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Preface

An integrated course on linear algebra and
analytical geometry is given to students of the computational
mathematics and cybernetics department (CMC) of Moscow university
(MU) during the first two terms of their study (at two lectures a week).
A lecturer on the subject is presented with some complicated prob-
lems and to clarify these problems, let us make some comparisons
between this course and the syllabi of similar courses in mathematlcs
departments, and in particular the h d- ics
department of Moscow university.

The CMC department syllabus lnclndes the greater part of the
analytical geomeu'y course given at the mechanics-and-mathematics
department of MU luding the affine classification of second order
lines and surfaces and the projective geometry elements) and the
whole linear algebra course. The latter comprises, inter alia, topics
usually omitted at the mechanics-and-mathematics department like,
for example, singular values of the operators, pseudo solutions of
systems of linear equations, etc. The specific character of the depart-
ment requires that a lecturer should draw the students' attention to
the flexibility of most concepts of classical linear algebra (linear
dependence, degeneracy, Jordan structure, etc.) and of its methods,
as well as indicate the approaches for finding stable solutions to
algebraic problems. To achieve this aim, elements of normal linear
space theory are introduced into the course in such a way that the
concrete metric results, such as evaluations of the perturbations of
a linear system solution and the eigenvalues of a matrix, etc., can
be attained later. This must all be achieved in less than the time
taken by the algebra and geometry courses together at the mathemat-
ics departments, and moreover, without lowering the degree of
mathematical rigor!

It is clear that without some essential restructuring of the custom-
ary course this would not be possible and it was V. Voyevodin who
made such an attempt to carry out this restructuring in his book
Linear Algebra (Mir Publishers, 1983). The book is based on the




8 Preface

author’s experience delivering a course of lectures for some years
at the CMC department.

Let us indicate some of the particulars of the course devised by
V. Voyevodin that helped to save his time as a lecturer.

The notion of linear spaces is easier to grasp after a study of vector
algebra and so is introduced at the very beginning of the course.
The customary way of repeated reintroducing linear space theory
three times usually—first in analytical geometry in relation to sets of
geometric vectors; then for arithmetic spaces in order to describe the
structure of the solution sets of linear algebraic equation systems;
and finally, in the general case—is avoided.

In the subseq hap too, the develop of geometry and
algebra takes place simultaneously; furthermore. a new geometric
notion forms the basis for an n-dimensional general case. Thus, the
scalar product of geometric vectors serves to introduce Euclidean
and unitary spaces and a formula for the volume of a three-dimension-
al parallelepiped advances the construction of n-dimensional volume
theory. Thus, the theory of determinants is considered as an oriented
volume of a parallelepiped in arithmetic space; straight lines and
planes in three-dimensional space are a reason to introduce the notion
of a plane in any linear space, and a geometric problem on inter-
secting hyperplanes illustrates the structure of the solution set of
a system of linear equations. By contrast there are some examples
when geometric results are deduced as simple corollaries of general
algebraic theorems, such as the Cartesian classification of second
order lines and surfaces.

Redesigning of the course of lectures also resulted in a consider-
able reordering of seminar classes. It turned out, moreover, that the
existing problem books in linear algebra by D. Faddeev and I. Somin-
sky, Problems in Higher Algebra, Mir Publishers, 1972 and by
I. Proskuryakov, Problems in Linear Algebra, Mir Publishers, 1978
could only be used to a very limited extent. Both of the above-
mentioned books assume that when solving problems on linear and
Euclidean spaces the student is already acquainted with matrix
algebra and systems of linear equations. This, as shown above, is
not always true in our case; besides, problems were required on the
nontraditional topics of the course. All this stipulated the necessity
of a new problem book to accompany V. Voyevedin's course, and
this book is now offered to the reader.

The present book closely iollov\s the structure of the I)ook by
V. Voyevodin with some insi deviations d d by the
particulars of the course of study. Thus, since the correspondmg
topic of the course of lectures is studied at the very end of the first
term, seminar classes cannot keep up with the course and so the
section devoted to metric spaces is included in Chapter 8.

The sequence of topics chosen in Voyevodin’s course creates cer-
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tain difficulties for the author of the problem book. For example,
how can the computational problems of the first two chapters be
solved when matrices and the greater part of the results derived by
the theory of systems of linear equations cannot be used? It happens,
however, that for the solution of typical P ional problems on
linear and Euclidean spaces, it is sufficient to bine el v
transformations of vector spaces with the method of Gauss elimina-
tion and thus a method to check consistency and definiteness and a
technique for finding any solution of a system of linear equations
are obtained (see the particulars in Secs. 1.0 and 2.0). Accordingly,
Gaussian elimination is described in Voyevodin’s book in Chapter 2:
just when it is required for the seminar classes. Problems involving
all the solutions of a system of linear equations are given in the
problem book only from Chapter 4 on. Note that we are guided here
by the same principles as A. Kurosh in Higher Algebra, Mir Pub-
lishers, 1980. He starts with the description of the method of succes-
sive eliminations of unknowns.

The reader will note that the first six chapters of the problem book
and some sections of Chapter 7 are devoted to customary topics. But
here too, because of the specific character of the CMC, the author
has striven to underline the computational aspects of the topics
under consideration. Consequently, a great deal of attention is paid
to the considerable number of questions that arise in practical
-computations using the Gauss method. Therefore, in some cases
computational algorithms eflectively employed in practice have
been formulated as a series of problems.

A number of sections in the last two chapters correspond to the
new topics in Voyevodin's course and for the first time are included
in a problem book on linear algebra.

It is a basic requi that any probl book should contain
a sufficient number of useful and comprehenslve problems for seminar
classes, h tests and ions. The author

hopes that this requirement has been fulfilled. Moreover, he has
attempted to supply the strongest students with a material for
personal study, and to lead them to problems currently faced in
computational algebra. Thus, he has included Wilkinson's hypothe-
sis regarding the rate of growth of the elements in the Gauss method
(Sec. 3.4), the description of the Strassen algorithm for the economical
multiplication of matrices (5.4), the results obtained by Wilkinson
regarding ill-conditioned eigenvalues (Sec. 8.4), and so on.

And now some notes on the use of this problem book.

The number of each problem in a section consists of three parts,
the first indicating the chapter number, the second the section
number, and the third the number of the problem. Formulae that
may be referred to afterwards are enumerated similarly but sepa-
rately.
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For the reader's convenience each chapter is preceded by a “zero”
section defining the concepts and, in some cases, methods used in
that chapter. A number of terms are, however, also defined in the
problems themselves. To make it casier for the reader to find “the
origin” of some term or other there is an index at the end of the book.

The asterisks marking some of the problems should be treated as
the “Attention” sign. In case of a problem requiring proof this means
that it either states an important fact (irrespective of the complexity
of the proof) or requires some nonstereotyped reasoning. A problem
requiring computation marked by the asterisk allows for a non-
stereotyped solution based, typically, on a theoretical statement.
Many problems marked by asterisks are supplied with either hints-
or complete solutions. Anyway, the key to the solutions of all the
problems may be found either in this problem book or in Voyevodin’s
textbook. Hints or solutions are also given for many problems
having no asterisk so as to demonstrate what is, from the author’s
point of view, the most rational approach to such problems. In ad-
dition, problems are, as a rule, grouped logically, the asterisked
onc being “the leader” in a group and the others being simple corol-
laries to it. The position of a problem, therefore, also contains some
information about it. -

Whilst compiling this problem book the author resorted to many
sources and it is unfortunately impossible to mention them all here.
The author's task was simplified to a very great extent by the avail-
ability of a number of excellent textbooks in linear algebra by Soviet
mathematicians and, in particular, by the problem books that have
already been menuoned ln some cases statements borrowed from
the current, were ft lated as problems.

The initiative in wi rlung this book was taken by Prof. V. Voyevodin
and Prof. I. Berezin. The author is glad to have the chance to express
his profound gratitude to them. He considers it his pleasant duty
to also record his gratitude to the higher algebra lecturers in the
CMC department for their valuable assistance.

H. Ikramov



CHAPTER 1

Linear Spaces

1.0. Terminology and General Notes

A set V is called a linear space over a number
field P if:

A. For the elements of this set, the operation of addition is defined
so that V is a commutative (Abelian) group. This means that the
following conditions are fulfilled:

(i) The operation of addition is commutative, i.e.

zt+y=y+az
(ii) The operation of addition is associative, i.e.
@ty rz=z+ @+ 2.

(iii) There exists in V the (unique) null element 0 satisfying, for
every element z of V, the equality

z+0==z -

(iv) For each element z from V there is a unique inverse element
—z such that z +— (—z) = 0.

B. The operation of multiplication by a number from P is defined
on the elements of the set ¥ so that for any elements z and y from V,
and for any numbers & and B from P the following conditions are
satisfied:

(i) a(z+y =az+ ay.
(i) (@ +B)z=az+ pa.
@) (@f)z=a (pa).

@iv) t.z=u=z

The elements of a linear space are said to be vectors, and the linear
3space itself is also called a vector space.

If P is the field of real or complex numbers, then the linear space
over P is said to be real or complez, respectively.

In this book, with the exception of some problems in Chapter 1,
only real and complex linear spaces are considered.

In a particular case, the space V may contain only one element
(sce Problem 1.1.1). Such a linear space is said to be the null (or
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trivial) space and is denoted hereafter by O. All other real or complex
spaces contain infinitely many elements.

The vector y = a2, + @y, + . . . + a2y is said to be a linear
combination of vectors z,, ,, . . z or to be linearly expressed in
terms of these vectors. The set of all llnear combinations of a fixed
set of vectors z,, . .., zy is called the span of this system and is
denoted by L (z;, ..., Zy).

The set of vectors z,, . . ., Z, is said to be linearly dependent if
at least one of the vectors z; can be linearly expressed in terms of
the other vectors of the set, and linearly independent if otherwise.
This definition is equivalent to the following: a set of vectors z,, . . .

., Ty is linearly dependent if there exist the numbers a,, . . ., ax,
at least one of them being different from zero, such that

az, + ...+ oz, =0,

and linearly independent if the indicated equality holds only in the
case when all a; are zeroes.

In particular, the linear dependence of a set of two vectors z, y
means that either y = az or z = By. In this case the vectors z
and y are known as collinear.

The following basic theorem about linear dependence is true: if
each of the vectors of a linearly independent set y,, . . ., y; is linearly
expressed in terms of the set zy, . . ., z), then | <

A linearly independent set of vectors e,, . . ., e, in whose terms
any vector of a space V can be expressed is called a basis for this
space. The linear space is said to be finite-dimensional if it has a basis
and infinite-dimensional if otherwise.

Beginning with Sec. 1.4, we shall ider only finite-di ional
linear spaces.

All bases for a finite-dimensional space V contain the same number
n of vectors. The number n is called the dimension of the space V
and is denoted by dim V. Moreover, V itself is then called an n-di-
mensional space. By definition, dim O =

The coefficients a,, . . ., a, in the decomposmon of a vector z
in terms of the vectors in a basis e,, . . ., e,, i.e. in

T =ae; + ...+ ae,

are called the coordinates of the vector z.

Two linear spaces over the same field are said to be isomorphic if
there is a one-to-one correspondence between their vectors such that
the image of the sum of two vectors is the sum of their images, and
the image of the product of a vector by a number is the product of
the image of this vector by the same number. The necessary and
sufficient condition for isomorphic correspondence between two
linear spaces is coincid of their




1.0 Terminology and General Notes 13

A subset L of a linear space V is called a linear subspace of this
space if it is also a linear space under the operations introduced on V.

If L, and L, are linear subspaces of a space V then the set of vectors
belonging both to L, and L, is called the intersection of the subspaces
L, and L,, and is denoted by L, ) L,. The set of all the sums z, + z,,
where z, € L, and z, € L,, is called the sum of the subspaces L, and
L,. We denote the sum of the subspaces by L, + L,. If for each
vector z from L = L, + L,, the representation

=2 + Ty

where x, € L,, x, € Ly, is unique, then L is called the direct sum
of the subspaces L, and L,, and is denoted by L, + L,.

Most of the computational problems in this book are formulated
for two particular lmear spaces. Let us describe them in more detail.

1. The n-d space. The el of this space
are ordered sets of n numbers, whether real or complex, and are
called ional vectors. R ively, we shall speak of the

real or complex arithmetic space, “and denote them by R, and C,.
If the n-dimensional vectors are written in the form

T= (0 Qg -0y %)y Y= (B Bay .. s Bn)

then the operations over them are defined by the equalities

T+y=(+Py &+ Ba .o an + Pk
= (ay, Ay, - ..y Aag).
Of the bases of the arithmetic space, one is placed in a favoured
position by the very nature of this space. This basis, formed by the
unit vectors
a=01,00...0),
=010 ...0),
1.0.1)
=000 ...,1),
is called the standard basis for the arithmetic space. The “favour”

is the absence of necessity to calculate the coordinates of a vector
T = (4, & ... @) in this basis since they are the numbers

g, Ggy - e Gne
2. The space of polynomials of degree <C ». A polynomial of
degree k

f® =ap+ait + a2 +... 4+ ap", a,%0 1.0.2)
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is an object fully determined by the ordered set of coefficients
ag, @y, . . ., ay. The equnllty of two polynomials is the equality of

di hile, the coefficients of the poly-
nomial may be real or b In bl as a rule,
only the first case is consndered The space of polynomna]s of degree
<n with real coefficients is denoted in this book by M,. Real or
complex numbers themselves are regarded to be polynomials of
zero degree, except the number zero whose degree is not defined.
This number serves as the null element in the polynomial space.
The operations over polynomials are reduced to the same operations
carried over their coefficients.

A polynomial (1.0.2) may be regarded as a function of a real or
complex variable ¢. The definition of equality of two functions, how-
ever, differs from the “algebraic” definition of the equality of poly-
nomials. Namely, functions are considered to be equal if their values
are equal for all the values of the variable. Certainly, polynomials,
equal in the sense of “algebraic” definition, are also equal as the
functions of ¢, but the converse is established only at the end of
Chapter 4. Therefore the notation f (c) should be interpreted as a
short form of writing the number a, + a,¢ + a,c® + ... + axc;
the equality f () = d as a short-hand way of writing the condition
imposed on the coefficients of the polynomials considend /(—t)
asa contracled designation of the polynomial 2y — a,t + a,t

+ (—1)* auth; and the equality f (t) = / (—t) as the shorhhand
fm- the conditions ¢, = 0, a, =

The following computauonal problems stated for the arithmetical
space, are typical of the present chapter.

1. Determine whether the given set of vectors is linearly dependent
or linearly independent.

. Find the maximum number of linearly independent vectors
contained in a given set, i.e. its rank.

3. Determine whether a vector z is expressed in terms of the set
of veclors yy, . . ., ys in which case calculate the coefficients of this
decomposition, i.e.

=0y + ...+ Y-

To solve Problems 1 and 2, “the method of elementary transfor-
mations” (see 1.2.17, 1.2.18) is developed. The idea of the method
is to reduce a given set without changing the rank to a set of vectors
whose linear independence or rank is self-evident.

Problem 3 reduces to the solution of a system of linear equations
for which the Gauss method or the method of successive elimination of
unknowns is performed. The idea of the method lies in transforming
the system to its simplest form without affecting the solution set of
the system. Let us describe the Gauss method in more detail bearing
in mind also its numerous applications in the subsequent chapters.
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Let a system of linear equations be given:
S“’a;, +af¥z,+ ¥z, 4 ... +affz, =5,
a2, + oz, + oz + . .. +afz, =B,
oz, + a2, + iz, + ... + o, = b4,

7+ alphe, +diBzs + ... + aliz, =50
Assume that a{Q 5= 0. This can always be achieved if there are some
a{¥ among the coefficients different from zero, and reordering, if
necessary, the equations of the system and/or changing the enumer-
ation of the unknowns. Now, subtract both sides of the first equation,
premultiplied by ¢{0’ /a{’ frem the corresponding sides of the second,
then subtract both sides of the first equation, premultiplied by
a(® /afQ, from the third equation, etc. We obtain, in the end, a sys-
tem in the following form:

(1.0.3)

0).
(I

a‘.':’z.+a$zzx+a‘nz,+ Loz, = b0,
(1)

oz, +afizy+ ... Lablz, = 88",
Pz, + afzy+ ... L afilz, = 8",

il + oy .. allen =
Here af} = af}, j=1, ..., n; bP=b{"; all the other elements
are altered according to the formulae
off) = a.‘,“’——a$°’ bV = pf° ——"—-b‘“‘ (1.0.4)
' o

i, j > 2. The first stage of the Gauss method has now been com-
pleud The coefficient a{%’ is called the pivot of the first stage.

Assume now that, among the coefficients ai}, i, j = 2, there are
some different from zero and, in particular, a9} 5= 0. Subtract both
sides of the second equation, premultiplied by

Foplr R
respectively, from both sides of the third and subsequent equations.
We then obtain the following system:
oz, + oz, + aBg+ ... +afRz, =D,
o, + oSy + ... +afle, =0,
Byt .ol =5,

offdzy+ ... +aliz, =5,
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The coefficient a¥3 is called the pivot of the second stage.
Continuing the process we shall finally reduce the system of equa-
tions to the form:

a7 Vz s Vet ol g el Va L e Dz, =0
aYz Vgt .o +af g, oz e Pz, =00,

a0 sz a4, =Y,
V2, 4. eV, =0,
0-2,4...+0-2z, =b7",

0z, 4...40.2, =bg~.
(1.0.5)
Here afiy V50, a5 V50, ..., a3V 150, a7V 5£0.

If some of the numbers b,“ y ... bE™" are different from zero,
then system (1.0.5) evidently has no solution, and is termed incon-
sistent. Therefore the equivalent system (1.0.3) is also inconsistent.
The inconsistency of the system could have been found out before if,
after some stage of the elimination, or even in the original system,
there was an equation

0z, +0z,+...4+0z,=b, bs£0.
It goes without saying that having obtained such an equation we
stop the process.

If " = ... =b%"" =0 then system (1.0.5) is consistent.
To find its solutions it suffices to consider the first r equations. In
case r = n these n equations produce a system in a triangular form

1] -
oz oy Vo + . a3 iz + ol V2, =000
oy ot oz ol Vz, = b0,

A n gy + Q1 T = B

A

The solution of such a system is unique: from the last equation we
deduce that z, is unique, substituting its value into the preceding
equation we find that z, ., is unique, etc. A system of linear equations
having a unique solution is said to be determinate. Thus, if system
(1.0.3) can be reduced to a triangular form then it is determinate.
This case is certain to take place when we find the decomposition of
a vector in terms of the vectors in a basis for the space.
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If r < n then the first r equations of system (1.0.5) form a system

in a trapezoidal form having infinitely many solutions. Given arbi-
trary numerical values to the free urkrownsz,,,, . . ., z,, we can fmd
in the way indicated above, the values of the unknowns z,, . . .,
By this method all the solutions for system (1.0.5), and, therefore. oi
system (1.0.3), can be found. A system of linear equations having
infinitely many solutions iscalled indeterminate. Thus, the trapezoidal
form of the final system in the Gauss method reveals the indetermi-
nacy of the original system (1.0.3). Such is the case, for example,
when we seek the expression of a vector z in terms of a linearly depen-
dent system yy, Y. - - -, yy on condition that z belongsto L (yy, . - ., ys)

Note, in conclusion, that all transformations in the Gauss method
may be performed with the elements of the augmented matriz made
up of the coefficients of system (1.0.3):

o oo B0
| R -

0; 0. () 0.
ol e} ... el by

The transfer to the subsequent matrices 4,, . . ., Z,., is performed
by the formulae of the type (1.0.4). The method of elementary trans-
formations, suggested for the solution of Problems 1 and 2, is actually
the method of Gauss elimination used for the matrix made up of the
vectors of the given system.

1.1. Definition of Linear Space

ln this section a number of examples of lmeur spaces, and also of certain
which are not linear spaces, are given. We also touch upon (see Problems
l i 17, 1.1.18) the axioms of a linear space.

1.1.1. A set V, consists of one element 6. The operations on V,
are deﬁned as follows

@) 8

Eb 20 = 0 for every A from the field P. Verify that V, is a linear
space over the field P.

Determine, for each of the following vector sets in a plane, whether
this set is a linear space under ordinary vector addition and vector
multiplication by a number. In case of the negative reply, indicate
which particular properties of a linear space are not fulfilled. It is
assumed that the origin of each vector is at the fixed point O of the
plane, being the origin of a rectangular system of coordinates.

1.4.2. All vectors whose end-points lie in the same straight line.

1.1.3. All vectors whose end-points lie: (a) in the first quadrant
of the system of coordinatesi (b) in the first or thlrd quadrant;
(c) in the first or second quadrant.

2 0819
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1.1.4. All vectors which form an angle ¢, 0 << @< =, with a given
nonzero vector a.

1.1.5. Show that (a) the set of real numbers may be considered as
a rational linear space; (b) the set of complex numbers may be con-
sidered as a real linear space; (c) in general, any field P may be con-
sidered as a linear space over a subfield P, of the field P.

1.1.6. On the set R* of positive real numbers the following
operations are defined: (a) “addition” z @ y = zy (i.e. the ordinary
multiplication of numbers z and y); (b) “multiplication by a real
number” a-z = z* (i.e. raising a number to the power of a).

Verify that the set R*, under the indicated operations is a linear
space.

1.1.7. Let R, be the set of all ordered pairs of real numbers
z = (2, @,) under the operations: (a) if z = (a;, @,) and y =

= (Pu By thenz + 5 = (o0 + By + B () for any teal number
1) G-

ls I'\’2 a real linear space?

1.1.8. The same question for the case with the following definition
;i the opetnl;;n of multiplication by a number: if z = (a;, ,) then

= 2).

1.1.9. Let P. be the set of all ordered sets of k elements from the
field P: z = (o4, @, - . ., @). The operations on P, are defined as
follows: (a) if z = (ay, @y, . - ., ax) and y = (By, PBa, - - -, Br)s then
z+y=(u+PB a+Ps ... an+ Ba); (b) for every A from
the field P, Ar = (Aa;, Ay, . . ., Aay). Verify that Py is a linear
space over the field P.

1.1.10. Let Z(» be the field of two elements 0 and 1 on which the
operations are defined by the following tables:

(a) addition (b) multiplication

0 1 0 1
0] 0 1 o o 0
1] 1 0 1 0 1

Construct the linear space Zi* (see Problem 1.1.9). Show that for
gnyz\;fctor z from Z}*, z + z = 0. Find the number of vectors
in Z;®.

1.4.11. Let s be the set of all infinite series of real numbers z =
= (&, &3, - - -, n, . . .). The operations on s are defined as fo!lows
@) ifz= (0, Gy - oy Gy oo 2)s ¥ = (Bry Bar v v s B - 22N
z+y=(a;+Bpay+Ba... @ + Bas- '(b)fornnyrenlh

Az = (hay, Ady, « ooy Ap, .. ).

Is s a real linear space?
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1.1.12. Let F be the set of all infinite series of real numbers whose
elements satisfy the relation oy = ax-; + ap-s.

The operations over series are defined just like in Problem 11 11.
Is F a linear space?

Verify. for each of the following sets of polynomials in one variable
and with real coefficients, whether this set is a linear space under
the ordinary operations of addition of polynomials and multipli-
cation of a polynomial by a number.

1.1.13. The set of polynomials of any degree, with zero adjoined.

1.1.14. The set of polynomials of degrees <(r, with zero adjoined.

1.1.15. The set of all polynomials of a given degree n.

1.1.16. The set of all polynomials f () satisfying the conditions:
@ fO =1 ® fO) =0 (© 2O —-31=0 @ f¢)+
+f@+...+f®=0.

1.1.17.* Give an example of a set M in which all the axioms of
a linear space are fulfilled except the axiom: 1.z = z for every z
from M How important is this axiom for the definition of a linear
space?

1.1.18.* Prove that the commutative law follows from the other
axioms of a linear space.

1.2. Linear Dependence

Besides the problems involving the notion of lmen dependence, ide,
in the present section, the co::sunmn] means for the solution of n problem of
linear dependence, or independence, of a concrete set of vectors in arithmetic
space, viz., the elementary transformations for the set.

1.2.1. Prove that a set of vectors containing the null vector is
linearly dependent.

1.2.2. Prove that a set of vectors two of whose vectors differ
only by a scalar multiplier, is linearly dependent.

1.2.3. Prove that if, in a set of vectors, some subset is linearly
dependent, then the whole set is linearly dependent.

1.2.4. Prove that in a linearly independent set of vectors, any
subset is also linearly independent.

1.2.5. Let a set of vectors z,, ..., zn be linearly independent
and let the set z,, Zy, . . ., Zm, ¥ be linearly dependent. Prove that
the vector y is linearly expressed in terms of z,, . . ., Zm.

1.2.6. Show that the decomposmon of the vector y in terms of
&y, ..., Tm (see the previous problem) is unique.

1.2.7. Conversely, lot the decomposition of the vector y in some
set Z,, . . ., Tm be unique. Prove that the set z;, . . ., Zrp is linearly
independent.

1.2.8. Let a vector y be linearly expressed in terms of a linearly
dependent set z;, . . ., Tm. Show that y has infinitely many decom-
positions in terms of the set.

20
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1.2.9. Let z, y, z be a linearly independent set of vectors. Are
the following sets of veclors lincarly independent:
(@ znz+yz+y+z b z+yy+zz+z
© z—yy—z:z—2
1.2.10. Show that for any veclors z, y, z, and any numbers o, B, ¥,
the set of vectors az — By, yy — oz, Pz — vz is linearly dependent.

1.2.11. Let r, s, v be different real numbers. Is the following set of
polynomials linearly dependent:

t—=nr@t—s), t—rt—uv), (t—-s@—0v?
1.2.12. Find the linear combination 3z, — 2z, + 7z; of the
vectors of the arithmetic space R,:
z, =3, 1, =7, 4,
zy= (1, 5, 0, 6),

=(—1, 1, 3, 0).
Discuss the result obtained. What can be said of the set of vectors
zy, %y, Zg?
V1213, Given a set of polynomlels /, ) = f2 (8) =
= 1 + 8, fs (t) =t—8f,()=1+ 2+ t’ ﬁnd zhe follow-
linear inations of the poly i ' of this set: (a) 3f; + f, —

— 4fg; (b) fy + 9y — 4f4. Dlscus« the obtained results. What can be
:said of the given set of polynomials?

1.2.14. Find other decompositions of the polynomial obtained in
“Problem 1.2.13 in terms of the set f, (£), f, (t), fs (), fq (8)-

1.2.15. Prove that the following “trapezoidal” set of veclors of the
space Py (see Problem 1.1.9) is linearly independent:

9= (% -
Y2=(0, ..., 0, Gz prp o Gagr O qaps - - s Cats O, t41r + o o0 Uzk)s
¥s=0, .0, s i)

s Qg g g oc o Ot g 141y - oy Ogie

Cypr &4, ptir

Og, g1 » o9 Ogty Obg, fbgr « v o

. cz,;):
1.2.1)

Here &g, p41, X3,q 415 - - +» %p,141 are elements of the field P and differ
from zero. At least one of the elements a,,, . . ., a,, is also nonzero.

1.2.16. Prove that in polynomial space, each finite set consisting
of polynomials of various degrees and not containing zero is linearly
independent.

1.2.17. Prove that linear depend or linear ind d of a
set of vectors is not afiected during the followmg tnnsformatlons of
the set, called the el tary transfor: : (@) i two

=0,
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vectors of the set; (b) multiplication of a vector of the set by a non-
zero number; (c) addition of one vector of the set to another mul—
tiplied by an arbitrary number.

1.2.18. Prove that an arbitrary set of vectors of the arithmetic
space can be reduced, by the elementary transformations, to a set
of vectors of the type indicated in Problem 1.2.15, probably, with
some zero vectors adjoined. How can it be determined whether the
original set was linearly dependent?

Determine whether the following vector sets of arithmetic spaces’
are linearly dependent:

1.2.49. z, = (=3, 1, 5), 1.2.20. z, = (4, —12, 28),

z, = (6, —2, 15). z, = (=7, 21, —49).
1.2.21. 7, = (1, 2, 3, 0), 1.2.22. 2, = (1,i,2 — i, 3 + 0),
z,= (2, 4 6, 1). ,=0—-i1+4+4

1—3i, 4—2i).
1.2.23. 2, = (1, 2, 3), 1.2.24. z, = (1, 2, 3),
=@ 57, z2,=5 7,
z3 =3, 7, 10). 5= (3, 7, 11).
1.2.25. 2, = (1, 2, 3),
2, =1(2, 5 7),
z3= (3, 7, 10 + ).

Here e is however small number other than zero.
1.2.26. 2, = (1, 1, 1, 1), 1.2.27. 7, = (5, =3, 2, 1, 10),

z,=(1, =1, =1, 1), 7, = (-1, 8,1, —47),
= (1, —1, 1, —1), 3= 21,9, =3, 6),
o=, 1, —1, —1). z,=(, 8, =5, 9, 11).

1.2.28.* Let a set of vectors of an arithmetic space be given

2 = (@11 Q19 -+ s Gan)s
Ty = (@g1, Ggay -+ v Cgn)y

Ty = (%a1s Fops -+ o Ranks

where s < n. Prove that if |ay |> f_." dayglhj=1 ... s
—1ie]
then the given set of vectors is linearly independent.
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1.3. Spans. Rank of Vector Sets
In this section we offer problems involving the definitions of the span; the
equivalence of sets of vectors; the base and rank of a vector set; and also a num-
ber of computational ‘mblem for finding the rank, and constructing the base
of a vector set in arithmetic space. The method of elementary transformations
developed in the previous section is the way to solve the latter problems.

Describe the spans of the following vector sets in the space Rg:
1.34.2=(1,0,0 0,0, 132.z=(0,0,0,1),

z,=(0,0,1,0,0), z,=(0,1,0,1,0),
z3=(0, 0,0, 0, 1). z,=(0, 0, 1, 0, 0).
1.33. 2, =(1,0,0, 0, —1),
z, = (0,1, 0,0, —1),
z3=(0, 0, 1, 0, —1),
z¢=(0,0,0, 1, —1).
Find the spans of the following sets of polynomials:
1.3.4. 1, ¢, ¢ 1.3.5. 145t + 51 + ¢+ %

1.3.6.1 — et — 2,2 — ¢t — 2 1.3.7. 1 — 18 ¢t — 2

1.3.8.* Consider the span generated by numbers 1 and V' 3 in the
set of real numbers and treated as a rational linear space. Does
/3 belong to this span?

1.3.9. Ifevery vector of aset y,, ys, . . ., ya is & linear combination
of the vectors z,, . . ., Zpm, then the set yy, . . ., y, is said to be linearly
ezpressed in terms of the set z,, . . ., . Prove the transitive law for
this concept, i.e. if the set y;, . . ., y, is linearly expressed in terms
of the set z,, . . ., Zr, and the set z,, . . ., z, is linearly expressed in
terms of yy, . . ., ¥y, then the set z;, . . ., z,, is linearly expressed in
terms of z, . .., Tm.

1.3.10. Show that if aset y,, . . ., yn is linearly expressed in terms
of z,, . . ., Znm, then the span of the first set is contained in the span
of the second.

1.3.11. The set of vectors z,, z, is linearly expressed in terms of
the set ¥y, ys Yo Yat

n=2n+ ¥ + 3ye

zy = Y1 — Sys + 4ys — 2,
Also the set yy, ys, Us, ¥4 i8 linearly expressed in terms of the set
Zyy Tgy Tyt

h= & +z,+7,
Ya= T+ 2, — 2y
Ya= T —Z+ 72,
Yo= —2 + 2, + 2y
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Find the expressions of the vectors z,, z, in terms of the vectors
Iy Ly T3.

1.3.12. Two sets of vectors z,, . . ., Ty and ¥y, . . ., Y, are said to
be equivalent if each of these sets is linearly expressed in terms of the
other. Prove that the equivalence relation is reflexive, symmetric
and transitive.

1.3.13. Show that two sets of vectors are equivalent if, and only
if, their spans coincide.

Are the following sets of vectors equivalent?

1.3.44. z, = (1, 0, 0), y, = (0, 0, 1),
2=010, y,=0,1,1),
=(0,0,1); ys=1(1, 1, 1).

1.3.45. z, = (1, 0, 0), y, = (1, 0, 0),
z,=00,1,0), y.=0,1,1),
=0,0,1; yo=(1, 1, 1.

1.3.16.* Prove that two equivalent linearly independent sets
contain the same number of vectors.

1.3.17. In a set of vectors z,, . . ., Tm, Y1, - - -, Yn, the vectors

. ., Yp are linearly dependent on the vectors Zy, .« .+, T Show
thnt thesetz,,. . .,Zm Yy, - - ., Yo isequivalent to theset z,, . . ., Zpm.

1.3.18.* Prove that in each set of vectors z,, . . ., z,, containing
at least one nonzero vector, an equivalent linearly independent
subset may be chosen. (Any such set is called the base of the given
set of vectors.)

1.3.19. Prove that all the bases of a given set z,, . . ., Z,, consist
of the same number of vectors. (This number is called the rank of
the given set. If all vectors of the set are zero then its rank is zero
by definition).

1.3.20. Let the rank of a set z,, . . ., z,, be equal to r. Prove that
5&) any of its subsets containing more than r vectors is linearly

ependent; (b) any linearly independent subset containing r vectors
is a base of the given set. Note that it follows from (a) that the rank
of a set of vectors equals the maximal number of its linearly inde-
pendent vectors.

1.3.21. Prove that (a) any nonzero vector of a given set can be
included into a certain base of this set; (b) any linearly independent
subset of the given set of vectors can be extended to form the base
of this set.

1.3.22. Prove that if asety,, . . ., ¥, is linearly expressed in terms
of aset z,, . . ., T, then the rank of the first set is not greater than
the rank of the second.
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1.3.23. Prove that if a set y,, ..., y, is linearly expressed in
terms of aset z;, . . ., T, then the rank of theset 2, . . ., Zm\ ¥y, - -«

. .1 Yn equals the rank of the set z,, . . ., z,.

1.3.24. Prove that equivalent vector sets have the same rank.
Determine whether the converse is true, viz. whether any two sets
of the same rank are equivalent.

1.3.25.* Prove that if two vector sets have the same rank and
one of these sets is linearly expressed in terms of the other, then
these sets are equivalent.

1.3.26. Prove that elementary transformations of a vector set do
not alter the rank of this set.

1.3.27. Apply the method of “reduction to the trapezoidal form”
worked out in Problem 1.2.418 to the solution of the following
problem: find the rank of a given vector set of the arithmetic space.

Find the rank of the following vector sets:

1.3.28. 7, = 1, 2, 3), 1.3.29. z, a, 4, 7, 10),
= (4, 5, 6), =(2 5 8 11),
=@ 809, =@ 6,9, 12).

= (0, 11, 12).
1.3.30. 2, = (1, —1, 0, 0), 1.3.31. 2, = (1, —1, 0, 0),

z,= (0, 1, —1, 0), z,= (0, 1, —1, 0),

z3=(0, 0, 1, —1), z3=(0, 0, 1, —1),

= (0,0,0,1), z,=(-1,0,0,1).

o= (1, —3, —4, 5).

1.3.32. z, =, 10, 0,0), 1.3.33. z. = 1, 1,1, 1),
= (0, 1, 10, 0), =, i, —1, —i, 1),
= (0, 0, 1, 10), To= (M, —1, 1, —1, 1),
ze= (10, 0, 0, 1). z,= (1, —i, —1, i, 1).

1.3.34.* Use the method of Problem 1.3.27 to find a base for a
given vector set in the arithmetic space.
Find a base for each of the following vector sets:

1.3.35. z. = (=1, 4, —3, —2), 1.3.36. 2, = (0, 2, —1),

=@ -7,5,3), 7, =071),
=@ -2,1,0, z3=(2, 0, 3),
z. =(—41,0,1). z,=(5 1, 8.

1.3.37.* 2, = (14, —27, —49, 113),
7, = (43, —82, —145, 340),
z, = (—29, 55, 96, —227),
£, = (85, —163, —293, 677).



1.3 Spans. Rank of Vector Sets 25

1.3.38. =@ —i, 1 —2i, =7 + 5i, 4 + 3i),

zy= (1 + 3i, 1 + i, —6 — 7i, 4i),
z3=(0, 1, 1, —3).

1.3.39.* The vectors 2y, . . ., z, of aset 2, ..., zn form a base
and the vector z;, the nonzero vector, is not in this base. Prove that,
among the vectors of the base, there is a vector z;, such that on
replacing it with z; in the subset zy,, . . ., z;,, a new base of the given
set I, . . ., Zp, is obtained. Is this vector, z;,, unique?

1.3.40.* What can be said about a vector set of rank r if it has
(a) a unique base; (b) precisely two bases; (c) precisely three bases?
NB. Two bases, differing only in the order of vectors, are treated
as the same.

Find all the bases of the following vectors:

1.3.41. z, = (4, —2, 12, 8), 1.3.42. 7, = (1, 2, 3, 0, —1),
z, = (—6, 12, 9, —3), z,=0,1,1,1,0),
zy = (—10, 5, —30, —20), z,=(1, 3, 4, 1, —1).
z, = (—14, 28, 24, —7).
1.3.43. 2, = (1 + i, 1 — i, 2 + 3i),
z, = (i, 1, 2),
zg=(01—i, —1 —1i, 3—20,
z, = (4, —4i, 10 + 2i).
1.3.44.* Apply the method of Problem 1.3.27 to the solution of
the following problem: determine whether a given vector set y;, . . .
..+, Yn is expressed in terms of a vector set z;, . . ., Zn, both being

in the arithmetic space.
1.3.45. Given two vector sets,

=11, n=@223),
z3=(1, 0, —1), y= 0 1, 2),
z3= (1, 3, 5); Y3 =3 4 5),

ye=( 6,8

determine whether the set y,, y,, ¥, ¥4 is linearly expressed in terms
of the set z,, z,, 5.

1.3.46. Are the sets indicated in the pi blem equivalent?
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1.4. Basis and Dimension of Space

We begin this section with examples of finite-dimensional and infinite-
dimensional linear spaces so as to consider, hereafter, only the finite-dimensional
spaces. Furthermore, we discuss the notion of a basis. If, in a linear space, a
basis is fixed, then the problems involving the elemems of this space are reduc
to similar problems the vectors of space. Some of these
problems (ﬁndmithe rank of a vector set, the dimension |nd basis of the span,
etc.) are solved by the method of element. :X transformations, others (e.g. the
decomposition in terms of a basis) are reduced to the solutfon of certain systems
(known beforehand) of lineu equations, the rational way of their solution being
the Gauss method. The 'section is concluded by problems involving linear sub-
spaces.

Determine, for each of the linear spaces indicated below, whether
they are finite-dimensional. In case of the positive reply find the
dimension and construct a basis for the space.

1.4.1. The space R* (see Problem 1.1.5).

1.4.2. The space P, whose elements are ordered sets of k elements
of the field P (see Problem 1.1.9)

1.4.3. The space s of all infinite real sequences (see Problem 1.1.11).

1.4.4. The space F of infinite real sequences whose elements satisfy
the relationship ay = @y, 4 @p-y k=3, 4, ... (see Prob-
lem 1.1.12).

id 1.4.5. The space M of polynomials of all degrees (see Problem
1.13).

.4.6. The space M, of polynomials whose degree does not exceed
a given nonnegative number n (see Problem 1.1.14).
1.4.7. Find the dimension of the field of complex numbers con-
sidered as (a) the complex linear space; (b) the real linear space.
1.4.8. Let C, be the set of all ordered sets of n complex numbers
under the customarily defined operations on these sets (see Problem
1.1.9). Find the dimension of C, as (a) a complex space; (b) a real

space.
Show that the following vector spaces are the bases for the space Ry:
1.49. z,=(1,2, 3, ..., n), 1410, :. =1, 1,11,

=0,23 ...,0n), zy=(1,4,...,1,1,0),
. =0,0,3 ... 1), zy=(,1,...,1,0,0),

=000, ... z.=(1,0,...,0,0,0).
1441 2, =, 1, 1, i, 1),
z,=1(0,1,0,0,...0)
=0, 1,10 ...0)
z,=0,1, 4, 1, ..., 0),

—o L0,
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1.4.12. Prove that in the space M, of polynomials of degree <(n,
the basis is any set of nonzero pnlynom‘nls containing one poly-
nomial of each degree k, k = 0, 1, 2,

1.4.13. Determine which of the followmg “two vector sets is a
basis for the space R,:

@ z =2 -1, -2), ®) 2 =(, 2, 1, =2,

z, = (2, 3, 0, —1), z, = (2. 3,0, —1),
z3=(1, 2, 1, 3), z3=(1, 2, 1, 4),
=(, 3, —1, 0y z,= (1, 3, —1, 0).

Henceforward, only the finite-dimensional spaces will be considered.

1.4.14. Prove that (a) any nonzero vector of a space may be includ-
ed in a certain basis for this space; (b) any linearly independent
vector set can be extended to form a basis for the space.

1.4.15. Find two different bases for the space R, having the vectors

=(1,1,0,0), and e, = (0, 0, 1, 1) in common.

1.4.16. Extend the set of polynomials 5 + ¢, t5 — 3¢, 3 + 22,
t® — ¢t to form a basis for the space M.

1.4.17. Prove that the decomposition of a vector in terms of vectors
of any basis is unique.

1.4.18. Let every vector of a space V be linearly expressed in
terms of the vectors in a sete,, . . ., e, and let the decomposition of
a certain vector z in terms of this set be unique. Prove that the
vectors e, . .., e, form a basis for the space V.

1.4.19. Let ¢y, . . ., e, be an arbitrary basis for a space V. Prove
that (a) the coordinates of the vector z + y in terms of the basis
€3, . . ., €, are equal to the sums of the corresponding coordinates of
the vectors z and y in the same basis; (b) the coordinates of a vector
Az in the basis e, . ., €, equal the corresponding coordinates of
the vector z mufhplled by the number A.

1.4.20. In a space V some basise,, . . ., e, is fixed. Each vector z
is matched with the row of its coordinates in this basis, i.e.

T > = (@ Qg .o ).

d 4

Prove that (a) the linear d d (or linear i of a
vector set T, ¥, . . ., 2 induces the linear dependence (lmen indepen-
dence) of the set of rows Ze, Y, . - ., Z considered as the elements of
the corresponding arithmetic space; (b) the rank of a vector set
Y. zequals the rank of the row set z,, ,, - - -, Z& (c) if a vector
u is linearly dependent on the vectors of a set z, y, . . ., 2, i.e. u =
=M + py + . . . + vz then this is true for the rows ue, Ze, Ye, - - -

.. Z and, thut besides, u, = Az + pye + . .. + vz

Determine the rank and find a base for each of the follnwmg sets of
polynomials:
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1.4.21. 362 + 2t + 1, 4+ 3t +2, 3 + 204+ 3, 2+t +1,
4t 4 3t + 4.

1.4.22. t’+2t’+3l+4 26 + 3¢ + 4t + 5,313 + 41 + 5t +
+ 6, 468 + 562 + 6t + 7

Verify that the vectors e,, ..., e, form a basis for the space R,;
find the coordinates of the vector z in this basis:

1423 0= @2~ e = @~ D), &= (1,2, 27 -
=, 1, 1).
1.4. 26. e, =(1,523),6=002,723),¢=0@394;z=(2,1,1).

1.4.25. ¢, = (1,2, —1, —2), &, = (2, 3, 0, —1) e, = (1,21, 4),
eg=(1,3,—1,0)5z = (7, 14, —1, 2).

1.4.26 6 =(1,2 1, 1), ¢ = (2 3,1, 0), e = (3, 1, 1, —2),

= (4 2, —1, —6); z = (0, 0, 2, 7).

1 4.27. Find the coordinates of the polynomial 5 — % + * —

— 1 — t + 1 in each of the following bases for the space Mj:

@) 1,¢t 2 8, 8 5

b 1, t+1, 241,841, 841, 8+ 4

© 148 t41t5 24868, 8, 413, 15+ 85

1.4.28. Verify that the sequences
=@3,5813, ...,
=(,23,58,...)

form the basis for the space F (see Problem 1.1.12); express the
sequence

e=(1,1,2237538,...)

in terms of the elements of this basis.

1.4.29. Prove that the span of an arbitrary finite vector set of
a linear space V is its linear subspace.

1.4.30. Let V be an n-dimensional linear space. Prove that any
linear subspace of the space V is finite-dimensional, its dimension not
exceeding n.

1.4.31. Prove that if L i is a linear subspace of a space V and the
dimension of L equals the d of V, then L ides with V.

1.4.32. Prove that any sub of an n-di ional space V
may be considered as the span of a certain vector set. Besides, the
set may be chosen to contain not more than n vectors.

1.4.33. Prove that in an r-dimensional space V, a linear subspace
of any dimension &, 0 << k < n, may be found.

1.4.34. Given that a linear subspace L is the span of a vector set
Zy, . . ., Ty, prove that the dimension of L equals the rank of the set
Zy, . . ., Ty, and that any basis for this set may serve as its basis.

Determine the dimension of and find a basis for the linear subspaces
spanned by the following sets of vectors of the arithmetic space:
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'~4-1;5~ 93.3= 1,2,2, ~1), 2, = 2,3,2,5), 7, = (—1, 43, —1),
=29, 3, 9.

1.4.36. 7, = (=3, 1, 5,3, 2, 2,=2, 3. 0, 1, 0), =z, =
=(1,238,21),z,=@ —5 —1, =3, —1), z, = 3,0, 1, 0, 0).

1.4.37. Find a basis and the dimension of a linear subspace of the
space R, if L is determined by the equation

a +ay+...+a, =0

1.4.38. In the space M, of polynomials with real coefficients of
degree <Cn the subsets of polynomials satisfying the following con-
ditions are considered: (a) f (0) =0; (b) (1) =0; (¢) f (@) =0,
where a is any real number; (d) f (0) = (1) = 0. Prove that each
of the indicated subsets is a linear subspace of the space M,; find
the di i for these sul

1.4.39, Find the dimension and a basis for the span generated by
lheret of polynomials: ¢& + ¢4 ¢° + 3¢ — ¢, — 218 - ¢, t8 — 4t*

z

1.4.40. Let L be an m-di ional of an n-di ional
space V. Prove that a basisey, . . ., e, for the space V may be found
such that its first m vectors e, N e,,. are in lhe subspace L.

1.4.41.* Prove that for whi L of
an n-dimensional space V, where m < n, there is a basis for V such
that (a) it contains no vectors from L; (b) it contains precisely k
vectors from L, k < m.

1.4.42. Construct a basis for the space M, of polynomials of the
fifth degree.

1.4.43. Conversely, can a basis for the space M;, containing no
polynomials of the fifth degree, be found?

1.5. Sum and Intersection
of Subspaces

In this section we seek:

To present the computational melhods used to find the basis for the sum and
intersection of two linear subsf

To indicate various criteria_for the “directness” of the subspace sum.

To stress that, in the general case, the decomposition of a vector in terms of
subspaces is not unique. It isunique only in the case of a direct sum. The sub-
spaces that prnduce. in their sum, the whole linear space serve as the gene-
ralized basis for

To illustrate thg existence of a complementary subspace (which is not unique)
of any subspace.

1.5.1. Prove that the sum and intersection of two linear subspaces
of a space V are also linear subspaces of this space.

1.5.2. Consider the set of all linear subspaces of a given space V
under the operation of subspace addition.

Verify that (a) the operation is associative; (b) there is a zero
element. Is this set a group?
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1.5.3. Consider the set of all the linear subspaces of a given space
V under the operation of intersection of subspaces. Show that (a) the
operation is associative; (b) there is an identity element. Is this set
a group?
1.5.4. Prove for any subspaces L, and L,, the validity of the
formula
dim L, + dim L, = dim (L, + Ly) + dim (L, N L,).
Here and henceforth, dim L means the dimension of the linear
space L.
1.5.5. Prove that, for any P,
dim (Ly + ...+ Lp) < dim L, 4+ . . . + dim L.

1.5.6. Let L, be the span of the set of vectors z,, . . ., z, and Ly
the span of vectors y,, . . ., ¥;. Prove that any base of the set z,, . . .
..., Yyserves as a basis for the sum L, + L,. In particu-
Iar. the bas:s L, + L, may be obtained by extending a basis for
L,
Fmd a basis and the dimension of the sum of the two subspaces,
viz. L, spanned by the Vectors zy, . . ., Tn and L, by the vectors
«. Y1 Di the ion of the i ion of these

S\Inbspaces
© 1,1, 1), z,=(1, 1,1, 2), 75, = (-2, 0, 1, 1);
1).

1.5.7. z,
n= —1. , 2, —1), pp = (1, 1,0, —
1.5.8. 2, = (2, —5, 3, 4), 7 =(102,0, 1), 2, = (3, —6,2.5;
n=00 —46),y =031 )-ya—(..1,5)
1.5.9.* Letz,,...,z,bea basns for a subspace L, and yy, . . ., ¥,
a basis for a space L, Funher, let z,, .. ., Zn, Yy, - - -, Y, be a base
of the set z,, . . ., ..., yyand the vectors Y, 4y, . . ., ¥y not in
this base, have the followmg decompositions in terms of this base:
Yo =onZ ...+ angx + Baby + - o+ Buba
i=s4+1, ..., 1L
Prove that the set of vectors z, . . ., z;-, where
g =—Puh — ... —Pie+ Yy, i=s+1,...1
or, written in other way,
Zg=ont + ... Fopzy i=s4+1,...,1
forms a basis for the intersection L, ) L.

Find the bases for the sum and tion of the linear sub
spanned by the sets z,. TS y,, . . . Y1, respectively:
1510. z, @ 1, .z,—(i 2, 3), 23 = (=5, —2,1); y, =

=0,1,2,y, = o ) Y3 = (2, 0, 3).
£.5.41. z, = (1,1,1,1 ).z,—(i 1, -4, —1), z = (1 1 1. —1);
=0 —1, =1, 0.y, = @ 2,0, 0}, yy = B, —1
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1.542. 2, = (1, 2,1, 1), 7, = 2, 3, 1, 0), 2, = 3, 1, 1, —2);
n=0 413),y =10 =2 —6), yo= (1, . 5).

1.5.13. Find two different decompositions of the vector z =
= (1, 0, 1) in terms of the subspaces L, and L, (see Problem 1.5.10).

1.5.14. Prove that the sum L of subspaces L,, . . ., L, is their
direct sum if and only if the union of the bases for thesc subspaces
produces a basis for L.

1.5.45. Prove that the condition stated in Problem 1.5.14 is
equivalent to the following condition:

dim (Ly + ... + Lp) = dim L, + . .. + dim Lj.

1.5.16. Prove that a subspace L = L, + ... + Ly is the direct
sum of the subspaces L,, . . ., Lp if and only if the intersection of
each of the subspaces L;, 4 < i < p, and the sum of the remaining
subspaces consists of the null vector only.

1.5.17. Let a set of subspaces L,, . . ., Lp be ordered. Verify that
the necessary and sufficient condition stated in Problem 1.5.16 may

d, viz. the i ion of each of the subspaces L;, 2 <
< i << p, and the sum of the previous subspaces should consist of
the null vector only.

1.5.18. Prove that the sum of subspaces L, ..., Lp is their
direct sum if and only if any set of nonzero vectors z, . . ., Zp, all
chosen from different subspaces Ly, j =1, . . ., p, is linearly inde-
pendent.

1.5.19. Prove the associative law fot the direct sum of subspaces.
viz, if L =L, +L and L-L +L,. then L—L‘+L,+L,

1.5.20. Veufy that the direct sum of the linear subspaces L, and
L, spanned by the sets of vectorsz, = (2, 3, 11, 5),z, = (1, 1, 5, 2),

=(0,1, 4, )and y, = (2,1, 3,2, y,= (1,1, 3, 4), ys =
= (5, 2, 6. 2), respectively, produces the whole space R; find the
decomposition of the vector z = (2, 0, 0, 3) in terms of these sub-
spaces.

1.5.21. Prove that in the space M, of polynomials of degree
<n (a) the set L, of the even polynomials f (t) (i.e. f (—t) = f (t))
and the set L, of the odd polynomials (i.e. f (—t) = —f (t)) are
linear subspaces; (b) the following equality is valid

My =L+ L,

1.5.22. Prove that, for any subspaco L, of a linear space V,
there is a compl Y a L, such that

V=L %L,
Is the complementary subspace of a given subspace L, unique?
1.5.23. Find two different complementary subspaces of the sub-
space L generated by vectors z; = (1, 3, 0, —1), z, = @, 5, 1, 2),
z3=(, 2 1, 3).
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1.5.24. In the space M, of polynomials of degree <Cn find a com-
plementary subspace to the space L of the polynomials satisfying the
condition f (1) = 0.

1.5.25. A space V is decomposed into the direct sum of subspaces
Ly, ..., Lp. Prove that (a) if a vector z is decomposed as follows:

z=z+...+zp, €L,

then the decomposition of the vector Az, in terms of the subspaces
L,, ..., Ly, is of the form
A =An + ... + Az
(b) if y is a vector with the decompositiony, + . .. — yp, y; € L,
then the decomposition of the vector z + y, in terms of the subspaces
Ly ..., Ly, is of the form

z+y=@+y) +...+ @+



CHAPTER 2

Euclidean and Unitary Spaces

2.0. Terminology and General Notes

A real linear space E is said to be a Euclidean
space if for cach pair of vectors z, y from E there is a corresponding
real number designated by the symbol (z, y) and called the scalar
product of the vectors z and y; at that the following conditions are
fulfilled:

) = y) = @ 2)

@ @+y 2= 2+ 2.

B) (2z, ¥) = @ (2, y).

(4) (z, z)>0if 25 0.

Here z, y, z are arbitrary vectors from E and « is an arbitrary real
number.

A (nonnegative) number is called the length of a vector z if

2=V @& ).

A vector whose length equals unity is said to be rormalized.

For any two vectors z and y, the Cauchy-Buniakowsky inequality

holds:
l@yi<izllyl

Vectors z and y are called orthogonal if their scalar product equals
zero. A sel of vectors is called orthogonal if each pair of the vectors
in this set is orthogonal.

Given a linearly independent set of vectors z;, Z,, . . ., Zy, let us
describe an orthogonalization procedure that will permit this set to be
transformed to an orthogonal set of nonzero vectors yy, y,, . .

Set y, = z,; the subsequent vectors y,, . . ., y, are then constructed
by the following formulae:

-1
y,=z,—§‘ Py, 1=2, ...,k

o = (=1, vi) _ _
& =y i=1,...,1—1

A basis for a Euclidean space is called orthogonal if it is an ortho-
gonal set. If the vectors of this set are normalized then this basis is
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called orthonormal. Thus, an orthonormal basise,, . . ., e, is specified
by the relations
1 if i=j,
Cred=1o it 1.

For two nonzero vectors z and y of a Euclidean space, the concept
of an angle may also be considered, its cosine being determined by
the formula

(z, y)
BTN

A complex linear space U is called unitary space if, for each pair
of vectors z, y from U, there is a corresponding complex number
denoted by (z, y), called the scalar product of the vectors z and y,
provided that the following conditions are true:

") = 9= 2-

@ @+y 2= 2)+ @ 2.
@) (@, y) = a (2, y)-

) (z, 2)>0if z£0.

In a unitary space an angle between vectors is not defined. How-
ever, all the above-mentioned definitions and results regarding a
Euclidean space also remain valid for a unitary space.

A typical example of a Euclidean space is the arithmetical space

A\
cos(z, y) =

R, in which the scalar product of vectors z = (a;, &, ..., @,)
and y = (By, Pay - - -, Bn) is determined by the rule
(@) Y) = Py + asfy + . . . + o 2.0.1)

Similarly, a typical example of a unitary space is the space C, in
which, for vectors z and y,

(= y)=aB+afy+ .. +cobn. (2.0.2)

In both cases the standard basis for the arithmetical space turns out
to be orthonormal.

Let us make some other notes concerning the computational prob-
lems of the present chapter.

Suppose it is required to extend an orthogonal set a,, .. .,
of nonzero vectors of an arithmetic space to form an orthogonal bnsu
for this space. We shall look for a vector a4, using the conditions
for the orthogonality

(anw a)=0,

(ah+l- a,)=0.
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Defined by relations (2.0.1) and (2.0.2), these conditions determine
a system of linear equations involving the components of the vector
@y 4. An arbitrary nonzero solution of this system may be chosen to
yield ay 4,. Now, the vector a, 4, may be determined by the relations

T (s @) =0,
(arszs an) =0,
(@rsgs @pes) =0,

and so on. At each stage of this extension procedure the results of the
previous computations can be used and the solution of the linear
equation systems found by the Gauss elimination method.

The problem of constructing a basis for an orthogonal complement
(see Problem 2.3.2) to the span of a given vector set in an arithmetic
space is solved in a similar way. Gaussian elimination can also be
applied both to the problems on computation of the vector pro-
jections on a given span and to those concerning the construction of
bases biorthogonal to the given (see Problems 2.3.10 and 2.3.15).

2.1. Definition of Euclidean Space

In the present section we have set ourselves the following principal goals:
To draw the simplest corollaries from the axioms of the scalar product.
To show that the scalar product may be defined for any real linear space,
and in infinitely many ways. Speaking of arithmetic spaces Ry, we demonstrate
the concrete techniy es txsul transform the spaces into Euc! idean spaces.
To draw the reader’s attention to the fact thul, nol, only ls any subspace of

space itself, but, the sc roduct, defined
fox an arbitrary subspau of a linear spuce is extenmble zo e whole space.
And, finally, we intend to the of the axiom

the positiveness of the scalar product.

2.1.1. Prove that it follows from the axioms for the scalar product
that (a) (z, ¥y + ¥2) = (2. ¥1) + (2. y2) for any vectors of a Euclidean
space; (b) (z, ay) = a (z, y) for any vectors z, y of a Euclidean space
and real number a;

©) @ — 22 ¥) = @0 ¥) — (@20 Y);
@ 0, 2)=0;

(e) (é‘ Uy, ,_él ﬁr'/) ‘_”Z iy (@ Ysh

2.1.2. Prove that the scalar product may be defined for any real
linear space.

2.1.3. Define the scalar product for the n-dimensional arithmetic
space

2.1.4." Define the scalar product for the space M, of polynomials
of degree <Cn with real coefficients.
3¢
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2.1.5. Let V be a Euclidean space with the scalar product (z, y).

Show that if we set
@ =2y,

where A is a fixed positive number, then, for (z, y), all the axioms
of the scalar product are fulfilled. What is the geometric meaning of
the transfer from (z, y) to (z, y) in the three-dimensional space of
geometric vectors?

2.1.6. Prove that if (z, y), and (z, y), are two different scalar pro-
ducts on the same linear space V, then the following are also the
scalar products

@) (@ y) = (@ yh+ @ Y

) @ y) =A@y + B @Y
where A and p are arbitrary nonnegative numbers that are not simul-
taneously equal to zero.

2.1.7. Let z = (a,, @,;) and y = (B,, P;) be arbitrary vectors of
the arithmetic space R,. Show that the scalar product on R, may be
defined in the following ways:

(2) (2, ¥) = asfy + @sBy;

(®) (@ y) = 2P, + 5By

©) (@ y) = @by + o,y + asfy + 20,8,

Evaluate the scalar product of the vectors z = (1, 1) and y =

=(—3, 2) by each of the above rules.
2.4. 8.' Prove that the scalar product on R, may be defined by the

formula
(@, y) = aoufy + basBs + baspy + casf,
if and only if a > 0 and ac > b® simultaneously.
2.1.9.* Prove that the scalar product on Ry may be defined in the
following way: if = (a@;, @,, @;) and y = (B, B,, Ps), then
(@, 4) = 10y + 3By + 30aBy + 2058 + @yf; +.asBy + 2P
2.1.10.* Prove that the scalar product on R, may be defined by
the formula
(@ y)=ayapy + apafs + ... +amaifn
+an°'191 + @50 + ... + 200

+‘1n|¢nﬁ|+anza..ﬁz+ R R 2
on condition that

(8) ayy=ay if i j;

n
(b) ay> 2 layl, i=1,...,n
=1
it
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2.1.11. Let a be a fixed vector of a Euclidean space V and o a
fixed real number. Is the set of all vectors z, for which (z, @) = «,
a linear subspace of the space

2.1.12. Prove that each subspace of a Euclidean space V is also
Euclidean in the sense of the scalar product defined for V.

2.1.13. A linear space V is resolved into the direct sum of sub-
spaces L,, . . ., Lp. For each of the subspaces L; the scalar product
is defined. Prove that the scalar product may be defined for the whole
space V, assuming that: if z and y are two arbitrary vectors from V,
with decompositions in terms of the subspaces L, . . ., L, respectively
z=z+...+zp and y =y, + ... + yp, then

@ y) =@y + -+ @p Yol
where the scalar product (zy, y;); is found by the rule given for L,.

2.4.14. In the arithmetic space R, the scalar product of two
vectors of the form z = (y, @,, 0, 0) and y = (B,, B,, 0, 0) is defined
as follows:

(@ 9y =By + 2058y,
and that of the vectors z and ;/' of the form

Z=(0,0, a5 @) and J = (0, 0, Bs B
is specified by another rule

(3- y)x = By + %aBy + 2By + 200

Define the scalar product for the whole space R, (by the method
indicated in Problem 2.1.13). Compute the scalar product of the
vectorsz = (1, 2, 3, 4) and y = (—3, 1, —3, 2) by the rule obtained.

2.1.15.* The scalar product (z, y) is defined for a subspace L
of a linear space V. Prove that the scalar product may be defined
for the whole space V so as to be identical with the original scalar
product (z, y) of the vectors z and y from L.

2.1.16.* Prove that in the Cauchy-Buniakowski inequality for
vectors z and y of Euclidean space, viz.

@ ¥ < (@ 2) @ Y),

the equality sign is upheld if and only if the vectors z and y are
linearly dependent.

2.1.17. Prove the following by the Cauchy-Buniakowski in-
equality:

n

® (ia.ﬁ.) <(E ) (Zm):

O (Sen)'<(Zne) (3 50),
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where @,, ..., a, and By, . . ., P are arbitrary real numbers and

s - -+ Ap are positive numbers.

2.1.18.* Given a space V for which the “scalar product” is defined
with the fourth axiom replaced by a weaker requirement, viz. (z, z) >
> 0 for any vector z, prove that (a) the Cauchy-Buniakowski in-
equality is valid; (b) the set M of vectors, such that (z, z) = 0, forms
a subspace; (c) for any vector z from M and any vector y from V
the scalar product equals zero; (d) if NV is an arbitrary, complementary
subspace of M, and

z=%y + Iy, Y=Yyu+yn

are the decompositions of the vectors z and y in terms of the subspaces
M and N, then the equality sign in the Cauchy-Buniakowski rela-
tionship for the vectors z and y is valid if and only if zy and y
are linearly dependent.

2.1.19. Will the Cauchy-Buniakowski inequality be upheld if
the fourth axiom in the definition of the scalar product is discarded?

2.2, Orthogonality, Orthonormal Basis,
Orthogonalization Procedure

. The problems of the present section concern the following two principal
opics:

e i d its applications to the ion of an
orthogonal basis for a space and to the of the linear di di
of a given vector set.

The orthonormal bases of a Euclidean space and their significance infevaluat-
ing the scalar product. We also intend to show the dependence of the orthonor-
mality property of a basis on the method of defining the scalar product for a
given linear space.

2.2.1. Prove that in a Euclidean space E (a) the null vector is
the only one possessing the property of orthogonality for all vectors
of the space; (b) if the equality (a, ) = (b, z) is valid for any vector
z from E, then a = b.

2.2.2. Prove that if z, y, . . ., z is an orthogonal set of vectors,
then, for any numbers A, p, . . ., v, the set of vectors Az, py, . . ., vz
is also orthogonal.

2.2.3. Prove that if a vector z is orthogonal to each of the vectors
Y1 - - - Yo then it is also orthogonal to any linear combination of
these vectors.

2.2.4. Prove that an orthogonal set of nonzero vectors is linearly
dependent.

We shall assume, hereafter, that the scalar product of the vectors
Z = (oy, gy -+ %) and y = By, By - .., Bn) belonging to an
arithmetic space R, is determined by the formula

@ y) = by + aby + . . . + anPa. @2.1)
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Apply the procedure of orthogonalization to the following sets of
vectors in the space R,:

2.25. 2, =(1, -2, 2), 2.26. 7, =(1,1, 1, 1),

z, = (—1, 0, —1), z, =3, 3, —1, —1),
= (5, =3, =7). Z3=(=2,0, 6, 8).

2.2.7.* Prove that the orthogonalization procedure applied to a
linearly independent set of vectors z,. ..., zy leads to an orthogonal
set of nonzero vectors Yir o o oy

2.2.8. Prove that in any Euclldean space there exists (a) an
orthogonal basis; (b) an orthonormal basis.

2.2.9. Prove that (a) any nonzero vector may be included in some
orthogonal basis for a Euclidean space; (b) any orthogonal set of
nonzero vectors may be extended to form an orthogonal basis for
the space.

Verify that the following sets of vectors are orthogonal. Extend
them to form orthogonal bases.

2.240. 7, = (1, =2, 1, 3), 2.2A1. z, = (1, —1, 1, =3),
=@, 1, =3, 1). zy = (—4, 1, 5, 0).
Extend the following sets of vectors to form orthonormal bases:

1 2 2
2.2.12. z,=(—ﬁ, —5 ?)'

2 14 1

a=(-5 -5 —3)
1 1 1 1

2.2.43. 5= (7, -? T —1)
1 1

I:=( 2, 7, 3 _?)'

2.2.14. Prove that the scalar product of any two vectors z and ¥
of a Euclidean space is expressed in terms of their coordinates in
certain bases by the formula

@ y) = b+ ...+ aabn

if and only if these bases are onhonormal.
2.2.15. Prove that the coordinates «,, ..., @, of a vector z in
an orthonormal basis e,, . . ., €, are found by the formulae

a=(ne) i=1...,n

2.2.16. Find the dimension of the subspace formed by all vectors z
such that (a, ) = 0. Here a is a fixed nonzero vector of a Euclidean
space.
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2.2.17.* Lete,, . . ., e, be an orth 1 basis for a Euclids
space. Find an expression for the scalar product of two arbitrary
vectors z and y in terms of their coordinates in: (a) the basis Aey,
Agey, . . ., Ane, where Ay, Ay, . . ., A, are nonzero numbers; (b) the
basis e, + €y, €3, €3 . e,

2.2.18. Let the procedure of orthogonnllzahon be applied to an
arbitrary set of vectors z,, . . ., zy. Prove that (a) if the set z, . . ., zx
is linearly dependent, then at some stage of the orthogonalization
procedure a zero vector is obtained; (b) if the vectors ¥, . . ., ¥1
(I < k) obtained in the orthogonalization process are nonzero vectors
and y; = 0, then, in the original set of vectors z;, . . ., zy, the subset
Zy, . . . I3 is linearly independent and the vector z, is linearly
dependent on this subset.

Applying the orthogonalization p construct or
bases for the subspaces spanned by the given sets of vectors:

2.249. 7, = @, 3, —4, —6), 2.2.20. z, = (1, 1, —1, —2),

Kl n 1

=, 8 —2, —16), z, = (=21, 5, 11),
z = (12, 5, —14, 5), z3=(0, 3,317,
=@ 4 =D zo=@ -3 -3 -9

2.2.21. Prove that if a set of vectors of the arithmetic space R,
Ty = (Qany gy Dz « oy Gan)s
Zy = (0, &gy, Apgy - - s Aan)y
T3 = ( 0, 0, ag, .- &),

—(0 0, 0,... an)

forms an orthogonal basis for this space, then (a) a;; %= 0, i = 1,

on (b) ey =0if i%]

2. 22 . In the space R, (n > 1) there is an orthogonal basis
» ., e, such that all the components of each of the vectors e,
are elther 1 or —1. Prove that the dimension of the space R, is either
2 or a multiple of 4.

2.2.23.* Given a linearly independent set of vectors z;, . . ., zy
and two orthogonal sets of nonzero vectors y;, . . ., yp and zy, . . ., z;
such that the vectors y;, and z; are linearly expressed in terms of
Zy, .., (=1, ..., k), prove that y, = a2, (i=1, ..., k)

where a; 5% 0.
2.2.24. A scalar product ls deﬁned arbitrarily for the space M,
of poly ials with real ¢ of degree <Cn. Prove that in

the Euchdem space so formed (a) an orthogonal basis exists contain-
ing one polynomial of each degree k, 0 << k << n; (b) iffo (8,1, (8), .. .
v fn(t)and go (t), g1 (), - - -, gn (t) are the two orthogonal bases
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possessing the above property, then the polynomials enumerated in
the same way making up these bases are different only in scalar
multipliers, i.e. g, () = o;f (1), i=0,1, ..., n.

2.2.25. Lete,, . . ., e, be an arbitrary basis for a real linear space
V. Prove that the scalar product may be defined for the space V so
that the set of vectors e,, . . ., ¢, may be an orthonormal basis for
the obtained Euclidean space.

2.2.26. Define the scalar product for the space )/, of polynomials
of degree <(n so that the basis

° m
Ltigry oogy

becomes orthonormal.

2.3. Orthogonal Complement,
Orthogonal Sums of Subspaces

The principal goals of this section:

To show the various properties of what will become a very important notion,
that of an orthogonal complement to a subspace.

To provide computational problems on how to find orthogonal complements
and, in particular, to underline the relation of these problems to the solution of
systems of linear equations. The problem on the perpendicular (see Problems
2.3.10 to 2.3.14) is also included into this category.

To indicate the important corollary of the theorems about orthogonal com-
plements that is the existence, for any basis for a Euclidean space, of a biortho-

asis.

To note the similarity between the theorems about the direct sums of sub-
spaces of a linear space and the theorems concerning the orthogonal sums in
a lidean space. In icular, the i of a Euclidean space into
the orthogonal sum of subspaces is the analogue of a decomposition in terms of
an orthonormal basis and in the sense the subspaces that yield a given linear
space when directly summed, play the role of a generalized basis for the whole
space.

2.3.1. Let L be a k-di ional sub of a Euclid space
E, k < n. Prove that there is in £ a nonzero vector orthogonal to all
vectors of L (or, in other words, a vector orthogonal to the subspace L).

2.3.2. Prove that the set L of all vectors orthogonal to a linear
subspace L is also a linear subspace. L1 is called the orthogonal
complement of the subspace L.

2.3.3. Let L be an arbitrary subspace of a Euclidean space E.
Prove that E is the direct sum of the subspaces L and Li. Note
the relation between the dimensions of the subspaces L and L! that
follows from the statement.

2.3.4. Prove that the orthogonal 1 of a linear
of a Euclidean space E possesses the following properties:

(a) (LY = L;
(b) if Ly < Ly, then L{ < L
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© (Ly + Lot = L NLy:

(d) (Ly N Lyt =L} + Li;

() Et =0, 04 =
Here O is the null subspace containing the zero vector only.

2.3.5. The direct sum of subspaces L, and L, produces a Euclidean
space E. Prove thnt the same holds for their orthogonal complements,

ie. E=Lt + Li.

2.3.6. Find a basis for the orthogonal complement L! of the span
L of the following set of vectors Ry:

7 =(1302,5,=07 1,2, 7,=@2 4 —1, 0.

2.3.7. In a Euclidean space E, an orthonormal basis e, . . ., ¢,
is fixed. Prove the following:
(a) If
aney + 450 + ...+ e =0,
Aty + @30y + .0+ @t =0,

0ty + A0y + o - F Bmnttn =0

is an arbitrary set of linear equations in n unknowns, then the set
of vectors z, whose coordinates with respect to the basis ¢, . . ., €,
satisfy this system, is a linear subspace of the space E. The dimen-
sion of this subspace equals n — r where r is the rank of the following
set of vectors of the arithmetic space:

= (& Qg - - o Q)
Ry = (G, Ga5, - - -y Gan),

m = @m1, @may -+ -y Cmn)s

(b) any subspace L of the space E may be described by a particular
system of linear equations. This means that a vector z belongs to the
subspace L if and only if its coordinates in the basis e, .. ., €,
satisfy the given system. If r is the dimension of the subspace L,
then any system describing this subspace consists of not less than
n — r equations; in addition, there exists a system consisting of
precisely n — r equations;

c) systems of linear equations describing the subspace L and its
orthogonal complement L in a given basis are related to each other
as follows: the coefficients of the system describing one of these
subspaces act as the coordinates of the vectors spanning the other
subspace.

2.3.8. In the space M, of polynomials with real coefficients of
degree <Cn a scalar product for the polynomials f (£) = a4 + a,¢ +
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+ ...+ apt*and g (t) = by + byt + . . . + b,t* (in which higher-
order coefficients of the polynomials may be equal to zero) is defined
by the formula

( 8) = aobo + asby + . . . + anbn. @.3.4)

Find the orthogonal complement of (a) the subspace of all polynomials
satisfying the condition f (1) = 0; (b) the subspace of all even poly-
nomials of the space M,.

2.3.9. Find the systems of linear equations that describe the sub-
space L defined in Problem 2.3.6 and that describe its orthogonal
complement L+,

2.3.10. Let L be a linear subspace of a Euclidean space E. Prove
that any vector z from E can be represented, in a unique way, as
z = y + z where y belongs to L and z is orthogonal to L. The vector
y is called the orthogonal projection of the vector z on the subspace L,
and z is called the perpendicular drawn from z to L. Find, for the
given subspace L and vector z, a method of evaluating y and z.

2.3.41.* Let z,, z4, ..., Zx be an arbitrary set of vectors in a
Euclidean space E. Prove that for any vector z from E the system
of linear equations

@1 ) 0 + (@ Zy) Ag + .o+ (@ 7)) O = (2, T),

(1 Zo) &y + (Tay Ta) @y + . 0+ (Zne Ts) an = (2, Ty),
(@1 zn) @ + (T2 Th) @y + - - F (ke ZH) @x = (2, TH)

has at least one snlutmn In whwh case is the solution unique?
Find the or and perpendicular drawn from the

vector z to the suhspace L.
A2, z = (14, -3, —6, —7) L is spanned by the vector y, =
—(—3 0,17, 5).y,-—(1 43, 2), ¥y = (2, 2, =2, —2).
2.3.143. z = (2, —5, 3, 4). L'is spanned by the vectors y, =
—(1335).y,—(13—5—3). =, =5, 3, =3).
A4,z =(=3,0, =5, 9). Lis detemnned by the system of
equations:
3ay +2a3 + ag— 20,=0,
Sa; + 4ay + 32y + 22, =0,
o + 2a4 + 305 + 10a, = 0.
2.3.15. Two sets of vectors z,, . . ., zy and ¥, . . ., Y in a Eucli-
dean space are called biorthogonal if
1 when i=j,
(0 3= [ 0 when is£j.

Prove that each of the two biorthogonal sets of vectors is linearly
independent.
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2.3.16. Prove that a unique biorthogonal basis cxists for any
basis of a Euclidean space.

2.3.17. Let ey, ..., e, and f, . . ., f» be a pair of biorthogonal
bases for a Euclidean space. Prove that for any k, 1 <k <<n the
orlhogonal 1 to the sub: d by the vectors

.. ., ey coincides with the span of the vectors fu4y, . . ., fu.
Fmd biorthogonal bases to the following bases of the space Ry

2.3.18. ¢, = (1, 0, 0, 0), 2.3.49. ¢, = (1, 0, 1, 0),

©, 2, 0, 0), e, = (0, 1, 2, 0),

e; = (0, 0, 3, 0), e3=(0,0,1,0),

(0, 0, 0, 4). eg=1(0,0,31).

2.3.20. ¢, = (1, 1, 1, 1), 2321, ¢, =(1,1,1, 1),
e, = (0,1, 1, 1), e, = (1, 1, —1, --1),
ey = (0, 0, 1, 1), ey = (1, —1, 1, —1),
ey = (0, 0, 0, 1). eg=(1, —1, —1, 1).

2.3.22. In a Euclidean space E biorthogonal bases e, . . ., e,
and f, ..., f, are fixed. Prove that

(a) if z is an arbitrary vector from E, then in its decomposition
in terms of the basis e}, .. ., e, viz. T = a,¢; + . .. + ane,, the
coeiﬁclents a, are determined by the formulae a; = (z, f)), i =

(b) the scalar product of arbitrary vectors z and y is determined
by the formula

@ 0=3,@ 1) G o= 3, b

where B,, ..., B, are the coefficients of the decomposition of the
vector y in terms of the basis f,, ..., fa.

2.3.23. The linear subspaces L,, . . L,, of a Euclidean space E,
are mutually orthogonal (lhls means that for each subspace L;, any
vector of that subspace is orthogonal to all the other subspaces).
Prove that the sum of the subspaces L, , Lp is their direct sum.
(The sum of mutually orthogonal subspaoes is called their orthogonal
sum and denoted by L, & .. p-

2.3.24. Prove that the sum L of subspaces Ly, ..., Ly is their
orthogonal sum if and only if the union of the orthogonal bases for
these subspaces yields the orthogonal basis for L.

2.3.25. Prove the associative law for the orthogonal sum of sub-

spaces, i.e. if L = L; ®Land L = L, @ Ly, then
L=L &L, &L,
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2.3.26. The direct sum of the subspaces L,, ..., L, yields a
Euclidean space E. Prove that this sum is orthogonal if and only if
for any vectors z and y from E, decomposed in terms of the subspaces
Ly, ..., Lp, respectively: s =2, + ... +2pand y = y; + . ..

.+ = Yp, their scalar product satisfies the equality

@ ) =@ y) + ...+ @ yp)-
2.3.27. A linear space V is arbitrarily decomposed into the direct

sum of subspaces, i.e. V = L, -‘— + Lp. Prove that a scalar
product for V may be defined so that every palr of the subspaces L;
is orthogonal.

2.4. Lengths, Angles, Distances

We intend in this sectio

To provide a number of mmple problems regarding the definitions of the
length, angle, and distance, and corroborating the validity of elementary
Euclidean geometry theorems in an arbitrary Euclidean space.

To interpret the problem of decomposing a vector in terms of the orthogonal
complementary subspace as the problem of determining the least distance from
the vector to_the subspace.

To determine the angle between a vector and a subspace and show that this
definition generalizes the notion of an angle between a vector and a plane in
three-dimensional Euclidean space.

2.4.1. Prove that the lengths of the vectors z and y = ax satisfy
the equality
lyl=lellz|

2.4.2. How is the angle between nonzero vectors z and y altered
if: (a) the vector z is multiplied by a positive number; (b) the vector z
is multiplied by a negative number; (c) both vectors z and y are
multiplied by negative numbers?

In the suhsequent problems the ordered set of three vectors Yy
and £ — y in an arbitrary Euclidean space is called, just as it is in
three-dimensional Euclldean space, a tnangle generaled by or drawn
on the vectors z and y". A , the generated
by the vectors z and y is considered |.o have the vectors z + y and
z —y as its diagonals.

2.4.3. Prove that the triangles generated by vectors z, y, and
az, ay respectively, where o« is an arbitrary nonzero number, have
equal corresponding angles.

2.4.4. Find the lengths of the sides of the triangle generaled hy
the vectors of the space R,z = (2, —1, 3, —2) and y = 3, 1,5, 1).
Find the angles between the sides of the triangle, i.e. vectors :, y
and z — y. Which of these angles is it natural to consider as interior
and exterior angles of the triangle?

2.4.5. Formulate and prove the cosine law for a triangle generated
by vectors z and y in an arbitrary Euclidean space.
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2.4.6. Determine whether the triangle generated by the poly-
nomials t2 + 3t and 22 + 2t — 1 is acute-angled or obtuse-angled
if the scalar product of the polynomials f (f) = ay + a;t + aut®
and g (t) = by + byt + byt? is given by the following formulae (a)
U 8) = Ggbo + aiby + asbs, () (s £) = Goby + 2a1b, + aghy.

2.4.7. Prove Pythagoras theorem and its converse, viz. that two
vectors z and y of a Euclid space are orth 1if, and only if,
lz—yP=lzP+ |y

2.4.8. Prove that for an arbitrary triangle in a Euclidean space
(a) the length of each side does not exceed the sum of the lengths of
the other two sides; (b) the length of each side is not less than the
absolute value of the difference of the other two sides.

2.4.9. Prove that in a parallelogram generated by vectors z and y,
the sum of the squares of the lengths of the diagonals equals the sum
of the squares of the lengths of the sides.

2.4.10. Prove that |z | = | y | if, and only if, the vectors z + y
and z — y are orth 1. Specify the ic sense of the state-
ment.

2.4.11. Let e, . . ., e, be an orth 1 basis for a Euclid
space, and z be an arbitrary pormalized vector. Prove that the coor-
dinates of the vector z in the basis ey, . . ., e, are equal to the cosines
of the angles a,, . . ., a, formed by z and the basis vectors. Hence
deduce the relation

cos®a; + cosla, + ...+ costa, =1.

2.4.12. The number
Py =Ilz—yl
is called the distance between vectors z and y of a Euclidean space.
Show that the distance thus defined satisfies the triangle inequality
p@ <Py +eW 2,

for any three vectors z, y, z.
2.4.13. Prove that, in the triangle inequality for vectors z, y
and z, the equality sign appears if, and only if, (z — y) = a (¥ — 2),

a>0.

2.4.14. In the space M, of polynomials of degree <(r a scalar
product for polynomials f (t) = ay + a;t + ... + a,t" and g (t) =
= by + bt + ...+ byt" is defined by formula (2.3.1). Given
polynomials

hty=3 42t +1, f() =—t2+2+1,
Fo® =30+ 245 f,()= 3 4+5+2

(a) find a polynomial f, () of degree < 2 equidistant from f, (¢),

fa () 15 (O fo (0
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(b) find the distance between f, (t) and each of the polynomials
IA (¢). T2 (0), fs (), fa (B

(c) prove that any polynomlal of the form

fo ®) + mgt® + . .. + mut*

is also equidistant from £, (t), /2 (t), /s (¢), /4 (t), and find the distance
between these polynomials.

2.4.15.* Given a subspace L and an arbitrary vector z of a Eucli-
dean space, the number

, Ly = inf p(z,
p (@ L) -vg,_p(zy)

is called the distance between the vector z and subspace L. Prove that
(a) the distance p (z, L) is equal to the length of the perpendicular
drawn from z to L; (b) the nearest vector of the subspace L to the vec-
tor z is the orthogonal projection of z on L; (c) for any y from L,

ple+y L)y=p (= L)

2.4.16.* A subspace L is the orthogonal direct sum of subspaces
L, and L,. If a vector z is orthogonal to the subspace L,, prove that
p(z L) =p (z, Ly).

2.4.17.% Let a be a fixed vector in a Euclidean space, and let L
be the subspace of all vectors orthogonal to a. Prove that the distance
between an arbitrary vector z and the subspace L may be found by
the formula

oz, L)= l(-ir.atlw)l .

2.4.18. A scalar product for the space M, of polynomials of degree
<n is computed in terms of the coefficients of the polynomials by
Formula (2.3.1). Find the distance between the subspace M, ., of all
polynomials of degree <Cn — 1, and (a) the polynomial ¢"; (b) the
polynomial ¢ -+ a,_ " = + ...+ at + a5 (c) the polynomial
o + gy t™ L.+ gt + g

2.4.19. In the space M, with the same scalar product as defined
in (2.3.1), consider the subspace L of all polynomials fulfilling the
condition f (1) = 0. Prove that the distance between an arbitrary
polynomial g () and the subspace L equals

__&)
o6 D=pA

2.4.20.* Given a subspace L and vector z of a Euclidean space,
the least angle formed by z with any vector from L is called the
angle between the vector z and subspace L. Prove that the angle between
z and L is equal to the angle between z and its orthogonal projection
y on L. Show that vectors of the subspace L form the same angle with
the vector z if, and’only if, they are of the form ay, a > 0.
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2.4.21. Prove that the sum of the angle formed by -a vector z
with an arbitrary subspace L, and of the angle formed by z and the
orthogonal complement L' equals x/2.

2.4.22. A Euclidean space E is resolved into the orthogonal sum
of subspaces Ly, . . ., Lp. Prove that the angles a,, . . ., a, formed
by an arbitrary vector z with the subspaces Ly, . . ., L, satisfy the
relation

cos®a; + cos?a, + ... + cosPap =1.
Compare this formula with the formula obtained in Problem 2.4.11.

2.4.23. A subspace L is the orthogonal sum of subspaces L, and
L,. A vector z is orthogonal to the subspace L,. Prove that the angle
between z and L equals the angle between z and L,.

Find the angle between the vector z and linear subspace L gener-
ated by the vectors y,, ¥, yy!

2.4.24. z = (=3, 15, 1, —5); 2.4.25. z=@3, 1, V2, —2)

n=@ 3 —4 —6), n= —-1,21,

y. = (1, 8, —2, —16), ¥ = (—1, 2, =2, 1),

¥a = (1, =5, —2, 10). ya=(—1, 1, —1,0).
)

2.5. Unitary Spaces

Most of the problems in the vgresent section are similar to the problems on
Euclidean spaces given carlier. We intend to show, by this similarity, that the
basic results proved for the case of a Euclidean space remain valid for arbitrary
unitary spaces as well. AL the same time, we have also attempted to illustrate
the theoretical differences between the real and complex cases, particularly for

metric theorems. We describe, in 1 hni or il
rom a Euclidean to unitary space (the so-called “complexification” of a unitary
space), and the inverse transfer (the “decomplexification”).

2.5.1. Prove that it follows from the axioms of the scalar product
on a unitary space that (a) (z, ¥, + ¥») = (=, 41) + (2, ¥,), for any
vectors in a unitary space; (b) for any vectors z and y in a unitary
space and any complex number a, (z, ay) = a (z, y); (¢) (0, ) =
=(z, 0)=0;

R ] oL
@ (E‘ Ty, ’él ﬁlyl) = '21 ’;' By (zi yy)-

2.5.2. Prove that the scalar product may be defined for any com-
plex linear space.

2.5.3. Define the scalar product for the n-dimensional complex
arithmetic space C,.

2.5.4. Define the scalar product for the space of polynomials with
complex coefficients of degree <Cn regarded as a complex linear
space under the usual operations for the addition of polynomials and
the multiplication of a polynomial by a complex number.
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2.5.! 5. Prove that the scalar product of the vectors z =
= (0. ... ax)and y = (By, By, - . ., Ba) can be defined for the
space C,. by the formula
(2, ¥) =ayebs+ apoBat - - . +24nct B
+anazﬁn+aua§x e +azn°‘§n

+ 8ny@nfy + Gng@nfa+ - - + GpntaBa
on condition that

(a) a,,=;,,. for all i, j;

n
(b) a“>,§1 layl, i=1,..
it

2.5.6. Prove that the scalar product of two vectors z and y is
expressed in terms of their coordinates by the formula

@ Y =afi+eby+ ... +anbn
if, and only if, the corresponding bases of the unitary space are
orthonormal.
2.5.7. Prove the Cauchy-Buniak ki inequality for the case of
a unitary space

1@y P<@E 26 )
Hence deduce the relation

li alﬁllzg(i o I’)(i! 18019

where o, . . ., and B,, » Pn are arbitrary complex numbers.

2.5.8. Prove that the Pythagon: theorem remains valid in an
arbitrary unitary space, viz., if vectors z and y are orthogonal then

lz—yP=1zP+ 1y

Show, however, that the converse theorem is incorrect.

2.5.9. Prove that vectors z and y of a unitary space are orthogonal
if, and only if, for any numbers & and p

laz + By ' = laz I + | By P

2.5.10. Prove that the statement of Problem 2.4.10 does not hold
in the case of a unitary space. Which statement, precisely, of the
two listed in the problem becomes invalid?

2.5.11. Prove, however, that the statement of Problem 2.4.9

lz+yP+le—yl=21zP+21yp

is also valid for a unitary space.

40819
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2.5.12, Prove the equality
b N=lz+tyP—lz—yP+ilz+iyP—ilz—iy
@.5.1)

2.5.13.* Let R be a real space and C the set made up of all formal
sums z + iy where z € R, y € R. Prove that

(a) the set C is a complex linear space if the linear operations are
defined for it by the formulae

@y + 1Y) + (22 + W) = (3 + 20) + i @+ ya)s
Az + )=+ i) (z+iy) = (@z— fy) + i (ay + fo)
where A = a -+ ip is an arbitrary complex number;

(b) a set of vectors z,, . . ., z;, of the space R is linearly dependent,
or independent, when the set of vectors z, + 0, . . ., zy + i0 of the
space C is linearly dependent, or independent;

(c) the dimension of the space C equals the dimension of the space R.

The technique just described for constructing a complex space from
a given real linear space R, and with the same dimension is called
the complezification of the space R.

2.5.14. Let R be a Euclidean space with scalar product (z, y),
and C the complex space obtained from R by the complexification.
Prove that

(a) the space C can be converted into a unitary space if the scalar
product is determined by the formula
(23 + W1, T3 + Wa) = (@1, 22) + (1 Ya)) + L L@ 22) — (@, ¥a)l;

(b) if ey, . . ., ey is an orthogonal set of vectors from R, then the set
of vectors e, + i0, . . ., e + i0 from the space C with the scalar
product just given is also orthogonal;

(c)ife, .. o €n is an orthonormal basis for R, then ¢, + {0, . . .

e, + i0 is an orthonormal basis for C.

X 5 15. Complexify the n-dimensional real arithmetic space R,,
(with the customary scalar product). What sort of complex space is
obtained?

2.5.16. Let C be an arbitrary complex space. Prove that the set
of vectors forming C can, at the same tlme be also consldered as a
real linear space R in which (a) the diti
with that on C; (b) for any real number @ and any vector z,

= (@ + i0) z,

where the right-hand side of the equality is the product of the vector z
by the number @ + i0, and is defined in C. The transfer from the
complex space C to the real space R is called the decomplezification
of the space C.
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2.5.17*. Let C be an n-di ional lex space obtained from
R by the decomplexification. Prove that

(a) if 2,. . . ., 2, is a linearly independent (or hnearly dependent)
set of vectors of the space C, then z,, iz, . . ., z, izp is a linearly

independent (or linearly dependent) set of vectors in the space R
(the product iz; is defined by the same rule as for C, and is an element.
of this space and, therefore, an element of the space R);

(b) the dimension of the space R equals 2r; in addition, to any
basisey, . . ., ¢, in the space C there is a corresponding basis ¢;, iey, . . .
« .. €, ie, for the space

2.5.18*. Let C be an n-dimensional unitary space with the scalar
product (z, y) and R the real space obtained from C by decomplexific-
ation. Prove that

(a) the space R can be converted into a Euclidean space by defining
a scalar product for it by the formula

(21, 2,) = Re (5, 25);

(b) for any vector z from C, the vectors s and u, conslderod as
elements of the obtained E lid space, are or

(¢) if ¢}, . . ., e, is an orthogonal set of vectors from C, then the
set of vectors ey, ie, . . ., €, iy is orthogonal in R;

(d) if e, . . ., €y is an orthonormal basis for C, then ¢,, iey, . . ., €,,
ie, is an orthonormal basis for

2.5.19. Prove that the d lexification of the n-d ional
complex arithmetic space C, can be performed by matching each
vector z = (@ + ify, ..., an + if,) from C, with the vector
(@« + oy Gpy Bay - - o0 Br) from the real arithmetic space R,,. Which
vector in Ry, corresponds to the vector iz? Which scalar product is
induced in Ry, if, in C,, the customary scalar product of z =
o Ay)and w = (p,, . . ., py) is defined as follows: (z, w) =

=M+« oo+ Appa?




CHAPTER 3

Determinants

3.0. Terminology and General Notes
Let z;, z,, ..., z, be an arbitrary set of
vectors of an n-dlmensmna] Euclidean or unitary space, and let
Ly=0, Ly =L (2}, .« ., za).

Denote the perpendicular drawn from z, to the subspace Ly -, by y.
he number

Vizy 2o ....zn)=j||y,| (3.0.1)

is known as the volume of the parallelepiped drawn on the set of
vectors Iy, Iy, . . ., Z,. It is evident that the volume of such a paral-
lelepiped equals zero if, and only if, the set z;, z,, . . ., Z, is lincarly
dependent. Since

lmiI<laal, k=1,...,n

the volume of a p satisfies Had &'s Ii

Nelenined

V(2 Ty one z,)gﬁ [EN| (3.0.2)

and the equality is upheld here if, and only if, either there is at least
one nonzero vector among the vectors z,, z,, . . ., z, or each pair of
these vectors is orthogonal.

Following V. Voyevodin we will define axiomatically an oriented
volume V* (z,, z,' + - +y Zy) of the parallelepiped drawn on the set of
vectors zy, . . ., Viz., we shall require that the following con-
ditions should be "tulfilled:

(1) V* (z,, 2, . . ., Z,) is a linear function for each of its vector
arguments;

2) V*(zy, 24, . . ., T,) = 0 if the set z,, z,, . . ., z, is linearly
dependent;

(3) V* (e, €5 ..., €,) =1, for a certain orthonormal basis.

It can be shown (see V. Voyevodm. Linear Algebra, Mir Publishers,
1983, Chapter 4) that an oriented volume of a parallelepiped exists,
and its modulus equals the volume of this parallelepiped. In par-

.
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ticular, the condition
VE @y Tgy + 0o Tn) =

turns out to be necessary and sufficient for the set of vectors z,, z,, . . .

.., Zn to be linearly dependent.

Since an oriented volume is not uniquely defined, then to single
out a concrete oriented volume it is necessary to give an orthonormal
basis ey, ey, . . ., €, with respect to which it will assume unit value.

A square number table with n rows and n columns

@4 @2 ... Gin

@ny @nz -+ @nn

is called a square matriz of order n. The elements ay of a matrix 4
can be real or complex numbers. Accordingly, we will speak of real
and compler matrices.

The elements a,;, @y, . . ., @5, are said to constitute the principal
diagonal of a matrix 4, all the other elements a,y, i % j, being called
the aﬂ-diagonal elements. A matrix all of whose 0fi- dlagonal elements
are zero is called a diagonal matriz. A diagonal matrix is called the
unit matriz if all elements on the principal diagonal of this matrix
are equal to unity. Another term is the secandary diagonal of a matrix
A, its elements being a,,, a,,, -,

The algebraic sum of n! terms is called the determinant of a matriz A
if these terms are all the possible products of 7 of the elements of the
matrix taken one in each row and in each column. The term a,q,,
Qgq, - -« Gng, has a plus sign if the permutation a,, &, ..., an
contains an even number of inversions, and a minus sign otherwise.
An inversion of the numbers «; and @; exists when a; > a; but &,
precedes @, in the permutation &, . . ., a,. We will denote, here-
after, the determinant of a matrix 4 by | 4 | or by det 4.

If all the rows of a matrix 4 are regarded as vectors of an n-dimen-
sional arithmetic space, then the determinant det A is nothing but
an orientation volume of a parallelepiped in this space, the corres-
ponding orthonormal basis being the standard basis (1.0.1). Hence
it follows that

(i) det A is a linear function of the matrix 4;

(ii) det A = 0 if and only if the rows of the matrix A are linearly
dependent. The matrix is called degenerate if its determinant is
equal to zero, and nondegenerate otherwise;

(iii) the value of the determinant of a matrix is unaltered by ad-
ding to a row a linear combination of the other rows;

(iv) the determinant changes sign when two rows are interchanged.
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The transposition of a matrix A is that transformation of a matrix
where the matrix rows are d with the col that have
the same index number T'. AT is the transpose of matrix A

@y Ggq ... Qpy

AT=|{%2 Q22 -+ Gnall (3.0.3)

@n @ap +-- Gpp

leaves the d i of a matrix unaltered: det A =
= det AT. Hence the above properties, valid for the rows of a
matrix, are also valid for its columns.

Choose any k rows with indices by gy ey i and k columns with
indices j;, Jar o« o0 Jn from a matrix 4. A matrix of order k, whose
determmnnt is called the minor of order k of the matrix A (or its
de ) ges from the i ion of these rows and columns.
In particular, minors of order 1 are the elements a;. To indicate the
position of the minor, being considered, in a matrix A, the following
designation is used

70 PR
w=a( »). 3.0.4
Jo 2 oo ¢ )
Tf, further, the indices of the rows coincide with the indices of the
columns, then we will use the shorter notation: A (iiy . . . is).

If the rows with indices i), ..., iy and columns with indices
J1r « « «» ju are deleted from the matrix A, then the remaining minor
of order n — k is called the complementary minor of the deleted
minor (3.0.4). The cofactor of minor (3.0.4) is defined to be its com-
plementary minor multiplied by (—1)* where

sy=bh+h+...+ti+htiat...+h
The cofactor of the element a,; is denoted by 4.

There is held the following

Laplace theorem. Let k rows (or k& columns) of a matrix A be chosen
arbitrarily 1 <k <{n — 1. Then the determinant det A is equal
to the sum of the products of all the minors of order k, and their
cofactors in any row or columns of A.

In a particular case, the Laplace theorem yields the following
formulae for ezpanding a determinant by a row:

apdn + apdn + ..o+ apdn = det 4, 3.0.5)
apAp +apdp+ ... Fapd;p =0, iFE].
1t is evident that similar formulae for ezpanding a determinant by
a column are also valid.

Let us make some other notes c: ing the methods of
the determinants used in the present chapter.
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It can be seen from Sec. 1.0 that Gaussian elimination reduces a
square matrix to a triangular form. Due to Properties 3 and 4 of
determinants above, the transformations used in doing so can only
change the sign of the determinant. The determinant of a matrix of
triangular form equals (see 3.1.8) the product of the entries on the
principal diagonal and the application of Gaussian elimination
relies on just this fact. Different aspects of the method are discussed
in detail in 3.4.

Let us now descnbe the method of iterative formulae which can be

used for eval of the following form:

ab0...00

cab...00
=052 00 (3.0.6)

00 0 .ab

000 ...ca

Consider then set s of infinite numerical sequences

Z = (Gyy Ggy o v vy Gy == 2)e (3.0.7)

Assume, for example, that they are complex. Define linear operations
on these sequences by the formulae:
@) Az = (ay, Ay ...y Aam, L)
(ii) if y = (B Bss + -+ Bny - ..), then
z+y=(0+Py as+Ba..o tntbn..)
and it is obvious that s becomes a linear space.
The set F of all sequences (3.0.7), for whose elements the iteration
formula or the difference equation of the second order holds
On = Pan-y + @n-n R =3, 4 3.0.8)
(where p and ¢ are fixed numbers and g %= 0), is a subspaco of s.
It is easy to see that the dimension of the subspace F equals 2. Let
us show how to construct a basis for this space.
Form the algebraic equation (called the characteristic equation)
from the coefficients of the difference relation (3.0.8)
A —ph—g=0.
Two cases must be considered here:

(izl The roots A, and A, of the characteristic equation are different.
In this case the basis for the subspace F is made up of the sequences
e=(hy AL AL LA, L),

ea=(hay AL AL ..., AR,
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(ii) The characteristic equation has a root of multiplicity 2. In

which case the basis for F consists of the sequences
e =(A, A% A3, ..., A% ...),
e;=(1, 24, 322, ..., nAn-1, ),

Any sequence (3.0.7) belonging to F can be decomposed in terms
of the basis e, e, thus:

T = 18 + g€
In terms of the components this relation is translated into
an = oM + A3
for case 1, and
@y = A" + ¢grA™ "t = A" (A + cpn)
for case 2.

The coordinates ¢, and c, of the sequence z may be determined by
its first two components only. These are the solutions of the system
of linear equations

Moy + Ayey, = ay,

Me, + Me, = ay,

or
Ay + ¢y =ay,
Moy + 2he, = @,
according as which case is considered.
Returning to d i (3.0.6) and expanding it along the last

row, we obtain
D, =aDp, —bcDypy, n=3,4 ...,
i.e. an iterative relation of the second order. Here
D, =a,
D, = a* — be,

and the above construction may be performed.

3.1. Evaluation and the Simplest
Properties of Determinants
A customary set of problems on the evaluation and the simglm properties
of determinants is presented in this section. We mean h{ this the linear prop-
erties, invariance on transposition, changing sign on the interchange of rows
{or wiun.ms). the existence of a zero determinant when its rows (or columns) are
inearly dependent.

Can a determinant of the seventh order have any of the following
products of its elements as one of its terms? If so, what are their



34 Evaluation and Properties of Determinants 57

respective signs?

341, a4 aqy Gyg g7 A3 Cys Agpe

3.1.2. @55 @5y @77 854 0g; Gyp Qs

3.1.3. @y 017 Ggg G4y Qg3 Qg5 Ay

3.4.4. @y a3 ayq ay7 A5y Qgg gy

3.1.5. Extend the profiuct of the elements a5 a, @y @4 @57 of 2
determinant of the seventh order to obtain a term of the determinant
(a) with a plus sign; (b) with a minus sign.

3.1.6. Find the relationship between the indices of the elements
placed (a) on the principal diagonal; (b) above the principal diagonal;
(c) below the principal diagonal.

3.1.7. What is the sign of the product of elements on the principal
diagonal?

3.1.8. Using only its definition, evaluate the determinant

a4, 0 0 ... 0
g @3 0 ... 0
a3 @3 a5 ... 0

@ny Gng Gny -+ Gnn

3.1.9. What is the relationship between the indices of the elements
of a determinant of order n placed (a) on the secondary diagonal;
(b) above the secondary diagonal; (c) below the secondary diagonal.

3.1.10. What sign has the product of the elements of the secondary
diagonal when considered as a term of a determinant of order n.

3.1.11. Evaluate the determinant using its definition only

0 ...0 0 ay,
0 ...0 @y, n-y G2n
0 ... a3 n-2 Ggn-y G |°

@ng «+- Gp,n-2 @n,n-y %an

Using the definition only luate the following d
3.4.42.1010 ... 0 3.4.43.10 ... 010
001...0 0...100
000..1‘ 1...000
100...0 0...001



Ch. 3

3.4.44* (100

° o
NE-IN
- o

coco oo o

3.14.15.

c0sQ ... —sing 1-th row

sing ... co'sq> i-th row
{-th column -th column

The elements of the principal diagonal missed out here are equal to
unity, and all the other elements are zeroes.
31 16. Show that if, in a determinant of order », more than
— n elements are zeroes, then the determinant equals zero.
Only with the help of the definiti luate the d

3.1.47. (000 1 3448. (0051
0002 0062
0003 0073
1234 1234

3149 (005 1
0062
5673|
1234

3.1.20. Prove that if, in a determinant of order n the elements
placed at the intersections of & rows and ! columns are zeroes and
that k + I > n, then the determinant is equal to zero.
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Find the maximum possible number of nonzero terms in a deter-
minant of order n in the following form:

3.4.21. (6,00 ...0 b 3.4.22%, a1 b, 0
€1 ag0... 0 by €y ag by .
Ocpag... 0 by 0 cya -
000 ... any bny 000 .
000 ... cny 6n 000 ..
3.4.23*, | @3 613 .- Gun-s Guno Gin
@51 @3y g5 .- Gz m-g asn
0 a5 @3 ... @3 n-z a3n

0 0 0 ...an-g,n-2 Gnog,nog Gnopn
0o 0 o ... 0 @n, n-1 ann
Represent the determinants of order n with entries expressed in
terms of ¢, as polynomials with powers of ¢ in descending order:
3424, |-t 0 0... 0 a
@ —t 0. 0 0
0 a4 —t.. O O
et
[} ] 0 ... —t 0
0 0 0 ... an =t

3.4.25* |t —1 0 ...0 0
0t —1 ...0 0
o 0 ¢t ..o0 0

[ R AP
@y @y Gy ... Gno1  Gngt
What is the degree of the polynomials in ¢ represented by the fol-
lowing determinants of order n:
3.1.26. [0+t 611 ... O1m

4 antt oo am

Gny  Gng ... annt

3.4.27. |au+t a4t ... a;ntt

83 Gyttt ... agntt

any @ng ... anntt
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3.1.28.* Is it always true that a determinant of the following form:

Gutbut Giatbit ... Gintbint
Gaatbat Gyatbast ... byntbunt

¢n|+bru' 0m+bn:‘ ﬁnn+bnnl

has degree n if represented by a polynomial in the unknown ¢?

3.1.29*. Find the necessary and sufficient condition for the above
determinant to be of a degree less than r if it is represented by a
polynomial in .

3.1.30. Find the free term of the polynomial indicated in Prob-
lem 3.1.28.

3.1.31. How will a determinant with complex entries be altered
if all the elements are replaced by their respective conjugates?

3.1.32. How will changing the sign of each of its elements alter
an n-order determinant?

3.1.33. If each element of an n-order determinant is multiplied
by a, how is the determinant altered?

3.1.34.* How will a determinant be altered if each of its ele-
ments a;;, is multiplied by a'-*, where the number a is nonzero?

3.1.35. The position of an element a;), in a determinant is called
even or odd awordmg to whether the sum i + k is even or odd. Prove
that a determinant is not altered by changmg sign of all its odd-
placed el if,h L all pl have theirsign
changed, then an even-ordered determinant remains unaltered, but
an odd-ordered determinant'’s sign is change

3.1.36*. A d i is called sk Y tric if its entries,
symmetric about the principal diagonal, differ in sign, i.e. a;; =
= —ay,, for all i, j.

Prove that a skew-symmetric determinant of odd order equals zero.

3.1.37.* Prove that the value of a determinant is real if all en-
tries, symmetric about the principal axis are complex conjugates
(i.e. a;; = ay; for all i, j).

3.1.38. How will an n-order determinant be altered if each row is
written in reverse order? Which element of the original determinant
occupies the i, j entry of the new one?

3.1.39. Find the el t of an n-order d i symmetric to
a;; with respect to the “centre” of the determinant.

3.1.40. How will a determinant be altered if each of its elements
is replaced by the one symmetric to it with respect to the “centre” of
the determinant?

3.1.41. Find the el t of an n-order de i ic to
ayy about the principal diagonal.

3.1.42. How will a determinant be altered if each e]ement is re-
placed by the element, sy ic about the 1?
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3.1.43.* How will rotating the matrix of an n-order determinant
through 90° about its centre alter the determinant?

Solve the following equations whose left-hand side is represented
in determinant form:

34.44. | 1 2 3 4 3445.| 1 2 3 4
S—tt 2 3 4| o tH1 2 43 4|
2 3 5—e1 : 1 34t4+t5+¢ .
2 3 4 1 1 -3 —4 —5

Evaluate the following determinants:

3.4.46. |zw1 Twe ... Zwn
W1 Talp - Tabn |

Znh ZnYz «+ Zn¥n

3.1.47. 1 2 n

PR IVE D)

3.1.48. Let f; (2), . . ., fa (¢) be polynomials of degree not greater
than n — 2. Prove that for arbitrary numbers a,, a,, . . ., a,, the
determinant

fila)) fi(eg) ...
fa(e1) f2(a9)

f1(en)
f2 (an)

/n (a1) fn(as) .. /n(ﬂn)
equals zero.

3.1.49. How will a determinant be altered if (a) from each row
(except the first) the previous row is subtracted; (b) from each row
(beginning with the second) the previous row is subtracted, and at
the ;ame time the last of the original rows is subtracted from the first
Tow.

3.1.50. Prove that any determinant equals half the sum of the
following two determinants: one obtained by adding a number b to
all elements of the i-th row of the original determinant, and the other
by adding —b to them.

Evaluate the following determinants representing them as a sum
of determinants:

3451, [tz 143w, oo 14ayn
thzay A4zbs oo 14 2oUn |

A znyy 1+'ny: eor A4-znyn
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3.1.52, [cos(ey—By) cos(o;—By) ... co8 (2,—Pn)
cos (g —By) cos (xz—Bg) ... cos (@g—PBn)|

cos (n—B;) cos(an—Bs) ... cos (an—Bn)

3.4.53% |14z s oo T

Zyy At zays ... Z¥n

Tnly  Ta¥y o 142Znyn
3.4.54. [1—2w} —2ww, ... —200p

—2ww; 1—2w} ... —2on |

—2opwy —h,.w, —2wh
where wi + w}

+...+twp=1.
3.1.55. The numbers 20604 53227 25755, 20927, and 78421 are
all divisible by 17. Prove that the determmant

2060 4
53227
25755
20927
78421
is also divislble by 17.
3.1.56. All of a d A are di iable func-

tions in one variable ¢. Prove that for the derivative of this deter-

minant considered as a function in ¢, the following formula is valid
o (8) i () ... ain(t)

Ay =|m® w® - an@

on1(t) Gns () ... Gnn ()
8 () 852 (t) ... 1a (1) 6 (t) 832(1) +-- G ()
O @ am@ | [m® e am@ |
ans () ang () -.- aan () Gh () s - ahn ()
3.1.57. Omit selecting sign of the entries from the definition of a
determinant, i.e. consider the following function against the entries
of the matrix 4:
A) = a4,z -+ ’
P4 "".Zm’“ 1,624, -« - Gnj,,
where the subscripts jy, fa, +y jn run through the whole set of per-
mutations of numbers 1, 2, . . ., n. This function is called the per-
manent. Prove that for both the determinant and permanent, the
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following properties hold: (a) if all the entries of an arbitrary row of
the matrix 4 are multiplied by a number «, then the permanent is
also multiplied by this number; (b) if all the entries of the i-th row
of the matrix 4 are the sums

ay=by+e i=1,...mn

then the permanent of the matrix A equals the sum of the perma-
nents of the two matrices that differ from 4 only in the i-th row,
viz., the first having all its entries in this row equal to the numbers
by, and the second to the numbers cj; (¢) when the matrix is trans-
posed the permanent remains unaltered.

In contrast to the determinant, however, (d) interchanging the
rows (or columns) of the matrix leaves the permanent unaltered.

Construct some examples demonstrating that the permanent may
be nonzero even if the rows of its matrix are linearly dependent, and
may equal zero in the case of a matrix with linearly independent rows.

3.2. Minors, Cofactors and the Laplace Theorem

The contents of this section are:

Problems about finding a minor, a complementary minor and a cofactor.
The adjoint and associated determinants and certain their properties are also
considered here.

Examples of the use of the Laplace theorem and some computational
problems.

Exercises to use the method of recurrent relations, described in the in-
lrodncuon to the chapter, to evaluate three-diagonal determinants.

3.2.1. Find, for a determinant of order n: (a) the number of mi-
nors of order k contained in k fixed rows; (b) the number of all mi-
nors of order k.

3.2.2. Let M be an arbitrary minor of a determinant of order n;
M’ be the complementary minor; and let (—1)*®M’ be the correspond-
ing cofactor in M (here sy is the sum of the numbers of those rows
and columns of the determinant which form the minor M). Show
that the cofactor corresponding to the minor M’ equals (—1)’MM.

3.2.3. The minor placed at the intersection of the k-th row and
the k-th column of a determinant with the same numbers is called
the principal minor of order k. Find how many principal minors of
order k there are in a determinant of order n.

3.2.4*. Find ex i for the coeffici of the polynomial
f (¢) given by the determinant

ay+t 6y ... Gn
8y Gyttt ... Ban

any Gns wee Gantt
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in terms of the minors of the determinant

81 Gz ... Oin
Gy Gy ... G
Gny Gng ... Onn

3.2.5. Find the maximum possible number of nonzero minors of
order k in the first k columns of this almost triangular determinant of
order n

@;1 Gyp @13 ... G,n-1 Gin
Gy O3y Gg3 --- O3, n-1 Gon
0 @y 63 ... @3.n-y Gsn

o 0 0 + Gn,n-y Gnn

3.2.6. Let D be a determmant of order n (n > 1). The determi-
nant D’ obtained from D by replacing each element a,; with its cofactor
A\ is said to be ad}omt of D. The determinant D" obtained from D
by repl. each el t ayy with its 1 'y minor My, is
said to be associated with D. i’rove that D' = D".

3.2.7. Prove that if a determinant D is symmetric (i.e. each ele-
ment of the determinant D is equal to the one symmetric to it about
the principal diagonal), then the adjoint determinant D’ is also
symmetric. A similar statement is valid for the associated determi-
nant D",

3.2.8. Is the following valid: If a d i D is
skew-symmetric, then the adjoint determinant D’ is also skew-
symmetric?

3.2.9.* Prove that the determinant, adjoint to the triangular
determinant of Problem 3.1.8, is of the form

Ay Ay Ay o Agn
0 Ay Ay ... 4
0 0  Agy ... Asnl-

3.2.10.* Find the relation between the value of a triangular de
terminant of order n and the value of its adjoint.

3.2.11.* How will the adjoint determinant D’ be altered if for a
given determinant D of order n (a) all elements of the i-th row are
multiplied by a number o; (b) the i-th and j-th rows are inter-
changed; (c) the j-th row is added to i-th multiplied by an arbitrary
number ; (d) the determinant D is transposed.

3.2.12. Show that the Laplace expansion of a determinant of
order n by any of its k rows (or columns).coincides with its decom-
position by the remaining n —.k rows (or columns).



32 Minors, Cofactors and Laplace Theorem 65

3.2.13. Prove that if, for a determinant of order n all the minors
of order k (k << n) are equal to zero, then all minors of an order
higher than k are also equal to zero.

3.2.14. Prove that among the minors of order k¥, made up of the
first k columns of this quasi-triangular determinant

@1 «-- Gk Gy ey ce- Gpn
< @kk An, hey Ghn

0 @hip.her +- Ghern
0 ... 0 an,pyy --- ann

only the principal minor can be nonzero. Find the Laplace expansion
of this determinant over the first k¥ columns.

3.2.15.* Given that the principal minor of order k, formed by the
first & columns of a determinant d of order n, is nonzero, and all the
other minors of order k equal zero, prove that d is of the form indi-
cated in Problem 3.2.14.

Using the Laplace theorem evaluate the following determinants:

3.2.16. 1 00 —1 3.2147. | 3 —1 5 2
2 34 7 2 070
-3 45 9| -3 120"
—4 =56 1 5 —4 12
3.2.18, |5 62 —79 4
0 2 3 0
6 183 201 5(°
o 3 4 0
3.219. (976 85 3.2.20. |1 23 45
30020 21234
5304 0 02123
10000 0021 2
75460 00021
3224, (10203 3.2.22. 7 -3 9 5 -4
02030 4 0 0 0 s
203 0 4. -6 0 1 o0 8|
03040 5 0 0 0 4
30403 1 8 —2 —9 3

5—0619
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(@®)

3.223 |2312098 3.224. 123 7 1 9 11
3421753 1 0 3 0 —4 0
005331 7 4 9—-1 11 -5
00857 5| 1 0-—-1 0 1 0
0000097 9—4 11 1 13 2
000043 4 0 1 0 -1 o0

3.2.25, |1 30 94 46 14 2 3226121000 0
0 7 6 9 40 121000
00 3 5 00 012100
0 0 2 3 00| 00121 0|
0 5 41 4 30 000121
2 7 47 23 15 1 000012

3.2.27. Prove that

a1y 812 ++-8,mey Gin Guney Gpnes -es Gpemep Gpem

ay, Gy cooGgney O 0 Gs.neg  --- Gpgn-y Gpom

PR 0 [ 0 0 n,4n

8nyy., O 0 0 0 0 0 Gner.on

Gen-1.1 Ggn-t.g +-+ Gonoginog O 0 83n-1, nez -+ Bgn-y. 2n-y Ggn-y. on

@yn.1 Gam.z  --- ®n,n-y Oan.n Gan.ns1d2n.ns2 - Ganieneg Gonlen

—|am  unn Hng. n-1 Ogonee ' @ny @n.on
@n.n Gzn, ey G2n-1. n-y Gan-1, nez Gn4y. 1 Gnsl.gn
ayy LT EEERC O 1Y @1n @ nay 81, ne2 EERCE L Yy.2n
0 L ' Gania oo Gagney Gagn
0 0 0 ann 0 0 0 an.n
@ny1, 100412 ++0 Onel, n-1 Onaiin Onilinsr Onal nez -es Gnyp.2nep Onap,on
0 Gnsz e +-- Onszon-1 Onezn O Gnis. mez - Gnis. 2n-1 Gniz.on
0 [] L. 0 an.n O 0 .0 an 3n

— [ @1, net
Gni1i1 @netner

() |ar © &3 0 ... am O
0 by 0 by ... 0 by

G2y . s, @nn @n gn

8ns2 2 Gngz. nag @n on Tn.an

an 0 ayp O agm O
0 by 0 by 0 b
@ny 0 an, O ann 0
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ey @i - G | [bu bz -ee bin
—=|%2 G2z .. G| |by ba ... ban
@ny @ng ... ann| |bny bz +.. ban

Using the Laplace theorem, and having first transformed them
evaluate the following determinants:

3.2.28. 3111 3.2.29. 9 797
2111 8 686
—8 595 —9 —7 9 7|
1774 —8 —686
3230 | 6 8 —9 —12 3.2.31. (213 186 162 137
4 6 -6 —9| . 344 157 295 106
—3 -4 6 8 419 418 419 418|°
—2 -3 4 8 417 416 417 416
3232 | 8 10 3 1 4 3.233%. 123 4 5
. 709 4 1 6 476 78
1 -2 2 1 3] 25910 11,
2 5 —4 —2—6 591 1 1
-1 2 6 3 9 912 3 4
3234 |0t 1111 3235 211113
101123 121131
110136 112311
100200| 113411
010030 131141
001004 311114

3.2.36. Prove that for the permanents (see Problem 3.1.57), a
theorem similar to the Laplace is valid, namely if, in a square matrix
A of order n, k rows (or columns) 4 << k < n — 1 are fixed, then the
permanent of the matrix 4 equals the sum of the products of the
permanents of all the submatrices of order % placed in these fixed
rows (or columns) and the permanents of their complementary sub-
matrices (of order n — k).

Using iterative relations evaluate the following determinants of
order n:

3.237. (520 0 3.2.38. |60
252 0 276
025 0| 027 .

0
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Determinants

3200 ...

£
°
o

5

1 —4

0

00
00
00

0100

1010 ...

0101 ...

e 004

0000
0000

10

100... 00

0
-1

00

00

0 —1014 ...

000 ...

0

0
0

000 ... —10

2

129 ...
412 ...

4

0

2

0 —1

3.2.39.

3.2.40.

3.2.4.

3.2.42.

3.2.43.
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3.2.45. Prove the equality:

cosa 1 0 . 00
1 2cosa 1 .00
0 1 2cosa ... O
. ) L. = cos na..
o o o veo 1 2c0sa

3.2.46. Find the iteration relations between the polynomials of
the sequence fo (A), i (A), fa ), - . ., fu (A), where fo (\) =1, and
the polynomial f; (\) (1 < i< n) is the principal minor of order i
placed in the upper left-hand corner of the determinant

A—ay b 0 ... O 0
¢ A—ay by ... O 0
0 ¢ A—ay ... O 0
o o o A—any  bn
o 0 o0 en  A—an

3.3. Determinants and the Volume of a
Parallelepiped in a Euclidean Space

In this section some of the properties of determinants and the volumes of

1} i in an n-di ional lidean or unitary space are established
using the natural relationships between them. Thus, the determinant of a
square matrix of order » is an ori ion volume of a 1lelepiped d
by an ordered set of rows (or columns) for this matrix; the rows (columns) are
considered here to be vectors of the corresponding arithmetic space, and the
modulus of the determinant coincides with the volume of the parallelepiped
(see V. Voyevodin, Linear Algebra, Chu})wr 4). In particular, this relationship
makes 1t possible to extend d 's il lity to d i and to
obtain the related approximations to the values of determinants, and conse-
quently to its volume. We also consider the Gram determinants and find their
relation to the volumes. Finally, we provide some Eroblems to illustrate the
stability of an orth 1 d il end instabilif f a i of
general form.

3.3.1. Let a,, a,, . . ., a, be an ordered set of rows of a determi-
nant d of order r, these rows being considered as vectors in an r-di-
mensional arithmetic space; and let by, b,, . . ., b, be the set ob-
tained from a,, a,, . . ., a, by the orthogonalization procedure. Prove
that the determinant d’, whose rows are the vectors by, by, . . ., ba,
equals the determinant d.

3.3.2*. Prove that a determinant equals zero if and only if its
rows (or columns) are linearly dependent.
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3.3.3. Let d be a determinant of order n
@ G2 ... @n
d=|%n %2 .- G

@ny @n: --- Gnn
Using the relationship between the modulus of a determinant and
the volume of the parallelepiped in an arithmeticspace, prove Hada-
mard’s inequality:

1S (Z, a9 (2 a1 . (2 1019,

3.3.4. Prove that the equality sign in Hadamard's inequality
holds if and only if either each pair of the rows of the determinant
are orth 1, or all the el of at least one row equal zero.
A similar statement holds for the columns of the determinant.

3.3.5%. Prove that if the modulus of all elements a,; of a deter-
minant of order n is bounded by a number M, |ay |< M,
then (a) the modulus of the determmant does not exceed M"n"/’
(b) this approximation is achieved for d with
entries for any n; (c) for determinants with real entries, this approxi-
mation is achieved if » is a number of the form n = 2™,

3.3.6*. Prove that the maximum f, of the moduli of determinants
of order n all of whose elements are real numbers from the line seg-
ment [—1, 1] coincides with the maximum g, of the moduli of deter-
minants whose elements only assume the values 1 and —1.

3.3.7*. Let h, be the maximum of the moduli of determinants of
order n compiled from units and zeroes, and let g, be determined as
in Problem 3.3.6. Prove that for the numbers g, and k,, the fol-
lowing relations are valid

hny Kby < oo <n <2y
Note, in particular, that g, is divisible by 2%,

3.3.8. Using Hadamard’s inequality and the inequalities proved
in Problem 3.3.7, prove, for the case of determinants of order 3,
that (a) by = 2; (b) g3 = 4. Note that it follows from (b) that the
approximation of the value of the determinant, indicated in Prob-
lem 3.3.5 (a), is not achieved for a determinant with real coefficients
of order 3.

3.3.9*. Strengthen the approximation indicated in Problem 3.3.7
by proving that

8n=>28n..
3.3.10*. Find the number g, and a determinant with entries 1
and —1, equal to g;. Note that the approximation of Problem 3.3.5(a)
is not achieved for determinants with real entries of order 5.



33 D i and Volume of Parallelepiped i}

3.3.11*. Prove that if in the conditions of Problem 3.3.5 all ele-
ments a,; of the determinant d are real and nonnegative, then for
the modulus of d the approximation is valid:

ld | << M™27™ (n + 1)+Dr2,

3.3.12. Reformulate Problems 3.3.5-3.3.11 for the volumes of the
corresponding parallelepipeds.
. The Gram determinant of a set of vectors z,, ,, . . ., zy of
a Euclidean (or unitary) space is a determinant of the form:

@) (7)) e

(’xv 1) (Zar 22)

(3»2.) (Tny T2) oee (Zny 20)

(@1 2n)
(22 20) |

G(Zyy onvy Tn)=

‘The matrix of this determl‘nant is called the Gram matriz of the set
of vectors z,, Zs, . . .,

What are the form and value of the Gram determinant if (a) the set

. ., Iy is orthogonal; (b) the span of the vectors z;, ..., Z;
(1 < 1 < k) is orthogonal to the span of the vectors z;4y, . . ., Zy.

3.3.14. How is the Gram determinant of a set of vectors z;, . . .
+ .., z) altered if (a) two vectors, z; and z;, are interchanged; (b) a
vector of the set is multiplied by a number «; (c) the vector z; is
added to the vector z; premultiplied by the number B.

. Hence deduce that the property of the Gram determinant being
equal or unequal to zero is maintained during these el 'y trans-
formations of the set of vectors z,, . . ., z,.

.3.15%. Prove that a set of vectors z,, . .., z of a Euclidean
(or unitary) space is linearly dependent if and only if the Gram
determinant of this set is equal to zero.

3.3.16*. A certain principal minor M of order m, m <k, in the
Gram determinant G (z,, . . ., z)) equals zero. Prove that in this
case any principal minor enclosing the minor M is also equal to zero.
(A minor M, is said to enclose a minor M, if the matrix of the minor
M, contains the matrix of the minor M, as a submatrix.) In particu-
Iar, the determinant G (z,, . . ., 7)) is also zero.

3.3.17. Prove that the Gram determinant of a set of vectors
Zy, . .., Ty is unaltered if a vector of this set is replaced by the
perpendicular drawn from this vector to the span of the other vectors
in the set.

3.3.18*. Let z,, . . ., z) be an arbitrary set of vectors of a Eucli-
dean (or unitary) space; and let y,, . . ., yx be the orthogonal set
obtained from the vectors z;, ..., z, by the orthogonalization
process. Prove that

C@p oo 2 =C W oo UW=10FI¥ P oeelinl
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Using this result, establish the relationship between the Gram deter-
minant of the vector set z,, . . ., zj, and the volume of the paralle-
lepiped generated by this set.

3.3.19. Prove that the Gram determinant G (z,, . . ., z)) equals
zero if the set of vectors z;, ..., z, is linearly dependent and is
positive if this system is linearly independent.

3.3.20. Let 4 be an arbitrary square matrix of order n, either
real or complex; a,, . . ., @, be the rows of this matrix, regarded as
vectors of the corresponding arithmetic space; and G (a,, . . .,2,)
be the Gram determinant of this set (we assume, as usu\ that the
scalar product of the vectors z = (a,, . .., a,) and y = (B,

. .., Pn)is determined by formula (2.2. 1) in the space Ry, and hy ‘the
formula

@y =af+ ... +apn (3.3.1)
in the space C,). Prove that

|det A P =G (@), + + «y ap).

3.3.21*. Verify that the proof of the properties of the Gram deter-
minant stated in Problems 3.3.13-3.3.19 can be given without the
use of the Cauchy-Buniakowski inequality, i.e. only with the help of
the theorems on vector orthogonality. Deduce this inequality from
the nonnegativeness of the Gram determinant.

3.3.22. Prove that the element of the Gram determinant with the
maximum modulus lies on the principal diagonal of this determi-
nant (and if there are several elements of this kind, then at least
one of them lies on the principal diagonal).

3.3.23. Prove that the distance from a vector z in a Euclidean
(or unitary) space to a linear subspace L, spanned by the linearly
independent set of vectors z,, . .., zj, can be computed by the

formula ; -
_[6G z T 12
oo by=[ St |
3.3.24. Prove Hadamard's inequality for the Gram determinants
[ AR E N RN
Show that the equality sign holds here if and only if either each pair
of the vectors z,, . . ., zy is orthogonal, or at least one of these
vectors equals zero.
3.3.25%. Prove the following generalization of Hadamard's in-
equality for the volumes of parallelepipeds
V(@ oevor Tty Tikny o o0 Tn)
KV (@ oo 2)V @4 oo T
where V (. . .) denotes the volume of the parallelepiped generated by
the corresponding vector set.



3.3 Determinants and Volume of Parallelepiped 73

Show that the equality sign is valid here if and only if either
@hz)=0,i=1,..,Lj=14+1, ...,k
or at leust one of the suhsets Ty oo z; and zp4,, . . ., Zy is linear-
ly 1, the ding property for the Gram

determmunu
3.3.26. Let z,, ..., 2y, Zx be a linearly independent set of
vectors of a Euclidean (or umtary) space. Prove that for any vector
3, the following relation between the volumes of parallelepipeds is
valid
Ve, oo d Va3
V@, v zn) S V(s Tnog)
Hence deduce the corresponding property ior the principal minors
of the Gram determinant.
3.3.27%. Let z,, ..., z) be an arbitrary set of vectors. Prove the
inequality

"
Vhi(z,, ..., z.)g}[_[‘ V(T4 ovor Bjopy Tjagy =0 Ta):

Explain the geometric sense of this inequality. Formulate a similar
property for the principal minors of the Gram determinant.

3.3.28*. Let z,, . .., 7 be an orthonormal set of vectors. Prove
that for any vector ¢ whose length is less than unity, the following
inequalities are valid

1—=1el<V (2 ooos Tiop T Tiwps -0 T)KAt el 2 =2 Fe.

3.3.29. A determinant is said to be orthogonal if its rows, regard-
ed as vectors in an arithmetic space form an orthonormal set. Re-
formulate the statement of Problem 3.3.28 for orthogonal deter-
minants.

3.3.30*. Interpreting the modulus of a determinant of order n
as the volume in an n-dimensional arithmetic space, explain the
geometric sense of the moduli of the minors of order k (k < n).

3.3.31. Prove that the modulus of the minors of any order of an
orthogonal determinant does not exceed unity using (a) Hada-
mard’s inequality for determinants (see Problem 3.3.3.); (b) a geo-
metric interpretation of the moduli of minors (see Problem 3.3.30).

Is a similar statement valid for arbitrary determinants whose
modulus equals unity and which are not orthogonal?

3.3.32. Show that the following determinant of order n

120 ...00

01 2. 00
ol 632
000 ...12
000 ...01
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can be made equal to zero by a perturbation of a certain element
whose modulus equals 2-*-1. Find this perturbation. Relate this
result to the question in the previous problem and give its geometric
interpretation.

3.4. Computing the Determinants
by the Elimination Method

In the present section we consider various topics related to Gauss elimin-
ation applied to the evnlnnuon of determinants. We provide four groups of
problems on the following:

The relations between the elements of determinants, obtained at various
stages of the reduction to triangular form, and the minors of the original deter-
minant.

Problems for practising the Gauss method.

The comﬂnt-tioml aspects of the method, i.e. the number of arithmetic
operations, the necessity to control the growth of elements during the nducuon
process, and hence, the use of various tactics whilst interchan, uf.

The application of the Gauss roethod to the proof of a usef t.hznrem on the
Kronecker product of determinants and some of its corollaries.

3.4.1. A determinant wu.h a matrix A was evaluated by the
‘Gauss method without i any rows or i.e. the
Ppivots at the various stages were the elements in the (1, 1), 2,2), . .
-+ (p—1, n—1) positions, respectively. Prove that after the
(p — 1)th stage of this reduction all the minors of order p contained
in the first p rows of the matrix were unaltered. Show also that these
minors are unaltered in the subsequent stages of the reduction.

3.4.2. Let A be a square matrix of order n. The principal minor
of order r at the intersection of the rows and columns numbered
1,2, ..., ris called the leading principal minor of order r of the
matrix 4. Prove that if all leading principal minors of the matrix 4
of orders 1, 2, ..., n — 1 are nonzero, then all the pivots aj?’y .y
employed in the elimination method for the matrix are also nonzero.
Find an etpression for the pivots in terms of the principal minors of
the matrix

3.4.3*. Prove that if

n
l'lul>z‘x||ﬂulv i—1, ...n
i

then the diti di d in th: p blem for the matrix
A of order n is fulfilled. Moreover, the determinant of the matrix
A, in this case, is not equal to zero either.

'3.4.4*%. Prove that for the Gram matrix of a linearly independent
set of vectors z,, ..., z) of a Euclidean ﬂor unitary) space, the con-
dition indicated in Problem 3.4.2 is fulfilled. Moreover, all the pi-
vots of this matrix involved in the Gauss elimination are positive
and do not exceed the maximum entry of the original matrix.
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3.4.5. Prove that if the determinant of a matrix A is nonzero
then, by interchanging the rows and columns of this matrix, all
the leading principal minors can be made to be nonzero.

3 4.6%. During the process of Gauss elimination for a matrix 4,

ing was y. Find exp i for the nonzero
olemen'.s of the p-th row of the matrix A®-D, obtained after the
(p — 1)th stage, in terms of the original matrix.

3.4.7. Using the result of Problem 3.4.6 show that if, in a matrix
A of order r, all the minors of order r + 1 enclosing the nonzero
leading principal minor of order r, 1 <r<<n — 1 (the definition
of an enclosing minor is given in Problem 3.3.16), are equal to zero,
then the determinant of the matrix A equals zero.

3.4.8*. Prove that if in a matrix 4 of order n there is a nonzero
minor M of order r, 1 < r << n — 1, such that all its enclosing mi-
nors of order r + 1 equal zero, then the determinant equals zero.
Note that for the above statement to be valid, it is only necessary
that the enclosing minors that are situated in the r + 1 rows of the
matrix 4 (r of these rows coinciding with the rows forming the mi-
nor M) are equal to zero.

3.4.9*. Using the Gauss method prove that the relation between
a determinant d of order n and its adjoint d’,

4 = d,
established in Problem 3.2.10 for triangular determinants, is valid

for any determinant d.
Using the Gauss method, evaluate the following determinants:

3440, [t 111 3441 |1 1 1 4
1212 1 =1 —
1131] 1 —1 1 —1(*
1214 1 -t —1 T

3442, (0123 3443, (1 2 3 4
1012 3 6 811
2101 7 13 20 26(°
3210 31 23 55 42

344 |1 2 3 4| 3445 |1 2 3 4
3 4 5 6 3 45 6
5 6 7 8 5 6 7 9|
31 23 55 42 31 23 55 42

34464 | 30 20 15 12] 3417 [12 1/ 14k 15

20 15 12 10 1/3 1/4 1/5 1/6

&
®
3
8

14 15 1/6 1/7|°
168 140 120 105 1/5 1,6 1/7 1/8
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3.4.18.

3.4.19.

3.4.20.

3.4.21.

3.4.22.

3.4.24.

3.4.26.

3.4.27.

2 1000 4 0.08
1 3000 —6 0.02
3 —2000 2 —0.02|
2 —1000 2 0
128 256 384 512
16 38 18 /4
/84 1/64 1/64 —1/84|"
2 0 —4 —12
1001 1002 1003 1004
1002 1003 1001 1002
1001 1001 1001 999|°
1001 1000 998 999
12 —1 —0.002
3 8 0 —0.004
2 2 —4 —0.003f
3000 8000 —1000 —6
02345 3.4.23. |1
11234 1
10123, 1
10012 1
10001 1
11111 3.4.25. |3
12121 1
11311, 0
12141 0
11115 0
111111
121212
113113
121412
111151
123216
110 100 1000 10000
04 2 30 400 5000
0 01 3 60 100
0 0 04 4 100
o 0 o 0t s
0o 0 o 0 0.1

& w
8

8 -
G e oo

comwn
o - wn o
- wn o D
w®o oo

» =000
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3.4.28. Evaluate the polynomial f (¢) given by the determinant
3—t 1 0 0 0 o
—1 3—1t 1 0 0 o0
0 —1 3—¢ 1 0 0
0 0 —13—1 1 0
0 o 0 —1 3-1t 1
0 0 0 0 —1 3—1¢
when ¢ = 2.
P 3.4.29. Find the number of multiplication and division opera-
tions necessary for evaluating a determinant of order n by the Gauss
method. Compare this number with the number of multiplication
operauons when evaluating a determmanl by the deﬁnmon only.
3.4.: ing that in G ion no b
occuned find the number of multiplications and divisions necessary
to evaluate (a) an almost triangular determinant of order n

Gy Gy2 @13 .. G-y G neg ain
Gy Gy 83 ... Gxn-p G ne asn
0 @ a3 ... Gymeg  G3n-1 Gy

0 0 o0 @n_j.n-s @n-1,n-1 Gn-gn
0 0 o0 0 an, n-y ann
(b) a tridiagonal determinant of order n
ay by 0
¢y ay by 0
0 ¢ ay 0
000 an-y bn

000 ...cn an

3.4.31. Let it be required to evaluate an n-order determinant
d,, known to be nonzero, and its enclosing determinant d, 4+, of order
n+1, ie.

ay
a3
dnty= dn
an
by by ... bpc
Organize the seq of ions using G li ion

so that for evaluating both determinants d, and d, 4,, there may be
required the same number of mulnphcauons and divisions as for
evaluating only the determinant of order n + 1.



8 Determinants Ch. 3

3.4.32. It is required to 1 k de i of order n which
differ from each other only in the last column Given that all the
determinants are nonzero, what is the sequence of computations
using the Gauss method in which the evaluation of all k determi-
nants requires only O (kr?) more multiplications than the number of
operations necessary to evaluate one determinant of order n.

3.4.33*. Find a method to evaluate a determinant of order n of
the form

811 G2 3 Gy ... G Ao Gin
Gy Gy @y Gy .. Gpney G
a3 0 8y 83 ... G3,mey Gan
ey 0 0 a6y ... agnoy Gyn

G, 0 0 0 Gney, n-1 Gn-1n

Gny  Gn; Gng Ong oo Gn.ner Onn

(where the diagonal elements @y, . . ., @,y -y are nonzero) such
that the number of operations is a second degree polynomial in n
(and not third degree as would be the case for the Gauss method when
applied to determinants in a general form).

3.4.34. Consider the set D, of determinants of order n that fulfil
the following conditions: (a) the modulus of all the elements of the
determinants is bounded by unity; (b) there is an element whose mo-
dulus equals unity; (c) all the leading principal minors are nonzero.

The last condition makes it possible to use the Gauss method to
evaluate a determinant from the set D, without any interchange
(see Problem 3.4.2). Prove, however, that if k is any integer from
theset 1,2, ..., n — 1, and N is any positive number, then there
is a determinant from the set D, such that in the matrix obtained
after k stages of the Gauss method without any interchange, there
may be found an element aff whose modulus is greater than the
number N. Thus, whatever the word size used by a computer is,
there exists a determinant from the set D, whose evaluation by Gaus-
sian elimination will lead to overflow.

3.4.35*. Consider the following modification of the Gauss meth-
od intended to avoid the overflow indicated in Problem 3.4.34.
After completing k stages of the reduction to triangular form,
the element with the greatest modulus out of the elements
aasy a9 n41s -+ o @Whyy is chosen as the pivot of the
(k + 1)th stage. Let it be an element a} w+1s ] =k + 1. Then the
rows k + 1 and j are interchanged so that thls element is posmoned
at (k - 1, k + 1). Then the y G ! ar
performed for the (k + 1)th stage. Thls modification is called tl\e
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elimination method with the choice of a pivot in a column (or par-
tial pivoting). Prove that during this procedure (a) if all elements
@4 ha1r BN2m41s - - o @%hyy of the pivotal column are zeroes,
then the ongma] determmant is also equal to zero; (b) for any posi-
tion (i, j)
la@* )| <2 max |a®)];
N

(c) for a determinant of order », the modulus of all the elements
obtained in the process of the reduction to triangular form is not
more than 2"-! times as great as the maximum element in the ori-
ginal determinant.

3.4.36*. Construct an example to support the probability that
the maximum modulus of elements will grow to the estimated value
indicated in Problem 3.4.35 (c), during the reduction to the triangu-
lar form using the Gauss method with partial pivoting.

3.4.37. Prove that whilst applying the Gauss method with partial
pivoting (a) the maximum modulus of the elements of an almost
triangular determinant of order n will not increase more than »
times; (b) the growth of the maximum modulus of the elements of a
tridiagonal determinant of order r, in the process of the reduction, is
not more than twofold, i.e.

max|a®| <2 max |a,,|, 1<k<n—1.
s s

3.4.38. It follows from Problem 3.4.36 that even faster growth
of the maximum modulus of the elements is possible using the Gauss
method with partial pivoting. As a consequence, a computer may,
once again, overflow during the computation of a determinant of a
sufficiently high order. Thus, another modification of the Gauss
method can be applied: the pivot of the (k + 1)th stage is chosen to
be the element with the greatest modulus out of the submatrix of
order n — k situated in the lower right-hand corner of the matrix
A®™ after the previous k stages. The rows and columns having in-
dices greater than k are interchanged so that the element with the
maximum modulus is positioned at (k + 1, k + 1). The (¢ + 1)th
stage of the Gauss method is then performed as usual. This modifica-
tion is termed the Gauss method with complete pivoting. Prove that
for the Gauss method with complete pivoting, the modulus of the
pivot of the (k + 1)th stage is not more than twice as great as the
modulus of the pivot of the k-th stage. Is a similar statement valid
for the Gauss method with the partial pivoting?

3.4.39*. There exists a hypothesis that for the Gauss method
with the complete pivoting, the growth of the maximum modulus
of the elements of a determinant of order n does not exceed n. Using
the result of Problem 3.3.8, prove this hypothesis for n = 3.
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3.4.40. Deduce from the result of the previous problem that whilst
applying the Gauss method with complete pivoting (a) the growth of
the maximum modulus does not exceed 6 in the case of real matrices
of order 4; (b) the growth of the maximum modulus does not exceed 9
in the case of real matrices of order 5.

3.4.41*. The following determinant of order mn
anbyy anbyy oo Gmmbiz .o apbim ... aimbim

- annbyy @nbyz .. dnnbyy anibym

aybom

@nnbam |

@ nbmm

anibmy -+ Gnnbmy Gnibms -+. Gnnbmy oo Gnibmm oo annbmm

is called the Kronecker product of the determinant

bt bms -+ bmm
of order n and m, respectively. Thus, the matrix of the determinant
D consists of m? blocks of order n. These blocks are obtained from the
matrix 4 by multiplying all its elements by by, by, « . .y bym,
bayy baay - .y bam, bmir Omas - - +» Omm, Trespectively. By
means of the Gauss msthod provs that

= (det A)™ (det B)".

3.4.42. Prove that the Kronecker product of two orthogonal deter-
minants, d of order n and d’ of order m, is an orthogonal determinant
of order mn.

3.4.43. Find the relation between the determinant of a matrix of
order n and determinants of matrices of order 2n arranged as follows:

"G ()

O () ()



CHAPTER 4

Systems of Linear Equations

4.0. Terminology and General Notes
A rectangular number table consisting of m rows and » columns,

C11 O12

A=| o o

DRI ool

@my @my -+ Gmn
is called a rectangular matriz of order m X n (or an m X n matrix).
It is said to be real or complez depending on whether the elements
ayy of this matrix are real or complex.

A minor of order k& is defined for a rectangular matrix, as in the
particular case of a square matrix (see Sec. 3.0), assuming that
k < min (m, n). The minor is designated in the same way, i.e. as
e by

. I»)

The highest order r of the minors of a matrix A4 that are nonzero is
called the rank of this matrix, and any nonzero minor of order r is
termed the basis minor of the matrix 4. If all elements of a matrix
are zeroes (the zero matriz), then its rank is defined to be zero.

If the rows of a matrix 4 are considered as n-dimensional vectors
and its columns as m-dimensional vectors, then the rank of the set
of rows and the rank of the set of columns are both equal to the rank
of the matrix 4. Hence, the rank of the transposed matrix AT, order
n X m (see Sec. 3.0), coincides with the rank of A.

Let z, be a fixed vector and L a subspace in an n-dimensional lin-
ear space V. The set P of all vectors of the form

z=2zy+y, y€L,

is called the plane obtained by lation of the sub L by the
vector z, and denoted by z, + L, z, being termed the translauon
vector, and L the directional subspace of the plane P.

If the subspace L is represented as the span L (g1, gay - - -» qn)
then a parametric equation of the plane P can be formed

z=xo+ hg + tage + ... + tagns

where the parameters ¢, ¢,, . . ., t, assume arbitrary values.
6-0819
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It can be shown (see 4.2.1) that for a given plane, the directional
subspace is defined uniquely. Thus, any plane can have a dimension
equal to that of its directional subspace. Thus, a plane of dimension 1
is called a straight line and a plane of dimension (n — 1) is termed a
hyperplane.

The planes P, = 1, + L, and P, = z, + L, are called parallel
if either Ly < L, or L, < L,.

Let us list some other definitions and results regarding systems of
linear equations (the systems are also considered in Sec. 1.0).

A system of linear equations is called homogeneous if the right-hand
sides of all equations of this system equal zero and ronkomogeneous
otherwise.

A matrix 4, made up of the coefficients of the unknowns, is called
the coefficient matrix of the given system of equations. If the column
of the right-hand sides of this system is ascribed to 4 then the so-
called augmented matriz A of the system is obtained.

Let the number of the unknowns in a system of equations be equal
to the number of the equations. Then the coefficient matrix A of the
system is a square matrix and the condition det 4 5= 0 stipulates
whether the system is consistent or determinate. A unique solution
Iy, ..., Z, can be found by Cramer's formuloe

det 4 .
I'=dTA" i=1,...,n

where A4, is the matrix obtained from 4 by replacing the i-th co-
lumn with the column of the right-hand sides.

Two remarks about the problems of this chapter. A number of
computational problems are given in Sec. 4.2 concerning determi-
nation of the mutual disposition of planes in a linear space. These
problems, including those on finding the rank of a given system of
vectors, intersection of two spans, etc., can be solved by the methods
of Chapter 1.

As it is shown in Sec. 4.5, the solution set of a nonhomogeneous
system of linear equations can be considered to be a plane in an arith-
metic space. If the scalar product can be defined in a space, then
among the vectors of any plane there exists a unique vector. ortho-
gonal to the directional subspace of this plane (see Problem 4.3.11).
It is called the normal vector, and the corresponding solution of the
system of linear equations is called the rormal solution. This con-
cept is used, for example, in Problem 4.5.36.

4.1. The Rank of a Matrix

In this section we provide a number of problems illustrating various defini-
tions of the rank of a matrix and their applications to finding the rank of con-
crete matrices.
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4.1.1. Prove that in any r linearly independent rows (or columns)
of a matrix, there is a nonzero minor of order r.

4.1.2*, In a rectangular m X n matrix 4 (m > n) there is a
nonzero minor of order n — 1, but all its enclosing minors of order n
are zero. Prove that all the minors of order n of the matrix 4 equal
zero, and hence the rank of 4 equals n — 1.

.1.3*. In a matrix 4 there is a nonzero minor M of order r but
all the enclosing M minors are zero. Prove that the rank of 4
equals r.

4.1.4. What can be said of an m X r matrix (m > n) of rank
n if it has only one basic minor?

4.1.5*. What can be said of an arbitrary m X n matrix if it has
only one basic minor?

4.1.6*. Prove that the minor of order r situated at the intersec-
tion of any r linearly independent rows and r linearly independent
columns is nonzero.

4.1.7. A square matrix 4 is said to be symmetric if a,; = ay, for
any i, j. Prove that the rank of a symmetric matrix equals the highest
order of the nonzero principal minors of this matrix.

4.1.8. Show that the statement of Problem 4.1.7 is also valid for
a complex Hermitian matrix 4, i.e. the matrix in which a;; = q,
for any i, j.

4.1.9*. Prove that the rank of an arbitrary set of vectors in a
Euclidean (or unitary) space equals the rank of the Gram matrix of
this system.

4.1.10. A square matrix A is said to be skew-symmetric if a;; =
= —ay, for any i, j. Prove that the rank of a skew-symmetric matrix
equals the highest order of the nonzero principal minors of this
matrix.

4.1.11. Prove that the rank of a skew-symmetric matrix is an
even integer.

4.1.12. The determinant of a square matrix of order ~ is nonzero.
Prove that for any r, 1 <r << n — 1, the leading principal minor
of order r of this matrix may be made nonzero by interchanging only
its rows.

4.1.13. Prove that all the leading principal minors of a square
matrix with a nonzero determinant may be made nonzero by inter-
changing only its rows.

4.4.14. The rank of an m X n matrix 4 equals 1. Prove that there
are numbers b,, . .., by and ¢, ..., ¢, such that

ay = by
for any i, j. Are these b uniquely d ined?

.1.15. The rows of an m X n matrix 4, considered as vectors in
an n-dimensional arithmetic space, are orthogonal. Moreover, in
each row there is at least one nonzero element. Prove that n > m.
6
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4.1.16. Prove that the rank of a matrix 4 of the form

4y 0
a=[% |

equals the sum‘of the nnks of the submamces A,, and Ag, (0 des-

ignates zero
4.1.17. Does the followmg sntement hold “the nnk of a matrix

A of the form
141 4
A‘" 0 An"

is Al;vays equal to the sum of the ranks of the submatrices 4,, and

2_1.18. How can the rank of matrix alter if the value of one of its
elements is altered?

4.1.19. How can the rank of a matrix alter if the elements of
only one row are altered? of k rows?

4.1.20*. Prove that in an n X n matrix of order r, there are &
elements such that however small a change in their absolute value
is, it increases the rank of the matrix to r + k, 1<k <n—r.

4.1.21. Indicate the possible values of the rank of a matrix of the
form

@m; @mg -+ Om, n-1 Gmn
4.1.22. Prove that in a square n X n matrix with a nonzero de-
terminant, the rank of any square submatrix of order n — 1 is not
less than n — 2.
4.1.23. Prove that the two systems of vectors in the arithmetic
space
Ty = (@yr + o1 Batr + oy Byjy + o oy Grn)y
Ty = (@gy +« o1 Baty + v oy Qafy o o oy Gan)y

Ty = (@rzy + + +» Gty » -+ s Qfy o+ oy Chn)

and
Y1 =1y + -+ Cupp -+ + oy Gats + + o G1n)y
= (a,

v @y o oo oty v ooy Gan)y

Yn=(@rs <+ v @ajr <+ o1 @hpy -+ - oy @pn)
have the same rank.
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4.1.24. Prove that the di ion of the span d by a set of
vectors z,, . . ., T equals the rank of the matrix made up from their
coordinates in any basis for the space.

4.1.25. Prove that a vector b belongs to the span of z;, . . ., 7
if and only if the rank of the matrix, made up from the coordinates
of the vectors z;, . . ., 4 in some basis for the space, equals the
rank of the augmented matrix made up from the coordinates in the
same basis of the vectors z,, ..., zy, b.

4.1.26. Prove that the elementary row (or column) transforma-
tions (see Problem 1.2.17) of a matrix do not alter its rank.

4.1.27. Prove that any m X n matrix can be reduced, by ele-
mentary transformations of its rows and columns, to the form

@y, Gy ... Gir ... Gyn l

0 ay azr asn
o o s
[

where ay,, @y, . . ., @, are nonzero, and r equals the rank of the

original matrix. Compare this statement with that of Problem 1.2.18.
Evaluate the rank of the following matrices:

44.29.) 25 —1 4 3

4.1.28, ||37 259 481 407
19 133 247 209 —31 2 0 1
25 175 325 275 41 6 —1 —tf*
—23 0 4 -9
4.1.30%, (1241 381 273 —165

134 —987 562 213
702 225 —1114 49

4431, |- 20 1 4
-1 52 3 5

6 —12 3 —7 —8
-3 79 4 15

4432, |-5 38 —4 03 —4
40 013 0
—34 0 20 o,
20 0-30 4
—10 2 40 0

4.1.33. 9 —12 3 —4 12 —6

—30 42-—10 14 —25 35
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4.1.34. Find the dimension of the span generated by the set of
vectors z, = (73, —51, 13, 42, 15), z, = (44, —32, 5, 25, 3), 2z, =
= (76 52, 16, 44, 18), z, = (—31, 27, —4, —21, —2).

35. A linear space L is spanned by the vectors z; = (2, 4, 8,
—4 T, 25 = (4, —2, —1,3,1), 2y = (3, 5, 2, =2, 4), 7, = (—5, 1,
7, -6, 2).
Do the vectors

(a) by = (6, 18, 1, —9, 8);
(b) by, = (6, 18, 1, —9 + ¢, 8);
© by = (6, 18, 1, —9, 8 + ¢)

belong to this subspace? Here e is any nonzero number.
4.1.36*. Prove that the rank of a k X n matrix 4 of the form

10 a ... a}t
1 e, a} ay~t

1 an af ... ap~t

is equal to k, where k < n and @y, a,, . . ., @, are different numbers.

4.2. Planes in a Linear Space
Most of the problems in the sresem. section concern the (ollowms two topics:
the deurmmmon of a plane and its dimension in a linear space; and the mutual
disposition of planes.
At the end of the section we state some of the relationships between planes
of an arbitrary dimension and hyperplanes.

4.2.1. Prove that the two planes P, = z; + L, and P, = z, +
+ L, coincide if and only if L, = L, and z;, — z, € L,. Hence the
direction subspace of any plane is uniquely determined.

4.2.2. Deduce from the result of the previous problem that for
any plane any of its vectors can be chosen to be the translation
vector.

4.2.3. Prove that if vectors z, and z, belong to the plane P =
= 1zy + L, then z, — z, € L. Conversely, if z; € P and z, — z, €
€L then z, € P.
f4 .2.4. Prove that the plane P = z, + L is a subspace if and only
ifzo€L

4.2.5. Prove that for the plane P = z, + L to be a subspace, it is
necessary and sufficient that the sum of any vectors z, and z, should
belong to L.

4.2.6. Prove that the intersection of the plane P = z, + L with
any subspace, complementary to L, consists of only one vector.

.2.7. What represents a plane of zero dimension?



4.2 Planes in a Linear Space 87

4.2.8. What a plane of di ion n in an n-di ional
linear space V?

4.2.9. Prove that in the space of polynomials of degree <Cn, the
set of polynomials f (¢) satisfying the condition f (¢) = b, where a
and b are fixed numbers, is a plane. Find the dimension of this plane.

4.2.10. Prove that in a plane of dimension k, not a subspace, a
linearly independent set consisting of k41 vectors can be found.

4.2.11. Prove that in a plane of dimension k, any set consisting
of k& + 2 vectors is linearly dependent.

4.2.12. Prove that for any & + 1 linearly independent vectors,
there exists, and is unique, a plane of dimension k containing these
vectors.

4.2.13. Prove that the plane of dimension k containing the lin-

early independent vectors z,, z,, . .., Z, can be described by the
set of all the linear combmauons agTo + Ty + ... 4 oz, sa-
tisfying the condition a, + o, ooy =1,

4.2.14. Prove that if the mtersecuon of two planes P, =z, +
+ L, and P, = z, 4 L, is nonempty, then it is a plane with the
direction subspace L, ] L,.

4.2.15. We define the sum P, + P, of the planes P, = z, + L,
and P, = z, + L, to be the set of all vectors of the form z, + 2,
where z; € Py, 2, € P,. Prove that the sum of the planes P, and P,
is also a plane. Find its directional subspace.

4.2.16. We define the product AP of the plane P =z, + L by a
number A to be the set of all vectors of the form Az where z € P. Prove
that the product of the plane P by the number A is also a plane.
Find its direction subspace.

4.2.17. A subspace L is fixed in a linear space V. Is the set M
of all planes in the space under the operations of addition and mul-
tiplication by a number defined in Problems 4.2.15 and 4.2.16 a
linear space?

4.2.18. Alter the definition for the multiplication of a plane by
a number so that the set M of Problem 4.2.17 may become a linear
space. Indicate the zero element of this space. (The obtained space M
is called a factor-space of the space V by the space L)

4.2.19. Let L be a k-di of an n-di ional
space V in the context of Problem 4.2.18. "What is l.he dimension of
the space M?

4.2.20. Givenaplanez =z, + t,p; + t,p, where zo = (2,3,—1,
1,1, p,=06 —1,1, —1,1), p2 =(—1,1 1, —1), determine
whether the vectors z = (1 6 y 4, —2) and v =(1,6,5, 4, =2
belong to this plane.

4.2.21. Prove that if a straight line has two vectors in common
with a plane then it is contained in this plane.

4.2.22. State the mutual disposition of the plane P = z, + L,
where z, = (1, 0, 0, 1), and L is spanned by the vectors y, = (5, 2,
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—3,1), yo = (4 1, —1, 0), ys = (—1, 2, —5, 3) and the straight
lines

@z=z+tg, =061 —-41, ¢=(-1121);

(b)) z=z, +tgs2, =3, 0, =4 1), ¢ =(—1,1,2, 1)

©z==xz5+tgs, 23=(=2,0, =1, 2), ¢ = (1, 1, =2, 1).

4.2.23. Prove that the straight lines z = z, 4 fg, and z = z, +
+ tg,, where z, = (9, 3, 6, 15, =3), ¢; = (7, —4, 11, 13, —=5), z, =
= (=7, 2, —6, =5, 3), ¢, = 2, 9, —10, —6, 4), intersect. Find
their intersection. Indicate the plane of dimension 2 in which these
straight lines lie.

4.2.24%, Prove that the straight linesz = z; + tg,and z = z, +
+ tg, where z, 15, —3), q1 = (7, —4%, 11,13, =5), 2, =
= (—17,2, —é = (2,9, —10, —6, 4), do not meet. Con-
struct a plane of dlmensmn 3 that contains them both.

Determine the mutual disposition of the planes P; = z, + t,p; +
+ tapy and Py = yo + t19; + tgat

4.2.25. 2z, = (3,1, 2, 0, 1), p= (2, =6, 3, 1, —6),

¥yo=(1,01,1,0), @ =(-11,—-1,01),
P2 = (0, 5, =2, —1, 6),
g = (-1, 3, —1, —1, 2).
42,26 z0= (7, —4,0,3,9, p= (=1, 1, 1, 1, 1),
Yo= (6, =5 —1,2,3), q=@1—-111),
= —-1,1,11),
=1 1,1, -1, 1).
4.2.27. 2y = (2, =3, 1,50, p=@ —2, 1,0, 1),
Yo=0,—1,041), a=0 2 40, =2,
Ps =(-1,5 -2,0,3),
=3 40,3).
4.2.28. z, (=8 =2, 1, =1, 2, py=(1, =1, 1, 1, 3),
¥o=(—1,0,3, 3, 8), a=@01,-=3 =31,
p=(—-1,21,2 -2,
lg: = (0, 1, 2, 3, 1).

4.2.29. z, = (1, 2, 0, 2, 1), =0, =2, 6,1, —4),
Yo=(1 21,21, =1, —40,1, —0),
Pa=1(1,301),

g = (=3, 3, =3, —1, 9).
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4.2.30. z, = (4, 1, 10, =3, 5), =@ 1,30 1),
Yo=1(=3,21,—4,8), g¢=@ -3 31, —5),
pse=(, —4, 0, 1, —6),
9= (5, =2, 6, 1, —4).

4 2.31. Prove that if a straight line z = z, + tg and a hyperplane
Yo + L do not meet, then g € L.

4 2 32. Prove that if the hyperplanes n, =z, + L, and 7, =

= y., + L, do not intersect then L, = L,.
4.2.33*. Prove that if the mtersecuon of hyperplanes =y, ...

« .. @y of an n-di ional space is y, then it is a plane
whose dimension is not less than n — k.

4.2.34*. Prove that any k- dimensional plane can be deﬁned in
an n-dimensional space, as the i of n — k hy,

4.3. Planes in a Euclidean Space

. Various i for

and a Setween phnes and systems o( Imenr
equations xs estnbllshed Then we introduce the notion of a normal vector to
a plane and consider certain geometric problems related to the determination of
distance. In conclusion, we consider it important to note that the deseriguon of
planes by systems of linear el" ations obtained here for the orthonormal
@ Euclidean space, actually holds for any basis of a linear space.

4.3.1*. Prove that the set of all vectors of a Euclidean (unitary)
space £ satisfying the condition (2, z) = b where r is a fixed non-
zero vector and b is a given number, is a hyperplane of this space.
In what case will this hyperplane be a subspace?

4.3.2. Show that the hyperplane described by the condition
(n, ) = b can be also described by the condition (r, z — ) = 0,
where z, is an arbitrary vector of this hyperplane.

4.3.3*. Prove that any hyperplane of a Euclldean space can be
determined by a condition of the form (r, z) =

4.3.4. Prove that if the conditions (r;, z) = b, and (ng, T) = by
determine one and the same hyperplane, then for a certain nonzero
number a, r, = ar, and b, = ab,.

4.3.5. The scalar product for the space of polynomials of degree
<n is defined by formula (2.3.1). Describe the hyperplane given by
the condition f (¢) = d, by a relation of the form (r, /) = b. Indicate
the corresponding polynomial r (t).

4.3.6. Can an arbitrary hyperplane of the space of polynomials
(see the prevnous problem) be described by a condition of the form

J@)=d?
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4.3.7. Prove that any hyperplane can be described, with respect
to any orthonormal basis, by an equation of the first degree
Ay, + Aa,+ .0 + Apa, =5
in the coordinates a,, a,, ..., @, of vectors of this hyperplane.
4.3.8*%. Prove that if the intersection of hyperplanes in an n-di-
mensional space
(ny, 2) = by,
(n2y 2) = by,
(nny 2) = by
is nonempty, then it represents a plane whose dimension equals
n — r where r is the rank of the set of vectors n,, . .
4.3.9. An orthonormal basis e;, . . ., e, is fixed for a E\lclxrlenn
(unitary) space. Prove that (a) if
@40+ a0+ . .+ a0 =by,
A0+ g0y + .« .+ 8pp@p = by,

Q10+ Cma®a+ o+ Cpnln =bp
is an arbitrary consistent system of linear equations in n unknowns,
then the set of vectors z, whose coordinates in the basis ¢;, .. ., €,
satisfy this system, is a plane of the space E. The dimension of this
plane equals n — r where r is the rank of the matrix
8y Gpp oee
Gy Gg2

Om1 Gmg -

(b) any plane P in the space E can be described by a certain sys-
tem of linear equations. This means that a vector z belongs to the
plane P if and only if its coordinates with respect to the basise,, . . .

. ., €, satisfy the given system. If r is the dimension of the plane
P, then any system describing this plane consists of at least n — r
equations, and there exists a system containing precisely n — r
equations.

4.3.10. Find a system of linear equations describing the plane
P =z, + L wherez, = (1, 1, 1, 1) and L is spanned by the vectors
3,0,2,y,=(3.7 —1,2),y,= (2, 4 —1,0).

Prove that among the vectors in any plane P there is a
unique vector z,, orthogonal to the directional subspace of this
plane. The vector z, is called the rormal vector of the plane P.

4.3.12. Show that of all vectors in a plane P the normal vector
2, has the least length.
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4.3.13. Show that the normal vector z, of a plane P equals the
perpendicular drawn from an arbitrary vector of this plane to the
directional subspace.

4.3.14. Find the normal vector z, of the hyperplane given by the
condition (n, z) = b.

4.3.15. Let z, be the normal vector of a plane P (not coincident
with the whole space). Prove that the plane P is contained in the
hyperplane (z5, z) = (2, 2o)-

4.3.16. Find for the space of polynomials of degree <{n with the
scalar product (2.3.1) the normal vector of a plane defined by the
conditions f (0) = 1, f (1) = 1.

4.3.17. We define the distance between a vector x and the plane P =
=z, + L to be the number

p(z, P)= inf p(z, u).
ue€pP

Prove that the distance p (z, P) is equal to the length of the perpen-
dicular drawn from the vector z — z, to the subspace L.

4.3.18. A subspace L is generated by a linearly independent set
of vectors yy, . . ., ys. With the use of the result of Problem 4.3.17
and the Gram determinant properties, prove that the distance from
the vector z to the plane P = z, + L is equal to

_ (G, - Ym z—2) (12
pla P)=( ClUyr --nr VB ) .

4.3.19. Find the distance from the vector z = (5, 3, —1, —1)
to the plane P = z, + L where zo, = (0, 0, —3, 6) and L is spanned
by the s;e(ti of zecmrs =002 —2,y,=(01,20), y; =
=@ —4)

4.3.20. A number

p(P, PY= inf p(u,uyl
u1€Py, u2€Py

is called the distance between two planes Py = z, + L, and P, =
= z, + L,. Prove that the distance p (P;, Pj) is equal to the length
of the perpendlcular drawn from the vector z; — z, to the subspace
L=1L,+L
4. 3 21. Prove that the square of the distance between the straight
lines I, = z, + tq, and I, = z4 + tg, equals
. _ G s 5 —2)

@ ol l)= G (91, 92)

if the straight lines !, and [; are not parallel;

. _ Gl 1, —2y)
) e* (e )= == =0s

if the straight lines [, and I, are parallel.
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Find the distance between the straight lines I, = z, + tg, and
ly =z, + tg,:

4.3.22. 7, = (5.6 2,0,3), =12 —4 iz, =@ —1,31),
¢ =(, 0, —1, 0).

6328 1 = (5,432 ¢ =1, —1, —1); z, = @ 1, 4 3),
g = (=3, =3, 3, 3).
Find the distance between the planes Py = z, + t,p, + ¢,p, and
Py = yo + gy + toga
4.3.24. z, = (89, 37, 111, 13, 54), p,= (¢, 1, 0, —1, —1),
Vo= (42, —16, —39, 71, 3), ¢, = (1, 1, 0, 1, 1),
pa=(1, =1, 0, —1, 1),
g, = (1, —1, 0, 1, —1).

4.3.25. 2, = (5, 0, —1, 9, 3), = 1,0, =1, —1),
Vo=, 2, —4, 17, 5), o= 1,01,1),
pp= (1, —1, 0, —1, 1),
g:= (0, 3,0, 1, =2).

4.3.26. 2 = (4,2, 2, 2, 0), =022 -11),
Yo=(—1,1, —1, 0, 2), o=@ 7 =21, —1),
pe= (2,1, =2, 1, 1),
gs = (=5, —4, 2, —1, 1).

4.3.27. Prove that with respect to any basis for a linear space,
any hyperplane can be described by a first degree equation in the
vector coordinates of the hyperplane (cf. Problem 4.3.7).

4.3.28. Prove that with respect to any basis of a linear space, any
plane of dimension r can be described by a system of n — r linear
equations in the vector coordinates of the plane.

4.3.29. Let! P be a certain plane in a linear space, not being a
subspace, and z an arbitrary vector in this plane. Show that the
scalar product can be defined for the space so that z is the normal
vector of the plane P.

]

4.4. Homogeneous Systems
of Linear Equations

‘We considered it appropriate to group the problems referring to homogeneous
systems of linear equations in a separate section. In contrast to the nonhomo-
geneous case, the question of consistency does not arise here; moreover,
diebnic structure of the solution set is also different, being a subspace for
a homogeneous system and a plane for a nonhomogeneous system.

Great attention has been puid to the two traditional tasks, viz. finding the
complete solution and conslmctini the fundamental system of solutions. It
was our i ions to ize the rel bip of these two meth.ds that
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describe the solution subspace of a homogeneous system and Problem 4.4.13
shows that the formulae for the complete solution coincide, in iu.',t, with the
deocnphon of this subspace in terms of a special fundamental system.
At the end of the section we have indicated som of the applications of homo-
f' us systems of linear equations to the problems concerning linear spaces,
e. ﬁnding the basis and dimension of a subspace, testing the equivalence of two
vector sets, etc.

4.4.1. Show that the solution set of an arbitrary homogeneous
system of linear equations is a subspace, whereas the solutions may
be considered as vectors of the corresponding anthmenc space.

4.4.2. Two t of linear eq

ayzy + ...+ ez =0,

amTy + ... +amnzn = U

byuzy + ..o 4 b2, =0,

and

are said to be equivalent if they have the same solution set. Prove
that the indicated systems are equivalent if and only if the vector
sets

uy = (@, - -+ Q)

Um = (@m1 -+ v Gmn)

vy = (b, + + oy bun)s

. v = (big, - - bim)
are equivalent.
4.4.3. A homogeneous system of m equations in r unknowns has
a coefficient matrix with rank r. Prove that the dimension of the
solution subspace of this system equals n — r.
4.4.4. Indicate all the values of the parameter A for which the
system of equations
B —2) 2 + 2z, + 325+ Az =0,
T+ (9 — N ay + bzs + Az =0,
zy+ 2z, + (10 — ) 74 + Az, = 0,
T+ 224 + 37, + Az, =0

and

is indeterminate.
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Find the d ion of the soluti b of the following sys-
tems in relation to the value of the parameter A:

4.45. (1 — M)z, + Azy + 20z + 20z, = 0,

(—1 + X5y + 2 — 2 7, — %Az, — 2z, =0,

A=Wz +he+ @+ Ao+ (L + Mz, =0,

(=1 + Mz — Az, — 2hz3 + (2 — 30 7, = 0.
4.4.6. —4z, + (2 + 2M) 75 + 2Az, + 20z, = O,

Ary+ (1 + M)z + Azy + Az =0,

Azy + (1 +4) 23 — 225 + Az = 0,

Az — (1 + M)z, —Azy — (2 + 2z, = 0.

4.4.7. Let a homogeneous system of equations be of rank r. Prove
that the minors of orders 1, 2, . . ., r placed in the upper left-hand
corner can be made different from zero by interchanging the equa-
tions and renumbering the unknowns.

In Problems 4.4.84.4.15 the following homogeneous system of
equations is considered

anzy, + a7 + ... F a5z, =0,
ATy + 5Ty + ... 4 Gz =0,

(4.4.1)
AmyTy + AmaZy + - o+ Gupt, = 0.

The rank of this system is assumed to be equal to r, and the corner
minors of orders 1, 2, . . ., r of the matrix of the system are taken
to be nonzero (which can be always achieved, according to Prob-
lem 4.4.7, by changing the order of the equations and unknowns).
4.4.8. Prove that, when applying the elimination method to sys-
tem (4.4.1), ayy, @53, ..., a(;-Y) can be chosen as the pivot at the
separate stages while the resultant system of equations is of the form

4Tyt BTyt oo A QT 8y iy Trat o F AT =0,
a‘z‘z’xz+ B A AT + oz =0, (449,

1 (r=1),
&, 4+ a8z 4 a VT, =0

(those equations whose coefficients are all zero are omitted).
4.4.9. Show that system (4.4.2) can be solved for z,, ..., z,
in terms of the free unknowns z,,,, . . ., Zn, in the following form’

Ty =CyTrey+Carat oo+ CpnarTn

Tr = CnTrag+CraZraet oo = CrnarZn-
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These formulae are termed the complete solution of system (4.4.1).
This means that one possible solution of the first r components of
system (4.4.1) may be found by giving arbitrary values to the free
unknowns by formulae (4.4.3), and conversely, any solution of this
system can be obtained in this way for the corresponding values of
the free unknowns.

4.4.10*. Prove that the solutions of system (4.4.1)

Yi=(Tggs oo 1 Tiry Ty pipy <o 1 Tiphs
Y2 = (Tapr -+ o1 Tars Ty rbir oo o1 Tpn)s
Yn={(Tngp o1 Thps Th, r41s - o Thn)
are linearly dependent if and only if the (n — r)-dimensional vectors
21=(Ty, r+1r 2 Tyn)r
Z3=(Zp, raps o+ 1 Tznh
Zp = (Th, r+1r - o) Thp)
are linearly dependent.

4.4.11. Prove that a basis for the solution subspace of system
(4.4.1) can be obtained as follows: fix some nonzero determinant of
order n — r, and letting the values of the free unknowns z,4,, . . .

.., z, fill the matrix rows in turn, find the corresponding values
of the unknowns zy, . . ., z, by formulae (4.4.3). The constructed
n — r solutions form the basis. Any basis for the solution subspace
of a h system of equati is called the furd: tal so-
lution set of this system of equations.

4.4.12. Show that any fundamental solution set of system (4.4.1)
can be constructed by the method indicated in Problem 4.4.11 by
a correct choice of the determinant.

4.4.13. Show that the vectors

= (e Catr weer Crgo 1, 0,...,0),

2= (v oz +oen G 0 1,...,0),
Yn-r=(Ctn-rs Can-rrvverCronern 0y 0y 1)
form the fundamental solution set of system (4.4.1), where c;, are the
coefficients of formulae (4.4.3).
Adjoining the identities
Ty =Triy

Tr4g = Trio

T, = T,
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to formulae (4.4.3), interpret the )! ion as the rep:
tation of any solution of system (4.4.1) by a lmeu combination of
the solutions y;, ¥, . . ., ¥y, Whose coefficients are the values of the
free unknowns.
4.4.14*. Prove that the rank of the r X (n — r) matrix C, made
up of the coefficients of formulae (4.4.3), is equal to the rank of the
submatrix

8i.re1 Giirez --- Gin
82.r41 B2.rs2 +++ |21
@m.re1 Bm.rez v+ Amn

of the coefficient matrix of system (4.4.1).

4.4.15. Prove that all the coefficients of a free unknown z, (r <
< k < n) in formulae (4.4.3) will equal zero if and only if all the
coefﬁcients of this unknown in the original system (4.4.1) equal zero.

Find the general solution and the fundamental solution set of the
following systems of equations:

4.4.16. 0-z, + 0-z, + 0-z5 + 0-z, = 0.

4.417. 9z, + 21z, — 1524 + 5z, = 0,
12z, + 28z, — 20z, + Tz, = 0.

4.4.18. 14z, + 35z, — Tzg — 63z, =0,
—10z, — 25z, + 5z, + 45z, =0,
26z, + 65z, — 1325 — 117z, = 0.

4.449. 2z, — 51,4424+ 32, =0,

3zy— 4z, + Tzy+ 52, =0,

4z, — 9z, + 823 + 5z, =0,

— 32+ 2z, — 523+ 3z, =0.

4.4.20. 2z,+ z,+4x3+ z=0,

32,4+ 22, — z,— 6z, =
Tzy+ 4z, + 62— 5z, =
g +8z3+72,=0.

4421, z,+4z,+ 2z, —3z5=0,
224+ 92, + 524 — 2z, + 7,==0,
T3+ 3%+ 23— 2z, —9z5=0.



44 Homogoneous Systems of Linear i 97

4.4.22, 2zy— 22,4+ 3z3+ 6z,+ 5z,=0,
— 4zy+ Sz,— Tzy— 3z+ 8z5=0,

8z,— 9z,+ 13z, + 152, + 2z,=0,

10z, — 12z, + 1724 - 122, — 112, =0,

— 6z, + Tz,—10z3— 9z, + 3z,=0,

— 14z, + 172, — 24z, — 152, + 192, =0.

4.4.23, 2z,— 2,— 23— z,— Z,=0,
=2+ 25— Ty— 3 — =0,

4z + z,—5z4— 5z, —5z5=0,

Zi 4+ 4223+ 7+ z,=0,

Z+ T3t T3+ 23+ 25=0.

4.4.24. 3z+ 62,4 1074+ 4z, —22,=0,
6z, + 10z, + 1724+ 72, — 325 =0,
9z, + 3zy+4 2z, +3z,=0,

12z)-- 22,4+ x4+ 8z +5z,=0.

4.4.25. z,+2zy+ 37,4+ 22— 62,=0,
21,43z, + Tzy+ 6z,—18z5=0,
3z + 5z, + 1123+ 9z, —272,=0,
2z, — T2+ 725+ 162, —482;=0,
z,+4z, + S5z34+ 22— 6z,=0.

4.4.26. Verify that the system

2z, + 4z, + 623+ 52, + 3z, =0,
5z, +- 6z, + Tzy + 92, + 62 =0,
4z 4 6z, + 824+ Tz + 525 =0,
5z, + 5z, + 525 + 8z, + 625 =0,
3z, + 4z, + 524+ 62, + 42, =0.

has infinitely many solutions, while in each of its solutions z, =

= z; = 0. Explain these facts in terms of linear dependence or li-

near independence of the columns of the matrix of the system.
4.4.27. Indicate all the sets of unknowns that can be free un-

7-0819
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knowns of the system
— 4z, + 975 + 22, + 22, =0,
5z, + 82, + Txy — 4z + 285 = 0,
3z, — 8z, + 574 + 4z4 + 22, = 0,
Tzy — 2z, 4 223+ 4 — 5z, = 0.

4.4.28. ln the space of polynomlals of degree n, determina the
di of pol Is f (¢) sahsiymg the condi-
tions /(a,) = f(ag) = ...=f(ay) =0 where a,, ..., a5 are
different numbers.

4.4.29. In the space of polynomials of degree <C 5, find the basis
for a linear subspace of polynomlals f@ fu]ﬁllmg the conditions
1O =1 =7~ =0.

4.4.30. Find a homogeneous system of linear equations consist-
ing of (a) two equations; (b) three equations; (c) four equations,
and for which the vector set

n== 4 -2 2 —1),
Yy = (3, 13, —1, 2, 1),
=7 =8, 4 =5
is a fundamental solution set.
4.4.31. Can a system of linear equations be found for which the
vector sets

=(231,2),
y.=(, 1, =2, =2),
=3 421
and
5=(,0 2 —5),
2,=(0,1,87),

23 = (4 5, =2, 0)

are two fundamental solution sets?

4.4.32*. The rank of a homogeneous system of linear equations
consisting of n — 1 equations with n unknowns equals n — 1. Prove
that a nonzero solution of this system can be constructed by the

formulae
= (—1)'4,, i=1,
where A, is a minor derived from the coefficient matrix of the system

by deleting the i-th column. In addition, show that any other solu-
tion of the system and the indicated one are collinear.
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4.4.33. With the aid of the result of Problem 4.4.32, find a vec-

tor orthogonal to the set of vectors
5= (2 —1, 3, 1),
zy=(1, 0, 2, —3),
2= (2, 3, 1, 4).

4.4.34*. Prove the following theorem: For two linearly indepen-
dent vector sets Z;, . . ., Tn-; a0d Yy, - . ., Yn-; in an n-dimensional
linear space to be equivalent, it is necessary and sufficient that all
n minors of order n — 1, made up of the coordinates of the vectors

1+ + + +» Tn-y iN any basis for this space, should be proportional to
the corresponding minors made up of the coordinates of the vectors

Yi ooy Ypore
14.4.35. 'lIB; means of the result of Problem 4.4.34, determine
whether the vector sets of Problem 4.4.31 are equivalent.

4.5. Nonhomogeneous Systems
of Linear Equations

The topics touched upon in this section are, for the most gart, as follows:
Criteria for the i of nonh tems of and

ion into the of individual systems.

Finding the general solution of a system. In addition to purely computational
problems, we also provide problems concerning the determination of the com-
plete solution. As with the homogeneous case, we stress the fact that the for-
mulae for complete solution yield, actually, the parametric equations for the
solution plane of the given system of linear equations (see Problem 4.5.9).
Note that the computational problems also point out certain techniques that
are generally loyed in practical i viz. a change of numeration
and scaling of the i and unk use of individual feats of
system, e.g. its property to decompose into several systems of the lesser order,
or the tridiagonal form of the matrix of coefficients.

In conclusion we list a number of problems referring to particular systems of
“‘::l“ equations. We indicate, inter alia, some applications of Cramer’s for-
mulae.

4.5.1. Prove that a nonhomogeneous system of m linear equations

1s consistent if the rank of the coefficient matrix of the unknowns
i

s m.
4.5.2. Prove that for the system
au; + a2 + .0+ 0T, = by
ATy + @2y + ...+ QT = by,
(4.5.1)
amy + GmeTs + - oo + GmaZn = bm
to be consistent, it is necessary and sufficient that the vector
b= (bsy byy +« vs bim)
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should belong to the span of the vectors

= (a1 spr - -+ Bmi)s

= (alﬁv Qagy - ¢ amz)'
an = (@1ns Cans - - -1 Cmn)-

4.5.3. Prove the Fredholm theorem: for a homogeneous system
(4.5.1) to be consistent, it is necessary and sufficient that the m-di-
mensional vector b = (b, by, ..., bm) should be orthogonal to
all the solutions of the conjugate homogeneous system

s + eu¥e + - -+ Gmym =0,
Qs + CagYs + - - o+ Cmglym =

a

¥y + Gye + -+ Cmnym = 0.

4.5.4. Given that a nonhomogeneous system of m equations in n
unknowns is consistent and the rank of the coefficient matrix of the
unknowns equals r, prove that the solution set for thls system is a
plane in an r-di arithmetic space with d n—r,
and whose directional sub is the solution set of the corres-
ponding homogeneous system with the same coefficient matrix of
the unknowns.

4.5.5. Two nonhomogeneous systems of linear equations

ez + ...+ 6Ty = by,

Cmy@y + oo+ GmpTn = b

Ty + ..o+ CnZn = dyy

and

epTy+ oo FepZn =d;
are called eguivalent if either they are both inconsistent or both
consistent, and have the same solution set. Prove that the indicated

systems, it consistent, are equivalent if and only if the vector sets
are equivalent

U = (@ -+ G bx).

Un = (@m1s + « s Gmns m)

Uy = (C1r + - o+ Camy Gy

and

V= (Cas «+ o1 Ciny A1)
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In the following verify whether the system is consistent and deter-
mine the dimension of the solution plane in relation to the value
of the parameter A.

456, (5—Mz —2r, —z,=1,
=2+ @2 =Nz, — 2z, =2,
—z; — 22, + (53— ANz =1.

45.7. —z, + 1 + M)z, 4+ 2 — N 2y + Ax = 3,

Azy — 1z, +2—Mzs+ha =2,
Az, + Az, +@—Mzs+ A =2
Az, + Az, + =Nz — 7 =2

Problems 4.5.8-4.5.11 concern consistent nonhomogeneous systems
of equations of rank r, similar to (4.5.1). The equations are assumed
to have a numeration that stipulates that the minors of orders
1,2, . ..., r, positioned in the upper left-hand corner, are nonzero.

4.5.8. Applying the method of elimination of the unknowns,
show that system (4.5.1) can be solved for z,, . . ., z, S0 that their
expressions in terms of the free unknowns z,4,, . . ., z, may be of
the following form:

Zy=¢40t CyTras+C1aTrazt oo 4 norZne
Zy=Ca0+ CayTras + CaaTreat oo +ConarZn 45.2)

Zr = Cro+ CriZreg+ CraZraat oo+ 6 nrZne
These formulae are known as the complete solution of system (4.5.1).
Formulae (4.4.3) are a particular case of formulae (4.5.2).

4.5.9. Show that the vector
Zo = (C1o0 Ca00 -+ + s Croy 0, 0, ..., 0)

is a solution of system (4.5.1) and the vectors

¥ = (e Car  eees Crp 1, 0,...,0)

2= (e Ca2s e 0, 1,...,0),

Ynor=(Ctonors Comors ++os Cropers O

form a fund ] solution set of the corresp
system.
By adding the identities
Trag = Tragr
Treg= Trezr
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to formulae (4.5.2), interpret the obtained relations as parametric
equations of the solution plane of system (4.5.1).
4.5.10. Prove that the rank of the matrix,
€0 Cnn €2 .- Cpmer

€0 €2y €23 +or Caner

Cro €y Cpz -++ Cp.om—p
made up of the coefficients of formulae (4.5.2), equals the rank of
the submatrix

Girer coe @inby
@arer -+ Gamby
m.rey - Gmnbm

of the augmented matrix of system (4.5.1).
4.5.11. Prove that the vector
Zy=(C1s Cats - n )y =1, ..., n—T
is a solution of the system of equations
ayty + o+ e, = —ay,
[ N I o
and the vector 2, = (€yq, €201 - - -» Cro) is & solution of the sys-
tem of equations
apzy + ..+ oz = by,
ez + ..+ oty = by
Investigate the consistency and find the general solution of the
following systems of equations
4.512.  38z,— Tiz,+ 46r,+ 84z(= 90,
— 95z, + 185z, — 1152, — 210z, = — 225,
57z — 111z, + 6925+ 126z, = 135.
4.5.13. 105z, — 175z, — 315z + 245z, = 84,
90z, — 150z, — 270z, + 210z, = 72,
75z, — 125z, — 22524+ 1752, = 59.
4514, 7z,—5z,—2z,—4z,= 8,
—3z,4 2z, + 7,4+ 2z,=—3,
25— z,— zy3—2z,= 1,
-z + zg+2z,= 1,
— Z,4 z3+2r= 3.
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4.515. z,+ 22,4+ 3z4+ 4zy= O,
Tz + 142+ 2023+ 272,= 0,
5z,+ 10z, + 16z, + 19z, = —2,

3zy+ Sz,+ 623+ 13z,= 5,

4546, z,+1, - 1,
Zy+ Za+ 24 = 4
Tyt T4 7 =-3,
Tyt + T5= 2,
z, + z5= —1.
4.5.17. 12z, —18z, + 102z, — 174z, — 216z, = 132,

14z, — 21z, + 119z, — 203z, — 252z, = 154,
zy+ 27+ 3z5=—1,
4zg+ Sz bzs=—2,
Tz3+ 8z+ 9zs= —3.
4.5.18. 24z, + 9z,+ 33z3— 15z, =21,
8z,+ 3z,+11z3— 5z, =1,
40z, + 15z, + 5524 — 25z, + 213z = 35,
56z, + 212, + 77z, — 35z, + 1975 = 49.
4.5.19%. 2000z,+0.008z, —0.3z; + 40z,= 3§,
3000z, +0.005z, —0.4z, + 90z,= 8,

500z, 4-0.0007z,— 0.08z;+ 8z,= 1.5,
60000z, +0.09z, —9z; -+ 1300z, = 190.
4.5.20. z+ 2z,— Szy+ 4a+ z3= 4
3z,+ Tz,— z3— 3z+2z;= 10,
— z,—13zy— 2z, 4+ z4= —14,
23— 162+ 2z, = — 11,
2z, +5z5= 12
4.5.21. 8z,+122,=20, 4.5.22. z,—5z,+2z= 6,
14z, + 21z, =35, 22,4+ z,+3z,= 6,
9244+ 11z,= 0, 22— Tzy+324= 4

1624+ 20z, = 0, 3zy+ 22+ 4z5= T,

10z, + 1224 = 22,
1525+ 18z = 33,

2z, — z3+ zo= —12.
4z,+ 3z, + 5z, = Q.

103
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Investigate the following systems and find their general solutions
in relation to the value of the parameter A:

4.5.23. 3z, + 2z, + 23 = —1,
T2y + B2, + 524 = A,
5z; + 4z, + 3z, = 2.
4.5.24. Az + T4 z4= O,
Szy4+ z,—2z4= 2,
—2z,—2z,+ z43= —3.
4.5.25. 24z,— 38z,+ 46z,=:26,
60z, + Az,+115z,=65,
84z, —133z, + 161z, =91.
4.5.26. z(+ z,+Azg=1,
T+ Az, + z4=1,
Azi+ zo+ za=1.
4.5.27. z,+ z,+Azg= 2,
zy+ Az, + zy=—1,
Az zZ,+ zg=—1.
4.5.28. z,+ z,+Azy=3,
Zy+Az,+ z5=0,
Azi+ z,+ z3=0.

45.29. 3—20z,+2—N) 1,4+ z3=",
@= Mz +R—-Nz+ zg=1,
T+ 4+ 2—Nzy=1)

4.5.30. (3+20) 7,4+ (1 +30) 2,4 Azg + (A—1) 7, =3,
3z + (B +2M) 2+ Azy +(A—1) z, =1,
3z, + 3z, + 325+ (A —1) 7, =1,
3z, + Az, +Azg+ (A—1) zg=1.
4.5.31. Verify that in all solutions of the system of equations
2z, +3z3+ 74 +zy = 6
zy+ 223+ 75z, = 5
— 2+ z3+3734 55,4+ 7= 8,
2z, — zy+ z3—8z(+2z5= —6,
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the values of the unknowns z; and z, are constant and equal to 1
and 0, respectively. Account for this fact in terms of the linear de—
d and linear ind d of the col in the
matrix of the system.
4.5.32. Can the general solution of the same system of linear
equations in 8 unknowns be described by the formulae
Zy= Z3+ 2Z¢+ 32,4+ 474,
Ty =22, +3%s+ 27+ 274,
Ty= Ty Te+ Tr— Ze
= 4 — 2z, —6z¢

and
zg= 21z,—6z,— 2623+ 17z,
2= — 17z, + 5z, + 2023 — 13z,
T;=— 1z, + 2z3— z
Tg= 4ry— z,— Sz3+ 3z
4.5.33. Replace the first relation in formulae (4.5.3) of Problem
4.5.32 by
= 22z, — 6z, — 26z, + 17z,

and answer the problem question again.

4.5.34. Prove that the set of polynomials f (¢) of degree <n satis-
fying the condmons/ (a;) = by, f (a3) = by, . . ., f (ay) = by (Where
k<n+1 and a,, ..., ay, by, ..., by are arbitrary numbers,
whereas all a;, 1 << i <k, are different) isnonempty and produces a
plane. Find the dimension of this plane.

4.5.35. Find three linear independent polynomials f (¢) of degree
< 5 fulfilling the conditions f(0) =1, f(1) =0, f(2) = —5,
1@) = —20.

4.5.36*. Verify that the system of equations

(45.3)

Tyt T+ T3—2z=—2,
8z + T2+ T23—9z,= 3,
624+ 5z, + 523 — Sz = T

is consistent and find a normal solution to this system.

4.5.37. Prove that for a nonhomogeneous system of linear equa-
tions, with the number of the equations equal to the number of the
unknowns, to be consistent it is necessary and sufficient that the
reduced homogeneous system should have a unique solution.

4.5.38. The columns 9 G - o Gn of the coefficient matrix of a
system of n linear eq in n form an orth
set. Prove that this system is fully defined, and that its solution can
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be cvalualed by the formulac z; = (b, g i=1, n.
Here b is an n-dimensional vector made up oi the right-] hand sldes
of the system, and the scalar product is defined by the usual rule
for an arithmetic space.

4.5.39. Prove that the statement of Problem 4.5.38 also holds
for a consistent system in which the number of equations does not
equal the number of the unknowns (the same condition of the ortho-
normality of the columns, however, being maintained).

4.5.40. Using the result of Problem 4.5.38, solve the following
system of equations:

az, + bz, + czy + dzy = p,
—bz, + az, + doy — ez, = g,
—dzy + azy + bzy =1,
—dz; + cz, — bzy + az =5

assuming that 4 = a® + b% 4 c® 4+ @2 % 0.

4.5.41. Deduce from the result of Problem 4.5.34 that if the
values of two polynomials /() and g(t) of degree <Cn coincide for
more than r different values of the argument, then these polyno-
mials are equal (i.e. the corresponding coefficients of the polyno-
mials coincide). Hence deduce that the given definition of equality
for two polynomials is equivalent to their equality as functions
(i.e. to coincidence of their values for all values of the unknown).

4.5.42. Find a polynomlal J (t) of the third degree for which
f(i) =2, f(2) = —4, {(3) = —2, f(4) = 10.

4.5.43. Fmd a polynomial f(t) of degree <4 for which /(—2)

—10 7 =4, f(—3) =60, (2) = —0, ] (—1

5.44*. Prove that a polynomlal 1(t) of degree <2k sansfym
the conditions f (a)) =f(—a), i=1, ... k where a}, ..., gj
are different nonzero numbers, is necessanly even, i.e. the equality
f(—=t) =1 (¢) holds true.

4.5.45. Prove that a polynomial f (¢) of degree <2k —1 fulﬁlllng
the conditions f (a;) = —f (—a,), i=1, ...,k where al, ..., af
are different nonzero numbers, is necessarily odd, i.e. the equallty
F(=t) = —f(t) is valid.

4.5.46. Prove that whatever the numbers a, by, b,, . . ., b, are,
there exists, and is unique, a polynomial f () of degree <(n such
that f(a) = by, ' (@) = by, ..., l"" @) = by.

4.5.47. Find a polynomial f(t) of degree <4 such that f(2) = 5,
! (2) =19, f® (2) =40, /¥ (2) = 43 19 @) = 2.

5.48*. Prove that whatever the numbers a,, a,, by, by, . .

+ bn-1s €9 (2, 7= @,) are, there exists, and is unique, a polynomlal
f (l) of degree <nsuch that f (a;) = by, f'(a)) = by, . . ., f®V(a)) =
= bn-1, f(a3) = ¢o.
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4 5.49. Find a polynomial f (f) of degree <4 such that i) =
3,0 () = =3, 9 (1) = 12, 9 (1) = 42, f (—1) =
4 5.50%. Prove that whatever the numbers ay, ay, by, b‘, C.
v bas Cor €uy oy €p (B F ay k 4+ 1 = n — 1) are, there exists,
and 1s unique, a polynomial of degree <Cr such that the conditions
fla) = bo. (@) = by - 19 (@) = by, f @) = o [ (@) =
... S (@y) =c; are met.
4 5 51. Fmd a polynomial f (¢) of degree <5 such that /(1) =
=2 Ft)y=—17, [O1) =4 fOU) =2, [@=
(2 = 2.
4.5. 52. The right- hand sldes by of a certaln system of n linear
in n unl iff of a variable ¢
the coefficients a, of the unknowns are constant numbers. Prove that
the components z,, ..., z, are also differentiable functions of ¢,
and

4.5.53*. By means of Cramer's formulae, deduce, for the r-th
derivative of a function

¢
10=-£2,
the following relation

h(t) 0 0 10}

0] h(t) o [4U]
(= ,,(,.q,(,) MA@y 2 () 10} e |-

AW (5) ACRMD (1) AChO-D (1) .. )

4.5.54. Evaluate the 5-th derivative of the function

- (t—1)°
1= 0 — 615+ 13— 7A1+ 25
when t = 1.

4.5.55. Prove that the solutions z,, ..., z, of certain systems
of linear equauons with the same coefficient matrix (and with right-
hand sides b,, » by) are linearly dependent if and only if the
right-hnd sides are linearly dependent.



CHAPILER §

Linear Operators
and Matrices

5.0. Terminology and General Notes

Given two linear spaces X and Y both real or both complex. A re-
lation between the elements of these spaces that matches each vector
z € X with one particular vector y € Y is called a linear operator A
from X to Y. The vector y is called the image of the vector z and is
denoted by Az, moreover

A (a3, + Pz)) = 0dz, + pdz,
for any vectors z, and z, and any numbers & and B. Since we will
only be considering linear operators from now on, the word “linear”
is sometimes omitted.

The set of all vectors Az, z € X, is called the range or image of the
operator A and is designated by T ,. The set of all vectors z, for
which Az = 0, is called the kerrel of the operator 4 and designated
by N 4. The image and kernel of a linear operator are linear spaces
(see Sec. 5.1). The dimension of the subspace T , is denoted by r, and
is called the rank of the operator A and the dimension of the subspace
N, is denoted by n, and is called the defect of the operator 4.

Let the set of all linear operators from X to ¥ be wxy. The struc-
ture of a linear space can be defined for the set wyy, that is we can

put

(i) (A + B) z = Az + Bz;

(ii) (M) z = A (A2),
where z is an arbitrary vector from X. The operators defined by these
relations, i.e. A 4+ B and A4, are called the sum of the operators A
and B, and the product of the operator A by a number A, respectively.
The zero element of the linear space wyxy is the zero operator from X
to Y, i.e. the operator matching each vector from X with the zero
element of the space Y.

Now, let A4 € wxy, B € wyz. An operator C = BA from X to Z
and defined by the relation

Cx = B (Az),

is called the product of the operator B by the operator A. For the prod-

uct BA to have any sense it is a necessary and sufficient condition
that the image of the operator 4 should be contained in the domain
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of the operator B. This condition is inevitably fulfilled in the case
of operators from wyx. We will say about each of such operators
that it is on the space X.

For an operator A from wxx, a natural power A* may be defined
as the product of k operators equal to A. By definition, for any op-
erator A we put .

A’ =

where E is the identity or unit operator (i.e. the operator matching
each z € X with the same vector z). If
f) =a+at +a,*+ ... +apt*
is an arbitrary polynomial, then the operator
1 (A4) =g + a4 + a,4* + ... + ap4*
is called a polynomml /(A) in the operator A.

The Ao 1 space X is called nondegene-
rate if the defect of this operator equals zero, or in other words, if
the rank equals n. For a nonhomogeneous operator A there exists,
and is unique, a linear operator B such that]

AB =BA =E.

The operator B is called the inverse of the operator A and is denoted
by A7

With the aid of the inverse operator, the whole negative powers of
a nondegenerate operator 4 can be defined. Namely, if & is a natural
number, we put
Ah = (A

A = (4M,
A matrix C = A + B of order m X n is called the sum of the
matrices A and B of order m X n if
cy=ay+byi=1..,mj=1,...,n
An m X n matrix D = AA4 such that
dy=Hnayy i=1,..,mj=1,..,n
is called the product of the matriz A by the number A.
The unit matriz (cf. Sec. 3.0), just like the identity operator, is

denoted by E. If the order » of a unit matrix should be explicit, the
notation E, is employed. Matrices of the form AE are said to be

or, equivalently

scalar.
A matrix C of order p X n such that

m
cy= X bwanyp i=1, ...opj=1, .., n
(=1l
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is called the product BA of a p X m matrix B and an m X n matrix
A. For the product BA to have sense it is a necessary and sufficient
condition that the number of columns of the matrix B should equal
the number of rows of the matrix 4. This condition is necessarily ful-
filled if both matrices are square matrices of the same order.

For a nondegenerate matrix A (i.e. a square matrix with a nonzero
determinant, cf. Sec. 3.0) there exists an inverse matrix 4! satis-

fying the equalities
AA*'=A"'A=E.

If we put B = 4! then the elements b,; of the matrix B can be
computed by the formulae

Ay, -
b=l (5.0.1)

Ay being the cofactor of the element ay,.

If a square » X n matrix C is the product 4B of two rectangular
matrices 4 and B of dimensions n X m and m X n, respectively, m
being >>n, then for the determinant of the matrix C the Binet-Cauchy
formula is valid:

1.2 ...~ ky kg ... K
det C = > A(kl P ,‘")B(,' 2. 6.0
1Sh<hi<...<h,<m
In particular, if 4 and B are also square matrices then
det AB = det A-det B. (5.0.3)

Let A be an operator from wxy and let ¢, .. ., €, and g,
..., Gm be fixed bases of the spaces X and Y, respectively. Resolve
the vectors Ae;, . .., Ae, in terms of the basis vectors gy, . . ., gm?

Aep = aygi +ang +- - -+ Cmgm,
Ae; = 0100 + 03995 + - - -+ CmoGmy

Aen = 1ngy + aon@s + - - -+ Cmnm.

Construct anm X n matrix of the coeffici in these d positions
811 Gz ... Gn
A= @22 - G |} (5.0.4)

@mi @mz ... Gmn

A e is said to be the matriz of the operator A in the pair of basesey, . . .
«. enand gy, . .., gm, OF to define the operator A in this pair of
bases.
An m X 1 matrix is called an m-dimensional column vector, an
1 X n matrix is called an n-dimensinnal row vector. Let each vector
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z € X correspond to an n-dimensional column vector z, made up
of the coordinates of this vector in a basis en - - En Similarly,
each vector y €Y can be hed with an m-di 1 column
vector y, of the coordinates of this vector in a basis ¢y, . . ., gm-
Then the relation between the coordinates of the vector z and vector
y = Az can be determined by a matrix equality

Yq = AgeTe. (5.0.5)
To describe an operator 4 from wyy it suffices to fix one basis
€y, - .., €y, With the vectors Ae,, ..., Ae, being decomposed in

terms of this basis. The matrix made up of the coefficients in the
decompositions is denoted by A4, and is called the matriz of the

operator A in the basis ey, . . ., e,. A, is also said to define the opera-
tor A in this basis. Formula (5.0.5) is converted into
Ye = AZ,. (5.0.6)

Let in a space X two bases be fixed: e;, . .., e, and f, . . ., fn-
Decompose the vectors fy, . . ., f, in terms of the basis e;, . . ., en

fr = Puey + pues + . oo + Pnsn,
f2 = Prses + pases + ... + Pnstn,
fn = Pin€y + Ponee + e + Prnén-
A matrix can be constructed from the coefficients in these decom-
positions
Py P12z +er Pin
P= Pn Piz e P (5.0.7)

p.u pn, S
This matrix P is called the matriz of the transfer from the basise,, . . .
.., e tothe basis fy, . .., f,. If z, and z, are columns of the coor-
dinates of a vector z in these two bases, then the relation between
them is given by the equality

z, = Pz,. (5.0.8)
It 15 now possible also using the transfer matrix to write down the

relation between the two matrices A, and A;, that determine the
operator A on the space X; thus:

4y = P14,P. (5.0.9)
If A € oxy and xf in each of the spaces X and Y two bases are
fixed, i.e. €, ..., € fr, .o, fn and Gy <o oy Gmi Byy ok ey By

respectively, then the mamces Age and Ay, are cnnnecbed by a re-



112 Linear Operators and Matrices Ch. 5

lation

Ay = Q7 geP, (5.0.10)
where P is the matrix of the transfer frome,, ..., e tofy, - . . fay
and Q is the matrix of the transfer from g5, . .., gm to &y, « . ) tm.

If the elements of an arithmetic space are written in the vector-
column form, then formula (5.0.5) makes it possible to identify op-
erators in R, with those in Ry, or operators in C, with those in Cpm,
using m X n matrices which are real or complex, respectively (for
further details see Problem 5.6.7). With this remark in mind, we
will speak, hereafter, of the image of a matrix, its kernel, etc.

5.1, The Definition of
a Linear Operator, the Image
and Kernel of an Operator

In addition to examples of operators in concrete linear spaces, we provide
a number of problems related to the definition of a linear operator. Further, the
effect produced by a linear operator on the principal relations of a linear space
(such as linear dependence, equivalence of vector sets, the sum of subspaces,
eu) is_given prominence.

‘At the end of the section the important concepts of a kernel and image are
discussed.

Determine, for each of the following operators on the three-di-
mensional Euclidean space of geometric vectors, whether the opera-
tor is linear. All the operators are described by their effect on an
arbitrary vector z. Further, a and b signify fixed vectors of the space,
and « is a fixed number.

544.4z =0a.51.2. Az=2z + a.5.1.3. Az = az. 5.1.4. Az =
= (z, a) a. 5.1.5. Az = (a, ) b. 5.1.6. Az = (a, 2) 2. 5.1.7. Az =
= [z, al. 5.1.8. Az = la, [z, b]l.

Verify which of the following mappings of the three-dimensional
Euclidean space of geometric vectors into the set of real numbers
are linear operators. All the mappings are described by their effect
on an arbitrary vector z, @ and b being fixed vectors of the space
and a a fixed number.

5.1.9. f (z) = a. 5.1.10. f (z) = (=, a).

5.1.11. f (z) = cos (z, a). 5.1.12. f(z) = (z, :?.

5.1.13. f (z) = (la, 2, b). 5.4.14. f (z) = (z, la, z]).

Determine which of the following transformations of the three-
dimensional arithmetic space are linear. Each transformation is
described by its effect on an arbitrary vector z, while the components
of the image vector are given by functions of the components of the
vector z.

5.1.45. Az = (z,, 24, 23). 5.1.16. Az = (25, 2, Z,).

5.4.47. Az = (z,, z;, T, —

5.1.18. Az = (z, + 2z, — 3:,,3:, — z, + 3z,, 22, + 374 + 22,).
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Find the linear operators on the space M, of polynomials of
degree <C n in the real variable ¢t among the transformations given
below. Each transformation is described by its effect on an arbitrary
polynomial f (2).

5.1.19. Af () = f (—t). 5.1.20. Af (%) =f(t + 1).
hS. 21, Aof (t) = f (at + b), where a and b are fixed numbers,
w)

5.1. 22 Af () = f (t). This operator is called the differential
operator.

5.1.23. Af (t) = f® (). This operator is called the differential
operator ol mult;plwty k.

5.1.24. Af (1) =f(t+1)—f().

5.1.25. Af(t) = f (¢t + 1) — g (t), where g (t) is a fixed nonzero
polynomial.

5.1.26. Af (t) = tf (). 5.1.27, Af () = [ (t¥).

5.1.28. Show that (a) the transformation indicated in Prob-
lem 5.1.22 can be treated as a linear operator from M, into M, _;;
(b) the transformation indicated in Problem 5.1.26 is a linear operator
from M, into M, +,; (¢) the transformation indicated in Problem 5.1.27
is a linear operator from M, into

5.1.29. Given that a linear space X is the direct sum of subspaces
L, and L,, show that the operator P that assigns to each vector z
from the space X with the decomposition

T=2,+ I,

where z, € Ly, z, € L,, the vector z, of this decomposition, is linear.
The operator P is known as a projection operator of the space X on
L, parallel to L,.

.1.30. A lmear space X is the direct sum of subspaces L, and L
Prove that the operator R matching each vector z from the space 5(
with the decomposition

=2+ 2z,

where z, € L, and z, € L,, with the vector y = z, — z,, is linear.
TheLoperator R is called the reflection of the space X in L, parallel
to L,.

5.1.31. State the geometric sense of the orthogonal reflection of
a three-dimensional Euclidean space in a two-dimensional sub-
space L.

5.1.32. Given that in a linear space X a basis ¢, ..., e, is
fixed, prove that the mapping that matches each vector z of the
space with its i-th coordinate in this basis, is a linear operator
from X into the space of real or complex numbers. The linear opera-
tor mapping the space X into the corresponding number field is
called a linear functional on X.

8—0619
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5.1.33. Prove that each linear op one-di 1
space can be reduced to a mulhphcatmn of nll the vectors of the
space by a number fixed for the given operator.

5.1.34. Describe all linear operators of the space R* (see Prob-
lem 1.1.6).

5.1.35. Prove that any linear operator transforms a linearly
dependent set of vectors into a linearly dependent vector set.

5.1.36. Is the following statement valid: a linearly independent
vector set is transformed by any linear operator into a linearly
independent set?

5.1.37. Is the statement true: if vector sets z;, ..., z; and
Yy - .. Yy are equivalent, then for any linear operator A4 the
vector sets Az,, ..., Az, and Ay,, ..., Ay, are also equivalent?

5.1.38. Let 4 € mxy and L be an arbitury subspace of a space X.
The set of vectors Az, where z € L, is called the image of the
subspace L and denoted by AL. Prove that AL is a subspace of
the space Y.

5.1.39. Prove that the dimension of a subspace AL does not
exceed the dimension of the subspace

5.1.40. Let L be the sum of subspaces L, and L,, and L, their
intersection. Is it true that for any linear operator 4 (a) AL = AL,+
+ ALy; (b) AL, = AL, N ALy}

5.1.41. Give an example of a linear operator for which the formu-
la (b) of Problem 5.1.40 does not hold.

5.1.42. Show that a linear operator 4 has a unique effect on any
vector from a space X given that the images de;, . . ., de, of the
vectors e, . . ., é,, which form a basis for the space X, are known.

5.1.43. Let ¢y, ..., e, be a basis for a space X, vy, ... » Yn
an arbnrary vector set of a space Y. Prove that there exists, and is
unique, an operator 4 from Oyy such that de; = y;, i =1, ..., n.

5.1.44. Let z,, . . ., ) be an arbitrary vector set of a space X,
Y1 - . -, Yy an arbitrary vector set of a space Y. Is the following
statement true: there exists a linear operator 4 from "xr that
transforms the vectors z;, into the vectors y, i =1,

5.1.45. In addition to the data of Problem 5.1.44, assume that
the vector set z,, . .., z is linearly independent. Will the state-
ment of the problem still remain valid?

5.1.46. Given that a basis ¢, . .., e, for a space X is fixed,
show that the operation of a linear functional f on an arbitrary
vector z can be determined by the formula

f@ =ca + ... + caan, (5.1.1)
where a,, . . ., a, are the coordinates of the vector z, andcy, . . .

.., €, are the images of the basis vectors. Conversely, formu-
la (5 1.1) determines a linear functional on X for any numbers
€1y - oy Cne




54 Definition of Linear Operator, Image and Kernel 15

5.1.47. Show that the formula

of (1) = f (20)
defines a linear functional ¢ on the space M, of polynomials of
degree <Cn. Here f is an arbitrary polynomial from M, and a,
is a fixed number. Is the converse statement valid: any linear function-
al @ on M, can be defined thus, given a convenient choice of the
number a,

5.1.48, Let L be a subspace of a space X and A an arbitrary opera-
tor from ©zy. Show that the effect produced by the operator 4 on
the subspace L can be idered as (a) the ion of a lin-
ear operator from L into Y; (b) that of a linear operator from L
into AL.

5.1.49. Let L be a subspace of a space X and A a linear operator
from L into a certain space Y. Show that there is a linear operator
from X into Y whose effect on the subspace L coincides with that
of the operator 4.

5.1.50. Construct two different linear operators on the space M,
of polynomials of degree <Cn that coincide with the differential
operator on the subspace M,_,

5.1.51. Let a space X be the direct sum of subspaces Ly, . . ., Ly.
Show that the effect of a linear operator 4 on any vector of the space
is uniquely determined, if the effect of this operator on each of the

subspaces L, ..., L is known.
5.1.52. Lot A be a linear operator on a real lmeu space R, and C
be a lex space obtained from R by (see Prob-

lem 2.5.13). Define an operator A on C as follows: for any vector
z—z+iy from C where z, y € R, we put

Az = Az + idy.
Show that the operator A is linear.

Cl?n any linear operator of the space C be obtained in this
way

5.1.53. Can a linear functional on a complex linear space assume
only real values?

5.1.54. Show that the kernel N 4 of an arbitrary linear operator 4
from oxy is a linear subspace of the space X.

5.1.55. Is it true that any subspace of a space X is the kernel of
a certain linear operator from X to Y?

5.1.56. According to Problem 5.1.38, the image T , ofan arbitrary
linear operator 4 from wyy is a subspace of the space Y. Is it true
that any subspace of aspace Y is the image of a certain linear opera-
tor from X to

5.1.57. Prove thnt the set of all preimages of a vector y from T,
is a plane from the space X with the directional subspace N 4.

5.1.58*. Construct, for an operator 4 from wyy, a one-to-one

8¢
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correspondence between T, and the planes of the space X of the
form P =z, + Ng4.

5.1.59. The set M of all planes of the space X of the form P =
= zy + N4 is, according to Problem 4.2.18, a linear space.

Prove that the correspondence between planes from M and vectors
from T 4 constructed in Problem 5.1.58 is a linear operator (from M
to T,4). Find the kernel and defect of this operator.

5.1.60*. Prove that for any operator 4 from wyy the sum of the
rank and defect equals the dimension of the space X.

5.1.61. Give an example of a linear operator from wxyx such that
the space X is not the direct sum of the image and kernel of this
operator.

5.1.62. Let M be any subspace complementary to the kernel N 4
of an operator 4. Prove that (a) any linearly independent vector
set from M is transformed by the operator 4 into a linearly inde-
pendent set (cf. Problem 5.1.36); (b) the subspace M is mapped by
the operator A onto its image T, by a one-to-one mapping.

5.1.63. Prove that for any two subspaces, e.g. NV of an n-dimension-
al space X, and T of a space Y, such that dim N + dim T = n,
there is a linear operator 4 from wyy whose kernel coincides with N
and whose image coincides with T.

5.1.64. Construct two different linear operators on M, having
the same image and kernel.

5.1.65. Let A be an operator from X to Y, and L be a subspace
satisfying the inclusion L < T,4. Prove that the set of vectors z
of the space X whose images belong to L (called the complete preimage
of the subspace L) is also a subspace, and its dimension equals
dimL + n,

5.1.66. Flnd the defect of a linear fi ional f on an n-di ional
space X.

5.1.67. Find the kernel of each of the linear functionals on a three-
dimensional Euclidean space f, (z) = (z, a) and f, (z) = (la, ], b).

5.1.68. Find the image and kernel of the linear operator on a t|
dimensional Euclidean space defined by the formula Az = [z, al.

5.1.69*. Do the above for the operator Az = [e, [z,

Determine the defect and rank of the following transformations
of a three-dimensional arithmetic space and construct the bases for
their kernels and images. Each transformation is described by its
efiect on an arbitrary vector z, while the components of the vector Az
are given as functions of components of the vector z.

5.1.70. Az = (2, + z, + 23, T, + 75 + 23, 7y + 2, + z4).

5.4.M. Az = (2z) — 2, — T4, Ty — 22y + T4, T, + T, — 2z4).

5.4.72. Az = (—z, + Zy + Ty, Ty — Ty + Ty, T, + T, — Tg).

5.1.73. Describe the image and kernel of the differential operator
on the space M,.
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5.1.74. Consider the difference operator A) on the same space M,

h)—
af =Lt O

where h is a fixed nonzero number. Find its image and kernel.
5.1.75. Consider the following mapping of the space M, into an
arithmetic space:

FO) ~(f (@) - f @)
where a,, . .., a, are different numbers. Find the defect of this
operator.
5.1.76. Find the image and kernel of the projection operator
(see Problem 5.1.29).
5.1.77. Prove that in complexifying a real space R, the rank and
defect of an operator A from wyy are preserved during the transfer

to the operator A (see Problem 5.1.52).

5.2. Linear Operations over Operators

The set wxy of all linear operators from X to Y is considered, in the present

section, as a linear space. Particular attention is drawn to the following topics:
(i) The dimension of the space wyy.

(ii) Some of the classes of subspaces of wyy. Here we examine the details
of the relation between the ies of linéar d d of op from
wxyy and the mutual disposition of the images of these operators.

(iii) The rank of the sum of and t| di i
equality to the sum of the ranks of the addends.

its

5.2.1. Prove that the set wyy of all linear operators from a space X
into a space Y is a linear space under the operations of additionof
operators and multiplication of an operator by a number.

.2.2. Prove that the space of all linear operators on a one-dimen-
sional linear space is also one-dimensional.

5.2.3. The linear space X* of all functionals on a space X is said
to be conjugate to the space X. Prove that the conjugate linear space
X* is isomorphic to the space X.

5.2.4. Show that for any subspace L of a space X, the following
relations hold: (a) (Ad) L = AL if A5 0; (b) (4 + B) L AL +
+ BL, where A and B are operators from wyy. Show that, generally
speaking, the equality sign does not hold in the relation (b).

5.2.5. Prove that nonzero operators A and B from wyy, whose
images are different, are linearly independent.

5.2.6. Let gy, . .., gm be a basis for a space Y, and z a nonzero
vector of a space X. Prove that operators B,, . .., Bp such that

Bzx=gq; j=1,..,m (5.2.1)
are linearly independent.
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5.2.7*. Prove that for any operator 4 from wyy there are opera-
tors By, ..., By such that A = B, + ... + B,, whereas (a) the
rank of each of the operators B, does not exceed unity; (b) the image

of a nonzero operator B, is the vector ¢;, where g;, . . ., gm is a fixed
basis for the space Y
5.2.8. Lete,, . . ., e, be a basis for a space X, and y be a nonzero
vector of a space Y. Prove that the operators 4,, ..., 4, such
that
¥ k=j
Ao { 0, kg

are linearly independent.
5.2.9. Prove that any operator of rank 1 whose image contains

a vector y is a linear combination of the operators 4,, . .., 4,
(see the previous problem).
5.2.10*, Let bases ¢, ..., ¢, and gy, . gm_for spaces X

and Y, respectively, be fixed. Usmg the results of Problems 5.2.7
and 5.9. 9, show that each operator from wxy is a linear combination
of the operators Ay, . .., Amn satisfying the conditions
=5 N
A,,e,—[ 0, k#i i=4, ...om, j=1, ..., n (5.2.2)

5.2.11. By means of the results of Problems 5.2.6 and 5.2.8 show
that a set of operators defined by relations (5.2.2) is linearly inde-
pendent. Hence deduce the dimension of the space wyy (use also
the results of Problem 5.2.10).

5.2.12. Is the set of linear operators having (a) the same image T;
(b) the same kernel N, a linear subspace of the space wyy?

5.2.13. Show that if T is a subspace of a space Y, then the set
@y of all linear operators mapping the space X into T is a subspace
of the space wyy. Find the dimension of this subspace if dim X = n,
dim 7 = k.

5.2.14. Show that if N is a subspace of a space X, then the set K
of all linear operators from wyy whose kernel contains the subspace N
is a subspace of the space wxy. Find the dimension of this subspace
if dimX =n, dimN =1, dim Y =m.

5.2.15*. Let L, and L, be arbitrary subspaces of a space Y, L =
=Ly + Ly, Ly = Ly N L,. Prove the following relations:

(8) wxr=oxr, +oxL,;
(b) oxr,=oxr, NoxL,

5.2.16. Let a space Y be decomposed into the direct sum of sub-
spaces Ly, ..., Ly. Prove that

xy =0xL, +oxL,+ - -+ +OxL,.
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5.2.17. Prove that the rank of the sum of operators A and B
from wxy does not exceed the sum of the ranks of these operators.
5.2.18. Let operators A and B from wxy satisfy the equality

X=Ta+Ts=Ns+N,

Prove that the rank of the operator A + B equals the sum of the
ranks of the operators A and
5.2.19. Deduce the following mequalny from Problem 5.2.17

ra+s=|ra—rsl

5.2.20*. Prove that any operator A from wxyy with rank r can
be represented as the sum of r operators of rank 1 but cannot be
represented as the sum of less than r such operators

5.2.21*. Find the and suffi for the sum
of two operators of rank 1 to be of rank << 1.

5.2.22*. Given that a space X has the dimension n (r > 1),
prove that in wyy any subspace L of dimension n + 1 contains
at least one operator > 1.

.23. Let operators A and B from wxzy be such that for any
vector z from X, vectors Az and Bz are collinear. Does this imply
that the operators A and B are themselves collinear?

5.2.24*. The condition that n (» = dim X) must equal the rank
of the operator B is added to the data in Problem 5.2.23. Are the
operators 4 and B collinear in this case?

5.2.25. Prove that operators A and B of rank 1, having the same
image T and kernel N, are collinear.

5.2.26. Prove that for any projection operator P, the operator
E — P is also a projection operator. Find the relation between the
kernel and image of the operator £ — P and the kernel and image
of

5.2.27. Prove that for operators P and R carrying out the projec-
tion and reflection of a space X into L, parallel to L,, respectively,
',he following relation is valid: £ + R = 2P.

5.2.28. Show that when a real space R is transformed into a com-

plex one: (a) an operator A4 + B corresponds to the operator A+B

(see 5.1.52); (b) an ad ds to the ad,
a being a real number.

5.3. Multiplication of Operators

In the present section the following topics related to the multiplication of
operators are scrutinized:
(i) The image and kernel of the product of operators.
(i) Polynomials in operators.
(ili) Commutativity of operators.
(iv) Nondegenerate operators.
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We assume in the following that the products of operators which may be on
different spaces make sense.

5.3.1. Prove that the product BA of operators A and B satisfies
the inequalities:

(8) rpa <min (ra, rp)

(b) npa > na.

If the operators A and B are defined on the same space, then

(¢) npa =>np.

5.3.2. Prove that the product BA of operators 4 and B satisfies
the relations: (a) rps =rs — dim (T4 N Np); (b) npa = na +
+ dim (T4 NN p).

Note that from (b) an inequality follows:

npa < na+ Ry
5.3.3%. Prove the Frobenius inequality:
Tpa +Tac<Ta +Tpac

5.3.4. Let A and B be operators from wxx whereas B4 = 0.
Does it follow from here that 4B = 0?

%3.5. C;v)ive an example of two operators A and B such that AB =
=BA=0.

5.3.6. Prove that the set of all linear operators B from wxx satisfy-
ing, for a fixed operator A, the condition AB = 0, is a subspace
of the space wxy. Find the dimension of this subspace if
dim X = n and the rank of the operator A equals r.

5.3.7. The same question for the set of operators C from wxx
satisfying the condition CA = 0 for a fixed operator A of rank r.

5.3.8. Let X be an n-dimensional space and A an operator of
rank r from wyy. Using the operator 4, construct a transformation
of the space wyy that matches any operator B with the operator AB.
Prove that this transformation is linear. Find its rank and defect.

5.3.9. Let A be an arbitrary operator from oxx, and let Ny and
I;,' be the kernel and image of the operator A', respectively. Prove
that

(8) Nyc Ny Ny ..

b)) Iy T,D>T;> ...

5.3.10*. Prove that if in the sequence of subspaces .V, N, N, ...
(see Problem 5.3.9) for some g for the first time Ny = Ng4y, then
Ng = Ngyp for any k> 1.

$.3.417An operator A from wxy is said to be nilpotent if there
exists a natural number g such that A% = 0. The least such number ¢
is called the nilpotence indez of the operator A. Prove that the index
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of any nilpotent op di ional space does not exceed n.

5.3.12. Show that the rh ial op on pol 1s of the
space M, is nilpotent. Find its index of nilpotence.

5.3.13. Let 4 be a nilpotent operator of index g, and a vector =
sausfy the mequahty A%z 5= 0. Prove that the vector set z, Az,
A’z , A971z is linearly independent.

5.3.14%, Prove that for any operator A from wxx and with rank 1,
there is a number a such that 42 = a4.

R’S .3.15. Show that any operator of reflection R satisfies the relation
P’5.3 16. Show that any projection operator P satisfies the equality
= P.

5.3.17*. Conversely. prove that any operator P satisfying the
condition P? = P is a projection operator.

5.3.18. Show that it follows from the conditions P, + P, = E,
PPy =0 that

(a) P,, P, are projection operators;

®) PP, =

5.3.19. Prove that an operator 4 on the space M, which assigns
the polynomial g (£) = f (¢t + 1) to any polynomial f (?) is a polyno-
mial in the differential operator.

5.3.20. Given an operator 4, a polynomial 1 (?) (f (t)0) is called
an A-annihilator if f (4) = 0. "Prove that, for any linear operator 4
on an n-dimensional space, there exists an A-annihilator of degree

5 3 21 Let m (t) be the polynomial of the least degree out of all
the A-annihilators. Prove that m (t) is a divisor of all the other
A-annihilators.

5.3.22. Prove that the polynomial m(t) of Problem 5.3.21 is
uniquely determined by the operator 4 depending only on a nonzero
multiplier. Normalized so that the higher-order coefficient equals
unity, the polynomial m(t) is called the minimal polynomial of the
operator 4.

5.3.23*. Find the minimal polynomial (a) for a projection opera-
tor. (h) for a reflection operator; (c) for a nilpotent operator of in-

5.3.24. Show that for an operator of rank 1, the minimal polyno-
mial is of the second degree.

5.3.25. Operators 4 and B from oy are said to be commuting
if AB = BA. Let A commute with B, and B commute with C.
Does it follow that 4 commutes with C?

5.3.26. Show that any two polynomials in the same operator 4
are commuting.

5.3.27. Show that if operators 4 and B are commuting then any
polynomials f (4) and f (B) in these operators are also commuting.
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5.3.28. Prove that for commuting operators 4 and B
(A+ By = A na-1B 4 200 grape g g,

5.3.29. Prove that operators of rank 1 having the same kernel
and the same image are commuting.

5.3.30. Given two commuting operators, prove that BN , < N 4.

5.3.31*. Prove that if the projection operators P, and P, are
commuting, then their product is also a projection operator. Moreover

@) Tpp,=TpNTp,;
(b) Np,p,=Np,+Np,

5.3.32*, Prove that the sum of the projection operators P, and P,
is a projection operator if and only if P,P, = P,P, = 0. In addition,

@) Tpp,=Tp,+Tp,;

(b) Npiyp,=Np, N Ne,

5.3.33*. Prove that if an operator A commutes with each opera-
tor from wyy, then for any subspace L from X, AL = L. In parti-
cular, for any vector z from X, the vectors z and Az are collinear.

5.3.34. Using the result of Problem 5.3.33, prove the Schur
lemma: if an operator A commutes with each operator from wxy
then it is scalar, i.e. A = aE for a certain number a.

5.3.35. Show that if 4 is a nondegenerate operator, then for any
subspace L, the equality dim L = dim AL holds.

5.3.36. Given that a space X is the direct sum of subspaces

1y - -+ Ly, and A; is a nondegenerate operator defined on the
subspace L;, i =1, ..., k, show that an operator 4 from wyy
coinciding, on each of the subspaces L;, with the corresponding
operator A, is nondegenerate.

5.3.37. Verify that the diff ial (a) is d
on the space M, of polynomials of degree <n. (b) is nondegenerate
on the two-dimensional linear space generated by the functions

f1 = cos t and f, = sin ¢ (under the i of function additi
and multiplication of a function by a number, both defined in the
usual way).

5.3.38. Find the inverse operator of the differential operator
deﬁned in Problem 5.3.37(b).
5.3.39. Find the inverse of a refl
5.3.40. Show that for a nondegenerate operator A and any non-
zero number a,

(@d)yt=—2 4.

5.3.41*. Prove that if an operator A is of rank 1, then at least
one of the operators E + 4 and E — A is nondegenerate.
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5.3.42. Prove that if an operator 4 is nondegenerate, then for
any operator B,
Tap =Tpa =Tp
5.3.43. Prove that the product of operators A and B is a non-
degenernte operator if and only if each of the operators 4 and B
is nondegenerate. In this case:

(AB)~ = B-141.
5.3.44. Prove that for a nondegenerate operator A and an arbi-
trary operator B, the identity is valid
(A+B)A* (4 —B)=(4 —B)A* (4 + B).

5.3.45. Let A be a nilpotent operator of index g. Prove that the
— A is d and that

E—A)'=E+ A+ A4+ ... + 49,

5.3.46. Given that operators 4 and B are connected by a rela-
tion AB + A + E = 0, prove that 4 is a nondegenerate operator
while A = —E — B.

5.3.47. Prove that xf nn A-anmlnlator has a nonzero free term,
then the

5.3.48. Prove that the absolute term of the minimal polynomial
m (t) anmhxlahnia nondegenerate operator is nonzero.

5.3.49. Prove that for a nondegenerate operator A on an n-dimen-
sional space, the inverse operator 4! is represented as a polyno-
mial in 4 of a degree not greater than n® —

5 3 50 Show that any two polynomials f (4) and g (A™"), where

5 3 51 Let A be an opentor from wxy and let there exists an
operator B from wyy such that BA = Ey ghe ndentlty operator of
the space X). Does it follow from this that AB =

5.3.52. Let X be the span of polynomials ¢, 3, ..., t"; and
let Y be the space of polynomnls of degree <<n — "1.” Consider
the diffe of pol; Is as an op A from X into ¥
and i ion (i.e. the transf hing each polynomial
vﬁ‘th its antiderivative) as an operator B from Y into X. Show

that
BA = Ey, AB =Ey.

5.3.53. Let, in addition to the data of Problem 5.3.51, dimY >
>d1m X. Prove that the AB is a p p

n Y.
5.3.54. Show that, when complexifying the real space R: (a) to
AB there corresponds the op: A8; (b) to a nondegene-
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rate op: A there ponds the ds ate operator 4;
(c) if A is nondegenerate then to the inverse operator 4! there

corresponds the inverse operator A,

5.4. Operations over Matrices

We consider here various properties of the o) Ienuons defined on matrices,
and first of all, the operation of muluphcman mongst the Iaplcs treated, the
greatest wexght is given to the fo owmg
i) The formal the
dimensions of factors and the product, the numher af hmthmenul nnl,hmeuc
operations; etc.
(ii) Matrices of
(iii) Commuting matrices.
(iv) Classes of matrices, closed under multiplication.
(v) The rank of the product of matrices.
(vi) Operations with matrices partitioned into blocks, i.e. partitioned
mat rices.
(vii) The Kronecker product of matrices.

Find the products 4B and BA where

'y matrices).

(or

4
5.44. A=(2 —30), B=|[3f.
1
2 0
—230 1 1
5.4.2. A—" 2e2 _Jl il
1 3
Find the product AB where
83 —29 —52 48 2
54.3. A=|—15 91 78 —112ff, B= 4l
338 —4 69 85 o

83 —29 —52 46

5.4.4. A=]|010]|, B=’ —15 97 78 —1ii2
38

—4 69 85
5 2 —3 -3 1
-7 -2 4 2 1
5.4.5. A= 12 14l B= 1l
2 -2 -3 4 1

5.4.6, A=||1111], B=
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923 2115 0 0 0o 0 0 o0
1097 518 0 0 0o 0 0 0
547 A=|"6cr 169 0 0f" B=||416 a2 1505 s2"
841 13 00 540 705 999 400]|
5.4.8*. Evaluate the product ABC of matrices
901 992 993
12 —8 —2 11
4= % % 96 p_ N o —3f, c=[1 2.
997 998 999 % 12 —4 30
1000 1001 1002
5.4.9*. Evaluate the product ABCD of matrices
3 3
a=|sll, B=y213510 128y. c=|—1|, D=yt —21y.
7 -

5.4.10. Show that a system of linear equations
8Ty +apTy + ..o+ 8inTy =y
@y %y +agp%; .o+ 83Ty =by

@ T+ AmaTat oo+ Oy =bpy

can be rewritten in the form of a matrix equation Az = b by intro-
ducing matrices

4y aye b z
b, z.

A=|[%n b=, z=|].
Gmy Gmy .. Gmn bm In

5.4.11. Conversely, show that the solution of a matrix equation
AX = B, where A and B are m X nand m X p matrices, respec-
tively, is reduced to the solution of p systems of linear equations
with the same coefficient matrix A but different right-hand sides.

Solve the following matrix equations:

sz |3 f"xaﬂ_s o

5.4.13. x" _ " ":: f|

5.4.14. ’f ;|x—X“1 _‘"=": _:"
satse x|, x|t =t Tl
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12
5.4.16. X2 3 4 ‘_“gf:
341
1111 143
1011 032
sz, 101 Hx=f02 2
00114 021

5.4.18. Show that if both the products AB and B4 have sense
and 4 is an m X n matrix, then B is an n X m matrix.

5.4.19. Evaluate the number of multiplication and addition
operations in multiplying an m X n matrix 4 and an » X p matrix
B together.

5.4.20. Let A, B and C be matrices of orders m X n, n X p,
P X g, respectively. Evaluate the number of multiplications required
to compute the product ABC. Note that this number of operations
depends on the place of brackets in the product ABC.

5.4.21. Verify that for square matrices 4 and B of order 2, the
procedure for computing the matrix C = AB indicated below
requires 7 multiplication operations whereas employing the usual
algorithm to construct AB requires 8 multiplications:

@y = (833 + @30) (byy + b22)s
= (en + 243 byys
@y = @y (b1 — baa)y
Ay = gy (b — b1y
= (@ + @12) by
g = (@5 — au) (byy + b1a),
oy = (@12 — @3) (b + D30)s
n =0+ ag—a +ap
€12 = a3 + as,
e = Gy + Qg
Cap = Oy + &3 — &y + .
This algorithm was suggested by Strassen.

5.4.22. The sum of the elements on the principal diagonal of

; sqlla;e matrix is called its trace. The trace of a matrix 4 is denoted
y

Prove that the following properties are fulfilled

(@ tr(A+B)y=1trd +trB;

(b) tr (@A) = a tr 4;

(¢) tr (AB) = tr (BA).
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The last equality is also valid for rectangular matrix 4 and B if
both the products AB and BA are defined.

5.4.23. Matrices A and B of orders m X rn and n X p, respec-
tively, possess the property of having the same sums of the elements
in any row, equal to r in the matrix 4, and to s in the matrix B.
Prove that the same property is possessed by the product AB, with
the corresponding sums equal to rs. Enunciate and prove a similar
statement for the columns.

5.4.24. Show that the elementary row transformations of a matrix
A (see Problem 4.1.26) are equivalent to a premultiplication of
this matrix by specul matrices, called the matrices of elementary
tmn:formatwns, that is (a) mterchsngmg the i-th and j-th rows
to a multipli by a matrix Py,

Py=

(the el of the principal di; 1 that are not indicated are
equal to unity; all the other elements, except elements (i, j) and
(7, i), are equal to zero); (b) multiplication of the i-th row by a num-
ber a corresponds to a multiplication by a diagonal matrix D,

1

D= L3

(c) addition of the j-th row muluplled by a number a to the

i-th row is eq 1 to a lication by a matrix Ly
1
e
Ly= Tl
1
*e
1

(all ofi-diagonal elements of this matrix, except the element (i, j),
are equal to zero).
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Formulate and prove similar statements for the elementary trans-
formations of the columns of the matrix 4.

5.4.25. Determine how a matrix 4 is altered by post-multiplica-
tion by (a) the matrix N,

(b) the matrix S,
1 ay

The ofi-di 1 el of both ices that are not indicated
are equal to zero.

A similar problem for premultiplying the matrix 4 by the ma-
tnces S, and N,.

5.4.26. Prove that (a) the matrix N, (see the previous problem)
is the product of matrices Ly, k =i+ 1, ..., n (see Prob-
lem 5.4.24 (c)); (b) the matrix S, is the product of matrices Ly,,
k=1,...,i—1,i+1, ..., n (c) the nontrivial elements of
the factors Ly, coincide with the ding nontrivial el
of the matrix Ny (S4); (d) the order of the factors in the product
in both cases is arbitrary.

5.4.27. Prove that the product NN, of the matrices N, and N,
is (when i <j) of the following form
1

1
LI
a1 1
Gt G
1

ant anj 1
(the ofi-diagonal elements which are not indicated are equal to
zero).
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5.4.28%. A square matrix P in which each row and each column
have only one nonzero element equal to unity, is called a permuta-
tion matriz. Prove that any permutation matrix is the product of
the matrices Py, (see Problem 5.4.24 (a)).

Evaluate the following expressions (if the order of a matrix is
not explicit, it is equal to »):

5.4.29. "; :"‘ 5.4.30, “: ;"ﬂ

5431 f|a,  OfF

'
(all the off-diagonal elements are zero).
0 n
5.4.32. ||0 Mm|* 5.4.33. |0 1 o
A 01
. 0-
N o
w0 -0

(all the elements, except the elements positioned at (i, i + 1),
i=1, ..., n~—1, are zero).

5.4.34, [0 1 +
01
0 .
Rt
1 .. .0
(all the el except the el itioned at (1, 2), (2, 3),

3,4, ..., (n—1, n), (n, 1), are zero)
5.4.35%. Prove that for an n X » matrix

a1

90819
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the matrix J} is of the form (k > n):

[T EEZD s . magyanenn
0 K1 L meagyenee
Ne M. A-3C,M-ne
0 .
2

The matrix J, is called a Jordan block corresponding to the num-
ber A.

5.4.36. Let D be a diagonal matrix of order » with all the diagonal
elements different. Prove that (a) any polynomial in the matrix D
will be diagonal matrix; (b) any diagonal matrix can be represented
as a polynomial f (D) in the matrix D; (c) f (¢) can be chosen so that
its degree does not exceed n — 1.

5.4.37. Prove that for any diagonal matrix of order n, the mini-
mal polynomial has a degree not exceeding n. The definition of
the minimal polynomial of a matrix is similar to the definition
of the minimal polynomial of an operator. The latter is given in
Problem 5.3.20.

5.4.38. Show that the minimal polynomial of a diagonal matrix
of order n_with all its diagonal elements different is of degree n.

5.4.39. Prove that a matrix, commuting with a diagonal matrix
which has all its diagonal elements different, is also diagonal.

5.4.40*. A square matrix A is called scalar if it is diagonal and
all its diagonal elements are equal. Using the result of Problem 5.4.3%
prove the Schur lemma: if a square matrix A commutes with all
square matrices of the same order, then it is scalar (cf. Prob-
lem 5.3.34).

5.4.41. Show that for any matrix A, the set of matrices that
commute with 4 is (a) a subspace; (b) a ring.

Find the general form of matrices that commute with the following

matrix:
5.4.42. 5.4.43*. || o

1
0

ooo
o o=
- o

1
01

Tl

0

(the matrix is of order r).
5.4.44. Prove that any matrix, that commutes with a matrix 4,
will also commute with the matrix 4 — AE for any number A.



54 Operations over Matrices 131

Hence deduce that the set of matrices, symmetric to a Jordan block
J 1, is the same for all A and therefore coincides with the set obtained
in Problem 5.4.43. According to Problem 5.4.41, this set is a sub-
space, determine its dimension.

5.4.45. A square matrix 4 is called upper (or right-hand) triangular
if a;; = 0 for i > j. Similarly, a square matrix 4 in whicha;; =0
for i <j, is called lower (or left-hand) triangular. Prove that the
product of upper (lower) triangular matrices of the same order is an
upper (lower) triangular matrix.

5.4.46. Find the number of multiplications necessary for the
evaluation of the product of two triangular r-order matrices of
the same form (i.e. both the matrices are either upper triangular
or lower triangular).

5.4.47. A square matrix 4 is called strictly upper (lower) triangular
if a;; = 0 for i >>j (i < j). Prove that for the product B of two
strictly triangular matrices 4, and 4, of the same form, b;; = 0
when i>j—1 (i<<j+1).

5.4.48. Prove that for a strictly triangular n-order matrix A4
the power with index n is equal to the zero matrix.

5.4.49. A square matrix 4 of order n + 1 is called a greenhouse
matriz if it has the following structure

ag ay 8, ... a@noy ap
ay 6 8, ... Gpnoy an,
6.y G 4 ... On.y Gn-y

A=

G-n41 O-nez Goney oo G Oy
8on Genyy Goneg oee O G

Such a matrix is fully determined, lherefore, by 2r 4+ 1 numbers.

Prove that an upper triangular matrix 4 is a greenhouse matrix
if and only if it is a polynomial in the Jordan block J,.

5.4.50. Deduce from the result of Problem 5.4.49 that (a) the
product of upper tri is also a matrix
of the same form; (b) any two matrices of this class commute.

5.4.51. Prove that the product of two permutation matrices is
also a permutation matrix.

5.4.52. A square matrix A of order n + 1 is called a circulant
if it has the following structure

4, 8 8 ... Gu.y an

Gn 8y G .. Gpy an,;

Gney Gn G ... Gney Gn,

e, as ay ... a6, 4

a, @, 6y ... an a4,
Thus, a matrix of this class is fully determined by n + 1 numbers.
o
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Prove that a matrix C is a circulant if and only if it is a polynomial
in the permutation matrix P of Problem 5.4.34.

5.4.53. Deduce from the result of Problem 5.4.32 that (a) the
product of circulants is also a circulant; (b) any two circulants
commute.

5.4.54. How many Itiplication i are sufficient to
evaluate the product of two circulants of order n?

5.4.55. An n-order square matrix A4 is called a band matriz if for
a certain number m (<C n), all its elements a;y, such that | i —j | >
> m, equal zero. The number 2m + 1¢ is called the band-
width.

Prove that the product of strip matrices is also a strip matrix.
Determine the minimum strip width of the product if the width
of the factors equals 2m, + 1 and 2m, + 1, respectively.

5.4.56. A square product A with nonnegative clements is said
to be stochastic if the sum of the elements in each row of this matrix
equals 1. Moreover, if the sum of the elements in each column equals
unity, then the matrix is said to be doubly stochastic. Prove that (a)
the product of stochastic matrices is a stochastic matrix; (b) the
product of doubly stochastic matrices is a doubly stochastic matrix.

5.4.57. Using the matrix multiplication rule prove that the rank
of ;h; product AB does not exceed the rank of each of the factors 4
and B.

5.4.58. Given that an n X n matrix C is the product of two rectan-
gular matrices 4 and B of orders n X m and m X r, respectively,
m < n, prove that the determinant of the matrix C equals zero.

5.4.59. Prove that an m X n matrix 4 with rank 1 can be repre-
sented as the product A = zy where z is an m X 1 matrix and y
is a 1 X n matrix. Is such a representation unique?

5.4.60. Let A = zy be an n X n matrix of rank 1. Prove that
there is a number & such that 4* = a4. Find an expression of this
number in terms of the elements of the matrices = and y.

5.4.61. Given the representations 4 = zy and B = uv of two
matrices with rank 4, find the number of multiplications necessary
to evaluate their product.

5.4.62%. Prove that an m X n matrix 4 with rank r can be repre-
sented as the product 4 = BC where Band Carem X randr X n
matrices, respectively. Is such a representation unique?

The representation of a matrix A derived in Problem 5.4.62 is
called the skeletal d¢composttlon of this matrix. Find the skeletal

ition of the following matrices:
5.4.63. [|4 2 2 5.4.64. 1 —1 20
220|. -1 2 -3 1
202 0 1 —11
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5.4.65. A rectangular matrix 4 divided by horisontal and verti-
cal lines into submatrices is called a partitioned matriz. These sub-
matrices are called blocks and denoted by A,;. For example, if the
matrix A4 is partitioned into three “block rows” and two “block
columns”, then it is written in the form
Ay Ap
Ay Ay
Ay Ay

Show that (a) the multiplication of a partitioned matrix by a num-
ber is equivalent to the multiplication of each of its blocks by this
number; (b) the addition of two rectangular matrices of the same
order and partitioned in the same way is reduced to the addition of
the corresponding blocks; (c) if 4 and B are two rectangular parti-
tioned matrices of orders m X n and n X p, respectively, whereas
Ay Ay oeen Ay By By ... By
Ay Ay ... A B, B, ... B,
A An Ax wll | B P 2t

A=

Arg Ary oo Ay IBu Bay ... Bat

and the number of columns in each block 4, is equal to the number
of rows in the block Bj,, then the matrix C = AB can also be repre-
sented in a partitioned form

where
s
Cu=E’AUBIA' i=1, ..., k=1,

This condition can be reformulated thus: the number of the columns
of A included in each of its block columns equals the number of
the rows of B included in the ding block row; (d) if 4
and B are square matrices of the same order and are similarly parti-
tioned into blocks, with the diagonal blocks A, and By, i =

=1, ..., r, being square, then the matrix C = AB can be repre-
sented in the same partitioned form, and

r

AyByy By k=1, ..., .

5.4.66. A square matrix D partitioned into blocks is said to be
quasi-diagonal if its diagonal blocks are square, and its off-diagonal
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blocks are zero sub i Show that ti over quasi-diag-
onal matrices of the same block structure result in quasi-diagonal
matrices of the same structure. Note that when quasi-diagonal
matrices 4 and B are multiplied together, the diagonal blocks of
the matrix C = AB equal the products 4By, of the corresponding
diagonal blocks of the factors. Hence deduce that quasi-diagonal
matrices A and B of the same structure commute if and only if the
corresponding diagonal blocks are symmetric.

5.4.67*. Find the general form of matrices that commute with
this quasi-diagonal matrix

ME,, 0
ME),

0 MEn,
(A = A; when i 5= j).

5.4.6é. A square partitioned matrix A is said to be quasi-triangular
if its diagonal blocks are square, and ofi-diagonal blocks 4, i > j
(i <j) are zero submatrices. Show that operations over quasi-
triangular matrices of the same block structure, either upper or
lower, result in quasi-triangular matrices of the same structure.
Note that when upper (lower) quasi-triangular matrices 4 and B
are multiplied together, diagonal blocks of the matrix C = AR
equal the products A4, of the corresponding diagonal blocks of
the factors.

5.4.69*. Using the Strassen algorithm (see Problem 5.4.21),
indicate a method of evaluating the product C = AB of square
matrices A4 and B of order 4 requiring only 49 multiplication opera-
tions (compared with 64 operations in the customary method).

5.4.70. Let A be a complex n-order matrix. Represent A4 as 4 =
= B + iC where B and C are real matrices, and assign to it a real
matrix D of order 2n, viz.

p=(7 73)

Show that if 4, and 4, are complex n X n matrices, and D, and D,
are real double-order matrices made up in the indicated way, then
the product 4,4, corresponds to the product D,D,. Note that in
the particular case where n =1 the correspondence between the
complex numbers z = z + iy and the real matrices of order 2 of
the form
z —y

v z I

is obtained.
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5.4.71. Let a complex column vector z, of order n be a solution
to a system of linear equations Az = b where 4 is a complexm X n
matrix and b is a complex column vector of order m. Represent
A, band zp a8 A =B +iC, b=f + ig, 2, = zo + iy, Where B
and C are real matrices; f, g, Zo, ¥, are real column vectors. Show
that the real column vector

To
Yo

of order 2 is a solution to the system of 2m equations with real
coefficients Du = d, where

o=¢ el a=li]-

5.4.72. Show that the transposition operation is related to the
other operations on matrices by the following properties:

(a) (@4)F = adT;

(b) (4 + B)T = AT + BT;

(c) (AB)T = BTAT,

5.4.73*. Let A and B be rectangular matrices of orders m X n

and p X g, respectively. A matrix C of order mp X ng that can
be represented in a block form as

uy -~

anB 6B ... amB

Cc= anB apB ... a;B
myB amyB ... omnB|

is called the Kronecker product A X B of the matrices 4 and B.

Prove that for the Kronecker product of matrices the following
is valid:

(a) (@) X B=A X (aB) =a (A X B);

(b)) (A+B)XC=4XC+BXC;

©AXB+C)=AXB+AXC;

(d) if the products AB and CD are defined, then

(AB) X (CD) = (A X C) (B X D);

(e) the matrix A X B can be reduced to the matrix B X 4 by
interchanging its rows and columns; moreover, if 4 and B are square,
then the rows and col dergo a similar i g

5.4.74. Show that the representation of a matrix 4 of rank 1 as
the product A = zy (see Problem 5.4.59) can be interpreted as
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a tion of A as the K ker product
A=y Xa.
5.4.75%. Let ey, . . ., en be a basis for the space of column vectors

of order m (i.e. m X 1 matrices), and f;, ..., f, & basis for the
space of row vectors of order  (i.e. 1 X n matrices). Prove that the
Kronecker products f; X e; produce a basis for the space of m X n
matrices.

5.4.76. Prove that the Kronecker product of square matrices A
and B, perhaps, of different orders, is (a) a diagonal matrix if 4
and B are diagonal; (b) an upper (lower) triangular matrix if 4
and B are upper (lower) triangular; (c) a stochastic (doubly sto-
chastic) matrix if A and B are stochastic (doubly stochastic).

5.4.77*. Let A and B be square matrices of orders m and n, respec-
tively. Prove that

(a) tr (A X B) = (tr A) (tr B);

(b) det (4 X B) = (det A)" (det B)"

5.4.78. Let A, B, and C be rectangular matrices of orders m X n,
p X g and m X g, respecnvely Consider the matrix equation

A X B = C, where X is an n X p matrix, as a system of mq linear

in the np unk fici of this matrix, numbered
as follows:

Tias Zazr o+ o Taps Topy Tags -+ or Tapy « o1 Tnpy Tnay o o o Inpe
The equations of the system are numbered in accordance with the
familiar “by row” numeration of the coefficients in the matrix C:

€11y €12y + « +1 C1gv €21y C22y - 43 €2y o0 0 Cm1s Cmar o o og Cmge
Prove that this system of linear equations has A X BT as its matrix.
If, however, the coefficients of the matrices X and C are numbered
by column, i.e.

T11y Taps -+ o0 Tnp Tz Taz oo oy Tnzy o0 oy Taps Tapy o o or Tnpi

€110 €10 + -+ Cms Ciay Cazr oo oy Cmzs o o o1 C1qr Cags = = Cmgy
then the system has BT X A as its matrix.

5.4.79. Show that if a matrix equation

AX + XB =,
where A, B and C are mX m, nX n and mX r matrices, respective-
ly, is considered as a system of linear equations in the coefficients
of the m X n matrix X, then the matrix of this system is given by
the following: (a) A X E, + En X BT if the coefficients of the
matrices X and C are numbered by row; (b) E, X A + BT X Ep,
if the coefficients of the matrices X and C are numbered by columns,
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5.4.80. Given that the elements of an m X n matrix 4 are real
differentiable functions of a real variable ¢, an m X r matrix dA/dT

da,y) _day, dayn
at L )

day,  dayy dayn
L R &
dt
dam; dam, mn
dt a " dt

is called the derivative of the matrix;4.
Prove that for the differentiation of matrices so defined the fol-
lowing relations are valid:

@ 5 @h=al;
) +(a+B)=24 4 32,
© 5 4B) = L Bra s

@ 5 (%)= (2"

5.5. The Inverse of a Matrix

In this section various techniques to evaluate the inverse matrix and the
forms of the inverse matrices in the cases of some frequent classes of
matrices are indicated. Just like in Sec. 5.4, great attention is paid to the
matrices of the elementary transformations and to partitioned matrices. At
:he-md of the section we provide problems on the use of the Binet-Cauchy
lormula.

Using explicit expressions of the elements of A-! in terms of
elements of 4, evaluate the inverse matrices of the following:

5.5.1. 5 —4 5.5.2, || coee —sina
"—8 6"‘ sina  cosa ||*
5.5.3. —b 5.5.4. b
il Pl AR 2| aa—tero
5.5.5. ||—2 3 1 556, 2 2 —
3 2 2 — 2.
121 — 2 2
5.5.7. 1 -3 — 5.5.8. 21—
-2 7 2{. 31 2.
3 2 —4 10 1
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5.5.9. ot 11 5.5.10. 1110
—1 [ 11 —t 210
1 -1 01 1410
11 10 0003
5541, [[3 2 1 2 5.5.12¢. a b c d
75 25 b a—d ¢
00 94" — d a—b 'z“”'b""
00115 —d—c b a|TEFEO

5.5.13. Prove that the set of matrices of the form

where a is any real number, forms a commuting group under multi-
plication.
5.5.14. Prove that the set of real matrices of the form

a —b
"b a
‘has the structure of a field with respect to the usual operations of

addition and multiplication of matrices. Show that the correspon-
dence between such and the

cose —sina
sina  cosa

,'7 a"-»z=a+ib

is one-to-one and preserves the operations.
5.5.15%. Prove that the set of real matrices of the form
a b ¢ @
—b a —d ¢
— d a —b
—d —c b a
has the structure of a ring with respect to the usual operations of
addition and multiplication of matrices.

Prove lhat nonzero mamces of the indicated form is a group

under multi

5.5.16*. Can a set of matrices in which (a) all matrices are dege-
nerate; (b) there are both degenerate and nondegenerate matrices,
‘be a group under multiplication?

5.5.17*. Prove that the matrix, inverse to an upper (lower) trian-
‘gular matrix, is also upper (lower) triangular. Hence, using the
result of Problem 5.4.45, deduce a corollary: the set of nondegenerate
triangular matrices of the same form is a group under multiplication.

5.5.18*. Prove that the matrix, inverse to a greenhouse triangular
matrix, is also a greenhouse triangular matrix of the same form.
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Hence, with the aid of the result of Problem 5.4. 50 deduce a corol-
lary: the set of d of the
same form is a group under mn]upllcanon

5.5.19*. Prove that the matrix, inverse to a circulant, is also
a circulant. Bearing in mind the result of Problem 5.4.53, deduce
the following corollary: the set of nondegenerate circulants is a group
under multiplication.

5.5.20*. In a nondegenerate matrix A the sum of all row elements
is the same for all the rows. Prove that the inverse matrix 4!
possesses the same property. Moreover, if the row sum equals r = 0
for the matrix 4, then they are equal to 1/r for 4-1.

Enunciate and prove a similar statement for the columns.

5.5.21. Prove that (a) the set of nondegenerate stochastic matri-
ces, (b) the set of d doubly stochastic matrices, are
groups under multiplication.

Find the inverse matrices of the following matrices of order n:

5.5.22. [a, 0 5.5.23. ||0 M

Ay A
0 M An 0
(all A, are different from zero).
5.5.24. 5.5.25. (1]
0 .
. 0
5.5.26. 5.5.27*. 8
0
o
5.5.28.

5.5.29. Find the inverse matrices to the matrices of elementary
transformations Py, D, and Ly (see Problem 5.4.24).
.5.30. How is the inverse matrix A altered if in the matrix 4
(a) the i-th and j-th rows are interchanged; (b) the i-th row is multi-
plied by a nonzero number a; (c) the j-th row premultiplied by
a number a is added to the i-th row?
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Answer the similar questions for the columns of 4.
5.5.31. Find the inverse matrices of the matrices Ny and S, (see

Problem 5.4.25).

5.5.32. Prove that for a nondegenerate matrix 4 of the form

0 o ... o0 an
0 0 see Gg ne1 asn
A= -+ v e
0  an-g,g -ee Gny.moy Gn-g,nm
Gny  Gng <es @n, ey ann
the inverse matrix B = A~! is of the form
by big +o. byiney byn
by boy  eer byneg O
B=| . ... .
bnoger Bneggzee O O
bny e 00

5.5.33. Prove that the matrix, inverse to a permutation matrix,
is also a permutation matrix. Show that the set of permutation
matrices of a given order n is a group under multiplication. Find
the number of elements in this group.

5.5.34. Show that the evaluation of the matrix, inverse to an
n X n matrix 4, can be reduced to the solution of n systems of
linear equati each of which ists of n equations in » unknowns
and has the matrix A4 as its coefficient matrix for the unknowns.
Compare the number of arithmetic operations needed in solving
such systems by the Gauss method with that in finding the inverse
matrix using the explicit expressions for its elements in terms of
the elements of 4.

Find the inverse matrices of the following by the method indicated
in Problem 5.5.34:

5.5.35. ||2 3 4 5 5.5.360 1 -2 2 4
1234 -2 3 —4 &
112 3 3 6 5—0"
1112 -5 910 15

5.5.37*. All the leading principal minors of an n X n matrix 4
are nonzero. Prove that using the Gauss method the matrix 4 can
be represented as the product of a lower triangular matrix L by
an upper triangular matrix R, i.e. A = LR. The diagonal elements
of one of these matrices can be set equal to unity.

5.5.38. Prove that the representation of a matrix 4 as the product
A = LR, obtained in Problem 5.5.37, is unique if the diagonal
elements of the matrix L are chosen to be equal to unity.
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5.5.39. Prove that any nondegenerate matrix 4 can be represented
as the product 4 = PLR, where P is a permutation matrix, L is
a lower triangular, and R is an upper triangular matrix.

5.5.40*. Prove that any nondegenerate matrix 4 can be reduced
to the unit matrix by elementary transformations of its rows and
columns.

5.5.41. Show that the statement of Problem 5.5.40 is valid even
if only el vyt ions of the rows (col are permit-
ted.

5.5.42. Using the result of Problem 5.5.40, prove that any non-
degenerate matrix can be represented as the product of matrices
of elementary transformations.

5.5.43. Show that if elementary row transformations by which
a given matrix 4 is reduced to the unit matrix are applied in the
same sequence to the rows of the unit matrix, then the resulting
matrix is the inverse 4-1.

Find the inverse matrices of the following by the method indicated
in Problem 5.5.43:

5.5.44e 2 3 2 2 5.5.45. |2 3 45
- -1 0 — 3345
—2 —2 —2 44 4 5]
3 2 2 2 5555

5.5.46. Let J, be a matrix of order n all of
equal to unity. Prove that

. 1
E=T)t=E——tr T,

5.5.47. Let B be a matrix of rank 1. According to Problem 5.4.60,
B® = aB for some number a. Assuming that @ %= —1, prove that
(E + B! = E — B,
where f = iTa Show that Problem 5.5.46 is a particular case

of this statement.

5.5.48. Show that if a matrix 4 is nondegenerate, then the matri-
ces A + B and E + A~'B are either both degenerate or both non-
degenerate.

5.5.49*. Let A be a nondegenerate matrix whose inverse 4!
is known; further, let B = zy be a matrix of rank 1. Prove that
if the matrix 4 + B is nondegenerate, then its inverse can be found

by the formula
(A+B)y?*=4"—p4a-B4™
where B = 5 &= yA~'z. Thus, if a matrix of rank 1 is added

to the matrix 4, then a matrix of rank 1 is also added to the inverse
matrix.

hose elements are

2
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5.5.50. Calculate the number of multiplications and divisions
necessary to transform A-! to (4 + B)~' in Problem 5.5.49, as-
suming that the matrices z and y that make up the matrix B are
known.

5.5.51. A number y is added to an element a,; of a nondegenerate
matrix 4 yielding a matrix 4 which is also nondegenerate. Find an
expression for A~ in terms of y and the elements of the matrix 4.

5.5.52. In a nondegenerate matrix 4 of order n, the elements
Y1 - - -» ¥a are added to the last row in such a way that the non-
degenency of the matrix is preserved. Find an expression for the
inverse of the new matrix A. in terms of the elements of 4-! and
the numbers ¥,,

5.5.53. A numher ais ndded to each of the elements of a non-
degenerate matrix 4. The obtained matrix A will still be non-
d Find an expression for 4~ in terms of the elements of

A~! and the number a.
Find the inverse matrices to the following matrices of order n:

5.5.54. [|a b b ... b
bab ... b
bba ... b|,axb
....... az=b(1—n).
bbb ... @
5.5.55. |0 1 1 ... 1
101 ...1
140 ... 1,
111 .0
5.5.56. |1 11 ... 1 5.5.57. |[1—a 1 1 ... A
101 -1 1 14ay 1 e 1
110 ... 1 1 1 i4ag... 1
111 ...0 1 1 1 eoo 14an

(all @, are nonzero).

5.5.58. Prove that the inverse of a nondegenerate quasi-diagonal
matrix D is also quasi-diagonal and has the same block structure
as D. Note that the diagonal blocks of D-! are the inverse matrices
of the corresponding diagonal blocks of D.

5.5.59. Prove that the inverse matrix of a nondegenerate upper
(lower) quasi-triangular matrix A is also upper (lower) quasi-triangu-
lar and hes the same block structure as 4. Note that the diagonal
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blocks of 4! are the inverse ices of the corresponding di Y|
blocks of A.
5.5.60. Find the inverse to the matrix 4 of order k + !
_|1Er B
A_HO E “'

5.5.61*. Let the submatrix A of the following square partitioned
matrix 4B
=2 ol

be square and nondegenerate. Prove that the determinant of the
matrix M satisfies the relation

|M|=|A||D—CAB|
5.5.62*. Theinverse matrix A;'; of a matrix A, ., of order n — 1
is known. Find the inverse to the enclosing matrix A, of order n

Aney unny

A, =

’
Vpop @

i it to be d
5.5.63. Calculate the number of multiplications and divisions
necessary to employ the formulae for A;' derived in Problem 5.5.62.
.5.64. Verify that the inverse matrix M~ of the square parti-
tioned matrix M of order k + I

A B
M="c D"

where A and D are square blocks of orders k and [, respectively, is
also partitioned, viz., »
- Q
T
= 8

where P = (A — BD-'C)™, = —PBD", R = —D-CP, § =
= D1 —D-CQ or

§=(D—CAB)?, R=—SCA",

P=A"_ A"BR, Q=—A"BS.

The inverse matrices indicated here are assumed to be defined.
These so-called Frobenius formulae make it possible to reduce the
evaluation of the inverse to a matrix of order & + ! to the computa-
tion of one matrix of order £ and one matrix of order 1.

5.5.65. Let A and B be square nondegenerate matrices of orders
m and n, respectively. Prove that the Kronecker product of these
matrices is also nondegenerate and that

(A X B)"t=A"' X B,
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Find the inverse matrices to the following

5.5.66. 1 0000
0 1000
8 —47 100
—55 9010
62 —71 00 1
5.5.67. [0 001 —1
0 010 2
o 100 2f
1 000 1
1 —241 5
5.5.68. 1 03 9 5.5.69.% |(24 32 9 12
o 172 40 56 15 21
—3 —12 + 0ff° 1520 6 8f°
1 401 25 35 10 14

5.5.70. Let A = B 4- iC be a complex matrix of order n, and
A-1 = F 4 iG be the inverse of A. Prove that the real matrices of
order 2n, i.e.

B —~C
¢ 3

F —G
(¢ 7¢)
are inverse to one another,
5.5.71. Prove that the operations of mnsposmg and finding
the inverse are commuting, i.e. (A7) = (47Y)T.
5.5.72. The elements of a square matrix A are differentiable
functions of a real variable t. Assuming that the matrix 4 is nonde-
generate for a given value of ¢, prove the formula:

and

d o aqdA 4
Sy =—a1 Sl an,

5.5.73. Show that the solution of a system of linear equations
Az = b with a nondegenerate square coefficient matrix 4 is z =
= A%, Hence deduce Cramer's formulae.

5.5.74. Lot the coefficients of the matrix 4 and column vector b
(see}Problem 5.5.73) be differentiable functions of a real variable ¢.
Prove the formula

dz .2 - db
F= o T+A .

5.5.75. Lot A and B be rectangular matrices of orders m X n

and n X p, respectively. Prove that the minors of the matrix C = 4B



5.5 Inverse of a Matrix 145

satisfy the relations:

Cc(h b la) o
S ke
A< <. <iqm; 1K <p < o <Jg<P)-

5.5.76. Using the Binet-Cauchy formula, prove that the rank of
each of the matrices AAT and ATA equals the rank of the matrix 4.
A is assumed to be a real matrix.

5.5.77. Prove that the sum of all the principal minors of a given
order k (1 << k << min (n, m)) of the matrices AB and BA, where 4
and B are rectangular matrices of orders m X n and n X m, respec-
tively, is the same.

5.5.78. A square matrix A is said to be totally nonnegative (totally
positive) if all minors of each order are nonnegative (positive).
Prove that the product of totally nonnegative (totally positive)
matrices is also a totally nonnegative (totally positive) matrix.

5.5.79*. Let A be a square matrix of order n. Given a natural
number p, 1 < p < n, list in lexicographic order all the ¥ = "C,
combinations of n numbers 1, 2, ..., n taken p numbers k, <
<k, < ... <kp at a time. Lexicographic order means that the
combination k; <k, < ... <kp precedes the combination k; <
<kh<...<kifk —k;,.. ki = ki, but by <kj, 1<
fg T <p. Constrnct the square matrlx Ap = (ayy,p) of order N as
ollows:

Loy g g ke e kg
L AL |

gttt
a”"’—A(ln ja eeeoapl®
if the number of the combination i} <<i, << ... <ip equals iy
and the number of the combination j; <<j, < ... </p equals j.
The obtained matrix A,, is tsrmsd the p-th associated with 4. In
particular 4, = 4, 4,
Prove that
(8) (En)p = Em
(b) an associated matrix with a diagonal matrix D is also diago-
nal; (¢) an associated matrix with an upper (lower) triangular matrix
A is also upper (lower) triangular;
(d) (AB)p = ApBp,
(e) if A is a nondegenerate matrix then (47%), = (4,)"%
5.5.80*. Let A be a nondegenerate matrix of order n. Prove that
the minors of any order of the inverse matrix B = A-! are related
to the minors of the matrix 4 by the relations
-

24N ke,
Bl ) (=1 ‘(;; G e ),

Ry ke ... kpl T 141

10-0619
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where 1, <1, < ... <ip along with 1 < 1, oo <ip.p. and
by <k, <. <l-,. nlongwuhlc <L <. <I...p make the
complele eyetem of indices 1, 2, n.

5.6. The Matrix of a Linear Operator,
Transfer to Another Basns.
lent and Similar ¥

N Tl\ese problems are in three groups corresponding to the topics in the section
eading.

5.6.1. The Euclidean plane E, is assumed to have a right-hand
orientation (i.e. positive angles are those measured counterclock-
wise). Let Oeje, be a dextral Cartesian system of coordinates on the
plane E,. Construct the matrix of a linear transformation consisting
in the rotation of E, through an angle a about the origin for the
basis e,, e,.

5.6.2. Let e,, €,, €5 be a dextral orthonormal basis for the three-
dimensional Euclidean space £, of geometric vectors. Consider the
following linear operator A of the space E,

Az = |z, al.

Here a is a fixed vector whose coordinates with respect to the basis
€3, €;, €5 are equal to a, B, y. Find the matrix of the operator 4
in this basis.

5.6.3. Write the matrices of: (a) the differential operator; (b) the
difference operator A,; in the space M, of polynomlals of degree
<n with respect to the basis 1, ¢, 2,

5 6.4. If the differential operator is an operalor fmm M, to M, _,,
write its matrix with respect to the two bases 1, R
and 1, ¢, 2, t"-1. Find the matrix of the lnl.egratmn operator
with respect to the two bases as if it were an operator from M, _,
to M,.
5.6.5. Find the matrix of the differential operator on the two-
dimensional linear space drawn on the basis functions

(a) f (1) =cost, fo(t) =sint;
(b) g (t) = € cos bt, g, (t) = €® sin bt.

5.6.6. A space X is the direct sum of subspaces L, and L,. A ba-
sis ey, ..., e, is selected so that the veclorse,, . . .. e, form a basis
for the subspace L, and e,4,, . . ., e, form a basis for L,. Using
the basis e,, . . ., e,, construct (a) the matrix of the operator that
projects onto L,, parallel to L,; (b) the matrix of the operator that
projects onto L,, parallel to L,; (c) the matrix of the operator thal
reflects in L, parallel to L,.
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5.6.7. Consnder the n-dm\enemnal anthmeuc space X (elther real
or 1 ) d the co) 1 ari ic space Y
where the “natural” (standard) bases, made up of the unit vectors
of these spaces, are used. We can match each m ~ n matrix 4 with

an operator A from X to Y when the operator is defined as follows:

z;‘>y=Ax,

i.e. each column vector z from X is multiplied by the matrix 4.
Prove that (a) this correspondence between the m X n matrices
and the operators from X to Y is one-to-one; (b) the matrix of the

operator 4 with respect to the two standard bases coincides with

matrix of A. Thus, the operators on arithmetic spaces can be identi-

fied with rectangular matrices of the corresponding orders.
5.6.8. An operator A on a three-dimensional arithmetic space

converts linearly independent vectors a,, a,, a3 into vectors by, b,, b,

where

1

-2 —1 -2

3lls by = [ —
0

5
3
1

1
-3
—2

Find the matrix of this operator (a) with respect to the basis a,,

ay=|3" a,= vay=|2[" b= b=

0

as;
(b) with respect to the standard basis e, e,, ;.
5.6.9. In the space of square matrices of order 2 a basis consisting
of matrices (in the order indicated)

lool 06 ok 15 ok 1o

00 00 10 0 1]

is fixed. Write with respect to this basis (a) the matrix of the transpo-
sition operator, i.e. the operator that assigns to each matrix X
its transpose; (b) the matrix of the operator G, that assigns to
each matrix X the matrix AXB where 4 and B are given matrices;
(c) the matrix of an operator F 45 defined by the relation

X —~AX + XB.

How are these matrices altered if in the basis the matrices

0
6ol 15 2l

are |nterchanged?

5.6.10. Let in the space of m X n matrices a basis Eyy, Eyy, . . .

v oy Evpy Egyy Eyy v Eony <oy Emyy Emg, « ..y Emn (in the
order mdlcal,ed) be ﬁxed EU bemg an m X n matrix in which the
only nonzero element is p]aced at (i, j) and is equal to 1. Further,
let A and B be given square matrices of orders m and n, respectively.

10+
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Consider the operators G, and F4p, defined by the relations

Cap

X —— AXB,

X242 4X + XB.

Prove that with respect to the indicated basis (a) the matrix of
the operator G4 p is the Kronecker product 4 X BT; (b) the matrix
of the operator F,p is A X E, — E,, X BT.

Find matrices of the same operators with respect to the ]sasis
Eyp Eggy . - o2 Emgy Ergs Eago - - s Emgs -« o2 Eygy Eggy -+«

5.6.11. Let A be an operator from Oyy. Prove that all the matrl-
ces defining the operator 4 with respect to various pairs of bases
for the spaces X and Y have the same rank equal to the rank of 4.

5.6.12. Find the rank of an operator F ,p

X (G ) (2.

5.6.13. Prove that the operator F,, (see Problem 5.6.12) is
nilpotent and find the nilpotence index of this operator.

.14. What can be said about the matrix of an operator 4 of
rank r if, in the basise,, . . ., e, of the space X, the vectorse, 4, . . .
..., €, belong to the kernel of this operator?

5.6.15%. An operator 4 from @yy has rank r. Prove that in tho
spaces X and Y, the respective bases e, ..., e, and gy, . .
?n be chosen such that the matrix A g, of the operator 4 is of the
orm

10..00...0
01...00..0
00...10 .. 0f (2.6.4)

00...00...0

The number of nonzero columns in the matrix 44, equals the rank r
of the operator.

5.6.16. Show that any real or complex nondegenerate matrix
of order n can be regarded as the matrix that defines in the n-dimen-
sional space X, respectively real or complex, the transfer from one
basis e;, . . ., €, to another, f,, . . ., f,; moreover, one of the bases
can be chosen arbitrarily.

5.6.17. Let a matrix A define the transfer from a basise,, . . ., ¢,
toabasisf;, ..., f,, and amatrix Bfromf,, ..., fytogy, - . .. gn-
Show that (a) "the transfer matrix from fio o fotoe, ..., e
is .c‘l", (b) the transfer matrix from e,, ..., €, to gy, ..., g,
is
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5.6.18. How is the transfer matrix frome;, ..., e, t0fy, ... fa
altered if (a) the vectors e, and ¢; are mterchanged?

(b) the vectors f, and f, are interchanged

5.6.19. An operator A is defined with respect to the basis 1, ¢, &*
in the space M, by the matrix

001

010
100

Find the matrix of this operator when the basis comprises the poly-
nomials 3¢ + 2¢, 5t + 3t + 1, 7t* + 5t + 3.

5.6.20. Two operators are defined on the space M. The operator 4
transforms any polynomial ¢y + a,t + a,t‘ + a4t? into the polyno-
mial ay -+ a,t + a,t®. The op Bt the poly
t’+t’ t=+t B+, B3+ 24+t 4+ 1 into 2+ ¢, B+ 1, 24
+ t* =~ ¢t + 1 and the zero polynomial, respectively. Construct the
linatnces of the operators AB and BA with respect to the basis

N

5.6.21. Let P and Q be nondegenerate matrices of orders m and n,
respecuvely Show that matrices Fyy, Fia, . ..y Finy Foyy Fapy .o .
. n (where F,; = PE,Q, and E;; are the matrices defined
m Problem 5.6.10) form a basns for the space of m X n matrices.
Find the transfer matrix from the basis made up of the matrices E;;
to this basis, and also the matrix of the inverse transfer.

5.6.22. Find the matrices of the operators G, and F 45 of Prob-
lem 5.6.10 with respect to the basis Fy;, Fy,, . .., Fm, (see Prob-
lem 5.6.21).

5.6.23. Let 4, be an operator defined by a square n X n matrix 4

with respect to a basis e;, ..., e, of a space X, /T, the operator
defined by the same matrix with respect to a basis f;, ..., fa.
Prove that

A,=PA,P,
where P is an operator transforming the vectors ¢, ..., e, into

PRt At

5.6.24. Rectangular matrices 4 and B are said to be equivalent
if there exist nondegenerate matrices R and S such that B = RAS.
Show that the equivalence relation on the set of rectangular matrices
of fixed order m X n is reflexive, symmetric, and transitive.

5.6.25. Square matrices A and B are said to be similar if there
exists a nondegenerate matrix P such that B = P-'4P. In addition,
the matrix P is said to transform A to B. Show that the similarity
relation on a set of square matrices of a given order n is reflexive,
symmetric, and transitive.
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5.6.26. Prove that any two equivalent (similar) matrices have
the same rank.

5.6.27. Let X and Y be an n-di ional and m-di ional
space, respectively. Prove that any two equivalent m X n matrices
A and B can be regarded as matrices defining the same operator
from ®yy with respect to certain pairs of bases e, . . .,

“euy Gm and fy, ...y fu, By, ..., ty of these spaces. One oi the
pairs of hases can be chosen arhmanly

5.6.28. Prove that any two similar matrices of order n are matrices
that define the same operator of an n-dimensional space X with
respect to two bases e, ..., e, and f,, ..., f, for this space.
The choice of one of the bases is arbitrary.

5.6.29*. Prove that any matrix A is equivalent to a matrix of
form (5.6.1).

5.6.30. Prove Lhe statement, converse to that in Problem 5.6.26,
viz.. two m ° n matrices A and B having the same rank are equi-
valent.

5.6.31. Let matrices A and B be similar, i.e. B = P-14P. Is
the transforming matrix P unique?

.6.32*. Show that a scalar matrix aE is similar only to itself.
Prove that this property is intrinsic only to scalar matrices.

5.6.33. Let A be a fixed square matrix. Prove that the set of
all matrices P transforming 4 into A is a group under multipli-
cation.

5.6.34. Let A and B be similar matrices. Prove that if P, is some
matrix that transforms 4 into B, then the whole set of the trans-
forming matrices is obtained from the set of the matrices transform-
ing A into A by multiplying the latter matrices on the right by the
matrix P,.

5.6.35. Show that a matrix A is transformed into a similar matrix
by the following procedure: (a) the i-th row is multiplied by a non-
zero number o and then the i-th column is multiplied by the num-
ber 1/a; (b) the j-th row is multiplied by a number o and added to
the i-th row; then the i-th column premultiplied by a is subtracted
from the j-th column; (c) the :-th and j-th rows, and then the i-th
and j-th columns are interchanged.

5.6.36*. Show that the mirror reflection in the centre of a square
matrix is a similar transformation of this matrix.

5.6.37. Prove that similar matrices A and B have the same trace
and determinant.

5.6.38. Prove that if at least one of two square matrices A and B
of the same rank is nondegenerate, then the matrices A8 and BA
are similar. Give an example of degenerate matrices A and B for
which AB and BA are nol similar.

5.6.39. Show that if matrices A and B are similar, then (a) the
matrices A% and B? are similar; (b) the matrices A" and B*, where k
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is any natural number, are similar; (c) for any polynomial f (¢),
the matrices f (4) and f (B) are similar.

5.6.40. Does the equivalence of matrices 4 and B of order n X n
mean that the matrices 4% and B? are equivalent (cf. Problem 5.6.39
()2

5.6.41. Show that similar matrices 4 and B have the same mini-
mal polynomial.

5.6.42. Matrices 4 and B of orders m and n, respectively, are
similar to matrices C and D. Prove that (a) the matrix 4 X B is
similar to the matrix C X D; (b) the matrix A X E, + E,X BT
is similar _to the matrix C X E, + Ep X

5.6.43. Prove that if matrices A and B are slmllar, then their
associated matrices 4, and B are similar.

5.6.44. Show that if the complex matrices 4, = B, + iC, and
A, = B, + iC, are similar, then the real matrices D, and D, are
also similar:

o | e



CHAPTER 6

Linear Operator Structure

6.0. Terminology and General Notes

Let 4 be an operator from ®yy. A number A
is called an eigenvalue of the operator A if a nonzero vector z exists

such that
Az = Az, (6.0.1)

Any vector z 5= 0 satisfying (6.0.1) is called an eigenvector of the
operator A associated with the eigenvalue A

If A, is the matrix of an operator A with respect to an arbitrary
basis e;, . . ., €, for the space X then the polynomial det (AE — A)
does not depend on the selection of the basis and is called the charac-
teristic polynomial of the operator A.

The roots (in the given field) of the characteristic polynomial, and only
the roots, are the eigenvalues of an operator.

According to the fundamental theorem of algebra, any polynomial
of degree n (n > 1) with complex coefficients has precisely r roots
in the field of complex numbers (if each is counted as many times
as its multiplicity). If the algebraic multiplicity of an eigenvalue is
defined to be equal to its multiplicity as a root of the characteristic
polynomial, then

in a complex linear space of dimension n, each operator has n eigen-
values (taking their multiplicity into account). In addition, there
exists at least one eigenvector.

A subspace L is said to be invariant with respect to an operator A
if from z € L it follows that Az € L. An operator A, considered
only for vectors from an invariant space L, is called an irnduced
operator and denoted by A/L.

1f a space X is the direct sum of subspaces L, and L,, invariant
with respect to an operator 4, then for any vector £ with the decom-
position

T=1x,4+ T, T€L), T,€L,,

Az = Az, + Az, = (A/Ly) z, + (A/Ly) z,,
whereupon the operator A is said to be the direct sum of the induced
operators A/L, and A/L,. This is equivalent to saying that the
operator A is reduced by the pair of subspaces L, and L,.

we obtain
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For any operator A on a complex space, there exists a basis for
this space, called a Jordan canonical basis, in which the matrix
of this operator is of quasi-diagonal form

Iy 0
=l o,

0 I |

where each of the diagonal blocks J, is a Jordan block corresponding
to one of the eigenvalues of the operator A. The matrix J is called
the Jordan form of the operator A.

Terms such as “an eigenvector of a matrix”, “an invariant subspace
of a matrix”, etc. are used in the present chapter in the same sense
attributed to them at the end of Sec. 5 0 For example, an eigen-
vector of an n X r matrix is idered 1 column
vector, etc.

6.1. Eigenvalues and Eigenvectors

The present section includes ! i to the ej lues and
eigenvectors of an operator, that can be solved without the use of the characteris-
tic pnlynomul These problems mostly concern the following topics:

ane
(n) A" theorem ‘about, lin dependence of eig d with
different _eigenvalues, and comlhnes to it.

(iii) Operators and matrices of simple structures.

6.1.1. Prove that it is a necessary and sufficient condition for
nondegeneracy of an operator A, that it should not have an eigen-
value equal to zero._

6.1.2. Show that (a) the eigenvectors of an operator 4 associated
with a zero eigenvalue, and no others, belong to the kernel of this
operator; (b) the eigenvectors associated with nonzero eigenvalues
belong to the image of the operator.

6.1.3. Prove that if an operator 4 is nondegenerate, then both 4
and A-! have the same eigenvectors. Find the relation between the
eigenvalues of these operators.

6.1.4. Show that when an operator is multiplied by a nonzero
number, the eigenvectors are unaltered and the eigenvalues are
also multiplied by this number.

6.1.5. Show that the operator A — A,E has, for any number ,,
the same eigenvectors as the operator A. Find the relation between
the eigenvalues of these operators.

6.1.6. Prove that if z is an eigenvector of an operator 4, associated
with an eigenvalue A, then z is also an eigenvector of the operator (a)
AZ; (b) A" for any natural k; and (c) f (A) where f (¢) is any polyno-
mial. Find the corresponding eigenvalues.
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6.1.7. Is the following statement valid: if z is an eigenvector of
a certain polynomial f (4) in the operator 4, then z is also an eigen-
vector of the operator A itself?
6.1.8. Prove that a nilpotent operator has no eigenvalues other
than zero.
6.1.9. Prove that the operator which rotates the Euclidean plane
through an angle a, not a multiple of x has no eigenvectors.
6.1.10. Find the cigenvalues and eigenvectors of the operator A
of the three-dimensional Euclidean space such that Az = [z, al,
where a is a fixed vector.
6.1.11. Find the eigenvalues and eigenvectors of the differential
operalor on the space of polynomials V.
. Find the eigenvectors of the differential operator on the
space genernted by o (t) = cost, f4(t) =sint.
.1.13. Prove that the eigenvalues of a diagonal matrix coincide
with its diagonal elements.
6.1.14. Prove that a stochastic matrix has an eigenvalue equal
to unity. Find the corresponding eigenvector.
6.1.15*. Find the eigenvalues of a matrix A = zy having unit

k.
G.I}lﬁ. Find the eigenvalues and eigenvectors of the n X n ma-
trix J,

6.1.17. Find the eigenvalues and eigenvectors of the n X n
matrix A4:

abb ... b
bad b
A=|b b a bife
bbb ..a

6.1.18. Prove that if the matrices 4 and 3 are similar, then every
eigenvalue of A is also an eigenvalue of B, and vice versa. Find
the relation between the eigenvectors of the matrices 4 and B.

6.1.19*. Prove that an operator’s eigenvectors which are associated
with different eigenvalues, are linearly independent.

6.1.20. Using the result of Problem 6.1.19, deduce that an opera-
tor 4 on an n-dimensional space X cannot have more than n dif-
ferent eigenvalues. 1f there are precisely n different eigenvalues
then a basis for the space X exists that consists of the eigenvectors
of the operator 4.

.1.21. Prove that the set of all eigenvectors of an operator 4
associated with a given eigenvalue A,. together with the zzro vector
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is a subspace called an
with the eigenvalue A,.

6.1.22. A space X is the direct sum of subspaces L, and L,. Find
the eigenvalues and eigensubspaces of (a) the projection operator
on L, parallel to Ly (b) the reflecuon opeutorm L, parallel to L,.

6.1.23. The di of the of an operator A
associated with eigenvalue 2, is called the geometric multiplicity
of the eigenvalue A,. Show that the geometric multiplicity of A,
is equal to the de[ecl of the operator A — A,E.

6.1.24. Prove that the sum of the eigensubspaces of an operator A
is the direct sum.

6.1.25. Prove that all nonzero vectors of a space are the eigenvec-
tors of an operator A if and only if A4 is a scalar operator.

6.1.26*. Prove that the sum of the geometric multiplicities of
all the eigenvalues of an operator A from ®yx does not exceed the
dimension of the space X. Moreover, il is a necessary and sufficient
condition that the indicated sum equal the dimension of the space X
for a basis, made up of the eigenvectors of the operator 4, to exist
in the space X.

6.1.27. An operator 4 is called an operator with a simple structure
when there exists a basis for the space consisting of the eigenvectors
of this operator. What is the geometric meaning of such an operator?
What is the form of the matrix of the operator A with respect to the
basis of eigenvectors?

6.1.28. A square matrix is called a matriz of simple structure if
it is similar to some diagonal matrix. Prove that an operator 4
from @y is an operator of simple structure if and only if its matrix
with respect to an arbitrary basis for the space is a matrix of simple
structure.

6.1.29. Prove that an operator of simple structure possesses the
following properties: (a) the image is the span of the eigenvectors
associated with the nonzero eigenvalues; (b) the intersection of
the kernel and image consists of the zero vector only.

6.1.30. Show that the projection and refleclion operators are of
simple structure.

6.1.31. Prove that among nilpotent operators only the zero opera-
tor is of simple structure.

6.1.32. Prove that any polynomial f (4) in an operator of simple
structure is also of simple structure. In particular, if 4 is nondege-
nerate. then A-! is of simple structure.

6.1.33. Prove that if an operator 4 of an n-dimensional space is
of simple structure, then the minimal polynomial of this operator
has a degree not exceeding n.

6.1.34. An operalor A on an n-dimensional space X has n dif-
ferent eigenvalues. Prove that any operalor B that commules with 4
is an operator of simple structure.

of the operator 4 associated
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6.1.35. Show that the operator B (see Problem 6.1.34) can be
represented by a polynomial of the operator A.

6.1.36. Let A be an operator on a real space R, and let A be
the operator obtained from 4 by the complexification of the space R.
Show that if z is an eigenvector of the operator 4, associated with
an eigenvalue A, then the vector z + i0 is an eigenvector of the
operator A associated with the same eigenvalue.

6.1.37. Show that the operator A (see Problem 6.1.36) is of simple
structure if A is an operator of simple structure.

6.1.38. According to the definition of a matrix 4 of simple struc-
ture, there exists a nondegenerate matrix P such that P-14P = A
is a diagonal matrix. Prove that the diagonal elements of the mat-
rix A are the eigenvalues, and the columns of the matrix P the
eigenvectors of the matrix A. Conversely, a nondegenerate matrix P
whose columns are the eigenvectors of a matrix A reduces this
matrix to a diagonal matrix.

6.1.39. Prove that if a matrix 4 is of simple structure, then the
same is valid for the transpose of 4, i.e. for AT.

6.1.40. Let A be an eigenvalue and z the associated eigenvector of
anm X m matrix 4, and let p be an eigenvalue and y the associated
eigenvector of an n X n matrix B. Prove that the Kronecker pro-
duct z X y is: (a) an eigenvector of the matrix 4 X B; (b) an eigen-
vector of the matrix A X E, + E, X B. Find the associated eigen-
values.

6.1.41. Prove that if the matrices 4 and B (see Problem 6.1.40)
are of simple structure, then the same holds true for the matrices
A XB and A X E, + E,, X B.

6.1.42. Deduce a corollary from Problem 6.1.41: if matrices 4
and B are of simple structure, then the operators G.p and F.p
(see Problem 5.6.10) are of simple structure.

6.1.43. Prove that if 4 is a matrix of simple structure, then so
are all the associated matrices Ap.

6.2. The Characteristic Polynomial
We intended 1n this section to illustrate the following topics related to the

characteristic polynomial:

i) The definition of characteristic polynomial, the expression of its coef-
ficients in terms of minors of the matrix, and the relation of the coefficients to
the eigenvalues.

(ii) The characteristic polynomial as a means of computing Lhe eigen-
values.
(iii) The companion matrix of this polynomial.

(iv) The characteristic polynomials of special classes of operators and
matrices.

As 1n the previous seclion, a greal consideralion is given to operators and
matrices of simple structure. The test, established in Problem 6.1.26, reveals
its sligln:lil‘nunce only here, i.e. when a method of computing the eigenvalues is
available.
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6.2.1. Write explicit ex i for the ch istic polyno-
mials of matrices of order (a) 1; (b) 2; (c) 3.

6.2.2*. Prove that in the expression of the characteristic polyno-
mial [AE — A4 | of a matrix 4 in terms of powers of A

|AE— A | =2+ ap A 4+ ...+ ah + ap,

the coefficient a, equals the sum of all prmclpnl minors of order
n — k of the matrix A multiplied by (—1)*-*.
Set up the characteristic polynomials of the matrices

6.2.3. [z Tye oo ZTi¥n 6.2.4.[j0 0 ... 0 b
oYy oY, Zayn 00 ...0 b
TnYy ZnYs +-- Tn¥n 00 0 bny

€ € .ev (ny @

6.2.5. Prove that the characteristic polynomial of the transpose
AT of a matrix 4 coincides with the characteristic polynomial of the
matrix 4.

6.2.6. Prove that if each coefficient of a complex matrix 4 is
replaced by its conjugate, then the coefficients of the characteristic
polynomial are also replaced by their conjugates.

6.2.7*. Given that A and B are square matrices of the same
order, prove that the matrices AB and BA have the same charac-
teristic polynomial.

6.2.8. Prove that the characteristic polynomial f (A) of a matrix
A and that g (A) of the matrix A — A,E are related by the formula

gM) =1+ o).
6.2.9. Let an n X n matrix A be nondegenerate. Prove that

the characteristic polynomial f (A) of the matrix A is related to the
characteristic polynomial & (A) of the matrix A~! by the formula

ROy= (=1 (%)

Hence deduce the relationship between the sums of all principal
minors of a given order of the matrices A and A-. (Another method
of stating this relationship is given in Problem 5.5.80.)

6.2.10. Prove that similar matrices possess the same character-
istic polynomial. Give an example demonstrating that the con-
verse statement, viz., matrices having the same characteristic
polynomial are similar, does not hold.

6.2.11*. Prove that the following function in the elements of
& matrix 4

n
m(A)=‘;_’aual,
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is unaltered when the similarity transformation is applied to the
matrix.

6.2.12. Assuming that the matrix 4 (see Problem 6.2.11) is
complex, write an expression for the function m (4) in terms of
the eigenvalues of this matrix.

6.2.13. Generalizing the statement of Problem 6.2.11, prove
that the function

'":(-4)—2 E 2 E Quby@hhy - -+ by Bhji
=1 k11 ko=

is unaltered whcn the similarity transformatmn is applied to the
matrix 4.

6.2.14. 1f n eigenvalues A, . . ., A, of a matrix 4 of order n + 1
are given, how can another eigenvalue A, 4, be found?

6.2.15. Find the characteristic polynomial and eigenvalues
of the triangular matrix

ay 45 ... amn

O3y ... Ggn

0 0 ... ann
6.2.16. Prove that the characteristic polynomial of the matrix
—any —aney ... —8; —ag
1 0 0
cymn=f o 1 0

/
is equal to f(A) = A" 4+ @, A" + . .. + a;A + a,. The matrix
C (f (M) is called the companion of the polyrwmzal f (A) (or the Fro-
benius matriz).

6.2.17. Use the result of Problem 6.2.16 to prove that any
n-degree polynomial with the higher-order coefficient equal to
unity can be the characteristic polynomial of a certain square n-order
matrix.

6.2.18. Find the characteristic polynomial for the operator that
rotates the Euclidean plane through an angle a.

.2.19. Find the characteristic polynomial for the operator A
of the three-dimensional Euclidean space such that Az = [z, al,
where @ is a fixed vector.

6.2.20. Find the characteristic polynomial of the differential
operator on the space M,.

6.2.21. Find the charactensnc polynomlal of an arbitrary nil-
potent the spac

6.2.22. Prove that the rank of a projection opentor equals its
trace.
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6.2.23. Let an R reflect an n-di ional space X in
a subspace L. Prove that the dimension of L is related to the trace
of the operator R by the following:

trR =2dimL — n.

Evaluate the eigenvalues and eigenvectors of the following matri-
ces:

6.2.24. "(2) gl

6.2.25. |3+i —1"‘

2% 1—1
6.2.26. ||4 —1 —2 6.227. |41 1
2 1 =z, 24 1.
1 =1 1 0.1 4
6.2.28. 2 —5 =3 6.2.29. 4 —4 2
—1 —2 —3f. 2 —2 1
3 15 12 —4 4 =2
6.2.30. |0 1 00 6.231. It o to
3020 1101
0 20 3| 1010
0010 011t
6.2.32. 1 20 3 6.2.33. |3 —t 00
-1 =20 — 0 300
o o2 o 1034
1 20 3 o 103

6.2.34. Prove that any operator of a real space of dimension
n = 2k + 1 has at least one eigenvector.

Find the eigenvalues of the following matrices (a) in the field of
real numbers; (b) in the field of complex numbers.

6.2.35. " 12 6.2.36. ||1 1 0
—2 1] 01 1.
101
6.2.37. |1 020 6.238. |t 1+ o0 O
0 102 10 —1 —2
4 03of o0 1 1"
0—103 12 1 o

6.2.39. Show that the characteristic polynomial of a quasi-trian-
gular (quasi-diagonal) matrix equals the product of the charac-
teristic polynomials of the diagonal blocks.

6.2.40. Using the results of Problems 6.2.8 and 6.2.9, show that
the algebraic multiplicities of corresponding eigenvalues of the
operators A and 4 — A,FE are equal; the same is true for the corres-
ponding eigenvalues of the operators 4 and 4-1.
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6.2.41*. Prove that the geometric multiplicity of any eigenval-
ue A of an arbitrary operator 4 does not exceed its algebraic multi-

licity.
P 6.2.42. Prove that an operator A on a complex space is of simple
structure if and only if the geometric multiplicity of each eigen-
value of this operator coincides with the algebraic multiplicity.
Is the similar statement valid for a real space?

Determine if each of the following matrices is of simple structure.
If so, find a matrix that reduces the given one to diagonal form and
give the diagonal matrix.

6.2.43. [[0 001 6.2.44. OO 0O
0020 0010
0300f° 0200|
4000 3000

6.2.45. |1 12 3 6.2.46. |1 123
022 4 0112
001t —2ff 0020
100 2 0002

6.2.47. 010 o 6.2.48. 1100
001 0 3010
000 1 —100 1"
—6 17 —1 —2000

6.2.49*. Can the companion matrix of a polynomial f (A) be of
simple structure if this polynomial has at least one multiple root?

6.2.50. Prove that matrices 4 and B of simple structure are
similar if and only if they have the same characteristic polynomial.

6.2.51. Prove that a complex matrix with different eigenvalues
is s{milar to the companion matrix of its characteristic polyno-
mial.
6.2.52. Find the characteristic polynomial of the n-order ma-
trix

01
01
P
P= .

0 1

1 0
6.2.53*. Find the engenvalues of the matrix P (see ',he prevlous
problem) in the field of and the ted eigen-

vectors.
6.2.54. Using the result of Problem 6.2.53, show that any cir-
culant over the field of complex numbers is a matrix of simple
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structure. Find ex i for the eig 1 of a circul in
terms of its elements.

6.2.55*. Let A,, ..., Ay be all the different roots of a polyno-
mial f (A). Find the eigenvectors of the companion matrix to this
polynomial.

6.2.56*. Deduce the result of Problem 6.2.53 from Problem

2.55.

6.2.57*. Let a matrix A4 be of simple structure. Prove that for
any number Ay, the rank of the matrix 4 — A(E is equal to the
highest order of the nonzero principal minors in this matrix.

6.2.58. Prove that any operator of simple structure is annihilated
by its characteristic polynomial.

6.2.59. Let A be an operator of simple structure on an n-dimen-
sional space, and let A,, ..., A, be all the different eigenvalues
of the operator 4. Find the minimal polynomial of this operator.

6.2.60*. Let 4 and B be rectangular matrices of orders m X n
and n X m, respectively. Prove that the characteristic polynomials
of the matrices AB and BA satisfy the equality:

A" |AE,, — AB | =A™ |AE, — BA |.

In particular, when m=n we obtain the result of Problem 6.2.7,
6.2.61*. Prove that the characteristic polynomial of the ma-

trix M
4B
M=||B A"'

where A and B are square matrices of the same order, equals the
product of the characteristic polynomials of the matrices 4 + B
and A — B.
6.2.62. Prove that on complexifying the real linear space, an
P Ais £ d into the op A with the same char-
acteristic polynomial.
6.2.63. Show that the result of Problem 6.2.21 also holds for
a nilpotent operator on the n-dimensional real space.
6.2.64. Prove that the ch istic pol ial of a real 2n-ord

matrix D 5
o[z 3l

equals the product of the character_istic polynomials of n X n com-
plex matrices 4 =B + iC and 4 = B — iC.

6.3. Invariant Subspaces
The first half of this section is devoted to problems in invariant subspaces and
induced operators. In the second half, we consider a theorem and its corollaries
:nnuning the possibility of reducing the matrix of an operator to triangular
form.

11—0819



162 Linear Operator Structure Ch. 8

6.3.1. Prove that the sum and intersection of A-invariant sub-
spaces L, and L, are also invariant with respect to the operator 4.

6.3.2. Show that the kernel and image of an operator A from
@y y are A-invariant.

6.3.3. Prove that if an operator A is degenerate, then any sub-
space containing its nmage is A-m\anant

6.3.4. State the of the one-di ional inva-
riant subspaces of an operator nnd show nut in a complex space
any operator has at least one 1 invariant

6.3.5. What can be said about an operator A from Oxy “such
that any subspace of the space X is A-invariant?

6.3.6*. Prove that if any subspace of dimension k (where k is
a fixed natural number, 1<< k << n) of an n-dimensional space X
is A-invariant, then 4 is a scalar operator.

6.3.7. Prove that the span of any set of the eigenvectors of an
operator A is A-invariant. In particular, eigensubspaces of the
operator A are A-invariant.

6.3.8. Prove that operators 4 and A — AE, where A is any num-
ber, possess the same invariant subspaces.

6.3.9*. Show that any operator on an n-dimensional complex
space has an invariant subspace of dimension n — 1.

6.3.10. Prove that if an operator A is nondegenerate, then both
A and A~ possess the same invariant subspaces.

6.3.11. Show that any A-invariant subspace is also invariant
with respect to any polynomial of this operator. Is the converse
statement true?

6.3.12. Prove that both the kernel and image of any polynomial
1 (A) in an operator 4 are A-invariant.

6.3.13. Let operators A and B commute. Prove that the kernel
and image of the operator B are A-invariant.

6.3.14. Prove that any eigensubspace of an operator 4 is inva-
riant with respect to any operator commuting with 4.

6.3.15. Prove that if an A on an r-di ional space
has r different eigenvalues, then any operator B, commuting with 4,
is of simple structure. Further, all the eigenvectors of the opera-
tor A are also eigenvectors of the operator B.

6.3.16. Find all A-invariant subspaces of the three-dimensional
Euclidean space, where Az = [z, a] and a is a fixed vector. Deter-
mine the induced operator A/L for each invariant subspace L.

6.3.17%. Find all invariant subspaces of the differential opera-
tor on the space of polynomials M,.

6.3.18. A space X of dimension 1 is the direct sum of a subspace
L, of di k (> 0) and sub L, of di n — k. Sup-
pose a basis e, . . ., e, for the space is selected so that the vectors
€5, . .., e belong to L,, and the vectors ep4y, . . ., €, to the sub-
space L,. Represent the matrix of an operator 4 with respect to
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the basis ¢, . . ., €, in partitioned form
_ |14 4
S P

where A,; and 4,, are square submatrices of orders k and n — k,
respectively. Prove that (a) 4,, = 0 if and only if L, is A-invariant;
(b) Ay = 0 and 4,, = 0 if and only if both the subspaces L, and
L, are A-invariant.

6.3.19. Show that any complex r-order square matrix 4 is similar
to a matrix B of the form

ol 5

where B, is a submatrix of order n — 1. Give a method of construct-
ing a transforming matrix P such that B = P-4P.

6.3.20. If an operator 4 is on a complex space, then prove that
any A-invariant subspace contains at least one eigenvector of this
operator.

6.3.21. Let L be an A-invariant subspace. Prove that (a) the
characteristic polynomial of the induced operator A/L is a divisor
of the characteristic polynomial of the operator 4; (b) the minimal
polynomial of the induced operator A/L is a divisor of the minimal
polynomial of the operator 4.

6.3.22. Subspaces L, and L, are invariant with respect to an
operator A with Ly L,. Prove that the characteristic polyno-
mial of the operator A/L, is a divisor of the characteristic polyno-
mial of the operator A/L,. A similar statement is valid for the
minimal polynomials.

6.3.23. Subspaces L, and L, are invariant with respect to an
operator A. Prove that the characteristic polynomial of the opera-
tor A/(L, - L,) is a common multiple of, and that of the operator
A/(Ly N L,) is a common divisor of, the characteristic polynomials
of the operators A/L, and A/L,. A similar statement holds for the
minimal polynomials.

6.3.24*. Prove that an operator A of simple structure induces
an operator of simple structure A/L on each of its invariant sub-
spaces L.

6.3.25. Deduce the following corollary to Problem 6.3.24: any
nontrivial invariant subspace of an operator A of simple structure
is spanned on a certain set of the eigenvectors of this operator.

6.3.26. Prove that for commuting operators of simple structure
A and B, there exists a basis for the space consisting of the common
eigenvectors of these operators.

6.3.27. Prove that any two
space have a common eigenvector.

11*

on a
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6.3.28. Prove that for any (even mﬁmte) set G consisting of

mutually plex space, there is a com-
mon engenvector for all the operntors from G.
6.3.29. A Ais ible by two sub: L, and L,.

Prove that (a) the rank of the operator A is equal to the sum of the
ranks of the operators 4/L, and A/L,; (b) the characteristic polyno-
mial of the operator 4 equals the product of the characteristic poly-
nomials of the operators A/L, and A/L,; (c) the minimal polynomial
A is the least common multiple of the minimal polynomials 4/L,
and A/L,; (d) the operator A* is, for any whole number, the direct
sum of the operators (4/L,)* and (A/L,)*; (e) for any polynomial
f (¢), the operator f (4) is the direct sum of the operators f (4/L,)
and f (A/L,).

6.3.30. P:‘rove that the differential operator on the space M,
cannot be reduced by any pair of subspaces.

6.3.31. Let R be a real linear space and letC be a complex space
obtained from R by complexification. Let L be a subspace of R
which is invariant with respect to an operator 4, and lete,, . . ., eu
be a basis for L. Show that the span of the vectors e, + i0,

..., ey - i0 of the space C is A-invariant, 4 being the operator
correspondmg to A.

6.3.32*. Using complexification, prove that any operator on a

real linear space has an invariant subspace of dimension 1 or 2.

.3.33. Find a two-di ional invariant subsp of the matrix
4 —6 4
1 0 0|y
0 10

considered as an operator of the real arithmetic space R,.

6.3.34. Let n-dimensional column vcctors Ty ooy Zpy 3=
=2+ iy, iorm a basis for a k-di of the 1
matrix 4 = B 4+ iC. Prove that the 2nd|mens|onal real column
vectors Uy, .. ., u., vy, ..., Uy where

z -y
w=1l o=l o)
4 |w,' 4 zl?

| invariant sub of the real

form a basis for a 2k-di
matrix

B —C
p=|z 5|

6.3.35. Vectorse,, . .., e form a basis for a k-dimensional inva-
riant subspace of an m X m matrix 4 and vectors f,, . . ., f; form
a hasis for an l-dimensional invariant subspace of an n X n matrix B.
Prove that in the following matrices the span of the Kronecker pro-
ducts e; X f;, i=1, ...,k j=1,... 1, is a ki-dimensional
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invariant subspace: (a) of the matrix 4 X B; (b) of the matrix
A X E, 'm X B.

6.3.36*. Prove that for any operator 4 on an n-dimensional
complex space X, there is a sequence of invariant subspaces L,,
Ly, ..., Ly, L, such that the dimension of the subspace L
equals k and

Lcl,c...cl,cL,=X.
Show that the matrix of the operator 4, with respect to a basis for
the space having e; € L,, is upper triangular. However, if the order
of the basis vectors is reversed to e,, . .., e, then the matrix of
the operator assumes lower triangular form. State the meaning of
the diagonal elements of these matrices.

6.3.37. Deduce the following corollary to Problem 6.3.36: any
complex square matrix is similar to an upper (lower) triangular
matrix.

6.3.38*. Prove the statement of the previous problem without
using the result of Problem 6.3.36.

6.3.39. Prove that triangular form of a given complex matrix 4
is not unique, viz., each order of the eigenvalues 4,, . . ., A, of the
matrix 4 has a corresponding upper (lower) triangular matrix similar
to A in which the elements A,, . .., A, on the principal diagonal
are arranged in the required order.

Reduce the following matrices to triangular form by a similarity

£ ion (indi the obtained tri lar forms and the

transforming matrices):

6.3.40. 1 0 1 n 6341 )| 5 2 !
—1 =1 =1 —8 —3 —2|.
o 1 0 7 4 3

6.3.42*. Let A,, ..., A,, be all the different eigenvalues for
a complex n X n matrix 4, and k,, ..., k, the algebraic multi-
plicities of these eigenvalues. Prove that the matrix 4 is of simple
structure if and only if it is similar to a matrix B of the following
block structure

MEy, By By ... Bim
0 ME,, Bu ... Bum

B={ 0 0M&E, ... Buml.

0 0 0 AmEx,

6.3.43. Prove that an operator on a complex space is nilpotent
if and only if all its eigenvalues are equal to zero.

6.3.44*. Prove that the community matrices A and B can be
reduced to triangular form by the same similarity Lransformation.
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6.3.45. What does the statement of Problem 6.3.44 mean for the
commuting operators A4 and B?

6.3.46*. Prove that any real square matrix is similar to an up-
per (lower) quasitriangular matrix whose diagonal blocks are of
order 1 or 2.

6.3.47. Deduce the following corollary to the result of Prob-
lem 6.3.46, viz., that any operator on an n-dimensional space has
an invariant subspace of dimension n—1 or n—2.

6.3.48%. A,, ..., Ay are the eigenvalues of a complex m X m
matrix A, and p,, <+« Hn the eigenvalues of a complex n X n
matrix B (each sequence may contain equal terms). Prove that (a)
the mn products Ay, i=1, j=1, ..., n represent
collectively all the elgenv;lues of the matrn A X B and the op-
erator Gan (see Problem 5.6.10); (b) the mn sums A, + py, i =

cam,j=1, wn represent collectively all the eigen-
values of the mamxA M E, < E, X Band operator F 4p.

6.3.49. Prove that the mam'( equation

AX +XB=C

(where A, B and C are given complex matrices of orders m X m,
n X nand m X n, respectively) has a unique solution if there are
no eigenvalues A, of the matrix 4, and pj, of the matrix B, such
that A, + p; = 0.

6.3.50*. An operator 4 on a complex space is reducible by two
subspaces L, and L,, and the induced operators 4/L, and A/L, have
no equal eigenvalues. Prove that any operator B that commutes
with 4 is reducible by the same two subspaces L, and L,. Extend
this statement to the case of any finite number of subspaces.

3.51. Let Ay, ..., A, be the eigenvalues of a complex n X n
matrix A (some of the numbers A, may be equal). Prove that all
the possible products of p numbers from A,, ..., A, represent all
the eigenvalues of the p-th associated matrix Ap.

6.4. Root Subspaces
and the Jordan Form

The problems in this section are grouped in the following sequence:

Root subspaces. The basic tools here are: a theorem on the decomposition of
a complex space into the direct sum of the root subspaces of an operator 4,
and the characterization of the root subspace K, that corresponds to an eigen-
value A, as the kernel of some power of the opemar 4 — ME. Corollaries to this
theorem as well as computational ﬂmhhm’ on the construction ol root subspaces
are given and the concept of the height of a root vector is disct .

The structure of a root subspace. The material is expounded hy degrees, begin-
ning with the snmplest case, i.e. when the maximum height of a root vector
cmncides with the dimension of the root subspace. The situation then is gra-

ccommq more complex until the most general case is considered. At
euch suge we illustrate the structure of a canonical basis, and provide some
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computational examples. anins got an insight into the structure of an indi-
vidual root subspace, we proceed to
he construction of the Jordan form of an arbitrary operator. In addition to

computational ?mblem, we also offer here a number of theoretical problems
about the use of the Jordan form. In particular, the formulae which enable the
Jordan form to be computed without resorting to the construction of a canonical
basis are derived. The section is concluded by problems on

The relation between the sinularity of matrices and the Jordan form.

Throughout this section we will consider only operators on a complex space
and complex matrices unless otherwise stated.

6.4.1. Using Problems 5.3.9 and 5.3.10, prove that for any op-

erator 4 on an n-dimensional, real or complex, space X, the space X
can be decomposed into the direct sum of subspaces

X=N+T, (6.4.1)

where N is the kernel, and T the image of the operator 47 for some
natural number g. Moreover, for the least possible g, this inequality
is valid: g<< n.
Show that the operator 4 induces a nilpotent operator on the
b, e tor on the subsp T

N, and a d . Thus,
the st of the problem may be ref lated as follows: any
operator A is the direct sum of a nilpotent and a nondegenerate

operator.

6.4.2*. Prove that the decomposition of an operator 4 into the
direct sum of nilpotent and nondegenerate operators is unique.

6.4.3. Prove that the dimension of a subspace N in the decom-
position (6.4.1) equals the algebraic multiplicity of the zero eigen-
value of an operator 4.

6.4.4*. Prove that for any operator 4, a space X can be decom-
posed into the direct sum of subspaces Kj,, ..., Kin

X=Kn+Kn+ ...+ Km (6.4.2)

(where A, . .., An are all the different eigenvalues of the operator 4
having algebraic multiplicities k;, ..., kn, respectively) such
that each of the subspaces K;, is A-invariant, and the induced opera-
tor A/Kj, has the characteristic polynomial (A — A;)*.

6.4.5. Prove that the decomposition in (6.4.2) is unique if the
operator 4 satisfies the conditions listed in Problem 6.4.4.

6.4.6. A subspace Ki, in the decomposition (6.4.2) is called a
root subspace associated with an eigenvalue A;. Show that it follows
from Problems 6.4.1-6.4.5 that (a) the subspace K., can be described
as a set of all vectors z such that (4 — A,E)’z = 0, where s is any
natural number; (b) the subspace K;., can be described as the kernel

of the operator (4 — A,E)%, where g, is a certain natural number
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not ding k;; (c) the ei b L;“ iated with an eigen-
value A,, is contained in the root subspace KA‘.

6.4.7. Show that for an operator 4 to be of simple structure it is
necessary and sufficient that each ei b L;, of this op
associated with the eigenvalue A, should coincide with the root sub-
space Ky .

6.4.8. Prove that if K is a root subspace of an operator A asso-
ciated with an eigenvalue A, then (a) K3, is the root subspace of the
operator A — A E associated with the eigenvalue A, — Ao; (b) Ki,
is the root subspace of the op A iated with the eigen-
value 1/A,.

6.4.9*. Prove that any root subspace of an operator 4 is inva-
riant with respect to any operator B which commutes with 4.

6.4.10*. Prove the Cayley-Hamilton theorem, viz., that any

P A is annihi by its ch istic polynomial

6.4.11. Prove that if an A of an n-di ional space is
nondegenerate, then the inverse operator 4~! can be represented
as a polynomial of degree n — 1 in 4.

Construct the root subspaces of the following matrices:

6.4.12. |[—1 11 64.43. | 1 1 ©
-3 22|, —4 -2 1
—111 ‘ 4 1 —2
6.4.14. 23 03 6.4.15. |2 —3 4 —6
—10 12 1 -22 —4

03 23" o 02 -3
12 -10 0 01 —2

6.4.16. Any vector of a root [subspace Ky, of an operator 4 is
called a root vector of this operator associated with the eigenvalue?,.
A natural number k such that (4 — A,E)’z = 0, but (4 — AEP?
20 is called the height of a root vector z from K, By definition,
the height of the null vector is zero.

Show that (a) the height of each vector from Kj, does not exceed
the algebraic multiplicity k, of the eigenvalue A;; (b) the height
of an eigenvector equals 1; (c) the set H) of all vectors from Ka:
whose height does not exceed a given natural k is a subspace.

6.4.17*. Let z be a root vector of an operator A associated with
an eigenvalue A; and with a height 2 (> 0). Prove that (a) the vector
(A—AE) z has the height h—1; (b) the vector (A— A;E) z, where
A; is an eigenvalue of the operator A other than A, has the height
k; (c) if A; is a root of a polynomial f (¢) with a multiplicity of I,
where <Ch, then the vector f(4)z has height 2 —1; (d) the vector



6.4 Root Subspaces and Jordan Form 169

A~z has height &; (e) if B is an operator that commutes with 4,
then the height of the vector Bz does not exceed .

6.4.18. Show that a root vector z of an operator 4 is also a root
vector with the same height of (a) the operator A — A,E; (b) the
operator A1

6.4.19. Prove that a set of nonzero vectors from Kj, all of whose
heights are different, is linearly independent.

6.4.20. Let z be a vector from Kj with a height h.

Show that (a) the vector set (4 — AME)* -1z, (A— ME)*%z, ...

.., (A — ME) z, z is linearly mdependent, (b) the span of the set
is A-invariant.

In Problems 6.4.21-6.4.62 the only operators of an n-dimensional
space and matrices of order n that will be considered are those which
have only one eigenvalue A, with an algebraic multiplicity n. This
condition will not be made explicit henceforward. It should be clear
that all the results obtained will also be valid for an arbitrary oper-
ator that is considered only on a root subspace.

6.4.21. An A on an n-di ional space X is said to be
a one-block operator if the maximum possible height of theroot
vector coincides with the dimension r of the space. Prove that (a)
any basis for the space X contains at least one vector of height n;
(b) if z is a vector of height n, then the vector set (4 — AE)"! z,
(A — ME)y*2z, ..., (A —MAE)z, z is a basis for the space X;
(c) the matrix of the operator A with respect to this basis is a Jordan
block of order n corresponding to the number A,. The last statement
accounts for the term “one-block operator”.

Thus, in the case of a block tor the ical basis is the
set (A — AE)*'z, . . ., (A — ME) z, z called the series constructed
idrom the vector z, and the Jordan form consists of one block of or-

er n.

6.4.22. Find the matrix of the opener (see Problem 6 4 21, (b))
with respect to the basis z (4 — A E) z, 4 —

Construct the canonical basis and find the Jordan form of the
following matrices:

6423 | 14 6426, | 5 —9 —4
—4 3| 6 —11 5.
—7 1 e
6425 || 3 1 00 6.4.26, |5 —10 10 —5 1
o 2 10 1 00 00
. o 1t o0 oof.
f f' " 0 01 00
-1 -1 - 0 00 10
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Find the Jordan form of the following matrices of order n:

6.427. |-t -t o0 o0 .. 0 0
0 —1 —1 0 [ ]
0 0 —1 —1 [ ]
0 -1 —1
0 0 —1
6.4.28. |1 0
0 0
0 0
Ly a0,
0 a
0 1
6.4.29. ||9 00
0 00
0 00
. B
00 0 0 ... 9 an,
0000 ..009
Aoty oer Gy F 0.
6.4.30. [t 234...n 6.4.31. (|2 3 4 5 ... nt1
0123...n—t 0234..nr
001 2... n=2|. 0023 ... n—tf.
0000...1 0000... 2
6.4.32. ||«
0
o 1
00 0 ...a I

Gyplyg « - . Gy, n 70-

6.4.33. Find the canonical basis and Jordan form of the differen-
tial operator on the space of polynomials M.

.4.34. Prove that if 4 is a one-block operator associated with
an eigenvalue A, = 0, then (a) the operator A% (b) the operator A'
,\;llhell'(e I is any natural number; (c) the operator A-1, are also one-

ock.

6.4.35. Show that if 4 is a one-block operator associated with the
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zero slgenvnlue. then 42 is not a -block tor (the d
of the sgace is assumed to be greater than 1)

6.4.36. Given a one-block operator A, prove that the subspace
H.. which is the kernel of the operator (4 — A,E)*, has the dimen-
sion k, 0 <k<<n.

6.4.37. Prove that a one-block operator 4 has no nontrivial
invariant subspaces that are different from the subspaces Hj (see
Problem 6.4.36).

6.4.38. Let 4 and B be ive block Prove
that A-invariant and B-invariant subspaces coincide.

6. 4 39. Prove that the minimal polynomnl of a one-block opera-
tor A coincides with its ch istic polynomnl

6.4.40*. Let the maximum height of a vector in a space X be
equal to ¢. Given that the vectors z,, ..., zp are linearly inde-
pendent and have a height ¢, and that the intersection of the span
of the vectors z,, ..., zp and the subspace H,_, consists of the
null vector only, prove that for any natural k, 0 << k <C¢, the vectors
(A —ME)}z,, ..., (A — kE)*z, are linearly independent, and
that the intersection of the span of these vectors and the subspace
Hy_y -, consists of the null vector only (remember that the subspace
Hy_y-y is the kernel of the operator (4 — AE)*).

6.4.41. Denote the defect of the operator (4 — AE)* by my.
Deduce the following inequalities from the result of Problem 6.4.40:
n—m =mg—m_, < my — My, where 0 <k<t, m,=0.

6.4.42%. Prove that the series, constructed in Problem 6.4.40
on the vectors z,, . .., Zp, form a linearly independent set.

6.4.43. Show that if, in addition to the data of Problem 6.4.40,
the relation n = (n — m,_,) t (where n is the dlmensmn of the
space X) is valid, then (a) the series (4 — A E)™kz,, ...,

o (A= ME) 3, 2y, - -, (A — AE) M2, .. ., (A—AgE) 25, 2p
fonn a basis for the space X (we put p = n — m,.,); (b) the matrix
of the operator 4 with respect to this basis is of the following quasi-
diagonal form

Iy 0
Jy
0 Ip
where each of the matrices J, J,, ..., Jp is a Jordan block of
order ¢, corresponding to the number A,.
Thus, in the above case, the canonical basis for the operator 4
consists of a number of series that have the maximum possible

length, and the Jordan form consists of a number of Jordan blocks
of the same order.
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Construct the canonical basis, and find the Jordan form of the
following matrices:

6.4.44. |1 1 =20 6.4.45. ||99 0 0 101
2 1 02 0 9 0 0
1 0 11 0 101 9% 0"
0 —1 21 0 0 0 9

6.4.46. j—3 1 000 0 6.4.47. 2 o 0000
-30100 0 0O 2 0000
-1 0000 O 0 0 2000
00000 —1 0 -3 0200/
00010 -3 -1 0 0020
00001 -3 0 0 -5002

6.4.48. Find the canonical basis and Jordan form of the double
differentiation operator on the space of polynomials M,, assuming
that n = 2k — 1, where k is a whole number.

6.4.49. The maximum height of a vector in a space X equals t.
Linearly independent vectors z,, . . ., zp all have height ¢, and the
space X is the direct sum of the subspace H,., and the span drawn
on this vector set. Prove that if the following inequality holds for
the numbers m,, (see Problem 6.4.41),

My — Mgy < Myoy = My-gy

then (a) the series constructed on the vectors zy, . .., zp do not
form a basis for the space X; (b) the series constructed on the vectors
(A—ME) 24, . . ., (A—AoE) zp, do not form a basis for the subspace
H,.y; (c) if linearly independent vectors z,, 4+, . . ., Zp, having height
t — 1 are such that the direct sum of the span, drawn on the vector
set (A —AE)zy, ..., (A —AE)Zp, Zp,4y .- Zp, and the
subspace H,.,, is the subspace H,.,, then the series constructed on
the vectors z,, ..., Zp,, Zp 41, - - -, Tp form a linearly indepen-
dent set; (d) the numbers m, satisfy the relations

Mypay — Myoy << My — Myyy

where 0 <k <t—1, my=0.

6.4.50. Find a relationship connecting the dimension n of the
space X, the maximum height ¢ of the vectors and the numbers my,
which will imply that the series, constructed in Problem 6.4.49 (c),
f;rm a basis for X. Construct the Jordan form of the operator 4 for
this case.
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Construct the canonical basis and find the Jordan form of the
following matrices:

6.4.51. 41 1 6.4.52. ||5 1 —1 —1
—2 1 —2ff. 15 -1 —t
11 4 11 3 —f°
11 -1 3
6453 |—2 o0 3 4 5
0o —2 o0 6 7
0 0 -2 o0 8
0 0 0 -2 0
0 0 0 o0 -2
6.4.54, |t —1 0 —1 0
2 -2 00— 0
1 -1 - 0 0
2 -4 0 -2 0

2 -1 0 -1 —1

6.4.55. Find the canonical basis and Jordan form of the double
differentiation operator on the space of polynomials M,, assuming
that n = 2k, where k is a whole number.

6.4.56. Show that generally a basis for a space can be made up
of p, series with a maximum length ¢, p, — p; series of length ¢ — 1,
and for any 0 << k <<t, py-x+y — Pi-x series of length k. Here

Pr = Mpegyy — Myop.

Find the Jordan form of the operator for this case.
6.4.57. Deduce the following corollary to the result of Prob-
lem 6.4.56: the numbers m, satisfy the inequalities

Mypgy = Mp<< Moyy — My
if r>s.

6.4.58. Could there be a nilpotent operator 4 on an 8-dimension-
al space such that the ranks ry of the operators 4* form the se-
quence 6, 4, 3, 1, 0?

Construct the canonical basis, and find the Jordan form of the
following matrices:

6.4.59. 1t 1 10 6.4.60, |-3 1 —3 —2 —2
-1 3 01 0—2 1 0 0
-1 0 —1 1 1t 0 0o 1 ]
0 —1 —1 1 1 0 1 0 1
1.0 1 1 0
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6.4.61. 3 6 1 1 0 0
0 0 4 0 1 0O
-1 =2 -3 0 0 1
0 0 o 3 & 1|
0 0 0 o0 0 4
0 0 0 —1 —2 —3
6.4.62*. 2010 —1 0
0200 0 0
0010 1 0
0005 o0 —9
2010 3 0
|0 001 0 —1

Using the procedure for constructing a canonical basis for a root
subspace, described in the previous section, and also the decompo-
sition of the space into a direct sum of root subspaces, find the cano-
nical basis and the Jordan form of the following matrices: -

6.4.63. | —2 —1 1 6.4.64. || 3 —t 1
5 —1 4|, —2 4 -2
5 12 —2 2 o
6.4.63, (-—4 4 2 6.4.66. 30—
—1 11y, —2 1 1.
‘—s 43 3 —1 —t
6.4.67. | 00 —5 3 6.4.68. -3 4 3 15
00 —3 1 —11 0 5
—53 0ol 00 —3 —3-
-3 1 00 00 2 2
6.4.69. |—2 4 o0 o0 6.4.70. 4 1 1 1
-1 2 0 o - 2 =
-2 —1 ol 8 1 — 1]
3 -6 0 —t -6 — 4 2

6.4.71. The vectors of the 1 basis for an A have
been numerated in reverse order. How is the matrix of the opera-
tor altered?

6.4.72. Given the Jordan form of an operntor A, find the Jordan
form of the operator (a) 4 — A,E; (b) A1

6.4.73. Show that if A, ..., A, are the exgenvalues (some of
which may be equal) of an 4 of a space,
then the numbers f(A,), ..., f () are the eigenvalues of the
polynomial f (4).
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6.4.74. Prove that any operator on a complex space is the direct
sum of one-block operators.

6.4.75*. Given the Jordan form of an operator 4, find the Jordan
form of the operator 42,

6.4.76. Prove that any operator on a complex space can be re-
presented as the sum of an operator of simple structure and a nil-
potent operator.

6.4.77*. Prove that a non-scalar operator A4, fulfilling the con-
dition 4% = E, is a reflection operator.

6.4.78. Prove that an operator 4, fulfilling the condition 4* = E
for a certain natural number k, is of simple structure.

.4.79*. Prove that in any Jordan form of an operator 4, the num-
ber of the Jordan blocks, corresponding to an eigenvalue A,, equals
the defect m, of the operator 4 — A E.

6.4.80*. Prove that in any Jordan form of an operator 4, the
number of the Jordan blocks, corresponding to an eigenvalue A,
and having an order greater than or equl to k, is determined by
the formula

Sop = my — my-y,

where my = 0, and m,, is the defect of the operator (4 — A,E)*.
6.4.81. Deduce from the result of Problem 6.4.80 that

Sp = 2my — mpyy — My,

where S, is the number of the Jordan blocks corresponding to the
eigenvalue A, and having the order k.

Thus, the Jordan form of any operator is uniquely determined
by the position of the Jordan blocks on the diagonal.

Without computing the canonical basis, find the Jordan form
of the following matrices:

6.4.82. 31000 6483 |0 t 000
-2 0100 0 0 100
—2 0 0 1 off, 0 0 01 0],
30004 0 0 001
—1 0000 1 -1 =221
6.4.84. |5 0 6 7 9 14
0508 10 15
0050 14 16
0005 217
0000 13 18
0000 019
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6.485. | 2 0 0 0 0 0
(] 2 0 0 (] 0
1 —1 —4 0 0 0
3 2 1 —4 0 of"
-2 2 5 7 4 0
4 3 8 6 0 —4
6.4.86% 000 t 10 0
10 -3 01 0
01 300 1
00 000 1]
00 010 3
00 00 1 3
6.487°[00 1 —1 0 1
10 -3 1 —1 —3 \
01 3 0 1 2
00 0 [1] 0 1
00 0 1 0 —3
00 0 0 1 3

6.4.88. Find the Jordan form of the difference operator 4, on
the space of polynomials M.

6.4.89. Find the Jordan form of (a) the triple differentiation oper-
ator; (b) the operator A3, where 4, is a difference operator, on the
space of polynomials M..

6.4.90. Show that in each class of similar matrices there is a uni-
que Jordan form for each positioning of the diagonal Jordan blocks.
. Determine whether the following matrices 4, B and C are simi-
ar:

6.4.91. -3 2 5 50 —63 52
Ar=|j-12 8 20 B=|[—147 159 —132],
3 —2 =5 —264 283 —219
59 —63 52
C = [|—147 159 —132],
—244 263 —218
6.4.92. 31— 5 5 —2
A=|-3 =1 3, B=fl—2 —t 1|,
—2 2 4 -1 -1 2
80 8
c=| 32 ef.
—2 0 —2
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6.4.93. -1 -1 2 —8 12 —6
A=| 3 —5 8||, B=|—10 18 —10f,
2 —2 2 —12 26 —14
o 6 6
c=|-2 16 12,
4 —28 —20

6.4.94. Prove that any complex matrix 4 is similar to its trans-
se AT,

6.4.95. What can be said about the Jordan form of a matrix 4
similar to its inverse 4-1?

6.4.96. Prove that a Jordan block is similar to the companion
matrix of its characteristic polynomial, i.e., to the Frobenius ma-
trix.

6.4.97. Prove that any complex matrix is similar to a quasi-dia-
gonal matrix all of whose diagonal blocks are the Frobenius matri-

s.

6.4.98*. Find the necessary and sufficient condition for the mini-
mal polynomial of a complex matrix to coincide with its charac-
teristic polynomial.

. Let Ay, ..., A, be eigenvalues, all different, of an
n X ncomplex matrix 4. Prove that the matrix 4 is of simple struc-
ture if and only if the polynomial (A—A,) ... (A—An) is the
minimal polynomial of 4.

6.4.100*. Given an m-order matrix 4 of simple structure and
the Jordan form J of an n X n matrix B. Fmd the Jordan form
of the matrix (a) 4 X B; (b)) 4 X E, + E,, X

Apply the derived results to the operators GA 5 and F, p(see
Problem 5.6.

6.4.101. Find the Jordan form of the n-order matrix

11

€ 1

where ¢ is positive and positioned in (n, 1), and the off-diagonal
elements which are not indicated are zeroes.

6.4.102*. Replace the unit ofi-diagonal elements, if any, of the
Jordan form of a matrix 4 by an arbitrary number e = 0. Prove
that the matrix obtained is similar to the matrix 4.

12-0619



CHAPTER 7

Unitary Space Operators

7.0. Terminology and General Notes

Assume that X and Y are two spaces that are either both Euclidean
or both unitary, and consider a linear operator A from Oyxy. A li-
near operator A* from ©yy is said to be the conjugate of the operator A
if for any two vectorsz € X andy €Y,

(Az, y) = (z, A%Y). (7.0.1)

Every operator A has a conjugate operator A* which is unique.

Given a complex m X n matrix A, an n X m matrix A* is said
to be the conjugate of the matriz A if

oy =ay
for all i, j.

The conjugate operator has a corresponding conjugate matrix and
vice versa with respect to every pair of orthonormal bases for the
unitary spaces X and Y. In the case of the Euclidean spaces X and
Y, it can be shown that a similar relationship exists between the
conjugate operators and the transposed matrices.

Consider now the operators on a unitary space X for which the
following theorem is true.

The Schur theorem. For each operator A there is an orthonormal
basis for the space X with respect to which the matriz of the operator
is triangular.

A number of important classes of operators on a unitary space X
can be identified, using the notion of a conjugate operator.

An operator A is said to be normal if

A*A = AA*. (7.0.2)
An operator U is said to be unitary if
U*U =UU* =E. (7.0.3)
An operator H is said to be Hermitian if
H* = H. (7.0.4)

An operator K is said to be skew Hermitian if
K* = —K. (7.0.5)
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A Hermitian operator H is said to be positive-semidefinite (positive-
definite) if for each non-zero vector z

(Hz, )= 0 (> 0). (1.0.6)

We define normal, unitary, Hermitian, skew Hermitian, positive-
semidefinite, and positive-definite matrices in exactly the same way
and in the last two cases matrices can be identified, as usual, with
operators on the arithmetic space.

The following results hold for all the above classes of opera-
tors:

An operator A4 is normal if and only if there exists an orthonormal
basis for it containing the eigenvectors.

A normal operator 4 is unitary if and only if the moduli of all
the eigenvalues are equal to unity.

A normal operator 4 is Hermitian if and only if all its eigenvalues
are real.

A Hermitian tor H is positi idefinite (positive-defi-
nite) if and only if all its eigenvalues are nonnegative (positive).

Any operator 4 from ©yy may be represented as

A =H, + i, (7.0.7)

where Hl and H, are Hermitian operntors This is called the Her-
mitian d of A.

Hy= (A4 A%, Hy=f (449,

In the Euclidean space X the relations (7.0.2)~(7.0.6) also iden-
tify classes of operators which are called, respectively, normal,
orthogonal, symmetric, skew-symmetric, positive-semidefinite, positive-
definite. Matrices with the same names are defined in similar man-
ner.

The following definitions and results are true for both unitary and
Euclidean spaces.

If A4 is an operator with rank r from X to Y, then the nonzero
eigenvalues of operators 4*4 and AA* coincide (taking their mul-
tiplicity into account) and are positive.

1f n and m are the dimensions of spaces X and Y, respectively,
then the multiplicity of the eigenvalue zero is equal to n — r for
the operator A*A, and to m—r for the operator AA*.

Let s=min (n, m) and denote the common eigenvalues of the
operators A*4 and A4* by aj, ..., al (2;>0). The numbers
@y, ..., @, are then called the singular values of the operator A.

The singular values of a matriz are defined sumlnrly

In all cases orthonormal bases e, .. ., and f, o fm

A € Oy, then m =n) exist for an operator 4 s\lch that. (1) the vactors
e, ..., e, are the eigenvectors of the operator 4*4; (2) the vectors
120
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fir - -« fm are the elgenvectors of the operator A4*; (3) if e,, P
R andl v. . frare d with nonzero bers a?,

o ad then

1
[,::a—lAe,. i=1,...,r
A pair of bases ¢, . .., &, and f;, . . ., fmm that possess these prop-
erties is said to be a pair of singular bases for the operator 4.

It is possible to represent any operator A on a space X as the
product of a positive-semidefinite and unitary (orthogonal) operator:

A=HU. 1.0.8)

This is called the polar representation of operator A.
Assume that 4 is an operator from ©yy and b is a fixed vector
in space Y. If the equality
Az'=b (7.0.9)

is considered for finding vectors z from X, then the equation is
consistent if and only if b € T 4. Thus, the solutions of (7.0.9) are
all pre-images of the vector b. If b¢ T, then it is sensible also
to find the vectors z such that the vector

y=b— Az

has the least possible length. These vectors z are called pseudoso-
lutions of equation (7.0.9). The pseudosolution which has the least
length is said to be the normal pseudosolution of the equation (7.0.9).
It always exists and is unique.

By considering equatlon (7 0 9) for all vectors b from Y, we can

match the normal p. of the to

each vector b and thus obtain a linear operator irom Y to X. This

is called pseud of the operator 4 and is denoted

A qriadratic form F in n real variables z,, . .., z, is a function
of the form

s n
F=§ E ayz,2), (7.0.10)
where a,; are real numbers; we assume that a,; = ay. ’

If a symmetric matrix A4 of the coefficients a,; (called the matriz
of a quadratic form) and a column vector z having the variables
Z;, . . ., T are constructed, then the definition of a quadratic form

may be rewritten as
= (Az, z). (7.0.11)

The scalar product is defined here by the familiar rule (7.1.4) and
the rank of a quadratic form F is the rank of the matrix A.
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When the variables are changed by

z =Py (71.0.12)
the form F is transformed into a new qundratic form in the new
variables yy, . .., y, and the matrix B, defined by this form, is
related to the matrix 4 by the relation

B = PTAP. (7.0.13)

This change of variables (7.0.12) is said to be nondegenerate if
the matrix P is nondegenerate. The rank of a quadratic form remains
unaltered by a nondegenerate transformation of its variables.

Every quadratic form F of rank r may be reduced by a nondegene-
rate transformation of variables to the form

F=Agt+ A2+ ...+ Al (1.0.44)

which is called the canonical form of F. Here Ay, Aq, . . ., A, are
all nonzero.

Generally speaking, the canonical form of a given quadratic
form is not uniquely defined. In particular, it is always possible
to make nonzero coefficients equal to 1 or —1. Such a canonical form
is called the normal form of the quadratic form and despite the
an‘ibiguity of the canonical form the following statement remains
valid.

The law of inertia of quadratic forms. The number of positive (and
negative) coefficients among Ay, . . ., A, is the same in each cano-
nical form to which a given quadratic form may be reduced by
a nondegenerate transformation of variables.

The above-mentioned numbers are called, respectively, the posi-
tive and negative indices of inertia, and their difference is said to be
the signature of the quadratic form.

Note that each quadratic form F may be reduced to the canonical
form by an orthogonal transformation of variables (a transformation
defined by an orthogonal coefficient matrix). For this it is sufficient
to substitute an orthogonal matrix, whose columns are the eigen-
vectors of the matrix 4, for P in (7.0.12). The coefficients of the
canonical form then obtained are the eigenvalues of 4.

A quadratic form (7.0.11) is called positive-definite if

(4z, ) >0
and when z 5= 0. A positive-definite form F becomes normal when
F=y+ut ..+ (7.0.15)
Two qnadranc iorms F and G in the same variables may be redu-
ced to a 1 form by one if at least one of the

forms (F, for example) is positive-definite. If in this case the trans-
formation z = Py, which reduces the form F to a normal form
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(7.0.15), is carried out first, then the form G is turned into some
form in the variables y;, . . ., y,. Next the orthogonal transforma-
tion y = Qz, which reduces G to a canonical form, is carried out; the
form F still renms its normal form and is changed into F = z? 4-
+4+... 42

Note in oonclusnon that the symbols ' are used in this chapter
as a contracted way of writing the complex number z = cos ¢ +
+ isiny.

7.1. Conjugate Operator.

Conjugate Matrix
ln tlus secuon the following topics are considered:
gebraic of P and
mtg les of te t
.xamples ol conjugate operators.
The rghuon beol.v‘:'vg o and j matrices with
Tespect to onhonnrmn] bnus for the spnu

he betwe;n. lheh atrie char i of nnlopentor A and

t conj ator A* such as the kernel, image, eigenvalues, et
“gms«rlrhmughout that this propen)" (two o’penuus bein'g conjugate)

depends on the definition of the scalar product for a given linear space.

7.1.1. Deduce the following properties from the definition of
a conjugate operator:

) (A‘). e A.
(i) (4 + B)“ = A* + B%;
(iii) 0* =

(iv) (aA)‘ = ad*;
(v) (4B%) = B*4%;
(vi) E* = E;
(vii) if an A d. then (A-N)* = (4*)"%;

(viii) (A™)* = (4*)™ for any whole nonnegative m;

(ix) if an operator A is nondegenerate, then the previous property
is true for any whole number m;

(i) if f(t) =ay+ a;t + ...+ ant™ is an arbitrary polynomial,

then
If () = l_(A‘),

where 7 (2) = @, + ayt + .

7.1.2. Prove that the properhes hsted in the previous problem
also hold for conjugate matrices.

7.1.3. Show that for a nilpotent operator A with the nilpotence
index ¢, the conjugate operator A* is also nilpotent and has the
same nilpotence index.

7.1.4. Show that if operators A and B commute, then the conju-
gate operators 4* and B* al<o commute.



74 Conjugate Operator. Conjugate Matrix . 183

7.4.5. Two bases ey, ..., e, and gy, . . ., gm for unitary (Eucli-
dean) spaces X and Y, respechvely. ‘are held fixed. Assume that
the following relations are valid for linear operators 4 and B

(Aey g) = (e Bgy), i=1,..,mij=1,...,m

Prove that in this case 4* = B.

7.1.6. Let e, . .., e, be an orthogonal (but not orthonormall)
basis for a space X. Find the relationship between the matrices
defined by an operator A from @y, with respect to this basis and
the matrices of the conjugate operator 4*.

7.1.7*. Let an operator 4 be defined by a matrix 4, with respect
to a certain basis e, ..., e, for a unitary (Euclidean) space X.
Prove that with respect to the basis f,, . . ., f., Which is biorthogo-
nal to the basis e}, . . ., e,, the conjugate operator 4* is defined
by the conjugate matrix (4.)*.

7.1.8. If there is an tor 4 on the di 1 unitary
(Euclidean) space, what does the transformatlon A*, which is conju-
gate of 4, constitute?

7.1.9. Find the conjugate operator of the rotation of the Eucli-
dean plane through an angle a.

7.1.10*. Find the conjugate operator for the operator of the
Euclidean three-dimensional space Az = [z, al, where a is a fixed
vector.

7.1.11. The scalar product is given on the space of polynomials
M, by the formula:

(f, &) = aobo + asb; + azb,, (7.1.1)
where f(t) = ay + ayt + a,t®, g () = by + byt + byt®. Find all
the matrices of the differential operator 4 and the conjugate opera-
tor A* with respect to the basis: (a) 1, ¢, £ (b) 582 — 3¢, 8 — 1,
@1, o]

7.1.12. On the space M, the scalar product is defined by:
hea=fDe(=N+70©0)g©O + /1) g (71.2)

Find the matrix defined by the operator, which is conjugate to the
differential operator, with respect to each of the bases listed in
Problem 7.1.11. Compare the matrices obtained with the correspond-
ing matrices of Problem 7.1.11.

7l.i.13. The scalar product on the space M, is given by the for-
mula:

1
G.o={1mgma (1.1.3)
b



184 Unitary Space Operators Ch. 7

Find the matrix of the operator which is conjugate to the differen-
tial operator with respect to each of the bases listed in Problem

A1,
7.4.14. On the rn-dimensional arithmetic space, whose elements
are the column vectors, the natural scalar product is defined by:

(@, y) = by + . o + XoPne L (14.4)
Here
@ B,
z=|: . y=|:
an Bn

(the sign of complex conjugation is omnted in the real case).

Show that if X n are d with on this
space as in Problem 5.6.7, then the conjugate operator of the ma-
trix A is: (a) the transpose of the matrix AT in the case of the real
space R,; (b) the conjugate matrix A* in the case of the complex
space C,.

7.1.15. Show that in the case of the Kronecker product 4 X B,
the conéugate matrix is of the form 4* X B*.

7.1.16. Prove that if 4 is a square matrix, then for associated

matrices the following relationship holds true

4 ')p = (Ay)"

7.1.17. Denote the spaces of real and of complex r X r matrices
by Rnxn and Cnxna, respectively, for which the scalar product is
given by the formula

In

“ B)= ;_]l abiy (7.1.5)

(In the real case, the sign of the complex conjugation is omitted).
Show that
{4, B) = tr (B*4) = tr (4B*). (7.1.6)

7.1.18. Show that on the spaces Rnxn and Cnxn the conjugates
to the operators G, 5 and F, p defined in Problem 5.6.10 are the
operators G s g and F 44 ps.

7.1.19. Let 4,, ..., 4, be fixed real n X n matrices. Consider
the following operator A4 from R, to Rnxn:

%

A Az=ady+ ..o

=

%n
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The scalar product is defined according to (7.1.4). Show that the
conjugate of an operator 4 is the operator
By
B—>y= , Bi=tr(BT4) =tr (ATB), i=1,...,n
n
Extend this result to the complex case.
7.1.20. Show that each linear functional f (z) on a unitary (Eucli-
dean) space X may be defined as the scalar product

f@) =@ 1

where f is a certain vector of the space being held constant for the
given functional.

7.1.21. Show that the conjugate to a projection operator is also
a projection operator.

7.1.22. Show that the conjugate to a reflection operator isalso
a reflection operator.

7.1.23. Show that the rank of a conjugate operator A* equals
the rank of the operator 4

7.1.24. Prove that the kernel of an operator A* coincides with
the orthogonal complement of the image of the operator 4.

7.1.25. In the three-dimensional Euclidean space, a Cartesian
system of coordinates Ozyz is fixed. Let A be the projection operator
on the coordinate plane and parallel to the straight line determined
by the equations z = y = z. Find the conjugate operator A*.

7.1.26. Find the kernel and image of the operator in the M ,-space
which is conjugate to the differential operator, if the scalar product
for M2 is given by the formula: (a) (7.1.1); (b) (7.1.2); (c) (7.1.3).

7.1.27. Prove the Fredholm theorem a non-homogeneous system
of linear eq Az = b is if and only if the column
vector b is orthogonal to all the solutions of the conjugate homoge-
neous system A*y = 0 (cf. 4.5.3).

7.1.28. Prove the following Fredholm alternative: either a system
of equations Az = b is consistent, whatever the right-hand side b is,
or the conjugate homogeneous system A*y = 0 has nonzero solu-
tions.

7.1.29. Prove that the kernel of an operator A*A4 coincides with
the kernel of the operator A.

7.1.30. Prove that the image of an operator A*A coincides with
the image of the operator A*.

7.1.31. Let operators A and B satisfy the equality B*4 = 0.
Prove that the images of these operators are orthogonal subspaces.

7.1.32*. Prove that if AB* = 0 and B*4 = 0, then the rank
of the operator 4 + B equals the sum of the ranks of the operators
4 and B. Moreover, the kernel of the operator A + B is the inter-
section of the kernels of the operators A and B.
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7.1.33. Prove that if a subspace L of a unitary (Euclidean) space
is A-invariant, then its orthogonal complement L' is invariant
under the conjugate operator A*.

7.1.34*. On the space M, of polynomials of degree < n, the
scalar product is given by the formula

o= 2 by, 1.7
where f(t)=ay - at + ...+ a,t", gt)=by+ bt + ...+
+ b,t". Describe all the invariant subspaces of the operator

conjugate to the differential operator.
7.1.35. The scalar product for M, is determined by the formula:

o= 2 1kg k. 1.4.8)

Find the r-di ional invariant sub: of the which
is conjugate to the differential operator.

7.1.36. Solve a similar problem for the case when the scalar
product for M, is defined by the formula

1
o= [ 10gwa 7.1.9)
it

7.1.37. Prove that in the unitary space of dimension n, each
operator has: (a) an invariant subspace of dimension n — 1; (b) an
invariant subspace of dimension k, 0 << k << n (cf. 6.3.9 and 6.3. 36)

7.1.38. Prove the following Schur theorem: for each operator 4
on a unitary space there exists an orthonormal basis with respect to
which the matrix of the operator A4 is triangular (cf. 6.3.36).

7.1.39. Find the Schur basis for the differential operator in
the space M, if the scalar product of M, is determined by the formula:
(a) (71 1); (b) (7.1.2); (¢) (7.1.3).

1.40*. Prove that commuting operators 4 and B on a unitary
space have a common Schur basis with respect to which the matrices,
defined by these operators, are triangular and have the same form.

7.1.41. Find the relation between the eigenvalues of an operator
A on a unitary space and the conjugate operator A*.

7.1.42. Let z be an eigenvector common to the conjugate opera-
tors A and A*. Prove that the eigenvalues A and p of the operators
A and A*, and associated with the vector z, are conjugate numbers

7.1.43. Let z be the eig of an o A, iated with
an eigenvalue A; y is the cigenvector of the operator A*, associated
with an eigenvalue 1, with p = A. Prove that the vectors z and y
are orthogonal.
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7.1.44*. Let K, and K} be root subspaces of operators 4 and 4*,
associated with eigenvalues A and p, respectively, with p = A.
Prove that the subspaces K, and K} are orthogonal.

7.1.45. How are the Jordan forms of the conjugate operators A
and A* related?

7.1.46. Find the Jordan canonical bases for the differential ope-
rator and its conjugate in the polynomial space M,, with the scalar
product introduced as in (7.1.1).

7.1.47*. Prove that the Schur basis for an operator 4 is defined
ambiguonsly. Namely, for each sequence of the operator’s eigenva-
lues A,, . . ., A,, there is an orthonormal basis for the unitary space
with respect to which the matrix determining this operator not only
is upper (lower) tri lar, but also has eig lues A; positioned
on the main diagonal in the original sequence.

7.2. Normal Operators and Matrices

We discuss here various properties of normal operators and normal matrices.
‘The most 1mportant of these is, certainly, the existence of an orthonormal basis
for these operators and matrices that is made up of the eigenvectors. The greater
part of the problems are devoted to just this fact. Further, we wished to illustrate
the following important statement: of all operators of simple structure, the
normal operators are peculiar with respect to the scalar product defined on the
space, since the basis for these, being made up of the eigenvectors, is orthogonal
and not merely arbitrary. If, however, the scalar product on this space is defined
in another way then those linear operators that were normal would cease to be
such, generally speaking, and conversely, another subset of the operators of
simple structure would become the class of normal operators.

7.2.1. Show that any scalar operator of a unitary (Euclidean)
space is normal.

7.2.2. Show that if A is a normal operator, then the following
operators are also normal: (a) a4, where a is any number; (b) A%,
where k is any natural number; (c) f (4), where f (t) is an arbitrary
polynomial; (d) 471, if 4 is nondegenerate; (e) A*.

7.2.3. Give examples demonstrating that the sum 4 + B and
product AB of normal operators A and B are not, generally speaking,
normal operators either.

7.2.4. Show that the matrix of a normal operator with respect
to any orthonormal basis is also normal. Conversely, any normal
matrix defines a normal operator with respect to that basis.

7.2.3. Give examples demonstrating that the matrix of a normal
operator with respect to a non-orthogonal basis (a) may prove not
to be normal; (b) may be normal.

7.2.6. Show that any linear operator in a one-dimensional unitary
(Euclidean) space is a normal operator.

7.2.7. Show that rotation operator on the Euclidean plane is a
normal operator.
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7.2.8. Show that an operator on the three-dimensional Eucli-
dean space, such that Az = [z, al, is normal.

7.2.9. Show that the following operators on the space II of poly-
nomials with the scalar product (7.1.7) are normal:

(a) 1 (1) 1 (—1);

(b) f () —>t7f (1/1).

.2.10. Prove that any circulant is a normal matrix.

7.2.11. Let A = B + iC be a normal complex matrix of order

n. Prove that the real matrix D of order 2n

B —C
D=(c B

(7.2.4)
is also normal.

7.2.12. Prove that if the rows and columns of a normal matrix
are considered as vectors of the arithmetic space with the natural
scalar pioduct (7.1.4), then (a) the length of the i-th row equals the
length of the i-th column; (b) the scalar product of the i-th and j-th
rows equals the scalar product of the j-th and i-th columns (in the
indicated order).

7.2.43. Prove that a quasi-triangular normal matrix is neces-
sarily quasi-diagonal.

7.2.14. Prove that if 4 is a normal matrix, then the associated
matrix A, is also normal.

7.2.15. Prove that the sum of the squares of the moduli of all
minors of order k, selected from the rows By e By of a normal
matrix A4, equals a similar sum of the minors selected from the
columns with the same indices.

7.2.16. Prove that the Kronecker product of normal matrices 4
and B (perhaps, of different orders) is also a normal matrix.

7.2.17. Let A and B be normal matrices of order n X n. Prove
that the operators G4 5 and F, g (see Problem 5.6.10) are normal
operators on the space C,,‘,, (Ruxn

7.2.18. Prove that if 4 is a normal operator, then for any vector
z, the following equality is true

|Az | = | A*z |. (1.2.2)

7.2.19. Prove that the kernel of a normal operator is the orthogo-
nal complement to its image.

7.2.20*. Prove the following statement: for an operator 4 on a
unitary space to be normal, it is necessary and sufficient that the
image and kernel of the operator A — AE, where A is any number,
should be orthogonal. Is a similar statement valid for a Euclidean
space?

7.2.21. Prove that a projection operator P is normal if and only
if the image and kernel of this operator are orthogonal. If this is
the case, the operator P is called an operator of orthogonal projection.
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7.2.22. Let A and B be normal operators, and AB = 0. Do these
conditions imply the equality BA = 0?

7.2.23. Prove that any eigenvector of a normal operator 4 is
also an eigenvector of the conjugate operator A*.

7.2.24*. Prove the statement converse to that in Problem 7.2.23:
if each eigenvector of an operator 4 on a unitary space is also an
eigenvector of the conjugate operator A* the operator 4 is normal.

7.2.25*. Prove that each invariant subspace of a normal opera-
tor A is also invariant with respect to 4*.

7.2.26. Prove that an operator, induced on an arbitrary inva-
riant subspace by a normal operator, is also normal.

7.2.27. Show that the eigensubspaces of a normal operator are
orthogonal to one another.

7.2.28. Prove that the operator R of reflection in L, parallel to
L, is normal if and only if the subspaces L, and L, are orthogonal.
In this case R is called an orthogonal reflection operator.

7.2.29. Can a normal operator have a nonorthogonal basis made
up of the eigenvectors?

Verify that the matrices, indicated below, are normal and find,
for each of them, an orthonormal (in the sense of (7.1.4)) basis of
eigenvectors:

7.2.30. "l '" 7.2.31. 02 1
i1 —2 0 —2f,
—12 0
7.2.32% || 2—¢ —t 0 7.2.33. 11 1 1
—1 1—1 1 . 11— —t
0 1 2—1 -t 1 -1 1
-1 1

7.2.34. Can the scalar product be defined on the space M, (n>> 1)
so that the differential operator is normal?

7.2.35. An operator on the space of polynomials M, (n>1),
f () =1 (t + a) (where a is a certain fixed number), is considered.
Can the scalar product on M, be defined so that this operator is
normal?

7.2.36. Let X be an arbitrary linear space. Prove that for any
operator 4 of simple structure on X the scalar product on X may
be defined so that 4 is normal.

7.2.37*. An operator A on the arithmetic space R, has the matrix

11 1
00
00 —1

with respect to the standard basis. Define the scalar product on R,
s0 that the operator 4 is a normal operator.
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7.2.38*. Prove that an operator A is a normal operator if and
only if the conjugate operator A* can be represented by a polynomial
of A. !

7.2.39. Let A be a normal operator, and let 4 commute with
some operator B. Prove that (a) A* commutes with B; (b) A com-
mutes with B*.

7.2.40. Prove that the commuting normal operators A and B
have a orth 1 basis d of their eigenvectors.

Verify that the matrices A and B, indicated below, are normal
and commuting and construct a common orthonormal basis of
their eigenvectors for them:

011 0 1 —t
7.241. A=|[1 01|, B=|—1 o 1.
110 14 0
145 —14+i 11—t
2 2 — € 3
7.242. A=| 2 —t 2|, B= —13+4 243—: -13+. .
-1 2 2

(ETRNEI AR e )
- 3 e

7.2.43. Prove that the operators 4 + B, AB, and BA (see
Problem 7.2.40) arc normal as well as the operators 4 and B.

7.2.44*. Prove the following statement which contrasts slightly
to that of Problem 7.2.43: if A, B, and AB are normal operators,
and at least one of the operators A or B has not only simple but
different in modulus eigenvalues then A and B are commuting.

7.2.45*. Prove the following strong version of the statement of
Problem 7.2.44, viz. that if A, B, and AB are normal operators, and
at least one of the operators A or B has no different eigenvalues
with equal moduli, then 4 and B are commuting.

7.2.46. Give an example of normal operators A and B for which
the operators AB and BA are normal and different.

7.2.47. The maximum value of the moduli of the eigenvalues
Ay -« .y A, of an operator 4

p (4) = max [A,]
i

is called its spectral radius. Prove the following estimate of the
extreme value for the spectral radius of a normal operator A:

— 1(Az, 7)|
P =ma T

What can be said about vectors for which such a maximum occurs?
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7.2.48. Prove that the following estimate of the spectral radius of
a normal n X n matrix 4 is valid

P(A)B%I ié "u]~
v, =t

7.2.49. Prove that for the spectral radius of a normal operator 4
the formula is valid

_ |4z]
P =max 5T

Is it correct to say that each vector z, for which the indicated equa-
lity occurs, is an eigenvector of the operator A?

7.2.50*. Let R be a Euclidean space, C a unitary space obtained
from R by complexification (see Problem 2.5.14). Show that the

d b the A of the space R and the

operators 2 of the space C (see Problem 5.1.52): (a) assigns the conju-
gate operator 1{ * to the conjugate operator A*; (b) assigns the nor-
mal operator A to a normal operator 4.

Using (b), show that if A is an eigenvalue for a normal operator 4,
then its geometric and algebraic multiplicities coincide.

7.3. Unitary Operators and Matrices

The first part of the section is devoted to unitary operators. We shall be
iall d with the following two of their ies: the spectral
} ic (unitary op normal op all of whose ej |
have unit moduli), and the preservation of the scalar product.

In the second part of the section we consider unitary matrices. Having dis-
cussed their formal properties, we introduce the notion of unitarily similar
matrices and formulate the matrix analogues of a number of propositions that
have already been proved for the operators. Finally, we demonstrate some impor-
tant compulational applications of certain unitary matrices of special form.

7.3.1. Show that the set of all unitary operators from @yy forms
a group under multiplication.

7.3.2. Show that the sum of unitary operators is not, generally
speaking, a unitary operator.

7.3.3. Show that the product of a unitary operator by a number o
is a unitary operator if and only if |a | = 1.

7.3.4. Describe all the unitary on a
space.

7.3.5. Show that an operator that rotates the Euclidean plane
is an orthogonal operator.

7.3.6. Is the operator Az = [z, a] on a three-dimensional Eucli-
dean space orthogonal?

7.3.7. Show that the operators of Problem 7.2.9 are orthogonal.

7.3.8. Let the scalar product on the space M, (n>>1) be defined

3i PO
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by formula (7.1.9). Are the operators mentioned in Problem 7.2.9
orthogonal on such a Euclidean space?

7.3.9. Let A be a normal op on a three-di ional unitary
space. Prove that if the eigenvalues A;, A,, A, of this operator con-
sidered as points in the complex plane are not in the same straight
line, then the operator A can be represented in the form

A =aE + pU,

where U is a unitary operator and a is a complex number, p > 0.

7.3.10. Can a projection operator be unitary?

7.3.11. Show that an orthogonal reflection operator is aunitary
operator.

7.3.12. Show that the operators mentioned in Problem 7.2.9
are orthogonal reflection operators. Find the eigensubspaces of
each of them.

7.3.13*. An operator A4 on the space M, has the matrix

3 -2 =2
2 -1 =2
2 -2 -

with respect to the basis 1, ¢, t% Show that A is a reflection operator.
Define the scalar product on M, so that A becomes an orthogonal
operator.

7.3.14. Prove that a normal operator 4, fulfilling the condition
A* = E (where k is a certain whole number k 5= 0), is a unitary
operator.

7.3.15. Prove that the modulus of the determmant of a unitary
operator equals unity.

7.3.16*. An orthogonal operator Q on the space of polynomials
M, with the scalar product (7.1.1) transforms the polynomials
1+ t+t*and 1 — ¢ into —1 — ¢ + ¢2 and 1 — ¢, respectively.
The determinant of this operator equals —1. Find its matrix with
respect to the basis 1, ¢, 2.

7.3.17. Prove that if U is a unitary operator, then for any vectors

d
sty (Uz, Uy) = (2, y),

i.e. the unitary operator preserves the scalar product. Conversely,
if a certain linear operator U preserves the scalar product of any
two vectors, then U is a unitary operator.

7.3.18. An operator on the arithmetic spaoe R. with the scalar
product (7.4.4) transforms the vectors ks 2,2,2), z,=

=(2,022),2,=2202), z, = (22, é 0). respechve]y' into
the  vectors vy =(40,00), y,=(3' —1, 1, 1), yy,=
=(3,1, —1, 1), y,=(@3, 1, 1, —1). Is this operator orthogonal?
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7.3.19. Prove that for a linear operator on a space X to be uni-
tary, it is necessary and sufficient that it should preserve the scalar
products of the vectors of a certain basis for the space X. In particu-
lar, an operator is unitary if it transforms an orthonormal basis
into another orthonormal basis.

7.3.20*. Prove that for a linear operator U on a space X to be
unitary, it is sufficient that U should preserve the lengths of all
vectors from X.

.3.21*. Prove that a linear operator preserving the orthogonal-
ity of any two vectors differs from a certain unitary operator only
by a numerical multiplier.

7.3.22. Prove that the requirement of a matrix U to be unitary
is equivalent to the requirement that the columns (or rows) of U,
considered as vectors of the arithmetic space with the scalar product
(7.1.4), form an orthonormal basis for this space.

7.3.23. Prove that any permutation matrix is a unitary matrix.

7.3.24. Prove that the modulus of each element of a unitary
matrix equals its complementary minor.

7.3.25. Let U = P + iQ be a complex unitary matrix of order n.
Prove that the real matrix of order 2n

o= 7l
is orthogonal.

7.3.26. Prove that if U is a unitary matrix, then the associated
matrix Up is also unitary.

7.3.27. Prove that the sum of the squares of the moduli of all
minors of order k, selected from arbitrary k rows (or columns) of
a unitary matrix, equals unity.

7.3.28. Let the modulus of the leading principal minor of order
k of a unitary matrix U equal unity. Prove that in this case U is
of quasi-diagonal form

Un I
v ol

where U, is a block of order k.

7.3.29. Prove that the Kronecker product of unitary matrices
U and V, being, perhaps, of different orders, is also a unitary matrix.

7.3.30. Let U and V be unitary matrices of order n X n. Show that
(a) the operator Gyy (see Problem 5.6.10) is unitary; (b) the operator
Fyy is not, generally speaking, unitary.

7.3.31. Prove that the transfer matrix, from an orthonormal
basis into another orthonormal basis for a unitary space, is a uni-
tary matrix.

7.3.32. Matrices 4 and B are said to be unitarily similar if there
exists such a unitary matrix U that B = U-'4U. Show that the
13-0619
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relation of unitary similarity on the set of square matrices of a given
order n is reflexive, symmetric, and transitive.

7.3.33. Prove that any complex matrix is unitarily similar to
a triangular matrix.

7.8.34. Prove that an upper triangular matrix is unitarily simi-
lar to some lower triangular matrix.

7.3.35. Show that a unitarily similar transformation transforms
a normal matrix into another normal matrix.

7.3.36. Show that a complex normal matrix is unitarily similar
to a diagonal matrix.

7.8.37. Find a condition for a matrix of the form

1

i-th row cos @-etVr ... —sing.eVs
(7.31)

j-th row sing-e® ... cosqelte

1
to be unitary (the off-diagonal elements, that are not indicated,
are equal to zero). The unitary matrix obtained is called an ele-
mentary unitary matriz and is further denoted by T,

7.3.38. Let A be a square matrix of order n (n} 2) Select an
elementary unitary matrix Ty so that the (j, i) element of the
matrix B=T;; Ais equal to zero. In this way we may put Y, =9, =0
(see Problem 17

7.3.39. Given an n—order matrix 4, how should such a sequence
of elementary unitary matrices 7™, T®, ..., be chosen so that
all the elements of the first column below the diagonal of the prod-
uct . . . T®TM4 are equal to zero?

7.3.40*. Using Problems 7.3.38 and 7.3.39, indicate a method
to decompose a square matrix into the product of a unitary and upper
triangular matrices.

7.3.41. Prove that any unitary matrix can be decomposedinto
the product of elementary unitary matrices and, perhaps, by a {di-
agonal unitary matrix.

7.3.42. Let A = U,R, and 4 = U,R, be two decompositions
of a nondegenerate matrix 4 into the product of a unitary and upper
triangular matrix. Prove that

U, =UQ, R,=0QR,,
where Q is a certain diagonal unitary matrix.
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7.3.43. How should the method derived in Problem 7.3.40 be
applied to the solution of a system of linear equations A4z = b with
a square nondegenerate coefficient matrix?

7.3.44. Find a condition for a column vector w so that a matrix
of the form

H = E — 2uw* (1.3.2)
is unitary.

7.3.45. Let w be a normalized column vector. Prove that the
corresponding matrix (7.3.2), treated as an operator on the artithmet-
ic space, defines an orthegonal reflection in it. Such a matrix H
is called a reflection matriz.

7.3.46. Find the eigenvalues and eigenvectors of a reflection
matrix.

7.3.47. Find the determinant of a reflection matrix.

7.3.48. Show that any unitary matrix all of whose eigenvalues
are +1 and —1, —1 being an eigenvalue of multiplicity unit, can
be represented in the form (7.3.2).

7.3.49. Show that the matrix

7—|cos® sin ¢
- lsincp —cos ¢

is a reflection matrix. Find the corresponding vector w.

7.3.50. Let H be a reflection matrix whose vector w is known.
How should the product of the matrix H by a column vector z be
computed so that this operation requires performing only (2n + 1)
multiplication operations?

7.3.51. Select the vector w so that the reflection matrix, defined
by it, transforms a given vector z into a vector collinear to the
unit column vector e, (we assume that the vector z itself is not colli-
near to e,).

7.3.52*. Use the result of Problem 7.3.51 to construct an algo-
rithm that decomposes a square matrix into the product of a uni-
tary and an upper triangular matrix.

7.3.53. Let Az = b be a system of linear equations with a non-
degenerate square matrix A. Describe a method to solve this system
based on the procedure derived in Problem 7.3.52.

7.3.54*. Let A be a square matrix of order n (n > 2). How should
such a reflection matrix H be selected so that the matrix B =
= HAH* has zeroes for all the elements of the first column from
the third element down?

7.3.55. A square matrix B is said to be upper (lower) almost trian-
gular if bj; =0 for i>j+1 (j>i-+1). Using the result of
Problem 7.3.54, show that any square matrix is unitarily similar
1o an upper (lower) almost triangular matrix. Restate this state-
ment in the language of operators.
13+
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7.4. Hermitian O and Matri

In the first half of the section, we discuss the slmplm;mpeﬂm of Hermitian
operators and matrices. The sequence of the problems is determined by the same
principles as in the previous sections. The second half compr]xses the problems

ol S]
Yabl T 1

given to thei he per-
lies enahles one of the most eﬂecuve computnuoml techniques Ior ﬁndmg the
eigenvalues of Hermitian matrices to be used, i.e. the method of bisection which
is described in Problems 7.4.43-7.4.48.

7.4.1. Show that the set of all Hermitian operators from ©xx
forms a group under addition.

7.4.2. Show that the set of all symmetric operators from the
linear space ©gx of all linear operators on a Euclidean space X is
a linear P A similar is valid for the set of all
skew-symmetric operators from @y

7.4.3. Show that the product of a nonzero Hermitian operator
and a number « is a Hermitian operator if and only if « is a real
number.

7.4.4. Show that an operator K is skew Hermitian if and only if
the operator iK is Hermitian.

7.4.5. Show that the product of Hermitian operators H, and H,
is a Hermitian operator if and only if H, and H, commute.

7.4.6. Show that the inverse operator of a nondegenerate Hermi-
tian operator is also Hermitian.

7.4.7. Describe all the Hermitian operators that act on a one-
dimensional space.

.4.8. A linear operator A4 is defined on a two-dimensional Eucli-
dean space and for two particular noncollinear operators z and y

(4z, y) = (2, Ay).

Prove that 4 is a symmetric operator.

7.4.9. Show that the operator Az = [z, al on a three-dimensional
Euclidean space is skew-symmetric.

7.4.10%. Prove that any skew-symmetric operator K of a three-
dimensional Euclidean space can be represented in the form Kz =
= [z, a] having selected a convenient vector a.

7.4.11. An operator on the arithmetic space R, with the scalar
product (7.1.4) converts the veclors z, =011, 1), Ty =

=(—1,01,1), z=(—1, —1 0, 1), = (—1 —1, 0)
into the vectors y, = (3, —1, —1, —1), ya = (1, _1 _1)
Yy = (—1, =3, —1, 1), yo = (=3, —1, —1, 1), respechvely Is

this operator symmetric?
7.4.12. Show that the operators of Problem 7.2.9 are symmetric.
7.4.13. Show that any orthogonal reflection operator is Hermitian.
In particular, the reflection matrix (7.3.2) is Hermitian.
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7.4.14. Show that an operator, both unitary and Hermitian,
is either equal to E or is an orthogonal reflection operator.

7.4.15*. A symmetric operator S on the space M, of polyno-
mials with thescalar product (7.1.1) transforms the polynomials
2+2t—1t* and 2 —t+ 26 into 5 — ¢t —¢* and 3 + 3t + 382,
respectively. The trace of this operator is equal to 3. Find the ma-
trix with respect to the basis 1, ¢, t2

7.4.16. Let H, and H, be complex Ilermitian matrices of the
same order. Prove that the trace of the matrix H,H, is a real number.

7.4.17. Let a Hermitian matrix H be represented in the form

= S + iK, where S and K are real matrices. Show that S is
a symmetric, and K a skew-symmetric matrix.

7.4.18. Prove that the real matrix (see Problem 7.4.17)

§ —K
b= " K s "
is symmetric

.4.19. Prove that if H is a Hermitian matrix, then the associated
matrix H, is also Hermitian.

7.4.20. Prove that the Kronecker product of Hermitian matrices
H, and H, of different orders, perhaps, is also a Hermitian matrix.

7.4.21. Let H, and H, be Hermitian matrices of order n X n.
Show that the operators Gy,y, and Fy,y, (see Problem 5.6.10) are
Hermitian.

7.4.22. Prove that if an operator H is Hermman, then for an
arbitrary vector z the scalar product (Hz, z) is a real number.

7.4.23. Let K be a sk ic on a Euclid
space X. Prove that (Kz, ) = 0 for any vector z from X.

7.4.24. What can be said about a Hermitian operator H if
(Hz, z) = 0 for all vectors z?

7.4.25. Show that if the equality (H,z, z) = (H,z, ) is \alld
for Hermitian operators H, and H, and any vector z, then H;, =

Prove the statement, converse to that in Prob]em 7.2. 18
viz., that if the equality (7.2. 2) holds for any vector z, and 4 is
a linear operator, then A is a normal operator.

7.4.27. The eigenvalues of a normal operator A on a unitary space
belong to the same straight line of the complex plane. Prove that
the operator A can be represented in the form

A =aE + af,
where H is a Hermitian operator, a and « are complex numbers,
lee | =1.

7.4.28. Show that the eigenvalues of a skew-Hermitian operator
are pure imaginary numbers.

7.4.29. Show that an orthogonal projection operator is a Hermi-
tian operator.
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It is assumed in Problems 7.4.30-7.4.37 that the eigenvalues
s+« +1 Ay of a Hermitian operator (or a Hermitian matrix) H are
numerated so that

M. .. =0, (7.4.1)
If, besides the eigenvalues, an orthonormal basns €y ..o € CON-
sisting of the eig of the op H i id then

the enumeration of ns vectors will be assumed to correspond to the
same ordering (7.4.1)
7.4.30. Prove the valldny of the following representations of
the maximum and minimum values of a Hermitian operator H:
_ (Hz, 2) — (Hz, 2)
}.‘._?:: w9 }.,,_?:E: el (7.4.2)
Show that the vectors for which the indicated extreme values occur
are elgenvectors of the operator H.
. Show that the extreme eigenvalues of a Hermitian ma-
tnx H sausfy the relations:
M= max by, A< mi‘n Rige
i

7.4.32. Assume that the equality A, = ky; holds for a Hermitian
matrix H. Prove that all the off-diagonal elements of the i-th row
and i-th column of the matrix H are zeroes.

7.4.33. Prove that for the linear subspace L drawn on the eigen-

vectors & , ..., &, (i, <...< i) of a Hermitian operator H,
the following relations are valid:
(Hz, 2) _ (Hz, 2)
A mmax S Ay min TR (149)
x€EL xEL
7.4.34*. Prove the following Courant-Fischer theorem. an eigen-
value A, of a Hermitian op H on an n-di 1 space X
satisfies the conditions
Ay =max min HZ 2) 7.4.4
+=mex min (03 @44
€Ly
Ap= min a. M, 7.4.5)
" Lok T*: @ 2) (
*€Lp_pyy

The maxima must be found for all k-dimensional subspaces L, of
the space X for use in the equality (7.4.4); similarly, Ln_x,, in
(7.4.5) means an arbu.rary subspace of order n — k + 1.

7.4.35*. Let H,, be an arbitrary principal submatrix of an
n-order Hermitian matrix H. Using the Courant-Fischer theorem,
prove that the eigenvalues p,, . . ., pa_; of the matrix H,_, enume-
rated in descending order separate the eigenvalues of the matrix H.
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This means that

MW= P> M= P = e
7.4.36. Without computing the eigenvalues for the n-order
matrix H
00 ... 0 1
00 ... 0 2
He=||...coccou .
00 ... 0 n—1
12 ...n—1 n
indicate the number of nonzero eigenvalues and their signs.
7.4.37. Let the rank of a Hermitian matrix H be two greater
than the rank of the principal submatrix H,.,. Prove that the ma-
trix H has one positive and one negative eigenvalue more than

'.7-1438 Let the eigenvalues of Hermitian operators H,, H, and
H, + H, be enumerated in descending order
H—aza>.. .=,
Hy—$=>8,>...> 0

Hy+ Hy— =12 .2
With the aid of the Courant-Fischer theorem, prove that the follow-
ing inequalities are true (¢ =1, 2, ..., n):

(7.4.6)

w<ay T B m<an + Bu
W= 1 Bay VA an + Bae

7.4.39. Show that by a unitary similar transformation, a Her-
mitian matrix is reduced to another Hermitian matrix.

7.4.40. A band matrix is said to be tridiagonal if the band width
equals 3. Deduce the following corollary to Problem 7.3.55: any
Hermitian matrix is unitarily similar to a tridiagonal matrix.
Restate this proposition in the language of operators.

7.4.41. We call a tridiagonal matrix C irreducible if ¢;; %0
when |i —j | = 1. Prove that if a tridiagonal Hermitian matrix
has an eigenvalue A of multiplicity r, then it is quasi-diagonal and,
moreover, that there are at least r irreducible submatrices of lesser
order on the diagonal.

The following Problems 7.4.42-7.4.49 concern a given tridiago-
nal irreducible Hermitian matrix C of order n, for which a sequence
of polynomials f, (A), fi(A), ..., fa () is considered, where
fo (A) =1, and f; (A) is the characteristic polynomial of the leading
principal submatrix C; of the matrix C (so that the polynomial
1 (A) is of degree i). The iteration formulae, connecting the polyno-
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mials of this set, were derived in Problem 3.2.46 (in the Hermitian
case under consideration, ¢, = b;), and are used from now on
without further reference. The roots of the polynomial f; (A), i.e.
the eigenvalues of the submatrix C, are denoted by AY, ..., AP
and enumerated in descending order so that AP>AM>...
% A® (howe\er, see Problem 7.4.43, (b)), whereas A{™ = A,
i=
7.4.42. Construct a sequence of polynomials f, (A), f; (A), . ..
.., f5 (A) for the matrix

014000
10100 R
01010 (7.4.7)
00101

00010

7.4.43. Prove that in the set of polynomials f, (A), f; (A), . . .

.. fa (A): (a) adjacent polynomials have no common roots; (b)
the roots of a polynomial f; A), 1< i< n — 1, strictly separate
the roots of the polynomial f;4; (A):

AISAPS AT S AP S L S AT S AP S A,

(c) if M, i < n, is a root of a polynomial f; (A), then the numbers
/,., (A“’) and fi+1 (M") have different signs.

*. A real number p is not a root of any polynomial f; (A).
Prove that the number of changes of sign in the number sequence

fo@h @ o fu®) (1.4.8)

equals the number of the eigenvalues of the matrix C (i.e. the roots
of the polynomial f, (A)) which are strictly greater than p.

7.4.45*. Now let the number p be a root of the polynomials in
the set fo (A), f; A), . . ., fa (A). As before, count the number of
changes of sign in the sequence (7.4.8), ascribing the sign of the
number f;_; (1) to each zero value f; (1). Prove that the statement
of Problem 7.4.44 remains valid in tgis case also.

7.4.46*. Given that an eigenvalue A, of matrix C lies in an inter-
val (a, b). In this case A, is said to be localized in (a, b). How,
using the results of Problems 7.4.44 and 7.4.45, can A, be localized
in an interval of half the length?

7.4.47. Let all eigenvalues of a matrix C lie in an interval (m, M).
Using the result of Problem 7.4.46, indicate a method of finding
the numbers A; to the accuracy of a given member e.

7.4.48. Show that the sequence (7.4.8) can be computed by per-
forming only 2 (n — 1) operations of multiplication (assuming that
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the | b, |%, in the iteration formulae connecting the polynomials
fi (M), are already evaluated).

7.4.49. The method of evaluating the eigenvalues of a tridiagonal
Hermitian matrix derived in Problem 7.4.47 is termed the bisection
method. Perform the bisection method for computing the greatest
eigenvalue of the matrix (7.4.7) to the accuracy of e = 1/16.

7.4.50*. Using the results of Problems 7.4.40, 7.4.41, 7.4.47,
describe a method for approximating the eigenvalues of an arbitrary
Hermitian matrix.

7.4.51*. A tridiagonal irreducible matrix 4 is said to be Jaco-
bian if @y, 14,814, , > 0 for all i. Show that for Jacobian matrices
wu}:i real diagonal entries the results of Problems 7.4.43-7.4.47 are
vali

7.4.52. Using the correspondence between operators on a Eucli-
dean space R and a unitary space C, obtained from R by complexifi-
cation, prove that (a) a Hermitian operator S on the space C cor-
resp ds to a y S on the space R; (b) for any
symmetric operator on the space R, there is an orthonormal basis
for R such that the matrix of this operator, with respect to this ba-
sis, is diagonal.

Reformulate statement (b) for matrices.

7.4.53. Let z,, ..., 2., 2; = Z; + iy; be an orthonormal basis
of the eigenvectors of a Hermman matrix of order n X n H =
=S + iK, and A, ..., A, be the corresponding eigenvalues.
Prove that the 2n-dimensional column vectors u,, vy, . . ., Up, Upn,

where
2y
Uy=
ant
form an orthonormal basis of the eigenvectors of a real matrix
S —K
S P

z5

whose corresponding eigenvalues are Ay, Ay, Ay, Agy .o oy Ay, Ape

7.5. Positive-Semidefinite
and Positive-Definite Operators
and Matrices

Tlns section mostly deals \nlh
e fo ids and positive-definite op

formal
\Ahlcll lollow from the deﬁmuon directly.
Positive-definite matrices and Gram matrices. In this part of the section,
we show that positive-definite matrices are, in a sense, a universal means of
deﬁmng a scalar product on a given hnear sg 3

of a positive-semi-
deﬁmte (posmve-deﬁmu) nperatnr (mtrnx)
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Various criteria for the positive definiteness of Hermitia) matrices, and,
rticular, the diagonal dominance (see Problem 7.5.24), the Sylvesur cri-

terion, etc. We also provide computational problems on their use.

The relation of a gmnl ordering on the set of Hermitian operators.

The square root of a positive-semidefinite numerical operator and some
examples on evaluating the square root.

Finally, up&licnions of an important theorem about the eigenvalues of an
operator /S, where H and S are Hermitian operators, and S is positive-definite.

7.5.1. Can a positive-definite operator H convert a nonzero vector
z into a vector y, orthogonal to zi

7.5.2. Deduce from the definition that a positive-definite pperator
is nondegenerate.

7.5.3. Let H be a positive-definit onaE:

X. Show that for any nonzero vector z from X, its image makes
an acute angle with z.

7.5.4. Lot H and S be positive-semidefinite operators. Show that
for any nonnegative numbers @ and B, the operator aH + BS is
positive-semidefinite.

7.5.5. Let H and S be positive-semidefinite operators, and assume
that for certain real numbers %o and B, the operator ayH + B,S
is positive-definite. Show that in this case, all operators aH + ﬁ
{(where o and P are arbitrary positive numbers) are positive-definite.

7.5.6. Prove that the inverse operator of a positive-definite
operator is also positive-definite.

.5.7. Show that any orthogonal projection operator is a positive-
semidefinite operator.
t H be a complex positive-definite matrix. Prove that
the transpose of H, i.e. HT, is also positive-definite.

7.5.9. Prove that any principal submatrix of a positi
nite (positive definite) matrix is also positive-semidefinite (positive-
definite).

7.5.10*. Let z,, ..., 2, be an arbitrary vector set of a unitary
{Euclidean) space X. Prove that the Gram matrix of the set z;, . . .
..., Ty is a positive-semidefinite matrix. This matrix is positive-
definite if the set z,, ..., z; is linearly independent.

7.5.11. Let e,, ..., e, be an arbitrary basis for a unitary
(Euclidean) space X. Prove that the scalar product of any two vectors
z and y from X can be computed by the formula

(2, y) = GXes Vo). (7.5.1)
GT denotes the Gram matrix of the set e;, .. ., e, . Y are n-
dimensional vector columns constituted from the coordmates of the
vectors z and y with respect to the basis e, .. ., e,, and the scalar
product on the right-hand side of (7.5.1) is defined in the usual way
(as in 7.1.4).

7.5.12. Lete,, .. ., e, be an arbitrary basis for a linear space X,
and let G be an arbitrary positive-definite matrix. Show that the

o
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formula (7.5.1) defines a scalar product on X. Moreover, the matrix
GT is the Gram matrix of the set e;, . .., e, with respect to the
derived scalar product.

Thus, the formula (7.5.1) (just like the method of Problem 2.1.2)
describes all possible methods of defining a scalar product on a given
linear space X.

7.5.13. Let (z, y), and (z, y), be two different scalar products
on an arithmetic space. Prove that (a) there is a nondegenerate
matrix A such that

@ )2 = (47, Y
(b) it follows from (a) that
@ yh = (A7, Y

7.5.14. Let A be an arbitrary linear operator from a unitary
(Euclidean) space X to a unitary (Euclidean) space Y. Show that
the product A*4 is a positive-semidefinite operator on X, and the
product AA* is a positive-semidefinite operator of the space Y.
Accordingly, for any rectangular matrix A, the matrices 4*4 and
AA* are positive-semidefinite.

7.5.15. Let H be a complex positive-definite matrix. Prove that
in the representation of the matrix H

H=S8+iK

(where S and K are real matrices) the matrix S is positive-definite.
7.5.16. Let H be a positive-semidefinite operator, and (Hz, z) =
= 0 for some vector z. Prove that (a) z belongs to the kernel Ng
of the operator H; (b) the operator H/Ty, induced on the image
Ty of the operator H, is positive-definite.
7.5.17. Show that a positive-definite operator can be defined as a
d positi idefinite operator.

7.5.18. Show that a Hermitian operator H is positive-semidefinite
(positive-definite) if and only if for any positive (nonnegative)
number e, the operator # -+ ¢E is nondegenerate.

7.5.19. A Hermitian operator H is said to be negative-semidefinite
(negative-definite) if for any nonzero vector z the scalar product
(Hz, z) is nonpositive (negative). Neg idefinite and negati
definite matrices are similarly defined.

Prove that any Hermitian operator can be represented as the sum
of positi idefinite and negati idefinite

7.5.20*. A complex square matrix A is said to be stable if for
any eigenvalue A for this matrix, the condition Re A < 0 is fulfilled.

Prove that if the Lyapunov matriz equation for an n X n matrix 4

A*X + XA =C
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(where C is a certain negative-definite matrix) has a positive-definite
solution B, then 4 is a stable matrix. Hence, deduce that B is the
unique solution of the indicated equation.

7.5.21. What can be said about a negative-semidefinite operator H
if its trace equals zero?

7.5.22. Show that the de! inant of a positive-definite
is positive. Hence, deduce that all the principal minors of a positive-
definite matrix are positive.

7.5.23. Show that the element with maximum modulus in a posi-
tive-definite matrix is on the principal diagonal.

7.5.24*. Prove that a Hermitian n X n matrix H is positive-
definite if

n
h yoi=1 . 00 7.5.
II>E‘ lhyl, i=1 n. (7.5.2)
Jeki
7.5.25. Let H = § + iK be a complex positive-definite matrix.
Prove that the real matrix
S —K
o=[x |
is also positive.

7.5.26*. Let H be a positive-definite matrix. Prove that the
associated matrix H, is also positive definite.

7.5.27. Prove that of all the k-order minors of a positive-definite
matrix H, the one with the maximum modulus is one of the princi-
pal minors.

7.5.28. Prove that the Kronecker product of positive-definite
matrices H, and H, (perhaps, of different orders) is also a positive-
definite matrix.

7.5.29*. Let A and B both be n-order square matrices. The Schur
product of the matrices 4 and B is a matrix C of order n X n sucb
that for all i, j

iy = aybyy
Prove that the Schur product of positive-definite matrices H, and H,
is also a positive-definite matrix.

7.5.30. Let H be a positive-definite n-order matrix. Prove that
an n X nmatrix S such that s;; = | k;; | for all i, j is also positive-
definite.

7 5.31. Let H and S be Hermman operators, and let the difference

— S be a positi (po: te)

We will write in this case that H > § (H > S) Show that for the
relation > the followmg properties are valid:

@ H>S, S>T=>H>T;

(b) Hy > 5, H, > S5,= aH, + BpH, > aS, + BS,, where o and
P are any nonnegative numbers,

(¢) H>= S = A*HA > A*SA for any operator 4.
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7.5.32. Let H and S be Hermitian operators, H# > S. Prove that
the eigenvalues of the operator S placed in descending order do not
exceed the corresponding (also in the same order) eigenvalues of
lhe operator H.

7.5.33. A positive-definite operator H satisfies the inequality
H > E. Prove that H-' << E.
h7 .5.34. Matrices H and S are positive-definite, H > S. Prove
that

(a) max Thy >max Isiyls

(b) the prmclpa] minors of the matrix S do not exceed the cor-
responding minors of the matrix H; and in particular, (c) det H >
>det S.

7.5.35. A diagonal element ky of a positive-definite matrix H
has been increased. Prove that the determinant of the obtained
matrix  is greater than the determinant of the matrix H.

7.5.36*, Prove the following Sylvester criterion for positive defi-
niteness: for a Hermitian matrix H to be a positive-definite, it is
necessary and sufficient that all its leading principal minors be
positive.

7.5.37. A leading principal k-order, minor of a nonnegative ma-
trix H is equal to zero. Prove that all the leading principal minors
with orders higher than k are equal to zero.

7.5.38. Prove that all the principal odd-order minors of a negative-
definite matrix H are negative, whereas all the principal even-
order minors are positive.

Determine for each of the following tridiagonal n-order matnces
whether the matrix is positive-definite or positi e.

7.5.39. || »—1 1
1 n—2

7.5.40.
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7.5.41. |a+1 1
1t -
e |
. 131
12
7.5.42% (|n
1
1
21
11
7.5.43. ||»* 1 7.5.44. || 1 1
1 (a—t2 121
o e 12,
RV Lo
11 .
21

t 1

7.5.45*. Prove that for any positive semidefinite (positive-defi-
nite) operator H, there is a unique positive-semidefinite (positive-
definite) operator K such that X? = H. The operator K is called
(the plri’ncipal value of) the square root of the operator H and denoted
by HY2,

Find the square roots of the following matrices:

7.5.46. " 5 -3 ” 7.547. |2t 1
-3 . 121
112
7.5.48. || 26 6 —12 7.549. ||t 1 11
63 6 11411
—12 6 2% 1111
11411

7.5.50*. Using the existence of a square root, prove that the
determinant of a positive-definite n-order matrix H satisfies the

inequality
det H < hyyhgy .« - . hppe
The equality occurs if and only if H is a diagonal matrix.
7.5.51*. A positive definite matrix H is represented in a parti-
tioned form thus:

Hu Hn"
H.‘, Hy
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where H,; and H,, are square submatrices. Prove that
det H <C det Hy,-det H,,,

and that the equality occurs if and only if H,, = 0.

7.5.52. Let H and S be Hermitian operators, and let S be posi-
tive-semidefinite. Prove that if H and S commute, then H-! and
S12 also commute.

7.5.33*. Operators H and S are positive-definite and H > S.
Prove that H-1 < S,

7.5.54. Show that the product HS of commuting positive-semi-
definite operators H and S is also a positive-semidefinite operator.

7.5.55. Let H > S, and let T be a positive-semidefinite operator
that commutes with H and S. Prove that HT > ST.

7.5.56*. Let H and S be Hermitian operators, and let S be posi-
tive-definite. Prove that the eigenvalues of the operator HS are
real numbers and that the operator is of simple structure.

7.5.57. The operator H is positive-semidefinite (see Problem
7.5.56). Show that all the eigenvalues of the operator HS are non-
negative.

7.5.58. Show that the statement, converse to that in 7.5.57, is
true: if operators H and S are Hermitian, S is positive-definite,
and all the eigenvalues of the operator HS are nonnegative, then H
is a positive-semidefinite operator.

7.5.59*. Let H and § be Hermitian n-order matrices, and let S
be positive-definite. Prove that (a) the left-hand side of the equation

det (AS — H) = 0 (7.5.3)

is a polynomial in A of degree n with the higher-order coefficient
equal to the determinant of the matrix S; (b) the equation (7.5.3)
has n real roots if each root is counted as many times as its multi-
plicity is.

7.5.60. Let H and S be positive-definite operators whose greatest
eigenvalues are equal to a, and B,, respectively. Prove that the
grentestﬁeigenvalue 7 of the operator HS satisfies the inequality
NS e
7.5.61*. Prove that the following statements are valid: (a) the
eigenvalues of the matrix iS-'K (see Problem 7.5.15) are real and
have absolute values less than unity; (b) det § > det H, and the
equality occurs if and only if H = §; (c) det § > det K.

7.5.62*, Let A be an operator of rank r from an n-dimensional
space X to an m-dimensional space Y, and lete,, . .., e, be an
orthonormal basis containing the eigenvectors of a positive-semi-
definite operator A*4, the vectorse,, . . ., e, corresponding to the
nonzero eigenvalues af, ..., a! (@; >0, i=1, 2, ..., r). Prove
that (a) the vectors ey, - . ., €, Constitute a basis for "the kernel
N 4 of the operator 4; (b) the vectors e, . . ., e, constitute a basis
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for the image T 4+ of the conjugate operator A*; (c) the vectors
, Ae, are orthogonal and form a basis for the image T4
ol the operal,or A; (d) the length of the vector de, equalsa,, i =
R X (] each of the vectors Ae, is an eigenvector of the ope-

ralor AA* and corresponds to the eigenvalue ai; (f) if we put

/,—_a—‘,«u,, i=1 .o,

then
A= ae.

7.6. Singular Values and the Polar
Representation

When discussing singular values, we shall mostly be interested in the various
methods that in concrele cases facilitate computation and estimation in prac-
tical cases. The principal ap) hc-unns of smfnhr values are related to metric
problems and are discussed 7.8 and Iater sections. Here, however, we
only provide some of the mequ-hues that connect singular values to the eigen-
values of an operator. The singular-value decomposition of an arbitrary rectan-
gular matrix, and the polar representation of operators from wxx and square
matrices, are discussed in detail.

In all the problems, singular values &, . . ., &, are assumed to be enumerated
in descending order

Q> %o

7.6.1. Given the singular values ol an operator A, find the singu-
lar values of (a) the operator A*, (b) the operator a4, where a is
an arbitrary complex number.

7.6.2. Prove that thesingular values of an operator are unaltered
when the operator is multiplied by unitary operators.

7.6.3. Let an operator A be defined on a space X. Show that 4
is nondegenerate if and only if all the singular values of this operator
are nonzero.

7.6.4. Show that the modulus of an operator’s determinant equals
the product of its singular values.

7.6.5. Assuming that an operator A is nondegenerate, find the
relation between the singular values of the operators 4 and A4-%.

7.6.6. Prove that the singular values of a normal operator coincide
with the moduli of its eigenvalues.

7.6.7. Prove that an operator 4 on a unitary space is unitary if
and only if all the singular values of this operator equal unity.

7.6.8*. Find the singular values of the differential operator on
the space of polynomials M, with the scalar product (7.1.7).

7.6.9*. Find the singular values of the differential operator on
the space M, of polynomials if the scalar product is defined by the
formula (7.1.2). Contrast this result with that of Problem 7.6.8.

.6.10*. Let A be a rectangular m X n matrix of rank r, either
real or complex. Prove that the matrix 4 can be represented in the
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form
A = UAV, (7.6.1)

where U and V are orthogonal (unitary) matrices of orders m and n,
respectively; A is an m X n matrix such that A;; >R, > ...

.>A;r >0, and all the other elements are zeroes. Tl-us repre-
sentauon (7.6. l) is called the singular-value decomposition of the

iz A.

7.6 11. Show that the matrix A in the decomposmon (1.6.1) is

umquely determined by the matrix A itself, viz. the numbers
..., A, are the nonzero elgenvalues of the matrix (A*4)y2
(as they are of the matrix (AA‘)‘/)
7.6.12. Determine the meaning of the matrices U and V in the
singular-value decomposition of a matrix 4

.6.13. Rectangular m X n matrices A and B are said to be
unitarily equivalent if there exist such unitary matrices U and V
that B = UAV. Prove that the relation of unitary equivalence on
the set of m X n matrices is reflexive, symmetric and transitive.

7.6.14. Prove that m X n matrices A and B are unitarily equi-
valent if and only if they have the same singular values.

7.6.15. Show that matrices A and B are unitarily equivalent if
and only if the matrices A*A and B*B are similar.

7.6.16. Given the singular-value decomposition 4 = UAV of
a matrix A, find the singular-value decompositions and singular
values of the matrices: (a) AT, (b) A*, (c) A~! if 4 is a square,
nondegenerate matrix.

7.6.17. Show that for any m X n matrix 4, there is a unitary
m-order matrix W such that the rows of the matrix WA are orthogo-
nal. Similarly, a unitary n-order matrix Z exists such that the co-
lumns of the matrix AZ are orthogonal.

7.6.18. The rows of a matrix are orthogonal. Prove that the sin-
gular values of this matrix equal the lengths of its rows.

7.6.19. Find the singular values of an m X n matrix 4 with
unity rank.

7.6.20. Let A be a partitioned matrix of the form

0
a=(3 4)
where A4, and A, are not necessarily square matrices. Prove that
the nonzero singular values of the blocks 4, and A, produce, col-

lectively, all the nonzero singular values of the matrix A. The same
statement is also valid for a partitioned matrix of the form

0 A‘)
(3 ©)-
7.6.21. Deduce the following corollary to the statement of

Problem 7.6.20: if a pair of orthogonal subspaces L and M reduce
14-0010
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an operator A, then the singular values of the operators A/L and
A/M produce, collectively, all the singular values of the operator 4.

7.6.22, Prove that the singular value decomposition (7.6.1) of
a matrix 4 can be rewritten in the form

= UAY, (1.6.2)

where U is an m X r matrix with orthonormal columns, V is an
r X n matrix with orthonormal rows, and A, is a diagonal matrix
with positive diagonal elements. The representation (7.6.2) is also
called the singular decomposition of the matrix 4.

7.6.23. Prove that for the singular values a, . . of an
operator A, the following version of the Courant- Flscher theorem is

valid

. |Az]
@y =max min .
L, =0 2]
iy
. 14z)
ap= min max .
Lnohey 50 =l
*€Lp_hyy

Here, as in 7.4.34, L, and L, -5+, are arbitrary subspaces of dimen-
sions k and n — I3 +1, respemvely, of the n-dimensional space X.
In particular, the followmg relations hold

ay = max 1] @, =min 14z]
A= R E e S ]

7.6.24. Prove that the spectral radius of an operator does not
exceed its greatest singular value.

7.6.25. Prove that the eigenvalue A, with the minimal modulus
and the minimal singular value a, of an operator 4 satisfy the rela-

tion
13 | = otne

7.6.26. Let a,, ..., @, be the singular values of an n X n
matrix 4. Prove that the singular values of the associated matrix
Ap are all the possible products of p numbers from @, . . ., .

7.6.27. The eigenvalues A;, Aq, . . ., h,. of an n X n matrix 4
are ordered so that |A, [>>[Ay [>>...> | A, |. Prove that the
following Weyl inequalities are vall

e I <. an
(R N RSN P b S P A Y T
They generalize 7.6.24 and 7.6.25.



78 Singular Values and Polar Representation 214

7.6.28. Prove that the greatest and least singular values of am
n X n matrix A satisfy the estimates

@, >max [m?x (é‘ |a,,|’)m. m?x (‘g |au|z)'/2]'

" n
a, <min lm‘in(g1 lagy[2)¥2, m;n(‘z_',‘ lay19)V2).

7.6.29*. For an operator 4 the equality |A, | = a, is valid.
Here A, is the eigenvalue of 4 with the greatest modulus. Prove
that the operators 4 and 4* have a common eigenvector correspond-
ing to the eigenvalue A (%,).

7.6.30*. Prove the statement, converse to 7.6.6, viz., if the sin-
gular values of an operator 4 coincide with the moduli of the eigen-
values, then A4 is a normal operator. )

7.6.31*. Let 4 be a rectangular m X n matrix, and let 4 be an
arbitrary submatrix of the matrix 4. Prove that the singular values

of the matrix 4 do not exceed the corresponding singular values of 4.
7.6.32. Let A be an arbitrary square submatrix of a normal
matrix 4. Prove that the spectral radius of A does not exceed the
spectral radius of
7.6.33. Prove that the singular values ay, By, yx of operators 4,
B and A + B satisfy the inequalities:

w<a+bh wm<at by
w=—o+ B ma—b, 1<E<n

7.6.34*. Operators A and B are defined on an n-dimensional
space X. Prove that the singular values @,, By, 8y of the operators
A, B and AB satisfy the relations:

< aybu Sw < anby
0 > anBry > anbny 1<k

7.6.35. Let A and B be positive-definite operators. Prove that
the eigenvalues of the operator AB are equal to the squares of the
singular values of the operator A1/2B/S,

7.6.36. Given the singular values a;, .. ., and B,, s Bm
of matrices 4 and B of orders n and m, respecuvely Find the singu-
lar values of the Kronecker product 4 X B.

Find the singular values of the following matrices:

7.6.37. |20 © 7.6.38. [0 2 ©
o1 Of. 00 3.
00 —2 10 o
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7.6.39. || 4 —2 2 7.6.40. || 4 —2 4
4 4 - 2 1 2
—2 4 2 —4 2 —4
7641, || 4 -3 o0 7.6.42. 0 02—
-3 4 0 [ 0 2 1
0o 0 -3 Vi -Vio o
—-VZ VvZo o
7.6.43. 0 Y3 e o 7.6.44. |1 111
V3 02 o R
o 2o vl i
0o o0V3 o
7645, 1 1 1 1 7.6.46%. 2 —1 4 =2
1 6 -1 — 2 14 2
1 -1 1= -4 22 —
41—t —1 —4 22 1

7.6.47. What becomes of the polar representation of a matrix
of order n when n = 1?

7.6.48. Show that in a polar representation A = HU of an opera-
tor A, the positive-semidefinite operator H is uniquely determined.

7.6.49*. Let A = HU be an arbitrary polar representation of an
operator A. Show that the operator U transforms the orthonormal
basis, containing the eigenvectors of the operator A*4, into a simi-
lar basis for the operator AA*.

7.6.50. Show that for wh polar r ion 4 = HU
of an operator A4, the unitary tor U t f the sub
T4+ into T4, and the subspace NV, into N 4».

7.6.51*. Let 4 = HU be an arbitrary polar representation of an
operator A. Prove that effect of the unitary operator U on the sub-
space T 4+ is uniquely deurmmed by the operator 4.

7.6.52. Prove that a a unique
polar representation.

7.6.53. Prove that any operator A on a unitary (Euclidean)
space can be represented in the form

A = U i,
where U, is a unitary (orthogonal), and H, a positive-semidefinite,
operator. Show that the operator H, is, in this representation,
uniquely determined.

7.6.54*. Prove that an operator 4 is normal if and only if the
operators H and U in its polar representation 4 = HU are commut-
ing.
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7.6.55. Let A be a nondegenerate normal operator on a unitary

;paoe, and let its eigenvalues A,, . . ., A, be given in trigonometric
orm

A = py(cos @ + isin @), - .. Ay = pp (O @ + i singy).
Prove that the operators H and U in a polar representation of the
operator A have the eigenvalues p;, ..., p, and cos @, +
+ isin @y, ..., cos @, + isin @,, respectively.

7.6.56. An operator S is positive-semidefinite. Find its polar
representation.

7.6.57. Find a polar ation of the diff ial

on the space M, of polynomials with the scalar product (7 1.7).
7.6.58. Given a polar representation A = HU of a matrix 4,
find a polar ion of the d matrix 4p.
7.6.59. Given square matrices 4 and B, perhaps, of different
orders and letting A = HU and B = KV be their polar representa-

tions, find a polar tation of the K ker product 4 X B.
Find polar roprmntntlons of the following matrices:
7.6.60. " -1 -7 " 7.6.61. 03 —1
1 70" 0 4 2
=50 0
7.6.62*. 2 —1 4 =2
2 14 2
-4 22 —1
—4 =2 2 1
7.6.63*. Using the polar i prove the of

7.5.56, viz., that if an n X n matrix 4, whose eigenvalues 4,, . . .
« .. A, are real numbers, is of simple structure, then 4 can
represented in the form 4 = HS, where H and S are Hermitian
operators and S is positive-definite. If the matrix A is real, then the
factors H and § can be chosen to be real.

7.6.64*. Prove that the sum of the singular values a, . . ., ap
of an n X n matrix A satisfies the representations

ayt ... Fop= max [tr (AW)| = max Re tr (4W),
w
where W ranges over,the whole set of unitary n-order matrices.

7.7. Hermitian Decomposition
The purpose of this sectiol; is to 1ll|mnte thnt, despite its simplicity, Her—

mitil ul many cases a prob! ler,

terms nt nrhnu--ry cnn he usmg the

sition to an task p i the solution of which
proves to be much simpler l,o nbum At the end of the section we demoutn(e
an unalogue of the of op: ona i space

(see Problem 7.7.23).
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7.7.1. What does the Hermitian decomposition of an n-order
matrix, when n = 1, turn into

7.7.2. What can be said about a linear operator 4 if (4z, z) =0
for any vector z?

7.7.3. What can be said about linear operators A4 and B if for
any vector z:

(a) (4z, z) = (Bz, z)?

() (4z, z) = (z, Bz

7.7.4. Prove the converse to 7.4.22, viz., that if the scalar prod-
uct (Az, z) is a real number for any operator 4, then for any opera-
tor z, A is a Hermitian operator.

7.7.5. Show that in the definition of a positive-definite operator
on a unitary space the requirement that it should be Hermitian is
extra.

7.7.6. Let H and S be Hermitian operators. Show that the scalar
product (Hz, Sz) is real for any vector z if and only if H and §
are commuting.

7.7.7. What can be said about an n X r matrix 4 if it is orthogo-
n7al to)?ny Hermitian matrix with the scalar product defined as in
(1.4.5

7.7.8. Let the trace of the product AH of an n X n matrix 4
and any Hermitian matrix H be a real number. Prove that the
matrix A is Hermitian.

7.7.9. Let A = H, + iH, be the Hermman decomposmon of an
operator A. Find the Hermitian d of the
operator A*.

7.7.10. Prove that an operator A is normal if and only if the
operators H, and H, in its Hermitian decomposition are commuting.

7.7.11. Show that the eigenvalues of the operators H, and H,
from the Hermitian decomposition of a normal operator 4 coincide
with the real and the imaginary parts, respectively, of the eigen-
values of the operator 4.

7.7.12. Show that any orthonormal basis, containing the eigen-
vectors of a normal operator 4 is also a basis made up of the eigen-
vectors of the operators H, and H, of its Hermitian decomposition.

7.7.13. Let A and B be commuting normal operators, and let 4 =
= H, + iH,, B =8, + iS, be their Hermitian decompositions.
Prove that all the operators H,, H,, Sy, §; are commuting.

7.7.14. Let A be an operator on an n-dimensional space with the
Hermitian decomposition A = H, + iH,. Prove that the set of
values for the ratio

(4z, 2)
(2, 2)

(where z is an arbitrary nonzero vector) is bounded by a rectangle
in the complex plane with vertices (;, By)y (@1 Pn)s (@n, Ba)s
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(@n, B1), @, @, and B;, B, being the greatest and least of the eigen-
values of the matrices H, and H,, respectively.

7.7.15. Deduce the following Bendizson theorem from 7.7.14:
the real (imaginary) parts of the eigenvalues of an operator 4 are
confined between the greatest and least eigenvalues of the operator
H, (H;) of its Hermitian decomposition.

7.7.16. The operator H, from the Hermitian decomposition of an
operator 4 is positive-definite. Prove that the operator 4 is nonde-
generate.

7.7.47*. The matrix H, in the Hermitian decomposition of a
matrix 4 is negative-definite. Prove that (a) the matrix A is stable
(see 7.5.20); (b) the product of the matrix 4 by any positive-definite
matrix H is also a stable matrix.

7.7.18*. The diagonal el ay of a lex tridi 1
matrix A are real b and the off-di 1 el satisfy
the inequalities @j ;4,844,, 1 <<0, i=1,2, ..., n—1. Prove

that the eigenvalues of the matrix 4 are bounded by the strip in the
complex plane:
min a,;<Re zsmax ay.

7.7.19*. A square real matrix A4 is called a fournament matrix
ifjall the diagonal elements a;; are zeroes and the off-diagonal ele-
ments satisfy the condition a;; + a; = 1for all L ;é)) Prove
that the eigenvalues of a to matrix 4, d in the
field of complex numbers, lie in the strip of the complex plane

——7 <Re z<T(n—i).

where n is the order of 4.
7.7.20*. Prove that in the context of Problem 7.7.16

| det 4 | > det H,.

When does the equality occur in this relation?

7.7.21*. By means of the Schur theorem, prove that the follow-
ing relationship between the eigenvalues M, s A, and @
.. - ap of the operators A and H,, respectively, is true (see Prob-
lem 7.7.16)

ReA  ReAy...Red, > ayay. .. .
The equality occurs if and only if ReA; = a;, i =1, ..., n, with
the appropriate ordering of the eigenvalues.

7.7.22. Show that the greatest singular value a, of an operator 4
satisfies the inequality

p (Hy) + p (Hy).
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Here p (H,) and p (H,) are the spectral radii of the operators H,
and H, of the Hermitian decomposition.

7.7.23. Show that any linear operator 4 on a Euclidean space can
be uniquely represented in the form

=S 4K,

where S is a tric, and K a sk

7.7.24. Prove that the space R,,, (see "7.1. 17) 1s the orthogonal
sum of the subspace of symmetric matrices and the subspace of skew-
symmetric matrices.

7.7.25. What can be said about a linear operator 4 on a Euclidean
space if (Az, ) = O for any vector z? Contrast this with the re-
sult of 7.7.2.

7.8. Pseudosolutions
and Pseudoinverse Operators
The first half of the section is devoted to the properties of paeudomlntionx

and a normal pseudosolution of the equation Az = b, where A is generall
operawr from o Xy ¢ and b is a fixed vector from the space Y. Severa meth s
1

bases that were obtained from the elgenveetols of tﬁe operators A‘A or AA*.
Remember, by the way, that these bases ¢, .. u]l
the singular bases of an operator 4 (and of 4% |l "the vecv,ors e,, e ey

to nonzero 2 ... @F, are ‘connected by

2 I
ti:e relations

/,=—‘— Aoy =ty

Singular bases play a princi) l‘x"l role in A)rovmg various properties about the
pseudoinverse operator to which the second part of the section is devoted. We
treat this subject more extensively than is required for immediate academic
purposes, taking into account the scarcity of the material on the pseudoinverse
operator in general text-books on linear algebra. In specialized literature inter-
pretations of this notion can be found that seem totally different to each other
at first glance, but which are certainly equivalent. We present a number of such
definitions to prove their equivalence. We demonstrate also that a number of
classes of operators on a unitary space (normal, Hermitian, positive-semidefinite)
is closed under the of

7.8.1. Let by be a projection of a vector b onto the image T,
of an operator 4. Prove that any pseudosolution of the equation
Az = b is a pre-image of the vector by.

7.8.2. Show that the set of all dosolutions of the i
Az = b is a plane whose directional subspace is the kernel N a of
the operator A. This plane is a subspace if and only if b belongs
to the kernel N4+ of the con]ugate operator A*

7.8.3. Show thu. a normnl of the equation Az =

= b can be ified as a p lution of this equation, orthogonal
to the kernel of the operntor A, or in other words, as a pseudosolution
belonging to the image of the conjugate operator A*.
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7.8.4. Let A be a differential operator on the space M, of poly-
nomials with the scalar product defined as in (7.1.7), and let g (2)
be a given polynomial from M,. Find all the pseudosolutions and
a normal pseudosolution of the equation Af = g.

7.8.5. How are pseudosolutions and normal pseudosolutions of
the equation Az = b and the equations (a) adz = b, (b) Az = ab,
(¢) Az = ab related where a is a nonzero number?

7.8.6. How are normal pseudosolutions of the equation Az = b
and the equations (a) UAz = Ub, (b) AVz = b related? Here U
and V are unitary operators.

7.8.7. Let 4 be a normal op and let an orth 1 basis,
ey, ..., &, containing the eigenvectors of this operator, be given.
How are the pseudosolutions and a normal pseudosolution of the
equation Az = b found?

7.8.8*. Let A be an operator of rank r from an n-dimensional
space X into an m-dimensional space Y. Given an orthonormal basis
e, ..., &, containing the eigenvectors of the operator A*4 and
the corresponding eigenvalues al, ce ah (@ >0, i=1,..,7),
prove that (a) the pseudosolutions of the eq 4z = bare de-
scribed by the formula

z=Pe;+ ...+ Brer + Pras€rr1 + oo o+ Voem,

‘where
_ (b Ae) _ (A%hoe)
ﬁ‘—m——a;—. i=1, ...r
and Yr4q, .+ . ., Yo are arbitrary numbers; (b) the normal pseudosolu-
tion is the vector
zo = Py + . .« + Brere

7.8.9. Given an orthonormal basis f,, . .., fm, containing the
eigenvectors of the operator AA"‘ (wlule a; >0, i= 1, ...,
prove that the normal p of the eq Az =5 can

be found by the formula
= &AM + ... + 54

where
b f
R A

Find the normal pseudosolutions of the following systems of lmen
equations, assuming that the scalar prod on the p g
arithmetic spaces are defined by (7. 1. 4).

7.8.10. 279z, + 362z, — 408z, = 0,
515z, — 187z, + 734z, = 0
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7.841*. 27z, —55z,=1,
— 132+ 27z, =1,

— 14z, 4 28z, =1.
7.842. 2+ 23+ 23+ 2, =2, 7843, z+z,=2,
Tt o+ Tyt o=3, 7 —23=0,
T+ Ty + 2y 2 =4 2z, + 2, =2.
7844, —z,—2z,=1,
2z,+42,=0,
z,+22;,=0,
3z, +62,=0.
7.8.15. 2z,—z, =1,
— 2+ 23+ 23=0,
z3+2zy=1.
7.8.46. 2z,—z, =1,
—z+(1+e) 2 +23=0, (e0),
z3+2zy=1.
7.847. 2z,—z, =1,
—Z T T+ Ty =0,
2,3+ (2+e) zg=1, (e5<0).
7.8.18%. 5z, — 3z, =2,
S 42421, 4-22,=3,
223+ 2z4 =0,
—3z,+ 2,
223+ 224
7.8.19. Find pseudoi se operator of the null from X
into Y.
7.8.20. Prove that the pseudoinverse op of a d
operator coincides with lts inverse.
7.8.21. Find the pseud of the diff ial opera-

tor on the space M,. of polynomials with the scalar product defined
as in (7.1.7). Compare the obtained operator with the conjugate
(see 7.1.34

).
7.8.22. Prove that for any operator A and a nonzero number @

(ad)* = ? A+,
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7.8.23. Prove that for any unitary operators U and V:
(a) (UA)* = A*U*,
(b) (AV)* = V*4*,

7.8.24. Show that the image and kernel of the pseudoinverse
operator A* coincide with the image and kernel, respectively, of
the conjugate operator A*.

7.8.25. Consnder an operator A as an operator from T 4» into T4,
and the tor A+ as an from T, into T 4».
Show that the operators A and A* are inverse to each other on this
pair of subspaces. This means that for any vector z from T 4+ and
any vector y from T,

A*dz =z, AA*y=y.

7.8.26. Show that stating the properties of the pseudoinverse
operator listed in 7.8.24 and 7.8.25, together with that of linearity,
is equivalent to the definition of the pseudoinverse operator.

7.8.27. Let ¢;, ..., ey and f, . .., fm be singular bases for an
operator A. Find the matrix of the pseudoinverse operator 4* with
respect to this pair of bases.

7.8.28. Show that singular bases for an operator 4 are also singu-
lar for the pseudoinverse operator A*. Meanwhile, the nonzero sin-
gular values of the operators are reciprocal.

7 8.29. Show that (4*)* =

7.8.30. Show that (4%)* = (A’)‘

7.8.31. Show that the pseudoinverse operator of a Hermitian
operator is also Hermitian.

7.8.32. Show that the pseudoinverse operator A* of a normal
operator A is also normal. Find the relationship between the eigen-
values of the operators A and 4*.

7.8.33. Prove that a normal operator A satisfies for any & the
relauon (AM* = (4%

7.8.34. Prove that the pseudoinverse operator of a positive-
semidefinite operator is also positive-semidefinite.

7.8.35. Let A = HU, and let A = U,H, be polar representations
of an operator 4. Fmd polar representations of the operator A'

7.8.36. Prove that for an A to coincide with its pseud
verse it i and sufficient that (a) the nnage T,
and kernel N A should be orthogonal (b) the induced operator A/T 4
should satisfy the equality

(A/T ) = AIT,.

In particular, these conditions are fulfilled for an operator of ortho-
gonal projection.
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7.8.37*. Let operators 4 and B satisfy the relations 4*B = 0
and BA* = 0. Prove that (4 + B)* = A* + B*.

7.8.38*. Operators A and B are such that T, = T ge. Prove
that (BA)* = A*B*.

7.8.39. Prove the equality

AA*A = A.
7.8.40. Show that the geometric meaning of the equation
AXA =4 (7.8.1)

in a linear operator X is that the operators 4 and X are inverse to
one another on the pair of subspaces XT 4 and T4 in the sense de-
fined in 7.8.25.

7.8.41. Prove that a pseudoinverse operator A* can be defined
as a linear operator satisfying equation (7.8.1) and having the same
image and kernel as the conjugate operator 4*.

8.42*. Prove that each of the definitions indicated below is
equivalent to the definition of a pseudoinverse operator:

(a) an operator X satisfying equation (7.8.1) and such that

X = A*B = CA*

for certain linear operators B and C; (b) an operator X satisfying
equation (7.8.1) and such that

X = A*DA*
for a certain linear operator D; (c) an operator X satisfying the
equation A*4X = A* and such that

X = A*AF
for a certain linear operator ¥.

7.8.43. Prove that the rank of the operator (4 *)* equals the rank
of the operator A%.

7.8.44. Given an operator 4 from a space X to a space Y, prove
that the operator 4*4 is Hermitian and projects the space X ortho-
gonally onto the subspace T 4+

7.8.45. Describe the geometric meaning of the requirements for
an operator X to be specified by the system of equations

AXA =4,
(X4)* = X4A. (7.8.2)

7.8.46. Prove the equality A*AA* = A*.

7.8.47. An operator X satisfies system (7.8.2). What does a new
for this op by the equation

XAX =X

q

mean?
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7.8.48. Prove that the operator A (see Problem 7.8.44) stipulates
that the operator 44* is Hermitian and projects the space Y ortho-
gonally onto the subspace T,.

7.8.49. Prove that the conditions

AXA = A, XAX = X,
(XA)* = X4, (AX)* = AX

determine the pseudoinverse operator uniquely. These conditions
are called the Penrose equations after a British mathematician who
was one of the first to introduce the notion of a pseudoinverse opera-
tor (a pseudoinverse matrix, actually).

7.9. Quadratic Forms

In thls section we shall focus our ntenuon mostly o
The f a form to its 1 ronn by an

ol
transformation of the unknowns.
The law of inertia, relation of congruence, and the use of principal minors
for finding the indices of inertia.

Simultaneous reduction of a pair of quadratic forms.

The L:snnge method of the to 1 form, idered only
with to positive-definite forms. Hence, the possnbnhty that a positive-
definite matrix may be reduced into the product of two triangular matrices,
each the trauspose of the other. Such a reduction forms the basis for one of the
most efficient techniques for the solution of systems of linear equations with
matrices of lhu class. We ave paid particular attention to this method and
its computa aspects.

Nolle that nll the matrices considered in the present section are assumed to

Jor each of the quadratic forms below, find an orthogonal trans-
formation of the unknowns that makes the form canonical, and state
the canonical form obtained.

7.9.1. 2z} + 523 + 223 — 4zy7, — 22,7, + 4T,T5.

7.9.2. —3z} + 42,2, + 102,75 — 42,7,.

7.9.3. —zf + z3 — 5:5 + 62,75 + 42,7,

7.9.4. 20:,:‘ + 62,z

7.9.5. zi + 4z} "' 13 + 4z + 43Ty + 22075 + 43z + hdEaTy
+ 82,7, + 47,7,

7.9.6%. Suppose a quadratic form F (z,, ..., Z,) is reduced by
some (even degenerate) transformation to the form

F=pi+ ...+ —phei— o — Ve

Prove that the positive index of inertia for the form F does not ex-
ceed k, and that the negative index of inertia does not exceed I.

7.9.7. Prove that for separating a quadratic form into the prod-
uct of two linear forms, it is necessary and sufficient that the rank
of the form should not exceed two, and that the signature should
be equal to zero if the rank equals two.
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7.9.8. Show that the rank and signature of a quadratic form are
either both odd or both even.

7.9.9. Real n X n matrices A and B are said to be congruent
if there exists a nondegenerate matrix P such that B = PTAP.
Show that the congruence relation on the set of square matrices of
a given order is reflexive, symmetric and transitive.

7.9.10. Prove that a matrix A is congruent to a diagonal matrix
if and only if it is symmetric.

7.9.11. Prove that symmetric matrices 4 and B are congruent if
and only if they have the same number of positive and negative
eigenvalues.

7.9.12*. Using the properties of the eigenvalues and principal
submatrices of symmetric matrices (see 7.4.35), prove that if a
matrix 4 is the matrix of a quadratic form F in » unl and if
all the leading principal minors of the matrix A are different from
zero, then the positive (negative) index of inertia of the form F
equals the number of repetitions (changes) of sign in the number

sequence
My Dy, Dy, o oy Dy,

where 0, is the leading principal minor of order i. This rule for
finding the indices of inertia was introduced by Jacobi.

7.9.13*. The minor Dy, k << n (see Problem 7.9.12) is zero, but
the minors Dy_; and Dy 4, are nonzero. Prove that Dy Dy 4y << 0.

7.9.14*. Assume that the determinant D, 5= 0 in the sequence
1, Dy, . .., D, but if k << n, then the minor D, may be zero. In
which case, assume, additionally, that both Dy _, and D)4, are non-
zero. By giving arbitrary signs to the zero values of D, show that
the Jacobi rule for finding the indices of inertia is still valid for
this case. This modification to the Jacobi rule is due to Gundelfinger.

97.9.15. Deduce statements 7.4.44 and 7.4.45 from 7.9.12 and
7.9.44.

Compute the indices of inertia for the following quadratic forms.

7.9.16. 2,2, + Z,25 + 47,

7.9.17. 2y + 22,25 + 32,2, + 295 + 2247, + T5%,.

7. 9.18 z; + 223 + 3z} + 4z} + 2z,2, + 23,25 + 23,7, +
+ 424z, + G2,z + B2o7,.

7.9.19. Let the coefficient a,, in a quadratic form F (z,, . . ., z,)
be greater than zero. What will be the result of the following tnns—
formation of the unknowns

_ 4
Y —V——_—E (e + . - +a1nTn)s
=2z, t=2,...,n?
7.9.20*. Prove that a positive-definite quadratic form can be
reduced to the normal one by a triangular transformation of the
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unknowns, i.e. by a transformation of the form
Yy=$uZy+Si2%+ - o + SinZnr
Y= S22T2 7+ + oo+ SgpTns (7.94)

Yn= SnnZns

where s, Ssg, . . ., Spn are different from zero.

Reduce the following quadratic forms to normal ones by a triangu-
lar transformation:

7.9.24. z} + 223 + 323 + 2,7, + 21,75 + 4z,z,.

7.9.22, 2} + 223 + 223 + 22,2, + 22,75,

71.2;23. 2}t 4zh + 1123 + Ohz] — Ozyzy — hayz, + dzy7y +
+ Zqe

7.9.%4 Prove that for any positive-definite matrix A4, there is
a so-called triangular decomposition, i.e.

A4 = 878, (7.9.2)
where S is an upper triangular matrix.
7.9.25. Show that the diagonal elements of the matrix S in the
triangular decomposition (7.9.2) and the leading principal minors
Dy of the matrix A are connected by the relations

D, N
sh =—-‘|' i=1,..., n; Dy=1.

The same is true for the di 1 el of fe lae (7.9.1).
7.9.26. Prove that atriangular decomposition (7.9.2) of a positive-
definite matrix A, where all the diagonal elements s;; are positive,
is unique.
7.9.27. Show that the elements of the matrix S in decomposition
(7.9.2) can be calculated consecutively in the order sy;, $y3, - - -1 Sins
Sgas Saae -+ - +» San Dy the formulae

sy=Vay., s,,—:—::. j=2...., n,
—
s,,=‘/a,,—k2’ sy (E>1), (1.9.3)
-1
ayy— 2 Snishj
spy=—ott >

m

Using formulae (7.9.3), find triangular decompositions of the
following matrices:

7928 [| 42 -2 7929 9-3 O
25 f. -3 5 —4|.
—21 3 94 s
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7.9.30. ||t
2
3
4

7.9.31. A positive-definite matrix A is of the band structure,
ie. ¢y =0 when |i —j | > d > 0. Using formulae (7.9.3), show
that s;; = 0 when j — i >d.

7.9.32. Find the triangular decomposition of the following tri-
diagonal matrix of order n

1 V2
V2 gvi _
ad| VR 2V
o 3'1/2
v: 3

7.9.33. Show that if a matrix S represents the triangular decom-
position of a matrix A, then its principal submatrix S represents
the triangular decomposition of the submatrix 4, of the matrix 4.

7.9.34. Using the result of Problem 7.9.30, find the triangular
decomposition of the matrix

1.2 3 45
2 5 811 14
3 8 14 20 26ff.
4 11 20 30 40
5 14 26 40 55

7.9.35. Prove that for the elements of the matrix S of the triangu-
lar decomposition in (7.9.2), the following inequality holds:

n;»;lsul<mgxlfﬁ.

Hence, deduce that if for the matrix 4, ma;; [agy | =1, then
1,
mex [5y | <1.

In these ci ances when the
a positive-definite matrix is being
(in the indicated sense) will not occur.

7.9.36. Find the number of multiplication, division, and square
root operations that are needed to obtain the triangular decomposi-
tion matrix using formulae (7.9.3).

7.9.37. Given the triangular decomposition of a positive-definite
matrix 4, find a method to solve the system of linear equations
Az = b.

Tar d position of
d, growth of el
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7.9.38. Find the total number of multiplications and divisions
necessary to solve the system of linear equations Az = b (where A
is a positive-definite matrix) when a trungllllr decomposmon using
formulae (7.9.3) followed by an 1i of t
to the subsequent systems (see 7. 9. 37) is used. Compare this with
the number of multiplication and division operations necessary for
Gaussian elimination.

The method indicated for the solution of a system of linear equa-
tions with a positive-definite matrix is called the square root method.

7.9.39. Prove that a positive-definite matrix 4 can be also repre-
sented as the product

4 =887, (7.9.4)

where §, is an upper triangular matrix.

7.9.40. Let A be a positive-definite matrix, and 4 the matrix
btained when the el of 4 are refl d through the centre of
A, A = STS is then the triangular decomposition of the matrix 4.
Prove that this representation (7.9.4) of 4 can be obtained by reflect-
ing each of the matrices ST and S through their centres.

.9.41. Prove that two quadratic forms F and G both in the same
unknowns can be reduced to canonical form by the same nondegener-
ate linear transformation if at least one of the forms F and G is posi-
tive-definite.

7.9.42. Given quadratic forms F and G both in the same un-
knowns, the form G being nondegenerate. Prove that if a nondegener-
ate linear transformation exists that can reduce both F and G to

canonical form:
F=Agi+ ...+ hh

G=pi+ ... Pt
then the set of ratios

» M An
2 Ay A
[ R )
is the same for any such transformation. These ratios are the roots
of the so-called z-equation of the pair of forms F and G, i.e. | A—zB |=
=0, where 4 and B are the matrices for F and G, respectively.
7. 9.43. Quadratic forms F and G are positive-definite. Consider
two linear transf ions, the first reducing F to
the canonicel form Ay} + . . . + Anyh and G to a normal form, and
the other reducing F to a normal form and G to the canonical form
wzt + ... + pazh. How are the coefficients A,, ..., 4, and
By, - - o B related?
7.9.44. Prove that the forms F and G can both be reduced to ca-
nonical form by the same linear if
the matrices of these forms are commuting.

150819
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For each of the following pairs of quadratic forms, find a nondege-
nerate linear transformation that reduces both to canonical form
and state the obtained forms:

7.9.45. F= 2!+ 2z}+ 323+ 22.2,— 2224,
G =22; + 8z} + 313+ 82,2, + 22,25 + 42,7,
7.9.46. F=2}+52;+ 23+ 222, + 62,24+ 22,7y,
G =z} — 225+ 73+ 42,3, — 1022, + 42,75
7.9.47. F= —z}— 5z}—142}+ 42,2, + 62,2 — 8z,7,,
G= —z}— 14z — 4xi+ Bz, — 22,24+ 4,2y
7.9.48. F=z}+32}+ 23— 23— 223, — 42,7y + 2247,
G = 2} + 224+ 225 + 223 — 22,T — 2257y — 2147
7.9.49. F= a}+ z;+ 23+ zi+2z,2,+ 42,34
+ 2243 + 2557y + 42,3, + 22T,
G =2z} + 22} + 223+ 223 — 2247, + 23,7
— 2247 — 22T + 2297 — 24
7.9.50. Assume that F and G are quadratic forms both in the
same unknowns zy, . . ., Zp, and G is positive-definite, and enumera-
te the roots of the z-equation in descending order z, >z, > .

. >> z,. Prove that for the biggest root z, and smallest root z,,.
the following representations are true

F(zy, .-, Zn)
= ax  oZn ens Zn)
& :;+.l?+=;,¢o G (2ys over Zn) ?
N F(2y, .-y Zn)
= min el SR
o e tagmo G @0 eens 2Zn)

7.9.51. Formulate and prove the analogue of the Courant-Fischer
theorem for the pair of the forms in the preceding problem.



CHAPIER 8

Metric Problems in Linear Space

8.0. Terminology and General Notes

A set X is called a metric space if to each pair of its elements z
and y, there is assigned a nonnegative number p (z, y) called the
distance between z and y, and the following conditions are fulfilled:

(i) p(z y)=0if and only if z = y;

(i) p(z, y) =p (v, 2);

(iii) p (z, 2) < p (7, ¥) + p (¥ 2).

If M, is a subset of a metric space X, then the set of all elements
z € X, not belonging to M,, is called the complement of the set M,.
If M), M,, ... are the subsets of X, then the set of all elements,
each of which belongs to at least one of the sets M,, M,, ..., is
called the union of M,, M,, ... . The set of all elements, which
are elements of each of the sets M,, M,, . .., is called the inter-
section of M,, M,,

The set of all elements z from X fulfilling the condition

plaz<r

is called isphere S (a, r). The element a is called the centre of the
sphere, and the positive number r the radius of the sphere.

The neighbourhood of an element z is any sphere, centre z. A set M
in a metric space X is said to be open if it contains for every ele-
ment £ some neighbourhood of the element.

An element z € X is called a boundary point of a set M if any
neighbourhood of this element contains at least one element from M
which does not coincide with z. The set obtained from M by adding
all its boundary points, is called the closure of the set M and denot-
ed by M. A set M is closed if M = M.

The set S (a, r) of all elements z from X fulfilling the condition

plz, ay<r

is called a closed sphere, centre a and radius r.

An element z, from a metric space X is called the limit of a sequence
{za} of elements z,, T4, . .., Tn, ... from X if p (2o, z,) =0 as
n — oo, We write this as

T, =>T
15*
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or
limz, =z,
P

A sequence {z,} which has a limit (z,) is said to be convergent.

A sequence {r,} of clements from a metric space is said to be
fundamental if for any number € > 0 there is another number N (e)
such that p (z,, zm) <&, when n, m > N (e).

If any fundamental sequence in a metric space X converges to
a limit, then the space is said to be complete.

A real or complex linear space X is called a linear normed space
if each vector z € X has an associated real number || z || called the
norm of the vector z, and which fulfils the following conditions:

@i =z || >0, moreover lz |l =0 only if 2 =0;
(i) Jlz+y II II 1 Il + 'y Il (the triangle inequality); (8.0.1)
(iii) Az || = z |l

A normed space can be treated as a metric space if we put
Py =Ilz—yl

The convergence of a sequence with respect to the distance thus
defined is called the convergence with respect to the norm.

A set M in a linear normed space X is said to be bounded if there
is a positive number C such that || z || < C for all z from M.

The unit sphere of a normed space X is the set of all vectors z
for which |z |1 (lz | =1).

Aset Mina normod space is said to be convez if, in addition to
any two of its vectors z and y, it also contains the whole segment
A4+l —-Ny 0K<AST

Any finite-dimensional linear normed space X is a complele metric
space. Moreover, describing a set M from X as bounded is equivalent
to describing the coordinates of all vectors z from M with respect
to any basis for the space X as bounded. Similarly, the converg
of a sequence {z;} to a vector z, is equivalent to the convergence of
the coordinates of the vectors zj to the corresponding coordinates
of the vector z, with respect to any basis for the space X.

An example of a normed space is the n-dimensional arithmetic
space in which the norm of a vector z = (2@, . . ., %,)T is defined
by the equality

lzlp=>Ut P+ la; P+ ...+ [an PP, p=>1. (8.0.2)

The triangle inequality for this norm is called the Minkowski in-
equality. Its proof is based on tl\e following Holder inequality

3 el <( 3 lanl® )’“’( L )Y, L1t =1 @03
h=1

Rt
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Let X and Y be normed spaces with the norms ||z [ix and
Il y liy, respectively. The norm || A || on the space of the operators
©yy is said to be consistent with the vector norms on spaces X and

Yif
Az lly <Az llx (8.0.4)
for all z € X and any operator 4 € ©y;
If X is a normed space with the norm || z ||, then the norm on the
space ©yy, defined by the equality

I141=sup ", =1, 8.0.5)

is said to be subordinate to the vector norm || z [|. Besides the usual
conditions (8.0.1), the secondary norm also possesses the following
special property with respect to operator multiplication:

HAB <A B (8.0.6)

The definitions of a i and subordi norm can be exlend-
ed immediately to spaces of matri id
arithmetic spaces. In particular, if the norm || z || (see (8.0. 2)) ls
defined on an arithmetic space, then the correspomfmg subordinate
norm is designated by || 4 [lp. The norms || A |y, | 42 (I, | 4 [l
are considered most often.

Even if the matrix norm under consideration is not subordinate,
we shall assume that equality (8.0.6) is valid for it.

If a matrix A has the form 4 = E + B,Ywhere || B || <1 for
some matrix norm, then 4 is nondegenerate and the norm of the
inverse matrix can be estimated by

4 <g 8.0.7)

II B [
Consider the system of linear equations
Az =b

with a square nondegenerate matrix 4 and a perturbed system

(A+e)z=0b+ e
The matrix e, is assumed to satisfy the inequality
Feall<<tiA-tit

This condition is sufficient for the matrix A4 + e4 to be nondegene-
rate. If we put

IIz—ZIl _lleal _ llesl
be-SEp M=ty =T
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then the following estimate is true

nAunA*I
&sw (84— 6b). (8.0.8)
Here, the matrix norm || 4 || is assumed to be subordinate to the
vector norm .

The product || A || [| 4 |7 is called the condition number of the
matrix A and denoted by cond (A). If it is necessary to state expli-
citly to which matrix norm a condition number refers, then we shall
write cond, (4), cond, (4) or conde (4).

As can be seen from estimate (8.0.8), a condition number character-
izes) the sensitivity of a system of linear equations Az = b to per-

bations of its coeffici Matrices with large condition numbers
are said to be ill-conditioned.

Suppose an n X n matrix A with the eigenvalues A, ..., A,
is of simple structure, and X is a nondegenerate matrix whose
columns are the eigenvectors of the matrix A. Then all the eigen-
values of the matrix 4 + e 4 are in a region of the complex plane which
is the union of n circles

lz—% |<cond (X) leall, i=1,...,n (8.0.9)

Here, the matrix norm is understood to be one of the norms || 4 ||y,
FA Nl 1Al

8.1. Normed Linear Space
In addition to the basic metric notions, another two topics are considered
in this section:fthe equivalence of the norms on a finite-dimensional linear space,
and a duality relation between the norms and the scalar product. The theory
of dual norms will make it possible to introduce in the next section a relation
ordering the set of operator norms.

8.1.1. Show that the length of a vector in a Euclidean (unitary)
space fulfils the conditions of a norm.

8.1.2. Given a fixed basise,, . . ., e, for an n-dimensional space X
and an arbitrary vector z from X whose decomposition with respect
to this basis is

T = a8 + Qe + . .. + Apep.
\lShow that a norm can be defined for X by any of the following equa-
ities
@zl = e[+ [al+...+[anl
M) [z lls=(ay [P+ la P+ ...+ [a P

(©) 2 llo= max [« |;

(d) generally, ;or any positive number p, p > 1,
Izl =(lays P+ lag P+ ... + [ P¥.
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ShB.l.3. Let m (z) and r (z) be two norms for a linear space X.
oW

(a) p (z) = max (m (z), n (2));

(b) g (z) = am (z) + Pn(z), where « and B are fixed nonnegative
numbers and never both zero;

() r (z) = (m* (2) + n* @)V
are also norms for this space.

8.1.4. Let P be a linear nondegenerate operator on a normed
linear space X with respect to the norm || z ||. Prove that m (z),

where
m(z) = || Pz |}, 8.1.1)

is also a norm for the space X.

8.1.5. A linear space X is the direct sum of subspaces L, and L,
and, in addition, norms m (z) and n (z) are defined on L, and L,,
respectively. Let z be an arbitrary vector from X, and let z = z, +
+ z,, where z, € L,, z, € L,. Show that a norm on the space X
can be defined thus:

Iz I =m (z1) + n (za)-
8.1.6. If the requirement that the norm in the definition of a

norm should be equal to zero only in the case of the null vector is
omitted then the vector function thus obtained is called the :emt-

norm. Hence, the i lfz |l is ified by the
() llz || =
(b) IIMII= IG IBEX

©llz+ylI<liz|+ Nyl

Prove that if a seminorm || z || is defined on a linear space X,
then: (a) the set of vectors, for which the seminorm equals zero, is
a linear subspace L of the space X; (b) all the vectors in the plane
z, + L have the same seminorm; (c) by matching each plane z, + L
with the common value of the seminorm of its vectors, a norm on
the factor-space of the space X is obtained with respect to the sub-
space L.
8.1.7. Prove that for any four vectors z, y, z, u of a normed
space, the following inequality holds

lez—yl—lz—ullI<lz—zl+ly—ul

8.1.8. Prove that the sphere ||z — z, || <<r is an open set.

8.1.9. Prove that the union of any number of open sets is an
apen set.

8.1.10. Show that any sphere is a bounded set.

8.1.11. Show that any plane of positive dimension is not a bound-

set.

8.1.12. Show that any sphere is a convex set.

8.1.13. Show that any plane of positive dimension is a convex
set.
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8.1.14. Prove that the sphere ||z — zo || <<r is a closed set.

8.1.15. Prove that the complement of an open set is a closed set.

8.1.16. Prove that the complement of a closed set is open.

8.1.17. Show that the intersection of any number of closed sets
is a closed set.

8.1.18. Show that the union of any finite number of closed sets is
a closed set. Set up an example demonstrating that the union of
infinitely many closed sets may not be a closed set.

8.1.19. Prove that if zy —z, and yx —y,, then: (a) |lzy || -
=l zo Il; (b)) lzx — a || >l zo + a || for any vector a; (¢) azy +
+ Bys —az, + Py, for any numbers @ and B; (d) if a sequence of
numbers A, converges to a number Aq, then Ayzy — Aoz,

8.1.20. Prove that if any nontrivial subsequence of a sequence
{zx} converges, then the sequence {z,} itself also converges. A subse-
quence is trivial if it coincides with the original sequence from some
term onwards.

8.1.21. Prove that if z, is a boundary point of a set M, then there
is a sequence {z,}, z» € M, convergent to z,.

8.1.22. Prove that the closure of a convex set is also a convex
set.

8.1.23. Prove that a convergent subsequence can be singled out
from any bounded sequence of vectors of a normed space.

8.1.24. Prove that any infinite bounded set has boundary points.

8.1.25. The quantity

oz M)=inf|lz—yl|
veM

is called the distance from a vector z to a set M. Show that if M is
a closed set, then there is y, € M such that p (z, M) = ||z — y, I
8.1.26. The quantity
p(Myy My)=inf|lz—y||
zEM, yeM,
is called the distance between the sets M, and M,. Prove that if the
sets M, and M, are closed and bounded, then there are z, € M,
and y, € M, such that p (M;, M,) = |lzg — y, |l

8.1.27. Show that the result of Problem 8. 1 26 remains valid if
the for the b d of one of the sets M, and M,
is omitted. Give an example to d that this st
becomes invalid if neither set (M, and M,) is bounded.

8.1.28. Are the vectors z, and y, in Problems 8.1.25, 8.1.26,
8.1.27 unique?

8.1.29*. Assume M to be a convex set of a Euclidean (unitary)'space,
and consider the length of a vector as its norm. Prove that the
vector y, (see Problem 8.1.25) is determined uniquely in these
circumstances.
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8.1.30. Let M, and M, be closed bounded sets. Prove that the
set NV, made up of all vectors having the form z + y, where z € M,
Y € M,, is closed and bounded.

8.1.31. The sets M, and M, are closed, moreover the set M, is
bounded. Prove that the statement of Problem 8.1.30 about the
boundedness of the set N is also valid in this case. Give an example
demonstrating that when the sets M, and M, are closed and not
bounded, then the set N is not closed.

8.1.32*. Given that X is a real (complex) linear space. A func-
tional on X is a mapping from the space X into a set of real (complex)
numbers. For a normed space X, a functional F (z) is continuous
at a point z, if F (z,) > F (z,) as 2, —z,. A functional F (z) is
continuous on a set M if it is continuous at every z, in W and a
continuous functional is continuous at every z from X.

Prove that (a) any linear functional on the space X is continuous;
(b) if || z || is a norm defined on X, then any other norm m (z) on the
space X is a continuous functional with respect to || z ||.

8.1.33*. Let M be a closed bounded set, and let a functional
F (z) be continuous on the set M. Prove that there is a positive
number ¢ such that | F (z) | < ¢ for all z from M.

8.1.34*. Prove that in the set .M (see the previous problem),
there is a vector z, such that | F (z,) | = max | F(2) I

8.1.35*. Prove that for any two norms m (z) and n (z) on a linear
space X, there are two positive numbers ¢, and ¢, such that

an (z) < m(z) < cgn (2). (8.1.2)

How can the largest possible number ¢, and smallest possible num-
ber c, be selected?
8.1.36. For each pair of the three norms ||z |l;, |z llo, [z II.,
(see 8.1.2), find the best possible ¢, and ¢, for inequalities (8.1.2).
8.1.37*. Consider for n-dimensional arithmetic space, the norms

Nz lls=(ayP+...+ lan P2
m (z) = || Pz [l

where P is a nondegenerate n X n matrix. How can the best possible
constants ¢, and ¢, in inequalities (8.1.2) be computed?

8.1.38. Prove that a set M, contained by a space X, and open
with respect to a norm m (z) on this space, is also open with respect.
to any other norm.

8.1.39. Prove that a set M, closed with respect to a norm on
a space X, is also closed with respect to any other norm on this
space.

8.1.40. Prove that any plane in a normed space X is a closed
and not an open sct (with the exception of the set X itself).

and
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8.1.41*. A set X is the direct sum of the subspaces L, and L,.
A closed set M, is contained in L,, and a closed set M, in L,. Prove
that the set N made up of all sums z + y, where z € M,, y € M,,
is closed. Note that in contrast to 8.1.31, no condition on the bounds
of the sets M, and M, is required here.

8.1.42. A norm m (z) is considered other than the length of the
vector on a Euclidean (unitary) space X. Show that for any y from X,
the expression

m*(g) = sup Lo AL ©1.3)
is nlways finite and satisfies all the conditions of a norm. This norm
m* (y) is said to be dual to the norm m (z) with respect to the scalar
product (z, y,

.1.43. Show that the definition of a dual norm is equivalent to
each of the following expressions:

@ m @)= swp Iz Yl (@) me () =max LT
m(x)=1 m(z)

®) m* @) =maxLZBL; (@) m* @)= max Re(y, 2.
E2l

(c) m*(y)= max |(z, y)|;
m(x)mt
8.1.44. Show that for any two vectors z and y (see Problem 8.1.42),
the following inequality is valid
1@ y) I <m(2) m* (y). (8.1.4)
Moreover, for any y there is a vector z, such that
(Zor y) = m (zo) m* (y).
8.1.45. Find the dual norm for the length of vectors.
8.1.46. Find the dual norm for the norm ||z |l = m:x ET

on the n-dlmensnonal arithmetic space with the scalar product de-
fined as (7.1.4
8.1.47*. Generallzmg 8.1.46, prove that the norm

Hzllg=(lay P+ ...+ | )
is dual with respect to the norm o
Nzllp=(lal®+ ... +lanl?? p>1, o o=1.
What happens to inequality (8.1.4) for this pair of norms?
8.1.48. Given two norms m (z) and n (z) on a Euclidean (unitary)
space X and any vector z for which the inequality m (z) > n (z)

obtains, show that for the dual norms m* (y) and n* (y), the reverse
relation is valid: m* (y) << n* (y) for any vector y.
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8.1.49*. Prove that for any vector z, there is a vector y such
that inequality (8.1.4) turns into an equality.
.1.50. Show that the norm m** (z), dual to the dual norm
m* (y), coincides with the original norm m (z).

8.2. Norms of Operators and Matrices

We give consulonuun almost exclusively here lo matrlx space norms, having
in mind the in bviously, all these
statements can be nlormn]uled for operators. It sho\lld be tressed that a matrix
norm fulfils a further related to the of matrix i

in addition to the Lhree usual axioms, namely:

IABI<UANNBI

Various classes of matrix norms and, in Yarucnln, the properties of the
spectral and Euclidean norms are considered. In the latter case we have listed
a number of mtereamg metric relauons. snmlhr to those valid for the complex
plane. In of norms and the consistency be-
tween the vector and matrix norms are analyzed. This analysis leads to a relation
of partial ordering on the norm set.

8.2.1. Prove that any linear t £ a bounded set
into another bounded set.

8.2.2. Is it correct to say that an open set is transformed by
a linear operator into another open set?

8.2.3. Is it true that a closed set is transformed by a linear trans-
formation to a closed set?

8.2.4. Prove that a closed and bounded set is transformed to
a closed set by an arbitrary linear operator.

8.2.5*. If M is a closed set and 4 a linear operator, prove that
the complete pre-image of the set M (i.e. the set of all z for which
Az € M) is also a closed set.

8.2.6%. Let {A,} be a sequence of linear operators on a normed
space X, and assume that for any z from X the sequence {4z} is
convergent. If

Az =lim Az,
)
showithat (a) an operator A, defined by this equality, is linear;
(b) Ay > A for any norm on the space of operators.

8.2.7. Show that the sequence of matrices A, = (a%}") converges
(under any norm) to the matrix 4 = (ayy) if and only if af?’—»a,,
for all i

.2.8. ‘Show that the limit of a sequence of normal matrices can
only be a normal matrix. Similarly, show that a sequence of unitary
matrices can only converge to a unitary matrix, a sequence of Her-
mitian matrices to a Hermitian matrix, and a sequence of positive-
definite matrices to a positive-definite matrix.
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8.2.9. Show that for any norm on a matrix space, the norm of the
unit matrix is not less than unity.

8.2.10. Let || 4 || be a norm on the space of n X r matrices. Show
that the following are also matrix norms:

(a) M (4) —aIIA I, &e>1;

(b) L (4) = |1 4* |I;

(c) N (A) = || P'AP ||, where P is a nondegenerate n-order
matrix.

8.2.11. Show that if M (4) and L (4) are matrix norms, then
N (A) = max{M (4), L (4)} is also a matrix norm.

8.2.12. Prove that the following function of an » X rn matrix

»
K(4)= 3 la,l (8.2.1)
i7=1

is a matrix norm.

8.2.13. Let E;;be an n-order matrix, in which the only nonzero
element is at (i, j) and equals unity. Show that if a matrix norm
Il 4 || satisfies the inequality

NE; <1t
14 1I1< K (4),

where K (A) is a norm defined by the formula (8.2.1).

8.2.14. The natural scalar product (7.1.4) is defined on the n-di-
mensional arithmetic space. A matrix norm, subordinate to vector
length in this space, is called the spectral norm and denoted by || 4 |l,.
Pr;)ve that the spectral norm of a matrix equals its greatest singular
value.

8.2.15. How can the spectral norm be calculated for (a) a diagonal
matrix, (b) a quasidiagonal matrix?

8.2.16. Define the scalar product on the space of n X n matrices
as in (7.1.5). The length of a matrix in the Euclidean (unitary)
space thus obtained is expressed by the formula

for all i, j then

n
Hdlle=( 2] a9
1=
and called the Euclidean norm of the matriz. Show that for any matri-

ces A and B
4B lle <A Nl Il B I

8.2.17. Find the Euclidean norm of a unitary n-order matrix.

8.2.18*. Derive an expression for the Euclidean norm of an
n X n matrix 4 in terms of its singular values a,, . . .,

8.2.19. Prove that the speclral norm of a matrix 4 equa]s its
Euclidean norm if and only if 4 is a matrix of unit rank.
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8.2.20. Prove that for any unitary matrices U and V
BECAV g = 1A |l 1 UAV llg = || 4 |lg-

8.2.21*. Prove the following inequalities:

@) N4Vl A1l

() N1 4B lle <114 Il 1| B lli

©) NAB e <114 llg | B lla-

8.2.. 22. Let a matrix 4 have a Hermitian decomposition 4 =
= H, + iH,. Prove that

@ UH <N Al T Ho << N4 i

() I Hy M+ He =1 A1

8.2.23. Prove that for any Hermitian matrix H
1A —Hllz=>14 — Hllg

In this case, the matrix H, from the Hermitian decomposition of 4
is the Hermitian matrix closest in the sense of Euclidean distance
to matrix 4 and, similarly, the matrix iH, is the closest skew Hermi-
tilan matrix. Indicate the analogue of this property on the complex
plane.

8.2.24. Let 4 = HU be a polar representation of a matrix 4.
Show that

I1H V= 1) Hy e+ 1| He |l
W;uch property of complex numbers does this equality correspond

8.2.25*. Prove that for any positive-definite matrix H, the closest
(in the Euclidean distance sense) unitary matrix is the unit matrix E,
and the farthest is the matrix —E. What happens if H is a positive-
semidefinite matrix?

8.2.26. Let 4 = HU be an arbitrary polar representation of
a matrix 4. Prove that for any unitary matrix V, the following
inequalities are valid

TA=Ule<ll4d=VIg<l4+ Ul

What is the ding p of 1 bers?
8.2.27*. Let 4 be an n X n matrix with the singular values
@y, + - .y Op. Assuming
SA) =o+...+a, (8:2.2)

prove that S (4) is a matrix norm.
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8.2.28. Prove that for any positive-semidefinite matrices 4 and B
and any nonnegative numbers & and B

S (a4 + BB) = aS (4) + BS (B).

The norm S (4) is defined by (8.2.2).
8.2.29*. Show that in the definition of a secondary norm

1411 = sup L4z
up

[EX
sup may be replaced by max.
8.2.30. Find subordinate matrix norms for the following norms
on the n-dimensional arithmetic space:

@ llzll=loayl+ ...+ lanl
() 1z llo = max | e |

What are the values of these norms for a diagonal matrix D.
8.2.31. Prove that forany n X n matrix A, the following equality

holds

I Az lleo

[EXTS

8.2.32. Norms m (z) and n (z) on an arithmetic space such that
for any vector x m (z) = cn (z) where c is a constant number. Show
that the corresponding subordinate norms are identical.

8.2.33. Suppose M (A) is a matrix norm, subordinate to a vector
norm m (z). Find a matrix norm, subordinate to the norm r (z) =
= m (Pz), where P is a constant nondegenerate matrix.

8.2.34. Let A be a matrix of rank 1 which can be represented as
the product 4 = zy*, where z and y are n-dimensional column
veclors. Given any norm m (z) on the arithmetic space and its cor-
responding subordinate matrix norm M (4), prove the equality

M (4) = m (z) m* (y), (8.2.3)

where m* (y) is the norm dual to m (z) with respect to the scalar
product (7.1.4).

8.2.35. Find the value of the norm || 4 ||~ for a matrix having
rank 1 given that 4 = zy*.

8.2.36. If M (A) is a subordinate matrix norm, prove that M (4)
can be represented as

A
M (4)= max ’;’4‘( 5‘;” . (8.2.4)

max |a;;| = max
1 x40

8.2.37. Prove that the representation (8.2.4) remains valid if,
ip;tea:;l of all nonzero matrices B, only unit rank matrices are con-
sidered.
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8.2.38*. Prove that the subordinate matrix norm M (4) may be
represented as follows:

M(A) = max

l"f#‘ (8.2.5)

Here B ranges over the set of matrices of rank 1.
8.2.39. Given that M (4) and N (A) are subordinate norms,
and that M (4) > N (A) for all A, prove that M (4) = N (4).
.2.40*. Given that m (z) and m* (z) are dual norms on an arith-
metic space, and that M (A) and M* (A) are their subordinate
matrix norms. Prove that for any matrix 4

M (4) = M* (4%).

8.2.41*. Prove that any matrix norm is consistent with a certain
norm on the arithmetic space.

8.2.42. Show that if a matrix norm || A4 || is consistent with
a vector norm m (z) and M (4) is subordinate to m (z), then || A || >
> M (A) for all matrices 4. Thus, the subordinate norm M (4)
is the least of all norms, consistent with the vector norm m (z).

8.2.43*. Prove that any subordinate matrix norm is consistent
with a unique (dependent on a numerical multiplier) vector norm.

.2.44. Show that any subordinate matrix norm M (4) is mini-
mal, i.e. another matrix norm L (4) does not exist, for which

L(A)< M)
for any matrix 4.

.2.45*. Let a matrix norm || A || be consistent with a vector
norm m (z) for which M (A4) is subordinate. Moreover, || 4 || coin-
tides with M (A) for the set of matrices of rank 1. Prove that m (z)
is a vector norm (unique for a given numerical multiplier) consis-
tent with || 4 ||

8.2.46. Show that the Euclidean matrix norm and the norm S (4)
(see (8 2.2)) are consistent only with the norm || z |l, = (|, |* +
...+ lap [)Y? (depending on a given numerical mulnpller)
8.2.47. A matrix norm }M (A) is subordinate to the unit matrix E.
Does this mean that A (A) is a subordinate norm?

8.3. Matrix Norms and Systems
of Linear Equations
Here the application of - matrix norms to the solution of cemm systems of
linear is d and systems have been

considered in Sec. 7.8). The basic topics . nn the following:

Criteria of nondegeneracy of matri

Estimates of norms of inverse mnlnc

Tl;h: conditioning of a system of Tinear equations, properties of condition
numbers.
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The estimation of a perturbation in the solution of a system for a given
pnlurhauon of its coefficients.

Sroxlmue solution of a system and estimation of the accuracy of the
derived solution.

8.3.1. Prove that a matrix 4 + B, where 4 is nondegenerate
and || 4-1B || < 1, is also nondegenerate.

8.3.2. Prove that if a matrix 4 is nondegenerate and the matrix
A — B is degenerate, then the condition number of the matrix 4
satisfies the inequality

hAi

cond (A) =7 BT

8.3.3. Find the cstimate from below for the condition number
cond (4) of the matrix

1 -1 1
A=|—1 e e, e+#0.
1 e e

8.3.4. Prove that a matrix U - B is nondegenerate given that U
is a unitary matrix and the spectral norm of the matrix B is less
than unity.

8.3.5*. Let a, be the smallest singular value of an rn X n ma-
trix A. Prove that the distance (in the sense of the spectral norm)
from the matrix A to the set M of degenerate matrices equals

P2 (4, M) = an.

8.3.6*. Prove that the smallest singular value of the matrix of
the determinant (3.3.1) does not exceed 2-("-1,

8.3.7*. An n-order matrix A has the singular values a, >. ..
...>=>a, Prove that the distance (in the sense of the spectral
norm) from the matrix 4 to the set M, of matrices, whose rank is
less than r, is equal to

P24, M) =a, r=1,2 ..., n

8.3.8. An n-order matrix A is said to be diagonally dominant

(with respect to its rows) matrix if

n
|a,,|>]2‘ lagyl, i=1, ..., n
I

Prove that a di lly dominant matrix is d ate. Formu
late a similar criterion for dominance with respect to its columns.
8.3.9*. Let A be a partitioned matrix of the form
| Ay Ay oo Aw
A= Ay Ay ... Agy
B

Any Ang oo Apn
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where all the blocks A,; are square and have the same order m,
and the diagonal blocks A, are nondegenerate. Moreover, for all i,
1 << i<k, the following inequalities hold true:

WA NN Al oo A VDA e 4+ DA D <1
Prove that the matrix 4 is d What h when
?

m=1?
8.3.10. Is the matrix

0 1 0.1 —0.2

1 0 —04 0.1

0.4 05 2 1
—0.5 0.4 1 1

A=

nondegenerate?
8.3.11*. Assume that 4 is a diagonally dominant r-order matrix
and for a certain positive number a << 1

n
a Iaul>2_)‘ legl, i=1, ..., n
i

Prove that for the norm of the inverse matrix A-! the estimates
are true:

1 1 1
W TSl e < Srar = ®31

8.3.12. Estimate from below and from above the condition num-
ber cond w (4);(see Problem 8.3.11) in terms of the diagonal elements
of the matrix A and the number a.

8.3.13. Estimate from below and from above the condition num-
ber condw (4) of the n X n matrix

1 101 10-2 vee 107771
101 2 10-2 veo 10-(r-1)
3 oo 101

10 g0 go-cne | n

8.3.14. Let R be a triangular N-order matrix for which

(a) 1ryy <1 for all ¢, ji

(b) ry, =1 for all i.
Find the maximum possible value of the condition number cond »(R).

8.3.15. Given a sequence of matrices 4, of a fixed order n, with
Il 4, Il = 1 and cond (43) — oo as k — oco. Prove that det 4, -0
as k — oo,

Thus, for a fixed order of a matrix an increase in the condition
number is related to a decrease in determinant size. However, as is

16 0819
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shown in 8.3.14, for a sufficiently large r, the condition number of
a matrix may be very large even if its determinant equals 1

8.3.16. Show that the condition number of any matrix has a low-
er bound of 1.

8.3.17. Show that the condition number cond (4) is unaltered
when the matrix 4 is multiplied by a nonzero number.

8.3.18. Find the expression of the spectral condition number of
a nondegenerate normal matrix 4 in terms of its eigenvalues 4,, . . .

8.3.19. Find the expression of the spectral condition number of
a nondegenerate n X n matrix 4 in terms of its singular values
an Zay=. .. =>a
8.3. 20 Show that the equality cond, (4) = 1 occurs if and only
if A = aU, where U is a unitary matrix and a is a nonzero number.

8.3.21. Show that the condition numbers cond,, ,, «, g (4) are
unaltered when the rows and columns of the matrix A are inter-
changed.

8.3.22. Show that the spectral and Euclidean condition numbers
of a matrix A are unaltered when it is left-multiplied and right-
multiplied by arbitrary unitary matrices U and V.

8.3.23. Prove the inequalities

max {2::: :Z: N :::: :g; }gcond (AB)< cond (4) cond (B).

8.3.24. For a nondegenerate 2 X 2 matrix A4, give an explicit
expression of the Euclidean condition number condz (4) in terms
of the elements of this matrix.

8.3.25. Show that the matrix

Il

has the greatest Euclidean condition number among all nondegene-
rate 2 X 2 matrices whose elements are nonnegative integers not
exceeding 100.

8.3.26. The solution of a system of two linear equations in two
unknowns: .
anT + 1oy =, anT + agy =a,
with a real and nondegenerate matrix 4 is equivalent to the geomet-
ric problem of finding the point of intersection of two straight lines
determined by the equations of the system. Prove that the angle a
between these straight lines satisfies the inequality

leota] <5 cond - (4).
8.3.27. If A is a positive-definite matrix, prove that the spectral

condition number of the matrix 4 + aE is a steadily decreasing
function of @ when a > 0.
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8.3.28. Suppose A is a positive-definite matrix and A4, is an

arbitrary principal submatrix of the matrix 4. Prove that
cond, (4,) < cond, (4).

8.3.29. Let 4 = STS be a triangular decomposition of a real
positive-definite matrix 4. How are the spectral condition numbers
of the matrices A and S related?

8.3.30. Estimate from below the spectral condition number of
the matrix of the system of linear equations

10z, + 10z,+ 30z3= -3,
0.1z,4+ 0.5z,+ 0.1z3=0.55,
0.03z,+ 0.01z, + 0.01z5 = 0.045.
Indicate a method to decrease the condition number so that in the

obtained system Az = Econd, (,i) = 3. Find the solution of this
8y:

stem.
8.3.31*. Estimate from below the spectral condition number of
the matrix of the system

z,+ 20z,—400zs =1,
0.2z, — 2z,— 20z3=0.2,
—0.042,—0.22,+  z,=0.05.
Indicate a method for decreasing the condition number so that in
the obtained system Ay = b, cond, (,3) = 2. Find the solution
of this system.

8.3.32. Let || z || be a norm on an arithmetic space, and let || 4 |{
be its subordinate matrix norm. Show that when the right-hand side
of a system of linear equations Az = b is replaced by a vector with
the norm e > 0, the solution of the system can be changed to a vec-
tor with the norm ¢ || 471 ||.

8.3.33. Estimate the possible perturbation of the system

z— 2y=—1,
—224+4.01y=2
when the components of the right-hand side are changed by 0.01,
Find the solution of this system and of the system with the same
matrix and the right-hand side

~ —1
b=" 2.01 "
8.3.34. Find the condition number condw (4) of the matrix of
the system
5z — 3.3y = 1.69,
6z — 3.97y = 2.03.

18
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Indicate the change of the solution of this system in the transfer
:,: the system with the same matrix but with the right-hand side

ing
17l
2 ||

8.3.35. Find an approximate solution of the system
2.503z, + 0.002z, — 0.004z + 0.001z, =5,
0.006z, — 3.002z, + 0.001z, - 0.001z,=3,

—0.002z, + 0.002z, + 4.998z; + 0.004z, =10,

0.005z, —0.001z, +3.997x, ==

such that the error in each component may not exceed 0.01.
.3.36. Find an approximate solution of the system

0.501z, — 0.499z, + 0.001z, =0.5,

' 0.498z, +0.502z, —0.001z,=0.5,
0.006z 4-0.007x, + 3.008z, — 1.991z, =0,
—0.001x, —2.001z4+ 1.000z, =0

such that the error in each component may not exceed 0.06.
8.3.37. Prove the inequality

B-1_ 41
I a I <cond (4)

IB—4)
[N

8.4. Matrix Norms and Eigenvalues

In this section we intended to d of ications of
malrix norms to _problems mvolvmg the engenvnlues of complex matrices.

Some and the matrix morms are
considered at first. These mm]]uahues can be used to specify a region on the
complex plane contammg all the eigenvalues of a matrix. The Gershgorin
theorem (see Sec. 8.4.20) and a theorem on eigenvalue perturbations (see Sec. 8.0)
can also be applied for the same purpose.

Using the properties of the eigenvalues of Hermitian matrices, the
bation theorem can be modified so as to derive an estimate of each mdw-dual
eigenvalue (sce Problems 8.4. 2.:-8 4.32).

Given an to 11 d eig: lue A, and the corre-

sponding approximate e.genveczou of a normal matrix, the Rayleigh ratio for

the vector z gives an approximation to 4, with considerably higher accuracy.
We discuss this point in Problems 8.4.33-8.4.39.
Finally the relation between close eigenvalues of a matrix and |Il-candmomn§
of the eigenvector matrix is investigated. It is easy to demonstrate that in a smal
il\baurhood of a matrix with close or multiple eigenvalues, there is a mnun
with Jordan structure. The latter can be considered as the %N
matrix with ill-conditioned eigenvectors. As it was establizhed by |llunson.
the converse relation is also true: if for a matrix 4 (even with well-separated
eigenvalues) the matrix of the eigenvectors -conditioned, then 1n a small
neighbourhood of A there is a matrix with a
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8.4.1*, Prove that for the spectral radius of a matrix A, the

following inequality holds
pAYI4 (8.4.1)

for any matrix norm || 4 |l

8.4.2. Indicate a circle on the complex plane containing all the
eigenvalues of the matrix
—1 0 1+

0 2 14
1+2i 1+i 0
8.4.3. Prove that all the eigenvalues of the matrix
1 -2 3 4
2 1 - 0
1 -2 0 1
1 1 2 —
lie within the circle of the complex plane |z | < 6.

8.4.4. Show that the greatest eigenvalue A, and the least eigen-
value A, of the symmetric matrix

62 -3 0
29 5 1
-3 5 13 —2
04 —2 20

satisfy the inequalities
20<H <23, 0<<A<6.
+ 8.4.5. Prove that the moduli of all the eigenvalues of a stochastic

matrix do not exceed unity.
8.4.6. Prove that the eigenvalues of a tridiagonal matrix

a, by
¢z 8y by
o as
C= .
an-y ba
e on

satisfy the inequality
|M<m‘ax(la,| + 10l el ey =0n4y=0.

How can this result be used to evaluate the eigenvalues of a Her-
mitian matrix by the bisection method?
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8.4.7. Prove that all roots of a polynomial I(z) = a,2" +
+ @, + ...+ a2+ ay a, %0, are contained in each of
the following circles on the complex plane

@ 1o < max {1, |24 ]2 :—:[}
(b) |2I < max + max |3 2y

8.4.8*. Let 4, be a matrix of simple structure. Prove that there
is a matrix norm || 4 || such that when 4 = 4, (8.4.1) becomes an
equality relation.

8.4.9*. Let A, be an arbitrary matrix. Prove that for any posi-
tive number ¢, there is a matrix norm || 4 || for which || 4, || <
<p(dg t+ e

8.4.10. Prove that for a normal matrix Ag, 1ol < M (4y)
for any matrix norm M (4).

8.4.11. Prove that for an arbitrary matrix 4, and any matrix
norm M(A)- ||Ao Il: < VM (Ag) M (43).

8.4.12*. Let A be a matrix of order n with the eigenvalues

ST Prove the following Schur inequality
n
2 M Al ®8.42)
8.4.13*. Let a,, ..., @, and B, ..., B, (see Problem 8.4.12)
he the real and imaginary parts, respectively, of the eigenvalues
+ An. Prove that

(a) 4‘2_','ai<llt4+-4‘lliz; (b) 4‘5_‘}’&!&]]/1—14‘“} (8.4.3)

8.4.14*. Prove that equality occurs in (8.4.2) if and only if 4
is a normal matrix. The same is true for each of relations (8.4.3).
8.4.15*. Let A be an n X n matrix with the eigenvalues 4,,
, and let P be an arbitrary nondegenerate matrix. Prove

that
n
inf || PHAP k=2 |A,)2%
inf || P4AP 5= 2} ||
For which matrices A is the indicated lower bound reached?

8.4.16*. Using 8.4.14, prove that the normality of matrices 4, B
and AB implies the normality of BA.
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8.4.17*. Suppose that a normal matrix 4 is partitioned into
blocks A,y so that
Ay Ay o Am
_ Ay Ay o Agm
[ 4mi Ame - Amm
and, moreover, the diagonal blocks 4, are square, though perhaps,
of different orders. Further, assume that the eigenvalues of the
matrix 4 coincide with the set of the eigenvalues of the matrices 4.
Prove that then all the off-diagonal blocks 4,y equal zero.
8.4.18*. Let A,, .. ., A, be the eigenvalues, and let @y, . . ., @n
be the singular values of a matrix 4. Prove that

M+ + I mI<e + ...+ an
8.4.19*. Using 8.4.18, prove that for any matrix 4 of order r,

n n
§| 1441 gi.;:l lagl-
8.4.20*. Prove the following Gershgorin theorem: all the eigenval-
ues of an n X n matrix A lie in a region of the complex plane given
by the union of n disks

n
lz—a,,lslz lagl, =1, ..., n
=)
Ji
8.4.21. Indicate a region on the complex plane containing all
.the eigenvalues of the matrix
1.23 0.03 0.04
0.03 2.17 0.01
0.02 0.04 3.06

8.4.22, These inequalities are valid for a matrix 4
n
Rea, < —;llaul. i=1, ..., n
i
Prove that 4 is a stable matrix.
8.4.23. Using the theorem about a perturbation of the eigenval-
ues, indicate a region on the complex plane containing all the eigen-
values of the matrix

2.001 1.499  0.001
0.499 1.001 —0.001
—0.001 0.004  0.999
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8.4.24. Let
-2 -1 2 —1 1 —1
A= 2 10 B= 1 -1 1 ‘ .
0 01 —1 1 -

Find a region on the complex plane containing all the eigenvalues
of the matrix A + eB, using the theorem about a perturbation of
the eigenvalues.

8.4.25*. Let 4 and B be Hermitian matrices, and let A, y Ay
be the eigenvalues of the matrix A. Prove that in each mtervul
—IBll.<z—M<IBl:x i=1,...,n (8.4.4)

there is at least one eigenvalue of the matrix 4 4 B.
8.4.26. Let Ay, Ay, Ag and py, My, pg be the eigenvalues of the
matrices 4 and B, respectively, where

2 3 =2 214 29 =2
A=| 31t o, B=| 29 09 o1
-2 0 —1 -2 04 —1

Prove that for each Ay, there is such p, that |A; — p; | < 0.3.
8.4.27*. Find eigenvalues of the matrix
2.1 -3 4 9991
—3.10-8 1:10-¢ —0.4993 —6.10~4
4-10-8 —0.4993  2.10-% —2.10~¢
0.9991.10~ —6.10-+ —2.40-%  1.10-4
approximately, so that the error in each does not exceed 0.002.
.4.28. Let an eigenvalue A, (see Problem 8.4.25) be of multipli-
city k. Prove that then the interval
—NBla<z—M<IBI

contains at least k eigenvalues of the matrix 4 + B.
8.4.29*. Find approximations to the eigenvalues of the matrix
1.00 —1.99 o0.01 0.01
—1.99 1.00 —0.01 —0.04
0.04 —0.04 —0.04 —0.99
0.04 —0.04 —0.99 —0.04

such that the error in each eigenvalue does not exceed 0.02.

.4.30. Let the region D, made up of the intervals (8.4.4), be
broken into regions (i.e. intervals) having no common points. Prove
that in each of these regions D,, there are as many eigenvalues of
the matrix A + B (see Problem 8.4.25) as there are intervals in the
set (8.4.4) that compose this region. Moreover, if A; is a multiple
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eigenvalue of 4, then its corresponding interval is counted as many
times as the multiplicity of A,.
8.4.31. A Hermitian matrix A is partitioned into blocks
" An A “
Al Ay

so that A, and A4,, are square and || Ay, ||, = e. Let A, A5, . . ., Ay
be the eigenvalues of the matrix 4 numbered in descending order,
and let &, ..., &, be the eigenvalues of Ay, and 7y, . . ., Naoyp
the eigenvalues of A,,. Finally, let p,, ..., p, be the numbers of
the set &, ..., &, My, ..., Nn-, also numbered in descending
order. Prove that I —p I<e, i=1, n.

Thus, the eigenvalues of the dlagona] blocks can be taken as
approximations to the eigenvalues of the matrix A itself with an
accuracy of e.

8.4.32*. Prove that the following matrix A of order 8

1 LN 0 /N
YN 1 2/N
0 2N 1
2 4N
YN 2
—0.5 0.4 —0.2]
0.4 —1 0
1N —0.2 0 2
(the matrix 4 is i-di; 1 to the of the el

positioned in (1. 8) and (8.1)):
(a) for any N >0, has at least one eigenvalue in the interval

_L<1 1< V2 |/2 .
(b) for N > 10 has precisely three eigenvalues in the interval
=3 3
v <M<y
In Problems 8.4.33-8.4.35, it is assumed that 4 is a normal ma-

trix and Z is a column vector normed so that ||z lly = 1.

8.4.33. Let || AZ ||, = e. Prove that the matrix 4 has an eigen-
value A for which |A | <e.

8.4.34. Assume for an arbitrary number p thate = || AT — pz lz-
Show that there is at least one eigenvalue of the matrix 4 in the
disk on the complex plane |z — p | << e.
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8.4.35*. Let A, be an eigenvalue of a matrix 4 lying in the disk
[z — po [ < & (e is defined as in 8.4.34), and let for all the other
eigenvalues &,, . .., A,, the condition be fulfilled

[Ay— o [=a>e.
If the normed eigenvector associated with the eigenvalue A, is denot-
ed by e, and
z=ae + 3 (8.4.5)
where z | e, prove that

(a) 14z — poz fl: = e [l 2 Il

() 14z — pez ll < e, Izl < e/a

© la|=V T—ea%

(d) [ (42, 2) — o fl 2 I} | < e*a.

Thus, if e is sufficiently small compared to @, then z can be con-
sidered as an approximation to e;.

8.4.36. Let A be a matrix of order n, z an arbitrary nonzero n-
dimensional column vector. The number
(Az. z)
(z, 7)
is called the Rayleigh quotient ding to the vector z. Prove
that for any number p

Itz —r @) z lls < l| 4z — pz Iy

r(z)=

8.4.37. Prove that for a normal matrix 4 and any normed vec-
tor z, the disk
1z —r@I<l4z [F—Ir(2) P2
contains an eigenvalue of the matrix 4.
8.4.38*. Assume that p, (see Problem 8.4.35) is the Rayleigh quo-
Lient corresponding to the vector z. Prove that the estimate is valid
2 2\ -1
=l <& (1— )7 (8.4.6)
8.4.39. For a symmetric matrix A4
1 0.004 0.002 0.002
0.001 2 0.002 0.002
0.002 0.002 3 0.001
0.002 0.002 0.001 4

(a) with the aid of 8.4.25 find the eigenvalues to an accuracy
O . N
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(b) show that the di 1 el of A can be idered as the
Rayleigh ratios if the corresponding vectors have been given;

(c) prove that the diagonal elements are approximations to the
corresponding eigenvalues to an accuracy of 10-5.

8.4.40. Let all the eigenvalues A;, ..., A, of a matrix 4 be
different and d = min |A; — A; |. Prove that there is a matrix B

for which || B ||, <§/'2 and the matrix 4 + B has a multiple eigen-
1

value.

8.4.41*. Prove that (see Problem 8.4.40) for any number ¢ > 0,
a matrix C. can be found such that || C, II,<%+2 and the
matrix A + C. is not simply structured.

8.4.42%. All the eigenvalues A,, . . ., A, of a matrix 4 are differ-
ent. Let z, be an eigenvector of the matrix 4 associated with A;, y;
an eigenvector of the matrix 4* corresponding to A,. Put

P 7Y 7)) P
S Tedu e

For real z; and y,, the number s, is the cosine of the angle between
these vectors. It is obvious that |s, | is independent of the selection
of a concrete pair of vectors z;, y; (for the given A,).
Prove that
(a) for any matrix X made up of the eigenvectors of the matrix 4,
cond, (X) > |s‘,| ,

(b) a matrix X can be selected so that

i=1,...,n;

n
1
cond, (X)<condg (X) = 3 T
i=1

Thus, the value of |s, |, together with its condition number, can
serve as a measure of the conditioning of the eigenvector matrix.
8.4.43. Let C be a triangular matrix

A s e Cin
|0 P em ,
() An
and let the first of some eig y of the conjugate

matrix C* associated with the eigenvalue A, be equal to zero. Prove
that A, is a multiple eigenvalue of C.

8.4.44. Matrices A and A* possess the eigenvectors z and y,
associated with A, and A, respectively, and, in addition, (z, y) =0.
Prove that A, is a multiple eigenvalue of A.
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8.4.45*. Write the matrix C (see Problem 8.4.43) in the parti-
tioned form

M oe
0 Cny |

We will assume that_ the eigenvector y of the matrix C*, associated
with the eigenvalue },, to be normed, and require instead of §; = 0,
that B, = ¢, | e | <1. Represent the vector y in the form

~=(2).

Prove that A, is an eigenvalue of the matrix

|

& €

Cooy=Cny+

e %

h8.6.46. Prove that (see Problem 8.4.45) there ‘s a matrix & such
that

@ =Tl ICl

(b) C hes a multiple eigenvalue A,.

8.4.47. Let z and y be the normed eigenvectors of matrices A
and A* corresponding to A, and A,, respectively. Moreover, |s | =
= |(z, y) | = e < 1. Prove that there is a matrix A such that

~ e X

(@) 14—4 IIzgﬁ"A"z-

(b) A hasa multiple eigenvalue A,. Thereby, the fact that conju-
gate matrices possess a pair of almost orthogonal eigenvectors asso-
ciated with the conjugate eigenvalues, testifies that there exists
a close matrix with a multiple eigenvalue.



Hints

1.1.18. Using only the distrlbuuvlty and the existence of the opposite

element, prove that 0-x == 0 for any vector z. Hence, deduce that (—1).z = —z.
Finally, using the associativity of lddlllon, prove that z 4y = y + z.
1.2.23‘ Write a linear combination Mz, + . . . + Az, of the vectors z,,

1f we assume that there are nonzeroes among the coefficients A,
and that 7.y has the maximum modulus, then we have to show that the /-lh com-
ponent of ll\e vector kyzy + . . . + kg, is dilferent from zero.

e Theorem h| (see ll\e text-book by V. Voyevodin, p. 50).

1.3.25. Use 1.3.17 and 1

1.3.26. Show that each le y leads to an
veclor set.

1.3.34. Let the rank of the vector set zy, . . ., 2, be r. Then, the first r rows
of the matrix, obtained from the reduction to trapezoidal form (see the solution
of Problem 1.2.18), will be nonzero. Let them correspond to the rows numbered
41y« + oy 1, in the original matrix. Prove that the vectors zy,,. . ., z;, make a base
for the given set.

1.3.36. Set up the reduction so that the zero clements are positioned inthe
lower right corner of the matrix.

1.3.39. 1f z; = ayz;, + . . . + @7y, then any vector, for which the coef-
ficient a; in this decomposition is different from zero, can be taken as z;.

1.3.44. Use 1.3.23.

1.4.41. Extend an arbitrary basis for the subspace L to form a basise,, . . .
. . ., ey, of the space I". Obtain the basis fullilling the conditions of the pmhlem
by elementary transformations of the set e, . . ., en.

1.5.16. Use 1.5.14.  1.5.18. Use 1.5.16.

2.1.2. Let ey, . . ., e, be a basis for the given linear space. But
@ =ab+...+aby

for arbitrary vectors z = aye; + + ape, + Buen-
Verily that all the requlmments for a scalar p"roduct are lul‘ﬁiled
2.1.8. Prove the necessary comdition ac > b* by considering the scalar
square (z, z) of a vector of the form z = (a;, 1) as a quadratic trinomial of ;.
2.1.9. Derive the representation

(7, ) = o} + (Bog + @) + (0a + @)?
for Lhe scalnr square of the vector z = (ay, ag).

2.1.10. Use the inequality 2 | a;; | | & | | a, | S | agllay 24 aylal?
to verify the fourth requirement for a scalar prod:

2.14.15. hne a scalar product arbitrarily on the subspace, complementary
to . Then use 2.1.13.

2.1.18. See Vo)evodin Theorem 27.2, p. 93.

2.1.18. (d) Use 2.1.16.

2.2.23. For cach 1, 1 < i< k, the vectors yy, - . ., y; and z, . . ., 7 form
an orthogonal l'l;asls for the spandrawn on the Nectors s . 42y, Tharefore
gy zp) = 0 W

3525, See the it o Problem 2.0.2.




254 Hints

2.3.7. (a) Interpret each equation of the system as a condition of the ortho-
gonality of the vector z = (@, - . . @,) to the vector made up of the coefficients
of l,h; equation.

2. Use the basis for the orthogonal complement derived in 2.3.6.
2311. See the solution of Problem 2.3.10.
2.3.14. The coefficients of the equations ol the system give the coordinates

of the vectors on which L* is drawn. By the method of Problem 2.3.10, find the
perpendicular z, and then y as the difference z — z.
2.3.27. Set up a basis for V" as the union of bases for the subspaces Ly, . . .
, L,, and define a scalar product on V by 2.2.25.

" 3.4f6. Show that in the lecomposition of the vector z, z = y + z where
y€L,z L L, the vector y € L, and, therefore, the perpendicular from z to L,
cnmcules \vlth the perpendicular z from z to L.

2. The perpendicular z from the vector z to L is collinear with the
vector | a

2.4.19. Use 2.4.17.

2.4.20. In evnluaung the cosine of the angle between z and an nbltrny
vector u of lhe subspace L use the decomposition z = y 4 zwherey € L,z 1 L.
2.4.23. See the hint for 2.4.16.
2.5.2. As in Problem 2.1.2 (see the hm), fix a basis ey, . « . ¢, and for arbi-

trary vectors z and y assume (z. y) LAN -+
2.5.5. See the hint for bt FnPo

2.5.13. (cf Show that |I ey is a basis for the space R, thgn Any vector
from C is a linear colnbmn‘on of t.he vectors ¢, + 10, . . ., e -+ 10,

3.1.21. Derive the iterative formula m, = my_, + 1 Ior the number m,
of nonzero terms in the determinant of order n ere m;

3.1.22. Derive the iterative formula m, + m.,,, !or the number
of nonzero terms in the determinant of order n ‘hle general solution of sucl

an  equation is (see Sec. 3.0) my = ¢ (’.+_2‘ﬁ)+ o (“2_‘/5) . The

¢y and ¢, are ’lromthe ities my = 1, my = 2.
3.1.23. Derive the iterative formula = 2m,,., for the number m,, of non-
zero terms in the deuminmt of order n. In this case my =
t a determinant of order n ol the |ndxuted form. Derive
the lollowmﬁ nenuve formula: P, (1) = tP,_, (1) +
ow that the given of tl
to mnluplncation ?'! itsrowsby a, a?, . . ., a®, respeetively, and iu coiumn.s by

37. Transpose the determinant. 3.1.40. Use
3 42. Transpose the determinant and use
3. The indicated transformation of the detenmnant can be replaoed by
tnnsposmg it about the principal diagonal and reversing the ro

.44, A polynomnl of the fourth degree cannot have more llun Tour differ-
en! 3.
3 1. 56 Dlﬂerenal;uu the general term of the determinant.

3. 0 The given determinant has an almost triangular form. When this
detenmmmt is expanded by the first two rows, the sum contains only three
term:

&2 26. Expand the determinant by the first three columns.

3.2.33. Subtract the first row from the second, third and fourth.

3.2.45. Show that for a determinant d,, of the ‘indicated form, the iterative
h-rmul; dy = 2 cos ad,_, — dy_pis valid and dy = cosa, d, = 2 costa — 1=
= cos 2a.
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3.3.1. The vector b; is obtained from q; by subtracting a linear combination
of the vectors ayy -y
3.3.15. Voyevodm, Theorem 41.2, p. 134.
3.3.16. Any pnnclpnl ‘minor of a Gram determinant is itself a Gram deter-
minant with respect to a subset of a given vector set.
3.3.17. Use 3.3.14. 3.3.18. Use 3.3.17 and 3.3.13.
H S nialnd .
e lengt] oleper ndicular rom the vector z;4, to tl
an of the vectors z;, tfe not exu«r the length of the vector itself;
e length of the perpendiculn dropped from the vector z;, I+ 1 <) <k, to
the span of the vectors zj, . . ., 74, does not exceed the length of the perpen-
dic\l.lur dropped from the same vector to the span of the vectors zj+y, . -
3" 3‘ e elzemnt positioned in (r, 1) should be replaced by —l)" 2t (’""

3.4.4. Use 3.3.25 and 3.4.3 to prove the latter statement.
4.8. Transpose the minor M to the upper left corner and use the Gauss
elimination.
3.4.9. Use 3.2.11, recalling that the Gauss elimination consists of a sequence
of elementary row and column transformation.
3.4.1 f& Before applying the Gauss elimmmon. decrease the value of the
terms of
3441;,6 Reduu the elements of each Tow to their common denominator and
use
b 2‘.(4 .19, Take the common factor of the elements in each row outside the
racket.
3.4.20. See the hint for 3.4.16.
3.4.24. The determinant is obtained by enclosing the determinant of
Problem 3.4.10.
Pro::ﬁ 26. The determinant is obtained by enclosing the determinant of
lem
3.&35. (b) Use the formulae of the (k + 1)th stage of the elimination method,

recalling that the moduli of ratios .t>k+l are bounded by unity.
calling that the uli of X“) bounded b:

. 3.4.41. Carry out the transformation tlnt reduces the matrix 4 to triangular
form over each of the n sets from the n rows of the determinant D. The matrix
of the determinant obtained will contain m? triangular blocks. Using the Laplace
theorem, this determinant can be expanded as in 3.2.27, (b).

4.1.2. Prove thn the rank of the set of columns is n — 1.

4.1.3. Using 4.1.2, prove that the columns of the matrix 4, containing the
mm‘or‘ ‘u, lf«'mn a hlu of the vector set.

4.1.6. Consider the submatrix formed by the given r linearly independent
columns. Show that the rows, in which the given minor is placed, are the basis
rows for the submatri:

4.1.9. The rank of a Gram matrix equals the highest order of nonzero nn—
¢Ip&‘l :II;I:OI?J of thu{ l;lltl’ix For the principal minors of a Gram matrix see 3.

1142 The first r columns contain at least one nonzero minor of order r.

4 1 20. The indicated increase in the rank can be achieved by changing the
elements of the minor that is complementary to the basis minor.

4.1.22. Use 4.1.19. 4.1.29. The rows of the matrix are orthogonal.

4.1.30. See 1.2.28

4.1.36. Prove that the minor of order k placed in the left-hand corner 1s
nonzero.

4.2.5. Use 4.2.4. 4.2.9. See 1.4.38.
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4.2.19. Set the isomorphism between M and an arbitrary subspace, comple-
mentary to

4. 2 33, That the intersection is a plane follows from 4.2.14. Moreover, if
Ly, .. ., Ly are the directional subspaces of the given hyperplanes, then

dim (m Neee NA) =dim (L Noos N Ly).

Now, prove by the method of i jon that in an ional space the
the i fon of k(n — 1)-di i is not less

than n— I:
3. If 1 =zy+ Ly, is a given hyperplane, then any nonzero vector
(bnm L3, can be taken as the vector n, writing it as (r, z) = b. In this case
= (n. o).
l- 3.9, (a) follows from 4.3.8; (b) follows from 4.2.34 and 4.3.7.

se
e u i obvlous that lenglh in a Euclidean space possesses the property

[ (r' ub
3.20. ee " the hint for 4.3.17.
4 3.24. Note that L (p,, p,. q,, q,Lcan be described hy the equation ay = 0.
4.3.25. The vector zo — thogonal to the subspace L (py, pg, g1 43)-

4.3.27. Define a_scalar pmduet on the space so that the given basis may
become orlhonormal

4.3.28. See the hint for 4.3.27.

4.3.29. Let ¢, ey be a hlsm l'or the directional subspace of the plane P.
Extend the hnelrly independem » €x, = to form a basis for the space,
and then define the scalar product \vnh ‘the’aid ol’ this basis.

4.4.2. The suhspaoes L u.,,é and L (v,, . .., ) must coincide.
d 353 44T Use 44

22;: Ch v 1lz .v bles b; = 3z nd ¢, = 2z,
anke the variables utting ¢ and ¢,
228, el Y P LAY 1 s 2

30. Find a hasns for the orthogonal complement to L (41, ys yg)-
4.4.32. If an arbitrary n-th row is adjoined to the system matrix then in
the obtained stLuare matrix, the numbers (—1)! A, are (to the accuracy of the
sign which is the same for all n numbers) cofactors of the elements of the n-th
row.

4.4.34. Use 4.4.32, 4.5.3. Use 4.5.2. 4.5.10. See 4.4.14.

4518 Change the variables by putting t, = 6z, t, = 3z, ty = 11z,

4. m Muluply the third equation of the system hy 10, the founh hy 10-1,
and llaen make the substitutions: ¢, = 1000z, t, = 0.004z,, ty = 0.1zy,
iy =

4 5.36 See 4.4.28.

4.5.36. Construct the general solution of the given system of equations and
find the fundamental system of solutions of the reduced homogeneous system.
Noto that a normal solution should be orthogonal to this fundamental system.

4.5.48. Express the polynomial f(¢) in terms of the basis 1, t — g,
- ax) o (= )"

4.5.50. Prove that only the null
(Iltmns for the homogeneous case.

4.5.52. Use the Cramer formulu and 3.1.56.

1 satisfies the ing con-

-1.8. Az=(a. b)z—-(a, z) b. 5.1.49. Use 5.1.43.
.36. Use 5.1

. Match each vector from T4 with the plane of its pre-i mzfg

. According to 5.1.59, the subspace 7, A is isomorphic to the factor-space
ce X with respect to the subspace N 4.

Use 5.1.43.

. Lety, = Azy,. .., yy = Az, be an arbitrary basis for the subspace L.
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Show that the com{le(c pn;l‘lu‘ge of L is the direct sum of the subspaces V4 and
(Zay -+ o ZTn)
5.2.9. The set of all op mappmg an n-di ional space X to a one-

I space has n di

14. Show that if M is an nbm-ny subsplce complementary to N, then

wyy and Ky are isomorphic.

(a) Let ¢y, - . ., e, be some basns for X. Given some operator 4 from

ssions oi the vectors dey, . . ., Ae, can be written in terms of the

L, and L,: A =u+y EL‘, vy € Ly. Then A = A, + 4,,

re Aje; = uy, Agey g b =1, ..., n.

16. Use 1.5.16. 5247 s

5.2.18. Prove that

S T ot TR X hat s = ABz and Ay = 1B, for any
nonzero vectors z and y. Show that A, = A,.

3T W e the e Tayapd

(a) Use the relations Tg, — an Typq = BT,
5.3.2. (a) Use the equality: (B4)X ="BT,. °* “
5.3.3. Use the relations
rgac =rac —dim (Tgc N Np), rpy =r4 —dim (T4 N Np).

5.3.8. Use 5 .,sn Use5310

5.3.44. If 4% then hen A% 5 0, use 5.2.25.

5.3.17. Show tlul, the murseeuon of Np and Tp contains only the null
vector and that PT,

Sa.de @) Use 85,077

5.3.20. The operators £, 4, 43, ..., A"2 are linearly dependent.

5.3.23. UseS:HG,S.'HS 5.3.25. Use 5.3.14.

5.3.29. See 5.2.25. 5.3.33. Use 5.3.30.

5.3.34. Use 5.2.24.

5.3.47, If z is a nonzero vector from N, then f (4) z % 0, which is con-
trary to the condition that f (¢) is the annihil ator.

5.3.48. IF the free term is equal to zero, then a polynomial of a lesser degree
can be lound um also annihilates the given operator:

o

5. 8 Flrst evaluate BC. 5.4.9. First evaluate BC.
.4.28. Use the theorem stating that any permutation can be factorized intc
the product of transpositions.
Represent the matrix J, as J, = AE + A, where 4 is a Jordan
block corresponding to zero; then Use the result of Problem 5.4.33.
5.4.36. ) (¢) For the given dugonal matrix A, constmcl. an murpolnuon
t) so that /(d“) =1
5499, 5,448 Use Lda.

Use 5.4.34.

57. The wlumns of AB are linear combinations of the columns of 4,
ws nISAB4an lincar combinations of the rows of B.

1.1
9. Partition the matrices A and B into four square blocks of order 2
and apply the Strassen formulae to these blocks. Use the Strassen algorithm to
evaluate the products of the blocl

73. }b Use the muluplxcnuon of partitioned matrices.

) See 3

. Using the properues of (skew) symmetry about the principal and
y diagonals, only four minors can be evaluated. Use the orthogonality
ws to evaluate the determinant.
15. Use the result of Problem 5.5.12,
.17. For example, use the statement in Problem 5.3.49, according to
whlch the inverse matrix A-* is a polynomial of the matrix 4.

17 0619



258 Hints

5.5.18. Use 5.4.49. 5.5.19. Use 5.4.52. 5.5.20. Find the sum of the elements
of the i-th row of the product A~'A = E in two ways.

5.5.27. Represent the matrix as a (E + = Jo) and use 5.3.45. Here J

is the Jordan block corresponding to zero.

5.5.28. According to 5.5.18, it suffices 1o compute the elements of the upper
row _of the inverse matrix only

5.5.32. If P is a permutation matrix of the following form

0 1

then PA is an upper triangular matrix.
.39. Make all the leading principal minors nonzero by interchanging

5.5.46. Show that J} = nJ,.

5.5.49. Use 5.5.47.

5.5.54. Use 5.5.53.

5.5.56. Use the result of Problem 5.5.51 for the matrix 5.5.55.
5.5.57. Use 5.5.53.

5.5.61. Represent the matrix M as the product

| By A1B
Ic E,l 0 D—ca-B|?

where & is the order or the matrix A, and k -+ [ is the order of matrix M.
5.5.65. U: U 4.73, (d). 5.5.66. See 5.5.60.

5.5.23. Use lhe formulle of Problem 5.5.64.

5.5.72. Dllerentnte the equality 443 = .
.77. Use the formula of Problem

.5.79. (d) Use the formula ol thlem 5575

5. .42. Use 5.6.9, (c). 5.6.27.

29. Consider the operator nhwh lhe malrn A defines vu(h rewect to an
lrhitnry pau- of bases for the spaces X and Y. 5.6.30. Use 5.6.

P1A4P=A or AP=PA

for the matrix A and for any nondegenerate matrix P. Verify that the Schur
lemma (see 5.4.40) remums valid in the case when A only commutes with all
nondegenerate matrict
.6.36. Show that the mirror reflection of a matrix in its centre is a similarity
transformation with the matrix P (see the hint to 5.5.32).
543 . The equality of the traces of similar matrices can be deduced from
5.

.4%.) Use 5.6.22.

1. 17. The matrix 4 is a polynomul of the matrix J,, of Problem 6.1.16.
.1.19. See V. Voyevodin, Theore! 204.
6.1.. 24 Use the test of the dlrect sum i '5.18.
.1.25. Use 6.1.24 to prove the necessary condition.
.1.33. See 5.4.37. 6!34.8995439 6.1.35. See 5.4.36.
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6.1.38. Rewrite the condition P-'AP = \ as AP = PA, and write the
latter “ilh respect to the columns.

6.1.40. Use the progerty of lhe l(ronocker pmducl 5 4 73, (¢).
6.1.. 4] See 5.6.42. 6.1. See 2. S

6.2. he rank of the mnu‘lx n uni )

6.2.4. The rank of the matrix oqunlq two. 6.2.7. Use 5.5.77.
6.2.13. Show that m (4) = tr (A

6.2.19. Use the matrix of the operawr constructed in 5.6.2.
6.2.20. Use lhe matrix of the operator constructed in 5.6.3, (a).

6.2.21. See 6.

6.2.41. Consider the matrix of the operator with respect to a basis whose
first vectors form a basis for the eigensubspace, auocnted vuth A. Using this
matrix, compute the characteristic polynomial of the opes

6] Kou that for any eigenvalue A, the rank orlhe mamx ME —C(f (M)
equals n — 1.

6.2.56. The matrix PT is the companion of the polynomial f () = A" — 1.

6.2.60. Use the matrix equality

lw,,._n 4 Is,,. I
0 ARl B 5..|

6.2.61, Use the matrix equality

E E||||AE—4 AE—(A+B) 0 EE
"0 El“ 5 aE- A" ' -8B hE—(A—B)“"O -

6.2.64. Use the matrix equality

"0 ""A—c AE— B|_"1—c AE— A""E 'E"

Any suhspace of dimension k — 1 can be represented as the inter-
of two subspaces of dimension k. Thereby, any subspace of dimension
1 is also A-mvarlant

6.3.9. Use 6.3.3 for the operator A — A,E where A, is an eigenvalue of 4.
& 2! Use 6.3.18, (a).

. 1f n is the dimension of the spaoe, then there are not more than n?
ndependent operators; therefore, |l suffices to prove the statement for
a finite number of » by ion over this number.

.3.30. In each pair of invariant zmbspaoes vnth respect to the differential
opentor. one is contained in the other.

6.3.32. Let all roots of the characteristic polynomial of the operator 4 be
complex; each is an eigenvalue of the corresponding operator A. Show that if A
is an arbitrary eigenvalue of 4 and z = z + Iy is an eigenvector associated with
A, then the subspace drawn on the real vectors z and y has 2 dimensions and is
A-invariant.

6.3.36. Use 6.3.9. 6.3.38. Use 6.3.19.

6.3.39. Use 6.3.19.

6.3.42. Show that for each eigenvalue of My -+ + s Ay, the defect of the matrix

).E,,. A "
0 AEn—BA|"

IBE,.

B —ME
6.3.. ui.eaelpent the mnsu'ucuon performed In Problem 6.3.38, taking into
account Probl . 3.

6.3.49. S )h

6.4.1. Prove thaz for the mlmberi mentioned in 5.3.10, the subspaces N
and 7, intersect in the null vector on!

17°
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6.4.2. Let X =N+ T be the decomposition derived in lHl where N

is the kernel and T is the image of the operator 49. If X = + Ty is any
other dccnmﬁosltian such qhn A/Ny is nilpotent and A/T, is nundegeneme, then
show that T

. Gh 4.3, The chanctensuc yol‘ynomul of the open%l" A eqn;ls the product
of

6.4.4. Appl) 6.4.1 to the opernor A - ME and show that in the decompo-

sition X = Ny + Ty, the subspace Ny possesses all the properties required for
KM Then, decompose the subspace T; emanating from the operator A — A,E,

64a Use 6.4.2 and 6.3.43. 6.4.9. See 6.3.
6.4.10. Use the decomposition (6.4.2). 6.4 11. Use 6.4.10.
6.4.14. Use 6.2.61 to find the ugenvalues of the matrix.

6.4.37. Contrast with 6.3.17. Use 4 17, (e), and 6.4.3
6.4.41. Select linearly mdependenl “vectors © ey Zp SO (hat |hen span
in tshe dimt sum with /f,_; produces the whole space X.

6. 4.57 Mcon‘ing to &Xae lfne sequence of numbers py, . . ., p, is nonde-
creasing.

6.4. G& The matrix is reduced to quasi-diagonal form by the same transfor-
mations of the columns and rows.

6.4.72. Use 6.4.18. 6.4.75. Use 6.4.34, 6448, 6.4.55.

6.4.76. Use the Jordan form of the o] pe

6.4.80. Square the matrix J — A,E an¢ ulate the increase in the defect;
multiply the mnmx  — AE)® by v = A.E and caleulate the increase in the
defect again, el

6.4.86. ane tlnt for the matrix

-1 0 1
B=| 1 —t —3f,
o 1 2

the equality B® = 0 holds. When nislng the matrix A — E to a power, remember
that the matrix is quasi-tria
.4.87. See the hint for 6. 864 '6.4.88. The defect of the operator equals

unity.
6 4.91. Verlfy the equality of the ranks and traces of the matrices 4, B

6.4.98. Use
6.4.100, Let A = PAP". where A is a diagonal matrix. Then the matrix
A XBis slmlhr to the matrixA X J,and4 X E, + Ej, X B is similar to
AXE, +E
6.4.108. Ule 6.432.

7.1.9.{Consider the matrix of the operator in Cartesian coordinate system.
7.1.12. Note that the basis (b) menuonzd in Problem 7.1.11 is orthonormal
with respect to the scalar product defined i g
7.1.13. Note that the basis (b) mentioned in Problem 7.1.11 is orthogonal
vnlh mg'ect to the scnln product defined in (7.1.3), and use the result of 7.1.6.

between the ji P and con-

.1.23. Use 1he
jugnle mnmc
7.1.. 34. se the result of Problem 6.3. 17,

71 Use the existence of a common
A* nnd D" and therefore, of a common invariant suhspnu of dlmen.s[on n—1
to the operators A and B. Here n is the dimension of the space.
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7.1.41. Use the Schur theorem. 7.1.45. Use 7.1.7. 7.2.8. See 7.1.10. 7.2.9. Con-
:mlcl :he matrices for the operators with respect to the orthonormal basis

[

7.2.0. Use 5.4.52. 7214 Use 7.1.16. 7.2.16. Use 7.1.15.

7.2.19. Show that N,

7.2.20. Deduce from the mJ‘ icated data that the root subspaces of the oper.
uto; ;‘ comclde with its eigensubspaces, and that they are mutually orthogonal.

7.2.24. Prove the exist: of an orth 1 basis ining thejeigen-
vectors of the operator 4 following the dure for the jon"of the
Schur basis.

7.2.25. Use 6. 3 25. Use 7.2.13 for another possible solution.

7.2.26. Use 7.2.25.

7.2.32. The gwen matrix differs from a real one by an addend —:E.

7 2 36. Define a scalar product usmg the elgenvector bms of the  operator A.

o prove the const d?
nomn (}.) so tlm for eneh elgenvdue 2y of the opentor A, the con uon
)= A, may be fulfilled.

7.2.40. See 7.1.40.

7.2.47. Use the decomposmon of vector z in terms of the orthonormal eigen-
vector basis of the operator

7.2.48. Use 7.2.47 for the vestor 2= (1 1 1 ... )T

7.2.50. To fmve the latter statement, show that & basis can be selected that
consists of “ru vectors”, i.e. vectors of the form z + i0 for the eigensubspace of
the ogfntor 4 associated with an eigenvalue A.

9. Consider the operator matrix with mpect to the orthonormalfeigen-

vector basis and remember that a circumference can be drawn through the points

7}.,& : 3’. on the iﬁmple{ plmz

7.3.16. The eﬂect of the opentor in the polynomnl 1 — 2t+ ¢, which is
onhﬂuml to the two given polynomials 1 + ¢+ 2 and 1 — ¢ may be deter-
by the data given. Construct the matrix of the operator Q with respect
tl;o thei basis formed by these polynomials, and then transform it to the required
asis 1, ¢, 12,
7.3.18. See 7.3.19.
7.3.20. Use the relation (z, y)=

lz*yl‘—lr—yl-'+" lztayl2—t fr—wl?

Lyli—lr—y|?
1z 2uP— 12— 01" g0 the real case and

(z, ¥) = for the complex case.

7.3.39. Consider a sequence ol mnnces T12y Tisy - « -y T1p, Whose parameters
are selected in accordance with 7.3.38.
7.4.8. Assume the vectors z and y / to be a basis for the space.

7.4.10. A skew-symmetric o] ‘perator on the three-dimensional space is de-
i::erule. Consider the matrix of the operator K with mpecl to an orthonorm:

is, one of whose vectors belongs to the kernel of

7.4.11. Verify that (z, ¥)) = (v, z5) v\hen ik .

7.4.15. Find a fs () 1 to the given pol, Is f, (1) =
=24 2t— ¢ and f, _;' ~'t+ 268 and having the same lellglh The
matrix of the operator S with respect to the orthogonal basis f; (1), fa (1), fa (t)
can be determined from the data of the problem. Then transform the matrix to
the required basis 1, t,

7.4.27. Consnder the mamx of the operator A with respect to the orthonormal
eigenvector basis. an a straight line through the eigenvalues 4y, ..., A,
on the complex plai

Accardmg lo 7.4.30, the i-th column ¢, is the eigenvector associated
with the eigenvalue ;.
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4.41. Shov\ that the eij of an i il iti matrix can-

7.
Dot he
A common root of the polynomials f;+, and }; (A) is also &
root oi zhe polynonunl f1-1. (1), etc. But the polynomn!‘ fo ()-) 1 has no roots;
() use SA) and 7.4.35; (c) use iterative formulae.
7.4.4 find the sequence (7.4.8), employ he iterative formulae con-
aecting the polynomuls fr (V).

7.4.51. Show that the matrix 4 is similar to a tridiagonal irreducible Her-
mltnn matrix.

.52. Use 7.2.50 to prove (b).

7 5 9. Without loss of gener ity, the princi a] snbmatnx of order k under
consideration can be assumed to lie in the left-] upper corner of the given
matrix /{. Then the scalar product (/z, z) for the colnmn vectors, in which only
the first k components can be different from zero, should be considered.

7.5.10. Let G be the Gram matrix, z = (@, . - ., )7 an nrbnru-y k-dimen-
sloml column vector. Show that (Gz, z) = | @z, + - N

7.5.16. (a) Use the decomposmon of the vector z'in |erms ol the cigen-
veclors of lhe oPenlor H.

22. 7.5.24. Use the test 7.5.18.

r 5 25 U

7.5.27. Consnder the associated matrix

7.5.29. Show that the Schur L)mducl of Lhe malncu ll. and H, is the prin-
mpa;l5 ;gmmx of v.he Kronecker product H; X

7.5.33. U: erms ol the eij of the operator H.

7.5.34. *) Use 4523, g) llse 7.5.3!

;52? o prove the snl clent wndmon. use 7.4.35.

7.5.44. Use lhn Sylvester cnurion

7.5.45. See V. Voyevodin, p. 261.

7.5.50. Use Hadamard’ s meqntlity (see 3 3 3) lor the square root of the
matrix H.

7.5.51. Use 3.3.25. 7.5.55. Use 7.

7.5.56. lhat the operator HS hns lhe same eigenvalues as the Hermitian

Show
opentor S'/’HS'

7.5.62. See V. Voyevodm Sec. 78.

7.6.8. Consider the matrices of the dnﬂeremnl openl,or and its conjugate
wuh respccl to the orthonormal basis , 12,

. To evaluate the singular values. use the mnnx of the conjugate
opentor obtnmed in 7.1.12, with respect to the basis 1,

7.6.10. Let X and Y be ubunry Euclidean (unitary) spaces of dimensions n
and m, pecuvely Consider the operator generated by the matrix 4 with
respect to an arbitrary pair of bases for the spaces X and Y, and use the singular
bases of this operator.

7.6.17. If A = UAV is the singular-value decomposition of the matrix 4,
then U* and V* are convenient matrices.

7.6.26. Use 6.3.51. 7.6.27. Use 7.6.26.

7.6.29. Using 7.6.28, prove that in the ‘Schur form for the operator 4, all
the ‘olﬂ-dugon-l elements of the row and column, in whose intersection Ay lies,
equal ze

7.6.30. Using 7.6.29, prove the existence of a basis of the eigenvectors com-
mon to the opentors A and 4°

7.6 The proof is similar to that of 7.4.38.
; 6. 39 The columns of the matrix are orthogol

6.43. The matrix is symmetric.
7.6.45. Verify that the matrix to the accuracy of the numerical factor 2
is unitary.
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6.46. Use 7.6.36. 7.6.50. See the solution of
/651 Use the equality A/T 4+ = (H/T,) (U/TAO) ox (ll/f'.‘)‘l X (AIT %)
6. 2- Use _7.8.59. 7.7.2. Use 7.4.24.
7.8. Use 7.4.186.
.7.13. Use an 1 basis of the common to the com-
muting normal operators (sec 7.2.40).
7.7147. (b) AHis snmlaltolhematﬂxﬂ'l‘AH'/’— IR 4 GHYH HAYS,
7.7.18. Perform a similar transformation 4 = DAD-1, where D is a diago-
nal matrix with pasll,ive diagonal elements sclected so that for the matrix A

\,

7.
7.
= Ul
7.
7
7.

= —anp t=1,2 ..., n— 1 Then use the

the equality is vuhd a“
Bendnson theorem (see
. Use the Bendixson theorem.

7.7.20. Consider the equality All. E + iH,H* and show that
1 del (AN | > 1

7.21." Consider the Hennman decomposnnon of the operator 4 with respect

to thc Schur basis and use 7.5.

7.8.8. Use 7.5.62.

7.8.11. The vector b = (1 1 )7 is orthogonal to T,.

7.8.15. The matrix of the system is nonnegative.

7.8.18. The system sphts into two. m z , 24 and in zL, Z3, T

1 8 22 1 8 . Use 7.8.6. .32, Use 7.8.7

7888 It iollo“s l‘mm the data that Tpa = Tpy Nps = N4. To prove
the nquired relation, use
Show lhal, the effect of both operators on the vectors of the singular

basls is lhg

7.8.42. (a), (h) Use 7.8.41; (c) first show that the operator X has the same
image and kernel as the opentorA‘ and then deduce from the equation A*AX =
= A* that the effect of X on the two subspaces T, and T4« is inverse to the
.ﬂe;t of the opemstor A.

d (@)

7.9.4 6 The proof is given in the same way as the law of inertia.

7.9.11. Use the law of inertia.

7.9.14. Note that in transforming from Dy, to Dy +1, the number of coin-
cidences and changes of sign increases by one each, irrespective of the sign
ascribed to Dy. Moreover, the number of positive and the number of negativ'
eigenvalues of ‘the submatnx Ay + each is one greater than the corresponding
oumber for the submatrix 4

7.9.39. See 7.9.40. 7943 Use 5535

7.9.42. Show that the roots of a z-eq! are unaltered in a
transformation of both forms.

9. Use 7.2.40.

7.9.50. Let A and B be the matrices of the quadratic forms F and G, and
let B=s7s be ll\e mangular decomposition of the matrix B. The roots of the
z-equation B | =0 are the eigenvalues of the symmetric matrix
(ST .81 Henee. 7430 can be used.

8.1.2. (d) Use the Minkowski inequality.

8.1.20. Show that all the subsequences have the same limit o and that a
is the limit of the whole sequence.

8.1.22. Use 8.1.21.

£.1.23. For a fixed basis for the space, the coordinates of all the vectors of
the given sequence are bounded.
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8.1.32. Use the equivalence of the convergence, with respect to any norm,

to !he coordinate convergence.
1.35. Consider the values of each norm on the unit ball determined by

unoth T norm.

8.1.38. Use 8.1.35. 8.1.50. Use 8.1.49.

8.2.6. Prove the statement (b) for the subordinate operator norm, and then
use the equivalence of the n
218, Use 7447, 8.2.20 (b). (c). Use 7.6.34.
.22, Use the relations

28

H, =—<.4 1 4%, 1{,=4_(.4—A~).

8.2.27. Use 7.6.64 and 7.6.34.

8.. ..2& Show thnt for a positive semidefinite matrix 4: S (4) = tr 4.

8.2.29. Use 8. . 8.2.37. Use 8.2.34.

8.2.39. Use the npreaenution of the subordinate norm from 8.2.38.

8.2.41. Put for the given norm M (4), m (z) = M (X) where X is a matrix
with z as the first column, and whose other columns are zero. Show that m (=)

is a norm on the arithmetic space and that M () is consistent with m (z).

8.2.44. Use 8.2.42 and 8.2.39.

8.2.46. Use 8.2.45.

8.3.3. U seﬂ

8.3.5. Use

8.3.6. Uu33323nd835

% .7. Use 7.6.33. The solution is similar to that of 8.3.5.

.8, Re&nsent A as A =D (E + D-'B), where D is a diagonal matrix
made up of the diagonal elements of 4.

s 3 10 Apply tl;: ust of Problem 8.3.9 to the transpose AT,

ee the hint f

8 &25 Verify that | det A | = 1. Therefore (see 8.3.24) an increase in the
condition number is only possible when the norm of the matrix increases. Show
that matrices with a_large Euclidean nom fulfilling the conditions of the
problem pomss a smaller condition num!

8.3.27. Use the expression cond, (4 -+ uE) in terms of the eigenvalues of
the matrix 4.
8.3.28. See 7.4

.35,
8.8.30. To estimate the condition number, use the inequalities of Problem
7.6.28. If the first row of the system is multiplied by 10-1, second by 10, and
third bg 100, then the matrix of the derived system will be symmetric.
Show that the solution of the system D (z) = b may be tuken as
an uppmximulmn to the exact solution of the given system, where

25 000 5
0 —300 3
b=l oso0f |
0 w04 4

8.3.36. Show that the solution of the system Bz = b may be taken as an
approximation to the exact solution of the given system, where

05 =05 0 0 0.5

05 05 0 O 0.5
B= N -

0 0 3 =2 b (U |

0 0 -2 1 [
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8.3.37. Use the identity B-* — A-! = A-! (4 — B) B-%.

8.4.1. See 8.2.41, and also V. Voyevodm' p. 275.

8.4.4. Prove that the matrix is positive definite.

8.4.7. Applg 8.4.1 to the companion matrix of the polynomial f (z)/an.
8.4.9. Use 6.4.102. 8.4.12. Use the Schur theorem. 8.4.15. Use 8.4.102.
8.4.17. Use the Schur inequality and the statement 8.4.14.

8.4.23. Consider the given matrix as a perturbation of the matrix

2 150
051 0
0o 0 1

8.4.25. Usc the inequalitics of Problem 7.4.38.
27. The given matrix is similar to the symmetric matrix
2:107% —3-10*  4.10-¢  0.9991 |
—3.10-4 14074 —0.4993 —6.10~¢
4100 —0.4993 2106 —2.10~
0.9991 —6-10-% —2.40~ 1.0~
whicb cnn be comudered as a perturbnuon of a symmetric matrix B such that
. = 1, = by = —0.5, and the olher elements b;; equal zero.
] inequalities of Problem 7

B 4 29. Consider the given matrix as a peﬂ{ari)ntlon of a symmetric matrix B
such that b“—- by =1, bn=b,— —2, by = by = —1 and the other

elemems b, zeToes.
(e 7.4.35. 8.4.33. See 7
8 4 34. From the normality of lhe malnx A, the normality of A — pE fol-

»

8.(.35. ‘a) On the orthogonal complement to the vector e, the moduli of
the eigenvalues of the normal matrix A — poE are not less than a; (b) use the

condxuon || Az - p.: lls = & (d) use the Cauchy-Buniakowski inequality.

BJ 39. g) Use lhe estimate (8.4.6).
4.40. Use the Schur theorem. 8.4.41. Use the Schur theorem.

8.4.46. Add the matrix A, =

T=TeF z¢ to Cpey and estimate || Ap_q flg-

8.4.47. This statement may be derived from 8.4.46 in the same way 8.4.44
is derived Irom 8.4.43.



Answers and Solutions

;_--qu

: L 2[ t\l;e straight line passes through the point O; otherwise no.
0.
No 1.1.8. Yes.

Yes 1.1.12.

*—-——hr
=%

1.
1.
A
Al
1.
1.1

et G be an al elian up under addition containing more than one
element Plx some ﬁeld P, and for any z € G and any A € P, set Az =
hus, the use of this axiom 1.z = z means that by multiplying vectors of

the ngen space by arbitrary numbers every vector could be obtained.

12 g‘Yes, (b) yes; (c) no.

1. The set is lincarly independent.

z.nz The sel |s linearly dependent.
1.2.43. 58 — 512 — 4t + 6 in both cases. The set is linearly dependent.

1.2.18. Let z, be an arbitrary set nr vectors of the arithmetic space.
Set up the coorﬁmate matrix of these vectos

Bu Bie - ﬂn.
By B2 B

DRI IPEE

Bsi Bsz ... Ber

Let m be the first column in the matrix with nonzero numbers. By interchanging
the rows of the matrix, wh|ch wrresponds to interchanging the vectors of the
set, we can make B, the of the first
row from all the lol‘{gwmg rows zeroes can be obtained at every place in the
m-th column except the first. These row transformations are obviously equiva-
lenl to a sequence of clemnentary transformations of type (c) over the vector
1y o vy Zge Consndering now all the rows of the matrix except the first,
npeul the procedure.
1.2 !9 The set is hnenly independent. 1.2.20. The set is linearly depen-
he set is linearly independent. 1.2.22. The set is linearly depen-
23 The set is linearly dependent. 1.2.24. The set is linearly indepen-
25 The set is lmearl{ independent. 1.2.26. The set is linearly indepen-
he set is linearly independent.
l 3 1. \ll veclnrs of the form (a, 0, B, 0, 7). 1.3.2. All vectors of the form
(a. B, v, B, @). 1.3.3. All vectors (@, &, @3, %, ;) satisfying the condition

za,=0

='1.3.4. Al polynnmials of f depree <Z and the null polynomial. 1.3.5. The
same answer as to 1.3.4. 1.3.6. polynomials of degree sz n which the coef-
ﬁcu.-'n;‘gn‘m]l\{equuls zerv. and the null polynomial. 1.3.7. The same as in 1.3.6.

11. + 4xy, 2 = 25, — 10z, + B2,
H Yo 1305 0.0 T 20 T 0 B
28. 2. 1.3.29. 2. 1.3.30. 4. 1.3.31. 3. 1.3.32. 3. 1.3.33. 4.
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1.3.35. For example, z,, z,. 1.3.36. For example, z;, z,, z,. 1.3.37. For
example, z,. z, 1.3.38. For exnmﬁle, Iy, Zg.

1.3.40. bmlsely r vectors of the set nre different from zero; (b) r+ 1
vectors of ] e set are different from zero, two of them being collinear; (c) either
r+ 2 vectors of the set are different from zero, three of them being collinear,
or r + 1 vectors of the set are nonzero and there exist three linearly dependent
wvectors, two of whick are not collinear.

10 Tai z"l‘%:‘?’
vect Ty, Zgi Ty, Ty Tgy Tqe
13 08 N 1 R R

1.4.1. The space is one-dnmznmo\ul its basis being any number other than
one. 1.4.2. The dimension of the space equals k. 1.4.3. The space is infinite-
dunensxoml 1.4, 4 The dimension of the space equals 2. 1.4.5. The spnce is

1.4.6. The of the space equals n + 1
oy @ 1; (b) 2. 1.4.8. (@) n, (b) 2n.
1.4.13. The' basis is the set
1.4.21. The base can be mnde up. for example, of the 1st, 3rd and 4th poly-
nommls 1.4.22. The base can be made up, for example, of the 1st and 2nd poly-
nomuals
1.4.23. 1/3, 1/3, 1/3. 1.4.24. 0, —5.4. 1.4.25. 0, 2, 1, 2. 1.4.26. 67, —51,

1427 @1, =1, =1, 1, =1, 1; (b) 2, —1, —1, |, =1, §; )1, —1, —1, 2,

1 2 e 1.4.36. F I
. Ty, Ty, T3, T, % ‘or example, 7, zy, z5.
11437, ‘The “limension of L equals n = [
1.4.38. (a), (b), (c) m; (d) n —
1.4.39. The basis can be made up. for example, of the fst, 2nd and 3rd
polynomials.
1. 63 No. 1.5.2. No. 1.5.3. No.

2 < Ly. The veclors z,, z,, 7, are linearly independent. 1.5.8. The
basis ror the sum can be made up, for example, of the vectors z;, zy, 73, ;. The
dimension of the intersection is 2.
1.5.10. The basis for the sum can be made up, for example, ¢ o! the vectors
EY z,, The basis for the intersection is the vector z = (3,
. ‘ The basis for the sum can be made up, for exnmyle. o( the vectors
EN z,, z,. yp5 the basis of the intersection, for example, of z = (1, —1, 1, —1),
= (2,0, 2,0). 1.5.12. The basis for the sum could be Tor exarpl e, , Z, z,. y,
e basis for the intersection could be, for ex:unple, 7 =0(0,4 i 5

P20 200, 22, s, =3+ 2 6 0.

1.5.23. The subspace L is t s the pace,
l'or example, the spans of the vectors ¢; = {(1 0, 0 0), eg = (0, 1,0, 0) and ey =

=1(0,0,1,0), ¢, = (0, 0, 0, 1) can be tal

1.5.24. For example, the set of polynomials of the form ec.t™.

A change in the sule unit for measuring lengths.
2.4 (l) —1; (b) 4 (c) 0.
2.1.11. Yes, |I¢—0. no, when @ 0.
2.4.14. 0. 2.1.19. No.

- 2 2 1 p
225 y=n=0,-220 =(—3 — 3, — 5), v =6 -5 —0.
226 p=z=>0,1,11,0=02 -2 =2, 4= (-1 1, =1, 1).
2.2.10. For example, add the vectorszy = (1,1, 1,0) and z, = (—1, 1,0, 1)-
22111, For example, add the vectors z; = (2, 3, 1,0) and z, = (1, —1, 1,
2.2.12. Add, for example, the vector z3 = (2/3, —1/3. 2/3).
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2.2.13. Add, for exnmple, the vector z, = (1/2, 1/2, 1/2, 1/2, z, =
= (1/2, 1/2, —1/2 —1/2
2.16. n — 1, where n is the dimension of the g)ven Euclidean space.
2.217. (8) (=, v) @By + Malf, +
(b) (2 1) = (PoaBy + aafly + asby). + (“:3- T asby +
D and By By

are the coordinates of the vectors z and y wn&:

—6). v = (23,2, 6, —4), 4o = (4, 6 2. 3).
=, —2), Uy = (2, 5, 1, ), y3 = 2 —1, 1, 0)c
2222, Lel n)-s Compnle ‘by ‘Tow "tbe coordinate matrix of !he "vectors
Nm if the signs of nll elements of an arbitrary column of this
, hen its rows produce the coordinates of a new and still
orlhogol‘ul m of vectors. We shall assume, therefore, that the first row of the
matrix consists of units only, and that in the first three rows, tlu columns of
only one of the following forms are possible

1 1 1 1
1 1 -1 —.
1 -1 1~

Denote the number of columns of each of the indicated forms by z, y, z, w,
respectively. Then, obviously,
z+y+z+w=n
It follows from the orthogonality of the first three vectors that
z4+y—z—w=0,
z—y+z—w=0,
z—y—~z+w=0.
We obtain from this system that z = y = z = w = n/4. Thus, n must be a
mulu{le of 4.
2_& b"/ (l) = a. Foagtt a4 ...+ ath g () = b+ byt + byt +
n,
(A :) = aoby + arby + (2)? ayby + .+ .« + (D) apby.
2.3.6. For example, y; = (—3, 1, —2, 0), y, = (1, —1, =2, 1).
2.3.8. (a) The subspace of Iynomlals ‘of dimension one all of whose
coefﬁciems are equal (b) the su space of all odd polynomials.
. For example,
3oy —a, + 223 =10
—a, ~ 2+ a =0
a; + 3ay + 22, =0
30y + Tay — @y + 20, =0
for its onhogonal complement.
2.3.10. Let L be the span of the vector set gy, . . ., ay, not necessarily linear-
ly mdependenl The required vector y can be repnsented as a linear combination
.+ ayay. Since (2, @) =0, t=1, ..., k, to determine the
coetﬁcnenls a,. « « .+, @ the following system of linear equ jons can be formed
(a), @) @y + (a2, @) @p+ ... F(an, @) ax = (1, @),
(ay. “z)“l"‘(”:- @) eyt ... F(ah ) ar=(7, ay).

(ﬂ;. ﬂn)a. + (@ ap) 2+ .+ (0ny au) fzn—ln an)~

for the subspace L, and
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‘To construct the vector y, any solution of the system can be used. The vector z
is dze:’u‘-mnmd as the

s the gwen and /., fn is the required, bi-

onhogonnl bnsns The condxuons
€ fp=0, 1=1, .., j—1,7+1,..,n,

atipulate that the vector I, should belong to the orthogonal complement of the
san of the vectors e, -+ en- In this one-dimensional subspace,
e condition (¢, f)) = - umquely delem-ines the vector fj.

2348, f,=(1. 0, 0, 0), 1,=(o.7. 0.0), fs=(0.0, -'3—.0),
Je= (0. 0,0, %)
BRI (0 0.0, 00 5= 0, 4,000 o= (1 =2 1, =D, fi =

zmo/ 1, 0,0, 0), —1,1,0,0), fy=(©0, —1, 1, 0), f, =
— & h 13. ) o= ( ), fs= (0 ) fo

1 1 1
2.3.21. /,=(T,L, T' T)' fo=

1

1 1 1
YT T _T)’
t=(go =g 1) h=(F =% =1 7)-

2.4.2. (a) It remains unaltered; (b) it is nduced to the supplementary angle
(up to @); () it remains unalteres
2.4.

|z|—-31/2.|y|—6. |z—yl=3Y7Z Thus, the lrlangle is

isosceles. z, (z — y) = ; , hence, the triangle is right-angled. z, y= T and is

_an interior angle of the triangle. 7, (z — y) = %1 and, hence, an interior angle

N
of the triangle is the angle, y, (y —
@) |f12=10,1g[*=19, II— I‘—3.I!l'<|ll'+ll—§l'

ce. the lrnngle is acute-; nngled MdIf1r=19, ¢ = 13,
=4 [f]3> 1812+ |f— g I? and the triangle is obtuse-angle
2 ( 10. Fo:d a I|)anlilelognm, lhe condmons for the eqlulily of the lengths
of th or

24 u (a) :’-+ a:+?. (b) 3; (c) (s+ m;+ iy

2 ( M1

242 7. 2425 3.
2.5.8. The equality |z — y |* = | z |* 4 | y |* means that the scalar prod-
uct ol the vectors z and y is a fuuly imaginary num]
.10. From the equality of
fol!ow that the vectors z +
2.5.

r.
the lengths of the Veclors z and y, it does not

tﬂmeuc space Cp.
a,) r.on-esponds to the vector iz.
nduud on R,

3.1.1. The term is positive. 3.1.2. It is not a term of the determinant.
3.1.3. The term has a minus sign. 3.1.4. It is not a term of the determinant.
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5. (b) aroes4asga, a
S 331—1. B IR ot O

The plus g

@118y,

(Ibl+ b t+)<n+1; @© i+, >n+1.

The sign ls (— )"(" 12,

1.21.
3.1.22. 1f we put

14+V3 1-V5
2 3

=

then the number of nonzero terms in a determinant of order n of the indicated
form equals

A=ry
T —r, r{‘+ _'l
3.1.23. 2n-1,
34,24, (—)n (¢n — L. aph
3.1.25. (" + ap, l""+a l""+...+a,t+a,.
3.1.26. n. 3.1.27.
3.1.29. The delermmnnl
by
by
.
by bns
must be equal to
3.1.30. The free tem is then determinant

Oy @y ... Gyn

3.1.31. The determinant obtained is a complex number, conjugate to the

onguml deurmman
he determinant is multiplied by (—1)™ 3.1.33. The determinant
is muln lml by am. 3.1.34. The determinant is unaltered.

The "determinant is multiplied by (—1)™"-1/%. The element
ay 4,_, 1 of the original determinant is at (¢, j) in the obtained determinant.
3.1.39. an -+,

. The delertntnant is unaltered.

3 ﬂ- éetemunant is unaltered.

. 'l‘he determinant is multiphed by (—l)"("-‘)/‘
. The roots of the equation are the numbers —2, —1, 1, 2.
. The roots of the equation are the numbers 0 md —

3'21 40 :m when n =1, 0 when n > 1. 3.1.47. 1 when n =1, —2 when
n=2,0Ww

8. The olynomu!s i @® » fn (1) are linearly dependent. Let, for
deﬁnlunm' f,.?‘ = of, ()'1'( ! @peafna (. Then, for any number

In (@) = (a) @p1fn s (a) Therefore, the rows of the mdlum‘
demminm are linenly depes
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.49. (a) The d I (b) the i becomes zero.
NINR R AP when =1, (7 —z,) R —y,) when n=2, 0 when

. cos 1«,, B,) when n =1, sin (@ — a,) sin (B; — Pg) when n=
3h°|“+ Foayet ..+
33, EN Zoys + - z,Y,
56 4 — 2l + Wit ...+ wp) = —1.
57. The permanent of the matrix

11
(i 1)
equals two even though its rows are linearly dependent. However,’the perma-
nent of the matri
1 —-1)
(i

mth Iineurly mdegende’nt rows equlls 0.

1. a)"C., ) (PC)% 3.2.3. 7

4 et p; be the suni of all lhe pnmlpll minors of order ¢ of the deter-
minant

ay 8 ..
O3 G2

c e es e

@n; @ng «e. Gn

The 9) = » ] n-1t
enz{()k+ +ptnt o ppat+ e

3.2.8. 11 D is of odd order, then D’ is symmetric; if D is of even order, ther
D’ is skew-symmetric.

3.2 et ¢ > j. Then there is a matrix comprising only zeroes and having
n — ) columns in the first ; rows of the minor My; complementary to ay. Since

4]+(n—]j—-n>n—1 by 3.1.20, M;;= 0.

3.2.10. D’ = D"

3.2.41. 1u) The i-th row of D’ is unaltered and all the others are multiplied
by @. The whole determinant D’ is multiplied by a™-1; (b) the t-th and j-th rows
are interchanged, and then all the rows are multiplied by (—1). The overall
change of the determinant, thereby, has been that it was mllluphed by (—1);
(c) all the rows of D’, except the i-th, are unaltered; the corresponding elements
of ':he - lh premullwlled Y @, have been s\(xb)u'scled from the elements of the
t-th row. The is

3.2.16. 216 3.2.17. —106. 3.2.18. 1. 3.2.19. 120. 3.2.20. —11. 3.2.21. —2.
3221 —13. 3.2.23. 1. 3.2.24. 15. 3.2.25. 3. 3.2.26. 7.

2.28. —12. &2.2& 16, 3.2.30. 1. 3.2.31. —400. 3.2.32. —36. 3.2.33. 0.
3.2.34 8. 2.35

3.2.37. 5 4n — lj‘ 3.2.38. 4n#1 — 3n4l. 3.2.39. 2741 — 4. 3.2.40. 5n.

3.2.41. ‘;' (! + (—1)m). 3.2.42. ;(1 + (—1)7). 3.2.43. 1 + n. 3.2.44. 624 +ln).

3.2.46. fi+1 B = (A — a141) fy (M) — byg
2.3.2. TI:e p(r"operty mdiclted 'l(:.po L lﬂy/'u‘noanentuuon volume of a
ranllelepxped in any Euclidean or unitary
3.3.5. (a) It follows from Hadamard's ineq\ullty' ih) let e be the nth root
&= cos 2n/n + ¢ sin 2n/n. Then the estimate indicated in (a) is

of unity, i.e.
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reached by the determinant

11 1 e 1
te e L. entt
1e et P N H

1 gn-1 g2wn-b ., pm=12
(¢) for n = 2 the estimate occurs for the determinant
1 —1
e 7l
If the esumnte is reached by the determinant of the matrix A, for n = 2k, then
for m = 2k*, the determinant of the following matrix of order 2n must be

considered
An —A4n
A= (A,. An ) .

3.3.6. If the modulus of the element g,y is less than 1 for a certain pair of
mdnm i, j in the given determinant dy, then d, is increased on reflncmg ayy
by 118y >0, and by repincing ay By ~1 iy <0, Fnally, f 4, =6
then the déterminant is unaltered when ayis replnee by either of these numbers.
Similar reasoning, with respect to the minimum of the determinant, shnws that
the determinants of a given order with the modulus is a d
made up of 1's and —

. To prove the ineq\uln,yh -1 < hn, it suffices to enclose the determi-

nant d Jn-1 Of order n — 1 made up "of 0 and 1 and whose modulus equals &, _;,

0

8o that a determuum of order n, also made up of 0 and 1 and whose modulus
equuls h, _,. is obtained.

To e the meq\mhty hy, < 8,1, consider the extremal determinant made
up nfo s nnd 1'sy mterchnnge its rows so that the (1, 1) position contains a 1 and
make all the other elemznu of h first column equal to zero by subtracting
lrom l. s. Then a order n — 1, whose elements

, —1 and modulus equals to k,, will be nhtulngd in the bottom right-
Inmi corner By 3.3.6, the modulus of such a determinant does not exceed g, ..

To prove the mgquqlxty &,-1 < &n, it suffices to enclose the extremal deter—
minant d,,_;, made up of 1's and —1's, in the way indicated in the proof of the
first meq\n nty. and then to use 3.3.6.

For the proof of the last inequality, consider the extremal determinant 7,
with the elements 1 and —1. Multiplying, if necessary, the rows and columns
of this determinant by —1, make all the elements of the first row equal to t,
and dl the elements of the first column, beginning with the second element, equal
to —1. Now, adding’the first row to all the others, we shall obtain, in the bottom
and corner, a determinant of order » — 1 made up of 0’s and 2's and
equal in modulus to & Factoring out the 2's we shall see that this determinant
is the product of 27-1 and some determinant of order » — 1 made up of 0's and
1’s. Hence, the required inequality.
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3.3.8. According t0 3.3.7, by < g3 = 2. That hy = 2 is shown, for example,
by the determinant
101
110],
011
Since obviously h, = 1, by 3.3.7, g5 < 4. Since g; > g, = 2 and g, is a mul-
tiple of 4, g3 = 1

3.3.9. Let dn_, -y be the extremal determinant of order n — 1 made up of
1's and —1's. Denote the columns of this determinant by a;, .. Gp and
construct the determinant of order n, which also contains only 1's and —1's:

ay ay ... @y |a,
-1 1 ... 1 1
Only two of the minors of order » — 1 in the first » — 1 rows of lhe deumumnt
are nonzero. Hence, expanding by the last row, we find that d

3.3.10. According to 3.3.5, 3.3.7 and 3.3.9, g is a mulu])le of 16 anh &>

> 2g, = 32. On the other hand by Hadamard’s inequality
a<(V5)=25V5<64.

Therefore, gy is either equal to 32 or 48. The method of enclosmg the extremal

determinant of order 4, indicated in the solution to Problem 3.3.9, makes it

possible to obtain, for a determinant of order 5, an estimate of 32. Hence, en-
close the determinant in a different way:

11— 1) 1
1014 -1 —1|—
[y
111 1 1]
— 11— 1
Tlns delermnnnte uals 48. Thus, g;

= 48.
1. Assume that M — 1 and enclose a determinant d of order n in the
Iollowmg way:

a=

(RSN

72

IR

The new determinant d of order » + 4 equals d/2. Now subtract the first row
of d from all the others. Then the modulus of all elements of the determinant
does not exceed 1/2 and, according to 3.3.5, (a),

d/2 < (1/2)" (n + 1)("*)3, Q.E.D.
3.3.13. (a) The determuunt G (2 ) has a diagonal form and equals

(21
|z,| Izl 3. . 1%; (b) the demmimntc" (z,, + ., z3) has a “quasi-diagonal
form” anJ equals (z,, <o 2) G @i, -
(b) the is multipli

kS
]

a=

by | a |’ (c) the delenmnant is unaltered.
According to 3.3.18, G*/% (ay, . . ., a,) is the volume of the paralle-
leplped dnwn on the vectors ay, . . ., a,,. det 4" has the same meaning.

180649
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3.3.25. The Gram determinant does not exceed the product of tno of its
minors, complementary to one another, and is equal to this product if and only
if at least one of the minors is zero or all the elements of the determinant, out-
side these minors, are equal to zero

3.3.27. When k = 3, the meq\uhty assumes the following form

V2 (21, 23, 23) < S (21 22) S (310 29) S (22) 29)-
Thus, the square of the volume of the parallelepiped drawn on the vectors
3, Z, does not exceed the product of the areas of its faces.
5%5.28. 17 811 the elements of some row of an orthogonal determinant. are

replaced by e;, j =1, .. ., n so that e* = 2 | &2 <1, then the new deter-
Jet
minant d’ satisfies the inequalities
1—lel<|dI<t+]e]
3.3.20. The modulus of the minor at the intersection of the rows numbered
1y e e oy d the columnsy, . . ., jy is the volume of the parallelepiped obtained

8
by pnucctmg the indicated rows on the coordinate subspace of the vectors
ey r e r ey where ey, . . ., e,, is the nntnml bms for l.he anthmeuc sp‘ce

is reckoned to be the (n— 1)-d|me|wonal parallelepiped P, duwn on the
%;:z n— 1 rows, then Py, has a very small height and a very large volume of the
se P,
@-1)__A(l ... p)
3.4.2. ey =Ad,...p=D"
(l wp—1p
(P=1) 1 17 N
346, oy V=—pai o gs, p<isn

3.4.10. 4 3.41] —16i &4 12. —12. 3.4.13. 5. 3.4.14. 0. 3.4.15. 80. 3.4.16. 3.

4. 240. 3.4.19. —1/2. 3.4.20. —18 016. 3.4.21. 2,
3.4.22, — 3.‘23 3424 16 3.4.25. 63. 3.4.26. 32, 3.4.27. 1. 3.4.28. 13.
EL/& .29, This number is a polynomial in n with the higher-order term equal

n)
3.4.30. (a) The higher-order term of the number of operations equals n2/2;
(b tl\e higher-order term equals 3n.

4.31. Evaluate the determinant dy +, so that d, remains the leading prin-
cnpnl minor of d, +| " the matrix of the determinant is triangular, start the
operations at the u orner.

3.4.32. 1t lnllows lrum the condition of nondegeneracy that all the leading
pnncnpal minors may be made nonzero by interchanging the rows only; inter-
changing the first n'— 1 columns is also possible. Then the Gauss method is
performed for the last columns of all the k determinants.

.4.33. For example' place the first row last and carry out the same operation
over the first c
.36. For exnmple. the determinant
1 0 0...1
-1 1 0...1

— —1 1...1
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3.4.38. The statement does not hold for the Gauss method with partial pivoting;
an example is
1 1000

1 2000(°
3.4.39. Assume that mnx loyl=1. Let @ =|af’|,p=10ap |. Then
i

<2a af < 4, whence B<2l/
he determinant equals 1 and the length of each of its row equals 1.
Aocordmg 10 3.3.4, the rows of the determinant are on.h%goml each to each.
3.4.43. () 27 (del A)% (b) O; (c) (del A)% (d) (—1)™ (det A ).

4.1.4. All the matrix elements not in the basis minor are zeroes.
4.1.5. See the answer to Problem 4.1.4.
4444 1 by, . . ., by, €1y - - .y Cp IS @ convenient set of numbers, then for

any number @, @ 5 0, the set aby, . .., @miger, - - ‘%c,. is also convenient.
4.1.17. No. A counter example is

01
A=
(0 o)-
.18. The rank is either unaltered or changed by unity.
és‘) '(l)‘he‘nnk 1s changed by not more than unity; not more than k.
364135, & 6130, 3 43 3 4LE 4 4038, 4
34. The dimension equals three.
.35 (a) Yes; (b) yes; () no.
7. Such a plane consists of only one vector.
8. Such a plane coincides with the whole space.

mhhhgmhhsg

.
2. If 2y, 2y, - . ., 24 is the given set of vectors, then z, may be chosen
tnnshhon vector of the required plane and the span of the vectors z; —
..y Zp—2, as the direction subspace.
245, Ly +
‘Zi&LlfA;&O OifA=
4.2.17. Yes, if L = 0; in this case M coincides with V. No, if L 5= O, since
riwluphcslion by a mlmber, as it is defined in 4.2.16, may yield a result which
ies outside
.2.18. Retain the definition of multipliution by a number for nonzero
numbers A. Put 0-P = L for any plane P = z, + L. Then L is the null element
of th; :pnu M.
9, =
4 uo ‘The mdlc-ted plune contains the vector z, but does not contain the

e

naiE

S5
444

vecl

6.2.22. %) The straight line does not intersect the plane; (b) the straight line
has only the vector zy = (2, 1, —2, 2) in common with the phne. (c) the
nmght line lies in the plane.

he straight lines have one common vector z, = (—5, 11, —16,

—ll 7) The plane passiog through this vector and having the span of the Vectors
q nnd as its directional subspace, contains both the given straight lines.
zzl Draw a plane through z, parallel to the span of the vectors z; —z;,

60’2‘25, The planes have only the vector zy = (1, 2, 1, 0, 1) in common.
4.2.26. The planes do not meet, whereas their - directional s\lbupnm intersect.
only m a null vector.

18+
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4.2.27. The planes do not meet, whereas their directional subspaces intersect
in .S o‘ne-gmolens;nml subspace drawn on the vector 2p; + py = g3 — g, =
( 'ézs ‘The planes intersect in the straight line z = z, + gyt, where zo =

§ 1, s 7).
4.2.29, The phnes do not meet.

hile, their d 1 coin-

cide.
4.2.30. The Pphnes coincide.
4.2.34. Let Ly and ey, . . ., ¢ be the basis for Ly. Extend it to
form a basis for the wllole 8pace: ey, . . ., €y, €x+1y - - -y €n. Then the following
can be taken as the required hyperplanes
=2+ L(eys -+ €hy €hezy €hegs ---1€n)
Ry =2, qu,. ens e.,,, Chess + v‘n)

Tne =2q+l-(¢.. ceer€hs ety Chegs - .:n-:‘

4.3.1. 1If z, is an arbitrary vector fulfilling the condition (r, zo) = b (the
vector @gn, @, = b/(n, r), for example, can be chosen as z,), then the given set
is a h}:rrplune of vectors of the form z, 4 y where y is any vector orthogonal

his hyperplane is a subs ace if and only if b = 0.
5. n(@=1-+ct+ ... 4+ cnn b=d
8. Let 7o be an urbnrary vector of the infersection. Rewrite the equations
of the hyperplanes in the form

(r1y 2 — 20) = 0,
("1- z —z.) =0,

('m- = "n) = 0~
Hence, the i ion of the given ! is the plane P = z, + L, where
Lis the orlhogonal complement of the sgln of the vectors ny, . . .,

4. he nn,hogonal complement of L is drawn on the vectors z. (-3
1, —1, —2, 1) (see 2.3.8). Therefore, P can be described, for

enmple. hy the system "of equations:

(21, 2) = (211 o)

(220 @) = (32 %)y

—30, + @y — 22, = —4,
o —ay — 25+ ag = —1.

4.3.44. zp = a,,n, where @, = b/(r, n).

4.3.46. f(t)m 1

4349, 5. 4.3.22. 2. 4.3.23. 2. 4.3.24. 150, 4.3.25. 5. 4.3.26. 5. 4.4.4. 0, 7.

4.4.5. When A 5 1, 2 the system has a unique solution; when A = 1 it has
a one—dlmensmnal and ‘when A = 2, a two-dimensional solution subspace

4.4.6. When A = —1, —2 the symm Ins a unique solution; when
it h s a one-dimensional, and when A = —2, a three-dimensional solution. lub-

4.4‘8. The glvots are equal to the ratios of the corner minors.

4.4.10. The linear dependence of the vectors z., +» 2y i9 obviously due to
the lmeur dependence of the vectors yy, .. ., nversely. let now at least
one of the coefficients in the equality a,z, 0 be dllmm, from
zero. Then two solutions of system (4. 4 l). (he’ zero so’ution and a.ﬁ
<+« + apyy, have the same values for the last » — r components. erefnre,
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a, i.e. the vectors yy, ..., y, are linearly dependent.
h 14. Wl\en ﬂ\e Gauss method is useJ and thekmhsequent formulae are
derived for the general solution, only elementary transformations over the rows
of the indicated submatrix are performed. The final result is the matrix C (the
zero rows from the (r + 1)th to the m-th are omitted).
.4.16. Any vector of the 4-dimensional arithmetic space is a solution of the
system.
4.4.17. For example, a general solution is: z, = — %z, + %z,, z,= 0. The
Iund-mennl syslem of solulions is: y, = (=7, 3, 0, 0), y, (5, 0,
.18, T The

s 3, 0).
e general solution is: zy = 27y + 5z, —91 [undnmental
g’sum of mluuons o = (1 0, 2,00, 4y = 00 1,5, 0, v = (0 O w9,

4.19, The system has only a zero solution.
20. The general solution is: z; = z,, =, = 74, 73 = —z,. The funda-
mental system of solutions has only one vector, e.g. y = (l 1, —l l)
4.4.21. The general solution is: 7, = 275 + 8z, 7, =
The lusadamnn system of solutions is: 4, = (2, —1, 1, 0, 6). v, = (3- —2
J

4422, The general solution is: 7y = — Lo — 126, — A6z, 2, = 2, —

— 9z, — 18z,. The fundamental system of solutions is: y, = (—1, 2, 2, 0, 0),
ve =12, 9, 0, —1, 0), ys = (41, 36, 0, 0, —2).

4.4.23. The general solution is: £, = zy=n-z,, 79 = %, = — 7. The fun-
d_lame;)ll] system of solutions consists of a unique vector, e.g. y = (1, 1, —3,
, 7).

4.4.24. Thegeneral solution is: &y = — 525 —g 20, 73 = — 52, + 573124 = 0-
The fund.mem.l system of solutions is: y; = (2, 9, —6, 0, 0), y, = (—2, 3,
—z,+ 3z5. The lun-
J1,0 h= @ =3, 3

).

' 4.6.26. The first three columns of the matrix are linearly dependent; the
‘fourth column is not linearly dependent on the rest, therefore z, = 0; the sam
is valid for the fifth column, thus z5 =

' 44.25. The general solution is: z; = —z, =
damennl system of solutions is: y; = (—1, 1, —

27. Z4, Tg; 2y 240 Tay Zg; Tye Tph 3y z.z:
‘ 28. ,‘lt+l‘ 11 Tar Tar Tgs Ty Ty T1y To0 Tee Ty-
4.4.29. The b-sns for the subspace is formed, for exlmple, hy the polynomills
fu()) =14 — 68 + 112 — 6t and f, (1) = ¢* — 25¢ + 60

4.4.30. (a) For example,
10z, — 162,442, + 2,=0,
— 52, 4 2y— 2y + 25 =0.
In order to answer (b), (¢), any linear b
of the equations of (a) can be added to (a).
4.4.31. No. The given syslems are not equivalent.
4.4.33. (44, —11, =31, —6).
4.5.6. When A 5 0.6 ‘the system is defined; when A = 0 it is inconsistent;
when A = 6 the system has a two-dimensional solution plane.
4.5.7. When A5 —1, 2 the system is defined; when A = 2 it is inconsistent;
when A = —1 the syslem has a two-dimensional solution plane.
4.5.12. For example, the genenl solution could
45 "_ 23 N
- 19 FUR TR T 19

(two linear
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4.5.13. The system is inconsistent.
14. For example, the general solution could be: 7= —1+4 234 22,

zy =

+ =,
4.5.15. The syaum has the unique solution: z; =

y 29 = —1, zg= —1,

2= 4.
‘ &6 The general solution is: 2, = 6 — g5, 2y = —5 + 25, 29 = 3, 7, =
—

4.5.17. The general solution is: :,=—% -}—%z, —%:‘. 1,=%-+ 4,

2
z=—5—
7_3 11
4.5.18. The general solution is: n=g—gn- g :,+ g 2,=0.
4.5.19. The system is inconsistent.
4.5.20. The system has the unique solution: z; = z, = z; = z,

4.5.21. The general solution isi 5= 3 32y, 73 = 2,= 0, 2, = 5~ gz

5
4 5.22. The a{mm is inconsistent.
he system is inconsistent. When A = 5 the system is
wnsment and its genenl solution could be, for example, 7, = —4 + z5, 2, =

—i,
6.5.24. When A 5= —3 the system has a unique solution
3

1,2, = 2.
i

At

z = T,= e

1

l+3 ’ 3(A+3)

When A = —3 the system is inconsistent.
4.5.25. The system is consistent for any value of A. When A 5¢ —95 the gen-

eral solution is of the form z, = 0, z; = o v hd When A = —95 the general

solution is: z, = ’—:+ ki f—gz,.
4.5.26. When A 5% 1, —2 the system has the unique solution

1
a=n=sn=gos.

When A =1 the genenl solution is: z; = 1 — z, — z;. When A = —2 the
system is inconsiste

4.5.27. When A 9& l —2 the sysum bas the unique solution

2
"‘="=—ﬁ’ iy =t

When A = 1 the system is mconsment When A = —2 the system is consistent
and its general solution is: z, 1 + z,

4.5.28. When Aot 1, —2 llie syslem hu the unique solution

3(t+1)
(A—l)(l+2) ’ A=1(A+2) °
When A =1 and A = —2 the system is inconsistent.
4.5.29. When A 5= 1, 3 the system has the \lniq\le solution

Ty =zy= 4=

=—1, I=

b
A—31 BT ;._-5'
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When A =1 the general solution is: zy = 1 — z4 — z5. When A = 3 the system
is mconslsle nt.

4.5.30. When A 5 1, 3 the system has the unique solution
e LN
-1 E-%

When A = 1 the system is inconsistent. When A = 3 the general solution is:
17 1 2
n=——g—3F H g T,=2,

4.5.31. The third column of the matrix of the system is linearly indepen-
dent of the remaining columns; the fifth column is linearly mdependenl of
the remaining columns of the augmented matrix of the system

4.5.32. No. The formulae are not equivalent.

4.5.33. Yes. 4.5.34. n+ 1 —k.

4.5.35. Tho mdncaud diti d two-di ional plane. If
4o (¢) is a polynomial in this pl-ne. then the pnlynomuls fo (8), fo () + 11 (D),
fo (&) + fa (8), Where f, () and f, (¢#) form a basis for the directional subspace,
are lnuﬁy |ndependv.-nt For £, () and f, (t), the polynomials of Problem 4.4.29

, m=r=0, z=

can
s 6 g Y
4540, o= tpbamermds o bplegodrie
tp+dq+ar—rs dp—cq4-bri-as
» % A .

4.5.42. f (1) = l'—41’+31—2
45.43. 1 () = —30 + 7t
4.5.47. f ()= 1" — 4P+ 3t — 1.
4.5.49. f ()= 20" — £ — 32 — 2t + 1.
4.5.51. f () = 26 — 4t' — 33+ 5t — 2.
4.5.53. For the function f and its derivatives, write the system of equations:
by =z
B+ =g
ey

h(!)/+2h’ JENYC) =

n(my 4 kD 4 CRROSDE) 4 L. 4 b = g™,

Using Cramer’s formula for f(n), we obtain the required relation.
4.5.54 fO) (1) = —

5.4.4. Yu. if a1

. No, if a 0. 5.1.2. See the answer to 5.1.1. 5.1.3,
Yes. 5.1.6. No. Yo Yo
. No, if & 5 0. 5.1.

es. 5.1. es.
. Yes. 5.1.11. No. 5.1.12. No. 5.1.13.

18. Yes.
.22, Yes. 5.1.23. Yes. 5.1.24. Yes.

No.
. \ny he space R* raises all the numbers of this space 10
; swnlh a ﬁxed (for a glven operator) real exponent.

(@) Yes, (b) no.
l;'o. if the set z;, ..., z, is linearly dependent.
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5.1.47. For linear functional @ on the space Mp to be iven by the formula
@/(t) = [ (ap), it is necessary and sufficient that the num]

q=@ ), t=0,1,...,n,
satisfy the relations t ¢ e

=const, 1=0, 1,...,n—1.

=1, “c“
5.1.52, No. Any operator on the space C, obtained in the indicated way,
converls "renl" vectors (i.e. vectors of the form z 4 10) back into real vectors.
5.1 No, if this functional is not zero,
. Yes, if dim Y > dim X; no, if dim ¥ < dim X.
56 No. if dim Y > dim X; yes, if dim ¥ < dim X.
Ies'n. U= 0 — 1,y 0
.67. A Lwo—dnmensnonnl space of vectors orthogonal to a; a two-dimen-

smml vector subspnce coxlanur with e and
5. A isa straight line drawn on the vector a; T, "4 isa plane perpendicular

to the v ector

5.1.69. If (g, & b) = 0, then N4 is a plane Fer:endiculn to the vecl.or a and
T, is a straight line drawn on the vector b. 11, owever, (a, b) 5 0, then N,
is'a slrught ine drawn on the vector b and TA is a plane perpendicular to He

=1, the basis for the image is y = (4, 1, 1); nqy = 2, the basis
for lhe kem:l = 1 0), Zor= (1, 0, ( 4

=2, thehunsturthelmugels 17 (2 l 1), ys = (—1, =2, 1);
the‘busxs for the kemel isZ=(1, 1, l)
5.1 73. ﬂle um 1 n-15 the kernel: M,.
5.1.74. See the mswer to 5.1
il.75.n+1—kl <n+10|fk>n+i

= Lg;
Let e, ..., e,. he a basis for the space X, and let for the given op-

Aey = angy + angs + - + - + Gmadms
Aey = ayggy + Gasta + - - - Gy

Aep = 1,01+ 3n2 + - - - + Omplm-

Put
Biey = angr, Bsey = angsy -« -» Bmey = Gmadm,
Bne, = aom, Bm = gy, - - Hm‘: maimy
Blen = Gnf1s B!‘n = Ggna -+ Bm'n = Gmndm-
It lslobwo\ls that the operators By, i = 1, ..., m satisfy the conditions of the
problem
5.2.11. dim o

X Y
5.2.12 (a) No, if heo, (b) no, if ¥ = X.
5.2.13. dim w_n-
5.2.14. dim K’ m n —1).
5.2.20. Letey,". . ., d—n—r)henbasnslorNA.e,,. ,edzn.-.
., €, @ basis Yfor X. Ttm: the vectors y; = Aeg v Uy = Aey Take up
a basis for T,4. The required representation of the opentor A s glven by the
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operators By, . . ., B, determined by

0 kdi
s,z,={ i

Yo k=d-+u

5.2.21. Either N, = Ny or Ty = Tp.
5.2.22. Let all operators of L be of rank <1, and let A be an arbitrary op-
erator of rank 1 from L. Consider a subset L,, in L, of all operators B for
which Ng DN 4, and a subset L, of all operators C for which To < Tj.
ccording to 5.2.13, 5.2.14, these subsets are the subspaces of L of dimension
<n. Therefore Ly s L, L, 5 L, and there exists an operator D from L such
that D € Ly, D@Ly, i-e. Tps= Ta, Nps% Ny. But then (see 5.2.21) A + D
is of rank 2.
No (see 5.2.8).
Yes.

5.2.26. Ng.p= Tp, Tg.p= Np.

5.3.4. No.
5.3.6. n(n —r). 5.3.7. n(n—r). 53.8 The rank equals nr, the defect

).
.10, Let z € Ngyy. Then
Authz = 0= A1 (4h-3z).

Since Ng = Ny,
= Ten A9 (Ak-1g) = 0= Aa*h-1z,
i.e. z € Ng.p-y. Therefore, N,y = Ng,p-y. Continuing to reason in the same
way, we obtain
Now = Noupoy = Nggpog = - . = Ny = N,

i 1 A
A=ET—"—D~1- —Z—I—Dl - ...-,——"TD'E

5.3.21. Let @ (4) = 0 and @ () = g (t) m (&) + r (), where the degree of
r(t) is less lhln‘pﬂgll of m (t), or r((l)- Of {f r()isa |(lonuro polynomial, then
7 (A)= @ (A) — g (A) m (A) = 0, which is contrary to the definition of the
polynomial m (¢).

5.3.22 Let m, (t) and m, (t) be two annihilating polynomials of the least de-
gree. Morcover, we may assume that the higher-order coefficients of both the
polynomials equal 1. If p (f) = my (f) — m, (1) is a nonzero polynomial, then
1t is also an A-amnihilator.

532 (@am()=1—tifPkO0, Esm@®)=tif P=0Gm()=1t—1,
whe; P=E; (b) mt)=1—1; (c) m(t)= 1.

.3.25. No.
_ 5.3.31. That PyP, is a projection operator follows (sce 5.3.17) from the equal-
ity
(PyPy)? = P\P,P\Py = PP} = P\P,.
1t also follows from the commutativity of Py and P, that Tpp, & Tp, N Tp,
1f, conversely, z € Tp, N1 Tp,, then Pz = Pyz =z and PPz =z, i.e
2€ Tpypye

Using the commutativity of P; and P, again, wejobtain that Np,= Np,p,
and Np,C Npyp,, ie. Np, + Np,C Npp, Now, if z€Npp,, then
Pyz € Np, and (E — Py) z € Np,. The identity z = Pyz + (E — P,) z proves
the reverse inclusion relation: Np p,C Npy + Np,
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5.3.32 It is easy lo vcnly that it follows from PyPy = PyP; = 0 that (P, 4+

+ P, + 4 P, 15 a projection operator. Conversely, let
>, ' XL LA !
PyPy + PPy = 0.
Premultiplying and postmultiplying this equality by Py, we obtain
PiPyPy+ P\Py =0, PP+ P\PyPy =0,
PyP, — PPy = 0.
PPy = PyPy = 0.

The inclusion Tp,yp, & Tpy -+ Tp, is obvious. It follows from the equality
PPy = 0 that Tp,< Np,. Since the sum Tp, + N,,‘ is direct, the same il
true for the sum Tp, + Tp, Now, if z € Tp, + Tp,, 1.e. & = & + &, (Where
21 € Tpyy 74 € Tpy), then
PrtP)a=(Pr+P)a+ (Pt P)a

= (Pr+ Py) Pizy+ (Py+ Py) Pyzy = Plry + Plry = oy + 2, = 2,
s.e. P|+ Tp, < Tpypy

Since Tp, 1 Tp, = 0, it follows from z € Np, + p, (i.c. from Pz =

= —Py), that € Np, 1\ Np,.

5.3.38. The operator that malche: each function with its (unique) antide-
rivative belon{mg to the given space.
5.3.39. R.

and hence

Therefore,

5.3.41. The kernel of each of the operators £ + A and £ — 4, in case they
are degenerate, should coincide with the image of the operator A. But for a
nonzero vector z, the equalities —Az = z and Az = z cannot be both true.

5.3.51. Yes, lf dim ¥ = dim X;no, ifdim ¥ > dim X. The case of dim ¥ <
< dim X is impossible,

8 —12 0
54, AB=—1. BA=|6 —9 0
2 -3 0
4 6 0 2
00 -3 2 -2 2
542 AB="0 o"' Ba=| T, 270 AL
| {6 8 —2
—52
543 4B=| 8.
6
5.44 AB=(—15 97 78 —i12)
1
_3
3

5.45, AB -
|
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546. AB=(—1 0 —1 4.

0000
A 0000
saz. ap=lio 00 0l
0000
g Z 3 63
548, asc=| 0 o 5.49. ABCD=||5 —10 5.
oo 7 4 g
12 58
5412, x="l _1", 5.1..13.x=||3 5"
1 7 —1 10
SAdh X=+ 415 X=
=5 | —1"' sass. x=[ .
011
114 111
5.4.16. x="l ! _‘", saar x=| o1 ol
flo 11

5.4.19. There are mpn multiplications and mp (» — 1) additions.

5.4.20. mp (n + ¢) multiplications are required for the product (48) C,
and_ng gn + p% multiplications for 4 (BC).

5.4.25. (a) The i-th row is multiplied by «;+, and added to the (1 + )th
row of A then, premultiplied by @y, ; instead of @y, ¢, the i-th row is added
to the (i + 2)th row. This sequence is repeated until l%e i-th row, premulti-
plied by ay,, is added to the n-th row; (b) as in (a) the i-th row is premultiplied
this time by ey, ..., @, 40 @1, 10 - -+ @y and added to the i-th,
(i 4+ 1)th, . .., n-th rows, raspectiveiyA

In the postmultiplication case: (a) each of the subsequent rows premulti-
plied by ayy, k = i + 1, . .., n, respectively, and in turn is added to the i-th
.column of A; (b) each of the subsequent columns premultiplied by o, k 5 i,
‘respectively, and in turn is added to the i-th column of 4.

5.4.29. ||1 kl

01
s.a.ao.l o c...l
Chey ez’

where cy are the Fibonacci numbers, c.; = 0, ¢ = 1, ¢ = ¢4 + g
5431 | 3 0
1
M
0 An
AR 0

MR

5.4.32.

TapaAp
| 0 AAD
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when k = 2m and

0 AP
APHAR,
ARy
AmHAP 0
when k = 2m + 1
5.4.33. l[ the glven matrix is demned by A, then for B= A* and k <n
we obtain by, =1, { = l, e , the other elements byy being equl.i

to zero. When k

5. Lot e glven matrix be 4. Then for e =
bt =1, t=1,..., n—k bi tsh-n=
oum elements by equal Zero. For k = n, we oMunA" = E I[ ho\\ever k > n,
then representing k as k = np + m, we obtain Ak = 4™,

5.4.42, a b c 5.4.43. a b oc...h

a b

A" and k < n, we obuin

0.
5.4.44. n, the order of the Jordan block.
546, 2ot D (n 2

6
5.4.54. n®. It is required to evaluate only n elements fully determining the
clm;‘:?)f) 2 + +l
4.59. 2 (my )+ 1.
S ‘ e wi s + . .o+ Zoyn.
X . n(n ). Reymem the matrix AB as AB = (Bz) v where B =
u1ll - + ypup. To evaluate f, n muluphcmom are required; to eva-
luate e column vector Bz, nglm nmultiplications, but n? operations for ?z) v,
5.4.62. Construct the matrix B from a set o! ‘the basis columns of the
columns of B being the d f the
A in terms of the set.

2 2
5.4.63. For example, B=|[2 0 C= Il‘ 1o
’ 10 1)
02
t- 10 1
5.4.64. For example, B=|—1 2 C=
0 1 ’ 01 —

5.4.1 67 An arbitrary qum-dmgonn] matrix whose diagonal blocks are of
orders ky, ..., k,, respec

5.4.75. Let Z; Za,,/, X ;= 0. Then
i=1 j=1

m on
D (X euf))x er=0.
=1 =
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Due to the linear independence of the set ey, . . ., ep, We obtain

n
g afy=0, 1=1,...

whence for all i, j, aj; = 0.

16 lnl l cosa sina
-5 + 5.5,
2 "8 5| 52‘, —sina cosa
a b d —b
| ~

—ba

5.5.1.

5.5.3. 55.4. 1

I -
rEd

ad—be

5.5.5.

2 — 0
-1 -3 7
0 7 =21
32 14 —1 5.5.8.
2 1 0
25 14 —1
0 —1 1 —
1 0 -1 1
-1 1 0 -1
1t -1 1 0
5 —2 —5 4
-7 3

5.5.6. 2 2
2 —1 2f,

9—1 2 2

1 — —1.
3 —

-5 3 1
2 0 =2

—1 1 —
5.5.10, —2
1
-5 -3 3
0 0 o0 —2

5.5.7.

4
. -2

5.5.9. 0
0
o+

5.5.11.

5.5.12. a
. b a d
e
a ¢ —b
5.5.16. (a) Yes. E.g. the set of matrices

[ v |
oof?*
where a 5= 0; (b) no; the equation Az = B, where 4 is a degenerate matrix and
B is a nond, matrix, is il i

a
of the form

ssz2. | 0 35.23.
:

1
0 T
1
T |-

1
=

=)

N L
An Ay
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5524 (1 1 1.1 5.525. |11 2 4 8
01 1.1 0124
00 1...1 0012
000..1 0000
5.5.26. 1 0 0 0
—a 1 0 0
a? —a 1 0
—a? at  —a 1
(St (o (— e (S
1 -1 1 —1 1
5520 |l o T S e (D o
1 —1 1
LI NN Gl o
1 =t .
o 0 s 2T e (S
1
] 0 0 -
5.5.28.

55.29. P}=Ph=Py;

1

X
il

L=

1

5,5.30. In the inverse matrix: (a) the i-th and j-th columns are interchanged;
(b) the #-th column is muluphed by the number 1/a; (c) the i-th columns multi-
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plied by the number @ is subtracted from the j-th.

1 oo
1 —ai
Y=l e, e ’ sit=
. —ae 1
—ang 1 : .
—any 1
5.5.33. nl
5.5.35. 1 =2 1 0 5.5.36. 15 10 —6 —4
0 1 =2 1 10 5 —4& —2
1 — 1 =2 -9 —6 3 2"
—1 1 0 1 -8 =3 2 1

5.5.37. Reduction of the matrix 4, to triangular form mentioned in the
roblem, only needs elementary transformations of “tlype (c). Bach stage of the
auss elimination can then be i d as left multiplication of the current

matrix by the wrunce of matrices Ly, or, equivalently, by the corresponding
matrix N,. Finally, we obtain

NpxoeoNyooo NA=R,
where R is an upper triangular matrix. Hence,
A=(N§'... AT NFLOR.

All the matrices Ni* are lower triangular with units on the principal di-
agonal which is also true for their product.

5.5.40. Reduce A4 by the Gauss elimination to an upper triangular matrix
with units on the principal diagonal. Then, subtract a]ﬂ;mprhu multiples of
the last row from the previous rows to make all the ofi-diagonal elements of
lIht.- last column equal zero. The same is done for the next row and so on to the
astrow.

.5.43. Let M, be the matrices of elementary transformations involved in
the reduction of A to the identity matrix, then

My ... MA=E,

ie
A =My .. My
5544, | —t! —1 —1 [ 5.5.45. ||—1 1 0 0
0 —1 —1 —t 1t -2 1 0
103 1 1. 0 1 -2
7 7T 7T %2 4
ro1 o2 1 0o 0 t-3

5.5.50. Perform the calculations in the following order: 1. 4-'z. 2. yA-1.
3. a=y(At2) 4 8= g7o.5 B (A7) 6. PATIBA = (BA-2) (4.

7. (A + B)™. Then 3n% + 2n - 1 operations of multiplication and division are
required.

5,551, A== A1

-
Tven
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Here ¢y is the (], t) element of the matrix € = A1, ry is the i-th column, and s;
s the j-th row

5.5.52. Let v = (’n. « v Yn)r 8= VAL, 1, the last column of A-1. Then
Aig 2
A TTorn rns.

5.5.53. Let e be a column vector (ol lhe same onler as A) all of whose ele-
ments are equal to unity. Put t = A7 Then

Aoy e a
A-1=4 1-1~ra3 tu,
where S is the sum of all elements of 4.
5.5.54.
[ E—
(a—b) (a+b(n—1)) M
a=a+b(n—2).
5.5.55. 2—n 1

1 1 1 ... 2—n
5.556. |2—n 1 1... 1

5.5.57. 1—ayt 1 1 1

i 1 1
where t=1+4+—+ —+4.. —.
+ a‘+ P +...4
5.5.60. | Ey, —B
o El*
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5.5.62. Look for the partitioned matrix An!

Pny r.._,l
A=
"l b 2
whe;e Py, is a square matrix of order n — 1. From the condition A4,4n! = E,
‘We deri'
AnyPnoytun-ignoy=En-y (@)
An-iTn-1+buny =0, ®)
vn-1Pn-y+agn- =0, )
vn-yTno +ab=1. 0]
It follows from (B) that
= —bAzl; ung. ©
Substituting in (8), we find b:
1
b= .
a—vn_Ap tn-y
Now, r,_, is determined from (e).

thamute the expression for P, _;, derived from (a),
. Py =45l — Agliunogn-y
in (v):
Hence

on-y Aty —vn- Agtitn-1@n-y +agn-, =0.

1oy Aty

Va1 Antitin-y = henadit

qn-1=
Finally, find P,

Puoy =43l - bAGLun_Vny 471,
5.5.63. Evaluate in the following sequence:
1. Aplunoy. 2. vnodil 3. vaoy (Rkitnoy).
L4 b 5 rnoye 6.gomy. 7. racy(Vnadity)e 8. Pny.
Then 3n% — 3n + 1 operations of multiplication and division are required.

5.5.86. 1 0000 5567 1 4 —2 2 —
0 1000 2 8 -3 2 -2
—83 47 1 0 O}, 2 9 —4 2 =2
5 —9% 0 1 0 0 —4 2 — 1
—62 1001 -1 —4 2 — 1
5.5.68. 1 0 -3 —9 5.5.69. 4% —8 -2 12
0 1 =1 -2 —10 6 15 -9
3 12 —92 279" —35 20 56 —32
-4 -4 3 9% 25 —15 —40 24
5.5.80. Consider the equality
ApBp = (En)p @

a3 a system of equations in the elements of the matrix By. This system is deter-
minate.

19-0619
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Apply the Laplace theorem to the determinant of the matrix A4:

Nz e+ Ip),
“(t.t, s ip

1<l <ty . .<1p<n
P
141, when D} (js—ke)*=0,

P
0, wheng (a—ks)? = 0.

Obtaining tl:‘eaal?oveidmmyositions for all the setsi,{. m iz li‘,, and ky, kyy .+ . .0
cenkpsuchithat 1<y <)y < .00 < mi<h<kh<...<k<
< n'. We obtain that the‘nnn’:]nrs » t * P

»
2

Uaths) (k.'k; . "“l-n )

g1 b
Kij .. thop

(=1

are the solutions of the system ().
5.6.1. “ cosa —sinu" 5.6.2.
sine  cosall’

5.63. @0 100 0 Mo 111 1
0020 [ 023 n
0003 ol 003 ... Ch
0000 n 0000 ... n
Ioooo 0 0000 ... 0

3.6.4. (8)

0000...n
The matrix is of order n X (n + 1).
Mo oo...0
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The matrix is of order (n + 1) X n.

5.65. (1) "_? ;"’ b " — :"

5.6.6. (a) The first r elements of the principal dilsonal are unils; all the
other elements are zeroes; (b) the last » — r elements of the crrim:ipal diagonal
are units; all the other elements are zeroes; (c) the matrix is diagonal, the first r
elements of the principal diagonal being equal to unity, and the others to —1.

5.6.8. (@)||—5 —10 —7 () ||5 —20 33
6 13 —10f; 7 —24 38
17 36 —27 o 00
5.6.9. @1 00 0 (b Ax BT, (c) AXE+ExBT,
00 1o0f.
010o0|
0001

When the basis matrices are interchanged, the matrix (a) is unaltered, the
mnriTx (b) is replaced by BT X A, the matrix (c) is replaced by E X 4 +

X E.
5.6.10. (8) B’ X A; (b) E, X A + B X Ep. 5.6.12. 2. 5.6.13. 3.
5.6.14. The last » — r columns of the operator matrix contain zeroes
whereas the first r are linearly independent.

5.6.18. (a) The i-th and j-th rows are interchanged; (b) the k-th and I-th
columns!ar(e interchanged.

5.6.19. 1t 0 0
15
-2
a9
T 3 4
0 1 0 0 —1 0
0 1 0 -1 00
5.6.20, AB=]l1 _ Al Ba=| 1 1 1
|7 ) 7 "7 2 O
0 0 1 1 1
—z "7 "7 °

5.6.21. (8) P X Q7; (b) P x (Y.
5.6.22. &e operator (GA, posses(gs )the matrix

(P*AP) X (QBQ)T
with respect to the basis Fyy, ..., Fp,, and the operator F, 5 the matrix
(P AP) X Ep + Ep, X (QBQ)T.
5.6.31. No; when B = P-' AP, B = (aP)-! A (aP) for any nonzero num-
's.é.a& For example, for the matrices

o T B P
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ao=Jo ol =[5l

5.6.40. No. For example, A% = 0, B* = B for the matrices A and B in the
solution to Problem 5.6.38, even lhough A and B are equivalent.

we obtain

1 A.. <oy Ay are the e:ﬁenvdues of the operator A, then:

6.1.3. The operator A“ as the cigenvalues 1/%,, oo A

6.1.5. The operator A — AoE has the eigenvalues A, — Ay, .. ., Ay — Ag.
6.1.6. (c) The operator / (A) has the eigenvalues f (1.). woon [ ()

IG 10, ’l‘he cigenvectors are those collinear” with a. The associated eigen-
value is ze

6.4.11. The eigenvectors are polynomials of zero degree; the associated
engenvnlne is zero.

There are Do eigenvectors.

s 1 u a1... )7

6.4.15. The matrix 4 = zy always has the eigenvalue X —= z(y, + .

-+ 2y, 1f the order of the matrix is greater than unity, then there isa
Zero eigenvalue.

6.1.16. The nonzero eig lue is n, the iated ei is(t1.

). The following equation for the components of the eigenvectors is asso-
ciated with the zero eigenvalue:

a+at... +a, =0

6.1.17. The eigenvectors are the same as those of the matrix J, in Problem
6.1. 16 The engenvalues are a+ b(n—1) and a — b.
1f B= T-1 AT and z is an eigenvector of the matrix A associated
mlh an engenvalue A, then T-!z js an eigenvector of the matrix B associated
with the same elgenvalne
(a) The projection operalor has eigenvalues 1 and 0, L, being the
nsubspace associated with A = 1, L, the eigensubspace associated with A = 0:
(b the reflection operator has engenvalues 1 an —l where Ly is the cigensubspace
for A =1, L, is the eigensubspace for A
6.1.27. An _operator of simple suuctun streu:hes the space in n linearly
(n being the of the space). The matrix of this
operator with nspect to the elgenveclor basns is diagonal.
6.2.1. (a li (b) A — (ay + ag) A+ (adae — @p0u)i () W —
(a h + ags + ans) 2 + (andss + a11835 T 3033 — G190y — G103 — Gpadsy)

6. 13 M — (@ + 2y + ’-""

6.2.4. A" — aAn1 — (be, + b

6.2.9. The sum of all pnnenynl’ migors of order b of the malrix A-! equals
the sum of all pnnc.pd minors of order n — k of the matrix 4 divided by the
determinant | 4 | (k = l. ++. n—1). The determinant | 4~ | is reciprocal
of the determinant | 4

6.2.10. For example, the matrices

00 01
a=lg s ==ls ol

«s A, being the eigenvalues of the matrix 4.

are not similar.

6.2.12. m (4) =
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6.2.15. The eigenvalues are the diagonal elements ay;,
-2 ct; = 0.

6.2.. k. Ay = 2. The eigenvectors are all nonzero two-dimensional col-
“mlé 2V§c5tols

=2, Thv.- cigenveclors are of the form @ (1 { 4+ )T, @ %= 0.
A, == 2, Ay = 3. The eigenvectors for A = 1 are of the form
of lho form & (1 01T, and for A =3 of the form
a (107 a%o.

3; Ag = 6. The elgenvectors lor h = 3 are of the form

of the form & (@ 4 — 2)T;

2.28. & = A, Ay = 6. The eigenvectors l’or x = 3 are of the form
o (—, 5 —8)7 +'P (6 —3 3)T (@ and B are not both zero), for A = G of the
form a (1 4 —3)T where a = 0.

6.2.29, A, = Ay = Ay = 0. The eigenvectors are of the form a (1 1 0)T 4
+ B (01 2)T, where @ and B are not both zero.

6.2.30. A = —3, Ay = —1, Ay =1, A, = 3. The eigenvectors for A = —3
are of the form @ (1 —3 3 — for = —1 of the form & d —1 =117
forA = 1of the forma (1 1 —1 —1)T; for A = 3 of the forma (1 —3 3 —1)T;
@ 0.

6.2.31. Ay = Ay =
form @ (o 1 () -1)1 lor }.

6.2.27. &y = A,
a (o 1 =17, for

= 2. The eigenvectors for A = 0 are of the
20[lhelorma(0 10 1)7; a % 0.

The eigenvectors for
a(Z—iOb)"+D(300—1) [or A=2: a(i—101)7+§(0010)1
@ and B are Dot both zero

= Ay = Ay = 3. The eigenvectors are of the following form:
a(100—)1+9(0010)1 @ and B are not both zel
6.2.35. (a) There are no eigenvalues; (b) A, = 1 + z;. o= 12
6236 @h=2 B h=20=4 415 1= Lo,
6.2.37. (a) M = —1, 5; (b) 1, 51—2+x.l
o, S238 @) Thore gt e.g{env}'.'lues. ® M= 1y
-
* 6.2.42. Tn the complex case the sum of the algebnlc multiplicites of the

openwr eigenvalues equals the dimension of the space. In the real case this may
not be true.

62431 1 0 0 2 0 0 0
o 0 1 1 0 —2 o0 0
0 o0VE —vi|’ 0 0Ve off
2 -2 0 0 0 0 0 —-V8

6.2.44. The matrix is not of simple structure.

6.2.45. ot 1 1
21 0 0
10 2ff* 0
00 —1 0

coon=



294 Answers and Solutions

6.2.46. The matnix is not of simple structure.

6247.11 11 1 1 00 o
1 —-12 -3 0 —10 0
1 14 9’ o 02 of
1 —18 —27 0 00 -3

6.2.48. The matrix is not of simple structure.

6.2.52. A" — 1.

6.2.53. Let e be an arbitrary cigenvalue of P, i.e. an arbitrary n-th root of
unity. The eigenvector associated with e is, given collinearity, of the form

eel. .. et )T,

6.2.54. According to 5.4.52 any circulant is a polynomial in the matrix P
(see Problem 6.2.52). A circulant of order n is determined by n numbers a4
@y, - .., 8,y Given the polynomial / (t) = ag + ayt + @ + . . . 4 apqt",
lfle eigenvalues of the circulant are the numbersf (e;), . . ., / (e,) Where &,
+ .., en arc all the n-th roots of unity.

6.2.55. The eigenvectors for A; (i=1, ..., m) are

AP AT e o

6.2.57. The only case that needs proving is when A, is an eigenvalue of 4.
Let its multiplicity be k. Then the rank of A — AE is n — k (the matrix is of
simple structure!). Since the characteristic polynomial of the matrix 4 — Aok’
has a zero root of multiplicity k, t! ffici of this pol: ial is nonzero,
and there 1s a nonzero minor among the principal minors of order n — k.

6.2.59. (A —hp) <+ (A — hp).

6.3.5. A is a scalar operator.

6.3.11. The converse statement is not true.

6.3.16. The nontrivial invariant subspaces are: the straight line whose direc-
tion vector is a (the zero operator is induced on it), and the plane orthogonal to a.
The operator induced on this plane is the operator of rotation through 90°.

6.3.17. The spaces My, 0 < k < n, and the zero subspace.

6.3.19. Rewriting the condition B = P-4 P in the form PB = AP and
equalizing the first columns in the derived matrix relation, we see that by, is
an eigenvalue of 4, and the first column of P is its associated eigenvector. Hence
to construct the transforming matrix P find an eigenvector of 4 and extend it

ily to form a atrix.

6.3.24. Select a basis ¢, . . ., en for the space so that the first vectors of
this basis, e,, . . ., ey, form a basis for L. Then the matrix of the operator 4 is

< ]
ac=[g 2zl

Ay being the matrix of the induced operator A/L with respect to the basise,, . . .
++. €. Assume that Ay is not of simple structure, and for a certain eigen-
value 2 of this matrix of multiplicity p, i, = ra,,-ag, >k — p. Let & be of alge-
braic multiplicity g as of an eigenvalue of Agq; thenry = rypy gy, > (R — k) —
— g. Thus, A is an eigenvalue of 4, of multiplicity p 4 ¢, b

TaeAER 2Nt re>k—p+(—k—qg=n—(+4q,

which is contrary to the assumption that 4, is of simple structure.
6.3.33. The two-dimensional invariant subspace is drawn on the vectors
2= (01 17T and y= (21 0T,
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6.3.36. The eigenvalues of the operator are on the diagonal of the matrix.

6.3.40.1|0 —1 1 1 00
0 o-:l. o 10
0 0 o —1 -1 1

6.3.41.([2 0 1 1 00
010> —2 10|
002 1 —20

6.3.44. In accordance with Problems 6.3.19 and 6.3.38, construct a matrix P
reducing 4 to triangular form in n — 4 stages At the first st , take the eigen-
vector common to the matrices A and B to be the first column of the transforming
matrix P@). Then A®) = (P(‘\)-‘AP(’) and H(‘) = (P(‘D)-‘BP(‘\ are of the form

B b
A= Bh=
" Bn-l
Ap, and By, being square matrices of order n — 1. Construct the matrix P(®)
10
o= ..

8o that the first column of P, _, is the eiﬁenvecwr common to the (commuting)
matrices A,_, and B, ,. Continuing in this manner, determine P as the product
PO PR | P("-‘) both matrices P-'AP and P-'BP being upper triangular.

6.3.45. For the commuting operators A and B, there is a basis for the space
with respect to which the matrices of both the operators are triangular of similar

6 :3.48. Let a matrix 4 be similar to an “Ep“ triangular matrix R, and a
matrix B to an upper triangular matrix 7. en A X B is similar to R X T,
the latter also being upper tnangular with all the possible products A,p, pllud
on its principal diagonal. Similarly, the matrix 4 X En + Ep X B issimilar
the upper triangular matrix R X E, + E,, X T on whose pnnclpal dilgolnl lll
the posslble sums A, + by are plued

. €y, -« -y €n for the s ace 80 that ¢;, ..., ¢ form a
lnsls lor L,, .nd e,,.,, N bAsis for L,. Then the matrix of ‘the' opeutor A
is quasi-diagonal:

‘n "

Partition the matrix B, of the operator B thus:

_||Bn 9""
B:l B:S

From the condition 4,8, — B4, = 0, we obtain
AnBiy — Bipdgy = 0, 4308 — B,,A,, =0

Now. it follows from 6.3.49 that By, = 0, By,
51. If 4 is similar to a u‘nnguhr mu.nx n. “then Ap is similar to the

unmlur mnnx Rp.

. The b.sns For the root subspace for A = 0 is the vector (0 1 —1)7.
The bag‘is for the root subspace for A = 1 is formed by the vectors (1 0 1)” and
© 1 0.

6.4. 1& The only eigenvalue is A = 1. The root subspace coincides with the
three-dimensional uritﬁneuc space.

A,=
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6.4.14. The basis for the root subspace for A = 2 is made up of the vectors
@—1007, (10107, (200 1)7 The basis for the root subspace when
A= —2 is the vector 0 10 —1)7.

6.4.15. The basis for the root subsplce when A = —1 is formed by the vectors
1007, 0ot 1)T. The basis for the root subspace when A = 1 is formed
by lhe vecwrs 31007, (0—23n7.

7. (a) Assume that the vector (A — A;E) z has height k, k < k. Then
(A —MEP (A —ME)z=0= (4 — ME) (4 — ME)a.
Thereby, the nonzero vector (4 — ME)* z ] is un elgenvecwr associated wnh the
ﬂgenvnlue Ay, Ay = Ay, which is since the root intersect
in the zero vector;

(c) as with (b), show that for any number & other than Ay, the height of the vec-
tor (A — aE) z is the same as that of the vector .

The transpose of the Jordan block of order n for the number Ao

6.4 23 The canonical basis can comprise, for enmple, the vectors ¢ =

= (4 3)7, e; = (0 1)7. The Jordan form is as follow:

=] 1]
6426 o =( 1 1 —1T, 010
ea=(-4 =5 6T, J=[oo 1.

e=( 0 0 1T 000

6425, , _q _y o of. 2100
=0 1 —1 of. ,_ 0210}
=0 0 1 —nT. 0021
=0 0 0 1T 0002

6.4.26. ,=(1 111 1T,
e=(3210 —17,
e=(3100 T,
ee=(1 000 —T,
6=0000 {T;

6.4.27. || —1

0
0
6.4.29. |19 1
9
0
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6.4.31. |21 00...00 6.4.32. [« 1 0 0 0
0210...00 0ai10..00
0021...00 00 at 00
0000...21 000 La
0000...02 0000...0 a

6.4.33. The Jordan form is the I ordan block of order n + 1 corresponding
to zero. The canonical basisis 1, ¢, F [ L 7 "

6.4 29 Both are equal to (A — Ag)®, n bemg the dimension of the space.

then G (4 —hEV i+ ..+ ap(d —AEVz, =0,
(A4 — BV (m + - o+ ) = O,

whence (since k < 1)
gz + .tz =0,

=0.

& (A — MEVz, + .+ oy (A — ME)z, € Hypoy
0= (4 — ME)-hly = (4 — HEN (a2 + - - - + apzpe
Therefore
iz + ..t apr, =0

and & =...=a,=0.

6.4.42. Applying the operator (4 — AyE)!-! to both sides of the cquality
ozt ... taprpt fd —hE)nt ..+ Bp (A—hE) 7y +

et B @ = AME I (A —ME) N, =0 (@),

we obtain
(A = AE) @z + - . . + apz) = 0,
whence ¢, = ... =a,=0. Simllarly, applying the operator (4 — A E)!-3
to (a). show that ﬂ‘ =0,
6.4.44. A canonical basis is, fur enmple, and the Jordan form
21 2T, 1100
01 T, sfotoo
21 T, 001 1)
0001
10 of
6.4.45. e=( 00 101 T, 9 1 0 0
e=( 01 00T, sl o 0o
e=(101 0 0 0)T, g 3 93 9; :
e=(00 017
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6.4.45
a=( 1 2 10007, -1 1 0 0 0 ©
e=(—2 —3 —1 00 0T, g—; : g z g
e=( 1 0 00007 J= -

¢:= 0 0 01217, g g g_;_: :’.
e=( 0 0 01107 0 0 0 0 0 —1
e=( 0 0 01007

6.4.47

=000 0 —1 0T, 210000

=100 0 0 o, 020000
=000 —3 0 07T, j=°°2‘°g

=010 0 0 0T, zgz;:’

=000 0 0 —57, 000002

=001 0 0o oF;

6.4.48. The Jordan form consists of two Jordan blocks of order k corre-
spnnding to zero. A unomcd basis could be, for example,

1 —l' —(‘

—— {2k —_— k-1
O il (2k—2)l s, ERoR (2k =

6.4.50. n=(my—my_y) t+2(mq_y~ my—my_) (t—1) = pyt +(ps— py) (t—1).
The Jordan Iorm‘ conslsts of p, ilocks lol nr’dvgr t an ;z,—l P ‘wl:wks'z order

6.451. ||le,=(4 —2 T, 310
=1 0 0T, J=llo 3 of.
=0 1 —1T; 003

6.4.52. [le,=(1 1 1 9T, 4100
=100 0F, 7=|° 400
=011 07T, 00 40|

- 0004
(=001 —nF;

6.4.53. ¢,=(24 0 0 0 0)7, -2 41 0 0 o
e,=(5780 0T, 0-2 1 0 0
a=(0000 17, 7= g z*ﬁ_g ‘1’~
e=(4 600 0T, o 0 0 o0 —2

&=(0001 07



6.4.54,

6.4.55.
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=01 11 117, -
=0 —10 00T,
= 10 19T,
e=0 00 —1 0.
=0 00 0 4T;
The Jordan form consists of two Jordan blocks corresponding 1o zero,

J=

co oo =
oo o m -
|
co~oo
5 m 0o

one being of order k + 1, and the other of order . A canonical basis could be, for

example,

1. L[.’

2!

1 1
— _—
Carth e vk ¢

1 1 1
—_— 13, — b ———— 2k
T e ey

6.4.56. The Jordan form consists of p; blocks of order ¢, py — p; blocks of
order t — 1, and in general, py_,,; — py-y blocks of order k, 0 <k < t.
ise

6.4.58.

6.4.59.

6.4.60.

6.4.61.

6.4.62.

No; otherw;
myg—my=22>my—my=1.
=22 -2 =27, 1100
=01 1 of, ,_fot1o
=00 0 9T, 001 o)
0001

=10 0o 3%

g=(—311 1 T, -4 1 0 0 0

a=(—201 1 9T, 0—-1 1 o0 O

a=( 100 o of, =] 0 o-1 o o

e=( 100 —1 07, 0 0 0-1 0

0 0 0 0 —1

e=( 100 0 —1F

=2 —12 0 o0 0 0T, 010000

6=(6 0 —2 8 —4 OF, 001000

= (1 0 o0 3 o —1yT, J=0001oo

e=(0 0 0o 1 o OF, 000000

s e o oF 000001

e=( 0 ~1 - )" 000000

=(2 0 0 —3 o §HT;

e=(—2020 20T, 210000

e.—( 0000207, 021000

e—( 1000007, s_[002000
000210

~( 00030 1,

ol )T 000020

ey=( 0001007, 000002

e=( 0100007
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6.4.63. ¢,=(—2 2 2T, -2 10
e=( 11 —1)T, J=[| o —2 0.
H=( 01 1 0 03
6.464 e,=( 1107, 200
e=( 01 1T, =[lo 2 of.
=(—1227; 003
6.4.65. ,=(—4 —3 —47, 11 0
e=( 2 2 —nf, J=[lo1 of,
Ha=( 1 0 1f 00 —2
6.4.66. e, =(1 —1 2T, 110
=0 0 —nT, J=|011
6=0 1 Of 001
6.4.67. e=( 3 3 —3 —3T, 21 0 o0
e=( 1 0 —1 0T, _|le2 o o
e=(—3 —3 —3 —3T, 00 —2 1
e=( 1 0 1 0OF 00 02
6468. 6=( 2 1 0 0T, -1 1 00
e=(-21 =100 0 of, , | 0-1 10
H6=( 0 0 3 —2T, o n--10
e=( 8 3 -1 0 0 o0
6.4.69. e,=(—2 —1 0 )T, 01 0 o0
e=( 1 0 —2 3T, ,=00 o0
a=( 0 0 107, 00 —1 of
e=( 0 0 0N 00 0t
6.470. e,=(2 —2 2 —2)T, 310 0
=01 01 0T, _|fe30o o
=0 —1 0 1T, 003 o0
000 —2

e=(0 01 —1)T;

6.4.71. Each block is replaced by its transpose; the order of the blocks on
the pnncnpal diagonal is rever:
The diagonal elements A,, v oo g of the Jordan form of the opera-
tor A are changed to Ay — Ag, . .., Ay — Ay in (a), and to 1/A;, . .., 1Ay in

'6.4.75. The Jordan form of the operator A2 can be oblained from unl of lhe
operator A as follows: replace A by A% in each block corresponding to A
replace each block of order k corresponding to 0 by two blocks of order ! 11’ k=

and by two blocks of orders I + 1 and I, respectively, if k = 21 + 1.
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6.4.77. It follows from the comlmon A® = E that the elgenvalues of the ope-
rator 4 can only be equal to 1 and —1. Verifying the equality J2 = E for the
Jordan form of the operator A we find that J is a diagonal matrix, i.e. 4 is an
operator of simple structure whereas both 1 and —1 must be the cigenvalues of 4,
otherwise A = —E or A = E. Denoting the eigensubspaces of the operator 4
associated with 1 by L, and L,, respectively, we obtain that 4 is a reflection
operator in L, parallel L,.

6.4.79. The defect of the operator A — A E can be found using the matrix
J — hE, where J is the Jordan form of the ogonlor A Usmg l,hls matrix each
block of 7 corresponding to A, is transformed into a block of J — A E corre-
spondmg lo 0, the defect of the latter being equal to unity. Tho other locks of

—ME nondegeneule. and thus the defect of J — AE equals the number
l Jordan blocl(s of J corresponding to

6.482. |1 100 0 6.4.83. 110 0 0
011410 0 o011 o0 o0
0011 of. oot o of.
0001 0 000 —1 1
0CcCoo0 —1 000 0 —1

6.484 5100 0 O 6485 )20 0 0 o0 O
0500 0 0 02 0 0 0 O
0051 0 0 60—-4 1 0 0
0005 0 0 00 0 —4 1 of
000013 O 00 0 0—4 0
0000 019 00 0 0 0 —4

6.486. |1 10000 6.487. |11 0000
01000090 011000
001100 001000
000110 000110
000011 000011
000001 000001

6.4.88. The Jordan form consists of one block of order n41 corre-

spondmg to zero.
6.4.89. The Jordan forms of both the onenlom coincide and consist of three

. Jordan bloeks of order 3 correspondin;

6.4. here is not a single pair of the m.mces A, B and C that contains
smuln matrices.

. A and C are similar to one another and not similar to B.

G 4.93. 4 and B are similar to one another and not similar to C.

6.4.95. If 4 is an eigenvalue of 4 not 1 or —1, then 1/A is also an eigenvalue;
moreover, to both eigenvalues then cormponds the same number of Jordan
blocks of resrcuvely equal ol

6.4. l nly one Jordan hlock m the Jordan form can correspond to each
eigenvalu

6.4, 100 Write a quasi-diagonal matrix of order mn whose diagonal is !he
matrix J repeated m times. Then the Jordan form of the matrices 4 X B and

X E, + X B is obtained as follows: (a) for each nonzero eigenvalue Ay
orA muluply the diagonal elements of the i-th block of J by A;; and if 4, = 0,
then’ the corresponding block of J is replaced by the zero matrix; (b) add A;
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to all the diagonal elements of the i-th block of J. The Jordan form of the op-
erators G4 p and Fj, g, respectively, is obtained in the same way.

6.4.101. If a ns the n-th primitive root of unity, r= y , then the Jordan
form of A is as follows:

1+r 0
1rra
t+ra2

0 14ran-t

7.4.6. 1f A is a diagonal matrix sucki that Ay = (¢, ¢;), then
(A%)e = A1 (4% A,

where (4,)* is a matrix conjngau: to A4, ln particular, if the lengths of all the
vectors e, are the same, then (A*)e = (A,)
7.1.7. For elements a;; of the ‘matrix A, of the operator 4, the equalities
must
ay = (Aey, f1);
similarly, for elements a5 of the matrix7A} of the conjugate operator 4*:

af; = (A%, ).
Therefore _
ah = ap

7.1.8. Any operator on a one-dimensional space multiplies each vector in
the space by a fixed (for the given operator) number a. If the space is unitary,
then the con, uﬁnu operator multiplies by the coniugnte number a. Any opera-
tor on a Eucl space with its

; . ‘i‘o‘:' l}olauon through the angle & in the opposite direction.

1.

7441, (@) 010 000
002 100
000 020
|—3—4—1 —1 11
% 10—t 0 00
1 4 3 —1—11
© fo10 o2 o
003 3
ooc _4
10—
4
o3 0
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7442 @) || 0 —4 0 (b) -3 11 (@0 —2 0
3 S|4 o4f: 3- ., 3
5 0f; 2 z ozl
0o 60 0 0
7413, (a) [|[0 —5/2 0 b [—3 22 ©[[000
3 0 1 _5 45, 300f.
0 1520 4 4 050
—2 —2 3

7.1.19. In the complex case Py = tr (4}B).
7.1.20. If ¢;, . . ., ¢, is an orthonormal ‘nsis for the space X, then the vec-
tor f is one whose coordinates with respect to this basis are the numbers f ey), . . .

ooy [ (en)s
51&.‘:‘ A* is the projection operator on the plane z + y + z = 0 parallel
to the axis Oz.

7.1.26. (a) The basis for the kernel is the polynomial ¢%, and the basis for
the image is made up of the polynomials ¢ and ¢3; (b) the basis for the kernel is
the polynomial 3¢ — 2, and the basis for the image consists of the polynomials
tand 3¢2 — 2; (c) the basis for the kernel is the polynomial 3t* — 1, and the basis
for the image contains ¢ and 312 — 1.

7.1.32. The inclusion T,,5< T4 + Tp 15 always fulfilled. Show that for
the data given, To,p = T4 + Tp, for Which it suffices to show that 7, c
< Thup and Tp'C Thupe

L41% € Ty0:then A= 0 (by the condition AB* = 0) and (4 + B) z =
= Bz. If z ranges over T z*, then Bz ranges over Tp; thus, Ty 7,4, . In the
n;n.e way deduce that T4 74,5 by rewriting ‘the condition A5¥="0as

B;zhé second condition in the problem and Problem 7.1.31, the sum T4, 5 =
= T4 + Tp is orthogonal. Therefore

Tasp=7Ta+ 5

Similnlz, it can be shown that Ty, p# = T4+ - Tpe, whence by trans-
!el’l‘;lllg to the orthogonal complements, we obtain the second statement of the
problem.

1.1.’.3:’.‘ ‘l‘h‘e) n\ll.ll suhspn)ce and spans of the sets of polynomials ¢*, th+1, . . .
ey P k=101, ..., n).

7.1.35. The required subspace is determined by the condition

n
> f =0
h=0

7.1.36. The required subspace is determined by the condition

1
5 f@)dt=0,
-1

7.4.39. (2) 1, & % () VE, 4VE @e—-2/VE © 1V 2 VIR,
V5B @Ee—1).

7.4.41. If Ay, . . ., A, are the eigenvalues of the operator 4, then the eigen-
values of the operator A* are Ton-
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7.1.44. Let k be the dimension of K. Then for r a0y vector z from Kj: (4 —
— AE)k z= 0. If y is an arbitrary vector from K}, then
0= ((4 —AB)hz, y) = (z, (4% —RE)ky).
The operator A* — AE is nondegenerate on lhe mvannnt subspace Kji. There-
fore the obtained equality means that X,
7.1.45. The Jordan form of the operator A‘ is'obtained from the Jordan form
of A by replacing the diagonal elements with the conjugate complex numbers.
46. A canonical basis for the differential operator can be constructed,
ple, by the polynomials 2, 2¢t, t%; a canonical basis for the conjugate
r by the polynomials (2, 1/2 1/
.1.47. Let the given order of "the elgenvul\les be as follows A, , ).,’. ey
and let it be required to construct an upper Schur form. Then take the normed
eigenvector of the operator 4*, associated with the eigenvalue X, , , as the vector
e, and consider both the operator 4, induced on the orthogonal complement to
e, Which is A-invariant, and its conjugate A}. Take the normed cigenvector A}
associated \uthf,n 188 e,_y, and then consider the orthogonal complement to the
n of the vectors e, _, and e,, etc. The construction may also be performed “in
the reverse order”: select the normed eigenvector of A associated with l, as
the vector ¢, and then consider the orthogonal complement of e, which is A
invariant, etc.
7.2.20, This statement about a Euclidean space does not hold. Any operator
whichll;;s 1o engen;'-hles and is not normal will serve as a counter-example.
. Yes, it
7.2.29. No, if all the engenvulues of the operator are of multiplicity unity;

yes 1lat least one of them is multiple.
2.30. A, = , Ag = 1 — i. A basis could be, for example, the vectors

i 't
=—= (1 1), = (1 —1)7.
&= V3 ( €= 2( )
7.2.31. Ay=0, Ay=3i, A= —3i. A basis could be, for oxumple. the

1 _ e g
=3 2460 5T, 6= 1/1_0(“-

vectors e,=%(z 1 =27, ¢,= 3

+4-3 2—61 5)T.
7.232, M= —1, Ay=2—i, Ay=3—1i. The basis is z.=# 2 -1,

1197,

o= %u 01T, e,=-l/‘—

7.233. Ay=2, Ay=—2, A;=2i, Ay=—2. The basis is ¢=
1 1 1
=W“ 1007, ¢= vz ©01 —1)T; e = U =t 0T, eg=
=5 -1 —i =)
7.2.34. No. The differential operator is not an operator of simple structure.
7 2.35. No. if @ 5% 0. When a = 0 the ldenmy operator is obtaine
7.2.37. If z = (1, @y, &) and y = are nbltnry veelors from
Ry, then tho scalar product can be given ‘by lhe ormula
(@ ) = aify + aiB; + @By + oy + 206,
+ 20,85 + sy + 2asf, + 3aifs
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617 em (i B R
] V3T
-t )

1 T T
7.2.42. For e l,——l—2|,=—|0—1 =
‘or example, ¢; Ve ( ), e V3 ( ), es
1)t
V3 ( ).

7.2.44. Let all the elgenvnlnes of the opeuwr A be different in modulus
1M1 >12 1> .. >[hyl, and let ¢, n be the corresponding ortho-
normal elgenvectax basis. The matrix of th perator AB with respect to this
basis is normal and equal to the product of the matrices 4 quali;

(in accordance with 7.2.12) the sums of the squares of the moluli of thz elemenu"%
the first row to those of the first column of the matrix 4 ,B,, we obtail

A2 (18013 byg ]2+ o= [bin [} = [Ay)2[bya ]2+ [Agl [by |2+ -[Anllhml‘
Since B, is also a normal matrix,
15ual2 4 [baa [P oo [bna 2= 1031 |2 = 1ya |2+ o+ [Bin 2
These equalities are all true only if
by=...=by=by=...=bp=0
Similarly it can be shown that all the other off-diagonal elements of the matrix
cBo'm n‘:.eu zer roes. Thus B, is diagonal matrix, and therefore the operators A and B

7.2.45. Reasoning in the same way as for the proof of 7.2.44, show that the
matrix of the operator B is quasi-diagonal with respect to the orthonormal eigen-
vector basis of the operator 4 (if it snhsﬁes the wntlmons of lhe problem), and
that its diagonal blocks of order > f the
of lhe o?enmr A. Hence the mnmces of the opentors commu e.

Any vector [nr v\hwh this maxlmum occurs is an ﬂgenveclor of the

openlor

. No. For exlmple' for a unitary openlor U, the ratio | Uz x|
eqlnls uml{ for any nonzero vector z.

7.3, e operators of muluplicman by a number whose modulus equals
unity.

7. & No. ‘l‘he operator A is degenerate.

7.3.8. (a) Yes; (b) no.

7.3.10. No, if the operator is not the identity operator.

7.3.12. .}.) The eigensubspace for A = 1 coincides with the set of all even poly-
nomials and the eigensubspace for A = —1 oommdes with the set of all odd poly-
nnmills, (c) the eigensubspace for A = 1 is drawn on the set of polynomials
LY 1 4+ ¢, ..., and the engensnbspnce for A = —1 is drawn on the
pnlynomhls ;m—q, g, If n= 2k — 1, then both the subspaces

are of dimension k; if, ha“ever' n= 2k, lhen the dimension of the first is & + 1
nnd of the second k

7.3.13. The scalar product of polynomials f(t) = a + ayt + ap® and
€ (1) = by + byt + byt* may be evaluated by the formula

(f, 8) = 3agby — 2aby — 2agby
—2a1by + 206, + arbs
—2a4by + agby + 2a3b,.
1/; 20-0819
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7.3.46. 12 2
3 3 3
2 2 1
%=l—3 3 T
2 _1 2
3 3 3
7.3.18. Yes, it is.

7.3.21. Let 4 be the given operator nlld let g be an arbitrary or-
thonormal basis. By the data, the vectors 4 Ae, are orthogonal each
to each. Show that they have equal length. lf " for enmple, =|Ae|#*

@, = | Aey |, then the vectors e; + e, and e; — e, are orthogonal, and A le +

+ &) and A (e, — e,) are not:
(A (erF ey A (e — &) = (Aex, Aey) — (Aey, Aey) = o — .
Therefore | Ae; | = a for all i =1, ..., n, and then 4 = aU, where U is a

unitary operator transforming the vectors ¢; into_the vectors (1/a) Ae;.
7.3.34. Interchanging the rows and columns of a matrix in the reverse order

is a unitarily similar transformation.
7.3.37. ¥ — ¥y = (¥ — Vo) + 2k
7.3.38. §, = —{3 = arg a;; — arg ay;,
laitl . la;il
cos ¢ sing =

V lanl +1agl* Vlanl*~lagl?

7.3.40. M\lltmly the given mamx A on the left by the sequence of elementary
unitary matrices Ty,, 75 .o n 80 as to make all the
subdiagonal elements equnl to zero "one ’by one The denved upper triangular
matrix is one of the hctols of the required decomposition, and the other is the
prodnct T3,TY

.3 44, {‘he lenglh ol’ the vector w must be equal to unity.

7.3.46. The eigenvalues equal 1 and —1. Moreover, A = —1 is an exgenval\le
of mnlnphcity unity, and its corresponding vectors are collinear with w.
elgenvecton for A =1 (and the zero vector) make up the orthogonal complemem

7.3.47. The determinant equals —1i.
7349 w=(—sinFeos )7,
7.3.50. The product Hz should be evaluated by the formula
Hz=3z—2(@, v)w
The scalar product (z, w) is computed by (7.1.4).
7.3.50 w-l—‘r (& — key), where | k| = | 2| = (z, /", s to the
rest, the chom of k is arbitrary.
7.3.52. In accordance with 7 3.51 select the matrix H, so that for thegiven
matrix A of order r, the matrix 4; = HyA ,may be of the form
k X, |
0 i, !
such that Zg is a submatrix of order n — 1. Now construct the matrix H,:
10...0 l

(N4

4,=
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where H, is a reflection matrix of order n — 1 selected so that all the subdiagonal

elements of the first column of the matrix H,A, are zero. The first two columns

of the matrix H,H;A will now coincide with the columns of a triangular matrix.

In a similar way after n — 1 steps an upper triangular matrix is obtained.
The unitary factor of the required presentation is the product HyH, ... Hy.y*

7.3.54. 1f the column vector (agy ag; « « « a,)7 isidenoted by ;,. then a matrix

of the form
Ili 0...0
o K

may be taken as H, where 4 is a reflection matrix transforming q, into a vector
collinear with the unit column e, of order n — 1. Moreover, Hyis itself also a re-
fection_matrix.

7.3.55. For any operator there exists an orthonormal basis for thejspace with
to which the matrix of this operator is upper (lower) almost triangular.
7.4.7. In the complex case, lhesej are operators of multiplication by a real

All linear op ona space
- Yes.
17 5 —1
7445, Semgll 5 =7 5 ||,
—1 5 17

7.4.24. H = 0.

7.4.34. Let L, be an arbitrary k-dimensional subspace. Consider the ?ln
My _p 4y of the VECLOTS ey, €pypy - - -9 €n to%ether with Ly. The intersection of Ly
and M, _g,, is at least onhlimensioml; et z, be a nonzero vector from this
intersection. Then according to (7.4.3),

Yo 2 g,

(20, o)
Thercfore @
z, 2)
mo S <M
€Ly
80 that also
. (Hz,
max min ( f::) < Ap.

Ly axo (&
SELA

That the equality in the relation (7.4.4) occurs is demonstrated by the k-di-
mensional span of the vectors e, . .
7.4.5) is proved similarly.

7.4.35. Without loss of generality, the submatrix H,
in the nrper left-hand corner of the matrix H. Let fy, - . +, fn-1 be an orthonormal
basis of the eigenvectors of the matrix H,., associated with p, ..., pn-ys
respectively, where py > pg > ... > pny. According to (7.4.3),

1 may be assumed to be

max o ) gy B 9)
o) [T P
32 vesT,

20%
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where 7y is drawn onll,

there M i o and ﬁn:. 0D fpy < « -4 fn-1- Now, match each
n — mensional col

voen ]

umn y w’ﬁh an n-dimensional column vector z such that
(v

=(3)-

(Hpoy. v) _ (Hz. 2)
(287 (£ 2

for the corresponding vectors y and z. To the subspaces M., and M, there
correspond, in the n-dimensional space, M,_; and M, of the same dimension.
Therefore, it follows from the Courant-Fischer theorem that

Mot < i < M

7.4.36. One positive and one negative eigenvalue.

7.4.40. For any Hermitian operator, there is an orthonormal basis for the
lpuc7e‘w‘i;h m&ect t‘o whita the;'mutrii of l;’;’ opienltoa ;s tﬂt‘ugo&a! L»

AA2 fo M =1, HA)=h [;(W) =4 —1, fs(}) =71 —2), =

=AY, f = A — 4;.!’+ 3. ‘

7.4.44. Use the induction method over the number of polynomials in the
set fo (M), fy (M)s + + .y fx (A). Let k= 1. Then f, £p) is greater or less than zero
according as the number p is greater or less than the unique root A{"’ of the poly-
nomial f; (). In the first case, the sequence

=14 h®

has no sign cha , and in the second it has.

Assume thalmspmposition in the question is true for all k < r. The values
o{ thie pohmomiuls fr (M) and fp4 (4) at the point p may then be calculated by
the formulae

Then

r r+1
fr= []' W=A, fra = ,l']‘ (=AY,
= i=

Hence the sign of each of the numbers f, () and f,,, (4) is determined by the
number of negative brackets in the corresponding pmﬁnct. The number of roots
of the polynomial f,y g.) occurring to the right of the point p is equal to, or one
greater than, that of the polynomial f, (A) (see 7.4.43 (b)). In the former case,
the sign of f,.,; () coincides with that of f, (4), and the sequence

fo (s 1 (W) oo os fr (#)s fraa (W)
has the samne number of the sign changes as the sequence
fo W fr Wy -« oo fr (W

In the latter case, the signs of f,,; (s) and f, (1) are opposite, and n the first se-
quence there is one more sign cfunge than in the second.

7.4.45. The proof, as in 7.4.44, uses the induction method. First, let ¥ = 1.
If p = A, then the same sign as of fo (4) = 1 is ascribed to the zero value of
h (») and the sequence

. fo)s h

has no sign changes.

Now, let the statement be true for all k < r. If p is not a root of the polyno-

muals f, (A) and f,,1 (A), then the induction follows as in proof of 7.4.44. Con-
sider the two remarning possibilities:
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(a) p is a root of lbe polynomnl s ). Then by problem 7.4.43 (b), the num-
ber of roou of the polynomial f,.; (\) ymg to the right of p is one greater than
that of f, (A). The numbers f,,; () and f,; (1) have opposite signs and there is
one more sign change in the sequence
To (o fr @ « - v Fraa @ fr (W) fren ()

than in the sequence

fo (s fr e+ o oo Froa () Fr (D3
(b) i is a root of the polynnmul fr41 (M- In this case, the rule described above
to a(scrn)e a sign to a zero value is ns@éx and so the indicated seq\lences both have
the same number of sign changes. In -ddiuon. both the p: {nomnls fr () and
#r41 (M) have the same mnnber of the roots lying to the right of p
7.4.46. Let S (z) be the number of sign changes in the sequence of numbers

fo @1 1@y - -1 f (@
Accarding to the condition S (a) > k, § (0) <k Put =238 and set up
the sequence

fo(@s 1) oo fn (O

If 8 (c) >k, then 2y lies in the mterval (c, b). 1f, however, § (c) <k, then
euher or My lies in the in
. The required approximation tn A, is 2

1‘ 52. (b) Any real symmetric matrix is nrthogomlly similar to a diagonal
mllnx

5?

75 20 Let A be any eigenvalue of the matrix A and z the corresponding
eigenvector. Thes

0 > (Cz, 7) = (A*Bz, z) + (BAz, 2) = (Bz, Az) + (Az, Bz)
= (+ M) (Bz, ) = 2 Re h-(Bz, 2),

whence Re 4 < 0. Now, the nmqueness nf the solution of the Lyapunov equa-
tion I‘;rzthe mntronx 4 follows from 6.3.4
7. H

7.5.26. The proposition in the problem follows from 7.4.19 and 6.3.51.
7 &28. The proposition in the problem follows from 7.4.20 and 6.3.48.
r 30. The matrix S is the Schur product of the positive-definite matrices //
lnd H
" 7.5.36. The necessary condition follows from 7.5.9. Now, let the matrix H
fulfil the Sylvester criterion. Prove by induction that the leading principal sub-
matrix Hy is positive definite.
For Ic L1 it is obvious. Further if Hyis l{msmve definite, then the eigenval-
ues p, > my_of this matrix are posn It rollows from 7.4.35 that at
lustlk Ay of the eigenvalues A, > > M4y of the submatrix
are positive. But in view of the condition’ del 7!».1 >0, hy.; is also posi-
ence Hy.; is positive definite.
7.5.39. The matrix is not ’Fosnwe semidefinite. 7.5.40. The matrix is not
positive semidefinite. 7.5.41. The matrix is positive definite. 7.5. 42 For any
& > 0 the matrix H + eE satisfies condition , therefore A at least,
positive semidefinite. However, it can be shown that the delerminqnt oi the
matrix H is positive by evaluating it using the iterative formulae which relate
the principal minorsin the lower right-hand corner. Therefore A is positive definite.
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7.5.43. The matrix is positive semidelinite. 7.5.44. The matrix is positive
semidefinite.

7.5.46. 3 —1| 7547, (1414
v“ | Ll
14
7.5.48. h2 —4 7.5.49. 1111
o2 o2 aft1as
-4 2 14 2 1114
1114

7.5.53. It follows from H > S that S-'AHS-12 > E, where S-1A=

= (81/2)-1, Then, according to 7.5.33, S}2H-1S12 < E or H-! < 8-,

7.5.60. Let = be an orthonormal eigenvector -of the operator HS corre-
sponding to the eigenvalue y,. Then

= (HSz, 2) = (Sz, H2) < | Sz || Hz | < aufy.

In the last pan of the relatmn. relnmn (7.4.2) is used.

7.5.61. (a) It follows from # = S + K that 1S-'K = §-! H — E. Since
the eigenvalues of the matrix A“Il are positive, the-eigenvalues of the mnatrix
iS-1Kare real and greater than —1. Note that S™!K is similar to the skew-sym-
metric matrix S-1/2KS-1/2, therefore its ) an
about zero. Hence the engv.-nvalues of iS1K are less

(b) to prove the Krnpusmon it suffices to verily llm (Iel (S-'H) < 1. It fol-
lows from (a) that the eigenvalues of the matrix $-1// lie 1 the interval (0, 2)
and are symmetric about its midpoint. The product of each symmetric pair of
the eigenvalues, 1 + z and 1 — z, does not exceed unnf' hence the required in-
equality. When det S = det /, the matrix S-'H equals the unil matrix;

(c) it follows from (a) that | det (S71K) | <1 \\hence det X < det

a, re the smguln values of the operator A then (u) A*
hls the same smgular values. (b) @4 has the singular values' lalag, .-
| o

" 7.6.5. The singular values of A are reciprocal to the singular values of 4.
768 n,n—1,...,2,1,0.7.69. 2V3, 1/ 30

7.6.12. The columns of U make up an onhonormnl set of the eigenvectors of
the matrix AA*, and the columns of '* form an orthonormal set of the eigenvec-
tors of the matrix A*4.

7.6.16. () A = V! AU; (b) A® = VSAUS; () A=} = (PV) *PA-1P (UP)*,
where P is the following permutation matrix:

0'14

£ 0
7.6.19, The unigue nonzero singular value equals
n o
TNy 1/2
oy 12)2,
(&, g, 1ot

7.6.28. These estimates are obtained from 7.6.23 if the unit column vectors
are taken as z.
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7.6.31. Without loss of generality, we can assume that 4 is in the upper left-
hand corner of 4, since this can be achieved by interchangin mr priate rows
and columns which evidently leave the singular values unaltes Let] A be of
the following partitioned form

Ais
¢ D

Then the matrix F = AA‘ + BB' is thidynnclpal submatrix of A4*, and its
do not exceed the corresponding
eigenvulues of AA*. Since BB* is a positive semideﬁmte matrix, the eigenvalues
of A4* also do not exceed the corresponding eigenvalues of F. Hence the re-
quired statement.
7.6.34. Let Lﬂ be a subspace of X such that

A=

A,
a.=mm ! IBI”'
:eL‘.
Since
|ABz| | Bz|
o
Tl <%
op < %y-mun |Fz] < o max min 1821 —=oBr.
w0 |7l L, =0 1271
xeL} €Ly

1 there is a nonzero vector z in the subspace L& such that Bz = 0, then § = 0,
and the mequuhty oy, < 0B, becomes evident. (Note that in this case f, = 0
also, so that the ourth ineqnnhly is also valid.) Otherwise the subspace BLj
is of dimension k and for all nonzero vectors from Lf:

14Bz| _|ABz| |Hz| <B 14 (Bz)|
[E] [E2] ' T1Bal ¢t
Hence
14 (Bn)| 14y) in A1
) s ————=f;. mm - max min =Py
n<Bemis SEer R mn Ty T D e P
€LY, veBLY *€Ly

‘The other two inequalities are proved in a similar \vny
7.6.36. All the possible prodncissa,ﬂ,, 1,

5. a4y = a, = ag =
=a, 6.46. @ = ay = 2|/ 10, a3 =, = V10,
7.6. (7 when n = 1 we obtain the tngonnmetnc form of a complex number.
7.6.48. H = (A*A)A.
7.6.49. It follows from the polar upresennunn A = HU that A4* = K2,
USHU. Let A®Ae; = U*He; = aie;. Then H? (Uey) = af (Ue)).
. Hy = (A*AN/.

)
7 1f H and U commute, then A*4 = AA* = K32, and the opentor A
is normal. Conversely let A be a normal operator, i.e. %4 = and let
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e, be the orthonormal bnsls of the eigenvectors of the operator A4*.
he e vectors e, . . ., e, are also the eigenvectors of the operator H, since
AA* = ll’ therefore

(UH) ey = U (He) = ayUey, t=1, ..., n @

e -

On the other hand, it follows from 7.6.49 that
HY(Ue) = allUey, 1=1,...,n
(HU) ey = H(Ue) = ayUepy =1, ..., n ®
The rselaho;:'s @) I;d (B o show that UH = HU.
7.6.57. If the matrix of the ‘differential operator is considered with respect
to the basis1, t, l’ « .. t", then the operator H has a diagonal matrix;] h-vmlg,

elements 1, 2, 3 v n 0 \vith respect to the same basis, and the operator
has the matrix

or

010 ...0
001 ...0
ceeeenas|.
000 ... 1
1 00 ... 0
Thus. l/ is either a cyclic permutation operator: 1 — ", ¢t =1, 3 1, ..
v - — ("1, or an operator both of cyclic permutation and of reflection:
—»—l
7.6.58. 4,
7.6.59, Axn—&zxk)(vxn
5 =5 ,_ 43 —4
1660.”—“_ || v=%|3 “
oL _ 1
2V2 VZIo V2 vi
68 A=l y33yzof, U=[ o_t _
0 05 V2 |/2
—i 0 0
3100 1 —-12 =2
_ ]{ﬁ) 1300 _ 1 12 2
7662 H=—"5 0031‘ UVTO —2 21 —1
0013 -2 =21 1

7.6.63. Let A = PAP-!, where A is a di,ﬁmnl matrix, and let P =!KU
be the polar representation of the matrix P. Then

A = RUAUSK= = (KUAU*K) (K-
Assuming H = KUAU*K, 8§ = (K-')% we obtain the required representation.
7.6.64. Let A = UAV be the singular decomposition of the matrix 4. Then
tr (AW) = &t (UAVW) = tr (AVWU) = tr (A2),
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where Z = VWU and tﬁum with W ranges over the whole set of unitary
matrices. It is obvious that
lw@A2) <o +...+ap,

and the e%‘ilnlily occurs when, for example, Z = E, i.e. W = V*U*.

7.7.1. When n = 1 we obtain the ordinary form z = a + b of a complex
number z.

7.7.2. A=0. 7.7.3. (a) 4 = B; (b) A* = B.

7.7.7. A = 0.

7.7.9. A* = Hy — iH,.

7.7.20. The equality | det A | = det H, occurs if and only if 4 = IH,.

7728, S=— (A 4%), K= (A—A").

7.7.25. A is a skew-symmetric operator.

7.8.4. 1f the polynomial g (t) is represented in the form g (f) = at® +
+ 8,1 (1), Where g,_, () is a polynomial of degree <\ n — 1, then the pseudo-
solutions of the equation 4/ = g are ‘Yre-imnges of polynomial g,_, (¢),
i.e. all its antiderivatives. The normal pseudosolution is the antiderivative
with the free term equal to zero.

7.8.5. If the plane of the pseudosolutions of the equation Az = b is given
in the form z = z, + N, where z, is the normal pseudosolution, then for (a),
(), (<) the corresponding planes are: () = = 20 + N (b) == azo+ Ny
© z=1xy+ Ny

7.8.6. Let .:,1» the normal pseudosolution of the equation Az = b. Then:
(2) z, is the normal pseudosolution of the equation UAz = Ub; (b) V*z, is the
norm: dosolution of the equation 4Vz = b.

7.8.7. Let r be the rank of the operator 4, and let the eigenvectorsey,. . ., ¢,
be associated with nonzero eigenvalues 4,, .. ., A.. If

b=oyet .ot oot apuem oo+ @nep,

then the pseudosolutions of the equation Az = b are vectors of the form
1=":—:"|+-<-+;_:‘r+ﬂru‘n1+~»+ﬂn=m
where B, ..., By are arbitrary numbers. The normal pseudosolution is
z.=:—: ¢,+...+“T: e
7.8.40. 7, = (0 0 OT.  7.8.44. z,= (0 O,
7842 m=2( 11 0T, 7843 z=—acit T
7.8.44. .to=-%—(5 6. 7845, m=(1 0 1.

7846 z=3(1 0 OT. 7847 n=(t 1 OT.

7848, 7=(1 + -1 1)7.

7.8.19. The null operator from Y to X.
21 0619
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7.8.21. The effect of the pseudoinverse operator on M, is similar to that
of the integration opentor Polynomuh of the form at™ constitute the kernel of
the pseudomveru opera!

827 Let B = (A'), Then B is an n X m matrix in which b, = 1/a;,
= 1/a,, and all the other entries are zeroes.

" &3& Nonzero "eigenvalies of the operators A and A* are l'ecxpl'ocll to
one_another.

7.8.35. A* = U*H*= H{U%.

7.8.45. The operators 4 and X are reciprocally inverse on the pair of the
subspaces Ta+ and Ta.

7.8.47. The operator X must have the same rank as A. Consequently, the
subspace T4+ is the image of this operator.

7.8.49. In addition to the conditions in Problem 7.8.. 41 the equation (4 X)*=
= AX shows that the kernel of the operator X must be onhofonal to the sub-
sgaoe TA. Thus, the i muge and kernel of X tomude with the image and kernel

the op and X bemsg Ily inverse on the pair of the sub-
spaces Ta+ and T4 and by 7.8.2 =
In Problems 7.9.1-7.9.5, the tnnslomuuon of the unknowns is not uniquely
determined.
1
7.9.40. i+ 703+ vk z,- v.+ I/ﬁ w3

Tym=———

1
V— Vot — 1/3 Yy Ty=—= V2 W v:—ﬁ ¥s
7.9.2, —y}—Td+5u8 7 =—r V' n+—r 73 vt —= l/' Ysy
PR B [ S ——_ yrt—=y
2 Vi = l/‘ £ 3 ]/E 1— ‘/- 2 VE 3.

7.9.3, =T+ 7 =—mr 1/2‘ n+— 1/3 vt —= Vﬁ Yo
2= Vﬁ nt—= l/‘ s lfﬁ s T 1/21 nt—= V§ ¥t Vﬁ Y-

7.9.4. y1+31—33—ut — =y
1+3u—3d—ut 7= V2 nt—= I/Z Ys

zy=

ﬁv:+ v Yoo B3= 1}5 Yr— 1/5 e W= 1/5 n— l/f Yo

7.9.5. 10y%: = = Yo
N 1/10 n+—= \/10 ht—= l/io Vb —= 1/10 Yo
2

Ty = —— — 3 = Y&

"=V h— I/N Yt ——= VW Y3— ]/10 Ys

TN TR S T
) ]/To 0 VE Yo ]/1_0 £) Vi_o Yae

1
B Vm Ut —=

V-G Yo
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7.9.12. We give a proof by induction over n. When n = 1 the proposition
is obviously true. Let it be true for n = k. Consider the form in ¥ 4 1 unknowns,
and let Ay., be its matrix, 4, the leading principal submatrix of order k. Since
Aps and A, are nondegenerate, by 7.4.35 the matrix Ay, has either one posi-
tive or one negative eigenvalue more than the matrix 4. In the first case, Dy,
has the same sign as Dy, and the sequence 1, Dy, . . ., Dy, Dy,; has one more
coincidence of sign than the sequence 1, Dy, . . ., Dy. In the second case, Dy,
has the sign opposite to that of Dy, and thus there is another sign .

7.9.13. Since Dy_y 5= 0, A = 0 is an eigenvalue of multiplicity one of the
leading principal submatrix 4. Let I be the number of its negative eigenvalues.
Then according to 7.4.35, the number of negative eigenvalues equals I for 4y_;,
and 141 for A.,. Hence Dy Dy, <O.

7.9.16. Each of the indices of inertia equals 2. 7.9.17. The positive index
of inertia is 1, and negative 3.

7.9.18. The form is positive definite.

7.9.19. The form F is reduced to F = y} +}G where G is, however, a quad~
ratic form in the unknowns y,, ..., yn.

7.9.21. For example, y, = 7 + 7, +

7.9.22. For example, y, = z, +

7.9.23. For example, y; =z,

+ 250 U3 =
R
et =30t

+ 2z,, y, =4z,
21 —1 3 -1 0
7.9.28. s=|[o 2 1fl, 7920 s=flo 2 —2f,
0o 1 0o 0 1
1 V32
1234 1 vz 0
0123 B
7930, s=|l 0, 7.9.82. S= S R
0001 0 1 V32
1
12345
01234
7.9.3. 5=[001 2 3,
00012
00001

7.9.36. There are n extractions of the square root. The number of operations
of multiplication and division is expressed by a polynomial in n whose higher-

order term equals .
7.9.37. The solution of the system Az = b is m‘isuwi to the solution of the
z =

two triangular systems of equations S'y nd .
7.9.38. The solution of the two trinﬂ\d ystems requires O (n%) of o]
rations of multiplication and division. Taking into account 7.9.36, we see
the square roots method is ly twice more fcal than the Gauss
method.
7.9.43. For an appropriate numeration, Ay =1, t=1,..., n.

21




816 Answers and Solutions

.9.45. The form F is positive definite. The tnnsiormation of the unknowns

A2 22
EREYZ RV V7 Vs' Ve
3a=%f|—l/§’:
makes the form P normal, and the form G canonical, i.e. 5zf + 223
7.9.46. The matrices F and G are The

of the unknowns

n =L_;,——_ 1,4,-;:,' y,=;_l| <73
V3 v 3 |/§ 1/2 1/2
_— T, _ .
¥s= Vs 1T Tt ——= l/s 2z
makes lh form F canonical, 3y} — 2y§ + 8y3, and the form G canonical also,

(~8)yi +
¢ l.i7 Tfle form F is negative definite. The transformation of the unknowns
1 4 2 5 Y 2 2
u=ga—Fhotty L=Fn—3H- n=gn—gn—in
makes the form 7 normal, and the form G canonical, (—5)z} — 22} + 2.

7.9.48. The form G is posmve definite. The transformation of the unknowns
= z4 — 74, Y4 = z, makes the form G normal,

And the Iorm } anomcd yf+ 2u% — v3.
7.9.49. The matrices for the forms F and G commute. The orthogonal

transformation of the unknowns y, =1 24 5 '— z,+ 1 z3+ Lz., y'=%tl—

——2;+fz:——1a Vs= ;le_; Ty Yy=—z z,—Lz,m-kos the

i:_rm F ctnomul 5y} +y3i—y3—vi. and the form Gl/unamcnyulso. yi+543
¥+

8.1.29. Let p (z, M) = llz — yo Il = | = — y II, then

ol M < |e— Lo FL | < S thsmo 14 Ne= i D=p o M.
Therefore
-
2

z—y=h(@E—y)

I— Yo
|55+
According to 2.4.13,
where A > 0. Hence

ﬂl +|3—_v6
2 2 N

Tz—yoll
A= =1
(B
8 I 33. li the number of ¢ does not exist, then there is such a sequence {zy},
zp € M such that | F (z,) | > k. Single out of {23} a subsequence {za s}, con-
vergent to a certain zo € M. Tlun by the continuity of the functional F, the
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relation F (zp Nd F (zo) must hold, and thus is contrary to the assumption that
Fay) >
8.1.34. Put
C= sup |F(2)|.
%€M

According to 8.1.33, the number C is finite, so if, for any z from M, this bound
is not reached, then the functional

1
CEO==Tr e
must be continuous on M and its values bounded, which is contrary to the
definition of the number C.
8.1.35. ¢i'= max n(z), c;= max m(z).
mE)<L =)<t
E2=0)

8.4.36. Izl <IzI, <V alz s
lzlle <Nzl <nllzlle
Izlle<Izl: <Vl
&}.3[1; Put ¢, equal to the least, and c, to the greatest singular value of the

matrix P.

8.1.41. Define the scalar product on X so that L, and L, may be orthogonal.
Let z, be boundary point of N and {z,}, a sequence of vectors from N, conver-
gent o 7. 1f 2y = 2, + yy, 25 € M,y € My and zy = z, + Yo i8 the expression
of the vector z, in terms of {t.e mﬁsp‘ces L, and l,. then

loh =z 2= lzy — 2 1+ lyp — b0 I*

whence > zo and yy— yo- Since M; and M, are closed, zo € My, yo € M3, 50 €N

8.1,45. The length of a vector is dual to itself with respect to the scalar
product generating it.

8146 m* @) =llzlh=lal+...+lanl .

1.47. The inequality (8.1.4) for the two norms || z ||, and || z ||g is actu-
ally the Holder inequ: 3

8.1.49. It suffices to consider vectors z, such that m (zo) = 1. Each of these
vectors is a boundary point of the unit sphere determima by the norm m (z).
It is proved in the course of convex nuf'sis that for any boundary gomt zy
of a convex set M, there exists the so-called “supporting hyperplane” deter-
mined by the equality Re (z, y) =c (where y is a fixed vector) such that it pos-
sesses the Tmpen v that Re (2o, y) is equal to c and Re (z, y‘is less than or equal
to ¢ for all the other z from M. Applying this theorem to the case under consid-
‘eration, comstruct the supporting Kyperphne Re (z, y) = c for the given vec-
tor zo. The vector y determining this hyperplane is the one required.

8.2.2. Yes, if the operator in nondegenerate. .

8.2.3. In case the operator is degenerate, the statement may be invalid.

8.2.5. Let My = M 1 T,. Being the intersection of closed sets, M, is also
closed. Define the scalar products on the spaces under consideration. The com-
plete pre-image of M (or My, which is the same) is the set of the planes z+l‘;‘-
Where z ranges over the set A*M,. Since the operator A* , considered only on s,
is nondegenerate, A*M is a closed set (see 8.2.3). Now the required statement f A
lows from 8.1.41.

8.2.15. (a) The spectral norm of a diagonal matrix is equal to the greatest
modulus of the diagonal elements; (b) the spectral norm of a quasi-diagonal
matrix equals the greatest spectral norm of the diagonal blocks.

8247 Vn. 8248 [AE=ai+...+al.
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8.2.23. The real (imaginary) part of a complex number z is the point nearest
to 3 on the axis of reals (imaginaries).

8.2.24. This equality is similar to the formula for the modulus of a complex
number, z =z + iy.

8.2.25. Let U be an arbitrary unitary matrix. Then

H—U|g=tc(H—U) (H—U)=trH+ n—2Retr (HU).
“rdmg ||l: X'y (« [¢ (
—tr H < Retr (HU)<tr H,
llu eqlulity on the righ.t occurring only if U = E, and on the left only if U =

w P matrix, the remains valid. How-
ever, the clomt and hnlmt unitary matrices may not be unique.
26. For a nonzero complex number z = p (cos ¢ + ¢ sin ), the number
ry=cos @ + {sin @ is the closest, and the number r, = —(cos ¢ + ¢ sin @)
is the farthest point of the umt circle.

82.30. ()] 4 Ih-m-xz lagy 1 () 114 lloo = max Zla“] The values
=1
of both the norms on a dngoml matrix D equal the grnmt of the moduli of
the diagonal elements dy;.
8.2. N(A) n Fap-y.
8235 If 2= (@, .. @7, y= (B - . BT, then

14l = (max |am.(2 18:1).

8.2.38. Since any matrix B of rank 1 may be represented as the product zy*
where z and y are column vectors, then with the aid of (8.1.4), we obtain

| Lt 4B 1tr 4z 1(42. )1
e M) ke M) o mE@ R E)
< may 2@ m* (”’_m""(“)au(A).

S0 BRI zmo 7@
According to 8.1.49, fora fixed vector z, a vector y can be found such that
| (42, y) | = m (42) m* (v).
n%'ng‘% priate z, y, we can convert the above relations mto equalities,
e proof is given by the following chain of equalitie:
M* (A%) = max m' (A*y)= max max I(A‘:. )|
me)=" me)=1 m@)=
= max max [(4z, y)l- max m(A:)=M(A)
m@)=1 m¥y)=1 ()=
Hrn the statement 8.1.50 is used, i.e. m (z) coincides with the norm dual to
m' g
8.2.43. Let the given norm || A {] be consistent with vector norms m (z) and

n (z). From 8.2.42 and 8.2.39, it follows that || 4 || must be subordinate both to
m(z) and n(z), so that

m (Ax)

HAl = mex 2L @
141 = max2d2) ®

X0 A (D)
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Suppose that there is no constant ¢ such that m (z) = ¢n (z) for any vector z.

norm m (z) may be made less than or equal to n (z) for any z by muluplymg

one of the norms by an appropriate number (according to 8.2.32, this leaves a

norm o) = 1 (o) for a certain vector zq.

Since the norms m (z) and n (z) are not ldemicnl by assumption, there exists

a vector z; such that m (z)) < n (z;). We may assume that m (z) = m (z;) = 1.
According to 8.1.49, there is a vector y such that

@0y ¥) = m (70) m* (¥) = m* ().

The vector y can also be normed by the condition m* (y) = 1. Now, for the
matrix 4 = z;y*, we have

Azg = 21y*z = (2o V) 1 = 210
141 =m (@) m* @*) =1
However, if the representation (B) is used for the evaluation of [| 4 f|, then

n (Azy)
™ (z0)

nan> =n(z)>m (5)=1.

Thls contndlmon shows that the norms m (z) and n (z) m\m be proport.ionul.
|| A || is consistent with another norm n (z) and N (4) is the corre-
8] ondmg subordmnte norm, then M (A)> N (A) on the set of matrices of rank 1.
grepruenu tion (8.2. 5). we obtain that M (4) ms N (4) for all A, whence
(nee 2. 43) it follows that the norms m (3) and n'(z) are proportional.
No.”"For example,Tjthe norm

M (4) = max (Gl 4 [, 1| 4 lle)

satisfies the conditions of the problem, but is consistent with the two non-pro-
portional norms || z ||; and || z || and so it cannot be subordinate.

8.3.3. condes (4) > —c"‘

8.3.5. It follows from 7.6.33 that if || B |l <a,,. then the mtrix A+ B

is nondegenerate. Construct now a matrix B such | ||, =a,and 4 + B
is a degenerate matrix. Let 4 = UAV be the n%u e decompositlon of
the matrix 4; as usual Ay; > Age >+ . >Mpp, and Ann Then the matrix
B is of the form: B = UAYV, where ;.., =%nain ,_o‘x..,.=_a,..
8.3.9. Let 4 be degeneruu and Az = 0 for onzero vector z. Partition
the vector z in accordance with the pnrtnuomng of the matrix 4:
I
£
z=| .
zn
iAmme that [ zy || = max ({2, l, I Z3 lls - - +» || 2 |I}- Then from the equal-
ty

—Ayz=Annt ..+ Ayazat A eBa Tt o+ Apny
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we obtain

Nzl = |]A,.- ? Az || <D A7 "2’ 11 g0 25l

Feed

&
<(nap ug} [ED I EYRIEAS
4
i
Tlli‘!” ﬁontndlctlon proves that 4 is nondegenerate.

en m = 1 a criterion of diagonal dominence with respect to the rows
is ob;‘uined

10. The matrix 4 is nondegenerate.

8.3.12. If D is a diagonal matrix made np of.the diagonal elements of the
matrix A, then

conde (D)

< condeo (4) < condeo

I+a

8.3.13. Using the inequalities derived in 8.3.12, we obtain
0.9n < conde, (4) < 1.25n.

8.3.14. The maximum condition number is reached for the matrix

1 —1 —1 ... =t

0o 1 —1 .

Ro=llo o 1 .. —tf»
0o 0 o0 1
for which
1124 .., 208 202
0112, 20 2n8
n-5 gn-1
B[00 11 e 2 2
0000 1 1
0000 0o 1
Therefore condo, (Ro) = n2n-!
3.15. Since | || A, || —= 1, the elements of all the matrices Ay, are bounded

in absolute value. All minors of order n — 1 of these matrices are therefore also
boudnded Hence an increase in the condition number is poss]ble only if det 4,
tends

to
348, 11 1A 1> 13 13+ > 1Ay 1, then
tnn(lz(ﬂ)—'l—xi.
8.3.49. cond, (4)= l;
41E |d|||"rldnl’+|ﬂu|’—Iﬂnl’

8.3.24. condg (4) = Tgor 4] Ta11023— S1s0m]
8.3.29. cond, (4) = cond} (5).
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&&80. For the ongmd syst:m of equations, cond, (4) > 1000. The solution

is: 7 = 1.5,

3331 The Setimate “cond, (4) > 363 for matrix 4 of the original system
of equations using the inequalilies of Problem 7. To decrease the condition
number, multiply the second equation of the symm by 10, and the third by
100, then substitute the variables: y, = = 10z,, ys = 100zy. A system
with a symmetric matrix will be obtained, it.s solutmn bemg n=—1,y=—1,
ya= —1. Therefon the solution of the orlgmll system is: z; = —1,z, = —0.1,

3. 33 h c components of the solution can be changed hy 6.01. The solution
of the ongm.l system is: z = —1, y = 0. The solution of the perturbed system
is:

&8 34. cond,, (A) = 10 967. The solution ol’ the original sls\em is: z=1,
y==1. The solution of the perturbed system is: z= — 129, V= — 20. The
perturbation of the system: z =139,y —

8.3.35. For example, z, z

8.3.36. For example, 7, =1, =z,

u 2. For cxample, the circle |z | <V s V2.

4.6. This inequality determines an mterval within which the eigenvalues
are louud and the hnsecuon method may be started with it.

8.4.8. Let P-14,P = A, where A is a diagonal matrix made up of the eigen-
values of the matrix Ag. Any of the norms || P-LAP [|;..c0 (sée 8.2.10, (c)) may
be taken as the required norm |A

13. Let A = H, -+ 1H, e he Hermitian decomposition, and B =
= U*AU the Schur form for the malnx A. Then the Hermitian decomposition
of the matrix B is:

B = UHU + iUH,U = Hy + ifl,.
The principal diagonal of the matrices ﬁ. and 17, conuins the numbers @;, ...
.. @y and p,, <+ Bn, Tespectively. Therefore 2 A< 1 UHU Ik =
= || H, U= % 14 +4° |k The numbers B, ..., g,. satisfy a similar
&u&. As regnds the relations (8.4.3), the equality 4 Za‘ =A+a%

means (see the solution to 8.4.13) that Hyisa dugon.l mumx Since H. =
=3 (B+ B*) and B is a triangular matrix, it follows from the ofi-diagonal

e]ements of H, being zero that the same holds for B. Hence 4 is a normal matrix.
8.4.15. For matrices 4 of simple structure.
8.4.16. Accordll\g to 6.2.7, the matrices 4B and BA have the same eigen-
values 4;, . . ., A,. Since 4B is a normal matrix,

1 AB I} ‘}‘; A0

Show that || BA flg = [| 4B ||, whence (due to 8.4.44) the normality of the
atrin 54" oflovE. Raly, =" ¢

1| BA I =11 (BA (BAY)=tr (BAA®B*)=1r (AA*B*B)
=tr (ASABB*)=tr (B*A*AB)=tr (AB)*AB)=| AB |}

Here b}gt}}:)the nonmmy of the matrices 4 and B and the equality tr (XY) =
=tr(



322 Answers and Solutions

may
8.4.18. In 7.6.84, it was derived that &; + ...+ an =W | tr (AW) ],
where W is an arbitrary unitary matrix. Let B = U*AU be the Schur form
of the matrix 4. Then tr (AW) tr (UBU*W) = tr (BU*WU). Determine W,
from the relation U' W,oU = D, where D is a diagonal unitary matrix such that
bud,, = | by | =[M]. For the mnuix W., (which is not unique if there is a zero
th M). tr (A “V.) =] Anl, whence the requned 1nequality,
he statement f ows l:om 8.2.13, 8.2.27 and 8.4.18.

n
|‘—¢u|>$‘|¢ul. i=1, ..., ny
=

then the matrix z£ — 4 is diagonally dominant -and therefore nondegenerate .
Hence z may not be an eigenvalue of the matrix

8.4.21. This regnon cnnsisv.s of the three discs:” |z2—1.23 <007, |3 —
— 247 | <0.04, |z 08 .08.

8.4.23. Thls reglon conzisls of the three discs: lz2— M 1<0.012,t=1,2,3,
where =1, Ay =2.

8.4.. For example, the region consisting of the three discs: lz—=MI<
<dde, t=1, z,a.g:h' L.ng A,=n.31:=1~ M
8.4.27. For example, Ay = —0.5, Ay = —1, %y = - 0.5, =1

8.4.29, For example, % = kg = —1, Ay=1, X =3.

8.4.32. To prove (u). replace the elements @13, Gy a0d azg, ag by zeroes. The
lpee:rﬁ norm of the corresponding perturbation matrix equals } 2/N, whence
a) follows.
¢ To prove (b), consider the matrix 4 as a perturbation of the quasi-diagonal
matrix D with the diagonal blocks

—05 01 —02
Dy=[l010 17,,="0 2” Dyg=|| 04 —1 0
001 —02 0 2

For the perturbation matrix B=A — D || B |, < | B II.. == 3/N. Therefore,
at least three eigenvalues of the matrix lie in the interv

—3/IN<A—1<3IN. (@

To show that there are precisely three eigenvalues, prove that when ¥ > 10,
the inurval (@) does noz intersecl the other intervals of the system | z — A, |
. nlg he elgenvnlues of the matrix

This is clm he inm'vn 1z — 2] < 3/N < 0.3. Note now that accord-
ing to the rshgorin theorem, the eigenvllues sy Aq. Ag of the matrix Dyy
lie in the intervals [—1.3, , [—0. and [1.7, 2.3]. Hence when
N > 10 the intervals | z —l. |< "IN < 03, 1 —e 7, 8 remain separate from
the lzurvnl (

@)

The v r(z) z is the pro)ecuon of zhe vector Az on L (z).
8438, Since. Ia|‘+ 2l =1, po = po | @ >+ po | 2 I} On the other
hand, po= (47, 5 = M | @ 1+ (dz, 2. Hence |A—pyl |a (=] (dz,
:) - Iz 113l < eYa. Since | @ | > VT — e¥/a?, the required estimate is

u 39. (a) For example, ¥ = 1, % = 2, %y = 3, % = 4; (b) the unit col-
umn vectors.
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8.4.42. (a) If Z= X and z is the (-th row of lh matrix Z, then :,‘= v,
is the eigenvalue of the matri: ,1 wn 7.
it follows from the matrix equahl (
= Nz lls 1l gl NW- from 7.6.28 ed“u '»hl‘ ¢°ﬂd: (X) = II X II: I X" II:
zls vells= s 1
(b) select vecwrs z; such that || z; Ils _1/1/ Ts¢ |- Then for the rows z; of
the matrix X-1, we obtain || z ||y I's(I- Therefore

n
condg (X)=1 X | £l Xl £ = 1 X I} =2‘, T

8.4.44. Without loss of generality, the vectors z and y may be assumed to be
normed. Let C = Q*AQ be an upper Schur form of the matrix A selected so
that ¢;; = A;. According to 7.1.47, such a form may be constructed in wlnch
the vector z may be chosen as the first column of the matrix Q. Then the vector
2= Q% is an eigenvector of C*, and (¢, 2) = (Q%z, Q%) = =0.
Thus, the first component of the vector z equ s 2ero, and the require stuument
follows from 8.4.43.

8.4.45. From the condition C*y = Ty, we obtain that ec* + C#_yz = Tz or
. -
Cliztect —|T|=‘=(""-'+1—- mzc.,-) smis.
Hence the statement of the problem follows.
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