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PREFACE

HE theory of linear associative algebras (or closed systems of
hypercomplex numbers) is essentially the theory of pairs of
reciprocal linear groups (§ 52) or the theory of certain sets of matrices
or bilinear forms (§ 53). Beginning with Hamilton’s discovery of
quaternions seventy years ago, there has been a rapidly increasing
number of papers on these various theories. "The French Encyclopedia
of Mathematics devotes more than a hundred pages to references and
statements of results on this subject (with an additional part on
ordinary complex numbers). However, the subject is rich not merely
in extent, but also in depth, reaching to the very heart of modern
algebra.

The purpose of this tract is to afford anelementary introduction
to the general theory of linear algebras, including also non-associative
algebras. It retains the character of a set of lectures delivered at the
University of Chicago in the Spring Quarter of 1913. The subject is
presented from the standpoint of linear algebras and makes no use
either of the terminology or of theorems peculiar to the theory of
bilinear forms, matrices or groups (aside of course from §§ 52—54, which
treat in ample detail of the relations of linear algebras to those
topics).

Part I relates to definitions, concrete illustrations, and important
theorems capable of brief and elementary proof. A very elementary
proof is given of Frobenius’s theorem which shows the unique place of
quaternions among algebras. The remarkable properties of Cayley’s
algebra of eight units are here obtained for the first time in a simple
manner, without computations. Other new results and new points of
view will be found in this introductory part.

In presenting in Parts II and IV the main theorems of the general
theory, it was necessary to choose between the expositions by Molien,
Cartan and Wedderburn (that by Frobenius being based upon bilinear
forms and hence outside our plan of treatment). We have not pre-
sented the theory of Molien partly because his later proofs depend
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upon the theory of groups and partly because certain of his earlier
proofs have not yet been made correctly by his methods. The more
general paper by Wedderburn is based upon a rather abstract calculus
of complexes, comparable with the theory of abstract groups (§ 61). In
compensation, he obtains in relatively brief space the main theorems
not only for the usual cases of complex and real algebras, but also for
algebras the coordinates of whose numbers range over any field (stated
in § 56).

In order that our treatment of the general theory shall be ele-
mentary and concrete and shall use but a very few concepts easily kept
in mind, we have confined our exposition (in Part II) to the classical
case of algebras whose numbers have ordinary complex coordinates
and given a careful revision of the theory as presented in Cartan’s
fundamental paper. Running parallel with the general theory is an
illustrative example treated independently but in the spirit of the
theory. While we thereby lose the generalization to a general field,
we gain the important normalized sets of units, first given by Scheffers
under certain restrictions, and so obtain the analogues of important
theorems on the canonical forms of groups of linear transformations or
of sets of matrices or bilinear forms.

I am much indebted to Professor Wedderburn of Princeton and
Miss Hazlett of Chicago for suggestions made after careful readings of
the proofs. My thanks are due to the editors for the opportunity to
participate in this useful series of tracts. Finally, I am under obliga-
tions to the officials of the University Press for complying with all of
my requests as regards the form of this tract, and for expeditious
publication in spite of the distance travelled by the proofs. The
(uality of the printing speaks for itself.

L. E. D.

CHi1cAGoO,
May, 1914.
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PART 1

DEFINITIONS, ILLUSTRATIONS AND ELEMENTARY
THEOREMS

1. Arithmetical definition of ordinary complex numbers.
The following purely arithmetical theory of couples (@, ») of real
numbers differs only in unessential points from the initial theory of
W. R. Hamilton*. Two couples (a, b) and (¢, d) are called equal if
and only if @=¢, b=d. Addition, subtraction and multiplication of
two couples are defined by the formulast

(a4, 0) + (¢, d)=(a+c, b+d) .
(a, b)= (¢, d)=(a-c, b—-ad) (1).
(@, b) (¢, d) = (ac - bd, ad + bc)
Addition is seen to be commutative and associative :
z+x'=2'+z, (@+a)+a"'=a+ (2 +2") (2),
where z, a2/, " are any couples. Multiplication is commutative,
associative and distributive:

zv’' =2z, (vx)a"=z(x'2") (3),
z(@+a")=ad + 22", (@ +a")e=az+2a"x (4).

* Trans. Irish Acad., vol. 17 (1837), p. 293 ; Lectures on Quaternions, 1853,
Preface.

+ Each couple (a, b) uniquely determines a vector from the origin O to the
point A with the rectangular coordinates ¢, b. The sum of two vectors from O to
A and the point C=(c, d) is defined to be the vector from O to the fourth vertex S
of the parallelogram having the lines 04 and OC as two sides. The coordinates
of S are a+c, b+d. Subtraction of vectors is the operation inverse to addition ;
thus OS - 04=0C. To define the product of the vectors from O to 4 and C, we
employ initially the polar coordinates r, 6 and 2/, & of 4 and C. Then 0O4.0C is
defined to be the vector from O to the point P with the polar coordinates 7,
8+6'. Since 4 has the rectangular coordinates a=rcos 6, b=1sin 6, and similarly
for C and P, the expansions of cos (6 + 0') and sin (6 + 6') lead to the third relation
(1) between the rectangular coordinates of 4, C, P.

- -
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Division is defined as the operation inverse to multiplication.
Division except by (0, 0) is possible and unique:
(e,d) fac+bd ad-be -
(a,0) ~ ( @+ 0t b") ().
In particular, we have
(1, 0) £ (¢, 0)=(wxc, 0), (a,0)(c, 0)=/(ac, 0),
EZ’—% = (f—l, ()) if a+0.
Hence the couples (¢, 0) combine under the above defined addition,
multiplication, etc., exactly as the real numbers « combine under
ordinary addition, multiplication, etc. Without introducing any con-
tradiction, we may and shall impose upon our system of couples (a, b),
subject to the above definitions of addition, etc., the further assumption*
that the couple («, 0) shall be the real number «. For brevity write 7
for (0, 1). Then
32=00,1)(0,1)=(-1,0)=—-1,
(a, b) = (a, 0) + (0, b) =a+ (b, 0) (0, 1) = « + bi.
The resulting symbol a + 4¢ is called a complex number. Relations
(1) and (5) now take the familiar forms
(a+b)x(c+di)=(axe)+(hxd)i
(@ +b0) (¢ +di) = (e — bhd) + (ad + be) § (6),
c+di ac+bd wd-be
avbi” @b T @+l
where, for the last, « + bi+0, i.e. @ and b are not both zero.

2. Number fields. A set of complex numbers is called a
number field (domain of rationality or Korper) if the rational
operations can always be performed unambiguously within the set.
In other words, the sum, difference, product and quotient (the divisor
not being zero) of any two equal or distinct numbers of the set must
be numbers belonging to the set.

In view of (6), all complex numbers «+ b form a field. Again,
all real numbers form a field. The set of all rational numbers is a
field, but the set of all integers is not.

* Just as the natural numbers are included among the signed integers, the
integers among the rational numbers, and the latter among the real numbers
defined by means of them. In the same train of ideas, 1 is often used to denote
the principal unit (§ 7, §11), and the number e for the scalar matrix S, (§ 4, second
foot-note).
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3. Matrices. The concept matrix* affords an excellent in-
troduction to the subject of this tract and, moreover, is of special
importance in the general theory. We shall consider only square
matrices of n rows each containing n elements. For example, if

n=2,
w280 v () 2

are matrices, the elements of the first matrix m being «, b, ¢, d.
Each element may be any number of a given number field F.
We shall say that m and p are equal if and only if their corre-
sponding elements are equal, «=a, etc. Addition and multiplication
are defined by

m_‘_‘“:<(a+a I;+B>’ ,”P'"_<4m+l)y (L,B+I)8) ®).

c+y d+38 “N\ea+dy eB+dd

The element in the /th row and jth column of the product is the sum
of the products of each element of the ¢th row of the first matrix by
the corresponding element of the jth column of the second matrix,
i.e. first by first, second by second, etc. This rule holds also for
matrices of n* elements. Of the four possible rules for expressing
the product of two determinants of order » as a determinant of
order n, the above is the only rule which holds also for matrices.

With the exception of (3,), the laws (2)—(4) for addition and
multiplication hold for matrices. Since the product (8,) is in general
altered when the Roman and Greek letters are interchanged, matric
multiplication is usually not commutative. Accordingly we shall see
that we must distinguish between two distinct kinds of division of
matrices. To this end, note that

e 0 e 0 ea eb
<O e) m=m (0 e) B (ec ed) (9).
In particular, the wnit matrix

-3 w

has the property that fm =mI=m, for every matrix m. By the
tnverse of a matrix m whose determinant A=|m| is not zero is
meant

* Cayley, Phil. Trans. London, vol. 148 (1858), pp. 17—37 (=Coll. Math.
Papers, 11, pp. 475, 604).
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a -b
A A
m = 11),
"\ @ v
A A

if n =2, while if » 2, we employ as the element in the ¢th row and
Jth column the quotient of the co-factor of the element in the jth
row and ¢th column of A by A. Then

mm~ =m"m =1 (12).

Given two matrices m and p such that |m|+0, we can find one
and only one matrix p=m"'p such that mu=:p, also one and only
one matrix v=pm™ such that vm=p. These respective kinds of
division by p by m shall be called right-hand and left-hand division.

On the contrary, if |m | =0, there is no matrix u for which mpu - 7,
since this would imply 0 |u|=|7|=1. Likewise, there is no matrix v
for which vm = I.

Thus right- and left-hand division by m are each always possible
and unique if and only if the determinant of m is not zero.

Addition, subtraction, multiplication and division of matrices with
elements in a field #'lead to matrices with elements in #. Accordingly
we shall speak of the matric algebra over the field #© When F'is the
field of all complex numbers, the field of all real numbers, or that of
all rational numbers, we have the complex, real or rational matric
algebra of square matrices of 2* elements.

4. A matric algebra viewed as a linear algebra*.
T'aking n=2, we shall make use of the particular matrices

10 01 00 00
w=(00) #=(00) «=(10) «=(1)

Their sixteen products by twos are
Cylik = €y Cijlrr = 0 (t =|=j) (14).

If m is a matrix and e is a number, we shall define the productt em

* For references, see § 13.
1 In the product (9) we may therefore replace the ¢ scalar matrix " (8 2):5’,

by the number e, This becomes intuitive if we note that S,=el. Since
Se+ 8y =8¢4s, 8eSy=8y, ete., the algebra of all scalar matrices over a field F
is abstractly identical with K. This replacement of S, by e is similar to that of
(@, 0) by a in § 1.
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or me to be the matrix each of whose elements is the product of ¢ by
the corresponding element of m :

a b @ b ew b
¢ (c d) - (c d) = (ec ed) (15).
In view of (13), matrices (7) and (8) may be expressed in the
form

m = aey + bey, + cey + dey } 16),
= aey + Bey, + yey + Sex
m+p=(@+a)ey+(b+B)en+ (c+y)ey +(d+8)exn } (17

mp = (aa + by) ey + (aB + b8) €1, + (ca + dy) en + (cB + dS) ex )

'The last may also be found from (16) by use of relations (14),

The set of hyper-complex numbers ae;, + ... + dey, in which a, ..., d
range independently over a field #, and for which addition and multi-
plication are defined by (17), is called a linear associative algebra
over F with the four units ey, ..., e subject to the multiplication
table (14).

For any #, let ; be the square matrix of #* elements all zero except
that in the i¢th row and jth column which is unity. Then relations (14)
hold. We obtain a linear associative algebra with »? units ey.

5. General definition of hyper-complex numbers and
linear algebras*. We shall generalize the notion of couples in § 1
and, with a change of notation, the notion of quadruples (7). Consider
the set of all n-tuples (2, ...,2,), whose coordinates ,, ..., x, range
independently over a given number field F.

Two n-tuples are called equal if and only if their corresponding
coordinates are equal.

Addition and subtraction of »-tuples are defined by
(@, ey n) £ (@y yn)= (2, o, nt2n)  (18)
The product of any number p of the field #' and any n-tuple
2=(y, .0, )

is defined to be
pr =xp = (P‘z'], AR ] P-”n) (19)'

* Hamilton’s Lectures on Quaternions, 1853, Introduction. For definitions by
independent postulates, see Dickson, Trans. Amer. Math. Soc., vol. 4 (1903), p. 21;
vol. 6 (1905), p. 344.
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The n units are defined to be
a=(1,0,..0), ,=(0,1,0,...,0), ..., €,= (0, ..., 0, 1).

Hence any n-tuple  can be expressed in the form

X =210+ ToPy + .. + Tnfy.

We shall call 2 a kyper-complex number, or briefly a number. In view
of the definition of equality of #-tuples, + and

a=x'e + ... +a)e,

are equal if and only if #,=2/,..,2,=a,/. In particular, =0
implies that each 2;=0. Hence the units ¢,, ..., ¢, are linearly in-
dependent with respect to the field .

It is assumed that any two such numbers z and 2’ can be
combined by an operation called multiplication subject to the dis-
tributive laws (4):

n
zx'= 3 xa ee,
ij=1
and such that the product #2’ is a number 3z;; with coordinates in £
Necessary conditions for the latter property are

eie,zél Yukos (,j=1,...,n; yYsin F) (20).
These are sufficient conditions, since they imply
xx' =y = Sy, yk=iélx,~xj’yw¢ (k=1,..,0) (21).
Properties (18) and (19) of n-tuples give
rxra = é} (@i+x)e:, pr=ap= éx (py) e; (22),

if pis in #. 'The set of all numbers Sz;¢;, with coordinates in 7,
combined under multiplication as in (21), under addition and sub-
traction as in (22,), and under multiplication by a number p of F
as in (22,), shall be said to form a linear algebra (or system of
hyper-complex numbers) over the field F, with the units e, ..., e,
(linearly independent with respect to #) and the multiplication table
(20). The n* numbers yy are called the constants of multiplication.
Neither the commutative nor the associative law of multiplication is
assumed.
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For example, the set of all ordinary cormplex numbers @ +b¢ form a binary
linear algebra over the field ' of all real numbers, with the units 1 and ¢
subject to the multiplication table

12=1, l.i=i.1=i, ¢=-1
In this algebra (§ 1), multiplication is commutative and associative. The
algebra is a field F(z) and may be viewed as a unary algebra over this
complex field with the single unit 1.
In § 4 we considered a linear associative algebra with four units.

6. Division. Given two numbers # and y of a linear algebra,
we can determine uniquely a number 2’ of the algebra such that
a2’ =y provided the » linear equations at the end of (21) are solvable
uniquely for #/, ..., a," in the field /. This will be the case if and
only if the determinant

@)= 3 v Goh=tom) (29)

is not zero. In that case, right-hand division by » is always possible
and unique.

Similarly, there is a unique solution 2’ in the algebra of the
equation 'z =y if and only if

A'(r)=

igl Ty Yk (j) k= 1, veey ”) (24)

is not zero. In that case, left-hand division by « is always possible

and unique.

We shall call A (2) the right-hand determinunt of x, and A’ () the
left-hand determinant of a.

7. Principal unit (modulus). An algebra may contain a

number
€=€0 +... + €0,

called a principal unit or modulus, such that
ze=er=x  (for every number  of the algebra)  (25).

For example, e=1 in the binary algebra of all complex numbers
a+bi. Again, € = ¢, + ey in the matric algebra of § 4.

"There cannot be a second principal unit €. More generally, there
is no new number ¢ for which ¢ = for every 2. For, if so, e =
while by (25,) for 2= ¢, ¢ = ¢, whence ¢ =e.

Conditions (25) hold if and only if

gE=¢€0=¢ (j = 1, ceey n) (25’)
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With Kronecker, set ;=1, ;=0 if j+£ By use of (20) and the
linear independence of ¢, ..., ¢,, we see that (25") are equivalent to

n n
Elfmik =8, Elft}’wa = 8y (U k=1,...,m) (26).

Hence A ()=Aa(e) =8| =1 7).
Hence if there exists a principal unit, neither A(z) nor A'(z) is
identically zero in zi,...,2,.

For the case of a linear associative algebra it is easily proved that,
conversely*, when neither A (x) nor A'(z) is identically zero, the
algebra has a principal unit. Indeed, there is then a numnber » for
which neither A (#) nor A’(u) is zero. By § 6, there is a unique
number e of the algebra such that e =, and a uniquely determined z
for which 2u =, where «# is an arbitrary number of the algebra.
Then, by the associative law,

re=(zu)e=z (ue)=2u =2z,
u(ex)=(ue) e=uzr, ex=ua.
Hence ¢ is a principal unit. In such an algebra any number z for

which A(2)+0 has a unique inverse. For, if 2! is the unique
number determined by 2z~'=¢, then z~'z=¢, since

z(x 'z —¢€) = ex —re=0.

Hence 'z =€ implies &' =2, as shown by multiplying by 2! on the
right, so that A’ (2)+0 (§ 6).

Thus A (2) +0 implies A’ (z) + 0 and conversely.

8. Transformation of units. Consider » numbers

E=3 ¢y, (i=1,..,n)  (28)
j=1

J:
in which the ¢’s are numbers of a field # such that
leg|+0 (=1, ..ym).
We may solve the n equations and obtain

n
=3 4k, 1yl+0  (i=1, com)  (29),
j:
where the #'s are numbers of #. By means of (28) and (20) we can

* Q. Scheffers, Leipzig Berichte, vol. 41 (1889), p. 293. Stated for com-
mutative algebras by Weierstrass, Gittingen Nach., 1884, p. 412,
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express KK as a linear function of the ¢'s, and hence by (29) as a
linear function of the E’s:

Ei.b}=k§1 PijkEk (’i,j-_- 1, ..., n) (30)-
For any number # of the algebra,

2= Sme=3 X,B, X=3 b (31).
i=1 =1 i=1
Hence 2 can be expressed in one way and, in view of the linear
independence of K, ..., B, with respect to F, but one way as 2 X £,
where the .1”s are numbers of A, Taking K\, ..., K, as new units,
we obtain a linear algebra over /' with the constants of multiplication
Ty, which is called the ¢ransform of the initial algebra by the trans-
formation of units (28) or (29). The two algebras are called equivalent
under linear transformation of units in #.

9. Any number of a linear algebra is a root of an
equation. Any z+1 numbers of a linear algebra with » units
over a field /' are linearly dependent with respect to /. For, if the
first n of the % + 1 numbers are linearly independent with respect to #)
the (n+ 1)th number can be expressed as a linear function of them
with coefficients in # (§ 8).

Assuming here that multiplication is associative, we may denote
the product of ¢ factors A by .1, where 4 is any number of the
algebra. Since A, 4% ..., A"*! are linearly dependent, 4 is a root of
an equation of degree =< n + 1 with coefficients in #.

If also the algebra has a modulus ¢, then ¢, 4, ..., A" are linearly
dependent and A is a root of an equation of degree < n with coefficients
in F.

For example, in the case of the linear associative algebra of four units in

§ 4, e=ey; +¢y is a principal unit, and the general number m, given by (16,), is

a root of
m?—(a+d) m+(ad—be) e=0.

10. Polynomials in a single number. An algebraic

identity

S (@) g ()= p (2),
where the functions f(z), etc., are polynomials in an ordinary complex
variable with ordinary complex coefficients, without terms free of z,
implies that the same relation holds when 2 is any number of a linear
associative algebra. Indeed, the term involving #* in f(z)g () is
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obtained by multiplying the term in a* of f(x) by the term in #*-* of
g (2) and summing the products fori=1, ..., A — 1. But the associative
law gives a'a*~i =2t

The argument holds also for functions with terms free of the
variable « provided the algebra has a principal unit ¢ and this is
multiplied into those terms of the corresponding relation in the
hyper-complex number .

Since the associative law implies 2”2* = #*a”, two polynomials in a
hyper-complex number a' are commutative.

11. Algebra of real quaternions; its unique place
among algebras. We shall determine all linear associative
algebras over the field of real numbers such that a product is zero
only when one factor is zero. 'This determination is of decided
intrinsic interest and yields an important result on real simple
algebras (end of § 56).

If » is a given number +0, 22'=0 implies &' =0; similarly,
Zx=0 implies 2°=0. Hence (§ 6) neither A (2) nor A’ (2) is zero
when #+0. Thus (end of § 7) the algebra contains a principal unit,
which we shall denote by 1. If every number is s real multiple of 1,
the algebra is the field of all real numbers. Excluding this case, we
may take the units to be 1, ey, ..., ¢,_,, where n>1. Then (§ 9) any
number 4 of the algebra is a root of au equation p () =0 of degree
=n with real coefficients. By the fundamental theorem of algebra,
2 (2) equals a product f, () f, () ... of linear or quadratic factors with
real coefficients. Then (§ 10), f; (4)/:(4) ...=0. Thus one factor is
zero. Hence any number of the algebra is a root of a quadratic
equation with real coefficients.

If ¢ +2re+s=0, then (e+7)*=2*—s. Hence after adding a real
constant to each ¢;, we may assume that the square of each new
unit ¢; is a real number. If ¢? is a real number = 0,

O=e’==(e,~7)(e1+7), =+,
whereas ¢, and 1 are linearly independent. Thus e*= —#, where ¢ is
a real number +0. Set £, =¢/t. Then E*=—-1. If n=2, the new
units are 1, &) =7, and the algebra is the system of ordinary complex
numbers. Next, let 2>2. 'Then we may take the units to be

1, 1, J, ..., where*
I’=-1, J*=-—1, ... (82).

* Although I2=J%, it does not follow that (I-J) (I+J)=0, I=+J.



§11] QUATERNIONS 11

Since 7+ J is a root of a quadratic equation,
(I+JIp=-2+1+J[-r(T+J)+m,
(I-Jy=-2-LS-Jl=s(I-J)+s,

where », 1, 8, s, are real. Adding, we get
(r+8) I+ —8)J+r+s+4=0.
But 1, /, J are linearly independent with respect to the field of reals.

Hence »—5=0. Thus
1J +JI=2¢ (¢ real) (33).

The product £/ is linearly independent of 1, /, J with respect to
the field of reals. For, if
IJ=r+sl+1tJ,

where 7, s, ¢ are real, then

7+ st 7t —8
(I—t)(J+-ﬁ+1l+tﬂ+l)—(),

whereas neither factor is zero. Hence we may take
/=K (34)
as the fourth unit. In view of this choice of K, we do not know that
*=-1, as1n (32). But, by (32)—(34),
K:=I(JD)J=12c—-1J)J=2cK -1, \
(K-cl=¢-1<0 (85).
For, if *= 1, K —¢, and hence X, would be real.
We make the real transformation of units
i=1 j=Jtrol Koo
Jize' Ji-¢
Then ij=£, ji=—k. By (85), #2=—1. By (32) and (33), #*=—-1,
J*=-1. Then the associative law gives

k=i () =—d, ki=(§)i=—ik=j
ki=@)Jj=—1, jk=j()=—ki=i.
The resulting algebra, over the field of reals, with the four units
1, ¢, j, & and the multiplication table
P=peB=—1, =k ji=—Fh
Gomi, ki, kieq e—g) @O
is called the algebra @ of real quaternions*.

* W. R. Hamilton, T'rans. Irish Acad., vol. 21 (1848), p. 199 [1843]; Lectures
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Finally, suppose that our algebra contains a number A not in this
sub-algebra . Since A satisfies a quadratic equation with real
coefficients, we may derive as at the outset a number /, not in @,
such that 2=-1. By the proof leading to (33),

UW+li=c, jl+l=c, k+Ilk=c,
where the ¢’s are real constants. Then
k=))j=(c—t)j=ej—i(c—gl)=c1j— et + K,
2kl = cy+ eyt — ¢1 .
Multiply each term of the latter by % on the left. 'Thus
=20 = ¢k + ¢y7 + eyl.
But [ was not in ). We therefore have the

TueoreM*. The only linear associative algebras over the field of
reals, in which a product is zero only when one factor is zero, are the
Jfield of reals, the field of ordinary complex numbers, and the alyebra of
real quaternions.

12. Simplest algebraic properties of real quaternions.
To show that multiplication is associative, it suffices to verify (3,)
when each « is chosen from ¢, j, #. Instead of treating all 27 cases,
Jit, gk. Now (i) k=—1=1[(jk), ete.

The conjugate ' of a quaternion ¢ is defined by

g=r+yi+zj+wk, ¢ =x-yi—z —wk
Their product is called the norm of ¢:
N(Q)=q7 =qq=2"+y + 2" + W'
If ¢+ 0, then NV (¢)+0 and the inverse of ¢ is
a1
7= N q.
Thus, if ¢+0, ¢@ = ¢, has the unique solution §=¢'¢,, and Q¢ = ¢,

on Quaternions, 1853 ; Elements of Quaternions, 1866, etc. To assist the memory,
note that if 4, j, k be read in cyclic order (so that & is followed by i), the product of
any one by the next is the next following one.

* Frobenius, Crelle, vol. 84 (1878), p. 59; C. S. Peirce, Amer. Jour. Math.,
vol. 4 (1881), p. 225; E. Cartan, dnn. Fac. sc. Toulouse, vol. 12 (1898), B, p. 82
(see last foot-note in § 56); F. X. Grissemann, Monatshefte Math. Phys., vol. 11
(1900), pp. 132—147 (the last a slight modification of the proof by Frobenius).

The remarkably simple proof in the text is due to the writer and was outlined
by him in Trans. Amer. Math. Soc., vol. 15 (1914), p. 89.
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has the unique solution @=¢,¢7'. In particular, a product of two
quaternions is zero only when one factor is zero.

Since each kind of division by ¢ is always possible and unique
if and only if N (¢)+0, it is not surprising that a computation

gives
A(g) =a"(9) ={N (D}

The conjugate of ¢ is ¢. ''he conjugate of ¢¢; is ¢¢. In
their product we may move the real number ¢,¢," to the front of ¢.
Hence the norm of a product of any two quaternions equals the pro-
duct of their norms. This proves Euler’s theorem that the product
of two sums of four squares can be expressed as a sum of four
squares. For applications, see end of § 52.

The general quaternion ¢ is a root of

F=2zq+at+ P+ 2+ w0,
A quaternion integer* is a (uaternion
a(L+i+7+k)2+yi +2j + wk,
in which #, ..., w are ordinary integers. For them there is a greatest
common divisor process, unique factorization into primes (apart from
factors +1, +¢, ..., which divide unity), etc., as in the arithmetic of
ordinary integers.

13. Equivalence of the complex quaternion and matric
algebras. We consider quaternions whose coordinates are ordinary

complex numbers @ +b /=1 and the complex matric algebra with four
units (§ 4). From the units e, ... of the matric algebra, we derive
the quaternion units as follows:

l=en+@m, 2.=N/——i (eﬁ_e“), j‘=en—eﬂ, k=—‘\/_—1 (e]2+631).

These satisfy the quaternion relations (86). Conversely,

b L+ _1-v-T1i
1 = 9 y 6= 9 ’
o, tYVLE i N1k

12 = 9 , 21 = 9

The two complex algebras are thereforet equivalent under linear

* A. Hurwitz, Gittingen Nachrichten, 1896, p. 313.

+ In § 45 of Cayley’s paper (cited in § 3 above), he noted that relations (36)
between the quaternion units can be satisfied by four matrices of order 2. B. Peirce,
Amer. Jour. Math., vol. 4 (1881), p. 132 (read before the Nat. Acad. Sec., 1870),
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transformation of units, but the real quaternion and real matric
sub-algebras are not.

14. Cayley’s eight unit generalization of real qua-
ternions. Cayley* gave the real algebra with the units 1, ¢, ..., ¢:

ei=—1, ee=-e¢¢ (Gg=1,...,7; i%J)
“he=€3,  66,= 65, Ol — €7,  €65=6 (37)’
==, e =0, 0,6,=¢
together with 14 equations obtained from the last 7 by permuting
cach set of three subscripts cyclically, as e.e;—e;, e;e,=¢,.

The norm N () of a general number « is defined by
X=Ty+ 0+t 70, N(Z)=a+a00+ 0+ 2t

While the associative law holds for three units chosen from one
of the triples in (37), we have e.e,.¢, ——é¢,. e¢. when the three ¢'s
are not in one of those triples. Since the associative law fails we may

knew that the complex quaternion algebra was equivalent to the linear algebra
011, €12, €21, €22 satisfying relations (14) ; he and C. 8. Peirce knew the corresponding
hnear algebra (14) with n? units (pp. 217—18).

Sylvester, Johns Hopkins Univ. Circulars, vol. 1 (1882), p. 241; vol. 11 (1884),
p. 7 (=Math. Papers, vol. 111, p. 647; vol. 1v, p. 122), noted that the matrices

9 (2 (), (5 weven

‘“construed as complex numbers are a linear transformation of the ordinary
quaternion system” [they satisfy (36) if taken as 1, i, k, j respectively, thus
verifying Cayley’s above remark], and gave the transformation in §13. If p is a
cube root of unity, the matrices

100 00 1\ 0 01
I=<0 1 0), u=<p 0 0), 'u=<p2 00)
001 0 p2 0 0 pO

satisfy the relations w3=v3=1I, vu=puv. He called the linear algebra with the
nine units wivi (i, j=0, 1, 2) nonions. Sylvester gave another set of matrices u, v
in Compt. Rend. Paris, vol. 97 (1883), p. 1336; vol. 98 (1884), pp. 273, 471 (=Math.
Papers, vol. 1v, pp. 118, 154). In Amer. Jour. Math., vol. 6 (1884), p. 286
(=Math. Papers, vol. 1v, p. 224), he called the matric algebra of order p, p?-ions,
Clifford had earlier given the name quadrate algebra.

* Phil. Mag. London, ser. 3, vol. 26 (1845), p. 210 (= Coll. Math. Papers, vol. 1,
p. 127). In his 4, 87 should read 47. I have changed the sign of his last unit
to obtain one (given by e;= - 1) of the two algebras later considered in more detail
by Cayley, dmer. Jour. Math., vol. 4 (1881), pp. 293—6 (=Coll. Math. Papers,
vol. x1, pp. 368—3871). His algebra with e;= +1 may be obtained from that with
e;= —1 by changing the signs of e,, ..., ¢;. Hence the various Cayley algebras
are equivalent to (37). An equivalent algebra was discovered independently by
J. J. Graves before 1844, Trans. Irish Acad., vol. 21 (1848), p. 338.
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[]

not prove by the method used for quaternions (end of § 12) that the
norm of a product equals the product of the norms of the factors.
To secure this property, Cayley made a long analysis which led finally
to the choice of signs given in the relations (87). I have given a simple
proof of this property and at the same time proved the remarkable
theorem that right- and left-hand division, except by zero, are always
possible and unique in this algebra, a fact overlooked by Cayley and
first stated in a recent paper of mine*. I shall here give more elegant
proofs based upon a representation of the 8 unit algebra as a quasi-
binary algebra with real quaternion coordinates. Set ¢=e,. Then
the general number is ¢+ @e, where ¢, @ and », R below are real
quaternions in the units 1, ¢, e, e¢;. It can be verifiedt that
relations (37) imply

(q+Qe)(r+ Re)=qr—-RQ+(Ry+Q')e (38),
where #' is the quaternion conjugate to .
Taking r=¢/, B =~- (), we have
(g+ Q) (¢ —Qe) =gy + QQ = N (g + Qe).
The norm of the product (38) is ¢’ + 7’7", where

t=q¢—RQ, T=Rq+@Qr (89),
and hence equals

(¢ +QQ) (' + RR)=N(q + Qe). N (r + Re),
increased by a— B, where
a=Rqrd + Q¢ R, B=qrQR+RQry.
But the conjugate of the first term of « is the second term. Hence
a is a real number. Thus a = R'eR+ RR, and this is at once seen

to equal B. Hence the norm of a product is the product of the
norms.

Left-hand division except by zero is always possible and unique.
For, if r, R, t, T be given, we can solve (89) for ¢, . 'To this end

* Trans. Amer. Math. Soc., vol. 13 (1912), p. 72. Every number can be ex-
pressed as a linear function_ of ez, ey, eg, with coefficients linearin ¢;. 1f B=7+ 3¢,
where r and s are real, set B=7—se;. Let also C be linear in ¢;. Then

ejB=DBej, (Bej)(Cej)=(BT)e?, (Bej)(Cep)=(BC)(ese),
for j, k=2, 4, 6; j+k. Hence the 8 unit algebra can be exhibited as & quasi-

quaternion algebra with the units 1, ey, ¢4, ¢ and coordinates linear in e,.
t The reader may take (38) as the definition of the algebra.
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multiply the second equation (39) by » on the right and replace ¢» by
its value from the first ; we get

(' + RE) Q= Tr - Rt.
Multiply the first by #' on the right and eliminate @~. Thus
(' + RR)gq=t"+ R'T.

Similarly, right-hand division except by zero is always possible and
unique. By the relations in the first line of (87), the general number 2
1s & root of

2t =2z, + N (2) = 0.
The above theorem on the norm of a product and the corresponding

one for norms of quaternions (end of § 12) and for norms of ordinary
complex numbers lead to identities

@2+ ... + &) @i+ e ) =224 o+ 20

in the 2’s and g’s, where 2y, ..., 2, are bilinear functions of the #’s and
the s, for the cases n =2, 4, 8. That there is such an identity only
in these three cases was proved by A. Hurwitz*, using the theory of
matrices. Many earlier writers had published unsatisfactory proofs t.
All writers have overlooked the initial paper by C. F. Degeni, who
gave the identity for » =8, and a method which he supposed would
succeed for 2 = 16.

15. Characteristic determinants and equations. Let
e, ..., 6, be the units of a linear associative algebra over a field F'
and having a principal unit e. Let @ = Sa;¢; be the general number of
the algebra. By (20),

n n
xe; = kfl.’/jkek, Y= ifxx'mk (=1, .., ).

For j=1,...,n in turn, the first equation gives

(?/11_'7')31 +:’/1232+ +.7/men:01

.......................................

Y€+ Ynslo ¥ oo + (Y — ) €, = 0.

Let » be an arbitrary number of #. When « is replaced by o, the
determinant of the coefficients of the ¢’s becomes 8(w) in (40). Let
0, (w), ..., Cp (w) be the cofactors of the elements of the jth column.

* Gottingen Nachrichten, 1898, p. 309.

+ A partial list is in Encyclopédie Sc. Math., vol. 1, 1, pp. 368, 467.

T Mém. Acad. Sc. St. Pétersbourg, vol. 8, années 1817—18 (1822), p. 207. There
is a misprint in the sign of Rt.
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Multiply the linear equations by Ci(z)e, ..., C;(2)€ on the left.
Then (§ 10)
8(z)e=0 (G=1,...,n)

Multiply by ¢ and sum, where S¢e=e. Thus 5(2) e=0. Starting
with ¢;2, we obtain the second part of

TaEOREM 1. In a linear associative ulgebra with a principal unit,
the general number x is a root of the right-hand and left-hand charac-
teristic equations 8 (w) =0, &' (w) = 0, respectively, where

n n
8(w) = ’El Yurd'i— S0 ! y ¥ (0)= El')’jtk”'i - dpw
U, k=1, ...,n) (40).

Here 8y is Kronecker’s symbol (§ 7). 'These determinants are
called the right- and left-hand characteristic determinants, respectively.
The same definitions are made for any linear algebra. Thus the
characteristic determinants are derived from the determinants A (z)
and A'(r) of §6 by subtracting o from each element of the main
diagonals.

For any linear algebra with a principal unit e=3¢e;, there is a
deeper relation between these pairs of determinants. Then

n n
-21 (21— we) ygi = 21 LoYye = 08k,
1= 1=

" n
21( &€;-— (D(,;) Yiik = ‘El.riyj,‘k - (ﬂajk,
i= i=

by (26). Hence

A(2—we) =8(w), A'(r-we) =38 (v) (41).
As multiplication may not be associative, we shall write
L=x, at'=alx, w=2, Tw=r(2) ((=1,2,...),

and, in case there is a modulus ¢, 2° =z =¢. If St;2'=0, 2 is called
a right-hand root of 3t,wi=0. If 3¢,(2)=0, r is called a left-hand
root of St;w'=0. We shall prove
TueoreEM 2. In any linear algebra with a principal unit, the
general number is a left-hand root of the right-hand characteristic
equation and a right-hand root of the left-hand characteristic equation.
Without loss of generality (§ 16), we may assume that the principal
unit is ¢,=1. By (41), 8(») and & (w) are derived from A () and
A’ (2) by replacing #; by #, —o. Set .
d(w)=A(z-w)= _Eonw‘.
1=
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Denote by 2, ..., ) the cofactors of the elements of the first row in

32y - 3o
A(z): ceevessseststitsannnn (42).
| E‘Z'i')'iln Ewi')’iun

Multiply 2/ by the jth element 32y of the Ath row and sum for
j=1,..,n. We obtain the coefficient 3, of ¢ in y= 22, where
7': 3a/¢. But y,=A(x), 3»=0(k>1). Hence 22'=A(z). When
a, is replaced by 2, — v, let 2’ become

n-1

S= 3 fio,
i=0
where the /; are numbers of the algebra. Thus
(@-o)f=A(r-0)= 3 rat
i=0

Expanding the first product and equating the coefficients of like powers
of o, we get

'7:/;) = 7‘0'1 'T.fl _.ﬂ) =1y eery XBJu-1"Ju-2 = Tu-15 _.f;b—l =

Multiply the second equation by # on the left, the third by « twice
on the left, the fourth by # three times, etc. Adding. we get

Sr, () =0.
The proof of the second part of the theorem T is similar.
A final generalization, not hitherto published, is

TuEOREM 8. In an arbitrary linear algebra, the general number is
@ left-hand root of w8 (v) =0 and a right-hand root of w¥ (w) =0.

Let ¢, ..., e, be the units of the given algebra A, which is not
assumed to have a principal unit, nor to be associative. Consider the
algebra A* with the units ¢,, ¢, ..., &, where

902:00, €= €;i6y=¢; (i=l, "')n)'

+ This theorem was stated and proved by Dickson, T'rans. Amer. Math. Soc.,
vol. 13 (1912), p. 60. For the case in which multiplication is associative, the proof
becomes essentially the simpler one of the two proofs by Frobenius, Sitzungsber.
Akad. Berlin, 1896, p. 601, when that proof is suitably translated from the
terminology of bilinear forms into that of hyper-complex numbers. In this asso-
ciative case, the theorem can be expressed as one on matrices and was first stated
in this form by Cayley and verified for n=2 and n=38, Phil. T'rans. London,
vol. 148 (1858), p. 24 (= Coll. Math. Papers, vol. 11, p. 475). For matrix m in (7),
3 2)50. For references to many other
proofs, see Encyc. Sc. Math., vol. 1, 1, p. 418. The earliest occurrence of the
theorem®was, for n =3, in Hamilton’s Lectures on Quaternions, 1853, pp. 566—17.

the theorem is m? - (a + d) m+ (ad - be) <
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Thus ¢, is a principal unit of 4*. Set
n n
=S zi0;,, T*=200+2, 2 =3 /¢
i=1 i=1
Then 2 and 2* are the general numbers of A and A*. Since

n
(2 ey + &) 2* = &) 2oy + '21 (@'ai+a/z,) e, + 2z,
i=

the left-hand determinant of z* is

| 0 0
’ r, &+ E.T;YUI . 2.7'_/}’,01
A (@)= L ;
X'y, 2-7:}‘/1 mo e Lot zwﬂ’njn

with ., occurring only in the main diagonal. By (41), the left-hand
characteristic determinant /) (w) of #* is therefore

n
A',,+1 (1'* - “’eo) = (-’"0 - “’) 'Eoll (“’ - -/C'u)l,
=

where 3/, is the expansion of the left-hand characteristic determinant
¥ (w) of #. By the second theorem above, #* is a right-hand root of
D(0)=0. Set a,=0. Hence 2 is a right-hand root of Zf0i*' =0,
The first part of the theorem is proved similarly.

16. Determinants of « unaltered by linear transforma-
tion of units. Introduce new units %, ..., /s, as in §8; let 2
become X =SX k. We are to prove that A (2), given by (23),
equals

D(X)= ] S Xl
i=1

(U, k=1, ...,2).

If # and y are given numbers of the initial algebra, z2'=y has a
unique solution &' if and only if A (#)+0 (§6). Similarly, XX'=Y
has a unique solution .Y if and only if D (X)+0. But 2=X, etc.
Hence A (#)=0 implies D (X)=0. If A(2)is identically zero, then
D(X) is, and the theorem A (#)=D(Y) is true. Henceforth,
let A () be not identically zero, so that there exists a modulus € (§ 7).
Since every set of values of the @,, y; for which A (#)=0 is a set of
solutions of D(X)=0, it will follow from a well-known theorem on
polynomials that A (z) is a factor of D (X) as soon as A («) is proved
to be an irreducible function of its arguments z;,.yu. Since each
element of the determinant D (X) equals a function linear and
homogeneous in #;, ..., #,, and linear and homogeneous in the v,
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the quotient of D (.Y) by A (z) depends only upon the coefficients #;
of the transformation of units. The quotient is unity, since the latter
is its value for z = € by (27).

It remains only to prove that A () is irreducible. If the function
A (z), homogeneous in the y’s and homogeneous in zy, ..., &y, is the
product of two factors, each factor is homogeneous in the y’s and in
the 2’s. But the coefficient of &, is |y,|, a determinant whose ?
eleents are arbitrary and hence an irreducible function of these
n® elements y,,,. Hence one factor of A is free of the y’s. Taking
Yur =0 (%)), we have

A@)=lgypl=a - @ulyp!  Gh=1,..0)

Hence for general values of the y’s, the factor free of the y's is z; ... ..
But the coefficient of " in A was seen to be not identically zero.
A like argument holds for A’ («). Hence A (z) and A’ (#) are unaltered
under linear transformation of the units. Since the modulus e is
unaltered, we have*, by (41), the

TueoREM. The determinants and characteristic determinants of
the general number of any linear algebra remain unaltered under any
linear transformation of the units.

17. Invariants and covariants of linear algebras.
Consider the linear algebra with n units whose constants of multi-
plicationt y;, are undetermined numbers of a field 7. Let C be a
polynomial in these y’s and the coordinates ; of the general number #
of the algebra over #. If, under every linear transformation of units (§ 8),

C(Xi; Ty =7. Clai; yun),
where f'is a function only of the coefficients ¢, of the transformation,
O is called a covariant of the algebra. In particular, C is an absolute
covariant if /= 1, and an invariant if C involves only the y's.

The characteristic determinants &(w) and & (w) are absolute co-
variants of the general linear algebra with » units (§ 16).

For example, consider the algebra with the units ¢, e, where ¢ is a principal
unit, and e?=ye4ce. For v=x1¢e+250,

r ery
Zy Xyt yxy
8(0)=¥(0)=0?~lo+A(2), I=2x;+yzs.

A(2)=4" (z)=

)

* The invariance of §(w) when A (z) =0 follows by continuity.
1 If there be a modulus, we take it as the unit ¢;. Then
75=1i=0 Ng=v=0 (j+k).
The remaining v’s are to be left arbitrary. See the example.
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Then 7 and A (z) are absolute covariants. To give a direct proof, introduce
the new units ¢, £=r¢+ ¢, where r+0. Then

87y , Xy

v=Xe+ X,k Xij=2- e 12=—r—,

E?=TE+Ce¢ T=2s+ry, C=rlc—rsy—4,
X, CX, g . -
X, X,4+rX, =A(»), 2X;4+TX,=/

The discriminant of A () gives an invariant of the algebra :
T244C=1% (y2 4 4c).

18. Binary linear algebras with a principal unit. In
the last example, take »:=1, s=—~y/2. Then I'=0. Let therefore
¥=0 in the initial algebra. In order that the transformed algebra
shall have T -.0, the transformation must be ~'=7¢ (i.c. have s =0).
Then C=1%. Hence the binary algebra

D)

€=¢ e=¢e=e¢, € =ce (43),

and the similar one with the parameter C, are equivalent if and only
if ¢ and € are both zero, or both are not zero and their ratio is the
square of a number of the field /'

If F is the field of all complex numbers, the two types of non-
equivalent binary algebras are (48) with ¢=0, ¢=1.

If #'is the field of reals, the three types are (43) with¢=0, ¢=1,
¢ =—1, the last being the field #'(¢) of complex numbers.

Cayley* gave the seven types of non-equivalent binary associative
algebras over the field of complex numbers, the presence of a principal*
unit not being assumed. Miss O. C. Hazlett1 recently obtained these
seven types from the triple algebras having a modulus (§ 20) and
characterized them by covariants.

19. Rank and rank equation of a linear algebra. Let
¢, ..., 6, be the units of an algebra over a field /" and let the
coordinates 2, ..., #» of # =3¢, be undetermined numbers of #.

First, let the algebra be associative. By § 15, # is a root of
8(0)=0 or wd(w)=0, according as the algebra has or has not a
principal unit. Thus 2" or 2"*' is a linear combination of lower
powers of 2 (also by § 9). "The rank r of the algebra is the least
positive integer such that #” is a linear combination of lower powers

* Proc. London Math. Soc., vol. 15 (1883—4), p. 185 (=Coll. Math. Papers,
vol. xir, pp. 60, 105).
t Annals of Mathematics, vol. 16 (1914), p. 1.
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of # whose coefficients are rational functions of =z, ..., 2, with
coefficients in F. The equation B (z)=0 itself is called the rank
equation of the algebra*. If there were two such equations, the
difference would give an equation of lower degree.

Now R (w) is a divisor of 8(w) or wd(w). For, if not, the division
by R (w) would lead to a remainder p(w), of degree <7, which
vanishes for w=z, contrary to the definition of ~ (cf. § 10).

Similarly, R (v) divides 8 (w) or w8’ (w).
It follows that the coefficients of 72(w) are integral rational

functions of 4, ..., #,. For, if not, some set of finite values of the
#'s would give an infinite root of a characteristic equation.

Let oy, ..., o, be the ordinary complex roots of 2 (w)=0. Then, if
the algebra has a modulus ¢,

R(x)= (x-we) ... (—w.€=0.

The factors are commutative (§ 10). Thus f=r — w;e is a number=0
such that fy =0 for some g+0. Such a number f is called a nil factort.
Then A (f)=0, and since gf=0, A'(f)=0 (§ 6). Hence, by (41),
oy, ..., o, are roots of the two characteristic equations. Conversely,
any root o of one of the latter, say 8 (w) =0, is one of the set wy, ..., ,.
For, if w=2x — we, then A (w)=0 by (41) and we can find a number
y +0 such that wy=0. Now

V=X —0,€=W+ L€, p=0—w;,
0=00,...0.=( )W+ mpy ... pre

Multiply this by z on the right. Thus 0=p, ... n,y. Hence one of
the ws is zero. We thus have (Scheffers, l.c.)

THEOREM 1. For a linear associative algebra having a principal
unit, the distinct roots of the rank equation R ()= 0 are identical with
the distinct roots of either characteristic equation.

For example, the results in § 12 show that each characteristic
determinant of the quaternion z +yi+ 2 + wk is

(= a) +g+ 52+ = (R W)

* Th. Molien, Math. Annalen, vol. 41 (1893), p. 113. G. Scheffers, ibid., vol. 39
(1891), p. 293, called it the characteristic equation of the system, and r the ¢ Grad.”
It is often called the identical equation of the algebra.

t B. Peirce, Amer. Jour, Math., vol, 4 (1881), p. 104; Weierstrass, Gitt. Nach.,
1884, p. 395.
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Under a transformation of units, let the rank equation
R (o; @i, yu) =0,

satisfied by w = ., be transformed into p (w; X, Ty) =0, so that p=0
for o = X. But R (v; X;, Ty) =0 for o=_Y. Unless the last equation
is identical with p = 0, we obtain by subtraction an equation of degree
<r satisfied by o=_Y. This equation is the transform of an equation
of degree <r satisfied by w =z, contrary to the definition of ». Hence
(Miss Hazlett, lc.) :

THEOREM 2. The rank equation of a linear associative algebra is
unaltered by every linear transformation of units.

In the sense of § 17, the rank » is an invariant of the general
associative algebra with n units, whereas the rank function R (o) is
not a covariant.

For non-associative linear algebras, there is an equation p (w) =0
of lowest degree having z as a right-hand root (§ 15), called the
right-hand rank equation. Then* p (v) divides & (w) or wd' (w),
according as there is or is not a modulus. A similar definition and
property hold for the left-hand rank equation. These equations are
unaltered by every linear transformation of units.

For example, in the commutative, but not associative, linear algebra with

the units ¢, ¢, ..., ¢;, of which e is a principal unit, and
ef=ey ee=e;, e66=—0, ee=¢t, ee=el=—e,
ef=ey, esy=—e5, Ge3=e,0=e3¢4=cyes=e, =cy0;=¢;?=0,
w=x16+...+25¢; is a root of
w. w342 2w?=0,

but not of a cubic or quadratic equation. The general number z=2,e+w is
therefore a root of

& .28 = 4203+ (212 4+ 6202) 42— 2 (29212 + 22)3) 2 + (222,24 2*) =0,

20. Complex ternary linear associative algebras with
a modulust. Consider a linear associative algebra, over the field of
all complex numbers, with three units and the modulus e. Its rank »
is 3 or 2.

(I) First, let r=38. 'There exists a number a such that
R (a) = (a=27e)(a—Ae) (a—Ae) =0,
and such that o is not a root of a quadratic equation.

* Trans. Amer. Math. Soc., vol. 13 (1912), p. 62, Cor. II.

t E. Btudy, Gittingen Nach., 1889, pp. 243—7. Many computations there
made or left to the reader are avoided in the exposition in this tract. Study gave
no argument leading to (A), (B) in case IL
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(L) If the roots A, A,, A, are distinet, set

_(a —_)\_.,e_')_(a—)\se) _(a=XNe) (a—Ne) _(a=A€) (a—Ae)

0= — - oV, e —=
A G- A)

= el o= S £
M= A) (=) 7 i A=A (A —2y)
For o an arbitrary number, the sum of these ¢’s will be proved to
equal e. If we replace a by M e (i =1, 2, 3), we see that
e +eyt+e;=¢ (44)
is satisfied. But an algebraic quadratic equation is an identity if it is
satistied by three values. Thus (44) holds. By the associative law,
powers of a and hence the a— X e are commutative. 'Thus, if 7+,
e,¢; has the factor /¢ and is zero. Multiplying (44) on the right by e,
we get e2=¢;. llence
ee=0, e¢l=e (i=1,2,8;7{+)) (45).
Finally, the ¢’s are linearly independent. For, by multiplying Sa,e, =0
by ¢, on the right, we get @;e;=0, ¢,=0, since ¢,+0. 'The resulting
algebra (45) is evidently associative, and has
R=8=8=(r—0)(r,— o) (r;— o).
(L) If A =XM#X;, setl=X—A; and
o< — (a— Ae) (a— 2N € + \ye)/ 1%
er=c(a—Ne) (a—Ne), e;=(a—Ne)?/l
where ¢ is any constant 0. Kach product in the first line of
0103= 0,0, = 00, = €30, = ¢’ =0
} (46)

el=e, ee=ee =0y, el=g

has the factor R and is zero. By addition, ¢, +e¢,=e. Multiplying
this on the left by e,, e, ¢; in turn and on the right by e,, we get the
relations in the second line of (46). The units are linearly independent
since the products of 2@,e,=0 on the left by e, and ¢; in turn give
a;=a;=0. The relations (46) for this associative algebra are un-
altered if ¢, is replaced by te,. Here

R=38=08= (2~ 0) (13— o)
(I) IfN=N=A; sete,=¢ e,=a—\¢ es=(a—A )’ Then
ae=e0 =6, 6G=6ea=6'=0, e’=e¢ (47),
R=8=8=(z, - o)’

(II) Next, let »=2. Take ¢, = ¢, ¢,, ¢; as the units. Since =2,
£=ye, + ¢, 18 a root of a quadratic §2+2LE + @ e=0, where L is a



§ 20] TERNARY ALGEBRAS 25

linear and @, a quadratic function of y and 2 with fixed coefficients
depending upon the y. Thus (¢ — Le)*= Qe, where @ is a quadratic
function of g, 2. If @ is not identically zero it can be transformed
linearly into gz or 2% neither of which is zero for (y,2)=(1, 1) or (1, 2).
Hence we can find two linearly independent sets (y, 2) for which @ +0,
and therefore three linearly independent units e, & — Ly¢, & — Lge, such
that the squares of the last two are Q.e, Q¢ respectively, where

Q.. +0. Take F,=(&—L,&)/QF. Then
Eieve FEi=e (A).
But if @, and hence the square of ye, + z¢, — Le, 1s identically zero,

where L is a certain linear function of y, 2, we have ounly to subtract
constant multiples of € from ¢, ¢; to obtain new units for which

el=0, e2=0 (B).
(IL;) Consider case (A). Set
By ly=ae+ BI, + yE;.

Then }2 (E3 ]’/';;) = (B + ay) €+ (a + ,By) Eg + ‘y'z]y'_, = I!«'f]b'g = .E';;,

(E.Ey) Ey=(y+aB) e+ 2L+ (a+ By) Ey= EyEX = E,,

BF=y'=1, a+PBy=B+ay=y+af=0.

When the sign of £, is changed, that of y is changed. Hence we may
set y=+1. Changing if necessary the sign of £, we may also set

B=+1. Hence
By~ — e+ K.+ K,

Set e, = Ky, e, = fy+ £,. Then
ef=¢ ees=e;, o'—ee=e,
036, = 1€ + Sy + ley.
Equating the two values of e.e;e, and the two values of e;e.e,, we get
r=s t°=1, s (1 +¢)=0, respectively. For ¢=1, ¢;¢,=e,, 6>=2¢,, and
€, f'= 3 + 63, f2 =€ + 4¢, are linearly independent, whereas the rank is 2.

Hence ¢=-1,
€30, = S€+ 80, — 03, 05" = S€ + 8¢y,

(6365) 63 = 2363 — &, = 5 (0s05) = &, o = se;,
8o that s=0. We have therefore the algebra
Qe =¢66=0, e'=0, €&=0, 6e=—¢, e¢'=0 (48),
8=IR, 8=I'R, R=U, lzz+@—0, I'=0,—2,— 0.
Here, and in (49), R may be derived from 8 and & as in § 19.
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(IL,) Finally, consider case (B). Let ¢, f denote e, ¢; or e, 6,.
Set ¢f =ae+ be+¢f. Then

0=¢f=c¢(ef)=ace+ (a+bc)e+cf, ¢c=a=0,
0=¢f*=(¢f).f =(be)f=b, b=0,
ae=ea=e, &'=e6=66=6'=0 (49),
8=0=(2-w), R=(2;-o0)p

No two of the five resulting linear associative algebras (45)—(49)
with a principal unit are equivalent. They are characterized by the
invariant r and the covariant 8 (w).

The corresponding problem for 4, 5, 6 units has been treated*,

21. Reducible linear associative algebras with a
modulus. A linear associative algebra A with = units over a
field /" and with a modulus € is called reduciblet with respect
to &' if it contains p + ¢ =n numbers e, ...,e,; K, ..., K, linearly
independent with respect to /) such that

6B=0, Ee=0 (i=1,.psj=1,...q) (50).

Any number of 4 is a lincar combination of the ¢’s and £’s. Let
the modulus be e=¢ + £, where ¢ is a linear function of ¢, ..., ¢,, and
Eof E,, ..., E, If zis any linear function of ¢,, .. , ¢, with coefficients
in F, then 2= xe=uxe, since 2= (), and & = er=cr. Similarly, if X
is any linear function of /), ..., E,, then EX=XFE=_1. Next,
zup=x+ X, where 2, and x, are any linear functions of ¢, ..., ¢,.
Multiply by £ on the right. We get 0=.Y. Hence} the product
of any two .'s is an . Similarly, the product of any two .\”’s is an X
Hence the numbers # form a sub-algebra s= (e, ..., ¢,) with a modulus ¢,
and the numbers .Y~ form a sub-algebra S = (&, ..., K,) with a
modulus E. The algebra A is said to be decomposable into s and S,
and is called their direct§ sum, A =s+8=8+s.

* Emecye. Se. Math., vol. 1, 1, pp. 401—3. For the irreducible algebras with
six units, see G. Voghera, Denkschr. dk. Wiss., Wien, vol. 84 (1908).

+ G. Scheffers, Math. Annalen, vol. 39 (1891), p. 317; vol. 41 (1893), p. 601,
In dAmer. Jour. Math., vol. 4 (1881), p. 100, B. Peirce defined a mixed (impure)
algebra 4 to be one each of whore numbers is the sum of a nnmber of a sub-
algebra s and a number of a sub-algebra S such that the products ¢E and Ke of
any numbers ¢ of s and E of S are numbers common to s and S. In case zero is
the only common number, the mixed algebra is reducible in the sense of the text.

1 Proved less simply by S. Epsteen, Trams. Amer. Math. Soc., vol. 5 (1904),
p. 105.

§ A mixed algebra is not always the direct sum of s and S.
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Conversely, from any two linear (associative) algebras (e, ..., €,)
and (&, ..., E,) over /' with moduli ¢ and £, we obtain a linear
(associative) algebra (e, ..., ;) over F with the modulus ¢+ £ by
postulating relations (50) and regarding ¢, ..., £ to be linearly in-
dependent with respect to /!

Scheffers gave the following criterion for reducibility :

A linear associative algebra A with a modulus e is reducible if and
only if it contains @ number ¢+ e such that ¢ =e, ex=xe, for every
number x of A.

That these conditions are necessary was proved above. That they
are sufficient is proved by setting £'= e—¢ and showing that 4 =5+ S,
where s is composed of all products e, and S of all products z£, =
ranging over all numbers of 4. We have

el=e¢(e—e)=¢—e=0, Le=(c—¢)e=0,

re.yll=xy. el =0, yk.ze=y(kKe)x=0,
since ey = ye for any y in 1. Also 4 =5+ § since

z=xe=r(¢e+ E)=xe+ k.
Finally, if the «e¢ are expressible linearly in terms of linearly in-
dependent numbers e, ..., ¢, of the form we, and the zE in terms of
. By, then ¢, ..., I, are lmearly independent. For, if ze + yE 0,

the product by ¢ on the right gives ze= 0.

A component s of a reducible algebra A may be reducible or
irreducible. Hence a reducible algebra may be decomposed into
irreducible algebras. For example, algebra (45) is the sum of three
irreducible algebras (e,), (), (es), and, by (44), its modulns is the sum
of the moduli ¢,, e,, ¢, of the sub-algebras.

Concerning the uniqueness of decomposition, see end of § 61.

22. Direct product of two algebras. Let s=(e, ..., ¢),
S=(&, ..., £,) be two linear algebras over a field #, so that

1
6.6 = 2 '}'Ukek , E1 E'j =k§1 Pm; Ek .

Proceeding™® in a formal manner, regard ez = ¢; B = Kye,, for i=1, ..., p;
k=1, ..., ¢, as pq linearly independent units of an algebra P with

* W.K. Clifford, Amer. Journ. Math., vol. 1 (1878), p. 850 (= Coll. Math. Papers,
1882, p. 266). If w?=1 and w is commutative with every real quaternion ¢ and Q,
he called ¢+ wQ a biquaternion (not Hamilton’s biquaternion, a quaternion with
ordinary complex coefficients).
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coordinates ranging over ), and set

» o
A 7 SR
cren=ee . Lo, = 3 IE Yo Tan €gn-
=1 h=1

Call P the direct* product of s and S, and write £ =s8= 8.

We may also obtain P by interpreting the coordinates i, ..., #p in
I=2,6+ ... +Ty¢p to be general numbers

i=Xpli+ ...+ X, B, (X’sin F)
of 8 Thus a=3X, ek (=1, ...y, p; k=1, ..., ¢). Or we may
regard P to be an algebra of ¢ units over the algebra s.

For example, from the real quaternion algebra (1, 7, j, #) and the
real algebra (1, v/ — 1), we obtain the complex quaternion algebra.

[f s and § are associative algebras, /= ¢S is associative. If s and
S have moduli e and E, P has the modulus ¢ /2.

For this definition of multiplication of algebras and that of addition
in § 21, the commutative, associative and distributive laws hold.

Tueorem 1t. If A is a linear associative algebre having the
quaternion algebra Q) as a sub-alyebra and having the same modulus 1
as @, then A =QOC, where C is a sub-algebra, with the modulus 1, of
A such that every number of Cis commutative with every number of Q.

It is just as easy to prove Wedderburn’s generalization :
J y o p 4

THEOREM 2. [f A is a linear associative algebra with the modulus €
and the sub-algebra Q with n* wnits f° (0, b=1, ...,n):

M=fr=¢ fepef (61),
where p is @ primitive nth root of unity, then A = QC, where C is
sub-algebra, with the same modulus €, of A such that every number of C
s commutative with every number of ().

ab I,

The inverse of Ky , = %f” is p* K_,, _» since (by induction)
fbe" = pabeafb (51/).
If X is any number of A, the #* numbers

n
Nea= 2 E—!a,bEc,d¢‘Eu,b (0,d=1,--~, n)

a,b=

* To distinguish it from the non-commutative * product” Zz;;e;E; of any two
sets Zz,e; and 2y;E; of numbers of an algebra.

t G. Scheffers, Math. 4dnn., vol. 39 (1891), pp. 364—374. In place of this
proof occupying ten pages, we shall give the short proof due to J. H. M. Wedderburn,
Proc. Roy. Soc. Edinb., vol. 26, 1 (1905—6), p. 48, of a more general theorem.
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are commutative with every number of (. Indeed,

n
jfr.a Nc.d = bz 1 paber ‘8 e_af_b ]fc,d XE{L, »= Eb pab—aaer-afa-b Ec,d 4Y-lga,b
. a, b= a,

n
= 3 prfted e_af-ﬁ -Ec,d 41’Er+a, s+B = lvc,dEr,e;
a, =1
in which we have replaced the summation indices @, b by » +a, s+ 3,
respectively. We find at once that

v h h _ i-be I~
-l!‘ ]c,ttb 1a,l; bo,d"‘Pm b la,b-

Summing for ¢, d=1, ..., n, we get zero unless @ and 4 are multiples
of n, i.e. unless f, , =¢, and then we get n*¢. Hence

p> l'lLlc, adV¥e,a= n24\’-

e,d

The set C of all numnbers A, g, ... of A which are commutative with

every " of A contains € A+ p, Au, and hence is a sub-algebra with
the modulus . We saw that C contains every N, and that X is
expressible as a sum of products of numbers £, , of @ by numbers
N.qof C. Hence every X" of A is in the direct product @C. 'The

product is direct since
n
3 B Yan=0 (s in €)
a,b=

implies that each y=0. Since y is commutative with the £’s,
0=3 3 E—lc, a E—la, v .[ﬁ'c, aYa, 0= n2Yll1L‘

a,be,d
To prove that v, == 0, we multiply the given relation by £, ; and use
the resulting relation in which y,, is the coefficient of ¢ £, ,.

The complex algebra defined by (51) is equivalent to the complex
matric algebra of § 4. Indeed, (51) are satisfied if

e=eby+enyt...tey, f=en+plep+..+p Ve,

The algebra (51) is Sylvester’s algebra of nonions if n=3 (§ 13).

23. Units normalized relatively to a fixed number.
Given a number a=3a;e; of any algebra whose coordinates are
scalars, i.e. ordinary complex numbers, we can find a number

y=3y,6,%+0
and a scalar o such that
ay = wy (52).
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By (20) and the linear independence of the ¢’s, necessary and sufficient
conditions for (52) are
n
,glﬁlkai?/j_“’yk=0 k=1, ...,n).
%HJ=

y

The determinant of the coefficients of i, ..., ¥, is 8 (), given by (40)
with # =«. Hence 8 (w) =0 is a necessary and sufficient condition for

the existence of a number y + 0 satisfying (52).

For the general number # let & (v)=0 define o as an A-valued
fuuction of ay, ..., @, as in the theory of algebraic functions. Let
@ be a particular number 2 for which there are % distinct roots
oy, ..., w, of multiplicities m,, ..., my.

If y, is a second solution of (52), then ¢y + ;9 is a solution, where
¢ and ¢, are any scalars. Hence all solutions y are linear functions of
certain ¢ linearly independent solutions, which we take as the first ¢ of
our new units e, .... Then ae¢; = we (j = ¢) give

2 ai‘yi,k:mls,k (kzl, ceey 77/; j=1’ sy t) (53)’
i=1

where, as usual, 8,=1, 8,=0 (#+,). "Then (§ 16)
-0 0 .. 0

...........................

n
b =1 3 t,Yin— | = :
()= 2 @rn-od 0 0 .o—w: |’

...........................

in the first ¢ columns of which all elements are zero except the
diagonal elements w, — w, while J/ denotes the matrix of the elements
in the last % - ¢ rows and last n — ¢ columns.  Hence
8(w) =(w,—w)|M|=0
has o, as a root of multiplicity m,, where m, Z ¢.
If m,=¢, we proceed no further with w, (see the example in § 24).

Next, let m;>¢. Then there exist numbers z= Sz,¢;+ 0 such that
¢

az=wz+ 3 o (54):
k=1
n n t
3 ;2 iplr = W, 3 Zxéy + 3 Cr;6;:.
1,4, k=21 k=1 k=1

The coefficients of e, (k=1,...,¢) give equations which serve to
determine the c,. Consider the coeflicient of e, (£>¢); in it the
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coefficient of z(j =<?) is zero by (53), since £>j. We thus have
the conditions
; g atyUk:,,—-wlzk:*O (k=t+ 1,..., ”).
J=t+l i=1

The matrix of the coefficients of the #’s is the above M if v=w,. But
| M|=0. Hence there exist £+ ¢ (¢ = 1) linearly independent solutions
z of (54), including the solutions e, ..., ¢ of (52). Taking these as
the first £+ ¢ new ¢'s, we find as before that 8(w) has the factor
(0, — )+, If m=¢t+¢, we proceed no further with o,. But if
m,>t+¢, there exist solutions w=+0 of

t+t
aw = ow + 3 dye.
k=1

Ultimately we reach e, linearly independent numbers

@, allx 0y al(mx.‘l)
such that )
e, = 0,0, + lin. func. of a, ..., ¢, (55).

Similarly, if w, is a root of multiplicity m,, there exist m; linearly
independent numbers a,, o, ..., such that*

a0, = o;a” +lin. fune. of aj, ..., a;t-? (55").
These n=m,+ ... +m, numbers a are linearly independent.
First, if ay =1 where /=c¢ya,+ ... + cza,®, ¢, %0, then
oy =amy=ol+l, 0=(o,—w)l+l,
where /' is a linear function of aj, ..., 0,40, But a,® is not a linear

function of those o’s. Next, if a, = ca, +/, multiplication by & on the
left gives

m2a2' + go, = Cwa, + mll +7.
Eliminating a,, we get
ga, = (ml - wz) I+ l’,

which was proved impossible if g+0 or g=0. The general step of the
proof follows similarly by induction. Hence the o/ may be introduced
as 7 units normalized relatively to a.

By the proof leading to (55), if ax differs from w,z by a linear
function of a,, a;', ..., then @ itself is such a linear function.

* For the case of associative algebras having a modulus, this was stated without
proof by E, Cartan, Ann. Fac. Sc. Toulouse, vol. 12 (1898), memoir B, p. 17.
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Occasionally we shall use the result similar to our first one : there
is a number ¥ + 0 and a scalar o such that

Y=y (56)
if and ounly if &' (w) =0.

24. BExample. The algebra with the units ¢, ..., ¢;, such that
€16=€1, €3€3=¢€;, €36;=0y, €306;=63,
esey =€, eep=ey, ef=ey, eey=e3, ef=e6,
while the remaining e;e, are zero, is associative and has the modulus e=e; +¢;.
The conditions for zy=wy arc
(X4 =) 1+ 2ys+2,95=0, (24— 0) Yya+2,;=0,
(#5— ) Y3+ 23Y:=0, (13~=0)y3=0, (25— w)y;=0.
The determinant of the coefficients of gy, ..., y; is evidently
8 ()= (73— o) (75— w)*
For r=a=¢;, 13=1, ;=0 (¢<5), and & (w)=0 has the roots 0, 1.

If w=0, the five conditions reduce to yy=y;=0. Since y;, ¥z, 44 are
arbitrary, we may take e, ¢z, €4 as the linearly independent solutions y of
ay=0. Next, if o=1, the conditions reduce to y;=y,=y,=0, and we may
take ey, e; as the linearly independent solutions y of ay=y. Hence e, e,, ¢y,
¢s, e; are units normalized relatively to a=e .



PART II

REVISION OF CARTAN'S GENERAL THEORY OF
COMPLEX LINEAR ASSOCIATIVE ALGEBRAS
WITH A MODULUS

25. Units having a character. If z is any number, § 23
gives
a () = (aa) 2 = (w,0,) £ = 0, (0,2).

Hence (end of § 23), e,z is a linear function of @, o, .... Next,
a(o/z) = (0e + Aa)) 2 = 0, (¢/'2) + lin. fune. of aj, /), ....

Hence oz is a linear function of a;, o/, .... By induction, we see
similarly that any a2 is a linear function of o, o/, ...

If eis the modulus, e=¢ + ... + &, where ¢ is a linear function of
the units a;, a/, .... By the preceding result, ¢a,® is a linear function
ofaj, @/, .... Hence

h
00 = e, = 21 6,0
J:

gives 60, = a0, 6o, =0 (j*1) (67).
Similarly, we have
ga =), €¢a)=0 (J*2),... (58).
It follows at once that
=g, G&=0 (F*k) (59).
We shall call ¢, ..., €, partial moduli of the algebra.

Since €€, =¢, not every a,¢; is zero. After a suitable rearrange-
ment of a;, a, ..., we may assume that

nE, o6, ..., P g (pz1) (60)
are linearly independent, while each a,®¢, (£ Z p) is linearly dependent
on the numbers (60):

a,Pe =cMase + ... + M, 0,7 V¢ (k=p,...,m—1).
' 3



34 UNITS HAVING A CHARACTER [(61)

In place of these units &, we introduce
aM=0,® —cMa, - ... — c®,_ a,(P~) Gk =p, ooy my—1).
Now a,®e,=0. Dropping the bars from these a’s, we have m, linearly
independent units a,t? (¢ =0, 1, ..., m, — 1) such that
a,Me =0 (k=p, ey my—1) (61),
while the numbers (60) are linearly independent.

The property that any o2 is a linear function of a;, a/, ...
evidently holds true also for the present a,”). Set
a6 = koay + ... + l‘ml_lal(m‘ -,
Since (a,¢,) = a;¢;, we have, by (61),
a6 = ko€ + ... +h,_ 0,0 Ve,
By the linear independence of the numbers (60),
k=1, k=0,.., k_ =0,
a6 =a; l‘l,al(l’) + ...+ l',,,]_lal(m‘_l).
Similarly,
o/ =a'+k a®+ .. a@Ve=aWP)+f,0 a0+ ..
The right members @, @, ..., ¢,#=" of these equations, together with

a, ..., a, ™"V evidently give m, linearly independent functions of
the «,), and hence may be taken as new units. But, by (61),

Ge =ae=4, o/ q=a,.. oPVg=aP,
Dropping the bars from these a’s, we have (61) and
ma=a, @'q=a,.., aFV¢=a®D,
Since ¢¢; =0 by (59), if i +1,
a6=(0,6)=0a,(€) =0, o/¢=0,.., o Neg=0 @G=*1).
Hence if 7 is any one of the numbers a,, o/, ..., ;@Y
na=7n =0, en=u, en=0 (i+1)  (62),
the last pair from (57). 'These hold also for n = ¢ by (59).

If p=m,, the u’s include all the «,. But if p<m,, ¢®e, ...,
o,M¢, are not all zero, where £ is any fixed integer = p. .For, if so,
0, =o,Me=a,M¢, contrary to (61). Suppose first that not all of the
a,®¢; are zero. Then the argument beginning with (60) is repeated
for &, ..., "™ in their relation to e. Thus if 5 is any one of
certain ¢>0 numbers o,?), ..., a,®+2-1)

ng=7n 7¢=0 ({+2), en=7 =0 (i+1)  (63),
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the last pair from (57). We proceed similarly until the set
. a, a, ..., al('""l)
is exhausted.

An analogous distribution of the a.®) into sets of #'s may be made,
and likewise for the «,/?. We may assume that e is one of the %’s
coming from the a)l!, etc. ‘

Any 7 in (62) is said to have the character (1, 1); any » in (63)
the character (1, 2). In general, » is of character* (a, B8) it

n=0 (i*a), =7 76=0 (j*B), 7ea=n (64)
In particular, ¢ is of character (7, 7).

THEOREM. We can find n linearly independent units e, ..., ¢,
My ey Mmn €ACh having « definite churacter.

For example, in the matric algebra of 2° units ¢; in § 4, the
€ =¢;(i=1, ..., n) are the partial moduli, and ¢; is of character (i, j)
in view of (14).

Any number 5 is said to be of character (a, 8) if and only if it
satisfies relations (64).  The sum of two numbers of like character has
that character ; the sum of two numbers of unlike character has no
character. For, if 5 has the character (a, 8) and %’ the character (y, 8),
(m+7') eg=n+7n" or », according as B =38 or B+3; while

&(m+n)=n+7 or

according as y=a or y=*o.

26. HExample. We shall find the character of each of the normalized
units in the example of § 24. Here 2=2, ¢;=¢,, ¢,=¢;. Then
al=e, e'=e, qe=66=0,

eer=¢;, ee;=0, e€¢6=0 e¢e=¢,

eep=e;, €6=0, =0, ee=e,

€1€3=O, €xC3=¢€3, 33€4=0, €3€3=2C3.
Hence ¢ is of character (1, 1), &2 and e; are of character (2, 2), ¢; and e, of
character (1, 2).

27. Theorem. 7Tke product of a number v of character (a, B)
by @ number v’ of character (y, 8) is zero if B=+vy, and s either zero or
15 a number of character (o, 8) if B=1.

* Introduced by G. Scheffers, Math. Ann., vol. 39 (1891), p. 313, in connection
with algebras without a quaternion sub-algebra. The present proof of the general
theorem is an amplification of that by Cartan, I. c., p. 19.

3—2
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We ha,ve €N = 1'¢B =1, ‘y"]‘ = ,,7' ‘5 —_ ,”/’
' =m' =1, 1M =(ne)(¢n) =71 (eae) 7.

Hence, if B+1y, m =0 since egey=0. If 8=y and n'+0, then 79’ is
of character (a, ).

28. The sub-algebras =;. The product of two numbers of
character (7, ¢) is of character (4, ¢). In view also of the remark at
the end of § 25, all of the numbers of character (¢, ¢) of the initial
algebra 3 form a linear associative sub-algebra =; with the modulus ;.

The characteristic equation* for 2, has « single root and its
multiplicity is the number m of units of 3,.

For, if it had two or more distinct roots, 3, would have at least
two partial moduli ¢’, ¢” (§25). Set

o=x/¢ +2" ¢ + 126+ ... + 216,
where the a’s are arbitrary scalars. Then
ae =2/’¢, a¢ =2"¢", ae =26, ..., a6 =2, 6.
Hence (§ 23) the characteristic equation of « for = has the distinct
roots 2y, 2", s, ..., 1, whereas the number is =4.

29, Choose the units ¢; of =, so that ¢, is the modulus ¢,. As
just proved, the characteristic equation of # =36 is (0-0)"=0,
where /=3¢, Taking z=e¢, we have w=1, I=¢,, whence ¢, =1.
Take as new units €, n;,=¢,~c;¢ (¢=2,...,m). Then

z=x'e+ 3z,
where 2,'=[. For the algebra in the new units, the characteristic
equation of # is (w-2,)"=0. Hence the characteristic equation of
any linear combination of 7,, ..., 7, has no root other than zero.

30. Nilpotent numbers. A number is called nilpotentt if
some power of it is zero. Let n*=0, n+0, and call » any root of the
characteristic equation of 7. There exists (§ 23) a number »+0 such
that 7y = wy. Multiply by »*~! on the left. Thus

0 = 0t "ty = 092 (0y) = 13 (0y) = ... = ¥y,

Hence »=0. Conversely, if the characteristic equation of % has all
its roots zero, a power of » vanishes by Theorem 1, § 15. Hence

* The prefix “‘right hand” will often be omitted.

1 B. Peirce, Amer. Journ. Math., vol. 4 (1881), p. 97. The name Wurzel der
Null was used by Frobenius, Sitzungsb. Ak. Berlin, 1908, p. 635; pseudo-nul by
Cartan, l.c., p. 21
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a number is nilpotent if and only if every root of its characteristic
equation is zero. Similarly, or by Theorem 1 of § 19, every root of
the left-hand characteristic equation of a nilpotent number is zero.

3l. Theorem. As the units of 3, we may take its modulus e,
and m— 1 nilpotent numbers n such that any linear function of the v's
is nilpotent.

This follows from the result in § 29.

32. Normalized units. In view of the last theorem and that
in §25, we may take the » units of any algebra to be the partial
moduli ¢, ..., ¢, and »— % nilpotent numbers each of a definite
character. Note that any number of character (a, B), a+p, is
nilpotent, since its square is zero.

33. Examples. In the algebra considered in §§ 24, 26, the sub-algebra
3, of numbers of character (2, 2) has the two units e, and e, of which ¢, is the
partial modulus,  For a'=ey, the formula in § 24 gives 8 (w)=w®. Thus e; is

nilpotent in the main algebra S. We have ¢2=0. Similarly, ¢, and e, arc
nilpotent. Heuce the normalized units of = are ¢, ¢ and the nilpotent
numbers e, e,, ey.

As an instructive example, the reader may show by means of the general
theory that the algebra of complex quaternions is equivalent to the matric
algebra of four units [take a=1 in § 23].

He may treat also the algebra (e, ..., ¢;,) where

e=e, ee=ey, oo =e, ef=e;, ef=e,, ee=e,
while all further products of two units are zero ; the modulus is e;+e;.

34. Theorem. The product of any nilpotent number n of
character (I, ©) by any number w of the same character is nilpotent.

For concreteness, take ¢=1. Then the product nu is of character
(1, 1) and hence is in algebra =,. By § 31,

. N = ae + 7' (@ scalar, n' nilpotent).
Since 7e, =7, we have
u=an+1y.
Let m be the least positive integer for which #™u=0. 1f m=1, the
theorem is true. If m Z 2, multiply the preceding equation by ™2
on the left. Thus
.,,m—xnl — (_ a) nm-l’ nm-l +0.

Hence @ =0 since 7’ is nilpotent (end of § 30). Thus yu =17

In the example in § 26, § 33, e, is nilpotent, ¢, and ¢ are of
character (2, 2), and e,e,=¢, is nilpotent.
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35. Separation of algebras into two categories. An
algebra is of the first category if the determinant A () of its general
number Saz;e; is the product of » linear homogeneous functions* of
ol’], ey Z,.

An algebra is of the second category if A (z) has a non-linear
irreducible factor f(z,, ..., &)

A binary algebra is of the first category since a homogeneous function of .y
and a3 is a product of lincar functions. The five types of ternary algebras
(45)—(49) are of the first category, since for each A (r)=8(0) is a product of
linear factors.

The algebra of complex quaternions is of the second category, since (§ 12)
A(¢) is the square of the irreducible function 2?+y*4+22+w% We may also
employ the equivalent matric algebra of §4. By (16), (17),

a O b 0 ! a b 0 0
i 0O « O b i ¢c d 0 0
) ! - 65
A="00 q o [0 0 « b (65),
10 ¢ 0 d 10 0 ¢ d

while a general determinant of order two is irreducible.

We shall later (§ 46) prove that an algebra is of the second category
if and only if it has a quaternion sub-algebra. It will then follow that
the above classification into algebras of the first and second categories
(Cartan, /. c., p. 24) coincides with thatt of algebras into those without
and with quaternion sub-algebras.

ALGEBRAS A, OF THE FIRST CATEGORY.

36. Theorem. The sum of two nilpotent numbers of A, is
nilpotent.

The distinct roots of the characteristic equation of z = 3a; are by
hypothesis of the form
0= X+ e + Ay T (=1, ..., k),

where the «’s depend only upon the constants of multiplication yg.
Hence the roots of the characteristic equation of z + 2’ are

A (url + :l'll) + o= wp+ 0),'1.

* With coefficients in F, in case we are treating algebras over a field F. Since
the w’s are now in F and since the work in §§ 36—39 is purely rational, we obtain
normalized units (§ 39) with coordinates in F; cf. ex. in §§ 26, 83.

t G. Scheffers, Math. Ann., vol. 39 (1891), p. 305: Quaternionsysteme, Nicht-
quaternionsysteme. Th. Molien, ibid., vol. 41 (1893), p. 83.
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If # and 2’ are nilpotent, each w;= o,/ =0, and = + &' is nilpotent.
By § 32, any number of 4, is of the form
R R A (66),

where the €’s are the partial moduli and the »’s are nilpotent numbers,
each with a definite character. Since

(‘Z‘ltl + oo+ ‘Zh‘h) € = X€,
the characteristic equation of (66) has the roots @, ..., #, and hence
(66) is nilpotent if and only if x,, ..., &y are all zero.
37. Theorem. The product of any nilpotent number of A, by
any number w of A, is nilpotent.
It suffices to prove that n,u, ..., nu are nilpotent.

Consider an » of character (1, 1), and express « as a sum of
components each of a definite character. The product of 5 by a com-
ponent will be zero or of character (1, 5), j> 1, and hence a nilpotent
number (§ 32), unless the component be of character (1, 1). In the
latter case also, the product is nilpotent (§ 34).

Consider an n of character + (¢, ), say (1, 2). As before it suffices
to take u of character (2, 1). Then »u is of character (1, 1) and

nu = ae + ¢,
where « is a scalar and ¢ a nilpotent number of character (1, 1). If
@ =0, the theorem is proved. Henceforth, let «+0. Then (§ 34)
(qu)*=d*eq+ &, & =2al+ &3
where ¢ is a nilpotent number of =, in § 28. By induction,
(qu)™ = a™€; + &,
where ¢, is nilpotent. If uy is nilpotent, its mth power is zero,
where m is a certain integer. Then

0= (un)" = (u)™ = a"n + {un,
since ¢ =1, y being of character (1, 2). Thus —a™ is a root of the

characteristic equation of ¢,. This is impossible since @+ 0 and ¢, is
nilpotent. Hence u» is not nilpotent :

un=d'e;+{,
where ¢’ +0 and ¢ is nilpotent of character (2, 2).
If v+0 is of character (2, 1), then yw=+0. For, if yv =0,
0=u(mw)=(un)v=av+{v,
whereas —a’ is not a root of the characteristic equation of the
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nilpotent number ¢’ since a’ is not zero. If v, ..., v, form a complete*
set of linearly independent numbers of character (2, 1), then nv,, ..., 7,
are linearly independent and of character (1, 1). Indeed, 3¢,7v; =0
implies 7w = 0, where v = 3c;v;.
If w+ 0 is of character (1, 1), then ww +0. For, if uw=0,
0= (qu)w = aw + lw,

whereas — & is not a root of the characteristic equation of the nilpotent
number {.  If w,, ..., w: form a complete set of linearly independent
numbers of character (1, 1), then ww,, ..., uw, are linearly independent
and of character (2, 1). Indeed, Sc,uw, =0 implies ww =0, w =S¢, w,.

By the first result, £ < r; by the second, ¢ Hence r=¢ and
1, ..., 7, form a complete set of linearly independent numbers of
character (1, 1). Hence there exist scalars d; such that Sdow, =¢.
Thus 7o =¢ for v=3dwv. Here n is of character (1, 2) and o of
character (2, 1). Hence

(n+v) (e +v)=¢ +v.

The characteristic equation of n+ v has therefore the root unity,
whereas it is the sum of two nilpotent numbers of 4, and hence is

nilpotent. The assumption that a+0 has therefore led to a contra-
diction.

By reversing the order of the factors in our products, we sece that
the product of any number of A, by any nilpotent number is nilpotent.

CoROLLARY. The nilpotent numbers of A, form a linear associative
algebra N without o modulus.

If it had a modulus %, then would nu =wu, whereas unity is not
a root of the characteristic equation of the nilpotent number 7.

An algebra is called nilpotent if all of its numbers are nilpotent.

38. Normalized units of a nilpotent algebra.

THEOREM. In a nilpotent algebra N, linearly independent wunits
My -oey Ty €k of @ definite charactert, can be chosen so that the product
of any two units n; and w; s a linear function of the units n whose
subscripts exceed both i and j.

If £=1, n2®=an, where a is scalar. Since & is a root of the

* Any number of character (2, 1) is to be a linear function of v} ..., v, with
scalar coefficients. The basis of the definition is the result at the end of § 25.

1 This supplement concerning character applies to algebras N contained in an
algebra with partial moduli.
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characteristic equation of the nilpotent number »,, we have a=0.
The theorem is thus true for % =1, since it states that 5 is a linear
function of the (non-existing) %’s whose subscripts exceed 1, and hence
that 7,2=0.

Assuming that the theorem holds for nilpotent algebras with fewer
than £ units, we shall prove it for an algebra &V with £ unitse,, ..., €.

LemMa.  There exists a number w of N for which
eu=0, eu=0,.., eu=0 (67).

Among all of the numbers # (including certainly a power of ¢,) for
which e,u =0, there may be some making e =0, some making also
e;u=0, etc. Suppose that the Lemma is false. Then none of these
«’s satisfy (67). Hence there is an integer m <# for which

euw=0, eau=0,.., e,u—=0 (68)
have a common solution #+0 and such that no common solution =
makes ex = 0, where ¢ is any number of A, linearly independent of
€, .-, eu. Any linear combination of solutions of (68) is a solution.
Hence we may assume that w,, ..., u, form a complete set of
linearly independent solutions of (68). For j < m, () u is zero for
every solution . Hence eg, is a linear function of ey, ..., ¢,. Thus
&y, ..., &, are units of a nilpotent sub-algebra N;. Since m <£, the
hypothesis for our induction shows that our theorem holds for ;.
Hence, if 7 < m, j < m, e¢; is a linear function of the ¢'s whose sub-
scripts exceed ¢ and j, but not m.

Let v be any number +0 of N. FKither v is a linear combination
of Uy, ..., Uy, O there exists @ number 3 of N, such that v is a
linear combination +0 of uy, ..., u,. For, if ¢ <m, e;e, =0, as just
proved, so that e;(e,v)=0 and e,v is a linear combination of the
independent solutions w,, ..., u, of (68). If e,v+0, our italicized
statement is proved. If ¢,v=0, every ¢;¢,-,v=0 (¢ < m), since ¢;6,,
is a multiple of e,,, as just proved. 'Thus e,_,v is a linear combination
of uy, ..., u,. Hence our italicized statement follows unless possibly
each ¢;v = 0 ; but then v itself is a linear combination of w,, ..., %,.

Taking e,,,,, as v, our italicized result shows that either en4,% or
some % times it is a linear function 0 of u,, ..., u,. In the respective
cases take {,=e¢,,, or ne,,,. Thus u,+0. Since ¢ is nilpotent,
{yu, + su,, where s is scalar. Hence, by a change of notation of the u’s,
we may take {u, =u,.

For this new u,, take ¢,,,,u, as v in our italicized result. Thus
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s = €py O 1'éy,, has the property that u, is a linear combination = (¢
of uy, ..., w,. If &u,be a linear function of «,, u,, we have

Ly = oy Lta=15, ..., Loyt = Uy, Lpttpy=Ntty + ... + X0, (69),
for p = 2, where the scalars A, ..., A, are not all zero. In the contrary
case, we may take Lu, = ;. Proceeding with u,, we obtain a number
¢, such that Luw, is a linear function+0 of u,, ..., u,. If it involves
only u,, u,, u;, we have (69) for p=38. If not, we take {yu; =uy, ete.

We may set A, =0, ..., A,_; =0, A,+0, where s is a certain integer
z1. Set
l": szp—] B Cs+1 {s - A[:C]i—l eer {s Teee = AR-wg.s+l£u— A.H-l C.\-
Multiply by #, on the right. By (69) the product is
Loty = Aptly— . = Ny pally, s — Mr Ug 1 = Aglly.
Thus lu,=Au,. But/is nilpotent and A, +0. Hence the supposition
that the lemma is false has led to a contradiction.

Let therefore u,, ..., u,(n Z1) form a complete set of linearly
independent solutions u of the system of equations (67). Let n be
any number of N. Then (¢u;)n =0, so that um is a linear function of
Upy ey Wy

UM = AUy + oon + Wity
If w = 3¢;u;, the conditions for un = pw are

n n
2ean—cp=0,..., _E Ci@p—Cop =0,

=1 i=1

Let p be a root of

T gy «oo App— P |

Then the determinant of the coefficients of ¢,, ..., ¢, in our n equations
is zero, which thercfore have a set of solutions ¢, ..., ¢, not all zero.
By wn=pu, p is a root of the second characteristic equation of the
nilpotent number #. Hence p=0. Given any » in &V, we can therefore
find a linear combination =0 of u,, ..., u, such that up=0.

Apply this result to n=¢,. Hence there is a linear function w+ 0
of u,, ..., u, for which ue,=0. Some of the solutions u of the latter
may make ue, =0, some also ue; =0, etc. Hence there exists an integer
m = k such that

ue,=0, uey=0,..., ue,=0 (70)

have a common solution # which is a linear function #0 of u,, ..., u,,
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but no such solution making also we=0, where ¢ is a number of XN,
linearly independent of e, ..., e,,. By a change of notation of u, ..., u,,
we may assume that #,, ..., «, form a complete set of linearly inde-
pendent solutions of (70).

We shall assume that m <% and prove that a contradiction results.
For ¢=m, u(ee)=0 for every solution u of (70). Hence ¢y¢ is a
linear function of e, ..., ¢,, which are therefore the units of a sub-
algebra IV}, to which our theorem applies. If v is any number +0 of N,
either v is « linear combination of w,, ..., wy or there exists a number 7
of N, such that vn is @ linear function=0 of w,, ..., u,. For, if ¢ = m,
e, =0, (ve,)e,=0 and ve, is a linear combination of w,, ..., u,. If
ven, +0, the italicized statement holds. If zero, ve,_.e;=0 (¢ < m),
since e,_,¢; 1s a multiple of e,. Thus ve,_, is a linear function of
Wy .y %y, Taking 6,4, as v, we obtain, as in the proof of the lemma,
a & for which w& +su,, thence u,{, —u,, etc. We obtain (69) with
w,; in place of Lu;, and then the contradiction .l =Au,. Hence
m=#k, so that there exists a solution w+0 of (67) and (70), whence
ut =tu =0 for every number ¢ in the algebra N.

This # is a sum of numbers ' of definite characters. If » is of
character (a, 8), un is a sum of products «'y each zero or of a definite
character. Since un =0, each up=0. Similarly, each yu’ = 0.

We introduce as new linearly independent units »,, ., ..., 7, where
7 1s one of the /, such that each » has a definite character. Then
7% =m0 =0 @E=1,...,%) (1),
k
7)177] = ?‘l%‘;s’h (2;.]': 1) ceey k)'

Consider an algebra with the units ¢, .. , &, such that

k-1
L=3 vl (=1, k-1)

For A, u, v all less than £, (&) & =80 (&l,). Indeed, nan.=n"+ cny,
where 7' is the same linear function of 7, ..., nx—; that &\ is of
&y oo G But (), =9'n,, so that its part free of 7 is the same
function of #,, ..., m—; that (L&) & is of &, ...y -y Similarly, the
part of nx(n.n.) free of =, is the same function of #,, ..., -, that
O (&) 18 of &, ..., G- Since the products of the »’s are equal,
those of the {’s are. Hence the {’s are the units of a linear associative
algebra.

Since yus=0 (4, =1, ..., &) by (71,), the elements of the £th row
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of the characteristic determinant (40) of the »-algebra are 0, ..., 0, - w.
Since vy =0(4, =1, ..., k) by (71,), the minor of —w is the
characteristic determinant of the lalgebra. Hence every number of
the latter is nilpotent. Since the theorem applies to this {algebra,
we may suppose that new ’s have been introduced such that, if 7, j, s
are less than £, yy, =0 unless s>7, s>j. As just noted, this result
holds also if ¢=# or =4 Hence »,, ..., n; satisfy the requirements of
our theorem.

39. Normalized units of an algebra A4, of the first
category. In view of the last theorem, the result at the end of
§ 25, and the remark in § 36 on the units, we have the

THROREM*. If in the characteristic equation 8(w) =0 for A, v is
an h-valued function of ay, ..., a,, we may choose as normalized units
€1y ooy €y iy eee, M, Where each n has a definite character, €*=g¢,
€= 0 (i+7), while n,m, is a linear function of those v's whose subscripts
exceed a and b and have the same character as n,.v,.

Conversely, any such algebra is of the first category.

Mo prove the converse, arrange the » units in the following order :
first ¢ ; then the units », of character (1, 1), (2, 1),..., (4, 1) in
ascending order of their subscripts 7; then e, and the units », of
character (1, 2), (2, 2), ..., (4, 2) in the order of their subscripts ¢; ete.
Let &, ..., ¢, be the units thus arranged. Let 2.5 be the number of
units » of character (o, 8) and set

ng=1+nmpg+ng+...+0g.
The characteristic determinant of 2 =2,¢ +... +2,, is (40) :
2517111 —w EZ, Yia- "Ezz}'ml ‘
S(0) | crreeeeiieiee et | (72).
?\ 2:1')'1!11 EziYi‘zn"-EziYinn—w |
The elements which lie simultaneously in one of the first n#, rows and
last # —n, columns are zero, since
Yau=0 (@=1,...,%; A>n; p=mn).

Indeed, for such a set of subscripts, {. is of character (1), & of
character (¢8), 8> 1, ¢\ i3 zero or of character (¢3). Hence in

n
C; ZA = E 171‘4\;4, {p. (73)a
n=

* G. Scheffers, Math. Ann., vol. 39 (1891), p. 293. He took a definition of
algebras 4; different from the definition we have used following Cartan.
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& (n < m <)) does not occur. Hence its coefficient is zero. Thus
8 (w) has as a factor the minor whose elements lie in the first #, rows
and first #; columns. Similarly, it has n,-rowed, ..., #,-rowed minors
as factors,

In the n,-rowed minor all of the elements above the main diagonal
are zero, while the element in the Ath row and main diagonal is z,— o,
where (¢, 1) is the character of {y. First, let 1<A=n,, l<p=n,,
so that &, ¢, are n's. Then if ¢ is an 7, ya.=0 if p S A, by the
above theorem*. But if {;=¢ and { is of character (a, 1), {;{ =0 or
{r, according as a=+¢, a=1¢, 0 that ya.=0 if p+A, and yar=0 or 1,
according as a+¢ or a=¢ Second, let p=1, so that {,=¢. 'There
18 10 ¢ in the sum (73) if ¢ and {\ are both 7’s. Next, let {;=¢, so
that {;{x = 0 or &\, according as { is not or is of character (Z¢); thus
& occurs in the sum (73) only when A=¢==1. Since ¢ =€, yn =0
(¢>1),ym=1. Finally, if &(A = n)) 1s an ¢ it is ¢, and the sum
(73) contains ¢ only when it reduces to the preceding case €€ = ¢.
Third, if A=1, y,, is below the main diagonal unless »=1. Hence in
our minor, all elements above the main diagonal are zero and all in
the diagonal are zero except the yaa for which {;=¢ and & is of
character (¢, 1), and these y’s are unity. Hence if 2z be given the
former notation (66) we have the result at the beginning of this
paragraph. Thus the #,-rowed minor equals

h
(ar—w) II (- o),
t=1
the first factor coming from ¢,. Similarly,
h
(2, 0) 11 (2,— w)"e
t=1

is the value of the nyrowed minor, etc. Set

n =140y +ng+ ... + 0y,

Hencet
3 (w) = (2, — ) (27— )™ ... (23— )™ (14).

For example, if the units are €, #,, €, n,, Where 5, is of character (1, 1),
ng of character (1, 2), we have an associative algebra for which the character-
istic determinant of e, +¥, 1, + Zy€3+ Y21, is

* The ¢, and hence all of the units of the sum (73) are #’s of character (e1),
the relative order of which was not changed by our rearrangement of the units.
+ The conclusions of Cartan (l.c., §§ 39, 40) are erroneous.
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r - 0 0 0 |
% X - 0 0
s0= 0 T e o =i (-
0 0 A 2 -

As a check, note that »)'=3, n,’ =1, by inspection of the units.

Since the roots are linear functions of the #'s, the algebra is of the
first category. Since y, ..., ay, are independent variables and since
8(w) is a covariant (§§16, 17), we conclude that ), ..., n, are unaltered
by a linear transformation of units which replaces algebra A, by one
with normalized units*. By using the order (1, 1), (1, 2), ..., (1, 4);
(2, 1), ..., (2, &), ..., we see that the exponents #,, ..., n, in & (») are
unaltered by transformation.

Moreover, each n,s has the last property (sce Cartan, Le., p. 36).

There is an extensive list of papers relating to the determination
and classification of algebras of the first category (Kncyc. Sc. Math.,
vol. 1, 1, p. 425).

ALGEBRAS A, OF THE SECOND CATEGORY.

40. Properties of the characteristic determinant for 4..

We shall employ the normalized units ¢, 7, of § 32. A linear com-
bination of the nilpotent units #,, ..., 7. need not be nilpotent.

Arrange the units in the order &, ..., {, as in § 39. The first
property of determinant (72) holds also here: 8=8,3, ... §;,, where §,
is the minor composed of the elements in the first », rows and columns
of 3§, ete.

In (78) set 2=1, A< n,. Then ¢\ is of character (¢1). Since ¢ is
the partial modulus €, we have {;{\ =0 or & according as the character
of & is(a, 1), @>1 or (1, 1). Hence 4, =0 unless x =X and & is
of character (1, 1). Thus 2, occurs only in the main diagonal of §,
and there only in the first 2,, + 1 terms (with coefficient unity). Simi-
larly, 2y, +1. the coefficient of e, occurs only in the main diagonal and

* But undey the transformation each ¢, may be increased by a properly chosen
nilpotent number. For example, if #=2, k=1, and 5, =9 is of character (1, 2),
the multiplication table is

a’=e, el=e, aa=aq=ar=1=0, =1 =7, =0
This is unaltered if we replace ¢; by €;" =€, +, €3 by e’ =€z — 7.
Various writers have overlooked this possibility (see end of § 61).
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there only in n, terms (with coefficient unity), ete. Using the second
notation (66) for z, we see that @, &, ..., 2, occur only in the main
diagonal of 8, and that each element of the diagonal contains one and
but one of these «’s (with coefficient unity). Thus every element of
3, is linear and homogeneous in

’ ’
X =Ly, =@y ooy Ty =)~ 0y Yy eeey Y (75).
Hence 8, is homogeneous in /', ..., Y.

For brevity we shall say that #, is of the same character as 7, and
z{ of character (4, ). If, in (78), & is of character (ae) then y=0
unless {x is of character (ae). Conversely, if . is of character (ae)
then y=0 unless ¢ is of character (ae). Hence the variables z, of
character (as) enter the same rows of the determinant 8, Hence 8, is
homogeneous and of degree nq, or a4 + 1 in the z; of character (ae),
according as a>1 or a = 1.

Similarly 8, is homogeneous and of degree n, Or 4 + 1 in the
variables of character (ea), according as a>1 or a = 1.

Let 8(w)=P" ... P, where P, ..., P, are distinct irreducible
functions of their arguments (75), the degree of P; in w being d,.
Then d; + ... +dy=14, if 8 (0)=0 defines v as an A-valued function of
the2’s and g's. For y, =0, ..., 4, =0, we saw that & (v) reduces to the
product (74) of its diagonal elements. Thus /?, reduces to a product
of d; factors «, —w. The resulting 3d, linear factors are z, - o, ...,
a, — win some order. Hence no one appears twice in the same P, or
appears in different P’s. We may thus set

(Py-o=(t—w) ... (@p—0) =ay ... x) (76).
The factor 8, of 8 is homogeneous in the variables of character (as).
Hence each irreducible factor P, of &, is homogeneous in these variables.
To find its degree in them, it suffices to examine one term (76), which

is linear and homogeneous in the variables of character (as). We have
therefore the

TaEOREM. The irreducible factor P, of the determinant 8, is linear
and homogeneous in those of its arquments (15) whose characters are (1¢),
linear and homogeneous in those of characters (2¢), ..., and in those of
characters (pe) ; likewise for the variables of characters (s1), ..., and for
(op). No further variables occur in P,.

41. BExample. In the matric algebra of four units e;, of § 4, ¢;; is of
character (7, 7). The characteristic determinant of

Zyen +T12612 + Lo €21 + Poale
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is, by § 35, the square of

61 = ‘ x”' xlﬂl

L2 )

Hence Py =34, is linear and homogeneous in zy,’ and 2, of characters (le), also

in 2y and 2y’ of characters (2e); also in &y’ and @y of characters (e1); and
in &2, &y of characters (e2).

’ . " I__ )
y I =, L =T w.

42. Sub-algebras S; of 4,. To obtain P, we need consider
only numbers involving the units of characters (a, 8), o, 8=1, ..., p.
These are the units of a sub-algebra S..

By the argument leading to (76), we may set

(P)ymo=t'p1 &'pia e 'y

To obtain P, we need consider only numbers involving the units of
characters (a, 8), a, B=p+1, ..., ¢; these are the units of a sub-algebra

Y, ete.  The product of a number of S; by one of S; is zero, and vice
versw. In the characteristic determinant of the reducible (§ 21) algebra
8, + 8,, the elements in the first and third “ quadrants ” are all zero,
so that it equals the product of the characteristic determinants of 8,
and S;. Similarly, for 8, + S, + ... + 8. Thus 8 (w) is unaltered when
we replace by zero each variable not corresponding to a unit of S,
Sy, ..., or 8. Hence the characteristic determinant of §; is 2.%.

For the moment, let [a, B8] denote a variable (75) of character
(a, B). Let P, be the irreducible factor of degree p>1 of 8 (w), with
the properties given in the theorem of § 40. It involves a variable
of character (a, B), a+B. Otherwise, a power of £, would be the
characteristic determinant of a number of algebra S having each
[a, B] =0, a=+ B, and hence of the direct sum of the algebras =, ..., =,
of numbers of characters (1, 1), ...,(p, p), respectively. But (§ 42),
P, would then be a product of a function of the variables [1, 1], by a
function of the [2, 2], ete., and hence a product of linear functions,
whereas it is irreducible and of degree > 1.

By choice of the notation, we may assume that P, has a term with
the factor [1, 2] and hence a factor [2, j], 7 +2, which we may take to
be [2, 1] or [2, 8]; in the latter case, a factor [3, 1] or [3, 4], ete.
Thus P, has a term

[1,2][2,3] .. [a=1,a] [, 1]e [a+1,a+2] ... [8, a+1] ...iji_l[i, il
(17),

in which [7, ¢] for ¢=A+1,...,p are variables 2/ =2;~—w, while the
remaining [, ¢] are variables y,. Set #,=0,...,2,=0. Then (77)
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becomes a multiple of w?-?, while the term (76) of 2, reduces to + w?.
Hence algebra 8, contains a number whose characteristic equation has
a root # 0, the number being a sum of numbers of characters

(1,2),(2,8), ..., (a1),(a+1,a+2),..., (Bya+1), (%)
(E=y+1,..,A)  (78),

those of character (7, 7) being nilpotent.

43. Preliminary criterion for an algebra 4, of the
second category. A necessary and sufficient condition that an
algebra be of the second category is that it contain a number

A
U=(C+lun+ ... +Carata) +t (Catratat . +0ap1) * oo + 2 My,
i=y+1
whose characteristic equation has a root not zero, where the ¢; and »;
are linear functions of nilpotent units #,, ..., 7 of characters (¢, ) and
(4, 7), respectively, and where one of the integers a, B—a, ..., A~y is
positive.

'The condition is necessary by § 42, and sufficient by § 36 [see § 47].

44, Since u is not nilpotent, there is a number »#0 such that
wo=wv, o a scalar+0. 'Take /v as a new ». Then wv=v. Hence
if » be expressed as a sum of numbers each of a definite character
(r, s), then » < A. Let v,,, be the sum of the parts of v of character
(y+1e). Then

Ulyt1 = Nys1y41Vy41 = Uy = 0,

since the » is nilpotent. Hence each term=+0 of v is of character
(r, s), r<v. After a change of notation of the cycles of w, we may
assume that » has a term+0 of character (1+). Call +' the number
+0 which is the sum of the terms of v of characters (1e)...,(as).
Set ' =¢p+exu+ ... +6a. Then u'v'=90. Drop the accents. We may
therefore assume that initially

u=e]2+eg3+ cee +e¢“ u'l):'v,
r

V=3 (O + Vg + ... + Vo) *0),
i=1

where v,; is zero or of character (a, 2). By wv=0,

€12V =V1i, O3V3i =Vgiy eeey;  €a1Vsi =Vai.
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Let ¢ have a fixed value for which one of the vy, ..., v is+0 and
hence all are+0. It follows at once that

612633 ... €a—1a €ay V1 =y,

€a1612 - €a—2a-1€a-1a Vai = Va;i.
The product of the ¢'s in the first of these equations has unity as a
root of its characteristic equation and is of character (1, 1); hence
(§ 31) it equals ae + ¢, where @ is a scalar and ¢ is nilpotent, the
churacteristic determinant of ae + ¢ being a power of @ —w. Thus
a=1,

12y - la—ra b =€+,

€aiis o+ Ca—za-1€a-10 =€+ La,

¢; being nilpotent and of character (i, 7).

45. Notation. Set e, = 0y, oy = a1, and, in general,
€y = Cit1€t1042 « o €j—2)-1€j_1j (i+7) (19),
where ¢aay, is to be replaced by e,,. The last equations in § 44 become
=€+ (h,7=1,...,a; i) (80).
If % is a number + 0 of character (j, ), then ¢;m=+0. Tor, if zero,
0=epeyn=n+§m,
whereas — 1 i3 not a root of the characteristic equation of the nilpotent
number ¢. Let #,, ..., n, be a complete set of linearly independent
numbers of character (j, A). Then e;n,, ..., e,n, are linearly inde-
pendent numbers of character (¢, A). For, if S¢,e n,=0, then e¢;n=0
when 7 =3¢,n,. If the resulting eyn, did not form a complete set, the
n, would not. Hence a complete set of linearly independent numbers
of character (i, A) is obtained from a complete set of character (§, N) by
multiplying ey by the latter.
It may be proved in the same manner that there are as many

linearly independent numbers of character (A, i) as of character (A, j),
and the latter are given by the products of the former by e,.

In these theorems, 7, j=1, ...,a; A=1, ..., A.
46. In particular, if n,, ..., #, form a complete set of linearly in-

dependent numbers of character (o, 1), where a> 1, then ¢g,n,, ...,
é.n; form a complete set of character (1, 1). Hence for suitably
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chosen scalars ¢,, 3cm, is a number ¢, of character (a, 1) such that
6106’ = €, a number of character (1, 1). Expressed otherwise, by
means of (79),

el.ip =€, en = 013823 cee ei_li, B = 6““ “ee ea_laeal'.
Since ¢;; and B are of characters (1, ¢) and (7, 1), respectively,

Bey=ae:+
where @ is scalar and ¢’ is nilpotent of character (¢, ). Maultiplying
this on the left by e,, and applying (79), we get
10601 €1 = €y = aey, + ey

Thus, by (56), 1 — @ is a root of the left-hand characteristic equation
of the nilpotent number {. Hence ¢ =1, ¢;{/=0. This contradicts
the statement after (80), unless £’ =0. In Be;=e¢;, we drop the accent
on e,," and write ¢; for ¢,. Thus

€i+1€141142 + -+ €a—10€a1 €12 --- €51 = € (7: = 1’ ey a)'

Define ¢,; by (79). ' Then we get
€iily = €jjy iy =€; (801).

Hence we have o* linearly independent numbers ¢, (7, j=1, ..., a) of
character (4, j), which have the same multiplication table (14) as the
matric algebra of a* units.

TUEOREM. Any algebra of the second category contains @ sub-
alyebra equivalent to the matric alyebra of o® units, a > 1.

The matric algebra of «* units e; has as a sub-algebra the matric
algebra of the B8* units e;(¢,j=1,..., 8), if B<a. By §13, we have
the

COROLLARY.  Any algebra of the second category contains an algebra
equivalent to the algebra of complex quaternions.

47. Normalized units of an algebra 4. of the second
category.

For brevity we shall say that there is a path joining a and B, where
o and B are distinct positive integers = 4, if there is a number 7.5 of
character (o, 8) and a number g, of character (8, «) such that
748 + 7ga 18 not nilpotent. 'The existence of a path is a necessary and
sufficient condition that an algebra be of the second category. It is
sufficient by § 36 and necessary since there is a path joining 1 and 2 in

view of
(312 + 321) (011 + ) =ey + 6.
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After rearranging the subscripts 1, ..., &, we may assume that they
fall into sets (1,2, ..., p), (p+ 1, ..., @), ..., such that there is no path
joining a number of one set with a number of another set, but that
any two given numbers, as 1 and 2, of the same set may be joined by
a path ; or else other numbers, as 3 and 4, of that set may be found
such that there exist paths as 13, 34, 42, securing passage from the
first to the second given numbers 1, 2. To secure such passage between
any two points, 1, 2,..., p, evidently p—1 paths are necessary and
suthicient. 'T'hey need not form a single broken line, as was assumed
by Cartan (Lc., p. 48), who did not employ the suggestive terminology
of paths. For p =35, the possible figures (trees of Cayley) are as
follows :

VAR A Ve

In any case we may assume that there are paths joining 1 with 2
and 2 with 8, and hence numbers #;, + 7, and 7y + 73, neither nilpotent.
Calling the first », we can find a number »+0 such that we —v+0,
where v is necessarily a sum of numbers of characters (1e), (2¢). Pro-
ceeding as in §§ 44—46, with a=2, and making a transformation of
units (§ 46) which alters at most those of characters (1, 2) and (2, 1),
we obtain units ¢, and e, of those characters such that

€189 — €11, neyy =y (e, partial moduli) (81).
Hence this normalization is not disturbed in treating 7.; + 7y similarly.
Hence we may set also
o3€y0 == €y €320 = Oy (82).
If the paths form a single broken line, we get similarly
€31€43 = €33y €y3034 =€y +-., €pp_1€p_1p = €pp (83).
To secure passage from 1 to 3 we must use the paths 1, 2 and 2, 3 and
accordingly we set ¢); = ep6x, €5 = pe,.  In general, we set
Ciej = Ciis1€ig1i42 000 Ciyj—isrgy Ciyji = Ciyjivj—1 -+ Citais
It is easily seen that the p* numbers ¢; are the units of a matric
algebra (14).

The same result follows if the paths are distributed in any other
manner ; we have only to define ¢; to be the product of the ¢’s whose
pairs of subscripts give the uniquely determined series of paths
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securing passage from ¢ to j. For example, if p =4, and if the paths
radiate from 2 to 1, 3, 4, respectively, we have (81), (82), and
O30 = by €€y = €4y (84),

and define the remaining ¢’s by

€13 = O1ylyyy O3 = Oy, €14 = C1aly,

€4 = €430, O3y = Cpabay, Cy3=ECpbys,
80 that e, is of character (¢, j) and relations (14) follow.

The theorems of § 45 still hold, with now 7, j=1, ..., p.

Let 9,9 (p=0, 1, 2, ...) denote the units of character (1, 1), where
Mm®=e,.  Then all the units of character (¢, ), ¢ = p, j = p, are given

by
M = eanuPey;.

Similarly, if A is a fixed integer > p, and g (0 =1, 2, ...) are the
units of character (1, A), those of character (7, X) are

"71:\(0) = 3“7)1)\(”) (0' = 1, 2, ...).
We may set
"711(") "711("’ = 2"-pnrr "711(7); 7711(") ﬂu\(”) =3 Bpn"h)\(ﬂ (85)~

T T

Then
m;“’) W/l(a) = E"'pa"r "hl(ﬂ, WU(P) "7,}1\(0) = Eﬂpwﬂt:\(’)-

T T

For example, the second product equals

enmP e je “jl"?n\(") = ey P gl =3 ,Bparetlnl)\(f)-
T

Similarly, 7 7/ is a linear function of the 7 whose coefficients
are independent of 7, j. Hence, if we are given the multiplication
table (85), etc., of the sub-algebra A, composed of the units of
characters

(LD, (Lp+1),(Lg+1),.., (p+1,1), (p+1,p+1), ..
we can deduce the multiplication table of the main algebra 4,.
In view of the definition of the sets (1, 2, ..., p), ...,
"711)+1 + ")p+111
are nilpotent, so that the sub-algebra A, is of the first category.

We therefore have a simple process to derive all algebras of the
second category from those of the first.

Let E,, ..., Ky, H,, ..., Hy be normalized units (§ 39) of 4,:
E¢2=Ei, E;Hp=HP.E;=Hp, HpHar'EanH'r (86))
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where H, is of character (i, j), H, of character (j, ), and each H, of
character (4, 0), and 7> p, 7> 0. As normalized units* of the algebra
A, of the second category we take sets of p® units eg® (a, B=1, ..., p1)
corresponding to the partial moduli K;, and sets of p;p; units n.p®
(a=1,..., p; B=1,..., p;) corresponding to H, of character (3, 7). If
N is the number of H, of character (¢, f), these

/4
n = 21 pﬁ + ‘E.Ni}pipi
i iy J

normalized units of A, have the multiplication table
¢as gy = 64y (0, B, y=1,...., p;) (87),
€ap My P = 10y 0, 1, P ysV) = meslP) (a, B=pi; v, 8=p) (88),
s 6y = Zypor ey (a2, BEpy, vy ST 7>0) (89),

corresponding to the three types (86). All products mot written are
zerot.

For a simplified statement of part of the content of this theorem,
see § 50.

48. Characteristic determinant 8 of an algebra A,
Let the units £, H of the sub-algebra (86) be arranged as in § 39 so
that in its characteristic determinant &, every element above the main
diagonal is zero. The corresponding sets of units of A, are arranged
in this order, while the units in the set corresponding to H, of
character (7, j) are arranged in the order

NPy NP,y -y npilp’ ThePy +o oy ﬂpizp, My ooy "71"1’/'»

and the subscripts of the e,s® corresponding to X; are arranged
similarly.

Consider the element in the rth row and cth column of 3,. Let
(4, 7) be the character of the rth unit of the sub-algebra, and (/, ¢) that
of the cth unit. Then the matrix of 8 is obtained from that of & by
replacing the element in the rth row and cth column by a rectangular
array of p;p; lines and p;p, columns. Since §, is the product of its

* As in § 22, we may express the theorem as follows: Any 4, can be deduced
from an 4, given by (86), by regarding the coefficient of E; to be a square matrix
of p? elements and that of Hp, of character (i, j), to be a rectangular matrix of
s rows and p; columns, these matrices to be regarded as commutative with each
E and H.

+ Molien, Math. Ann., vol. 41 (1893), p. 83, by use of group theory; Cartan,
l.c., as in the text.
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diagonal elements, 8 equals the product of the determinants of the
diagonal arrays, obtained by setting ¢ =r, the rth being a p;p;-rowed
determinant. 'The latter is schematically

M; O... O 2, — o 2, e ﬂ'lpi(‘)
10 M;... O " T =0 w?pim
e R I (90),
1
'0 0 ...M; \.z‘])il(i) ‘zl’ﬁ(t) . xpw‘(i) —o

where O is a p;rowed square matrix all of whose elements are zero.
The schematic determinant is p,-rowed, and hence equals | 2; | #. Thus,
since there is a single unit %; of character (7, <),
H
S=I1| M;| Pi+Nypi+ Niwpy + ... + Nyupn (91).

i=1

In particular, the characteristic determinant of the matric sub-
algebra of p? units satisfying (87) equals | M; . Its rank equation
is | M; | =0, as follows from Cayley’s theorem on matrices (§ 15).

A determinant like | A7;| whose elements are independent variables
is an irreducible function of its elements.

The characteristic determinant for an wlgebra A, of the second
category 1s @ product of powers of H irreducible functions P; of degrees
p. expressible as prowed determinants; and the 3p; elements of these H
determinants are linearly independent linear functions of the coordinates.
Here H is the number of partial moduli of the sub-algebra A,.

If we equate to zero each element of these determinants, we obtain
a system of linear equations which is independent of the choice of
the units (§ 16). Hence the set of nilpotent numbers whose coordinates
satisfy these cquations is independent of the choice of units. When
the normalized units of § 47 are used, these nilpotent numbers are the
linear combinations of the #’s.

49, Invariant sub-algebra; simple and semi-simple
algebras.

An invariant sub-algebra I of any algebra A4 is one such that the
product of any number of 7 by any number of A4 is in 7 and the
product of any number of A by any number of 7 is in 1.

For example, the algebra (e, ¢, ;) in (46) has the invariant sub-
algebras (e, ¢,), (¢;) and (e5). Algebra (45) has the invariant sub-
algebras (¢;) and (&, ¢), 4, /=1, 2, 3.
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A simple algebra is one having no invariant sub-algebra.

A semi-simple* algebra is one having no nilpotent invariant sub-
algebra. Algebra (45) is semi-simple since it has no nilpotent number,
as shown by its characteristic equation, given after (45).

50. Main theorem. By § 37, the nilpotent numbers of an
algebra A, of the first category form an invariant nilpotent sub-algebra.
Hence A, is semi-simple if and only if its units are the partial moduli
€, ..., &, and is then the direct sum of the unary algebras (¢,), ..., (e,).
In particular, the only simple A, is that with a single unit .

In an algebra A, of the second category, the u’s are, by (89), the
units of an algebra which is nilpotent (end of § 48), and an invariant
sub algebra of 4,, by (88). Hence in a semi-simple A, the units % are
absent, so that its units are those contained in the matric sub-algebras
of p* units. As each of the latter is an invariant sub-algebra, a simple
A, wmust be matric.

Conversely, any matric algebra A/ of p? units ¢, is simple. TFor, if
& =3r,e;+0 occurs in an invariant sub-algebra /, then

€0, 268 =L Cap
occurs in 7.  Hence every e, g is in fand M= 1.

Similarly, the direct sum a + M of two matric algebras has no
invariant sub-algebra / other than m and M. For, if « + .Y" be one of
its numbers and =+ 0, and if the units of m are ¢;, then

o (2 + X)eg =2, 008
is in 7, so that @ is a sub-algebra of . Thus /=m or m + M. If
there be three or more summands, the argument is similar. Since
a matric algebra or a direct sum of matric algebras is not nilpotent,
a direct sum of matric algebras is semi-simple.
An algebra (ay, ..., a,, b, ..., b,) for which 4=(ay, ..., @,) and
B=(b,, ..., b,) are sub-algebras is called the sum of the algebras 4 and
B. It need not be their direct sum (§ 21).

THEOREMtT. Any linear associative algebra with o modulus and

* In place of Cartan’s definition (l.c., p. 57) of a semi-simple algebra as a
reducible algebra each of whose irreducible components is simple, I have employed
that by J. H. M. Wedderburn, Proc. London Math. Soc., ser. 2, vol. 6 (1907), p. 94,
and deduced the former property.

+ Cartan, lLec., p. 58. For simple algebras the theorem was first proved (but
not altogether satisfactorily) by Th. Molien, Math. Ann., vol. 41 (1893), p. 125;
then by Frobenius, Berlin Sitzungsber., 1903, p. 527; cf. J. B. Shaw, Trans. Amer.
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with complex coordinates is the sum of a semi-simple algebra and
a nilpotent invariant sub-alyebra. A semi-simple algebra is either
simple or a direct sum of simple algebras, and conversely. A simple
algebra is of matric type and conversely.

51, Commutative algebras. A commutative complex algebra
with a modulus must be of the first category (§ 46, Corollary). Em-
ploying the normalized units of § 39, we see that there cannot occur
a unit 7 of- character (a, B), B+a. For, if s0, ean="1, 7€, =0, and
multiplication would not be commutative. Then the algebra is the
direct sum of 3, ..., 3,, where 3; is forined of the numbers of character
(4, J), and has 7 units e =€, 1, %, .-, 7,_, such that

e = €, en=me=1n, MNYy= 27(’/""‘5 (92)’

where &> ¢, £>j, and y=vyu. The y’s are of course subject to the
further conditions implied by the associative law of multiplication.

In particular, if the algebra has no nilpotent number, no units
7 occur (for, *._; = 0), and the algebra is (¢, ..., ¢,) :

ef=¢, €=0 (5,7=1,...,k; i%)) (93).

Math. Soc., vol. 4 (1903), pp. 275—283. It is implied in Frobenius’s theory
(see § 54) of group characters and group determinants, Berlin Sitz., 1896, pp. 985,
1343 ; 1897, p. 994 ; 1898, p. 501 ; 1899, pp. 330, 482 ; 1904, p. 558, an elementary
exposition of which was given by Dickson, dnnals of Math., ser. 2, vol. 4 (1902),
pp. 25—49. For an attractive method of treating the latter theory, see I. Schur,
Berlin Sitz., 1905, p. 406 [cf. Dickson, Trans. Amer. Math. Soc., vol. 8 (1907),
p- 389]. Cf. W. Burnside, Proc. London Math. Soc., vol. 35 (1903), p. 206. For
the work of Wedderburn, see § 56. Another proof of the main theorem and the
theorems in §§ 47, 48 has been given by Frobenius, Berlin Sitz., 1903, p. 641.



PART III

RELATIONS OF LINEAR ALGEBRAS TO OTHER
SUBJECTS

52. Correspondence between linear associative algebras
and linear groups.

Consider a linear associative algebra with the multiplication table

n

66 = 351 Yis¥s (,7=1,..., n) (94).

For y a fixed number and 2 a variable number of the algebra, the
equation &' = zy is equivalent to the » equations

which define a linear homogeneous transformation of the variables
&y, ..., &y into the variables &/, ..., &/, which corresponds to the given
number .

Similarly, to 3 corresponds the transformation 2" =2’y :

n

) " :"* E‘_ l’)’uchl'xljl/k’ (t=1,...,n)

of the variables .z, ..., 2, into 2", ..., 2,”. But

(7

2 =(xy)y =2y, Y =yy.
To y” corresponds the transformation

n n
(.Il/”) & = . 3 lmzz:.%", :I/s" Ej kE l'}’jl‘a?/Jyk’ (ta s=1,.., n)’
8= =

the values of the %,” being found from %" =gy by use of (94). The
transformation (y”) is therefore identical with the so-called product
(:1/) (y,) z;" =3 kz’ . lYUsYsktZ;yjykl (t =1,.., n);
y Ky ©,J=
obtained by eliminating the variables " between the sets of equations
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(%), (). To give a formal verification, note that the coefficients of
zy,y, 1o the last two expressions for 2,” are equal if

n

n
51 Vist Yiks = El Yijs Y skt (i, hkt=1,.., ”)
These are satisfied since, by (94),

n n
é; (3j€k) =6 321 Y ks n =t 3 l')’iat'y_/kaeta
= , 8=

n n
(@) . = ( 3 Ym%) = 2 YysYurlr-
§=1 8 t=1

Hence the correspondence between numbers y and transformations
(y) is such that to the product yy' of two numbers corresponds the
product (%) (') of the corresponding transformations. The resulting
set of transformations is closed under multiplication since the algebra is.

For example, if the algebra is that of four units in § 4, to the
number p in (16), with the coordinates a, B, y, 8, corresponds the
transformation 7' = mp in (17,) :

d=qu+by, V=aB+08 c=ca+dy, d=cB+dd (95)
The product* of this transformation by that with the coeflicients
o, ..., 8 is the transformation with the coefticients
@ =daryB, y=dy+yd B =fa+¥B 8 =Fy+¥5 (96).

Let the algebra have a modulus . The corresponding transforma-
tion &' =ae=x is the identity transformation 2,/'=2;((=1,..., n).
Then A (y) is not identically zero. For a number y such that A () *0,
there exists a unique number ! such that yy™' = y~'y =€ (end of § 7).
Then 2’ =2y implies # ="y, so that the transformation (y~*) is the
inverse to (7) and conversely. If A(y)=+0and A(y") %0, then A(yy") 0,
since yy' has the inverse ' 7'y~

A set of linear transformations forms a group if the product of

* Since ¢, d are transformed cogrediently with a, b, the work need not be
duplicated. If the matrix of the coeflicients of @ and b in (95) be called x, we
have u’=u'u. The matrix of the coefficients of the product 71" of two linear
transformations in n variables equals the product of the matrices of 7/ and T
(i.e., taken in reverse order). But if we denote by T, the transformation

a=a'a+by, b=a'B+b'8
of matrix x, and by T’ the transformation of matrix u’ expressing a’, b’ in terms of
a”, b”, then by eliminating a’, ', we obtain as the transformation expressing a, b
in terms of a”, 0" one with the matrix uy’. Thus transformations, expressing the
old variables in terms of the new, compound as their matrices taken in the same
order. See also the second foot-note in § 53.
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any two of the set is a transformation of the set, if the set contains
the identity transformation, and if each transformation has an inverse
in the set. Thus we have

TnroreM 1*. The set of all numbers not nilfactors of w linear
associative algebra with n units and having o modulus corresponds to
a group (f of linear transformations on n variables whose coefficients
are linear functions of n arbitrary parameters.

The determinant A’(y) of each transformation (y) of G is not zero.
The group is called simply transitive since it contains a unique trans-
formation (y) which replaces a given general set of values ay, ..., 4,
viz., one for which A (2)+0, by any given set 2,..., 2,” for which
A(w)+0. Indeed, 7y =2’ then has a unique solution z for which
A (y) +£0 and hence A’ (y) +0.

T'o any number % corresponds also a transformation 2’ = ya :

n

[¥] ) = ‘Sil Vs, (s=1,..., n).

HJ

Similarly, to 4 corresponds [¢']: #” =y'2. Then

&=y @ye)=y"x% y'=yy ly1=[y1lyl

Hence we obtain a second simply transitive group G".

If we apply a transformation (¢) : 2’ =ay and then a transformation
[2] : 2" =22/, we obtain (y)[2] : " =zay. 'The same result is obtained
by applying first [2]:2'=z2 and afterwards (y):2"—a'y. Hence
every transformation of G is commututive with every transformation of
G'. 'Two such simply transitive mutually commutative groups are
called reciprocal.

The coefficients of the transformation, written at the end of formula
(y"), replacing the variables 7, ..., ¥, by the variables ", ..., ¥,", are
the same functions of the parameters g, ..., %, as the coefficients of
the #; in (y) are of the parameters u,, ..., ¥,, as is also clear from the
formulas 4" =y, 2’ =ay. For this reason, the group G is said to be
its own parameter group. Similarly, ¥ =%y, 2’ =y show that G' is
its own parameter group.

TueorREM 2%1. Every linear associative algebra with a modulus

* Stated by Poincaré, Paris Comptes Rendus, vol. 99 (1884), p. 740.

+ E. Study, Leipzig Berichte, vol. 41 (188)), math., p. 202; reprinted in
Monatshefte Math. u. Phys., vol. 1 (1890), pp. 283—355. While Study used the
theory of bilinear forms, Scheffers gave a purely group-theoretic proof, using infini-
tesimal transformations (Lie-Scheffers, Continuierliche Gruppen, 1893, p. 627).
Cf. Scheffers, Leip. Ber., vol. 41 (1889), math., pp. 290—307.
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defines a definite pair of reciprocal groups, eack its own parameter
group.  Comversely, given any pair of simply transitive groups, reciprocal
to each other, of linear homogeneous transformations on n variables, we
can find new variables &y, ..., x, such that the groups are reduced simul-
taneously to groups of transformations (y) and [y] in whick the n
parameters Yy, ..., Y, enter linearly and homogeneously and suck that
each new group is its own parameter group ; hence (y) defines « rule of
multiplication & =xy of two numbers of a linear associative algebra
with the units ey, ..., e, and multiplication table (94).

Consider the linear transformation ¢ = ¢,qq,, where
g=x+yi+z+wk, Q=X+ Yi+Zj+ Wk

are quaternions with variable coordinates and ¢, ¢, are given quater-
nions. Then, by § 12,

N@Q)=X*+Y*+Z+ Wi=¢c(@*+y +Z+w*), ¢=N(qq.)

For ¢#0, we have a transformation, involving seven arbitrary
constants, expressing .\, Y, Z, W as linear functions of determinant
+0 of «, , z, w, which multiplies #*+y*+2*+w* by ¢. If we start
with the general quaternary linear transformation having 16 coeflicients
and impose the last condition, viz, that the coefficients of the six
terms .\"Y, ... shall vanish, and those of .\ ... shall be equal, we
have nine relations and hence seven free constants. Supplementing
this “ counting of constants” by the definitive formula* for the
resulting transformations, we see that all are given by the quaternion
transformation € =¢,9¢,. We therefore have a very convenient
expression for the groupt generated by rotations around the origin and
stretchings from it. To obtain the corresponding groupi in three
dimensions, we have only to take #=X"=0, ¢,=¢,, the quaternion
conjugate to ¢,.

For further relations between linear algebras and groups of trans-
formations not necessarily linear, and for various geometric aspects of
our subject, the reader is referred to the Kncyc. Sc. Math., vol. 1, 1,

* Cayley, 1854, Coll. Math. Papers, 11, pp. 133, 214; Klein, Math. Ann.,
vol. 37 (1890), p. 544, and Elementarmath. vom hisheren Standpunkte aus, I,
p. 161.

t Since if also Q,=g;Qq,, then Q;=(q50,) 7 (g294)-
1 By retaining only transformations of positive determinants, we exclude

y=-y, Z=-2, w=-w

and its products by the former.
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pp. 448—465. Also to p. 468 for the connection between the con-
tinuous groups of Sophus Lie and non-associative linear algebras in
which ab=—1ba, (ab)c+ (bc)a+(ca)b=0, for any three numbers
a, b, ¢ of the algebra.

53. Correspondence between linear associative algebras
and systems of bilinear forms.

If i, w;({ =1, ..., n) are 2n independent variables,

n
A= 3 aywiw
hy=1
is called a bilinear furm. Let B denote a similar form with the co-
efficients b;. Then A +B denotes the form with the coefficients
ay+b,;. The product* AR is the bilinear form C with the coefficients

n
cy= 3 agby (G J=1,..,n).
k=1

Thus the matrix of the coefficients of the sum or product of two
bilinear forms is the sum or product of their matrices, taken in the
same order. The subject of bilinear forms is thercfore essentially
identical with that of matrices and, if we agree to use also singular
transformations (of determinant zero), with that of linear homogeneous
transformations.

If at the beginning of § 52 we take y =¢;, the equation 2’ =ze,

gives
n
p_ %
@) = ,21%}:«“’» (s=1,...,, »),
i=

the matrix of which has the element y,,in the sth row and ¢th column.
Takingt it as the @, in A, we obtain the bilinear form

n
Aj= . 3 l'ywx,uu.

i, 8=

Then the number Z¢,¢; corresponds to the bilinear form 3¢;4;, while

* Hence 4B= %} aa: g—f . This is the definition by Frobenius, Jour. der Math.,
k O
vol, 84 (1877), pp. 1—063, the most important paper on the subject.
4 If TT'=T" for linear transformations then mu'=p", where u denotes the

matrix u of 7' with the rows and columns interchanged. Thus in (95), (96),

(8 G%)-G%)
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the sum or product of two numbers corresponds to the sum or product
of the corresponding bilinear forms*.

For example, the units 1, ¢ of the binary algebra of complex numbers
correspond to &y u; + Zaug and 2, us — 2y%;.

An excellent example is furnished by the matric algebra of four units.
Since the corresponding group (95) affects the two pairs of variables cogredi-
ently, the bilinear forms are each the sum of two similar parts on separate
variables, z,%;, ¢, j=1, 2 in one part and ¢, j=3, 4 in the other part. Re-
taining only the first parts, we obtain

ax Uy + By Uy + Y2 uy + 8251,
as the part corresponding to the transposed matrix of coefficients of a and b
in (95). Thus each unit e, of the algebra [see (16,)] corresponds to the
bilinear form B,; = x,%, with the same subscripts. Thet B;; satisfy relations
(14).

Conversely, given » bilinear forms 4,, ..., 4, in a;, w;(i =1, ..., n)
such that each A, A,is a linear function of A, ..., 4, with constant co-
efficients, we may take them as the units of a linear associative algebra.

The subject of bilinear forms } is therefore at bottom identical with
that of linear associative algebras.

54. Relations of linear algebras to finite groups. Con-
sider for example the rotations 7, 4, B in a plane about a point
through angles 0°, 120°, 240°, respectively. 'They form a group with
the multiplication table

1 A B
11 4 B
BB I A
A|lA B 1

This is read AB =1, ete. Taking I, A, B as units whose products are
given by the table, we have a linear associative algebra§. Similarly, if
we start with any finite group, which is associative by definition.

* C. 8. Peirce proved this theorem expressed in a different notation ; see list of
his papers in Encyc. Sc. Math., vol. 1, 1, p. 416. Cf. Study, Leip. Ber., vol. 41
(1889), p. 192.

1 The easiest verification is by differentiation (see first foot-note of this section).

T References are given in Encyc. Sc. Math., vol. 1, 1, pp. 415—421, 444—446.
For an account of the theory of bilinear forms and their applications, see Muth,
Elementartheiler, Leipzig, 1899.

§ Cayley, Phil. Mag., vol. 7 (1854), p. 46 (=Coll. Math. Papers, vol. 11, 1889,
p. 129).
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If we take /, A, B as ordinary variables, and consider the three-
rowed matrix forming the body of the multiplication table of the above
group (the multipliers having been arranged so that every element of
the main diagonal is /), we have an example of what Frobenius* calls
the group matriz of a given finite group. The product of two such
group matrices is another of the same kind :

I A B T a O Lt a L=Ii+Ab+Ba,
])’ I A b za B va), a=la+ Al + Bb,
A B I/ \ab 1, a B/ B=Ib+Adu+ Bi.

Call ¢, the matrix obtained from the first by setting /=1, 4 = B=0;
¢ that by setting A =1, I=B=0; ¢;by B=1, I=A4 =0. Then
(ley + Aey + Be,) (iey + aes + bey) = e, + ag, + Be,
is the equivalent of the above relation between matrices, and is the
multiplication formula for the algebra with modulus ¢, and
o=, e =ee=6, 6'=e6.
We have in effect returned to our group of three operators. For an
elegant exposition of this direct relation between the theory of group

matrices and linear algebras, and applications to Abelian integrals, see
a memoir by Poincaré t.

55. Dedekind’s point of view for linear associative com-
mutative algebrasi. Consider the example of the commutative
triple algebra :

el=etete;, ee=6, e’ =e¢'=6, ee=e66=e+e;.
Regarding these as ordinary algebraic equations for the unknowns ¢;,
we find at once that they have only four sets of solutions:

(e, &, €)= (0, 0,0), (1,0, 0), (2,1,1), (0,—1,1).
Excluding of course the first set, Dedekind regarded the e’s as multi-
valued (but correlated) numbers, so that any linear function of them is
three-valued. The correlation is here such that, when e,=7, then
e,=r+1, ¢;=7% where 7 is a three-value function for which *=#. In
general, the multiplication equations

”
eiej— ]‘Elyukekzo (’i, j.—_ 1, very ﬂ) (94)

* References at the end of § 50.
t Journ. de Math., ser. 5, vol. 9 (1903), p. 180.
1 Giottingen Nachr., 1885, p. 141; 1887, p. 1; reproduced by B. Berloty, These,

Paris, 1886.
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of a commutative associative algebra have n sets of real or complex
solutions of determinant* not zero if and only if
n
p>
i,j=
Not far removed from this view is that of Kroneckert, who obtained

all commutative linear associative algebras by use of modular systems,
the moduli being the left members of (94).

. YrsiYii ’ *+0 (1‘, s=1, ..., n)_

* Cf. J. Petersen, Gitt. Nachr., 1887, p. 489; G. Frobenius, Berlin Sitzungsber.,
1896, p. 601 ; D. Hilbert, Giitt. Nachr., 1296, p. 179 (by the theory of invariants).

+ Berlin Sitzungsber., 1888, pp. 429, 447, 557, 595, 983. See the clear abstract
in Encycl. Sc. Math., vol. 1, 1, pp. 409—411.



PART IV
LINEAR ALGEBRAS OVER A FIELD F

56. By a division algebra shall be meant one in which both right-
hand and left-hand division, except by zero, are possible and unique.
The fundamental theorem of § 50 on complex algebras has been
generalized by Wedderburn* as follows :

THEOREM 1. dny linear associative algebra over a field F' is the sum
of « semi-simple algebra and a nilpotent invariant sub-algebra, eackh
over K. A semi-simple algebra over I9'is either simple or the direct sum
of stmple algebras ocer F.  Any simple algebra over F is the direct
product of a division algebra and « simple matric algebra each over F,
including the possibility that the modulus is the only unit of one factor.

As the part relating to simple algebras is quite different from our
former result for the case of the complex field, it will clarify the
subject to have a proof of the converse :

TuroreM 2. The direct product P of a division algebra D and
a matric algebra M, each over F, is simple ; any number of P com-
mutative with every number of P is in D.

Denote the units of M by e,,( p, ¢=1, .., n), so that the¢,, are the
partial moduli and €= ey + ... + ¢4, 15 the modulus of 2 and hence of
P. Let I be any invariant sub-algebra of £, and ¢ =33,,¢,, be any
number of 7, where &, is in D. Since / is invariant, ¢,,ze,, is in /.
Allowing p and ¢ to vary, we get a product =0 if =0, since

n . n .

S ogpley= 2 e,le=ce=1
»,7=1 »=1
Thus, for a certain pair of integers p and ¢,

Spqpy = Eppleyy * 0.

* Proc. London Math, Soc., ser. 2, vol. 6 (1907), p. 109.
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Thus 7 contains a number 8,¢,,, where 8, is a number +0 of D. If 8
is any element of D, we can find a number 8, of D such that 8,8, =38.
Hence 7 contains d¢,, and therefore also

8epy 0y = dpr, €4y Oy, = deyylpy = oy,
where 7, s are any positive integers = 2. Hence /= £.

Next, if « is any number of P commutative with every number of
P, set x = 33,,¢,,, where 3,, is in D). 'Then

n n
3 Srp‘)‘rq = Xlpy =y = > 841»;911:”
r=1 s=1

where p and ¢ are arbitrary. Hence
811) =0 (7' *]))1 SPI' = 841417 z = 8ll Ep‘l’l = 811 €= 811’
50 that # is in D. 'The case in which D has a single unit gives the

Corollary. In a matric algebra M with the modulus ¢ the numbers
e (a scalar) are the only ones commutative with every number of M.
Hence (§ 52) the only linear transformations commutative with everyone
are those multiplying each variable by the same constant.

When # is the field of all complex numbers, any number of
a division algebra satisfies a linear equation (§ 11), so that the algebra
is the field itself. Hence (in agreement with § 50), any simple algebra
is matric.

When Fis the field of all real numbers, the only division algebras
are the three found in § 11.  We have therefore

THEOREM 3%. Every real simple algebra is either a real matric
algebra M with p* units ey, or the direct product of M and the algebro
(1, 2) of ordinary complex numbers, or the direct product of M and the
algebra of real quaternions.

For the second type, the units are ey, ¢’ = te;, = 6,4, where
0 (k+10),

0 ;o
€€ tn = € ji€um = €51€'tm =
i m Jk%m e/ ) J m "ejm (/C=l).

Jjm

By the above corollary, a commutative matric algebra has a single
unit e. Using the first parts of Theorem 1 and Theorem 3, we get

* Expressed and proved otherwise by Cartan (Lc., pp. 61—72). He also
proved the first part of Theorem 1 for real algebras. The method was to study
the corresponding complex algebra with the same units. We conclude that a
real division algebra is simple and hence by Theorem 3 of one of the three types
in § 11.
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THEOREM 4. Any real commutative algebra without nilpotent
numbers 1s the direct sum of certuin algebras (e,), each equivalent to the
algebra of real numbers, and certain algebras (e;, ¢/),

el=e, e”=—e, ee =e'e;=¢/,
each equivalent to the algebra of ordinary complex numbers.
We obtain a sub-algebra of the complex algebra (93) by setting
B, B =Y(e,+N-1¢)), K:=FE, E°=F, EE'=EFE=0.

57. The algebras of Weierstrass. If % is a nilfactor (i.e.,
a uumber for which £y =0 has a solution y+0), and ¢ is not, there is
an infinitude of numbers « satisfying the equation kp + kox = 0. For,
if y is one of the infinitude of s satisfying &y =0, it has the solution
2 where 2 is determined from p + o = y.  Similarly, there are equations
of any degree m, having each coefficient ¢; a multiple of 4, with an
infinitude of roots, viz., 2 — ., +yz, where 3¢ =0. Welerstrass*
investigated real linear algebras in which multiplication is commutative
and associative, with A (z) not identically zero (§ 6), and such that the
only algebraic equations having an infinitude of roots are those in
which all of the coefficients are multiples of one and the same nilfactor.
By a rather long, but elegant analysis, he proved that such an algcbra
is equivalent under a real linear transformation of units to a direct
sum of real unary and binary algebras (as given in the above Theorem
4), and conversely that the resulting algebra has the specified
properties.

This result follows at once from Theorem 4 ; for, if the algebra had
a nilpotent number 7, so that »* = 0, the equation *= 0 would have an
infinity of roots s (» real) and yet its coeflicients are not nilfactors.
But Theorem 4 was based upon results not proved in this tract. We
shall therefore give a direct proof (the second of Study’s two proofs 1)
of the theorem of Weierstrass, in the equivalent form (known to the
latter) that the corresponding complex algebra is of type (93). It
suffices to prove that the only complex irreducible algebras of Weier-
strass are those with a single unit e. By the criterion of Scheffers
(§ 21) an irreducible commutative algebra with a modulus e has no
further number ¢ such that ¢?=e. Thus (§ 20) the rank equation is
(a=Ae)'=0. If r>1, (a—Aey'isaroot =0 of =0, Hencer=1
and the only unit is e

* Gittingen Nachr., 1884, pp. 395—419.

t Gittingen Nachr., 1898, p. 1 [1889, pp. 262—5]. All except the last papers
cited in § 55 deal with this subject.
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58. Commutative non-associative division algebras.
Let F be any field (except one with the modulus 2 in which therefore
22 counts as zero) for which there is an irreducible function

2 - Ba*—Bx—0b (B, B, bin F.

Then division except by zero is always possible and unique in the
algebra * with the units 1, 7, j over / for which

Rej, 4 -ji-b+Bit B, F=AbB—B—8bi-28j (97).
If the final equation be replaced by
P=i(i))=bB+(b+BB)i+(B+ B,

we obtain the field 7'({), the determinant A (2) of whose general
number w« =7 + si + ¢/ vanishes if and only if #, , £ are all zero. Hence
the latter property holds also for the function 8 derived from A () by
replacing 7, s, ¢ by » + B¢, s+ 2/, — 2t respectively. But 8 is the
determinant of .» for algebra (97).

Of quite another character is the commutative division algebrat
with 2n units J*, LJ" (r =0, 1, ..., n —1) over F, where J is a root of
a uniserial Abelian equation

a"—e " et — L te, =0,
i.e., an equation irreducible in /" and having the roots
S, J=0J),J"=0J)=0]), .., Jo V=0 (J) [0 (J])=J],

where @ is a polynomial with coefficients in Z, with the further con-
dition that ¢, is not the square of a number of F. The general
number of the algebra is 4 + BI where A, /3 are polynomials in J
with coefficients in /. Write 5’ =B (J'), B"=B(J"), ete. for the
conjugates to A (J). The multiplication table of the algebra is
defined by

(A+BI)(X+YD)=R+SI, R= AX+BY'J,S= BX+AY (98).

The last two equations can be solved for .\"and ¥ in the field #'(J)
provided A and B are not both zero. Eliminating .Y, we get

BBY'J-A4*Y=C, C=BR-AS.

* Dickson, ‘“On finite algebras,” Gittingen Nachrichten, 1905, pp. 358—393 ;
Bull. Amer. Math. Soc., vol. 14 (1907—8), p. 169, where these algebras are proved
to be the only ones with three units and division unique if F is a finite field, by
use of a remarkable theorem on non-vanishing ternary cubic forms; Trans. Amer.
Math. Soc., vol. 7 (1906), pp. 370—390, where (97) is found by invariantive pro-
perties,

t Dickson, Trans, Amer. Math, Soc., vol. 7 (1906), p. 514,
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In C, C,..., C"" the determinant of the coefficients of Y, Y, ...
equals

BB ... [Bo] — 424" . [A ] %0,
and the resulting Y satisfies the preceding equation. Hence division
except by zero is always possible and unique.

59. Linear associative division algebras. Let ¢ (#)=0 be
any uniserial Abelian equation of degree 7 in a field #. Call its roots
i, 0@), @()=0[0(()]..., () [®7(¢)=1].

Then %5t(s, £=0, 1, ..., 7 — 1) are the * units of a linear associative
algebra* over /" having
4’(7:) =0, ji =0 (7:).7.’ jr =9 (99)1
where g and the coefficients of the polynomials ® and ¢ are in A. If
r=2, we may, without loss of generality, take ¢*=c, where ¢ is in
but is not the square of a number of /. The linear functions of ¢
form a field #'(¢). 'The general number of the algebra is N =a +f8j,
aand Bin £ (7). If B=0, N has the inverse a7, in /(7). If B0,
N =By, where v is of the form y+j, and y=e+fi. Write y =e—~fi.
Since @ () = —7, we have
Ji==U, Jy=vi G-¥)U+v=9-7/
Hencet every number N #0 has an inverse if g is not the norm
vY = & —¢f* of a number y of #'(¢). 'The conditions on ¢ and ¢ are
satisfied when F is the field of reals by taking e =g =—1, and the
algebra is then that of real quaternions.
A like result holds { for any ». By (99,),

F@) =), 7f@)=,[€ D], (100),
where f is a polynomial with coefficients in /% We shall treat the
typical case »=38. We have at once

[+ £(€°)5 + k(@) & (@)][5 — & (9)] = 9 — k() k (®) (0,
where £(®") denotes £[®*(:)]. Assume that g is not the norm of
a number of F'(¢). 'Then every j~£(:) has an inverse. It remains

only to show that
z=+aj+ B
has an inverse, a and B being in /(7). But
2[j-a(@)]=[B-a()a(®)]j+g-B(:)(8®)
* Dickson, Trans. Amer. Math. Soc., vol. 15 (1914), p. 31,

t+ Dickson, l.c., and Trans. Amer. Math. Soc., vol. 13 (1912), pp. 65, 66.
1 Wedderburn, Trans, Amer. Math. Soc., vol. 15 (1914), p. 162,
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is not zero since g is not the norm of «(¢); and each number of F'(3)
and each linear function of 7 has an inverse.

The existence of these linear associative algebras in 72 units in
which both right- and left-hand division except by zero is always possible
and unique is of decided interest and importance in view of the role of
division algebras in the general theory of § 56.

On the contrary, if the field # has only a finite number of elements
multiplication must be commutative in a linear associative division
algebra, which is therefore a field *.

60. Finite associative division algebrast. Consider p*
couples (z, y), where z, y are integers taken modulo p, p a prime > 2,
such that

(4 ¢)+ (2, y)=(a+z,c+y) (101),
(o, ¢). (2, y) = (ax + evcy, cz + eay) (102).
Here v is a fixed quadratic non-residue of p, while
p-1
e =(a*~v?) 2 (mod. p).
Right-hand and left-hand division except by (0, 0) are each possible

and unique. Multiplication is associative. The first distributive law
(4,) holds, but not (4).

For p a prime of the form 37+ 1, define the sum of (a, b, ¢) and
(z, 9, 2) as in (101), and their product to be

(az + evey + €vbz, br + eay + Evez, cx + by + €az),
where v is a fixed cubic non-residue of p, and

p_—_-_l
e=D 3 (mod. p), D=a*+vbh®+v3c*— 3vabe.

Now D is divisible by p only when a, b, ¢ are. Indeed, D is the
determinant A () for the field algebra of the numbers

z =a+bp+cp’, p*=v(mod. p).

Hence each kind of division except by (0, 0, 0) is possible and unique.
Multiplication is associative, and the first distributive law (4,) holds.
The generalization to n-tuples is immediate.

* Wedderburn, Trans. Amer. Math. Soc., vol. 6 (1905), p. 849; Dickson,
Gottingen Nachr., 1905, p. 881.
1 Dickson, Gottingen Nachr., 1905, p. 358,
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Each of the algebras (97) and (101)—(102) has been used to
construet non-Desarguesian and non-Pascalian geometries*.

61. Statement of further results on general linear
algebras.

Let A be a linear algebra, not necessarily associative, over a field
F.  Let 7 be any invariant sub-algebra of A. Let 7y, ..., 7, be a comn-
plete set of linearly independent numbers of 7 with respect to the field
F.  Choose numbers a,, ..., @, of A such that 7\, ..., 7, @, ..., @, form
a complete set of linearly independent nunbers of A with respect to
F. Let< 7, ... denote linear functions of 7, ..., 7, with coefficients in
F; and a, a, ... linear functions of a,, ..., a,. Then a/ and i« are
numbers 7 and ¢’ of the invariant sub-algebra 7. Hence

1y 1

(a+2)(@+7)=ad +¢", " =i +7"+7".

Hence if we suppress the components a,3,, ..., ,7, in all numbers and
products of numbers of A, we obtain a linear algebra which is said to
accompanyt A and to be complementary to 1. It is conveniently
denoted by A — 7 and called a difference algebra. 'The number of its
units is the excess of the number of units of A over the number of
units of /. By regarding as identical those numbers of A which differ
only by numbers of /, we obtain A — 1. It is an associative algebra if
A is.

If each A, is a maximal invariant sub-algebra of A4,_,, then A,,
Ay, Ay, ... 1s called a composition series of A;. 'The difference algebras
A, - A,y Ag— Ay, ... are said to form a difference series of A,. Any
two difference series of A, differ only in the wrrangement of the terms of
the seriest. Each algebra of the difference series is simple. A like
theorem holds when each A, is the largest sub-algebra of A4,_, in-
variant in 4,, the resulting series being called a principal or chief
difference series. 'These theorems are analogous to those relating to
a composition series of a finite group.

Let A, be a reducible algebra and A, its largest sub-algebra such
that A, is the direct sum (§ 21) of 4, and another sub-algebra 4,. If
A, is reducible, let A, be its largest sub-algebra such that A4, is the
direct sum of 4; and another sub-algebra of 4,, etc. Then the series

* Veblen and Wedderburn, Trans. Amer. Math. Soc., vol. 8 (1907), p. 879.

+ Th. Molien, Math. Ann., vol. 41 (1893), p. 93, begleitendes System; G.
Frobenius, Berlin Sitzungsb., 1903, p. 523, homomorphe Gruppe.

+ Wedderburn, Proc. London Math. Soc., ser. 2, vol. 6 (1907), pp. 84, 110;
Epsteen and Wedderburn, Trans. Amer. Math, Soc., vol, 6 (1905), p. 176,
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A=Ay, dy— Ay, ... is called* a reduction series of A,. Any two
reduction series of A, differ only in the arrangement of their terms.

By use of the latter theorem, Wedderburn proved that e linear
associative algebra over « field can be expressed in one and but one way
as the direct sum of irreducible algebras each having a modulus and an
algebra without a modulus. In particulart, an algebra with a modulus
can be expressed as the direct sum of irreducible algebras each having
a modulus. The rank equation of s+ & is the productf of the rank
equations of s and S.

62. Analytic functions of hypercomplex numbers. B.
Berloty in his thesis (Paris, 1886) extended the elements of the theory
of functions of a complex variable to that of a number in an algebra of
Weierstrass. 'The conditions for such an extension to a general algebra
with a modulus have been treated by G. Scheffers§; let £, ..., f, be
continuous functions of &, ..., @, ; in order that =3 fe; shall have
aunique derivative independent of du,, ..., d,, multiplication must be
commutative ; in order that the derivatives and integrals of analytic
functions as defined shall be analytic, multiplication must also be asso-
ciative. A different extension was based by F. Hausdorff|| upon the
number of linearly independent expressions Sa;zb;, where the a’s and
0’s are fixed numbers of the algebra.

* Wedderburn, l.c., pp. 86, 112; Epsteen, 1'rans. dmer. Math. Soc., vol. 4
(1903), p. 444.

+ G. Scheffers, Math. Ann., vol. 41 (1893), p. 601, for the case of the field of
complex numbers. His proof rests upon an incorrect inference (top of p. 603),
mentioned in the second foot-note to § 839 in this tract.

1 Study, Monatshefte Math. w. Phys., vol. 2 (1891), p. 44; Scheffers, Math.
Ann., vol. 39 (1891), p. 319.

§ Paris Comp. Rend., 116 (1893), pp. 1114, 1242; Leipzig Berichte, vol. 45
(1893), math., p. 828; vol. 46 (1894), p. 120.

|| Leipzig Ber., vol. 52 (1900), math., p. 45. Cf. L. Autonne, Paris Comptes
Rendus, 142 (1906), p. 1183; Journ. de Math., ser. 6, vol. 3 (1907), p. 53.
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