(2) The side parallel to
p

is
p + QMsp, that parallel to e is E + fllfpe.

(3) If all vectors are drawn from 0, the usual formulae of quaternions

hold. Thus the equation of the plane perpendicular to <$ through its extremity
is S

(p <$) ^ = ;
the line through the extremity of 5 parallel to a is

p
= 5 + ta. But a rotor in the plane is not

p 8 but p <$ -f- QM . 8p and

a rotor on the line is not xa but x (a-\- RM&a).

(4) A velocity of rotation about an axis is represented by a rotor on

that axis, a translation along the axis is a lator on that axis. A motor, as

o -J- Her, indicates a displacement such that in time dt any point rotates about

the axis of the motor by an angle Tut . dt and is translated along the axis by
a distance Ta dt.

8
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(5) The axis of M . AB is the common perpendicular of the axes of A
and B. The rotor ofM . AB is the vector of the product of the rotors of A
and B considered as vectors through 0. The lator of M. AB has a pitch equal

to the sum of the pitches of A and B and the length of the common perpen-

dicular multiplied by the cotangent of the angle between A and B (= d cot 6).

(6) The rotor of A -j- B is equal and parallel to c^ + ft the sum of two

rotors from equal to the rotor of A and parallel to the rotor of B respect-

ively, and intersects the common perpendicular from A to B at a distance

from equal to [n? being the common perpendicular]

T [a S/3 (a, + p)-* + (p- p>) Ma, . (i + )~
2

]

(7) /S'j
. ABC is one-sixth of the volume of the parallelepiped whose edges

are the rotors of ABC. M, . ABC is a rotor determined from the rotors of

A, B, C as V. a.$y is from a, ft y.

t. S.ABC= tA+ tB + tC+ dcotO etan$; d and d as in (5), e and
<J>

the common perpendicular from M . AB to C, and the angle.

d cot e tan-

(8) If B and C are motors whose rotors are not zero and not parallel,

then KB + YG is any motor which intersects the common perpendicular of

B and C perpendicularly.
1

454. Triquaternions. If
/u, [i

1 are points, $, ^' lines, w and w1

planes, all of

unit tensor,

(j.
=

(ix + o (ix! + jx2 + Jfx3) n is the point
--

,

-
,

Xg XQ -Cg

w= aft+ p ('! +/as + Jca3) to is the plane ft a: -f c^ Xj -f a2 a-2 -f a3 x3
=

ka3 -f o (;& +/& + &/?3) aj ft + a2 ft + a3 ft =

is the line J&-
:
J&-

:
X*..

:
-

:
.

3 ft ft ft

That is, a point or a plane is represented by the symmetry transformation

it produces; a line, by a rotation about it as an axis through 180.

(1) Gbb' is cos of angle between the lines.

(2) Gam' is cos of angle between the planes.

(3) Lfif^' is the vector of (J towards p.

(4) L(i8 is the vector perpendicular of the plane containing the point and

the line, tensor equal to distance from point to line.

(5) Lb& is the complex whose axis is the common perpendicular and

whose automoment is the product of the shortest distance by the

cotangent of the angle.

(6) L{ira is the perpendicular drawn through (t
to the plane w.

(7) L&w is the point of intersection of the line and the plane, tensor equal
to the sine of the angle of the line and plane.

1 M'AOLAT 2.
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(8) Law' is the line of intersection of the two planes, tensor equal to the

sine of the angle.

(9) P(i8 is the plane through (i perpendicular to $.

(10) P&W is the plane at oo multiplied by the shortest distance and the sine

of the angle of the two lines. P&V is the moment of the two lines.

(11) Pfim is the plane at multiplied by the distance from p to m and

positive or negative as
fi

is on the side of the positive or negative

aspect of the plane.

(12)
n
<5w is the plane drawn through the line perpendicular to the plane,
tensor equal to the sine of the angle of the line and the positive

normal of the plane.

(13) If y, y are two complexes of unit tensors, Pyy' = means the two

are in involution.

(14) A displacement without deformation is given by r()r
-1

:

The axis is 5 = VLr = U( Vq +
The angle of rotation is 20.

The translation is 2>?. >j
= ~frv~~

r = (1 + "5>y) (cos 6 + 5 sin 6)

(15) Transformations by similitude are given by r = pq + (^q\ Sqq\ =
(16) The triquaternion r produces a point transformation m' = rmr~1

,

if r = ic + I + p, 2wp P P =
(w + m) (w + d}mu- c i-This transformation may be written w which is a

rotation about the line d, and a homothetic transformation whose

center is m and coefficient w + Tm
Hence r produces the group of transformations by similitude.

1

(17) A sphere
2

is represented by the inversion which it leaves invariant;

that is, by the quadriquaternion p. (ixi -\-jy\ + &Zi) + c>H>2 + G>'WS .

(18) If JJfand M' are two spheres of zero radius, m and m' their centers,

LmM'=.Lm'M is the line (mm 1

). The sphere on mm! as diameter is

Pm M1

. If d is a line, then P . Md is the plane through d and m.

455. Alternates. There are various applications of the different systems
of alternates, notably those which are called space-analysis the development
of GRASSMANN'S systems; vector-analysis a GRASSMANN system without the

use of point-symbols or else a system due to GIBBS; and finally the CLIFFORD

systems. No brief account or exhibition of formula can be given.
8

' COMBEBIAC 2. 'COMBEBIAC 3.

' See Bibliography of Quaternions ; notably JOLT 6; HYDE 4
;
WHITEHBAD 1

; GIBBS-WILSON 3.
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XXTV. PHYSICO-MECHANICAL APPLICATIONS.

456. These are so numerous that they may be 'only glanced at. Quater-

nions has been applied to all branches of mechanics and physics, biquaternions

and triquaternions to certain parts of mechanics and physics, alternates and

vector analysis in general to mechanics and physics. The standard treatises

already mentioned may be consulted.

XXV. TRANSFORMATION GROUPS. 1

457. Theorem. To every linear associative algebra containing a modulus

belongs a simply transitive group of linear homogeneous transformations, in

whose finite equations the parameters appear linearly and homogeneously, and

conversely.
2

458. Theorem. Associated with every linear associative algebra containing

a modulus and of order r, is a pair of reciprocal simply transitive linear

homogeneous groups in r variables.
8

459. Theorem. To a simply transitive bilinear group which has the

equations

-? -&- -i rf^
f'j-i^ *^fc O \

"~ X / I

k,t QXS

8

corresponds the algebra whose multiplication table is e
i
ek = 2 a tkt est and

8

conversely.
4

r r

460. Theorem. The product of a= 2 a
i
e
i
and b= 2 b

t
e

t gives the finite

transformation corresponding to the successive transformations 5 of the para-
meters (ax

. . . . ar) and (b^ . . . . br).

461. Theorem. To every sub-group of G, the group corresponding to the

algebra 2, corresponds a sub-algebra of 2, and conversely. To every invariant

sub-algebra of 2 corresponds an invariant sub-group
4 of G.

462. Theorem. To the nilpotent sub-algebra of 2 corresponds a sub-group
of G, FI (/).... Yk (f), such that for no values of F./or X ,f, transforma-

tions respectively of the sub-group and the group, do we have 6

( YX) = Y(Xf) X( Yf) =
463. Theorem. The invariant sub-group g, corresponding to the nilpotent

sub-algebra cr,
is of rank zero.4

. 'PoiNCABE 1, 2, 8
;
STUDY 3; CARTAN 2. See also SCHVB 1.

'8TCDT 1, 8; LIE-SCHBFFEKS 4; CABTAN 2. 4 CARTAN 2. ^CAHTAN 2; STUDY 3.

CARTAN f. Ct. ESGEL, Kleinere Beitriige zur Gruppentheorie, Leipzigcr BericMe, 1887, 8. 96; 1893,
8. 360-369.
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464. Theorem. To every quadrate of order rp* corresponds the para-
meter group of the linear homogeneous group ofp variables.

1

465. Theorem. To every SCHEFFERS or PEIRCE algebra corresponds an

integrable simply transitive bilinear group, whose infinitesimal transforma-
tions are

3 o

*^* = Xi
~dx- ^~^y<' "977

* = @f (a4 , A are the characters of
>?;)"977

( > i,
s >/)

and whose finite equations are 2

= x

2 a

466. Theorem. Every simply transitive group can be deduced from a

group of the form just given,

*"*
1 *7-i -T-rf~\ O / ^ \v-) -i-r 3F(P)

2

or

F(A,

by setting to correspond to each variable Xw or YM of character (a/3), pa p^
new variables x (

$, y<fi\
where i,j are respectively any two numbers of the

series 1, 2 . . . . pay 1, 2 . . . . p?
. Likewise to each parameter Aw

,

M of

character (a/3), /'a ^>3 new parameters a$', b$.
The simply transitive group is then defined by the infinitesimal trans-

formations
A=I....P. 3

or by the finite equations
:

1,9.. ..p,
H) y _(i> _)
0^
~~ "M Xa\

y(0
y y,Oi) ,/fi i y A( () i

a^
- -6 M

A)3 ^aA T * A/3 -^oA T
p<rA

,.(SI

hf>

;
MOLIEN 1. Cf. CATLRV 11, 5

j
LAQUERRE 1

;
STEPHANOS 1

J
KLEIN 1

;
LlPSCHITZ 2. AISO

CATLET 3
; FROBENIUS!; SYLVESTER!; WETR 5, 6, 7, 8.

CARTAN 2.
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467. Theorem. Every simply transitive bilinear group G is formed of a

sub-group F of rank zero, and a sub-group g which is composed of /* groups

9i '
ffht respectively isomorphic with general linear homogeneous groups of

Pi, Pz . . . . ph variables. Moreover the variables may be so chosen that the

p\ first variables are interchanged by the first g1
of these h groups, like the

parameters of the general linear homogeneous group on p^ variables, and are

not altered by the other h 1 groups ;
the same is true of the p\ p\

following variables
; finally these p\ -\- .... + p\ variables are not changed

by the sub-group
l
F.

468. Theorem. All simply transitive groups are known when those in

465 are known.2

469. Theorem. Every real simply transitive group G is composed of an

invariant sub-group F of rank zero, and a sub-group g which is the sum of h

groups (ft
. . . . gk) each of which belongs to one or other of the three types

following:

(1) The groups of the first type are on p
z variables x^ and are given by

the formulae

~ 3 3 3
** ~ x

ds^j
+
**&,'*

h ** dxp}
or

a
'ij
= av xn + a

2j *i2++ apj xip

giving the parameter group of the general linear homogeneous group on p
variables.

(2) The groups of the second type are on the 2p
2 variables a-o , y^ and are

given by the formulae

3 33 3

YH = XH fa' + + X
PI -fa

--
2/

y\i i/pj

or

fv = av xn+ ---- + aw x
tv *u yu ---- -- b

pj ytp

y'u= i, 2/u -H ---- + a
pj y^p + btj xn + ---- + b

v} xip

(3) Those of the third type are on 4p
2 variables x

ijt yij}
z
i}t

t
tj> given by

the formulae ^p/3 3 3.3\X
tj
= 2 f *M

-g
+ yu g + 2xi -o + tu

-g
}

A=I \ ox^j oy^j oz^j oi^j /

A=I

A=I

"CARTAN 2. Cf. MOLIEN 1. * CiRTAN 2.



TRANSFORMATION GROUPS 123

or p
2 (a
A 1

P

2 (a

p

2
A 1

P
2 aA

ziA -f

iA

<a d
K} 2iA)

C
A:,

To each of these groups ofp
2

, 2p
2

,
or 4p

2 variables we can set to corre-

spond p
z
, 2p

3
,
or 4p

2 variables which are interchanged by these equations,
without being changed by the other groups which enter g nor by the sub-

group F. All these variables are independent.
1

470. Theorem. The groups in 469 are not simple, but are composed of

an invariant sub-group of one parameter and simple invariant sub-groups of

p2 --
1, 2p~ 1, 4p

2
1 parameters.

1

471. Theorem. Simply transitive bilinear groups in involution (transfor-

mations commutative) are given by the formulae

(1)

or

X= x
dx

11iJ

i=l. 2 r 1

(2) X= .

= * ~

aAi8
= if s

<
i,

s = /I

T
t
=x -57- + z -5

or j

a/ = ax cz

z
1 =az + ex

2(
A. 8

A, 8

2 (aA(f
;

A, 8

2 ^
2 /3A

472. Theorem. Every bilinear group G is composed of an invariant sub-

group F of rank zero, and of a sub-group g which is the sum of a certain

number h of groups which are respectively isomorphic with the general linear

'CAKTAN 2.
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homogeneous group on plt ps
. . . . ph variables. Every real bilinear group G

is composed of a real invariant sub-group F, and a sub-group g which is the

sum of h groups each isomorphic with one of the three following groups:

(1) The general linear homogeneous group on p variables.

(2) The group on 2p
2
parameters and 2p variables x

i} yt
:

di = an Zj + + a
pl Xp &i, ft

-- b
pi yp

(3) The group on 4/>
2

parameters and 4p variables y
( , yt)

z
t ,

t
{

:

v
a/4 = 2 (aAJ A 6A( yA cAl ZA dA < A)AI

P

y'i
= 2 (OM y^ + 6Ai aA + CM <A + cfAt ZA)

p= 2 (aAi 2A + &A1 <A + CAI JCA+

Ai a-A)

Each of these groups is formed of a simple invariant sub-group on p
2

1,

2/>
2 --

1, or 4/)
2

1 parameters and an invariant sub-group on one parameter.
1

473. Theorem. Every bilinear group G is composed of an invariant sub-

group F of rank zero, and one or more groups glt gz . . . . of which each g is,

symbolically, the general linear homogeneous group of a certain number of

variables Xv
. . . . X

p) these variables being real, imaginary, or quaternions,

and the p2

parameters having the same nature,

If the variables and the parameters of the bilinear group G are any

imaginary quantities whatever, the group is composed of an invariant sub-

group F, of rank zero, and of one or more sub-groups gl} g.z
. . . . of which

each g is the general linear homogeneous group of a certain number of series

of p variables, of course imaginary.
1

474. Theorem. The quaternion algebra is isomorphic with the group of

rotations about a fixed point,
2 with the group of projective transformations on

a line, and with the group of special linear transformations around a point in

a plane.

475. Theorem. Biquaternions is isomorphic with the group of displace-

ments in space without deformation. 3

476. Theorem. Triquaternions is isomorphic with the group of displace-

ments and transformations by similitude.4
Quadriquaternions is isomorphic

with the group of conformal transformations of space.

1 CARTAN 2. 'CATLBTlO; LAOUERUE 1
; STEPHANOS!; STRINGHAM 8; BEEZ 1.

M'AOLAY 2; CoMBEB'ACl; STUDY 5. COMBEBIAC 2, 3.



ABSTRACT GROUPS 125

XXVI. ABSTRACT GROUPS.

477. Theorem. Every abstract group is isomorphic with a FROBENIUS

algebra of the same order as the group.
1

478. Theorem. The expressions for the numbers of the FROBENIUS algebra

corresponding to the group are determined by finding the sub-algebra consist-

ing of all numbers commutative with every number of the algebra, then

determining by linear expressions the partial moduli of the separate quadrates
of the algebra, and then multiplying on the right and on the left by these

partial moduli. Every number is thus separated into the parts that belong to

the different quadrates. The parts for any quadrate of order r
i
determine

the rf quadrate units of the sub-algebra consisting of the quadrate, which
P

determination is not unique. In terms of these r = 2 r\ units all numbers of

the algebra may be expressed.
3

479. Theorem. The characteristic equation of a FROBENIUS algebra con-

sisting ofp quadrates is the product ofp irreducible determinant factors. The

pre-latent equation and the post-latent equation are identical and consist of the

products of these p irreducible factors each to a power r
i equal to its order.3

480. Theorem. The linear factors of a FROBENIUS algebra correspond to

numbers which are commutative with all numbers. The number of linear

factors is the order of the quotient-group; that is, the order r divided by the

order of the commutator sub-group.

481. Theorem. The single unit in each of the quadrates of order unity,

may be found as one of the solutions, a, of the equations

r<r = at: = ta for all 's

e
i
e
t -ij

= e
j}

For the 's it is sufficient to take the r numbers corresponding to the operators

of the group. Thus if a = 2 . xt e,. and if ei e l
= elj , hence et e1 -i < = e<1 we

must have
to = <r

Hence

Thus if a = 2 . e
it and if e

i e^
= e

ijt

,

= 2 . Xi e
is
= 2 x

tj
- 1 e

i
for all j's

If e
}

is of order ^, ep = e
l 1, then

Xii
-i = txt

x
lj
-i = Px

t
a5w

- =
i

Hence

=
1, or a-,

=

2?mA/l/C / AJ/lirC-

t = cos - - +v 1 sin =
tj

n = 1 . - - -

p,

since not all xt
vanish.

1 I'niM'AKK 4; SHAW 6. This theorem follows at once from CABTAN 2. See also 131.

'PoiNCABE4; SHAW 6.
3 FBOBBNIUS 14

;
SHAW 6.
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Hence
a = 2 x< fo + t,

e
tj
-i + $- +....)

= 2 x, e, (1 + t
f e,-i +-...+ $r' ej) (/=!.... r)

The subscripts i run through those values only which are given by the

table
| G\ = {<$} By operating on a with other numbers ek we establish

other equalities among the x's and finally arrive at the units in question.

482. Theorem. The units in the quadrates of order 28

may be found as the

solutions of the equations

ifa = <j + <jj
a cr^

2 =
t{ <r + < <y

( any number)

We may state this also

(1 ?> + 2 ?i) <* ti fi <7 *2 & + ^8 <^ = (f! , ^2 any numbers)

The units in the quadrates of higher orders may be found by similar

equations.

483. Theorem. The numbers elt i = 1 . . . . r, may be arranged in con-

jugate classes, the sum of all of those in any class being commutative with

all numbers of the algebra. If these sums are Klt Kz . . . . K
h) then

h

a = 2 a;j Kt

i=i

The partial moduli of quadrates of order I
2
,
are formed by operating on a

with all numbers and determining the coefficients to satisfy the equations

ff = to a = ta

The partial moduli of quadrates of order 22 and higher orders satisfy the

equations of 48 2.

484. Theorem. Every Abelian group of order n defines the FROBENIUS

algebra
1

e
t
= ^m (i=i .... r

)

485. Theorem. The dihedron groups, generated by elt ez ,

f m i _ Jt f p p m 1 -
e
l

- * ^2 eZ el
e

l %

define FROBENIUS algebras as follows :

When TO is odd: Let t>
m =

1, u being a primitive root of unity, then the

algebra is given by

^110 ^220 ^2(-l2t-l>0 ^2i-l> 2i> ^2i>2i-l>0 ^2i I 21 >
( I = 2 . . . .

^ )

We notice that

e
l
= ^110 "I" ^220 H~ 2 (6) ^2< + l> 2i + lj + " ^2i+2> 2i + 2> fl)

[!....
g J

==
^-110 ^220 ~H 2 (/12( + 1 , 2i + 2 > + ^"2* + 2 > 2i + 1 > fl) ^ = = 1 . . . .

^ J

1 SHAW 6. This reference applies to the following sections.
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When 77i is even, the algebra is given by

3-no 3,320 3,330 3,440 324 _ lj2( _i, 3 2{_i, 2( ,
3.2 ,-, 2i _i, 3,^,^,0

(i=3....^
We notice that 1

e1 = 3-uo ~\~ 3-220 3.330 3,440 ~r 2 w "
3,

2t _ lt 24_i, o

220 -3303- - 3..J40 2 (3,3i _ i

486. Theorem. The rotation groups, not dihedron groups, define the

algebras given below :

(a) The tetrahedral group: generators e
1; ez ^ = 1 = e| = (e1

e2)
3

Leto3 =l. The FROBENIUS algebra is

^110 ^220 ^-330 ^440 ^-460 ^460 ^540 ^-550 ^680 ^640 ^650 ^660

i
^ A]jo -f" t>" AQOQ 1 w ^330 I ^440 ~T w ^-550 1

(J ^-660

C2 = ?.110 + /I22o + ^.330
- 5 (^440 + ^-550 + ^660J + f (^460 + ^-460 + ^-540

~l~ ^-560 T
(b) The octahedral group : e\

= 1 = el = (e^ e^f.

Let o4 = 1. The algebra is

^110 ^220 ^330 ^-440 ^-340 ^430 ^-560 ?-660 ^770 ^-560 ^6BO ^-670

"760 "670 ^760 ^880 ^990 ^aaO ^890 '"980 ^8oO ^a80 ^-9aO ^a90

Cj
=

/lj]o
-

^220 ~l~ ^-330 ^-440 I ^-650 T ^660 "I" w ^-770
-

(t) ^880 ~\~ <J ^-99

3 X430 + i
(

1 + M) XMO + i (1 o)

(1 ") ^890 + 4 (1 + ") ^8aO + W 3 ^340 i ^440

(1 + 0)) ^660 i Jl66o + i 3,670 + i (1
-

") 3-980 + 4 " ^-990 +
(1 (j) X750 + i A760 + J W 3,770

(c) The icosahedral group : ef
= 1 = c|= (e2 ej)

2
.

The algebra is X110 7,
ij0

3,wo ^Pqo %tto where 2

s, < = y, , e,i,j= 2, 3, 4 k
t
1= 5, 6, 7 p, q= 8, 9, a,

487. Theorem. The group Gm , e\
= 1 = e\

=
(ez e^, defines the algebra

where 3

i,y=2, 3, 4 ^, Z=5, 6, 7

s,t= s, $, y, 6, i,x,^

^, ? = 8, 9, a, (3, y, $

u,v = ii, v, o, n, p, a,

488. Theorem. The groups defined by the relations e?=l=e|, e^
1
e
1
e2=ief,

m prime to a, give FROBENIUS algebras of order r = ac which are sums of

quadrates as follows :

a
t kg of order 1 /, &, of order <$

'SHAW 6. 2 FBOBBNICS 3
;
DICKSON 4. 3 POINCAKE 4.
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where a
{
is the highest common factor of m 1 and a

; g is the lowest expo-
nent for which m= 1 (mod a) ;

c = kg.

If a' is the smallest divisor of a, :):
]

,
and a = o^ a', then wi" 1 = 1 (mod e^).

If a" is the next smallest divisor of a, a = a2 a", ?"'== 1 (mod a.,),
and so

on for all divisors of a
;

if also
<J> (iV) is the totient of (N), then

$ (a)
= hg $ (a,)

= h
1 g l

---- ^>(aj)=hj gj (/= 1, 2 ---- i 1, i + 1 ---- p)

We notice that if w is a primitive a-th root of unity, n a primitive c-th

root of unity

i, o

wherein
i = 1 ---- Tcx j\ ---- gx 1=1 ---- hx

The multiples of ap_x+1 , namely v
t
ap_x+ll where v

t
is prime to ax ,

are

divided into hx sets of gx each
;

s 's the lowest in the Z-th set, the set being
s(

x, msa ) WJ *""1 *^'; and/ + 1 is reduced modulo 1

gx .

489. Theorem. The algebra defined by the groups 1 = e% = e = e%

e.z e
l
= e

l
es ea e

1
= e^ e3 e2 es =^e1 es e2 is given by the forms /I occurring

in the equations

where

=^+l,^ ---- 1,0 n = n np+1 =l lt,i\ ---- np_x+l j=.\ ---- nx

lx is any integer < nx and prime to nx [has therefore ^(Wa-) values], j + 1 is

reduced modulo nx ;
nx is any divisor of n, the quotient

1

being n
p _ x + l

.

490. The papers of FROBENIUS and BURNSIDE on group-characteristics

should be consulted.

>SHAW 12.
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XXVH. SPECIAL CLASSES OF GROUPS.

491. Since every group determines a FROBENIUS algebra, it is evident that

this algebra might be used to determine the group and to serve in applications

of the group. Since the group admits only of multiplication, the group

properties become those of certain numbers in the algebra combined only by
multiplication. However, if the group is a group of operators, or may be

viewed as a group of operators, it may happen that the result of operating
on a given operand may be additive, in which case the numbers of the algebra
become operators. Examples are given below.

492. Substitutions. Since every abstract group of order r is isomorphic
with one or more substitution groups on r letters or fewer, it follows that the

permutations or substitutions of such groups may be expressed by numbers of

the algebra corresponding to the abstract group. Thus a rational integral

algebraic function P of n variables may be reduced to the form

m
P= 2 P4

t=i

where P
i
is expressible in the form

where Af is a positive or negative numerical coefficient and Sj is a substitution

of the symmetric group of the n variables. F
i
is a rational integral algebraic

function of the variables. All the substitutional properties of P
i are direct

consequences of the form (A
(

f + + A /Sn).
For example

P = i 2 i 3 + 3
1 2 3

1 3 T a| 3 + T 2 8 = P\ + A
where

PI= i [1 (2 a) + (i a,) (!

PZ [3 1 (i 2 s)
3 (2 s)

wherein the bracket expresses an operation. We may find solutions for

equations such as

(l+tf + (T
2 + (T

8)P=0 =
(abed)

or other forms in which the parenthesis is any rational integral expression in

terms of substitutions.

The solution of this particular case is P= (l a}F}
where F is any

rational integral function. These equations are useful in the study of

invariants.1

493. Linear Groups. A group of linear substitutions has corresponding to

it an abstract group, such that if the generating substitutions of the linear

group, H, are 2j, 22 2P ,
with certain relations 2

4l 2,-,
2r,

=
1, S^Sj,

.... 2r,
=

1, etc., then the abstract group is determined by generating sub-

stitutions C1} a2 . . . .ap ,
with relations ah ajt

---- (Tr,= 1, cr^o^ . ... a
ra
=

1, etc.

1 A. YOUNG 1.
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If we choose a suitable polygon in a fundamental circle, the circle is

divisible into an infinity of triangles, which may be produced by inversions at

the corners of the polygon, according to the well-known methods. The

group G generated by alt az
. .ap without the relations is in general infinite.

With the addition of the relations we get a group G' isomorphic with

II, H being merihedrically isomorphic with G.

Then G', or what is the same thing H, may be made isomorphic with a

FROBENIUS algebra, which is of use in the applications of the group. A notable

application of this kind was made by POINCARE.'

This application is devoted on the one hand to the study of the linear

groups of the periods of the two kinds of integrals of a linear differential

equation of order n which is algebraically integrable; and, on the other, to the

proof that for every finite group contained in the general linear group of n

variables there is such a differential equation. The results are chiefly the

following :

494. Theorem. For every group G' there is a system of Fuchsian func-

tions, Abelian integrals of the first kind, such that if K(z) is any such function,

and if S is any substitution of G1 to which corresponds a linear substitution

n * *-=l then

rf)=
where is called a period of K(z).

There are also Abelian integrals of the second kind P(z, a), such that

P(zS, a) = P(z, a) + <J>(a),
where $(a) is the a-derivative of a function of the

first kind.

495. Theorem. The genus of the group being q, there are q independent

integrals of each kind ; all others are expressible linearly in terms of these.

496. Theorem. In the FROBENIUS algebra corresponding to the group let

X be 2 . X
i
elt where e

t corresponds to tS
t

. Then KX means 2Xt K(za^
1

),
and

uX means the period of KX corresponding to the period o of Kz. Then there

are three kinds of quadrates in the algebra.

I. Those for which KXa
= constant, for all values of K and any number

Xa in the a-th quadrate. In this case JT= identically for any .ff"and any
substitution S, and if Xa = 2Xai e

i}
there are linear relations among the

coefficients Xai . Also P(z, a) Xa is an algebraic function.

II. Those for which KXa is constant for each K if X^ is properly chosen,

so that for any /iTand any S there is an Xa such that uXa = 0.

There is an integral K 1 whose periods are linear combinations with

integral coefficients of Xat ;
this integral K 1 combined with K by RIEMANN'S

1 POINCARK 4.
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relations gives the coefficients of the periods u in uX-= 2JTtti
u

t ;
that is,

determines X^. There are but q such relations independent.
Also P(z, a) X^ is not an algebraic function for this X^.
III. K . Xa is not constant for certain K's, and any Xa . For any such

K we may write KX^ = G(z), then the periods of G(z) being ult o2 m
for the TO substitutions of G', if we form the periods of G(za), we get the

same periods o in another order
;

a group determinant may be formed from

these by letting a run through G, which must vanish as well as its minors of

the first JTI n 1 orders.

That there be a rational function of x, y, satisfying a linear equation of

order n, it is necessary and sufficient that there are numbers &;,&,.... bm
whose group determinant is of the character above. There is thus always at

least one quadrate of the third kind.

497. Theorem. An integral of the first kind, K, belongs to a quadrate if

KX= constant, for any number X not in this quadrate, but KX is not con-

stant for all numbers in the quadrate.
An integral P(z, a) belongs to a quadrate if for all values ofX not in this

quadrate P(z, a) X is an algebraic function
;
but for some values of X in the

quadrate P(z, a) X is not an algebraic function.

The number of integrals of the first kind belonging to a quadrate of

order a2
is a multiple of a.

Any integral can be separated into integrals each of which belongs to a

single quadrate.

498. Theorem. The 2g- periods of K(z) are subject to a linear transforma-

tion by each substitution S of G'. The totality of these linear transformations

furnish a linear group isomorphic with H.

The relations between the periods of P(z, a) are found by writing the

linear relations between K(z), K(zS^), K(zS.^), etc., and differentiating them.

The derivatives are subject to linear transformations which also generate a

group isomorphic with H.

The second group is related to the totality of quadrates of the second

kind, the first group to the totality of quadrates of the third kind.

499. Modular Group. This has been studied by means of the commutative

algebras.
1

500. LAURENT 2 has made use of representations of linear substitutions by

quadrate numbers or tettarions, to derive several theorems. His processes are

briefly indicated below.

Theorem. If a = 2co /ly ,
where

c = 1 * = 1 n GU = Cji i :/
then the tettarion t = 2a~ l

1 represents an orthogonal substitution, and the

1 J. W. YOCHG 1. 'LAURENT 1, 2, 8, 4.
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orthogonal group consists of all such substitutions. In this case a represents

a skew substitution.

501. Theorem. Every orthogonal substitution may be represented by the

product of tettarions of the type
1

(J = a, + A,, + + a,.,. + (* + *) cos + a 2
4

8in

X4< and JL^ absent

502. Theorem. Tetlarions of the type c and 1 + c (2,w + Jl^) produce

tettarions representing symmetric substitutions.

503. Theorem. Tettarions of the type 1 -f \} produce tettarions which

represent substitutions with integral coefficients.

l....n

504. Theorem. If t = 2 a
is %y represents an orthogonal substitution, then

y
!....

7-p3
= 2 a

lr
ajq /1M gives a new group of linear substitutions. By similar

>',j

compounding of coefficients of known groups, new groups may be formed.

505. AuxoNNE 2 has applied the theory of matrices to derive theorems

relating to linear groups, real, orthogonal, hermitian, and hypohermitian. If

l-...n

T = 2 a
tj %tj t = 2 o-ji %ij t = 2 a

ii \)

where ao is the conjugate of the ordinary complex number a
ij}

then r is

symmetric if T = T
;

it is orthogonal if TT = 1
;

rectZ if r = t
', unitary if

fr= 1
;
hermitian if T= r. In the latter case the hermitian form /. (T) > 0.

[In this expression (T) acts on as a linear vector operator]. If t is hermitian

there is one and only one hermitian
<J>
such that $

2 =
t, or 9 = T4.

Theorem. That an n-ary group G can be rendered real and orthogonal

by a convenient choice of variables, the following conditions are necessary

and sufficient :

(1) G possesses two absolute invariants: a hermitian form /. (T) and

an n-ary quadratic form of determinant unity, P= / .

(p)
.

(2) G having been rendered unitary by being put into the form TI

Gr~*,

in the transform of P, p is unitary.

506. Theorem. Every tettarion is the product of a unitary tettarion by a

hermitian tettarion.

To put a into such a form we take T2= da and v = aT"1
;

then a = vr.

The literature of bilinear forms furnishes many investigations along

these lines.

1 Cf. TABER 6, 7, and other papers on matrices. * AUTONNE 1, 2, 3, 4.



MODULAR SYSTEMS 133

XXVin. DIFFERENTIAL EQUATIONS.

507. Pfajf's Equation. To the solution of the equation

X
l dxi + Xz dx2 + ---- -f Xm dxm =

GRASSMANN 1

applied the methods of the Ausdehnungslehre.

508. La Place's Equation. This may be written y s = 0. It has been
treated by quaternionic methods in the case of three variables.2 Other equa-
tions and systems of equations which appear in physics have been handled in

analogous ways. The literature of quaternions and vector analysis should be

consulted. 3 The full advantage of treating the general operator y as an

associative number, would simplify many problems and suggest solutions for

cases not yet handled.

509. It is pointed out by BRILL* that by means of matrices the operator

a* a2 a2
a* a* 32A = a -3-0- + o 3 o -f c ^-s- + 7-55 |- q ~^r^--h -a ^ay? ay* otf oydz dzox cxoy

can be factored into

p and q being matrices (tettarions).

Therefore any matrical function of x, y, z which vanishes under the

operation of either of these linear operators is a solution of the equation

A . 0=0
It is obvious that this method is capable of considerable extension.5

MODULAR SYSTEMS.

510. It is obvious that every multiplication table may be expressed in

the form

e/c
=

If now we consider a domain admitting e
it e^, etc., and their products and

linear combinations, it is evident that we have a modular system. The

expressions e
i

. . . . need not be ordinary algebraic variables, of course; they

may be function-signs, for example.

Every modular system may be considered to represent, and may be

represented by, an algebra. From this point of view all numbers are quali-

tative except integers.

'FOBSTTHB 1. Cf. Avtdehnungtlehre, 1862, 500-527.

BooLBl; CABMICHAEL 1, 2, 3, 4; BRILL 2; GBAVES 1.

WBDDEBBUKN 2
;
POCKLINOTOK 1. BBILLS.

' Cf. B. FKIBOB 2. Same In Appendix I In B. FBIBCB 3.

9
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XXX. OPERATORS.

511. The use of different abstract algebras in forms which practically

make them operators on other entities is quite common in some directions.

In such applications the theory demands a consideration of the operands as

much as of the operators. As operators they have also certain invariant,

covariant, contravariant, etc. operands, so that the invariant theory becomes

important.
For example, the algebra of nonions plays a very important part in

quaternions as the theory of the linear vector operator.
1

512. Invariants of Quantics. The formulae and methods of quaternions
have been applied to the study of the invariants of the orthogonal trans-

formations of ternary and quaternary qualities.
3 If is a vector, then q%q~

l

is an orthogonal transformation of
, q being any quaternion of non-vanishing

tensor. Every vector or power of a vector or products of powers of vectors

furnishes a pseudo-invariant. Orthogonal ternary invariants are then those

functions of vectors which are mere scalars, the list being as follows :

rp T2a Sa(3 Soap Sapy

In these, a, (3, etc. are practically different ndblas operating on
p,

so that

we understand by S . apy substantially what is also written S. ViVsVs-
The formulae of quaternions become thus applicable to these symbolic

operators, yielding reductions, syzygies, etc. For example, the syzygies

Sap Syoe Spy Saoe + Sjlb Saye Spe SayS =
Sap SpyS - Spp SayS + Syp Safit Sop Sapy=

This amounts, of course, to a new interpretation of ARONHOLD'S notation, and

the process may readily be generalized to n dimensions by introducing the

forms lap, Ipp, lap, and the like.

513. Differential Operators. The differential operators occurring in con-

tinuous group-theory are associative, hence generate an associative algebra

(usually infinite in dimensions). Groups of such operators are groups in the

algebras they define, and their theory may be considered to be a chapter on

group-theory of infinite algebras. The whole subject of infinite algebras is

undeveloped. The iterative calculus, the calculus of functional equations,
and the calculus of linear operations are closely connected with the subject
of this memoir.3

1 See references under Nonions, previously given.
M< MAIION 1

;
SHAW 14.

'PlNOHERLB 2, 8; LEMERAT 1, 2, 8; LEAU 1. The literature of this subject should be consulted.
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