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Preface 

An integrated course on linear algebra and 
analytical geometry is given to students of the computational 
mathematics and cybernetics department (CMC) of Moscow university 
(MU) during the first two terms of their study (at two lectures a week). 
A lecturer on the subject is presented with some complicated prob­
lems and to clarify these problems, let us make some comparisons 
between this course and the syllabi of similar courses in mathematics 
departments, and in particular the mechanics-and-mathematics 
department of Moscow university.· 

The CMC department syllabus includes the greater part of the 
analytical geometry course given at the mechanics-and-mathematics 
department of MU (excluding the affine classification of second order 
lines and surfaces and the projective geometry elements) and the 
whole linear algebra course. The latter comprises, inter alia, topics 
usually omitted at the mechanics-and-mathematics department like, 
for example, singular values of the operators, pseudo solutions of 
systems of linear equations, etc. The specific character of the depart­
ment requires that a lecturer should draw the students' attention to 
the flexibility of most concepts of classical linear algebra (linear 
dependence, degeneracy, Jordan structure, etc.) and of its methods, 
as well as indicate the approaches for finding stable solutions to 
algebraic problems. To achieve this aim, elements of normal linear 
space theory are introduced into the course in such a way that the 
concrete metric results, such as evaluations of the perturbations of 
a linear system solution and the eigenvalues of a matrix, etc., can 
be attained later. This must all be achieved in less than the time 
taken by the algebra and geometry courses together at the mathemat­
ics departments, and moreover, without lowering the degree of 
mathematical rigor! 

It is clear that without some essential restructuring of the custom­
ary course this would not be possible and it was V. Voyevodin who 
made such an attempt to carry out this restructuring in his book 
Unear Algebra (.\lir Publishers, 1983). The book is ba'ied on the 
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author's experience delivering a course of lectures for some yelll'S 
at the CMC department. 

Let us indicate some of the particulars of the course devised by 
V. Voyevodin that helped to saw his time as a lecturer. 

The notion of linear spaces is easier to grasp after a study of Yector 
algebra and so is introduced at the Yery beginning of the course. 
The customary way of repeated reintroducing linear space theory 
three times usually-first in analytical geometry in relation to 1lets of 
geometric vectors; then for arithmetic spaces in order to describe the 
structure of the solution sets of linear algebraic equation systems; 
and fmally, in the general case-is avoided.· 

In the subsequent chapters, too, the development of geometry and 
algebra takes place simultaneously; furthermore. a new geometric 
notion forms the basis for an n·dimensional general case. Thus, the 
scalar product of geometric vectors serves to introduce Euclidean 
and unitary spaces and a formula for the volume of a three·dimension· 
al parallelepiped advances the construction of n·dimensional Yolume 
theory. Thus, the theory of determinants is considered as an oriented 
volume of a parallelepiped in arithmetic space; straight lines and 
planes in three-dimensional space are a reason to introduce the notion 
of a plane in any linear space, and a geometric problem on inter­
secting hyperplanes illustrates the structure of the solution set of 
a system of linear equations. By contrast there are some examples 
when geometric results are deduced as simple corollaries of general 
algebraic theorems, such as the Cartesian classification of second 
order I ines and surfaces. 

Redesigning of the course of lectures also resulted in a consider­
able reordering of seminar classes. It turned out, moreo,·er, that the 
existing problem books in linear algebra by D. Faddeev and I. Somin­
sky, Problems in Higher Algebra, Mir Publishers, 19i2 and by 
I. Proskuryakov, Problems in Linear Algebra, ~lir Publishers, 1978 
could only be used to a very limited extent. Both of the above­
mentioned books assume that when solving problems on linear and 
Euclidean spaces the student is already acquainted with matrix 
algebra and systems of linear equations. This, as shown above, is 
not always true in our case; besides, problems were required on the 
nontraditional topics of the course. All this stipulated the necessity 
of a new problem book to accompany V. Voyevodin's course, and 
this book is now offered to the reader. 

The present book closely follows the structure of the book by 
V. Voyevodin with some insignificant deviations demanded by the 
particulars of the course of study. Thus, since the corresponding 
topic of the course of lectures is studied at the very end of the first 
term, seminar classes cannot keep up with the course and so the 
section devoted to metric spaces is included in Chapter 8. 

The sequence of topics chosen in Voyevodin's course creates cer-
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tain difficulties for the author of the problem book. For example, 
how can the computational problems of the first two chapters be 
solved when matrices and the greater part of the results derived by 
the theory of systems of linear equations cannot be used? It happens, 
however, that for the solution of typical computational problems on 
linear and Euclidean spaces, it is sufficient to combine elementary 
transformations of vector spaces with the method of Gauss elimina~ 
tion and thus a method to check consistency and definiteness and a 
technique for finding any solution of a system of linear equations 
are obtained (see the particulars in Sees. 1.0 and 2.0). Accordingly, 
Gaussian elimination is described in Voyevodin's book in Chapter 2: 
just when it is required for the seminar classes. Problems involving 
all the solutions of a system of linear equations are given in the 
problem book only from Chapter 4 on. Note that we are guided here 
by the same principles as A. Kurosh in Higher Algebra, Mir Pub­
lishers, 1980. He starts with the description of the method of succes­
sive eliminations of unknowns. 

The reader will note that the first six chapters of the problem book 
and some sections of Chapter 7 are devoted to customary topics. But 
here too, because of the specific character of the CMC, the author 
has striven to underline the computational aspects of the topics 
under consideration. Consequently, a great deal of attention is paid 
to the considerable number of questions that arise in practical 

·COmputations using the Gauss method. Therefore, in some cases 
computational algorithms effectively employed in practice have 
been formulated as a series of problems. 

A number of sections in the last two chapters correspond to the 
new topics in Voyevodin's course and for the first time are included 
in a problem book on linear algebra. 

It is a basic requirement that any problem book should contain 
a sufficient number of useful and comprehensive problems for seminar 
classes, home-assignments, tests and examinations. The author 
hopes that this requirement has been fulfilled. Moreover, he has 
attempted to supply the strongest students with a material for 
personal study, and to lead them to problems currently faced in 
computational algebra. Thus, he has included Wilkinson's hypothe­
sis regarding the rate of growth of the elements in the Gauss method 
(Sec. 3.4), the description of the Strassen algorithm for the economical 
multiplication of matrices (5.4), the results obtained by Wilkinson 
regarding ill-conditioned eigenvalues (Sec. 8.4), and so on. 

And now some notes on the use of this problem book. 
The number of each problem in a section consists of three parts, 

the first indicating the chapter number, the second the section 
number, and the third the number of the problem. Formulae that 
may be referred to afterwards are enumerated similarly but sepa­
rately. 
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For the reader's convenience each chapter is preceded by a "zero" 
section defining the concepts and, in some cases, methods used in 
that chapter. A number of terms are, however, also defined in the 
problems themse!Yes. To make it easier for the reader to find "the 
origin" of some term or other there is an index at the end of the book. 

The asterisks marking some of the problems should be treated as 
the "Attention" sign. In case of a problem requiring proof this means 
that it either states an important fact.(irrespective of the complexity 
of the proof) or requires some nonstereotyped reasoning. A problem 
requiring computation marked by the asterisk allows for a non­
stereotyped solution based, typically, on a theoretical statement. 
Many problems marked by asterisks are supplied with either hints· 
or complete solutions. Anyway, the key to the solutions of all the 
problems may be found either in this problem book or in Voyevodin's 
textbook. Hints or solutions are also given for many problems 
having no asterisk so as to demonstrate what is, from the author's 
point of view, the most rational approach to such problems. In ad­
dition, problems are, as a rule, grouped logically, the asterisked 
one being "the leader" in a group and the others being simple corol­
laries to it. The position of a problem, therefore, also contains some 
information about it .... 

Whilst compiling this problem book the author resorted to many 
sources and it is unfortunately impossible to mention them all here. 
The author's task was simplified to a very great extent by the avail­
ability of a number of excellent textbooks in linear algebra by Soviet 
mathematicians and, in particular, by the problem books that have 
already been mentioned. In some cases statements borrowed from 
the current, specialised literature were formulated as problems. 

The initiative in writing this book was taken by Prof. V. Voyevodin 
and Prof. I. Berezin. The author is glad to have the chance to express 
his profound gratitude to them. He considers it his pleasant duty 
to also record his gratitude to the higher algebra lecturers in the 
Cl\IC department for their valuable assistance. 

H. Ikramov 



CHAPTER t 

Linear Spaces 

1.0. Terminology and General Notes 

A set V is called a linear space over a number 
field P if: 

A. For the elements of this set, the operation of addition is defined 
so that V is a commutative (Abelian) group. This means that the 
following conditions are fulfilled: -

(i) The ~peratio~ of addition is commutative, i.e. 

X+ y = y +X. 
(ii) The operation of addition is associative, i.e. 

(x + y) + z ~ x + (y + z). 

(iii) There exists in V the (unique) null element 0 satisfying, for 
every element x of V, the equality 

X+ 0 =X." 

(iv) For each element x from V there is a unique inverse element 
-x such that x 1 (-x) = 0. 

B. The operation of multiplication by a number from P is defmed 
on the elements of the set V so that for any elements x and y from V, 
and for any numbers a and ~ from P the following conditions are 
satisfied: 

(i) a (x + y) = ax + ay. 

(ii) (~ -r ~)X ~ = + ~­
(iii) (~~)X ~ ~ (~). 

(iv) 1·x = x. 

The elements of a linear space are said to be vectors, and the linear 
space itself is also called a vector space. 

If P is the field of real or complex numbers, then the linear space 
over P is said to be real or complex, respectively. 

In this book, with the exception of some problems in Chapter 1, 
only real and complex linear spaces are considered. 

In a particular case, the space V may contain only one element 
(see Problem 1.1.1). Such a linear space is said to be the null (or 
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trivial) space and is denoted hereafter by 0. All other real or complex 
spaces contain infinitely many elements. 

The vector y = et1x1 + a 2x 2 + ... + CtJaXJa is said to be a- linear 
combination of vectors x1, x2 , ••• , x~a or to be linearly expressed in 
terms of these vectors. The set of all linear combinations of a fixed 
set of vectors x1, • ., x 11 is called the span of this system and is 
denoted by L (x1 , ., x.~a)-

The set of vectors x1, ••• , x11 is said to be linearly dependent if 
at least one of the vectors x 1 can be linearly expressed in terms of 
the other vectors of the set, and linearly independent if otherwise. 
This definition is equivalent to the following: a set of vectors x1 , • 

. , x 11 is linearly dependent if there exist the numbers a 1 , ... , a~u 
at least one of them being different from zero, such that 

Ct1X1 + ... + Ct11X11 = 0, 

and linearly independent if the indicated equality holds only in the 
case when all a 1 are zeroes. 

In particular, the linear dependence of a set of two vectors x, y 
means that either y = ax or x = ~y. In this case the vectors x 
and y are known as collinear. 

The following basic theorem about linear dependence is true: if 
each of the vectors of a linearly independent set y1 , ••. , y 1 is linearly 
expressed in terms of the set x1 , ••• , x 111 then l::;;;;; k. 

A linearly independent set of vectors e1, ••• , e,.. in who!.e terms 
any vector of a space V can be expressed is called a basis for this 
space. The linear space is said to be finite-dimensional if it ha:-; a basis 
and infinite-dimensional if otherwise. 

Beginning with Sec. 1.4, we shall consider only finite-dimensional 
linear spaces. 

All bases for a ftnite-dimensional space V contain the same number 
n of vectors. The number n is called the dimenston of the space V 
and is denoted by dim V. Moreover, V itself is then called an n-di­
mensional space. By definition, dim 0 = 0. 

The coefHcients et1 , ..• , a,.. in the decomposition of a vector x 
in terms of the vectors in a basis e1, ••• , en, i.e. in 

are called the coordinates of the vector x. 
Two linear spaces over the same field are said to be isomorphic if 

there is a one-to-one correspondence between their vectors ~uch that 
the image of the sum of two vectors is the sum of their images, and 
the image of the product of a vector by a number is the product of 
the image of this vector by the same number. The necessary and 
sufficient condition for isomorphic correspondence between two 
linear spaces is coincidence of their dimensions. 
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A subset L of a linear space V is called a linear subspace of this 
space if it is also a linear space under the operations introduced on V. 

If £ 1 and £ 1 are linear subspaces of a space V then the set of vectors 
belonging both to L1 and L 2 is called the intersection of the subspaces 
L1 and L 2, and is denoted by L1 n L 2• The set of all the sums x1 + x1 , 

where x1 E L1 and x 2 E L 2 , is called the sum of the subspaces L1 and 
L 1 • We denote the sum of the subspaces by L1 + L1• If for each 
vector x from L = L 1 + L 2 , the representation 

X= X1 + Xto 

where x1 E £ 1 , x2 E L 2 , is unique, then L is called the direct sum 
of the subspaces L1 and L 1 , and is denoted by L 1 + L 2 • 

Most of the computational problems in this book are formulated 
for two particular linear spaces. Let us describe them in more detail. 

f. Then-dimensional arithmetic space. The elements of this space 
are ordered sets of n numbers, whether real or complex, and are 
called n-dimenstonal vectors. Respectively, we shall speak of the 
real or complex arithmetic space, and denote them by Rn and C,.. 
If the n-dimensional vectors are written in the form 

then the operations over them are defined by the equalities 

x + y ~ (a1 + ~1 , a, + ~ ..... , a" + ~")' 
Ax = (Aa:10 Ao: 2 , , , ., Aa:n)• 

Of the bases of the arithmetic space, one is placed in a favoured 
position by the ,·ery nature of this space. This basis, formed by the 
unit vectors 

e1 ~ (1, 0, 0, ... , 0), 
e, ~ (0, 1, 0, . , ., 0), 

'" ~ (0, 0, 0, ... , 1), 

(1.0.1) 

is called the standard basis for the arithmetic space. The "favour" 
is the absence of necessity to calculate the coordinates of a vector 
x = (a:1, a:2 , ••• , O:n) in this basis since they are the numbers 
0:1, 0:2, • · .. O:n• 

2. The space of polynomials of degree =s;;;; n. A polynomial of 
degree k 

I (t) = a0 + a1t + a 2t2 + ... + a11t", a11 + 0 (1.0.2) 
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is an object fully determined by the ordered set of coefficients 
a0 , a1 , ••• , a,.. The equality of two polynomials is the equality of 
corresponding coefficients. Meanwhile, the coefficients of the poly­
nomial may be real or complex numbers. In the problems, as a rule, 
only the fi.rst case is considered. The space of polynomials of degree 
~n with real coefficients is denoted in this book by lv!.,. Real or 
complex numbers themselves are regarded to be polynomials of 
zero degree, except the number zero whose degree is not defined. 
This number serves as the null element in the polynomial space. 
The operations over polynomials are reduced to the same operations 
carried over their coefficients. 

A polynomial (1.0.2) may be regarded as a function of a real or 
complex variable t. The definition of equality of two functions, how­
ever, diflers from the "algebraic" definition of the equality of poly­
nomials. Namely, functions are considered to be equal if their values 
are equal for all the values of the variable. Certainly, polynomials, 
equal in the sense of "algebraic" definition, are also equal as the 
functions of t, but the converse is established only at the end of 
Chapter 4. Therefore the notation f (c) should be interpreted as a 
short form of writing the number a 0 + a1c + a 2c2 + ... + a 11c11 ; 

the equality f (c) = d as a short-hand way of writing the condition 
imposed on the coefficients of the polynomials considered; f (-t) 
as a contracted designation of the polynomial a0 - a1t + a2t2 -r ... 
. . . + (-1)~ a 11t11 ; and the equality f (t) = f (-t) as the short-hand 
for the conditions a1 = 0, a 3 = 0, ... , etc. 

The following computational problems, stated for the arithmetical 
space, are typical of the present chapter. 

1. Determine whether the given set of vectors is linearly dependent 
or linearly independent. 

2. Find the maximum number of linearly independent vectors 
contained in a given set, i.e. its rank. 

3. Determine whether a vector x is expressed in terms of the set 
of vectors y1 , .•• , y 11 in which case calculate the coefficients of this 
decomposition, i.e. 

x = 0:1Y1 + · . · + a11Y11· 

To solve Problems 1 and 2, "the method of elementary transfor­
mations" (see 1.2.17, 1.2.18) is developed. The idea of the method 
is to reduce a given set without changing the rank to a set of vectors 
whose linear independence or rank is self-evident. 

Problem 3 reduces to the solution of a system of linear equations 
for which the Gau.ss method or the method of successive elimination of 
unknowns is performed. The idea of the method lies in transforming 
the system to its simplest form without affecting the solution set of 
the system. Let us describe the Gauss method in more detail bearing 
in mind also its numerous applications in the subsequent chapters. 
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Let a system of linear equations be given: 

aWx1 +a\~'x2 +a\~>x3 + ... +a\~xn=b~0>, 
aWxt +aWx2 +a&~'x3 + ... +a~~Xn=b~0>, 

a~0t'.x 1 +a~Ofx2 +aWx3 + ... + a~r:lxn=b~0>, 
(1.0.3) 

a~lx1 +a~lx2 +d~Jx:r+ . .. +~Jxn=b~'. 
Assume that a~Z> '=F 0. This can always be achie,•ed if there are some 
a\'' among the coefficients different from zero, and reordering, if 
necessary, the equations of the system and/or changing the enumer­
ation of the unknowns. Now, subtract both sides of the first equation, 
premultiplied by a~~> /af~> from the corresponding sides of the second, 
then subtract both sides of the first equation, premultiplied by 
a~> !ai~>, from the third equation, etc. We obtain, in the end, a sys­
tem in the following form: 

a~Vx1 +aW.x2 +aWx.,+ ... 7a\!.l.xn =b~'', 
aW.x2 +aW.x3 + ... -L.a~!!xn=b&'>, 
aWx2 +a~~'x3 + ... .La~!l.xn = b~0 , 

a~dx2 + a~Jx3 + ... -L. t4:Jx n = b~). 
Here a\?= a\0}, j = 1, ... , n; b',n= b't>; all the other elements 
are altered according to the formulae 

aiJ>=a~,o)_ a~!: a\~'. bf''=bi0'- a;!: b~0 >, (1.0.4) 
all all 

i, j ~ 2. The first stage of the Gauss method has now been com­
pleted. The coefficient aW is called the pivot of the first stage. 

Assume now that, among the coefficients ag', i, j ~ 2, there are 
some different from zero and, in particular, a':f2 =F 0. Subtract both 
sides of the second equation, premultiplied by 

aW aiY a~J 
a~h' ' aW ' ... , aW ' 

respectively, from both sides of the third and subsequent equations. 
We then obtain the following system: 

aWx1 +a\2lx2 +a~Wx3+ ... +a\;'.xn =b\2', 
a~2lx2 +aWx3 + ... +a~~Xn=l42'. 

aWx.,+ ... +a~;,>xn =b~2', 
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The coefficient a21~ is called the piuot of the second stage. . 
Continuing the process we shall finally reduce the system of equa­

tions to the form: 
4~,-llxt+a~z-I)X2+• .. +a~:-;.:\xr-l+a~~-I)Xr+,,, + a~';.-t).rn=bir-l), 

a~2-t)x2+ ... +a~-;.~>lxr-t+a~~-t>x.+ .. . +a~ .. -l>xn =b~-tl, 

ar_-,~)r-tXr-l+a~':.-l!),..rr+ • • · +ar_-,~)nXn =btl. I) • 
a~-l)xr+ ... +a~- I) Xn=b~r-1), 

O·xr+ ... +O·Xn =b~':.--,1 >, 

(1.0.5) 
Here a~·,-1):#:0, al{2-ll=#=O •... ,ar--~~>r- 1 :#:0, a~~- 1 >:#:0. 

If some of the numbers b~"+ill , ... , b~-ll are different from zero, 
then system (1.0.5) evidently has no solution, and is termed incon­
sistent. Therefore the equivalent system (1.0.3) is also inconsistent. 
The inconsistency of the system could have been found out before if, 
after some stage of the elimination, or even in the original system, 
there was an equation 

O·.r1 + O·.rs + ... + O·Xn = b, b =#= 0. 

It goes without saying that having obtained such an equation we 
stop the process. 

If b~':..l'l = ... = b;;;-t> = 0 then system (1.0.5) is consistent. 
To lind its solutions it suffices to consider the first r equations. In 
case r = n these n equations produce a system in a triangular form 

a\~- 0x 1 +a\~-llx2+ ... +a\~;.~.\.rn-t +a\~-l)Xn = b\n-1), 

a~·r 1l.r2 + ... + a~~~:>tXn- 1 + a~~-I)Xn = b~n-t), 

a~n--~~)n-tXn-1 + ~n--l~)nXn = b;n_-l) o 

~-t)Xn=b~n-1). 

The solution of such a system is unique: from the last equation we 
deduce that Xn is unique, substituting its value into the preceding 
equation we find that Xn _1 is unique, etc. A system of linear equations 
ha,·ing a unique solution is said to be determinate. Thus, if system 
(1.0.3) can be reduced to a triangular form then it is determinate. 
This case is certain to take place when we find the decomposition of 
a vector in terms of the vectors in a basis for the space. 
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If r < n then the first r equations of system (1.0.5) form a system 
in a trapezoulal form having infinitely many solutions. Given arbi­
trary numerical values to the freeunknownsxr+l• ... , Xn, we can find, 
in the way indicated above, the values of the unknowns x11 ••• , Xr. 
By this method all the solutions for system (1.0.5), and, therefore, of 
system (1.0.3), can be found. A system of linear equations having 
infinitely many solutions is called indeterminate. Thus, the trapezoidal 
form of the final system in the Gauss method reveals the indetermi­
nacy of the original system (1.0.3). Such is the case, for example, 
when we seek the expression of a vector x in terms of a linearly depen­
dent system y1, y2, ••• , y 11 on condition thatx belongs to L (y1 , ... , y 11 ). 

Note, in conclusion, that all transformations in the Gauss method 
may be performed with the elements of the augmented matrix made 
up of the coefficients of system (1.0.3): 

A,~ 11:;~: .:~ :. : ;;; . :;::II· 
a~l a~J ... a~~ b~ 1 

The transfer to the subsequent matrices A 1 , ••• , Ar-I is performed 
by the formulae of the type (1.0.4). The method of elementary trans­
formations, suggested for the solution of Problems 1 and 2, is actually 
the method of Gauss elimination used for the matrix made up of the 
vectors of the given system. 

1.1. De6..oition of Linear Space 

In this section a number of examples of linear spaces, and also of certain 
sets which are not linear spaces, are given. We also touch upon (see Problems 
1.1.17, t.t.tS) the nioms of a linear space. 

t.t.t. A set V0 consists of one element 8. The operations on V0 

are defined as follows: 
(a) e + e ~ e; 
(b) AS = 8 for every A from the field P. Verify that V0 is a linear 

space over the field P. 
Determine, for each of the following vector sets in a plane, whether 

this set is a linear space under ordinary vector addition and vector 
multiplication by a number. In case of the negative reply, indicate 
which particular properties of a linear space are not fulfilled. It is 
assumed that the origin of each vector is at the fixed point 0 of the 
plane, being the origin of a rectangular system of coordinates. 

1.1.2. All vectors whose end-points lie in the same straight line. 
1.1.3. All vectors whose end-points lie: (a) in the first quadrant 

of the system of "coOrdinates;· (b) in the first or third quadrant; 
(c) in the first or second quadrant. · 
2 0619 
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1.1.4. All vectors which form an angle q>, 0 ~ IP~ n, with a given 
nonzero vector a. 

t. 1.5. Show that (a) the set of real numbers may be considered as 
a rational linear space; (b) the set of complex numbers may be con­
sidered as a real linear space; (c) in general, any field P may be con­
sidered as a linear space over a subfield P 1 of the field P. 

1.1.6. On the set R+ of positive real numbers the following 
operations are defined: (a) "addition" X $ y = xy (i.e, the ordinary 
multiplication of numbers x and y); (b) "multiplication by a real 
number" a· X= :xa (i.e. raising a number to the power of a). 

Verify that the set R+, under the indicated operations is a linear 
space. 

t. t. 7. Let ff2 be the set of all ordered pairs of real numbers 
x = (a:10 o:2) under the operations: (a) if x = (a1 , a 2) and y = 
= (~1 , ~2) then x + y = (a1 + ~1 , a 2 + ~ 2 ); (b) for any real number 
A, 'J..x= ("-at, a2)· 

Is R2 a real linear space? 
J. t .8. The same question for the case with the following definition 

of the operation of multiplication by a number: if x = (~, a 2) then 
AX~ (l.a,, l.a,). 

t. J .9. Let P,. be the set of all ordered sets of k elements from the 
field P: x = (ext> a 2 , ••• , a,.). The operations on P,. are defined as 
follows: (a) if x = (a1, a 2 , ••• , a,.) andy= (~ 1 , ~ 2 , ••• , ~,.),then 
x + y = (a1 + ~1 , a 2 + ~ 2 , •.• , a:,. + ~k); (b) for every A from 
the field P, 'J..x = (Aa:1, A.a2 , .•• , Aa:Jt)· Verify that P,. is a linear 
space oYer the field P. 

t. t. tO. Let Z<2> be the field of two elements 0 and 1 on which the 
operations are defined by the following tables: 

(a) addition (b) multiplication 

0 1 0 1 

0~11 0~10' 
11~1~ 

Construct the linear space Z~21 (see Problem 1.1.9). Show that for 
any vector x from Z~2', x + x = 0. Find the number of vectors 
in Z~2 '. 

Lt.tt. Lets be the set of all infinite series of real numbers x = 
= (a1, a 2 , .•• , a 11 , ••• ). The operations on s are defined as follows: 
(a) if x ~ (a,, a,, ... , a., ... ), y ~ (~., ~ ••... , ~ ••... ), then 
x + y = (a1 + ~1 • a 2 + ~ 2 , ••• , an + ~~~· ... ); (b) for any real A, 

Ax~ (l.a,, l.a,, .•. , ""·· .•. ). 
Is s a real linear space? 
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1.1.12. Let F be the set of all infinite series of real numbers whose 

elements satisfy the relation a 11 = o: 11 - 1 + a 11 - 1 , k = 3, 4, 
The operations over series are defined just like in Problem 1.1.11. 
Is F a linear space? 

Verif)'. for each of the following sets of polynomials in one variable 
and with real coefficients. whether this set is a linear space under 
the ordinary operations of addition of polynomials and multipli­
cation of a polynomial by a number. 

t. t. 13. The set of polynomials of any degree, with zero adjoined. 
t.t.t4. The set of polynomials of d('grees ~n. with zero adjoined. 
1.1.15. The set of all polynomials of a given degree n. 
1.1.16. The set of all polynomials f (t) satisfying the eonditions: 

(•) I (0) ~ I; (b) I (0) ~ 0; (c) 21 (0) - 31 (I) ~ 0; (d) I (I) + 
+ I (2) + ... + I (k) ~ o. 

t. 1.17. * Give an example of a set M in which all the axioms of 
a linear space are fulfilled except the axiom: 1·x = x for every x 
from M. How important is this axiom for the definition of a linear 
space? 

1.1.18.• Prove that the commutative law follows from the other 
axioms of a linear space. 

1.2. Linear Dependence 

Besides the problems involving the notion of linear dependence, we provide 
in the present section, the com~utational means for the solution of a problem of 

~~~:r, ~i~~~~h~cee)e~e~~&e~r::Si~~8~0:nf:teth:t ;:. vectors in arithmetic 

1.2.1. Pw\'e that a set of vectors containing the null vector is 
linearly dependent. 

1.2.2. Prove that a set of vectors two of whose vectors differ 
only by a scalar multiplier, is linearly dependent. 

1.2.3. Prove that if, in a set of vectors, some subset is linearly 
dependent, then the whole set is linearly dependent. 

1.2.4. Prove that in a linearly independent set of vectors, any 
subset is also linearly independent. 

1.2.5. Let a set of vectors x1 , •.. , Xm be linearly independent 
and let the set x1, x1 , ... , Xm, y be linearly dependent. Prove that 
the vector y is linearly expressed in terms of xi> ••• , Xm. 

t .2.6. Show that the decomposition of the vector y in terms of 
x1 , ••• , x 111 (see the previous problem) is unique. 

1.2.7. Conversely, let the decomposition of the vector y in some 
set xi> ••• , Xm be unique. Prove that the set xi> ••• , Xm is linearly 
independent. 

1.2.8. Let a vector y be linearly expressed in terms of a linearly 
dependent set .x1, ••• , Xm. Show that y has infinitely many decom­
positions in terms of the set. ,. 
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1.2.9. Let x, y, z be a linearly independent set of vectors. Are 
the follo\\o"ing sets of vectors linearly independent: 

(a) x, x + y, x + y + z; (b) x + y, y + z, z + x; 
(c) x - y, y - z, z - x? 

1.2.10. Show that for any vectors x, y, z, and any numbers a, ~. y, 
the set of vectors cr;x- ~y, yy - az, ~z- yx is linearly dependent. 

1.2.11. Let r, s, v be different real numbers. Is the following set of 
polynomials linearly dependent: 

(t - •) (t - •), (t - •) (t - v), (t - •) (t - v)? 

1.2.12. Find the linear combination 3x1 - 2x2 + 7x3 of the 
vectors of the arithmetic space R 4 : 

XI =- (3, 1, -7, 4), 
x, ~ (1, 5, 0, G), 

x, ~ (-1, 1, 3, 0). 

Discuss the result obtained. What can be said of the set of vectors 
x1 , X 2, x3? 

1.2.13. Given a set of polynomials / 1 (t) = 1- t2 , / 2 (t) = 
= 1 + t3 , f 3 (t) = t- t3 , f 4 (t) = 1 + t + (1. + t3 , find the fol\ow­

ii.ng linear combinations of the polynomials of this set: (a) 3/1 + f 2 -

- 4/3; (b)/1 + 9/2 -4/4. Discusstheobtainedresults. What can be 
:said of the given set of polynomials? 

1.2.14. Find other decompositions of the polynomial obtained in 
Problem 1.2.13 in terms of the set /1 (t), /, (t), / 3 (t), / 4 (t). 

1.2. 15. Prove that the following "trapezoidal" set of vectors of the 
:S_pace P11 (see Problem 1.1.9) is linearly independent: 

!11 = (et 11 , ••• , Ct1p• Ctt, p+l• •••• Cttq• Ct!,'l+!• • • ., Ctu, Ctt,t+t• ••• , Cttlt). 

y1 =(0, ... ,0, a 1,p+t• ••• ,a2q, a1,q+!• ... ,Ct2t• Ct2,J+1, ••• ,a211), 

Ya=(O, ... , 0, 0, ... , 0. Ct3,q+t• •• ·• Ct3to Ct3,t+P • • ·• Ct3~), 

g,~(O, .. ., 0, 0, ...• 0, o. ·• 0, Ctr,l+lt • • ·• Ctr.ft)· 

(1.2.1) 

Here et2,P+l• et 3,q+I• ••• , Ctr,I+I are elements of the field P and differ 
from zero. At least one of the elements Ctw ••• , et1p is also nonzero. 

1.2.16. Prove that in polynomial space, each finite set consisting 
.of polynomials of various degrees and not containing zero is linearly 
independent. 

1.2.17. Prove that linear dependence or linear independence of a 
•t of vectors is not affected during the following transformations of 
the set, called the elementary transformations: (a) interchanging two 
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vectors of the set; (b) multiplication of a vector of the set by a non­
zero nnmber; (c) addition of one vector of the set to another mul­
tiplied by an arbitrary number. 

( .2. (8. Prove that an arbitrary set of vectors of the arithmetic 
space can be reduced, by the elementary transformations, to a set 
of vectors of the type indicated in Problem 1.2.15, probably, with 
some zero vectors adjoined. How can it be determined whether the 
original set was linearly dependent? 

Determine whether the following vector sets of arithmetic spaces­
are linearly dependent: 

1.2.19. x, ~ (-3. I. 5). 1.2.20. x, ~ (4. -12. 28), 

X2 = (13, -2, 15), 

1.2.21. x, ~ (1. 2. 3. 0). 

x, ~ (2. 4, 6. 1). 

1.2.23. x, ~ (1. 2. 3). 

x, ~ (2. 5. 7). 

x, ~ (3. 7, 10). 

1.2.25. x, ~ (1, 2. 3), 

x, ~ (2. 5. 7). 

x, ~ (3. 7. 10 + •). 

x, ~ (-7. 21. -49). 

1.2,22, X 1 = (f, i, 2- i, 3 + i),. 

x 2 =(1-i,1+i, 

I - 3i, 4 - 2i). 

1.2.24. x, ~ (1. 2, 3), 

x, ~ (2. 5, 7), 

x, ~ (3. 7, 11). 

Here e is however small number other than zero. 

1.2.26. x, ~ (1. I. I. 1). 

x,~ (1. -1. -1, 1). 

x,~ (1. -1. 1. -1). 
x,~ (1, I, -1, -1). 

1.2.27. x, ~ (5, -3. 2. I, 10), 

x2 = (-1, 8, 1, -4, 7),. 

x, ~ (2. I. 9, -3. 6), 
x, ~ (1. 3. -5. 9, 11). 

L2.28. • Let a set of vectors of an arithmetic space be given 

Xt = (ctn, ctn, · • •• «X:tn), 
x2 = (ctu, ctu, .•. , ct2n), 

X a= (a.at• a.u, • • •• a.,n), 

where s ~ n. Prove that if I a.u I> ~ .I a.u 1. j = 1, ... , s,. 
i-1 ,.,..) 

then the given set of vectors is linearly independent. 
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1.3. Spans. Rank of Vector Sets 

eqJ:J~ee s:'ft~~ :1 v~:J~~~eb:S:~:~~~~ ~fa d::c%~~; ~~n~h~:;:n~!~ 
!t. o!:t!P:e~~~~J:!ifcm:p!:. n~~!n~!~hoda~e~~:te~~~;;~:!~t~!: 
developed in the previous section is the way to solve the latter problems. 

Describe the spans of the following vector sets in the space R~: 

1.3.1. •• ~ (1, o. 0 o. 0), 1.3.2 .•• ~ (1, 0, 0, 0, 1), 
•• ~ (0, o. 1, o. 0), •• ~ (0, 1, 0, 1, 0), 
•• ~ (0, o. o. o. 1). •• ~ (0, o. 1, o. 0). 

1.3.3 .•• ~ (1, 0, o. 0, -1), 
•• ~ (0, 1, 0, 0, -1), 
•• ~ (0, 0, 1, 0, -1), 
•• ~ (0, 0, 0, 1, -1). 

Find the spans of the following sets of polynomials: 

1.3.4. 1, t, t1 • 1.3.5. 1 + t1, t + t11 , 1 + t + t2• 

1.3.6. 1- t2 , t- t', 2- t- t2 • 1.3.7. 1 - t1, t- t1 • 

1.3.8. * Consider the span generated by numbers 1 and V 3 in the 
set of real numbers and treated as a rational linear space. Does 
Y3 belong to this span? 

1.3.9. If every vector of a set y1 , y 2, ••• , Yn is a linear combination 
of the vectors x1,. , ., Xm, then the set y1, . .. , Yn is said to be linearly 
expressed in terms of the set x1, ... , Xm· Prove the transitive law for 
this concept, i.e. if the set y1, ... , y 11 is linearly expressed in terms 
of the set x1, ••• , Xm and the set z1, ••• , Zp is linearly expressed in 
terms of y1 , .•. , Y11 , then the set z1 , ... , z, is linearly expressed in 
terms of x11 ••• , Xm· 

1.3.10. Show that if a set y1 , ••• , Yn is linearly expressed in terms 
of x1 , ..• , Xm, then the span of the first set is contained in the span 
of the second. 

1.3. 11. The set of vectors Zu z2 is linearly expressed in terms of 
the set Y~t y2, y3 , y,: 

z1 = 2y1 + Y2 + 3y4 , 

Z2 = Y1- 5y2 + 4ys - 2y,. 
Also the set y1, y2 , y3 , y 4 is linearly expressed in terms of the set 

Y1 = X1 + XI + Xs, 

Y2 = xl + X2 - Xs, 

Y3 = X1 - Xz + Xa, 

y, = -X1 + X2 + Xa. 
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Find the expressions of the vectors z1 , z2 in terms of the vectors 
Xu X 2, x3 • 

1.3.12. Two sets of vectorsx1, ••• , Xm and y1, •• • , Yn are said to 
be equivalent if each of these sets is linearly expressed in terms of the 
other. Prove that the equivalence relation is reflexive, symmetric 
and transitive. 

1.3.13. Show that two sets of vectors are equivalent if, and only 
if, their spans coincide. 

Are the following sets of vectors equivalent? 

1.3.14. x, ~ (1, 0, 0), y, ~ (0, 0, 1), 

x, ~ (0, I, 0), y, ~ (0, I, 1), 

x, ~ (0, 0, I); y, ~ (1, I, 1). 

1.3.15. x, ~ (1, 0, 0), y, ~ (1, 0, 0), 

x, ~ (0, I, 0), y, ~ (0, I, 1), 

x, ~ (0, 0, I); y, ~ (1, I, 1). 

1.3. 16. * Prove that two equivalent linearly independent sets 
contain the same number of vectors. 

1.3.17. In a set of vectors x1, ••• , Xm, y1 , ••• , y,11 the vectors 
y1, ••• , Yn are linearly dependent on the vectors x1, ••• , Xm· Show 
that the setx1, •.. , Xm, y1, .•. , Yn is equivalent to the set .x1 , ••• , Xm. 

1.3.18.* Prove that in each set of vectors .x1 , ••• , Xm containing 
at least one nonzero vector, an equivalent linearly independent 
subset may be chosen. (Any such set is called the base of the given 
set of vectors.) 

1.3.19. Prove that all the bases of a given set .x1 , ••• , Xm consist 
of the same number of vectors. (This number is called the rank of 
the given set. If all vectors of the set are zero then its rank is zero 
by definition). 

1.3.20. Let the rank of a set .x1 , ••• , Xm be equal tor. Prove that 
(a) any of its subsets containing more than r vectors is linearly 
dependent; (b) any linearly independent subset containing r vectors 
is a base of the given set. Note that it follows from (a) that the rank 
of a set of vectors equals the maximal number of its linearly inde­
pendent vectors. 

t.3.21. Prove that (a) any nonzero vector of a given set can be 
included into a certain base of this set; (b) any linearly independent 
subset of the gh·en set of vectors can be extended to form the base 
of this set. 

1.3.22. Prove that if a set y1, ... , Yn is linearly expressed in terms 
of a set .x10 ••• , Xm, then the rank of the first set is not greater than 
the rank of the second. 
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1.3.23. Prove that if a set y1 , ••• , y., is linearly expressed in 
terms of a set x 1, • •• , Xnu then the rank of the setx1, ... , x.,,, y1 , .•• 

. . . , Yn equals the rank of the set x1, •.. , Xrn· 

1.3.24. Prove that equivalent vector sets have the same rank. 
Determine whether the converse is true, viz. whether any two sets 
of the same rank are equivalent. 

1.3.25. * Prove that if two vector sets have the same rank and 
one of these sets is linearly expressed in terms of the other, then 
these sets are equivalent. 

t .3.26. Prove that elementary transformations of a vector set do 
not alter the rank of this set. 

1.3.27. Apply the method of "reduction to the trapezoidal form" 
worked out in Problem 1.2.18 to the solution of the following 
problem: find the rank of a given vector set of the arithmetic space. 

Find the rank of the following vector sets: 
1.3.28. r, ~ (1, 2, 3), 1.3.29. r, ~ (1, 4, 7, 10), 

x, ~ (4, 5, 6), x, ~ (2, 5, 8, 11), 
x, ~ (7, 8, 9), r, ~ (3, 6, 9, 12). 

r, ~ (10, 11, 12). 
1.3.30, x, ~ (1, -1, 0, 0), 

x, ~ (0, 1, -1, 0), 
x, ~ (0, 0, 1, -1), 
r, ~ (0, 0, 0, 1), 
x, ~ (7, -3, -4, 5). 

1.3.32. '• ~ (1, 10, 0, 0), 
x, ~ (0, 1, 10, 0), 
x, ~ (0, 0, 1, 10), 
x, ~ (10, 0, 0, 1). 

1.3.31. '• ~ (1, -1, 0, 0), 
x, ~ (0, I, -1, 0), 
r, ~ (0, 0, 1, -1), 
r, ~ (-1, 0, 0, 1). 

1.3.33. r, ~ (1, I, I, 1, 1), 
x2 = (1, f, -1, -f,1), 
x,~ (1, -1, I, -1, 1), 
x.,= (1, -f, -1, f, 1). 

1.3.34. * Use the method of Problem 1.3.27 to find a base for a 
given vector set in the arithmetic space. 

Find a base for each of the following vector sets: 

1.3.35. '• ~ (-1, 4, -3, -2), 1.3.36. '• ~ (0, 2, -1), 
r, ~ (3, -7, 5, 3), x, ~ (3, 7, 1), 
r, ~ (3, -2, 1, 0), r, ~ (2, 0, 3), 
x, ~ (-4, I, 0, 1). x, ~ (5, 1, 8). 

1.3,37.* '• ~ (14, -27, -49, 113), 
x, ~ (43, -82, -145, 340), 
r, ~ (-29, 55, 96, -227), 
r, ~ (85, -163, -293, 677). 
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1.3.38. x1 = (3- i, 1- 2i, -1 + Si, 4 + 3i), 

x 2 = (1 + 3i, 1 + i, -6 - 1i, 4i), 

x, ~ (0, 1, 1, -3). 
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1.3.39.* The vectors Xf,, ... , x1r of a set x1 , ••• , Xm form a base 
and the vector XJ> the nonzero vector, is not in this base. Prove that, 
among the vectors of the base, there is a vector x 11 such that on 
replacing it with x1 in the subset x;,, . .. , x1r, a new base of the given 
set x 1, ••• , Xm is obtained. Is this vector, x 11, unique? 

1.3.40. • What can be said about a vector set of rank r if it has 
(a) a unique base; (b) precisely two bases; (c) precisely three bases? 
NB. Two bases, differing only in the order of vectors, are treated 
as the same. 

Find all the bases of the following vectors: 

1.3.41. x, ~ (4, -2, 12, 8), 1.3.42. x, ~ (1, 2, 3, 0, -1), 

x, ~ (-6, 12, 9, -3), x, ~ (0, 1, 1, 1, 0), 

x, ~ (-10, 5, -30, -20), x, ~ (1, 3, 4, 1, -1). 

x, ~ (-14, 28, 21, -7). 

1.3.43. x, ~ (1 + i, 1 - i, 2 + 3i), 

x, ~ (i, I, 2), 

x, = (1 - i, -1 - i, 3 - 2i), 

x, ~ (4, -4i, 10 + 2i). 

1.3.44.• Apply the method of Problem 1.3.27 to the solution of 
the following problem: determine whether a given vector set y1 , ••• 

. . • , Yn is expressed in terms of a vector set x1 , ••• , Xm• both being 
in the arithmetic space. 

1.3.45. Given two vector sets, 

x, ~ (1, 1, 1), 

x, ~ (1, 0, -1), 

x, ~ (1, 3, 5); 

y, ~ (1, 2, 3), 

y, ~ (0, 1, 2), 

y, ~ (3, 4, 5), 
y, ~ (4, 6, 8) 

determine whether the set y1 , y2 , y3 , y4 is linearly expressed in terms 
of the set x1, x1 , x3 . 

1.3.46. Are the sets indicated in the previous problem equivalent? 
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1.4. Basis and Dimension of Space 

dim':!i:::it:~; s~a~~~ ~~t~ :::S0:!1re,8 h~~~~!~~~~eili!06~t:di!n!~i~~ 
spaces. Furthermore, we discuss the notion of a basis. If, in a linear space, a 
basis is fixed, then the problems involving the elements of this space are reduced 
to similar problems involving the vectors of arithmetic space. Some of these 

~~~-~l:s s'o~~!~~:h:b~8!t~od ~i!Y:mS:~t~ t:~:sr~~afi~~~a~~~! t~~g~Pfb~ 
decomposition in terms of a basis) are reduced to the solution of certain systems 
(known beforehand) of Hnear equations, the rational way of their solution being 
the Gauss method. The 'section is concluded by problems involving linear sub­
spaces. 

Determine, for each of the linear spaces indicated below, whether 
they are finite-dimensional. In case of the positive reply find the 
dimension and construct a basis for the space. 

1.4.1. The space R+ (see Problem 1.1.5). 
1.4.2. The space P 11 whose elements are ordered sets of k elements 

of the field P (see Problem 1.1.9). 
1.4.3. The spaces of all infinite real sequences (see Problem 1.1.11). 
1.4.4. The space F of infinite real sequences whose elements satisfy 

the relationship ct11 = ct 11 _1 + a 11 _2 , k = 3, "-· . . (see Prob-
lem 1.1.12). 

1.4.5. The space M of polynomials of all degrees (see Problem 
1.1.13). 

t .4.6. The space M n of polynomials whose degree does not exceed 
a given nonnegative number n (see Problem 1.1.14). 

1.4. 7. Find the dimension of the field of complex numbers con­
sidered as (a) the complex linear space; (b) the real linear space. 

1.4.8. Let C,. be the set of all ordered sets of n complex numbers 
under the customarily defined operations on these sets (see Problem 
1.1.9). Find the dimension of Cn as (a) a complex space; (b) a real 
space. 

Show that the following vector spaces are the bases for the spaceR,: 
1.4.9. x, ~ (1, 2, 3, ... , n), 1.4.10. x, ~ (1,1, ... ,1,1,1), 

x, ~ (0, 2, 3, ... , n), x, ~ (1,1, ... ,1, 1, 0), 
x, ~ (0, 0, 3, ... , n), x, ~ (1,1, ... , 1, 0, 0), 

x, = (0, 0, 0, ... , n). 

1.4.11. x, ~ (1, 1, 1, 1, ...• 1), 
x, ~ (0, 1, 0, 0, ...• 0), 
x, ~ (0, 1, 1, 0, ...• 0), 
x, ~ (0, 1, 1, 1, ...• 0), 

x, ~ (0, 1, 1, 1, ...• 1). 

x, ~ (1, 0, ... , 0, 0, 0). 
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t.4.t2. Prove that in the space Mn of polynomials of degree ::;;;;n, 
the basis is any set of nonzero polynomials containing one poly­
nomial of each degree k, k = 0, 1, 2, ... , n. 

f .4. 13. Determine which of the following two Yl'Clor sets is a 
basis for the space R 4: 

(a) x, ~ (1, 2, -1, -2), 

x, ~ (2, 3, 0, -1), 

x, ~ (1, 2, 1, 3), 

x, ~ (1, 3, -1, 0); 

(b) x, ~ (1, 2, -1, -2), 

x, ~ (2, 3, 0, -1), 

x, ~ (1, 2, 1, 4), 

x, ~ (1, 3, -1, 0). 

/lenceforward, only the finite-dimensional spaces will be considered. 
f .4.14. Prove that (a) any nonzero vector of a space may be includ­

ed in a certain basis for this space; (b) any linearly independent 
vector set can be extended to form a basis for the space. 

f .4. t5. Find two different bases for the spaceR, having the vectors 
e1 = (f, 1, 0, 0), and e2 = (0, 0, 1, 1) in common. 

1.4.16. Extend the set of polynomials t6 + tt, t'- 3ts, t5 -L 2t2, 

t6 - t to form a basis for the space M ~-
1.4.17. Prove that the decomposition of a vector in terms of vectors 

of any basis is unique. 
t.4.t8. Let every vector of a space V be linearly expressed in 

terms of the vectors in a set e1, ••• , e,. and let the decomposition of 
a certain vector :t in terms of this set be unique. Prove that the 
vectors e1, ••• , en form a basis for the space V. 

t.4. 19. Let e1 , ••• , en be an arbitrary basis for a space V. Prove 
that (a) the coordinates of the vector x + y in terms of the basis 
e1, ••• , e,. are equal to the sums of the corresponding coordinates of 
the vectors x and y in the same basis; (b) the coordinates of a vector 
Ax in the basis e1, ••• , en equal the corresponding coordinates of 
the vector x multiplied by the number A. 

1.4.20. In a space V some basis e1, ... , e,. is fixed. Each vector x 
is matched with the row of its coordinates in this basis, i.e. 

Prove that (a) the linear dependence (or linear independence) of a 
vector set x, y, ... , z induces the linear dependence (linear indepen­
dence) of the set of rows X1, y,, ... , Ze considered as the elements of 
the corresponding arithmetic space; (b) the rank of a vector set 
:t, y, . .. , z equals the rank of the row set Xe, y,, ... , Ze; (c) if a vector 
u is linearly dependent on the vectors of a set x, y, ... , z, i.e. u = 
= Ax + 1111 + ... + vz, then this is true for the rows Ue, Xe, Yt• ••• 
• • • , Ze and, that besides, Ue =Axe + IJ.Ye + ... + vz.. 

Determine the rank and lind a base for each of the following sets of 
polynomials: 
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1.4.21. 3t2 + 2t + 1, 4t2 + 3t + 2, 3t2 + 2t + 3, t 2 + t + 1, 
4<'+3<+4. 

1.4.22. t 3 + 2t2 + 3t + 4, 2t9 + 3t2 + 4t + 5, 3t9 + lit2 + St + 
+ 6, 4t9 + 5t2 + 6t + 7. 

Verify that the vectors el> •.. , e, form a basis for the space R,; 
find the coordinates of the vector x in this basis: 

1.4.23. e, ~ (2, 2, -1), e, ~ (2, -1, 2), e, ~ (-1, 2, 2); x c 

~ (1, 1, 1). 
1.4.24. e, ~ (1, 5, 3), e, ~ (2, 7, 3), e, ~ (3, 9, 4); x ~ (2, 1, 1). 
1.4.25. e, ~ (1, 2, -1, -2), e, ~ (2, 3, 0, -1), e, ~ (1, 2, 1, 4), 

e, ~ (1, 3, -1, 0); x ~ (7, 14, -1, 2). . 
1.4.26. e, ~ (1, 2, I, 1), e, ~ (2, 3, 1, 0), e, ~ (3, 1, 1, -2), 

e, ~ (4, 2, -1, -6); X ~ (0, 0, 2, 7). 
1.4.27. Find the coordinates of the polynomial t~ - t~ + t9 -

- t 2 - t + 1 in each of the following bases for the space M ~= 
(a) 1, t, t2 , t9 , tf., t6; 

(b) 1, t + 1, t 2 + 1, t 9 + 1, tf, + 1, t6 + 1; 
(c) 1 + t9 , t + t 9 , t3 + t3, t8 , fl.+ t9 , t 6 + t9 , 

1.4.28. Verify that the sequences 
e, ~ (2, 3, 5, 8, 13, .•. ), 

e2 = (1, 2, 3, 5, 8, ... ) 

form the basis for the space F (see Problem 1.1.12); express the 
sequence 

e ~ (1, I, 2, 3, 5, 8, •.. ) 

in terms of the elements of this basis. 
1.4.29. Prove that the span of an arbitrary finite vector set of 

a linear space V is its linear subspace. 
t .4.30. Let V be an n-dimensional linear space. Prove that any 

linear subspace of the space Vis finite-dimensional, its dimension not 
exceeding n. 

1.4.31. Prove that if L is a linear subspace of a space V and the 
dimension of L equals the dimension of V, then L coincides with V. 

1.4.32. Prove that any subspace of an n-dimensional space V 
may be considered as the span of a certain vector set. Besides, the 
set may be chosen to contain not more than n vectors. 

1.4.33. Prove that in an n-dimensional space V, a linear subspace 
of any dimension k, 0 ~ k ~ n, may be found. 

1 .4.34. Given that a linear subspace L is the span of a vector set 
x1 , .•• , x 11 , prove that the dimension of L equals the rank of the set 
x1 , ••• , x 11 , and that any basis for this set may serve as its basis. 

Determine the dimension of and find a basis for the linear subs paces 
spanned by the following sets of vectors of the arithmetic space: 
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1.4.35. x, ~ (1, 2, 2, -1), x, ~ (2, 3, 2, 5), x, ~ (-1, 4, 3, -1), 
x, ~ (2, 9, 3, 5). 

1.4.36. x, ~ (-3, 1, 5, 3, 2), x, ~ (2, 3. 0. 1, 0), x, ~ 
~ (1, 2, 3, 2, 1), x, ~ (3, -5, -1, -3, -1), x, ~ (3, 0, 1, 0, 0). 

1.4.37. Find a basis and the dimension of a linear !>nbspace of the 
space Rn if L is determined by the equation 

al + a2 -;- .•. + an = 0. 
1.4.38. In the space Mn of polynomials with real coefficients of 

degree ~n the subsets of polynomials satisfying the following con­
ditions are considered: (a) I (0) = 0; (b) I (1) = 0; (c) I (a) = 0, 
where a is any real number; (d) I (0) =I (1) -= 0. Prove that each 
of the indicated subsets is a linear subspace of the space M11 ; fmd 
the dimensions for these subspaces. 

t .4.39. Find the dimension and a basis for the span generated by 
the set of polynomials: t6 + t4 , t0 + 3t" - t, t6 - 2t4 J_ t, t8 - 4t4 + 
+ 2t. 

1.4.40. Let L be an m-dimensional subspace of an n-dimensional 
space F. Prove that a basis e1, ... , en for the space V may be found 
such that its first m vectors e1, ••• , em are in the subspace L. 

1.4.41.* Prove that for whichever m-dimensional subspace L of 
an n-dimensional space V, where m < n, there is a basis for V such 
that (a) it contains no vectors from L; (b) it contains precisely k 
vectors from L, k < m. 

1.4.42. Construct a basis for the space M& of polynomials of the 
fiflh degree. 

1.4.43. Conversely, can a basis for the space M 5 , containing no 
polynomials of the flflh degree, be found? 

t .5. Sum and Intersection 
of Subspaces 

In this section we seek: 
To present the computational methods used to find the basis for the sum and 

intersection of two linear subspaces. 
To indicate various criteria for the "directness" of the subspace sum. 
To stress that, in the general case, the decomposition of a vector in terms of 

subspaces is not unique. It is unique only in the case of a direct sum. The sub­
spaces that produce, in their sum, the whole linear space serve as the gene­
ralized basis for it. 

To illustrate the existence of a complementary subspace (which is not unique) 
of any subspace. 

1.5.1. Prove that the sum and intersection of two linear subspaces 
of a space V are also linear subspaces of this space. 

1.5.2. Consider the set of all linear subspaces of a given space V 
under the operation of subspace addition. 

Verify that (a) the operation is associative; (b) there is a zero 
element. Is this set a group? 
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1.5.3. Consider the set of all the linear subspaces of a given space 
V under the operation of intersection of subs paces. Show that (a} the 
operation is associative; (b) there is an identity element. Is this set 
a group? 

1.5.4. Prove for any subspaces L1 and £ 2 , the validity of the 
formula 

dim L1 + dim L,_ = dim (L1 + L 2) + dim (L1 n L1). 

Here and henceforth, dim L means the dimension of the linear 
space L. 

1.5.5. Prove that, for any P, 

dim (L1 + ... + Lp) ::::;;; dim L1 + ... + dim Lp. 

1.5.6. Let L 1 be the span of the set of vectors xlt ... , x,. and £ 2 
the span of vectors y1, .•• , y 1• Prove that any base of the set x1, ••. 

. . . , x,., y1, •.• , y 1 serves as a basis for the sum L 1 + £ 1 . In particu­
lar, the basis L1 + L1 may be obtained by extending a basis for 
L, (LJ. 

Find a basis and the dimension of the sum of the two subspaces, 
viz. L1 spanned by the vectors x1 , ••• , x" and Lt by the vectors 
y1, ••• , y 1• Determine the dimension of the intersection of these 
subspaces. 

1.5.7 .•• = (0, 1, 1, 1), ., = (1, 1, 1, 2), z, = (-2, 0, 1, 1); 
y, = (-1, 3, 2, -1), y, = (1, 1, 0, -1). 

1.5.8 .•• = (2, -5, 3, 4), •• = (1, 2, 0, -7), z, = (3, -6, 2, 5); 
y, = (2, 0, -4, 6), y, = (1, 1, 1, 1), y, = (3, 3, 1, 5). 

1.5.9.• Let x 1, ••• , x 11 be a basis for a subspace L1 and y1, ••• , Yt 
a basis for a space Lt. Further, let x1, ••• , x 11 , y1 , ••• , y, be a ba!'le 
of the set X1, • •• , x", y1, • •• , Y1 and the vectors Ya+t• ... , Yl not in 
this base, have the following decompositions in terms of this base: 

Yt = CtnX1 + · · · + CZtJiXJi + ~ttYt + . · · + ~taYa• 
i =s+ 1, ... , l. 

Prove that the set of vectors z1, ••• , z1_, where 

z,_, = -~11Y1 - ••• - ~~~y. + Yt• i = s + 1, •.• , l, 

or, "Titten in other way, 

z1_, = a 11x1 + ... + a 111x 11 , i = s + 1, ... , l, 
form!> a basis for the intersection L1 n L 2• 

Find the bases for the sum and intersection of the linear subspaces 
spanned by the sets x1 , ••• , x" and y1 , •.• , y,. respectively: 

1.5.10 .•• = (2, 1, 0), ., = (1, 2, 3), •• = (-5, -2, 1); y, = 
= (1, 1, 2), y, = (-1, 3, 0), y, = (2, 0, 3). 

1.5.11. z, = (1,1,1,1),z, = (1,1, -1, -1),z, = (1, -1,1,-1); 
y, = (1. -1, -1, 1). y, = (2, -2, 0, 0), y, = (3, -1, 1, 1). 
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1.5.12. x, ~ (1, 2, 1, 1), x, ~ (2, 3, 1, 0), x, ~ (3, 1, 1, -2); 
y, ~ (0, 4, 1, 3), "' ~ (1, 0, -2, -6), y, ~ (1, 0, 3, 5). 

1.5.13. Find two different decompositions of the wctor x = 
= (1, 0, 1) in terms of the subspaces L1 and L 2 (see Problem 1.5.10). 

1.5.14.. Prove that the sum L of subspaces £ 1, ••• , Lp is their 
direct sum if tmd only if the union of the bases for these subspaces 
produces a basis for L. 

1.5.15. Prove that the condition stated in Problem 1.5.14 is 
equivalent to the following condition: 

dim (£1 + ... + Lp) = dim L1 + ... + dim Lp. 

1.5.16. Prove that a subspace L = L1 + ... + Lp is the direct 
sum of the subspaces £ 1, •.• , Lp if and only if the intersection of 
each of the subs paces £ 1, i ~ i ~ p, and the sum of the remaining 
subs paces consists of the null vector only. 

1.5.17. Let a set of subspaces £ 1, •.• , Lp be ordered. Verify that 
the necessary and sufficient condition stated in Problem 1.5.16 may 
be weakened, viz. the intersection of each of the subspaces £ 1, 2 ~ 
~ i ~ p, and the sum of the previous subspaces should consist of 
the null vector only. 

1.5.18. Prove that the sum of subspaces L1, ••• , Lp is their 
direct sum if and only if any set of nonzero vectors x1 , ••• , x 11 , all 
chosen from different subspaces LJ> j = 1, ... , p, is linearly inde­
pendent. 

1.5.19. Prove the associative law for the direct sum of subspaces, 

...-iz. if L = L1 .f- L and L = L 2 + L 3 , then L = L 1 + L 2 + L 3 • 

1.5.20. Verify that the direct sum of the linear subspaces L1 and 
L 2 spanned by the sets of vectors x1 = (2, 3, 11, 5), x2 = (1, 1, 5, 2), 
x3 = (0, 1, 1, 1) and y1 = (2, 1, 3, 2), y 2 = (1, 1, 3, 4), y3 = 
= (5, 2, 6, 2), respectively, produces the whole space R 4 ; find the 
decomposition of the \'ector x = (2, 0, 0, 3) in terms of these sub­
spaces. 

1.5.21. Pro\'e that in the space M, of polynomials of degree 
~n (a) the set L 1 of the even polynomials f (t) (i.e. f (-t) = f (t)) 
and the set L 2 of the odd polynomials (i.e. f (-t) = -f (t)) are 
linear subspaces; (b) the following equality is valid 

M, = L1 ..f- L 2• 

1.5.22. Prove that, for any subspace L1 of a linear space V, 
there is a complementary subspace, i.e. a subspace L 2 such that 

V = Ll + £2. 
Is the complementary subspace of a given subspace L1 unique? 

1.5.23. Find two different complementary subspaces of the sub­
space L generated by vectors x1 = (1, 3, 0, -1), .x2 = (2, 5, 1, 2), 
x3 = (1, 2, 1, 3). 
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1.5.24. In the space Mn of polynomials of degree ~n find a com­
plementary subspace to the space L of the polynomials satisfying the 
condition f (1) = 0. 

1.5.25. A space V is decomposed into the direct sum of subspaces 
L1, ••. , Lp. Prove that (a) if a vector x is decomposed as follows: 

z = Xt + ... + Xp, Xj E Lj, 

then the decomposition of the vector Ax, in terms of the subspaces 
L1 , ••• , Lp. is of the form 

A..x = A.x1 + · .. + A.xp; 

(b) if y is a vector with the decomposition y1 + ... 1 YP• y 1 E £ 1, 

then the decomposition of the vector x + y, in terms of the subs paces 
L~" Lp, is of the form 

x + y = (x1 + y1) + ... + (xp + yp)· 



CHAPTER 2 

Euclidean and Unitary Spaces 

2.0. Terminology .and General Notes 

A real linear space E is said to be a Euclidean 
space if for each pair of vectors x, y from E there is a corresponding 
real number designated by the symbol (x, y) and called the scalar 
product of the vectors x and y; at that the following conditions are 
fulfilled: 

(1) (x, y) ~ (y, x), 

(2) (x -L y, ') ~ (x, ') + (y, ,), 

(3) (ax, y) ~ a (x, y), 

(4) (x, x) > 0 if x + 0. 

Here x. y, z are arbitrary vectors from E and a is an arbitrary real 
number. 

A (nonnegative) number is called the length of a vector x if 

I X I ~ V{X,X), 
A vector whose length equals unity is said to be normalized. 

For any two vectors x and y, the Cauchy-Buniakowsky inequality 
holds: 

I (x, y) I <;;; I x I· I y 1. 
Vector~ x andy are called orthogonal if their scalar product equals 

zero. A sel of ,·eclors is called orthogonal if each pair of the vectors 
in this set is orthogonal. 

Given a linearly independent set of vectors x1 , x2, ••• , x 11 , let us 
describe an orthogonalization procedure that will permit this set to be 
transformed to an orthogonal set of nonzero vectors y1 , y2 , ••• , y1,. 

Set y1 = x1 ; the subsequent vectors y2 , ••• , y11 are then constructed 
by the following formulae: 

1-1 

Y1 =x,-~~ ajl)y4,. 1 =2, ... , k, 

0:~1)= ~;:: ~:; i=1, ... , l-1. 

A basis for a Euclidean space 'is called orthogonal if it is an ortho­
gonal set. If the vectors of this set are normalized then this basis is 
3-06111 
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called orthonormal. Thus, an orthonormal basis e1 , .•. , en is specified 
by the relations 

It if i=i. 
(e,, e/)=1 0 if i:f=j, 

For two nonzero vectors x and y of a Euclidean space, the concept 
of an angle may also be considered, its cosine being determined by 
the formula 

cos(:;,y)= I ~j IY~ I' 
A complex lineaf space U is called unitary space if, for each pair 

of vectors x, y from U, there is a corresponding complex number 
denoted by (x, y), called the scalar product of the vectors x and y, 
provided that the following conditions are true: 

(I) (x, y) ~ (Y.X). 
(2) (x + y, •) ~ (x, •) + (y, ,). 

(3) (ax, y) ~ a (x, y). 

(4) (x, x) > 0 if x oF 0. 

In a unitary space an angle between vectors is not defined. How­
ever, all the above-mentioned definitions and results regarding a 
Euclidean space also remain valid for a unitary space. 

A typical example of a Euclidean space is the arithmetical space 
Rn in which the scalar product of vectors x = (a1, a 2, ••• , an) 
and y = (~1 • ~1 , .•. , ~n) is determined by the rule 

(x, y) ~a,~,+ a,~,+ ... +a,~,. (2.0.1) 

Similarly, a typical example of a unitary space is the space Cn in 
which, for vectors x and y, 

(x, y) ~ a,jl, + a,jl, + ... + a,jl,. (2.0.2) 

In both cases the standard basis for the arithmetical space turns out 
to be orthonormal. 

Let us make some other notes concerning the computational prob­
lems of the present chapter. 

Suppose it is required to extend an orthogonal set a1, •.• , a111 

of nonzero vectors of an arithmetic space to form an orthogonal basis 
for this space. We shall look for a vector a11 H using the conditions 
for the orthogonality 

(aHt• a 11 )=0. 
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Defined by relations (2.0.1) and (2.0.2), these conditions determine­
a system of linear equations involving the components of the vector 
aJt;+I· An arbitrary nonzero solution of this system may be chosen to 
yield ali +I· Now, the vector alt;+ll may be determined by the relations 

(a11+2, a 1) =0, 

(ali+2, a1J = 0, 

(a~t;+2 • all+!)= 0, 

and so on. At each stage of this extension procedure the results of the 
previous computations can be used and the solution of the linear 
equation systems found by the Gauss elimination method. 

The problem of constructing a basis for an orthogonal complement 
(see Problem 2.3.2) to the span of a given vector set in an arithmetic 
space is solved in a similar way. Gaussian elimination can also be 
applied both to the problems on computation of the vector pro­
jections on a given span and to those concerning the construction of 
bases biorthogonal to the given (see Problems 2.3.10 and 2.3.15). 

2.1. Definition of Euclidean Space 

In the present section we have set ourselves the following principal goals: 
To draw the simplest corollaries from the axioms of the sc8.lar product. 
To show that the scalar product may he defined for any real linear space, 

~b: :~:~;t~~h~~n!e:~h!"t s&a:}~X:f J.~t~;!~sc i~:Oce~:c1ld~:nd~m::;.rate 
To draw the rea1er's attention to the fact that not only is any sut!pace of 

ro:~~i::bi~ri~~::~!UE~fl!dfi~~~:~~a~ni~e~~l;n~fbl~a:: J~o~h~l'e d::::. 
And, finally, we intend to illustrate the significance of the axiom concerning 

the positiveness of the scalar product. 

2.1.1. Prove that it follows from the axioms for the scalar product 
that (a) {:r, y1 + y1) = (:r, y1) + (:r, y2) for any vectors of a Euclidean 
space; (b) (:r, ay) = a (z, y) for any vectors :r, y of a Euclidean space 
and real number a; 

(c) (:rt - %2, Y) = (:ru Y) - (:r2, y); 

(d) (0, z) ~ 0; 
1< I It l 

(e) (~1 a 1:r1, ~1 ~1z1 ) = 1~1 ~1 a1~1 (:r 1 , y1). 

2.1.2. Prove that the scalar product may be defined for any real 
linear space. 

2.1.3. Define the scalar product for the n-dimensional arithmetic 
space Rn. 

2.1.4. Define the scalar product for the space Mn of polynomials. 
of degree ~n with real coefficients. 
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2~1.5. Let V be a Euclidean space with the scalar product (.:z:, y). 
Show that if we set 

(x, y) ~ I. (x, y), 

where A is a fixed positive number, then, for {.:z:, y), all the axioms 
of the scalar product are fulfilled. What is the geometric meaning of 
the transfer from (.:z:, y) to {ol=, y) in the three-dimensional space of 
geometric vectors? 

2.1.6. Prove that if (.:z:, Yh and (.:z:, Y)t are two different scalar pro­
ducts on the same linear space V, then the following are also the 
scalar products 

(a) (x, y) ~ (x, Yh + (x, y),; 

(b) (x, y) ~ I. (x, Yh + ~ (x, y),, 

where A and flare arbitrary nonnegative numbers that are not simul­
taneously equal to zero. 

2.1.7. Let x = (a1, a 2) andy= (~1 , ~ 2 ) be arbitrary vectors of 
the arithmetic space R 2 • Show that the scalar product on R 2 may be 
defined in the following ways: 

(a) (x, y) = a1~1 + CL2~2; 
(b) (x, y) ~ 2a,~, + 5a,~,; 
(c) (x, y) = a1~1 + CL:t~ 2 + a2 ~1 + 2a 2~,. 

Evaluate the scalar product of the vectors x = (1, 1) and y = 
= ( -3, 2) by each of the above rules. 

2.1.8.* Prove that the scalar product on R 2 may be defined by the 
formula 

if and only if a > 0 and ac > b2 simultaneously. 
2.1.9.* Prove that the scalar product on R3 may be defined in the 

following way: if x = (a1 , a 2 , a 3) and y = (~It ~'' ~3), then 

(x, y) = 10a,~1 + 3CL:t~t + 3a2~I + 2a2~2 + a,~ a +.aa~2 + ~,~a· 
2.t.t0.* Prove that the scalar product on Rn may be defined by 

the formula 
(x, y) = aua1~1 + a12CL1~2 + . · · + a1nCL1~n 

+ a21cx.J}I + a22aJ12 + · · · + u,;naJin 

+an1CLn~1+an2CLn~2+ •• · +annCLn~n 
condition that 

(a) a11 =a11 if i=Fj; 

{b)au>tla11 1, i=i, ... ,n. 
J=l 
i+l 
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2.1.11. Let a be a fixed vector of a Euclidean space V and a a 
ftxed real number. Is the set of all vectors x, for which (x, a) = a, 
a linear subspace of the space V? 

2. 1. 12. Prove that each subspace of a Euclidean space V is also 
Euclidean in the sense of the scalar product defined for V. 

2.1.13. A linear space Vis resolved into the direct sum of sub­
spaces L1 , ••• , Lp. For each of the subspaces £ 1 the scalar product 
is defined. Prove that the scalar product may be defined for the whole 
space V, assuming that: if x andy are two arbitrary vectors from V, 
with decompositions in terms of the subspaces L1 , ••• , Lp respectively 
x = x1 + ... + Xp and y = y1 + ... + Yp. then 

(x, y) = (xu Y1h + ... + (xp, Yp)p, 
where the scalar product (xh y1) 1 is found by the rule given for £ 1• 

2.1.14. In the arithmetic space R 4 the scalar product of twc> 

vectors of Lhe form;= {et11 et2 , 0, 0) andY = (~1 , ~2 , 0, 0) is defined 
as follows: 

(;, Yh = ct1~1 + 2ctz~z· 
and Lhat of the vectors ; and i/ of the form - -i = (0, 0, et3 , ct4) and Y = (0, 0, ~3 • ~") 
is specified by another rule 

(X, Y)z = ct3~3 + ct3~4 + ct4~3 + 2ct4~4· 
Define the scalar product for the whole space R 4 (by the method 
indicaLed in Problem 2.1.13). Compute the scalar product of the 
vectors x = (1, 2, 3, 4) andy = (-3, 1, -3, 2) by the rule obtained. 

2.t.ts.• The scalar product (x, y) is defmed for a subspace L 
of a linear space V. Prove that the scalar product may be defined 
for the whole space V so as to be identical with the original scalar 
product (x, y) of the vectors x and y from L. 

2.t.t6.• Prove that in the Cauchy-Buniakowski inequality for 
vectors x and y of Euclidean space, viz. 

(x, y)',;;; (x, x) (y, y), 
the equality sign is upheld if and only if the vectors x and y are 
linearly dependent. 

2.1.17. Prove the following by the Cauchy-Buniakowski in­
equality: 

(a) ( ~ a1~ 1 )',;;;(~ a:) (.i; ~!); 
i=l t=l t=l 

(b) (~a1~1 }'.;;(:i1-1a!} (:if,~:), 
t=l 1=1 1-1 
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where a 1, ••• , an and ~H ••• , ~n are arbitrary real numbers and 
At •... , An are positive numbers. 

2.1.18. • Given a space V for which the "scalar product" is defined 
with the fourth axiom replaced by a weaker requirement, viz. (z, x)~ 
~ 0 for any vector x, prove that (a) the Cauchy-Buniakowski in~ 
equality is valid; (b) the set M of vectors, such that (z, z) = 0, forms 
a subspace; (c) for any vector x from M and any vector y from V 
the scalar product equals zero; (d) if N is an arbitrary, complementary 
subspace of M, and 

x=xM+xN, y=yu+YN 

are the decompositions of the vectors x andy in terms of the subspaces 
M and N, then the equality sign in the Cauchy-Buniakowski rela­
tionship for the vectors z and y is valid if and only if x N and y N 

are linearly dependent. 
2.1.19. Will the Cauchy-Buniakowski inequality be upheld if 

the fourth axiom in the definition of the scalar product is discarded? 

2.2. Orthogonality, Orthonormal Basis, 
Orthogonalization Procedure 

The problems of the present section concern the following two principal 
topics: 

The orthogonalization procedure, its applications to the construction of an 
orthogonal buis for a space and to the determination of the linear dependence 

of aT£~v~:th~~~:ftbases of a Euclidean space and their significance in[evaluat­
ing the scalar product. We also intend to show the dependence of the orthonor­
mility property of a basis on the method of defining the scalar product for a 
given linear space. 

2.2.1. Prove that in a Euclidean space E (a) the null vector is 
the only one possessing the property of orthogonality for all vectors 
of the space; (b) if the equality (a, x) = (b, x) is valid for any vector 
z from E, then a = b. 

2.2.2. Prove that if x, y, . , ., z is an orthogonal set of vectors, 
then, for any numbers A, ll• ... , v, the set of vectors A.x, J.LY, ... , vz 
is also orthogonal. 

2.2.3. Prove that if a vector x is orthogonal to each of the vectors 
y1 , ••• , Yto then it is also orthogonal to any linear combination of 
these vectors. 

2.2.4. Prove that an orthogonal set of nonzero vectors is linearly 
dependent. 

We sluzll assume, hereafter, tluzt the scalar product of the vectors 
z = (~, a,, ... , an) and y = (~1 , ~'' ••• , ~n) belonging to an 
arithmetic space Rn is determined by the formula 

(x, y) ~ o:,~, + "'•~• + ... + "'•~•· (2.2.1) 
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Apply the procedure of orthogonalization to the following sets of 
vectors in the space Rn: 

2.2.5. r, - (1, -2, 2), 

r,- (-1, 0, -1), 

.r, = (5, -3, -7). 

2o2o6o r, - (1, 1, 1, 1), 

r, - (3, 3, -1, -1). 

r, - (-2, 0, 6, 8) . 

2.2.7.* Prove that the orthogonalization procedure applied to a 
linearly independent set of vectors x1, •.. , x"- leads to an orthogonal 
set of nonzero vectors y1 , .•. , Yl!.· 

2.2.8. Prove that in any Euclidean space there exists (a) an 
orthogonal basis; (b) an orthonormal basis. 

2.2.9. Prove that (a) any nonzero vector may be included in some 
orthogonal basis for a Euclidean space; (b) any orthogonal set of 
nonzero vectors may be extended to form an orthogonal basis for 
the space. 

Verify that the following sets of vectors are orthogonal. Extend 
them to form orthogonal bases. 

2o2o10o r,- (1, -2, 1, 3), 

r,- (2, 1, -3, 1)o 

2o2ollo r,- (1, -1, 1, -3), 

r, = (-4, 1, 5, 0). 

Extend the following sets of vectors to form orthonormal bases: 

2.2.12. XI= ( -H, -ft, {-), 
Zz=(-fs, -~, -{-). 

2.2.13.x1=(t, -{, {, -{), 
X2=( -f, ~t j, -{). 

2.2.14. Prove that the scalar product of any two vectors x andy 
of a Euclidean space is expressed in terms of their coordinates in 
certain bases by the formula 

(r, y) - "'•~• + o o o + "'"~"' 
if and only if these bases are orthonormal. 

2.2.15. Prove that the coordinates~ •... , an of a vector x in 
an orthonormal basis e1, •.• , en are found by the formulae 

a 1 = (x, e1), i = 1, ••. , n. 

2.2.16. Find the dimension of the subspace formed by all vectors x 
such that (a, x) = 0. Here a is a fi.xed nonzero vector of a Euclidean 
space. 
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2.2.17.* Let ei> ... , e, be an orthonormal basis for a Euclidean 
space. Find an expression for the scalar product of two arbitrary 
vectors x and y in terms of their coordinates in: (a) the basis ~e1, 
A2e2 , ••• , A,e, where A1, A2 , ••• , A, are nonzero number!'l; (b) the 
basis e1 + e2 , e2 , e3 , ••• , e,. 

2.2. t8. Let the procedure of orthogonalization be applied to an 
arbitrary set of vectorsx1, ••• , x 11 • Prove that (a) if the set x1 , ••• , x,. 
is linearly dependent, then at some stage of the orthogonalization 
procedure a zero vector is obtained; (b) if the vectors y1 , ••• , y 1- 1 

(l :< k) obtained in the orthogonalization process are nonzero vectors 
and y 1 = 0, then, in the original set of vectorsx1 , ••• , x11 , the subset 
x1, ••• , x 1_1 is linearly independent and the vector x 1 is linearly 
dependent on this subset. 

Applying the orthogonalization procedure, construct orthogonal 
bases for the subspaces spanned by the given sets of vectors: 

2.2.19. z, ~ (2, 3, -4, -6), 2.2.20. z, ~ (1, I, -I, -2), 
z, ~ (1, 8, -2, -16), z, ~ (-2, I, 5, II), 

z, ~ (12, 5, -14, 5), z, ~ (0, 3, 3, 7), 
z, ~ (3, II, 4, -7). z, ~ (3, -3, -3, -9). 

2.2.21. Prove that if a set of vectors of the arithmetic space Rn 

X 1 = (ath ct12, au, •.. , atn), 

X2 = ( 0, au, a23• · · ., ct2n), 

Xa = ( 0, 0, etas• · · ., ctsn), 

Xn = ( 0, 0, 0, , .. , ctn,..) 

forms an orthogonal basis for this space, then (a) a 11 =f:=. 0, i = 1, ... 
. . . , n; (b) a 11 =0 if i=f:=.j. 

2.2.22.* In the space Rn (n > 1) there is an orthogonal basis 
e11 •.• , en such that all the components of each of the vectors e1 
are either 1 or -1. Prove that the dimension of the space R,.. is either 
2 or a multiple of 4. 

2.2.23.* Given a linearly independent set of vectors x1 , ••• , x,. 
and two orthogonal sets of nonzero vectors y1, ••• , y11 and z11 ••• , z,. 
such that the Yectors y1 and z:1 are linearly expressed in terms of 
x11 ••• , x1 (i = 1, ... , k), prove that y 1 = a 1z: 1 (i = 1, ... , k) 
where a 1 =F- 0. 

2.2.24. A scalar product is defined arbitrarily for the space M 11 

of polynomials with real Coefficients of degree ::::;;n. Prove that in 
the Euclidean space so formed (a) an orthogonal basis exists contain­
ing one polynomial of each degree k, 0::::;; k::::;; n; (b) if /0 (t), / 1 (t), ... 
. . . , In (t) and to (t), g1 (t), ... , In (t) are the two orthogonal basee. 
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possessing the above property, then the polynomials enumerated in 
the same way making up these bases are different only in scalar 
multipliers, i.e. g1 (t) = a;/1 (t), i = 0, 1, ... , n. 

2.2.25. Let e1 , ••• , e,. be an arbitrary basis for a real linear space 
V. Prove that the scalar product may be defined for the space V so 
that the set of vectors e1, ••• , en may be an orthonormal basis for 
the obtained Euclidean space. 

2.2.26. Define the scalar product for the space .l/., of polynomials 
of degree ~n so that the basis 

1,t.~, .... fr 
becomes orthonormal. 

2.3. Orthogonal Complement, 
Orthogonal Sums of Subspaces 

The principal goals of this section: 
To show the various properties of what will become a very important notion, 

that of an orthogonal complement to a subspace. 

anl~!~;!fc~f;r~~t:~~e~ifn!r~:;e:l~ti~nh~f't~~~n;!.o0bl1!n~ot~a~b~0:f~~~~n!f 
systems of linear equations. The problem on the perpendicular (see Problems 
2.3.10 to 2.3.14) is also included into this category. 

ple~~n~:dt~::ist~bei:xkf:~~:.f~~!~a?b;!ist?~r t!E:Clide~~o~~a~~~f~nb{o~h:= 
gonal basis. 

To note the similarity between the theorems about the direct sums of sub~ 
spaces of a linear space and the theorems concerning the orthogonal sums in 

:h:~~!~~~~~:f:~~ ~~ !uab!~~~~r is t~be d:~~;i~f0~ d~~!~~~:~i~~n i:~;:misn~f 
an orthonormal basis and in the sense the subspaces that yield a given linear 
space when directly summed, play the role of a generalized basis for the whole 
space. 

2.3.1. Let L be a k-dimensional subspace of a Euclidean space 
E, k < n. Prove that there is in E a nonzero vector orthogonal to all 
vectors of L (or, in other words, a vector orthogonal to the subspace L). 

2.3.2. Prove that the set £l. of all vectors orthogonal to a linear 
subspace L is also a linear subspace. £l. is called the orthogonal 
complement of the subspace L. 

2.3.3. Let L be an arbitrary subspace of a Euclidean space E. 
Prove that E is the direct sum of the subspaces L and £1., ~ote 
the relation between the dimensions of the subspaces L and £1. that 
follows from the statement. 

2.3.4. Prove that the orthogonal complement of a linear subspace 
of a Euclidean space E possesses the following properties: 

(a) (LL)> ~ L; 

(b) if £ 1 c £ 2, then Li c: Lf-; 
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(c) (L1 + L 2)J. = Lt n L1: 
(d) (£1 n L,.)l- = Lf + L~; 
(e) EL = 0, 01. = E. 

Ch. 2 

Here 0 is the null subspace containing the zero vector only. 
2.3.5. The direct sum of subspaces £ 1 and £ 2 produces a Euclidean 

space E. Prove that the same holds for their orthogonal complements, 

i.e. E = Lf _,:. Li. 
2.3.6. Find a basis for the orthogonal complement LL of the span 

L of the followfng set of vectors R 4: 

x, ~ (1, 3, 0, 2), x, ~ (3, 7, -1, 2), x, ~ (2, 4, -1, 0). 

2.3.7. In a Euclidean space E, an orthonormal basis e1, .•. , en 
is fi.xed. Prove the following: 

(a) If 

a,11a 1 + arrh,a2 + ... + amnCln = 0 

is an arbitrary set of linear equations in n unknowns, then the set 
of vectors z, whose coordinates with respect to the basis e10 ••• , en 
satisfy this system, is a linear subspace of the space E. The dimen­
sion of this subspace equals n - r where r is the rank of the following 
set of vectors of the arithmetic space: 

n1 = (a111 a12, ••• , a 1n), 

n 2 = (a211 au, ... , a,n), 

(b) any subspace L of the space E may be described by a particular 
system of linear equations. This means that a vector z belongs to the 
subspace L if and only if its coordinates in the basis e1, ••. , en 
satisfy the given system. If r is the dimension of the subspace L, 
then any system describing this subspace consists of not less than 
n - r equations; in addition, there exists a system consisting of 
precisely n - r equations; 

(c) systems of linear equations describing the subspace L and its 
orthogonal complement LJ. in a given basis are related to each other 
as follows: the coefficients of the system describing one of these 
subspaces act as the coordinates of the vectors spanning the other 
subspace. 

2.3.8. In the space M n of polynomials with real coefficients of 
degree ~n a scalar product for the polynomials f (t) = a1 + a1t + 
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+ ... + antn and g (t) = b0 + b1t + ... + bntn (in which higher­
order coefficients of the polynomials may be equal to zero) is defmed 
by the formula 

U, g)= aobo + a,bl + ... + anbn. (2.3.1) 

Find the orthogonal complement of (a) the subspace of all polynomials 
satisfying the condition f (1) = 0; (b) the subspace of all even poly­
nomials of the space Mn· 

2.3.9. Find the systems of linear equations that describe the sub­
space L defined in Problem 2.3.6 and that describe its orthogonal 
complement LJ.. 

2.3.10. Let L be a linear subspace of a Euclidean space E. Prove 
that any vector x from E can be represented, in a unique way, as 
x = y + z where y belongs to Land z is orthogonal to L. The vector 
y is cal1ed the orthogonal projection of the vector x on the subspace L, 
and z is called the perpendicular drawn from x to L. Find, for the 
given subspace L and vector x, a method of evaluating y and z. 

2.3.11.* Let x1 , x,, ... , x" be an arbitrary set of vectors in a 
Euclidean space E. Prove that for any vector x from E the system 
of linear equations 

(xH x1) ~ + (x,, x1) a, + ... + (x,., x1) a,. = (x, x1), 

(x1, x 2) a 1 + (x2 , x1) a, + ... + (x 11 , x1) a,. = (x, x 2), 

(x1, x,.) a 1 + (x2, x,.) a 2 + ... + (x,., Xtt) a" = (x, Xtt) 

has at least one solution. In which case is the solution unique? 
Find the orthogonal projection and perpendicular drawn from the 

vector x to the subspace L. 
2.3.12. x = (14, -3, -6, -7). Lis spanned by the vector y1 = 

~ (-3, 0, 7, 6), y, ~ (1, 4, 3, 2), y, ~ (2, 2, -2, -2). 
2.3. 13. x = (2, -5, 3, 4). L is spanned by the vectors y1 = 

~ (1, 3, 3, 5), y, ~ (1, 3, -5, -3), y, ~ (1, -5, 3, -3). 
2.3.14. x = (-3, 0, -5, 9). Lis determined by the system of 

equations: 
3a1 + 2a, + a 3 - 2a 4 = 0, 

~ + 4a1 + 3a3 + 2a4. = 0, 
CLt + 2a, + 3a3 + 10af. = 0. 

2.3.15. Two sets of vectors x1, .•• , x,. and Y1o,, ., y,. in a Eucli­
dean space are called biorthogonal if 

I 1 when i=j, 
(x1, YJ)= 0 when i#-j. 

Prove that each of the two biorthogonal sets of vectors is linearly 
independent. 
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2.3.16. Prove that a unique biorthogonal basis exists for any 
basis of a Euclidean space. 

2.3.17. Let e1, ••• , e, and 11• • ., In be a pair of biorthogonal 
bases for a Euclidean space. Prove that for any k, 1 < k < n the 
orthogonal complement to the subspace spanned by the Yectors 
e1, ••• , e11 coincides with the span of the vectors Ill +I• ... , 1,.. 

Find biorthogonal bases to the following bases of the space R ,: 

2.3.18. e, ~ (1, 0, 0, 0), 

e, ~ (0, 2, 0, 0), 
e, ~ (0, 0, 3, 0), 
e, ~ (0, 0, 0, 4). 

2.3.20. e, ~ (1, 1, 1, 1), 

e, ~ (0, 1, 1, 1), 

e, ~ (0, 0, 1, 1), 

e4 = (0, 0, 0, 1). 

2.3.19. e, ~ (1, 0, 1, 0), 
e, ~ (0, 1, 2, 0). 

e, ~ (0, 0, 1. 0), 
e, ~ (0, 0, 3, 1). 

2.3.21. e, ~ (1, 1, 1, 1), 

e, ~ (1, 1, -1, --1), 

e, ~ (1, -1, 1, -1), 

e,~ (1, -1, -1, 1). 

2.3.22. In a Euclide"an space E biorthogonal bases e1, ••• , e11 

and 11, ••• , In are fixed. Prove that 
(a) if x is an arbitrary vector from E, then in its decomposition 

in terms of the basis e1, ••• , en viz. x = a1e1 + ... + anen, the 
coefficients a 1 are determined by the formulae a 1 = (x, 11), i = 
= 1, ... , n; 

(b) the scalar product of arbitrary vectors x and y is determined 
by the formula 

(x, y) ~ ~ (x, /,) (y, e,) ~ ~ a,~, 
•=l 1=1 

where ~1 , ••• , ~n are the coefficients of the decomposition of the 
vector y in terms of the basis fu . ., In· 

2.3.23. The linear subspaces £ 1 , ••• , Lp of a Euclidean space E, 
are mutually orthogonal (this means that, for each subspace £ 1, any 
vector of that subspace is orthogonal to all the other subspaces). 
Prove that the sum of the subspaces L 1 , ••• , L, is their direct sum. 
(The sum of mutually orthogonal subspaces is called their orthogonal 
sum and denoted by L 1 EEl . , . ffi L,.) 

2.3.24. Prove that the sum L of subspaces £ 1, ... , Lp is their 
orthogonal sum if and only if the union of the orthogonal bases for 
these subspaces yields the orthogonal basis for L. 

2.3.25. Prove the associative law for the orthogonal sum of sub-

spaces, i.e. if L = L~ EEl Land l = L 2 EEl La, then 

L = L1 EEl L2 ffi La. 
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2.3.26. The direct sum of the subspaces L1 , ••. , Lp yields a 
Euclidean space E. Prove that this sum is orthogonal if and only if 
for any vectors x and y from E, decomposed in terms of the suhspaces 
£ 1 , •.. , Lp, respectively: x = x1 + ... + Xp and y = y1 + ... 
. , + y1,. their scalar product satisfies the equality 

(x, y) = (x1 , Y1) + ... + (Xp, Yp)· 

2.3.27. A linear space Vis arbitrarily decomposed into the direct 

sum of subspaces, i.e. V = L1 + ... + Lp. Prove that a scalar 
product for V may be dermed so that every pair of the subspaces £ 1 

is orthogonal. 

2.4. Lengths, Angles, Distances 

We inl!!nd in this section: 
To provide a number of simple problems regarding the definitions of the 

length, angle, and distance, and corroborating tbe validity of elementary 
Euclidean geometry theorems in an arbitrary Euclidean space. 

To interpret tbe problem of decomposing a vector in terms of tbe ortbogon~l 
complementary subspace as tbe problem of determining tbe least distance from 
the vector to the subspace. 

To determine the angle between a vector and a subspace and show that this 
definition generalizes tbe notion of an angle between a vector and a plane in 
three-dimensional Euclidean space. 

2.4..1. Prove that the lengths of the vectors :x andy= ax satisfy 
the equality 

I Y I~ I a II xI-
2.4.2. How is the angle between nonzero vectors :x and y altered 

if: (a) the vector :xis multiplied by a positive number; (b) the yector:x 
is multiplied by a negative number; (c) both vectors ;x and y are 
multiplied by negative numbers? 

In the ~ubsequent problems the ordered set of three vectors :x, y 
and :x- y in an arbitrary Euclidean space is called, just as it is in 
three-dimensional Euclidean space, a triangle "generated by or drawn 
on the vectors :x andy". Accordingly, the parallelogram generated 
by the vectors :x and y is considered to have the vectors :x + y and 
::t- y as its diagonals. 

2.4.3. Prove that the triangles generated by vectors :x, y, and 
ax, ay respectively, where a is an arbitrary nonzero number, have 
equal corresponding angles. 

2.4.4. Find the lengths of the sides of the triangle generated by 
the vectors of the space R 4 :x = (2, -1, 3, -2) andy = (3, 1, 5, 1). 
Find the angles between the sides of the triangle, i.e. vectors :x, y 
and :x- y. Which of these angles is it natural to consider as interior 
and exterior angles of the triangle? 

2.4.5. Formulate and prove the cosine law for a triangle generated 
by vectors :x and y in an arbitrary Euclidean space. 
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2.4.6. Determine whether the triangle generated by the poly­
nomials t1 + 3t and 2t1 + 2t - 1 is acute-angled or obtuse-angled 
if the scalar product of the polynomials f (t) = a0 + a1t + a1i 1 

and g (t) = b0 + b1t + b2t11 is given by the following formulae (a) 
U, g) = aobo + a1b1 + a2b2, (b) (!, g) = aobo + 2a1b1 + a11b2• 

2.4. 7. Prove Pythagoras theorem and its converse, viz. that two 
vectors :x and y of a Euclidean space are orthogonal if, and only if, 
I X - y I' - I X I' + I y I'· 

2.4.8. Prove that for an arbitrary triangle in a Euclidean space 
(a) the length of each side does not exceed the sum of the lengths of 
the other two sides; (b) the length of each side is not less than the 
absolute value of the difference of the other two sides. 

2.4.9. Prove that in a parallelogram generated by vectors :x andy, 
the sum of the squares of the lengths of the diagonals equals the sum 
of the squares of the lengths of the sides. 

2.4.10. Prove that I :x I = I y I if, and only if, the vectors :x + y 
and :x - y are orthogonal. Specify the geometric sense of the state­
ment. 

2.4.11. Let e1 , ••• , e,. be an orthonormal basis for a Euclidean 
space, and :x be an arbitrary pormalized vector. Prove that the coor­
dinates of the vector x in the basis e11 ••• , e,. are equal to the cosines 
of the angles a11 ••• , o:,. formed by :x and the basis vectors. Hence 
deduce the relation 

cos2 ct1 + cos2 a 2 + ... + cos11 a,. = 1. 

2.4.12. The number 

p(x, y) -lx-y I 
is called the distance between vectors :x and y of a Euclidean space. 
Show that the distance thus defined satisfies the triangle inequality 

p (x, ') ,;;; p (x, y) + p (y, '), 

for any three vectors :x, y, z. 
2.4.13. Prove that, in the triangle inequality for vectors :x, y 

and z, the equality sign appears if, and only if, (z - y) = a (y - z), 
o:~O. 

2.4.14. In the space M,. of polynomials of degree ~n a scalar 
product for polynomials f (t) = a0 + a1t + ... + a,.t" and g (t) = 
= b0 + b1t + ... + b,.t" is defined by formula (2.3.1). Given 
polynomials 

/, (t) - 3<' + 2t + 1, /, (t) - -t' + 2t + 1, 

/, (t) - 3<' + 2t + 5, ,, (t) - 3t' + 5t + 2, 

(a) find a polynomial / 0 (t) of degree ~2 equidistant from ft (t), 
f,(t), /,(t), /,(t); 
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(b) find the distance between / 0 (t) and each of the polynomials 

t. (t), '· (t), f, (t), t. (t); 
(c) prove that any polynomial of the form 

/ 0 (t) + m,t' + ... + m0 t" 
is also equidistant from /1 (t), / 2 (t),/3 (t),/4 (t), and find the distance 
between these polynomials. 

2.4.15.* Given a subspace Land an arbitrary vector x of a Eucli­
dean space, the number 

p (x, L) ~ inl p (x, y) 
"L 

is called the distance between the vector x and subspace L. Prove that 
(a) the distance p (.x, L) is equal to the length of the perpendicular 
drawn from x to L; (b) the nearest vector of the subspace L to the vec­
tor x is the orthogonal projection of x on L: (c) for any y from L, 

p (x + y, L) ~ p (x, L). 

2.4.16. * A subspace L is the orthogonal direct sum of subs paces 
L1 and £ 2• If a vector x is orthogonal to the subspace ~. prove that 

p (x, L) ~ p (x, L,). 

2.4.17.* Let a be a fixed vector in a Euclidean space, and let L 
be the subspace of all vectors orthogonal to a. Prove that the distance 
between an arbitrary vector x and the subspace L may be found by 
the formula 

p(x, L)= I r;~ ~)I. 

2.4.18. A scalar product for the space Mn of polynomials of degree 
~n is computed in terms of the coefficients of the polynomials by 
Formula (2.3.1). Find the distance between the subspace Mn-l of all 
polynomials of degree ~n- 1, and (a) the polynomial tn; (b) the 
polynomial tn +an _1tn-l + ... + a1t + a0 ; (c) the polynomial 
atn + an -1tn-l + ... + a1t + ao. 

2.4.19. In the space Mn with the same scalar product as defined 
in (2.3.1), consider the subspace L of all polynomials fulfilling the 
condition f (1) = 0. Prow that the distance between an arbitrary 
polynomial g (t) and the subspace L equals 

p(g, £)~:.(~ •. 

2.4.20. • Given a subspace L and vector x of a Euclidean space, 
the least angle formed by x with any vector from L is called the 
angle between the vector x and subspace L. Prove that the angle between 
x and L is equal to the angle between x and its orthogonal projection 
yon L. Show that vectors of the subspace L form the same angle with 
the vector x if, and'only if, they are of the form ay, a> 0. 
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2.4.21. Prove that the sum of the angle formed by ·a vector x 
with an arbitrary subspace L, and of the angle formed by x and the 
orthogonal complement LJ. equals n/2, 

2.4.22. A Euclidean space E is resolved into the orthogonal sum 
of subspaces £ 1, ••• , Lp. Prove that the. angles a.1, , •• , a.p formed 
by an arbitrary vector x with the subspaces L1 , , , ., Lp satisfy the 
relation 

cos2 a 1 + cos2 a 2 + ... + co!'l2 a.p = 1. 
Compare this formula with the formula obtained in Problem 2.4.11. 

2.4.23. A subspace L is the orthogonal sum of subspaces £ 1 and 
L 2 • A we tor x is orthogonal to the subspace £ 1• Prove that the angle 
between x and L equals the angle between x and £ 2 • 

Find the angle between the vector x and linear subspace L gener­
ated by the vectors y1, y2, y3: 

2.4.24. X~ (-3, 15, 1, -5); 2.4,25, X~ (3, 1, ]!2, -2); 

Y1 = (2, 3, -4, -6), 

y, ~ (1, 8, -2, -1B), 

y, ~ (1, -5, -2, 10). 

' 
2.5. Unitary Spaces 

y, ~ (2, -1, 2, 1), 

y, ~ (-1, 2, -2, 1), 
y, ~ 1-1, 1, -1, 0). 

Euc~~~~~fs~~~c~~i~'::~a~fiet~\e~~~:n~~~~ho~ b~m:~~: !~mW:ri~~b:h~s th~ 
basic results proved for the case of a Euclidean space remain valid for arbitrary 
unitary spaces as well. ,\l the same time, we have also aUcmpted to Illustrate 

t~~~~~~~~etfh~~~~.re~~s d~~;jb~~ ~~c cr;~:~~~i~:.o~p:::h~~;.se, foarrl:~~~!f!Jr[~; 
from a Euclidean to unitary space (the so-called "complexificalion" of a unitary 
space), and the inverse transfer (the "decomplexification"). 

2.5.1. Prove that it follows from the axioms of the scalar product 
on a unitary space that (a) (x, y1 -r y2 ) = (x, y1) + (x, y2), for any 
vectors in a unitary space; (b) for any vectors x andy in a unitary 
space and any complex number a, (x, ay) = a (x, y); (c) (0, .x) = 
~ (x, 0) ~ 0; 

(d) ( ± a 1x 1, ± ~1y1) ~ ± ± a,ji1 (x1, YJI· 
•=I J=1 I=IJ=I 

2.5.2. Prove that the scalar product may be defined for any com­
plex linear space. 

2.5.3. Define the scalar product for the n-dimensional complex 
arithmetic space C,.. 

2.5.4. Define the scalar product for the space of polynomials with 
complex coefficients of degree ~n regarded as a complex linear 
space under the usual operations for the addition of polynomials and 
the multiplication of a polynomial by a complex number. 
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2.5.5. Prove that the scalar product of the vectors x = 

= (a1 , a 2 , ••• , an) andy = (~1 , ~~· ••• , ~n) can be defined for the 
space C11 by the formula 

(x, y) = atlat~t + ataiXt~a + ... + a,nat~n 
+ aatcta"'i3t + aaactaP'a + ... + a2nctaP"n 

+ an.lan~ + anzCtnlf:; + ·. · + annctn~n 
on condition that 

(a) a,,= a,,, for all i, j; 

(b) all>t Ja11 J, i=1, ... ,n. ,_, , .. 
2.5.6. Prove that the scalar product of two vectors x and y is 

expressed in terms of their coordinates by the formula 

(.x, Y)=ctt~t+IX:2j3;+···+a.nl3"n 
if, and only if, the corresponding bases of the unitary space are 
orthonormal. 

2.5. 7. Prove the Cauchy-Buniakowski inequality for the case of 
a unitary space 

I (x, y) I' ,;; (x, x) (y, y). 

Hence deduce the relation 

If "•~.1'.;;(2'; l"•l'ld 1~•1') 
1=1 1=1 1=1 

where a 1 , •.• , an and ~1 , ••. , ~n are arbitrary complex numbers. 
2.5.8. Prove that the Pythagoras theorem remains valid in an 

arbitrary unitary space, viz., if vectors x and y are orthogonal then 

I•- y I'= I• I'+ I y I'· 
Show, however, that the converse theorem is incorrect. 

2.5.9. Prove that vectors x andy of a unitary space are orthogonal 
if, and only if, for any numbers a and ~ 

I=+ ~y I'= I= I'+ I ~y I'· 
2.5. tO. Prove that the statement of Problem 2.4.10 does not hold 

in the case of a unitary space. Which statement, precisely, of the 
two listed in the problem becomes invalid? 

2.5.11. Prove, however, that the statement of Problem 2.4.9 

I X+ y I'+ I X- y I'= 2 I X I'+ 2 I y I' 
is also valid for a unitarY space. 
4-0618 
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2.5.12. Prove the equality 

4 (z, y) = I x + y 111 - l z- y [11 + i [x + iy [1 - i [x- iy [1 • 

(2.5.1) 

2.5.13. • Let R be a real space and C the set made up of all formal 
sums x + iy where x E R, y E R. Prove that 

(a) the set C is a complex linear space if the linear operations are 
defined for it by the formulae 

(z1 + iy1) + (z1 + iy1) = (z1 + z 11) + i (y1 + y,), 

A (x + iy) ~ (<X + i~) (x + iy) ~ (= - ~y) + i (<Xy + ~) 
where ). = a + i~ is an arbitrary complex number; 

(b) a set of vectors z1, ••• , x 11 of the space R is linearly dependent, 
or independent, when the set of vectors z1 + iO, ••. , X~~; + iO of the 
space C is linearly dependent, or independent; 

(c) the dimension of the space C equals the dimension of the spaceR. 
The technique just described for constructing a complex space from 

a given real linear space R, and with the same dimension is called 
the complexification of the space R. 

2.5.14. Let R be a Euclidean space with scalar product (z, y), 
and C the complex space obtained from R by the complexifi.cation. 
Prove that 

(a) the space C can be converted into a unitary space if the scalar 
product is determined by the formula 

(zl + iy1, z, + iy,) = [(xl, z,) + (y1, y,)l + i [(yl, x11) - (zlt Y11)l; 

(b) if e11 ••• , e" is an orthogonal set of vectors from R, then the set 
of vectors e1 + iO, ... , e" + iO from the space C with the scalar 
product just given is also orthogonal; 

(c) if e1, ••• , e11 is an orthonormal basis for R, then e1 + tO, ... 
. . . , e11 + iO is an orthonormal basis for C. 

2.5.15. Complexify the n-dimensional real arithmetic space R 11 

(with the customary scalar product). What sort of complex space is 
obtained? 

2.5.16. Let C be an arbitrary complex space. Prove that the set 
of vectors forming C can, at the same time, be also considered as a 
real linear space R in which (a) the operation of addition coincides 
with that on C; (b) for any real number a and any vector z, 

az =(a+ iO)z, 

where the right-hand side of the equality is the product of the vector z 
by the number a + iO, and is defined in C. The transfer from the 
complex space C to the real space R is called the decomplexification 
of the space C. 
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2.5.17*. Let C be ann-dimensional complex space obtained from 
R by the decomplexification. Prove that 

(a) if z1 •••• , z11 is a linearly independent (or linearly dependent) 
set of vectors of the space C, then z1 , iz1, ••• , z1" iz, is a linearly 
independent (or linearly dependent) set of vectors in the space R 
(the product iz1 is defined by the same rule as for C, and is an element 
of this space and, therefore, an element of the space R); 

(b) the dimension of the space R equals 2n; in addition, to any 
basis e1 , ••• , en in the space C there is a corresponding basis e1, ie1, ••• 

• • . , en, ien for the space R. 
2.5.18*. Let C be an n-dimensional unitary space with the scalar 

product (x, y) and R the real space obtained from C by decomplexifi.c­
ation. Prove that 

(a) the spaceR can be converted into a Euclidean space by defining 
a scalar product for it by the formula 

{z1 , z1)= Re(z1, z2); 

(b) for any vector z from C, the vectors a and iz, considered as 
elements of the obtained Euclidean space, are orthogonal; 

(c) if e1, ••• , e11 is an orthogonal set of vectors from C, then the 
set of vectors e11 te1, ••• , e11 , te11 is orthogonal in R; 

(d) if e1, ••• , e8 is an orthonormal basis for C, then e1, ie1, ••• , en, 
ien is an orthonormal basis for R. 

2.5.19. Prove that the decomplexification of the n-dimensional 
complex arithmetic space Cn can be performed by matching each 
vector z = (Ctt + ip1, ••• , Ctn + i~ 11 ) from Cn with the vector 
(CtJ., ••• , et11 , ~1 , ••• , ~~~)from the real arithmetic space Rsn• Which 
vector in R211 corresponds to the vector iz? Which scalar product is 
induced in R211 if, in C11 , the customary scalar product of z = 
= ().,, ... , An) and w = ()l1, ••• , !ln) is defined as follows: (z, w) = 
~•,il, + ... +•.il.l 



CHAPTER 3 

Determinants 

3.0. Terminology aod General Notes 

Let .x1, x2, ••• , Xn be an arbitrary set of 
vectors of an n-dimensional Euclidean or unitary space, and let 

L0 = 0, L11 = L (x1, ••• , x 11). 

Denote the perpendicular drawn from x,. to the subspace L,..1 by y11 • 

The number 

(3.0.1) 

is known as the volume of the parallelepiped drawn on the set of 
vectors x1, x2, ••• , Xn. It is evident that the volume of such a paral­
lelepiped equals zero if, and only if, the set x1 , x,, ... , Xn is linearly 
dependent. Since 

I Y11 I::::;;;; I x11 1. k = 1, ••. , n, 

the volume of a parallelepiped satisfies Hadamard's tnequality 

(3.0.2) 

and the equality is upheld here if, and only if, either there is at least 
one nonzero vector among the vectors x11 x,, ... , Xn or each pair of 
these vectors is orthogonal. 

Following V. Voyevodin we will defrne axiomatically an oriented 
volume V± (x1, x2 , ••• , Xn) of the parallelepiped drawn on the set of 
vectors x1 , •.. , x". Viz., we shall require that the following con­
ditions should be fulfilled: 

(1) V± (x1 , x2 , ••• , Xn) is a linear function for each of its vector 
arguments; 

(2) V±(x1 , x2 , ••• , Xn) = 0 if the set x1 , x2 , ••• , Xn is linearly 
dependent; 

(3) V± (e1 , e2, ••• , en) = 1, for a certain orthonormal basis. 
It can be shown (see V. Voyevodin, Linear Algebra, Mir Publishers, 

1983, Chapter 4) that an oriented volume of a parallelepiped exists, 
and its modulus equals the volume of this parallelepiped. In par-
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ticular, the condition 

V± (x1, X 2 , ••• , x,.) = 0 

turns out to be necessary and sufficient for the set of vectorsx1 , x2 , ••• 

. . . , x,. to be linearly dependent. 
Since an oriented volume is not uniquely defined, then to single 

out a concrete oriented volume it is necessary to give an orthonormal 
basis e10 e2 , • , ., e .. with respect to which it will assume unit value. 

A square number table with n rows and n columns 

A~11::: :~ ::. :::.11 
a,. 1 a,.2 ••• a,.,. 

is called a square matrix of order n. The elements a11 of a matrix A 
can be real or complex numbers. Accordingly, we will speak of real 
and complex matrices. 

The elements aw a22 , ••• , a,.n are said to constitute the principal 
diagonal of a matrix A, all the other elements a1J> i =1= j, being called 
the off-diagonal elements. A matrix all of whose oil-diagonal elements 
are zero is called a diagonal matri:e. A diagonal matrix is called the 
unit matrix if all elements on the principal diagonal of this matrix 
are equal to unity. Another term is the secondary diagonal of a matrix 
A, its elements being a1n, a2,n-1, ••• , ant• 

The algebraic sum of nl terms is called the determinant of a matri:e A 
if these terms are all the possible products of n of the elements of the 
matrix taken one in each row and in each column. The term aHu• 
a2o;, ••• a"o;n has a plus sign if the permutation a 1 , o:2 , ••• , O:n 
contains an even number of inversions, and a minus sign otherwise. 
An inversion of the numbers o:1 and a1 exists when a1 > o:1 but o: 1 
precedes a1 in the permutation o:1 , •.. , O:n· We will denote, here­
after, the determinant of a matrix A by I A I or by det A. 

If all the rows of a matrix A are regarded as vectors of an n-dimen­
sional arithmetic space, then the determinant det A is nothing but 
an orientation volume of a parallelepiped in this space, the corres­
ponding orthonormal basis being the standard basis (1.0.1). Hence 
it follows that 

(i) det A is a linear function of the matrix A; 
(ii) det A = 0 if and only if the rows of the matrix A are linearly 

dependent. The matrix is called degenerate if its determinant is 
equal to zero, and nondegenerate otherwise; 

(iii) the value of the determinant of a matrix is unaltered by ad­
ding to a row a linear combination of the other rows; 

(iv) the determinant changes sign when two rows are interchanged. 



Determinants Ch. 3 

The transposition of a matrix A is that transformation of a matrix 
where the matrix rows are interchanged with the columns that have 
the same index number T. AT is the transpose of matrix A 

AT~ II:;:_;::_:::.;:; II· 
atn a,n • • • ann 

(3.0.3) 

Transposition leaves the determinant of a matrix unaltered: det A = 
= det AT. Hence the above properties, valid for the rows of a 
matrix, are also valid for its columns. 

Choose any k rows with indices i1 , i,, ... , i11 and k columns with 
indices /1, j,, ... , j 11 from a matrix A. A matrix of order k, whose 
.determinant is called the minor of order k of the matrix A (or its 
determinant) emerges from the intersection of these rows and columns. 
In particular, minors of order 1 are the elements a11. To indicate the 
position of the minor, being considered, in a matrix A, the following 
designation is used 

M~A · (i, i, ... i,) 
It /2 ··· i11. 

(3.0.4) 

If, further, the indices of the rows coincide with the indices of the 
columns, then we will use the shorter notation: A (i1i 1 ••• i 11 ). 

If the rows with indices i1 , ••• , i11 and columns with indices 
j 1, ••• , j 11 are deleted from the matrix A, then the remaining minor 
.of order n - k is called the complementary minor of the deleted 
minor (3.0.4). The cofactor of minor (3.0.4) is defined to be its com­
plementary minor multiplied by (-1)sM where 

~~4+4+---+~+h+h+···+~ 
The cofactor of the element a11 is denoted by A 11• 

There is held the following 
Laplace theorem. Let k rows (or k columns) of a matrix A be chosen 

arbitrarily 1 =s;;;; k =s;;;; n- 1. Then the determinant det A is equal 
to the sum of the products of all the minors of order k, and their 
cofactors in any row or columns of A. 

In a particular case, the Laplace theorem yields the following 
formulae for expanding a determinant by a row: 

a,1A 11 + anA 11 + ... + a1nAin = det A, (3.0.5) 

a11A11 + a,,AJ:a + ... + a,nAJn = 0, i =#= }. 

1t is evident that similar formulae for expanding a determtnant by 
a column are also valid. 

Let us make some other notes concerning the methods of evaluating 
the determinants used in the present. chapter. 
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It can be seen from Sec. 1.0 that Gaussian elimination reduces a 
square matrix to a triangular form. Due to Properties 3 and 4 of 
determinants above, the transformations used in doing so can only 
change the sign of the determinant. The determinant of a matrix of 
triangular form equals (see 3.1.8) the product of the entries on the 
principal diagonal and the application of Gaussian elimination 
relies on just this fact. Different aspects of the method are discussed 
in detail in 3.4. 

Let us now describe the method of tterattve formulae which can be 
used for evaluating tridiagonal determinants of the following form: 

a b 0 0 0 
c a b ... 0 0 

Dn= o_ ~ ~.·:·. ?.o. 
ooo ... ab 
0 0 0 ... c a 

Consider then set s of infinite numerical sequences 

X = (al, ct2, • • ·• 1Xno • • .). 

(3.0.6) 

(3.0.7) 

Assume, for example, that they a.:re complex. Define linear operations 
on these sequences by the formulae: 

(i) l.x~(l.a,, l.a,, ...• ~.a ••... ); 
(ii) if y ~ (~,. ~ ••••• , ~ •••.. ), then 

X + Y = (ctl + ~1• ct2 + ~2• • •• , ctn + ~no • • .) 

and it is obvious that s becomes a linear space. 
The set F of all sequences (3.0. 7), for whose elements the iteration 

formula or the difference equation of the second order holds 

Ctn = Pctn-1 + l]<tn-t• n = 3, 4, ... , (3.0.8) 

(where p and q are fixed numbers and q * 0), is a subspace of s. 
It is easy to see that the dimension of the subspace F equals 2. Let 
us show bow to construct a basis for this space. 

Form the algebraic equation (called the characteristic equation) 
from the coefficients of the difference relation (3.0.8) 

).2-p'J..-q=O. 

Two cases must be considered here: 
(i) The roots '-t and ).2 of the characteristic equation are different. 

In this case the basis for the subspace F is made up of the sequences 

e1 =(A1, A:, A~ .... , A'i, ... ), 

e2 =(A2 , A:. A!, .... A; •... ). 
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(ii) The characteristic equation has a root of multiplicity 2. In 
which case the basis for F consists of the sequences 

et=(A, )..2, ).a, , .. ' A", ... ), 

e2=(1, 2A., a:v, ... 'n).n-1, •.. ). 

Any sequence (3.0. 7) belonging to F can be decomposed in terms 
of the basis e1, e2 thus: 

x=c1e1 +c1e2• 

In terms of the components this relation is translated into 

for case 1, and 

a,. = c1A" + c2nA."-1 = A."-1 (c;A, + c2n) 
for case 2. 

The coordinates c1 and c2 of the sequence x may be determined by 
its first two components only. These are the solutions of the system 
of linear equations 

~cl + A2c2 = al, 

).~cl + A~c2 = et2, 

h.c1 +c2 =all 

A2c1 + 2Ac2 = a 2 

according as which case is considered. 
Returning to determinant (3.0.6) and expanding it along the last 

row, we obtain 

Dn = aDn-1 - bcDn-2.• n = 3, 4, ... , 

i.e. an iterative relation of the second order. Here 

D 1 =a, 
D 2 = a2 - be, 

and the above construction may be performed. 

3.1. Evaluation and the Simplest 
Properties of Determinants 

A customary set of problems on the evaluation and the simb.lest properties 

~te:te:!~~: ~~~~!~ i:Sii~.sec~!:i:esi:a:n ~bet~~~~ch!in:~rp:i; 
lor columns), the existence of a zero determinant when its rows (or coDfumns) are 
inearly dependent. 

Can a determinant of the seventh order have any of the following 
products of its elements as one of its terms? If so, what are their 
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respective signs? 

3.1.1. a 4&a71 a 23 a&7 a 34 au.a~. 

3. 1.2. a23 au a17 a34 a61 a12 a 4~. 

3.1.3. a11 a11 a,. aa2 au a 3 & au. 
3.1.4. a28 a 3 & au a11 a~3 au a111 • 

51 

3. t .5. Extend the product of the elements a13 au a 3~ au a67 of a 
determinant of the seventh order to obtain a term of the determinant 
(a) with a plus sign; (b) with a minus sign. 

3. t .6. Find the relationship between the indices of the elements 
placed (a) on the principal diagonal; (b) above the principal diagonal; 
(c) below the principal diagonal. 

3. t. 7. What is the sign of the product of elements on the principal 
diagonal? 

3. t .8. Using only its definition, evaluate the determinant 

a, 
a21 a22 

aat aat aaa 

3.1.9. What is the relationship between the indices of the elements 
of a determinant of order n placed (a) on the secondary diagonal; 
(b) above the secondary diagonal; (c) below the secondary diagonal. 

3.1.10. What sign has the product of the elements of the secondary 
diagonal when considered as a term of a determinant of order n. 

3.1. t t. Evaluate the determinant using its definition only 

a,. 
· .. 0 a2. n-1 azn 

· • • a3. n-2. aa. n-1 aan 

Using the definition only evaluate the following determinants 

3.1.12. 0 1 0 ... 
0 0 1 

0 0 0 
1 0 0 

3.1.13. 0 ... 0 1 0 
0 ... 1 0 0 

1 0 0 0 
0 ... 0 0 1 
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3.1.14.* 1 0 0 
0 1 0 
0 0 1 

0 m11 

0 m 21 

0 m31 

0 0 0 0 
0 ... 0 0 0 
0 ... 0 0 0 

3.1.15. 

0 0 0 1 m1_1, 1 0 0 0 0 

000 ... 0 1 0 ... 000 
0 0 0 ... 0 m1_. 1, 1 1 ..• 0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 mn-2,J 0 

0 mn-I,J 0 
0 m11J 

1 0 0 

0 1 0 
0 0 1 

cosq~ ... -sinq~ i-tb row 

sinq> ... cosq~ 
J-tb row 

i-tbeolumn 

The elements of the principal diagonal missed out here are equal to 
unity, and all the other elements are zeroes. 

3.1.16. Show that if, in a determinant of order n, more than 
ns- n elements are zeroes, then the determinant equals zero. 

Only with the help of the definition, evaluate &he determinants: 

3.1.17.,0 0 0 II 3.1.18. 10 0 5 11 
0002 0062 
0003 0073" 
1234 1234 

3.1.19.j ,~ ~: ~, 
5 6 7 3 • 

I 2 3 4 

3.1.20. Prove that if, in a determmant of order n the elements 
placed at the intersections of k rows and l columns are zeroes and 
that k + l > n, then the determinant is equal to zero. 
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Find the maximum possible number of nonzero terms in a deter­
minant of order n in the following form: 

3.1.21. "1 0 0 ... 0 b1 3.1.22*. a1 b2 0 ... 0 
c1 a2 0 ••• 0 b2 

0 c2 a8 ••• 0 b 3 

0 0 0 ... 4n.- 1 bn-1 

ooo ... cn-1 an 

c2 a 2 b 3 ••• 0 

0 c3 a3 ••• 0 

0 0 0 ... Cn 

3.1.23*. au au au ··· a1, n.-a a1, n-1 a1n 

au an au · · • at, n.-z "s. n-1 a2n 

au au ... a,, n-1 a,, n.-1 aan 

0 · ·• 4n.-l, n-t 4n.-t, n-1 4n.-t. n 

4n., 11.-1 

Represent the determinants of order n with entries expressed in 
terms of t, as polynomials with powers of t in descending order: 

3.1.24. -t 0 .. . 0 •• 

a2 -t 0 .. . 0 0 
0 a1 -t .. . 

• • • • • 0 ••••••••• 

0 0 ..• -t 0 

0 ••• an -t 

3.1.25*. t -i 0 ... 0 

t -1 ... 0 
t ... 0 

0 ... t -1 

What is the degree of the polynomials in t represented by the fol­
lowing determinants of order n: 

3.1.26. 

l
•u+< •u ... ••• I 

G!t a11 +t ... a 2n 
••••• 0. 0 •••• 

ani ans · · · ann +t 

3.1.27. 1•u+< •u+< ... •on+t I 
au au+t ... a1n+t , ............. 
11Jn1 ans •• • ann. +t 
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3.1.28.• Is it always true that a determinant of the following form: 

l•u+but •u+but ... "'"+''"' I 
au+but au+but ... b1 n+b1 nt .................. 
an1+bn1t an 1+bnzt ... ann+bnnt 

has degree n if represented by a polynomial in the unknown t? 
3. 1.29*. Find the necessary and sufficient condition for the above 

determinant to be of a degree less than n if it is represented by a 
polynomial in t. 

3.1.30. Find the free term of the polynomial indicated in Prob­
lem 3.1.28. 

3.1.31. How will a determinant with complex entries be altered 
if all the elements are replaced by their respective conjugates? 

3.1.32. How will changing the sign of each of its elements alter 
an n-order determinant? 

3.1.33. If each element of an n-order determinant is multiplied 
by a, how is the determinant altered? 

3.1.34.* How will a determinant be altered if each of its ele­
ments a11, is multiplied by o:•-11 , where the number a. is nonzero? 

3. t .35. The position of an element a1k in a determinant is called 
even or odd according to whether the sum i + k is even or odd. Prove 
that a determinant is not altered by changing sign of all its odd­
placed elements; if, however, all even-placed elements have their sign 
changed, then an even-ordered determinant remains unaltered, but 
an odd-ordered determinant's sign is changed. 

3.1.36*. A determinant is called skew-symmetric if its entries, 
symmetric about the principal diagonal, differ in sign, i.e. au= 
= -a11 , for all i, j. 

Prove that a skew-symmetric determinant of odd order equals zero. 
3.1.37. • Prove that the value of a determinant is real if all en­

tries, symmetric about the principal axis are complex conjugates 
(i.e. au =a }I for all i, j). 

3.1.38. How will ann-order determinant be altered if each row is 
written in reverse order? Which element of the original determinant 
occupies the i, j entry of the new one? 

3. t .39. Find the element of an n-order determinant symmetric to 
au with respect to the "centre" of the determinant. 

3.1.40. How will a determinant be altered ii each of its elements 
is replaced by the one symmetric to it with respect to the "centre" of 
the determinant? 

3.1.41. Find the element of ann-order determinant symmetric to 
au about the principal diagonal. 

3.1.42. How will a determinant be altered if each element is re­
placed by the element, symmetric about the secondary diagonal? 
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3.1.43.• How will rotating the matrix of an n-order determinant 
through 90° about its centre alter the determinant? 

Solve the following equations whose left-hand side is represented 
in determinant form: 

3.1.44.15~t2! ! :I 3.1.45.1t:t! t:3 : I 
2 3 5-t• t =O. t 3+t 4+t 5+t =O. 

2 3 4 t 1 -3 -4 -5 

Evaluate the following determinants: 

3.1.46. 

1

, ... , ...... , ... I 

ZtYl ZtYt ·•• Zt!fn • 
•••••• 0. 0. 

ZnY1 Znlf2 ··· ZnYn 

3.1.47. 

I 1 2 ... n I 
n+1 n+2 ... 2n 

n·(,;~t).tt' ~(·n.:_f)+2 ·.:. o ~2 

3.1.48. Let 11 (t), ... , In (t) be polynomials of degree not greater 
than n - 2. Prove that for arbitrary numbers a1, a1, ••• , an, the 
determinant 

equals zero. 

II, (•,) /,(•,) ... !,( •·II 
ft•(:J)' :t.(a.tl.·:·.f~(:n~ 
fn (al) fn(a2) ••• fn(an) 

3of.49. How will a determinant be altered if (a) from each row 
(except the first) the previous row is subtracted; (b) from each row 
(beginning with the second) the previous row is -subtracted, and at 
the same time the last of the original rows is subtracted from the first 
row? 

3.1.50. Prove that any determinant equals half the sum of the 
following two determinants: one obtained by adding a number b to 
all elements of the i-th row of the original determinant, and the other 
by adding -b to them. 

Evaluate the following determinants representing them as a sum 
of determinants: 

3.1.51. IHz,y, 1+z,y, ... 1+z,yn I 
t+z2Y1 i+ZtY2 ·•· i+ZtYfl 

;~_;' .-. ,t~~~y; 1-f-~11;2 · .. ·. 't+~ll·~;: 
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3.1.52. lcos(at-~1 ) coa(at-~2) •·• cOS(ctt-~n)l 

c~s .(a~--:-~ 1 ), ~o.s ~a~-:~~).·: .. c~s .(o:~-: ~n~ , 

cos(an-1}1) cos(an-!l2) ••• cos(an-!ln) 

3.1.53•. 

3.1.54. 

I 
Hz,y, z,y, . z,yn I 

X2Y1 t+x2Y2 Z2Yn , ............... 
ZnYt XnY2 t+xnYn 

l
l-2wf -2w,w, ,,, -2w,wnl 
-2wtw1 1-2wf ··· -2rDziOn 1 . . . . . . . . . . . . . . . . 
-2wnWt -2wnwa .•. 1-2w~ 

where wf + wi + ... + w~ = 1. 

Ch. 3 

3.1.55. The numbers 20604, 53227, 25755, 20927, and 73421 are 
a11 divisible by 17. Prove that the determinant 

is also divisible by 17. 

I ~ ~ : ~ ~I 
2 5 7 5 5 
2 0 9 2 7 
7 8 4 2 1 

3.1.56. All elements of a determinant /j. are differentiable func­
tions in one variable t. Prove that for the derivative of this deter­
minant considered as a function in t, the following formula is valid 

1

.;. (<) ·izl<) .... ;. (<) I 

a'(t) = a~l~t). ~~~(~) .··: _a,_n~t). 
ant (t) O:n2 (t) ••• O:nn (t) 

l

•ui<) •ul<) ··· •,.(<) I l'ui<) •ui<) ... '••(<) I 
+ a~,(~) • a';2 ?~ .· ·.· .at•n ~t)• + • .. + a~1 ~t). ~2~ (~) ." ... •a2'n ~t)• . 

a,u (t) ant (t) •• , ann (t) a~1 (t) a:,t (t) • · · a~n (t) 

3.1.57. Omit selecting sign of the entries from the definition of a 
determinant, i.e. consider the following function against the entries 
of the matrix A: 

p(A)=~ •. ~.~--.in a11,a2J 1 ••• Q.,.jn• 

where the subscripts ft, j 1, ••• , fn run through the whole set of per­
mutations of numbers 1, 2, .•. , n. This function is called the per­
manent. Prove that for both the determinant and permanent, the 
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followin~ properties hold: (a) if all the entries of an arbitrary row of 
the matrix A are multiplied by a number ct, then the permanent is 
also multiplied by this number; (b) if all the entries of the t-tb row 
of the matrix A are the sums 

a0 = b1 + c/t j = 1, ... , n, 

then the permanent of the matrix A equals the sum of the perma­
nents of the two matrices that differ from A only in the i-th row, 
viz., the first having all its entries in this row equal to the numbers 
bit and the second to the numbers c1; (c) when the matrix is trans­
posed the permanent remains unaltered. 

In contrast to the determinant, however, (d) interchanging the 
rows (or columns) of the matrix leaves the permanent unaltered. 

Construct some examples demonstrating that the permanent may 
be nonzero even if the rows of its matrix are linearly dependent, and 
may equal zero in the case of a matrix with linearly independent rows. 

3.2. Mioors, Cofaetors aod the Laplace Theorem 

The contents of this section are: 
Problems about finding a minor, a complementary minor and a cofactor. 

The adjoint and associated determinants and certain their properties are also 
considered here. 

Examples of the use of the Laplace theorem and some computational 
problelllS. 

E~ereises to use the method of recurrent relations, described in the in­
troduction to the chapter, to evaluate three-diagonal determinants. 

3.2.1. Find, for a determinant of order n: (a) the number of mi­
nors of order k contained ink fixed rows; (b) the number of all mi­
nors of order k. 

3'.2.2. Let M be an arbitrary minor of a determinant of order n; 
M' be the complementary minor; and let (-1)'MM' be the correspond­
ing cofactor in M (here sM is the sum of the numbers of those rows 
and columns of the determinant which form the minor M). Show 
that the cofactor corresponding to the minor M' equals (-1)"MM . 

.3.2.3. The minor placed at the intersection of the k-th row and 
the k-th column of a determinant with the same numbers is called 
the principal minor of order k. Find how many principal minors of 
order k there are in a determinant of order n. 

3.2.4•. Find expressions for the coefficients of the polynomial 
I (t) given by the determinant 

l•u+< •u ... "•• I 
au ou+t • .• a1, , ............. 
a,u 4nl ••• Gnn+t 
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in terms of the minors of the determinant 

l•u •u ... ''" I 
au au ... a2n • . . . . . . . . . 
ant 4ns · ·• Gnn 

3.2.5. Find the maximum possible number of nonzero minors of 
order kin the first k columns of this almost triangular determinant of 
order n 

l
•u '" '" ... ''· •-• ''" I 
au au au • · • a,, n-t a2n 

0 an a33 ••• aa. n-1 a3n • ............... 
0 0 0 .. , an, n-t ann 

3.2.6. Let D be a determinant of order n (n > 1). The determi­
nant D' obtained fromD by replacing each element a 11with its cofactor 
A 11 is said to be adjoint of D. The determinant D" obtained from D 
by replacing each element a 11 with its complementary minor M 11 is 
said to be associated with D. Prove that D' = D". 

3.2.7. Prove that if a determinant D is symmetric (i.e. each ele­
ment of the determinant D is equal to the one symmetric to it about 
the principal diagonal), then the adjoint determinant D' is also 
symmetric. A similar statement is valid for the associated determi­
nant D". 

3.2.8. Is the following statement valid: If a determinant D is 
skew-symmetric, then the adjoint determinant D' is also skew­
symmetric? 

3.2.9.* Prove that the determinant, adjoint to the triangular 
determinant of Problem 3.1.8, is of the form 

l ~n ~:: ~:: .. .'~::I 
0 0 Au•••Asn· ........... 
0 0 0 ... Ann 

3.2.10.* Find the relation between the value of a triangular de 
terminant of order n and the value of its adjoint. 

3.2.11.* How will the adjoint determinant D' be altered if fora 
given determinant D of order n (a) all elements of the i-th row are 
multiplied by a number a; (b) the i-th and j-th rows are inter­
changed; (c) the j-th row is added to i-th multiplied by an arbitrary 
number a; (d) the determinant D is transposed. 

3.2.12. Show that the Laplace expansion of a determinant of 
order n by any of its k ro.ws (or coJum.n&).coincides with its decom­
position by the remaining n ""·k rows (or columns). 
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3.2.13. Prove that if, for a determinant of order n all the minors 
of order k (k < n) are equal to zero, then all minors of an order 
higher than k are also equal to zero. 

3.2.14. Prove that among the minors of order k, made up of the 
first k columns of this quasi~triangular determinant 

4JII , • Ilk I< 11)1, II+! ••• 4~n 

0 llh+t.lru ••• 411+!,n 

only the principal minor can be nonzero. Find the Laplace expansion 
of this determinant over the first k columns. 

3.2. 15.* Given that the principal minor of order k, formed by the 
first k columns of a determinant d of order n, is nonzero, and all the 
oiher minors of order k equal zero, prove that dis of the form indi­
cated in Problem 3.2.14. 

Using the Laplace theorem evaluate the following determinants: 

3.2.16. 

1_: 4 : -~1-
-4 -5 6 t 

3.2.18. 

I~::, -:;1 ~I· 

1
: ; ~ : :1 
5 3 0 4 0 • 
1 0 
7 0 

3.2.19. 

3.2.21.1~ ~ ~ : ~,I· 
0 4 0 

!>-08111 

3.2.17.

1 
, -1 , 'I 
2 0 7 0 

-3 1 2 0. 

5 -4 t 2 

3.2.20. 

I
: : ! : :I 
0 2 1 2 3. 

0 0 2 t 2 

0 0 0 2 I 

1

_: -~ 
5 

1 8 -2 

' -;:1 
8 . 

0 4 
_, 3 

3.2.22. 



66 Determinants Ch. 3 

3.2.23. 2 3 1 2 9 8 3.2.24. 2 -3 7 9 11 

3 ' 7 5 3 0 3 -4 0 
0 0 3 3 1 4 9-1 11 -5 
0 0 8 5 5 . 0-1 0 1 0 . 

0 0 0 0 
9 -· 

11 13 
0 0 0 0 4 • 0 0 -1 

3.2.25. 1 30 .. 46 14 3.2.26. 2 1 0 0 0 0 
0 7 6 9 ' 1 2 1 0 0 0 
0 0 3 5 0 0 0 1 2 1 0 0 
0 0 2 3 0 0 . 0 0 1 0 . 

0 5 1 ' 3 0 0 0 2 1 
2 7 47 23 15 1 0 0 0 0 1 2 

3.2.27. Prove that 

(a) au au • •. al, n-t atn at. n+t a1. 11.+2 • •• a1, 211.-1 a1. tn 
au au ... a,, n.- 1 0 0 a2 , n+t ... a2. tn-1 a2. 211. ........................... 
4nt 0 ... 0 ... 0 1Jn,2n 

lln+t.t 0 ••• 0 ••• 0 1Jn.+to2R 

1J2n, 1 IJ2n.. 2 • • • ~'2n, n-t IJ2n. n a~n. R+t IJ2n, n+2 • • • azn. 211.-1 IJ2n. 211. 

=/:::.~~. :::.~~.::.f·/::~~;·R-1 ::~:;,2 .. +2[ ... [::: .. , ::::.~~.2~~.1; 
(b) au au · · aa. n-1 Utn lit. n+l a,, R+2 •·· "1. 2n-1 u1.2n 

(c) "" 0 ., 0 .,. 0 

b, 0 b, ll1n 
.,. 0 a22 0 ... 0 .,. 0 b:2 ... 0 ... 
IJn1 0 an2 0 linn 0 

bnt 0 bn2 "' 0 bnn 
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1
... ... . .. II .......... I 

=au au a!n hu bzz b!n • 

an 1 Onz ann b," bnz bnn 

Using the Laplace theorem, and having first transformed them 
evaluate the following determinants: 

3.2.28.1 3 1 1 'I 2111 

-8 59 5. 

-11 1 7 4 

3.2.30. 

3.2.32. 

3.2.34. 

1
_: 6 -6 -9 ' 

8 -9 -121 
-4 6 8 . 

-2 -3 4 6 

3 

I 
: ·~ 
1 -2 

2 5 -4 

-· 2 

: :1. 
-2 -6 

9 

! ~ {~ : : ~ ~ 

1 :~~~~~· 0 1 0 0 3 0 

0 0 I 0 0 4 

3.2.29. 

I . , . 'I _: _: : ~ . 
-8 -6 8 6 

3.2.31.1213 186 162 1371 
344 157 295 106 
419 418 419 418 • 

417 416 417 416 

3.2.33•.1! :: 1~ ·~1-
5 9 1 1 1 
9 1 2 3 4 

3.2.35. 2 1 1 1 I 3 
121131 

112 311 

113 4 t 1 
1 3 1 1 4 1 
3 t 1 t 14 

3.2.36. Prove that for the permanents {see Problem 3.1.57), 81 

theorem similar to the Laplace is valid, namely if, in a square matrix 
A of order n, k rows (or columns) 1 ~ k :::::; n - 1 are fixed, then the 
permanent of the matrix A equals the sum of the products of the 
permanents of all the submatrices of order k placed in these fixed 
rows (or columns) and the permanents of their complementary sub­
matrices (of order n- k). 

Using iterative relations evaluate the following determinants of 
order n: 

3.2.37.

1
5 2 0 ... "I 
2 5 2 ... 0 
0 2 5 ... 0 • 

0 0 0 ... 5 

3.2.38. 

I
, , () ... "I 2 7 6 ... 0 
0 2 7 ... 0 • 

0 0 0 ... 7 



.. 
3.2.39. 3 2 0 0 

1 3 1 0 
0 2 3 2 
0 () 1 3 

Determinants 

3 2 

1 3 1 
2 3 

3.2.40. 0 ... 0 
-iO -t. -4 0 ... 0 

0 5 -4 ..• 0 

. _, 
3.2.41. 0 1 0 0 ... 0 0 

1 0 1 0 0 0 
0 1 0 1 0 0 

0 0 0 0 ... 0 1 
0 0 0 0 ... 1 0 

3.2.42. 0 1 0 0 ... 0 0 

:J.2.43. 

-1 0 • 0 ... 0 0 

0 
-· 0 • ... 0 0 

0 0 0 ••. 0 1 

0 0 0 ••• -t 0 

2 -· 
-t 2 -1 

0 -t 2 

:!.2.~4. f~ !I 0 

lj 1:! 9 
(I 4 t2 

Ch. 3 

o n o 12 
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3.2.45. Prove the equality: 

1 0 () 

2cos a .. 0 

2cos a 

1 2cosa 

3.2.46. Find the iteration relations between the polynomials of 
the sequence / 0 (A), / 1 (A), / 2 (A), ... , /, (A), where / 0 ().) === 1, and 
the polynomial / 1 (A) (1 ~ i ~ n) is the principal minor of order i 
placed in the upper left-hand corner of the determinant 

3.3. Determinants and the Volume of a 
Parallelepiped in a Euclidean Space 

In this section some of the properties of determinants and the volumes of 
parallelepipeds in an n-dimensional Euclidean or unitary space are established 
using the natural relationships between them. Thus, the determinant of a 
square matrix of order n is an orientation volume of a parallelepiped generated 
by an ordered set of rows (or columns) for this matrix; the rows (columns) are 
considered here to be vectors of the corresponding arithmetic space, and the 
modulus .of the _determinant coincides with the volum~ of the .Paralle!ep~~d 

~:k~ · 1i n;::S~~~~· t~i~~~:n~ lgH~d~~::t!e~n~qJalir;~~e~!~~i1~a~f:ti;;d ~~ 
obtain the related approximations to the values of determinants, and conse· 
quently to its volume. We also consider the Gram determinants and find their 

~~b~W~Y t~f t~~ :%b:;:~a~i~~~:r·m~:a::o;~~e i~s~aebi)f~; 1~isa tde~1~:S::~t t~~ 
general form. 

3.3.1. Let a1 , a2 , ••• , a, be an ordered set of rows of a determi· 
nant d of order n, these rows being considered as vectors in an n-di­
mensional arithmetic space; and let b1 , b2 , ••• , b, he the set ob· 
tained from a1 , a 2 , • •• , a, by the orthogonalization procedure. Prove 
lhat the determinant d', whose rows are the vectors b1 , b2 , ••• , b,, 
equals the determinant d. 

3.3.2*. Prove that a determinant equals zero if and only if its 
rows (or columns) are linearly dependent. 
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3.3.3. Let d be a determinant of order n 

d~J::: __ ::_:. ·~·-~::I· 
an 1 an 2 ••• ann 

Using the relationship between the modulus of a determinant and 
the volume of the parallelepiped in an arithmetic space, prove Hada­
mard's inequality: 

ldl<;;(t la,,l')"'(): la,,l')'1' ••• (~ 1•.,1')'", 
J=l J=l 1=1 

3.3.4. Prove that the equality sign in Hadamard·s inequality 
holds if and only if either each pair of the rows of the determinant 
are orthogonal, or all the elements of at least one row equal zero. 
A similar statement holds for the columns of the determinant. 

3.3.5"'. Prove that if the modulus of all elements au of a deter­
minant of order n is bounded by a number M, 1 a11 l:::;;;;; M, 
then (a) the modulus of the determinant does not exceed Mnnn1 2; 

(b) this approximation is achieved for determinants with complex 
entries for any n; (c) for determinants with real entries, this approxi­
mation is achieved if n is a number of the form n = 2"'. 

3.3.6*. Prove that the maximum/, of the moduli of determinants 
of order n all of whose elements are real numbers from the line seg­
ment [-1, fl coincides with the maximum In of the moduli of deter­
minants whose elements only assume the values f and -1. 

3.3. 7*. Let h, be the maximum of the moduli of determinants of 
order n compiled from units and zeroes, and let g, be determined as 
in Problem 3.3.6. Prove that for the numbers g .. and h,, the fol­
lowing relations are valiU 

hn-1 ~ hn ~ gn-1 ~ gn ~ 2"-1hn-1• 
Note, in particular, that g, is divisible by 2"-1• 

3.3.8. Using Hadamard's inequality and the inequalities proved 
in Problem 3.3. 7, prove, for the case of determinants of order 3, 
that (a) h3 = 2; (b) g3 = 4. Note that it follows from (b) that the 
approximation of tht value of the determinant, indicated in Prob­
lem 3.3.5 (a), is not achieved for a determinant with real coefficients 
of order 3. 

3.3.9*. Strengthen the approximation indicated in Problem 3.3. 7 
by proving that 

3.3.10*. Find the number g6 and a determinant with entries f 
and -1, equal to Is· Note that the approximation of Problem 3.3.5(a) 
is not achieved for determinants with real entries of order 5. 
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3.3.11*. Prove that if in the conditions of Problem 3.3.5 allele­
ments a,1 of the determinant d are real and nonnegative, then for 
the modulus of d the approximation is valid: 

Jd I~ .Mn2-n (n + 1)(n+l)/2, 

3.3.12. H.eformulate Problems 3.3.5-3.3.11 for the volumes of the 
corresponding parallelepipeds. 

3.3.13. The Gram determinant of a set of vectors x1 , x 2 , ••• , x" of 
a Euclidean (or unitary) space is a determinant of the form: 

l
(x,. x,) (x,, x,) ... (x,, Xh) I 

G (x,, ... , x~) = ~x!.' ~~~ ~x~, .x~) ::·. (~•·. ~~~) •• 

(x,., x1) (r,., x2) ... (x,., XI<) 

The matrix of this determinant is called the Gram matrix of the set 
of vectors X 1, x 2, ••• , x,.. 

What are the form and value of the Gram determinant if (a) the set 
x1, ••• , x,. is orthogonal; (b) the span of the vectors x1, ••• , xl 
(1 ~ l < k) is orthogonal to the span of the vectors xl+t• ... , x,.. 

3.3.14. How is the Gram determinant of a set of vectors x1 , ••• 

. . . , x,. altered if (a) two vectors, x1 and x1, are interchanged; (b) a 
vector of the set is multiplied by a number a; (c) the vector x 1 is 
added to the vector x1 premultiplied by the number ~· 
. Hence deduce that the property of the Gram determinant being 
equal or unequal to zero is maintained during these elementary trans~ 
formations of the set of vectors x1, ••• , x11 • 

3.3.15*. Prove that a set of vectors x1, ••• , x11 of a Euclidean 
(or unitary) space is linearly dependent if and only if the Gram 
determinant of this set is equal to zero. 

3.3.16*. A certain principal minor M of order m, m < k, in the 
Gram determinant G (x1 , ••• , x_..) equals zero. Prove that in this 
ease any principal minor enclosing the minor M is also equal to zero. 
(A minor M 2 is said to enclose a minor M1 if the matrix of the minor 
M 2 contains the matrix of the minor M1 as a submatrix.) In particu­
lar, the determinant G (x1, ••• , x11) is also zero. 

3.3.17. Prove that the Gram determinant of a set of vectors 
x11 ••• , x_.. is unaltered if a vector of this set is replaced by the 
perpendicular drawn from this vector to the span of the other vectors 
in the set. 

3.3.18*. Let x1 , ••• , .x_.. be an arbitrary set of vectors of a Eucli­
dean (or unitary) space; and let y1 , ••• , Yll be the orthogonal set 
obtained from the vectors x1, ••• , x_.. by the orthogonalization 
process. Prove that 

G (xt, ••• , X~t) = G (Yu ••. , Yll) = I Yt 12 I Y: 12 ••• I Y~al2• 
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Using this result, establish the relationship between the Gram deter­
minant of the vector set x1, ••• , x 11 , and the volume of the paralle­
lepiped generated by this set. 

3.3.19. Prove that the Gram determinant G (x1, ••• , x 11 ) equals 
zero if the set of vectors x 1 , ••• , x 11 is linearly dependent and is 
positive if this system is linearly independent. 

3.3.20. Let A be an arbitrary square matrix of order n, either 
real or complex; a1 , ••• , an be the rows of this matrix, regarded as 

~:c;~:s ~:a::~ect:~r;~~~~~i:f th~~t~::e(!~ :~:~~e:na~ ~s~~~. iha"i :h~ 
scalar product of the vectors x = (a1, ••• , an) andy= (~1 , ••• 

. . . , Pn) is determined by formula (2.2.1) in the space Rn, and by the 
formula 

(x, Y) = o:1'W1 + • • • + O:n~n 
in the space Cn)• Prove that 

I det A I'~ G (a,, ••. , a.). 

(3.3.1) 

3.3.21*. Verify that the proof of the properties of the Gram deter­
minant stated in Problems 3.3.13-3.3.19 can be given without the 
use of the Cauchy-Buniakowski inequality, i.e. only with the help of 
the theorems on vector orthogonality. Deduce this inequality from 
the nonnegativeness of the Gram determinant. 

3.3.22. Prove that the element of the Gram determinant with the 
maximum modulus lies on the principal diagonal of this determi­
nant (and if there are several elements of this kind, then at least 
one of them lies on the principal diagonal). 

3.3.23. Prove that the distance from a vector x in a Euclidean 
(or unitary) space to a linear subspace L, spanned by the linearly 
independent set of vectors x 1, ••• , x 11 , can be computed by the 
formula 

p (:r, L) = r G ci~~~~~: ::,·~~h) J/2. 

3.3.24o Prove Hadamard's inequality for the Gram determinants 

G (x1, o o o' xll) ~ l x1 12 o o o l x 11 12• 

Show that the equality sign holds here if and only if either each pair 
of the vectors x 1 , ••• , xll is orthogonal, or at least one of these 
vectors equals zero. 

3.3.25*. Prove the following generalization of Hadamard's in­
equality for the volumes of parallelepipeds 

V (x1, o •• , xh x 1+1, • o ., x 11) 

~ V (x1, o o o, x,)o V (:rl+u • o ., x,.), 

where V ( ... ) denotes the volume of the parallelepiped generated by 
the corresponding vector set. 
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Show that the equality sign is valid here if and only if either 
(z 1, z1) ~ 0, i ~ i, ... , l, j ~ l + I, ... , k, 

or at least one of the subsets :r1, ••• , x 1 and :rl+1 , .•• , x 11 is linear­
ly dependent. Enunciate the corresponding property for the Gram 
determinants. 

3.3.26. Let x1, ••• , :z: 11 _1, x 11 be a linearly independent set of 
vectors of a Euclidean (or unitary) space. Prove that for any vector 
z, the following relation between the volumes of parallelepipeds is 
valid 

V(:t 1 , •• , x,., z)::;:::: V(x 1 •. . , .1'.11-t• z) 
V(z1, ... , Zit) "'""'= V(l'1, .•. , Xk-1) ' 

Hence deduce the corresponding property for the principal minors 
of the Gram determinant. 

3.3.27*. Let .:z:1 , ••• , x 11 be an arbitrary set of vectors. Prove the 
inequality 

V 11 - 1 (x1, ••• , x11)~ fi V(x1, ••• , x1_1, XJ+t• ••• , Xk)· 
J=l 

Explain the geometric sense of t.his inequality. Formulate a similar 
property for the principal minors of the Gram determinant. 

3.3.28*. Let x1, ... , xk be an orthonormal set of vectors. Prove 
that for any vector e whose length is less than unity, the following 
inequalities are valid 

1-lei~V(x,, ... , x1_ 1, ; 1, xi+!• ••• , xk)~1+1el; ;,-=x1 +e. 
3.3.29. A determinant is said to be orthogonal if its rows, regard-

ed as vectors in an arithmetic space form an orthonormal set. Re­
formulate the statement of Problem 3.3.28 for orthogonal deter­
minants. 

3.3.30*. Interpreting the modulus of a determinant of order n 
as the volume in an n-dimensional arithmetic space, explain the 
geometric sense of the moduli of the minors of order k (k < n). 

3.3.31. Prove that the modulus of the minors of any order of an 
orthogonal determinant does not exceed unity using (a) Hada­
mard's inequality for determinants (see Problem 3.3.3.); (b) a geo­
metric interpretation of the moduli of minors (see Problem 3.3.30). 

Is a similar statement nllid for arbitrary determinants whose 
modulus equals unity and which are not orthogonal? 

3.3.32. Show that the following determinant of order n 
1 2 0 0 0 

0 1 2 

0 0 1 

0 0 

0 0 

0 0 0 ... 1 2 

0 0 0 ... 0 1 

(3.3.2) 
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ean be made equal to zero by a perturbation of a certain element 
whose modulus equals 2-(n-IJ. Find this perturbation. Relate this 
result to the question in the previous problem and give its geometric 
interpretation. 

3.4. Computing the Determinants 
by the Elimination Method 

In the present section we consider various topics related to Gauss elimin­
ation apphed to the evaluation of determinants. We provide four groups of 
problems on the following: 

The relations between the elements of determinants, obtained at various 
stages of the reduction to triangular form, and the minors of the original deter­
minant. 

Problems for practising the Gauss method. 

~pe;a~~o:~t:t~=ty~~~~t~!l ~~: ;~~~hd~f i~j~~~:ts nd~i~; th~ :;~~c~~~c 
proT:!• a~~~i~aeti~· otfh~h~Ga0~~~~h~dt8t~tithe ;~~~t ~f~~c!f:tth~o~~':~n the 
J{ronecker product of determinants and some of its corollaries. 

3.4.1. A determinant with a matrix A was evaluated by the 
Gauss method without interchanging any rows or columns, i.e. the 
pivots at the various stages were the elements in the (1, 1), (2, 2), ... 
. . . , (n- 1, n- 1) positions, respectively. Prove that after the 
(p - 1)th stage of this reduction all the minors of order p contained 
in the f1rst prows of the matrix were unaltered. Show nlso that these 
minors are unaltered in the subsequent stages of the r('duction. 

3.4.2. Let A be a square matrix of order n. The principal minor 
of order r at the intersection of the rows and columns numbered 
1, 2, ... , r is called the leading prm-::ipal minor of order r of the 
matrix A. Prove that if all leading principal minor'"' of the matrix A 
of orders 1, 2, ... , n- 1 are nonzero, then all the pivots a~.'l.p"'l 
employed in the elimination method for the matrix are also nonzero. 
Fiud an expression for the pivots in terms of the principal minors of 
the matrix A. 

3.4.3*. Prove that if 

laul>~ laiJI• t~1, ... n 
J+1 

then the condition indicated in th~ previous problem for the matrix 
A of order n is fulfilled. Moreover, the determinant of the matrix 
A, in this case, is not equal to zero either. 

3.4.4*. Prove that for the Gram matrix of a linearly independent 
set of vectors x1 , ••• , x,. of a Euclidean (or unitary) space, the con­
t!.ition indicated in Problem 3.4.2 is fulfilled. Moreover, all the pi­
vots of this matrix involved in the Gauss elimination are positive 
and do not exceed the maximum entry of the original matrix. 
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3.4.5. ProYe that if the determinant of a matrix A is nonzero 

then, by interchanging the rows and columns of this matrix, all 
the leading principal minors can be made to be nonzero. 

3.4.6*. During the process of Gauss elimination for a matrix A, 
no interchanging was necessary. Find expressions for the nonzero 
elements of the p-th row of the matrix AU'-11, obtained after the 
(p - i)th stage, in terms of the original matrix. 

3.4.7. Using the result of Problem 3.4.6 show that if, in a matrix 
A of order n, all the minors of order r + 1 enclosing the nonzero 
leading principal minor of order r, 1 ~ r ~ n - 1 (the definition 
of an enclosing minor is given in Problem 3.3.16), are equal to zero, 
then the determinant of the matrix A equals zero. 3.4.8*. Pro,•e that if in a matrix A of order n there is a nonzero 
minor M of order r, 1 ~ r ~ n- 1, such that all its enclosing mi­
nors of order r + 1 equal zero, then the determinant equals zero. 
Note that for the above statement to be valid, it is only necessary 
that the enclosing minors that are situated in the r + 1 rows of the 
matrix A (r of these rows coinciding with the rows forming the mi­
nor M) are equal to zero. 3.4.9*. Using the Gau-:s method prove that the relation between 
a determinant d of order nand its adjoint d', 

d' = an.-l, 

established in Problem 3.2.10 for triangular determinants, is valid 
for any determinant d. 

Using the Gauss method, evaluate the following determinants: 

--3.4.10.
1
: :::I. 3.4.1 .. 

1
: _: _: =:I. 

1 2 1 4 1 -1 ! 

.3.4.12. 
1

0 1 2 31 
1 0 t 2 
2 1 0 1 • 

3 210 

3.4.13. 
1
1 2 3 41 3 6 8 tt 

7 t3 20 26 • 
3123 55 42 

3.1.14.11 2 3 41 
3 4 5 6 
5 G; 8 · 

3t 23 55 42 

3.4.15.1 : ! : :1 
5 G 7 0 · 

31 23 55 42 

3.4.16·.
1

30 20 15 "I 
20 t5 12 10 

105 84 70 60 • 

168 HO 120 105 

3.4.17•.11/2 1/3 1/4 1/51 
1.131/41/51/6 
1/4 1;5 t/6 111 • 115 1,li t/7 1/8 
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3.U8. 

I~ 
1000 4 0 •• 

1 
3000 -6 0.02 

-2000 -0.02 . 

-1000 0 

3.4.19. I"' 256 ~ "'I 1/4 3/8 1/8 1/4 
t/64 i/64 1/64 -1/64 • 

2 0 -4 -12 

3.4.20. 1'001 1002 1003 10041 
1002 too3 toot 1002 
tOOt tOOt tOOt 999 • 
tOOt 1000 998 999 

3.4.21. I' 2 _, -0.002

1 
3 8 0 -0.004. 
2 2 -4 -0.003 . 

3000 8000 -1000 - 6 

3.4.22. I. 23 451 
3.4.23.

1

1 , • • • I 
t t 2 3 4 t 3 1 0 0 

1 0 1 2 3 • 1 6 4 t 0 . 
1 0 0 t 2 t w to s 1 

1 0 0 0 t 1 15 20 15 6 

3.4.24. 

I' 11 "I 
3.4.25.

1

32 ••• 

1 
t 2 t 2 1 t 3 2 0 0 

1 t 3 1 1 • 0 t 3 2 0 . 
t 2 t 4 1 0 0 1 3 2 

t t t 1 5 0 0 0 t 3 

3.4.26. t 1 It 11 

t 2 t 2 1 2 
t 1 3 I t 3 
1 2 1 4 t 2 . 

t 1 1 t 5 I 

t 2 3 2 t 6 

3.4.27. 1 10 100 1000 10000 

·=I 0.1 2 30 400 5000 
0.1 60 1000 15000 
0 0.1 4 100 2000 . 

0.1 150 

0.1 6, 
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3.4.28. Evaluate the polynomial f (t) given by the determinant 
3-1 1 0 0 0 

-1 3-t 

0 -1 3-! 

0 -1 3-t 

0 -1 3-t 

0 0 -t 3-t 
when t = 2 . 
.. 3.4.29. Find the number of multiplication and division opera­
tions necessary for evaluating a determinant of order n by the Gauss 
method. Compare this number with the number of multiplication 
operations when evaluating a determinant by the defmition only. 

3.4.30. Assuming that in Gaussian elimination no interchange 
occurred, find the number of multiplications and divisions necessary 
to evaluate (a) an almost triangular determinant of order n ... . ., '" a1.n-2 l11,n-1 ., . 

., ... . , 11~. n-2 U2,n-1 ., . 
0 ., . , a3, n-t tJ3,n-t ., . 
0 0 0 •·• lln-1. n-: 11n-t. n-1 lln-1,n 

0 0 0 ... lln, n-1 

(b) a tridiagonal determinant of order n 
11t b2 0 0 0 

C: 11: b3 ,,, 0 

0 c 3 113 ••• 0 

0 0 0 

0 0 0 ... 

3.4.31. Let it be required to evaluate an n-order determinant 
dn known to be nonzero, and its enclosing determinant dn+l of order 
n + 1, i.e. 

d, 1

:: 

----·· b1 b2 ... bn c 

Organize the sequence of computations using Gaussian elimination 
so that for evaluating both determinants dn and dn+I• there may be 
required the same number of multiplications and divisions as for 
e\',duating only the determinant of order n + 1. 
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3.4.32. It is required to evaluate k determinants of order n which 
differ from each other only in the last column. Given that all the 
determinants are nonzero, what is the sequence of computations 
using the Gauss method in which the evaluation of all k detC'rmi· 
nants requires only 0 (kn2) more multiplications than the number of 
operations necessary to evaluate one determinant of order n. 

3.4.33*. Find a method to evaluate a determinant of order n of 
the form 

'" '" '" '" 
,, ,_, ,,, 

'" '" '" 
,,. ... !12,11-1 ,,, 

'" 0 ,,. ,,. !Is, n-1 ''" 
'" '" ... a4,n-1 a~,. 

On-J, 1 0 0 0 On.-1, R-1 4n-t. JJ 

(where the diagonal elements a 22, ••• , a,. -t,n _1 are nonzero) such 
that the number of operations is a second degree polynomial in n 
(and not third degree as would be the case for the Gauss method when 
applied to determinants in a general form). 

3.4.34. Consider the set Dn of determinants of order n that fulfil 
the following conditions: (a) the modulus of all the elements of the 
determinants is bounded by unity; (b) there is an element whose mo­
dulus equals unity; (c) all the leading principal minors arc nonzero. 

The last condition makes it possible to use the Gauss method to 
evaluate a determinant from the set Dn without any interchange 
(s£'e Problem 3.4.2). Prove, however, that if k is any integer from 
the set 1, 2, ... , n- 1, and N is any positivC' number, then thf're 
is a detf'rminant from the Sf't Dn such that in the matrix obtained 
after k stages of the Gauss method without any interchange, there 
may be found an element a\') whose modulus is greater than the 
number N. Thus, whatever the word size used by a computer is, 
therC' exists a determinant from the set D, whose evaluation by Gaus­
sian elimination will lead to overflow. 

3.4.35*, Consider the following modification of the Gauss meth­
od intended to avoid the overflow indicated in Problf'm 3.4.34. 
After completing k stages of the reduction to triangular form, 
the el£'ment \nth the greatest modulus out of the elements 
at1~t.h-<-t a~~z.u 1 , ••• , 1 a\.:'.)11+ 1 is chosen as the pi\·ot of the 
(k + 1)th stage. Let it be an element a}~1~+t> j # k + 1. Then the 
rows k + 1 and j are interchanged so that this element is positioned 
at (k + 1, k + 1). Then the customary Gaussian transformations are 
performed for the (k + 1)th stagf'. This modification is called the 
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elimination method with the choice of a pivot in a column (or par­
tial pivoting). Prove that during this procedure (a) if all elements 
a\~I.II+I• ai~2.11+I• ... , a~~~+l of the pivotal column are zeroes, 
then the original determinant is also equal to zero; (b) for any posi­
tion (i, j) 

la!1+1lJ~2~~~ Ia~~> I; 

(c) for a determinant of order n, the modulus of all the elements 
obtained in the process of the reduction to triangular form is not 
more than 2'1- 1 times as great as the maximum element in the ori­
ginal determinant. 

3.4.36*, Construct an example to support the probability that 
the maximum modulus of elements will grow to the estimated value 
indicated in Problem 3.4.35 (c), during the reduction to the triangu­
lar form using the Gauss method with partial pivoting. 

3.4.37. Prove that whilst applying the Gauss method with partial 
pivoting (a) the maximum modulus of the elements of an almost 
triangular determinant of order n will not increase more than n 
times; (b) the growth of the maximum modulus of the elements of a 
tridiagonal determinant of order n, in the process of the reduction, is 
not more than twofold, i.e. 

n:,~;fa~~>[~2~.a; lar8 l. 1~k~n-1. 

3.4.38. It follows from Problem 3.4.36 that even faster growth 
of the maximum modulus of the elements is possible using the Gauss 
method with partial pivoting. :As a consequence, a computer may, 
once again, overflow during the computation of a determinant of a 
sufficiently high order. Thus, another modification of the Gauss 
method can be applied: the pivot of the (k + 1)th stage is chosen to 
be the element with the greatest modulus out of the submatrix of 
order n - k situated in the lower right-hand corner of the matrix 
A(k) after the previous k stages. The rows and columns having in­
dices greater than k are interchanged so that the element with the 
maximum modulus is positioned at (k + 1, k + 1). The (k + 1)th 
stage of the Gauss method is then performed as usual. This modifica­
tion is termed the Gauss method with complete piYoting. Pro\·e that 
for the Gauss method with complete ph·oting, the modulus of the 
pivot of the (k + 1)th stage is not more than twice as great as the 
modulus of the pivot of the k-th stage. Is a similar statement valid 
for the Gauss method with the partial pivoting? 

3.4.39*. There exists a hypothesis that for the Gauss method 
with the complete pivoting, the growth of the maximum modulus 
of the elements of a determinant of order n does not exceed n. Using 
the result of Problem 3.3.8, prove this hypothesis for n = 3. 
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3.4.40. Deduce from the result of the previous problem that whilst 
applying the Gauss method with complete pivoting (a) the growth of 
the maximum modulus does not exceed 6 in the case of real matrices 
of order 4; (b) the growth of the maximum modulus does not exceed 9 
in the case of real matrices of order 5. 

3.4.41*. The following determinant of order mn 
a 11 b11 a 111 b11 aubl"i! a,,l,, ~ a 11 b 1.,. 

a, 1 b11 llnnbu tln1hu a,.,bu lln 1h1m 

a 11 b~ 1 n 1 nbu a ub~l a 1.,hu a 11 blm 

D~ 
lin 1b ~ 1 a,,hH a, 1bu t1nnbl2 a, •''~"' 

is called the Kronecker product of the determrnant 

deiA~I:::. ::: : :::1 
an 1 a,, 2 II'"' 

and the determinant 

detB=I::_:. :_::_ ::: :::1 
bnn bm2 ··· bmm 

of order nand m, respectively. Thus, the matrix of the determinant 
D consists of m2 blocks of order n. These blocks are obtained from the 
matrix A by multiplying all its elements by bno b12 , ••• , b1 m, 

b~n· bsz, ... , bzm• •.. , bm1, bms• .•. , bmmo respectively. By 
means of the Gauss method, prove that 

D ~ (del A)m (del B)•. 

3.4.42. Prove that the Kronecker product of two orthogonal deter­
minants, d of order nand d' of order m, is an orthogonal determinant 
of order mn. 

3.4.43. Find the relation between the determinant of a matrix of 
order nand determinants of matrices of order 2n arranged as follows: 

(a) (A -A) (b) ( A -A) . A A . -A A' 
(c) 

( 2A 3A). 
A 2A . 

(d) ( A 3A) 
2A ;,A . 



CHAPTER 4 

Systems of Linear Equations 

4.0. Terminology and General Notes 

A rectangular number table consisting of m rows and n columns, 

A~ll ::: ::: ::: :::II .......... ' 
Ornt am! ••• Omn 

is called a rectangular matrix of order m X n (or an m X n matrix). 
It is said to be real or complex depending on whether the elements 
a11 of this matrix are real or complex. 

A minor of order k is defined for a rectangular matrix, as in the 
particular case of a square matrix (see Sec. 3.0), assuming that 
k::;;; min (m, n). The minor is designated in the same way, i.e. as 

A(;: ::: ;:) 
The highest order r of the minors of a matrix A that are nonzero is 

called the rank of this matrix, and any nonzero minor of order r is 
termed the basis minor of the matrix A. If all elements of a matrix 
are zeroes (the zero matrix), then its rank is defined to be zero. 

If the rows of a matrix A are considered as n-dimensional vectors 
and its columns as m-dimensional vectors, then the rank of the set 
of rows and the rank of the set of columns are both equal to the rank 
of the matrix A. Hence, the rank of the transposed matrix AT, order 
n X m (see Sec. 3.0), coincides with the rank of A. 

Let x 0 be a fixed vector and L a subspace in an n-dimensionallin­
ear space V. The set P of all vectors of the form 

x = x0 + y, y E L, 

is called the plane obtained by translation of the subspace L by the 
vector x 0 and denoted by x 0 + L, x0 being termed the translation 
vector, and L the directional subspace of the plane P. 

If the subspace L is represented as the span L (qlt q2 , ••• , q11 ) 
then a parametric equation of the plane P can be formed 

X = Xo + t1q 1 + t 2q2 + , , • + t11q11, 

where the parameters tit t 2 , ••• , t 11 assume arbitrary values. 
6-0619 
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It can be shown (see 4.2.1) that for a given plane, the directional 
subspace is defined uniquely. Thus, any plane can have a dimension 
equal to that of its directional subspace. Thus, a plane of dimension 1 
is called a straight line and a plane of dimension (n- 1) is termed a 
hyperplane. 

The planes P1 = x1 + £ 1 and P 2 = x2 + L 2 are called parallel 
if either £ 1 c: £ 2 or L 2 c L1 • 

Let us list some other definitions and results regarding systems of 
linear equations (the systems are also considered in Sec. 1.0). 

A system of linear equations is called lwmogeneous if the right-hand 
sides of all equations of this system equal zero and nonhomogeneous 
otherwise. 

A matrix A, made up of the coefficients of the unknowns, is called 
the coefficient matrix of the given system of equations. If the column 
of the right-hand sides of this system is ascribed to A then the so­
called augmented matrix A of the system is obtained. 

Let the number of the unknowns in a system of equations be equal 
to the number of the equations. Then the coefficient matrix A of the 
system is a square matrix and the condition det A + 0 stipulates 
whether the system is consistent or determinate. A unique solution 
x1, ••• , Xn can be found by Cramer's formultJe 

Xt = ~:~~I t i = 1, ... , n, 

where A 1 is the matrix obtained from A by replacing the i-th co­
lumn with the column of the right-hand sides. 

Two remarks about the problems of this chapter. A number of 
computational problems are given in Sec. 4.2 concerning determi­
nation of the mutual disposition of planes in a linear space. These 
problems, including those on finding the rank of a given system of 
vectors, intersection of two spans, etc., can be soh·ed by the methods 
of Chapter 1. 

As it is shown in Sec. 4.5, the solution set of a nonhomogeneot1s 
system of linear equations can be considered to be a plane in an arith­
metic space. If the scalar product can be defined in a space, then 
among the vectors of any plane there exists n unique vector. ortho­
gonal to the directional subspace of this plane (see Problem 4.3.11). 
It is calied the normal vector, and the corresponding solution of the 
system of linear equations is called the normal solution. This con­
cept is used, for example, in Problem 4.5.36. 

4.1. The Rank of a Matrix 

tio~sD oih:he~~t!kDof"! ~~~;i~e a~~u:h:i~r a~pfi~a~~~~: :!1fi~d~~~nfh:a:!~ks o~e:on~= crete matrices. 
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4.1.1. Prove that in any r linearly independent rows (or columns) 
of a matrix, there is a nonzero minor of order r. 

4.1.2*. In a rectangular m X n matrix A (m ~ n) there is a 
nonzero minor of order n- 1, but all its enclosing minors of order n 
are zero. Prove that all the minors of order n of the matrix A equal 
zero, and hence the rank of A equals n - 1. 

4.1.3*. In a matrix A there is a nonzero minor M of order r but 
all the enclosing M minors are zero. Prove that the rank of A 
equals r. 

4.1.4. What can be said of an m X n matrix (m > n) of rank 
n if it has only one basic minor? 

4.1.5*. What can be said of an arbitrary m X n matrix if it has 
only one basic minor? 

4. t ,6*. Prove that the minor of order r situated at the intersec­
tion of any r linearly independent rows and r linearly independent 
columns is nonzero. 

4.1. 7. A square matrix A is said to be symmetric if alJ = a 11 for 
any i, j. Prove that the rank of a symmetric matrix equals the highest 
order of the nonzero principal minors of this matrix. 

4.1.8. Show that the statement of Problem 4.1.7 is also valid for 
a complex Hermitian matrix A, i.e. the matrix in which a 11 = a11 
for any i, j. 

4.1.9*. Prove that the rank of an arbitrary set of vectors in a 
Euclidean (or unitary) space equals the rank of the Gram matrix of 
this system. 

4.1.10. A square matrix A is said to be skew-symmetric if all= 
= -a11 for any i, j. Prove that the rank of a skew-symmetric matrix 
equals the highest order of the nonzero principal minors of this 
matrix. 

4.1.11. Prove that the rank of a skew-symmetric matrix is an 
even integer. 

4.1.12. The determinant of a square matrix of order n is nonzero. 
Prove that for any r, 1 ~ r ~ n- 1, the leading principal minor 
of order r of this matrix may be made nonzero by interchanging only 
its rows. 

4.1.13. Prove that all the leading principal minors of a square 
matrix with a nonzero determinant may be made nonzero by inter­
changing only its rows. 

4.1.14. The rank of an m X n matrix A equals 1. Prove that there 
are numbers b1, ••• , bm and c1, ••• , C11 such that 

Ujj = b1CJ 

for any i, j. Are these numbers uniquely determined? 
4.1.15. The rows of an m X n matrix A, considered as vectors in 

an n-dimensional arithmetic space, are orthogonal. Moreover, in 
each row there is at least one nonzero element. Prove that n;;;:;.. m. 
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4.1.16. Prove that the rank of a matrix A of the form 

equals the sum of the ranks of the submatrices A11 and A 22 (0 des­
ignates zero submatrices of the corresponding order). 

4.1.17. Does the following statement hold "the rank of a matrix 
A of the form 

is always equal to the sum of the ranks of the submatrices A11 and 
Au"? 

4.t.t8. How can the rank of matrix alter if the value of one of its 
elements is altered? 

4.1.19. How can the rank of a matrix alter if the elements of 
only one row are altered? of k rows? 

4. 1.20*, Prove that in an n X n matrix of order r, there are k 
elements such that however small a change in their absolute value 
is, it increases the rank of the matrix to r + k, 1 :;;;;; k :;;;;; n - r. 

4.1.21. Indicate the possible values of the rank of a matrix of the 
form 

II ~ ~. ::~ · · .0 
.. :::·II· 

0 0 ... am-1 n. 

4nu am! • • • am, n-1 4mn. 

4.1.22. Prove that in a square n X n matrix with a nonzero de­
terminant, the rank of any square submatrix of order n - 1 is not 
less than n - 2. 

4.1.23. Prove that the two systems of vectors in the arithmetic 
space 

ond 

.z1 = (an, ... , a1, ••• , a1J> ••• , a1n), 

.z1 = (a 11, ••• , a,,. ... , a1J> ••• , a1n), 

Yt = (an, · · ., all> · • ., ath • .. , aln), 
Yt = (a 11 , ••• , az~, ... , azh • •. , a1n), 

have the same rank. 
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4.1.24. Prove that the dimension of the span generated by a set of 
vectors x1 , •.. , xlt equals the rank of the matrix made up from their 
coordinates in any basis for the space. 

4.1.25. Prove that a vector b belongs to the span of x1 , ••• , xlt 
if and only if the rank of the matrix, made up from the coordinatee 
of the vectors x1 , •.. , xlt in some basis for the space, equals the 
rank of the augmented matrix made up from the coordinates in the 
same basis of the vectors x1 , ••• , xlt, b. 

4. t .26. Prove that the elementary row (or column) transforma­
tions (see Problem 1.2.17) of a matrix do not alter its rank. 

4.1.27. Prove that any m X n matrix can be reduced, by ele­
mentary transformations of its rows and columns, to the form 

4u 4a •·· 41~ · .. 41n" 

0 au a2r ... a2n 

0 ... 

0 ... 0 ... 0 
where a11 , a22 , ••• , arr are nonzero, and r equals the rank of the 
original matrix. Compare this statement with that of Problem 1.2.18. 

Evaluate the rank of the following matrices: 

4.1.28. 11 ~ :: ili :II· 4.1.29.1U , -1 

4.1.30*.111241 381 273 -16511 
134 -987 562 213 . 
702 225 -11ft 49 

4
.1.

3
1.11 3 -1; ~ _; ~~II· 

4.1.32"11=~ 1-: =~ 1111· 
4.1.33.11 9 -12 3 _, 12 -28"11 -15 2t -5 7 -20 

18 -24 6 -8 t5 -20 • 
-30 42 -10 t4 -25 35 

_: _:II· 
' -· 
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4.1.34. Find the dimension of the span generated by the set of 
vectors x1 = (73, -51, 13, 42, 15), x 1 = (44, -32, 5, 25, 3), x 3 = 
= (76, -52, 16, 44, 18), x, = (-37, 27, -4, -21, -2). 

4.1.35. A linear space L is spanned by the vectors x1 = (2, 4, 8, 
-4, 7), x, = (4, -2, -1, 3, 1), x, = (3, 5, 2, -2, 4), x, = (-5, 1, 
7, -6, 2). 

Do the vectors 

(a) b, = (6, 18, 1, -9, 8); 

(b) b, = (6, 18, 1, -9 + e, 8); 
(c) b, = (6, 18, I, -9, 8 +e) 

belong to this subspace? Here e is any nonzero number. 
4.1.36*, Prove that the rank of a k X n matrix A of the form 

is equal to k, where k ~ nand a1 , a2 , ••• , a" are different numbers. 

4.2. Planes in a Unear Space 

the ~:~:r:i~~i~~~:e:;l~~:haen~r7tS:d~:;~fo~ fnn~Yf!et:re sf;~~~~~:~ ~b; ~~:~ 
disposition of planes. 

At the end of the section we state some of the relationships between planes 
of an arbitrary dimension and hyperplanes. 

4.2.1. Prove that the two planes P 1 = x 1 + L1 and P 2 = Xz + 
+ L 2 coincide if and only if L 1 = L 2 and x 1 - x 2 E L1 • Hence the 
direction subspace of any plane is uniquely determined. 

4.2.2. Deduce from the result of the previous problem that for 
any plane any of its vectors can be chosen to be the translation 
vector. 

4.2.3. Prove that if vectors x 1 and x 2 belong to the plane P = 
= Xo + L, then XI - x2 E L. c~nversely, if xl E p and XI - x2 E 
EL then x 2 EP. 

4.2.4. Prove that the plane P = x 0 + L is a subspace if and only 
if x0 E L. 

4.2.5. Prove that for the plane P = x0 + L to be a subspace, it is 
necessary and sufficient that the sum of any vectors x1 and x 9 should 
belong to L. 

4.2.6. Prove that the intersection of the plane P = x0 + L with 
any subspace, complementary to L, consists of only One vector. 

4.2.7. What represents a plane of zero dimension? 
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4.2.8. What represents a plane of dimension n in ann-dimensional 
linear space V? 

4.2.9. Prove that in the space of polynomials of degree ~ n, the 
set of polynomials f (t) satisfying the condition f (a) = b, where a 
and b are fixed numbers, is a plane. Find the dimension of this plane. 

4.2. to. Prove that in a plane of dimension k, not a subspace, a 
linearly independent set consisting of k + 1 vectors can be found. 

4.2.11. Prove that in a plane of dimension k, any set consisting 
of k + 2 vectors is linearly dependent. 

4.2.12. Prove that for any k + 1 linearly independent vectors, 
there exists, and is unique, a plane of dimension k containing these 
vectors. 

4.2. t3. Prove that the plane of dimension k containing the lin­
early independent vectors x 0 , x1, ••• , x 11 can be described by the 
set of all the linear combinations ctoXo + a 1x1 -+-- ••• + a 11x11 sa­
tisfying the condition a0 + a 1 + ... + a 11 = 1. 

4.2.14. Prove that if the intersection of two planes P 1 = x1 -r + L1 and P 2 = x 2 + L 2 is nonempty, then it is a plane with the 
direction subspace L1 n L 2 • 

4.2.15. We define the sum P 1 + P 2 of the planes P 1 = x1 + L1 

and P 2 = x 2 + L 2 to be the set of all vectors of the form z:1 + z: 2 

where z:1 E P 1 , z: 2 E P 2 • Prove that the sum of the planes P 1 and P 2 

is also a plane. Find its directional subspace. 
4.2.16. We define the product 'J..P of the plane P = x0 + L by a 

number 'A to be the set of all vectors of the form 'J..z: where z: E P. Prove 
that the product of the plane P by the number').. is also a plane. 
Find its direction subspace. 

4.2.17. A subspace L is fixed in a linear space V. Is the set M 
of all planes in the space under the operations of addition and mul­
tiplication by a number defined in Problems 4.2.15 and 4.2.16 a 
linear space? 

4.2.18. Alter the definition for the multiplication of a plane by 
a number so that the set M of Problem 4.2.17 may become a linear 
space. Indicate the zero element of this space. (The obtained space M 
is called a factor-space of the space V by the space L). 

4.2.19. Let L be a k-dimensional subspace of an n-dimensional 
space V in the context of Problem 4.2.18. What is the dimension of 
the space M? 

4.2.20. Givenaplanex =x0 + ttP1 + t,p2 wherex0 = (2,3,-1, 
1, 1), p, = (3, -1, 1, -1, 1), p, = (-1, 1, 1, 1, -1), det.,mine 
whether the vectors z = (1, 6, 4, 4, -2) and v = (1, 6, 5, 4, -2) 
belong to this plane. 

4.2.21. Prove that if a straight line has two vectors in common 
with a plane then it is contained in this plane. 

4.2.22. State the mutual disposition of the plane P = x0 + L, 
where x 0 = (1, 0, 0, 1), and L is spanned by the vectors y1 = (5, 2, 
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-3, 1), y 2 = (4, 1, -1, 0), y3 = (-1, 2, -5, 3) and the straight 
lines 

(a) z ~ z, + tq,, z, ~ (3, 1, -4, 1), q, ~ (-1, 1, 2, 1); 
(b) "~ ., + tq,, ., ~ (3, 0, -4, 1), q, ~ (-1, 1, 2, 1); 
(c) z ~ z, + tq,, z, ~ (-2, 0, -1, 2), q, ~ (1, 1, -2, 1). 

4.2.23. Prove that the straight lines x = x1 + tq1 and x = x 2 + 
+ tq2 , where x1 = (9, 3, 6, 15, -3), q1 = (i, -4, 11, 13, -5), x 2 = 
= (-7, 2, -6, -5, 3), q2 = (2, 9, -10, -6, 4), intersect. Find 
their intersection. Indicate the plane of dimension 2 in which these 
straight lines lie. 

4.2.24*. Prove that the straight lines x = x1 + tq1 and x = x2 + 
+ tq, where z, ~ (8, 2, 5, 15, -3), q, ~ (7, -4, 11, 13, -5), z, ~ 
= (-7, 2, -6, -5, 3), q2 = (2, 9, -10,-6, 4), do not meet. Con­
struct a plane of dimension 3 that contains them both. 

Determine the mutual disposition of the planes P 1 = x0 + tJ}J1 + 
+ tzP2 and P2 = Yo + t1q1 + t2q2: 

4.2.25. "o ~ (3, 1, 2, 0, 1), p, ~ (2, -6, 3, 1, -6), 
Yo~ (1, 0, 1, 1, 0), q, ~ (-1, 1, -1, 0, 1), 

p, ~ (0, 5, -2, -1, 6), 
q, ~ (-1, 3, -1, -1, 2). 

4.2.26. •o ~ (7, -4, 0, 3, 2), p, ~ (-1, 1, 1, 1, 1), 
Yo ~ (6, -5, -1, 2, 3), q, ~ (1, 1, -1, 1,1), 
p, ~ (1, -1, 1, 1, 1), 

q, ~ (1, 1, 1, -1, 1). 

4.2.27. •o ~ (2, -3, 1, 5, 0), p, ~ (3, -2, 1, 0, 1), 
Yo ~ (0, -1, 0, 4, 1), q, ~ (1, 2, 4, 0, -2), 
p, ~ (-1, 5, -2, 0, 3), 
q, ~ (6, 3, 4, 0, 3). 

4.2.28. Zo ~ (-3, -2, 1, -1, 2), p, ~ (1, -1, 1, 1, 3), 

Yo ~ (-1, 0, 3, 3, 8). q, ~ (1, 1, -3, -3, 1), 
p, ~ (-1, 2, 1, 2, -2), 
!q, ~ (0, 1, 2, 3, 1). 

4.2.29. •o ~ (1, 2, 0, 2, 1), 
Yo~ (1, 2, 1, 2, 1), 
p, ~ (2, 1, 3, 0, 1), 
q, ~ (-3, 3, -3, -1, 5). 

p, ~ (5, -2, 6, 1, -4), 
q, ~ (1, -4, 0, 1, -6), 
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4.2.30. z, ~ (4, 1, 10, -3, 5), p, ~ (2, 1, 3, 0, 1), 

Yo ~ (-3, 2, 1, -4, 8), q, ~ (3, -3, 3, 1, -5), 

p, ~ (1, -4, 0, 1, -6), 

q, ~ (5, -2, 6, 1, -4). 

'9 

4.2.31. Prove that if a straight line x = x 0 + tq and a hyperplane 
n = Yo + L do not meet, then q E L. 

4.2.32. Prove that if the hyperplanes 1t1 = x0 + L1 and l'tt = 
= Yo + L 2 do not intersect then L1 = L 2 • 

4.2.33*. Prove that if the intersection of hyperplanes n1 , ••• 

. . . , n,. of an n-dimensional space is nonempty, then it is a plane 
whose dimension is not less than n - k. 

4.2.34*. Prove that any k-dimensional plane can be defined, in 
an n-dimensional space, as the intersection of n - k hyperplanes. 

4.3. Planes in a Euclidean Space 

disc~:!!d~9a~dc~ii!~!~~~ :~~se~~d:n~yg:~:~e~l~~e! !dc~~~=~s9~fUn:~ 
equations is established. Then we introduce the notion of a normal vector to 
a plane and consider certain geometric probleDl.!l related to the determination of 
distance. In conclusion, we consider it important to note that the descrihtion of 

iiE~:~~le:r~':!~ra~~e~J;hoal~~f!~~~~nb~s~:~r f~r 1\~~:r~oa~~mal ases of 

4.3.1*. Prove that the set of all vectors of a Euclidean (unitary) 
space E satisfying the condition (n, x) = b where n is a fixed non­
zero vector and b is a given number, is a hyperplane of this space. 
In what case will this hyperplane be a subspace? 

4.3.2. Show that the hyperplane described by the condition 
(n, :z:) = b can be also described by the condition (n, x - :z:0) = 0, 
where :z:0 is an arbitrary vector of this hyperplane. 

4.3.3•. Prove that any hyperplane of a Euclidean space can be 
determined by a condition of the form (n, :z:) = b. 

4.3.4. Prove that if the conditions (n1, :z:) = b1 and (n2, x) = b1 

determine one and the same hyperplane, then for a certain nonzero 
number a, n1 = an2 and b1 = a.b1 • 

4.3.5. The scalar product for the space of polynomials of degree 
~n is defined by formula (2.3.1). Describe the hyperplane, given by 
the condition f (c) = d, by a relation of the form (n, /) = b. Indicate 
the corresponding polynomial n (t). 

4.3.6. Can an arbitrary hyperplane of the space of polynomials 
(see the previous problem) be described by a condition of the form 
f(c)~ d'l 
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4.3.7. Prove that any hyperplane can be described, with respect 
to any orthonormal basis, by an equation of the first degree 

Alai+ A2a2 + • • • + Anctn = b 
in the coordinates a:1, a 2 , ••• , a 11 of vectors of this hyperplane. 

4.3.8*. Prove that if the intersection of hyperplanes in an n-di­
mensional space 

(n1 , x) = b1 , 

(n2 , x) = b2, 

(nlu x) = bn 
is nonempty, then it represents a plane whose dimension equals 
n- r where r is the rank of the set of vectors n1, ••• , n11 • 

4.3.9. An orthonormal basis e1, ••• , en is fixed for a Euclidean 
(unitary) space. Prove that (a) if 

a11a 1 +a12a 2+ ... +a111ct 11 =b1, 

a21ct1 + a22ct2 + · · · + a2nan = b2, 

amta1 +amaaa+ ... +amnctn =bm 

is an arbitrary consistent system of linear equations in n unknowns, 
then the set of vectors z, whose coordinates in the basis e1, ••• , e11 

satisfy this system, is a plane of the space E. The dimension of this 
plano equals n- r where r is the rank of the matrix 

I'" . ., ... ···J au au ... atn . 

a~,· ~m·z ~-~ ~~~~·~ 
(b) any plane P in the space E can be described by a certain sys­

tem of linear equations. This means that a vector .z belongs to the 
plane P if and only if its coordinates with respect to the basis e1, ••• 

. . . , e11 satisfy the given system. If r is the dimension of the plane 
P, then any system describing this plane consists of at least n - r 
equations, and there exists a system containing precisely n - r 
equations. 

4.3.10. Find a system of linear equations describing the plane 
P = x0 + L where x 0 = (1, 1, 1, 1) and Lis spanned by the vectors y,- (1, 3, 0, 2), y,- (3, 7, -1, 2), y,- (2, 4, -1, 0). 

4.3.11. Prove that among the vectors in any plane P there is a 
unique vector z0 , orthogonal to the directional subspace of this 
plane. The vector z0 is called the normal vector of the plal)e P. 

4.3.12. Show that of all vectors in a plane P the normal vector 
.z0 has the least length. 
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4.3. 13. Show that the normal vector z0 of a plane P equals the 
perpendicular drawn from an arbitrary vector of this plane to the 
direclional subspace. 

4.3.14. Find the normal vector z0 of the hyperplane given by the 
condition (n, x) = b. 

4.3.15. Let z0 be the normal vector of a plane P (not coincident 
with the whole space). Prove that the plane P is contained in the 
hyperplane (z0 , x) = (z0 , z0). 

4.3.16. Find for the space of polynomials of degree ~n with the 
scalar product (2.3.1) the normal vector of a plane defined by the 
conditions f (0) = 1, / (1) = 1. 

4.3.17. We define the distance between a vector x and the plane P = 
= x0 + L to be the number 

p (x, P) = inf p (x, u). 
11EP 

Prove that the distance p (x, P) is equal to the length of the perpen­
dicular drawn from the vector x - x0 to the subspace L. 

4.3.18. A subspace L is generated by a linearly independent set 
of vectors y1 , ..• , y11 • With the use of the result of Problem 4.3.17 
and the Gram determinant properties, prove that the distance from 
the vector x to the plane P = x0 + L is equal to 

P (x, P) = { G (y;;(~·.·:.~~·. ;11)x0)} 1/2, 

4.3.19. Find the distance from the vector x = (5, 3, -1, -1) 
to the plane P = x0 + L where x0 = (0, 0, -3, 6) and L is spanned 
by the set of vectors y 1 = (1, 0, 2, -2), y2 = (0, 1, 2, 0), y3 = 
~ (2, 1, 6, -4). 

4.3.20. A number 

p(P"P~= inf p(u1,u2)! 
lltEP!. 112EPt 

is called the distance between two planes P 1 = :r1 + £ 1 and P2 = 
= x 2 + L 2 • Prove that the distance p (P1 , Ps) is equal to the length 
of the perpendicular drawn from the vector x1 - x, to the subspace 
L = L 1 + £ 2 • 

4.3.21. Prove that the square of the distance between the straight 
lines l1 = x1 + tq1 and 12 = x 2 + tq1 equals 

(a) p2 (l" l0 = G (qG (~:: :~;-z2) 
if the straight lines 11 and 12 are not parallel; 

(b) p! (11,l,_)= GC~~~.x~Jzt) 

if the straight lines 11 and 12 are parallel. 
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Find the distance between the straight lines l1 = X 1 + tq1 and 
lz = Xz + tqz: 

4.3.22. x, ~ (5, 2, 0, 3), q, ~ (1, 2, -4, 1); x, ~ (3, -1, 3, 1), 
q, ~ (1, 0, -1, 0). 

4.3.23. x, ~ (5, 4, 3, 2), q, ~ (1, 1, -1, -1); x, ~ (2, 1, 4, 3), 
q, ~ (-3, -3, 3, 3). 

Find the distance between the planes P 1 = x 0 + tl.P1 + t 2p 2 and 
P'l. = Yo + t1q1 + fzqz: 

4.3.24. Xo ~ (89, 37, 111, 13, 54), p, ~ (1, 1, 0, -1, -1), 
y0 ~ (42, -16, -39, 71, 3), q, ~ (1, 1, 0, 1, 1), 
p, ~ (1, -1, 0, -1, 1), 
q, ~ (1, -1, 0, 1, -1). 

4.3.25. Xo ~ (5, 0, -1, 9, 3), 
Yo ~ (3, 2, -4, 7, 5), 
p, ~ (1, -1, 0, -1, 1), 
q, ~ (0, 3, 0, 1, -2). 

4.3.26. Xo ~ (4, ·2, 2, 2, 0), 
Yo ~ (-1, 1, -1, 0, 2), 
p, ~ (2, 1, -2, 1, -1), 

q, ~ (-5, -4, 2, -1, 1). 

p, ~ (1, 1, 0, -1, -1), 
q, ~ (1, 1, 0, 1, 1), 

p, ~ (1, 2, 2, -1, 1), 
q, ~ (8, 7, -2, 1, -1), 

4.3.27. Prove that with respect to any basis for a linear space, 
any hyperplane can be described by a first degree equation in the 
vector coordinates of the hyperplane (cf. Problem 4.3.7). 

4..3.28. Prove that with respect to any basis of a linear space, any 
plane of dimension r can be described by a system of n - r linear 
equations in the vector coordinates of the plane. 

su~;;~~~: ~~ ; :~ :r~~:::!~ ~~~~~/~n \~~~e;la~~~cSh:~\~:~n~h: 
scalar product can be defined for the space so that x is the normal 
vector of the plane P. 

4.4. Homogeneous Systems 
of Linear Equations 

We cOnsidered it appropriate to group the problems referring to homogeneous 
systems of linear equations in a separate section. In contrast to the nonhomo­
geneous case, the question of consistency does not arise here; moreover, the 

:t~~~~e:~~t~~t~~ t~~d s~l~~~o:e fo~ ~s na~:ho~~~~~~u:~;~e:O.subspace for 
Great attention has been p11.id to the two traditional tasks, viZ'. finding the 

~a':P~~~e i~~~~~:~~s a~od e~~~~~~i~et~~~!~~~~!hl~n~a/ tire~e~w~f !;~h~id:St~~ 
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describe the solution subspace of a homogeneous system and Problem 4.4.13 
shows that the formulae for the complete solution coincide, in fact, with the 
description of this subspace in terms of a special fundamental system. 

At the end of the section we have indicated some of the applications of homo-

r.e~fi~di~~ih:b~~s ~~~d8di:~;:f~~oft~ !~bs:~:~~:8ti~~h!""~::i!:S::~ sgfa~~~ 
vector sets, etc. 

4.4.1. Show that the solution set of an arbitrary homogeneous 
system of linear equations is a subspace, whereas the solutions may 
be considered as vectors of the corresponding arithmetic space. 

4.4.2. Two homogeneous systems of linear equations 

a11x1 + ... + alnXn = 0, 

and 

b11X1 + • • • + blnXn = 0 

are said to be equivalent if they have the same solution set. Prove 
that the indicated systems are equivalent if and only if the vector 
sets 

and 

are equivalent. 
4.4.3. A homogeneous system of m equations in n unknowns has 

a coefficient matrix with rank r. Prove that the dimension of the 
solution subspace of this system equals n - r. 

4.4.4. Indicate all the values of the parameter A for which the 
system of equations 

(8 - A) .x1 + 2xs + 3.x3 + Ax4 = 0, 

x, + (9 - A) x, + 4x, + Ax, ~ 0, 

x1 + 2x1 + (10 - A) .x3 + Ax4 = 0, 

.x1 + 2x1 + 3x3 + A.x4 = 0 
is indeterminate. 
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Find the dimension of the solution subspaces of the following sys­
tems in relation to the value of the parameter A: 

~.~.5. (I - 1.) x, + l.x, + 21.x, + 21.x, ~ O. 
(-I + I.) x, + (2 - 21.) x, - 21.x, - 2Ax, ~ 0. 

(I - 1.) x, + l.x, + (2 + I.) x, + (I + 21.) x, ~ O. 

(-1 + A) x1 - il...:r2 - 2Ax9 + (2- 3A) x .. = 0. 

4.4..6. -4x1 + (2 + 2).) x 2 + 2A.:r3 + 2A.:r" = 0, 

il...:r1 + (1 + A) Xs + il...:r9 + A.x, = 0, 

il...:r1 + (1 + A) x 2 - 2x9 + A.x .. = 0, 
-il...:r1 - (1 + A) x 1 - il...:r9 - (2 + 2A) x 4 = 0. 

4.4..7. Let a homogeneous system of equations be of rank r. Prove­
that the minors of orders 1, 2, ... , r placed in the upper left-hand 
corner can be made different from zero by interchanging the equa­
tions and renumbering the unknowns. 

In Problems 4.4.8-4.4.15 the following homogeneous system of 
equations is considered 

a11x1 + anXs + ... -i- a1nXn = 0, 

auxt + attZll + ... + allnXn = 0, 
(~-~.1) 

am1X1 + am2X2 + · • • + amnXn = 0. 
The rank of this system is assumed to be equal to r, and the corner 
minors of orders 1, 2, ... , r of the matrix of the system are taken 
to be nonzero (which can be always achieved, according to Prob­
lem 4.4. 7, by changing the order of the equations and unknowns). 

4.4.8. Prove that, when applying the elimination method to sys­
tem (4.4.1), a11 , a~':L ... , a!~-11 can be chosen as the pivot at the 
separate stages while the resultant system of equations is of the form 

auXt + attZ2 + ... + at,Xr +at. r+tXr+t + ... + atnXn = 0, 

a2'lx:a+ · · · +a~~>~r.~ a.2'.:~t~r~t.+. · .' ·. ~ ~~~~n .=.0, (4,4.2) 

a~~- 0x, +a~:-r~tXr+t + ... +a~-t)Xn = 0 
(those equations whose coefficients are all zero are omitted). 

4.4.9. Show that system (4.4.2) can be solved for x 1, ••• , Xr 
in terms of the free unknowns Xr+lt ... , Xn, in the following form~ 

XI =CuXr+t+Ct:aXr+:a+ · • ·+Ct. n-rXn, 

X:a=C2tXr+! +c22Xr+2+ ... +c:a. n-rXn, (4.4.3) 
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These formulae are termed the complete solution of system (4.4. t). 
This means that one possible solution of the first r components of 
system (4.4.1) may be found by giving arbitrary values to the free 
unknowns by formulae (4.4.3), and conversely, any solution of this 
system can be obtained in this way for the corresponding values of 
the free unknowns. 

4.4.10*. Prove that the solutions of system (4.4.1) 

Y1 =(xu, • • ·• Xtr• XI. r+t• · · ·• X In), 

Yz = (X:u• ... 'Xz,. Xz, r+t• , , , 'Xzn), 

Yt. = (.rill• •.. , Xllr• X11, r+!> · ·, x,.n) 
are linearly dependent if and only if the (n - r)·dimensional vectors 

Zt=(Xt,r+!> , .. ,XIn)o 

Zz=(Xz,r+t• •.. ,Xzn), 

are linearly dependent. 
4.4.tt. Prove that a basis for the solution subspace of system 

(4.4.1) can be obtained as follows: fix some nonzero determinant of 
order n- r, and letting the values of the free unknowns Xr+t• ..• 
• • • , Xn fill the matrix rows in turn, lind the corresponding values 
of the unknowns x1, ••• , Xr by formulae (4.4.3). The constructed 
n- r solutions form the basis. Any basis for the solution subspace 
of a homogeneous system of equations is called the fundamental so­
lution set of this system of equations. 

4.4.12. Show that any fundamental solution set of system (4.4.1} 
can be constructed by the method indicated in Problem 4.4.11 by 
a correct choice of the determinant. 

4.4.13. Show that the vectors 

Yt= (cw C21• ••• , Crt• t, 0, ... ,0), 
Y2= (cl2' C22• ••• , Cr2• 0, 1 •... ,0), 

Yn-r=(CI,n-r> C2.n-ro • •• ,Cr,n-rt 0, 0, ... ,1) 

form the fundamental solution set of system (4.4.1), where c;1 are the 
coefficients of formulae (4.4.3). 

Adjoining the identities 
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to formulae (4.4.3), interpret the complete solution as the represen­
tation of any solution of system (4.4.1) by a linear combination of 
the solutions y1, y2 , ••• , Yr whose coefficients are the values of the 
free unknowns. 

4.4.14*. Prove that the rank of the r X (n- r) matrix C, made 
up of the coefficients of formulae (4.4.3), is equal to the rank of the 
submatrix 

II 
.................. II 
a~, ~+I. _az .. r:2. : ·: . i~2~ 

4m.n! 4m.r+2 ••• Omn 

of the coefficient matrix of system (4.4.1). 
4.4.15. Prove that all the coefficients of a free unknown x~~. (r < 

< k ~ n) in formulae (4.4.3) will equal zero if and only if all the 
coefficients of this unknown in the original system (4.4.1) equal zero. 

Find the general solution and the fundamentlll solution set of t,he 
following systems of equations: 

4.4.16. O·x1 + O·x2 + O·x3 + O·x4 = 0. 

4.4.17. 9x1 + 21x 2 - 15x3 + 5x4 = 0, 
12z1 + 2&:2 - 20x3 + 1x4 = 0. 

4.4.18. 14x1 + 35x2 - 7x3 - 63.x4 = 0, 
-10x1 - 25x2 + 5x3 + 45x4 = 0, 

26:z:1 + 65x2 - 13.x3 - 117x, = 0. 

li-4.19. 2x1 -5x2 +4x3 +3x,=0, 
3x1 -4x2 + 7x3 +5x, =0, 
4x1 -9x2 +8x3 +5x4 =0, 

-3x1+2x2 -5x3 +3x6 =0. 

4.4.20. 2x1+ x2 +4x3 + x6 =0, 
3x1+2x3 - x3 -6x,=0, 
7x1 +4x2 +6x3 -5x, =0, 
x1 +Bx3 +7x,=0. 

-3x5 =0, 
2x1 +9x3 +5x3 -2x,+ x5 =0, 

X 1+3x2 + x3 -2x,-9x5 =0. 
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4.4.22. 2z1 - 2z2 + Sz1 + 6.zt. + 5z5 = 0, 
- 4z1+ 5.z2 - 7z1 - 3z,+ Bz5 =0, 

&:1 - 9z1 + 13z1 + 15.z, + 2z5 = 0, 
10.z1-12z2+ 17z1 + 12z, -11.1:5 =0, 

- 6z1 t 7z2 -10.z8 - 9z,+ 3.z5 =0, 
-14.2:1+ 17z2 -24z3 -15z6 + 19z5 =0. 

4.4.23. 2z1- .:r2 - z8 - z,- .z5 =0, 
-.z1-r2z2 - z1 - Zt.-· .z5 =0, 
4z1+ z1-5z3 -5.z,-5z5 =0, 
z1+ .z2 +2.z8 + .Zt.+ z5 =0, 
.Zt+ Za+ z1 +2z,+ z5 =0. 

4.4.24. 3z1+ 6z1 + 10z1 +4z6 -2z5 =0, 
6z1+ 10.z1 + 17z1 +7z,-3z5 =0, 
9z1 + 3z1 +2.zt.+3z5 =0, 

12z1-- 2.z1 + z1 +8.z,+5z5 =0. 

4.4.25. z1 + 2ZJ + 3zJ + 2z,- 6z5 = 0, 
2x,+3za+ 7za+ s.z.-1Bzs=0, 
3z1 +5z1 +11.z1 + 9z,-27z5 =0, 
2z1-7z2 + 7z3 +t6.z,-48z5 =0, 
z1 +4Zs+ 5z1 + 2z•- 6z5 =0. 

4.4.26. Verify that the system 

2z1 + 4z2 + 6.1:1 +5z, +3z5 =0, 
5.z1 -1- 6z2 + 7z1 +9.z,+6.z5 =0, 
4z1 +6z2 +8z3 +7z,+5z5=0, 
5z1 +5z1 +5z1 +Bz, +6.z5 =0, 
3.1:1 +4-Zz +5.z1 +6z,+4.z5 =0. 
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has infinitely many solutions, while in each of its solutions z 4 = 
= z 11 = 0. Explain these facts in terms of linear dependence or li­
near independence of the columns of the matrix of the system. 

4.4.27. Indicate all the sets of unknowns that can be free un-
7-oeu 
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knowns of the system 

7x1 - 4x2 + 9x3 + 2xf. + 2.r6 = 0, 
5x1 + &:2 + 7x3 - 4xf. + 2x6 = 0, 
3xi - B.xz + 5xa + 4xf. + 2x& = 0, 

7x1 - 2x 2 + 2x3 + xf.- 5x6 = 0. 

Ch. 4 

4.4.28. In the space of polynomials of degree :;;;;; n, determin.:~ the 
dimension of the subspace of polynomials I (t) satisfying the condi­
tions I (a1) = f (a 2) = ... = I (ah) = 0 where a1 , ••• , all. are 
different numbers. 

4.4.29. In the space of polynomials of degree ::;:;;; 5, find the basis 
for a linear subspace of polynomials I (t) fulfilling the conditions 
I (O) ~ I (1) ~ I (2) ~I (3) ~ o. 

4.4.30. Find a homogeneous system of linear equations consist­
ing of (a) two equations; (b) three equations; (c) four equations, 
and for which the vector set 

y, ~ (1, 4, -2, 2, -1), 
y, ~ (3, 13, -1, 2, 1), 
y, ~ (2, 7, -8, 4, -5) 

is a fundamental solution set. 
4.4.31. Can a system of linear equations be found for which the 

vector sets 

and 

y, ~ (2, 3, 1, 2), 

y, ~ (1, 1, -2, -2), 
y, ~ (3, 4, 2, 1) 

'• ~ (1, 0, 2, -5), 
,, ~ (0, 1, 8, 7), 

z, ~ (4, 5, -2, 0) 

are two fundamental solution sets? 
4.4.32*. The rank of a homogeneous system of linear equations 

consisting of n- 1 equations with n unknowns equals n- 1. Prove 
that a nonzero solution of this system can be constructed by the 
formulae 

where A, is a minor derived from the coefficient matrix of the system 
by deleting the i-th column. In addition, show that any other solu­
tion of the system and the indicated one are collinear. 
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4.4.33. With the aid of the result of Problem 4.4.32, find avec-
tor orthogonal to the set of vectors 

,, ~ (2, -1, 3, 1), 

'• ~ (1, 0, 2, -3), 
,, ~ (2, 3, 1, 4). 

4.4.34*. Prove the following theorem: For two linearly indepen­
dent vectorsetsx1, ••• , Xn-1 and y1, ••• , Yn-I in ann-dimensional 
linear space to be equivalent, it is necessary and sufficient that all 
n minors of order n- 1, made up of the coordinates of the vectors 
x1, •.. , Xn _1 in any basis for this space, should be proportional to 
the corresponding minors made up of the coordinates of the vectors 
Y1• • • •• Yn-1· 

4.4.35. By means of the result of Problem 4.4.34, determine 
whether the vector sets of Problem 4.4.31 are equivalent. 

4.5. Nonhomogeneous SystemB 
of Linear Equations 

The topics touched upon in this section are, tor the most sart, as follows: 

inv~::e~~io~0~n~~e t~n:~~:i~~!n~! ~~rodivifu~io~~~~ms 0 equations and 
Fin~ing the general solution of a system. In addition to purely computational 

problems, we also provide problems concerning the determination of the com­
plete solution. As with the homor,neous case, we stress the fact that the for-

~~~ro!0rpia0n~p~it~hS:1~{!~: ~~te~a~tt,~!re~rth:q~:rio~=t<:e evr~~ieU: f4~s~~~ 
Note that the computational problems also point out certain techniques that 

=~d ~aii~y oi~t~o~~~!~i:::c~~t u~":t~~::o:; ~if'i:di~idra1 °1e:::a~io: 
~~s~:·t:i5i~~n~fofoe:!Y 0tt tt~cO:ft~j; ~jt~:ffl~j~~:stems of the lesser order, 

In conclusion we list a number of problems referring to particular systems of 
linear equations. We indicate, inter alta, some applicatioilS of Cramer's for­
mulae. 

4.5.1. Prove that a nonhomogeneous system of m linear equations 
1:: consistent if the rank of the coefficient matrix of the unknowns 
ism. 

4.5.2. Prove that for the system 

a11X1 + a1t:X'2 + · · . + aln.Xn = bl, 

au.Xl + ast:X't + · · · + asnXn = bs, 

am1.%1 + amt:Xs + · · · + amn.Xn = bm 
to be consistent, it is necessary and sufficient that the vector 

b = (b1, b,, •• ,, bm) 

(4.5.!} 
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should belong to the span of the vectors 
a1 = (a11, a111 , ••• , amt), 
a2 = (a 12, a22 , ••• , am 2), 

a, = (atno a2n• · · ., amn)· 
4.5.3. Prove the Fredholm theorem: for a homogeneous system 

(4.5.1) to be consistent, it is necessary and sufficient that the m-di­
mensional vector b = (b1 , b2 , ••• , bm) should be orthogonal to 
all the solutions of the conjugate homogeneous system 

auYt + a21Y2 + · · · + amtYm = 0, 
auYt + auYz + · · · + a,n2Ym = 0, 

a1nY1 + 02n.'fz + • • • + amnYm = 0. 

4.5.4. Given that a nonhomogeneous system of m equations in n 
unknowns is consistent and the rank of the coefficient matrix of the 
unknowns equals r, prove that the solution set for this system is a 
plane in an n-dimensional arithmetic space with dimension n - r, 
and whose directional subspace is the solution set of the corres­
ponding homogeneous system with the same coefficient matrix of 
the unknowns. 

4.5.5. Two nonhomogeneous systems of linear equations 

au:rt + · · · + aln:rn = b1, 

and 

C11Xt + • • • + CJnXn = d1 

are called equirm.lent if either they are both inconsistent or both 
consistent, and have the same solution set. Prove that the indicated 
systems, if consistent, are equivalent if and only if the vector sets 
are equivalent 

and 
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In the following verify whether the system is consistent and deter­
mine the dimension of the solution plane in relation to the value 
of the parameter A. 

4.5.6. (5 -A) .x1 - 2x2 - x3 = 1, 
-2x1 + (2 -A)x2 - 2x3 = 2, 

-x1 - 2x1 + (5 - A) x9 = L 
4.5.7. -x, + (1 +I.) x, + (2- I.) x, +A.,= 3, 

M-1 - x2 + (2 - A) x9 + A.x 4 = 2, 
Ax1 + Ax2 + (2 - A.) x 9 + Ax, = 2, 

A.xt + Ax2 + (2 -A) x3 - x, = 2. 
Problems 4.5.8-4.5.11 concern consistent nonhomogeneous systems 

of equations of rank r, similar to (4.5.1). The equations are assumed 
to have a numeration that stipulates that the minors of orders 
1, 2, .... , r, positioned in the upper left-hand corner, are nonzero. 

4.5.8. Applying the method of elimination of the unknowns, 
show that system (4.5.1) can be solved for Xto ••. , Xr so that their 
expressions in terms of the free unknowns Xr+l• •.• , Xn may be of 
the following form: 

Zt =Cto+ CuXr+i +ctzXr+2+ · · · +ct, 11 -rX'" 

Xz=Czo+CztXr+i +c22.Xr+2.+ • •• +cz.n-rXn• (4.5.2) 

Xr=Cro+CrtXr+i+cr2Xr+2+ · • · +cr, 11 -rX11 • 

These formulae are known as the complete solution of system (4.5.1). 
Fol'mulae (4.4.3) are a particular case of formulae (4.5.2). 

4.5.9. Show that the vector 

Xo = (clO, C2o• • • ., Cro• 0, 0, ... , 0) 
is a solution of system (4.5.1) and the vectors 

Y1 = (cw C21• • •• , Crt• 1, 0, ... ,0), 
y2 = (ct2 c22, ... , c,2 , 0, 1, ... ,0), 

Yn-r = (Ct, n-ro C2. n-r• • • •• c,, n-r• 0, 0, ... , 1) 
form a fundamental solution set of the corresponding homogeneous 
system. 

By adding the identities 
Xr+t=Xr+JI 

Xr+2= Xr+2• 
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to formulae (4.5.2), interpret the obtained relations as parametric 
equations of the solution plane of system (4.5.1). 

4.5. tO. Prove that the rank of the matrix, 

II :::. ::: ::: · .::. :::~~:II· 
Cro en Crz ··· Cr.n-r 

made up of the coefficients of formulae (4.5.2), equals the rank of 
the submatrix 

II :: ::: .: : · ::::: II 
am.r+l •.• amnbm 

of the augmented matrix of system (4.5.1). 
4.5.11. Prove that the vector 

z1 = (c11 , cu • ... , c,1), i = 1, ... , n- r 
is a solution of the system of equations 

a11X 1 + ... + al,.xr = -aih 

ar~x1 + ... + a,,.x, = -a,1, 

and the vector z0 = (c10, c20, ••• , c,0) is a solution of the sys­
tem of equations 

a,1x1 + ... + a,,.x, = b,. 
Investigate the consistency and find the general solution of the 

following systems of equations 

4.5.12. 3Bx1- 74xz+ 46x3 + 84x,= 90, 
- 95x1 + 185xz -115.r3 - 210x, = - 225, 

57x1 -111x2 + 69x3 +126x,= 135. 

4..5.13. 105x1 -175xz- 315x3 +245x, = 84, 
90x1-150x2 -270x3 +210x, = 72, 
75x1-125x2 - 225x3 + 175x, =59. 

4..5.14.. 7x1 -5xz-2x3 -4x,= 8, 
-3x1 +2xz+ x3 +2x,= -3, 

2x1 - x2 - x3 -2x,= 1, 

x 1 + x 3 +2x,= 1, 
x2 + x3 +2x,= 3. 
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4.5.15. x 1+ 2x2 + 3x3 + 4x,= 0, 
7x1 +14x2 -t 20x3 +27x,= 0, 
5x1 + 10x2 + 16x3 + 19x6 = -2, 

3x1+ 5x2 + 6x3 +13x6 = 5, 
4,5.16. X 1 + Xz f, 

x1 +x2 +x3 = 4, 
~ -3, 

x3 .1-.x, + x5 = 2, 

x,+x5 =-1. 
4.5.17. 12x1 -18x2 + 102x3 -174x6 - 216x5 =- 132, 

14x1-21x2 + 119x3 - 203x,- 252x5 =- 154, 

x3 + 2x,-t 3x5 = -1. 
4x3 + 5xd- 6x5 = -2, 

7x3 + Bx,+ 9x5 = -3. 
4.5.18. 24x1+ 9x2 +33x3 -15x, =21, 

8x1 + 3x2 + 11x3 - 5x, = 7, 
40x1 + 15x2 + 55x3 - 25x, + 213x5 -: 35, 

56x1 + 21x2 + 77x3 -35x6 + 197x5 = 49. 
4.5.19*. 2000x1 + 0.003x2 - 0.3x3 + 40x, = 5, 

3000x1 + 0.005x2 -0.4x3 + 90x, = 8, 
500x1 +0.0007x2 -0.0Bx3 + Bx,= 1.:>, 

60000x1 +0.09x2 -9x3 +1300x,=190. 

4.5.20. x1 + 2x2 - 5x3 + 4x, + x5 = 4, 

3x1+ 7x2 - x3 - 3x,+2x5 = 10, 
x2 -13x3 - 2x6 + x5 = -14, 

x3 -16x,+2x5 = -11, 
2x,+5x5 = 12. 

4.5.21. Bx1 + 12x2 = 20, 4.5.22. .x1-5x8 + 2.x8 = 6, 

14x1 +21.x2 =35, 2.x1 + x,+3x5= 6, 
9x3 +11x,= 0, 

16x3 + 20x, = 0, 

10x~ + 12xa = 22, 
15x5 + 18.x8 = 33, 

2.r1-7.x3 +3.x8 = 4, 

3x2 +2x,+4x~= 7, 
2x1 - .x3 + x8 = -12. 
4x2 +3.x,+5.x5 = R 
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Investigate the following systems and find their general solutions 
in relation to the value of the parameter A: 

4.5.23. 3x1 + 2x2 + x3 = -1, 
1x1 + 6x1 + 5x3 =A, 

5x1 + 4xa + 3xa = 2. 

4.5.24. Ax1 + x2 + x3 = 0, 
5x1+ x2 -2x3 = 2, 

-2x1 -2x2 + x9 = -3. 
4.5.25. 24x1 - 38x2 + 46x9 = 26, 

60x 1+ Ax2 +115x3 =65, 
84x1 -133x2 + 161x9 = 91. 

4.5.26. x 1 ...L. x2 +Ax3 =1, 

x1 +Ax2 + X 3 =1. 
Ax 1 + x 2 + x3 = 1. 

4.5.27. x 1 + x2 + Ax3 = 2, 

x1 +Ax2 + x3 =-1. 
Ax 1+ x2 + x3 =-1. 

4.5.28. x 1+ x2 +Ax3 =3, 
x1 +Ax2 + x3 =0, 

Ax1+ x2 + x3 =0. 
4.5.29. (3- 21.) x, + (2- 1.) x, + x, ~ 1.. 

(2- l.)x,+(2-l.)x,+ x3 ~1. 

x 1+ x2 +(2-A)x3 =1.1 
4.5.30. (3+21.)x,+(1 +31.)x,+l.x3 +(1.--1)x, ~3, 

3Ax, + (3 + 21.)x2 +1.x3 + (1.-1) x, = 1, 
3Ax2 +3x3 +(A -1) x6 = 1, 

3Ax2 +Ax3 +(A-1) x6 =1. 

4.5.31. Verify that in all solutions of the system of equations 

x1+ 2x2 + x3 x, 5, 
-x1 + x2 +3x3 +5x6 + x~= 8, 

2x1 - x2 + x3 -8x,+2x5 = -6, 
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the values of the unknowns x 3 and x 6 are constant and equal to 1 
and 0, respectively. Account for this fact in terms of the linear de­
pendence and linear independence of the columns in the augmented 
matrix of the system. 

4.5.32. Can the general solution of the same system of linear 
equations in 8 unknowns be described by the formulae 

and 

x 1= x5 +2x6 +3x1 +4x8, 

Xz=2x5 +3xa+ x,+2x8, 

x3 = X5 --;- xa+ x1 - x6, 

x,= x~ -2x1 -6x8 

Xs= 21x1-6x2-26x3 +17x,, 
x8 = -17x1 -,5x2 +20x3 -13x,, 
x1=- x1 + 2x3 - x,, 
x 8 = 4x1 - x2 - 5x3 + 3x4? 

(4.5.3) 

4.5.33. Replace the first relation in formulae (4.5.3) of Problem 
4.5.32 by 

and answer the problem question again. 
4.5.34. Prove that the set of polynomials/ (t) of degree ~n satis­

fying the conditions f (a1) = b1, f (a2) = b2 , ••• , f (a")= b11 (where 
k ~ n + 1 and a1, ••• , a11 , bit .•. , b,. are arbitrary numbers, 
whereas all att 1 ~ i ~ k, are different) is noncmpty and produces a 
plane. Find the dimension of this plane. 

4.5.35. Find three linear independent polynomials f (t) of degree 
~ 5 fulfilling the conditions f (0) = 1, f (1) = 0, f (2) = -5, 
I (3) ~ -20. 

4.5.36*. Verify that the system of equations 

x1 --L x 2 .,- x3 -2x,= -2, 

8x1 +7x2 .,-7x3 -9x,= 3, 
6x1 + 5x2 + 5x3 - 5x, = 

is consistent and find a normal solution to this system. 
4.5.37. Prove that for a nonhomogeneous system of linear equa­

tions, with the number of the equations equal to the number of the 
unknowns, to be consistent it is necessary and sufficient that the 
reduced homogeneous system should have a unique solution. 

4.5.38. The columns q1 , q2, ••• , q11 of the coefficient matrix of a 
system of n linear equations in n unknowns form an orthonormal 
set. Prove that this system is fully defined, and that its solution can 
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be cvalualed by the formulao x 1 = (b, q1). i = 1, ... , n. 
Here b is an n~dimcnsional vector made up of the right~hand sides 
of the system, and the scalar product is defmcd by the usual rule 
for an arithmetic space. 

4.5.39. Prove that the statement of Problem 4.5.38 also holds 
for a consistent system in which the number of equations does not 
.equal the number of the unknowns (the same condition of the ortho­
normality of the columns, however, being maintained). 

4.5.40. Using the result of Problem 4.5.38, solve the following 
system of equations: 

ax1 + bx 2 + cx3 + dx4 = p, 

-bx1 + ax 2 + dx 3 - cx4 = q, 

-cx1 - dx 2 + ax3 + bx4 = r, 

-dx1 + cx 2 - bx3 + ax4 = s 

assuming that A = a2 + b2 + c2 + tJ2 =1=- 0. 
4.5.41. Deduce from the result of Problem 4.5.34 that if the 

values of two polynomials f(t) and g(t) of degree :s;;;;n coincide for 
more than n different values of the argument, then these polyno­
mials are equal (i.e. the corresponding coefllcients of the polyno­
mials coincide). Hence deduce that the given definition of equality 
for two polynomials is equivalent to their equality as functions 
(i.e. to coincidence of their values for all values of the unknown). 

4.5.42. Find a polynomial f (t) of the third degree for which 
J (1) ~ -2, I (2) ~ -4, I (3) ~ -2, I (4) ~ 10. 

4.5.43. Find a polynomial f(t) of degree ::;;;;;4 for which f(-2) = 
~ 10, I (1) ~ 4, I (-3) ~ 60, I (2) ~ -10, I (-1) ~ -4. 

4.5.44*. Prove that a polynomial f (t) of degree :s;;;;2k, satisfying 
the conditions f (a 1) = f (-a 1), t = 1, ., k, where at, ... , al 
.are different nonzero numbers, is necessarily even, i.e. the equality 
f ( -t) ~ I (t) holds true. 

4.5.45. Prove that a polynomial f (t) of degree :s;;;;2k -1 fulfilling 
the conditions t (a,)= -f (-a,), i = 1, ... , k, where ar, ... , a~ 
.are different nonzero numbers, is necessarily odd, i.e. the equality 
f (-t) ~ -1 (t) is valid. 

4.5.46. Prove that whatever the numbers a, b0 , b1 , ••• , bn. are, 
there exists, and is unique, a polynomial f (t) of degree :s;;;;n such 
that f (a) = b0 , f' (a) = b1, • , ., fl"l (a) = bn.. 

4.5.47. Find a polynomial f(t) of degree ::;;;;;4 such that f(2) = 5, 
!' (2) ~ 19, I'" (2) ~ 40, I'" (2) ~ 48, I''' (2) ~ 24. 

4.5.48*. Prove that whatever the numbers a1 , a 2 , b0 , b1, •• 

• . . , bn _1, c0 (a1 =I= a 2) are, there exists, and is unique, a polynomial 
f (t) of degree :s;;;;n such that f (a1) = b0 , f'(a1) = b1, ••• , fiR-1) (a1) = 
= bn-1• f (a1) =Co. 
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4.5.49. Find a polynomial I (t) of degree ::::;;;4 such that I (1) = 
~ -3, f' (I) ~ -3, !''' (1) ~ 12, /''' (1) ~ 42, I (-1) ~ 3. 

4.5.50*. Prove that whatever the numbers al! a 2, b0 , b1, • 

. • . , bA, c0 , C1 , ••• , c, (at =I= a 2 ; k + l = n- 1) are, there exists, 
and is unique, a polynomial of degree :::;;;;n such that the conditions 
I (at) = bo, f' (at) = bt, ... , f<A> (at) = bA, / (a 2) = Co, /' (a2) = 
= c1 , ••• , I<'> (a 2) = c1 are met. 

4.5.51. Find a polynomial I (t) of degree ::::;;;5 such that I (1) = 
~ -2, f' (11 ~ -7, I''' (1) ~ -14, I'" (11 ~ 24, 1 (21 ~ -4, 
f' (2) ~ 25. 

4.5.52. The right~hand sides b1 of a certain system of n linear 
equations in n unknowns are differentiable functions of a variable t; 
the coefficients a11 of the unknowns are constant numbers. Prove that 
the components x1 , ••• , Xn are also differentiable functions of t, 
and 

I~ .. bj(!) 
. .. "'"/ .... 

x;(t) ... b~ (t) """ i=1, ... , n . 

I~ ... .,, ... I· .. ... ""' """ 
4.5.53*. By means of Cramer's formulae, deduce, for the n-th 

derivative of a function 

f(t)= :::l, 
the following relation 

l
h(l) 0 0 

1 h' (!) h(t) 0 
/("l(t)= h(n+LJ(!) h(Zl(t) 2h'(l) h(t) 

/&(") (t) nc ,h<n-1) (t) nclh(n-2) (t) 

.,.) I g'(t) 

.'(~) .(1) •• 

g(R)(t) 

4.5.54.. Evaluate the 5-th derivative of the function 

f(t)= 37t' 61t'~-;,s1/~· 74.1+25 
when t = 1. 

4.5.55. Prove that the solutions x1 , •.• , x 11 of certain systems 
of linear equations with the same coefficient matrix (and with right­
hand sides b1, ••• , b11 ) are linearly dependent if and only if the 
right-h md sides are linearly dependent. 



CHAP fER 5 

Linear Operators 
and Matrices 

5.0. Terminology and General Notes 

Given two linear spaces X andY both real or both complex. Are­
lation between the elements of these spaces that matches each vector 
x EX with one particular vector y E Y is called a linear operator A 
from X toY. The vector y is called the image of the vector x and is 
denoted by Ax, moreover 

A (a.x1 + ~x2) = aAx1 + ):SAx, 
for any vectors x1 and x 2 and any numbers a and ~· Since we will 
only be considering linear operators from now on, the word "linear" 
is sometimes omitted. 

The set of all vectors Ax, x EX, is called the range or image of the 
operator A and is designated by T A· The set of all vectors x, for 
which Ax = 0, is called the kernel of the operator A and designated 
by N A· The image and kernel of a linear operator are linear spaces 
(see Sec. 5.1). The dimension of the subspace T A is denoted by r A and 
is called the rank of the operator A and the dimension of the subspace 
N A is denoted by nA and is called the defect of the operator A. 

Let the set of all linear operators from X to Y be (r)zy. The struc­
ture of a linear space can be defined for the set (r)zy, that is we can 
put 

(i) (A + B) x ~ Ax + Bx; 

(ii) (l.A) x ~ l. (Ax), 

where xis an arbitrary vector from X. The operators defined by these 
relations, i.e. A +Band AA, are called the sum of the operatorS A 
and B, and the product of the operator A by a number A, respectively. 
The zero element of the linear space (r)xy is the zero operator from X 
to Y, i.e. the operator matching each vector from X with the zero 
element of the space Y. 

Now, let A E (r)_xy, B E (r)yz. An operator C = BA from X to Z 
and defined by the relation 

Cx ~ B (Ax), 

is called the product of the operator B by the operator A. For the prod­
uct BA to have any sense it is a necessary and sufficient condition 
that the image of the operator A should be contained in the domain 
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of the operator B. This condition is inevitably fulfilled in the case 
of operators from Wxx· We will say about each of such operators 
that it is on the space X. 

For an operator A from Wxx• a natural power A11 may be delined 
as the product of k operators equal to A. By definition, for any op­
erator A we put 

where E is the identity or unit operator (i.e. the operator matching 
each z E X with the same vector x). If 

f (t) = a 0 + a1t + a 2t2 + ... + a,.t"' 

is an arbitrary polynomial, then the operator 

I (A)= a0E + a1A + a 2A 2 + ... + a,.A" 
is called a polynomial f (A) in the operator A. 

The operator A on an n-dimensional space X is called nondegene­
rate if the defect of this operator equals zero, or in other words, if 
the rank equals n. For a nonhomogeneous operator A there exists, 
and is unique, a linear operator B such that] 

AB ~ BA ~E. 

The operator B is called the inverse of the operator A and is denoted 
by A-1 • 

With the aid of the in,·erse operator, the whole negative powers of 
a nondegenerate operator A can be defined. Namely, if k is a natural 
number, we put 

or,. equivalently 

A matrix C = A + B of order m X n is called the sum of the 
matrices A and B of order m X n if 

c11 = a11 + b0 , i = 1, ... , m, j = 1, .•. , n. 

An m X n matrix D = AA such that 

du = Aa 1/t i = 1, .•. , m, f = 1, ... , n 

is called the product of the matrix A by the number A. 
The unit matrix (cf. Sec. 3.0), just like the identity operator, is 

denoted by E. If the order n of a unit matrix should be explicit, the 
notation E,. is employed. Matrices of the form AE are said to be 
rcalar. 

A matrix C of order p X n such that 
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is called the product BA of a p X m matrix B and an m X n matrix 
A. For the product BA to have sense it is a necessary and sufficient 
condition that the number of columns of the matrix B should equal 
the number of rows of the matrix A. This condition is necessarily ful­
filled if both matrices are square matrices of the same order. 

For a nondegenerate matrix A (i.e. a square matrix with a nonzero 
determinant, cf. Sec. 3.0) there exists an inverse matrix A-t satis­
fying the equalities 

AA-1 = A-1A =E. 

If we put B =A-t then the elements b11 of the matrix B can be 
computed by the formulae 

bo= d:tA' (3.0.1) 

AJI being the cofactor of the element a11 • 
If a square n X n matrix C is the product AB of two rectangular 

matrices A and B of dimensions n X m and m X n, respectively, m 
being ~n, then for the determinant of the matrix C the Binet·Cauchy 
formula is valid: 

detC= ~ A(!1 !2 ::: ~J B (~ 1 ~ 2 ::: ~n). (5.0.2) 
lo;:;;~.<llo<···<~n.;:;;m 

In particular, if A and B are also square matrices then 

det AB ~ det A ·del B. (5.0.3) 

Let A be an operator from Wxy and let e1, .•. , en and q1, ••• 

. . . , qm be fixed bases of the spaces X and Y, respectively. Resolve 
the vectors Ae~o ... , Aen in terms of the basis vectors qh ..• , qm: 

Ae1 = a11q1 + a21q2 + ... + am1qm, 

Aez = auql + a22q2 + · · . + amzqm, 

A en = atnql + aznqz + · · · + amnqm• 

Construct an m X n matrix of the coefficients in these decompositions 

II 
........... II 

Aqe= a:l. :!~ • :·.a!n . . 

ami am2 4mn 

(5.0.4) 

A qe is said to be the matrix of the operator A in the pair of bases e1, ••• 

. . . , e" and q1, .•. , qm, or to define the operator A in this pair of 
bases. 

An m X 1 matrix is called an m·dimensional column vector, an 
1 X n matrix is called an n·dimensinnal row vector. Let each vector 
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x E X correspond to an n-dimensional column vector Xe made up 
of the coordinates of this vector in a basis e1, .•• , en. Similarly, 
each vector y E Y can be matched with an m-dimensional column 
vector Yq of the coordinates of this vector in a basis q1 , ••• , qm. 
Then the relation between the coordinates of the vector x and vector­
y = Ax can be determined by a matrix equality 

(5.0.5) 

To describe an operator A from W;r;r it suffices to fix one basis 
e1, ••• , e11 , with the vectors Ae1, ••• , Aen being decomposed in 
terms of this basi~;. The matrix made up of the coefficients in the 
decompositions is denoted by A., and is called the matrix of the­
operator A in the basis e1, ••• , e11 • A., is also said to define the opera­
tor A in this basis. Formula (5.0.5) is converted into 

Y~ = AeXe· (5.0.6) 

Let in a space X two bases be fixed: e1 , •.. , en' and / 1 , ••• , In· 
Decompose the vectors / 1, ••• , In in terms of the basis e1, .•. , en 

/1 = Pnet + Pue2 + · · · + Pn1en, 

/2 = Pnet + Pne2 + · · · + Pn!en, 

/n = Ptnet + P2ne2 + • • • + Pnnen. 

A matrix can be constructed from the coefficients in these decom-
positions 

li
p,. Pu ... p," II 

P= ~n . • P~2 • • •• •• ~2~ • 

Pnt Pn2 •·· Pnn 

(5.0.7) 

This matrix Pis called the matrix of the transfer from the basise1 , ••• 

. . . , en to the basis / 1 , ••• , fn· If Xe and x1 are columns of the coor­
dinates of a vector x in these two bases, then the relation between 
them is given by the equality 

x. = Px1• (5.0.8) 

It IS now possible also using the transfer matrix to write down the 
relation between the two matrices A .. and A1, that determine the 
operator A on the space X; thus: 

(5.0.9) 

If A E w.u and if in each of the spaces X and Y two bases are 
f1xed, i.e. e1 , ••• , en; / 1, •.• , /n and q1, ••• , qm; t1, ••• , tm, 
respectively, then the matrices Aqe and A 11 are connected by are-
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lation 
A, ~ Q-'A,,P, (5.0.10) 

where Pis the matrix of the transfer from e1, ••• , en to / 1, ••• , ln. 
and Q is the matrix of the transfer from q1, .•. , qm to t1, •.• , tm. 

If the elements of an arithmetic space are written in the vector­
column form, then formula (5.0.5) makes it possible to identify op­
erators in Rn with those in Rm, or operators inC, with those in Cm, 
using m X n matrices which are real or complex, respectively (for 
further details see Problem 5.6.7). With this remark in mind, we 
will speak, hereafter, of the image of a matrix, its kernel, etc. 

5. t, The Definition of 
a Linear Operator, the Image 
and Kernel of an Operator 

a n~~b:rd~~i~~tJe::s8:f!:d0~o0f'b:~~fi~i~~o~0~fc~\!n~~~e~~:fa~:~·F:~J:;:,v~g: 
effect produced by a linear operator on the principal relations of a linear space 
(such as linear dependence, equivalence of vector sets, the sum of subspaces, 
etc.) is given prominence. 

At the end of the section the important concepts of a kernel and image are 
discussed. 

Determine, for each of the following operators on the three-di­
mensional Euclidean space of geometric vectors, whether the opera­
tor is linear. All the operators are described by their effect on an 
arbitrary vector x. Further, a and b signify fixed vectors of the space, 
and a is a fixed number. 

5.1.1. Ax= a. 5.1.2. Ax= x +a. 5.1.3. Ax= ax. 5.1.4. Ax= 
= (x, a) a. 5.1.5. Ax= (a, x) b. 5.1.6. Ax= (a, x) x. 5.1.7. Ax= 
~ [x, al. 5.1.8. Ax~ [a, [x, b[[. 

Verify which of the following mappings of the three-dimensional 
Euclidean space of geometric vectors into the set of real numbers 
are linear operators. All the mappings are described by their effect 
on an arbitrary vector x, a and b being fixed vectors of the space 
and a: a fixed number. 

5.1.9. I (x) ~a. 5.1.10. I (x) ~ (x, a). 
5.1.1 1. I (x) ~ cos (x, a). 5,1.12. I (x) ~ (x, x). 
5.1.13. I (x) ~ (Ia, x[, b). 5.1.14. I (x) ~ (x, [a, x[). 
Determine which of the following transformations of the three-

dimensional arithmetic space are linear. Each transformation is 
described by its effect on an arbitrary vector x, while the components 
of the image vector are given by functions of the components of the 
vector x. 

5.1.15. Ax= (x1, x 2 , x~). 5.1.16. Ax= (x3 , x1 , x 2). 

5.1.17. Ax= (x3 , x1, x2 - 1). 
5.1.18. Ax= (x1 + 2x 2 - 3x3 , 3x1 - X 2 + 3xs, 2xl + 3xt + 2xs)· 
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Find the linear operators on the space M n of polynomials of 
degree:::;;;; n in the real variable t among the transformations given 
below. Each transformation is described by its effect on an arbitrary 
polynomial f (t). 

5.1.19. Af (t) ~I (-t). 5.1.20. A/ (t) ~I (t + 1). 
5.1.21. A/ (t) = f (at+ b), where a and b are fi.xed numbers, 

while a =F 0. 
5. 1.22. Af (t) = f' (t). This operator is called the differential 

operator. 
5.1.23. A/ (t) = f!"> (t). This operator is called the differential 

operator of multiplicity k. 
5.1.24. Af (t) ~I (t +I)- I (t). 
5.1.25. A/ (t) = f (t + 1)- g (t), where g (t) is a fi.xed nonzero 

polynomial. 
5.!.26. At (t) ~ tf (t). 5.1.27. Af (t) ~I (t'). 
5.1.28. Show that (a) the transformation indicated in Prob­

lem 5.1.22 can be treated as a linear operator from Mn into Mn-1: 

(b) the transformation indicated in Problem 5.1.26 is a linear operator 
from Mn intoMn+1; (c)the transformation indicated inProblem5.1.27 
is a linear operator from Mn into M2 n. 

5.1.29. Given that a linear space X is the direct sum of subspaces 
L1 and L2, show that the operator P that assigns to each vector z 
from the space X with the decomposition 

z =.:z:1 +z2 

where z1 E L1, z 2 E L 2 , the vector z1 of this decomposition, is linear. 
The operator P is known as a projection operator of the space X on 
L 1 parallel to L 2 • 

5.1.30. A linear space X is the direct sum of subspaces L 1 and L,. 
ProYe that the operator R matching each vector z from the space X 
with the decomposition 

where z1 E L1 and x2 E L 2, with the vector y = z1 - z1, is linear. 
The operator R is called the reflection of the space X in L1 parallel 
to L 2 . 

5.1.31. State the geometric sense of the orthogonal reflection of 
a three-dimensional Euclidean space in a two-dimensional sub­
space L. 

5.1.32. Given that in a linear space X a basis e1, ••• , en is 
fixed, prove that the mapping that matches each vector z of the 
space with its i-th coordinate in this basis, is a linear operator 
from X into the space of real or complex numbers. The linear opera­
tor mapping the space X into the corresponding number field is 
called a linear junctional on X. 
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5. t .33. Prove that each linear operator on a one-dimensional 
space can be reduced to a multiplication of all the vectors of the 
space by a number fixed for the given operator. 

5.1.34. Describe all linear operators of the space R+ (see Prob­
lem 1.1.6). 

5. t .35. Prove that any linear operator transforms a linearly 
dependent set of vectors into a linearly dependent vector set. 

5.1.36. Is the following statement valid: a linearly independent 
vector set is transformed by any linear operator into a linearly 
independent set? 

5.t.37. Is the statement true: if vector sets .:r1 , ... , .:rk and 
y1, ••• , y 1 are equivalent, then for any linear operator A the 
vector sets A.:r1 , ••• , A.:r11 and Ay1, ••• , Ay 1 are also equivalent? 

5.1.38. Let A E w .. n and L be an arbitrary subspace of a space X. 
The set of vectors A.:r, where .:r E L, is called the image of the 
subspace L and denoted by AL. Prove that AL is a subspace of 
the space Y. 

5. 1.39. Prove that the dimension of a subspace AL does not 
exceed the dimension of the subspace L. 

5. t .40. Let L be the sum of subs paces L1 and L 2 , and L0 their 
intersection. Is it true that for any linear operator A (a) AL = AL1+ 
+ AL,; (b) A£0 ~ AL, n A£,1 

5. 1.41. Give an example of a linear operator for which the formu­
la (b) of Problem 5.1.40 does not hold. 

5. t .42. Show that a linear operator A has a unique effect on any 
vector from a space X given that the images Ae1 , ••• , Aen of the 
vectors e1, ••• , e11 , which form a basis for the space X, are known. 

5.1.43. Let e1 , .•• , en be a basis for a space X, y1 , ••• , Yn 
an arbitrary vector set of a space Y. Prove that there exists, and is 
unique, an operator A from Wzy such that Ae1 = y1, i = 1, ... , n. 

5.1.44. Let .:r1, ••. , .:rn be an arbitrary vector set of a space X, 
y1, ••• , y11 an arbitrary vector set of a space Y. Is the following 
statement true: there exists a linear operator A from Wxy that 
transforms the vectors .:r1 into the vectors Y~o i = 1, ... , k? 

5. 1.45. In addition to the data of Problem 5.1.44, assume that 
the vector set x 1 , ••• , x 11 is linearly independent. Will the state­
ment of the problem still remain valid? 

5.1.46. Given that a basis e1 , ••• , e11 for a space X is fixed, 
show that the operation of a linear functional .f on an arbitrary 
vector .:r can be determined by the formula 

.f(.:r) =ctctt+ · .. +cnct11 , (5.1.1) 
where ct 1 , ••• , ctn are the coordinates of the vector .:r, and c1 , ••• 

• • • , C11 are the iDl11.ges of the basis vectors. Conversely, formu­
la (5.1.1) determines a linear functional on X for any numbers 
c1, ••• , C11 • 
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5.1.47. Show that the formula 
q>f (t) ~ f (a,) 

defi.nes a linear functional ~ on the space M n of polynomials of 
degree ::;;;;;n. Here f is an arbitrary polynomial from Mn and a0 

is a fi.xed number. Is the converse statement valid: any linear function­
al 'P on Mn can be defined thus, given a convenient choice of the 
number a 0? 

5.1.48. Let L be a subspace of a space X and A an arbitrary opera­
tor from W.zr· Show that the effect produced by the operator A on 
the subspace L can be considered as (a) the operation of a lin­
ear operator from L into Y; (b) that of a linear operator from L 
into AL. 

5. 1.49. Let L be a subspace of a space X and A a linear operator 
from L into a certain spaceY. Show that there is a linear operator 
from X into Y whose effect on the subspace L coincides with that 
of the operator A. 

5.1.50. Construct two different linear operators on the space Mn 
of polynomials of degree :s;;;;n that coincide with the differential 
operator on the subspace Mn-I· 

5. 1.51. Let a space X be the direct sum of subspaces L1 , ••• , L11 • 

Show that the effect of a linear operator A on any vector of the space 
is uniquely determined, if the effect of this operator on each of the 
subspaces Lit ... , L 11 is known. 

5.1.52. Let A be a linear operator on a real linear spaceR, and C 
be a complex space obtained from R by complexifi.cation (see Prob· 

lem 2.5.13), Defi.ne an operator A on C as follows: for any vector 
z = x + iy from C where x, y E R, we put 

· Az = Ax + iAy. 

Show that the operator A is linear. 
Can any linear operator of the space C be obtained in this 

way? 
5.1 .53. Can a linear functional on a complex linear space assume 

only real values? 
5. 1.54. Show that the kernel N A of an arbitrary linear operator A 

from Wzy is a linear subspace of the space X. 
5.1.55. Is it true that any subspace of a space X is the kernel of 

a certain linear operator from X to Y? 
5.1.56. According to Problem 5.1.38, the image T A ofan arbitrary 

linear operator A from W.zy is a subspace of the space Y. Is it true 
that any subspace of a space Y is the image of a certain linear opera. 
tor from X to Y? 

5.1 .57. Prove that the set of all pre images of a vector y from T 4 
is a plane from the space X with the directional subspace N A· 

5.t.58•. Construct, for an operator A from Wzy, a one-to-one .. 
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correspondence between T A and the planes of the space X of the 
form P = x0 + N A· 

5. i .59. The set M of all planes of the space X of the form P = 
= x 0 + N A is, according to Problem 4.2.18, a linear space. 

Prove that the correspondence between planes from M and vectors 
from T A constructed in Problem 5.1.58 is a linear operator (from M 
to T A)· Find the kernel and defect of this operator. 

5.1.60*. Prove that for any operator A from OOzy the sum of the 
rank and defect equals the dimension of the space X. 

5.i.6i. Give an example of a linear operator from W.zx such that 
the space X is not the direct sum of the image and kernel of this 
operator. 

5. 1.62. Let M be any subspace complementary to the kernel N A 

of an operator A. Prove that (a) any linearly independent vector 
set from M is transformed by the operator A into a linearly inde­
pendent set (cf. Problem 5.1.36); (b) the subspace M is mapped by 
the operator A onto its image T A by a one-to-one mapping. 

5.1.63. Prove that for any two subspaces, e.g. N of an n-dimension­
al space X, and T of a space Y, such that dim N + dim T = n, 
there is a linear operator A from OOxy whose kernel coincides with N 
and whose image coincides with T. 

5.1.64. Construct two different linear operators on Mn having 
the same image and kernel. 

5.1.65. Let A be an operator from X to Y, and L be a subspace 
satisfying the inclusion L c T A· Prove that the set of vectors z 
of the space X whose images belong to L (called the complete preimage 
of the subspace L) is also a subspace, and its dimension equals 
dim L + nA-

5.1.66. Find the defect of a linear functional f on an n-dimensional 
Space X. 

5.1.67. Find the kernel of each of the linear functionals on a three­
dimensional Euclidean space ft (x) = (x, a) and / 2 (x) = ([a, x], b). 

5.1.68. Find the image and kernel of the linear operator on a three­
dimensional Euclidean space defined by the formula Ax = (x, a). 

5.1.69*. Do the above for the operator Ax= [a, [x, bll. 
Determine the defect and rank of the following transformations 

of a three-dimensional arithmetic space and construct the bases for 
their kernels and images. Each transformation is described by its 
effect on an arbitrary vector x, while the components of the vector Ax 
are given as functions of components of the vector x. 

5.1.70. Ax= (x1 + x2 + x3 , x 1 + x 2 + x 3 , X 1 + x 2 + x3). 

5.1.71. Ax= (2x1 - X 2 - x3 , X1 - 2x2 + x 3 , xi+ X 2 - 2x3). 

5.1.72. Ax= (-x1 + x 2 + x3 , x1 - x 2 + x3 , xi+ x 2 - X 3). 

5.1.73. Describe the image and kernel of the differential operator 
on the space liJn. 
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5.1.74. Consider the difference operator Ah on the same space Mn 

Ahf(t)=f(t+l~-f(t)' 

where h is a fixed nonzero number. Find its image and kernel. 
5.1.75. Consider the following mapping of the space Mn into an 

arithmetic space: 

/(!)-(!(a,), ... , /(a,)), 

where a1 , ..• , a11 are different numbers. Find the defect of this 
operator. 

5.1.76. Find the image and kernel of the projection operator 
(see Problem 5.1.29). 

5.1.77. Prove that in complexifying a real spaceR, the rank and 
defect of an operator A from <llxy are preserved during the transfer 
to the operator A (see Problem 5.1.52). 

5.2. Linear Operations over Operators 

sectTo~e' s:: a00fi~e~: ~~~~e;~~8~~!~r:/~':illo; ~~ Jr~~~o~:i~:efoh~w\~~ ~:p7c~~ 
(i) The dimension of the space OO;rY· 

(ii) Some of the classes of subspaces of OO;rY· Here we examine the detaila 

~ xt;e a:Ja:~~n ~et~':fdi!;~sft~~e~}i~teo~~~O::sr 01efh:;!e~~r~~0~erators from 
(iii) The rank of the sum of operators, and the conditions stipulating its 

equality to the sum of the ranks of the addends. 

5.2.1. Prove that the set OOzy of all linear operators from a space X 
into a space Y is a linear space under the operations of addition of 
operators and multiplication of an operator by a number. 

5'.2.2. Prove that the space of all linear operators on a one-dimen~ 
sional linear space is also one-dimensional. 

5.2.3. The linear space X* of all functionals on a space X is said 
to be conjugate to the space X. Prove that the conjugate linear space 
X• is isomorphic to the space X. 

5.2.4. Show that for any subspace L of a space X, the following 
relati•ns hold: (a) (1.A) L ~ AL if), of= 0; (b) (A + B) L cAL + 
+ BL, where A and Bare operators from W.zy. Show that, generally 
speaking, the equality sign does not hold in the relation (b). 

5.2.5. Prove that nonzero operators A and B from Wzy, whose 
images are different, are linearly independent. 

5.2.6. Let q1, ••• , qm be a basis for a space Y, and x a nonzero 
vector of a space X. Prove that operators 8 1, ••• , Bm such that 

B1x ~ q1, j ~ 1, ... , m (5.2.1) 

are linearly independent. 
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5.2.7*. Prove that for any operator A from W.zy there are opera­
tors B1 , ••• , Bm such that A = B 1 + ... + Bm whereas (a) the 
rank of each of the operators 8 1 does not exceed unity; (b) the image 
of a nonzero operator B 1 is the vector q1, where q1 , ..• , qm is a fixed 
basis for the space Y. 

5.2.8. Let e1 , ••• , en be a basis for a space X, andy be a nonzero 
vector of a space Y. Prove that the operators A1, .•. , An such 
that 

I y, k=j 
AJe"= 0, k=l=j 

are linearly independent. 
5.2.9. Prove that any operator of rank 1 whose image contains 

a vector y is a linear combination of the operators A 11 ••• , An 
(see the previous problem). 

5.2.10*, Let bases e1 , ••• , en and qu ••. , qm for spaces X 
and Y, respectively, be fixed. Using the results of Problems 5.2.7 
and 5.2.9, show that each operator from Wzy is a linear combination 
of the operators All> ... , Amn satisfying the conditions 

I q,, k=j, . . 
A0 e11= O, k=Fj' t=i, ... , m, ]=1, ...• n. (5.2.2) 

5.2.11. By means of the results of Problems 5.2.6 and 5.2.8 show 
that a set of operators defined by relations (5.2.2) is linearly inde­
pendent. Hence deduce the dimension of the space W.zy (use also 
the results of Problem 5.2.10). 

5.2.12. Is the set of linear operators having (a) the same image T; 
(b) the same kernel N, a linear subspace of the space Wzy? 

5.2.13. Show that if T is a subspace of a space Y, then the set 
WzT of all linear operators mapping the space X into T is a subspace 
of the space w.u· Find the dimension of this subspace if dim X = n, 
dimT=k. 

5.2.14. Show that if N is a subspace of a space X, then the set K N 

of all linear operators from W.zy whose kernel contains the subspace N 
is a subspace of the space W.zy· Find the dimension of this subspace 
if dim X = n, dim N = l, dim Y = m. 

5.2.15*. Let L1 and L 2 be arbitrary subspaces of a space Y, L = 
= L1 + L 2, L0 = L1 n L 2• Prove the following relations: 

(a) W.zL = W.ZL1 + WXL,; 

(b) W .. Uo = WXL, n WXL,• 

5.2.16. Let a space Y be decomposed into the direct sum of sub­
spaces Lu ... , L11 • Prove that 

W,ty = WXL 1 + WXL, + • · • + WXL11 • 
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5.2.17. Prove that the rank of the ~um of operator~ A and B 
from Wzy does not exceed the sum of the ranks of these operators. 

5.2.18. Let operators A and B from <ilz.x satisfy the equality 

X = T A + T B = N A + N B· 

Prove that the rank of the operator A + B equals the sum of the 
ranks of the operators A and B. 

5.2.19. Deduce the following inequality from Problem 5.2.17 

rA+s~lrA-rsl• 

5.2.20*. Prove that any operator A from Wzy with rank r can 
be represented as the sum of r operatol"5 of rank 1 but cannot be 
represented as the sum of less than r such operators. 

5.2.21 *. Find the necessary and sufficient condition for the sum 
of two operators of rank 1 to be of rank~ 1. 

5.2.22*. Given that a space X has the dimension n (n > 1), 
prove that in <il.x.r any subspace L of dimension n + 1 contains 
at least one operator > 1. 

5.2.23. Let operators A and B from Wzy be such that for any 
vector :r from X, vectors Ax and B:r are collinear. Does this imply 
that the operators A and B are themselves collinear? 

5.2.24*. The condition that n (n = dim X) must equal the rank 
of the operator B is added to the data in Problem 5.2.23. Are the 
operators A and B collinear in this case? 

5.2.25. Prove that operators A and B of rank 1, having the same 
image T and kernel N, are collinear. 

5.2.26. Prove that for any projection operator P, the operator 
E- P is also a projection operator. Find the relation between the 
kernel and image of the operator E - P and the kernel and image 
of P. 

5.2.27. Prove that for operators P and R carrying out the projec­
tion and reflection of a space X into L1 parallel to L2 , respectively, 
the following relation is valid: E + R = 2P. 

5.2.28. Show that when a real space R is transformed into a com-

plex one: (a) an operator A + B corresponds to the operator A + iJ 
(see 5.1.52); (b) an operator aA corresponds to the operator a.A, 
a being a real number. 

5.3. Multiplication of Operators 

In the present section the following topics related to the multiplication of 
operators are scrutinized: 

(i) The image and kernel of the product of operators. 

<m~ ~~~~tl~iti; ~re~~~:tors. 
(iv) Nondegenerate operators. 
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We assume in the following that the products of operators which may be oa 
different spaces make sePBe. 

5.3.1. Prove that the product BA of operators A and B satisfies 
the inequalities: 

(a) r 8 A:s;;;;min(rA, r 8); 

(b) ns.A ;> nA· 

If the operators A and B are defined on the same space, then 

(e) nsA > ns. 

5.3.2. Prove that the product BA of operators A and B satisfies 
the relations: (a) r BA = 1' A - dim (T A n N s)i (b) n BA = nA + 
+ dim (T A n N .). 

Note that from (b) an inequality follows: 

nsA:s;;;;nA+ns· 

5.3.3•. Prove the Frobenlus inequality: 

rsA +rAe :s;;;; l'A + l'sAc· 

5.3.4. Let A and B be Opel'&t.ol.'s from COzz whereas BA = 0. 
Does it follow from here that AB = 0? 

5.3.5. Give an example of two opel'ators A and B such that AB = 
=BA =0. 

5.3.6, Prove that the set of all linear operators B from mxz satisfy­
ing, for a fixed operator A, the condition AB = 0, is a subspace 
of the space fD.r.r· Find the dimension of this subspace if 
dim X = n and the rank of the operator A equals r. 

5.3. 7. The same question for the set of operators C from ro.r.r 
satisfying the condition CA = 0 for a fixed operator A of rank r. 

5.3.8. Let X be an n-dimensional space and A an operator of 
rank r from ro.r.r· Using the operator A, construct a transformation 
of the space roxx that matches any operator B with the operator AB. 
Prove that this transformation is linear. Find its rank and defect. 

5.3.9. Let A be an arbitrary operator from fD.r.r• and let N 1 and 
T 1 be the kernel and image of the operator A', respectively. Prove 
that 

(a) N1 cN1 cN8 c ... ; 

(b) T1 ::::::t T2 ::::::t T8 ::::::t •••• 

5.3.10•. Prove that if in the sequence ofsubspaces .V1, N 1 , N 8 , ••• 

(see Problem 5.3.9) for some q for the first time N 9 = N q+l• then 

N\.3.;';~+1n1':pe':i'ork ff~m rox.r is said to be nilpotent if there 
exists a natural number q such that A' = 0. The least such number q 
is called the nilpotence index of the operator A. Prove that the index 
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of any nilpotent operator on an n-d.imensional space does not exceed n. 
5.3.12. Show that the diflerential operator on polynomials of the 

space Mn is nilpotent. Find its index of nilpotence. 
5.3.13. Let A be a nilpotent operator of index q, and a vector x 

satisfy the inequality A'-1x '#= 0. Prove that the vector set x, Ax, 
A 1x, ... , A'-1x is linearly independent. 

5.3.14*. Prove that for any operator A from Wz.x and with rank 1, 
there is a number a such that A 8 = a.A. 

5.3.15. Show that any operator of reflection R satisfies the relation 
R8 =E. 

5.3.16. Show that any projection operator P satisfies the equality 
P'=P. 

5.3.17*. Conversely, prove that any operator P satisfying the 
condition P 1 = P is a projection operator. 

5.3.18. Show that it follows from the conditions P 1 + P 1 = E, 
P1P 1 = 0 that 

(a) P 1, P 1 are projection operators; 
(b) P,P, = 0. 
5.3.19. Prove that an operator A on the space M 11 which assigns 

the polynomialt (I) = f (I + 1) to any polynomial f (I) is a polyno­
mial in the differential operator. 

5.3.20. Given an operator A, a polynomial l(t) U (t)¢0) is called 
an A-annihilator if 1 (A) = 0. Prove that for any linear operator A 
on an n-dimensional space, there exists an A-annihilator of degree 
:s;;;; n•. 

5.3.21. Let m (t) he the polynomial of the least degree out of all 
the A-annihilators. Prove that m (t) is a divisor of all the other 
A-annihilators. 

5.3.22. Prove that the polynomial m(t) of Problem 5.3.21 is 
uniquely determined by the operator A depending only on a nonzero 
multiplier. Normalized so that the higher-order coefficient equals 
unity, the polynomial m(t) is called the minimal polynomial of the 
operator A. 

5.3.23•. Find the minimal polynomial (a) for a projection opera­
tor; (b) for a reflection operator; (c) for a nilpotent operator of in­
dex q. 

5.3.24. Show that for an operator of rank 1, the minimal polyno­
mial is of the second degree. 

5.3.25. Operators A and B from (l).tx are said to be commuting 
if AB = BA. Let A commute witll B, and B commute with C. 
Does it follow that A commutes with C? 

5.3.26. Show that any two polynomials in the same operator A 
are commuting. 

5.3.27. Show that if operators A and B are commuting then any 
polynomials I (A) and 1 (B) in these operators are also commuting. 
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5.3.28. Prove that for commuting operators A and B 

(A+B)"=A"+nA"-18+ n(n;-t) A"-2.82+ ... +B". 

Cb. 5 

5.3.29. Prove that operators of rank 1 having the same kernel 
and the same image are commuting. 

5.3.30. Given two commuting operators, prove that BN A c N A· 

5.3.31*. Prove that if the projection operators P 1 and P2 are 
commuting, then their product is also a projection operator. Moreover 

(n) TP,P, = Tp, n Tp,; 
(b) N,,,,~N,,+N,,. 

5.3.32*. Prove that the sum of the projection operators P1 and P2 
is a projection operator if and only if P1Ps = P 2P1 = 0. In addition, 

(a) Tp,+p,=Tp,-f-Tp,; 

(b) NP,+P.=Np, n Np •. 

5.3.33*, Prove that if an operator A commutes with each opera­
tor from W.z.z, then for any subspace L from X, AL c L. In parti­
cular, for any vector x from X, the vectors x and Ax are collinear. 

5.3.34. Using the result of Problem 5.3.33, prove the Schur 
lemma: if an operator A commutes with each operator from Wzz 
then it is scalar, i.e. A = a.E for a certain number Ct. 

5.3.35. Show that if A is a nondegenerate operator, then for any 
subspace L, the equality dim L = dim AL holds, 

5.3.36. Given that a space X is the direct sum of subspaces 
£ 1, ... , £ 1 , and A, is a nondegenerate operator defined on the 
subspace £ 1, i = 1, , .. , k, show that an operator A from Wzz 
coinciding, on each of the subspaces £ 1, with the corresponding 
operator A1 is nondegenerate. 

5.3.37. Verify that the differential operator (a) is degenerate 
on the space Mn of polynomials of degree ~n; (b) is nondegenerate 
on the two-dimensional linear space generated by the functions 
/ 1 = cost and / 2 = sin t (under the operations of function addition 
and multiplication of a function by a number, both defined in the 
usual way). 

5.3.38. Find the inverse operator of the differential operator 
defined in Problem 5.3.37(b). 

5.3.39. Find the inverse operator of a refiection operator R. 
5.3.40. Show that for a nondegenerate operator A and any non­

zero number et, 

(aAtt=fA-t. 

5.3.41*. Prove that if an operator A is of rank 1, then at least 
one of the operators E + A and E - A is nondegenerate. 
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5.3.42. Prove that if an operator A is nondegenerate, then for 
any operator B, 

5.3.43. Prove that the product of operators A and B is a non­
degenerate operator if and only if each of the operators A and B 
is nondegenerate. In this case: 

(AB)-' ~ B-'A -t. 

5.3.44. Prove that for a nondegenerate operator A and an arbi­
trary operator B, the identity is valid 

(A + B) A_, (A - B) ~ (A - B) A_, (A + B). 

5.3.45. Let A be a nilpotent operator of index q. Prove that the 
operator E - A is nondegenerate and that 

(E- A)-1 ~ E +A+ A'+ ... + A<-t. 

5.3.46. Given that operators A and B are connected by a rela­
tion AB + A + E = 0, prove that A is a nondegenerate operator 
while A -1 = -E- B. 

5.3.47. Prove that if an A-annihilator has a nonzero free term, 
then the operator A is nondegenerate. 

5.3.48. Prove that the absolute term of the minimal polynomial 
m (t) annihilating a nondegenerate operator is nonzero. 

5.3.49. Prove that for a non degenerate operator A on an n-dimen­
sional space, the inverse operator A -1 is represented as a polyno­
mial in A of a degree not greater than n" - 1. 

.5.3.50. Show that any two polynomials f (A) and g (A -1), where 
A is a nondegenerate operator, commute. 

5.3.51. Let A be an operator from Wzy and let there exists an 
operator B from Wyz such that BA = Ex (the identity operator of 
the space X). Does it follow from this that AB = E7 ? 

5.3.52. Let X be the span of polynomials t, t", , .. , tn; and 
let Y be the space of polynomials of degree ::::;;; n - 1. Consider 
the differentiation of polynomials as an operator A from X into Y 
and integration (i.e. the transformation matching each polynomial 
with its antiderivative) as an operator B from Y into X. Show 
that 

BA = Ez, AB = E7 • 

5.3.53. Let, in addition to the data of Problem 5.3.51, dim Y > 
>dim X. Prove that the operator AB is a projection operator 
on Y. 

5.3.54. Show that, when complexifying the real space R: (a) to 
operator AB there ~orresponds the operator Ail; (b) to a nondegene-
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rate operator A there corresponds the nondegenerate operator A.; 
(c) if A is nondegenerate then to the inverse operator A -l there 
corresponds the inverse operator A -1• 

5.4. Operations over Matrices 

and ~~~i!1Ie,r tt:r:P~~!ti~~ :roJ~~:~i~!ti::. 1:o~~~~9th~e~~;~s0~e~t!~:C:~; 
great{i)t rb~gr;r~afi~~~p~~it:Se !f'11;h~inferation of multiplication, viz. the 
dimensions of factors and the product; t~e number of fundamental arithmetic 
operations; etc. 

(ii) Matrices of elementary transformations (or elementary matrices). 
(iii) Commuting matrices. 
(iv) Classes of matrices, elosed under multiplication. 
(v) The rank of the product of matrices. 

(vi) Operations with matrices partitioned into blocks, i.e. partitioned 
matrices. 

(vii) The Kronecker product of matrices. 

Find the products AB and BA where 

5.4.1. A~(2 -3 O). s~11:11· 

5.4.2. A~~~-~ : ~ _;II· s~/1-r -;11· 
Find the product AB where 

5.4.3. A~ll-~ -J: -: -1~11· B~IU· 
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11 ,:: '::: ~ ~II II ~ ~ ~ ~11 A= 652 769 o o ' B= 476 372 t505 882 ' 

84t t34 0 0 549 795 999 400 I 

5.4.7. 
5.4.8*. Evaluate the product ABC of matrices 

A~11 ~~ :: ::11· B=ll:! :::: ::::11· c~11: ;II· 997 998 999 24 -t2 -4 3 0 
tooo toot t002 

5.4.9•. Evaluate the product ABCD of matrices 

A=lll 8=1121351012811. C~ll:::l D~lll-2111. 
5.4.10. Show that a system of linear equations 

auxl +a12Xz + ••• +a1nXn =b11 

llt1X1 +IJ:2zZa +·•·+tlznZn =ba, 

4mlxl+am2.:ta+ ••· +amn.:tn=brn 

125 

can be rewritten in the form of a matrix equation A.:r = b by intro­
ducing matrices 

II ............ II 11·· II llx, II A .... ~~~~.~~~.·~-.~~: 'b:r:a bt ' X= 7 • 
Om1 Gnu ··• Ornn b171 In 

5.4.11. Conversely, show that the solution of a matrix equation 
A X = B, where A and B are m X n and m X p matrices, respec­
tively, is reduced to the solution of p systems of linear equations 
with the same coefficient matrix A but different right-hand sides. 

Solve the following matrix equations: 

5.4.12.11! !llx=JI: :11· 
5.4.13. xll-! _:11=11:::: :11 
5.4.14.11: :11x-x11: -:/HI: _:II· 
5·"-~ 5· x11: !HI-: -:11=11-: -!II· 
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5.4.18. Show that if both the products AB and BA have sense 
and A is an m X n matrix, then 8 is an n X m matrix. 

5.4.19. Evaluate the number of multiplication and addition 
operations in multiplying an m X n matrix A and an n X p matrix 
B together. 

5.4.20. Let A, 8 and C be matrices of orders m X n, n X p, 
p X q, respectively. Evaluate the number of multiplications required 
to compute the product ABC. Note that this number of operations 
depends on the place of brackets in the product ABC. 

5.4.21. Verify that for square matrices A and B of order 2, the 
procedure for computing the matrix C = AB indicated below 
requires 7 multiplication operations whereas employing the usual 
algorithm to construct AB requires 8 multiplications: 

a 1 = (a11 + a111) (b11 + b22), 

a 2 = (au + a22) bw 
a 3 = a11 (bu - b22), 

a 4 = au (bu - b11), 

~ = (a11 + au) bu, 

Cte = (au - au) (bn + bu), 
a, = (au- an) (b 21 + b22), 

c11 = a 1 + at - a~ + a 7, 

C11 =aa+ah 
Cu =as+ IXto 

c22 = a1 + a 3 - a 2 + a 8 • 

This algorithm was suggested by Strassen. 
5.4.22. The sum of the elements on the principal dtagonal of 

a square matrix is called its trace. The trace of a matrix A is denoted 
by trA. 

Prove that the following properties are fulfilled 

(a) tr (A + B) ~ tr A + tr B; 
(b) tr(o:A) ~ o:trA; 

(c) tr (AB) ~ tr IBA). 
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The last equality is also valid for rectangular matrix A and B if 
both the products AB and BA are defined. 

5.4.23. Matrices A and B of orders m X n and n X p, respec­
tively, possess the property of having the same sums of the elements 
in any row, equal tor in the matrix A, and to sin the matrix B. 
Prove that the same property is possessed by the product AB, with 
the corresponding sums equal to rs. Enunciate and prove a similar 
statement for the columns. 

5.4.24. Show that the elementary row transformations of a matrix 
A (see Problem 4.1.26) are equivalent to a premultiplication of 
this matrix by special matrices, called the matrices of elementary, 
transformations, that is (a) interchanging the i-th and j-th rows 
corresponds to a multiplication by a matrix P 11 

t 

0 ... t 

1. ••• 0 

"t 

(the elements of the principal diagonal that are not indicated are 
equal to unity; all the other elements, except elements (i, j) and 
(j, i), are equal to zero); (b) multiplication of the i-th row by anum­
ber a corresponds to a multiplication by a diagonal matrix D 1 

·{\ 
(c) addition of the j-th row multiplied by a number a to the 

1-th row is equivalent to a multiplication by a matrix L!J: 

t 

t ••• Ct 

(all off-diagonal elements of this matrix, except the element (i, !), 
are equal to zero). 
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Formulate and prove similar statements for the elementary trans­
formations of the columns of the matrix A. 

5.4.25. Determine how a matrix A is altered by post-multiplica· 
tion by (a) the matrix N 1 

N,= 
.1 

(b) the matrix S 1 ""' 
"" 

t a,.t, 1 

81= t 
O:f+t.l 

""' The off-diagonal elements of both matrices that are not indicated 
are equal to zero. 

A similar problem for premultiplying the matrix A by the ma­
trices 8 1 and N 1• 

5.4.26. Prove that (a) the matrix N 1 (see the previous problem) 
is the product of matrices L~~, 1 , k = i + 1, ... , n (see Prob­
lem 5.4.24 (c)); (b) the matrix 8 1 is the product of matrices L~th 
k = 1, ... , i - 1, i + 1, ... , n; (c) the nontrivial elements of 
the factors L 111 coincide with the corresponding nontrivial elements 
of the matrix N 1 (St); (d) the order of the factors in the product 
in both cases is arbitrary. 

:>.4.27. Prove that the product N 1N 1 of the matrices N 1 and N 1 
i!" (when t < j) of the following form: 

1 

.1 

O:f+J,f 

N 1N1= 
r:l.j.l 

O:J+I, I ctJ+J,J 
1 

O:nf O:nJ 

(the off-diagonal elements which are not indicated are equal to 
zero). 
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5.4.28*. A square matrix P in which each row and each column 
have only one nonzero element equal to unity, is called a permuta­
tton matrix. Prove that any permutation matrix is the product of 
the matrices Pll (see Problem 5.4.24 (a)). 

Evaluate the following expressions (if the order of a matrix is 
not explicit, it is equal to n): 

5.4.29. 5.4.30. 

5.4.31. 11 0 " 
1., 

(all the offoodiagonal elements are zero). 

0 '· 
5.4.32. 0 1., • 5.4.33. 0 

'· 
.. 0 

I 
0· 

I 
. 0 

(all the elements, except the elements positioned at (t, l + 1), 
i = 1, ••• , n- 1, are zero). 

5.4.34, 0 I 
0 I 

0 • 

. I 
.0 

(all the elements, except the elements positioned at (1, 2), (2, 3), 
(3, 4), ... , (n- I, n), (n, 1), are zero). 

5.4.35*. Prove that for an n X n matrix 

J,= 

11-0619 

A I 

' 
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the matrix J~ is of the form (k ~ n): 

II ;,}l k'}.ll.-1 k(k;-t) M-~ ... fi-IC .. )..Io-'n+l 

k'}./t-1 ,,, ft--2Ck).k-nu 

J..ll •• n-3C,.)..k-n+a 

0 
,.. 

The matrix J ._ is called a Jordan block corresponding to the num­
ber A. 

5.4.36. Let D be a diagonal matrix of order n with all the diagonal 
elements different. Prove that (a) any polynomial in the matrix D 
will be diagonal matrix; (b) any diagonal matrix can he represented 
as a polynomial f (D) in the matrix D; (c) f (t) can be chosen so that 
its degree does not exceed n- 1. 

5.4.37. Prove that for any diagonal matrix of order n, the mini­
mal polynomial has a degree not exceeding n. The definition of 
the minimal polynomial of a matrix is similar to the definition 
of the minimal polynomial of an operator. The latter is given in 
Problem 5.3.20. 

5.4.38. Show that the minimal polynomial of a diagonal matrix 
of order n with all its diagonal elements different is of degree n. 

5.4.39. Prove that a matrix, commuting with a diagonal matrix 
which has all its diagonal elements different, is also diagonal. 

5.4.40*. A square matrix A is called scalar if it is diagonal and 
all its diagonal elements are equal. Using the result of Problem 5.4.39 
prove the Schur lemma: if a square matrix A commutes with all 
square matrices of the same order, then it is scalar (cf. Prob­
lem 5.3.34). 

5.4.41. Show that for any matrix A, the set of matrices that 
commute with A is (a) a subspace; (b) a ring. 

Find the general form of matrices that commute with the following 
matrix: 

5.4.42. 

II~ , :11-
0 f 

0 f 

0 f 

5.4.43*. 

(the matrix is of order n). 
5.4.44. Prove that any matrix, that commutes with a matrix A, 

will also commute with the matrix A - 'J..E for any number A.. 
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Hence deduce that the set of matrices, symmetric to a Jordan block 
J A• is the same for all A and therefore coincides with the set obtained 
in Problem 5.4..43. According to Problem 5.4.41, this set is a sub­
space, determine its dimension. 

5.4.45. A square matrix A is called upper (or right-hand) triangular 
if aiJ = 0 fort> j. Similarly, a square matrix A in which aiJ = 0 
for i < j, is called lower (or left-hand) triangular. Prove that the 
product of upper (lower) triangular matrices of the same order is an 
upper (lower) triangular matrix. 

5.4.46. Find the number of multiplications necessary for the 
evaluation of the product of two triangular n-order matrices of 
the same form (i.e. both the matrices are either upper triangular 
or lower triangular). 

5.4.47. A square matrix A is called strictly upper (lower) triangular 
if a11 = 0 for i > j (i ~ j). Prove that for the product B of two 
strictly triangular matrices A1 and A 2 of the same form, biJ = 0 
when i > j- 1 (i ~ j + 1). 

5.4.48. Prove that for a strictly triangular n-order matrix A 
the power with index n is equal to the zero matrix. 

5.4.49. A square matrix A of order n + 1 is called a greenhouse 
matrix if it has the following structure .. .. . , . .. a,_, .. 

·-· .. .. ... an-2 a,_, 

A~ 
.._, ·-· .. ... an-3 an-1 

t1-n+J t1-n+2 a-nn ·•• a0 a, 

a_, tl-n+l t1-nu ••• a_, ao 

Such a matrix is fully determined, therefore, by 2n + 1 numbers. 
Prove that an upper triangular matrix A is a greenhouse matrix 

if and only if it is a polynomial in the Jordan block ] 0 • 

5.4.50. Deduce from the result of Problem 5.4.49 that (a) the 
product of upper triangular greenhouse matrices is also a matrix 
of the same form; (b) any two matrices of this class commute. 

5.4.51. Prove that the product of two permutation matrices is 
also a permutation matrix. 

5.4.52. A square matrix A of order n + 1 is called a circulant 
if it has the following structure 

a0 a1 a, ... a"-l a, 
a, ao 4t ••• tln-2 a,_, 

a,_, tln-2 

a 2 a3 4 4 ••• a0 a1 

a, 42 4a •.• a, ao 

Thus, a matrix of this class is fully determined by n + 1 nnmbers. 
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Prove that a matrix Cis a circulant if and only if it is a polynomial 
in the permutation matrix P of Problem 5.4.34. 

5.4.53. Deduce from the result of Problem 5.4.32 that (a) the 
product of circulants is also a circulant; (b) any two circulants 
commute. 

5.4.54. How many multiplication operations are sufficient to 
evaluate the product of two circulants of order n? 

5.4.55. An n·order square matrix A is called a band matrix if for 
a certain number m (< n), all its elements a0 , such that I i - j I> 
> m, equal zero. The number 2m + 1~ is called the band­
width. 

Prove that the product of strip matrices is also a strip matrix. 
Determine the minimum strip width of the product if the width 
of the factors equals 2m1 + 1 and 2m2 + 1, respectively. 

5.4.56. A square product A with nonnegative clements is said 
to be stoclw.stic if the sum of the elements in each row of this matrix 
equals 1. Moreover, if the sum of the elements in each column equals 
unity, then the matrix is said to be doubly stochastic. Prove that (a) 
the product of stochastic matrices is a stochastic matrix; (b) the 
product of doubly stochastic matrices is a doubly stochastic matrix. 

5.4.57. Using the matrix multiplication rule prove that the rank 
of the product AB does not exceed the rank of each of the factors A 
and B. 

5.4.58. Given that ann X n matrix Cis the product of two rectan­
gular matrices A and B of orders n X m and m X n, respectively, 
m < n, prove that the determinant of the matrix C equals zero. 

5.4.59. Prove that an m X n matrix A with rank 1 can be repre­
sented as the product A = xy where x is an m X 1 matrix and y 
is a 1 X n matrix. Is such a representation unique? 

5.4.60. Let A = xy be an n X n matrix of rank 1. Prove that 
there is a number ct such that A 1 = etA. Find an expression of this 
number in terms of the elements of the matrices x and y. 

5.4.61. Given the representations A = xy and B = uv of two 
matrices with rank 1, find the number of multiplications necessary 
to evaluate their product. 

5.4.62*. Prove that an m X n matrix A with rank r can be repre­
sented as the product A = BC where B and C are m X r and r X n 
matrices, respectively. Is such a representation unique? 

The representation of a matrix A derived in Problem 5.4.62 is 
called the skektal decomposition of this matrix. Find the skeletal 
decomposition of the following matrices: 

5.4.63. 5.4.64. 
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5.~.65. A rectangular matrix A divided by horisontal and verti­
cal lines into submatrices is called a partitioned matrix. These sub­
matrices are called blocks and denoted by A 11• For example, if the 
matrix A is partitioned into three "block rows" and two "block 
columns", then it is written in the form 

A~~~~:: ~::11· 
.t11 A11 

Show that (a) the multiplication of a partitioned matrix by a num­
ber is equivnl('nt to the multiplication of each of its blocks by this 
number; (b) the addition of two rectangular matrices of the same 
order and partitioned in the same way is reduced to the addition of 
the corresponding blocks; (c) if A and B are two rectangular parti­
tioned matrices of orders m X n and n X p, respectively, whereas 

A~ll~:: ~::::·~::II· B~ll ~:: ::: :::II 
~r; ·A:2· .:.-A·r• I ~n Bu .. ~8! 

and the number of columns in each block A IJ is equal to the number 
of rows in the block BJA• then the matrix C = AB can also be repre­
sented in a partitioned form 

where 

II c,. c., ... c,,ll 
C = C21 Cu .•• C~t • ........ 

Cn Cr2 ••· Crt 

C1A= f. AIJB1,., l=i, ... , r; k=i, . ..• t. 
!=I 

This condition can be reformulated thus: the number of the columns 
of A included in each of its block columns equals the number of 
the rows of B included in the corresponding block row; (d) if A 
and B are square matrices of the same order and are similarly parti­
tioned into blocks, with the diagonal blocks A 11 and B tl• i = 
= 1, ... , r, being square, then the matrix C = AB can be repre­
sen1ed in the same partitioned form, and 

CtA='(;
1

AIJBJiu i, k=i, ... , r. 

5.4.66. A square matrix D partitioned into blocks is said to be 
quasi-diagonal if its diagonal blocks are square, and its off-diagonal 
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blocks are zero submatrices. Show that operations over quasi-diag­
onal matrices of the same block structure result in quasi-diagonal 
matrices of the same structure. Note that when quasi-diagonal 
matrices A and B are multiplied together, the diagonal blocks of 
the matrix C = AB equal the products A11B11 of the corresponding 
diagonal blocks of the factors. Hence deduce that quasi-diagonal 
matrices A and B of the same structure commute if and only if the 
corresponding diagonal blocks are symmetric. 

5.4.67•. Find the general form of matrices that commute with 
this quasi-diagonal matrix 

A•Ekl Q 
'},2E1, 2 

0 A,Ek, 

(AS~.~- "1.1:;u!r=: /2;titioned matrix A is said to be quasi-triangular 
if its diagonal blocks are square, and off-diagonal blocks A llt i > j 
(i < j) are zero submatrices. Show that operations over quasi­
triangular matrices of the same block structure, either upper or 
lower, result in quasi-triangular matrices of the same structure. 
Note that when upper (lower) quasi-triangular matrices A and B 
are multiplied together, di&gonal blocks of the matrix C = AB 
equal the products A 11B11 of the corresponding diagonal blocks of 
the factors. 

5.4.69•. Using the Strassen algorithm (see Problem 5.4.21), 
indicate a method of evaluating the product C = AB of square 
matrices A and B of order 4 requiring only 49 multiplication opera­
tions (compared with 64 operations in the customary method). 

5.4.70. Let A be a complex n-order matrix. Represent A as A = 
= B + iC where B and C are real matrices, and assign to it a real 
matrix D of order 2n, · 

D~(~ -~). 
Show that if A 1 and A 2 are complex n X n matrices, and D 1 and D 2 

are real double-order matrices made up in the indicated way, then 
the product A 1A 2 corresponds to the product D 1D 2• :-.Jote that in 
the particular case where n = 1 the correspondence between the 
complex numbers z -= x + iy and the real matrices of order 2 of 
the form 

is obtained. 
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5.4. 71. Let a complex column vector z0 of order n. be a solution 

to a system of linear equations Az = b where A is a complex m X tt 
matrix and b is a complex column vector of order m. Represent 
A, band Z0 as A =B + iC, b=f+ ig, Z 0 =x0 + iy0 , where B 
and C are real matrices; f, g, x0 , Yo are real column vectors. Show 
that the real column vector 

"· -11:: II 
of order 2n is a solution to the system of 2m equations with real 
coefficients Du = d, where 

5.4.72. Show that the transposition operation is related to the 
other operations on matrices by the following properties: 

(a) (aA)T ~ aAT; 

(b) (A + B)T ~ AT + BT; 

(c) (AB)T ~ BTAT. 

5.4. 73*. Let A and B be rectangular matrices of orders m X n 
and p X q, respectively. A matrix C of order mp X nq that can 
be represented in a block form as 

ll
a,.B a.,B . . . a,.B II 

C = auB a22B • •• o2nB 
........... 
4mtB Om2B • ·• amnB 

ia called the Kronecker product A X B of the matrices A and B. 
Prove that for the Kronecker product of matrices the following 

is valid: 

(a) (aA) X B ~A X (aB) ~ a (A X B); 

(b) (A +B) X C ~ A X C + B X C; 

(c) A X (B + C) ~A X B +A X C; 
(d) if the products AB and CD are defined, then 

(AB) X (CD) ~ (A X C) (B X D); 

(e) the matrix A X B can be reduced to the matrix B X A by 
interchanging its rows and columns; moreover, if A and Bare square, 
then the rows and columns undergo a similar interchange. 

5.4. 74. Show that the representation of a matrix A of rank 1 as 
the product A = xy (see Problem 5.4.59) can be interpreted as 
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a representation of A as the Kronecker product 

A= y X x. 

Ch. 5 

5.4. 75•. Let e1, ••. , em be a basis for the space of column vectors 
of order m (i.e. m X 1 matrices), and fi, ... , In a basis for the 
space of row vectors of order n (i.e. 1 X n matrices). Prove that the 
Kronecker products !1 X e1 produce a basis for the space of m X n 
matrices. 

5.4.76. Prove that the Kronecker product of square matrices A 
and B, perhaps, of different orders, is (a) a diagonal matrix if A 
and B are diagonal; (b) an upper (lower) triangular matrix if A 
and B are upper (lower) triangular; (c) a stochastic (doubly sto­
chastic) matrix if A and B are stochastic (doubly stochastic). 

5.4. 77•. Let A and B be square matrices of orders m and n, respec-
tively. Prove that 

(a) tr (A X B) = (lr A)(lr B); 

(b) del (A X B) = (det A)' (del Br 
5.4.78. Let A, B, and C be rectangular matrices of orders m X n, 

p X q and m X q, respectively. Consider the matrix equation 
A X B = C, where X is an n x p matrix, as a system of mq linear 
equations in the np unknown coefficients of this matrix, numbered 
as follows: 

The equations of the system are numbered in accordance with the 
familiar "by row" numeration of the coefficients in the matrix C: 

Cu, Cu, • • •• Ctq• Cu, Cno • • ·., C2q> • • •t Cmto Cm2o • • •t Cmq• 

Prove that this system of linear equations has A X BT as its matrix. 
If, however, the coefficients of the matrices X and C are numbered 
by column, i.e. 

Xu, Xn, · • ., Znl• Zno Zu, • • •o Zn2t • • •o Ztpt Zlpt • • •• Znpi 

Cu, Cn, • • •• Cmt• Cuo Cu, • • •• Cml• • • •• Clqt Csqo • • •• Cmq• 

then the system bas BT X A as its matrix. 
5.4. 79. Show that if a matrix equation 

AX+ XB = C, 

where A, B and C are m X m, n X n and m X n matrices, respective­
ly, is considered as a system of linear equations in the coefficients 
of them x n matrix X, then the matrix of this system is given by 
the following: (a) A X En + Em X BT if the coefficients of the 
matrices X and C are numbered by row; (b) En X A + BT X Em 
if the coefficients of the matrices X and C are numbered by columns. 
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5.4.80. Given that the elements of an m X n matrix A are real 
differentiable functions of a real variable t, an m x n matrix dA/dT 

da11 1 dau dau1 
~~ ~ 

dA 
Tt= 

daml damz damn 
----;jt----;jt···~ 

is called the derivative of the matrix~ A. 
Prove that for the differentiation of matrices so defined the fol-

lowing relations are valid: 

(a) f<o:A)=o: ~ ; 

(b) -:.-(A+B)~ ":, + "/:; 

(c) {<AB) = ~~ B+A ~~; 

(d) i-(A•H ":, )". 
5.5. The Inverse of a Matrix 

In this section various techniques to evaluate the inverse matrix and the 
forms of the inverse matrices in the cases of some frequent el1.88es of 
matrices are indicated. Jut like In Sec. 5.4, great attention is paid to the 
matrices of the elementary transformations and to partitioned mabices. At 
the, end of the section we provide problems on the uae of the BiDet-Cauchy 
formula. 

Using explicit expressions of the elements of A-t in terms of 
elements of A, evaluate the inverse matrices of the following: 

5.5.1.11--! ---:II· 
5.5.3.11: -:II· •'+b'+O. 

5.5.5 n 3 ~II· 

5.5.7.1H -3 J II· 

5·5·2·11 ·~·. _,,."II 
SIDQ: COSet: ' 

5.5.4.11: ! II• ad-bc+O. 

5.5.6.1U _: -~ II· 
5

•
5

·
8

· II : =: II· 
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5.5.9. 

II =1 j -~ J 5

.

5

.

10

.1h ~ i ~II· 
II ~ : : : II 

5
•
5

•
12··11-: : _: : II , · 0 0 9 4 ' -c d a -IJ ' a +b + 

0 0 tt 5 -d -c /1 a c 2+£f2=#=0. 

5.5.11. 

5.5.13. Prove that the set of matrices of the form 

II '~'" -•inn II' 
swa co!:'a 

where a is any real number, forms a commuting group under multi­
plication. 

5.5.14. Prove that the set of real matrices of the form 

has the structure of a field with respect to the usual operations of 
.addition and multiplication of matrices. Show that the correspon­
-dence between such matrices and the complex numbers 

is one-to-one and preserves the operations. 
5.5.15•. Prove that the set of real matrices of the form 

II =: = _: -:11 
-d -c a 

has the structure of a ring with respect to the usual operations of 
addition and multiplication of matrices. 

Prove that nonzero matrices of the indicated form is a group 
(noncommuting) under multiplication. 

5.5.t6•. Can a set of matrices in which (a) all matrices are dege­
nerate; (b) there are both degenerate and nondegenerate matrices, 
'be a group under multiplication? 

5.5.17•. Prove that the matrix, inverse to an upper (lower) trian­
gular matrix, is also upper (lower) triangular. Hence, using the 
result of Problem 5.4.45, deduce a corollary: the set of nondegenerate 
triangular matrices of the same form is a group under multiplication. 

5.5.t8•. Prove that the matrix, inverse to a greenhouse triangular 
matrix, is also a greenhouse triangular matrix of the same form. 
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Hence, with the aid of the result of Problem 5.4.50, deduce a corol­
lary: the set of nondegenerate greenhouse triangular matrices of the 
same form is a group under multiplication. 

5.5.19*. Prove that the matrix, inverse to a circulant, is also 
a circulant. Bearing in mind the result of Problem 5.4.53, deduce 
the following corollary: the set of nondegenerate circulants is a group 
under multiplication. 

5.5.20*. In a nondegenerate matrix A the sum of all row elements 
is the same for all the rows. Prove that the inverse matrix A - 1 

possesses the same property. Moreover, if the row sum equals r =fo 0 
for the matrix A, then they are equal to 1/r for A -1 • 

Enunciate and prove a similar statement for the columns. 
5.5.21. Prove that (a) the set of nondegenerate stochastic matri­

ces, (b) the set of nondegenerate doubly stochastic matrices, are 
groups under multiplication. 

Find the inverse matrices of the following matrices of order n: 
5.5.22. ~. 0 5.5.23. 0 ~. 

)..2 ).2 

0 0 
(all "-1 are different from zero). 

5.5.24.ll: ~~-~~--::.n 5.5.25.\I:-~:-~F:.:II· 
5.5.26.11i!: :::.:. !II· 5.5.27*.11:. i _!_:::.:II· 

ooo .. at ooo ... a 

5.5.28. E: : ... :HI· 
5.5.29. Find the inverse matrices to the matrices of elementary 

transformations P11, D 1 and L 0 (see Problem 5.4.24). 
5.5.30. How is the inverse matrix A -1 altered if in the matrix A 

(a) lhe Hh and j-th rows are interchanged; (b) the i-th row is multi­
plied by a nonzero number a; (c) the j-th row premultiplied by 
a number a is added to the i-th row? 
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Answer the similar questions for the columns of A. 
5.5.31. Find the inverse matrices of the matrices N 1 and 8 1 (see 

Problem 5.4.25). 
5.5.32. Prove that for a nondegenerate matrix A of the form 

the inverse matrix B = A -• is of the form 

II 
::: t;: ... :::::: 'r II 

B= bR-IO~ ·b~~-~.: :.:. 0 0 ° 
bnt 0 ,,, 0 0 

5.5.33. Prove that the matrix, inverse to a permutation matrix, 
is also a permutation matrix. Show that the set of permutation 
matrices of a given order n is a group under multiplication. Find 
the number of elements in this group. 

5.5.34. Show that the evaluation of the matrix, inverse to an 
n X n matrix A, can be reduced to the solution of n systems of 
linear equations, each of which consists of n equations inn unknowns 
and bas the matrix A as its coefficient matrix for the unknowns. 
Compare the number of arithmetic operations needed in solving 
such systems by the Gauss method with that in finding the inverse 
matrix using the explicit expressions for its elements in terms of 
the elements of A. 

Find the inverse matrices of the following by the method indicated 
in Problem 5.5.34: 

5.5.36.11 ~ -~ ~ --: II 
3 -6 5-10 . 

-6 9 -tO 15 

5.5.37•. All the leading principal minors of an n X n matrix A 
are nonzero. Prove that using the Gauss method the matrix A can 
be represented as the product of a lower triangular matrix L by 
an upper triangular matrix R, i.e. A = LR. The diagonal elements 
of one of these matrices can he set equal to unity. 

5.5.38. Prove that the representation of a matrix A as the product 
A = LR, obtained in Problem 5.5.37, is unique if the diagonal 
elements of the matrix L are chosen to be equal to unity. 
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5.5.39. Prove that any nondegenerate matrix A can be represented 
as the product A = PLR, where P is a permutation matrix, L is 
a lower triangular, and R is an upper triangular matrix. 

5.5.40*. Prove that any non degenerate matrix A can be reduced 
to the unit matrix by elementary transformations of its rows and 
columns. 

5.5.41. Show that the statement of Problem 5.5.40 is valid even 
if only elementary transformations of the rows (columns) are permit­
ted. 

5.5.42. Using the result of Problem 5.5.40, prove that any non­
degenerate matrix can be represented as the product of matrices 
of elementary transformations. 

5.5.43. Show that if elementary row transformations by which 
a given matrix A is reduced to the unit matrix are applied in the 
same sequence to the rows of the unit matrix, then the resulting 
matrix is the inverse A - 1 • 

Find the inverse matrices of the following by the method indicated 
in Problem 5.5.43: 

5.5.44.11 =; =~ _: =l 5.5.45.11 ~ ~ ~ lll· 
5.5.46. Let Jn be a matrix of order n all of whose elements are 

equal to unity. Prove that 

(E-Jn)-l=E- n~1 Jn• 

5.5.47. Let B be a matrix of rank 1. According to Problem 5.4.60, 
B1 = aB for some number a. Assuming that a ¥= -1, prove that 

(E +B)-' ~ E- ~B, 

where ~ = 1 ~ ct' Show that Problem 5.5.46 is a particular case 
of this statement. 

5.5.48. Show that if a matrix A is nondegenerate, then the matri· 
ces A + B and E + A -IB are either both degenerate or both non­
degenerate. 

5.5.49*. Let A be a nondegenerate matrix whose inverse A -1 

is known; further, let B = xy be a matrix of rank 1. Prove that 
if the matrix A + B is nondegenerate, then its inverse can be found 
by the formula 

(A+ B)-1 ~ A-1 - ~A-1BA-1 

where ~ = 1 ! ct' a = yA -1z. Thus, if a matrix of rank 1 is added 
to the matrix A, then a matl'ix of rank 1 is also added to the inverse 
matrix. 
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5.5.50. Calculate the number of multiplications and divisions 
necessary to transform A -l to (A + B)-1 in Problem 5.5.4.9, as­
suming that the matrices x and y that make up the matrix B ar~ 
known. 

5,5,51. A number y is added to an element a 11 of a nondegenerate 
matrix A yielding a matrix A which is also nondegenerate. Find an 

expression for A -I in terms of y and the elements of the matrix A -I. 

5.5.52. In a nondegenerate matrix A of order n, the elements 
y1, ••• , '\'n are added to the last row in such a way that the non­
degeneracy of the matrix is preserved. Find an expression for the 
inverse of the new matrix .4, in terms of the elements of A -I and 
the numbers y1 , y2 , • • ., '\'n· 

5.5.53. A number a is added to each of the elements of a non-

degenerate matrix A. The obtained matrix A will still be non­
degenerate. Find an expression for .4-1 in terms of the elements of 
A -1 and the number a. 

Find the inverse matrices to the following matrices of order n: 

5.5.54.11: : : .:: :II .. , b. 

. . • . . . . a,Cb(l-n). 
b b b • a 

5.5.55.11: ~ ~ ::: :II· 
t t t '" 0 

5
.
5

.

56
·11: ~ ~ .:: :11· 

5
.
5
.
57

·11 r ~~ ... ~~· .. :::.: II 
t t 1 0 t t t .. i+an 

(all a 1 are nonzero). 
5.5.58. Prove that the inverse of a nondegenerate quasi-diagonal 

matrix D is also quasi-diagonal and has the same block structure 
as D. Note that the diagonal blocks of D-1 are the inverse matrices 
of the corresponding diagonal blocks of D. 

5.5.59. Prove that the inverse matrix of a nondegenerate upper 
(lower) quasi-triangular matrix A is also upper (lower) quasi-triangu­
lar and has the same block structure as A. Note that the diagonal 
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blocks of A - 1 are the inverse matrices of the corresponding diagonal 
blocks of A. 

5.5.60. Find the inverse to the matrix A of order k + l 

5.5.6t•. Let the submatrix A of the following square parlitioned 
matrix 

be square and nondegenerate. Prove that the determinant of th& 
matrix M satisfies the relation 

I M I ~ I A I I D - CA -•n 1-
5.5.62•. The inverse matrix A;.~ 1 of a matrix An-l of order n -1 

is known. Find the inverse to the enclosing matrix An of order n 

A. ~II··-· "•-• II' 
Vn-1 a 

assuming it to be nondegenerate. 
5.5.63. Calculate the number of multiplications and divisions 

necessary to employ the formulae for A;.' derived in Problem 5.5.62. 
5.5.64. Verify that the inverse matrix M-1 of the square parti­

tioned matrix M of order k + l 

where A and D are square blocks of orders k and l, respectively, is 
also partitioned, viz., 

M-·~11~ a 
where P =(A - BD-1C)-1, Q = -PBD-1, R = -D-1CP, S = 
= D-1 - D-1CQ or 

S ~ (D- CA-'B)-', R ~ -SCA-', 
P ~ A-1- A -1BR, Q ~-A -•ns. 

The inverse matrices indicated here are assumed to be defined. 
These so-called Frobenius formulae make it possible to reduce the 
evaluation of the inverse to a matrix of order k + I to the computa­
tion of one matrix of order k and one matrix of order l. 

5.5.65. Let A and B be square nondegenerate matrices of orders 
m and n, respectively. Prove that the Kronecker product of these 
matrices is also nondegenerate and that 

(A X B)-1 = A-1 X B-1. 
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Find the inverse matrices to the following 

5.5.66.11' o o o oil 0 i 0 0 0 
83 -47 1 0 0 . 

-55 94 0 1 0 
62 -71 0 0 1 

5.5.67. 
11

0 0 0 1 -111 0 0 1 0 2 
0 1 0 0 2 • 
t 0 0 () t 
1 -2 4 1 5 

5.5.6K. II' 0 3 'II (0 t 7 21 
-3 -12 ( 0 • 

t 4 {J 1 

5.5.69. . 11 .. , , "II 40 56 15 21 
15 20 6 8 • 
2s as to H 

Ch.5 

5.5. 70. Let A = B + iC be a complex matrix of order n, and 
A -l = F + iG be the inverse of A. Prove that the real matrices of 
order 2n, i.e. 

and 

are inverse to one another. 
5.5.71. Prove that the operations of transposing and fi.nding 

the inverse are commuting, i.e. (AT)-1 = (A -l)T. 
5.5. 72. The elements of a square matrix A are differentiable 

functions of a real variable t. Assuming that the matrix A is nonde­
generate for a given value of t, prove the formula: 

1r (A-t)= -A-t~ A-•. 
5.5.73. Show that the solution of a system of linear equations 

Ax = b with a nondegenerate square coefficient matrix A is z = 
= A - 1b. Hence deduce Cramer's formulae. 

5.5.74. Let the coefficients of the matrix A and column vector b 
~;~!~r~~~e~or~~{;) be differentiable functions of a real variable t. 

1f= -A-•4tx+A-t *· 
5.5. 75. Let A and B be rectangular matrices of orders m X n 

and n X p, respectively. Prove that the minors of the matrix C = AB 
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satisfy the relations: 

c e: ;: ~:: ::) = ~ A(!~ i, ::: ~) B c~,' ~: ::: ~:) 
IIIO;Iill<llt..-•·· 

••• -":llq""n 

(1~i 1<i21 < ... <i,=s;;;m; 1<:/1 </1 < ···<i,~p). 
5.5. 76. Using the Binet-Cauchy formula, prove that the rank of 

each of the matrices AAT and ATA equals the rank of the matrix A. 
A is assumed to be a real matrix. 

5.5. 77. Prove that the sum of all the principal minors of a given 
order k (1 ~ k ~ min (n, m)) of tbe matrices AB and BA, where A 
and B are rectangular matrices of orders m X n and n X m, respec­
tively, is the same. 

5.5. 78. A square matrix A is said to be totally nonmgative (totally 
positive) if all minors of each order are nonnegative (positive). 
Pro,·e that the product of totally nonnegative (totally positive) 
matrices is also a totally nonnegative (totally positive) matrix. 

5.5.79*. Let A be a square matrix of order n. Given a natural 
number p, 1 =s;;; p ~ n, list in lexicographic order all the N = nc P 
combinations of n numbers 1, 2, ... , n taken p numbers k,. < 
< k1 < ... < kp at a time. Lexicographic order means that the 

~k~~t.i~n. ~ 1;kif k;::; k;~ ~p.,Pk,~C:s kf~:. ~::!bk~~ok;, ki ~ 
E; l ~ p. Construct the square matrix Ap = (a,1,p) of order N as 
follows: 

a,J,p"""Ae: ~~ ::: ;:)• 
if the number of the combination i 1 < i 1 < ... < ip equals i, 
and the number of the combination / 1 < j 1 < .. , < /p equals j. 
The obtained matrix Ap is termed the p-t.k associated with A. In 
particular A1 =A, An = I A I· 

Prove that 
(a) (E.), ~ E No 

(b) an associated matrix with a diagonal matrix D is also diago­
nal; (c) an associated matrix with an upper (lower) triangular matrix 
A is also upper (lower) triangular; 

(d) (AB), ~ A,B,, 
(e) if A is a nondegenerate matrix then (A - 1)p = (Ap)-1, 
5.5.80*. Let A be a nondegenerate matrix of order n. Prove that 

the minors of any order of the inverse matrix B = A • 1 are related 
to the minors of the matrix A by the relations . 

~ u.+•.J , • • 
(-t)'""t A(k,l ~ ... k~-P) 

8 (~1 ~: i:) =-.:: I t' '' "· 'n-P t 

t0-0619 
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whC're 11 < 1l < ... < ip al~ng ";'ith ij < i; < ... , < i:•-P· and 
k 1 < k 2 < ... < kp along w1th k, < k: < ... < k,_P make the 
('omplete system of indices 1, 2, 

5.6. The Matrix of a Linear Operator, 
Transfer to Another Basis, 
Equivalent and Similar Matrices 

These problems are in three groups corresponding to the topics in the section 
beading. 

5.6.L The Euclidean plane £ 2 is a~sumed to have a rigilt-hand 
orientation (i.e. positive angles are those measured counterclock­
wise). Let Oe1e2 be a dextral Cartesian system of coordinates on the 
plane E,. Construct the matrix of a linear transformation cont:isting 
in the rotation of E 2 through an angle ct about the origin for the 
basis e1 , e2• 

5.6.2. Let el' e2, e3 be a dextral orthonormal ba.sis for the three­
dimensional Euclidean space £ 3 of geometric vectors. Consider the 
following linear operator A of the space £ 3 

Ax= (x, al. 

Here a is a fixed vector whose coordinates with respect to the basis 
e1, e2, e3 ore equal to ct, ~. y. Find the matrix of the operator A 
in this basis. 

5,6.3. Write the matrice!> of: (a) the differential operator; (b) the 
difference operator A 1 ; in the space M 71 of polynomials of degree 
<n with respect to the basis 1, t, t2, ••• , [ 71 • 

5.6.4. If the differential operator is an operator from M ro to M ro _1 , 

write its matrix with respect to the two bases 1, t, t', ... , t" 
and 1, t, t2 , ••. , en-l. Find the matrix of the integration operator 
with respect to the two bases as if it were an operator from Mro-l 
toM,. 

5.6.5. Find the matrix of the differential operator on the two-
dimensional linear space drawn on the basis function!> 

(a) / 1 (t) = cost, / 2 (t) = sin t; 

(b) g1 (t) = eat cos bt, g 2 (t) = eat sin bt. 

5.6.6. A space X is the direct sum of subspaces L 1 ond L 2• A ba­
sis e1, ••• , e71 is selected so that the wctors e1 , •••• e,. form a basis 
for the subspace L 1 and e,+1 , ••• , e71 form a basis for £ 2• l;sing 
the basis e1 , ••• , e71 , construct (a) the matrix of the operator that 
projects onto L1 , parallel to L 2 ; (b) the matrix of the operator that 
projects onto L 2, parallel to L 1; (c) the matrix of the operator that 
reflects in L 1 parallel to L 2• 
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5.6.7. Consider then-dimensional arithmetic space X (either real 
or complex) and the corresponding m-dimensional arithmt'tic spaceY 
where the "natural" (standard) bases, made up of the unit Yectors 
of thcst' spaces, are used. We can match each m "' n matrix A with 

an operator A from X to Y wht'n tht' operator is defined as follows: 

.x~y=Ax, 
i.e. each column wctor x from X is multiplied by the matrix A. 
Prove that (a) this corrt'spondt'nct' between the m X n matrices 
and the operators from X to Y is ont'-to-one; (b) the matrix of the 

operator A with rt'spect to the two standard bases coincides with 
matrix of A. Thus, the opt'rators on arithmetic spaces can be identi­
fied with rectangular matrices of the corresponding orders. 

5.6.8. An operator A on a three-dimensional arithmetic space 
converts linearly independent vectors a1 , a2 , a3 into vectors b1 , b 2 , b3 , 

where 

Find the matrix of this operator (a) with respect to the basis a1 , 

a2, aa; 
(b) with respect to the standard basis e1, e1 , e3 • 

5.6.9, In the space of square matrices of order 2 a basis consisting 
of matrices (in the order indicated) 

II~ ~II· II~ a II~ ~II· II~ ~II 
is fixed. Write with respect to this basis (a) the matrix of the transpo­
sition operator, i.e. the operator that assigns to each matrix X 
its transpose; (b) the matrix of the operator GAB that assigns to 
each matrix X the matrix AXB where A and B are given matrices; 
(c) the matrix of an operator F AB defined by the relation 

X -AX+ XB. 

How are these matrict's altt'red if in the basis the matrices 

II~ ~II· II~ ~II 
are intt'rchanged? 

5.6.10. Let in the space of m X n matrices a basis Ew Ew ... 
· •. , E!n• En, E22• · · ., E2n• · · ., Eml• Em2> ... , Emn (in the 
order indicated) be fixed, E 11 being an m X n matrix in which the 
only nonzero element is placed at (i, j) and is equal to 1. Further, 
let A and B be given square matrices of orders m and n, respectively. 
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Consider the operators GAfl and F An• defined by the relations 

x..!:..:.~AXR, 

X~~AX+-XB. 
Prove that with respect to the indicated basis (a) the matrix of 
the operator GAB is the Kronecker product A X BT; (b) the matrix 
of the operator F AB is A X E., -rEm X BT. 

Find matrices of the same operators with respect to the basis 
Eu, En, • • ., Eml• Eu, E22• · · ., Em2• · · ., Eln• E2n• · • •• Emn· 

5,6,11. Let A be an operator from w.;n· Prove that all the matri­
ces defining the operator A with respect to various pairs of bases 
for the spaces X and Y have the same rank equal to the rank of A. 

5.6.12. Find the rank of an operator F AB 

x~(; -:)x~ x(=! :J. 
5.6.13. Prove that the operator FAll (see Problem 5.6.12) is 

nilpotent and find the nilpotence index of tliis operator. 
5.6.14. What can be said about the matrix of an operator A of 

rank r if, in the basis e1, ••• , e,. of the space X, the vectors e~+l . .. 
• . . , e,. belong to the kernel of this operator? 

5.6.15*. An operator A from Wxy has rank r. Prove that in the 
spaces X and Y, the respective bases e1, ••• , e,. and q1, ••• , qm 
can be chosen such that the matrix Aq. of the operator A is of the 
form 

t 0 ... 0 0 ... 0 

0 1 ... 0 0 

0 0 1 0 ... 0 

0 0 0 0 

The number of nonzero columns in the matrix Aqe equals the rank r 
of the operator. 

5.6.16. Show that any real or complex nondegenerate matrix 
of order n can he regarded as the matrix that defines in the n-dimen­
sional space X, respectively real or complex, the transfer from one 
basis e1, ••• , en to another, / 1, ••. , fn; moreover, one of the bases 
~an be chosen arbitrarily. 

5.6.17. Let a matrix A define the transfer from a basis e1, ••• , en 
toahasisfl> ... , fn.andamatrixBfrom/1, ... , /,.tog1, .• . ,g,.. 
Show that (a) the transfer matrix from / 1, ••• , In to e1, ••• , e,. 
is A - 1; (b) the transfer matrix from e1 , ••• , e,. to g1, •.• , g,. 
is C = AB. 
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5.6.18. How is the transfer matrix from e1, ••• , en to / 1, ••• , In 
altered if (a) the vectors e1 and e1 are interchanged? 

(b) the vectors /1t and / 1 are interchanged? 
5.6.19. An operator A is defined with respect to the basis 1, t, t* 

in the space M 1 , by the matrix 

lin ~II 
Find the matrix of this operator when the basis comprises the poly­
nomials 3t1 + 2t, 5t' + 3t + 1, 7t2 + 5t + 3. 

5.6.20. Two operators are defined on the space M 3 • The operator A 
transforms any polynomial a0 + a1t + a 2t2 + a3t3 into the polyno­
mial a0 + a1t + a 2t2 • The operator B transforms the polynomials 
t3 + t 2, ea + t, t3 + 1, t 3 + t2 + t + 1 into t3 + t, t3 + 1, t3 + 
+ t2 ...L t + 1 and the zero polynomial, respectively. Construct the 
matrices of the operators AB and BA with respect to the basis 
1, t, t2 , t3 • 

5.6.21. Let P and Q be nondegenerate matrices of orders m and n, 
respectively. Show that matrices F111 Fn, ... , F1,, F 21 , Fu, ... 
. . . , Fmn (where Fl/ = PE 1/), and E 11 are the matrices defined 
in Problem 5.6.10) form a basis for the space of m X n matrices. 
Find the transfer matrix from the basis made up of the matrices E11 
to this basis, and also the matrix of the inverse transfer. 

5.6.22. Find the matrices of the operators GAB and F AB of Prob­
lem 5.6.10 with respect to the basis Fw Fn, ... , Fmn (see Prob­
lem 5.6.21). 

5.6.23. Let A 1 be an operator defined by a square n X n matrix A 

with respect to a basis e1, ••• , e, of a space X, ..42 the operator 
defined by the same matrix with respect to a basis fu ... , ln.· 
Prove that 

where P is an operator transforming the vectors e1, ••. , en into 

f .. ... , '"' 5.6.24. Rectangular matrices A and B are said to be equivalent 
if there exist nondegenerate matrices RandS such that 8 = RAS. 
Show that the equivalence relation on the set of rectangular matrices 
of fixed order m X n is reflexive, symmetric, and transitive. 

5.6.25. Square matrices A and B are said to be similar if there 
exists a nondegenerate matrix P such that B = P-1AP. In addition, 
the matrix Pis said to transform A to B. Show that the similarity 
relation on R set of square niatrices of a given order n is refiexive, 
symmetric, and transitive. 
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5.6.26. Prove that any two equivalent (similar) matrices have 
the same rank. 

:>.6.27. Lel X and Y be an n-dimensional and m-dimensional 
space. respeclh·ely. Prove that any two equivalent m X n matrices 
A and B can be regarded as matrices defining the same operator 
from w.\':Y with respect to certain pairs of bases e1 , ••• , e,., q1 , • 

• . . , qm. and / 1 , ••• , /,, t 1 •••• , tm of these spaces. One of the 
pairs of bases can be chosen arbitrarily. 

5.6.28. Prove that any two similar matrices of order n are matrices 
that define the same operator of an n-dimensional space X with 
respect to two bases e" ... , e., and / 1 , ••• , / 11 for this space. 
The choice of one of the bases is arbitrary. 

5.6.29*. Prove that any matrix A is equivalent to a matrix of 
form (5.6.1). 

5.6.30. Prow the statement, converse to that in Problem 5.6.26, 
viz .. two m ? n matrice~ A and B having the same rank are equi· 
valent. 

5.6.31. Let matrices A and B be similar, i.e. R = P-1AP. Is 
the transforming matrix P unique? 

5.6.32•. Show that a scalar matrix aE is similar only to itself. 
Pro,·e that this property is intrinsic only to scalar matrices. 

5.6.33. Let A be a fixed square matrix. Prow that the set of 
all matrices P transforming A into A is a group under multipli­
cation. 

5.6.34.. Let A and B be similar matrices. Prove that if P 0 is some 
matrix that transforms A into B, then the whole set of the trans­
forming matrices is obtained from the set of the matrices transform­
ing A into A by multiplying the Iauer matrices on the right by the 
matrix P 0 • 

5.6.35. Show that a matrix A is transformed into a similar matrix 
by the following procedure: (a) the i·th row is multiplied by a non­
zero number a and then the i·th column is multiplied by the nom· 
her 1/a; (b) the j-tl1 row is multiplied by a number a and added to 
the i·th row; then the Hh column premultiplied by a is subtracted 
from the f·th column; (c) the t·th and J·lh rows, and then the Hh 
and j-th columns are interchanged. 

5.6.36•. Show that the mirror renection in the centre of a square 
matrix is a similar transformation of this matrix. 

5.6.37. Pro\·e that similar matrices A and B have the same trace 
a.nd determinant. 

5.6.38. Prove that if at least one of two square matrices A and B 
of the same rank is nondegenerate, then the matrices AR and BA 
are similar. Give an el.ample of degenerate matrices A and B for 
which AB and BA are not similar. 

5.6.39. Show that if matrices A and R are similar, then (a) the 
matrices A 2 and 8 2 are ~imilar; (b) the matrices A~ and a•, where k 
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is any natural number, are similar; (c) for any polynomial I (t), 
the matrices I (A) and I (B) are similar. 

5.6.40. Does the equivalence of matrices A and B of order n X n 
mean that the matrices A 2 and 8 2 are equivalent (d. rroblem 5.6.39 
(a))? 

5.6.41. Show that similar matrices A and B have the same mini­
mal polynomial. 

5.6.42. Matrices A and H of orders m and n, respectively, are 
similar to matrices C and D. Prove that (a) the matrix A X B is 
similar to the matrix C X D; (b) the matrix A X En, Em X BT 
is similar to the matrix C X E., + Ern X DT. 

5.6.43. Prove that if matrices A and B are similar, then their 
as~ociated matrices Ap and Bp are similar. 

5.6.44. Show that if the complex matrices A 1 = B1 + iC1 and 
A 2 = 8 2 + iC 2 are similar, then the real matrices D1 and D 2 are 
also similar: 



CHAPTER 6 

Linear Operator Structure 

6.0. Terminology and General Notes 

Let A be an operator from Wxx· A number ). 
is called an eigenvalue of the operator A if a nonzero vector x exists 
such that 

Ax =Ax. (6.0.1) 

Any vector x =F 0 satisfying (6.0.1) is called an eigenvector of the 
operator A associated with the eigenvalue A. 

If Ae is the matrix of an operator A with respect to an arbitrary 
basis e1 , ••• , en for the space X then the polynomial det (AE- A) 
does not depend on the selection of the basis and is called the charac· 
teristic polynomial of the operator A. 

The roots (in the given field) of the characteristic polynomial, and only 
the roots, are the eigenvalues of an operator. · 

According to the fundamental theorem of algebra, any polynomial 
of degree n (n # 1) with complex coefficients has precisely n roots 
in the field of complex numbers (if each is counted as many times 
as its multiplicity). If the algebraic multiplicity of an eigenvalue i~ 
defined to be equal to its multiplicity as a root of the characteristic 
polynomial, then 

in a complex linear space of dimension n, each operator has n eigen· 
values (taking their multiplicity into account). In addition, there 
exists at least one eigenvector. 

A subspace L is said to be invariant with respect to an operator A 
if from x E L it follows that Ax E L. An operator A, considered 
only for vectors from an invariant space L, is called an induced 
operator and denoted by AIL. 

If a space X is the direct sum of subspaces L1 and Lt, invariant 
with respect to an operator A, then for any vector x with the decom· 
position 

we obtain 
Ax = Ax1 + Axt = (A/L 1) x1 + (AIL 2) X 2 , 

whereupon the operator A is said to be the direct sum of the induced 
operators A/L1 and AIL2 • This is equivalent to saying that the 
operator A is reduced by the pair of subspaces L1 and Lt. 
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For any operator A on a complex space, there exists a basis for 
this space, called a Jordan canonical basis, in which the matrix 
of this operator is of quasi-diagonal form 

J~IJJ, J·· .. 0 11· 
o J, I 

where each of the diagonal blocks J 1 is a Jordan block corresponding 
to one of the eigenvalues of the operator A. The matrix J is called 
the Jordan form of the operator A. 

Terms such as "an eigenvector of a matrix", "an invariant subspace­
of a matrix", etc. are used in the present chapter in the same sense 
attributed to them at the end of Sec. 5.0. For example, an eigen­
vector of an n X n matrix is considered as an n-dimensional column 
vector, etc. 

6.1. Eigenvalues and Eigenvectors 

eige~~:cf!~seofta:~~~~t~~~W~~~sc~:o:::I~ef~f:~~~~gtht: u;:eofe:f~nch~:;te~f;: 
tic polynomial. These problems mostly concern the following topics: 

(i) Definition of eigenvalues and eigenvectors. 
(ii) A theorem about linear independence of eigenvectors associated with 

different eigenvalues, and corrollaries to it. 
(iii) Operators and matrices of simple structures. 

6.1.1. Prove that it is a necessary and sufficient condition for 
non degeneracy of an operator A, that it should not have an eigen­
value equal to zero._ 

6.1.2. Show that (a) the eigenvectors of an operator A associated 
with a zero eigenvalue, and no others, belong to the kernel of this 
operator; (b) the eigenvectors associated with nonzero eigenvalues 
belong to the image of the operator. 

6.1.3. Prove that if an operator A is nondegenerate, then both A 
and A -l have the same eigenvectors. Find the relation between the 
eigenvalues of these operators. 

6.1.4. Show that when an operator is multiplied by a nonzero­
number, the eigenvectors arc unaltered and the eigenvalues are 
also multiplied by this number. 

6. 1.5. Show that the operator A - 'J.. 0E has, for any number A0 , 

the same eigenvectors as the operator A. Find the relation between 
the eigenvalues of these operators. 

6.1.6. Prove that if xis an eigenvector of an operator A, associated 
with an eigmvalue A, then xis also an eigenvector of the operator (a) 
A 2; (b) A h for any natural k; and (c) I (A) where I (t) is any polyno­
mial. Find the corresponding eigen\'alues. 
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6.L7. Is the following statement valid: if xis an eigenvector of 
a certain polynomial f (A) in the operator A, then xis also an eigen· 
vector of the operator A itself? 

6, I .8. Prove that a nilpotent operator has no eigenvalues other 
than zero. 

6.1.9. Prove that the operator which rotates the Euclidean plane 
through an angle et, not a multiple of n has no eigenvectors. 

6.1.10. Find the eigenvalues and eigenvectors of the operator A 
of the three-dimensional Euclidean space such that Ax = (x, a], 
whNc a is a f1xed vector. 

6.1.11. Find the eigenvalues and eigenvectors of the differential 
operator on the space of polynomials .lf.,. 

6.1.12. J:o~ind the eigenvectors of the differential operator on the 
space generated by 11 (t) = cost, Is (t) = sin t. 

6.1.13. Prove that the eigenvalues of a diagonal matrix coincide 
with its diagonal elements. 

6.1.14. Prove that a stochastic matrix has an eigennlue equal 
to unity. Find the corresponding eigenvector. 

6.1.15*. Find the eigenvalues of a matrix A = xy having unit 
rank. 

6.1.16. Find the eigenvalues and eigenvectors of the n X n ma­
trix J, 

J.~ll;.: .:::.:II· 
t t ... t 

6.1.17. Find the eigenvalues and eigenvectors of the n X n 
matrix A: 

.4~11: :: .:: 111· 
b b b ,., II 

6.1.18. Prove that if the matrices A and Rare similar, then every 
eigenvalue of A is also an eigenvalue of R, and vice versa. Find 
the relation between the eigenvectors of the matrices A and B. 

6.1.19*. Prove that an operator's eigenvectors which are associated 
with different eigenvalues, are linearly independent. 

6.1.20. Using the result of Problem fi.1.19, deduce that an opera­
tor A on an n-dimensional space X cannot have more than n dif­
ferent eigenvalues. If there are precisely n different eigenvalues 
then a basis for the space X exists that consists of the eigenvectors 
oft he operator A. 

6.1.21. Prove that the set of all eigenvectors of an operator A 
associated with a given eigenvalue A0 • together with the :t~ro vect11r 
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is a ~ubspace called an eigensubspace of the operator A associated 
with the eigenvalue A0 . 

6.1.22. A space X is the direct sum ofsnbspaces L1 and L 2• Find 
the eigenvalues and eigensubspaces of (a) the projection operator 
on L 1 parallel to L 2 ; (b) the reflection operator in L 1 parallel to L 2 • 

6.1.23. The dimension of the eigensubspace of an operator A 
associated with eigenvalue /.. 0 is called the geometric multiplicity 
of the l.'igenvalue /..0 . Show that the geometric mulliplicity of A0 

is l'qual to the defect of the operator A - A0E. 
6.1.24. Prove that the sum of the eigensubspaces of an operator A 

is the direct sum. 
6.1.2:>. Pro\·e that all nonzero ''ectors of a space are the eigenvec­

tors of an operator A if and only if A is a scalar operator. 
6.1.26•. Pro..,·e that the sum of th"' geometric multiplicities of 

all the eigenvalues of an operator A from w.t"x does not exceed the 
dimen:c<ion of the space X. :O.Ioreover, il is a necessary and sufficient 
condition that the indicated sum equal the dimension of the space X 
for a basis, made np of the eigenvectors of the operator A, to exist 
in the space X. 

6.1.27. An operator A is called an operator with a simple structure 
when there exists a basis for the space consisting of the eigenvectors 
of this operator. What is the geometric meaning of such an operator? 
What is the form of the matrix of the operator A with respect to the 
basis of eigenvectors? 

6. J .28. A square matrix is called a matrix of simple structure if 
it is similar to some diagonal matrix. Prove that an operator A 
from wxx is an operator of simple structure if and only if its matrix 
with respect to an arbitrary basis for the space is a matrix of simple 
structure. 

6.1.29. Prove that an operator of simple structure possesses the 
following properties: (a) the image is the span of the eigenvectors 
associated with the nonzero eigenvalues; (b) the intersection of 
the kernel and image consists of the zero vector only. 

6.1.30. Show that the projection and refleclion operators are of 
simpll' structure. 

6.1.31. Prove that among nilpotent operators only the zero opera­
tor is of simple structure. 

6.1.32. Pro,·e that any polynomial/ (A) in an operator of simple 
structure is also of simple strnctnre. In particular, if A is nondege­
nerat£'. then A -I is of simple structure. 

6. t .33. Prove that if an operator A of an n-dimensional space is 
of simple structure, then the minimal polynomial of this operator 
has a degree not e:\ceeding n. 

6. t .34. An operator A on an n-dimensional space X has n dif­
ferent eigell\·alues. Pro' e that any opera lor II that commutes with A 
is ;tn operator of simple structure. 
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6.1.35. Show that the operator B (see Problem 6.1.34) can be 
represented by a polynomial of the operator A. 

6.1.36. Let A be an operator on a real space R, and let A be 
the operator obtained from A by the complexification of the spaceR. 
Show that if xis an eigenvector of the operator A, associated with 
an eigenvalue A, then the vector x + iO is an eigenvector of the 
operator A~ associated with the same eigenvalue. 

6.1.37. Show that the operator A (see Problem 6.1.36) is of simple 
structure if A is an operator of simple structure. 

6.1.38. According to the definition of a matrix A of simple struc­
ture, there exists a nondegenerate matrix P such that P- 1AP = A 
is a diagonal matrix. Prove that the diagonal elements of the mat­
rix A are the eigenvalues, and the columns of the matrix P the 
eigenvectors of the matrix A. Conversely, a nondegenerate matrix P 
whose columns are the eigenvectors of a matrix A reduces this 
matrix to a diagonal matrix. 

6. 1.39. Prove that if a matrix A is of simple structure, then the 
same is valid for the transpose of A, i.e. for AT. 

6.1.40. Let A he an eigenvalue and x the associated eigenvector of 
an m X m matrix A, and let ll be an eigenvalue and y the associated 
eigenvector of an n X n matrix B. Prove that the Kronecker pro­
duct x X y is: (a) an eigenvector of the matrix A X B; (b) an eigen­
vector of the matrix A X En +Em X B. Find the associated eigen­
values. 

6.1.!it. Prove that if the matrices A and B (see Problem 6.1.40) 
are of simple structure, then the same holds true for the matrices 
A X B and A X En +Em X B. 

6. 1.42. Deduce a corollary from Problem 6.1.41: if matrices A 
and B are of simple structure, then the operators GAB and F AB 

(see Problem 5.6.10) are of simple structure. 
6.1.43. Prove that if A is a matrix of simple structure, then so 

are all the associated matrices A P· 

6.2. The CharacterlsUc Polynomial 

We Intended m this section to illustrate the following topics related to the 
characteristic polynomial: 

(il The definition of characteristic polynomial, the expression of its coef­
ficients in terms ol minors of the matrix, and the relation of the coefficients to 
the eigenvalues. 

(ii) The characteristic polynomial as a means of computing the eigen­
values. 

(iii) The companion matrix of this polynomial. 
(iv) The characteristic polynomials of special classes of operators and 

matrices. 
As 1n the previous secLion, a great consirleratwn is given to operators and 

matrices of simple structure. The test, established in Problem 6. 1.26, reveals 
its signif1cance only here, i.e. when a method of computing the eigenvalues is 
available. 
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6.2.t. Write explicit expressions for the characteristic polyno­
mials of matrices of order (a) 1; (b) 2; (c) 3. 

6.2.2*. Prove that in the expression of the characteristic polyno­
mial 1 'J..E- A I of a matrix A in terms of powers of A 

I).£- A I= ).n + an-I).n-1 + ... + al). + ao, 

the coefficient a11 equals the sum of all principal minors of order 
n- k of the matrix A multiplied by (-i)n-11 • 

Set up the characteristic polynomials of the matrices 

6•2·3·11 .,,, .. , .... ··'" II 
~t~l. ~!Y•!. ·: •' ~21/.n , 

XnY 1 ZnY2 ••• XnYn 

6.2.4.

11

0 0 ... 0 b, II 0 0 ... 0 bt ........... 
0 0 .. , 0 bn-1 

c 1 c2 ••• ln-1 a 

6.2.5. Prove that the characteristic polynomial of the transpose 
AT of a matrix A coincides with the characteristic polynomial of the 
matrix A. 

6.2.6. ProYe that if each coefficient of a complex matrix A is 
replaced by its conjugate, then the coefficients of the characteristic 
polynomial are also replaced by their conjugates. 

6.2. 7*, Given that A and B are square matrices of the same 
order, prove that the matrices AB and BA have the same charac­
teristic polynomial. 

6.2.8. Prove that the characteristic polynomial I (A.) of a matrix 
A and that g (A) of the matrix A - A0 E are related by the formula 

g (X) ~ / (X + 1.0). 

6.2.9. Let an n X n matrix A be nondegenerate. Prove that 
the characteristic polynomial I (A) of the matrix A is related to the 
characteristic polynomial h (A) of the matrix A - 1 by the formula 

h(X)~(-X)"T,n-·1 (t) · 
Hence deduce the relationship between the sums of all principal 
minors of a given order of the matrices A and A-t. (Another method 
of stating this relationship is given in Problem 5.5.80.) 

6.2.10. Prove that similar matrices possess the same character­
istic polynomial. Give an example demonstrating that the con­
verse statement, viz., matrices having the same characteristic 
polynomial are similar, does not hold. 

6.2.tt*, Prove that the following function in the elements of 
a matrix A 
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is unaltered when the similarity transformation is applied to the 
matrix. 

6.2.12. Assuming that the matrix A (see Problem G.2.11) is 
complex, write an expression for the function m (A) in terms of 
the eigenvalues of this matrix. 

6.2.13. Generalizing the statement of Problem G.2.11, prove 
that the function 

" " " n 

m, (A) = 1f;1 ~~~ 1 11~ 1 ••• I>.~ I a,k 14k 1hs ••• akl-lh1a111t 

is unaltered when the similarity transformation is applied to the 
matrix A. 

6.2.14. If n eigenvalues A1 , ••• , A, of a matrix A of order n + 1 
are given, how can another eigenvalue A,+ 1 be found? 

6.2.15. Find the characteristic polynomial and eigen\"alues 
of the triangular matrix 

Iff: ::.: · · ::: II· 
6.2.16. Prove that the characteristic polynomial of the matrix 

11
-;·-· -;·-· ::: -~· -;·II 

C(/(1.))~ •. • ... I ... ".' .. ~ .. n 
0 0 ... t 0 

is equal to /(A) = A" + an -1A"- 1 + ... + a1A + a0 • The matrix 
C (f (A)) is called the companion of the polynomial f (A) (or the Fro­
benius matrix). 

6.2.17. Use the result of Problem 6.2.16 to prove that any 
n-degree polynomial with the higher-order coefficient equal to 
unity can be the characteristic polynomial of a certain square n-order 
matrix. 

6.2.18. Find the characteristic polynomial for the operator that 
rotates the Euclidean plane through an angle a. 

6.2. t 9. Find the characteristic polynomial for the operator A 
of the three-dimensional Euclidean space such that Ax = [x, a], 
where a is a fixed vector. 

6.2.20. Find the characteristic polynomial of the differential 
operator on the space M n. 

6.2.21. Find the characteristic polynomial of an arbitrary nil­
potent operator on the n-dimensional complex space. 

6.2.22. Prove that the rank of a projection operator equals its 
trace. 
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6.2.23. Let an operator R reflect an n-dimensional space X in 
a subspace L. Prove that the dimension of L is related Lo the trace­
of the operator R by the following: 

tr R --" 2 dim L - n. 

Evaluate the eigenvalues and eigenveclors of the following matri­
ces: 

6.2.24. II~ ~II· 6.2.25. 11'-t;: 1=-l 

6.2.26. r -1 
-

2 11 6
.
2 27·11U !II· 2 1 -2. 

1 -1 I 

6.2.28. II 2 _,-'II 6.2.29. II , -, Jl· -1 -2 -3. 2 -2 
3 15 12 _, ' 

6.2.30. r I() 
0

11 

6.2.31. 

[ ~ t 1 3 0 2 0 
0 2 0 3 . 

0 () f 0 

6.2.32.
11

1 2 () 'II 6.2.33. r -1 0 0

11 
-f -2 0 -3 0 3 () 0 

0 0 2 (J • 1 0 3 f . 

1 2 0 3 0 I u 3 

6.2.34. Prove tha't any operator of a real space of dimension 
n = 2k-+- 1 has at least one eigenvector. 

'Find the eigennlues of the following matrices (a) in the field of 
real numbers; (b) in the field of complex numbers. 

6.2.35. 11-; ;II· 6.2.36. II~ l !II· 

Iii J ~~II· 
6.2.37. 

6.2.38.111 1 o oil i 0 -f -2 
0 0 I f . 
1 2 I 0 

6.2.39. Show that the characteristic polynomial of a quasi-trian­
gular (quasi-diagonal) matrix equals the product of the charac­
teristic polynomials of the diagonal blocks. 

6.2.40. Using the results of Problems 6.2.8 and 6.2.9, show that 
the algebraic multiplicities of corresponding eigenvalues of the 
operators A and A - A0E are equal; the same is true for the corres­
ponding eigenvalues of the operators A and A -1• 
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6.2.4t *. Prove that the geometric multiplicity of any eigenval­
ue A. of an arbitrary operator A does not exceed its algebraic multi­
plicity. 

6.2.42. Prove that an operator A on a complex space is of simple 
structure if and only if the geometric multiplicity of each eigen­
value of this operator coincides with the algebraic multiplicity. 
Is the similar statement valid for a real space? 

Determine if each of the following matrices is of simple structure. 
If so, find a matrix that reduces the given one to diagonal form and 
give the diagonal matrix. 

6.2.43. II~ ~ : :II 6.2.44.11 ~ ~ ~ ~II 
0 3 0 0 ° 0 2 0 0 • 
4 0 0 0 3 0 0 0 

6·2·45·11: : ; ~II 6.2.46·11: : : ~II 0 0 t -2 • 0 0 2 0 • 

t 0 0 2 0 0 0 2 

6.2.47.11 ~ : ~ ~II 6.2.48.11 ; : : ~II 
0 0 0 1 • -1 0 0 1 . 

-6 t 7 -t -2 0 0 0 

6.2.49•. Can the companion matrix of a polynomial f (A) be of 
<Simple structure if this polynomial has at least one multiple root? 

6.2.50. Prove that matrices A and B of simple structure are 
similar if and only if they have the same characteristic polynomial. 

6.2.51. Prove that a complex matrix with different eigenvalues 
is similar to the companion matrix of its characteristic polyno­
mial. 

6.2.52. Find the characteristic polynomial of the n-or'der ma­
trix P 

0 1 

0 1 

P~ 

6.2.53*. Find the eigenvalues of the matrix P (see the previous 
problem) in the field of complex numbers, and the associated eigen­
vectors. 

6.2.54. Using the result of Problem 6.2.53, show that any cir­
eulant over the field of complex numbers is a matrix of simple 
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structure. Find expressions for the eigenvalues of a circulant in 
terms of its elements. 

6.2.55*. Let A1 , .•. , Am be all the different roots of a polyno­
mial f (A). Find the eigenvectors of the companion matrix to this 
polynomial. 

6.2.56*. Deduce the result of Problem 6.2.53 from Problem 
5.2.55. 

6.2.57*, Let a matrix A be of simple structure. Prove that for 
any number ).0, the rank of the matrix A - 'J..0E is equal to the 
highest order of the nonzero principal minors in this matrix. 

6.2.58. Prove that any operator of simple structure is annihilated 
by its characteristic polynomial. 

6.2.59. Let A be an operator of simple structure on an n-dimen­
sional space, and let A1, ••• , Am be all the different eigenvalues 
of the operator A. Find the minimal polynomial of this operator. 

6.2.60*. Let A and B be rectangular matrices of orders m X n 
and n X m, respectively. Prove that the characteristic polynomials 
of the matrices AB and BA satisfy the equality: 

1.• I 1.Em- AB I = 1.m IAE, - BA I· 
In particular, when m=n we obtain the result of Problem 6.2.7. 

6.2.61 •. Prove that the characteristic polynomial of the ma­
trix M 

M=ll~ !II· 
where A and B are square matrices of the same order, equals the 
product of the characteristic polynomials of the matrices A + B 
and A -B. 

6.2.62. Prove that on complexifying the real linear space, an 
operator A is transformed into the operator A with the same char­
acteristic polynomial. 

6.2.63. Show that the result of Problem 6.2.21 also holds for 
a nilpotent operator on the n-dimensional real space. 

6.2.64. Prove that the characteristic polynomial of a real 2n-order 
matrix D 

D=ll~ -~II 
equals the product of the characteristic polynomials of n X n com­
plex matrices A = B + iC and A = B - iC. 

6.3. Invariant Subspaees 
The first hall of this section is devoted to problems in invariant sub spaces and 

induced operators. In the second half, we consider a theorem and its corollaries 
concerning the possibility of reducing the matrix of an operator to triangular 
form. 

u-oeu 
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6.3.1. Prove that the sum and intersection of A-invariant sub­
spaces L 1 and L 2 are also innriant with respect to the operator A. 

6.3.2. Show that the kernel and image of an operator A from 
wx.T are A-invariant. 

6.3.3. Prove that if an operator A is degenerate, thon any sub­
space containing its image is A-invariant. 

6.3.4. State the geometric meaning of the one-dimensional im,.a­
riant subspaces of an operator and show that in a complex space 
any operator has at least one one-dimensional invariant subspace. 

6.3.5. What can be said about an operator A from ro~u such 
that any subspace of the space X is A-invariant? 

6.3.6*. Prove that if any subspace of dimension k (where k is 
a fixed natural number, 1 ~ k < n) of an n~dimensional space X 
is A-invariant, then A is a scalar operator. 

6.3.7. Prove that the span of any set of the eigenvectors of an 
operator A is A-invariant. In particular, eigensubspaces of the 
operator A are A-invariant. 

6.3.8. Prove that operators A and A - 'A.E, where 'A. is any num­
ber, possess the same invariant subspaces. 

6.3.9*. Show that any operator on an n-dimensional complex 
space has an invariant subspace of dimension n- 1. 

6.3.10. Prove that if an operator A is nondegenerate, then both 
A and A-t possess the same invariant subspaces. 

6.3.11. Show that any A-inYSriant subspace is also invariant 
with respect to any polynomial of this operator. Is the converse 
statement true? 

6.3.12. Prove that both the kernel and image of any polynomial 
f (A) in an operator A are A-invariant. 

6.3.13. Let operators A and B commute. Prove that ~he kernel 
and image of the operator B are A-invariant. 

6.3.14. Prove that any eigensubspace of an operator A is inva­
riant with respect to any operator commuting with A. 

6.3.15. Prove that if an operator A on an n-dimensional space 
has n different eigenvalues, then any operator B, commuting with A, 
is of simple structure. Further, all the eigenvectors of the opera­
tor A are also eigenvectors of the operator B. 

6.3.16. Find all A-invariant subspaces of the three~dimensional 
Euclidean space, where Ax = [x, a) and a is a fixed vector. Deter­
mine the induced operator AIL for each invariant subspace L. 

6.3.17*. Find all invariant subspaces of the differential opera­
tor on the space of polynomials Mn. 

6.3. 18. A space X of dimension n is the direct sum of a subspace 
L1 of dimension k (> 0) and subspace L 2 of dimension n - k. Sup­
pose a basis eh ••• , en for the space is selected so that the vectors 
e1, ••• , ell belong to L 1, and the vectors e 11 +t• ... , en to the sub­
space L 2• Represent the matrix of an operator A with respect to 
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the basis e1, ••• , en in partitioned form 

where A 11 and A 22 are square submatrices of orders k and n- k, 
respectively. Prove that (a) Au = 0 if and only if £ 1 is A~invariant; 
(b) A 21 = 0 and A12 = 0 if and only if both the subspaces L1 and 
L 2 are A-invariant. 

6.3.19. Show that any complex n-order square matrix A is similar 
to a matrix B of the form 

where B 22 is a submatrix of order n - 1. Give a method of construct­
ing a transforming matrix P such that B = P-1AP. 

6.3.20. If an operator A is on a complex space, then prove that 
any A-invariant subspace contains at least one eigenvector of this 
operator. 

6.3.21. Let L be an A-invariant subspace. Prove that (a) the 
characteristic polynomial of the induced operator AIL is a divisor 
of the characteristic polynomial of the operator A; (b) the minimal 
polynomial of the induced operator AIL is a dh·isor of the minimal 
polynomial of the operator A. 

6.3.22. Subspaces L1 and L 2 are invariant with respect to an 
operator A with L 1 c L 2• Prove that the characteristic polyno­
mial of the operator AIL1 is a divisor of the characteristic polyno­
mial of the operator AIL2 • A similar statement is valid for the 
minimal polynomials. 

6.3.23. Subspaces L 1 and L 2 are invariant with respect to an 
operator A. Prove that the characteristic polynomial of the opera­
tor AI(L1 + L 2) is a common multiple of, and that of the operator 
AI(L1 n L 2) is a common divisor of, the characteristic polynomials 
of the operators AIL1 and AIL 2• A similar statement holds for the 
minimal polynomials. 

6.3.24*. Prove that an operator A of simple structure induces 
an operator of simple structure AIL on each of its invariant sub­
spaces L. 

6.3.25. Deduce the following corollary to Problem 6.3.24: any 
nontrivial innriant subspace of an operator A of simple structure 
is spanned on a certain set of the eigenvectors of this operator. 

6.3.26, Prove that for commuting operators of simple structure 
A and B, there exists a basis for the space consisting of the common 
eigenvectors of these operators. 

6.3.27. Prove that any two commuting operators on a complex 
space have a common eigenvector. 

II' 
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6.3.28. Prove that for any (even infinite) set G consisting of 
mutually commuting operators on a complex space, there is a com­
mon eigenvector for all the operators from G. 

6.3.29. An operator A is reducible by two subspaces L 1 and L 2• 

Prove that (a) the rank of the operator A is equal to the sum of the 
ranks of the operators AIL1 and AIL~; (b) the characteristic polyno­
mial of the operator A equals the product of the characteristic poly­
nomials of the operators AIL1 and AIL2 ; (c) the minimal polynomial 
A is the least common multiple of the minimal polynomials AIL1 

and AIL2; (d) the operator A" is, for any whole number, the direct 
sum of the operators (A/£1)~ and (AIL~)"; (e) for any polynomial 
I (t), the operator I (A) is the direct sum of the operators I (AIL1) 

and f (AIL,). 
6.3.30. Prove that the differential operator on the space Mn 

cannot be reduced by any pair of subs paces. 
6.3.31. Let R be a real linear space and let C be a complex space 

obtained from R by complexification. Let L be a subspace of R 
which is invariant with respect to an operator A, and let e1, ••• , e11 
be a basis for L. Show that the span of the vectors e1 + iO, ... 
. . . , e" + iO of the space C is A·invariant, A being the operator 
corresponding to A. 

6.3.32•. Using complexifi.cation, prove that any operator on a 
real linear space has an invariant subspace of dimension 1 or 2. 

6.3.33. Find a two·dimensional invariant subspace of the matrix 

111 -:~II· 
considered as an operator of the real arithmetic space R 3• 

6.3.34.. Let n-dimensional column vectors z1, ••• , Z.tu z1 = 
= :r1 + iy1 form a basis for a k-dimensional subspace of the complex 
matrix A = B + iC. Prove that the 2n-dimensional real column 
vectors u1, ••. , U.tt, v1, .•. , v11 where 

form a basis for a 2k-dimensional invariant subspace of the real 
matrix 

6.3.35. Vectors e1, ••• , e11 form a basis for a k-dimensional inva-
riant subspace of an m X m matrix: A and vectors 11 , •.. , f 1 form 
a basis for an l-dimensional invariant subspace of ann X n matrix B. 
Prove that in the following matrices the span of the Kronecker pro­
ducts e1 X f1, i = 1, ... , k, j = 1, ••. , l, is a kl-dimensional 
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invariant subspace: (a) of the matrix A x B; (b) of the matrix 
A X En+ Em X B. 

6.3.36*. Prove that for any operator A on an n-dimensional 
complex space X, there is a sequence of invariant subspaces Llt 
L 2 , ••• , Ln . 1 , Ln such that the dimension of the subspace Lll 
equals k and 

L1 c L 2 c ... c Ln_1 c L, =X. 

Show that the matrix of the operator A, with respect to a basis for 
the space having e; E Lh is upper triangular. However, if the order 
of the basis vectors is reversed to en, ... , e1, then the matrix of 
the operator assumes lower triangular form. State the meaning of 
the diagonal elements of these matrices. 

6.3.37. Deduce the following corollary to Problem 6.3.36: any 
complex square matrix is similar to an upper (lower) triangular 
matrix. 

6.3.38'*. Prove the statement of the previous problem without 
using the result of Problem 6.3.36. 

6.3.39. Prove that triangular form of a given complex matrix A 
is not unique, viz., each order of the eigenvalues Ah ... , An of the 
matrix A has a corresponding upper (lower) triangular matrix similar 
to A in which the elements A1, ••• , An on the principal diagonal 
are arranged in the required order. 

Reduce the following matrices to triangular form by a similarity 
transformation (indicate the obtained triangular forms and the 
transforming matrices): 

6.3.40. II 1 • 'II -t -t -1 . 
0 1 0 

6.3.41. H -! -!II· 
6.3.42*. Let Au ... , Am be all the different eigenvalues for 

a complex n X n matrix A, and k1, ••• , km the algebraic multi­
plicities of these eigenvalues. Prove that the matrix A is of simple 
structure if and only if it is similar to a matrix B of the following 
block structure 

A1E,._ B12 B 13 B 1m 

0 A2E11• Bu B2m 

B= 0 0 A8E11, Bsm 

"-mE lim 

6.3.43. Prove that an operator on a complex space is nilpotent 
if and only if all its eigenvalues are equal to zero. 

6.3.44*. Prove that the community matrices A and B can be 
reduced to triangular form by the same similarity Lransrormation. 
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6.3.45. What does the statement of Problem 6.3.44 mean for the 
commuting operators A and B? 

6.3.46*. Prove that any real square matrix is similar to an up­
per (lower) quasitriangular matrix whose diagonal blocks are of 
order 1 or 2. 

6.3.47. Deduce the following corollary to the result of Prob­
lem 6.3.46, viz., that any operator on an n-dimensional space has 
an innriant subspace of dimension n-1 or n-2. 

6.3.48*. A1 , ..• , Am are the eigenvalues of a complex m X m 
matrix A, and Ill• ... , lln the eigenvalues of a complex n X n 
matrix B (each sequence may contain equal terms). Prove that (a) 
the mn products A1 ~-t1 , i = 1, ... , m, j = 1, ... , n represent 
collectively all the eigenvalues of the matrix A X B and the op­
erator GA 11 (see Problem 5.6.10); (b) the mn sums A1 + ~b i = 
= 1, ... , m, j = 1, ... , n represent collectively all the eigen­
values of the matrix A X En -7- Em X Band operator F AB· 

6.3.49. Prove that the matrix equation 

AX+ XB- C 

(where A, B and C are given complex matrices of orders m X m, 
n X n and m X n, respectively) has a unique solution if there are 
no eigenvalues A1, of the matrix A, and ~b of the matrix B, such 
that A1 + ~1 = 0. 

6.3.50*. An operator A on a complex space is reducible by two 
subspaces L 1 and L 2 , and the induced operators AIL1 and AIL2 have 
no equal eigenvalues. Prove that any operator B that commutes 
'vith A is reducible by the same two subspaces £ 1 and £ 2 • Extend 
this statement to the case of any finite number of subspaces. 

6.3.51. Let A11 ••• , An be the eigenvalues of a complex n X n 
matrix A (some of the numbers A1 may be equal). Prove that all 
the possible products of p numbers from A11 ••• , An represent all 
the eigenvalues of the p·th associated matrix Ap. 

6.4. Root Subspaces 
and the Jordan Form 

The problems in this section are grouped in the following sequence: 
Root 11u.bspaces. The basic tools here are: a theorem on the decomposition of 

a complex space into the direct sum of the root subspaces of an operator A, 
and the characterization of the root subspace K,_, that corresponds to an eigen· 
value A,. as the kernel of some power of the operator n. - ~.1 E. Corollaries to this 

~'::o;i::sa~dl~ha: ::J~~a~~o~h~ c~:~~~f o: :g~t c~~:~ci~iodi~~~~J. sub spaces 
The structure of a root subspace. T!ie material is expounded by degrees, begin· 

ning with the simplest case, i.e. when the maximum height of a root vector 
coincides with the dimension of the root subspace. The situation then is gra· 

~:ci! 1;t::~o,~~~fh~~;:,:o:h~1:~~~c~~~ 1!f amco:!o~~!~a~a~rs~ ;~d~~~i~t;{:d~o~! 
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~dfalt~~~n:~b~~=:~l!s~ ~!~~~ ~~t an insight into the structure of an indi-

The conslruttlon of the Jordan form of an arbl!rary operator. In addition to 

~b~!tu!~~i=l ofr~h~leJr:da';efoa!~ J!e;.~~~ul~r ~~hebf~r~u:::~~ti~chieg!b~!etb! 
!~~sa~!'rd!r~~!t~ cTheP~ti~i\~o~!nr:l~~~:o ;~ebr;:t~;tion of a canonical 

The relation between the nmtlartty of matrices and the Jordan form. 
Throughout this section we will consider only operators on a complex space 

and complex matrices unless otherwise stated. 

6.4.1. Using Problems 5.3.9 and 5.3.10, prove that for any op­
erator A on an n-dimensional, real or complex, space X, the space X 
can be decomposed into the direct sum of subspaces 

X= N-i-T, (6.4.1) 

where N is the kernel, and T the image of the operator Aq for some 
natural number q. Moreover, for the least possible q, this inequality 
is valid: q~ n. 

Show that the operator A induces a nilpotent operator on the 
subspace N, and a nondegenerate operator on the subspace T. Thus, 
the statement of the problem may be reformulated as follows: any 
operator A is the direct sum of a nilpotent and a nondegenerate 
operator. 

6.4.2•. Prove that the decomposition of an operator A into the 
direct sum of nilpotent and nondegenerate operators is unique. 

6.4.3. Prove that the dimension of a subspace N in the decom­
position (6.4.1) equals the algebraic multiplicity of the zero eigen­
value of an operator A. 

6.4.4•. Prove that for any operator A, a space X can be decom­
posed into the direct sum of subspaces K1., • ••. , K,,111 

(6.4.2) 

(where A1, ••• , A111 are all the different eigem·alues of the operator A 
having algebraic multiplicities k1, ••. , k111 , respectively) such 
that each of the subspaces K1.1 is A-invariant, and the induced opera­
tor AIK,. has the characteristic polynomial (A- A1) 11t. 

6.4.5. Prove that the decomposition in (6.4.2) is unique if the 
operator A satisfies the conditions listed in Problem 6.4.4. 

6.4.6. A subspace K1.1 in the decomposition (6.4.2) is called a 
root subspace associated with an eigenvalue A1• Show that it follows 
from Problems 6.4.1-6.4.5 that (a) the subspace K1•1 can be described 
as a set of all vectors x such that (A - A1E)'x = 0, where s is any 
natural number; (b) the subspace K,,1 can be described as the kernel 
of the operator (A - A1E)111, where q1 is a certain natural number 
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not exceeding k1; (c) the eigensubspace £,..1 associated with an eigen­
value "-to is contained in the root subspace K,.. 1• 

6.4.7. Show that for an operator A to be of simple structure it is 
necessary and sufficient that each eigensubspace L,.1 of this operator 
associated with the eigenvalue ')..1 should coincide \Vith the root sub­
space K).. 1• 

6.4.8. Prove that if K,.. is a root subspace of an operator A asso­
ciated with an eigenvalue J.h then (a) K,.. is the root subspace of the 
operator A - J.. 0E associated with the e'igenvalue A1 - A0; (b) K~o. 1 
is the root subspace of the operator A-t associated with the eigen­
value 1/A1. 

6.4.9*. Prove that any root subspace of an operator A is inva­
riant with respect to any operator B which commutes with A. 

6.4.10*. Prove the Cayley-Hamilton theorem, viz., that any 
operator A is annihilated by its characteristic polynomial. 

6.4.11. Prove that if an operator A of ann-dimensional space is 
nondegenerate, then the inverse operator A-t can be represented 
as a polynomial of degree n - 1 in A. 

Construct the root subspaces of the following matrices: 

6.4.12.11:=:: :II· 
6.4.14.11-: ~ ~ :II 

0 3 2 3 • 

1 2 -t 0 

6.4.13. 11 , , 'II -4 -2 1 

4 1 -2 

6.4.15. 
11

2 -3' -611 t -2 2-4 
0 0 2 -3 . 

0 0 t -2 

6.4.16. Any vector of a root !subspace K,.1 of an operator A is 
called a root vector of this operator associated with the eigenvalueA1• 

A natural number h such that (A - A1£)hx = 0, but (A - A1£)h-t 
x+O is called the height of a root vector x from K,.1• By definition, 
the height of the null vector is zero. 

Show that (a) the height of each vector from K,.1 does not exceed 
the algebraic multiplicity k1 of the eigenvalue A1; (b) the height 
of an eigenvector equals 1; (c) the setH,. of all vectors from K,., 
whose height does not exceed a given natural k is a subspace. 

6.4. 17*. Let x be a root vector of an operator A associated with 
an eigenvalue A1 and with a height h (> 0). Prove that (a) the vector 
(A-A1E) x has the height h-1; (b) the vector (A- J..1E) x, where 
A1 is an eigenvalue of the operator A other than Ah has the height 
h; (c) if A1 is a root of a polynomial f (t) with a multiplicity of l, 
where l ~ h, then the vector f (A) x has height h -l; (d) the vector 
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A -1x has height h; (e) if B is an operator that commutes with A. 
then the height of the vector Bx does not exceed h. 

6.4. 18. Show that a root vector x of an operator A is also a root 
vector with the same height of (a) the operator A - A0E; (b) the 
operator A -1 . 

6,4. 19. Prove that a set of nonzero vectors from K,.. 1, all of whose 
heights are different, is linearly independent. 

6.4.20. Let x be a vector from K). 1 with a height h. 
Show that (a) the vector set (A - ').1E)h-1x, (A- ').1E)h-2x • 

. . . , (A - A1E) x, xis linearly independent; (b) the span of the set 
is A-invariant. 

In Problems 6.4..21-6.4.62 the only operators of an n-dimensional 
space and matrices of order n that will be considered are those which 
have only one eigenvalue ').0 with an algebraic multiplicity n. This 
condition will not be made explicit henceforward. It should be clear 
that all the results obtained will also be valid for an arbitrary oper­
ator that is considered only on a root subspace. 

6.4.21. An operator A on an n-dimensional space X is said to be 
a one-block operator if the maximum possible height of the root 
''ector coincides with the dimension n of the space. Prove that (a} 
any basis for the space X contains at least one vector of height n; 
(b) if x is a vector of height n, then the vector set (A - A0E)" -1 x, 
(A - ').0£)n-2x, ... , (A - ').0£) x, x is a basis for the space X; 
(c) the matrix of the operator A with respect to this basis is a Jordan 
block of order n corresponding to the number ').0 • The last statement 
accounts for the term "one-block operator". 

Thus, in the case of a one-block operator the canonical basis is the 
set (A - A0E)"-1x, ... , (A - A0E) x, x called the series constructed 
from the vector x, and the Jordan form consists of one block of or­
der n. 

6.4.22. Find the matrix of the operator A (see Problem 6.4.21, (b)} 
with respect to the basis x (A - A0E) x, ... , (A - A0E)n-lx. 

Construct the canonical basis and find the Jordan form of the 
following matrices: 

6.4.23. II_!! ~II· 

6.4.25. 

IU _: _; fll· 

6.4.24.
11 

, -· _.

11 6 -if -5. 
-7 ta 6 

6.4.26.11i 
-10 10 

0 0 
0 -~ ~II 0 0 . 

0 0 
1 0 
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Find the Jordan form of the following matrices of order n: 

6.4.27. -t -t 0 0 ... 0 0 
0 -t -t 0 ... 0 0 
0 0 -t -t ... 0 0 

0.4..28. taOO ... OO 
0 t a: 0 ... 0 0 

-1 -t 
0 -t 

0 0 t a ... 0 0 , ct'=f=:O. 

0 0 0 0 ... t a 
0000 ... 01 

6.4.29. 9a.l00 ... 00 
09 a:1 0 .•• 00 
009a .... oo 

oooo ... Da.n-1 
0000 ... 09 

CZ1"s•••C11a-~r;i=-0. 

Cb. 8 

6.4.30. 

II ~).~~_::_: ~~;II· &.4 .31·11~.; .:. ; .:.:_::_:II· 
0000 •.. 1 0000 .. 2 

6.4.32. a~~ Gu ••• ilutl 
0 cz Gu ••• Gzn. 
0 0 cr. ••• llan , 

0 0 0 ~ •. a I 
a 12a11 ••• a11• 1, n +-.0. 

6.4.33. Find the canonical basis and Jordan form of the dift'eren­
tial operator on the space of polynomials M. 

6.4.34. Prove that if A is a one-block operator associated with 
an eigenvalue A-0 '=fo 0, then (a) the operator A1; {b) the operator A 1 

where l is any natural number; (c) the operator A -1, are also one­
block. 

6.4.35. Show that if A is a one-block operator associated with the 
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zero eigenvalue, then A 2 is not a one-block operator (the dimension 
of the space is assumed to be greater than 1). 

6.4.36. Given a one-block operator A, prove that the subspace 
H 111 which is the kernel of the operator (A - A0E)1\ has the dimen­
sion k, 0 < k~ n. 

6.4.37. Prove that a one-block operator A has no nontrivial 
invariant subspaces that are different from the subspaces HA (see 
Problem 6.4.36). 

6.4.38. Let A and B be commutative one-block operators. Prove 
that A-invariant and B-invariant subspaces coincide. 

6.4.39. Prove that the minimal polynomial of a one-block opera­
tor A coincides with its characteristic polynomial. 

6.4.40*. Let the maximum height of a vector in a space X be 
equal to t. Given that the vectors x1, ••. , Xp are linearly inde­
pendent and have a height t, and that the intersection of the span 
of the Yectors x1, ••• , xp and the subspace H1 _1 consists of the 
null vector only, prove that for any natural k, 0 < k <t, the vectors 
(A - i..0E)11 .:ttt .•• , (A - i..0El'xp are linearly independent, and 
that the intersection of the span of these vectors and the subspace 
H 1_ 11 _1 consists of the null vector only (remember that the subspace 
H 1_ 11 _1 is the kernel of the operator (A - i..0E)11 ). 

6.4.41. Denote the defect of the operator (A - i..0E)11 by m11 • 

Dt~duce the following inequalities from the result of Problem 6.4.40: 
n-m1 - 1 =m1 -m1 - 1 :s;;;m11 -m11 _1, where O<k<t, m0 =0. 

6.4.42*. Prove that the series, constructed in Problem 6.4.40 
on the Yectors x1, ..• , xp, form a linearly independent set. 

6.4.43. Show that if, in addition to the data of Problem 6.4.40, 
the relation n = (n - m1_1) t (where n is the dimension of the 
space X) is valid, then (a) the series (A - i..0E)1- 1x1, ••• , 

... , (A - i..0E) x1, x1, ••• , (A - i..0E)1- 1Xp, ••• , (A-i..0E) Xp, Xp 

form a basis for the space X (we put p = n- m1 _1); (b) the matrix 
of the operator A with respect to this basis is of the following quasi­
diagonal form 

where each of the matrices J 1, J 2, ••• , Jp is a 1ordan block of 
order t, corresponding to the number i..0 • 

Thus, in the above case, the canonical basis for the operator A 
consists of a number of series that have the maximum possible 
length, and the 1 ordan form consists of a number of 1 ordan blocks 
of the same order. 
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Construct the canonical basis, and find the Jordan form of the 
following matrices: 

6.4.44. 

II~ 1 -: ~II 6.4.45. r 0 0 101 II 0 99 0 0 
1 1 ° 0 tOt 99 0 • 

-1 1 0 0 0 99 

6.4.46. -3 1 0 0 0 6.4.47. 0 0 0 0 
-3 0 0 0 0 0 0 
-1 0 0 0 2 0 0 0 

0 0 0 0 0 -1 0 -3 0 2 0 0 

0 0 0 1 0 -3 -1 0 0 2 0 

0 0 0 0 1 -3 0 -5 0 0 2 

6.4.48. Find the canonical basis and Jordan form of the double 
differentiation operator on the space of polynomials Mn, assuming 
that n = 2k- 1, where k is a whole number. 

6.4.49. The maximum height of a vector in a space X equals t. 
Linearly independent vectors x11 ••• , Xp all have height -t, and the 
space X is the direct sum of the subspace H1 _1 and the span drawn 
on this vector set. Prove that if the following inequality holds for 
the numbers m" (SeP. Problem 6.4.41), 

then (a) the series constructed on the vectors x1, ••• , xp do not 
form a basis for the space X; (b) the series constructed on the vectors 
(A-A.0E)x1, ••• , (A-A.0E) Xp, do not form a basis for the subspace 
H,-1; (c) if linearly independent vectorsxp,+u ... , Xp, having height 
t- 1 are such that the direct sum of the span, drawn on the vector 
set (A - A. 0E) X1, ••• , (A- A. 0E) Xp,, Xp,+l• ... , Xp, and the 
subspace H,_2 , is the subspace H,_It then the series constructed on 
the vectors x1, ••• , Xp,, Xp,+l• ••• , Xp form a linearly indepen­
dent set; (d) the numbers m 11 satisfy the relations 

where 0 < k < t- 1, m0 = 0. 
6.4.50. Find a relationship connecting the dimension n of the 

space X, the maximum height t of the vectors and the numbers m11 , 

which will imply that the series, constructed in Problem 6.4.49 (c), 
form a basis for X. Construct the Jordan form of the operator A for 
this case. 
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Construct the canonical basis and find the Jordan form of the 
following matrices: 

6.4.51. H -!II· 6.4.52.ll~ : ~; =J 
6.4.53. n -~ _2 -~ Jl· 
6

.4.M.II i ~! -~ :1 Jl· 
6.4.55. Find the canonical basis and Jor~an form of the double 

differentiation operator on the space of polynomials Mn, assuming 
that n = 2k, where k is a whole number. 

6.4.56. Show that generally a basis for a space can be made up 
of p1 series with a maximum length t, p 2 - p1 series of length t- 1, 
and for any 0 < k < t, Pt-Hl- Pt-1< series of length k. Here 

Pit = mt-lt+t- mt-11· 

Find the Jordan form of the operator for this case. 
6.4.57. Deduce the following corollary to the result of Prob­

lem 6.4.56: the numbers m 11 satisfy the inequalities 

if r>s. 
6.4.58. Could there be a nilpotent 'operator A on an 8-dimension­

al space such that the ranks r11 of the operators A" form the se­
quence 6, 4, 3, 1, 0? 

Construct the canonical basis, and find the Jordan form of the 
following matrices: 

6.4.59. 

II =l_: =i i II s.
4
.oo. n _: _, -2 



6.4.61. 

6.4.62*. 

Linear Operator Structure 

' -I -2 -3 

0 

2 0 1 0 

0 2 0 0 
0 0 t 0 

0 
_, 

-2 

-1 

0 0 0 5 -9 
2 0 1 0 
0 0 0 t 0 -1 

' -· 

Ch .• 

Using the procedure for constructing a canonical basis for a root 
subspace, described in the previous section, and also the decompo­
sition of the space into a direct sum of root subspaces, find the cano­
nical basis and the Jordan form of the following matrices: 

6.4.63. n ::: !I· 6.4.64.11 =;-· -~II· 
6.4.65. 11 _. . 'II 6.4.66. 11 _:. o _, 11 =~ ~· _:_~· 

6.4.67·11-~ =~ ~II· 6
·
4

·
68

·11=: ~ -~ ~!II· 
:-3 0 0 2 

6.4.69.11=:. • _: :II· 6.4.70.11-: : ::: -:11· 
-6 0-1 -6-t 2 

6.4. 71. The vectors of the canonical basis for an operator A have 
been numerated in reverse order. How is the matrix of the opera­
tor altered? 

6.4.72. Given the Jordan form of an operator A, find the Jordan 
form of the operator (a) A - A0E; (b) A-t. 

6.4.73. Show that if ).10 ••• , "-n are the eigenvalues (some of 
which may be equal) of an operator A of an n-dimensional space, 
then the numbers f (A1), ••• , f (A.,.) are the eigenvalues of the 
polynomial f (A). 
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6.4. 74. Prove that any operator on a complex space is the direct 
sum of one-block operators. 

6.4.75*. Given the Jordan form of an operator A, find the Jordan 
form of the operator A 2• 

6.4. 76. Prove that any operator on a complex space can be re­
presented as the sum of an operator of simple structure and a nil­
potent operator. 

6.4.77*. Prove that a non-scalar operator A, fulfilling the con­
dition A 2 = E, is a reflection operator. 

6.4.78. Prove that an operator A, fulfilling the condition AI<= E 
for a certain natural number k, is of simple structure. 

6.4. 79*. Prove that in any Jordan form of an operator A, the num­
ber of the Jordan blocks, corresponding to an eigenvalue 1..0 , equals 
the defect m1 of the operator A - A0E. 

6.4.80*. Prove that in any Jordan form of an operator A, the­
number of the Jordan blocks, corresponding to an eigenvalue AI) 
and having an order greater than or equl to k, is determined by 
the formula 

where m 0 = 0, and m 11 is the defect of the operator (A - 1..0E)k. 

6.4.81. Deduce from the result of Problem 6.4.80 that 

where Sk is the number of the Jordan blocks corresponding to the 
eigenvalue 1..0 and having the order k. 

Thus, the Jordan form of any operator is uniquely determined 
by the position of the Jordan blocks on the diagonal. 

Without computing the canonical basis, find the Jordan form 
of the following matrices: 

6.4.82. 6.4.83. 

6.4.84. 5 0 6 7 9 " 0 5 0 8 tO 15 

0 0 5 0 tt 16 

0 0 0 5 12 17 

0 0 0 0 13 18 

0 0 0 0 0 19 
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6.4.85. 
2 

-1 -4 
t -4 0 

-2 -4 
4 0 -4 

6.4.86*. 0 0 t t 0 
1 0 -3 0 1. 

0 t 3 0 0 

0 0 0 0 0 t 

0 0 0 t 0 -3 

0 0 0 0 1. 

6.4.87*. 0 0 1 -1 
10-3 1-t-3 

0 1 
0 0 
0 0 0 -3 

0 0 

Ch. 6 

6.4.88. Find the Jordan form of the difference operator A1 on 
the space of polynomials Mn. 

6.4.89. Find the Jordan form of (a) the triple differentiation oper-

::~~~ ~~ ~~ry~~~~!f: 1/~. where A 1 is a difference operator, on the 

6.4.90. Show that in each class of similar matrices there is a uni· 
que Jordan form for each positioning of the diagonal Jordan blocks. 

Determine whether the following matrices A, B and C are simi­
lar: 

6.4.91. A• ~ 11--;: 2~ II· 
3 -2 -5 

II " -63 ''II C = -H7 159 -132 . 
-244 263 -218 

6.4.92. 

II 
., -63 .,

11 B= -147 t59 -132 , 
-244 263 -219 
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6.4.93. A~n =~ !II· 

c ~II-~ .~ 1:11· 
4 -28 -20 

11 -8 12 -Gil B= -1.01.8-10, 
-1.2 24 -1.4 
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6.4.94. Prove that any complex matrix A is similar to its trans· 
pose AT. 

6.4.95. What can be said about the 1ordan form of a matrix A 
similar to its inverse A - 1? 

6.4.96. Prove that a 1ordan block is similar to the companion 
matrix of its characteristic polynomial, i.e., to the Frobenius ma­
trix. 

6.4.97. Prove that any complex matrix is similar to a quasi-dia­
gonal matrix all of whose diagonal blocks are the Frobenius matri­
ces. 

6.4.98•. Find the necessary and sufficient condition for the mini­
mal polynomial of a complex matrix to coincide with its charac­
teristic polynomial. 

6.4.99. Let A1 , ••• , A.m be eigenvalues, all different, of an 
n X n complex matrix A. Prove that the matrix A is of simple struc­
ture if and only if the polynomial (A.- A.1) ••• (A.- A.m) is the 
minimal polynomial of A. 

6.4.100•. Given an m-order matrix A of simple structure and 
the 1 ordan form J of an n X n matrix B. Find the 1 ordan form 
of the matrix (a) A X B; (b) A X En+ Em X B. 

Apply the derived results to the operators GAB and FA B (see 
Problem 5.6.10). 

6.4.101. Find the 1ordan form of the n-order matrix 
1 1 

1 1 

1 1 I 

I· 
where e is positive and positioned in (n, 1), and the off-diagonal 
elements which are not indicated are zeroes. 

6.4.102•. Replace the unit off-diagonal elements, if any, of the 
Jordan form of a matrix A by an arbitrary number e =I= 0. Prove 
that the matrix obtained is similar to the matrix A. 



CHAPTER 7 

Unitary Space Operators 

7.0. Terminology and General Notes 

Assume that X andY are two spaces that are either both Euclidean 
or both unitary, and consider a linear operator A from <llxY· A li­
near operator A* from <llxy is said to be the conjugate of the operator A 
if for any two vectors x EX andy E Y, 

(Ax, y) ~ (x, A'y). (7.0.1) 

Every operator A has a conjugate operator A • which is unique. 
Given a complex m X n matrix A, ann X m matrix A* is said 

to be the conjugate of the matri.r A if 

for all i, j. 
The conjugate operator has a corresponding conjugate matrix and 

vice versa with respect to every pair of orthonormal bases for the 
unitary spaces X andY. In the case of the Euclidean spaces X and 
Y, it can be shown that a similar relationship exists between the 
conjugate operators and the transposed matrices. 

Consider now the operators on a unitary space X for which the 
following theorem is true. 

The Schur theorem. For each operator A there is an orthonormal 
basis for the space X with respect to u:hich the matrix of the operator 
is triangular. 

A number of important classes of operators on a unitary space X 
can be identified, using the notion of a conjugate operator. 

An operator A is said to be normal if 

A*A = AA*. 

An operator U is said to be unitary if 

U*U= UU*=E. 

An operator H is said to be Hermitian if 

J/* =H. 

An operator K is said to he skew Hermitian if 

K• = -K. 

(7.0.2) 

(7.0.3) 

(7.0.4) 

(7.0.5) 
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A Hermitian operator His said to be positive-semidefinite(positive­
definite) if for each non-zero vector x 

(Hx, x);;. 0 (> 0). (7.0.6) 

We define normal, unitary, Hermitian, skew Hermitian, positive­
semidefinite, and positive-definite matrices in exactly the same way 
and in the last two cases matrices can be identified, as usual, with 
operators on the arithmetic space. 

The following results hold for all the above classes of opera­
tors: 

An operator A is normal if and only if there exists an orthonormal 
basis for it containing the eigenvectors. 

A normal operator A is unitary if and only if the moduli of all 
the eigenvalues are equal to unity. 

A normal operator A is Hermitian if and only if all its eigenvalues 
are real. 

A Hermitian operator II is positive-semidefinite (positive-defi­
nite) if and only if all its eigenvalues are nonnegative (positive). 

Any operator A from wxr may be represented as 
A ~ H, + iH,, (7.0.7) 

where H1 and H 2 are Hermitian operators. This is called the Her­
mitian decomposition of operator A. Moreover, 

H1={(A+A*), H2 =-}(A-A*). 

In the Euclidean space X the relations (7 .0.2)-(7 .0.6) also iden­
tify classes of operators which are called, respectively, normal, 
tWthogonal, symmetric, skew-symmetric, positive-semidefinite, positive­
definite. Matrices with the same names are defined in similar man­
ner. 

The following definitions and results are true for both unitary and 
Euclidean spaces. 

If A is an operator with rank r from X to Y, then the nonzero 
eigenvalues of operators A*A and AA* coincide (taking their mul­
tiplicity into account) and are positive. 

If n and m are the dimensions of spaces X and Y, respectively. 
then the multiplicity of the eigenvalue zero is equal to n - r for 
the operator A*A, and to m-r for the operator AA*. 

Let s=min (n, m) and denote the common eigenvalues of the 
operators A • A and AA * by a~, ... , a! (a1 ~ 0). The numbers 
a 1, ... , a, are then called the singular values of the operator A. 

The singular values of a matrix are defined similarly. 
In all cases orthonormal bases e1, ..• , en and f1 , ••. , fm (if 

A E Wzz, then m = n) exist for an operator A such that: (1) the vectors 
e1 , ••• , en are the eigenyectors of the operator A* A; (2) the vectors 



180 Unitary Space Operators Ch. 7 

/ 1, .•• , /m are the eigenvectors of the operator AA *; (3) if e1, .•. 

• . . , er and / 1, ••• , fr are associated with nonzero numbers a;, , . . . . , a:, then 

t,~-=~Ae1 , 1=1. ... ,r. 

A pair of bases e1 , • •• , e,. and fu ..• , fm that possess these prop­
erties is said to be a pair of singular bases for the operator A. 

It is possible to represent any operator A on a space X as the 
product of a positive-semidefinite and unitary (orthogonal} operator: 

A~ HU. {7.0.8) 

This is called the polar representation of operator A. 
Assume that A is an operator from Wzy and b is a fixed vector 

in space Y. If the equality 
Ax'= b (7.0.9) 

is considered for finding vectors x from X, then the equation is 
consistent if and only if bET A· Thus, the solutions of (7.0.9} are 
all pre-images of the vector b. If b ~ T A• then it is sensible also 
to find the vectors x such that the vector 

y = b- Ax 

has the least possible length. These vectors x are called pseudoso­
lutions of equation (7.0.9). The pseudosolution which has the least 
length is said to be the normal pseudosolution of the equation (7 .0.9). 
It always exists and is unique. 

By considering equation (7.0.9) for all vectors b from Y, we can 
match the normal pseudosolution of the corresponding equation to 
each vector b and thus obtain a linear operator from Y to X, Thi!l 
operator is called pseudoinverse of the operator A and is denoted 
by A+. 

A quadratic form F in n real variables x1, •.. , Xn is a function 
.of the form 

(7.0.10) 

where au are real numbers; we assume that au= an. , 
If a symmetric matrix A of the coefficients au (called the matrix 

of a quadratic form) and a column vector x having the variables 
.x1, ••• , Xn are constructed, then the definition of a quadratic form 
may be rewritten as 

F ~(Ax, z). (7.0.11) 

The scalar product is defined here by the familiar rule (7.1.4) and 
the rank of a quadratic form F is the rank of the matrix A. 
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When the variables are changed by 

:e = Py 

181 

(7.0.!2) 

the form F is transformed into a new quadratic form in the new 
variables y1, ••• , Yn and the matrix B, defined by this form, is 
related to the matrix A by the relation 

B ~ P' AP. (7.0.!3) 

This change of variables (7.0.12) is said to be nondegenerate if 
the matrix Pis nondegenerate. The rank of a quadratic form remains 
unaltered by a nondegenerate transformation of its variables. 

Every quadratic form F of rank r may be reduced by a nondegene­
rate transformation of variables to the form 

(7.0.14) 

which is called the canonical form of F. Here A.1, A2, ••• , Ar are 
all nonzero. 

Generally speaking, the canonical form of a given quadratic 
form is not uniquely defmed. In particular, it is always possible 
to make nonzero coefficients equal to 1 or -1. Such a canonical form 
is called the normal form of the quadratic form and despite the 
ambiguity of the canonical form the following statement remains 
valid. 

The law of inertia of quadratic forms. The number of positive (and 
negative) coefficients among A1 , •.• , Ar is the same in each cano­
nical form to which a given quadratic form may be reduced by 
a nondegenerate transformation of variables. 

The above-mentioned numbers are called, respectively, the posi­
tive and negative indices of inertia, and their difference is said to be 
the signature of the quadratic form. 

Note that each quadratic form F may be reduced to the canonical 
form by an orthogonal transformation of variables (a transformation 
defined by an orthogonal coefficient matrix). For this it is sufficient 
to substitute an orthogonal matrix, whose columns are the eigen­
vectors of the matrix A, for P in (7.0.12). The coefficients of the 
canonical form then obtained are the eigenvalues of A. 

A quadratic form (7.0.11) is called positive-definite if 

(Ax, z) > 0 

and when z =I= 0. A positive-definite form F becomes normal when 

F=u!+u!+···+Y~· (7.0.15) 

Two quadratic forms F and Gin the same variables may be redu­
ced to a canonical form by one transformation if at least one of the 
forms (F, for example) is positive-definite. If in this case the trans­
formation x = Py, which reduces the form F to a normal form 
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(7.0.15), is carried out first, then the form G is turned into some 
form in the variables y1 , ••• , Yn· Next the orthogonal transforma­
tion y = Qz, which reduces G to a canonical form, is carried out; the 
form F still retains its normal form and is changed into F = z~ + 
+<+· .. +~. 

Note in conclusion that the symbols e1(J> are used in this chapter 
as a contracted way of writing the complex number z = cos \ji + 
+ isintp. 

7.1. Conjugate Operator. 
Conjugate Matrix 

In this section the following topics are considered: 
The definition and algebraic properties of conjugate operators and conjugate 

matrices. 
E:ramplea of conjugate operators. 
The relation between conjugate operators and conjugate matrices with 

resifte:a:Jon°sJ!~;'snb~:ee~8ili~ r;,:::tr~~a~~racteriatics of an operator A and 

the I~0fi~f~ha!':,to•ut~b~ta~h~~ep~;:~y ~~wa:e~~~~~~;:1b:~e~~·njugate) 
depends on the definition of the scalar product for a given linear space. 

7.1.1. Deduce the following properties from the definition of 
a conjugate operator: 
(i) (A•j• =A; 
(ii) (A + B)• =A*+ B*; 
(iii) o• = o: 
(iv) (aA)* = cXA*; 
(v) (AB*) = B* A •; 
(vi) E* = E; 
(vii) if an operator A is nondegenerate, then (A - 1)* = (A*)-1; 

(viii) (A"')*= (A*)"' for any whole nonnegative m; 
(ix) if an operator A is nondegenerate, then the previous property 
is true for any whole number m; 
(x) if f (t) = a0 + a1t + ... + a 171t"' is an arbitrary polynomial, 
then 

[f (A)]• = T (A*), 

where 7 (t) = ao + ii;,t + ... + amtm. 
7 .1.2. Prove that the properties listed in the previous problem 

also hold for conjugate matrices. 
7.1.3. Show that for a nilpotent operator A with the nilpotence 

index q, the conjugate operator A* is also nilpotent and has the 
same nilpotence index. 

7.1.4. Show that if operators A and B commute, then the conju­
gate operators A* and B* al!!o commute. 
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7.1.5. Two bases e1, .•. , en and q1, ••• , qm for unitary (Eucli­
dean) spaces X and Y, respectively, are held fixed. Assume that 
the following relations are valid for linear operators A and B 

(Ae~o qJ) = (e11 Bq1), i = 1, ... , n; j = 1, ... , m. 

Prove that in this case A"' = B. 
7.1.6. Let e1, ••• , en be an orthogonal (but not orthonormal!) 

basis for a space X. Find the relationship between the matrices 
defined by an operator A from Wxx with respect to this basis and 
the matrices of the conjugate operator A*. 

7.1.7*. Let an operator A be defined by a matrix Ae with respect 
to a certain basis e1, ... , en for a unitary (Euclidean) space X. 
Prove that with respect to the basis / 1 , , •. , fn. which is biorthogo­
nal to the basis e1, ••• , en, the conjugate operator A • is defined 
by the conjugate matrix (A e)•. 

7.1.8. If there is an operator A on the one-dimensional unitary 
(Euclidean) space, what does the transformation A •, which is conju­
gate of A, constitute? 

7.1.9. Find the conjugate operator of the rotation of the Eucli­
dean plane through an angle a:. 

7.1.10*. Find the conjugate operator for the operator of the 
Euclidean three-dimensional space Ax = [x, a], where a is a fixed 
vector. 

7.1.11. The scalar product is given on the space of polynomials 
M 1 by the formula: 

(7.1.1) 

where f (t) = a0 + a1t + a 2t1 , g (t) = b0 + b1t + b2t2• Find all 
the matrices of the differential operator A and the conjugate opera-

tor A• with respect to the basis: (a) 1, t, t1; (b) ~t' -~t, t2 -1, 

~t' +~t; (c) t, t, ~t2 -;. 

7.1.12. On the space M 2 the scalar product is defined by: 

(1, g)- I (-1) g (-1)+1 (0) g (O) + 1 (1) g (1). (7.1.2) 

Find the matrix defin('d by the operator, which is conjugate to the 
differential operator, with respect to each of the bases listed in 
Problem 7.1.11. Compare the matrices obtained with the correspond­
ing matrices of Problem 7.1.11. 

7.1.13. The scalar product on the space M 2 is given by the ror­
mula: 

(f, g)-~ l(t)g(t)dt. _, (7.1.3) 
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Find the matrix of the operator which is conjugate to the differen­
tial operator with respect to each of the bases listed in Problem 
7.1.11. 

7.1.14. On the n-dimensional arithmetic space, whose elements 
are the column vectors, the natural scalar product is defined by: 

(x, y) ~ a,jl, + ... +a"~". (7.1.4) 
Here 

·~ii:J y~il::ll 
(the sign of complex conjugation is omitted in the real case). 

Show that if n X n matrices are identified with operators on this 
space as in Problem 5.6. 7, then the conjugate operator of the ma­
trix A is: (a) the transpose of the matrix AT in the case of the real 
spaceR,; (b) the conjugate matrix A* in the case of the complex 
space C,. 

7.1.15. Show that in the case of the Kronecker product A X B. 
the conjugate matrix is of the form A* X B*. 

7.1.16. Prove that if A is a square matrix, then for associated 
matrices the following relationship holds true 

(A*),~ (A,)*. 

7.1.17. Denote the spaces of real and of complex n X n matrices 
by Rnxn and Cnxn. respectively, for which the scalar product is 
given by the formula 

(7.1.5) 

(In the real case, the sign of the complex conjugation is omitted). 
Show that 

;A, B)~ tr (B*A) ~ tr (AB*). (7.1.6) 

7.1.18. Show that on the spaces Rnxn and Cnxn the conjugates 
to the operators GAB and FAB defined in Problem 5.6.10 are the 
operators G A• 8 • and F A• B•· 

7.1.19. Let A 1 , ••• , An be fixed real n X n matrices. Consider 
the following operator A from Rn to Rnxn: 



7.1 Conjugate Operator. Conjugate Matrix 

The scalar product is defined according to (7 .1.4). Show that th& 
conjugate of an operator A is the operator 

s-y~II:J. ~.~••(B'A,>"·"(A;s>, ;~t •...••. 
Extend this result to the complex case. 

7.1.20. Show that each linear functional f (x) c.n a unitary (Eucli­
dean) space X may be defined as the scalar product 

I (x) ~ (x, f), 

where f is a certain vector of the space being held constant for th& 
given functional. 

7.1.21. Show that the conjugate to a projection operator is also 
a projection operator. 

7.1.22. Show that the conjugate to a reflection operator is also 
a reflection operator. 

7.1.23. Show that the rank of a conjugate operator A* equals 
the rank of the operator A. 

7.1.24. Prove that the kernel of an operator A* coincides with 
the orthogonal complement of the image of the operator A. 

7.1.25. In the three-dimensional Euclidean space, a Cartesian 
system of coordinates Oxyz is fixed. Let A be the projection operator 
on the coordinate plane and parallel to the straight line determined 
by the equations x = y = z. Find the conjugate operator A •. 

7.1.26. Find the kernel and image of the operator in the M 2-space 
which is conjugate to the differential operator, if the scalar product 
for M 2 is given by the formula: (a) (7.1.1); (b) (7.1.2); (c) (7.1.3). 

·7.1.27. Prove the Fredholm theorem: a non-homogeneous system 
of linear equations Ax = b is consistent if and only if the column 
vector b is orthogonal to all the solutions of the conjugate homoge­
neous system A *y = 0 (cf. 4.5.3). 

7.1.28. Prove the following Fredholm alternative: either a system 
of equations Ax = b is consistent, whatever the right-hand side b is, 
or the conjugate homogeneous system A *y = 0 has nonzero solu­
tions. 

7.1.29. Prove that the kernel of an operator A*A coincides with 
the kernel of the operator A. 

7.1.30. Prove that the image of an operator A*A coincides with 
the image of the operator A •. 

7.1.31. Let operators A and B satisfy the equality 8* A = 0. 
Prove that the images of these operators are orthogonal subspaces. 

7.1.32•. Prove that if AB* = 0 and B*A = 0, then the rank 
of the operator A + B equals the sum of the ranks of the operators 
A and B. Moreover, the kernel of the operator A + B is the inter­
~ection of the kernels of the operators A and B. 



186 Unitary Space Operators Ch. 7 

7. 1.33. Prove that if a subspace L of a unitary (Euclidean) space 
is A-invariant, then its orthogonal complement £l is invariant 
under the conjugate operator A*. 

7.L34*. On the space M, of polynomials of degree ~ n, the 
scalar product is gh·en by the formula 

(7.1.7) 

whNe /(t) = a 0 -,- a1t + ... + a,t", g(t)= b0 + b1t + ... + 
+ b,t". Describe all the invariant subspaces of the operator 
conjugate to the differential operator. 

7.1.35. The scalar product forM, is determined by the formula: 

(1, g)=:¥; /(k)g(k). (7.1.8) ,_, 
Find the n-dimensional invariant subspace of the operator which 
is conjugate to the differential operator. 

7.1.36. Solve a similar problem for the case when the scalar 
product for M, is defined by the formula 

(f, g)~ i f(t)g(t)dt. (7.1.9) 
-I 

7. 1.37. Prove that in the unitary space of dimension n, each 
operator has: (a) an invariant subspace of dimension n- 1; (b) an 
invariant subspace of dimension k, 0 < k < n (cf. 6.3.9 and 6.3.36). 

7.1.38. Prove the following Schur theorem: for each operator A 
on a unitary space there exists an orthonormal basis with respect to 
which the matrix of the operator A is triangular (cf. 6.3.36). 

7.1.39. Find the Schur basis for the differential operator in 
the space M 2 if the scalar product of M 2 is determined by the formula: 
(a) (7.1.1); (b) (7.1.2); (c) (7.1.3). 

7.1.40*. Prove that commuting operators A and B on a unitary 
space have a common Schur basis with respect to which the matrices, 
defined by these operators, are triangular and have the same form. 

7.1.41. Find the relation between the eigenvalues of an operator 
A on a unitary space and the conjugate operator A*. 

7. 1.4.2. LC't x be an eigenvector common to the conjugate opera­
tors A and A •. Pro,·e that the eigenvalues A. and 1.1. of the operators 
A and A •, and associated with the vector x, are conjugate numbers. 

7. t .43. Let x be the eigenvector of an operator A, associated with 
an eigenvalue A.; y i~ lhC' C'igenvector of the operator A •, associated 
with an eigenvalue J.L, with J.L =I=);". Prove that the vectors x and y 
are orthogonal. 
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7.1.44•. Let K '1.. and K~ be root subs paces of operators A and A*, 
associated with eigenvalues A and Jl, respectively, with Jl :::fo ~. 
Prove that the subspaces K). and K: are orthogonal. 

7.1.4:>. How are the Jordan forms of the conjugate operators A 
and A* related? 

7.1.46. Find the Jordan canonical bases for the differential ope­
rator and its conjugate in the polynomial space M 2 , with the scalar 
product introduced as in (7.1.1). 

7.1.47•. Prove that the Schur basis for an operator A is defined 
ambiguously. Namely, for each sequence of the operator's eigenva­
lues A1 , • ., A11 , there is an orthonormal basis for the unitary space 
with respect to which the matrix determining this operator not only 
is upper (lower) triangular, but also has eigenvalues A1 positioned 
on the main diagonal in the original sequence. 

7.2. Normal Operators and Matrices 

We diSCUSS here various properties of normal operators and normal matrices. 
The most Important of these is, certainly, the existence of an orthonormal basis 
for these operators and matrices that is made up of the eigenvectors. The greater 
part of the problems are devoted to just this fact. Further, we wished to illwtrate 
the following important statement: of all operators of simple structure, the 

~;~~~siorc:~~~baa~: foerc~~~~.w~!fn::rad! ~~ ~¥~hS:!1i~~l:~t~~~~:6o~~o~~nt~: 
f~:~tth~re~!~ ~h~i!r~h~~1 h!~~eov;!;a\~':s ~~a{ ~~~O:!r:ath~o~d~~s!et~nb: 
such, generally speaking, and conversely, another subset of the operators of 
simple ~tructurc would become the class of normal operators. 

7.2.1. Show that any scalar operator of a unitary (Euclidean) 
space is normal. 

7.2.2. Show that if A is a normal operator, then the following 
operators are also normal: (a) aA, where a is any number; (b) A", 
where k is any natural number; (c) f (A), where f (t) is an arbitrary 
polynomial; (d) A - 1, if A is nondegenerate; (e) A •. 

7.2.3. Give examples demonstrating that the sum A + B and 
product AB of normal operators A and Bare not, generally speaking, 
normal operators either. 

7.2.4. Show that the matrix of a normal operator with respect 
to any orthonormal basis is also normal. Conversely, any normal 
matrix dermes a normal operator with respect to that basis. 

7.2.5. Give examples demonstrating that the matrix of a normal 
operator with respect to a non-orthogonal basis (a) may prove not 
to be normal; (b) may be normal. 

7.2.6. Show that any linear operator in a one-dimensional unitary 
(Euclidean) space is a normal operator. 

7.2.7. Show that rotation operator on the Euclidean plane is a 
normal operator. 
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7.2.8. Show that an operator on the three-dimensional Eucli­
dean space, such that Ax = (x, a], is normal. 

7.2.9. Show that the following operators on the space .lf" of poly-
nomials with the scalar product (7.1.7) are normal: 1 

(a) /(t) -1(-t); 
(b) /(t) -t"/(1/t). 
7.2.1.0. Prove that any circulant is a normal matrix. 
7.2.tt. Let A = B + iC be a normal complex matrix of order 

n. Prove that the real matrix D of order 2n 

(i.2.1) 

is also normal. 
7.2.t2. Prove that if the rows and columns of a normal matrix 

are considered as vectors of the arithmetic space with the natural 
scalar p;:oduct (7.1.4), then (a) the length of the i-th row equals the 
length of the i-th column; (b) the scalar product of the Hh and j-th 
rows equals the scalar product of the j-th and i-th columns (in the 
indicated order). 

7.2.13. Prove that a quasi-triangular normal matrix is neces­
sarily quasi-diagonal. 

7.2.14. Prove that if A is a normal matrix, then the associated 
matrix A P is also normal. 

7.2.15. Prove that the sum of the squares of the moduli of all 
minors of order k, selected from the rows i 1, .•. , i,. of a normal 
matrix A, equals a similar sum of the minors selected from the 
columns with the same indices. 

7.2.16. Prove that the Kronecker product of normal matrices A 
and B (perhaps, of different orders) is also a normal matrix. 

7.2.t7. Let A and B be normal matrices of order n X n. Prove 
that the operators GA 8 and FA 8 (see Problem 5.6.10) are normal 
operators on the space Cr~><n (Rn.n)· 

7.2.t8. Pro\·e that if A is a normal operator, then for any vector 
;r, the following equality is true 

lAx I~ IA*x 1. (1.2.2) 

7.2.t9. Prove that the kernel of a normal operator is the orthogo­
nal complement to its image. 

1.2.20•. Prove the following statement: for an operator A on a 
unitary space to be normal, it is necessary and sufficient that the 
image and kernel of the operator A - AE, where A is any number, 
should be orthogonal. Is a similar statement valid for a Euclidean 
space? 

7.2.21. Prove that a projection operator Pis normal if and only 
if the image and kernel of this operator are orthogonal. If this is 
the case, the operator P is called an operator of orthogonal projection. 
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7.2.22. Let A and B be normal operators, and AB = 0. Do these 
conditions imply the equality BA = 0? 

7 .2.23. Prove that any eigenvector of a normal operator A is 
also an eigenvector of the conjugate operator A*. 

7 .2.24*. Prove the statement converse to that in Problem 7.2.23: 
if each eigenvector of an operator A on a unitary space is also an 
eigenvector of the conjugate operator A* the operator A is normal. 

7.2.25*. Prove that each invariant subspace of a normal opera­
tor A is also invariant with respect to A*. 

7.2.26. Prove that an operator, induced on an arbitrary inva­
riant subspace by a normal operator, is also normal. 

7.2.27. Show that the eigensubspaces of a normal operator are 
orthogonal to one another. 

7 .2.28. Prove that the operator R of reflection in L1 parallel to 
L 2 is normal if and only if the subspaces L 1 and L 2 are orthogonal. 
In this case R is called an orthogonal reflection operator. 

7 .2.29. Can a normal operator have a nonorthogonal basis made 
up of the eigenvectors? 

Verify that the matrices, indicated below, are normal and find, 
for each of them, an orthonormal (in the sense of (7.1.4)) basis of 
eigenvectors: 

7.2.30. II: ; II· 7
.
2

.
3
1. II=~ : -~II· 

7.2.32 •. 11 ,_, -1 • II 
-1 t-t 1 • 

0 t 2-1 

7.2.33. I[ : : _: _; II 
-1 t -t t . 

1-1 I I -1 
7.2.34. Can the scalar product be defined on the space Mn (n# 1) 

so that the differential operator is normal? 
7.2.35. An operator on the space of polynomials Mn (n# 1), 

I (t) -I (t + a) (where a is a certain fixed number), is considered. 
Can the scalar product on .Un be defined so that this operator is 
normal? 

7.2.36. Let X be an arbitrary linear space. Prove that for any 
operator A of simple structure on X the scalar product on X may 
be defined so that A is normal. 

7.2.37*. An operator A on the arithmetic space R 3 has the matrix 

II~ ~ Jl 
with respect to the standard basis. Define the scalar product on R 3 
so that the operator A is a normal operator. 
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7.2.38*. Prove that an operator A is a normal operator if and 
only if the conjugate operator A • can be represented by a polynomial 
dA. ' 

7.2.39. Let A be a normal operator, and let A commute with 
some operator B. Prove that (a) A* commutes with B; (b) A com­
mutes with B*. 

7.2.40. Prove that the commuting normal operators A and B 
have a common orthonormal basis composed of their eigenvectors. 

Verify that the matrices A and 8, indicated below, are normal 
and commuting and construct a common orthonormal basis of 
their eigenvectors for them: 

t+5t -t+t 1-f -,---,- -,-
8= -~+1 2!1 -~+f 

1-1 -1+i t-51 -,---,- -,-
7.2.43. Prove that the operators A + 8, AB, and BA (see 

Problem 7 .2.40) arc normal as well as the operators A and 8. 
7.2.44*. Prove the following statement which contrasts slightly 

to that of Problem 7.2.43: if A, B, and ABare normal operators, 
and at least one of the operators A or B has not only simple but 
different in modulus eigenvalues then A and B are commuting. 

7.2.45*. Prove the following strong version of the statement of 
Problem 7.2.44, viz. that if A, B, and ABare normal operators, and 
at least one of the operators A or B has no different eigenvalues 
with equal moduli, then A and B are commuting. 

7.2.4.6. Give an example of normal operators A and B for which 
the operators AB and BA are normal and different. 

7.2.47. The maximum value of the moduli of the eigenvalues 
Ah .•. , An of an operator A 

p(A)~maxJ1c1 J 

' is called its spectral radius. Prove the following estimate of the 
extreme value for the spectral radius of a normal operator A: 

p(A)=~;~ 1(~~·.,;)1 . 

What can be said about \'ectors for which such a maximum occurs? 



7.3 Unitary Operators and Matrices 191 

7 .2.4.8. Prove that the following estimate of the spectral radius of 
a normal n X n matrix A is valid 

p(AJ~-H ~ "11 1· 
,,}=1 

7.2.4.9. Prove that for the spectral radius of a normal operator A 
the formula is valid 

p (A)=~~: l~z~l , 

Is it correct to say that each vector .x, for which the indicated equa­
lity occurs, is an eigenvector of the operator A? 

7 .2.50•. Let R be a Euclidean space, C a unitary space obtained 
from R by complexification (see Problem 2.5.14). Show that the 
correspondence between the operators A of the space R and the 
operators A of the space C (see Problem 5.1.52): (a) assigns the conju­
gate operator A• to the conjugate operator A"'; (b) assigns the nor­
mal operator A to a normal operator A. 

Using (b), show that if A is an eigenvalue for a normal operator A. 
then its geometric and algebraic multiplicities coincide. 

7 .3. Unitary Operators and Matrices 

The first part of the section is devoted to unitary operators. We shall be 

~h~~~~al~~s~i~8~~~:ryw~~er~~~~o!~w~~m~i~;!r:t~~ aW0Ji~~~~ t~i~e~:~~t~~ 
have unil moduli), and the preservation of the scalar product. 

In the second part of the section we consider unitary matrices. Having dis­
cu~sed the1r formal properties, we introduce the notion of unitarily Similar 
matrices and formulate the matrix analogues of a number of propositions that 
have already been proved for the operators. Finally, we demonstrate some impor­
tant computational applications of certain unitary matrices of special form. 

7.3.1. Show that the set of all unitary operators from OO.r.r forms 
a group under multiplication. 

7.3.2. Show that the sum of unitary operators is not, generally 
speaking, a unitary operator. 

7 .3.3. Show that the product of a unitary operator by a number a 
is a unitary operator if and only if I a I = 1. 

7 .3.4. Describe all the unitary operators on a one-dimensional 
space. 

7.3.5. Show that an operator that rotates the Euclidean plane 
is an orthogonal operator. 

7.3.6. Is the operator Az = [:z:, a) on a three-dimensional Eucli­
dean space orthogonal? 

7.3.7. Sho\v that the operators of Problem 7.2.9 are orthogonal. 
7.3.8. Let the scalar product on the spnce M" (n> 1) be defined 
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by formula (7.1.9). Are the operators mentioned in Problem 7.2.9 
orthogonal on such a Euclidean space? 

7.3.9. Let A be a normal operator on a three-dimensional unitary 
space. Prove that if the eigenvalues At> A~.h A3 of this operator con­
sidered as points in the complex plane are not in the same straight 
line, then the operator A can be represented in the form 

A~ aE + pU, 

where U is a unitary operator and a is a complex number, p > 0. 
7 .3.10. Can a projection operator be unitary? 
7.3.11. Show that an orthogonal reflection operator is a unitary 

<lperator. 
7.3.12. Show that the operators mentioned in Problem 7.2.9 

are orthogonal reflection operators. Find the eigensubspaces of 
.each of them. 

7 .3.13*. An operator A on the space M 2 has the matrix 

with respect to the basis 1, t, t 2 • Show that A is a reflection operator. 
Define the scalar product on M 1 so that A becomes an orthogonal 
<lperator. 

7.3.14. Prove that a normal operator A, fulfilling the condition 
A k = E (where k is a certain whole number k =fo 0), is a unitary 
operator. .-

7.3.15. Prove that the modulus of the determinant of a unitary 
opf'rator equals unity. 

7.3.16*, An orthogonal operator Q on the space of polynomials 
M 2 with the scalar product (7.1.1) transforms the polynomials 
1 + t + t2 and 1 - t2 into -1 - t + t2 and 1 - t, respectively. 
The determinant of this operator equals -1. Find its matrix with 
respect to the basis 1, t, ta. 

7.3.17. Prove that if U is a unitary operator, then for any vectors 
.x and y 

( Ux, Uy) ~ (x, y), 

i.e. the unitary operator preserves the scalar product. Conversely, 
if a certain linear operator U preserves the scalar product of any 
two vectors, then U is a unitary operator. 

7 .3.18. An operator on the arithmetic space R 4 with the scalar 
product (7.1.4) transforms the vectors x1 = (2, 2, 2, 2,), x2 = 
= (2, 0, 2, 2), x 3 = (2, 2, 0, 2), .x4 = (2, 2, 2, 0), respectively, into 
the vectors y1 = (4, 0, 0, 0), y 2 = (3, -1, 1, 1), y 3 = 
=(3, 1, -1, 1), y4=(3, 1, 1, -1). Is this operator orthogonal? 
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7.3.19. Prove that for a linear operator on a space X to be uni­
tary, it is necessary and sufficient that it should preserve the scalar 
products of the vectors of a certain basis for the space X. In particu­
lar, an operator is unitary if it transforms an orthonormal basis 
into another orthonormal basis. 

7 .3.20•. Prove that for a linear operator U on a space X to be 
unitary, it is sufficient that U should preserve the lengths of all 
vectors from X. 

7.3.2t•. Prove that a linear operator preserving the orthogonal­
ity of any two vectors differs from a certain unitary operator only 
by a numerical multiplier. 

7.3.22. Prove that the requirement of a matrix U to be unitary 
is equivalent to the requirement that the columns (or rows) of U, 
considered as vectors of the arithmetic space with the scalar product 
(7.1.4), form an orthonormal basis for this space. 

7.3.23. Prove that any permutation matrix is a unitary matrix. 
7.3.24. Prove that the modulus of each element of a unitary 

matrix equals its complementary minor. 
7.3.25. Let U = P + iQ be a complex unitary matrix of order n. 

Prove that the real matrix of order 2n 

is orthogonal. 
7.3.26. Prove that if U is a unitary matrix, then the associated 

matrix Up is also unitary. 
7.3.27. Prove that the sum of the squares of the moduli of all 

minors of order k, selected from arbitrary k rows (or columns) of 
a unitary matrix, equals unity. 

7 .3.28. Let the modulus of the leading principal minor of order 
k of a unitary matrix U equal unity. Prove that in this case U is 
of quasi-diagonal form 

where U11 is a block of order k. 
7.3.29. Prove that the Kronecker product of unitary matrices 

U and V, being, perhaps, of different orders, is also a unitary matrix. 
7.3.30. Let U and V be unitary matrices of order n X n. Show that 

(a) the operator Guv (see Problem 5.6.10) is unitary; (b) the operator 
Fuv is not, generally speaking, unitary. 

7 .3.31. Prove that the transfer matrix, from an orthonormal 
basis into another orthonormal basis for a unitary space, is a uni­
tary matrix. 

7 .3.32. Matrices A and B are said to be unitarily similar if there 
exists such a unitary matrix U that B = u-1A U. Show that the 
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relation of unitary similarity on the set of square matrices of a given 
order n is reflexive, symmetric, and transitive. 

7.3.33. Prove that any complex matrix is unitarily similar to 
a triangular matrix. 

7 .3.34. Prove that an upper triangular matrix is unitarily simi­
lar to some lower triangular matrix. 

7.3.35. Show that a unitarily similar transformation transforms 
a normal matrix into another normal matrix. 

7.3.36. Show that a complex normal matrix is unitarily similar 
to a diagonal matrix. 

7.3.37. Find a condition for a matrix of the form 

i-th row 

(7.3.1) 

j-th row 

to be unitary (the off-diagonal elements, that are not indicated, 
are equal to zero). The unitary matrix obtained is called an ele­
mentary unitary matrix and is further denoted by T !J• 

7.3.38. Let A be a square matrix of order n (n~ 2). Select an 
elementary unitary matrix Til so that the (j, i) element of the 
matrixB = T11 Aisequal to zero. In this way we may put'¢1 ='1j• 4 = 0 
(see Problem 7 .3.37). 

7.3.39. Given an n-order matrix A, how should such a sequence 
of elementary unitary matrices T<1l, T<2l, .•• , be chosen so that 
all the elements of the first column below the diagonal of the prod­
uct ... T<2lT< 1lA are equal to zero? 

7.3.40*. Using Problems 7.3.38 and 7.3.39, indicate a method 
to decompose a square matrix into the product of a unitary and upper 
triangular matrices. 

7.3.41. Prove that any unitary matrix can be decomposedinto 
the product of elementary unitary matrices and, perhaps, by a :di­
agonal unitary matrix. 

7.3.42. Let A = U1R 1 and A = U2R 2 be two decompositions 
of a nondegenerate matrix A into the product of a unitary and upper 
triangular matrix. Prove that 

U2 = UtQ, Rt = QR2, 

where Q is a certain diagonal unitary matrix. 
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7.3.43. How should the method derived in Problem 7.3.40 be 
applied to the solution of a system of linear equations Ax = b with 
a square nondegenerate coefficient matrix? 

7.3.44. Find a condition for a column vector w so that a matrix 
of the form 

H=E-2ww* (7.3.2) 

is unitary. 
7.3.45. Let w be a normalized column vector. Prove that the 

corresponding matrix (7.3.2), treated as an operator on the artithmet­
ic space, defines an orth&gonal reflection in it. Such a matrix H 
is called a reflection mtJtrix. 

7.3.46. Find the eigenvalues and eigenvectors of a reflection 
matrix. 

7.3.47. Find the determinant of a reflection matrix. 
7.3.48. Show that any unitary matrix all of whose eigenvalues 

are +1 and -1, -1 being an eigenvalue of multiplicity unit, can 
be represented in the form (7.3.2). 

7 .3.49. Show that the matrix 

r~ll'~·· ,;·•11 sln!p -cosq; 

is a reflection matrix. Find the corresponding vector w. 
7.3.50. Let H be a reflection matrix whose vector w is known. 

How should the product of the matrix H by a column vector x be 
computed so that this operation requires performing only (2n + 1) 
multiplication operations? 

7.3.51. Select the vector w so that the reflection matrix, defined 
by it, transforms a given vector x into a vector collinear to the 
unit column vector e1 (we assume that the vector x itself is not colli­
near to e1). 

7.3.52*. Use the result of Problem 7.3.51 to construct an algo­
rithm that decomposes a square matrix into the product of a uni­
tary and an upper triangular matrix. 

7.3.53. Let Ax = b be a system of linear equations with a non­
degenerate square matrix A. Describe a method to solve this system 
based on the procedure derived in Problem 7 .3.52. 

7.3.54*. Let A be a square matrix of order n (n > 2). How should 
such a reflection matrix H be selected so that the matrix B = 
= HAH* has zeroes for all the elements of the first column from 
the third element down? 

7 .3.55. A square matrix B is said to be upper (lower) almost trian­
~tular if bu = 0 for i > j + 1 (j > i + 1.). Using the result of 
Problem 7.3.54, show that any square matrix is unitarily similar 
to an upper (lower) almost triangular matrix. Restate this state­
ment in the language of operators. 
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7 .4. Hermitian Operators and Matrices 

ope~~t~~= !~t ~~1{rff_!~~h:~~e~~ ... d~~~S: ~~~b::J:~t de~~~~~~d 0~~:h:~;i,~~~ 
principles as in the previous sections. The second half comprises the problems 

~~~~~rf~'%!~e r::!:~k:~J:5e~{r~!~~~::n~::.r¥h~5~p~I1~~l!! ~£~~~::-a;!~~ ... ~~ 
!~!:::1~1:: octH ... ~rm\~ra~~!t~:'c:~t~~eb~0u~du,t~~~~~b~ :~h~~u~£5 ~~~~f:~~~h~~h 
is described in Problems i .4.43-i .4.48. 

7 .4. 1. Show that the set of all Hermitian operators from w xx 
forms a group under addition. 

7.4.2. Show that the set of all symmetric operators from the 
linear space Wxx of all linear operators on a Euclidean space X is 
a linear subspace. A similar statement is valid for the set of all 
skew-symmetric operators from wxx· 

7.4.3. Show that the product of a nonzero Hermitian operator 
and a number ct is a Hermitian operator if and only if ct is a real 
number. 

7.4.4. Show that an operator K is skew Hermitian if and only if 
the operator iK is Hermitian. 

7.4.5. Show that the product of Hermitian operators H1 and H, 
is a Hermitian operator if and only if H 1 and H 2 commute. 

7 .4.6. Show that the inverse operator of a non degenerate Hermi­
tian operator is also Hermitian. 

7.4.7. Describe all the Hermitian operators that act on a one­
dimensional space. 

7.4.8. A linear operator A is defined on a two-dimensional Eucli­
deAn space and for two particular noncollinear operators z and y 

(Az, y) ~ (z, Ay). 

Prove that A is a symmetric operator. 
7.4.9. Show that tho operator Az = [z, a] on a three-dimensional 

Euclidean space is skew-symmetric. 
7.4.10*. Prove that any skew-symmetric operator K of a three­

dimensional Euclidean space can be represenled in the form Kz = 
= [z, a] having selected a convenient vector a. 

7.4.11. An operator on the arithmetic space R 4 with the scalar 
product (7.1.4) converts the vectors z 1 = (0, 1, 1, 1), z 2 = 
~ (-l. o. l, l), z, ~ (-l, -l, 0, l). z, ~ (-l, -l. -l, 0) 
into the vectors y1 = (3, -1, -1, -1), y2 = (1, -3, -1, -1), 
y, = (-1, -3, -1, 1), y 4 = (-3, -1, -1, 1), respectively. Is 
this operator symmetric? 

7.4.12. Show that the operators of Problem 7.2.9 are symmetric. 
7.4.13. Show that any orthogonal reflection operator is Hermitian. 

In particular, the renection matrix (7.3.2) is Hermitian. 
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7.4.14. Show that an operator, both unitary and Hermitian, 
is either equal to ±E or is an orthogonal reflection operator. 

7.4.15*. A symmetric operator S on the space M 2 of polyno· 
mials with the scalar product (7.1.1) transforms the polynomials 

2 + 2t- (l and 2- t + 2t2 into 5- t- t2 and 3 + 3t + 3t11 , 

respectively. The trace of this operator is equal to 3. Find the ma­
trix with respect to the basis 1, t, t 2• 

7.4.16. Let /l1 and /l2 be complex Hermitian matrices of the 
same order. Prove that the trace of the matrix /l1/l2 is a real number. 

7.4.17. Let a Hermitian matrix H be represented in the form 
H = S + iK, where S and K are real matrices. Show that S is 
a symmetric, and K a skew-symmetric matrix. 

7.4.18. Prove that the real matrix (see Problem 7.4.17) 

is symmetric. 
7.4.19. Prove that if His a Hermitian matrix, then the associated 

matrix ll, is also Hermitian. 
7 .4.20. Prove that the Kronecker product of Hermitian matrices 

H1 and // 2 of different orders, perhaps, is also a Hermitian matrix. 
7.4.21. Let H 1 and // 2 be Hermitian matrices of order n X n. 

Show that the operators Gn,H, and Fn,n, (see Problem 5.6.10) are 
Hermitian. 

7.4.22. Prove that if an operator H is Hermitian, then for an 
arbitrary vector x the scalar product (J/x, x) is a real number. 

7 .4.23. Let K be a skew-symmetric operator on a Euclidean 
space X. Prove that (Kx, x) = 0 for any vector x from X. 

7.4.24. What can be said about a Hermitian operator // if 
(H:r, x) = 0 for all \'ectors x? 

7.4.25. Show that if the equality (H1x, x) = (H 2x, x) is valid 
for Hermitian operators H1 and H 2 and any vector x, then H 1 = //2 • 

7.4.26. Prove the statement, converse to that in Problem 7.2.18, 
viz., that if the equality (7.2.2) holds for any vector x, and A is 
a linear operator, then A is a normal operator. 

7.4.27. The eigenvalues of a normal operator A on a unitary space 
belong to the same straight line of the complex plane. Prove that 
the operator A can be represented in the form 

A= aE + a.H, 
where H is a Hermitian operator, a and a are complex numbers, 
Ia I~ 1. 

7 .4.28. Show that the eigenvalues of a skew-Hermitian operator 
are pure imaginary numbers. 

7 .4.29. Show that an orthogonal projection operator is a Hermi­
tian operator. 



198 Unitary Space Opera.tors Ch. 7 

It is assumed in Problems 7.4.30-7 .4.37 that the eigenvalues 
A.1 , ••• , A~~. of a Hermitian operator (or a Hermitian matrix) Hare 
numerated so that 

AI~ A2~ •.. ~ A11 (7.4.1) 

If, besides the eigenvalues, an orthonormal basis e1, ••• , e11 con­
sisting of the eigenvectors of the operator H is considered, then 
the enumeration of its vectors will be assumed to correspond to the 
same ordering (7.4.1). 

7.4.30. Prove the validity of the following representations of 
the maximum and minimum values of a Hermitian operator H: 

A,=~,!~ (!:·x;) t An=~~~ (!:·z~) . (7.4.2) 

Show that the vectors for which the indicated extreme values occur 
are eigenvectors of the operator H. 

7.4.31. Show that the extreme eigenvalues of a Hermitian ma­
trix H satisfy the relations: 

A.1 ~max h11> i\ 11 ::s;;;; min h11• 

' ' 7.4.32. Assume that the equality i\1 = h 11 holds for a Hermitian 
matrix H. Prove that all the off-diagonal elements of the i-th row 
and i-th column of the matrix H are zeroes. " 

7.4.33. Prove that for the linear subspace L drawn on the eigen­
vectors e,1 , ••• , e111 (i1 < ... < i11 ) of a Hermitian operator H, 
the following relations are valid: 

)..1 1 =~:: (~:·x;) 1 Af11 =~!~ (!:·z~) . (7.4.3) 
xeL xeL 

7.4.34*. Prove the following Courant-Fischer theorem: an eigen­
value i\11 of a Hermitian operator H on an n-dimensional space X 
satisfies the conditions 

A.,.= max min (HI z, z)) (i .4.4) 
L 11 x""O z, Z 

xELil 

A.,.= rom max (1(/z, z)) (7 .4.5) 
Lll-11+1 x¢0 X, Z 

x~LII-Il+l 

The maxima must be found for all k-dimensional subspaces Lk of 
the space X for use in the equality (7.4.4); similarly, L11_kd in 
(7.4.5) means an arbitrary subspace of order n - k + 1. 

7.4.35*, Let H 11 _ 1 be an arbitrary principal submatrix of an 
n-order Hermitian matrix H. Using the Courant-Fischer theorem, 
prove that the eigenvalues f!1 , ••• , f! 11 _ 1 of the matrix H11 _ 1 enume-. 
rated in descending order separate the eigenvalues of the matrl.s. H. 



7.4 Hermitian Operators and Matrices 

This means that 

At>flt>A2>fl2>···>An-t>lln-t>"-n· 

t99 

7 .4.36. Without computing the eigenvalues for the n-order 
matrix H 

H~ll ~ .~.:::.~ .. _:·II· 
0 0 ... 0 n-1 
t 2 ..• n-t n 

indicate the number of nonzero eigenvalues and their signs. 
7.4.37. Let the rank of a Hermitian matrix H be two greater 

than the rank of the principal submatrix H,_1 , Prove that the ma­
trix H has one positive and one negative eigenvalue more than 
Hn-t· 

7.4.38. Let the eigenvalues of Hermitian operators H1 , H 2 and 
H1 + H 2 be enumerated in descending order 

H 1 - a 1 >a:2> ... >a,, 
H2- ~~> ~2> • • ·> ~"' 

(7.4.6) 

With the aid of the Courant-Fischer theorem, prove that the follow­
ing inequalities are true (k = t. 2, ... , n): 

Y~t~ ct1 T ~'" 1'11< a11 + ~1 • 
Y~<> an+~~ .. 1'11.~ a,.+ ~n· 

7.4.39. Show that by a unitary similar transformation, a Her­
mitian matrix is reduced to another Hermitian matrix. 

7.4.40. A band matrix is said to be tridiagonal if the band width 
equals 3. Deduce the following corollary to Problem 7.3.55: any 
Hermitian matrix is unitarily similar to a tridiagonal matrix. 
Restate this proposition in the language of operators. 

7.4.41. We call a tridiagonal matrix C irreducible if cu=F 0 
when I i - j I = 1. Prove that if a tridiagonal Hermitian matrix 
has an eigenvalue A of multiplicity r, then it is quasi-diagonal and, 
moreover, that there are at least r irreducible submatrices of lesser 
order on the diagonal. 

The following Problems 7.4.42-7.4.49 concern a given tridiago­
nal irreducible Hermitian matrix C of order n, for which a sequence 
of polynomials / 0 (A), It (A), •.. , In (A) is considered, where 
/ 0 (A.)== 1, and / 1 (A) is the characteristic polynomial of the leading 
principal submatrix C1 of the matrix C (so that the polynomial 
11 (A) is of degree i). The iteration formulae, connecting the polyno-
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mials of this set, were derived in Problem 3.2.46 (in the Hermitian 
case under consideration, c1 = b1), and are used from now on 
without further reference. The roots of the polynomial / 1 (A), i.e. 
the eigenvalues of the submatrix C, are denoted by A~•l, ... , J..~•) 

and enumerated in descending order so that J..(,•J~ A~,J~ ... 
. . ·> J..~f) (however, see Problem 7.4.43, (b)), whereas ).In'= A,. 
i = 1, ... , n. 

7.4.42. Construct a sequence of polynomials / 0 (A), / 1 (A), . 
. . . , h (J..) for the matrix 

lllHHII (i.4.i) 

7.4.43. Prove that in the set of polynomials / 0 (A), / 1 (A), ... 
. . . , In (J..): (a) adjacent polynomials have no common roots; (b) 
the roots of a polynomial / 1 (J..), 1 ~ i :s;;;; n- 1, strictly separate 
the roots of the polynomial IJ+t (A): 

A\HI)>A\')>A~'+I)>A~')> ... >A~i+ll>A\i)>A~'++IIl; 

(c) if Aj.il, i < n, is a root of a polynomial 11 (A), then the nuf!1Lers 
11 - 1 (Ai'l) and 11+1 (Aj.'l) have different signs. 

7.4.44•. A real number J.l. is not a root of any polynomial 11 (A). 
Prove that the number of changes of sign in the number sequence 

/, (~). /, (~) .... , /, (~) (i.4.8) 

equals the number of the eigenvalues of the matrix C (i.e. the roots 
of the polynomial 1, (A)) which are strictly greater than fl· 

7.4.45*. l\low let the number fl be a root of the polynomials in 
the set lo (A), 11 (A), ..• , In (A). As before, count the number of 
changes of sign in the sequence (i .4.8), ascribing the sign of the 
number 11 - 1 (fl) to each zero value 11 (fl). Prove that the statement 
of Problem i.4.44 remains valid in this case also. 

7.4.46*. Given that an eigenvalue A11 of matrix C lies in an inter­
val (a, b). In this case A11 is said to be localized in (a, b). How, 
using the results of Problems i .4.44 and i .4.45, can A11 be localized 
in an interval of half the length? 

7 .4.47. Let all eigenvalues of a matrix C lie in an interval (m, .M). 
Using the result of Problem i.4.46, indicate a method of finding 
the numbers A, to the accuracy of a given member e. 

7 .4.48. Show that the sequence (i .4.8) can be computed by per­
forming only 2 (n- 1) operations of multiplication (assuming that 
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the 1 b1 ]2 , in the iteration formulae connecting the polynomials 
/ 1 (A), are already evaluated). 

7.4.49. The method of evaluating the eigenvalues of a tridiagonal 
Hermitian matrix derived in Problem 7.4.47 is termed the bisection 
method. Perform the bisection method for computing the greatest 
eigenvalue of the matrix (7.4.7) to the accuracy of e = 1/16. 

7.4.50*. Using the results of Problems 7.4.40, 7.4.4t, 7.4.47, 
describe a method for approximating the eigenvalues of an arbitrary 
Hermitian matrix. 

7.4.51*. A tridiagonal irreducible matrix A is said to be Jaco­
bian if a 1, l+lal+l., > 0 for all i. Show that for Jacobian matrices 
with real diagonal entries the results of Problems 7.4.43-7.4.47 are 
valid. 

7.4.52. Using the correspondence between operators on a Eucli­
dean space R and a unitary space C, obtained from R by complexifi-
cation, prove that (a) a Hermitian operator §on the space C cor­
responds to a symmetric operator S on the space R; (b) for any 
symmetric operator on the space R, there is an orthonormal basis 
for R such that the matrix of this operator, with respect to this ba­
sis, is diagonal. 

Reformulate statement (b) for matrices. 
7.4.53. Let z1, ••• , z,,. z1 = x1 + iy1 be an orthonormal basis 

of the eigenvectors of a Hermitian matrix of order n X n II = 
= S + iK, and A1 , ••• , An be the corresponding eigenvalues. 
Prove that the 2n-dimensional column vectors u1 , v1 , ••• , u". v", 
where 

form an orthonormal basis of the eigenvectors of a real matrix 

whose corresponding eigenvalues are A1, /,1, A2 , A2 , ••. , A,., An. 

7 .5. Positive-Semidefinite 
and Positive-Definite Operators 
and Matrices 

This section mostly deals with: 
The formal properties of positive-semidefinite and positive-definite operators 

which follow from the definition directly. 
Positive-definite matrices and Gram matrices. In this part of the section, 

we show that positive-definite matrices are, in a sense, a universal means of 

defi~h~ :o~n~;:trvr:~~~t r:o:it~~~~~9~)neo~r :c:c:igenvalues of a positive-semi-
definite (positlve-definite) operator (matrix). 
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in ;a~~~~~a~,ri:h:iadi~O:o~~t /o~\~:c:e(!:~tp~~bte% ~~~~\t:athem;:r~:~~r8~~: 
teflon, etc. We also provide computational problems on their use. 

The relation of a partial ordering on the set of Hermitian operators. 
The square root of a positive-semidefinite numerical operator and some 

examples on evaluating the square root. 

ope~~~:!1ks:~~!:tlJ~~dfs ·:~~~~~r~;~~~~~~~o~~~~d t~ise~~~iti~1~~Ji0!i~e~ 
7.5.1. Can a positive-definite operator H convert a nonzero vector 

:x into a vector y, orthogonal to x? 
7.5.2. Deduce from the definition that a positive-definite 1operator 

is nondegenerate. 
7.5.3. Let H be a positive-definite operator on a Euclidean space 

X. Show that for any nonzero vector x from X, its image makes 
an acute angle with x. 

7.5.4. Let HandS be positive-semidefinite operators. Show that 
for any nonnegative numbers a and ~. the operator aH + ~S is 
positive-semidefinite. 

7 .5.5. Let H and S be positive-semidefinite operators, and assume 
that for certain real numbers a 0 and ~0 the operator a0H + ~08 
is positive-definite. Show that in this case, all operators aH + ~S 
{where a and ~are arbitrary positive numbers) are positive-definite. 

7.5.6. Prove that the inverse operator of a positive-definite 
{)perator is also positive-definite. 

7.5.7. Show that any orthogonal projection operator is a positive­
semidefinite operator. 

7.5.8. Let H be a complex positive-defmite matrix. Prove that 
the transpose of H, i.e. HT, is also positive-definite. 

7.5.9. Prove that any principal submatrix of a positive-semidefi­
nite (positive defmite) matrix is also positive-semidefinite (positive­
definite). 

7.5.to•. Let :r1, ..• , x,. be an arbitrary vector set of a unitary 
{Euclidean) space X. Prove that the Gram matrix of the set :r1 , ••• . . . , x,. is a positive-semidefinite matrix. This matrix is positive­
definite if the set :t1 , ••• , x,. is linearly independent. 

7.5.11. Let e1 , ••• , e,. be an arbitrary basis for a unitary 
(Euclidean) space X. Prove that the scalar product of any two vectors 
x and y from X can be computed by the formula 

(x, y) ~ (GX., Y,). (7.5.1) 
GT denotes the Gram matrix of the set e1, ••• , e,.; Xe, Ye are n­
dimensional vector columns constituted from the coordinates of the 
vectors x andy with respect to the basis e1 , ••. , e,., and the scalar 
product on the right-hand side of (7.5.1) is defined in the usual way 
(as in 7.1.4). 

7.5.12. Let e1, ..• , e,. be an arbitrary basis for a linear space X, 
and let G be an arbitrary positive-definite matrix. Show that the 
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formula (7.5.1) delines a scalar product on X. Moreover, the matrix 
GT is the Gram matrix of the set e11 ••• , en with respect to the 
derived scalar product. 

Thus, the formula (7.5.1) (just like the method of Problem 2.1.2) 
describes all possible methods of delining a scalar product on a given 
linear space X. 

7.5.13. Let (:r:, Yh and (z, y)11 be two different scalar products 
on an arithmetic space. Prove that (a) there is a nondegenerate 
matrix A such that 

(z, y), ~ (Az, y),; 

(b) it follows from (a) that 
(z, y), ~ (A ->z, y),. 

7.5.14. Let A be an arbitrary linear operator from a unitary 
(Euclidean) space X to a unitary (Euclidean) space Y. Show that 
the product A • A is a positive-semidefinite operator on X, and the 
product AA • is a positive-semidefinite operator of the space Y. 
Accordingly, for any rectangular matrix A, the matrices A*A and 
AA • are positive-semidelinite. 

7 .5.15. Let H be a complex positive-definite matrix. Prove that 
in the representation of the matrix H 

H~S+tK 

(where S and K are real matrices) the matrix S is positive-definite. 
7.5.16. Let H be a positive-semidefinite operator, and (H:r:, :r:) = 

= 0 for some vector z. Prove that (a) z belongs to the kernel N8 

of the operator H; (b) the operator HIT 8 , induced on the image 
T H of the operator H, is positive-definite. 

7.5.17. Sho\V that a positive-definite operator can be defined as a 
nondegenerate positive-semidefinite operator. 

7.5.18. Show that a Hermitian operator His positive-semidefinite 
(posith•e-delinite) if and only if for any positive (nonnegative) 
number 8, the operator H + sE is nondegenerate. 

7.5.19. A Hermitian operator His said to be negatioe-semidefinite 
(negative-definite) if for any nonzero vector z the scalar product 
(Hz, z) is nonpositive (negative). Negative-semidefinite and negative­
definite matrices are similarly defined. 

Prove that any Hermitian operator can be represented as the sum 
of positive-semidefinite and negative-semidefinite operators. 

7 .5.20*. A complex square matrix A is said to be stable if for 
any eigenvalue A for this matrix, the condition Re A < 0 is fulfilled. 

Prove that if the Lyapunov matrlz equation for an n X n matrix A 

A*X+XA ~c 
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(where Cis a certain negative-definite matrix) has&. positive-defmite 
solution B, then A is a stable matrix. Hence, deduce that B is the 
unique solution of the indicated equation. 

7 .5.21. What can be said about a negative-semidefinite operator H 
if its trace equals zero? 

7.5.22. Show that the determinant of a positive-definite operator 
is positive. Hence, deduce that all the principal minors of a positive­
definite matrix are positive. 

7.5.23. Show that the element with maximum modulus in a posi­
tive-definite matrix is on the principal diagonal. 

7.5.24*. Prove that a Hermitian n X n matrix H is positive­
definite if 

h 11 > f lh11 1. i=1. ... , n. (7.5.2) t;:, 
j¢1 

7 .5.25. Let H = S + iK be a complex positive-definite matrix. 
Prove that the real matrix 

is also positive. 
n~ll ~ -~II 

7.5.26*. Let H be a positive-defmite matrix. Prove that the 
associated matrix H P is also positive definite. 

7.5.27. Prove that of all the k-order minors of a positive-definite 
matrix H, the one with the maximum modulus is one of the princi­
pal minors. 

7.5.28. Prove that the Kronecker product of positive-defmite 
matrices H 1 and H 2 (perhaps, of different orders) is also a positive­
definite matrix. 

7.5.29*. Let A and B both ben-order square matrices. The Schur 
product of the matrices A and B is a matrix C of order n X n sucb 
that for all i, j 

c11 = a11b11• 

Prove that the Schur product of positive-definite matrices H1 aod H 2 

is also a positive-definite matrix. 
7 .5.30. Let H be a positive-definite n-order matrix. Prove that 

ann X n matrix S such that s0 = I hu 12 for all i, j is also posith·e­
definite. 

7 .5.31. Let HandS be Hermitian operators, and let the difference 
H- S be a positive-semidefinite (positive-definite) operator. 
We will write in this case that H > S (H > S). Show that for the 
relation > the following properties are valid: 

(a) H>S, S>T"9H>T; 
(b) H1 > S 1, H 2 > S 2 ==* r:xH1 + ~H2 > r:xS1 + ~S 2 , wherer:x and 

~ are any nonnegative numbers, 
(c) H>S===?A•HA >A•SA for any operator A. 



7.5 Positive-De&.nite Operators and Matrices 

7 .5.32. Let H and S be Hermitian operators, H ~ S. Prove that 
the eigenvalues of the operator S placed in descending order do not 
exceed the corresponding (also in the same order) eigenvalues of 
the operator H. 

7.5.33. A positive-definite operator H satisfies the inequality 
H ~E. Prove that H-1 :s;;;; E. 

7.5.34. Matrices H and S are positive-definite, H ~ S. Prove 
that 

(a) ~llh,,l~n:~lls,,l; 
(b) the principal minors of the matrix S do not exceed the cor­

responding minors of the matrix H; and in particular, (c) det H ~ 
;;. dotS. 

7 .5.35. A diagonal element hu of a positive-definite matrix H 
has been increased. Prove that the determinant of the obtained 

matrix ii is greater than the determinant of the matrix H. 
7 .5.36•. Prove the following Sylvester criteriOn for positive defi­

niteness: for a Hermitian matrix H to be a positive-definite, it is 
necessary and sufficient that all its leading principal minors be 
positive. 

7.5.37. A leading principal k-order1 minor of a nonnegative ma­
trix H is equal to zero. Prove that all the leading principal minors 
with orders higher thank are equal to zero. 

7.5.38. Prove that all the principal odd-order minors of a negative­
definite matrix H are negative, whereas all the principal even­
order minors are positive. 

Determine for each of the following tridiagonal n-order matrice~ 
whether the matrix is positive-definite or positive-semidefinite. 

7.5.39. n-1 
t n-2 

7.5.40. n-t t 
t n-2 

· 2 I 
I I I 

'II 
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7.5.41. n+1 1. 
I 

7.5.42*. n 1 
1 n-1, 

7.5.43. ,.~ t 

Unitary Space Operators 

4 I 
I 3 I 

I 2 

3 1 
1 2 1 

1 1 

7.5.44. I 1 
t (n-1)2. 1 2 I 

. • 1 

1 1 

1 2 . 

2 I 
I I 

Ch. 7 

7.5.45*. Prove that for any positive semidefmite (positive-defi­
nite) operator H, there is a unique posith·e-semidefinite (positive­
definite) operator K such that K 2 = H. The operator K is called 
(the principal value of) the square root of the operator Hand denoted 
by Hlft, 

Find the square roots of the following matrices: 

7.5.46. 11-: -: II- 7.5.47.11 : : : II· 

7.5.48. 11-:: 3! -~ II· 7.5.49.ll ! i ! J 
7.5.50*. Using the existence of a square root, prove that the 

determinant of a positive-definite n-order matrix H satisfies the 
inequality 

del H::;;; h11h22 ••• h,.,,.,. 
The equality occurs if and only if His a diagonal matrix. 

7.5.51*. A positive definite matrix His represented in a parti­
tioned form thus: 

H~IIH:· H"ll. 
H12 Hu 
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where H11 and H22 are square submatrices. Prove that 

det H ~ det H11 ·det H 22, 

and that the equality occurs if and only if H 12 = 0. 

20i 

7.5.52. Let H and S be Hermitian operators, and letS be posi­
tive-semidefinite. Prove that if H and S commute, then H-1 and 
8 112 also commute. 

7.5.;53*. Operators H and S are positive-definite and H ~ S. 
Prove that H-1 ~ s-1. 

7.5.54. Show that the product HS of commuting positive-semi­
definite operators H and S is also a positive-semidefinite operator. 

7 .5.55. Let H >= 8, and let T be a positive-semidefinite operator 
that commutes with Hand S. Prove that HT >"ST. 

7 ,5.56*. Let H and S be Hermitian operators, and let S be posi­
tive-definite. Prove that the eigenvalues of the operator HS are 
real numbers and that the operator is of simple structure. 

7.5.57. The operator H is positive-semidefinite (see Problem 
7.5.56). Show that all the eigenvalues of the operator HS are non­
negative. 

7 .5.58. Show that the statement, converse to that in 7 .5.57, is 
true: if operators H and S are Hermitian, S is positive-definite, 
and all the eigenvalues of the operator HS are nonnegative, then H 
is a positive-semidefinite operator. 

7.5.59*. Let HandS be Hermitian n-order matrices, and letS 
be positive-definite. Prove that (a) the left-band side of the equation 

det (I.S -H) ~ 0 (7.5.3) 

is a polynomial in A of degree n with the higher-order coeificient 
equal to the determinant of the matrix S; (b) the equation (7.5.3) 
has n real roots if each root is counted as many times as its multi­
plicity is. 

7.5.60. Let Hand S be positive-definite operators whose greatest 
eigenvalues are equal to a 1 and ~1 , respectively. Prove that the 
greatest eigenvalue y1 of the operator HS satisfies the inequality 
"''t~al~t· 

7 .5.61 *. Prove that the following statements are valid: (a) the 
eigenvalues of the matrix iS-1K (see Problem 7.5.15) are real and 
have absolute values less than unity; (b) det S ~del H, and the 
equality occurs if and only if H = S; (c) det S >del K. 

7.5.62*. Let A be an operator of rank r from an n-dimensional 
space X to an m-dimensional space Y, and let e1 , ••• , en be an 
orthonormal basis containing the eigenvectors of a positive-semi­
definite operator A•A, the vectorse1, ••• , er corresponding to the 
nonzero eigenvalues af, ... , a~ (a 1 > 0, i = 1, 2, ... , r). Prove 
that (a) the vectors er+t• .•. , en constitute a basis for the kernel 
N A of the operator A; (b) the vectors e1, •.. , er constitute a basis 
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for the image T A* of the conjugate operator A"'; (c) the vectors 
Ae1 , ••• , Aer arc orthogonal and form a basis for the image T A 

of the operator A; (d) the length of the vector Ae1 equals a: 1, i = 
= 1, ... , r; (c) each of the vectors Ae1 is an eigenvector of the ope­
rator AA • and corresponds to the eigenvalue a:f; (f) if we put 

then 

/ 1 -=+,Ae., i=1, ... , r, 

A"'/1 =a:;e1• 

7 .6. Singular Values and the Polar 
Representation 

When discussing singular \·alues, we shall mostly be interested in the various 
methods that in concrete cases facilitate computation and estimation in prac-

~rcoa~~~~S:8~n1h!r:r~~~~:!edPf;i~~~.0~~80~:~Df~!:: ~~~Y~!s~1r~~th~\\~~v=~t~~~ 
only provide some of the inequalities that connect singular values to the eigen­
values of an operator. The singular-value decomposition of an arbitrary rectan­
gular matrix, and the polar representation of operators from Wxx and square 
matrices, are discussed in detail. 

In all the problems, singular values a 1 , ••• , as are assumed to be enumerated 
in descending order 

a 1 > ... :;;>..ct8 • 

7.6.1. Given the singular values of an operator A, find the singu­
lar •·alucs of (a) the operator A"', (b) the operator a:A, where a: is 
an arbitrary complex number. 

7.6.2. Prove that the singular values of an operator are unaltered 
when the operator is multiplied by unitary operators. 

7.6.3. Let an operator A be defined on a space X. Show that A 
is nondegcncratc if and only if all the singular values of this operator 
are nonzero. 

7.6.4. Show that the modulus of an operator's determinant equals 
the product of its singular values. 

7.6.5. Assuming that an operator A is nondegenerate, find the 
relation between the singular values of the operators A and A -I. 

7 .6.6. Prove that the singular values of a normal operator coincide 
with the moduli of its eigenvalues. 

7.6.7. Prove that an operator A on a unitary space is unitary if 
and only if all the singular values of this operator equal unity. 

7.6.8*. Find the singulal' values of the differential operator on 
the space of polynomials M n with the scalar product (7 .1. 7). 

7.6.9*. Find the singular values of the differential operator on 
the space M 2 of polynomials if the scalar product is defined by the 
formula (7.1.2). Contrast this result with that of Problem 7.6.8. 

7.6.to•. Let A be a rectangular m X n matrix of rank r, either 
real or complex. Prove that the matrix A can be represented in the 
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form 
A~ UAV, (7.6.1) 

where U and V are orthogonal (unitary) matrices of orders m and n, 
respectively; A is an m X n matrix such that A11 >= A22 >= ... 
. . . >= Arr > 0, and all the other elements are zeroes. This repre­
sentation (7 .6.1) is called the singular-value decomposition of the 
matrix A. 

7.6.11. Show that the matrix A in the decomposition (7.6.1) is 
uniquely determined by the matrix A itself, viz. the numbers 
Aw ... , Arr are the nonzero eigenvalues of the matrix (A*A)111 

(as they are of the matrix (AA *)112). 

7.6.12. Determine the meaning of the matrices U and V in the 
singular-value decomposition of a matrix A. 

7.6.13. Rectangular m X n matrices A and B are said to be 
unitarily equivalent if there exist such unitary matrices U and V 
that B = UAV. Prove that the relation of unitary equivalence on 
the set of m X n matrices is reflexive, symmetric and transitive. 

7.6.14. Prove that m X n matrices A and Bare unitarily equi­
valent if and only if they have the same singular values. 

7.6.15. Show that matrices A and B are unitarily equivalent if 
and only if the matrices A • A and B*B are similar. 

7.6.16. Given the singular-value decomposition A = UAV of 
a matrix A, find the singular-value decompositions and singular 
values of the matrices: (a) AT, (b) A*, (c) A -1 if A is a square, 
nondegenerate matrix. 

7.6.17. Show that for any m X n matrix A, there is a unitary 
m-order matrix W such that the rows of the matrix WA are orthogo­
nal. Similarly, a unitary n-order matrix Z exists such that the co­
lumns of the matrix AZ are orthogonal. 

7 .6.18. The rows of a matrix are orthogonal. Prove that the sin­
gular values of this matrix equal the lengths of its rows. 

7.6.19. Find the singular values of an m X n matrix A with 
unity rank. 

7.6.20. Let A be a partitioned matrix of the form 

A=(gt ~J, 
where At and A 1 are not necessarily square matrices. Prove that 
the nonzero singular values of the blocks At and A 2 produce, col­
lectively, all the nonzero singular values of the matrix A. The same 
statement is also valid for a partitioned matrix of the form 

(~2 ~~)-
7.6.21. Deduce the following corollary to the statement of 

Problem 7.6.20: if a pair of orthogonal subspaces L and M reduce 
14-0811 
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an operator A, then the singular values of the operators AIL and 
AIM produce, collectively, all the singular values of the operator A. 

7.6.22. Prove that the singular value decomposition (7.6.1) of 
a matrix A can be rewritten in the form 

A~ UA,V, (7.6.2) 

where U is an m X r matrix with orthonormal columns, V is an 
r X n matrix with orthonormal rows, and Ar is a diagonal matrix 
with positive diagonal elements. The representation (7 .6.2) is also 
called the singular decomposition of the matrix A. 

7.6.23. Prove that for the singular values a 1, ••• , an of an 
operator A, the following version of the Courant-Fischer theorem is 
valid 

Here, as in 7 .4.34, L11. and Ln -A+x are arbitrary subs paces of dimen­
sions k and n- k + 1, respectively, of the n·dimensional space X. 
In particular, the following relations hold 

jA.rj , jA:a:j 
ct1 = ~!~ j;T, an=~~~ ---rzj• 

7 .6.24. Prove that the spectral radius of an operator does not 
exceed its greatest singular value. 

7 .6.25. Prove that the eigenvalue A., with the minimal modulus 
and the minimal singular value ctn of an operator A satisfy the rela­
tion 

7.6.26. Let a 1, ••• , ctn be the singular values of an n X n 
matrix A. Prove that the singular values of the associated matrix 
Ap are all the possible products of p numbers from ct1, .•. , ctn· 

7 .6.2:1. The eigenvalues "-,., A2 , •• , , An of an n X n matrix A 
are ordered so that I A1 I ~ I A2 I ~ ... ~ 1 A., I· Prove that the 
following Weyl inequalities are valid 

1Ali···IA~~.I~a1 ••• a.~~. 

I A~~. I I A11.+1 I ... I An I~ ct.ttct.tt+1 ••• an, 1 ~ k~ n. 

They generalize 7.6.24 and 7.6.25. 
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7 .6.28, Prove that the greatest and least singular values of an 
n X n matrix A satisfy the estimates 

a1 ~max/max(~ ]a11F) 112 , ~x(iJ ]a11 ]z)fi2J, 
I f;;_t J i-t 

an~min(~in(~1 ]al/[2)1' 2 , mJn(~1 ]a1J]2) 1 ' 2 !. 
7.6.29*. For an operator A the equality I A1 I = a 1 is valid. 

Here ~ is the eigenvalue of A with the greatest modulus. Prove 
that the operators A and A* have a common eigenvector correspond­
ing to the eigenvalue A1 (r1). 

7.6.30*. Prove the statement, converse to 7.6.6, viz., if the sin­
gular values of an operator A coincide with the moduli of the eigen­
values, then A is a normal operator. 

7.6.31*. Let A be a rectangular m X n matrix, and let A be an 
arbitrary submatrix of the matrix A. Prove that the singular values 

of the matrix A do not exceed the corresponding singular values of A. 
7.6.32. Let A be an arbitrary square submatri:l: of a normal 

matrix A. Prove that the spectral radius of A does not exceed the 
spectral radius of A. 

7.6.33. Prove that the singular values a,., ~,., y,. of operators A, 
B and A + B satisfy the inequalities: 

'\'11. ~ a:1 + ~,.. y,. ~a,. + ~1 , 

y,. ~ -a1 + ~,., y,. ~a,. - ~1 • 1 ~ k ~ n. 

7.6.34*. Operators A and B are defined on an n-dimensional 
space X. Prove that the singular values a:,., ~,., 6,. of the operators 
A, B and AB satisfy the relations: 

6,. ~ a1~,.. 611 ~ a,.~1 , 

611 ~ Cl.n~ll.• 6,. ~ a:11~n' 1 ~ k ~ n. 

7.6.35. Let A and B be positive-definite operators. Prove that 
the eigenvalues of the operator AB are equal to the squares of the 
singular values of the operator A 11'JB111 , 

7.6.36. Given the singular values a:1, ••• , an and ~1 •••• , ~m 
of matrices A and B of orders nand m, respectively. Find the singu­
lu values of the Kronecker product A X B. 

Find the singular values of the following matrices: 

7.6.37. II~ ~ Jl 7.6.38. II~ , -~II· 
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7.6.39. 

7.6.41. 

7.6.43. 

7.6.4:>. 
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IIJ =~ Jl· IU -: -:II· 7.6.40. 

H· -!·-~II 7.6.42.11 v~ _;~ ~ -:II· 
-v2 V' o o 

ll v~ v~ ~ ~-II 
0 2 0 vs . 
o o v• o 

7
.6.4

4
.11 i i i i II· 

Iii =i j =ill· 
7.6.46'.IU ~~~=a 

7 .6.47. What becomes of the polar representation of a matrix 
of order n when n = 1? 

7.6.48. Show that in a polar representation A = HU of an opera­
tor A, the positive-semidefinite operator 1/ is uniquely determined. 

7.6.49•. Let A = HU be an arbitrary polar representation of an 
<>perator A. Show that the operator U transforms the orthonormal 
basis, containing the eigenvectors of the operator A •A, into a simi­
lar basis for the operator AA •. 

7.6.50. Show that for whatever polar representation A = HU 
of an operator A, the unitary operator U transforms the subspace 
T A* into T A• and the subspace N A into N A•· 

7.6.5t•. Let A = HU be an arbitrary polar representation of an 
operator A. Prove that effect of the unitary operator U on the sub­
space T M is uniquely determined by the operator A. 

7 .6.52. Prove that a nondegenerate operator possesses a unique 
polar representation. 

7 .6.53. Prove that any operator A on a unitary (Euclidean} 
space can be represented in the form 

A= U1H 1, 

where U1 is a unitary (orthogonal), and H1 a positive-semidefinite. 
-operator. Show that the operator H1 is, in this represen,ation, 
uniquely determined. 

7 .6.54*. Prove that an operator A is normal if and only if the 
o0perators Hand U in its polar representation A = HU are commut­
ing. 
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7 .6.55. Let A be a nondegenerate normal operator on a unitary 
space, and let its eigenvalues A1, ... , An be given in trigonometric 
form 

A1 = p1 (cos IJI1 + i sin 'l!1), •.• , An = Pn (cos IPn + t sin <Jln)· 
Prove that the operators H and U in a polar representation of the 
operator A have the eigenvalues p1, ••. , Pn and cos 'lit + 
+ i sin <p1 , ••• , cos IJin + i sin <p11 , respectively. 

7 .6.56. An operator S is positive·semidefinite. Find its polar 
representation. 

7.6.57. Find a polar representation of the differential operator 
on the space M 11 of polynomials with the scalar product (7.1.7). 

7.6.58. Given a polar representation A = HU of a matrix A, 
find a polar representation of the associated matrix Ap. 

7 .6.59. Given square matrices A and B, perhaps, of different 
orders and letting A = HU and B = KV be their polar representa­
tions, find a polar representation of the Kronecker product A X B. 

Find polar representations of the following matrices: 

7.6.60. ,,-: -; II· 7.6.61.11 0 3 -1 II 
-~· ~ ~ . 

7.6.63•. Using the polar representation, prove the converse of 
7 .5.56, viz., that if an n X n matrix A, whose eigenvalues A1, .•• 

. . . , An are real numbers, is of simple structure, then A can be­
represented in the form A = HS, where H and S are Hermitian 
operators and Sis positive-definite. If the matrix A is real, then the­
factors H and S can be chosen to be real. 

7 .6.64•. Prove that the sum of the singular values a 1, •.• , a" 
of an n X n matrix A satisfies the representations 

a 1+ ... +an =max ltr(AW)I =maxRetr(AW), 
w w 

where W ranges over~the whole set of unitary n-order matrices. 

7.7. Hermitian Decompositiou 

mitfa~e /e~~::O~!i~~i~sS:C!~fu\5 i~~t~~!!~~el!h!~n~e~:~: !~:~hl!~~i~ei~ 
terms of arbitrary operators, can be transferred using the Hermitian decompo­
sition to an analogous task posed in Hermitian operators, the solution of which 
proves to be mudi simpler to obtain. At the end of the section we demonstrate 
(:Sa~~lJ~~ot~~~r.ermitian decomposition of operators on a Euclidean space 
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7.7.1. What does the Hermitian decomposition of an n--order 
matrix, when n = 1, turn into? 

7.7.2. What can be said about a linear operator A if (Az, z) = 0 
for any vector z? 

7.7.3. What can be said about linear operators A and B if for 
any vector x: 

(a) (Az, z) ~ (Bz, z)? 
(b) (Az, z) ~ (z, Bz)? 
7.7.4. Prove the converse to 7.4.22, viz., that if the scalar prod­

uct (Ax, x) is a real number for any operator A, then for any opera­
tor x, A is a Hermitian operator. 

7.7.5. Show that in the definition of a positive-definite operator 
on a unitary space the requirement that it should be Hermitian is 
extra. 

7.7.6. Let HandS be Hermitian operators. Show that the scalar 
product (Hz, Sx) is real for any vector x if and only if H and S 
are commuting. 

7.7.7. What can be said about ann X n matrix A if it is orthogo­
nal to any Hermitian matrix with the scalar product defined as in 
(7 .1.5)? 

7.7.8. Let the trace of the product AH of an n X n matrix A 
and any Hermitian matrix H be a real number. Prove that the 
matrix A is Hermitian. 

7.7.9. Let A = H1 + iH1 be the Hermitian decomposition of an 
operator A. Find the Hermitian decomposition of the conjugate 
operator A •. 

7.7.10. Prove that an operator A is normal if and only if the 
operators H1 and H 1 in its Hermitian decomposition are commuting. 

7.7.11. Show that the eigenvalues of the operators H1 and H1 
from the Hermitian decomposition of a normal operator A coincide 
with the real and the imaginary parts, respectively, of the eigen­
values of the operator A. 

7.7.12. Show that any orthonormal basis, containing the eigen­
vectors of a normal operator A is also a basis made up of the eigen­
vectors of the operators H 1 and H 2 of its Hermitian decomposition. 

7.7.13. Let A and B be commuting normal operators, and let A = 
= H1 + iH2, B = 8 1 + i8 1 be their Hermitian decompositions. 
Prove that all the operators H1, H 1, 81 , 8 1 are commuting. 

7.7.14. Let A be an operator on ann-dimensional space with the 
Hermitian decomposition A = H 1 + iH1 • Prove that the set of 
values for the ratio 

(Az, z) 
li:%) 

(where z is an arbitrary nonzero vector) is bounded by a rectangle 
in the complex plane with vertices (a1 , ~1), (au !},.), (ct,a, !in), 
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(a .. , ~1 ), a 1 , a .. and ~1 , ~ .. being the greatest and least of the eigen~ 
values of the matrices H 1 and H 2 , respectively. 

7.7.15. Deduce the following Bendixson theorem from 7.7.14: 
the real (imaginary) parts of the eigenvalues of an operator A are 
confmed between the greatest and least eigenvalues of the operator 
H 1 (H 2) of its Hermitian decomposition. 

7.7.16. The operator H 1 from the Hermitian decomposition of an 
operator A is positive-definite. Prove that the operator A is non de­
generate. 

7.7.17*. The matrix H 1 in the Hermitian decomposition of a 
matrix A is negative-definite. Prove that (a) the matrix A is stable 
(see 7.5.20); (b) the product of the matrix A by any positive-definite 
matrix H is also a stable matrix. 

7.7.18*, The diagonal elements a 11 of a complex tridiagonal 
matrix A are real numbers and the off-diagonal elements satisfy 
the inequalities a 1, I+Ial+1, 1 < 0, i = 1, 2, ... , n- 1. Prove 
that the eigenvalues of the matrix A are bounded by the strip in the 
complex plane: 

mina11 ~Re z~maxa11 • . , . 
7.7.19*. A square real matrix A is called a tournament matrix 

ifJall the diagonal elements a 11 are zeroes and the off-diagonal ele­
ments satisfy the condition a11 +an = 1 for all i, j (i =I= j). Prove 
that the eigenvalues of a tournament matrix A, considered in the 
field of complex numbers, lie in the strip of the complex plane 

-{~Re z~-}(n-1), 

where n is the order of A. 
7.7.20*. Prove that in the context of Problem 7.7.16 

I detA I~ det H 1• 

When does the equality occur in this relation? 
7.7.21*. By means of the Schur theorem, prove that the follow­

ing relationship between the eigenvalues A.1 , ••• , A. .. and a 1 , ••• 

. . . , a .. of the operators A and H1, respectively, is true (see Prob­
lem 7.7.16) 

Re '-t Re A. 2 ••• ReA. .. ~ a 1ct 2 ••• a ... 

The equality occurs if and only if Re A.1 = a 1, i = 1, ••. , n, with 
the appropriate ordering of the eigenvalues. 

7.7.22. Show that the greatest singular value a 1 of an operator A 
satisfies the inequality 

"'•,.;; p (H,) + p (H,). 
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Here p (H1) and p (H 2) are the spectral radii of the operators H1 

and H 2 of the Hermitian decomposition. 
7. 7 .23. Show that any linear operator A on a Euclidean space can 

be uniquely represented in the form 

A~ S + K, 

where 8 is a symmetric, and K a skew-symmetric operator 
7.7.24. Prove that the space Rn~n (see 7.1.17) is the orthogonal 

sum of the subspace of symmetric matrices and the subspace of skew­
symmetric matrices. 

7. 7 .25. What can be said about a linear operator A on a Euclidean 
space if (Ax, x) = 0 for any vector x? Contrast this with the re­
sult of 7.7.2. 

7 .8. Pseudosolutions 
and Pseudoinverse Operators 

The first half of the section is devoted to the properties of pseudosolutions 

~:~r:tonroi:~ ~~~~~~~u!if:a 0Jx~hde vee~~~~1fr~~~h': s;~~hy~ s:v!~a1e~~~tJXs ~f 
evaluating pseudosolutions are demonstrated, using ~redetermined orthonormal 

~~:C!~~~.wb;etb~t!i:;,d tk~~t~~:e eb~sv:~~~~ .~~e~ :noJ;::t~~.,A/:A ~ :J~d 
the singular bases of an operator A (and of A •) if the vectors e1 , ••• , er and 
{b'e. ~ia{ri~:rresponding to nonzero eigenvalues cz;~, , •• , af, are connected by 

f1=*Aei, J=t. ... ,r. 

pse~~~Fn!:rrs:a~!fa~~~ ~o p~h~~fi~~0~c~nf'~=~~fvfh~0':clfg:ei~id!v~~d~ ~: 
treat this subject more extensively than is required for immediate academic 
purposes, Laking into account the scarcity of the material on the pseudoinverse 

~~::t\o;n;n ofethi~a~~~~~~b;ao:sb~f;~~da~h~r!~':.:t ~~t!fi;~~~:!~~t~~a~~h i:t~!; 
d~:~:~~~!n~!·P~~~:·f~~~r a:~ui:!r;~!!.eW!vd!:~~!~t~rCS;} tb:tu~~~~~~~~ 
classes of operators on a unitary space (normal, Hermitian, positive-semidefinite) 
is closed under the operation of pseudoinverse determination. 

7.8.1. Let br be a projection of a vector b onto the image T A 

of an operator A. Prove that any pseudosolution of the equation 
Ax = b is a pre-image of the vector br. 

7.8.2. Show that the set of all pseudosolutions of the equation 
Ax = b is a plane whose directional subspace is the kernel N A of 
the operator A. This plane is a subspace if and only if b belongs 
to the kernel N A• of the conjugate operator A*. 

7.8.3. Show that a normal pseudosolution of the equation Ax = 
= b can be specified as a pseudosolution of this equation, orthogonal 
to the kernel of the operator A, or in other words, as a pseudosolution 
belonging to the image of the conjugate operator A*. 



7.8 P~eudo~olutions and Pseudoinverse Operators 217 

7 .8.4. Let A be a differential operator on the space M n of poly­
nomials with the scalar product defined as in (7.1.7), and let g (t) 
be a given polynomial from Mn· Find all the pseudosolutions and 
a normal pseudosolution of the equation At = g. 

7.8.5. How are pseudosolutions and normal pseudosolutions of 
the equation Ax = b and the equations (a) a:Ax = b, (b) Ax = a.b, 
(c) a:Ax = ab related where ct is a nonzero number? 

7 .8.6. How are normal pseudosolutions of the equation Ax = b 
and the equations (a) UAx = Ub, (b) AVx = b related? Here U 
and V are unitary operators. 

7.8,7. Let A be a normal operator, and let an orthonormal basis, 
e1, •.• , e", containing the eigenvectors of this operator, be given. 
How are the pseudosolutions and a normal pseudosolution of the 
equation Ax = b found? 

7 .8.8•. Let A be an operator of rank r from an n-dimensional 
space X into an m-dimensional spaceY. Given an orthonormal basis 
e1, ••. , en, containing the eigenvectors of the operator A*A and 
the corresponding eigenvalues ctl. ..• , ct~ (a: 1 > 0, i = 1, ... , r), 
prove that (a) the pscudosolutions of the equation Ax = bare de­
scribed by the formula 

X = Ptel + • • • + Prer + '\'r+ter+l + • • • + '\'nen, 
where 

~~ = (!b;11A~1~il = (A•:·: el) , i = 1, ... , r, 

and '\'r+t• •.. , '\'n are arbitrary numbers; (b) the normal pseudosolu­
tion is the vector 

7.8.9. Given an orthonormal basis / 1, ••• , fm, containing the 
eigenvectors of the operator AA * (while ct 1 > 0, i = 1, ... , r), 
prove that the normal pseudosolution of the equation Ax = b can 
be found by the formula 

X 0 = ~1A*/1 + ... + Sr-4*/,., 
where 

S1 =- (b~{') 1 i=1, ... , r. 

Find the normal pseudosolutions of the following systems of linear 
equations, assuming that the scalar products on the corresponding 
arithmetic spaces are defined by (7.1.4). 

7.8.10. 279z, + 362.x,- 40&, ~ 0, 

515x1 - 187x2 + 734x1 = 0 
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7.8.11•. 27x1-!'i5x2 = 1, 
-13x1 +27x2 =1, 
-14x1+28x2 =1. 

7.8.12 • .:z:1+Xz +x1 +x4 = 2, 

x1+x2 +x1 +x,=3, 
x1 +x2 +x1 +x,=4. 

7.8.13. Xt+.:t2 ==-2, 

7.8.14. -.:z:1-2.:z:2 = 1, 

2x1 +4x2 =0, 
x1 +2x2 =0, 

3x1 +6.:z:2 =0. 
7.8.15. 2zt-xa ~t, 

-x1+x2 +x1 =0, 
.:z:2 +2x8 =1. 

7.8.16. 2x1-x2 = 1, 

x 1-x1 =0, 
2x1+x2 =2. 

-z,+(l+e)z2 +z,~O, (e.-0), 
x2 +2x1 =1. 

7.8.17. 2x1-x2 =1, 

-x1 Tx2+x1 =0, 
•2 +(2+•)•0 ~1. (e.-0). 

7.8.18*. 5x1 -3x, =2, 

' 4x2 +2x1 +2x5 =3, 
2x2 +2x3 =0, 

-3.:z: 1 +x~~. 

2x2 +2x5 

~-2, 

=3. 

Ch. 7 

7.8.19. Find pseudoinverse operator of the null operator from X 
into Y. 

7.8.20. Prove that the pseudoinverse operator of a nondegenerate 
operator coincides with its inverse. 

7.8.21. Find the pseudoinverse operator of the differential opera~ 
tor on the space Mn of polynomials with the scalar product defined 
as in (7.1.7). Compare the obtained operator with the conjugate 
(see 7.1.34). 

7.8.22. Prove that for any operator A and a nonzero number " 

(aA)+=~A+. 
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7 .8.23. Prove that for any unitary operators U and V: 

(a) (UA)• ~ A•U•, 

(b) (AV)• ~ V*A •. 

2t9 

7 .8.24. Show that the image and kernel of the pseudo inverse 
operator A+ coincide with the image and kernel, respectively, of 
the conjugate operator A •. 

7.8.25. Consider an operator A as an operator from T A• into T A• 

and the pseudo inverse operator A+ as an operator from T A into T A•· 

Show that the operators A and A+ are inverse to each other on this 
pair of subspaces. This means that for any vector x from T A* and 
any vector y from T A• 

A+Ax = x, AA+y = y. 

7 .8.26. Show that stating the properties of the pseudo inverse 
operator listed in 7.8.24 and 7 .8.25, together with that of linearity, 
is equivalent to the definition of the pseudoinverse operator. 

7.8.27. Let e1, .•. , en and / 1, ••• , 1m be singular bases for an 
operator A. Find the matrix of the pseudo inverse operator A+ with 
respect to this pair of bases. 

7 .8.28. Show that singular bases for an operator A are also singu­
lar for the pseudo inverse operator A+. Meanwhile, the nonzero sin~ 
gular values of the operators are reciprocal. 

7.8.29. Show that (A+)+ =A. 
7.8.30. Show that (A"')+= (A+)*. 
7.8.31. Show that the pseudoinverse operator of a Hermitian 

operator is also Hermitian. 
7 .8.32. Show that the pseudo inverse operator A+ of a normal 

operator A is also normal. Find the relationship between the eigen­
values of the operators A and A+, 

7 .8.33. Prove that a normal operator A satisfies for any k the 
relation (A 11 )+ = (A+) 11 • 

7.8.34. Prove that the pseudoinverse operator of a positive­
semidefinite operator is also positive-semidefinite. 

7.8.35. Let A = HU, and let A = U1H1 be polar representations 
of an operator A. Find polar representations of the operator A+. 

7.8.36. Prove that for an operator A to coincide with its pseudoin­
verse operator, it is necessary and sufficient that (a) the image T A 

and kernel N A should be orthogonal; (b) the induced operator AfT A 

should satisfy the equality 

(AfT.)-' ~ AfT A· 

In particular, these conditions are fulfilled for an operator of ortho­
gonal projection. 
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7.8.37*. Let operators A and B satisfy the relations A•B = 0 
and BA* = 0. Prove that (A +B)+= A++ B+. 

7 .8.38*. Operators A and B are such that T A = T s•· Prove 
that (BA)' =A •B•. 

7 .8.39. Prove the equality 
AA•A =A. 

7.8.40. Show that the geometric meaning of the equation 

AKA = A (7.8.1) 

in a linear operator X is that the operators A and X ara inverse to 
one another on the pair of subspaces XT A and T A in the sensa de­
fined in 7 .8.25. 

7 .8.41. Prove that a pseudo inverse operator A+ can be defined 
as a linear operator satisfying equation (7.8.1) and having the same 
image and kernel as the conjugate operator A •. 

7 .8.42*, Prove that each of the definitions indicated below is 
equivalent to the definition of a pseudoinverse operator: 

(a) an operator X satisfying equation (7.8.1) and such that 

X=A*B=CA* 

for certain linear operators B and C; (b) an operator X satisfying 
equation (7.8.1) and such that 

X= A*DA* 

for a certain linear operator D; (c) an operator X satisfying the 
equation A*AX =A* and such that 

X= A*AF 

for a certain linear operator F. 
7 .8.43. Prove that the rank of the operator (A +)t equals the rank 

of the operator A 1 • 

7.8.44. Given an operator A from a space X to a space Y, prove 
that the operator A+ A is Hermitian and projects the space X ortho­
gonally onto the subspace T A., 

7.8.45. Describe the geometric meaning of the requirements for 
an operator X to be specified by the system of equations 

AKA= A, 
(XA)• = XA. (7.8.2) 

7.8.46. Prove the equality A+AA+ =A+. 
7.8.47. An operator X satisfies system (7.8.2). What does a new 

requirement for this operator specified by the equation 
XAX= X 

mean? 
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7 .8.48, Prove that the operator A (see Problem 7 .8.44) stipulates 
that the operator AA + is Hermitian and projects the space Y ortho· 
gonally onto the subspace T A· 

7.8.49. Prove that the conditions 
AXA ~A, XAX ~X, 

(XA)' ~ XA, (AX)' ~AX 

determine the pseudoinverse operator uniquely. These conditions 
are called the Penrose equations after a British mathematician who 
was one of the first to introduce the notion of a pseudoinverse opera­
tor (a pseudoinversc matrix, actually). 

7.9. Quadratic Forms 

In this section we shsll focus our attcmtion mostly on: 
The reduction of s quadratic form to its canonical form by sn orthogonal 

transformation of the unknowns. 
The law of inertia, relation of congruence, snd the usc of principal minors 

for finding the indices of inertis. 
Simultaneous reduction of a pair of quadratic forms. 

wit~h~~r~~;o~~i~he~~efi~itt~e f~!us~t~:n~~.c~hgn~~~i~jij~y ~h~i~e~~i~~~: 
definite mstrix may be reduced into the product of two trisngular mstrices, 
each the trsuspose of the other. Such a reduction forms the bssis for one of the 
most efficient techniques for the solution of systems of linear equations wilh 
mstrices of this clsss. We hsve paid particulsr attention to this method and 
its computational aspects. 

Note thst sll the mstrices considered in the present section sre assumed to 
be real. 

• or each of the quadratic forms below, find an orthogonal trans­
formation of the unknowns that makes the form canonical, and state 
the canonical form obtained. 

7.9.1. 2xf + 5x~ + 2x~- 4x1x2 - 2x1x3 + 4.x~x3 • 
7.9.2. -3x~ + lu1x 2 + 10x1x3 - 4xs.t:3 • 

7.9.3. -xl + x! - 5x~ + 6x1x3 + 4xt=ta· 
7.9.4. 2x1x, + 6.t:~a· 
7.9.5. xi + 4x! + x~ + 4x! + 4x1x2 + 2x1.t:3 + 4x1x, + 4xs.t:3 + 

+ Bx,x, + 4.x,x,. 
7.9.6•. Suppose a quadratic form F (z1 , ••. , Xn) is reduced by 

Some (even degenerate) transformation to the form 

F=y:+ ... +y~-Y~+t- · ·· -yl+l· 

Prove that the positive index of inertia for the form F does not ex­
ceed k, and that the negative index of inertia does not exceed l. 

7.9.7. Prove that for separating a quadratic form into the prod­
uct of two linear forms, it is necessary and sufficient that the rank 
of the form should not exceed two, and that the signature should 
IMt equal to zero if the rank equals two. 
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7.9.8. Show that the rank and signature of a quadratic form are 
either both odd or both evon. 

7.9.9. Real n X n matrices A and B are said to be congruent 
if there exists a nondegenerate matrix P such that B = PTAP. 
Show that the congruence relation on the set of square matrices of 
a given order is reflexive, symmetric and transitive. 

7.9.10. Prove that a matrix A is congruent to a diagonal matrix 
if and only if it is symmetric. 

7.9.11. Prove that symmetric matrices A and Bare congruent if 
and only if they have the same number of positive and negative 
eigenvalues. 

7.9.12*. Using the properties of the eigenvalues and principal 
submatrices of symmetric matrices (see 7 .4.35), prove that if a 
matrix A is the matrix of a quadratic form F in n unknowns and if 
all the leading principal minors of the matrix A are different from 
zero, then the positive (negative) index of inertia of the form F 
equals the number of repetitions (changes) of sign in the number 
sequence 

,ff, Dto D,, ••• , Dn, 

where 0 1 is the leading principal minor of order i. This rule for 
finding the indices of inertia was introduced by Jacobi. 

7.9.13*. The minor D11 , k < n (see Problem 7.9.12) is zero, but 
the minors D11 • 1 and D 11 +1 are nonzero. Prove that D 11 • 1D11 +1 < 0. 

7.9.14*. Assume that the determinant Dn =F 0 in the sequence 
1, D1 , ••. , Dn but if k < n, then the minor D11 may be zero. In 
which case, assume, additionally, that both D 11 • 1 and DHt are non­
zero. By giving arbitrary signs to the zero values of D11 , show that 
the Jacobi rule for finding the indices of inertia is still valid for 
this case. This modification to the Jacobi rule is due to Gundelfinger. 

7.9.15. Deduce statements 7.4.44 and 7.4.45 from 7.9.12 and 
7.9.14. 

Compute the indices of inertia for the following quadratic forms. 
7.9.16, X1X 2 + X,.X 3 + X 3X 4• 

7.9.17 . .x1x2 + 2x1x3 + 3x1.x4 + x,.x3 + 2x,.x4 + XsX4-
1.9.1B. x~ + 2.x~ + 3.xJ + 4xl + 2.x1.x2 + 2x1x3 + 2x1x4 + 

+ 4x,.:ts + "ix,.x4 + 6xsx4. 
7.9.19. Let the coefficient a11 in a quadratic form F (x1, ••• , Xn) 

be greater than zero. What will be the result of the following trans­
formation of the unknowns 

Y1=1f~(aux1+ ••• +aln.xn), 

Yt=Xto 1=2, ... , n? 

7.9.20*. Prove that a positive-definite quadratic form can be 
reduced to the normal one by a triangular transformation of the 
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unknowns, i.e. by a transformation of the form 

Yt = SuXJ + Stil't + · · · + StnZn• 

Yz= 

y,.= 
where s11, s11, ••• , Snn are different from zero. 
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(7.9.1) 

Reduce the following quadratic forms to normal ones by a triangu-
lar transformation: 

7 .9.21. xi + 2x! + ax~ + 2xlx2 + 2xlx3 + 4z~s· 
7.9.22. xi + 2.x~ + 2x~ + 2x1x 2 + 2xr:3 • 

7 .9.23. xi + 4x! + 11x~ + 24zi - 2x1xs - 4xlx4 + 4x~a + + 16x3x4 • 

7.9.24. Prove that for any positive-definite matrix A, there is 
a so-called triangular decomposition, i.e. 

A - STS, (7.9.2) 

where S is an upper triangular matrix. 
7 .9.25. Show that the diagonal elements of the matrix S in the 

triangular decomposition (7 .9.2) and the leading principal minol'!'l 
D, of the matrix A are connected by the relations 

slt= D~~~, i=1, .•. , n; D0 =1. 

The same is true for the diagonal elements of formulae (7.9.1). 
7 .9.26. Prove that a triangular decomposition (7 .9.2) of a positive­

definite matrix A, where all the diagonal elements s11 are positive, 
is unique. 

7.9.27. Show that the elements of the matrix Sin decomposition 
(7.9.2) can be calculated consecutively in the order sw s12, ••• , s1n, 
Su, s23, •.• , Snn by the formulae 

s11 =Va;;-. s11 = ~::, j=2, ... , n, 

,_, 
au-~ 81!j8~J 

·~· "' 
(/>i). 

(7.9.3) 

Using formulae (7 .9.3), lind triangular decompositions of the 
following matrices: 

7.9.28. 11 _:, ;, -:.II· 7.9.29. 11 • -· •11 
-~ -~ -:r 
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7.9.30. 
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II , , • 'II 2 5 8 11 
3 8 t4 20 ° 

4 tt 20 30 

Ch. 7 

7.9.31. A positive-definite matrix A is of the band structure, 
i.e. au= 0 when If- j I> d > 0. Using formulae (7.9.3), show 

th;~9~~2~ F~ndh:h/ tria~~~:~ decomposition of the following tri­
diagonal matrix of order n 

A= 

1 Vi 
Vi a Vi 

Vi a Vi 

a Vi 
Vi a 

7.9.33. Show that if a matrix S represents the triangular decom­
position of a matrix A, then its principal submatrix Sk represents 
the triangular decomposition of the submatrix Ak of the matrix A. 

7.9.34. Using the result of Problem 7.9.30, find the triangular 
decomposition of the matrix 

Il l U~:!ll· 4 tt 20 30 4.0 
514264055 

7,9.35. Prove that for the olements of the matrix S of the triangu• 
lar decomposition in (7.9.2), the following inequality holds: 

n:.8fls,11 ~m~ lf~. 

Hence, deduce that if for the matrix A, max I a11 I = 1, then 
,,; 

~~j lsul~1. 
In these circumstances when the triangular decomposition of 

a positive-definite matrix is being computed, growth of elements 
(in the indicated sense) will not occur. 

7.9.36. Find the number of multiplication, division, and square 
root operations that are needed to obtain the triangular decomposi­
tion matrix using formulae (7.9.3). 

7.9.37. Given the triangular decomposition of a positive-definite 
matrix A, find a method to solve the system of linear equations 
Ax= b. 
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7.9.38. Find the total number of multiplications and divisions 
necessary to solve the system of linear equations Ax = b (where A 
is a positive-definite matrix) when a triangular decomposition using 
formulae (7 .9.3) followed by an application of triangular matrices 
to the subsequent systems (see 7.9.37) is used. Compare this with 
the number of multiplication and division operations necessary for 
Gaussian elimination. 

The method indicated for the solution of a system of linear equa­
tions with a positive-definite matrix is called the square root method. 

7.9.39. Prove that a positive-definite matrix A can be also repre­
sented as the product 

(7.9.4) 

where sl is an upper triangular matrix. 
7.9.40. Let A be a positive-definite matrix, and A the matrix 

obtained when the elements of A are reflected through the centre of 
A, A= SxS is then the triangular decomposition of the matrix A. 
Prove that this reprt'sentation (7.9.4) of A can be obtained by reflect­
ing each of the matrices ST and S through their centres. 

7.9.41. Prove that two quadratic forms F and G both in the same 
unknowns can be reduced to canonical form by the same non degener­
ate linear transformation if at least one of the forms F and G is posi­
tive-definite. 

7.9.42. Given quadratic forms F and G both in the same un­
knowns, the form G being nondegenerate. Prove that if a nondegener­
ate linear transformation exists that can reduce both F and G to 
canonical form: 

then the set of ratios 

F=A1y:+ . .. +Any~. 

G~~,1/l+ ... +~"If., 

).1 ).t An 
~'"'ji;'"'''"iL,;" 

is the same for any such transformation. These ratios are the roots 
of the so-called z-equatton of the pair of forms F and G, i.e. I A-zB I= 
= 0, where A and B are the matrices for F and G, respectively. 

7.9.43. Quadratic forms F and G are positive-definite. Consider 
two nondegenerate linear transformations, the first reducing F to 
the canonical form A1yr + ... + AnY~ and G to a normal form, and 
the other reducing F to a normal form and G to the canonical form 
~~~f -~ .", -~n +re'J;:;d? How are the coefficients A1 , . , ., An and 

7.9.44. Prove that the forms F and G can both be reduced to ca­
nonical form by the same nondegenerate linear transformation if 
the matrices of these forms are commuting. 
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For each of the following pairs of quadratic forms, find a nondege­
nerate linear transformation that reduces both to canonical form 
and state the obtained forms: 

7.9.~5. F= xi+2x:+3x:+2x1x2 -2x1x1, 

G = 2x: +ax:+ ax:+ 8x1xa+ 2x,x, +4xzXa· 
7.9.46, F=x~+5x!+x:+2x1xa+ 6x1x8 +2x~3, 

G = x:- 2x! + x;+ 4x1x2 -10x1x8 + 4x2x3• 

7.9.47. F= -X~- sz;-14x:+4x,xa+6x,x,-8xaXa, 
G= -x:-14x!- 4x;+Sx1x2-2x1x3 +4x2x3• 

7.9.48. F=x~+3x!+ x:- x!-2.:t1x2 -4x:rr3 +-2x3x,, 
G =x~ + 2x~T 2x:+ 2x!- 2x1Xz-2x:X3-2x3x,. 

7.9.49. F= x;+ x:+ x~+ x!+2x1x2 +4x1x3 

+ 2x1x, + 2xa-r3 + 4x~, + ;:!x3xu 

G --= 2x:+ 2x:, 2x~+ 2x:- 2x1x2 + 2x1x3 

- 2x1x,- 2xa-r3 + 2xa-r,- 2x,.x,. 
7 .9.50. Assume that F and G are quadratic forms both in the 

same unknownsx1, ••• , Xn, and G is positive-definite, and enumera­
te the :roots of the z-equation in descending order z1 # z1 ~ • , • 

. . . # Zn· Prove that fo:r the biggest root z1 and smallest root Zn, 
the following representations are true 

zl= max F(:a::l, ... ,:a::n)' 
Zf+···+:<t-FO G(:a::l'"'':a::n) 

Zn= min F(xl, •.• , xn) • 
z[+•··+xt+O G(:a::l' ••·• :i:n) 

7.9.51. Formulate and prove the analogue of the Courant-Fischer 
theorem for the pair of the forms in the preceding problem. 
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Metric Problems in Linear Space 

8.0. Terminology and General Notes 
A set X is called a metric space if to each pair of its elements x 

and y, there is assigned a nonnegative number p (x, y) called the 
distance between x andy, and the following conditions are fulfilled: 

(i) p (x, y) = 0 if and only if x = y; 
(ii) p (x, y) ~ p (y, x); 
(iii) p (x, z) <;;; p (x, y) + p (y, z). 
If M 1 is a subset of a metric space X, then the set of all elements 

x EX, not belonging to M 1 , is called the complement of the set Ml' 
If M 1, M 2 , ••• are the subsets of X, then the set of all elements, 
each of which belongs to at least one of the sets Mtt Mz, , , ., is 
called the union of M 1 , M 2 , •••• The set of all elements, which 
are elements of each of the sets Mt> M 2 , ••• , is called the inter­
section of M 1 , M 2 , 

The set of all elements x from X fulfilling the condition 

p (a, x) < r 

is called 1 sphere S (a, r). The element a is called the centre of the 
sphere, and the po~itive number r the radius of the sphere. 

The neighbourhood of an element xis any sphere, centrex. A set M 
in a metric spacE' X is said to be open if it contains for every ele­
ment x some neighbourhood of the element. 

An element x E X is called a boundary point of a set M if any 
neighbourhood of this element contains at least one element from M 
which does not coincide with x. The set obtained from M by adding 
all its boundary points, is called the closure of the set M and denot­
ed by XI. A set M is closed if M = M. 

The set S (a, r) of all elements x from X fulfilling the condition. 

p (x, a)~ r 

is called a closed sphere, centre a and radius r. 
An element x0 from a metric space X is called thE' limit of a sequence 

{xn} of elements x1 , x2, ••• , x,, ... from X if p (x0 , x,) -+ 0 as 
n -+ oo .. We write this as 

... 
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~j~'.!,Xn = Xp. 

A sequence {x,} which has a limit (x0 ) is said to be convergent. 

fu;das~~~~~t~r \~~}a~~.~\~:;:~~;~ ';O the~e~~i~n~~~~~ ~~!~~r ~ (~) 
such that p (Xn, Xm) < e, when n, m >= N (e). 

If any fundamental sequence in a metric space X converges to 
a limit, then the space is said to be complete. 

A real or complex linear space X is called a linear normed space 
if each vector x E X has an associated real number II x II called the 
norm of the vector x, and which fulfils the following conditions: 

(i) II x II ~ 0, moreover II x II = 0 only if x = 0; 
(ii) II x + y II,;; II x II + II y II (the t•iangle inequality); (8.0.1) 
(iii) II A.x II~ p. Ill X II-
A normed space can be treated as a metric space if we put 

r (x, y) ~ II x - y II· 
Tho convergence of a sequence with respect to the distance thus 
defrned is called the convergence with respect to the norm. 

A set Min a linear normed space X is said to be bounded if there 
is a positive number C such that II x II~ C for all x from Jf. 

The unit sphere of a normed space X is the set of all vectors x 
for which II x II,;; 1 (II x II ~ 1). 

A set .Win a normed space is said to be convex if, in addition to 
any two of its vectors x and y, it also contains the whole segment 
Ax + (1 -A) y, 0 ~A~ 1. 

Any finite-dimensional linear normed space X is a complete metric 
spaee. Moreover, describing a set .11 from X as bounded is equivalent 
to describing the coordinates of all vectors x from M with respect 
to any basis for the space X as bounded. Similarly, the convergence 
of a sequence {x1J to a vector x0 is equivalent to the convergence of 
the coordinates of the vectors X~t to the corresponding coordinates 
of the vector x 0 with respect to any basis for the space X. 

An example of a normed space is the n-dimensional arithmetic 
space in which the norm of a vector x = (a 1a 2 , ••• , ctn)T is defined 
by the equality 

II x liP = (I <l1 [P + I <l2 fP + • • • + I <ln [P)tfP, p ~ 1. (8.0.2) 

The triangle inequality for this norm is called the Minkowski in­
equality. Its proof is based on the following Holder inequality 

~ 1"•·~•1<;;(~ I"•I')'IP(~ 1~•1') 11', ~+~ ~1. (8.0.3) 
h=l 1<=1 11=1 
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Let X and Y be normed spaces with the norms II x liz and 
II y lly, respectively. The norm II A II on the space of the operators 
Wxy is said to be consistent with the vector norms on spaces X and 
Yif 

II Ax llr ,;;; II A II II X llx (8.0.4) 

for all x EX and any operator A E wxY· 
If X is a normed space with the norm II x 11. then the norm on the 

space Wxx• defined by the equality 

II A II~!!~ 11n';11
11 , (8.0.5) 

is said to be subordinate to the vector norm II x II· Besides the usual 
conditions (8.0.1), the secondary norm also possesses the following 
special property with respect to operator multiplication: 

IIAB 11.;; IIA II liB II· (8.0.6) 

The defi.nitions of a consistent and subordinate norm can be extend­
ed immediately to spaces of matrices considered as operators on 

~~~t~:e~~~ =~·~:~ih~e~~r!~~~~~ri~!nt~~en~~~~~~~li~~e:u~~~d~~a!! 
norm is designated by II A lip· The norms II A 111 , II A 11 II, II A 11-
are considered most often. 

Even if the matrix norm under consideration is not subordinate, 
we shall assume that equality (8.0.6) is valid for it. 

If a matrix A has the form A = E + B,\where II B II< 1 for 
some matrix norm, then A is nondegenerate and the norm of the 
inverse matrix can be estimated by: 

II A-• II,;; ~~~! 11 . 
Consider the system of linear equations 

Ax= b 

with a square non degenerate matrix A and a perturbed system 

(A + tA); = b + tb· 

The matrix £A is assumed to satisfy the inequality 

II •• II< II A-' 11-•. 

(8.0.7) 

This condition is sufficient for the matrix A + eA to be nondegene­
rate. If we put 

Qx_llx-;11 6A=~ 6b-~ 
llxll ' JIAII' - III.JII' 
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then the following estimate is true 

6.x:s;:1 111~}1~11~--\1\1 M (6A ~ Bb). (8.0.8) 

Here, the matrix norm II A II is assumed to be subordinate to the 
vector norm II x fl. 

The product II A II II A u-1 is called the condition number of the 
matrix A and denoted by cond (A). If it is necessary to state expli­
citly to which matrix norm a condition number refers, then we shall 
write cond1 (A), cond 9 (A) or cond., (A). 

As can be seen from estimate (8.0.8), a condition number character­
izes! the sensitivity of a system of linear equations Ax = b to per­
turbations of its coefficients. Matrices with large condition numbers 
.are said to be ill-conditioned. 

Suppose an n X n matrix A with the eigenvalues A1, ••• , An 
is of simple structure, and X is a nondegenerate matrix whose 
columns are the eigenvectors of the matrix A. Then all the eigen­
values of thematrixA +e.._ are in a region of the complex plane which 
is the union of n circles 

I z- ~~ I,;; cond (X) II •• 11, i = 1, ..• , n. (8.0.9) 

Here, the matrix norm is understood to be one of the norms II A 111 , 

IIA,II,, IIA II~· 

8.1. Normed Linear Space 

In addition to the basic metric notions, another two topics are considered 
in thissection:tthe equivalence o( the norms on a finite-dimensional linear space, 
and a duality relation between the norms and the scalar product. The theory 
o( dual norms will make it possible to introduce in the next section a relation 
ordering the set o( oPerator norms. 

8.1.1. Show that the length of a vector in a Euclidean (unitary) 
space fullils the conditions of a norm. 

8.1.2. Given a fixed basise1, ••• , en for ann-dimensional space X 
and an arbitrary vector x from X whose decomposition with respect 
to this basis is 

x = a 1e1 + a 2e2 + ... + anen. 

Show that a norm can be defined for X by any of the following equa­
lities 

(a) II x 11, = I "• I + I "• I + . . + I "• I; 
(b) II X II.= (I "• I'+ I "• I'+ ... + I"· 1')'1'; 
(c) II x 11~ = m~x I" I; 
(d) generally, for any positive number p, p > 1, 

llx lip= (I at IP -i- leta IP +···+I an IP)lJP. 
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8.1.3. Let m (x) and n (x) be two norms for a linear space X. 
Show that 

(a) p (x) ~ max (m (x), n (x)); 
(b) q (x) = am (x) + ~n(x), where a and ~ are fixed nonnegative 

numbers and never both zero; 
(c) r (x) = (mt (.x) + n2 (x))lf2 

are also norms for this space. 
8. 1.4. Let P be a linear nondegenerate operator on a normed 

linear space X with respect to the norm II x II· Prove that m (x), 
where 

m (x) ~ II Px 11. (8.1.1) 

is also a norm for the space X. 
8. t.5, A linear space X is the direct sum of subspaces £ 1 and £ 3 

and, in addition, norms m (x) and n (x) are defined on L1 and L2 , 

respectively. Let x be an arbitrary vector from X, and let x = x1 + 
+ x 2 , where x1 E Ltt x, E L 2• Show that a norm on the space X 
can be defined thus: 

II x II ~ m (x,) + n (x0). 

8. t .6. If the requirement that the norm in the definition of a 
norm should be equal to zero only in the case of the null vector is 
omitted then the vector function thus obtained is called the semi­
rwrm. Hence, the seminorm II z II is specified by the conditions: 

(a) II x II;;;. 0; 
(b) II= II~ Ia lllx II; 
(c) II x + Y II,; II x II + II Y II· 
Prove that if a seminorm II z II is defined on a linear space X, 

then: (a) the set of vectors, for which the seminorm equals zero, is 
a linear subspace L of the space X; (b) all the vectors in the plane 
.z0 + L have the same seminorm; (c) by matching each plane z0 + L 
with the common value of the seminorm of its vectors, a norm on 
the factor-space of the space X is obtained with respect to the sub­
space L. 

8.t.7. Prove that for any four vectors z, y, z, u of a normed 
space, the following inequality holds 

I II X - y II - II ' - u II I < II X - ' II + II y - u II· 
8.1.8. Prove that the sphere II z - z0 II< r is an open set. 
8.1.9. Prove that the union of any number of open sets is an 

open set. 
8.1.10. Show that any sphere is a bounded set. 
8. L t t. Show that any plane of positive dimension is not a bound­

ed set. 
8.t.t2. Show that any sphere is a convex set. 
8.1.13. Show that any plane of positive dimension is a convex 

set. 
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8.1.14. Prove that the sphere 11 x- x0 11 ~ r is a closed set. 
8.1.15. Prove that the complement of an open set is a closed set. 
8.1.16. Prove that the complement of a closed set is open. 
8.1.17. Show that the intersection of any number of closed sets 

is a closed set. 
8.1.18. Show that the union of any finite number of closed sets is 

a closed set. Set up an example demonstrating that the union of 
infinitely many closed sets may not be a closed set. 

8.1.19. Prove that if x,. -+Xo and y,. -+y0, then: (a) llx~~,JI-+ 
-+II x0 Jl; (b) II X11 - a II -+II X0 + a II for any vector a; (c) cu 11 + 
+ PY.~t -+ctX0 + PYo for any numbers a and ~; (d) if a sequence of 
numbers A11 converges to a number A0 , then A11x 11 -+AoXo· 

8.1.20. Prove that if any nontrivial subsequence of a sequence 
{xlt} converges, then the sequence (x~~,} itself also converges. A subse­
quence is trivial if it coincides with the original sequence from some 
term onwards. 

8.1.21. Prove that if x0 is a boundary point of a set M, then there 
is a sequence {x~~,}, x~~, E ,\{, com•crgent to x0 • 

8. 1.22. Prove that the closure of a convex set is also a convex 
set. 

8.1.23. Prove that a convergent subsequence can be singled out 
from any bounded sequence of vectors of a normed space. 

8.1.24. Prove that any infinite bounded set has boundary points. 
8.1.25. The quantity 

p(x, M)~infllx-yll 
"M 

is called the distance from a vector x to a set .M. Show that if M is 
a closed set, then there is Yo E M such that p (x, M) = 11 X - Yo n. 

8.1 .26. The quantity 

p(M,, M,)~infllx-yll 
xEM1, yEM2 

is called the distance between the sets M1 and M 2 • Prove that if the 
sets M 1 and M 2 are closed and bounded, then there are x0 E M1 

and Yo E M 2 such that p (M1, M 2) = \lx0 - Yo II· 
8.1.27. Show that the result of Problem 8.1.26 remains valid if 

the requirement for the boundedness of one of the sets M 1 and M 2 

is omitted. Give an example to demonstrate that this statement 
becomes invalid if neither set (M1 and M 2) is bounded. 

8.1.28. Are the vectors x 0 and Yo in Problems 8.1.25, 8.1.26, 
8.1.27 unique? 

8. t .29*. Assume M to be a convex set of a Euclidean (unitary)!space, 
and consider the length of a vector as its norm. Prove that the 
vector Yo (see Problem 8.1.25) is determined uniquely in these 
circumstances. 
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8.1.30. Let M1 and M'l. be closed bounded sets. Prove that the­
set N, made up of all vectors having the form x + y, where x E .:111,_ 

y E M 2 , is closed and bounded. 
8.1.31. The sets M1 and M 2 are closed, moreover the set .111 is 

bounded. Prove that the statement of Problem 8.1.30 about the 
houndedness of the set N is also valid in this case. Give an example­
demonstrating that when the sets M1 and M 2 are closed and not 
bounded, then the set N is not closed. 

8.1.32*, Given that X is a real (complex) linear space. A junc­
tional on X is a mapping from the space X into a set of real (complex) 
numbers. For a normed space X, a functional F (x) is continuous 
at a point x 0 ifF (xk) -+F (x0) as xk -+x0 . A functional F (x) is 
continuous on a set M if it is continuous at every x11 in Jf and a 
continuous functional is continuous at every x from X. 

Prove that (a) any linear functional on the space X is continuous; 
(b) if II x II is a norm defined on X, then any other norm m (x) on the­
space X is a continuous functional with respect to II x II· 

8. 1.33". Let M be a closed bounded set, and let a functional 
F (x) be continuous on the set .H. Prove that there is a positive­
number c such that IF (x) I~ c for all x from M. 

8.1.34". Prove that in the set .lf (see the previous problem), 
there is a vector x0 such that IF (x11 ) I = max IF (x) I· 

'E.'II 
8.1.35". Prove that for any two norms m (x) and n (x) on a linear­

space X, there are two positive numbers c1 and c2 such that 

(8.1.2} 

How can the largest possible number c1 and smallest possible num­
ber c2 be selected? 

8.1.36. For each pair of the three norms II x 111 , II x 11 2 , II x lloo­
(see 8.1.2), find the best possible c1 and c2 for inequalities (8.1.2). 

8.1.37". Consider for n-dimensional arithmetic space, the norms. 

and 
II x 11, =(I a, I'+ ... + I a. I')''' 

m (x) = II Px 11,, 
where Pis a nondegeneratc n X n matrix. How can the best possible­
constants c1 and c2 in inequalities (8.1.2) be computed? 

8.1.38. Prove that a set M, contained by a space X, and open 
with respect to a norm m (x) on this space, is also open with respect 
to any other norm. 

8.1.39. Prove that a set .lf, closed with respect to a norm on 
a space X, is also closed with respect to any other norm on this 
space. 

8.1.40. Prove that any plane in a normed space X is a closed 
and not an open set (with the exception of the set X itself). 



234 Metric Problems in Linear Space Ch. 8 

8.1.41•. A set X is the direct sum of the subspaces £ 1 and L~. 
A closed set M1 is contained in L1, and a closed set M~ in L,. Prove 
that the sel N made up of all sums x + y, where x E M11 y E M 2, 

is closed. Note that in contrast to 8.1.31, no condition on the bounds 
of the sets M1 and M 2 is required here. 

8.1.42. A norm m (.:z:) is considered other than the length of the 
vector on a Euclidean (unitary) space X. Show that for any y from X, 
the ex pression 

(8.1.3) 

is always finite and satisfies all the conditions of a norm. This norm 
m* (y) is said to be dual to the norm m (x) with respect to the scalar 
product (x, y). 

8.1.43. Show that the definition of a dual norm is equivalent to 
each of the following expressions: 

(a) m*(y)= m~:c~£ 1 l(x, y)l; (d) m•(y)=~~; R~~~t ; 
(b) m•(y)=~!! ~~·(r~)l i (e) m•(y)= m~~!tRe(y, x). 

(c) m'(y)~ max l(x, y)l; 
m(x)-1 

8.1.44. Show that for any lwo vectors.:z: andy (see Problem 8.1.42), 
the following inequality is valid 

I (x, y) I<;; m (x) m• (y). (8.1.4) 

Moreover, for any y there is a vector x0 such that 

(.:z:o, Y) = m (.:z:o) m• (y). 

8.1.45. Find the dual norm for the length of vectors. 
8. 1.46. Find the dual norm for the norm II x II"" = max I a, I 

I 
on the n-dimensional arithmetic space with the scalar product de­
fined as (7 .1.4). 

8. t.47•. Generalizing 8.1.46, prove that the norm 

ll.:z: llq =(I Ct1 lq + · · · + I Ctn Jq)IJq 

is dual with respect to the norm 

Jl.:z:Jip=(latl"+ ... + letni") 11P, p> 1, f++=i. 
What happens to inequality (8.1.4) for this pair of norms? 

8.1.48. Given two norms m (x) and n (.:z:) on a Euclidean (unitary) 
space X and any vector x for which the inequality m (x) >: n (.:z:) 
obtains, show that for the dual norms m• (y) and n• (y), the reverse 
relation is valid: m• (y) ~ n• (y) for any vector y. 
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8.1.49*. Prove that for any vector x, there is a vector y such 
that inequality (8.1.4) turns into an equality. 

8.1.50. Show that the norm m** (x), dual to the dual norm 
m"' (y), coincides with the original norm m (x). 

8.2. Norms of Operators and Matrices 

in ~;~tt'b~ cao;;f:~~ti~i~; !~~~i~ln~~c:~s!~b~:;:tt~~~~~ 6brio~~~~l~8tb~~ 
statements can be re.formu1ated for operator!. It should be stressed that a matrix 

~:r~~~f~l~ ~!u~~~e~~~::d~t~~~~r~l:i~!st,o ~~~~f;~ation of matrix multiplication 

II ABII.;; IIA IIIIBII. 
Various classes of matrix norms and, in particular, the properties of the 

spectral and Euclidean norms are considered. In the latter case we have listed 
.a number of interesting metric relations, similar to those valid for the complex 

f~~~~ t~~ ~:~~~!~d:O~~~&e~~;:0:~~~~~1~~~~ Thfs!~J~f:fe~d=~~t!~fat~oe~ 
(l{ partial ordering on the norm set. 

8.2.1. Prove that any linear operator transforms a bounded set 
into another bounded set. 

8.2.2. Is it correct to say that an open set is transformed by 
a linear operator into another open set? 

8.2.3. Is it true that a closed set is transformed by a linear trans­
formation to a closed set? 

8.2.4. Prove that a closed and bounded set is transformed to 
a closed set by an arbitrary linear operator. 

8.2.5*. If M is a closed set and A a linear operator, prove that 
the complete pre-image of the set M (i.e. the set of all x for which 
Ax E M) is also a closed set. 

8.2.6*. Let (A 11 } be a sequence of linear op~::rators on a normed 
space X, and assume that for any x from X the sequence {A 11x} i:; 
convergent. If 

Ax=!~~ A 11 x, 

show~,that (a) an operator A, defined by this equality, is linear; 
{b) A 11 -+A for any norm on the space of operators. 

8.2.7. Show that the sequence of matrices A 11 = (a~~ 1 ) converges 
(under any norm) to the matrix A = (a0 ) if and only if a~~l-+ ao 
for all i, j. 

8.2.8. Show that the limit of a sequence of normal matrices can 
(lnly be a normal matrix. Similarly, show that a sequence of unitary 
matrices ca11 only converge to a unitary matrix, a sequence of Her­
mitian matrices to a Hermitian matrix, and a sequence of positive­
definite matrices to a positive-dermite matrix. 
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8.2.9. Show that for any norm on a matrix space, the norm of the 
unit matrix is not less than unity. 

8.2.10. Let II A II be a norm on the space of n X n matrices. Show 
that the following are also matrix norms: 

(a) M (A) ~ " II A II, "> 1; 
(b) L (A)~ II A* II; 
(c) N (A) = II P-1AP II, where P is a nondegenerate n-order 

matrix. 
8.2.11. Show that if .M (A) and L (A) are matrix norms, then 

N (A) = max{M (A), L (A)} is also a matrix norm. 
8.2.12. Prove that the follo\Ving function of an Jl X n matrix 

(8.2.1) 

is a matrix norm. 
8.2.13. Let E11 be an n-order matrix, in which the only nonzerO> 

element is at (i, j) and equals unity. Show that if a matrix norm 
II A II satisfies the inequality 

for all i, j then 
liEu II<;; I 

IIA II<;;K (A), 

where K (A) is a norm defined by the formula (8.2.1). 
8.2.14. The natural scalar product (7 .1.4) is defined on the n-di­

mensional arithmetic space. A matrix norm, subordinate to Yector 
length in this space, is called the spectral norm and denoted by II A 111. 

Prove that the spectral norm of a matrix equals its greatest singular 
value. 

8.2.15. How can the spectral norm be calculated for (a) a diagonal 
matrix, (b) a quasidiagonal matrix? 

8.2.16. Define the scalar product on the space of n X n matrices 
as in (7.1.5). The length of a matrix in the Euclidean (unitary) 
space thus obtained is expressed by the formula 

!I All.~( j; la,,l')'12 
t • .:l=l 

and called the Euclidean norm of the matrix. Show that for any matri­
ces A and B 

II AB liE.;; II A liE II B liE· 
8.2.17. Find the Euclidean norm of a unitary n-order matrix. 
8.2.t8•. Derive an expression for the Euclidean norm of an 

n X n matrix A in terms of its singular values a 1 , ••• , CLn· 
8.2.19. Prove that the spectral norm of a matrix A equals its 

Euclidean norm if and only if A is a matrix of unit rank. 
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8.2.20. Prove that for any unitary matrices U and. V 

II ("A\' II.~ II A II,, II UAV liE~ II A liE· 
8.2.21*. Prove the following inequalities: 

<·•l IIAIIE.;;ViiiiAII,: 
(b) II AB liE<;;; II A II. II B liE; 
(c) II AB liE<;;; II A liE II B 11,. 

231 

8.2.22. Let a matrix A have a Hermitian decomposition A = 
= H 1 + iH 2 • Prove that 

(a) IIH, II,<;;IIA 11,, IIH, llo<;; IIA II,; 
(b) IIH.!Il:+IIH,IIl:~IIAIII:· 

8.2.23. Prove that for any Hermitian matrix H 

II A - H II. ;;;, II A - H, liE· 

In this case, the matrix H1 from the Hermitian decomposition of A 
is the Hermitian matrix closest in the sense of Euclidean distance 
to matrix A and, similarly, the matrix iH1 is the closest skew Hermi­
tian matrix. Indicate the analogue of thls property on the complex 
plane. 

8.2.24. Let A = HU be a polar representation of a matrix A. 
Show that 

Which property of complex numbers does this equality correspond 
to? 

8.2.25*. Prove that for any positive-definite matrix H, the closest 
(in the Euclidean distance sense) unitary matrix is the unit matrix E, 
and the farthest is the matrix -E. What happens if His a positive­
semidefinite matrix? 

8.2.26. Let A = H U be an arbitrary polar representation of 
a matrix A. Prove that for any unitary matrix V, the following 
inequalities are valid 

II A - U II• <;;; II A - V lis <;;; II A + U liE· 

What is the corresponding property of complex numbers? 
8.2.27*. Let A be an n X n matrix with the singular values 

a 1, ••. , an. Assuming 

S (A) = ct1 + ... + ""' 
prove that S (A) is a matrix norm. 

(8.2.2) 
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8.2.28. Prove that for any positive-semidefinite matrices A and B 
and any nonnegative numbers et and ~ 

S (aA + ~B) ~ aS (A) + ~S (B). 

The norm S (A) is defined by (8.2.2). 
8.2.29*. Show that in the defmition of a secondary norm 

II A II=;'~~ 1111~%1111 , 
sup may be replaced by max. 

8.2.30. Find subordinate matrix norms for the following norms 
on the n-dimensional arithmetic space: 

(a) II x, II ~ I a, I + ... + I a" 1. 
(b) llx 11~ ~max I a, 1. 

What are the values of these norms for a diagonal matrix D. 
8.2.31. Prove that for any n X n matrix A, the following equality 

holds 

U:.~x I alii=~!! lltxzlll:"" . 
8.2.32. Xorms m (x) and n (x) on an arithmetic space .surh that 

for any vector x m (x) = en (x) where c is a constant number. Show 
that the corresponding subordinate norms are identical. 

8.2.33. Suppose M (A) is a matrix norm, subordinate to a vector 
norm m (x). Find a matrix norm, subordinate to the norm n (x) = 
= m (Px), where P is a constant nondegenerate matrix. 

8.2.34. Let A be a matrix of rank 1 which can be represented as 
the product A = xy*, where x and y are n-dimensional column 
vectors. Given any norm m (x) on the arithmetic space and its cor­
responding subordinate matrix norm M (A), prove the equality 

M (A) ~ m (x) m• (y), (8.2.3) 

where m• (y) is the norm dual to m (x) with respect to the scalar 
product (7.1.4). 

8.2.35. Find the value of the norm II A lloo for a matrix having 
rank 1 given that A = xy*. 

8.2.36. If M (A) is a subordinate matrix norm, prove that M (A) 
can be represented as 

M(A)=~!; !~:~). (8.2.4) 

8.2.37, Prove that the representation (8.2.4) remains valid if, 
instead of all nonzero matrices B, only unit rank matrices are con­
sidered. 



8.2.38*. Prove that the subordinate matrix norm M (A) may be 
represented as follows: 

M (A)= m~x it.~(:~) I . (8.2.5} 
"s-1 

Here B ranges over the set of matrices of rank 1. 
8.2.39. Given that M (A) and N (A) are subordinate norms, 

and that M (A)> N (A) for all A, prove that M (A):= N (A). 
8.2.40*. Given that m (x) and m* (x) are dual norms on an arith­

metic space, and that M (A) and .IU* (A) are their subordinate 
matrix norms. Prove that for any matrix A 

M (A)~ M* (A*). 

8.2.41*. Prove that any matrix norm is consistent with a certain 
norm on the arithmetic space. 

8.2.42. Show that if a matrix norm II A II is consistent with 
a vector norm m (x) and ltl (A) is subordinate tom (x), then II A II;:;;;,­
> M (A) for all matrices A. Thus, the subordinate norm M (A) 
is the least of all norms, consistent with the vector norm m (x). 

8.2.43*. Prove that any subordinate matrix norm is consistent 
with a unique (dependent on a numerical multiplier) vector norm. 

8.2.44. Show that any subordinate matrix norm M (A) is mini­
mal, i.e. another matrix norm L (A) does not exist, for which 

L(A)<;;M(A) 
for any matrix A. 

8.2.45*. Let a matrix norm II A II be consistent with a vector 
norm m (x) for which M (A) is subordinate. Moreover, II A II coin­
Cides with M (A) for the set of matrices of rank 1. Prove that m (.x) 
is a vector norm (unique for a given numerical multiplier) consis­
tent with II A 11. 

8.2.46. Show that the Euclidean matrix norm and the normS (A) 
(see (8.2.2)) are consistent only with the uorm ll.x 11 2 = (I ct1 13 + ... 
. . . + 1 a., 12) 112 (depending on a given numerical multiplier). 

8.2.47. A matrix norm .M (A) is subordinate to the unit matrix E. 
Does this mean that .11 (A) is a subordinate norm? 

8.3. Matrl.x Norms and Systems 
of IJ.near Equations 

line~:~q~~~i:~f!~cd~~!~ (~!di:te~::!t!0 a~~e ~~~~!is~~~ ~~.~tl~~ssl!~em:e~! 
considered in Sec. i.8). The bns1c topics are the following; 

Criteria of ooodegeneracy of matrices. 
Estimates of norms of inverse matrices. 
The conditioning of a system of linear equations, properties of condition 

numbers. 
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per~~ba~~~~m~}ioi~s o~o!r/c~~~L~~alion in the solution uf a system for a give• 

Approximate solution of a system and estimation of the accuracy of the 
derived solution. · 

8.3.1. Pro,·c that a matrix A + 8, where A is nondegenerate 
.and II A -18 II< 1, is also nondegenerate. 

8.3.2, Prove that if a matrix A is nondegenerate and the matrix 
A - B is degenerate, then the condition number of the matrix A 
satisfi£'s the inequality 

cond (A)# \\ ~ \: . 

8.3.3. Find the estimate from below for the condition number 
cond.,., (A) of the matrix 

8.3.4. Prove that a matrix U ...:.. B is nondegcnerate given that U 
is a unitary matrix and the sp£'ctral norm of the matrix B is less 
than unity. 

8.3.5•. Let an be the smallest singular value of an n X n ma­
trix A. Prove that the distance (in the sense of the spectral norm) 
from the matrix A to the set M of degenerate matrices equals 

P2 (A, M) =an. 

8.3.6*. Prove that the smallest singular value of the matrix of 
the determinant (3.3.1) does not exceed 2-(n-tJ. 

8.3.7*. An n-order matrix A has the singular values a:1 ~ ..• 

, .. ~a,.. Prove that the distance (in the sense of the spectral 
norm) from the matrix A to the ~et ]'v[ ~of matricl'~, whose rank is 
less than r, is equal to 

P2 (A, 1\1~) = ar, r = 1, 2, •.. , n. 
8.3.8. An n-order matrix A is said to be diagonally dominant 

(with respect to its rou:s) matrix if 

l•11l > i; I•., I· t-1, .. ,, n. 
J=i ,,., 

Prove that a diagonally dominant matrix is nondegenerate. Formu 
late a similar criterion for dominance with respect to its columns. 

8.3.9*. Let A be a partitioned matrix of the form 

A-1 1

1 ~:: ~:: ::. ~::II· 
A1t 1 A~t 2 ••• Au 
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where all the blocks A 11 are square and have the same order m, 
and the diagonal blocks A 11 are nondegenerate. Moreover, for all i, 
1 ~ i ~ k, the following inequaliUes hold true: 

II Ail II Ill Au II+ ... +II A,,,_, II+IIA,,, .. II+ ... + II A,. Ill< I. 
Prove that the matrix A is nondegenerate. What happens when 
m= 1? 

8.3.10. Is the matrix 

II ~ t -~.: -~::11 
A= 0.4 o.s 2 1 

-0 5 0 4 1 1 
nondegenerate? 

8.3.11*. Assume that A is a diagonally dominant n-order matrix 
and for a certain positive number a < 1 

a laul>"i: laiJI• i=1, ... , n. 
J=t 
j,;o!oi 

Prove that for the norm of the inverse matrix A-t the estimates 
are true: 

min 11"111 • l~a. ~~~A-'ll"":::;,;; min11"HI · t~a • (S.J.i) 
• f 

8.3.12. Estimate from below and from above the condition num· 
her cond., (A):(see Problem 8.3.11) in terms of the diagonal elements 
of the matrix A and the number o:. 
' 8.3.13. Estimate from below and from above the condition num­
ber cond., (A) of the n X n matrix 

II 
t to-· to-· to-<·-·· II 10-1 2 ff)-2 •• : to-(n-1) 

to-• 10-• 3 ... to-<•-•> . 

f~(· .. ~,)· ~~(:_;). ;;( .. ~1; •• • •n • • 

8.3.14. Let R be a triangular N-order matrix for which 
(a) I r;1 I~ 1 for all i, j: 
(b) r 1, = 1 for all i. 

Find the maximum possible value of the condition number cond,.,(R). 
8.3.15. Given a sequence of matrices A 11 of a fixed order n, with 

II A 11 II= 1 and cond (A 11)--+ oo ask--+ oo. Prove that det Ah --+0 
ask--+ oo. 

Thus, for a fixed order of a matrix an increase in the condition 
number is related to a decrease in determinant size. However, as is 
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shown in 8.3.14, for a sufficiently large n, the condition number of 
a matrix may be very large even if its determinant equals 1. 

8.3.16. Show that the condition number of any matrix has a low· 
er bound of 1. 

8.3.17. Show that the condition number cond (A) is unaltered 
when the matrix A is multiplied by a nonzero number. 

8.3.18. Find the expression of the spectral condition number of 
a nondegenerate normal matrix A in terms of its eigenvalues A1, ••. ... ,),. 

8.3.19. Find the expression of the spectral condition number of 
a nondegenerate n X n matrix A in terms of its singular values 
a1 >a2 >···>an. 

8.3.20. Show that the equality cond 2 (A) = 1 occurs if and only 
if A =aU, where U is a unitary matrix and a is a nonzero number. 

8.3.21. Show that the condition numbers cond1 , 2 , .... E (A) are 
unaltered when the rows and columns of the matrix A are inter· 
changed. 

8.3.22. Show that the spectral and Euclidean condition numbers 
of a matrix A are unaltered when it is left·multiplied and right· 
multiplied by arbitrary unitary matrices U and V. 

8.3.23. Pro"e the inequalities 

max{~~:~~~~, ~~::~!~}~cond(AB)~cond(A)cond(B). 
8.3.24. For a non degenerate 2 X 2 matrix A, give an explicit 

expression of the Euclidean condition number condE (A) in terms 
of the elements of this matrix. 

8.3.25. Show that the matrix 

II': ::11 
has the greatest Euclidean condition number among all nondegene· 
rate 2 X 2 matrices whose elements are nonnegative integers not 
exceeding 100. 

8.3.26. The solution of a system of two linear equations in two 
unknowns: 

a11x + a12y = a1, a 21x + a 22y = a 2 

with a real and nondegenerate matrix A is equivalent to the geomet­
ric problem of finding the point of intersection of two straight lines 
determined by the equations of the system. Prove that the angle a 
between these straight lines satisfies the inequality 

lcotal ~+ condE(A). 

8.3.27. If A is a positive·defmite matrix, prove that the spectral 
condition number of the matrix A + aE is a steadily decreasing 
function of a when a > 0. 
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8.3.28. Suppose A is a positiYe-defmite matrix and A" is an 
arbitrary principal submatrix of the matrix A. Prove that 

cond 2 (A 11 ) =s;;;; cond 2 (A). 

8.3.29. Let A = STS be a triangular decomposition of a real 
positive-definite matrix A. How are the spectral condition numbers 
of the matrices A and S related? 

8.3.30. Estimate from below the spectral condition number of 
the matrix of the system of linear equations 

10x1 + 10x2 + 30x3 =- --5, 
0.1x1 + 0.5x2 + 0.1x3 = 0.55, 

0.03x 1 + 0.01x2 + 0.01x3 = 0.045. 
Indicate a method to decrease the condition number so that in the 

obtained system Ax = b cond 2 (...i) = 3. Find the solution of thil!l 
system. 

8.3.31*, Estimate from below the spectral condition number of 
the matrix of the system 

x 1 + 20x2 -400x3 = 1, 
0.2x1 - 2x2 - 20:&3 =0.2, 

-0.04x1-0.2x2 + x3 =0.05. 
Indicate a method for decreasing the condition number so that in 
the obtained system A.y = b, cond 2 (.4) = 2. Find the solution 
of this system. 

8.3.32. Let 11 :e ll be a norm on an arithmetic space, and let II A II 
be its subordinate matrix norm. Show that when the right-hand side 
of a system of linear equations A:e = b is replaced by a vector with 
the norm e > 0, the solution of the system can be changed to a vee. 
tor with the norm e II A-1 II· 

8.3.33. Estimate thf' possible perturbation of the system 

Zy--1, 
-2x+4.01y-2 

when the components of the right-hand side are changed by 0.01. 
Find the solution of this system and of the system with the same 
matrix and the right-hand side 

b~ll-:.0!11· 
8.3.34. Find the condition number cond.., (A) of the matrix of 

the system 

... 
5x - 3.31y - 1.69, 
6x - 3.97y - 2.03 . 
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Indicate the change of the solution of this system in the transfer 
to the system with the same matrix but with the right-hand side 
being 

8.3.35. Find an approximate solution of the system 
2.503x1 + 0.002x2 -0.004x3 + 0.001x, = 5, 
0.006x1 - 3.002x2 + 0.001x3 - 0.001x, = 3, 

-0.002x1 + 0.002x2 + 4.998x3 +0.004.x, = 10, 
0.005x1 - 0.001x2 + 3.997x, == 4. 

such that the error in each component may not exceed 0.01. 
8.3.36. Find an approximate solution of the system 

0.501x1-0.499x2 +0.001x3 =0.5, 
· 0.498x1 + 0.502x2 -0.001x, = 0.5, 
0.006x 1 +0.007x2 + 3.008x3 -1.991x, = 0, 

-0.001x1 -2.001x3 +1.000x,=0 
such that the error in each component may not exceed 0.06. 

8.3.37. Prove the inequality 

II B~t;~;• II ~cond (A) Ill~~: II . 

8.4. Matrix Norms and Eigenvalues 

In this section we intended to dl'monstrate some of numerous applications of 
rnatrix norms to problems involving the eigenvalues of complex matrices. 

Some inequalities connecting the eigenvalues and the matrix norms are 

~:~1:~e;l:~e6~~;.t!:~iS:gi~Wu:~~li:~g~~a~~e:~1 !o ~~~f~: ;hr;g~:rs~o~~! 
theorem (see Sec. 8.4.20) and a thl'orem on eigenvalue perturbations (see Sec. 8.0) 
can also be applied for the same purpose. 

batJ~~i~f~e~~:~r~!~r:,~esm~dJ~gd e!~e:;~~u~~e~~eH:~~~1/i:a~a!ri~b t~dfv~~~;i 
eigenvalue (se<> Problems 8A.25-8.4.32). 

Given an approximation to a well-separated eigenvalue "-1 and the corre-

sponding approximate eigenvector~ of a normal matrix, the Rayleigh ratio for 

W: d~~~~;tfl:es0:~·1 ~~Pp~:~iea~:8.~~3~8~~i-~~-considerahly higher accuracy. 
Finally the refation between close eigenvalues of a matrix and Ill-conditioning 

of the eigenvector matrix is investigated. It is easy to demonstrate that in a small 

~1tthj~~d~~0~t~c~u~e~1~he"'f!~t~~~n°rb~~~~~i~e~f~;a:h:Sii~i~fnis c~:a!ri~ 
matrix with ill-conditioned eigenvectors. -\s it was e:"tabli,.hl'd h\' Wilkinson, 
the conver:<e relation il' also true: if for a matrix A (even with well-separated 
eigenvalues) the malrix of the eigenvectors is ill-conditioned, then m a small 
neighbourhood of A there is a malrix with a multiple rout. 
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8.4.1*. Prove that for the spectral radius of a matrix A, the 
fo11owing inequality holds 

p (A),;;; II A II (8.4.1) 

for any matrix norm II A 11. 
8.4.2. Indicate a circJe on the complex plane containing all the 

eigenvalues of the matrix 

II -~ ~ ::~·11· 
1+2i t+i 0 

8.4.3. Prove that a11 the eigenvalues of the matrix 

II~ =: -! ji 
Jie within the circ1e of the complex plane I z I~ 6. 

8.4.4. Show that the greatest eigenvalue A1 and the least eigen· 
value A4 of the symmetric matrix 

II-~; j ~~II 
satisfy the inequalities 

20::::;A1 ~23, O~A.4 ~6. 
8.4.5. Prove that the moduli of aiJ the eigenvalues of a stochastic 

matrix do not exceed unity. 
8.4.6. Prove that the eigenvalues of a tridiagonal matrix 

c~ 

.. 
satisfy the inequality 

IAI ~m~x{la,[ + lb1+d +led}. c1= bn+t =0. 

How can this result be used to evaluate the eigenvalues of a Her· 
mitian matrix by the bisection method? 
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8.4. 7, Prove that all roots of a polynomial f (z) = a,.zn + 
+ a11 _1z"-1 -r .•. + a1z + a0 , a11 -=#= 0, are contained in each of 
the following circles on the complex plane 

(a) lzl,;; max {I, I";~· I+ ... + I ;; H :: I}; 

8.4.8*. Let A0 be a matrix of simple structure. Prove that there 
is a matrix norm II A II such that when A = A0 (8.4.1) becomes an 
equality relation. 

8.4.9*. Let A 0 be an arbitrary matrix. Prove that for any posi­
tive number e, there is a matrix norm II A II for which II A0 II< 
<p(A,)+ e. 

8.4.10. Prove that for a normal matrix A 0 , II A 0 lis~ M (A 0) 

for any matrix norm M (A). 
8.4.11. Prove that for an arbitrary matrix A 0 and any matrix 

norm M (A), II A, 11,,;; V M (A,) M (A!). 
8.4.12*. Let A he a matrix of order n with the eigenvalues 

A1 , ••• , A11 • Prove the following Schur inequality 

(8.4.2) 

8.4.13*. Let a:1 , ••• , a 11 and ~I' ••. , ~n (see Problem 8.4.12) 
be the real and imaginary parts, respectively, of the eigenvalues 
A1, •.. , An. Prove that 

(a) 4:f; alqiA+A'IIl.: (b) 4i'; ~lqiA-A'IIk· (8.4.3) 
i=t 1-1 

8.4.14*. Prove that equality occurs in (8.4.2) if and only if A 
is a normal matrix. The same is true for each of relations (8.4.3). 

8.4.15*. Let A be an n X n matrix with the eigenvalues A:t, .. 
. . . , A11 , and let P be an arbitrary nondegenerate matrix. Prove 
that 

infiiP-'APIIl~:f; ll.d'· 
p 1=1 

For which matrices A is the indicated lower bound reached? 
8.4.16*. Using 8.4.14, prove that the normality of matrices A, B 

and AB implies the normality of BA. 
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8.4.17*. Suppose that a normal matrix A is partitioned into 
blocks A 11 so that 

and, moreover, the diagonal blocks A 11 are square, though perhaps, 
of different orders. Further, assume that the eigenvalues of the 
matrix A coincide with the set of the eigenvalues of the matrices A 11 • 

Prove that then all the off-diagonal blocks A 11 equal zero. 
8.4.18*. Let A1, •.. , An be the eigenvalues, and let a 1 , .•• , a" 

be the singular values of a matrix A. Prove that 

I AI I + • • • + I An 1 ~ 0:1 + • • • + O:no 

8.4.19*. Using 8.4.18, prove that for any matrix A of order n, 

~ lk,l<;; ~ Ja"J. 
,=1 i,J=1 

8.4.20*. Prove the following Gershgorin theorem: all the eigenval· 
ues of an n X n matrix A lie in a region of the complex plane given 
by the union of n disks 

lz-a 11 l:s;;;;tla11 1. i=1. ... ,n. 
1=1 
#I 

8.4.21. Indicate a region on the complex plane containing all 
.the eigenvalues of the matrix 

II ~:~: ~:~~ ~:: II· 
0.02 0.04 3.06 

8.4.22. These inequalities are valid for a matrix A 

Rea11 < -i la11 1. i=i, ... , n. 
]=1 

'"' Prove that A is a stable matrix. 
8.4.23. Using the theorem about a perturbation of the eigenval· 

ues, indicate a region on the complex plane containing all the eigen­
values of the matrix 

II 
2.001 1.499 0.001 II 
0.499 LOOt -O.OOt . 

-o.oot o.oot o.m 
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Find a region on the complex plane containing all the eigenvalues 
of the matrix A + eB, using the theorem about a perturbation of 
the eigenvalues. 

8.4.25*. Let A and B be Hermitian matrices, and let i\1, ••• , An 
be the eigenvalues of the matrix A. Prove that in each interval 

- II B 11, <;;; z- A1 <;;; II B 11, i = 1, ... , n, (8.4.4) 
there is at least one eigenvalue of the matrix A + B, 

8.4.26. Let 1..1 , 1..2 , "-s and llt• f.1 1, l!s be the eigenvalues of the 
matrices A and B, respectively, where 

A=ll ~ 3 -~II· B~ll :! ~: -~,11· 
-2 -1 -2 0 t -t 

Prove that for each 1..1, there is such I!J that I 1..1 - llJ I~ 0.3. 
8.4.27*. Find eigenvalues of the matrix 

II 

_!:~~: -:.to-' _:.4993 _:~~II 
4- to-s -0.4993 2-iD-' -2· IQ-<1 

0.9991-tD-' -6-tD-' -2-to-' 1-to-• 

approximately, so that the error in each does not exceed 0.002. 
8.4.28. Let an eigenvalue A1 (see Problem 8.4.25) be of multipli­

city k. Prove that then the interval 

- II B II, <;;; z - A, <;;; II B II. 
contains at least k eigenvalues of the matrix A + B. 

8.4.29•. Find approximations to the eigenvalues of the matrix 

11 -~·: =~:r: ::H: ::~:~~ II 

0.01 -0.01 -0.99 -0.01. 

such that the error in each eigenvalue does not exceed 0.02. 
8.4.30. Let the region D, made up of the intervals (8.4.4), be 

broken into regions (i.e. intervals) having no common points. Prove 
that in each of these regions Dh, there are as many eigenvalues of 
the matrix A + B (see Problem 8.4.25) as there are intervals in the 
set (8.4.4) that compose this region. Moreover, if A1 is a multiple 
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eigenvalue of A, then its corresponding interval is counted as many 
times as the multiplicity of A1• 

8.4.31. A Hermitian matrix A is partitioned into blocks 

so that A11 and A 22 are square and II A 12 11 2 = e. Let A1, A2 , ••. , A11 

be the eigenvalues of the matrix A numbered in descending order, 
and let £1 , ••• , Sr be the eigenvalues of A11 , and T] 1 , • ., 11., -r 
the eigenvalues of A 22. Finally, let fli> •.. , J.ln be the numbers of 
the set £1 , ... , Sr. 11 1, ... , lln-r also numbered in descending 
order. Prove that I A1 - flt I:::;;;;; e, i = 1, ... , n. 

Thus, the eigenvalues of the diagonal blocks can be taken as 
approximations to the eigenvalues of the matrix A itself with an 
accuracy of e. 

8.4.32•. Prove that the following matrix A of order 8 

t tiN 0 I 1/N 
tjN t 2/N 

0 2/N t 

1/N 

I' 1/NI f/N 2 

1

-0.5 
0.1 -0.2 

O.t -0.21 
-1 0 

0 2 

(the matrix A is quasi-diagonal to the accuracy of the elements 
positioned in (1.8) and (8.1)): 

(a) for any N > 0, has at least one eigenvalue in the interval 

-~,;;J.-1,;;; V,'; 
(b) for N > 10 has precisely three eigenvalues in the interval 

-;3 ~A-t~}. 
ln Problems 8.4.33-8.4.35, it is assumed that A is a normal ma­

trix and X is a column vector normed so that II; 11 2 = L 

8.4.33. Let II AX lis = e. Prove that the matrix A has an eigen­
value A for which I A I~ e. 

8.4.34. Assume for an arbitrary number fl that e = II A.i'- Jl; 11 2 • 

Show that there is at least one eigenvalue of the matrix A in the 
disk on the complex plane I z - Jl I ~ e. 



Metric Problems in Linear Space Ch. 8 

8.4.35*. Let A1 be an eigenvalue of a matrix A lying in the disk 
I z - fLo I~ e (e is defined as in 8.4.34), and let for all the other 
eigen\'alues A11 , ••• , An, the condition be fulfilled 

[A,-Ilo l~a»e. 
If the normed eigenvector associated with the eigenvalue A1 is denot­
ed by e1 and 

x = ae1 + z, 
where z ..L e1, prove that 

1•1 II Az- ~,, 11,;;;. a II z II,; 
(b) II Az- j.L0Z 11 2 :::::;,;; e, II z 11 2 ~ ela; 

(c) lcti~"V1-e21 a2 ; 
(d) I (Az, z) - !Jo II z rr: I ~ e2/a. 

(8.4.51 

Thus, if e is sufficiently small compared to a, then ; can be con­
sidered as an approximation to e1• 

8.4.36. Let A be a matrix of order n, x an arbitrary nonzero n­
dimensional column vector. The number 

r (x) = <tr~· ~J 
is called the Rayleigh quotient corresponding to the vector x. Prove 
that for any number j.L 

II Ax - r (xl x 11, <;;; II Ax - ~x 11,. 
8.4.37. Prove that for a normal matrix A and any normed vec­

tor ;, the disk 

lz-r(;II<;;(IIA;II:-Ir(;l 1'1''' 
<'Ontains an eigenvalue of the matrix A. 

8.4.38*. Assume that l.lo (see Problem 8.4.35) is the Rayleigh quo· 
Uent corresponding to the vector;, Prove that the estimate is valid 

IAt-j.Lor~f(t-~r~. (8.4.61 

8.4.39. For a symmetric matrix A 

II 
~.001 ~-001 :::: :::: II 
0.002 0.002 3 0.001 
0.002 0.002 0.001 4 

(a) with the aid of 8.4.25 find the eigenvalues to an accuracy 
of 0.005; 
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(b) show that the diagonal elements of A can be considered as the 
Rayleigh ratios if the corresponding vectors have been given; 

(c) prove that the diagonal elements are approximations to the 
corresponding eigenvalues to an accuracy of 10-5 • 

8.4.40. Let all the eigenvalues A1 , ••• , A, of a matrix A be 
different and d = ~~ ! A1 - A1 !. Prove that there is a matrix B 

for which II B 11 2 ::;;;; d/2 and the matrix A + B has a multiple eigen­
value. 

8.4.41•. Prove that (see Problem 8.4.40) for any number e > 0, 

a matrix Ce can be found such that II Cs 11 2 < f + e and the 
matrix A + Ce is not simply structured. 

8.4.42•. All the eigenvalues A1 , ••• , A, of a matrix A are differ­
ent. Let x 1 be an eigenvector of the matrix A associated with A1, y1 

an eigenvector of the matrix A • corresponding to~- Put 

s,= II ;;11: 1f~, lit' i = 1. ... ' n. 

For real x 1 and y1, the number s1 is the cosine of the angle between 
these vectors. It is obvious that 1 s1 I is independent of the selection 
of a concrete pair of vectors :t:1, y1 (for the given A1). 

Prove that 
(a) for any matrix X made up of the eigenvectors of the matrix A, 

cond 2 (X)~~. i=i, ... , n; 

(b) a matrix X can be selected so that 

cond 2 (X):::=;;condE(X) = ~ -,!;,. 
i=l 

Thus, the nlue of ! s1 I, together with its condition number, can 
serve as a measure of the conditioning of the eigenvector matrix. 

8.4.43. Let C be a triangular matrix 

and let the first component of some eigenvector y of the conjugate 
matrix C* associated with the eigenvalue f 1 be equal to zero. Prove 
that A1 is a multiple eigenvalue of C. 

8.4.44. Matrices A and A • possess the eigenvectors x and y, 
associated with A1 and r,. respectively, and, in addition, (:t:, y) = 0. 
Prove that A1 is a multiple eigenvalue of A. 
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8.4.45*. Write the matrix C (see Problem 8.4.43) in the parti­
tioned form 

c~JJ~· L.IJ. 
We will assume that the eigenvector y of the matrix C*, associated 
with the eigenvalue X1 , to be normed, and require instead of ~ 1 = 0, 
that ~1 = e, I e I< 1. Represent the vector y in the form 

y=( :J. 
Prove that A1 is an eigenvalue of the matrix 

(;n-I=Cn-t+ 1--EitP zc. 

8.4.46. Prove that (see Problem 8.4.45) there ·s a matrix C such 
that 

(a) IIC-CII,< Vt~ 1 1 , 1 , IICII,; 

(b) C has a multiple eigenvalue J..1• 

8.4.47. Let x and y be the normed eigenvectors of matrices A 

and A* corresponding to A1 and I 1, respectively. Moreover, Is I= 

= I (.x, y) I = e « 1. Prove that there is a matrix A snch that 

(a) IIA-Aib<vL,. IIAII,; 

(b) A has a multiple eigenvalue A1• Thereby, the fact that conju· 
gate matrices possess a pair of almost orthogonal eigenvectors asso· 
ciated with the conjugate eigenvalues, testifies that there exists 
a close matrix with a multiple eigenvalue. 



Hints 

I. t. 18. Usin~ only the distributivity and the existence of the opposite 
element, prove that 0-.r = 0 for anyveetor:z:. Hence, deduce that (-1)-z: = -:z:. 
Finally, using the associativity of addition, prove that :z: + y = y + :z:. 

1.2.28. Write a linear combination ~1 :r:1 + . . + A.z8 of the vectors z:1 , ••• 
. . . , x •. If we assume that there are nonzeroes among the coefficients A1, ••• , i..8 , 

and that i.1 has the maximum modulus, then we have to show that the f·lh com­
ponent uf the \'ector i.1x1 + ... + l • .,:t8 is different from zero. 

1.3.16. Use Theortm 15.1 (see the text-book by V. Voyevodin, p. 50). 
1.3.25. Use 1.3.17 and 1.3.19. 
1.3.26. Show that each elementary transformation leads to an equivalent 

vector sel. 
1.3.34. tet the rank of the vector set :z:1 , ••• , :r8 be r. Then, the fil'!t r rows 

of the matrix, obtained from the reduction to trapezoidal form (see the solution 
of Problem t.2.t8\, will be nonzero. Let them correspond to the rows numbered 
i 1 , •• • , 'r in the original matrix. Prove that the vectorsz:11 , •.• , z:17 make a base 
for the ~iven set. 

1.3.36. Set up the reduction so that the zero elements are positioned in the 
lower right comer of the matrix. 

1.3.39. If :t:J = a 1x 11 + .. + arz:lr• then any vector, for which the coef~ 
ficient a 1 in this decomposition is different from zero, can be taken as z:11• 

t.3.41i.. Use 1.3.23. 
l.li..•H. Extend an arbitrary basis for the subspace L to form a basis e1, ••• 

. . . , e,. of the space 1'. Obtain the basis fullilling the conditions of the problem 
by elementary transformations of the set e11 ••• , en• 

t.5.16. Use 1.5.14. 1.5.18. Use 1.5.16. 

2.1.2. Let e1 , ••• , "n be a basis for the given linear spaee. But 

(:t:, y) = <Xt~1 + • • • + !Xn~n 
~!rif)~bti~;~r~ll vtehc~o::q:i:ru:~~~ t; ~ ·:.~~n~rod~:t %r:=r!ffiht: .. + ~ro"n• 

2. 1.8. Prove the necessary condition ac > b2 by considering the sc11.lar 
square (.r, :t:) of a vector of the form :t: = (ah 1) as a quadratic trinomial of a 1. 

2.1.!1. Derive the representation 

(:t:, z:) = af + (3a1 + a 1)1 + (a1 + a 3)2 

for Lhe scalar square of the vector :t: = (a1 , a 2, a 8). 

2.t.IU. Usetheinequality2 I a11 I I a 1 I 1 a1 I~ I a11 II a 1 12 +I a11 1 a 1 12 

to ~~tff~.1h0e~f~:t: ;:.~~r~"::dt~c~0:rbi~~:~if/~~d:h!·subspace, complementary 
to L. Then use 2.1.13. 

2.1.16. See Voyevodin, Theorem 27.2, p. 93. 
2.1.18. (d) L'se 2.1.16. 
2.2.23. For each 1, t ~ i ~ k, the vectol'! y1, ••• , Y; and z1, •• , z1 form 

an orthogonal hasis for the span drawn on the vectol'! x1 , ••• , :t:1. Therefore 
(<it• Zm) = 0 ''hen I + m. 

2.2.2:1. See the h•nt to Problem 2.1.2. 



Hint.<~ 

2.3.7. (a) Interpret each equation of the system as a condition of the ortho­
gonality of the vector:= (a:1 , ••. a;n) to the vector made up of the coefficients 
of the equation. 

2.3.!1. Use the basis for the orthogonal complement derived in 2.3.6. 
2.3.11- See the solution of Problem 2.3.10. 
2.3. Hi. The coefficients of the equations of the system give the coordinates 

;~:;nd~~~: ~~ ::Jc~h~: !s : 5rat'h!· d~Je~::e:h~d :~f Problem 2.3. tO, find the 
2.3.27. Set up a basis fur r as the Wlion of bases for the subspaces L1 , • , , 

·' '2.f.1J6.a~~o~ve~h~t\~:~:r J'e~:ct;~~sitio: o~Yt:/~!~·lor x, x = y + z where 
y E {,, z J. L, the vector y E L 2 and, therefore, the perpendicular from x to L 2 
coincides with the perpendicular z from x to L. 

2.4. t 7. The perpendicular z from the vector x to L is collinear with the 
vector a. 

2.4. t9. Use 2.4. ti. 
2.4.20. In evaluating the cosine of the angle between x and an arbitrary 

vector u of the subspace L use the decomposition x = y + z where y E L, z J. L. 
2.4.23. See the hint for 2.4.16. 
2.5.2. As in Problem 2.t.2 (see the hint), fix a basis e10 ••• , en and for arbi· 

trary vectors x and 11 assume (x, y) = ct1jl;_ + ... + e&n~n· 
2.5.5. See the hint for 2.1.10. 

fro~-~~~- a(c~i~:~wco~~i:a~\~~ 'of' ;~e~!e~:Sise!0+~6,8~~~ ~~ ~t'O.anyvector 

of :~!:e~~ ~~~ei~~bei~!~~ein~~~~rd:r ";;. ife·ie ~t ~of. the number mn 

of ~~-z~ ~;;!:: i~het~~d~\i~~:f~f~d':r ~;-fb't ;'e~e·r~0rs!~ti~~m:re~d: 
an equation is (see Sec. 3.0) mn = c1 ( 1 +2 V5)+ c2 ( 1 - 2 V5r, The 

constants cband c2 are determined from the equalities m1 = t, m1 = 2. 

zer:·:~:!s ine~;; J~~e!!:f!!~te tf~r::;: :::J: t~i'~~o~~'! {~ber mn of non-
3.1.25. Let Pn (t) be a determinant of order n of the indicated form. Derive 

the followi~ iterative formula: Pn ~t) = tPn·l (t) +a,. 
to !~it~ii~ati:n t:,a:~h~£;v;; !:a::. ~~t~:. ~s~~t1~~t;~~d!t~5 c~f~:::!eb; 
cz;-1, cz;-2, •• • , a;-n, respectively. 

3.t.35. Use 3.1.34. 3.1.36. Transpose the determinant. 
3.1.37. Transpose the determinant. 3.1.40. Use 3.1.38. 
3.t.42. Transpose the determinant and use 3.1.40. 
3.1.43. The indicated transformation of the determinant can be replaced by 

tra~~~~:l~g Aitp:l~~~tm~~f Jfr~h~t~~r~~a~~~ ~::n~vb~j~~~~ t~;;sfour differ~ 
ent roots. 

3.1.56. Differentiate the general term of the determinant. 
3.2.6. Use 3.1.35. 
3.2.20. The given determinant has an almost triangular form. When this 

determinant is expanded by the first two rows, the sum contains only three 
terms. 

3.2.26. Expand the determinant by the first three columns. 
3.2.33. Subtract the first row from the second, third and fourth. 
3.2.45. Show that for a determinant dn of the indicated form, the iterative 

formula dn = 2 cos a;dn-l- dn-2 is valid and d1 =cos a, d2 = 2 cos11 a;- t = 
= cos2a;. 
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3.3.1. The vector bt is obtained from a1 by subtracting a linear combination 
of the vectors a 1, .•. , al-I· 

3.3.15. See V. Voyevodin, Theorem 41.2, p. 134.. 
3.3.16. Any principal minor of a Gram determinant is itself a Gram deter-

min~3~1~·.itt~sra\t a.a~:~t u~ a l~~i~ ~~~os.a.~·3. 
3.3.23. Use 3.3.17 and 3.3.13. 3.3.24. Use 3.3.18. 
3.3.25. The length of the perlendicular drofped from the vector .l"J+I to the 

~=nle~:~eof~bt;~e:p~~ii~;u~~ d:~:e0J fer~:eth!h~e~~~~t~,01 ~et ~c~o~i~~~/~ 
the span of the vectors xh ••• , x1_1 , docs not exceed the length of the perpen-

dic~a3t0~h~d e{~<;:nt~~=i~!nved~~r(!~ ttf:hs!~d b~ ~~1~:~0~·x(-~_li)n :2~(~t1t 
3.4.3. Use 1.2.28. 
3.4.4. Use 3.3.25 and 3.4.3 to prove the latter statement. 
3.4.8. Transpose the minor M to the upper left corner and use the Gauss 

elimination. 
3.4.9. Use 3.2.tt, recalling that the Gauss elimination consists of a sequence 

of elementary row and column transformation. 
3.4.16. Before applying the Gauss elimination, decrease the value of the 

terms of the determinant by elementary transformations. 
3.4.17. Reduce the elements of each row to their common denominator and 

use 3.4.16. 
3.4.19. Take the common factor of the elements in each row outside the 

bracket. 
3.4.20. See the hint for 3.4.16. 
3.4.24. The determinant is obtained by enclosing the determinant of 

Problem 3.4.10. 
3.4.26. The determinant is obtained by enclosing the determinant of 

Problem 3.4.24. 
3.4.35. (b) Use the formulae of the (k + t)th stage of the elimination method, 

recalling that the moduli ofratios a~::lt+ 1 , 1 > k + 1, are bounded by unity. 
011,1!.+1 

. 3.4.41. Carry out the transformation that reduces the matrix A to triangular 
Iorm over each of the n sets from the n rows of the determinant D. The matrix 
of the determinant obtained will contain m2 triangular blocks. Using the Laplace 
theorem, this determinant can be expanded as in 3.2.27, (b). 

4.1.2. Prove that the rank of the set of columns is n - 1. 
4.1.3. Using 4.t.2, prove that the columns of the matrix A, containing the 

minor M, form a base of the vector set. 
4.1.4. Use 1.3.39. 

col:~~:~ ~~i~~t1~e s:o~~\~xw~~etiebih~~: !ii~~~ is 1~f::1: ;ed:g:n::~! 
rows for the submatrix. 

cip~~~~o~!f r:ht! !~~ri~~~~r ~r:;~:i:c1~~so!f:o~~~~~~~0:~0it~;nS:3.r~r 
4.t.u. Use 3.1.36. 
4.1.12. The first r columns contain at least one nonzero minor of order r. 
4.1.20. The indicated increase in the rank can be achieved by changing the 

ele4~~~2.0fU~e 4~~~9~ ~~:.~~ Th':~~:Se~~a~het~!~~xb~~ :::h~~nal. 
4.1.30. See 1.2.28. 
4.1.36. Prove that the minor of order k placed in the left·hand corner 1s 

nonzero. 
4.2.5. Use 4.2.4. 4.2.9. See 1.4.38. 
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4.2.19. Set the isomorphism between Mandan arbitrary subspace, comple­
mentary to L. 

4.2.33. That the intersection is a plane follows from 4.2.14. Moreover, if 
L1 , ••• , L11 are the directional subspacea of the given hyperplanes, then 

dim (n1 n ••• n a") = dim (£1 n •. • n £11)· 

Now, prove by the method of induction that in an n-dimensional apace the 
dimension of the intersection of k(n - i)-dimensional subspaces is not less 
than n- k. 

4.3.3. If :t = x0 + Ln_1 is a given hyperplane, then any nonzero vector 
from LL, can be taken as the vector n, writing it as (n, x) = b. In this case 
b = (n, x0). 

4.3.9. (a) follows from 4.3.8; (b) follows from 4.2.34 and 4.3.7. 
4.3.11. Use 4.2.6. 
4.3.17. It is obvious that length in a Euclidean space possesses the property 

p (x, 11) = p (.r- .ro, u- Xo)· 
4.3.20. See the hint for 4.3.ii. 
4.3.24. Note that L (p1 , p1 , q1 , q1) can be described by the equation a;~= 0. 
4.3.25. The vector x0 - g0 is orthogonal to the subspace L (p11 Pi• q1 , q1 ). 

4.3.27. Define a scalar product on the space so that the given basis may 
become orthonormal. 

4.3.28. See the hint for 4.3.27. 
4.3.29. Let e1 , ••• , ell be a basis for the directional subspace of the planeP. 

Extend the linearly independent set e" •• . , e11, x to form a basis for the space, 
and then Jefine the scalar product with the aid of this basis. 

t!:~·l. T~:C s4~s.foc':'n~ ~1'.3.. 4:4:TI~ a~~ ~-~~io" ... , v1) must coincide. 
4.4.24. Change the variables by putting t 1 = 3x1 and t1 = 2.r1 • 

4.4.28. Use 4.1.36. 

::::~g: flnadn aartU~!r;rn!t~e ~~h?f:'dj~i:d~~e~b!ts:~te~ (~'afr~~ ~~~n in 

!Jt:n '~~~~~he1s sth~a:!a:~~x~llh! ~~:::~!;-!) ~-;;-f~:t:A :f\~~0 e\~:0:~:-ofcfh~fn~~b 
row. 

4.4.34. Use 4.4.32. 4.5.3. Use 4.5.2. 4.5.10. See 4.4.14. 
4.5.18. Change the variables by putting t1 = 6x1 , t2 = 3x1 , t 8 = itx~, 

14 = -5.T~. 
4.5.19. Multiply the third equation of the system by 10, the fourth by 10-1 , 

and then make the substitutions: t 1 = 1000x1 , t 2 = 0.00i.x21 t~ = O.ix3 , 

'~ = IO,T~. 
4.5.34. See 4.4.28. 
4.5.36. Construct the general solution of the given system of equations and 

find the fundamental system of solutions of the reduced homogeneous system. 
Note that a normal solution should be orthogonal to this fundamental system. 

4.5.48. Express the polynomial f (t) in terms of the basis i, t- flr, 
(t- adz, ... , (t-a 1)n. 

4.5.50. Prove that only the null polynomial satisfies the corresponding con· 
chtions for the homogeneous case. 

4.5.52. Use the Cramer formulae and 3.1.56. 

5.1.8. Ax= (a, b) x- (a, x) b. 5.1.49. Use 5.1.43 • 
.').1.56. t:se 5.1.43. 

g: l :~8: ~c8:~~di:~~ov~~r;t~h: s~ts;~~~ }~e i~1i::.~~;~~cptr:fh!afa~~-or-space 
of the space X with respect to the subspace NA. 

5.1.63. Use 5.1.43. 
5.1.65. Let g1 = Ax1 , •• • , g,. =Ax,. bean arbitrary basis for the subspace L. 
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~b&~", t_h~~.~~:)~o5~l.~~teu~.5~f.4r. of Lis the direct sum of the subspaces N A and 

5.2.9. The set of all operators mapping an "-dimensional space X to a one­
dimensional space has n dimensions (see 5.2.3). 

5.2.14. ::ihow that if M is an arbllrary subspace complementary toN, then 

the 5~~~f~~ ~)vle~~d. ~.11_, 8:: ~:O!~h~~~is for X. Given some operator A from 
W.J:L• expressions a! the vectors Ael> .. . , Aen can he written in terms of the 
subspaces Lt and L,: Aet = Ut + u,, UtE Lu vt E L1• Then A =At+ A 1 , 
where Atel = Ufo A 1et = Vt, I= 1, ... , n. 

5.2.16. Use t.S.Hi. 5.2.17. Use 5.2.4. 

:t~:: r:or:ilo~~:tfr~~ ~~e=da~~ that Az = 1 •. -cflz and Ay = ~811 for any 
non5.2.'2s:eU~rs 5. 2~~~~- y. Show that }..1; = ).11 . 

5.3.1. (a) Use the relations T8A c T8 and T 8A = BTA. 

~:~:i: ~~~he t!ia~:'o~a5lity: (BA)X = BTA. 

"BAC = "AC- dim (TAc n Ng). "BA ="A- dim (TA n N g)· 
3.3.8. Use 5.3.6. ;}.3.11. Use 5.3.10. 
5.3. 14. If A1 = 0, then ct = 0. When A 1 + 0, use 5.2.25. 
5.3.17. Show that the intersection of Np and Tp contains only the null 

vector and that PTp = Tpo 
5.3.18. (a) Use 5.3.17. 
5.3.20. The operators E, A, A1, ••• , A 11 z are linearly dependent. 
5.3.23. Use 5.3.16, 5.3.15. 5.3.24. Use 5.3.14. 
5.3.29. See 5.2.25. 5.3.33. Use 5.3.30. 
5.3.34. Use 5.2.24. 

trar;~:Ih~~o~Jrti~nn~h!~/ (;)ei!~h!r;:i~f;t;:.en t (A) x + 0, which is con-
5.3.4i8. If the free term is equal to zero, then a polynomial of a lesser degree 

can be found that also annihilates the given operator. 
5.3.49. Use 5.3.20. 
5./i.S. First evaluate BC. 5.4.9. First evaluate BC. 

· 5.4.28. Use the theorem stating that any permutation can be factorized intc 
the product of transpositions. 

15.4.35. Represent the matrix J). as J). = ~E +A, where A is a 1ordan 

blo5\~;6~{C)~n~\n~o~0 t~~r;iv~~edi:~n~1emr::~; A~ ::~~~eur:t :!·f:ierpolation 
polynomial f (t) so that f (d11) = ').u, t = 1, ... , n. 

5.4.40. Use 5.4.39. 5.4.49. Use 5.4.33. 5.4.52. Use 5.4.34. 
5.4.56. Use 5.4.23. 
5.4.57. The columns of AB are linear combinations of the columns of A, 

the rows of AB are linear combinations of the rows of B. 
5.4.59. See 4.1.14. 
5.4.69. Partition the matrices A and B into four square blocks of order 2 

and apply the Strassen formulae to these blocks. Use the Strassen algorithm to 
evaluate the products of the blocks. 

5.4.73. (d) Use the multiplication of partitioned matrices. 

~ti£: ~~i::et~~4p:~perties of (skew) symmetry about the principal and 
secondar~· diagonals, only four minors can be evaluated. Use the orthogonality 
of ito; row~ to evaluate the determinant. 

5.5.15. Vse the result of Problem 5.5.12, 
5.5.17. For example, use the statement in Problem 5.3.4i9, according to 

which the inverse matrix A -1 is a polynomial of the matrix A. 

17 0019 
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5.5.18. l;se 5.4.49. 5.5.19. Use 5.4.52. 5.5.20. Find the sum of the el!!ments 
of th{' Hh row of the product A-lA = E in two ways. 

5.5.27. Represent the matrix as a ( E + ~ I 0 ) and use 5.3.45. Here I 

is the J urdan block corresponding to zero. 
5.5.28. According to 5.5.18, it surfices to compute the elements or the upper 

row of the inverse matrix only. 
5.5.32. If P is a permutation matrix of the following form 

0 l 

0 
then PA is an upper triangular matrix. 
row~:5.39. Make all the ll•ading principal minors nonz~ro by interchanging 

5.5.46. Show that lA = n/n. 
5.5.49. Use 5.5.4i. 
5.5.54. Use 5.5.53. 
5.5.56. Use the result of Problem 5.5.51 for the matrix 5.5.55. 
5.5.57. Use 5.5.53. 
5.5.61. Represent the matrix M as the product 

where k is the order of the matri:r. A, and k +lis the order of matrix Jr. 

~t~: ~= ~=· ~~~~~~e 5~~·~;o:l~~ 55~5~g2. 
5.5.68. Use the formulae of Problem 5.5.6~. 
5.5.69. Use 5.5.65. 

~t~~: g~etlt~tif~:m~~: ~1uP1:!ble~~ 51.5=:if· 
5.5. 79. (d) Use the formula of Problem 5.5. 75. 
5.6.t2. Use 5.6.9, (c). 5.6.27. Use 5.6.1G. 
5.6.29. Consider the operator which the matrix A defines \dth respect to an 

arbitrary pair of bases for the spaces X and Y. 5.6.30. US{> 5.6.29. 
5.6.32. Let 

p-lAP =A or AP = PA 

for the matrix A and for any nondegenerate matrix P. Veriry that the Schur 
lemma (see 5.4.40) remains valid in the case when A only commute~ with all 
nondegenerate matrices. 

5.6.36. Show that the mirror reflection of a matrix in its centre is a similarity 
transformation with the matrix P (see the hint to 5.5.32). 

5.6.37. The equality of the traces of similar matrices can br deduced from 
5.4.22, (c). 

5.6.~2. Use 5.6.22. 

6.1.17. The matrix A is a polynomial of the matrix Jn or Problem 6.t.16. 
6.1.19. See V. Voyevodin, Theorem 65.1, p. 204. 
6.1.24. Use the test of the direct sum 1.5.18. 
6.t.25. Use 6.1.24 to prove the necessary condition. 
6.1.33. Sec 5.4.37. 6.1.34. See 5.4.39. 6.1.35. See 5.4.36. 
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6.1.38. Hewrite the condition P-1AP = .\ os AP = P.\, and write the 
latter with restJect lu the columns. 

6.1.4.0. Lse the property of the Kronecker product 5.4. 73, (c). 
6.1.41. See 5.6.4.2. 6.1.43. See 5.6.43. 6.2.2. See 3.2.4. 
6.2.3. The rank of the matrb: i~ unity. 
6.2.4. The rank of the matrix rquols (\\O. 6.2.7. t:se 5.5.ii. 
6.2.13. Show that m1 (A).--- tr (A 1). 
6.2.19. Use the matrix of th(' operator constructed in 5.6.2. 
6.2.20. Use the matrix of the operator constructed in 5.6.3, (a). 
6.2.21. See 6. t.8. 
6.2.41. Consider the matri.r. of the operator with respect to a basis whose 

first vectors form a bosis for the eigensubspace, associated with ~- Using thi!l 

ma~~4~~S~~~~ t~ha~ ~~:~~;~~~!~~fi~;;:~~~:~a0~k1~f th~e~a;~~-:t A0 E - C (j (A)) 
equals n- 1. 

6.2.56. The matrix pT is the companion of the polynomial f (A)= A"- i. 
6.2.60. Use the matrix equality 

II AEm-AB A II II Em 0 11=11'"' '> llll'"m A II• 0 ),En B En B En 0 AEn-BA 

6.2.61. Use the matrix equality 

llg ~IIII'E_:-; ;;~AII=Ii"_=-iA~·~ "-~A-B)IIIIg i!l-
6.2.64. Use the matrix equality 

II~ tllll'~-;,· >E~BII=II'~-;,A .. "-:.Illig '!II· 
A = B + IC, X= B- IC. 

6.3.5. See 6.t.25. 
6.3.6. Any subspace of dimension k - 1 can be represented as the inter­

section of two subspaces of dimension k. Thereby, any subspace of dimension. 
k- 1 is also A-invariant. 

6.3.9. Use 6.3.3 for the operator A - A0 E where A0 is an eigenvalue of A. 
6.3.2t. l.Jse 6.3.18, (a). 
6.3.26. l.'se 6.3.14 and 6.3.25. 6.3.27. l.Jse 6.3.14. 
6.3.28. If n is the dimension of the space, then there are not more than n' 

linearly inrlepenrlent ope-rator~; therefore, it suffices to prove the statement for 
a finite number of commuting operators, e.g., by induction over this number. 

6.3.30. In each pair of invariant subspaces with respect to the differential 
operator, one is contain('d in the other. 

6.3.32. Let all roots of the characteristic polynomial of the operator A be 
complex; each is an eigenvalue of the col'l't'sponding operator .i. Show that if A 
is an arbitrary eigenvalue of A and '= z + ly is an eigenvector associated with 
A, then the subspace drawn on the real vectors z and y has 2 dimensions and is 
A-invariant. 

6.3.36. l.Jse 6.3.9. 6.3.38. Use 6.3.19. 
6.3.39. Use 6.3.19. 
6.3.4.2. Show that for each eigenvalue of At, ... , Am, the defect of the matri:l 

B - A1E equals k1. 
au!~!·146P!bfe':t 6~~~3~~nstruction performed In Problem 6.3.38, taking into 

6.3.49. See 6.3.48, (b). 
md6·:;•in~e=ttftoa~~:rn~tf :~~~e~n1Y.mentioned in 5.3.10, the subspaces Nq 

.,. 



260 Hints 

6.4.2. Let X = N .f- T bl' the decomposition derived in 6.4. t, where N 
is the kernel aud T is lhe image of the operator Aq, If X = N 1 .f- T1 is any 
other decomposition such that A/1'1'1 is nilpotent and AIT1 is nondegenerate, then 
Show that N1 c N, T1 c: T. 

of :t!·~ha~~~t~~=~~ct;~l~!~!f~fsn~f~~e u~P~~=t~~r~~~ :nr~i~. the product 
6.4.4. Applr 6.4. t to the operator A - ~1 E and show that in the decompo­

sition X= N1 + T., the subspace /1'1 possesses all the properties required for 
K11. Then, decompose the subspace T1 emanating from lhe operator A- A2E, 
etc. 

6.4.5. Use 6.4.2 and 6.3.43. 6..4.9. See 6.3.50. 
6.4.10. Use the decomposition (6.4.2). 6.4.11. Use 6.4.t0. 
6.4.14. lise 6.2.61 to fiud the e1genvalues of the matrix. 
6.4.37. Contrast with 6.3.t7. 6.4.38. Use 6.4.17, (e), and 6.4.37. 
6.4.41. Select linearly independent vectors x., ... , xP so that their span 

in the direct sum with // 1_1 produces the whole space X. 

:t:~: ~~con:Ji~glomtt56 1:~~ sequence of numbers p 1 , ••. , p 1 is nonde-
creasing. 

6.4.62. The matrix is reduced to quasi-diagonal form by the same transfor-
mations of the columns and rows. 

6.4.72. Use 6.4.18. 6.4.75. Use 6.4.34, 6.4.48, 6.4.55. 
6.4.76. Use the Jordan form of the operator. 
6.4.80. Square the matrix I - '},0£ and calculate the increase in the defect; 

multiply the matrix (I - '-o£)2 by I - '-oE and calculate the increase in the 
defect again, etc. 

6.4.86. Note that for the matrix 

the equality B' = Oholds. When raising the matrix A - E to a power, remember 
that the matrix is quasi-triangular. 

6.4.87. See the hint for 6.4.86. 6.4.88. The defect of the operator equals 
unity. 

6.4.91. Verify the equality of the ranks and traces of the matrices A, B 
and C. 

6.4.98. Use 6.4.39. 
6.4.100. Let A = PAP-1 , where A is a diagonal matrix. Then the matrix 

A X B is similar to the matrix A X /,andA X En+ Em X B is similar to 
AXEn+EmXI. 

6.4.102. Use 6.4.32. 

7.1.9.\Consider the matrix of the operator in Cartesian coordinate system. 
7.t.t2. Note that the basis (b) mentioned in Problem 7.t.it is orthonormal 

with respect to the scalar product defined in (7.t.2). 
7.t.t3. Note that the basis (b) mentioned lD Problem 7.t.it is orth,onal 

wit~.~~~~ct~ ~~:.~~lar product defined in (7.1.3), and use the result of .t.6. 

7.1.23. Use the correspondence between the conjugate operators and con­
jugate matrices. 

i.t.34. Use the result of Problem 6.3.17. 
7.t.40. Use the existence of a common eigenvector of commuting operators 

A • and B•, and therefore, of a common invariant subspace of dimension n - t 
to the operators A and B. Here n is the dimension of tlie space. 
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7.t.4.1. Use the Schur theorem. 7.t.45. Use 7.t.7. 7.2.8. See 7.1.t0. 7.2.9. Con­
struct the matrices for the operators with respect to the orthonormal basis 
t,t, t2, ... , tn. 

7.2.10. lse 5.4.52. 7.2.14. Use 7.1.16. 7.2.16. Use 7.1.15. 

~:~J~: t~d~~hf!~'ih; i~fi~ted data that the root subspaces of the oper. 
a tor A co1ncide with its eigensubspaces, and that they are mutually orthogonal. 

7.2.23. Use 7.2.18. 
7.2.24. Prove the existence of an orthonormal basis containing the!eigen­

vectors of the operator A following the pro~ure for the construction of the 
Schur basis. 

7.2.25. Use 6.3.25. Use 7.2.13 for another possible solution. 
7.2.26. Use 7.2.25. 
7.2.32. The given matrix differs from a real one by an addend -1£. 
7.2.36. Define a scalar product using the eigenvector basis of the operator A. 

norJi·;j~·(~Jos!rtb:~ ~~~ ~=~SS:i~nc:~~~tif.~'of0th!~~r:~o;n~e?t~:t~~~Jiti~~ 
f (i.d =I, may be fulfilled. 

7.2.40. See 7.t.40. 
7.2.47. Use the decomposition of vector z in terms of the orthonormal eigen­

vector basis of the operator A. 
7.2.48. t;se 7.2.47 for the vector z = (t 1 1 ... 1)T. 
7.2.50. To rrove the latter statement, show that a basis can be selected that 

consists of "rea vectors", i.e. vectors of the form z + 10 for the eigensubspace of 

the operator A associated with an eigenvalue I.. 
7.3.9. Consider the operator matrix with respect to the orthonormalreigen­

vector basis and remember that a circumference can be drawn through the points 
'-l_, ~. 1.3 on the complex plane. 

7.3.13. Verify that AI= E. 
7.3.16. The effect of the operator in the polynomial 1- 2t + t•, which is 

orthogonal to the two given polynomials 1 + t + tl and 1 - t 1 may be deter-

~i~h! ~:si~hfo:~~ad ~;e:he;0:~l~nc~~i~is~:~dixtl~:n t~:a~~~0ft ?o 7~~ re~~f:J 
basis 1, t, t 1• 

7.3.t8. See 7.3.19. 

7.3.20. Use the relation (z, y) lx +-.IIP4I.r-yf 2 for the real case and 

(z, y)= lz...!...yl~-l.r-yjl+~lz+IYI 2 -tfi-IYI! for tht complex case. 

7.3.39. Consider a sequence of matrices T1!, T13, ... , T1n whose parameters 
are selected in accordance with 7.3.38. 

7.4.8. Assume the vectors z and y to be a basis for the space. 
7.4.10. A skew·symmetric operator on the three-dimensional space is de­

generate. Consider the matrix of the operator K with respect to an orthonormal 
basis, one of whose vectors belongs to the kernel of K. 

;::::~: ~ie;~fi ~~f:U~ri;i:(js(I)(;~;J(,~~=i t~ ft.~·given polynomials/1 (I)= 
= 2 + 21 - t3 and / 2 (I) = 2 - I+ 2t and having the same length. Th& 
matrix of the operatorS with respect to the orthogonal basis ft (t), fz (t), / 1 (t} 
can be determined from the data of the problem. Then transform the matrix to 
the required basis 1, 1, 12. 

7.4.27. Consider the matrix of the operator A "ith respect to the orthonormal 
eigenvector basis. Draw a straight line through the eigenvalues "-,., . ., An 
on the complex plane. 

7.4.32. According to 7.4.30, the 1·th column~, is the eigenvector associated 
with the eigenvalue "-,.. 
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7.4 • .U. Show that the eigenvalues of an irreducible Hermitian matrix can­
not be multiple. 

rool'o~~t·e ~aJI;.~oc~~i/,~1 rw~ ::c.t~euf~l:~~~~4t:t ;:)(i.): ~ 1 ~;! ~5o ~~0ts~ 
(b) 7~~,A~) T8o0dn:ci\i~; ~~u~~ceit(¥~t8t, r:~~~;\he iterat1ve formulae con-
necting the polynomials ft (J..). 

7.4.51. Show that the mntrix A is similar to a tridiagonal irreducible Her­
mitian matrix. 

~:!:~~- \.XUw~~-~~~ 1~r~::ra)~~Y. the principal submatrix of order k under 
consideration can be assumed to lie in the left-hand upper corner of the given 
matrix/{. Then the scalar product (liz, z) for the column vectors, in which only 
the first k components can be different from zero, should be considered. 

7.5.10. Let G be the Gram matrix,z = (a:10 ••• , a11 )1' an arbitrary k-dimen­
sional column vector. Show that (Gz, z) = I ct1z1 + ... + ;-,.z,. I· 

7.5.16. (a) Use the decomposition of the vector z in terms of the t>igen-
vectors of the operator H. 

7.5.23. Use 7.5.22. 7.5.24. Lse the test 7.5.18. 
7.5.25. Use 7.4.53. 
7.5.27. Consider the associated matrix 1111 • 

cip:i5~~t·m~f~~ to~att~~e i~~::c&:rd~~!d~c~h~~~tr;: 1/1 and H2 is the prin-
7.5.32. Use 7.4.38. 
7.5.33. Use the decomposition in terms of the eigenvectors of the operator H. 

it~:~~ p~~·e7i~'e23;ufh~ie~:eco7~jifi~n, use 7.4.35. 
7.5.41. Use 7.5.24. 7.5.43. Use 7.5.30. 
7.5.44. Use the Sylvester criterion. 
7.5.45. See V. Voyevodin, p. 261. 7.5.49. H 2 = 4H. 
7.5.50. Use Hadamard's inequality (see 3.3.3) for the square root of the 

matrix H. 
7.5.5t. Use 3.3.25. 7.5.55. Use 7 .5.52. 
7.5.56. Show that the operator HS has the same eigenvalues as the Hermitian 

operator S112HS1/2. 
7.5.62. See V. Voyevodin, St>c. 78. 
7.6.8. Consider the matrices of the differential operator and its conjugate 

with respect to the orthonormal basis t, 1, t 2 , ••• , tn. 
7.6.9. To evaluate the singular values, use the matrix of the conjugate 

operator obtained in 7.t.t2, with respect to the basis I, 1, t1. 

7 .6. tO. Let X and Y be arbitrary Euclidean (unitary) spaces of dimensions n 
and m, respectively. Consider the operator l':'enerated by the matrix A with 
respect to an arbitrary pair of bases for the spaces X and Y, and use the singular 
bases of this operator. 

7.6.17. If A= UAV is the singular-value decomposition of the matrix A, 
then u• and v• are convenient matrices. 

7.6.26. Use 6.3.51. 7.6.27. Use 7.6.26. 
7.6.29. Using 7.6.28, prove that in the Schur form for the opero~tor A, all 

the off-diagonal elements of the row ancl column, in whose intersection At lies, 
equal zero. 

7.6.30. Using 7.6.29, prove the existence of a basis of the eigenvectors com-
mon to the operators A and A •. 

7.6.33. The proof is similar to that of 7.4.38. 
7.6.39. The columns of the matrix are orthogonal. 
7.6.40. The rank of the matrix equals unity. 7.6A2. Use 7.6.20. 
7.6.43. The matrix is symmetric. 
7.6.45. Verify that the matrix to the accuracy of the numerical factor 2 

fs unitary. 



HiDts 283 

7.6.46. tJse 7.6.36. 7.6.50. See the solution of 7.6.49. 
7.6.51. Use theequalityA/TA• = (11/TA) (U/TA•) or (11/TA)-1 X (AlTA•) 

c: UITA•· 
7.6.62.. Use 7.6.59. 7.7.2. Use 7.4.24. 
7.7.8. Use 7.4.16. 
7.<.13. Cse- an "rthonormal basis of the eigenvectors, common to the com­

mutin'l" normal operators (*c 0 .2.<10). 
7.7.17. (b) Allis similartothematrixH1tiA1f1/2 = Jflf2JJ1IJI/"2 + jlflfiH1HlfS. 

7.7.18. Perform a similar transformation A= DAD-I, where Dis a diago­
nal matrix with posttive diagonal elements selected so that for the matrix A 
the equality is valtd ; 1 1 +1 = -"";1 +1 1, 1 = 1, 2, ••• , n - I. Then use the 
Bendixson theorem (see 7.7.15). 

7.7.19. Use the Bendixson theorem. 
7.7.20. Consider the equality Alli1 = E + ii/1 Hj1 and show that 

ldet(AJ/i'll#1. 
7. 7.21. Consider the Hermatian decomposition of the operator A with respect 

to the Schur basis and use 7.5.50. 
7.8.8. Use 7.5.62. 
7.8.11. The vector b =(I 1 1)r is orthogonal to TA. 
7.8.15. The matrix of the system is nonnegative. 

~:~--~~-. ~: sr.~~s~ ;.~~~3. i~~e t;~s:ai.n 7~8:32~ a~! i~.S.¥. zs. z6. 
7.8.37. lise 7.1.32 and 7.8.26. 
7.8.38. It follows from the data that TBA = Ts, NBA = NA. To prove 

&he required relation, use 7.8.26. 
7.8.39. Show that the effect of both operators on the vectors of the singular 

basis is the same. 
7.8.42. (a), (b). Use 7.8.41; (c) first show that the operator X has the same 

ima'l"e and kernel as the operator A •, and then deduce from the equation A •Ax = 
= A• that the effect of X on the two subspaces TA and TA• is inverse to the 
effect of the operator A. 

7.8.43. Use 7.8.12, (a). 
7.9.6. The proof is given in the same way as the law of inertia. 
7.9.11. Use the law of inertia. 
7.9.14. Note that in transforming from D 11 _1 to D 11 +1, the number of coin­

cidences and changes of sign increases by one each, irrespective of the sign 
ascribed to D11 . Moreover, the number of positive and the number of negative 
eigenvalues of the submatrix A 11 +t each is one greater than the corresponding 

nu~~~~3~~ S~~e ;.~~:'o~t~~9.1b:1"use 5.6.36. 
7.9.42. Show that the roots of a :-equation are unaltered in a nondegenerate 

transformation of both forms. 
7.9.44. Use 7.2.40. 
7.9.50. Let A and B be the matrices of the quadratic forms F and G, and 

let B = sT S be the triangular decomposition of the matrix B. The roots of the 
z-equatwn I A - zB I = 0 are the eigenvalues of the symmetric matrix 
(S-l)T .IS-1. Hence, 7.4.30 can be used. 

8.1.2. (d) Use the Minkowski inequalit)". 
8.f.20. Show that all the subsequences have the same limit a and that 11 

is the limit of the whole sequence. 
8.1.2.2. t:se 8.1.2J. 
tl.t.23. For a fixed hns1S for the space, the coordinates of all the vectors of 

the gh·en sequence are bounded. 



, .. Hints 

8.1.32. ~se the equivalence of the convergence, with respect to any norm, 
to the coordmate convergpnce. 

8. 1.35. Consider the values of each norm on the unit ball determined by 
another norm. 

8.1.38. Use 8.1.35. 8.1.50. Use 8.1.49. 
8.2.6. Prove the statement (b) for the subordinate operator norm, and then 

use the equivalence of the norms. 
8.2.18. Use 7.1.17. 8.2.21. (b), (c). Use 7.6.34. 
8.2.22. Use the relations 

H 1=+(A+M), H 1=-it(A-A"')• 

8.2.27. Use 7.6.64 and 7.6.34. 
8.2.28. Show that for a positive semidefinite matrix A: S (A)= trA.. 
8.2.29. Use 8.1.34. 8.2.37. Use 8.2.34. 
8.2.39. Use the representation of the subordinate norm from 8.2.38. 

wit:·;·~!· t::~; !~fu~:0a:t~h! <:t~e~ c~/u:n~a~~;;!~Sh~wi~ha:n!1(~) 
is a norm on the arithmetic space and that M (A) is consistent with m (z). 

8.2.4.4. Use 8.2.42 and 8.2.39. 
8.2.46. Use 8.2.45. 
8.3.3. Use 8.3.2. 
8.3.5. Use 7.6.33. 
8.3.6. Use 3.3.32 and 8.3.5. 
8.3.7. Use 7.6.33. The solution is similar to that of 8.3.5. 

ma3~3~~ 0~et~":dJ~:nais efe~~8 ~1 :t. D-1B), where D is a diagonal matrix 

~~:1~: tfeP~bet~~nttesf'o,of8_~1~lem 8.3.9 to the transpose Ar. 
8.3.25. Verify that I det A I= 1. Therefore (see 8.3.24) an increase in the 

:b~:~~~~r?~~b\~'~t~ ~nlTa~~ss~~~~id~~~ t~~:fufJl~neg mtht!i~~d~~~~:· o~htb~ 
problem possess a smaller condition number. 

8.3.27. Use the expression cond1 (A + a.E) in tenns of the eigenvalues of 
the matrix A. 

8.3.28. See 7.4.35. 
8.3.30. To estimate the condition number, use the inequalities of Problem 

7.6.28. 1f the first row of the system is multiplied by t0-1, second by tO, and 
third by 100, then the matrix of the derived system will be symmetric. 

an ~:p~~~:~i~n1ht~t t~ee eS:!~:~:~:~o~heot}~h~~~~n(z!y~e~:n!.te: taken as 

8.3.36. Show that the solution of the system Bz = b may be taken as an 
approximation to the exact solution of the given system, where 

11

0.5 

B= 0.5 
0 

lo -~:_,-~II· ,~ll~l 



Hints 

8.3.37. Use the identity B-l -A •1 = A -1 (A - B) B-1. 
8.4.1. See 8.2.41, and also V. Voyevodin, p. 275. 
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8.4.4. Prove that the matrix is positive definite. 

g:!:~: ~~1 b}i~~- t~.4~~~-c~~rtt;nsciJ:~~r\be~~~~ ~~-~ts~mJ~ ~-~~~~2~ 
8.4.17. Use the Schur inequality and the statement 8.4.t4. 
8.4.23. Consider the given matrix as a perturbation of the matrix 

11 2.1.5 'II O.a I 0 • 
0 0 I 

8.4.25. l"se the inequalities of Problem 7.4.38. 
8.4.27. The given matrix is similar to the symmetric matrix 

II 2·10·· -3-lo-· •. w-· '·'"''I' -3-to-~ I-to-~ -0.4993 -6·10""' I 
4-10-~ -0.4993 2-to-• -2- to-• ' 
0.9991 -6-to-~ -2-to-' t-10-1 

which can be considered as a perturbation of a symmetric matrix B such that 
bu = b41 = 1, bu = b81 = -0.5, and the other elements b11 eqUal zero. 

8.4.28. Use the inequalities of Problem 7.4.38. 
8.4.29. Consider the given matrix as a perturbation of a symmetric matrix B 

such that b11 = bu = t, bu = b11 = -2, b84 = bu = -t and the other-

ele~~:~.b1b~re7~t38.8'8.4.33. See 7.6.23. 
8.4.34. From the normality of the matrix A, the normality of A - J.l.E fol­

lows. 

the 8~~!!~-a~~es0!r ~~: ~~~:r;:!t~;nl'~~~~ t~r!h:o;,~~rtb~'n t!:e (~o~:;itb! 
condition II A;- J.l.o; 11 1 = £; (d) use the Cauchy-Buniakov.ski inequality. 

8.4.37. See 8.4.34. 

t.:::g: ~~~he ~'cl.::tfbe~~:~~t~~4t. Use the Schur theorem. 

8.4.46. Add the matrix .O.n-l = t _ el e 11 zc to Cn-1 and estimate II .O.n-t 11,. 

8.4.47. This statement may be derived from 8.4.46 in the same way 8.4.44 
is derived Jrum 8.4.43. 



Answers and Solutions 

t't.t.2. Yes, if the straight line passes through the point 0; otherwise no. 
t.t.3. No. t.t-4. ~o. 

t.t.7. No. t.l.8. Yes. 
t.l.to. 21t. 
t.l.tl. Yes. 1.1.12. Yes. 
1.1.13. Yes. t.t.t.f.. Yes. 1.1.15. No. 
1.1.16. (a) No; (b), (c), (d) yes. 
t.t.t7. Let G be an abelian group under addition containing more than one 

-element. Fix some field P, and for any z E G and any~ E P, set M = 0. 
Thus, the use uf this axiom I· e = :t means that by multiplying vectors of 

the given space by urbitrary numbers every vector could be obtained. 
1.2.9. (a) Yes; (b) yes; (c) no. 
1.2. t t. The set is linearly independent. 
1.2.12. The set IS linearly dependent. 
1.2.13. 5t8 - 5t1 - .f.t + 6 in both cases. The set is linearly dependent. 

Set~~~ ':he Lc~:ai~~t~' ~sa~ri:noCU~~!~r~e~t~: vectors of the arithmetic space. 

11 :~: .:;:_ •.••. ;:~II· 
~~~ ~12 •• • ~sk 

Let m be the first column in the matrix with nonzero numbers. By interchanging 
the rows of the matrix, which corresponds to interchanging the vectors of the 

:~~ r:r:a:n~t~e r~m,:ln~- r~~~t~~~~~~g c;~e b~p~b1~f~~~ ~u~;:rr~sp!Ic!hfn lith! 
i:~~ ~;l~m:q~~:~t ~~h~l~~~;·n~~~setr':n~f~~~O::f~:Sa~t~~;;e (c)b~~~~s~be e~~~~~; 
set .r1 , ••• , z8 • Considering now all the rows of the matrix except the first, 
repeut the procedure, etc. 

den!:2i.1:.'2[h;hs:~its i~iJf::~~~;~~1e~~~d~;t.\~'i.g2.T;he s:;t ifs \ii~~~rrll~ ~=~:~: 
dent. 1.2.23. The set is linearly dependent. 1.2.24. The set is linearly indepen-

~:~:: ~:i:i~: ~i~ ~ti~s~w~=~~fyi7~d~~~:d~~-t.1.2.26. The set is linearly indepen-
1.3.1 •. \II vectors of the form (a, 0, ~. 0, y). 1.3.2. All vectors of the form 

(~, ~. y, ~.a). 1.3.3 .. \11 vectors (a1 , a 2 , a 3 , a4 , a5) satisfying the condition 

~ ., ~ 0. 
I=! 

1.3.4. All polrnolllials of degree ~~ 11.11d the null polynomial. t.3.5. The 
same answer as to 1.3.4. 1.3.6. All polynomials of degree :;;;;;2, m which the coef­
.ficicmt sum equals zero, and the null polynomial. 1.3.7. The same as in t.3.6. 

1.3.8. No. 

::t.:l: ~e;_ ~~a.is.4~~- =2 = 2z1- tOx1 +&:a. 
1.3.28. 2. 1.3.29. 2. 1.3.30. 4. 1.3.31. 3. 1.3.32. 3. 1.3.33. 4. 
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1.3.35. For example, .r1 , .r2• 1.3.36. For example, .:r1 , x1 , Xt· 1.3.37. For 

exa~K~40.x(~tJ:r:~;S:i;·:S;~;:rse:f~h~e~~~~~~·different from zero; (h) r + t 
vectors of .he set are different from zero, two of them being collinear; (cl either 
r + 2 \eclors of the set are different from zero, three of them being co linear, 
or r -i- 1 vectors of the set are nonzero and there exist three linearly dependent 
vectors, two of which are not collinear. 

1.3.41 • .r1, .r1 ; x,, .rt; .r:~, .rai Xa, Xt• 
1.3.42. Any two vectors. 1.3.43. x1 , x1 ; xh x3; .r1 , .rt. 
1.3.45. Yes. 1.3.46. Yes. 
1.4.1. The space is one-dimensional, its basis being any number other than 

one. 1.4.2. The dunewion of the space equals k. 1.4.3. The space is infinite­
dimensional. 1.4.4. The dimension of the space equals 2. 1.4.5. The space is 
infimte-dimensional. 1.4.6. The dimension of the space equals n + t. 

1.4.7. (a) t; (hJ 2. 1.4.8. (a) tt; (b) 2n. 
1.4.13. The basis is the set (b). 
1.4.21. The baSI! can be made up, for example, of the tst, 3rd and 4th poly­

nommls. 1.4.22. The base can be made up, for example, of the tst and 2nd poly­
nomials. 

1.4.23. t/3, t/3, t/3. 1.4.24. 0, -5.'\1. 1.4.25. 0, 2, f, 2. 1.4.26. 67, -51, 
-3, 11. 

1.4.27. (a) 1, -1, -1, I, -1, t; (b) 2, -1, -1, J, -1, 1; (c)l, -1, -t, 2, 
-t, 1. 

1.4.28. e= e1 -e2. 

1:ti~: ~be.r1di~~nx:i·o!·4~:r·l:~~!f:n~I~ xl.' z,, xa. 
1.4.38. (a), (b), (c) n; (d) n- t. 
1.4.39. The basis can be made up, for example, of th.e 1st, 2nd and 3rd 

polynomials. ' 
1.4.43. No. 1.5.2. No. 1.5.3. No. 
1.5.7. L 1 c L1 • The vectors .rlt x1 , .r3 are linearly independent. 1.5.8. The 

basis for th.e sum can be made up, for example, of the vectors .:1 , z1 , .r3 , y1• The 
dimension of the intersection is 2. 

1.5.10. The basis for the sum can he made up, for example, of the vectors 
z1, .r1, y1• The basis for the intersection is the vector:= (3, 5, 7). 

. 1.5.11. The basis for the sum can he made up, for example, of the vectors 
z1 , .r2 , .~: 3 , y1; the basis of the intersection, for example, of : 1 = (1, -1, t, -1), 
~ = (2, 0, 2, 0). 1.5.12. The basis for the sum could he, forexample,x1,x,, .rao y 2 • 

Tile basis for the intersection could he, for example, : 1 = (0, 4, , 3), z2 = 
=(2, 0, 1, -1). 

1.5.20. X= (-1, -2, -6, -3) + (3, 2, 6, 6), 
1.5.23. The subspace L is two-dimensional. As the complementary subspace, 

~r cO~a~p{~·o~~ee:~n(0~r0~hO,vf)~oar: ~e=;a[~'n~' 0, 0), e2 = (0, t, o, O) and e3 = 
t.5.2.1i. For example, the set of polynomials of the form C•tn. 

2.1.5 .. \ change in th.e scale unit for measuring lengths, 
2.1.7. (a) -t; (h) 4; (c) 0. 
2.1.11. Yes, if et = 0; no, when et + 0. 
2.1.14. 0. 2.1.19. No. 

2.2.s. y1 =.r1 = (1,-2,2),1!!2 =(- ~.- ~. - j), y3 = (6, -a, -6), 

2.2.6. /It= x1 = (t, 1, I, 1), y 2 = (2, 2, -2, -2), y3 = (-1, I, -t, 1). 
2.2.10. For example, add the vectors .r3 = (1, I, 1, 0) and .rt = (-1, I, 0, 1)· 
2.2.11. For example, add the vectorsz3 = (2, 3, 1, 0) and x, = (t, -t, t, t). 
2.2.12. Add, for example, tbe vector.r8 = (2/3, -1/3, 213). 
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Z.Z.I3. Add, for example, the vector x3 = (1/2, 1/2, 1/2, 1/2, z, = 
= (1/2, t/2, -t/2, -1/2). 

2.2.16. n- t, where n is the dimension of the given Euclidean space. 

2' 2' 17' ~M~~~~~): 1~t1 t ~~:~~~:~J.t (~:;:~; O:s~a + • · · +anflnl· 
Here czt, ... , an and llJ., •.. , Jln are the cocildinates of the vectors z andy with 
respect to the corresponding bases. 

2.2.19. Yt = z1 = (2, 3, -4, -6), Yt = (-3, 2, 6, -4), !Ia = (4, 6, 2, 3). 
2.2.20. Yt = z1 = (t, 1, -1, -2), Yt = (2, 5, 1, 3), g8 = (2, -t, 1, 0). 
2.2.22. Let n > 3. Compile by row the coordinate matrix of the vectors 

e1 , ••• , en. Note that if the signs of all elements of an arbitrary column of this 

:~:-:v:d ~~a~fe:;c::~~ ~! da~it ~=~C:. ~~~:f~::.i~~~s th~ ~~~";o~n~,sttf! 
matrix consists of units only, and that in the first three rows, the columna of 
only one of the following forms are possible . 

1 1 1 t 

t -1 -t. 
t -1 t -1 

Denote the number of columns of each of the indicated forms by z, y, :, "'• 
respectively. Then, obviously, 

z+y+:+w= n.. 

It follows from the orthogonality of the first three vectors that 

z+y-z-w=O, 
z-y+z-w=O, 
z-y-z+w=O. 

We obtain from this system that z = y = z = w = n/4. Thu<;, n must be a 

mu~~1.~6. 0ffj·(!) = a0 + a1t+ a1t2 + ... + a,..tn,g (!) = b0 + b1t+ b1t1 + 
+ .. , +bnln, then 

(!, g)= aobo + a1b1 + (2!) 2 arb2 + ..• + (nl)' anbn. 
2.3.6. For example, y1 = (-3, 1, -2, 0), y1 = (t, -t, -2, 1). 

coe:fi~i:~t~a~r;~~u~Y~(~)c~e0fsut~!ra~~~~a~ii 0:dddi:Oi~~:~iaJ~~ all of \\hose 
2.3.9. For example, 

3«t-«2+2aa=O 
«t- «2 - 2aa+a4 = 0 

for the subspace L, and 
a 1+3a1 +2a4 =0 

for its orthogonal complement. 
2.3.10. Let L be the span of the vector set a1 , , , ., a11 , not necessarily linear­

ly independent. The required vector y can be represented as a linear combination 
y = a 1a1 + ... + a~a11 • Since (:, a1) = 0, 1 = t, . , ., k, to determine tb'e 
coefficients a 1 , ••• , a11 the following system of linear equations can be formed 

(a 1 , a 1)a 1 +(a2 , a1)a2+ ... +(all, a 1 )a~t={.r, ad, 

(a 1, a:)a 1+(a:, a:)a2+ .. +(all, a 2)al<=(.r, a:)• 
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To con~Lruct the vector y, any solution of the system can be used. The vector-' 
is determined as the difference x - y. 

2.3.11. H the set x1 , ••• , ;-11 is linearly independent. 
2.3.12. y = (5, 2, -9, -8), z = (9, -5, 3, 1). 
2.3.13. y = (0, -3, 5, 2), z = (2, -2, -2, 2). 
2.3.14.. y = (1, 2, -5, 1), z = (-4, -2, 0, 8). 
2.3.16. Suppose .. " ... , .. , is the given, and f1 , ••• , !, is the required, bi­

<~rthogonal basis. The conditions 

(t't 1 lj) = 0, 1 = 1, ... , j- 1, J + 1, ... , n, 

stipulate that the vector I} should belong to the orthogonal complement of the 

:C:nc~Jfn~~~i::c(~~ /;) ~·1' ~';rq:~tY'dei;~i~e~nt~~isv:~~i~~nsional subspace, 

2.3.18. /,=(l. o, o, 0), /!=(o. -f. o. o), J~=(o. o, +· o), 

/, ~ ( 0, 0, 0, i-) ' 
2.3.19. II= (1, o, o, 0), 1~ = (O, 1, o, OJ, 1~ = (-1, -2, 1, -3), 14 = 

= (0, 0, 0, i). 
2.3.20. It= (1, 0, 0, 0), ,, = (-1, 1, 0, 0), I,= (0, -1, t, 0), t. = 

= (0, 0, -1, 1). 

2.3.21. ~~=(+·+· f.T). ,,=(+·+· -+. -+). 
/,=(+.-+.+·-f), 1~=(+. -+.-+. T). 

2.4.2. (a) It remains unaltered; (b) it is reduced to the supplementary angle 
(up to l"f)i (c) it remains unaltered. 

2.4..4. I x I = 3 112. I y I = 6, I z. - y I = 3 VT. Thus, the triangle is 

isosceles. {(;- y) = }-, hence, the triangle is right-angled. x:y = { and is 

. an interior angle of the triangle. /i, (z- y) =¥and, hence, an interior angle 

~ 
of the triangle is the angle, y, (y - x). 

2.4.6. (a) I I 12 = tO, I g 11 = 9, I I- g 11 = 3, I I 11 < I g I'+ I I - g 11, 
and, hence, the triangle is acute-angled; (b) I I 12 = 19, I g I'= 13, I I - g 11 = 
= 4; 1 I 1~ > I g 11 + I 1 - g 12, and the triangle is obtuse-angled. 

2.4.. 10. For a parallelogram, the conditions for the equality of the lengths 
of the sides and for the perpendicularity of the diagonals are equivalent. 

2.4..14.. (a) 11 + 3t + 3; (b) 3; (c) (3 + mi + ... + m~)t/s. 
2.4.18. (a) 1; (h) t; (c) a. 

2.4..24. i· 2.4..25. i. 
2.5.8. The equality I x- y I'= I z 12 + I y 12 means that the scalar prod-

uct 2~~-tlhQ. v;:~~rsthea~:u:l:~/ of~h~)::.~~~n~f~h~u~!~~·rs x and y, it does not 

foll2~.~~~tT~ee ~~t:i:x z. a"tthr!:t~c z s~~ C:. orthogonal. 

The z.~~{~~,Jh~al~to;~du~t' (2·.2: 1 ~ni9 {~du'ced ~~ c;;:~sponds to the vector t:. 

3.1.1. The term is positive. 3.1.2. It is not a term of the determinant. 
3.1.3. The term has a minus sign. 3.1.4. It is not a term of the determinant. 



270 Answers and Solutions 

~:::~: ~:l 1~aN{l:t~s~~;~~(~tt (~ 1_auauas&a41 a6, aha,,. 

3.1.7. The plus sign. 
3.1.8.auau ··· a1111 -

3.1.9. (a) t + 1 = n + t; (h) t + 1 < n + 1; (c) I+ 1 >.n + 1. 
3.1.10. The sign is (-l)npl-llf2. 
3.1.11. (-1) 11C11 - 11/2·a111a1 • 11 -t ···ani' 
3,f,t2. (-J)II·l, 3,t.f3. (-t)oR·!)(II·lJfZ, 3.f,f4, 1. 3.1.15, f, 
3.1.17. o. 3.1.18. 0. 3.1.19. 16. 
3.1.21. n. 
3.1.22. If we put 

then the number of nonzero terms in a determinant of order n of the indicated 
form equals 

3.f,23, 2R·I, 
3.1.24. (-1)11 (1 11 -a1a1 · ·• an)• 
3.1.25. 111 + a11 t 11 • 1 + a11 • 1t 11·1 + ... + a1 t + a1• 
3. 1.26. n. 3. t.27. n. 
3.1.29. The determinant 

bn bu . . • b~n ......... II 
......... '·· II 

b,., bn2 ··· bnn 
must be equal to zero. 

3.1.30. The free term fs then determinant 

II 
............ II 
au au .. · a 1n 

. ····· ... 
an, an2 ••• 4nn. 

3.1.31. The determinant obtained is a complex number, conjugate to the 
original detenninant. 

3.1.32. The detenninant is multiplied by (-t)n. 3.1.33. The determinant 

is n;~i.~~~i;.~:yd~~~i~~~t· Tshemdu1W~!dan1~9 ~~\~(r:~ll/1 • The element 
an+t-l 1 of the original determinant is at (t, f) in the obtained determinant. 

3.t.39. a~~:+t-l.n +t-~· 
3.1.40. The detennmant is unaltered. 

~:t:k ~h!'-&ele;;nl~ant is unaltered. 
3.1.43. The determinant is multiplied by (-f)R(R-I)fl, 
3.1.44. The roots of the equation are the numbers -2, -1, t, 2. 
a. 1.45. The roots of the equation are the numbers 0 and -t. 
3.1.46. %W1 when n = t, 0 when n > t. 3.1.47. 1 when n = t, -2 when 

n=2,0whenn>2. 

defi!"i~~~~~~~: f,)1~~/a~:> ~ <~>:: +'ct:n_5~-~(t).uTh:~~ 1~r::en~ui;.~~·r r~: 
In (a) = cz,J1 (a) + ... + «n-tln-l (a). Therefore, the rows of tbe indicated 
determinant are linearly dependent. 
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3.1.49. (a) The determinant Is unaltNcd; (b) the deternlinant become.~ zero. 
3.1.51. 1 + x1y1 When II= 1, (.r 2 - X1) (Y 2 - Yil when II= 2, 0 \\hen 

11 >3.2i.s2. cos (a:1 - ~1 ) whl'n n = 1, sin (a:1 - a 2) sm (~I- ~2l "hen 
=2,U\\henn>2. 

3.1.53. 1 + :t:1Y1 + :t:2Y2 + · · · + ZnYn· 
3.!.54. 1 - 2 (wf + w~ + ... + wRl = -1. 
3.1.57. The permanent of the matrix 

equals two even though its ro,,s are linearly dependent. However,'"the perma· 
nent of the matrix 

wit~.J~~~a(~rn~:;d(~)(~~~\t~3~~-;_q~~:. 0. 
3.2.4. Let Pt be the sum of all the principal minors of order I of the deter~ 

minant 

II 
. ., ....... , II 
au au ,,, a2n ......... 
On1 an~ ••• 4na 

Then I (t) = t" + Pltn-l + • • · + Pn·lt + Pn· 
3.2.5. k+ t. 
3.2.8. If Dis of odd order, then D' is symmetric; if Dis of even order, then 

D' is skew-symmetric. 
3.2.9. Let I > j. Then there is a matrix comprising only zeroes and having 

n- J columns in the first J row~ of the minor M 11 complementary to a11. Since 
.J+(n-j)=n>n-1, by 3.1.20, MIJ=O. 

3.2.10. D' = Dn-l, 
3.2.tt. (a) The i-th row of D' is unaltered and all the others are multiplied 

by a:. The \\hole determinant D' is multiplied by a:11 - 1 ; (b) the 1-th and 1-th rows 
are interchanged, and thl'n all the rows are multiplied by (-1). The overall 

(~la~fieth~ 1r~~~e!£U:n:;:~ t~~h:hl-ih~a:~~~a\~:~~~ ~: !~~~~~i~~ ~i;~;;;~ 
of the j-th, premultiplied by a:, have been subtracted from the elements of the 
t-th row. Tlie determinant D' is unaltered; (d) D' is transposed. 

3.2.16. 216. 3.2.17. -106. 3.2.18. t. 3.2.19. 120. 3.2.20. -tt. 3.2.21. -2. 
3.2.22. -13. 3.2.23. 1. 3.2.24. 15. 3.2.25. 3. 3.2.26. 7. 

3.2.28. -12. 3.2.29. 16. 3.2.30. 1. 3.2.31. -400. 3.2.32. -36. 3.2.33. 0. 
3.2.34. 8. 3.2.35. -t. 

3.2.37. ~ (4"+1 - 1). 3.2.38. 4n+l - 3n+l. 3.2.39. 2n+l - 1. 3.2.4.0. sn. 

,. ' 3.2.41. 2 (1 + (-t)n.). 3.2.4.2. 2(1 + (-1)"). 3.2.4.3. 1 + n. 3.2.4.4.. 6"(1 +In). 

3.2.4.6. ft+I(A)= (A-ot+l)ft(A.)-bt+tCt+tft-t(A). 
:~.3.2. Tlie property indic-ated is po88e88ed by an orientation volumf' of a 

J:nrallelepiped in any Euclidean or unitary space. 

()[ .~~i~: 1~J. 1! ~1~~;2~+ ~as1!~:sfb:u~;t!;t~a~ti!d~~~~ f~~a)i! 
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reached by the determinant 

I
I I I 
t £ ~::t 

1 ez t: 1 

~ ~n-1 ~hn-11 

..• I I en-1 

• rlPl-ll , 

,m-t12 

(c) for n = 2 the estimate occurs for the determinant 

1
1 -II 
1 I" 

If the estimate is reached by the determinant of the matrix A., for n = 211, then 
for 111 = 211+1, the determinant of the following matrix of order 2n must be 
considered 

A 1n=(~: -~:). 
3.3.6. If the modulus of the element a1J is less than t for a certain pair of 

tnd~ceif ~ ~ ~ &~e8~:tb~ ~=~~ci~a~~/bY t~e1n i1"Ai1s ~cQa::i~a11 1f~fl~c1~~ a&! 
tfien the determinant is unaltered when a11 is replace:/ by either of t~ese numbers. 
Similar reasoning, with respect to the m1nimum of the determinant, shows that 
the determinants of a given order .with the maximum modulus is a determinant 
made up oft's and -t's. 

3.3. 7. To prove the inequalityh,_1 :s;;; h,., it suffices to enclose the determi­
nant d,_1 of order n - t made up of 0 and t and whose modulus equals h,. _1 , 

d~t~·:·t· 
0 ... 0 t 

80 that a determinant of order n, also made up of 0 and 1 and whose modulus 
equals !t,.1, is obtained. 

To prove the inequality hn :s;;; tn-t• consider the extremal determinant made 

~k! 0~f1a~~e t;~h!~t:~~~~ ~~ ~h~s fi~tthc~\~~n(1e'q!laf0t~t~~~cb~a;:bt!a~:i~~ 
from the subsequent rows. Then a determinant of order n - t, whose elements 
are 0, l, -t and modulus equals to h,., will be obtained in the bottom right­
hand corner. By 3.3.6, the modulus of such a determinant does not exceed in-~> 

To prove the inequality g11 _1 ~ tn. it suffices to enclose the extremal deter-

fu.~~a~~e~':.~~'it~~(~endpth~:·~0a~'!e 3~~~S.in the way indicated in the proof of the 

For the proof of the last inequality, consider the extremal determinant d, 
:l 1t~i;hde~~~:i:~nt1 ba;~t,t~~k~t!fl~~O: ~l~m~~SS:gh:hfir:~;::~:u:!1~;:'~~ 
and all the elements of the first column, beginning with the second element, equal 
to-t. Now, adding:the first row to all the others, we shall obtain, in the bottom 
right-hand comer, a determinant of order n- t made up of O's and 2's and 
equal in modulus to fn· Factori, out the 2's we shall see that this determinant 
~~s~htfe~o:!~c:h~f ;;;ui~S :~euaii\e;.minant of order n - t made up of O's and 
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3.3.8. According to 3.3.7, h3 ~ g1 = 2. That h3 = 2 is shown, for example, 
by the determinant 

I: ~ ~I· 
0 1 1 

~l;1~e :fb4:o~:l;, hl. = 1, by 3.3. 7, g3 ~ 4. Since Is::;;;... 12 = 2 and g3 is a mul-

3.3.9. Let dn_1 be the extremal detenninant of order n- t made up of 
t's and -t's. Denote the columns of this detenninant by alt au ... , an-I and 
construct the detenninant of order n, which also contains only 1's and -1's: 

d~l ,, '• ... '•-• I,, I· 
-1 t ... 1 t 

Only two of the minors of order n - t in the first n- 1 rows of the detenninant 
are nonzero. Hence, expanding by the last row, we find that d = 2dn-a 

::;;;,.. ~:.· ~· 3~~cQ~i~:e t~t~~;-~a!l; 7 b~nt:d~!:a:~ .~s i~~::~\W~e of 16 an Ia ::;;;,.. 

1!'1 ~ CVS)1 =2s -vs < 64. 
Therefore, g1 is either equal to 32 or 48. The method of enclosing the extremal 
determinant of order 4, indicated in the solution to Problem 3.3.9, makes it 
possible to obtain, for a determinant of order 5, an estimate of 32. Hence, en­
close the determinant in a different way: 

~ -~ =~ -~ 1-: 
1 -1 1 -1 t 

1 t t t t 

-t 1 -1 -t t 

.Thtg_fti.Ai::r:!ee'lb~:s;s~ T1h~!d 1:nclo!:'a determinant d of order n in the 
following way: 

The new determinant d of order n + t equals d/2. Now subtract the lirst row 
of d from all the others. Then the modulus of all elements of the determinant 
does not exceed t/2 and, according to 3.3.5, (a), 

d/2 ~ (1/2)n•l (n + f){ll+IJJI, Q.E.D. 

3.3.13. (a) The determinant G (z11 ••. , :f) has a diagonal form and equals 
~0:t,W! ·!:J' e11q·u~is I G'(~11; ~b! .t,h:Se~e(~~~~~t ..• <z:~): .. , :e11) has a "quasi-diagonal 

3.3.!4 .. (a) The determinant is unaltered; (b) the detenninant is multiplied 
by I et 12; (c) the determinant is unaltered. 

3.3.20. According to 3.3.18, (]1J1 (llJ., ••• , an) is the volume of the parall~ 
lepiped drawn on the vectors alt ••• , an; det A has the same meaning. 

11-06t9 
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3.3.25. The Gram determinant does not exceed the product of two of its 
minors, complementary to one another, and is equal to th1s product if and only 
if at least one of the minors is zero or all the elements of the determinant, out­
side these minors, are equal to zero. 

3.3.27. When k = 3, the inequality assumes the following form 

Thus, the square of the volume oF the parallelepiped drnwn on the vectors 
zh z 10 z, does not exceed the product of the areas of its faces. 

3.3.2\1. If all the elements of some row ~~ an orthogonal determinant are 

replaced by £1, j = 1, ... , n so that £~ = ~ I e1 12 < t, then the new dete,.. ,_, 
minant d' satisfies the inequalities 

t -I e[::S.;;Jd' 1~1+ rer. 
3.3.20. The modulus of the minor at the intersection of the rows numbered 

t1 , ••• , 111 and the columns11, ... , ik is the volume of the parallelepiped obtained 
by projecting the indicated rows on the coordinate subspace of the vectors 
e11 , ••• , e111 where cit ... , en is the natural basis for the arithmetic space. 

3.3.32. If the base of the comsponrling n-dimensional parallelepiped P0 
is reckoned to be the (n - t)-dimensioD!ll parallelepiped Pn-l drawn on the 
first n - 1 rows, then Pn bas a very small he1ght and a very large volume of the 
bose Pn-I· 

A (I, ... , p) 
A(t, ... , p 1)' 

3.4.6. 
A(~::::=~~) 
A(t, ... , p 1) ' 

3.4.10. 4. 3.4.11. -16i. 3.4.12. -12. 3.4.13. 5. 3.4.14. 0. 3.4.15. so. 3.4.16. 3. 
3.4.17. z-o-3-3 -5-'·7-1• 3.4.18. 240. 3.4.19. -t/2. 3.4.20. -18 016. 3.4.21. 2. 
3.4.22. -1. 3.4.23. 5. 3.4.24. t6. 3.4.25. 63. 3.4.26. 32. 3.4.27. 1. 3.4.28. t3. 

3.4.29. This number is a polynomial in n with the higher-order term equal 
to n3/3. 

3.4.30. (a) The higher-order term of the number of operations equals n2;2; 
(b) the higher-order term equals 311. 

3.4.3t. Evaluate the determinant dn +1 so thot tin remains the leading prin­
cipal minor of dn+J· If the matrix of the determinant is triangular, start the 
operations at the upper corner. 

3.4.32. It follows from the condition of nondegeneracy that all the leading 
principal minors may be made nonzero by interchanging the rows only; inter­
changing the first 11 - 1 columns is also possible. Then the Gouss method is 
performed for the last cblumns of all the k determinants. 

3.4.33. For example, place the first row lost and carry out the same operation 
over the first column. 

3.4.36. For example, the determinant 

I
I 0 0 .•• I I 

-t I 0 ••• 1 
-t -1 1 ... 1 • 

~t ~t _;:::t 
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3.4.38. The statement does not hold for the Gauss method with partial pivoting~ 
an eumple is 

I 1 10001 
i 200'J. 

3.4.39. Assume that max I afl I= 1. Let a= 1 aW I,~= I aji1 r. Then 

'·' 
~ '1.t.i2~~~ j~t:.:fnC:nfe~~YFa~ 3ihe length of each of ita row equals 1. 

Acc3~4d.~W, (~) a2~·ide\h~)~~(b)o~it~:) d(~~el~~~;a(~) a~~)~h(/e~n~\~~ach to each.. 

4.t.4. All the matrix elementa not in the basis minor are zeroes. 
4.t.S. See the answer to Problem 4.1.4. 
4.i.t4. If b1 , ••• , bm, c1 , ••• , en is a convenient set of numbers, then for 

any number a, a =1= 0, the set ctb1 , ••• , abm,;cl> .. . ,;en is also convenient. 

4.t.t7. No. A counter e:umple is 

4.1. t8. The rank is eilher unaltered or changed by unity. 
4.1.i9. The rank 1s changed by not more than unity; not more thank. 
4.1.21. 0,1, :.!. 
4.t.28. 1. 4.t.29. 4. 4.t.30. 3. 4.i.3i. 3. 4.t.32. 4. 4.t.33. 4. 
4.i.34. The dimension equals three. 

~t~~·s!~~ ;e;ia~~) c~~~is~) o'f0~nly one vector. 
4.2.8. Such a plane coincides with the whole space. 
4.2.9. n. 
4.2.t2. If .:z:0 , x1 , ••• , .:z:11. is the given set of vectors, then .:z:11 may be choaeD 

as the translation vector of the required plane and the span of the vectors .:z:1 -
·- z11 , ••• , Z11.-.:z:0 as the direction subspace. 

4.2.t5. Lt + L 2 • 

4.2.t6. L if1..=t= 0, 0 if1..= 0. 
4.2.t7. Yes, if L = 0; in this case M coincides with V. No, if L .,a 0, since 

multiplication by a number, as it is defined in 4.2.16, may yield a result which 
liesoutsideM. 

4.2. t8. Retain the definition of multiplication by a number for nonzero. 
numbers 1... Put O·P = L for any plane P = .:z:0 + L. Then Lis the null elemf'nt 
of the space M. 

4.2.i9. dim M = n- k. 
4.2.20. The indicated plane contains the vectors, but does not contain the 

vector v. 
4.2.22. ~)The straight line does not intersect the plane; (b) the straight line 

:~~i;h~yli~ee Ii'e~ti: ~== ~f~n!: -2, 2) in common with the plane; (c) the 

4.2.23. The straight lines have one common vector s0 = (-5, it, -16, 
-11, 7). The plane passing through this vector and having the span of the vectors 

91 a4~~.ll. a~r~~ ~i~!~~nt~ro~~~s~:C:~r!JI~1a::'thbeo~~a~h~fg:b:nv:;~~~~t• ~!~: 
q,,q,. 

t~:~~: J:: p)~~~~s d~a;:t ~~t,t~be':a!0[h:fr di~tfdn!i s~b!~a~s in~~f. 
only in a null vector . ... 
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4.2.27. The planes do not meet, whereas their directional subspaces intersect 
in a one-dimensional subspace drawn on the vector 2p1 + p 3 = q3 - q1 = 
= (5, t, 0, 0, 5). 
= (~2:!~~~:~: K~a~)~s intersect in the straight line z = z0 + q1t, where z0 = 

4.2.29. The planes do not meet. Meanwhile, their directional subspaces coin­
cide. 

4..2.30. The planes coincide. 
4.2.34. Let P = .rt + L11. and e1 , ••• , e~~, be the basis for L11. Extend it to 

~~~mb: faak!~r~; :~ ~q~~~db~~{;I~~e~' ell, elt+to ... , en. Then the following 

.1t1=zo+L(el, ... e,., ekuo eii.+S• ••• ,en) 

.lt~=zo-i·L(el, ... , ek, elt+t• elt+a• .•. ,en) 

4.3.1. If z0 is an arbitrary vector fulfilling the condition (n, .l'0) = b (the 
vector a 0n, ~ = bl(n, n), for example, can be chosen as z0), then the given set 
is a h>:j]erplane of vectors of the form :t0 + 11 where 11 is any vector orthogonal 

to 4: 3.f.isnh(~f'!p~a+ ~: + :~t~s.}a~. ~f+nc1t~~~~! ~-= 0. 
4..3.8. Let x0 be an arbitrary vector of the intersection. Rewrite the equations 

of the hyperplanes in the form 

(nt, :t-:to)= 0, 

(n,,:t-:to)=O, 

(n,., :t-:t0 ) = 0. 

~ei~~h:h0~:h~~:~fi~~~~f:!:~~e:r ~ree~p~~n~f i:h~:.J~::Se ~. =:- .z~. ~~~~· where 
4..3.10. The orthogonal complement oV Lis drawn on the vectors z1 = (-3, 

t, -2, 0), z1 = (1, -t, -2, 1) (see 2.3.6). Therefore, P can be described, for 
example, by the system of equations: 

i.e. 

(zl, z) = (zl, :to) 

(z1 , z) = (lu zo) 1 

-3CZ-t. + a 1 - 2«3 = -4, 
Gtt -a1 - 2ct:8 + a,= -t. 

4..3.14.. z0 = a 0n, where a 0 = bl(n, n). 
4..3.16. /(t)-t. 
4..3.19. 5. 4..3.2.2. 2. 4..3.23. 2. 4..3.24. t5o. 4..3.25. 5. 4..3.26. 5. 4.4..4. o, 1. 
4.4..5. When ). .p 1, 2 the s{stem has a unique solution; when A = t it has 

8 04~t~~:h~~n~l~a~1~~~ th:= s;~t!~h::~m:~~~a~~n~~~nwh~~s~a:·-t 
it has a one-dimensional, and when A= -2, a three-dimensional solution rrub· 
space. 

4.4..8. The ~ivots are equal to the ratios of the corner minors. 

the 4ii~:~; r:;en~nee:~ d:f~~e~:~t~~t~;. v.e~t~rs";· Co~~~~~~.l~~i~~:Yati:a~~ 
one of the coefficients in the equality a 1z1 + ... + a11z~ = 0 be different from 

~~~·+T~:~,.~wha~ 1~~~0'!!~! iai~e~ f~~\~~·~~~ ~e~ :Oc~~~~n!~~-~tetf~~; 
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~Y~.t 1·~: ·~~kYt'h:= ~~u~e.m~~hode~~o~J'J 'a~d 'ih~k s~bse~~=:~1fo~~~t=~e::~ 
~;r:h':~~drc~~!l:~~~~~~~np~rl~n:~d~T~!1n~t;:I~f:i~h: ~:~~~hC r(tb! 
zer4.~~~6. r:n~ ~~~t~ tf !l.~h 4~~1i~!n:f~~at':ri~h~~:i~)~pace is a solution of the 
system. 

4.~.17. For example, a general solution is: z1 = - ;x1 + ~z1 , z, = 0. The 

fundamental system of solutions is: y1 = (-7, 3, 0, 0), Yi = (5, 0, 3, 0). 

syst~·!·1:; s!l~~i~~~ei~l Y~o~ ~:f~ oi,s:2,z0>7 Y~~ + (O~zJ ,5,90)', ;,h~ f~~dO~~~~l 
t). 

4.4.19. The system has only a zero solution. 
4.4.20. The general solution is: z1 = z,, z2 = z,, z8 = -z4• The funda­

mental system of solutions has only one vector, e.g. y = (f, f, -f, f). 

The4r!·:J~rJ'e~~a~e~:S~~m80!(t~~futi~n~1 i; ;;~+(2S:~f.S f: O,'zO);-y~!' ~~ =:t 
0, f, 0). 

4.4.22, The general solution is: z1 = - ,fza- i2x4 - ~z5 , z 1 = z8 -

~ :Z•(t2, f:,Zti,T~e1 ~u~~a~:~a}4f~s~6~ Q~ ~1~2fs is: y1 = (-1, 2, 2, 0, 0), 

4.4.23. The general solution is: z1 = z!=~z6 , z8 = z, = - ix6• The fun­

damental system of solutions consists of a unique vector, e.g. y = (f, i, -3, 
-3,7). 

~.4.24. Thegeneralsolutionis: z1 = -tz1 -~z5 ,z1 = -}z8 + ~6,z, = 0. 

The fundamental system of solutions is: y1 = (2, 9, -6, 0, 0), y1 = (-2, 3, 
0, 0, 6). 

4..4.25. The general solution is: Zt = -z, = Za = -z, + ax,. The fun­
g~t)_ntal system of solutions is: y1 = (-f, f, -i, t, 0), y1 = (3, -3, 3, 

4..4..26. The first three columns of the matrix are linearly dependent; the 
fourth column is not linearly dependent on the rest, therefore z, = 0; the same 
is valid for the fifth column, thus z5 = 0. 

4.4..27. z,, z6 ; z1, z4; z3 , z4; z1 , z5; z1 , z 1 ; z1 , za-
4..4.28. n+ t -k. 
~.~.29. The basis for the subspace is formed, for example, by the polynomials 

/ 1 (t) = t 4 - 6t3 +1ft!- 6t and / 1 (t) = t&- 25t1 + 60t•- 36t. 
4..~.30. (a) For example, 

70z1-t&1 +-L=8 +z,=0, 
-5z1 +z1 -za+z8 =0. 

In order to answer (b), (c), any linear combination (two linear combinations) 
of the equations of (a) can be added to (a). 

~.4.31. No. The given systems are not equivalent. 

t~:~· w~=~ i:!!'o.&~~~ ;;~~m is defined; when ), = 0 it is inconsistent; 
when A= 6 the system has a two-dimensional solution plane. 

4.5.7. When A =Ia -i, 2 the system is defined; when A= 2 it is inconsistent: 
when A= -1 the system has a two-dimensional solution plane. 

o$.5, (2. For e:>..ample, the general solution could be: 

z 1 =~ t{IT-zi-*za-*z,. 
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4.5. 13. The system is inconsistent. 
4.5.t4. For example, the general solution could be: z1 = -1 + z3 + 2r,, 

z1 = -3+ z1 + :a,. 
4.5.15. The system has the unique solution: z1 = t, z2 = -t, z1 = -1, 

z,= 1. 
4.5.16. The general solution is: z1 = 6- z&, z 1 = -5 + z6 , z 8 = 3, z4 = 

= -t-z6 • 

4.5.17, The general solution is: z1 = -{ +-}z2 - {-zs, ~.={ + z6, 

z,=-j-ZJ:,. 
4.5.18. The general solut10n is: :r 1 =-f-i z 2--¥- z 3 +} z~, z5 =0. 

4.5.19. The system is inconsistent. 
4.5.20. The system has the unique solution: z1 = z1 = z3 = x, = t, x6 = 2. 

4.5.21. The general solution is: z1 = -} -~z1 , Z3 = z, = 0, :t"5 = ~- fz 8 • 

1t~ ~~~n8r~m5 ~hei~~~!~t~~tinconsistent. When ). = 5 the system is 
eonsistent and its general solution could be, for example, z1 = -4 + z1 , z1 = 

=¥-2z1 • 

4.5.24. When).+ -3 the system has a unique solution 
1 4).+11 ).+ti 

:rl=-""t+3' :r2= 3().+3)' rs=- 3().+3). 

When ). = -3 the system is inconsistent. 
4.5.25. The system is consistent for any value of).. When). .p -95 the gen-

eral solution is of the form z-1 = 0, z-1 = ~- ~r1 . When).= -95 the general 

aolution is: r 1 = M+ ~ :r1 - H r,. 
4.5.26. When ). + t, -2 the system has the unique solution 

1 
r 1 =z1 =r3 =1:'+'2. 

When ). = t the general solution is: r 1 = t - r 1 - r 3• When ). = -2 the 
system is inconsistent. 

4.5.27. When ). + t, -2 the system has the unique .solution 

t ' z 1 =z1 =--r=T', r 1 =-r=t· 
When ). = t the system is Inconsistent. When i. = -2 the system is consistent 

and4.~~2s~eWh~n ~~~ii~ ~~ ~L;=s;:t:U h!s-+thtunique solution 

3 3(i.+1) 
Z1=:r1= (). 1)().+2) ' Z"l (). f)().+2J ' 

When ). = t and ). = -2 the system is inconsistent. 
4.5.29. When ). + t, 3 the system has the unique solution 

s 1=-t, z1 =~=;, z-3 =-).~ 3 . 
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When A= 1 the general solution is: x1 = 1- x1 - x1• When 1.. = 3 the system 
is inconsistent. 

4.5.30. \\'hen J, + 1, 3 the system has the unique solution 

x 1 = 3_:},, Xz=l'3=0, l:t= (A 31)-(~J, /.) • 

When A = t the system is inconsistent. When A = 3 the general solution is: 

%1=--¥--E- Z1-}J:4, I2=2, 

6.5.31. The third column of the matrix of the system is linearly indepen­
dent of the remaining columns; the fifth column is linearly independent of 
the remaining columns of the augmented matrix oF the system. 

6.5.32. No. The formulae are not equivalent. 
6.5.33. Yes. 4.5.34. n + t- k. 
6.5.35. The indicated conditions determine a two-dimensional plane. If 

/ 0 (t) is a polynomial in this plane, then the polynomials 10 (t), / 0 (t) + ldt), 

~o~tlite!r1~'~~~~~~d~~~~J F~~d1/<~V~:dr~ <:J, bt'h!s P~~~!!i~\~~}i~~~~l~~~~4~~9 
can be taken. 

4,5,36, It= 2, X1 = f, I1 = f, I4 = 3. 

4.5.40. 
ap-bq-cr-ds bpj-aq-dr-' r:s r, 

A 

r, cp+dq+ar-h; 
A 

4.5.42. f (I) = 13 - 411 + 31 - 2. 
4.5.43. 1 (I) = -31~ + 11. 
4.5.47. f (1) = 11 - 411 + 31-1. 

r, 
A .. dp-cq+br+ as 

A 

4.5.49. 1 (1) = 21'- 13 - 312 - 2t + 1. 
4.5.51. f (I) = 2t3 - 4t 1 - 3t1 + 51 - 2. 
4.5.53. For the function 1 and its derivatives, write the system of equations: ., 

h'f+hf' 

h(2Jf+2h'f'+hf(2) 

=g' 
=g(Z) 

h(ft)/ + n/1(rt-l) f' + CAh<n-:)f(Z) + ... + h/(Jt)=g(ft), 

Using Cramer's formula for /('•J, we obtain the required relation. 
4.5.54. /(~) (1) = -2. 

5.1.1. Yes, if a= 0. No, if a+ 0. 5.1.2. See the answer to 5.1.1. 5.1.3. 
Yes. 5.1.4. Ye,., 5.1.5. Yes. 5.1.6. No. 5.1.7. Yes. 5.i.8. Yes. 

5.1.9. Yes, ifct = 0. No, if a:+ 0. 5.1.10. Yes. 5.1.11. No. 5.1.12. No. 5.1.13. 
Yes. 5.1.16. No. 

5.1.15. No. 5.1.16. Yes. 5.1.17. No. 5.1.18. Yes. 
5.1.19. Yes. 5.1.20. Yes. 5.1.21. Yes. 5.1.22. Yes. 5.1.23. Yes. 5.1.24. Yes. 

Ei.1.25. No. 5.1.26. No. 5.1.27. No. 
5.1.34 •. \ny operator on the space R+ raises all the numbers of this space lo 

a power with a fixed· (for a given operator) real exponent. 
5.1.36. No. 5.1.37. Yes. 

~:::~2: ~~,yi1s;t~~) S:f'.r1 , ••• , x11 is linearly dependent. 
5.1.65. Yes. 



satisfy the relations 
c1 = ~p(tf), t= 0, t,,, ., n, 

r0 =1. ~=const, 1=0, t, ... ,n-t. 

con!~~·t~~:re~f; v~~{o~'(i~:.t~rec~~,.!~f ~~=~~~ x oit~b)ega~k i~~ ~:tc:!~~~;;.ay, 
5.1.53. No, if this functional is not zero. 
5.1.55. Yes, if dim Y:;... dim X; no, if dim Y <dim X. 
5.1.56. No, if dim Y >dim X; yes, if dim Y.;:;;: dim X. 
5.1.59. !lA; 0. 
5.1.66 n, iff= 0; n- t, H J + 0. 
5.1.67. A two-dimensional space of vectors orthogonal to a; a two-dimen-

sio5~~~68,tr; :ui~s::~:ai~~!,i~! ~;!~.:~:~:;vector a; T A is a plane perpendicular 
to the vector a. 

T A ~~\6~tr~~ ~i ~~~;d~~~~e~n~~e i~:Ct~~a~~ ff~rt~~?~~~!:r(.;~ !~~vO:tfbe: ~: 
is a straight ~ne drawn on the vector band TA is a plane perpendicular to U:ie 
vector a. 

for ~h1~ 7:~r~:. is: 1, ~ ?t:s~~~r o\~ez!~~ed: g,=-~j. t, t); "A = 2, the basiS 

nA ~~1~\h;\:i;f~~U!':~:~;ltfs~~:!e(t f! f). (2, t, t), Ys = (-t, -2, t); 

~:tfi: ~1te=i!~~Ai; ~n-1 ; the kernel: M0 • 

5.1.74. See the answer to 5.t.i3. 
5.1.75. n + 1- k, if k < n + t; 0, if k:;;;.... n + 1. 
5.1.76. Np = !.2; Tp = Lt· 
5.2,7. Let e1 , •. . , e., be a basis for the space X, and let for the given op­

erator A fromooxl' 

P"t 

Ae, = auql + anqz + · · · + a.,lqm, 

Ae2 = aaql + auqs + · · · + a,2qm, 

B,e, = auqlt B2e1 = auq2, · · ., B.,e! = U,tq.,, 

Btta = aaql, Bzez = auqz, · · ., B.,ez = llmtq.,, 

Bttn = al.,ql, Bzen = az.,qz, • • •• B.,e., = a,,q.,. 

It is obvious that the operators 8 1, I= t, ... , 171 satisfy the conditions of the 
problem. 

5.2.11. dim Wx}' = mn. 
5.2.12 (a) No, if T + 0; (b) no, if N ¢X. 
5.2.13. dim WxT = kn. 
5.2.1-ti. dim K~ = 171 (n -l) . 

. . . ~-~~2~· b~~\:'r~; X.'.' Tte~ tlte\~;J~ey~ t;:s~::~~ ~;. e~.· Yr':,:. A~: e':n+Jke' ~p 
a basis for T A' The required representation of tlie operator A i8 given by the 
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operators B1 , ••• , Br determined by 

B;e11.={ y~: ::d:'1.1 
5.2.21. Either NA=N8 or TA= T8. 
5.2.22. Let all operators of L lie of raiik.s;;;;t, and let A be an arbitrary op­

erator of rank 1 from L. Consider a subset £., in L, of all operators B for 
which N 8 ::JNA• and a subset L! of all operators C for which Tc c: TA. 
According to 5.2.13, 5.2.14, these subsets are the subspaces of L of dimension 
.s;;;;n. Therefore Lt + L, L 1 + L, and there exists an operator D from L such 
that D Ef £,., D!i.£10 i.e. Tv+ TA, Nv+ NA. But then (see 5.2.21) A+ D 
is of rank 2. 

5.2.23. No (see 5.2.8). 
5.2.24. Yes. 
5.2.26. NE-P = Tp, TE-P = Np. 
5.3.4. No. 
5.3.6. n (n- r). 5.3. 7. n (n - r). 5.3.8. The rank equals nr, the defect 

n(n- r). 
5.3.10. Let z E Nq+k· Then 

A<l+kx=O=Aq+l (AII-I:r). 

Since Nq = Nq+t• 

i.e. z E Nq•k-t: Therefore, Nq+k = Nq+h-t· Continuing to reason in the same­
way, we obtam 

Nq+ll = Nq+ll-t = Nq+k-t = ... = Nq+t = Nq. 

5.3.12 II+ f. 
5.3.19. If D is a differential operator, then 

A=E-r-fr-o .- {ro2 , --·+~D". 

r (li!·f:~ ~h!n q>t~:l :f! (~~.dorq>r <(h~ qo~t~t~ W ~; ~~~z~~e;:l;!~mdi~1~e:h:! 
-~~Ay~:m~lA2 (;}.q (A) m (A)= 0, which is contrary to the definition of the 

5.3.22 Let m1 (t) and m 2 (t) he two &nnihilating polynomi&ls of the least de­
gree. Moreover, we may assume that the higher-order coefficients of both the 
polynomials equal 1. If p (t) = m1 (t)- m2 (t) is a nonzero polynomial, then 
it is also an A-annihilator. 

5.3.23. (a) m (t) = t1 - t if P + 0, E; 111 (t) = t if P = O; m (t) = t- I, 
when P = E; (b) m (t) = t2 - 1; (c) m (t)'""' t'l. 

5.3.25. No. 
5.3.31. That P1P1 is a projection operator follows (see 5.3. 17) from the equal­

ity 

It also follows from the commutativity of P1 and P, that Tp1p3 c: Tp1 n Tp3-

If, conversely, z E Tp1 n TP2. then P1z = P1z = z. and P1P.z = z, i.e• 
z E TptPz• 

Using the commutativity of P1 and P1 again, we;obtain tbat Np 1c: Np1Pz 
and Np3c: Np1 p2 , i.e. Np 1 + NPzC Np 1P2. Now, if z E Np1p2 , then 
P1z E Npl' and(£- P 1)z E Np2. The identity x= P1x+ (£- P 1)zprove.s 
the reverse inclusion relation: N p1p2 c: N P! + N Pz 
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5.3.32. It is easy to verify that it follows from P1P1 = P1P1 = 0 that (P1 + 
ttf.'pjt~ "'t,P.t' ~~~· ~tet:• 1s a projection operator. Conversely, let 

P1Pt + P,P1 = 0. 

Premultiplying and postmultiplying this equality by P1 , we obtain 

and hence 

Therefore, 

P,P1P1 + P1P1 = 0, P 1P1 + P 1P1P1 """ 0, 

P1P1 - P,P1 = 0. 

P1P1 = P1P1 = 0. 

The inclusion T Pt+Pa c T Pt + T 1>2 is obvious. It follows [rom the equality 

:~·1:; ~h!h:mr~~:;~.s~:.t~,C#~~~+ ~~~t!~ ;:c!: !h:.~:e! 
z1 E Tp1, z 1 E Tp.J, then 

(P1 + PJz = (P1 + P1)#1 + (P1 + PJ z1 

= (P1 + P.J P1z1 + (P1 + P1 ) Prz1 = Pfz, + Pl:r1 = #1 + .z1 = z, 

a.e. Tp1 + Tp1c TPt+Pa• 

Since T p 1 n T Pa - 0, it folloWll from .z E N Pt + Pz (i.e. from P1z ""' 
""'-P.,:J"), that z E Np1 'l Np1• 

5.3.38. The operator that matches each function with its (unique) antide­
riv~i3.39~e~Y!!'R~o the given space. 

5.3.41. The kernel of each of the opera ton~ E + A and E - A, in case they 
are degenerate, should coincide with the image of the operator A. But for a 

non5~5~ecY~, fi dtit;: ~~j~~s x:::. if df:yi ~di'; x.cTh:O!!eo~d~!a ~.:: 

<d~:.~ :~::···~A-1: ~! ~11 
2 -3 0 

II =: 6 

5.4.2. AB=ll~ ~II· BA= 4 -t 

I 

5.U AB-rm. 
5.4..4. AB =(-t5 97 78 -112) 

·-~ ABJ;II· 
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when k = 2m and 

II ·~ .. ·r ·~=~·~:.:::. II 
when k=2m+t. 

we !·:i:t~ !~. t~~: !!vi~ ~~tf:x. i~ .~e~o~t,bi~~t\~rn e{~~!n; :.; b~i~ e~:I 
to zero. When k :;;t. n, B = 0. 

5.4.34. Let the given matrix be A. Then forB= A 11 and k < n, we obtain 
bt.l+lt = 1, l = t, ... , n- k; b1. l+lt-n = 1, 1 = n- k + t, ... , n; the 
other elementsb11 equal zero. Fork= n, we obtain A"= E. If, ho\\'ever, k > n, 
then representing k as k = np + m, we obtain Ak =Am. 

5.4.42. II~ • :II· 5.4.43. • : : ... ,. 

o. 
5.4.4.4.. n, the order of the .Jordan block. 
5.4..4.G. n (n + 1! (n + 2), 

5.4.54. n1• It is required to evaluate only n elements fully determining the 
circulant. 

::t~: ~ ~1:r-:; {.) ty:·+ ... + z 11y11 • 

5.4.61. n (n + ~). Represent the matrix AB as AB = (jh) v where ~ = 
= y1u\t + ... + y11u11 • To evaluate ~. n multiplications are required; to eva-

lua~~~.6e2~0~:as~~~t~h!z~:f:i~ 8 n;~~:!p~ic:e~o:t·t~~t b~:fl~~,~~~~ f~f 1.ztbe 
columns of B being the decomposition coefficients of the corresponding columns of 
A in terms of the set. 

5.4.63. Foe mmplo, n~~~~ ~~~· c~ 11: ~ ~~~· 

5.4.64. Foe mmplo, B~H -: II• c~~~~ ~ _:II· 
5.4..67. An arbitrary quasi-diagonal matrix whose diagonnl blocks are of 

orders k1 , ••• , k:,.• ~spectively, 

5.4. 75. Let i~ ~1a11t1 X e1 = 0. Then 

~ <i a1Jfi)Xe1=0. 
l=t 1=1 
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Due to the linear independence of the set e1 , ••• , em, we obtain 

"5: a.,JIJ=O, l=l, •.. ,m, 
1:1 

whence for all l, j, a.11 = 0. 

5·5·1• .!.II' 4 11 - II """ ,,. "II -2 8 5 ,;),5•2• -sina. cosa. ' 

5.5.3. -~-II • bll 5.5.4. _1 II • -~ll-
aS+b~ -b a • ad-be -c .. 

5.5.5. -+H =; Jl· 5.5.6. ~u -: -:II-
5.5.7.,,3~ 1~ 

25 11 
=~ II· 5.5... _ + li=i -: =:ii-

5.5 ... 11 ~ -: _: -:II· 5.5.10. I II-~ ~ =: 
-t 1 0 -t -6 -6 -3 

t -1 t 0 0 0 Jl· 
5.5.tt.ll-: -: -;: -1:11 

0 0 5 -4 • 

0 0 -11 9 

5.5.12. ~b'~•'+d' II: == -: =: II· 
lla c -b a 

5.S.t6. (a) Yes. E.g. the set of matrices of the form 

II~ ~II· 
where a+ 0; (b) no; the equation Az = B, where A is a degenerate matrh: and 
B is a nondegenerate matrix, is inconsistent. 

5.5.22. -& 5.5.23. 0 I 
-,;;;; 

I 
r;_ 

I. 

r. 
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5.5.26. 

5.5.27. 

5.5.28. 

' _, 
a li' ' " _, ... 

·, 

5
.
5 
.... 11 ~ : : : • . • :::: II 0 0 1 2 ,,, 2n-3 , 

0 0 0 0 ... i 

_, ... 
' ' 7 ... (-t)n-2an-l 

~ .... (-t)•H a:-~ 

.. 

0 

II 
.. 0 

:· .o •. 

.. ' 

·, 
5.5.30. In the inverse matrix: (a) the t-th and J·th columns are intereha~; 

(b) the t-th column is multiplied by the number tta.; (c) the i-th columns mUlti-
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plied by the number a is subtracted from the j-th. 
1 

II 
1 

II 

y-t 't 
'. = -~l+t.l'.. ' 

-a.nl 1 

S~l= 

5.5.33. nl 
5.5.i!6. 

II 
:~ 1~ =: =: II 

-9 -6 3 2 . 

-6 -3 1 

287 

5.5.37. Reduction of the matrix A, to triangular form menLioned in the 

&~:;;~.i~i~;ti~~~!:1:h!:n~~1'n~~:;~~!d:~il~ft ~u?tf;H~ii~:~f ~~!~~:r!: 
::~~~; ~-t~1nS:Jl~~n~~ c;,rb;::~rices £ 111 or, equivalently, by the corresponding 

Nn-t ••• N, ••• NtA = R, 

where R is an upper triangular matrix. Hence, 
A=(Ni't ... .rq·t •.. Nn!.-tl R, 

,\ll the matrices Nl.1 are lower triangular with units on the principal di-

agog,a~~~~~ift~i~c:1;t ~;u:h!0G!!::refi:~~~l~n to an upper triangular matrix 

~~~11Ja~~i~'~ 11fr~h~ ~h~nc~fe~iod~~;o~:!· t!h~~:u~\r~~ ?/.%:~an~l n;~~~:~~: ~: 
thl' last column equal zero. The same is done for the next row and so on to the 
last row. 

5.5.43. Let M 1 be the matrices of elementary transformations involved in 
the reductiun of A to the identity matrix, then 

i.e. 
M,. ••. MtA = E, 

:i.5.1lll. 

5.5.50. Perform the calculations in the following order: 1. A -1x. 2. yA -t. 

3. a.= y (A-1.r). ll. ~ = t ~a.' 5. ~ (A-lx). 6. ~A-tBA-t = (~A-1 .t) (yA-1), 

7. (A + B)-1• Then 3n2 + 2n + t operations of multiplication and division ar& 
required. 

5,:-i.St. A-l=A-l- 1+~Cjj 'I'J· 
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Here e11 is the lj, i) element of the matrix C = A - 1, r1 is the i-tb column, and s1 
is the j-th row of A -1, 

5.5.52. Let v = (l':l, •.. , 'Vn>• a= vA-1 , rn the last column of A -1• Then 

A-l=A-1- t_;vrn r 71 g, 

5.5.53. Let e be a column vector (of the same order as A) all of whose ele­
ments are equal to unity. Putt= A-1 e, u = erA-1• Then 

A-'=A-1- t..:as tu, 
where S is the sum oi all elements of A - 1• 

5

•

5

•

54

• I• b)l•+b(n 1))11=:).=~.::.=:~~. 
-b -b -b ... JJ 

a=a+b(n-2). 

5.5.55. _t 112~1 n 2-n 

n-t 1 2-n 

t ~ ..:. ·II· 2-n 

5.5.00. r:- -~ -: : Jl· 
5.5.57. 1-a11 t t -d;-1 -,-l-

a 1D~ a 1aa 

t t-a 2 t t t 

t 
a 1a~ ----ar- llz4a a 2Dni -, _,_ t t-a3 t t 
D1a8 a~a 3 ---aJ a a an 

t t _,_ 1-ant 
atDn azDn aaan Dr 

wh"" e=t+.!+ .!.+··· +_!_· a, a2 an 

5.5.80.11 E; -~.[[. 
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5.5.62. Look for the partitioned matrix A;;.1 

A··~IIP._, '•-•II· qn- 1 b 

where Pn-t is a square matrix of order n- 1. From the condition AnA;;.1 =En 
we derive 

An-tPn-t +un-lqR-1 =En-t (a) 

An-t'n-t +bun-t=O, (~) 

Vn-tPn-t+aqn-t =0, (y) 

Vn-t'n-l+ab=1. (6) 
It follows from(~) that 

Substituting in (&), we find b: 

Now, 'n-l is determined from (E). 
Substitute the expression for Pn-l• derived from (a), 

in (y): 

Hence 

Pn-t =Aii~t-Aft~tun-tqn-t 

rn- 1An!.1 -vn- 1An!.tun-1qn-1 +aqn-1 =0. 

qn-t vn- 1An!.,un-t a 
Finally, find P11 - 1 

5.5.63. Evaluate in the following seqUence: 

t, Aij~ 1un_ 1 • 2. Vn-tA;;!.,. 3. ~·..__, (Afi!.lun-1)· 

. 4. b. 5. rn-t· 6. q-nt• 7. rn-t(Vn-tAn!.,). 8. Pn-1' 

<•> 

Then 3n'- 3n + t operations of multiplication and division are required. 

5.5.66.
11 

, 0 0 0 0 II 5.5.67.1
1 

, . -2 , _,II 
-83 47100. 2 9-4 2-2. 

0 tOOO 12 8-3 2-2 
5:J -94 (l 0 -4 -t t 

-62 71 t -1 -4 2 -1 1 

5.5.68.1U ~~ ~~ -~1;11· .. 5.69.11=1~ ~~ ~~~ ~JII· 
5.5.80. Consider the equality 

ApBp = (En)p (a) 

as. a system of equations in the elements of the matrix BP' This system is deter­
mmate. 
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Apply the Laplace theorem to the determinant of the matrix A: 

-I lA I. when.~~ u.-ks)2=o. 
- p 

0, when ~ (1 8-k.)2 -op 0. 

=• 
Obtaining the above decompositions for all the sets;1 , J!, ... , ip and k1 , k 2 , ••• , 

~ ~: ~e sgb~i~8tha1t "it~1 n~te~ · · · < Jp ,;;;; n, 1 ~ k 1 < k! < · · · < kp ~ 
p 

~~~ (ls+lh) A (kJkf .. -~~-P) 
(-1) t 1 f~ •.. ln-P 

IAI 
are the solutions of the system (")· 

5.6 ... 11:~:: -::::11 5.6.2.11-i -~ -;II· 
l.6.3. (a) 10 t 0 0 .. . 

0 0 2 0 .. . 
0 0 0 3 .. . 

I~ ~ 6 6 

'·6···~·~11:::: ·:11· 
The matrix is of order 11 X (n + t). 

(b)OOO ... O 
t 0 0 .•. 0 

0 { 0 .•• 0 

0 0 .!. ... 0 

0 0 0 

(h) 0 1 t 1 
0 0 2 3 
0 0 0 3 

0 0 0 0 
0 0 0 0 

n 
c~ 
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The matrix is of order (n + t) X n. 

5·6•5· 1'1 11-~ ~II: (b) 11-: !II· 

5.6.0. <•I II~ ~ : ~II· 
0 t 0 0 ' 
0 0 0 t 

(b) AxB'~'; 

-'" "II -2~ 3~ . 
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When the basis matrices are interchanged, the matrix (a) is unaltered, the 
matrix (b) is replaced by BT X A, the matrix (c) is replaced by E X A + 
+ OT X E. 

5.6.t0. (a) or X A; {L) En X A+ or X Em. 5.6.12. 2. 5.6.13. 3. 
5.6.14. The last n - r columns of the operator matrix contain zeroes 

whereas the first r are linearly independent. 
5.6.18. (a) The i-th and j-tb rows are interchanged; (b) the k-th and l-th 

columns}are interchanged. 

5

.6!.. II-~ _: -: II· 

5.6.20. AIJ~II± =t ~t H BA~ ~ =t ~t: 
-z -2 -T 0 

5.6.21. (a) P X Qr; (b) p-t X (Q-t)T. 
5.6.22. The operator GAB possesses the matri:r: 

(P-lAP) X (QBQ-l)T 

with respect to the basis F11 , ... , Fmn• and the operator F AB the matrix 

(P-t AP) X En+ Em X (QOQ-t)r. 

5.6.31. No; when B = P-1 AP, B = (o:P)-1 A (o:P) for any nonzero num­
ber o:. 

5.6.38. For example, for the matrices 

... 
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we obtain 

5.6 • .(0. No. For example, A 1 = 0, B1 = B for the matrices A and Bin the 
solution to Problem 5.6.38, even though A and B arc equivalent. 

~~~~f Th~' o1er~r t~e_,eig:~v~~e~i;!n~~iu~:efji~.r .~·., t~~~~-
6. t.S. The operator A - A0E has the eigenvalues A1 - J..o, ... , An - A0, 
6.t.6. (c) The operator f (A) has the eigenvalues 1 (A1J, ... , f (An)· 
6.t.7. No. 
6.t.t0. The eigenvectors are those collinl'ar' with a. The associated eigen­

value is zero. 
6.t.tt. The eigenvectors arc polynomials of zero degree; the associated 

eigenvalue is zero. 
6.t.t2. There arc no eigenvectors. 
6.t.tli. (1 1 ... t)T . 

. . . 6~· ~~~"~hff tb:t~~~e~ of\h~ !~~·:i~ i:~re!~:r r~~nn~a~ft~, J.u~;nxlf:e! is. ~ 
zero eigenvalue. 

6.t.t6. The nonzero eigenvalue is n, the associated eigenvector is (t 1 ... 
, , . t)T. The following equation for the components of the eagenvectors is asso­
ciated with the zero eigenvalue: 

a1 +a1 + ... +an=O. 
6.t.t7. The eigenvectors are the same as those of the matrix ln in Problem 

6.1.16. The eigenvalues are a+ b (n- 1) and a- b. 
6.t.t8. If B = T-1 AT and xis an eigenvector of the matrix A associated 

with an eigenvalue A, then T-1 x is an eigenvector of the matrix B associated 
with the same eigenvalue. 

6.1.22. (a) The projection operator has eigenvalues t and 0, L1 being the 

(~~h~u~rre~~~o~~;!~!:rb~~e~g;n;~l~~st~ea~ir~st~~g:: r0sc~h~e:i;~~uts;a~~ 
for }. = t, L1 is the eigensubspacc £or).= -t. 

6.1.27. An operator of simple structure "stretches" the space in n linearly 
independent directions (n being the dimension o£ the space). The matrix of this 
operator with respect to the eigenvector basis is diagonal. 

- ~-~~· t ~~)~ ~ ~S'l; ,5bla1;:t; ~a~!l~3 a-f) a::~~}~a:112~ ~~~~1~~31 ~) a,::3J 
'J.-1 A I· 

6.2.3. ).n- (XrYa + x~gl + · · · + XnYn) J.n-1, 

~:it ~~e~:!"~; ;!1 <:~f~cf;~~~ito~· ~f 'trS~r'%"~/\~;-'~atrix A - 1 equals 
the sum of all principal minors of order n - k of the matrix A divided by the 
determinant I A I (k = t, ... , n- t). The determinant I A-1 I is reciprocal 
of the determinant I A I· 

6.2. to. For example, the matrices 

arc not similar. 

6.2.12. m(A) = )-,)J, A1 , .•• , ).n being the eigenvalues of the matrix A. 
i=t 
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6.2.15. The eigenvalues are the diagonal elements a11 , ••• , ann· 
6.2. 18. }.Z - (2 cos a) A+ 1 =- 0. 
6.2.19. A3 + I a11 '-= 0. 
6,2,20, }.R+l, 

6.2.21. '-"· 
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6.2.24. ~ = ~ = 2. The eigenvectors are all nonzero two-dimensional col­
umn vectors. 

6.2.25. At = '-2 = 2. The eigenvectors are of the form a (I I + t)T, a =fo 0. 

a <~·~·21~T."to'; ?_'=\ ~r 2th!a f:r!· Jh(teiCef>';.~c~~d f1~/J. == t3 ar~f of~~~e :~~~ 
a (t 1 O)T; a =fo 0. 

a (g·~.2~1~.fo~\ ~ 3J !l the 6ior'!':~ ~get:·~c~)~ !o:., J.0~ 3 are of the form 

6.2.28. At -= J.2 = 3; J.3 = 6. The eigenvectors for i. = 3 are of the form 
a (-i 5 -6)1 + ~ (6 -3 3)T (a and ~ are not both zero), for A= 6 of the 
form a (1 1 -3)T where a =fo 0. 

6.2.29. ~ = ~ = }.3 = 0. The eigenvectors are of the form a (t 1 O)T + 
+ ~ (0 1 2)T, where a and ~are not both zero. 

6.2.30. ~ = -3, ~ = -1, i.3 = 1, i.4 = 3. The eigenvectors for}.= -3 
are of the form a (1 -3 3 -1)T; for ;. = -f of the form a (1 -I -1 1)T; 
fori.= 1ofthe forma(11 -1 -t)T;forA= 3oftheforma(1 -3 3 -1)T; 
a =fo 0. 

6.2.31. At = ~ = 0; i.3 = A4 = 2. The eigenvectors for J. = 0 are of the 
form a (0 1 0 -i)T, for ;. = 2 of the form a (0 1 0 1)T; a =fo 0. 

a (~-:.3t2'o;.b)T ,tz;(3°;o ~~ =1~f.=r;; r~ 2:ig;(~~fr~ f)i.; F<8 oarrO)T; 
a and ~ are not both zero. 

6.2.33. ~ = ~ = i.1 = J., = 3. The eigenvectors are of the following form: 
a (1 0 0 -1)T + ~ (0 0 t 0)1'; a and ~ are not both zero. 

6.2.35. (a) There are no eigenvalues; (b) }. 1 = 1 + 21, ~ = 1 - 21. 

6.2.36. (a)l-t=2; (b)i.t= 2;i.2 ={ + l ~. J.3 = ~-~q. 
~:~:~~: ~!~ \here-!~:~n: ~jg~~v~ih:s;-;b)J.~==5 ~,}.~~=.; ~~:· t~ ~ i + !: 

J.,= 1-t. 

ope~~~~~2~i~:O!~fu~;~:~=~ ~~:ed~~~;~:~n ~~ ~~! s~:::.r~~c theu~~f~~~i~hi~fn!!; 
not be true. 

6.2.44. The matrix is not of simple structure. 

0 I 'II 2 I 0 
-1 0 2 I 

0 0 -t II~ ~ ~ ~II· 
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6.2.46. The matnx is not of simple structure. 

•·
2·"·11' , , 'II II' , , "II 1 -t 2 -3 0 -t 0 0 

1 1 4 9 ' u 0 2 0 . 
1 -1 8 -27 0 0 0 -3 

6.2.48. The n1alrix is not of simple structure. 
6.2.52. I."- t. 
6.2.53. Let e be an arbitrary eigenvalue of P, i.e. an arbitrary ri-th root of 

unity. The eigenvector associated with e is, given collinearity, of the form 
(t e s3 ••• e"-')T. 

6.2.54. According to 5.4.52 any circulant is a polynomial in the matrix P 

~~. ~~~b!:~l' 6G~:e2~. t:e ~~~~~~~alrt (~~~ :o i+ da~~e+~~~~ ~Y. ~. +~~~~ .. ~1: 
tteeigenvaluesof the circulant are the numbers/ (t:1), ••• , I (e,.) where 8J., ... , 
... , e,. nrc all the n-th roots of unity. 

6.2.55. The eigenvectors for ).I (t = 1, ... , m) are 

a (J .. ~-1 )_f-l .•• Ah.l t)T a =F 0. 

Let6i;~~~~lri~~i~~7 ::s:. ~h!n n:::sr!:kv~r~ is_''~e: i';o ;s_!~ (~ren;~\~rx0fs ~f 
simple structure!). Smce the characteristic polynomial of the matrix A - 1..0 1!.' 
has a zero root of multiplicity k, the coeflicient of J..lt of this polynomial is nonzero, 
and th<.'re 1s a nonzero minor among the principal minor.~ of order n - k. 

6.2.59. ('A. - ).,) ... ('A. - 'J..m). 
6.3.5. A is a scalar operator. 
6.3.11. The converse statement is nut true. 

tion6:~~t~r ~h! (~h~~~~~P~~::::~~\~d~~d~! iQ: at~d ~~ea~~~~!i!:tb~~~aft~~~ 
The operator induced on this plane is the operator of rotation through 90°. 

:t~~: ~~~v~l~~:s t1:t·c~n~t~o~ B' !n~-\~eie[; f.!~s}~:; PB = AP and 
equalizing the first columns in the derived matrix relation, we see that b11 is 
an eigenvalue of A, and the fi.r.~t column of Pis its associated eigenvector. Hence 
;~b~~:;:s~ct 1~hef::!ns!or~~'1eg~~!~~~/ ~:t~i!~ eigenvector of A and extend it 

6.3.24. Select a basis e-1 , ••• , e-n for the space so that the first vectors of 
this basis, e-., . ., e-11 , form a basis for L. Then the matrix of the operator A is 

A"~ll~" ~"II· " 
Au being the matrix of the induced operator AIL with respect to the basis e-1 , ••• 

~~l~e e-'A.~Nh~r:a~~~t o1~t!iti0p}~c~{ys~~~~l~s~~~~~~~~ ~n~ _!_o;. Le~eft~~n of~~~: 
braic multiplicityqasof an eigenvalue of A 11; then r 2 = rA 22 _.._F.n-lt~ (n- k) -
- q. Thus, 'A. is an eigenvalue of Aot of multiplicity p + q, but 

'Ae->-En:;;:.. r1 + r2 > k- P + (n- k) - q = n- (p + q), 

whi~.~.~3.coT~~ar(w~~di1~~n~~~~[\~:a:i~~~ ~~b~p~!esii':p~:a~~~t:r:he vector~ 
:l= (O 1 t)T andy= (2 1 oJT. 
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8.3.36. The eigenvalues of the operator are on the diagonal of the matrix. 

'·'"'··11~ -g -ill· U _; ~II· 
'·'·"·1/g nil· H _;~II· 
6.3.44. In accordance with Problems 6.3.19 and 6.3.38, construct a matrix P 

~:!~~;~~~~~:~~a~~~~~~[c~s ~ :nd J t~if:~h:~~ec!l~~~~rth~a~r~!~fu~i:g-
matrix p(l), Then A<lJ = (P(lJ)-lAP(lJ and 8(1) = (P<'>)-IBP(lJ are of the form 

A<>•~~~~ ~._,11. B<>>~~~~ ~.J• 
A,._1 and 811 _1 being square matrices of order n - t. Construct the matrix P(') 

P"'~ll: ~ .. II 
:a~~ic~~.:,.~:nd~,.~~ ~~:ti~~::gt~~ eff~sn::!~~r~0d!~~~i~e t~ea!c:'h~~:dJ~~ 
P<1> P<•> .•• P< 11 - 1 >, both matrices P-IAP and P-1BP being upper triangular. 

6.3.45. For the commuting operators A and B, there is a basis for the space 
with respect to which the matrices of both the operators are triangular of similar 
form. 

ma~~~~4A\oL:~ ~p::rtrtria~ia:i:~~i;0 ;_n Th~~rAtr~nf't':'si:~lt:;xtoRk a~d T~ 
~~e i~:t~~rn~~~ol3t::o~:rsi:::1i:r~~~atb~,·~~~1i~ t!e ~o;~~ t:~c~s i~1~{o1f!~~ 
the upper triangular matrix R X E11 + Em X T on whose principal diagonal all 
the possible sums ~~ + I'J are placed. 

· basr;To~~~~:dt e~~~~~i~ ~: 'e~ ~ ·b:si/f:r l~~ .;c:~hS: ~~~:i~1 ~f · th~' o~r~(or; l 
is quasi-diagonal: 

A,~~~~" ~.J 
Partition the matrix 8 11 of the operator B thus: 

Be=ll;:: :::11· 
From the condition A 11B 11 - B,A .. = 0, we obtain 

AuB12- B12A22 = 0, A22B21 - BuAu = 0. 

Now, it follows from 6.3.49 that 8 12 = 0, Bu = 0. 
6.3.51. If A is similar to a triangular matrix R, then Ap is similar to the 

triangular matrix Rp· 
6.4.12. The basis for the root subspace for~= 0 is the vector (0 t -t)r. 

The basis for lh~ root subspace for~= t is formed by the vectors (t 0 t)r and 
(0 t O)T. 

thre6;!/!~n~~:n~il~r~it::~~ues~a!e:= 1. The root subspace coincides with the 
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6.4.14. The basis for the root subspace for A.= 2 is made up of the vectors 
(2 -t 0 O)T, (t 0 t O)', (2 0 0 t)T. The basis for the root subspace when 
l.= -2 is the vector (0 t 0 -i)r. 

6.4..15. The basis for the root subspace when A.= -tis formed by the vecton. 
(1 t 0 O)T, (0 0 t t)T. The basis for the root subspace when A.= t is formed 
by the vectors (3 t 0 O)r, (0 -2 3 t)T. 

6.4.17. (a) Assume that the vector (A - 1-.1E) z has height k, k <h. Theu 
(A - )..1£)11 (A - ).1E) z = 0 = (A - l.1E) (A - J..1E)II:z:. 

Thereby, the nonzero vector (A - ).tE) 11 z is an eigenvector associated with the 
~~~n~!'~he).J~e~& ~e!'l~r~hich is impossible since the root subspaces intersect 

(c) as with (b), show that for any number a other than l.1, the height of the vee· 
tor (A - aE) x is the same as that of the vector z. 

6.4.22. The transpose of the 1 ordan block of order n for the number ~-
6.4.23. The canonical basis can comprise, for example, the vectors e1 = 

= (4 3)r, e1 = (0 1jT. The Iordan form is as follows 

J~ll~ ill· 
6.4.24. ::::-~ _! -~:~: '=llooo oo1 o~ll· 

e3 =( 0 1f; 

6.4.25. e.=<t -1 o?. 112 to oil 
::=~~ -: -~:;: l= ~0 0~ 0: 021 . 
e4=(0 0 0 t)T; 

6.4.26. e1 =(1 1 t 1 t)T, lit t 0 0 011 

:::~: ~ ~ ~ -:;:: l= ~ ~ : ~ ~ . 

e,=(t 0 0 0 -t)T, ~ ~ ~ ~ : 

e6=(0 0 0 0 1)T; 

6.4.27. -t 1 () () .. 

0 -t t 0. 
0 0 -t t . 

0 0 
0 0 

() 0 

0 0 ... -t 
0 0 0 0 0 -t 

6.4.28. 1 t 0 0 ... 0 0 

0 t t 0 ... 0 () 

0 0 t 1 ... 0 0 

0 0 0 0 ... t 1 

0 0 () 0 ... 0 t 
6.4.29. 9 1 0 0 .. 0 0 

0 9 t () .. 0 0 

0091. .. 00 

6.4.30. t t 0 0 ... 0 01 
0 t t 0 ... 0 0 

0 0 t t ... 0 0 

o'o' 0 o:.~; tj' 0000 .. 91 
0000 .. 00 0000 ... 01 
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6.ti.31. 2 t 0 0 .. o 0 6..i.32. " t 0 0 ... 0 0 

0 2 t 0 .. o 0 0 " t 0. .o 0 

0 0 2 t ... 0 0 0 0 " t 0 0 

0 0 0 0 .. 2 t 0 0 0 0 ... a t 

0 0 0 0 .. 0 2 0 0 0 0. .0 " 
6.4..33. The Jordan form is the Jordan block of order 11 + t corresponding 

to zero. The canonical basis is t, t, E t1, ••• ,~ tn. 

6.4..39. Both are equal to (;t..- J.o) 11 , 11 being the dimension of the space. 
6.4..-iO.If 

then 
a.,_ (A- J.oE)kx1 + •. , + ap(A- ;t..0E)kxp = 0, 

(A - ;t..0E)" (Ctt:tt + ... + ap:tp) = 0, 

whence (since k < t) 

i.e., a.,_= •.• = ap = 0. 
Tbe~ow, let y = a 1 (A- A.,E)"x1 +, .. + a 1, (A - A0E)IIxp E Ht-IH· 

0 = (A - "-oE)t-11-ly =(A - Ac,E)I-1 (a1x1 + ... + ar1 ... 

Therefore 
a1x1 + , .. + apxp = 0 

and a.,_ = ... = aP = 0. 
6.4..4.2. Applying the operator (A - ;t..0E)t-l to both sides of the equality 

a.,_xl + ... + ap:ep+ Jl1 (A- ;t..oE)xl + · · · + JIP (A-A.,E)xp+ . 

we obtain 
. . . + '1'1 (A - Ac,E)I-Ix1 + ... + Vp (A - Ac,E)I-Ixp = 0 (a), 

(A - ;t..0E)I-l (a1x1 + .. , + ap:tp) = 0, 

whence a.,_ = .. , = aP = 0. Similarly, applying the operator (A - J.oE)I-t 
to (a), show that Jl1 = ... = J11, = 0, etc. 

6.4..4.4.. A canonical basis is, for example, and the Jordan form 

e1 =(-2 2 1 zl. 

~~11~ ~ ~ rll· e2=( 0 0 t t)T, 

.,~( t 2 t -t)T, 

e4=( t t 0 O)T; 

6.-i.4.5. •.~1 0 0 101 O)T, r., 'II e!=( 0 t 0 O)T, 1- 0 99 0 0 

e3 =(10t 0 0 O)T, 
- 0 0 99 1 • 

0 0 0 99 
e•=( 0 0 0 t)T; 
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6.4.45. 

tl=( ' ' 0 0 O)T, -I 

o!'t=(-2 -3 _, 0 0 O)T, 0 -t 

ta=( ' 0 0 0 O)T, 

lit=< 0 0 ' 2 t)T, 

I~ 
0 -1 

-I 

0 -1 
th=( 0 0 ' ' O)T, 0 0 -1 
e,=( 0 0 1 0 O)T; 

6.4,1i7, 

e1 =(0 0 0 0 -I O)T, 2 1 0 0 0 0 

~~~=(1 0 0 O)T, 020000 

~~~=(0 0 0 -3 O)T, I~ 
0 0 2 t 0 0 

0 O}T, 
000200 

t4=(0 I 0 
0 0 0 0 2 t 

e,=(O 0 0 0 -5)T, 000002 
t 1 =(0 0 1 O)T; 

6.4.48. The 1ordan form consists of two 1ordan blocks of order k corre­
sponding to zero. A canonical basis could be, for example, 

1, }t~. ~t~ • ... , (2k~2)1 t21!.-t,t,-irt•, -:r-t~ . .... (2k~1)! ttk-1, 

....... r~[· -2 l)r.ll ~~11~ ~~II· ~~~=(1 0 O)T 

e3 =(0 t -i)Ti ....... r~[l .. l)r.ll ~~11~ ~~~II· t2=(1 0 0 O)T, 

t3=(0 t 1 O)T 

e4 =(0 0 1 -t)T; 

6.1.53. e1 = (24 0 0 0 O)T, 

hn 
0 

Jl· 
e~ = ( 5 i 8 0 O)T, -2 ' 
e3 = ( 0 0 0 0 t)T, 

0 -Z 

e4 = ( 4 6 0 0 O)T, 
0 -2 

e 1 =( 0 0 0 1 O)T: 
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6.4.M. e 1 =(1 11 1 1)T, r 1 0 

0 

Jl· 
e~=(O -1 0 0 O)T, 0 -t 0 

e3 =(1 1 0 1 1)T, 1~ ~ ~ -1 
1 

-1 
e~=(O 0 0 -1 O)T. 

e5=(0 0 0 0 1)T; 

one 6b!i~:· of~:d;~r:+ tr~J~b!i~~i.~! ~f~r~~~dk~nA b!~~~~f~lb~~~~~':fdtb:.ef~~ 
example, 

(2k~1)1 tlll-1. 

6.4.56. The Jordan form consists of p1 blocks of order 1, p1 - p1 blocks of 
order t- 1, and in general, Pt-11-n- p1_11 blocks of order k, 0 < k <I. 

6.4.58. No; otherwise 

e~=( 6 0 -2 

•• ~1 1 

e~=( 0 1 

e~=( 3 0 -1 -8 

e8 =(2 0-3 

6.4.62. e1 =(-2 0 2 0 2 O)T, 

e~-{ 0 0 0 0 2 O)T, 

e3 - ( t 0 0 0 () O)T, 

e,--( 000301)T, 

t'\=( 0 0 0 1 0 0)~. 

to= ( 0 1 0 0 0 O)T; 

_, 
0 

O)T, 010000 

O)T, 001000 

-1)T, I~ 
000100 

I~ 

O)T, 000000 

000001 
O)T, 

000000 
i)T; 

2 1 0 0 0 0 

021000 

002000 

000210 

000020 

000002 
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6.4.63. e 1 =(-2 2 2)T, 

e2=( t t -I)T, 

e3=-( 0 1 t)T; 

6.4.64. e1 = ( t t O)T, 

6.4. 71. Each block is replaced by ils transpose; the order of the blocks on 
the principal diagonal is reversed. 

6.4. 72. The diagonal elements i..1 , ••• , ?-m of the J'ordan form of the opera· 
tor A are changed to At- J..o, ... , Am- he, in (a), and to t/1..1 , .•• , il'}..,q in 
(b). 

6.4.75. The Jordan form of the operator A 2 can be obtained from that of the 
operator A as follows: replace I. by ,._, in each block corresponding to 1. + 0; 
replace each block of order k corresponding to 0 by two blocks of order l if k = 2l, 
and by two blocks of orders l + 1 and l, respectively, if k = 2l + t. 
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6.4. 77. It follows from the condition A 2 = E that the eigenvalues of the ope­
rator A can only he equal to 1 and -1. Verifying the equality / 3 = E for the 
Jordan form of the operator A, we find that J is a diagonal matrix, i.e. A is an 
operator of simple structure whereas both t and -t must be the eigenvalues of A, 
otherwise A = -E or A = E. Denoting the eigensubspaces of the operator A 
~::~i1~tre~nwth p~~ftef\:nt!.Lu respectively, we obtain that A is a reOeclion 

6.4. 79. The defect of the operator A - "1-.aE can he found using the matrix 

~l;;;k ~f·/~oe:r~~~J~~ J ~~d~n i~or:a~!r~~~~Se'i~~~r: bl~:~~ft~is~\Uxc~:~~ 
~~~:~ !~ 0~o~dee~!~~!t:r. t~:i~~~~ ~b!n9ef~ta~t~ u~i~:le~eu~~~~he ~~:~~ 
of Jordan blocks of J corresponding to /..0• 

0 0 1 1 0 0 0 t 0 
6.4.82.11 ~ : ~ ~ ~II .. 4.83.11 ~ : : ~II 

~ ~ ~ ~ -~ . ~ ~ ~ -~ -~ . 
6..t84. 5 t 0 0 0 0 6.4.85, 2 0 

0 5 0 0 0 0 0 2 

0 0 5 t 0 0 "0 -4 
0 0 0 5 0 0 0 0 -4 
0 0 0 0 13 0 0 0 0 -4 
0 0 0 0 0 19 0 0 0 -4 

6.4.86. 1 1 0 0 0 0 6.4.87. 1 1 0 0 0 0 

0 1 0 0 0 0 0 1 t 0 0 0 
0 0 1 t 0 0 0 0 1 0 0 0 
0 0 0 t 1 0 0 0 0 1 t 0 

0 0 0 0 t 1 0 0 0 0 1 1 

0 0 0 0 0 t 0 () 0 0 0 1 

6,4,88. The Jordan form con~ists of one block of order n+1 corre­
spondtng to Z{'rO. 

6.4.89. The Jordan forms of both the operators coincide and consist of three 

· Jor~~4~9~~0;!'be~ i~~~~! ~f~:p;:i~i~f t~e z~~lrices A, B and C that contains 
similar matrices. 

6.4.92. A and Care similar to one another and not similar to B. 
6.4.93. A and Bare similar to one another and not similar to C. 
6.4.95. If/.. is an eigenvalue of A not tor-t, then t/1.. is also an eigenvalue; 

moreover, to both eigenvalues there corresponds the same number of Jordan 

hlos~.t;J. o~y~c~::1fo:d~una1bl~~te7~ the Jordan form can correspond to each 
eigenvalue. 

ma~i~j00;ep'::~d ~ 1Y::;~~g~~a:h:~~:da~f f~~~rof'L~h;"~;ri~!!g~n~ ~ :~d 
A X En + Em X B is obtained as follows: (a) for each nomero eigenvalue /..1 
of A, muhiply the diagonal elements of the t-th block of J by /..1; and if /..1 = 0, 
then the corresponding block of J is replaced by the zero matrix; (b) add /..1 
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to all the diagonal elements of the 1-th block of/, The Jordan form of the op­
erators GAs and FAB• respectively, is obtained in the same v.ay. 

6.4.t0t. If a; is the n-th primitive root of unity, r= 'Y !, then the Jordan 
form of A is as follows: 

0 
t,ra 

t+ra2 

0 t+ra.'l-1 

7.t.6. If A is a diagonal matrix such that A11 = (e1, e1), then 

(A •)e = A-1 (A e)• A, 

where (A 11)• is a matrix conjugate to A 11 • In parlicular, if the lengths of a]! the 
vectors e1 are the same, then (A")e = (A.,)•. 

7.t.7. For elements ao of the matrix .4 11 of the operator A, the equalities 
must hold 

au""' (AeJ, ft); 

similarly, for elements tll*i of the matri:x:~A1 of the conjugate operator A•: 

aT;= (A"IJ• e,). 
Therefore 

afl=aj,. 

the 7;~;:~ ~;~ fi:d(f~r 0tbe8 g~~::~::r~~~0r)8!u~b: :.ufji~!e:p~~~hisv:n\~~~~ 
~~:0o!h: ~~nc\~S!!! ~~e:.d~;;e~~~~:fi:~a~~ ~?ucid~g:~~h nu~~~j~~:.y opera-

7.t.9. Rotation through lhe angle a in the opposite direction. 
7.t.t0. A• =-A. 

'·'·"· ··~11~~~11· II!HII, 
(b) I 11- 3 -·-'II II-' I 'II· 2! ~ ~-~. -~-~~. 

(<) II~~ ~II· o2. 
3 

t 0 -+ 
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7ofot2o 

7.1.13. (a) 11: -:/2 ~II· 
0 15/2 0 

;:::~: :~ e:~e .. ~,m::~: :::JJ!,;c!!ti~~ for the space X, then the vee-
tor f is one whOIII! coordinates with respect to this basis are the num.berstTeJ, ..• 

o o '1J~5!"A• is the projection operator on the plane :r + 11 + z = 0 parallel 
\o the axis Os. 

7.t.26. (a) The basis for the kernel Is the polynomial t1, and the basis for 
the image ii made up of the polynomials t and t1; (b) the basis for the kernel is 

~~g~r~m4~c~'~; h!;,~f:r1~hebk~=e~0fs '/h~ ~~r:!o~i:/~:. ~ t a~0J~C:b!~~ 
for t.i~a!L¥be i:~~~:~ r:~:~ T 1"+ T D IS always fullilled. Show that for 
the data giveu., TA+B= TA + 1 8 , for which It suffices to show that TAc: 

c: t1iB:r en;B::•tb.e:10:~ 0 (by the condition AB• = 0) and r.: +B) :r = 
;!:r-vJ:Y:r r~: o~'!t1#:·~;.:~; b~w~Yti~1kth:~ftfi~ :NI~no ~: 
BA• ""'0. 

Bytheseeond condition in the problem and Problem 7.t.3t, the sum TA+B""' = T A + T .a is orthogonal. Therefore 

rA+B = rA + 'B· 

· Similarly, it can be shown that T1A+BJ• = T A • + T .a*• whence by trans­
ferring to the orthogonal complements, we obtain the second statement of the 
problem. 

7.1.34. The null subspace and SpaDS of the .eets of polynomials t", tRn, ••• 
0 

• ·;.r~~ T~· ~q~tnd :!hspace ts determined by the condition 

i; I (ki-D. -7of.38o The required subspace is determined by the condition 
I J l(t)dh=O. _, 

7.1.39. (o) I, 1, I~ (b) lilf3, 1/lf!, (31°-2)/lf~; (o) 1/lfii, lflij2t, 
l(5iii(3t'-l), 

7ol.41. If A,, ••. , An are the eigenvalue~ of the:operator A, then the eigen· 
values of the operator A • are 1.,., ... , ~-
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7.1.44. Let k be the dimension of K,.. Then for any vector x from K,_: (A -
- AE)II z = 0. If y is an arbitrary vector from K~ then 

0 =((A- AE)II x, y) = (z, (A•- i:E)II y). 

~~ 0tb~ra;b~a1n•ed-e~!aiiit;o~~~g:5ne~~!~ ~lh~~~variant subspace K~. Tbere-

7.1.4.5. The Jordan form of the operator A • is obtained from the Jordan form 
of A by replacing the diagonal elements with the conjugate complex numbers. 

7.1.4.6. A canonical basis for the di&erential operator can be constructed, 
~~er~~~~p~;· ~t?'e t;~~:;~~i~~i~~: ~h~til~~; a canonical basis for the conjugate 

7.1.47. Let the given order of the eigenvalues be as followsA.11 , 1..1 ~, .•. , 11.1n, 
and let it be required to construct an upper Schur form. Then take the normed 
eigenvector of the operator A •, associated with the eigenvalue f 1n , as the vector 
e11 and consider both the operator A 1 induced on the orthogonal complement to 
e11 which is A-invariant, and its conjugate A~- Take the normed eigenvector A f 
associated with 'Itn-t as e11 • 1 , and then consider the orthogonal complement to the 

~h:n ;!ctr~ ~~dt;..~~ e~~~:tn~h; 1D~~%:Cr~i~:~~:;;o~f ~aya=~i~fese~ftht; .. ~~ 
the vector e1 and then consider the orthogonal complement of e1 which is~ •­
invariant, etc. 

whi~~i~~ :C,h!~:et:!:iu~~ta~:tJ: ;o~~~~!~i~ift:rt~e!sn~tc~~~~~r~~~!~i:~tor 
7.2.22. Yes, it follows. 
7.2.29. No, if all the eigenvalues of the operator are of multiplicity unity; 

yes, if at least one of them is multiple. 
7.2.30. ~ = 1 + i, ~ = 1 - i. A basis could be, for example, the vectors 

e1 =;1- (t t)r, e2 = 7z (1 -1)T. 

7.2.31. A1 =0, A1 =3f, A3 = -&. A basis could be, for example, the 

Vl.'ctur~e 1 =+(21 -2)T, e2 = aJiO('i-3f 2+6i 5)T, ea= a:iQ (4+ 

-j-3, 2-UI 5)T. 

7.2.32. 1..1=-1, A2=2-i, A3=3-i. The basis is e1 = Jrr (t 2 -t)T, 

e2=~(l 0 i)T, e3 =.....!..:-1-l t 1)T. 
(12 va 

7.2.33. A1 =2, A1 =-2, A3 =21, A~=-2t. The basis is e1 = 

= Jz (I I 0 O)T, e1 = ~Z (0 0 t -1)T; e3 = {<t -f i ,)T, e4 = 

=+{1 --1 -f -i)T· 

7.2.34. No. The differential operator is not an operator of simple structure. 
7.2.35. No, if a + 0. When a = 0 the identity operator is obtained. 

R3 ,7l~c3n7.t~! :C;Ja~~~od~c~~a~n~eYgj;e~'b/H}J~r~l:rbitrary vectors from 

(z, y) = a,~, + C11~2 +a,~.+ C12~1 + 2C12~t 
+ 2a2~3 + eta~t + 2aa~t + 3aa~l 
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7.2.41. e1 = Ja (1 I I)T, e~= J3 ( t--j-+t l~j -+-1 1~3 r 1 
t3= :a (t-{-' ~3 -+~~ ~3 r. 

7.2.42. For example, e1= : 6 (1 -2 tl, t 2= Jz (I 0 -t)T, t 3= 

=~a (Itt >r. 
7.2./ili. Let all the eigenvalues of the operator A be di8erent in modulus 

~!:~J J~n~?ct~; b~~- '-.p~ :Ona~r:~t :!'the' ~J,::at~ ~~ ~jilis~~::;: t~~ti; 
t~s~sc:r'd~:~ wi~: 7~&) ttb!~~~0o~~hte ~~~~~!ft~~r:~~Sutr~f ~~~ ~~~~~:!~~ 
the first row to those of the first column of the matrix A ,B., we obtain 

[Ad 1 ([bu[ 1..l.. [bul 2+ · · ,..J...[bln[ 1)= [Ad 2[bull+ [A~[ [b21 [1+- · · .-[An [ [bn![ 1 

Since B 8 is also a normal matrix, 

[bul 2 +!bu[~+•·•-;- [bn,[ 2 = \bu[ 1 --lbul 2 + ··+ lbud 2 • 

These equalities are all true only if 

b~l = •.• = bnt = bu = ... = b,n = 0. 

Similarly it can be shown that all the other off-diagonal elements of the matrix 
B• are zeroes. Thus B 9 is diagonal matrix, and therefore the operators A and B 
commute. 

7.2.45. Reasoning in the same way as for the proof of 7.2.44, show that the 
matrix of the operator B is quasi-diagonal with respect to the orthonormal eigen­
vector basis of the operutor A (if it satisfies the conditions of the problem), and 
that its diagonal blocks of order >1 correspond to multiples of the eigenvalues 
of the operator A. Hence the matrices of the operators commute. 
, 7.2.47. Any vector for wh1ch this maximum occurs is an eigenvector of the 
operator A associated with the eigenvalue with maximum modulus. 

7.2.49. No. For example, for a unitary operator U, the ratio I Uz ill z I 
equals unity for any nonzero vector z. 

7.3./i. The operators of multiplication by a number whose modulus equab 
unity. 

7.3.6. No. The operator A is degenerate. 
7.3.8. (a) Yes; (b) no. 
7.3.10. No, if the operator is not the identity operator. 
7.3.12. Ja) The eigensubspace for A= t coincides with the set of all even poly-

:~::~:;a{c) t~hee~~~~~~~;~:o:0; ~ =-: ~~i'd~~~~~ :i~ht~e ::: ~~ ~t~~~~{; 
t 11 + 1, tn-1 + t, ..• , and the eigensubspace for ).. = -1 is drawn on the 
polynomials t" - 1, t 11 - 1 - t, . , . If " = 2k - 1, then both the subspaces 
are of dimension k; if, however, n = 2k, then the dimension of the first is k + f 
and of the second k. 

7.3.13. The scalar product of polynomials f (t) = a0 + a1t + a1t: and 
g (t) = b0 + b1t + b2 t1 may be evaluated by the formula 

(I, g) = 3aob0 - 2a0bt - 2a0b1 

-2atb0 +2arbl+atbt 

-2a1b0 + a1b1 + 2a2b2· 

l/1 20-0&19 
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7.3.16. + -+ -fl 
2 2 1' 

-+ =+ +I. 
7.3.18. Ye9, it is. 
7.3.21. Let A be the given operator and let e1, ••• , e,. he an arbitrary or­

thonormal basis. By the data, the veetors Ael' ... , Ae,. are orthogonal each = ~~c! IS!~:\t~h!nt~h:v:t~~ee~u.f.I]2c~~~h;1 ~ ~0~r=~~:h~e~n~f. :nd ~1e! + 
+ e,) and A (e1 - e,) are not: 

(A (e1 + e1), A (l'J- e2)) = (Ae1, Ae1)- (Ae21 Ae1) = a:J- aJ. 
Therefore I Jle1 I =a: for all I= t, ... , n, and t.hen A = o.U, where U is a 
unilary operator transforming the vectors e1 into the vectors (1/a:) Ae1. 

7.3.34. Interchangicg the rows and columns of a matrix in the reverse order 
is a unitarily similar traMformation. 

7.3.37. t. - t2 = (¢, - ¢.) + 2kll. 
7.3.38. tj" 2 = -t3 = arg au - arg all• 

la;d . laJ;I 
cosq: V laul 2+ laJd 2 ' stnq V laul 2 ,-laJ;I 1 

7.3.40. Multiply the given matrix A on the left by the sequence of elementary 
unitary matrices T12 , Tu, ... , T1n, Tu, ... , Tn-I.n so a9 to make all the 
subdiagonal elements equal to zero one by one. The derived upper triangular 
matrix is one of the factors of the required decompo9ilion, and the other 1s the 
product TttTt3, ... , T~-1.n· . 

7.3.44. The length of the vector w must be equal to umty. 
7.3.46. The eigenvalue9 equal t and -t. Moreover,"'= -1 is an eigenvalue 

of multiplicity unity, and its corre9ponding vectors are collinear witli w. The 
eigenvectors for"' = 1 (and the zero vector) make up the orthogonal complement 
of w. 

7.3.47. The determinant equals -1. 

7.3.49, w=(-sinfcos-f)T. 

7.3.50. The product Hz: should be evaluatrd by the formula 
llz:=z:-2(z:, w)w. 

The scalar product (z:, w) is computed by (7. 1.4). 

7.3.51. w = I z: _ 1 ketl (x - ker), where I k 1 = 1 z: 1 = (z:, z)lfl, as to the 

rest, the choice of k is arbitrary. 
7.3.52. In accordance with 7.3.51 select the matrix H1 so that for the given 

matrix A of order n, the matrix A 1 = H1A1may be of the form 

•·-11: x.~x II· 
such that At is a submatrix of order n- t. Now construct the matrix H2: 

-II' .... "II H,- - ' 
0 H, 
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where li1 is a reOection matrix of order n- 1 selected so that all the)ubdiagonal 
elements of the first column of the matrix ff2] 1 are zero. The first two columns 
of the matrix H 2H 1A will now coincide with the columns of a triangular matrix. 
In a s1milar way alter n - t steps an upper triangular matrix is obtained. 

The unitary factor of the required presentation is the product H 1H 2 ••• H,._1 · 

7.3.54. If the column vector (a 21 a31 ••• a,.1V is: denoted by ;;1 , then a matrix 
of the form 

II: ' fi 'II 
:T?:!~;~~Uh ~h:'~n,~th~~u~!s e~ ~~~t;~~ ~8~.iM~r':~~~~~fs ~\~}0arS:~c~~ 
Oection matrix. 

res:~i~~- :bichntb:~~~~~~ ~~ellii:x~;~r:~~j~h~;~~(fo~~;)s !~~~~;~~!:~~~ 
7.4.7. In the complex case, these are operators of multiplication by a real 

number. All linear operators on a one-dimensional Euclidean space are symmetric. 
7.1.11. Yes. 

7.1.15. S,=+IU' -~ -:J 
7.4.24. H = 0. 
7.4.M. Let L11 be an arbitrary k-dimensional subspace. Consider the s{an 

~71-"M,.:!.~h~sv!~tl!:s?~;!:Ji~~n;i;;a:f~:ih:: b!t~ ~~~~n~:r~ i~~~~rcV~nmo t~~ 
intersection. Then according to (i-4.3), 

Therefore 

so that also 

(~:~· x:;) ~ A11. 

max min (Hx, x) ~ A~c. 
Lll 1.,0.0 {3:, L) 

:o:EL 11 

That the equality in the relation (7.4.4) occurs is demonstrated by the k-di· 
mensional span of the vectors e1 , ••• , ell. 

(7.4.5) is proved similarly. 
7.4.35. Without loss of generality, the submatrix H,._1 may be assumed to be 

in t~e ufper lef~-hand corner of the matr~x H. Let ft, .... , J,._, be an orthonormal 

::;!c~iv:fy~ ~~-{~~;~:o> :: J:~ -~a~~~ .. ~~~-'A:::':J~~~e~owt~~-~),' ... , fln-t• 

~!!~ (H(~~~;·I y) = flll = ~~~ (H ('y~~:~ y) ' 
11EMn-11 11ESi11 

,.. 
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Thon 
(Hn-tY· y) (Hz. z) 
~=~ 

for the corresponding vectors y and z. To the subspaces Mn-k and M" there 

Th!::fo~~·d0roW~w~-d~::~b~al~~:~:l~i~'h:rn1h:~~ ~~=t same dimension, 

).ll+l:s;:;;f.lk.:;,;;;A.k. 

7.4.36. One positive and one negative eigenvalue, 
7.4.40. For any Hermitian operator, there is an orthonormal basis for the 

spa7~,~~~ ;0e{rj!, ti, w~i(fl t!e ,.~;~r~I) o~ tf!s ~Pf,r;~o~;s ~~i~~r.· f' {).) = 
= A.•-3:V+ f, h(;l..) = :v -4!..3+3).. 

7.4.44. Use the induction method over the number of polynomials in the 

S:C~LriJ\~g ~~ \~~ ~~~·bt~ ~l.l~ ~r~~t~/~r \~~~b~t\iie) ui!i~~~a~~~t0ft~~:f ~i~0p~j~ 
nomial ft (A). In the first ease, the sequence 

/o(ll.)=1, ft(!l) 

bas :~us~en th!~~hep:C,np~;i~i!~ei:e::h:~J!s~~~ is true for all k .:;,;;;; r. The values 
of the polynomials fr (A) and fr+l (f..) at the point 11 may then be calculated by 
the formulae 

r r+l 
lr(Jt)= {l (fl-t..~•>l, lr+d!l)= fi (!1-A~n+I>J. 

J=t i=t 

~:~!!:~£ ~i:;ati~:bcr~ci!e~~in ~h~~~~~;Pi~~fnngd t;;aj~l. i~:ee~~:~ne~d 0~~~~: 
~~~~~f~~~~~~~h~t 1U\h~ ~~~~~~~~a\0 ,:h~)if! 0f.~~4l(~)l~ ~~sth~uf~r~~r0~~~ 
the sign of lr•l (!1) coincides with thaL of fr (f.l), and the sequenc'" 

/o(f.l),ft(f.l), ••• ,/r(f.l),/r+l(l.l) 

has the same number of the sign changes as the sequence 

/o(f.l), h(l.l), · ··• lr(!l)• 

~:!:elat~=~c~;e~~~e~~~s8~!~·~ta~iea~:aJ•in(~h:r!:[Jd.site, and m the first se-
7.4.45. The proof, as in 7.4.44, uses the induction method. First, let k = 1. 

;: r!l)=a~d)· t~~e:e~~~;;ne sign as of /o (!1) = 1 is ascribed to the zero value of 

/o(f.l), ft(!l) 
bas no sign changes. 

~ow, let the statement be true for all k ~ r. If 11 is .tot a root of the polyno­
mials fr (;1..) and /,.1 (i..), then the induction follow!! as m proof of 7.4.44. Con­
sider lhe two remaming possibilities: 
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her~~ ro~~s aof0tJ{e 0~~~:n~:Jaioi:::lJ.J \~i·n~hteon t~! ~~~~~{ :·i~·!:e(~r~!~:r ~b~~ 
that oft~ (A.). The numbers /~.,.1 (~) and t~-t (Ill have opposite signs and there is 
ooe more sign change in the sequence 

J,(j.L),ft(!l), ... ,fr-1(!l)ofr(l!}o/r+!(l!) 

than in the sequence 

/o(l!),/1(1l), •• ,,fr-1(1l},/,.(1!); 

(b)!! is a root of the polynomial '?/ ("-l· In this case, the rule described above 

:bea:%~e :u!\~:0of ~~~ '~~~=g~~-u~ ~:d1ti:o~hboitbd~b~t~~~~~i~i: ~;(~)h::: 
lrH7?'1.4~~v~e~h~ ~)be0~heb!~~tetrh~fr:t~ ~~~~~e~0i~h:h:ifeh:u~~c~'of numbers 

/o (z), /1 (z), • ·.,In (z). 

According to the condition S (a) :,;;... k, S (b) < k. ~ut c = a t b and set up 

the sequence 
/o(c),/t(c) ••• ,/n(c). 

!!tge~c~ >=k~ t:rel11'"fie!ir~ ~het~;t~~~!f'{:! ~}:b). If, however, s (c)< k, then 

7.4.4'9. The required approximation to At is 2i/t6. 
7.4.52. (b) An}' real symmetric matrix is orthogonally similar to a diagonal 

matrix. 
7.5.1. No. 
7.5.20. Let ), be any eigenvalue of the matrix A and z the corresponding 

ei~ovector. Then 

0 > (Cz, z) = (A•Bz, z) + (BAz, z) = (Bz, Az) + (Az, Bz) 

= (f" + "-) (Bz, z) = 2 Re l·(Bz, z), 

whence l\e l < 0. Now, the uniqueness of the solution of the Lyapunov equa­
tion for the matrix A follows from 6.3.49. 

7.5.21. H = 0. 
7.5.26. The proposition in the problem follows from i.4.t9 and 6.3.51. 
7.5.28. The proposition in the problem follows from i.4.20 and 6.3.48. 
7.5.30. The matrix S is the Schur product of the positive-definite matrices II 

and HT. 
7.5.36. The necessary condition follows from i.5.9. Now, let the matrix H 

fulfil the Sylvester criterion. Prove by induction that the leading principal sub­
matrix H11 is positive definite. 

Fur k = tit is obvious. Further if 11,. is _flositive definite, then the eigenval-

Jee:s£).:.:: :, rt~fo:h~h~ig~~~:\:e~re~o~t~~e: ~t,~ol~l: .. ~roof ~:·~~b~:~r:! 
Hlt+t are positive. But in view of the condition det Hk+t > 0, l~-n is also po.;;i­
tive, hence H~.1 is positive definite. 

7.5.39. The matrix is not positive semidefinite. 7.5.40. The matrix is not 
posith·e semidefinite. 7.5.41. The matrix is positive definite. 7.5.42. For any 
e > 0 the matrix H + eE satisfies condition (i.5.2), therefore H is, at least, 
positive semidelinite. However, it cao be shown that the determinant of the 
matrix His positive by evaluating it using the iterative formulae whieh relate 
the prmcipal nlinors in the lower right-hand corner. Therefore His positive definite. 
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7.5.43. The matrix is positive sem1delinite. 7.5.44., The matrix is positive 
semidefinite. 

7.5.1i6. 

7.5.<7. +II:: J 
7.5.... II "' _,II i- 2 17 2 . 

-4 2 14 

7
.,.... + IIi i i l 

7.5.53. It follows from H > S that S-1tJHS-1fl > E, where s-lfS = 
= (Slf2j·l, Then, according to 7.5.33, S1f2H-1Slf2 ~ E or n-t ~ S-1, 

7.5.60. Let x be an orthonormal eigenvector -of the operator HS corre­
sponding to the eigenvalue y1• Then 

1'1 = (HS.r., x) = (S.:r, //.r.) ~I Sx 1·1 Hx J :s.;;; ctx.l\· 

In ~~~.~~~t ~)r~tUt:;self~~~~~~;e!atlo+ <:t·~~1~ ~S:~K = S-1 H-E. Since 
the eigenva\ues of the matrix ::;-1// arc positive, the·eigenvalues of the matrix 
IS-IK are real and greater than -I. Note that S-1K is similar to the skew-sym-

:::~\c z~!~r~e:c:\~h~~~~~t~v~~~rce:o:: i~~t)!~~~aleu:Ss th~n ~l~ced symmetrically 

low~h~~':n P(~r~h;~etC:O~~!i!~~iu~ts S:t~h~s !~t~?~i~-}~/a\.~e•tu<fh; 1~t~;l 1(t:0J) 
and arc symmetric about iLs midpoint. The product of each symmetric pair of 

!~~=11K~~v~Jh:~· Jet sx !n~e~ li, ~h~0~~~ri~ c;~~jl e11qn~!f; ~~=n~!i~h!.~~~;'ed in-
(c) it foliows from (a) that I det (S-'K) J < 1 \\"hence det K < det S. 
7.6.1. If a1, ... , a 8 are the singular values of the operator A, then (a) A • 

has the same singular values; (b) aA has the singular values Ja 1 a,, ... 
. , I a I as. 
7.6.5. The singular values of A -1 are reciprocal to the singular values of A. 

7.6.8. n, n- 1, •.. , 2, t, 0. 7.6.9. 2Jf3, Jl'i• 0. 

7.6.12. The columns of U make up an orthonormal set of the eigenvectors or 
the matrix AA •, and the columns of v• form an orthonormal set of the eigenvec­
tors of the matrix A•A. 

7.6.16. (a) A' = V' AU; (h) A• = V•AU•; (c) A -1 = (PY) •PA-lP (UP)•, 
where P is the following permutation matrix: 

7.6.19. The unique nonzero singular value equals 

(~1~11•.,1')112. 
7.6.28. These estimates are obtained from 7.8.23 if the unit column vectors 

are taken as x. 
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~~~v~~e~,a~~~:e:t£t~: Je~~n~ii:gt~~J!~~ndt~o~u:x~di~h~ ~:~~p~~~i~; 
eigenvalues of AA •. Since BB• is a positive semidefinite matrix, the eigenvalues 
of AA • also do not exceed the corresponding eigenvalues of F. Hence the re­
quired statement. 

7.6.34. Let £~ be a subspace of X such that 

IABxl 
o,.=~.,!~~ 

x~Lt 

Since 

~~:t'.;;;;r.t.tr, 

ult,;;;;a 1 ·!1!!,~ ~~~~ ,;;;;a 1 n;_~x!l~~: ~~~~ -=Ur~lt· 
xtL1 o:EL11 

!~~h:: ifn:qnu~Ii:;o u:e~o~:~~n b~~~!ue~s~!fde~f. 5~~t~h:~a~i;t~ls t~:! 6~n ~ 00 
also, so that the fourth inequality is also valid.) Otherwise the subspace RL: 
is of dimension k and for all nonzero vectors from L:: 

r~:~r = 1~!~1. r 1~~~ .;;;; ~. ~~~=~lr . 
Hence 

b,.o;;;;~.·!~~ ~~~~tl =~r· ~~~ ~~~~ .;;;;~•·•~:x:~~ ~~~~ =~ 1 a,.. 
-..EL~ yEBL~ :~:EL11 

The other two inequalities are proved in a similar way. 
7.6.36. All the possible products a1 ~1 , I= 1, ... , n, 1 = 1, ... , m. 
7.6.37. a,_ = a~ = 2, a8 = 1. 7.6.38. a 1 = 3, a 2 = 2, a8 = t. 7.6.39. 

a1 = a 2 = 6, a 8 = 3. 7.6.40. a 1 = 9, a 2 = a 8 = 0. 7.6.41. ct:t = a 2 = 5, 

:; ~ ~~ ~6{~2·7.~44. a~1 ~ 22: ~2 ~ ~ ~ ~~ ~~ 0: ~:6.~·::4 !·. !• a: ! 2 ~ !· 
= a 4 = 2. 7.6.46. a,_= a,= 2Vt0. a,= a 4 = 1/W. 

7.6.47. When n = t we obtain the trigonometric form of a complex number. 
7.6.48. H = (A•A)l''· 
7.6.49. It follows from the polar representation A= HU that AA• = H 2, 

~~t.o=. U•H~r.:. Let A•Ael = U•JI1Uet = a~e,. Then HI (Ue1) =a: (Ue1). 

7.6.53. 9 1 = (A•A)Ifl, 
7.6.54. If H and U commute, then A • A = AA • = HI, and the operator A 

is normal. Conversely let A be a normal operator, i.e. A•A = AA•, and let 
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1he' ~~:"v!~o~eel~r~h.o~.o~~~;~~~ ~~:~~g~~~:;t~~o~ ~~t"t~~e~~~~~t~' ~i~;; 
AA • = H', therefore 

(UH) e1 = U (He1) = a.1Ue1, l = 1, .•. , n. (a) 

On the other band, it follows from 7,6.49 that 

H1 (Ue1) = alue1, 1 = 1, , , ., n 

(HU) e1 = H(Ue1) = a1Ue1, l = 1, , .. , n. (~) 

The relations (a) and (fl) show that UH = HU. 
7.6.56. H = -S, U = -E. 
7.6.57. If the matrix: of the differential o!lerator is considered with respect 

~fe~~n~:~i~ k k, ~~ .. ·.; ;:, ~\-l~hnn!:~ft~a~b~ !~:s b~~!~g::d\bea~r;,!~~~;;~ 
has the matrix 

II 
. 1 ••••• 

11 

0 0 1 ..• 0 
•••••••• 0 

0 0 0 ..• 1 
1±1 0 0 ... 0 

Thus, U is either a cyclic permutation operator: 1-+ t", t-+ f, t1 -+ t, ... , 
•.. , t" ...... t 11 - 1 , or an operator both of cyclic permutation and of reflection: 
f-+-tn, 

~t~~: ~pX= BH~Ufii X K) (U X V). 

7.6.60. n~li -~ -~II· 

11
2!12 Vi "II 

7.6.61. n= v~ 3 v~ ~ , 

7.6.62 n~ 1/lii 11: : ~~II • 2 0 0 3 i ' 

0 0 1 3 

be ~~-~la~e:e:re=;~~fc,~·of''~b~e m~t~t/p~i1b:nal matrix, and let P =~KU 
A= KUAU•K-t = (KUAU•K) (K-1)'. 

AS!uming H = KUAU•K, S = (K-1)', we obtain the required representation. 
7.6.6-i. Let A = U AV be the singular decomposition of the matrix A. Then 

tr (AW) = tr (UAVW) = tr (AVWU) = tr (AZ), 
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~~~~ce!. Jt ~~~v~~~s t~~er with W ranges over the whole set of unitary 

I tr(AZ) I~ tXt+ ••• +an, 

and7.t~~. e~h~~Y n o~c'f~:-~b~~i~rth:~~Ji:~; for!• si!. aw+ =;bv;fu: 'complex 
numbers. 

7.7.2. A= 0. 7.7.3. (a) A= B; (b) A• =B. 
7.7.7. A= 0. 
7.7.9. A• = H1 -lH1 • 

1.1.20. The equality I det A I= det H1 occurs if and only if A= 1/1• 

7.7.23. S=+(A+A•), K=+(A-A•). 

7.7.25. A is a skew-symmetric operator. 

+ l~~;~·t>!rwl!~ ~:~~~)~!1a 'p~/y!~mrr:r~fd~~i~ ~h~ rr~he~ <~;=p::;dt. 
~-ut;Jlnit~f a!~id:r1~:~::s.A~he 1noar~afr;~~~~~l~{i!!eir~0ar:!~i~e~rv-:tf~~ 
with the free term equal to zero. 

7.8.5. If the plane of the pseudosolutions of the equation Ax= b is given 
in the form x = -l'o + N A, where x0 is the normal pseudosolution, then for (a), 

(b), (c) the corresponding planes are: (a) x= ~.l'o + NA; (b) .:l= cxz0+NA; 

(c) 7~8~.xLJ' :~the normal pseudosolution of the equation A.l' =b. Then: 
(a) x0 is the normal pseudosolution of the equation UA:l = Ub; (b) v•x0 is the 
normal pseudosolution of the equation A Vx = b. 

be Z!~ia~dt :~t t!!:z~~~ ~:ie~ev~f:~=t~1~ ~·. ~~d}.!~t 1~he eigenvectors e1 , ••• , er 

b = alel + • • • + a,.er + rLr+l'r+l + • • • + Cln'n• 

then the pseudosolutions of the equation A:l = b are vectors of the form 

x=~ e 1+···+-!;- e~+~rHer+l+, -+~nen, 

where ~r+l• ••• , ~n are arbitrary numbers. The normal pseudosolution is 

X0=~e1 -j- ••• +-!;-e,. 

7.8.10. x0 =- (0 0 O)r. 7.8.11. -l'o = (0 O)r. 

7.8.12. x0={-(t I I I)T. 

7.8.14. -l'o=+<S sl. 

7.8.16. x 0 ={-(t 0 l)r, 

7.8.13. r 0=--h(l 2)~. 

7.8.15, x0 =+ (I 0 t)T. 

7.8.17 • .r0 =(1 1 O)r. 

7.R.t8. Xu=(t + -+, ~r. 
7.8.19. The null operator from Y to X. 

21 06\ll 
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7.8.21. The effect of the pseudoinverse operator on Mn-I is similar to that 
of the mtegration operalor. Polynomials of tli:e form atn constitute the kernel of 
the pseudoinverse operator. 

bu 7,:,8.1~~uL·e~ ~ b,/!+)t{~~~~d !ulsth: ~~h~r ~n~;~i~n z~=~ b11 = tfctt, 
7.8.32. Nonzero eigenvalt es of the operators A and A+ are reciprocal to 

one another. 
7.8.35. A+= U•H+ = IItUt. 
7.8.45. The operators A and X are reciprocally inverse on the pair of the 

suhspaces TA• and T.-t. 
7.8.47. The operator X must have the same rank as A. Consequently, the 

subspace T A• is the image of this operator. 
7.8.49. In addition to the conditions in Problem 7.8.47, the equation (AX)•= 

;'a~ X T ~~0Th~~.a!.a~hi.;:;e~ndf ~~:U~f~fai?rc!n~d!t ~~h0~hheof~~~e ~n~h~e:~i 
olf A •, the operators A and X being reciprocally inverse on the pair of the sub­
spaces TA• and TA and by 7.8.26 X=A+. 

In Problems 7.9.1-7.9.5, the transformation of the unknowns is not uniquely 
determined. 

7.9.f. yf+7Yi+Yii X1= : 2 Y1+ Jij Y2+ 1)3 Y3• 

z. =- ~6 Y2+ J3 Y•· z,= : 2 ~~~- J6 y,- ~ 3 Ya· 

7.9.2.. -yf-7YI+5yf; %1 = J6 Y1+ J3 Yt+ J2 Ya, 

z,= ~& Yt- J3 Ya• z.=- J6 y1- J3 Ya+ J2 Y•· 

7.9.3, -7yf+2yj; %1 = : 21 Yi+ J6 Y1+ 1./[4 Yl• 

z,= Vt21 Yt+ Je Yl- Ju Yso %a=- :21 III+ Js II•+ v~ 113· 

7.9.4. yf+3gl-3yf-yJ; %1- J2 Yt+ J2 Yt• 

.t::~= J2 Ys+ J2 Yl• .ta= ~2 Yl- J2 Y3• z•= J2 Yt- : 2 Y4· 

2· t 2 "t 2 
7.9.5, toy!' .z:t = lfffi Yt+ l(IQ Y1+ Vffi Yt+ lfTh Yt.• 

:r::~= :i(i Yt-1/10 Yl+ V210 Ya-1./iO Yt• 

~= lf\0 Yt+ .Jw Y1- -v\o Ya- Jw Y~· 

x,= Jw Yt- Jw y,- :t(i y,+ lf\0 Y&· 
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is o~~~t~)~:Ut'Le~ lbeo:~! f~~d::!i1~ ~~~~id~ lh~ef~r:O in 1 ~e t ~~:~~ 
and let A 11 •1 be its matrix, A 11 the leading principal submatrix of order k. Since 
Ah1 and A 11 are nondegenerate, by 7.4.35 the matrix A11 +1 has either one posi-

~~se the o~~~e!~v:s eb~n:~~u~h~~~~~~e tf~ z:~t~i~ -~~lll•n J~:l fib:s c::· ~~~ 
coincidence of sign than the sequence 1, D~t ... , D11 • In the second case, D11+1 

has 7~~~1:gSi~~!~~t~1 ~ t~a~:! g~~ ~~d e~~U:v;~~~e o7 !~J:f~'ici~f o~~~ihe 
leading principal submatrix A~. Let l be the number of its negative eigenvalues. 
Then according to 7.4.35, the number of negati\·e eigenvalues equalsl for AII-I• 
and l + 1 for A 11 ~1 • Hence D~_1D11 -u < 0. 

7.9.16. Each of the indices of inertia equals 2. 7.9.17. The positive index 
of inertia is 1, and negative 3. 

7.9. 18. The form is positive definite. 
7.9.19. The form F is reduced to F = yf +jG where G is, however, a quad-

ratic form in the unknowns y2, ..• , Vn· 
7.9.21. For example, y1 = z1 + z 2 + z1 , y, = z1 + z 1 , y1 = z 1 • 
7.9.22. For example, y1 = z1 + z,. y2 = z1 + z1 , y1 = z,. 
7.9.23. For example, y1 = z1 - zs- 2zt., y, = 2z1 + z,, y, = az, + 

+ 2zt, y4 = 4z4 • 

'·"·"'· s~~~~ ~ H II· 
0 0 0 t 

11
12 3 4 511 0 1 2 3 4 

7.9.34. S= 0 0 1 2 3 • 
0 0 0 1 2 
0 0 0 0 1 

1 Vl 
I Vl 0 

7.9.32. S= 

0 1 Vii 
1 

7.9.36. There are n extractions of the square root. The number of operatiou 
of multiplication and division is expressed by a polynomial in n whose higher­
order term equals n1/6. 

7.9.37. The solution of the system Az = b is reduced to the solution of the 

tw\~~38~"~t~ ~t~~io~ 0~f eiliea~~~ t~;:~:r a:~!s = r/cjwres 0 (n') of o e-
rations of multiplication and division. Taling into account 7.9.36, we see tC!t 
the square roots method is approximately twice more economical than the GaUS! 
method. 

7.9.43. For an appropriate numeration, A11-11 = t, t = t, ... , n. 
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7.9.45. The form F is positive definite. The transformation of the unknowns 

z1 = ~ 3 z,_J_ J3 z 2 ...:- 1; 3 x3. z2= J6 r 1+ : 6 .r!- ,:~, .T1. 

z3=J2 :T1 -V2xs 

makes the form F normal, and the form G canonical, i.e. Szi + 2.zf. 
7.9.4.6. The matrices F and G are commuting. The orthogonal transformation 

of the unknowns 
1 1 1 1 1 

VI= V 3 x.- t/3 z2+ t/3 x3, Y2= V2 x,- V2 xs. 

Ys= J6 z,+ :6 ~2+ t:6 x, 
makes the form F canonical, 3yf- 2yi + 6yi, and the form G canonical also, 
(-6)yf+6yl. 

7.9.47. The form F is negative definite. The transfonnation of the unknowns 

~=}z1 -}z2 +~· ~=~r~-t~-2~. ~=+x~-~~-~ 
makes the form F normal, and the form G canonical, (-S)zf- 2z1 + zJ. 

7.9.4.8. The form G is positive definite. The transformation of the unknowns 

!td tb•e fo~ y} ~~~~c:C ~f + 2;f: .. z;i. y4 = x 4 makes the form G normal, 

7.9.4.9. The matrices for the forms F and G commute. The orthogonal 

transformation of the unknowns y1 =} .r1+ }z2 + }zs+}x,, y1 ={z1 -

-}x~+-}x3-}x,, lfa= : 2x.- ;2" .1"3 , y,=~x2-~r,makes the 

form F canonical, 5yf+y~-y~-y.f, and the form JlcanoniciiValso, yj+Sy~+ 
+Yf+Y1· 

8.t.29. Let p (z, M) = ll.x- y0 II= II r- y:, 11, then 

p(:r, M)o:;;;;j/z- YoiY' llo:;;;;{-. (ll.r-y0 ll+llr-y~ 1/)=p(z, M). 

Therefore 

II r.,y, + r--;y; 11=11 r--;••JI+II r--;y; II· 
ACCOl'ding to 2.4.t3, 

where ). > 0. Hence 

and Yo= y(.. 

z - Ye = A (z- II~) 

,._nz-y0 1J_ 1 
-1/z-fiGII-

8. 1.33. If the number of c does not exist, then there is such a sequence (xn~• 
zn EM such that I F (zk) I > k. Single out of (:rk~ a subsequence (x111 ~, con· 
vergent to a certain z0 EM. Then by the continuity of the functional F, the 
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relation P (z11J)- P (z1) must hold, and t.hua ia cont.rary to the asaumptiou that. 

P(~f.a;: c;~t 
C= sup IF(z)l. 

zEM 

According to 8.1.33, the number Cis fiuite, so if, for any z from M, tbis bound 
Ia not reached, then the functional 

G(:r)=G-I~(z)l 
muat be c:ont.inuous on M and its values bouuded, whic:h is c:outrary to the 
defiuitiou of the number C. 

8,1,35. ct1""' max n(z), c1 = max m(z). 
m(z)IIO;l 11(:.:)..;;1 
:11: ... 0 z ... o 

8.1.36. II~II.E;;;;IfziiLE;;;;lfiillzll•· 
II zll· :e;;; II Zlh E;;;;n n z 11-· 
UzU-.:e;;;llzU.<lfRUzll .... 

8.1.37. Put c1 equal to the least, and c1 to the greateat singulu nlue of the 
mat.rix P. 

Let8~o:!·h~u~n.'r~heP:~a~fN'!'!dt (~}~ a80set:::~ :;~~k:Jro~ ot:~r: 
~J!o vZ:~t~/!o in zt~:~ ~\: !ti$:Js .If! :~ •1.7' J~+ Yo is the expression 

l•11 -1o 11 = lz11 -z0 11 + I ill -Yo 11, 

wh&f.4S~Th:~~~;,':o ~=~:r~~ d:!.ft:!t~li~i~ ~~·cf't~ :~· ~~! 
product generating it. 

8.1o4.6o m.• (:r) = II z ll1 = I at I + o o . + I an l­
allys.:b.!7.8~e!o:::~fit~~1.4) for the two nonns 11 z lip and 11 z U, is ac:tu-

vec~~~4.~ ~tt!~~d:in~i:tsi:f~hee~~f: :o.=~h dt~J:a> h !b::~n:r ~h(~). 
It is proved in the c:ourse of c:onvex ~s.is that lor any );,und~oiut z, 

~i:er:;~he S:~!1·i,~'Rr: c:~i~>s .!~ cwhere ~1. :'~&::dr!!:fo~Y::C1that it~ 
~o~~f~lee~~t:~~t f!e~1i. yl~s i~~ ~~~ ~~~z~ ~!~= !d:ror ~nt. 

·eration, COD!Itmc:t the supporting hyperplane Re (:r, y) = c for the given vec­
tor z0 • The vec:tor y detennining this hyperplane is the one required. 

8.2.2. Yea, if the operator in nondegenerate. 
8.2.3. In ease the operator is degenerate, the statement may be invalid. 

cic!l~et:! :~;.fun ~~~c:~!i!: :::; !~~~=~~d!r 0!o~id:!aU:;. ~\!s ::. 
plete pre-image of M (or ~1 , whic:h Is the same) is the set of the planes z+~, 
b~;:de~~:~:~ !t1ist :c:;~d ~~c:{s!'~?.3)~~:: :he ::ii'!:d':t:f~t r~: 
lows from 8.i.4t. 

mo~fu~5~f(a{hJ'hd~:,e:!r!I:~:t~;f ~t1:':~~:~Y1:o~ e~(! ~u!e_r.;,t:t 
matrix equals the greatest spec:tral nonn of the diagonal bloc:ka. 

8.2.17. lfii. 8.2.18. II A Ill= af + ... +a,_. 
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8.2.23. The real (imaginary) part of a complex number z is the poin\ nearest 
to z on the axis of reals (imaginaries). 

8.2.24. This equality is similar to the formula for the modulus of a complex 
number, z = z + ty. 

8.2.25. Let U be an arbitrary unitary matrix. Then 
11 H - U IIi = tr ((H - U)• (H - U)) = trIP+ n - 2 Re tr (H U), 

According to 7.6.64, 
-trH.,;;;; Retr(HU).;;,;;trH, 

the equality on the rigM occurring only if U = E, and on the left only if U = 
=-E. 

When His a positive-semidefinite matrix, the statement remains valid. How­
ever, the closest and farthest unitary matrices may not be unique. 

r1 !~~~~ ~~ :ig~nzi~roth~~fd:e~t~0a~e~he ~~m~ ~~"t,' ~(c~J·~'+ ~~i!b;) 
is the farthest point of the unit circle. . 

8.2.30. (a) 11 A 11 1 = max t I a11 1: (b) 11 A 11 ... = max ~ 1 aiJ J. The values 
I o=l j ;-1 

(If both the norms on a diagonal matrix D equal the greatest of the moduli of 
&he diagonal elements du. 

8.2.33. N (A)= M (PAP-1). 

8.2.35. If z = (~ •... , Ctn)T, g = (~1 •••. , ~n)T, then 

IIAII~~(mn lafiJ.(f "•I). 
I i=l 

8.2.38. Since any matrix B ol rank i may be represented as the product :ry• 
where :r and y are column vectors, then with the aid of (8.t.4), we obtain 

r~~ It;)~:/ I= "'~~0 1~(~:!;)1 = ,.~!!o ~~:;:n!\IY) 

~r~~o :<~;)"~·(;f)=~~:(~~)=M(A). 
According to 8. t.49, for .t. fixed vector :r, a vector y can be found such that 

I (Az, y) I = m (Az) m• (y). 

Sel&~~. a~br;~~o~ i~' g¥~e~e b~a~~0foii~~~~= ~:~i~e of~a~~~irtf:'"s~o equalities. 

M• (A•) = max m• (A•y)= ma~ max I(A•y, x)l 
m•(v)=l m•(y)=l m(:~:)=l 

=max mu: I{A:r, y)l= max m(Az)=l'tf(A). 
m(:~:)=l m•(y)=l m(..:)=l 

Here the statement 8.1.50 is used, i.e. m (:rl coincides with the :norm dual to 
rn•(y). 

n (x~:2F':c;.!'8~~~:2 ~;3~.2~39, i1t 1o~l~!sc~h!i:~~t n"~~tvb:t~~b~~dTn9a~ tzjth~~ 
m (z) and n (z), so that 

II A II = max m (Ax) (.z) 
:~:-;6(1 m(T) ' 

II A II = rna" 11 (Ax). 
,.,..,(1 n(x) 

(~) 



Answers and Solutions 310 

Suppose that there is no constant c such that m (z) = en (z) for any vector z. 
The norm m (~) may be made less than or equal ton (z) for any z by multiplying 

:bo~~i~ha~en~:~ 'ioai':e:J'IJ~f{~;;~v~~.m!e(z!):O~~~~ ~~r8/~;ia~~i~!:::re~.~ 
Since the norms m (~) and n (z) are not identical by assumption, there exists 
fl. v('f't<~r :r1 such that m (~1 ) < n (~Jl. We may assume that m (z0) = m (z1) = t. 
According to 8.t.49, there is a vrctor '' ~11ch that 

(zo, y) = m (zo) m• (y) = m• (y), 

The vector y can also be normed by the condition m• (y) = f. Now, for the 
matrix A = z1y•, \\'e have 

A~o = Zty•zo = (.:to, y) Zt = .1'1• 

11 A II = m (zt) m• (y•) = f. 

However, if the representation (~) is used for the evaluation of H A n, then 

M (A) = max (Ell A ll1t 11 A lloo) 

satisfies the conditions of the problem, but is consistent with the two non-pro­
portional norms II z 11 1 and II z II,., and so it cannot be subordinate. 

8.3.3. condoo(AJ>{e:-1 • 

8.3.5. It follows from 7.6.33 that if II B 11 11 < ~. then the matrix A+ B 
is nondegenerate. Construct now a matrix B such that II B 11 1 = !X.n and A + B 
is a degenerate matrix. Let A = U AV be the singular value decomposition of 
the matrix A; as usual '-t1 ::;;.. ~u ::;;.. •.. :;>Ann, and Ann = tl:n• Then the matrix 

B is of the form: B = uAv, where ~I= ••• = tn-lt R-1 = 0, lnn = -an. 
8.3.9. Let A be degenerate and Az = 0 for a nonzero vector z. Partition 

the vector z in accordance with the partitioning of the matrix A: 

Assume that 11 z1 11 = max {II z1 II• II z1 11, ••• , 11 z.rr. II}· Then from the equal­
ity 

-Au~l = AhZt + · · · + Ahl-tzl-t + A1. 1•Izl+l + · · · + A,hzh, 



'"' 
we obtain 
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. 
~(II A;,1 11 ~ IIAull)llslll < llz,n. 

,.,., 
This contradiction proves that A is nondegenerate. 

When m = t a criterion of diagonal dominance with respect to the rowa 
19 obtained. 

s.a.to. The matrix A is nondegenerate. 
8.3.12. If Dis a diagonal matrix made up of.the diagonal elements of the 

matrix A, then 

cond.,.,(D) i~ct .s;;;cond.,.,(A)-s;;;cond.,.,(D) !~:. 
8.3.13. Using the inequalities derived in 8.3.12, we obtain 

0.9n :S;;; cond.., (A) :S;;; 1.25n. 

8.3.14. The maximum condition number is reached for the matrix 

R,-11: -1 =~ ::: =J 
for which 

1 t 2 4 

0 t t 2 

R-~= 0 0 t t 

0 0 0 0 

0 0 0 0 

2n-s 2n-2 

zn-il zn-s 

2n-5 zn-t 

Therefore cond.,., (R0) = n2n-1• 

in .~;f:te 8~~l~e.11 f1t !i:o~ !~~:Cl:rm;n~ 1°~t~1!~e :.~~~:s S:e" tb~re~::n:l: 
bounded. Hence an increase in the condition number is possible only if det A 11 
tends to zero. 

S.3.t8. If I At I:;? I~ I:;? ... :? I J..n I, lhen 

conddA)= ~~~II . 

8.3.19. cond 2 (A)= ~. 

IJA II~ la 11 12 + lauP+ I auF+ laul 2 

8.3.24. conUE(A) jd!!lAI lauau auaul 

8.3.29. cond1 (A) = condl (S). 
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8.3.30. For the original system of equations, cond2 (A)::> 1000. The solution 
is: :r1 = 1.5, .7'2 = t, :r8 = -L 

8.3.3t. The estimate cond 2 (A) > 363 for matrix A of the original system 
of equations using the inequalilies of Problem 7.6.28. To decrease the condition 
number, multiply the second equation of the system by tO, and the third by 
tOO, then substitute the variables: y 1 = .:r~o y 2 = 102'1 , Ya = tOOz8• A system 
with fl symmetric matrix will be obtained, its solution being y 1 = -t, y1 = -f. 
y 8 = -1. Therefore the solution of the original system is: :r1 = -t, :r1 = -O.t, 
.7'3 = -O.Ot. 

8.3.33. The components of the solution can be changed by 6.0t. The solution 
of the original system is: x = - i, y = 0. The solution of the perturbed system 

is:?= t, ii= t. 
8.3.34. cond 30 (A)= tO 96i. The solution of the original sistem is: :r=i, 

y=t. The solution of the perturbed system is: ; = - 12.9, Y = - 20. ThC" 

perturbation of the :system: .7'-; = 13.9, y- li= 21. 
8.3.35. For example, .:r1 = 2, :r2 = -t, :r3 = 2, .T4 = t. 
8.3.36. For example, .:r1 = 1, .7'2 = :ra = .7'• = 0. 
8.4.2. For example, the circle I :o I :s;;;Jf5 + Jf2. 
8.4.6. This inequality determines an interval within which the eigenvalues 

are located, and t.lie bisection method may be started with it. 
8.4.8. Let P-1A 0P = A, where A is a diagonal matrix made up of the eigen­

values of the matrix A 0 • Any of the norms 11 P- 1AP lh.s .... (see 8.2.10, (c)) may 

be ~~:.~~- ale~h~ ~uk7~ ~Jim ~: ~ke Hermitian decomposition, and B = 
= u• AU the Schur form for fhe matrix A. Then the Hermitian decomposition 
of the matrix B is: 

B = u•H1U + w•H2 U = ii1 + iii1• 

The principal diagonal of the matrices ii1 and ii 2 contain~ the numbers a,_, 

•••• O:n and ~ •...• ~ ... respectively. Therefore L o:f:s;;; II u•HIU nl: = 

= II H1IIA = .!. II A +A • nl:. The numbers ~ •.. .'~~~ .. satisfy a similar 
relation. • n 

8.4.14. As regards the relations (8.4.3), the equality4 ~rtf= 11 A + A• 11}:-
- •=1 -

means (see the solution to 8.4. t3) that H1 is a diagonal matrix. Since H1 = 
= ~ (B + B•) and B is a triangular matrix, it follows from the oil-diagonal 

elements of ii 1 being zero that the same holds forB, Hence A is a normal matrix. 
8.4.15. For matrices A of simple structure. 
8.4.t6. According to 6.2.7, the matrices AB and BA have the same eigen­

values A1 , ••• , An. Since A B is a normal matrix, 

II AR ll:k= ~~II A1ll 2 • 

Show that II BA liE= II AB liE• whence (due to 8.•tU) the normality of the 
matrix BA follows. Really, 

11 //A 111-=•r(BA (BA)*)=tr (B.AA•B•)=\r(AA•B*B) 

= tr (A*ARB•)=tr(B*A•AB)= tr ((AB)•AB)= II AB 11}:. 

H!'re both the normality of the maLrices A ond B and the equality tr (XY) = 
= tr(YX) are used. 
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m" 
8.4.(8. In 7.6.64, it was derived that Q1, + ... +an= W l tr (AW) 1, 

where W is an arbitrary unitary matrix. Let B = U•A U be the ::ichUI' form 
of the matrix A. Then tr (A W) = tr (UBU•W) = tr (BU•WU). Determine W0 
from the relation u•w0U = D, where Dis a diagonal unitary matrix such that 
budu = I bu I = I ).if For the matrix W0 ~which is not unique if there is a zero 

ams_,, ~~~ ~ t~t~1em~D~ 1r~!\\~ f~:U -ig_lfJ; 8~~~2r: !~~ r~~~\~~ mequality, 
8.4.20. If 

J:a:-a:ul > ]
1
JaiJJ, i=t, ... , n, 

;.,.., 
then the matrix zE -A is diagonally dominant .and therefore nondegenerate. 
Hence z may not be an eigenvalue of the matrix A. _ ::t72 1t·,z~~Q4~~i~n_c~~As~s~r0~~6. three discs: 1 z-:- 1.23 1 ..:;:;; o.oi, 1,-

8.4.23. This region consists of the three discs: I z- 1..1 1.;::;; 0.012, i = t, 2, 3, 

wh8~4.tl. Fo0;~xa~pie,1 the.i..~;i;~s~ou.sisting of the three discs: I z - l, I ~ 
< 45e, I= 1., 2, 3, where_l1 = -1, A,= 0, 1..3 :' 1.. _ 

8.4.27. For example, lt = -0.5, '1, = -1., 1..1 = 0.5, 1..4 =f. 

~::~~: i':rpr!:!(fJ~e;e~C: tb ~e;:~ts~~.:= a!: a~~ ~,:·aa by zeroes. The 
spectral u.orm of the correspou.ding perturbation matrix equals Jf2/N, whence 
(a) follows. 
maJL/Dv~~~· ili:S~di~~~!Jmbl~k/ as a per~urbatiou. of the quasi-diagonal 

li t 0 'II 11-0.5 O.t 
D11 = 0 1. 0 , D22 =11~ ~~~· D13 = 0.1 -1 

0 0 1 -0.2 0 

For the perturbation matrix B =A - D 11 B lis< II B II<»- 3/N. Therefore, 
.at least three eigenvalues of the matrix lie iu. the interval 

-3/N ~.i..-1. ~ 31N. (a) 

To show that there are precisely tbree eigenvalues, prove that when N :;;;;.... 1.0, 
the iu.terval (a) does not intersect the other intervals of the system I :r: - 1..1 1 ~ 

~ Sf~~·-; 1is~1!:U.· f~;· th; ~rite~:f 1 ';:_ e~gjn~a~~~ :l;,1 o~t ;oat~~\~ihat accord~ 
in!l to the Gershgorin theorem, the eigenvalues J..., ~. la of the matrix Du 
lie in the iu.tervals (-1.3, -0.7], (-0.8, -0.2], au.d (1.7, 2.3]. Hence when 
N :;;;..,.1.0 the iu.tervals I :r:- 1..1 1~ 3/N ~ 0.3, I= 6, 7, 8 remaiu. separate from 
tb.e interval (a). 

8.4.36. The vector r (:r:) :r: is the projection of the vector Ax on L (:r:). 
8.4.38. Siu.ce I a 11 +II z Ill= t, J.l.o = J.l.o I a 12 + llo U z II~· On the other 

hand, llo = (Ai", ij = lt.l a; 11 + (Az, z). Hence I At- llo I I a 11 = I (Az, 
z)- J.l.o II z 1111 ~ e1/a. Since I a I:;;;;.... {1- eHa1, the required estimate is 
proved. 

8.4.39. (a) For example, Xr = t, ~ = 2,1::8 = 3, ~ = 4; (b) the uu.it col~ 
umn vectors. 
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Is t~e4~1:~n~~~~ !f ~hf~~~~ A •isa~c/;~dr~~tl~f t~~ef;!~:~:~ l~.e~~~::e~; 
~ ~~~~ii: 1fr:,i1~~h~o:~J:~!n e7~~~~tKefu~ '7h:t ~~!~,<(~>g!!, jj i 1i~~1 k~~~~~~: ;_ 
:>II Ztll1 II gtlll =ill s,l; 

(b) select vectors z1 such that II z1 111 =fly'~. Then for the rows z1 of 
the matrix X-1, we obtain II z1 11 1 = i/Jf10 Therefore 

condE(X)-11 X liEIIX-1 11B=IIX II}=~~-
i=l 

8.4.44. Without loss of generality, the vectors z and g may be assumed to be 
normed. Let C = Q•AQ be an upper Schur form of the matrix A selected so 
that c11 =At· According to 7.t.47, such a form may be coD.l!ltructed in which 
the vector z may be chosen as the first column of the matrix Q. Then the vector 
s = Q•g is an eigenvector of C•, and !:/:• z) = (Q•z, Q•g) = (z, g)= 0. 
ioY:~hjr!:t s~:ta.nent or the vector z equ , zero, and the required statement 

8.4.45. From the condition C•g = ~g, we obtain that ec• + C~_1z = 'i1z or 

Cl-tz+u• t..:~:p =( c:_,+t-elel:c•z•) z=);tZ· 

Hence the statement of the problem follows. 
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