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Preface (Part IT)

This book, Part 3 - Operators and Tensors, covers Chapters 9 through 12 of the book A Com-
prehensive Introduction to Linear Algebra (Addison-Wesley, 1986), by Joel G. Broida and S. Gill
Williamson. Selections from Chapters 9 and 10 are covered in most upper division courses in
linear algebra. Chapters 11 and 12 introduce multilinear algebra and Hilbert space. The orig-
inal Preface, Contents and Index are included. Three appendices from the original manuscript
are included as well as the original Bibliography. The latter is now (2012) mostly out of date.
Wikipedia articles on selected subjects are generally very informative.






Preface (Parts I, 11, 11I)

As a text, this book is intended for upper division undergraduate and begin-
ning graduate students in mathematics, applied mathematics, and fields of
science and engineering that rely heavily on mathematical methods. However,
it has been organized with particular concern for workers in these diverse
fields who want to review the subject of linear algebra. In other words, we
have written a book which we hope will still be referred to long after any final
exam is over. As a result, we have included far more material than can possi-
bly be covered in a single semester or quarter. This accomplishes at least two
things. First, it provides the basis for a wide range of possible courses that can
be tailored to the needs of the student or the desire of the instructor. And
second, it becomes much easier for the student to later learn the basics of
several more advanced topics such as tensors and infinite-dimensional vector
spaces from a point of view coherent with elementary linear algebra. Indeed,
we hope that this text will be quite useful for self-study. Because of this, our
proofs are extremely detailed and should allow the instructor extra time to

work out exercises and provide additional examples if desired.
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viii PREFACE

A major concern in writing this book has been to develop a text that
addresses the exceptional diversity of the audience that needs to know some-
thing about the subject of linear algebra. Although seldom explicitly
acknowledged, one of the central difficulties in teaching a linear algebra
course to advanced students is that they have been exposed to the basic back-
ground material from many different sources and points of view. An experi-
enced mathematician will see the essential equivalence of these points of
view, but these same differences seem large and very formidable to the
students. An engineering student for example, can waste an inordinate amount
of time because of some trivial mathematical concept missing from their
background. A mathematics student might have had a concept from a different
point of view and not realize the equivalence of that point of view to the one
currently required. Although such problems can arise in any advanced mathe-
matics course, they seem to be particularly acute in linear algebra.

To address this problem of student diversity, we have written a very self-
contained text by including a large amount of background material necessary
for a more advanced understanding of linear algebra. The most elementary of
this material constitutes Chapter 0, and some basic analysis is presented in
three appendices. In addition, we present a thorough introduction to those
aspects of abstract algebra, including groups, rings, fields and polynomials
over fields, that relate directly to linear algebra. This material includes both
points that may seem “trivial” as well as more advanced background material.
While trivial points can be quickly skipped by the reader who knows them
already, they can cause discouraging delays for some students if omitted. It is
for this reason that we have tried to err on the side of over-explaining
concepts, especially when these concepts appear in slightly altered forms. The
more advanced reader can gloss over these details, but they are there for those
who need them. We hope that more experienced mathematicians will forgive
our repetitive justification of numerous facts throughout the text.

A glance at the Contents shows that we have covered those topics nor-
mally included in any linear algebra text although, as explained above, to a
greater level of detail than other books. Where we differ significantly in con-
tent from most linear algebra texts however, is in our treatment of canonical
forms (Chapter 8), tensors (Chapter 11), and infinite-dimensional vector
spaces (Chapter 12). In particular, our treatment of the Jordan and rational

canonical forms in Chapter 8 is based entirely on invariant factors and the
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Smith normal form of a matrix. We feel this approach is well worth the effort
required to learn it since the result is, at least conceptually, a constructive
algorithm for computing the Jordan and rational forms of a matrix. However,
later sections of the chapter tie together this approach with the more standard
treatment in terms of cyclic subspaces. Chapter 11 presents the basic formal-
ism of tensors as they are most commonly used by applied mathematicians,
physicists and engineers. While most students first learn this material in a
course on differential geometry, it is clear that virtually all the theory can be
easily presented at this level, and the extension to differentiable manifolds
then becomes only a technical exercise. Since this approach is all that most
scientists ever need, we leave more general treatments to advanced courses on
abstract algebra. Finally, Chapter 12 serves as an introduction to the theory of
infinite-dimensional vector spaces. We felt it is desirable to give the student
some idea of the problems associated with infinite-dimensional spaces and
how they are to be handled. And in addition, physics students and others
studying quantum mechanics should have some understanding of how linear
operators and their adjoints are properly defined in a Hilbert space.

One major topic we have not treated at all is that of numerical methods.
The main reason for this (other than that the book would have become too
unwieldy) is that we feel at this level, the student who needs to know such
techniques usually takes a separate course devoted entirely to the subject of
numerical analysis. However, as a natural supplement to the present text, we
suggest the very readable “Numerical Analysis” by I. Jacques and C. Judd
(Chapman and Hall, 1987).

The problems in this text have been accumulated over 25 years of teaching
the subject of linear algebra. The more of these problems that the students
work the better. Be particularly wary of the attitude that assumes that some of
these problems are “obvious” and need not be written out or precisely articu-
lated. There are many surprises in the problems that will be missed from this
approach! While these exercises are of varying degrees of difficulty, we have
not distinguished any as being particularly difficult. However, the level of dif-
ficulty ranges from routine calculations that everyone reading this book
should be able to complete, to some that will require a fair amount of thought
from most students.

Because of the wide range of backgrounds, interests and goals of both

students and instructors, there is little point in our recommending a particular
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course outline based on this book. We prefer instead to leave it up to each
teacher individually to decide exactly what material should be covered to meet
the needs of the students. While at least portions of the first seven chapters
should be read in order, the remaining chapters are essentially independent of
each other. Those sections that are essentially applications of previous
concepts, or else are not necessary for the rest of the book are denoted by an
asterisk (*).

Now for one last comment on our notation. We use the symbol B to denote
the end of a proof, and / to denote the end of an example. Sections are labeled
in the format “Chapter.Section,” and exercises are labeled in the format
“Chapter.Section.Exercise.” For example, Exercise 2.3.4 refers to Exercise 4
of Section 2.3, 1.e., Section 3 of Chapter 2. Books listed in the bibliography
are referred to by author and copyright date.
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CHAPTER 9

Linear Forms

We are now ready to elaborate on the material of Sections 2.4, 2.5 and 5.1.
Throughout this chapter, the field F will be assumed to be either the real or
complex number system unless otherwise noted.

9.1 BILINEAR FUNCTIONALS

Recall from Section 5.1 that the vector space V* = L(V, F): V — ¥ is defined
to be the space of linear functionals on V. In other words, if ¢ € V*, then for
every u, vE Vand a, b € F we have

¢(au + bv) = adp(u) + bp(v) EF .

The space V* is called the dual space of V. If V is finite-dimensional, then
viewing ¥ as a one-dimensional vector space (over ¥), it follows from
Theorem 5.4 that dim V* = dim V. In particular, given a basis {e;} for V, the
proof of Theorem 5.4 showed that a unique basis {w'} for V* is defined by the
requirement that

u)i(ej) = Bij
where we now again use superscripts to denote basis vectors in the dual space.
We refer to the basis {u)i} for V* as the basis dual to the basis {e;} for V.

446
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Elements of V* are usually referred to as 1-forms, and are commonly denoted

by Greek letters such as o, ¢, 6 and so forth. Similarly, we often refer to the o'
as basis 1-forms.

Since applying Theorem 5.4 to the special case of V* directly may be
somewhat confusing, let us briefly go through a slightly different approach to
defining a basis for V*.

Suppose we are given a basis {€,, . . . , €} for a finite-dimensional vector
space V. Given any set of n scalars ¢;, we define the linear functionals ¢ € V*
=L(V, F) by ¢(e;) = ¢;. According to Theorem 5.1, this mapping is unique. In
particular, we define n linear functionals ' by u)i(ej) = Bij. Conversely, given
any linear functional ¢ € V*, we define the n scalars ¢; by ¢; = ¢(e;). Then,

given any ¢ € V* and any v = Zvjej € V, we have on the one hand
O(v) = d2vle) = Zvigle) = XV
while on the other hand
0'(v) = (Di(ZjVj e) = Zjvjwi (e) = Zjvjéij = v .

Therefore ¢(v) = Zi(])iwi(v) for any v € V, and we conclude that ¢ = Zi(])iwi.
This shows that the ' span V*, and we claim that they are in fact a basis for
V*,

To show that the w' are linearly independent, suppose ;a,0' = 0. We must
show that every a; =0. But forany j=1, ..., n we have

0= Ziai(ﬂi(ej) = Ziaiaij = q

which verifies our claim. This completes the proof that {w'} forms a basis for
V*,

There is another common way of denoting the action of V* on V that is
quite similar to the notation used for an inner product. In this approach, the
action of the dual basis {u)i} for V* on the basis {e;} for V is denoted by
writing u)i(ej) as

(@, e ) = Bij )
However, it should be carefully noted that this is not an inner product. In par-
ticular, the entry on the left inside the bracket is an element of V*, while the
entry on the right is an element of V. Furthermore, from the definition of V*
as a linear vector space, it follows that { , ) is linear in both entries. In other
words, if ¢, 0 € V¥, and if u, vE V and a, b € F, we have
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These relations define what we shall call a bilinear functional ( , ): V* x
V — % on V* and V (compare this with definition IP1 of an inner product
given in Section 2.4).

We summarize these results as a theorem.

Theorem 9.1 Let{e,, ..., ey} be abasis for V, and let {u)], ..., 0"} be the

corresponding dual basis for V* defined by u)i(ej) = Bij. Then any v € V can
be written in the forms

v=iv’e~ ia) (v)e; —E<(ui, V>e,~
i=1

and any ¢ € V* can be written as

¢= Eqm E¢(e>w E )0

i=1

This theorem provides us with a simple interpretation of the dual basis. In
particular, since we already know that any v € V has the expansion v = Zv'e,
in terms of a basis {e;}, we see that u)i(v) = (u)i, V) = viis just the ith coord—
inate of v. In other words, w' is just the itk coordinate function on V (relative
to the basis {e;}).

Let us make another observation. If we write v = Zviei and recall that
¢(e;) = ¢;, then (as we saw above) the linearity of ¢ results in

(B, V) = 0(v) = d(Svie) = Zviple) = Zov!

which looks very much like the standard inner product on R". In fact, if V is
an inner product space, we shall see that the components of an element ¢ €
V* may be related in a direct way to the components of some vector in V (see
Section 11.10).

It is also useful to note that given any nonzero v € V, there exists ¢ € V*
with the property that ¢(v) # 0. To see this, we use Theorem 2.10 to first
extend v to a basis {v, v,, . .., vp} for V. Then, according to Theorem 5.1,
there exists a unique linear transformation ¢: V. — ¥ such that ¢(v) = 1 and
¢(vi) =0fori=2,...,n. This ¢ so defined clearly has the desired property.
An important consequence of this comes from noting that if v,, v, € V with
vV, # V,, then v, — v, # 0, and thus there exists ¢ € V* such that
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0 # ¢(vi —vy) = d(vy) - o(v,) .
This proves our next result.

Theorem 9.2 If V is finite-dimensional and v,, v, € V with v, # v,, then
there exists ¢ € V* with the property that ¢(v,) # ¢(v,).

Example 9.1 Consider the space V = R? consisting of all column vectors of
the form

Relative to the standard basis we have

1 0
v=y v = vlel + v2e2 .
0 1

If ¢ € V*, then ¢(v) = Zd;v', and we may represent ¢ by the row vector ¢ =

(¢1, ¢2). In particular, if we write the dual basis as o' = (a;, b;), then we have

1
1=w1(el) =(a1,bl)( )=a1
0
1 0
0=w(e;)=(a, b)) 1 = b,

0=w’(e,)=(ay, by)| |=a,

1=w’(e,)=(ay, b,)| |=b,
so that ! = (1, 0) and 0’ = (0, 1). Note that, for example,

vl
o' (v)=(l, 0)( 2]=v1

v
as it should. /
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Exercises

9.2

We

. Find the basis dual to the given basis for each of the following:

(a) R? with basis e = 2,1),e2=(3, 1).
(b) R? with basis e; = (1, -1, 3), e2 = (0, 1, =1), e3 = (0, 3, -2).

Let V be the space of all real polynomials of degree < 1. Define o', w?> €
V* by

o'(N= [ f@dr  and  W(N)= [ f(x)dx .

Find a basis {e;, e>} for V that is dual to {u)], (1)2}.

Let V be the vector space of all polynomials of degree < 2. Define the

linear functionals u)], (1)2, ® € V* by

1 !
o' (N)=[ fdy, (=D, &)= fO)
where f'(x) is the usual derivative of f(x). Find the basis {e;} for V which
is dual to {u)i}.

(a) Letu, veE V and suppose that ¢(u) = 0 implies ¢(v) =0 for all ¢ € V*.
Show that v = ku for some scalar k.

(b) Let ¢, o € V* and suppose that ¢p(v) = 0 implies o(v) =0 for all v E
V. Show that o = k¢ for some scalar k.

Let V = #[x], and for a € F, define ¢,: V — F by ¢,(f ) = f(a). Show that:
(a) ¢, is linear, i.e., that ¢, € V*.
(b) If a#b, then ¢, # Pp.

Let V be finite-dimensional and W a subspace of V. If ¢ € W*, prove that
¢ can be extended to a linear functional ® € V*, i.e., ®(w) = ¢(w) for all
wEW.

DOUBLE DUALS AND ANNIHILATORS

now discuss the similarity between the dual space and inner products. To

elaborate on this relationship, let V be finite-dimensional over the real field R
with an inner product ( , ): V x V. — ¥ defined on it. (There should be no
confusion between the inner product on V and the action of a bilinear func-
tional on V* x V because both entries in the inner product expressions are
elements of V.) In fact, throughout this section we may relax our definition of
inner product somewhat as follows. Referring to our definition in Section 2.4,
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we keep properties (IP1) and (IP2), but instead of (IP3) we require that if u €
V and (u, v) =0 for all v € V, then u = 0. Such an inner product is said to be
nondegenerate. The reader should be able to see easily that (IP3) implies
nondegeneracy, and hence all inner products we have used so far in this book
have been nondegenerate. (In Section 11.10 we will see an example of an
inner product space with the property that (u, u) =0 for some u # 0.)

If we leave out the second vector entry in the inner product (u, ), then
what we have left is essentially a linear functional on V. In other words, given
any u € V, we define a linear functional L, € V* by

Lu(v) = (u,v)

for all v € V. From the definition of a (real) inner product, it is easy to see that
this functional is indeed linear. Furthermore, it also has the property that

Laus+bv = aLy +bLy

for all u, vE V and a, b € F. What we have therefore done is define a linear
mapping L: V — V* by L(u) = L, for all u € V. Since the inner product is
nondegenerate, we see that if u # 0 then L(v) = (u, v) can not vanish for all
vE YV, and hence L, # 0. This means that Ker L = {0}, and hence the
mapping must be one-to-one (Theorem 5.5). But both V and V* are of
dimension n, and therefore this mapping is actually an isomorphism of V onto
V*. This proves our next theorem.

Theorem 9.3 Let V be finite-dimensional over R, and assume that V has a
nondegenerate inner product defined on it. Then the mapping u — L, is an
isomorphism of V onto V*.

Looking at this isomorphism as a mapping from V* onto V, we can
reword this theorem as follows.

Corollary Let V be as in Theorem 9.3. Then, given any linear functional
L € V*, there exists a unique u € V such that L(v) = (u, v) =Ly(v) forall vE
V. In other words, given any L € V*, there exists a unique u € V such that L,
=L.

Note that if V is a vector space over C with the more general Hermitian
inner product defined on it, then the definition L,(v) = (u, v) shows that L,, =
a*L, , and the mapping u — L, is no longer an isomorphism of V onto V*.
Such a mapping is not even linear, and is in fact called antilinear (or conju-
gate linear). We will return to this more general case later.
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Let us now consider vector spaces V and V* over an arbitrary (i.e., possi-
bly complex) field #. Since V* is a vector space, we can equally well define
the space of linear functionals on V*. By a procedure similar to that followed
above, the expression ( , u) for a fixed u € V defines a linear functional on V*
(note that here ( , ) is a bilinear functional and not an inner product). In other
words, we define the function f,: V¥ — F by

fu(®) = (o, u) = ()
for all ¢ € V*. It follows that for all a, b € F and ¢, w € V* we have
fu(ap + bw) = (ap + bw, u) = a{d, u) + b(w, u) = afy(p) + bfy(w)

and hence f is a linear functional from V* to . In other words, f, is in the
dual space of V*. This space is called the double dual (or second dual) of V,
and is denoted by V**.

Note that Theorem 9.3 shows us that V* is isomorphic to V for any finite-
dimensional V, and hence V* is also finite-dimensional. But then applying
Theorem 9.3 again, we see that V** is isomorphic to V*, and therefore V is
isomorphic to V**. Our next theorem verifies this fact by explicit construction
of an isomorphism from V onto V**.

Theorem 9.4 Let V be finite-dimensional over ¥, and for each u € V define
the function f,: V¥ — ¥ by fy(¢) = ¢(u) for all ¢ € V*. Then the mapping f:
u — f,, is an isomorphism of V onto V**.

Proof We first show that the mapping f: u — f, defined above is linear. For
any u, vE V and a, b € F we see that

auron(9) = (@, au +bv)
= a(q), u>+ b<¢, v)
= af, (9) +bf,(9)
= (af, +bf,)(9) -

Since this holds for all ¢§ € V*, it follows that f,,, vy = af, + bfy, and hence
the mapping f is indeed linear (so it defines a vector space homomorphism).

Now let u € V be an arbitrary nonzero vector. By Theorem 9.2 (with v, =
u and v, = 0) there exists a ¢ € V* such that fy,(¢) = (¢, u) # 0, and hence
clearly f, # 0. Since it is obviously true that fy, = 0, it follows that Ker f = {0},
and thus we have a one-to-one mapping from V into V** (Theorem 5.5).
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Finally, since V is finite-dimensional, we see that dim V = dim V* =
dim V**, and hence the mapping f must be onto (since it is one-to-one). W

The isomorphism f: u — {, defined in Theorem 9.4 is called the natural
(or evaluation) mapping of V into V**. (We remark without proof that even
if V is infinite-dimensional this mapping is linear and injective, but is not
surjective.) Because of this isomorphism, we will make the identification V =
V** from now on, and hence also view V as the space of linear functionals on

V*. Furthermore, if {u)i} is a basis for V*, then the dual basis {e;} for V will
be taken to be the basis for V**. In other words, we may write

u)i(ej) = ej(wi) = Bij
so that

O(V) = V() = Zpv' .

Now let S be an arbitrary subset of a vector space V. We call the set of
elements ¢ € V* with the property that ¢(v) = 0 for all v € S the annihilator

of S, and we denote it by SO In other words,
SO = {pEV*: p(v)=0forallvE S} .

It is easy to see that S” is a subspace of V*. Indeed, suppose that ¢, w € S, let
a,b &€ F and let v € S be arbitrary. Then

(a9 + bw)(v) = ap(v) +bw(v) = 0+0 =0
so that ap + bw € SO, Note also that we clearly have 0 € SO, and if T C S, then

st T
If we let S be the linear span of a subset S C V, then it is easy to see that

50=1259 Indeed, if u € S is arbitrary, then there exist scalars a,, . . . , a; such
that u = Zaivi for some set of vectors {V], ..., V'} €S. But then for any ¢ €
SY we have

o) = ¢Cav) = Tap(v) = 0

and hence ¢ € 0. Conversely, if ¢ € S° then ¢ annihilates every v € S and

hence ¢ € S°. The main conclusion to deduce from this observation is that to
find the annihilator of a subspace W of V, it suffices to find the linear func-
tionals that annihilate any basis for W (see Example 9.2 below).
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Just as we talked about the second dual of a vector space, we may define

the space S in the obvious manner by
S = (89 = {veV:¢(v)=0forall p €S} .

This is allowed because of our identification of V and V** under the isomor-
phism u — f, . To be precise, note that if v & S C V is arbitrary, then for any

o E SO we have fu(d) = ¢(v) = 0, and hence f, € (SO)O = S°0, But by our
identification of v and fy (i.e., the identification of V and V*%) it follows that

v E S, and thus S C S%. If S happens to be subspace of V, then we can in
fact say more than this.

Theorem 9.5 Let V be finite-dimensional and W a subspace of V. Then
(2) dim W% =dim V - dim W.
(b) WP =w.

Proof (a) Assume that dim V =n and dim W = m < n. If we choose a basis
{wy, ..., wnp} for W, then we may extend this to a basis

{Wl,---,Wm,VL,---,Vn—m}

for V (Theorem 2.10). Corresponding to this basis for V, we define the dual
basis

..., om0, ..., e" ™

for V*. By definition of dual basis we then have Oi(Vj) = Bij and Oi(wj) =0 for
all w;. This shows that 6' € W foreachi=1,...,n-m We claim that {Oi}
forms a basis for WY.

Since each 0! is an element of a basis for V*, the set {Oi} must be linearly

independent. Now let o € W be arbitrary. Applying Theorem 9.1 (and
remembering that w; € W) we have

m n—-m n-m
o =E<0, wl->¢" + E <o, vj>6j = E <o, vj>6j )
i=1 j=1 Jj=1
This shows that the 6! also span WY, and hence they form a basis for WY,
Therefore dim W =n - m = dim V - dim W.

(b) Recall that the discussion preceding this theorem showed that W C
W%, To show that W = W, we need only show that dim W = dim W%,
However, since W is a subspace of V* and dim V* = dim V, we may apply
part (a) to obtain
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dimW® = dimV* - dimWw?°
= dimV*—(dimV - dim W)
=dimW . 11

Example 9.2 Let W C R* be the two-dimensional subspace spanned by the
(column) vectors w, = (1, 2, -3, 4) and w, = (0, 1, 4, —-1). To find a basis for
WO, we seek dim W = 4 — 2 = 2 independent linear functionals ¢ of the form
o(X, y, z, t) = ax + by + cz + dt such that ¢(w;) = ¢p(w,) = 0. (This is just
P(w) = Z(I)iwi where w = (X, y, z, t) and ¢ = (a, b, ¢, d).) This means that we
must solve the set of linear equations

(1,2, =3, 4) = a+2b-3c+41 =0
¢(071’49_1)= b+4C— t=0

which are already in row-echelon form with ¢ and t as free variables (see
Section 3.5). We are therefore free to choose any two distinct sets of values
we like for ¢ and t in order to obtain independent solutions.

If we let c =1 and t = 0, then we obtain a = 11 and b = —4 which yields the

linear functional (I)](X, y,z,t)=11x -4y +z. [f we let c =0 and t = 1, then we
obtain a = —6 and b = 1 so that ¢2(X, y, Z, t) = =6X + y + t. Therefore a basis

for WO is given by the pair {¢', ¢>}. In component form, these basis (row)
vectors are simply

¢1 = (1 19 _4’ 17 0)
9> =(-6,1,0,1) . /

This example suggests a general approach to finding the annihilator of a

subspace W of 7". To see this, first suppose that we have m < n linear equa-

n
j=1

foreachi=1, ..., m. If we define the m linear functionals (I)i by

n
¢ (xpy ey X,)= Eaijxj
j=1

tions in n unknowns:

then we see that the solution space of our system of equations is nothing more

than the subspace of #™ that is annihilated by {¢'}. Recalling the material of
Section 3.5, we know that the solution space to this system is found by row-
reducing the matrix A = (a;;). Note also that the row vectors A; are just the
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coordinates of the linear functional ¢' relative to the basis of F™* that is dual

to the standard basis for F".

Now suppose that for each1 =1, ..., m we are given the vector n-tuple
vi=(ay, ..., an € F". What we would like to do is find the annihilator of

the subspace W C F" that is spanned by the vectors v;. From the previous

section (and the above example) we know that any linear functional ¢ on F"
must have the form ¢(x,, . . ., Xp) = 2P=1¢iX;, and hence the annihilator we

seek satisfies the condition

o) =(a;, ..., a,) = Eaijcj =0
j=1

foreachi=1, ..., m. In other words, the annihilator (c,, .

of the homogeneous system

Eaijcj =0 .

n
j=1

Example 9.3 Let W C R’ be spanned by the four vectors

.., Cp) 1s a solution

v, =(2,-2,3,4,-1) v, =(-1,1,2,5,2)
v3=(0,0, -1, -2, 3) ve=(,-1,2,30) .

Then WY is found by row-reducing the matrix A whose rows are the basis

vectors of W:

N = DN W
(OST NS RNV, NN

-1
2
3
0

—_—0 = N
—_— O =
|

Using standard techniques, the reduced matrix is easily found to be

1 -1 0-10
0O 01 20
0 00 01
0 00 0O
This is equivalent to the equations
Cl - 02 - C4 = 0
C3 + 2C4 = 0

CS=O
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and hence the free variables are ¢, and c4. Note that the row-reduced form of
A shows that dim W = 3, and hence dim W” = 5 - 3 = 2. Choosing ¢, = 1 and
c4 =0 yields ¢, = 1 and c3 = 0, and hence one of the basis vectors for WO is
given by (I)] =(1, 1,0, 0, 0). Similarly, choosing ¢, =0 and c4 = 1 results in the
other basis vector (])2 =(1,0,-2,1,0). /

Exercises

1. Let U and W be subspaces of V (which may be infinite-dimensional).
Prove that:

@ (U+W)°=1"NW°
(b) (UNW)°=0°+ WP
Compare with Exercise 2.5.2.

2. Let V be finite-dimensional and W a subspace of V. Prove that W* is iso-
morphic to V¥/WY and (independently of Theorem 9.5) also that

dim WY = dim V - dim W .

[Hint: Consider the mapping T: V* — W* defined by T¢ = ¢ where ¢y,
is the restriction of ¢ € V* to W. Show that T is a surjective linear

transformation and that Ker T = W° Now apply Exercise 1.5.11 and
Theorems 5.4 and 7.34.]

3. Let V be an n-dimensional vector space. An (n — 1)-dimensional subspace
of V is said to be a hyperspace (or hyperplane). If W is an m-
dimensional subspace of V, show that W is the intersection of n — m
hyperspaces in V.

4. Let U and W be subspaces of a finite-dimensional vectors space V. Prove
that U = W if and only if U = WP,

5. Let {eq, ..., es} be the standard basis for IRS, and let W C R? be spanned
by the three vectors
w =€ +2e,+ e
w, = e, +3es + 3e, + e
wy=e +4e, +6e;+4e, +e5 .

Find a basis for WY,
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9.3 THE TRANSPOSE OF A LINEAR TRANSFORMATION

Suppose U and V are vector spaces over a field ¥, and let U* and V* be the
corresponding dual spaces. We will show that any T € L(U, V) induces a
linear transformation T* € L(V*, U*) in a natural way. We begin by recalling
our discussion in Section 5.4 on the relationship between two bases for a
vector space. In particular, if a space V has two bases {e;} and {€;}, we seek

the relationship between the corresponding dual bases {u)i} and {mi} for V*.
This is given by the following theorem.

Theorem 9.6 Let {e;} and {&;} be two bases for a finite-dimensional vector
space V, and let {u)i} and {mi} be the corresponding dual bases for V*. If P is
the transition matrix from the basis {e;} to the basis {&}, then (P™)T is the

transition matrix from the {u)i} basis to the {mi} basis.

Proof Letdim V = n. By definition of P = (p;;) we have

n

¢ = E €iDji
j=1
foreachi=1, ..., n. Similarly, let us define the (transition) matrix Q = (q;;)
by the requirement that

n .
~ _ j
j=1

We must show that Q = (P™)T. To see this, first note that the ith column of Q

is Qi =(qy» - - - » qni) and the jth row of PTis PTJ- = (Ple, e, ijn). From the
definition of dual bases, we then see that

' — k k
6lj = <a)i’ ej> = <ka 9ri» 2rerprj> = 2k, quiprj <(1) ’ €r>
k T
= Zk, r‘lkiprj(3 r= qukipkj =2p ki
=(P'Q); .

In other words, PTQ = L. Since P is a transition matrix it is nonsingular, and
hence this shows that Q = (PT)™ = (P™)T (Theorem 3.21, Corollary 4).

Now suppose that T € L(V, U). We define a mapping T*: U* — V* by
the rule
T*¢p = ¢oT

for all ¢ € U*. (The mapping T* is frequently written T".) In other words, for
any v € V we have
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(THP)(v) = (9o TH(v) = ¢(T(V) EF .

To show that T*¢ is indeed an element of V*, we simply note that for v,, v, €
V and a, b € F we have (using the linearity of T and ¢)

(T*p)av, +bvy)=¢(T (av, + bv,))
=¢(aT (v))+bT (v,))
=ad(T (v)) + (T (v,))
=a(T*¢)(v;) +b(T*P)(v,)

(this also follows directly from Theorem 5.2). Furthermore, it is easy to see
that the mapping T* is linear since for any ¢, 6 € U* and a, b € ¥ we have

T*(ap+b0) = (ap+bO) o T = a(¢poT)+b(BT) = a(T*$) + b(T*0) .
Hence we have proven the next result.

Theorem 9.7 Suppose T € L(V, U), and define the mapping T*: U* — V*
by T*¢p = ¢ o T for all ¢ € U*. Then T* € L(U*, V*).

The linear mapping T* defined in this theorem is called the transpose of
the linear transformation T. The reason for the name transpose is shown in the
next theorem. Note that we make a slight change in our notation for elements
of the dual space in order to keep everything as simple as possible.

Theorem 9.8 Let T € L(V, U) have matrix representation A = (a;) with
respect to the bases {v, ..., vy} for Vand {u,, ..., u,} for U. Let the dual

spaces V* and U* have the corresponding dual bases {Vi} and {ﬁi}. Then the
matrix representation of T* &€ L(U*, V*) with respect to these bases for U*

and V* is given by AT,

Proof By definition of A = (a;;) we have

n

j=1

foreachi=1, ..., m. Define the matrix representation B = (b;;) of T* by
j=1
foreachi=1, ..., n Applying the left side of this equation to an arbitrary

basis vector v, we find
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(T*ul)v, = wl(Tv,) = ﬁi(zjujajk) = Zjﬁi(uj)ajk = Zjéijajk = a,
while the right side yields
Sbivi(vy) = Zbid = by
Therefore b,; =a,, =a',;, and thus B=AT. 1

Example 9.4 If T € L(V, U), let us show that Ker T* = (Im T)°. (Remember
that T*: U* — V*) Let ¢ € Ker T* be arbitrary, so that 0 = T*¢ = ¢ oT. If
u € U is any element in Im T, then there exists v € V such that u = Tv. Hence

b)) = ¢(Tv) = (T*p)v = 0

and thus ¢ € (Im T)O. This shows that Ker T* C (Im T)O.

Now suppose 0 € (Im T)O so that O(u) = 0 for all u € Im T. Then for any
v € V we have
(T*6)v = 6(Tv) € 6(ImT) = 0

and hence T*0 = 0. This shows that 8 € Ker T* and therefore (Im T)O C
Ker T*. Combined with the previous result, we see that Ker T* = (Im T)O. 7

Example 9.5 Suppose T € L(V, U) and recall that r(T) is defined to be the

number dim(Im T). We will show that r(T) = r(T*). From Theorem 9.5 we
have

dim(Im T)O = dim U -dim(Im T) = dim U - 1(T)
and from the previous example it follows that
nul T* = dim(Ker T*) = dim(Im T)° .
Therefore (using Theorem 5.6) we see that

r(T*)=dimU* —nulT* =dimU - nulT* = dimU - dim(Im T)O
=1(T) .
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Exercises

1. Suppose A € Mpuxn(F). Use Example 9.5 to give a simple proof that
r(A) = cr(A).

2. Let V =R? and define ¢ € V* by ¢(x, y) = 3x — 2y. For each of the fol-
lowing linear transformations T € L(|R3, IRZ), find (T*¢)(x, y, 2):

(@ T(x,y,z2)=(X+Yy,y +2).
b) TX,y,z)=(X+y+2z,2x-Y).

3. SeL(U, V)and T € L(V, W), prove that (T o S)* = S* o T*,

4. Let V be finite-dimensional, and suppose that T € L(V). Show that the
mapping T — T* defines an isomorphism of L(V) onto L(V*).

5. Let V =R[x], suppose a, b € R are fixed, and define ¢ € V* by
b
o) = fodx .

If D 1s the usual differentiation operator on V, find D*¢.
6. Let V=My¥),letB €V be fixed, and define T € L(V) by
T(A) = AB-BA .

If ¢ € V* is defined by ¢(A) =Tr A, find T*¢.

9.4 BILINEAR FORMS

In order to facilitate our treatment of operators (as well as our later discussion
of the tensor product), it is worth generalizing slightly some of what we have
done so far in this chapter. Let U and V be vector spaces over F. We say that a
mapping f: U x V — 7 is bilinear if it has the following properties for all u,,
u, €U, forallv,,v,EVandalla,b& ¥:

(1) f(au, + bu,, v,) = af(u,, v,) + bf(u,, v,).
(2) f(u,, av, + bv,) = af(u,, v,) + bf(u,, v,).

In other words, f is bilinear if for each v € V the mapping u — f(u, v) is
linear, and if for each u € U the mapping v — f(u, v) is linear. In the
particular case that V = U, then the bilinear map f: V x V. — ¥ is called a
bilinear form on V. (Note that a bilinear form is defined on V x V, while a
bilinear functional was defined on V* x V.) Rather than write expressions like
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f(u, v), we will sometimes write the bilinear map as (u, v) if there is no need to
refer to the mapping f explicitly. While this notation is used to denote several
different operations, the context generally makes it clear exactly what is
meant.

We say that the bilinear map f: U x V — ¥ is nondegenerate if f(u, v) =0
for all v & V implies that u = 0, and f(u, v) = 0 for all u € U implies that v = 0.

Example 9.6 Suppose A = (a;;) € M,(¥). Then we may interpret A as a
bilinear form on F" as follows. In terms of the standard basis {e;} for F", any

X € F" may be written as X = X x'e; , and hence for all X, Y € F" we define
the bilinear form f 5 by

fAX,Y) = 2 ax'y) = XTAY .

Here the row vector X' is the transpose of the column vector X, and the
expression XTAY is just the usual matrix product. It should be easy for the
reader to verify that f is actually a bilinear form on #". /

Example 9.7 Suppose a, § € V*. Since a and f are linear, we may define a
bilinear form f: Vx V =% by

f(u, v) = a(w)p(v)

for all u, v € V. This form is usually denoted by oo ® (3 and is called the
tensor product of a and f. In other words, the tensor product of two elements
a, B € V*is defined for all u, vE V by

(a® B)(u, v) = aPv) .

We may also define the bilinear form g: V x V =% by

g(u, v) = a(w)p(v) - a(v)p(u) .

We leave it to the reader to show that this is indeed a bilinear form. The map-
ping g is usually denoted by aap, and is called the wedge product or the
antisymmetric tensor product of a and f3. In other words

(aaf)(u, v) = a(Bv) - a(v)p() .

Note that aAfisjusta @B - a. /
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Generalizing Example 9.6 leads to the following theorem.

Theorem 9.9 Given a bilinear map f: F™ x F" — F, there exists a unique
matrix A € My xn(F) such that f = f5. In other words, there exists a unique

matrix A such that f(X, Y) = XTAY forall XE F™ and Y € F".

Proof In terms of the standard bases for #™ and F", we have the column
vectors X = 3M_  xie, EFMand Y = 2= yj e; € F". Using the bilinearity of
f we then have

fX,Y) = f(Zx'e , Tyle) = Zijx'yfie,e) .
If we define a;; = f(e;, €;), then we see that our expression becomes
fX,Y) = 2 jx'ay’ = XTAY .

To prove the uniqueness of the matrix A, suppose there exists a matrix A’
such that f =f4’. Then for all X € F™and Y € " we have

f(X,Y) = XTAY = XTA'Y
and hence XT(A - A)Y =0. Now let C = A — A’ so that
XTcy = 2] cijxi yj =0

forall X € F™ and Y € #". In particular, choosing X = e; and Y = e;, we find
that ¢; =0 forevery iand j. Thus C=0sothat A=A". &

The matrix A defined in this theorem is said to represent the bilinear map
f relative to the standard bases for F™ and F". It thus appears that f is repre-
sented by the mn elements a; = f(e;, ;). It is extremely important to realize
that the elements a; are defined by the expression f(e;, €;) and, conversely,
given a matrix A = (a;), we define the expression f(e;, €;) by requiring that
f(ei, ) = a;; . In other words, to say that we are given a bilinear map f: F™ x
F" — F means that we are given values of f(e;, e;) for each i and j. Then,
given these values, we can evaluate expressions of the form f(X, Y) =
i, i xiyj f(e;, €;). Conversely, if we are given each of the f(e;, ¢;), then we have

defined a bilinear map on F™ x F".
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We denote the set of all bilinear maps on U and V by B(U x V, ¥), and the
set of all bilinear forms as simply B(V) = B(V x V, F). It is easy to make
B(U x V, ) into a vector space over F. To do so, we simply define

(af + bg)(u, v) = af(u, v) + bg(u, v)

for any f, g € B(U x V, ) and a, b € ¥. The reader should have no trouble
showing that af + bg is itself a bilinear mapping.

It is left to the reader (see Exercise 9.4.1) to show that the association
A — fp defined in Theorem 9.9 is actually an isomorphism between

Mmxn (F) and B(F™ x F", F). More generally, it should be clear that Theo-

rem 9.9 applies equally well to any pair of finite-dimensional vector spaces U
and V, and from now on we shall treat it as such.

Theorem 9.10 Let V be finite-dimensional over ¥, and let V* have basis
{u)i}. Define the elements ) € B(V) by

fitu, v) = o'(w)w(v)

for all u, v € V. Then {fij} forms a basis for B(V) which thus has dimension
(dim V)>.

Proof Let {e;} be the basis for V dual to the {u)i} basis for V*, and define
a; = f(e;, ¢). Given any f € B(V), we claim that f = Zi,j aijfij. To prove this, it
suffices to show that f(e,, e5) = (Z; aijfij)(er, eg) for all r and s. We first note
that

Eja;1" Ve, e) =2, ja0' (e )0’ (e,) = 2, ja;6'.8' = a,

124 y r
=f(er5 es) M

Since f is bilinear, it follows from this that f(u, v) = (X ; a;f ij)(u, v) for all u,
vE Vsothatf=2} aijfij. Hence {fij} spans B(V).

Now suppose that X; ; aijfij = 0 (note that this O is actually an element of
B(V)). Applying this to (e, €s) and using the above result, we see that

0 = (i ja;f)er, e = ary .

Therefore {f'} is linearly independent and hence forms a basis for B(V). B
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It should be mentioned in passing that the functions f! defined in Theorem
9.10 can be written as the tensor product o' ® w': V x V — F (see Example

9.7). Thus the set of bilinear forms w' ® w! forms a basis for the space V* ®
V* which is called the tensor product of the two spaces V*. This remark is
not meant to be a complete treatment by any means, and we will return to
these ideas in Chapter 11.

We also note that if {e;} is a basis for V and dim V = n, then the matrix A

of any f € B(V) has elements a;; = f(e;, ¢;), and hence A = (a;;) has n? inde-

pendent elements. Thus, dim B(V) = n? as we saw above.

Theorem 9.11 Let P be the transition matrix from a basis {e;} for V to a new

basis {e';}. If A is the matrix of f € B(V) relative to {e;}, then A’ = PTAP is
the matrix of f relative to the basis {¢';}.

Proof LetX,Y €V be arbitrary. In Section 5.4 we showed that the transition
matrix P = (p;) defined by e'; = P(e;) = 2ie;p;: also transforms the components
of X = Jixle; = ij’j e'; as x! = ijijx’j. In matrix notation, this may be written
as [X]e = P[X]e' (see Theorem 5.17), and hence [X]e! = [X]e' T PT. From
Theorem 9.9 we then have

f(X,Y) = [X]leTAlY]e = [XIe' T[PITA[PI[Y]e = [X]e TA[Y]e -

Since X and Y are arbitrary, this shows that A’ = PTAP is the unique repre-
sentation of f in the new basis {e’;}. I

Just as the transition matrix led to the definition of a similarity transforma-
tion, we now say that a matrix B is congruent to a matrix A if there exists a
nonsingular matrix P such that B = PTAP. It was shown in Exercise 5.2.12
that if P is nonsingular, then r(AP) = r(PA) = r(A). Since P is nonsingular, r(P)
=r(PT), and hence r(B) = r(PTAP) = r(AP) = r(A). In other words, congruent
matrices have the same rank. We are therefore justified in defining the rank
r(f ) of a bilinear form f on V to be the rank of any matrix representation of f.

We leave it to the reader to show that f is nondegenerate if and only if r(f ) =
dim V (see Exercise 9.4.3).

Exercises

1. Show that the association A — f 4 defined in Theorem 9.9 is an isomor-
phism between My, x m(F) and B(F™ x F", F).
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2. Let V=Mpxn(¥) and suppose A € My () is fixed. Then for any X, Y €
V we define the mapping fa: V x V =% by fo(X, Y) = Tr(XTAY). Show
that this defines a bilinear form on V.

3. Prove that a bilinear form f on V is nondegenerate if and only if r(f) =
dim V.

4. (a) Let V=R and define f € B(V) by
f(X,Y) = 3x'y! - 2x'y? + 5x%y! + 7x%y? - 8x%y’ + 4x°y? - x%y? .

Write out f(X, Y) as a matrix product XTAY.
(b) Suppose A € My(¥) and let {(X, Y) = XTAY for X, Y € #™ Show
that f € B(F™).

5. Let V =R? and define f € B(V) by
f(X,Y) = 2x'y! - 3xly? + x%y? .

(a) Find the matrix representation A of f relative to the basis vi = (1, 0),
vy = (1, 1).

(b) Find the matrix representation B of f relative to the basis v = (2, 1),
vo=(1, -1).

(¢) Find the transition matrix P from the basis {v;} to the basis {V;} and
verify that B = PTAP.

6. Let V=My(C), and for all A, B €V define
f(A, B) = nTr(AB) — (Tr A)(Tr B) .

(a) Show that this defines a bilinear form on V.

(b) Let U C V be the subspace of traceless matrices. Show that f is degen-
erate, but that fy = f|U is nondegenerate.

(c) Let W C V be the subspace of all traceless skew-Hermitian matrices A
(i.e, TrA=0and AT = A*T = —A). Show that fw = f|W is negative defi-
nite, i.e., that fw(A, A) <0 for all nonzero A € W.

(d) Let V C V be the set of all matrices A € V with the property that
f(A, B) = 0 for all B € V. Show that V is a subspace of V. Give an explicit
description of V and find its dimension.
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9.5 SYMMETRIC AND ANTISYMMETRIC BILINEAR FORMS

An extremely important type of bilinear form is one for which f(u, u) = O for
all u € V. Such forms are said to be alternating. If f is alternating, then for
every u, vE V we have

O=f(u+v,u+v)
= fu, u)+ f(u, v)+ f(v, u)+ f(v, v)
= f(u, v)+ f(v, u)
and hence

Jw, v)y==fv,u) .

A bilinear form that satisfies this condition is called antisymmetric (or skew-
symmetric). If we let v = u, then this becomes f(u, u) + f(u, u) = 0. As long as
F 1s not of characteristic 2 (see the discussion following Theorem 4.3; this is
equivalent to the statement that 1 + 1 # 0 in ), we can conclude that f(u, u) =
0. Thus, as long as the base field F is not of characteristic 2, alternating and
antisymmetric forms are equivalent. We will always assume that 1 + 1 # 0 in
F unless otherwise noted, and hence we always assume the equivalence of
alternating and antisymmetric forms.

It is also worth pointing out the simple fact that the diagonal matrix ele-
ments of any representation of an alternating (or antisymmetric) bilinear form

will necessarily be zero. This is because the diagonal elements are given by
a; = f(ei, e) =0.

Theorem 9.12 Let f € B(V) be alternating. Then there exists a basis for V in
which the matrix A of f takes the block diagonal form

A=M® - - OMB0D---®0

where O is the 1 x 1 matrix (0), and

w5 )

Moreover, the number of blocks consisting of the matrix M is just (1/2)r(f).

Proof We first note that the theorem is clearly true if f = 0. Next we note that
if dim V = 1, then any vector v; € V is of the form v; = a;u for some basis
vector u and scalar a;. Therefore, for any v,, v, € V we have
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f(v,, v,) = f(au, a,u) = a,af(u,u) = 0

so that again f = 0. We now assume that f # 0 and that dim V > 1, and proceed
by induction on dim V. In other words, we assume the theorem is true for
dim V < n, and proceed to show that it is also true for dim V =n.

Since dim V > 1 and f # 0, there exist nonzero vectors u;, u, € V such that
f(uy, u,) # 0. Moreover, we can always multiply u, by the appropriate scalar so
that

f(u,uy) =1 = —f(u,, uy) .

It is also true that u, and u, must be linearly independent because if u, = ku,,
then f(u,, u,) = f(u,, ku,) = kf(u,, u;) = 0. We can now define the two-
dimensional subspace U C V spanned by the vectors {u,, u,}. By definition,
the matrix (a;) € My(¥) of f restricted to U is given by a; = f(u;, u;), and
hence it is easy to see that (a;) is given by the matrix M defined in the
statement of the theorem.

Since any u € U is of the form u = au, + bu,, we see that

f(u, u)) = af(u;, u)) +bf(u,, u;) = -b
and
f(u, u,) = af(u,, u,) + bf(u,,u,) = a .

Now define the set
W = {we V:f(w,u)=0foreveryue U} .

We claim that V = U @ W (compare this with Theorem 2.22). To show that
U N W ={0}, we assume that vE U N W. Then v € U has the form v = au, +
Bu, for some scalars a and . But v € W so that 0 = f(v, u;) = - and 0 =
f(v,u,) = a, and hence v=0.
We now show that V= U + W. Let v € V be arbitrary, and define the

vectors

u=f,u)u - fv, upu, €U

w=v-u .

If we can show that w € W, then we will have shownthatv=u+w&U+ W
as desired. But this is easy to do since we have

S, u) = fv, uy) f(uy, uy) = f(v, up) f(uy, uy) = f(v, uy)
S, uy)=fv, uy) fuy, uy) = f(v, u) f(uy, uy) = f(v, uy)

and therefore we find that
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f(W, u1)=f(v—u, l/ll)=f(V, l/t])—f(u, M1)=O
S, uy))=f(v—u,uy)=f(v, uy) - f(u, uy)=0 .

These equations show that f(w, u) =0 for every u € U, and thus w € W. This
completes the proof that V = U @ W, and hence it follows that dim W =
dimV-dmU=n-2<n.

Next we note that the restriction of f to W is just an alternating bilinear
form on W, and therefore, by our induction hypothesis, there exists a basis
{us, ..., uy} for W such that the matrix of f restricted to W has the desired
form. But the matrix of V is the direct sum of the matrices of U and W, where
the matrix of U was shown above to be M. Therefore {u,, u,, ..., uy} is a
basis for V in which the matrix of f has the desired form.

Finally, it should be clear that the rows of the matrix of f that are made up
of the portion M @ - - - @ M are necessarily linearly independent (by defini—
tion of direct sum and the fact that the rows of M are independent). Since each
M contains two rows, we see that r(f) = rr(f) is precisely twice the number of
M matrices in the direct sum. B

Corollary 1 Any nonzero alternating bilinear form must have even rank.

Proof Since the number of M blocks in the matrix of f is (1/2)r(f), it follows
that r(f) must be an even number. H

Corollary 2 If there exists a nondegenerate, alternating form on V, then
dim V is even.

Proof This is Exercise 9.5.7. 1

If f € B(V) is alternating, then the matrix elements a;; representing f rela-
tive to any basis {e;} for V are given by
a; = flei, ¢) = —f(ej, ) = —a;
Any matrix A = (a;;) € My(F) with the property that a; = —a;; (i.e., A = AT
is said to be antisymmetric. If we are given any element a; of an anti-
symmetric matrix, then we automatically know a;. Because of this, we say
that a; and a; are not independent. Since the diagonal elements of any such
antisymmetric matrix must be zero, this means that the maximum number of
independent elements in A is given by (n?> — n)/2. Therefore, the subspace of

‘B(V) consisting of nondegenerate alternating bilinear forms is of dimension
n(n - 1)/2.
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Another extremely important class of bilinear forms on V is that for which
f(u, v) = f(v, u) for all u, v € V. In this case we say that f is symmetric, and
we have the matrix representation

a; = f(e;, ¢) = f(g, ) = a;

As expected, any matrix A = (a;;) with the property that a; = a;; (i.e., A = AT
is said to be symmetric. In this case, the number of independent elements of
Ais [(n2 -n)2]+n= (n2 + n)/2, and hence the subspace of B(V) consisting
of symmetric bilinear forms has dimension n(n + 1)/2.

It is also easy to prove generally that a matrix A € M,(f) represents a
symmetric bilinear form on V if and only if A is a symmetric matrix. Indeed,
if f is a symmetric bilinear form, then for all X, Y € V we have

XTAY = f(X,Y) = f(Y,X) = YTAX .

But XTAY is just a 1 x 1 matrix, and hence (XTAY)T = XTAY. Therefore
(using Theorem 3.18) we have

YTAX = XTAY = XTAY)T = YTATXTT = YTATX .

Since X and Y are arbitrary, this implies that A = AT. Conversely, suppose
that A is a symmetric matrix. Then for all X, Y € V we have

XTAY = XTAY)T = YTATXTT = YTAX
so that A represents a symmetric bilinear form. The analogous result holds for
antisymmetric bilinear forms as well (see Exercise 9.5.2).

Note that adding the dimensions of the symmetric and antisymmetric sub-
spaces of B(V) we find

nn-1)/2+nn+1)/2 = n? = dim B(V) .

This should not be surprising since, for an arbitrary bilinear form f € B(V)
and any X, Y € V, we can always write

(X, Y) = (A/2)[HX, Y) + {(Y, X)] + (12)[{(X, Y) - (Y, X)] .

In other words, any bilinear form can always be written as the sum of a sym-
metric and an antisymmetric bilinear form.
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There is another particular type of form that is worth distinguishing. In
particular, let V be finite-dimensional over ¥, and let f = (, ) be a symmetric
bilinear form on V. We define the mapping q: V — ¥ by

qX) = f(X, X) = (X, X)

for every X € V. The mapping q is called the quadratic form associated
with the symmetric bilinear form f. It is clear that (by definition) q is
represented by a symmetric matrix A, and hence it may be written in the
alternative forms

q(X) = XTAX = ZiJainiX‘j = Ziaii(xi)2+221<jaijxixj .

This expression for q in terms of the variables x! is called the quadratic poly-
nomial corresponding to the symmetric matrix A. In the case where A hap-
pens to be a diagonal matrix, then a; = O for 1 # j and we are left with the
simple form q(X) = au(x])2 + -+ ann(xn)z. In other words, the quadratic
polynomial corresponding to a diagonal matrix contains no “cross product”
terms.

While we will show below that every quadratic form has a diagonal repre-

sentation, let us first look at a special case.
Example 9.8 Consider the real quadratic polynomial on 7" defined by
q(Y) = Zj, jbyy'y!

(where b;; = b;; as usual for a quadratic form). If it happens that b,; = 0 but, for
example, that b, # 0, then we make the substitutions

N
Vol o
y =x'"fori=3,...,n .

A little algebra (which you should check) then shows that q(Y) takes the form
q(Y) = I jox'x)

where now c,; # 0. This means that we can focus our attention on the case

qX) = 2, jaijxixj where it is assumed that a,; # 0.
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Thus, given the real quadratic form q(X) = 2 jaijxixj where aj; # 0, let us
make the substitutions

x! =)’1 —(1/‘111)[‘112)’2 +otay,y" ]
x'=y' foreachi=2,...,n .

Some more algebra shows that q(X) now takes the form

qix', .. x™ = an(y)? +q A .., yD)

where q' is a new quadratic polynomial. Continuing this process, we eventu-
ally arrive at a new set of variables in which q has a diagonal representation.
This is called completing the square. /

Given any quadratic form q, it is possible to fully recover the values of f
from those of q. To show this, let u, v € V be arbitrary. Then

q(u+v)=<u+v,u+v>

= (ut, )+ (1, v+ (v, 1)+ (v, v)

=q)+2f(u, v)+q(v)

and therefore
S, v)=U2)qu+v)-qu)-q(v)] .

This equation is called the polar form of f.

Theorem 9.13 Let f be a symmetric bilinear form on a finite-dimensional
space V. Then there exists a basis {e;} for V in which f is represented by a
diagonal matrix. Alternatively, if f is represented by a (symmetric) matrix A in
one basis, then there exists a nonsingular transition matrix P to the basis {e;}

such that PTAP is diagonal.

Proof Since the theorem clearly holds if either f =0 or dim V = 1, we assume
that f # 0 and dim V =n > 1, and proceed by induction on dim V. If q(u) =
f(u, u) =0 for all u € V, then the polar form of f shows that f =0, a contradic-
tion. Therefore, there must exist a vector v, € V such that f(v,, v;) # 0. Now
let U be the (one-dimensional) subspace of V spanned by v,, and define the
subspace W = {u € V: f(u, v)) =0}. Weclaim that V=U @ W.

Suppose v € U N W. Then v € U implies that v = kv, for some scalar k,
and hence v € W implies 0 = f(v, v,) = k f(v,, v,). But since f(v, v;) # 0 we
must have k = 0, and thus v = kv, = 0. This shows that U N W = {0}.
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Now let v € V be arbitrary, and define

w = v - [f(v, v)(v,, v)]v] .
Then
f(w, vi) = (v, v)) = [f(v, v)/i(v,, v)If(v, v)) = 0

and hence w € W. Since the definition of w shows that any v € V is the sum
of w € W and an element of U, we have shown that V =U + W, and hence V
=U®DW.

We now consider the restriction of f to W, which is just a symmetric
bilinear form on W. Since dim W = dim V — dim U = n - 1, our induction
hypothesis shows there exists a basis {¢,, . . . , en} for W such that f(e;, €;) =0
for all i #j where 1, j =2, . . ., n. But the definition of W shows that f(e;, v,) =
O foreachi=2,...,n, and thus if we define e, = v,, the basis {e,, ..., ey} for
V has the property that f(e;, e;) =0 for all i # j where now i, j=1, ..., n. This
shows that the matrix of f in the basis {e;} is diagonal. The alternate statement
in the theorem follows from Theorem 9.11.

In the next section, we shall show explicitly how this diagonalization can
be carried out.
Exercises
1. (a) Show that if f is a nondegenerate, antisymmetric bilinear form on V,
then n =dim V is even.

(b) Show that there exists a basis for V in which the matrix of f takes the
block matrix form
0 D
b o)

where D is the (n/2) x (n/2) matrix

0 0 1
0 1 0
1 0 0

2. Show that a matrix A € M,(F) represents an antisymmetric bilinear form
on V if and only if A is antisymmetric.
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3. Reduce each of the following quadratic forms to diagonal form:
() q(x, y, 2) = 2x% = 8xy + y® — 16xz + 14yz + 57°.
b) qx,y,2) = X% — Xz + yz.
(©) q(X,y, z) =Xy + y? + 4xz + 7.

(d) q(x,y,z) =xy +yz.

4. (a) Find all antisymmetric bilinear forms on R3.

(b) Find a basis for the space of all antisymmetric bilinear forms on R".

5. Let V be finite-dimensional over C. Prove:
(a) The equation

(ED(u, v) = (1/2)[f(u, v) - f(v, )]

for every f € B(V) defines a linear operator E on B(V).

(b) E is a projection, i.e., E> = E.
(c) If T € L(V), the equation

(TTH)(u, v) = f(Tu, Tv)

defines a linear operator TT on B(V).
(d) ETT=TTEforall T € B(V).

6. Let V be finite-dimensional over C, and suppose f, g € B(V) are antisym-
metric. Show there exists an invertible T € L(V) such that f(Tu, Tv) =
g(u, v) for all u, v € V if and only if f and g have the same rank.

7. Prove Corollary 2 of Theorem 9.12.

9.6 DIAGONALIZATION OF SYMMETRIC BILINEAR FORMS

Now that we know any symmetric bilinear form f can be diagonalized, let us
look at how this can actually be carried out. After this discussion, we will give
an example that should clarify everything. (The algorithm that we are about to
describe may be taken as an independent proof of Theorem 9.13.) Let the
(symmetric) matrix representation of f be A = (a;;) € M(¥), and first assume
that a;, # 0. Foreach i =2, ..., n we multiply the ith row of A by a,,, and then
add -a;; times the first row to this new ith row. In other words, this
combination of two elementary row operations results in A; — a;;A; — a;A,.
Following this procedure for each1 =2, ..., n yields the first column of A in
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the form A! = (a;;, 0, ..., 0) (remember that this is a column vector, not a row
vector). We now want to put the first row of A into the same form. However,
this 1s easy because A is symmetric. We thus perform exactly the same opera-
tions (in the same sequence), but on columns instead of rows, resulting in
Al — a, 1Ai - a 1A]. Therefore the first row is also transformed into the form
A, =(a;;,0,...,0). In other words, this sequence of operations results in the
transformed A having the block matrix form

a; O
v
where B is a matrix of size less than that of A. We can also write this in the
form (a,,) @ B.

Now look carefully at what we did for the case of 1 = 2. Let us denote the
multiplication operation by the elementary matrix Ep,, and the addition opera-
tion by E, (see Section 3.8). Then what was done in performing the row oper-
ations was simply to carry out the multiplication (E,En,)A. Next, because A is
symmetric, we carried out exactly the same operations but applied to the
columns instead of the rows. As we saw at the end of Section 3.8, this is

equivalent to the multiplication A(EmTEaT). In other words, for i = 2 we
effectively carried out the multiplication

E.E,AE,,TE,T .

For each succeeding value of 1 we then carried out this same procedure, and
the final net effect on A was simply a multiplication of the form

Es---EAE,T...EJT

which resulted in the block matrix (a,;) @ B shown above. Furthermore, note
that if we let S =E,T - - - E{T = (Eg- - - E))T, then (a;;) ® B = STAS must be
symmetric since (STAS)T = STATS = STAS. This means that in fact the
matrix B must also be symmetric.

We can now repeat this procedure on the matrix B and, by induction, we
eventually arrive at a diagonal representation of A given by

D = E,---EAE,T---ET

for some set of elementary row transformations E;. But from Theorems 9.11
and 9.13, we know that D = PTAP, and therefore PT is given by the product
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er- - -e(I) =E;- - - E, of elementary row operations applied to the identity
matrix exactly as they were applied to A. It should be emphasized that we
were able to arrive at this conclusion only because A is symmetric, thereby
allowing each column operation to be the transpose of the corresponding row
operation. Note however, that while the order of the row and column opera-
tions performed is important within their own group, the associativity of the
matrix product allows the column operations (as a group) to be performed
independently of the row operations.

We still must take into account the case where a;; =0. If a;,;, =0 but a;; 0
for some 1 > 1, then we can bring a;; into the first diagonal position by inter-
changing the ith row and column with the first row and column respectively.
We then follow the procedure given above. If a;; =0 foreveryi=1,...,n,
then we can pick any a;; # 0 and apply the operations A; — A; + A, and Al —
Al + Al. This puts 2a;; # 0 into the ith diagonal position, and allows us to pro-
ceed as in the previous case (which then goes into the first case treated). (Note
also that this last procedure requires that our field is not of characteristic 2
because we assumed that a;; + a; = 2a;; 0.)

Example 9.9 Let us find the transition matrix P such that D = PTAP is diag-
onal, with A given by

1 -3 2
-3 7 =5
2 -5 8

We begin by forming the matrix (All):

1 -3 2|1 00
-3 7 -5 010
2 -5 8]0 01

Now carry out the following sequence of elementary row operations to both A
and I, and identical column operations to A only:

1 -3

2 |1
Ay+34; =10 2 1 | 3
Ay=24,—0 1 4 |2

S = O
_ O O
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0 0|1 00
0 2 1 ]3 10
0 1 4 ]2 01
(I
A? +3A1 AY-2A
1 0 0]100
0 2 1 |3 10
2434420 0 9 |-1 1 2
1 0 0 ]|100
0 2 0 ]3 10
0 0 18 |-1 1 2
!
2A% + A?

We have thus diagonalized A, and the final form of the matrix (All) is just
(DIPT). 7

Since Theorem 9.13 tells us that every symmetric bilinear form has a diag-
onal representation, it follows that the associated quadratic form q(X) has the
diagonal representation

qX) = XTAX = a,(x")? +- - - + apn(x")?

where A is the diagonal matrix representing the (symmetric) bilinear form.

Let us now specialize this discussion somewhat and consider only real
symmetric bilinear forms. We begin by noting that in general, the diagonal
representation of a symmetric bilinear form f has positive, negative, and zero
entries. We can always renumber the basis vectors so that the positive entries
appear first, followed by the negative entries and then the zero entries. It is in
fact true, as we now show, that any other diagonal representation of f has the
same number of positive and negative entries. If there are P positive entries
and N negative entries, then the difference S = P — N is called the signature
of f.

Theorem 9.14 Let f € B(V) be a real symmetric bilinear form. Then every

diagonal representation of f has the same number of positive and negative
entries.
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Proof Let {e,,...,en} be the basis for V in which the matrix of f is diagonal
(see Theorem 9.13). By suitably numbering the e;, we may assume that the
first P entries are positive and the next N entries are negative (also note that
there could be n — P — N zero entries). Now let {¢',, . . ., €4} be another basis
for V in which the matrix of f is also diagonal. Again, assume that the first P’
entries are positive and the next N’ entries are negative. Since the rank of f is
just the rank of any matrix representation of f, and since the rank of a matrix is
just the dimension of its row (or column) space, it is clear that r(f) =P + N =
P’ + N'. Because of this, we need only show that P =P".

Let U be the linear span of the P vectors {e,, . . . , ep}, let W be the linear
span of {e'p'41, . . . , €'n}, and note that dim U = P and dim W =n - P’. Then
for all nonzero vectors u € U and w € W, we have f(u, u) >0 and f(w, w) <0
(this inequality is < and not < because if P’ + N’ # n, then the last of the basis
vectors that span W will define a diagonal element in the matrix of f that is 0).
Hence it follows that U N W = {0}, and therefore (by Theorem 2.11)

dim(U +W)=dimU +dimW —-dim({U"W)=P+n-P' -0
=P-P+n .

Since U and W are subspaces of V, it follows that dim(U + W) <dim V =n,
and therefore P — P’ + n < n. This shows that P < P’. Had we let U be the span
of {e,,...,e'p'} and W be the span of {ep,, ..., en}, we would have found
that P’ < P. Therefore P = P’ as claimed. U

While Theorem 9.13 showed that any quadratic form has a diagonal repre-
sentation, the important special case of a real quadratic form allows an even
simpler representation. This corollary is known as Sylvester’s theorem or the
law of inertia.

Corollary Let f be a real symmetric bilinear form. Then f has a unique diag-
onal representation of the form

where I; and I are the r X r and s X s unit matrices, and O; is the t X t zero
matrix. In particular, the associated quadratic form q has a representation of
the form

Q(Xl, e, Xp) = (x])2 4o+ (Xr)Z _ (Xr+1)2 L (Xr+s)2
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Proof Let { be represented by a (real) symmetric n x n matrix A. By Theorem

9.14, there exists a nonsingular matrix P, such that D = P,TAP, = (dij) 1s a
diagonal representation of f with a unique number r of positive entries fol-
lowed by a unique number s of negative entries. We let t =n — r — s be the
unique number of zero entries in D. Now let P, be the diagonal matrix with

diagonal entries
1/\/d—u fori=1,...,r
(P); = 1/ -d; fori=r+1,...,r+s .

1 fori=r+s+1,...,n

Since P, is diagonal, it is obvious that (P,)T = P,. We leave it to the reader to
multiply out the matrices and show that

P,'DP, = P,'P,"APP, = (P\P,) A(P/P,)
is a congruence transformation that takes A into the desired form. W

We say that a real symmetric bilinear form f € B(V) is nonnegative (or
positive semidefinite) if q(X) = XTAX = 3; ja;x'x) = f(X, X) 2 0 for all X €
V, and we say that f is positive definite if q(X) > O for all nonzero X € V. In
particular, from Theorem 9.14 we see that f is nonnegative semidefinite if and
only if the signature S = r(f ) < dim V, and f will be positive definite if and
only if S =dim V.

Example 9.10 The quadratic form (x")? - 4x'x? + 5(x%)?
because it can be written in the form

is positive definite

(x! - 2x%)% + (x2)?

which is nonnegative for all real values of x! and x?, and is zero only if x! =
x2=0.
The quadratic form (x])2 + (xz)2 + 2()(3)2 - 2x!x® = 2x2x> can be written in
the form
x' =32+ (2= 32 .

Since this is nonnegative for all real values of x!, x> and x> but is zero for

2

nonzero values (e.g., x' = x> = x> # 0), this quadratic form is nonnegative but

not positive definite. /
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Exercises

1. Determine the rank and signature of the following real quadratic forms:
(a) x>+ 2xy + y2.
(b) x% + Xy + 2xz + 2y° + 4yz + 27°,

2. Find the transition matrix P such that PTAP is diagonal where A is given

by:
1 2 -3 0 1
(@ |2 5 4 b |1 -2 2
-3 -4 8 1 2 -1
1 1 -2 -3
© 1 2 -5 -1
c
-2 -5 6 9
-3 -1 9 11

3. Let f be the symmetric bilinear form associated with the real quadratic
form q(x, y) = ax’ + bxy + cy>. Show that:
(a) fis nondegenerate if and only if b> — 4ac # 0.
(b) fis positive definite if and only if a >0 and b — 4ac < 0.

4. If A is a real, symmetric, positive definite matrix, show there exists a non-

singular matrix P such that A = PTP.
The remaining exercises are all related.

5. Let V be finite-dimensional over C, let S be the subspace of all symmetric
bilinear forms on V, and let Q be the set of all quadratic forms on V.
(a) Show that Q is a subspace of all functions from V to C.
(b) Suppose T € L(V) and q € Q. Show that the equation (TTq)(v) =
q(Tv) defines a quadratic form T7q on V.
(c) Show that the function T is a linear operator on Q, and show that T7
is invertible if and only if T is invertible.

6. (a) Let q be the quadratic form on R? defined by q(x, y) = ax> + 2bxy +
cy2 (where a #0). Find an invertible T &€ L(IRZ) such that

(TTQ)(x, y) = ax’ + (c - b*/a)y? .
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[Hint: Complete the square to find T™ (and hence T).]
(b) Let q be the quadratic form on R? defined by q(x, y) = 2bxy. Find an
invertible T € L(IRZ) such that

(TTQ)(x, y) = 2bx> - 2by? .

(c) Let q be the quadratic form on R? defined by q(x, y, z) = Xy + 2xz +
z2. Find an invertible T € L(|R3) such that

(TTQ(X, y, 2) = x> —y? + 7% .

7. Suppose A € M(R) is symmetric, and define a quadratic form q on R" by

n
q(X)= E a;x'x’ .

i,j=1

Show there exists T € L(R"™) such that

T =Y e (%)

i=1

where each c; is either O or =1.

9.7 HERMITIAN FORMS

Let us now briefly consider how some of the results of the previous sections
carry over to the case of bilinear forms over the complex number field. Much
of this material will be elaborated on in the next chapter.

We say that a mapping f: V x V — C is a Hermitian form on V if for all
u,, U,, vE Vand a, b € C we have

(1) f(au, + bu,, v) = a*f(u,, v) + b*f(u,, v).
(2) f(u,, v) =f(v, u)*

(We should point out that many authors define a Hermitian form by requiring
that the scalars a and b on the right hand side of property (1) not be the com-
plex conjugates as we have defined it. In this case, the scalars on the right
hand side of property (3) below will be the complex conjugates of what we
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have shown.) As was the case for the Hermitian inner product (see Section
2.4), we see that

fu, av; +bv,) = f(av, + bv,, u)* =[a*f(v;, u) + b*f(v,, u)[*
=af (v, uy*+bf (v,, uy*=af (u, v)+ bf (u, v,)

which we state as
(3) f(u, av, + bv,) = af(u, v,) + bf(u, v,).

Since f(u, u) = f(u, u)* it follows that f(u, u) ER for allu € V.

Along with a Hermitian form f is the associated Hermitian quadratic
form q: V — R defined by q(u) = f(u, u) for all u € V. A little algebra
(Exercise 9.7.1) shows that f may be obtained from q by the polar form
expression of f which is

f(u, v) = (I/H[q + V) - q(u - v)] - (@D)[qu + iv) - qu - iv)] .

We also say that f is nonnegative semidefinite if q(u) = f(u, u) =0 forallu €
V, and positive definite if q(u) = f(u, u) > 0 for all nonzero u € V. For
example, the usual Hermitian inner product on C" is a positive definite form

since for every nonzero X = (x', . . ., x") € C" we have

n n
g(X)= f(X, X)=(X, X)= Y (x'yx' = Y& >0 .
i=1 i=1
As we defined in Section 8.1, we say that a matrix H = (h;)) € M(C) is
Hermitian if h;; = h;;*. In other words, H is Hermitian if H = H*T. We denote
the operation of taking the transpose along with taking the complex conjugate

of a matrix A by At (read “A dagger”). In other words, AT = A*T, For reasons
that will become clear in the next chapter, we frequently call AT the
(Hermitian) adjoint of A. Thus H is Hermitian if HT = H.

Note also that for any scalar k we have kT = k*. Furthermore, using
Theorem 3.18(d), we see that

(AB)T = (AB)*T = (A*B*)T = BTAT .

By induction, this obviously extends to any finite product of matrices. It is
also clear that
ATt = A .
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Example 9.11 Let H be a Hermitian matrix. We show that f(X, Y) = XTHY

defines a Hermitian form on C". Let X, X,, Y € C" be arbitrary, and let a,
b € C. Then (using Theorem 3.18(a))

f(aX, +bX,,Y)=(aX, +bX,) HY
= (a*X, +b*X," HY
= a*X,"HY +b*X, HY
= a*f(X;, Y)+b*f(X,, Y)

which shows that f(X, Y) satisfies property (1) of a Hermitian form. Now,
since XTHY is a (complex) scalar we have (XTHY)T = XTHY, and therefore

f(X, Y)* = (XTHY)* = (XTHY)T = YTHX = (Y, X)

where we used the fact that HY = H. Thus f(X, Y) satisfies property (2), and
hence defines a Hermitian form on C".

It is probably worth pointing out that XTHY will not be a Hermitian form
if the alternative definition mentioned above is used. In this case, one must

use (X, Y) = XTHY* (see Exercise 9.7.2). /

Now let V have basis {e;}, and let f be a Hermitian form on V. Then for
any X = X xle;and Y =3 yiei in V, we see that

fX,Y) = f(Sxle, Tyle) = i jx'*ylfle;, e) .

Just as we did in Theorem 9.9, we define the matrix elements h;; representing
a Hermitian form f by h;; = f(e;, ¢;). Note that since f(e;, ;) = f(e;, &)*, we see
that the diagonal elements of H = (h;;) must be real. Using this definition for
the matrix elements of f, we then have

f(X,Y) = Zi,in*hijyj = X'HY .

Following the proof of Theorem 9.9, this shows that any Hermitian form f has
a unique representation in terms of the Hermitian matrix H.

If we want to make explicit the basis referred to in this expression, we
write f(X, Y) = [X].TH[Y]. where it is understood that the elements h;; are
defined with respect to the basis {e;}. Finally, let us prove the complex ana-
logues of Theorems 9.11 and 9.14.
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Theorem 9.15 Let f be a Hermitian form on V, and let P be the transition
matrix from a basis {e;} for V to a new basis {e’;}. If H is the matrix of f with
respect to the basis {e;} for V, then H' = PTHP is the matrix of f relative to the
new basis {e';}.

Proof We saw in the proof of Theorem 9.11 that for any X € V we have
[X]e = P[X]e ', and hence [X]" = [X].' TPT. Therefore, for any X, Y € V we
see that

fX,Y) = [XI'H[Y]e = [X]eTPTHP[Y]e' = [X]e'TH'[Y]e'

where H' = PTHP is the (unique) matrix of f relative to the basis {e';}. N

Theorem 9.16 Let f be a Hermitian form on V. Then there exists a basis for
V in which the matrix of f is diagonal, and every other diagonal representation
of f has the same number of positive and negative entries.

Proof Using the fact that f(u, u) is real for all u € V along with the appropri-
ate polar form of f, it should be easy for the reader to follow the proofs of
Theorems 9.13 and 9.14 and complete the proof of this theorem (see Exercise
9.7.3). 1

We note that because of this result, our earlier definition for the signature
of a bilinear form applies equally well to Hermitian forms.
Exercises

1. Let f be a Hermitian form on V and q the associated quadratic form.
Verify the polar form

f(u, v) = (1/D)[qu +v) - q(u - V)] = @H[q(u + iv) — q(u - iv)] .
2. Verify the statement made at the end of Example 9.11.
3. Prove Theorem 9.16.

4. Show that the algorithm described in Section 9.6 applies to Hermitian
matrices if we allow multiplication by complex numbers and, instead of

multiplying by ET on the right, we multiply by E*T.

5. For each of the following Hermitian matrices H, use the results of the pre-

vious exercise to find a nonsingular matrix P such that PTHP is diagonal:
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@ 1 i ) 1 2+ 30
a
- 2 2-3i -1
1 i 2+1 1 1+1i 2i
(c) - 2 1-i d) [1-i 4 2-3i
2—-1 1+ 2 =2 2+3i 7

9.8 SIMULTANEOUS DIAGONALIZATION *
We now apply the results of Sections 8.1, 9.5 and 9.6 to the problem of simul-

taneously diagonalizing two real quadratic forms. After the proof we shall
give an example of how this result applies to classical mechanics.

Theorem 9.17 Let XTAX and X"BX be two real quadratic forms on an n-

dimensional Euclidean space V, and assume that XTAX is positive definite.
Then there exists a nonsingular matrix P such that the transformation X = PY

reduces X TAX to the form
XTAX = YTY = ()2 +-- -+ (y")?
and X TBX to the form
X™BX = Y'DY = M(yH)? +- - + ha(y")?
where A, . . ., Ay are roots of the equation
det(B-AA) =0 .
Moreover, the A; are real and positive if and only if X TBX is positive definite.

Proof Since A is symmetric, Theorem 9.13 tells us there exists a basis for V
that diagonalizes A. Furthermore, the corollary to Theorem 9.14 and the dis-
cussion following it shows that the fact A is positive definite means that the
corresponding nonsingular transition matrix R may be chosen so that the
transformation X = RY yields

XTAX = YTY = (D)2 +- -+ (y™% .

Note that YTY = XTAX = YTRTARY implies that
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RTAR =1 .

We also emphasize that R will not be orthogonal in general.

Now observe that RTBR is a real symmetric matrix since B is, and hence
(by the corollary to Theorem 8.2) there exists an orthogonal matrix Q such
that

QTRTBRQ = (RQ)TBRQ) = diag(h,,..., Ay) = D

where the A; are the eigenvalues of RTBR. If we define the nonsingular (and
not generally orthogonal) matrix P = RQ, then

PTBP = D
and
PTAP = QTRTARQ = QTIQ =1 .

Under the transformation X = PY, we are then left with

XTAX = YTPTAPY = Y'Y
as before, while

XTBX = Y'PTBPY = YIDY = A(y)2 + - - + An(y")>

as desired.
Now note that by definition, the A; are roots of the equation

det(RTBR-AI) = 0 .
Using RTAR =1 this may be written as
det[RT(B - MA)R] = 0 .
Since det R = det RT # 0, we find that (using Theorem 4.8)
dettB-AA) =0 .

Finally, since B is a real symmetric matrix, there exists an orthogonal
matrix S that brings it into the form

STBS = diag(u,,...,un) = D

where the w; are the eigenvalues of B. Writing X = SY, we see that
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XTBX = YTSTBSY = YT DY = w(y)2+- - - + u n(y"?

and thus XTBX is positive definite if and only if YTDY is positive definite,
1.e., if and only if every w; > 0. Since we saw above that

PTBP = diag(A,,...,Ay) = D

it follows from Theorem 9.14 that the number of positive w; must equal the

number of positive A;. Therefore X TBX is positive definite if and only if every
A>0. 1

Example 9.12 Let us show how Theorem 9.17 can be of help in classical
mechanics. This example requires a knowledge of both the Lagrange equa-
tions of motion and Taylor series expansions. The details of the physics are
given in, e.g., the classic text by Goldstein (1980). Our purpose is simply to
demonstrate the usefulness of this theorem.

Consider the small oscillations of a conservative system of N particles
about a point of stable equilibrium. We assume that the position r; of the ith
particle is a function of n generalized coordinates q;, and not explicitly on the

time t. Thus we write r; = ri(qy, . . . , qn), and
r, . qor .
i~ J
dt 51949,

where we denote the derivative with respect to time by a dot.

Since the velocity v; of the ith particle is given by I, , the kinetic energy T
of the ith particle is ( 1/2)mi(vi)2 = (1/2)m;i;o1;, and hence the kinetic energy
of the system of N particles is given by

N n
| S ..
T = zlamiri'ri = 2 M jq 4y
i= j k=1
where

ri
ik_E_ T

dq; a‘]k
Thus the kinetic energy is a quadratlc form in the generalized velocities ;. We
also assume that the equilibrium position of each q; is at q; = 0. Let the poten-
tial energy of the system be V = V(q;, ..., qn). Expanding V in a Taylor
series expansion about the equilibrium point, we have (using an obvious nota-
tion for evaluating functions at equilibrium)

NE% l
V(ql, vy qn)=V(0)+2(_) i 5 E ( ] qu]
21\, o i\ 99,9 0
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At equilibrium, the force on any particle vanishes, and hence we must have
(0V/0q;)o = 0 for every 1. Furthermore, we may shift the zero of potential and
assume that V(0) = 0 because this has no effect on the force on each particle.
We may therefore write the potential as the quadratic form

n
V= E bz‘j‘]iq b
i, j=1
where the b;; are constants, and b;; = b;;. Returning to the kinetic energy, we
expand M;; about the equilibrium position to obtain

N OM
M,:/(‘]]a..-, (],1)=M,:,-(0)+E( l]) gy + - .
=1\ %4k Jo

To a first approximation, we may keep only the first (constant) term in this
expansion. Then denoting M;;(0) by a;; = a;; we have

n
T = E aiquq i -
i, j=1
so that T is also a quadratic form.
The Lagrange equations of motion are

afor) o
dt\dq; ) 0q;

where L =T - V is called the Lagrangian. Since T is a function of the ¢; and
V is a function of the q; , the equations of motion take the form

dafor)_ v (*)
dr\og;)  oq;

Now, the physical nature of the kinetic energy tells us that T must be a posi-
tive definite quadratic form, and hence we seek to diagonalize T as follows.

Define new coordinates q',, . . . , q'n by @ = Z;p;;q; where P = (p;) is a
nonsingular constant matrix. Then differentiating with respect to time yields
q; = Z;pid’; so that the q; are transformed in the same manner as the g;. By
Theorem 9.17, the transformation P may be chosen so that T and V take the
forms

T =@+ +@w

and

V= 7\'1((1/1)2 L 7\'n(q/n)z .
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Since V=0atq, =- - - =qp =0, the fact that P is nonsingular tells us that V =
Oatq,=---=q'n =0 as well. Thus we see that V is also positive definite,

and hence each A; > 0. This means that we may write A; = 0012 where each w; is
real and positive.

Since P is a constant matrix, the equations of motion (*) are just as valid
for T and V expressed in terms of q'; and q';. Therefore, substituting these
expressions for T and V into (*), we obtain the equations of motion

d*q
dr?

2
=-W; q; -

Foreachi=1,...,n the solution to this equation is

!

qi = o cos(mt + f3;)

where o; and f3; are constants to be determined from the initial conditions of
the problem.

The coordinates q'; are called the normal coordinates for the system of
particles, and the form of the solution shows that the particles move according
to simple harmonic motion. /

For additional applications related to this example, we refer the reader to
any advanced text on classical mechanics, such as those listed in the bibliog-
raphy. (See, eg., Marion, chapter 13.6.)



CHAPTER 10

Linear Operators

Recall that a linear transformation T € L(V) of a vector space into itself is
called a (linear) operator. In this chapter we shall elaborate somewhat on the
theory of operators. In so doing, we will define several important types of
operators, and we will also prove some important diagonalization theorems.
Much of this material is directly useful in physics and engineering as well as
in mathematics. While some of this chapter overlaps with Chapter 8, we
assume that the reader has studied at least Section 8.1.

10.1 LINEAR FUNCTIONALS AND ADJOINTS

Recall that in Theorem 9.3 we showed that for a finite-dimensional real inner
product space V, the mapping u — L, = (u, ) was an isomorphism of V onto
V*. This mapping had the property that L,,v = (au, v) = a{u, v) = aL,v, and
hence L,, = al,, for all u € V and a € R. However, if V is a complex space
with a Hermitian inner product, then L,,v = (au, v) = a*(u, v) = a*L,v, and
hence L,, = a*L, which is not even linear (this was the definition of an anti-
linear (or conjugate linear) transformation given in Section 9.2). Fortunately,
there is a closely related result that holds even for complex vector spaces.

Let V be finite-dimensional over C, and assume that V has an inner prod-
uct { , ) defined on it (this is just a positive definite Hermitian form on V).
Thus for any X, Y € V we have (X, Y) € C. For example, with respect to the

40N
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standard basis {e;} for C" (which is the same as the standard basis for R"), we

have X = Xx'e; and hence (see Example 2.13)

(X,Y)= <2ixiei, ijjej> = Zi’jxi*yj <e,-, €j> = zi,jxi*yjaij

=3 x'ry = xy |

Note that we are temporarily writing X*T rather than Xt. We will shortly
explain the reason for this (see Theorem 10.2 below). In particular, for any
T e L(V) and X € V we have the vector TX € V, and hence it is meaningful
to write expressions of the form (TX, Y) and (X, TY).

Since we are dealing with finite-dimensional vector spaces, the Gram-
Schmidt process (Theorem 2.21) guarantees that we can always work with an
orthonormal basis. Hence, let us consider a complex inner product space V
with basis {e;} such that (e;, &) = 0. Then, just as we saw in the proof of

Theorem 9.1, we now see that for any u = Yul €j € V we have

(e, u) = (e, Zule) = Sule, ¢) = Zuld;, = ul

and thus
u = Zi(ei, uje; .

Now consider the vector Te;. Applying the result of the previous para-
graph we have
Te; = (e, Teje; .

But this is precisely the definition of the matrix A = (a;;) that represents T rel-
ative to the basis {e;}. In other words, this extremely important result shows
that the matrix elements a;; of the operator T € L(V) are given by
a; = (e, Tey) .

It is important to note however, that this definition depended on the use of an
orthonormal basis for V. To see the self-consistency of this definition, we go
back to our original definition of (a;) as Te; = Zkekakj . Taking the scalar
product of both sides of this equation with e; yields (using the orthonormality
of the e;)

(ei,Tej) = (ei,Zkekakj) = Zkakj(ei,ek) = Zkakjaik = a; .

We now prove the complex analogue of Theorem 9.3.



492 LINEAR OPERATORS

Theorem 10.1 Let V be a finite-dimensional inner product space over C.
Then, given any linear functional L on V, there exists a unique u € V such
that Lv=(u,v)forallve V.

Proof Let {e;} be an orthonormal basis for V and define u = 2 (Le;)*e; . Now
define the linear functional L, on V by Lyv = (u, v) for every v € V. Then, in
particular, we have

Luyei = (u,e) = (zj(Lej)*ej,ei) = ZjLej(ej,ei) = ZjLejéji = Le; .

Since L and L, agree on a basis for V, they must agree on any v € V, and
hence L=L, =(u, ).

As to the uniqueness of the vector u, suppose u’ € V has the property that
Lv = (u', v) for every v € V. Then Lv = (u, v) = (u/, v) so that (u - u’, v) = 0.
Since v was arbitrary we may choose v=u - u’. Then (u - u’, u-u') =0
which implies that (since the inner product is just a positive definite Hermitian
form)u-u' =0oru=u'. i

The importance of finite-dimensionality in this theorem is shown by the
following example.

Example 10.1 Let V = R[x] be the (infinite-dimensional) space of all poly-
nomials over R, and define an inner product on V by

. 8= [ f(0)g() dx

for every f, g € V. We will give an example of a linear functional L on V for
which there does not exist a polynomial h € V with the property that Lf =
(h,f)forallfE V.

To show this, define the nonzero linear functional L by

Lf = 1(0) .

(L 1s nonzero since, e.g., L(a + x) = a.) Now suppose there exists a polynomial
h € V such that Lf = f(0) = (h, f) for every f € V. Then, in particular, we have

L(xf) = 0f(0) = 0 = (h, xf)

for every f € V. Choosing f = xh we see that

0=(h, xzh)=f;x2h2dx .
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Since the integrand is strictly positive, this forces h to be the zero polynomial.
Thus we are left with Lf = (h, f) = (0, f) = 0 for every f € V, and hence L = 0.
But this contradicts the fact that L # 0, and hence no such polynomial h can
exist.

Note the fact that V is infinite-dimensional is required when we choose f =
xh. The reason for this is that if V consisted of all polynomials of degree <
some positive integer N, then f = xh could have degree > N. /

Now consider an operator T € L(V), and let u be an arbitrary element of
V. Then the mapping L,: V — C defined by L,v = (u, Tv) for every v E V is
a linear functional on V. Applying Theorem 10.1, we see that there exists a
unique u’ € V such that (u, Tv) = Lyv = (u/, v) for every v € V. We now
define the mapping T™: V. — V by TTu = u'. In other words, we define the
adjoint TT of an operator T € L(V) by

(TTu,v) = (u, Tv)

for all u, v € V. The mapping TT is unique because u’ is unique for a given u.
Thus, if TTu =u’ = Ttu, then (TT - TT)u =0 for every u € V, and hence TT -
Tt =0o0r Tt =TT,

Note further that

(Tu,v) = (v, Tu)* = (TTv,u)* = (u, TTv) .

However, it follows from the definition that (u, TTv) = (TTTu, v). Therefore
the uniqueness of the adjoint implies that TT™ =T.

Let us show that the map T is linear. For all u,, u,, vE V and a, b € C we
have

(TT(au1 +bu,), v)=(au; + bu,, Tv)
=a*(uy, Tv)+ b*(u,, Tv)
= a*(T u, v)+ b*(T uy, v)
=(aT "u;, v)+ (bT 'u,, v)

= (aTTul +bTTu2, V) .
Since this is true for every v € V, we must have
T'(au, + bu,) = aTTu, + bTTu, .

Thus TT is linear and TT € L(V).
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If {e;} is an orthonormal basis for V, then the matrix elements of T are
given by a;; = (e;, Te;). Similarly, the matrix elements b;; of TT are related to
those of T because

b = (e, TTe) = (Tei,e) = (e, Te))* = a* .

ij Hi

In other words, if A is the matrix representation of T relative to the orthonor-
mal basis {e;}, then A*T is the matrix representation of TT. This explains the
symbol and terminology for the Hermitian adjoint used in the last chapter.
Note that if V is a real vector space, then the matrix representation of TT is
simply AT, and we may denote the corresponding operator by T.

We summarize this discussion in the following theorem, which is valid

only in finite-dimensional vector spaces. (It is also worth pointing out that T
depends on the particular inner product defined on V.)

Theorem 10.2 Let T be a linear operator on a finite-dimensional complex
inner product space V. Then there exists a unique linear operator TT on V
defined by (TTu, v) = (u, Tv) for all u, v € V. Furthermore, if A is the matrix

representation of T relative to an orthonormal basis {e;}, then AT = A*Tis the
matrix representation of TT relative to this same basis. If V is a real space,

then the matrix representation of TT is simply AT.

Example 10.2 Let us give an example that shows the importance of finite-
dimensionality in defining an adjoint operator. Consider the space V = R[x] of
all polynomials over R, and let the inner product be as in Example 10.1.
Define the differentiation operator D € L(V) by Df = df/dx. We show that
there exists no adjoint operator D' that satisfies (Df, g) = (f, DTg).

Using (Df, g) = (f, Dg), we integrate by parts to obtain

. D'g)=(Df. g)= [, (Df)g dx = [ [D(fg)~ fDgldx
= (f)(1) = (fe)0)~ £, Dg) -

Rearranging, this general result may be written as
(f, (D +DMg) = (fg)(1) - (fg)(0) .

We now let f = X2(1 - X)zp for any p € V. Then f(1) = f(0) = 0 so that we are
left with
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0=1{f,(D+D")g)= folxz(l —x)2p(D+D")g dx

=(x*(1-x)*(D+DYg, p) .

Since this is true for every p € V, it follows that X2(1 - X)Z(D +DT)g =0. But

X2(1 - x)2 > (0 except at the endpoints, and hence we must have (D + DT)g =0
for all g € V, and thus D + DT = 0. However, the above general result then
yields

0 = (f,(D+Dhg) = (f)(1) - (fg)(0)

which is certainly not true for every f, g € V. Hence DT must not exist.
We leave it to the reader to find where the infinite-dimensionality of V =
R[x] enters into this example. /

While this example shows that not every operator on an infinite-dimen-
sional space has an adjoint, there are in fact some operators on some infinite-
dimensional spaces that do indeed have an adjoint. A particular example of
this is given in Exercise 10.1.3. In fact, the famous Riesz representation theo-
rem asserts that any continuous linear functional on a Hilbert space does
indeed have an adjoint. While this fact should be well known to anyone who
has studied quantum mechanics, we defer further discussion until Chapter 12
(see Theorem 12.26).

As defined previously, an operator T € L(V) is Hermitian (or self-
adjoint) if TT = T. The elementary properties of the adjoint operator TT are
given in the following theorem. Note that if V is a real vector space, then the
properties of the matrix representing an adjoint operator simply reduce to
those of the transpose. Hence, a real Hermitian operator is represented by a
(real) symmetric matrix.

Theorem 10.3 Suppose S, T € L(V) and ¢ € C. Then
(@ (S+T)T=ST+TT.
(b) (cT)T = c*TT.
(c) (ST)T =TT7ST.
(d) TTT =(TT)"=T.
(e) I' =T and 0T = 0.
) (TH=(TH".

Proof Letu,v €V be arbitrary. Then, from the definitions, we have
(a) (S+ T)Tu, = (u, (S+T)W) =(u, Sv+1v)=(u, Sv)+(u, Tv)
=(STu, V+(TTu, vy = (ST+THu, v).
(b) ((cT) u, v)={u, cTv) = clu, Tv) = c(T "u, v) = (¢*Tu, v).
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() ((ST) u, v) = (u, (STW) = (u, S(Tv)) = (STu, Tv)
=(T7(S™u), v) = (TTSTHu, v).
(d) This was shown in the discussion preceding Theorem 10.2.
(e) Iu,v) = (u,v) = (u, Iv) = (Ifu, v).
(Ou,v) = (0,v) = 0 = (u,0v) = (0Tu, v).
f)I=1I=(TTHT = (THTTT so that (T™)T = (TH)™.

The proof is completed by noting that the adjoint and inverse operators are
unique. B

Corollary If T € L(V) is nonsingular, then so is TT.
Proof This follows from Theorems 10.3(f ) and 5.10. K

We now group together several other useful properties of operators for
easy reference.

Theorem 10.4 (a) Let V be an inner product space over either R or C, let
T € L(V), and suppose that (u, Tv) =0 forallu,vE V. Then T = 0.

(b) Let V be an inner product space over C, let T € L(V), and suppose
that (u, Tu)=0forallu &€ V. Then T =0.

(c) Let V be a real inner product space, let T € L(V) be Hermitian, and
suppose that (u, Tu) =0 forallu&€ V. Then T = 0.

Proof (a) Let u = Tv. Then, by definition of the inner product, we see that
(Tv, Tv) = 0 implies Tv = 0 for all v &€ V which implies that T = 0.
(b) For any u, vE V we have (by hypothesis)

O=(u+v, T(u+v))
=(u, Tu)+(u, Tv)+ (v, Tu)+ (v, Tv)
=0+ (u, Tv)+ (v, Tu)+0
={(u, Tv)+ (v, Tu)

(*)

Since v is arbitrary, we may replace it with iv to obtain
0 = i{u, Tv) —i{v, Tu) .

Dividing this by i and adding to (*) results in O = (u, Tv) for any u, vE V. By
(a), this implies that T = 0.

(c) For any u, vE V we have (u + v, T(u + v)) = 0 which also yields (*).
Therefore, using (*), the fact that T = T, and the fact that V is real, we obtain
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0= (TTu, W+ (v, Tu) = (Tu, v)+ (v, Tu) = (v, Tu)+ (v, Tu)
=2(v, Tu).

Since this holds for any u, v E V we have T =0 by (a). (Note that in this par-
ticular case, T"=TT.) 1

Exercises

1. Suppose S, T € L(V).
(a) If S and T are Hermitian, show that ST and TS are Hermitian if and
only if [S, T] =ST -TS =0.
(b) If T is Hermitian, show that STTS is Hermitian for all S.
(¢) If S is nonsingular and STTS is Hermitian, show that T is Hermitian.

2. Consider V = M (C) with the inner product (A, B) = Tr(BTA). For each
M € V, define the operator Ty € L(V) by Tm(A) = MA. Show that
(Tm)" =Twmt.

3. Consider the space V = C[x]. If f = Jax' € V, we define the complex

conjugate of f to be the polynomial f* = Za;*x! € V. In other words, if
t € R, then *(t) = (f(t))*. We define an inner product on V by

1
i, 8= [, fns@dr .
For each f € V, define the operator T € L(V) by T¢(g) = fg. Show that
(Tp¥ =Ty~

4. Let V be the space of all real polynomials of degree < 3, and define an
inner product on V by

1
i, &)= [, f(D)g0) dx .
For any t € R, find a polynomial h; € V such that (h, f) = f(t) for all f €
V.

5. If Vs as in the previous exercise and D is the usual differentiation oper-
ator on V, find DT.

6. Let V = C? with the standard inner product.
(a) Define T € L(V) by Te, = (1, -2), Te, = (i, -1). If v = (z, z,), find
Tv.
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(b) Define T € L(V) by Te, = (1 + i, 2), Te, = (i, i). Find the matrix rep-
resentation of TT relative to the usual basis for V. Is it true that [T, TT] =
0?

7. Let V be a finite-dimensional inner product space and suppose T € L(V).
Show that Im TT = (Ker T)*.

8. Let V be a finite-dimensional inner product space, and suppose E € L(V)
is idempotent, i.e., E? = E. Prove that ET = E if and only if [E, Ef] = 0.

9. For each of the following inner product spaces V and L € V*, find a
vector u € V such that Lv = (u, v) for all v € V:
(a) V= R3 and L(x,y,z)=x -2y +4z.
(b) V=C?and L(z,, 2,) = 2, - 2,.
(c) V is the space of all real polynomials of degree < 2 with inner product
as in Exercise 4, and Lf = f(0) + Df(1). (Here D is the usual differentia-
tion operator.)

10. (@) LetV = R?, and define T € L(V) by T(x, y) =(2x +y, x — 3y). Find
TT(3, 5).
(b) LetV = C?, and define T € L(V) by T(z,, z,) = 2z, + iz,, (1 - i)z)).
Find TT(3 - i, 1 + i2).
(c) LetV be as in Exercise 9(c), and define T € L(V) by Tf = 3f + Df.
Find Tf where f = 3x* — x + 4.

10.2 ISOMETRIC AND UNITARY OPERATORS

Let V be a complex inner product space with the induced norm. Another
important class of operators U € L(V) is that for which [Uvll = vl for all v €
V. Such operators are called isometric because they preserve the length of the
vector v. Furthermore, for any v, w € V we see that

IUv — Uwl = UV =-w)l = |v-wl

so that U preserves distances as well. This is sometimes described by saying
that U is an isometry.

If we write out the norm as an inner product and assume that the adjoint
operator exists, we see that an isometric operator satisfies

(v,v) = (Uv, Uv) = (v, (UTU)v)
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and hence (v, (UTU - 1)v) = 0 for any v € V. But then from Theorem 10.4(b))
it follows that
Ui =1.

In fact, this is sometimes taken as the definition of an isometric operator. Note
that this applies equally well to an infinite-dimensional space.
If V is finite-dimensional, then (Theorems 3.21 and 5.13) it follows that
Ut =U", and hence
UTU = UUT= 1 .

Any operator that satisfies either UTU = UUT = 1 or UT = U™ is said to be
unitary. It is clear that a unitary operator is necessarily isometric. If V is
simply a real space, then unitary operators are called orthogonal.

Because of the importance of isometric and unitary operators in both
mathematics and physics, it is worth arriving at both of these definitions from
a slightly different viewpoint that also aids in our understanding of these
operators. Let V be a complex vector space with an inner product defined on
it. We say that an operator U is unitary if |Uvl = vl for all v € V, and in
addition, it has the property that it is a mapping of V onto itself. Since |Uv| =
Ivl, we see that Uv = 0 if and only if v = 0, and hence Ker U = {0}. Therefore
U is one-to-one and U™ exists (Theorem 5.5). Since U is surjective, the
inverse is defined on all of V also. Note that there has been no mention of
finite-dimensionality. This was avoided by requiring that the mapping be sur-
jective.

Starting from [Uv| = |vl, we may write (v, (UTU)v) = (v, v). As we did in
the proof of Theorem 10.4, if we first substitute v =v, + v, and then v =v, +
iv,, divide the second of these equations by i and then add to the first, we find
that (v,, (UTU)v,) = (v,, v,). Since this holds for all v,, v, € V, it follows that
UTU = 1. If we now multiply this equation from the left by U we have UUTU
= U, and hence (UUT)(Uv) = Uv for all v E V. But as v varies over all of V,
so does Uv since U is surjective. We then define v' = Uv so that (UUT)v' = v’
for all v/ € V. This shows that UTU = 1 implies UUT = 1. What we have just
done then, is show that a surjective norm-preserving operator U has the
property that UTU = UUT = 1. It is important to emphasize that this approach
is equally valid in infinite-dimensional spaces.

We now define an isometric operator €2 to be an operator defined on all of
V with the property that |Qvl = [vl for all v € V. This differs from a unitary
operator in that we do not require that € also be surjective. Again, the
requirement that € preserve the norm tells us that €2 has an inverse (since it
must be one-to-one), but this inverse is not necessarily defined on the whole
of V. For example, let {e;} be an orthonormal basis for V, and define the
“shift operator” € by

Q(e) = €j41 -
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This Q is clearly defined on all of V, but the image of € is not all of V since it
does not include the vector €,. Thus, Q' is not defined on e,.

Exactly as we did for unitary operators, we can show that Q7Q = 1 for an
isometric operator €. If V happens to be finite-dimensional, then obviously
QQ" = 1. Thus, on a finite-dimensional space, an isometric operator is also
unitary.

Finally, let us show an interesting relationship between the inverse Q™ of
an isometric operator and its adjoint Qf. From QfQ = 1, we may write
Q7(Q v) = v for every v € V. If we define Qv = V', then for every v/ € Im Q
we have v = Q™v', and hence

Qv = Q' forvEImQ .

On the other hand, if w' € (Im Q)*, then automatically (w’, Qv) = 0 for every
v € V. Therefore this may be written as (QTw’, v) = 0 for every v € V, and
hence (choose v = QTw")

Qfw' =0 forw € (Im Q)* .

In other words, we have

o Q' onImQ
0 on(mQ)*

For instance, using our earlier example of the shift operator, we see that
(e;, e;) =0 fori= 1, and hence e, € (Im Q)*. Therefore Q7(e,) =0, so that we
clearly can not have QQT = 1.

Our next theorem summarizes some of this discussion.

Theorem 10.5 Let V be a complex finite-dimensional inner product space.
Then the following conditions on an operator U € L(V) are equivalent:

(a) UT=U".

(b) (Uv, Uw)=(v,w)forallv, wE V.

(¢) 1U0vI = |vl.

Proof (a)=>(b): (Uv,Uw) = (v, (UTU)w) = (v,Iw) = (v, w).

(b) = (c): IUVI = (Uv, UV)'"2 = (v, v)!? = Ivl.

(c) = (a): (v, (UTU)v) = (Uv, Uv) = (v,v) = (v, Iv), and therefore
(v, (UTU -T)v) = 0. Hence (by Theorem 10.4(b)) we must have UTU =1, and
thus UT = U™ (since V is finite-dimensional). W
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From part (c) of this theorem we see that U preserves the length of any
vector. In particular, U preserves the length of a unit vector, hence the desig-
nation “unitary.” Note also that if v and w are orthogonal, then (v, w) =0 and
hence (Uv, Uw) = (v, w) = 0. Thus U maintains orthogonality as well.

Condition (b) of this theorem is sometimes described by saying that a
unitary transformation preserves inner products. In general, we say that a
linear transformation (i.e., a vector space homomorphism) T of an inner
product space V onto an inner product space W (over the same field) is an
inner product space isomorphism of V onto W if it also preserves inner
products. Therefore, one may define a unitary operator as an inner product
space isomorphism.

It is also worth commenting on the case of unitary operators defined on a
real vector space. Since in this case the adjoint reduces to the transpose, we

have UT = UT = U™, If V is a real vector space, then an operator T = L(V) that

satisfies TT = T is said to be an orthogonal transformation. It should be
clear that Theorem 10.5 also applies to real vector spaces if we replace the
adjoint by the transpose. We will have more to say about orthogonal transfor-
mations below.

Theorem 10.6 Let V be finite-dimensional over C (resp. R). A linear trans-
formation U € L(V) is unitary (resp. orthogonal) if and only if it takes an
orthonormal basis for V into an orthonormal basis for V.

Proof We consider the case where V is complex, leaving the real case to the
reader. Let {e;} be an orthonormal basis for V, and assume that U is unitary.
Then from Theorem 10.5(b) we have

(Ue;, Ug) = (ei, ) = 61j
so that {Ue;} is also an orthonormal set. But any orthonormal set is linearly
independent (Theorem 2.19), and hence {Ue;} forms a basis for V (since there
are as many of the Ue; as there are e;).

Conversely, suppose that both {e;} and {Ue;} are orthonormal bases for V
and let v, w € V be arbitrary. Then

(v, w)=(Zp'e;, Zwle)) =2, v'*w/le, e) =2, v *wlo,

=S

However, we also have
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(Uv, Uw) = (U(Ep'e), UEZ wle)) = Z; v *w/{Ue;, Ue,)

=3, vEwIs, =2yl = (v, w)
This shows that U is unitary (Theorem 10.5). R

Corollary Let V and W be finite-dimensional inner product spaces over C.
Then there exists an inner product space isomorphism of V onto W if and only
if dim V =dim W.

Proof Clearly dim V =dim W if V and W are isomorphic. On the other hand,
let {e,, ..., en} be an orthonormal basis for V, and let {&,, ... ,€,} be an
orthonormal basis for W. (These bases exist by Theorem 2.21.) We define the
(surjective) linear transformation U by the requirement Ue; = &;. U is unique
by Theorem 5.1. Since (Ue;, Ue;) = (i, €;) = 0;; = (e, ¢;), the proof of Theorem
10.6 shows that U preserves inner products. In particular, we see that [Uv| =
Ivl for every v € V, and hence Ker U = {0} (by property (N1) of Theorem

2.17). Thus U is also one-to-one (Theorem 5.5). |

From Theorem 10.2 we see that a complex matrix A represents a unitary
operator relative to an orthonormal basis if and only if AT = A™. We therefore
say that a complex matrix A is a unitary matrix if AT = A™. In the special

case that A is a real matrix with the property that AT = A~ then we say that A
is an orthogonal matrix. (These classes of matrices were also discussed in
Section 8.1.) The reason for this designation is shown in the next example,
which is really nothing more than another way of looking at what we have
done so far.

Example 10.3 Suppose V = R" and X € V. In terms of an orthonormal basis

{e;} for V we may write X = Xx'e;, Now suppose we are given another
orthonormal basis {&;} related to the first basis by & = A(e;) = 2ie;a; for some

real matrix (a;). Relative to this new basis we have A(X) = X = X.x'e; where
x' = Zjaij)‘(j (see Section 5.4). Then

2 . . . . . .
|1X|" = Zix'es, Zixlej) = Z; x'xlle;, €)= Z; x'x75;

_ i2 —j=k _ T —j—k
=2 (x')" = Zi’j’kaijaikx Xt = zi’j’ka ianx’x

=3, (ATA), T/x" .

If A is orthogonal, then AT = A" so that (ATA)J-k = 0;x and we are left with
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IXI? = Z(x)? = Z®)? = IXI?

so that the length of X is unchanged under an orthogonal transformation. An
equivalent way to see this is to assume that A simply represents a rotation so
that the length of a vector remains unchanged by definition. This then forces
A to be an orthogonal transformation (see Exercise 10.2.2).

Another way to think of orthogonal transformations is the following. We
saw in Section 2.4 that the angle 8 between two vectors X, Y € R" is defined
by

(X, Y)
Ixuyn

Under the orthogonal transformation A, we then have X = A(X) and also

<

7_ (X, 7)
Xyl

But IXI = IXl and IY[l = Y], and in addition,

(X, Y)=(Zx'e;, ijjej> =Zx'y = Zi,j,kaij)?jaikyk
=3, 0,3y =2 X5 = (X, Y)

so that @ = @ (this also follows from the real vector space version of Theorem
10.5). Therefore an orthogonal transformation also preserves the angle

between two vectors, and hence is nothing more than a rotation in R". /

Theorem 10.7 The following conditions on a matrix A are equivalent:
(a) A is unitary.
(b) The rows A; of A form an orthonormal set.

(¢) The columns Al of A form an orthonormal set.

Proof We begin by by noting that, using the usual inner product on C", we
have
(AAT)ij = ZkaikaTkj = Zkaika*jk = Zka*jkaik = (Aj,Ai)
and
(ATA)ij = ZkaTikakj = Zka*kiakj = (Ai, Aj) .

Now, if A is unitary, then AAT =T implies (AAT);; = §;; which then implies
that (A;, A;) = §;; so that (a) is equivalent to (b). Similarly, we must have
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(ATA)U =9 = (Ai, Aj) so that (a) is also equivalent to (c). Therefore (b) must
also be equivalent to (c). Il

Note that the equivalence of (b) and (c) in this theorem means that the
rows of A form an orthonormal set if and only if the columns of A form an

orthonormal set. But the rows of A are just the columns of AT, and hence A is
unitary if and only if AT is unitary.

It should be obvious that this theorem applies just as well to orthogonal
matrices. Looking at this in the other direction, we see that in this case AT =
A~ sothat ATA = AAT =1, and therefore

(ATA); = Zpa" gy = Zpaay; = 6;

T T
(AA ij = Zkaika kj = Zkaikajk = 6U .

Viewing the standard (orthonormal) basis {e;} for R" as row vectors, we have

A; = 2a;e;, and hence

<Ai’ A_]) = (zkaikek’ Zrajrer) = 2k,raikajr<ek’ er>

=2, ,aya;0, = Zpagay =06; .

Furthermore, it is easy to see that a similar result holds for the columns of A.
Our next theorem details several useful properties of orthogonal and uni-
tary matrices.

Theorem 10.8 (a) If A is an orthogonal matrix, then det A = +1.

(b) If U is a unitary matrix, then |det U] = 1. Alternatively, det U = ¢ for
some real number ¢.

Proof (a) We have AAT =1, and hence (from Theorems 4.8 and 4.1)
1 = detl = det(AAT) = (det A)(det AT) = (det A)?

so that det A = +1.
(b) If UUT =1 then, as above, we have

1=detl =det(UU") = (detU)(detU") = (detU)(det U™ )*
= (detU)(detU Y = |detU|” .
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Since the absolute value is defined to be positive, this shows that |det U| = 1

and hence det U = ¢" for some real ¢. B

Example 10.4 Let us take a look at rotations in R? as shown, for example, in
the figure below. Recall from Example 10.3 that if we have two bases {e;} and
{&:}, then they are related by a transition matrix A = (a;;) defined by & =

2,e;a;;. In addition, if X = Sxle; = ¥x'e,, then x' = Zjaij)‘;j. If both {e;} and {&;}

17
are orthonormal bases, then

(ei,éj) = (e, Zkekakj) = zkakj(ei,ek) = Zkakjaik = a; .

Using the usual dot product on R? as our inner product (see Section 2.4,
Lemma 2.3) and referring to the figure below, we see that the elements a;; are
given by (also see Section 0.6 for the trigonometric identities)i

ay, = e+¢, =|e||e)|cosb = cosH
ay, = e,°¢, =|e|||&|cos(w/2 + 0) = -sin0
ay; = €y¢, =|e,||e;|cos(w/2 - 0) = sinb

ayy = €02 =|e,]|2;|cos6 = cos O

X7
X7

Thus the matrix A is given by

@) cosf@ -sinf
a.)= .
v sinf cosf

We leave it to the reader to compute directly that ATA = AAT =T and det A =
+1. /

Example 10.5 Referring to the previous example, we can show that any
(real) 2 x 2 orthogonal matrix with det A = +1 has the form
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@) cosf -sinf
a.. =
v sinf cosé@

for some 0 € R. To see this, suppose A has the form

a b

c d
where a, b, ¢, d € R. Since A is orthogonal, its rows form an orthonormal set,
and hence we have

a2+b%=1, c2+d*’=1, ac+bd=0, ad-bc=1

where the last equation follows from det A = 1.

If a = 0, then the first of these equations yields b = +1, the third then yields
d =0, and the last yields —c = 1/b = +1 which is equivalent to ¢ = —b. In other
words, if a = 0, then A has either of the following forms:

0 1 0 -1
or .
-1 0 1 0
The first of these is of the required form if we choose 6 = -90° = /2, and

the second is of the required form if we choose 8 = +90° = +m/2.
Now suppose that a # 0. From the third equation we have ¢ = —bd/a, and

substituting this into the second equation, we find (a® + b®)d?> = a?. Using the
first equation, this becomes a®> = d? or a = +d. If a = —d, then the third equation

yields b = ¢, and hence the last equation yields —a*> — b?> = 1 which is im-
possible. Therefore a = d, the third equation then yields ¢ = —-b, and we are left
with

Sincedet A=a?2+c?= 1, there exists a real number 0 such that a = cos 6 and

¢ = sin O which gives us the desired form for A. /

Exercises

1. Let GL(n, C) denote the subset of M,(C) consisting of all nonsingular
matrices, U(n) the subset of all unitary matrices, and L(n) the set of all
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nonsingular lower-triangular matrices.

(a) Show that each of these three sets forms a group.

(b) Show that any nonsingular n X n complex matrix can be written as a
product of a nonsingular upper-triangular matrix and a unitary matrix.
[Hint: Use Exercises 5.4.14 and 3.7.7.]

. Let V = R" with the standard inner product, and suppose the length of any
X € V remains unchanged under A € L(V). Show that A must be an
orthogonal transformation.

. Let V be the space of all continuous complex-valued functions defined on
[0, 27t], and define an inner product on V by

1 2
o= [, f@s@adr .

Suppose there exists h € V such that |h(x)| = 1 for all x € [0, 2], and
define Ty, € L(V) by Tyf = hf. Prove that T is unitary.

. Let W be a finite-dimensional subspace of an inner product space V, and

recall that V.=W ® W+ (see Exercise 2.5.11). Define U € L(V) by
Uw, +w,) = w;—w,

where w, € W and w, € W+,

(a) Prove that U is a Hermitian operator.

(b) Let V =R have the standard inner product, and let W C V be spanned
by the vector (1, O, 1). Find the matrix of U relative to the standard basis
for V.

. Let V be a finite-dimensional inner product space. An operator Q2 € L(V)

is said to be a partial isometry if there exists a subspace W of V such that
IQwl = Iwl for all w € W, and I1QwI =0 for all w € W*. Let Q be a partial
isometry and suppose {wi, . .., Wk} is an orthonormal basis for W.

(a) Show that (Qu, Qv) = (u, v) for all u, v € W. [Hint: Use Exercise
2.4.7.]

(b) Show that {Qwy, ..., Qwg} is an orthonormal basis for Im €.

(c) Show there exists an orthonormal basis {v;} for V such that the first k
columns of [€2], form an orthonormal set, and the remaining columns are

Zero.
(d) Let {uy, ..., u} be an orthonormal basis for (Im Q)*. Show that
{Qwi,..., Q2w uy,...,usis an orthonormal basis for V.

(e) Suppose T € L(V) satisfies T(Q22 w;) = w; (for I <1 <k) and Tu; =0
(for 1 <i=<r). Show that T is well-defined, and that T = Q7.
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(f) Show that QT is a partial isometry.

6. Let V be a complex inner product space, and suppose H € L(V) is
Hermitian. Show that:
(a) Iv + iHvl = lv - iHv| forall vE V.
(b) u+iHu=v +iHvif and only if u=v.
(c) 1 +iHand 1 - iH are nonsingular.
(d) If V is finite-dimensional, then U = (1 - {H)(1 + iH)™ is a unitary
operator. (U is called the Cayley transform of H. This result is also true
in an infinite-dimensional Hilbert space but the proof is considerably more
difficult.)

10.3 NORMAL OPERATORS

We now turn our attention to characterizing the type of operator on V for
which there exists an orthonormal basis of eigenvectors for V. We begin by
taking a look at some rather simple properties of the eigenvalues and eigen-
vectors of the operators we have been discussing.

To simplify our terminology, we remark that a complex inner product
space is also called a unitary space, while a real inner product space is some-
times called a Euclidean space. If H is an operator such that H = —H, then H
is said to be anti-Hermitian (or skew-Hermitian). Furthermore, if P is an
operator such that P = STS for some operator S, then we say that P is positive
(or positive semidefinite or nonnegative). If S also happens to be nonsingular
(and hence P is also nonsingular), then we say that P is positive definite. Note
that a positive operator is necessarily Hermitian since (S¥S)™ = STS. The rea-
son that P is called positive is shown in part (d) of the following theorem.

Theorem 10.9 (a) The eigenvalues of a Hermitian operator are real.

(b) The eigenvalues of an isometry (and hence also of a unitary transfor-
mation) have absolute value one.

(c) The eigenvalues of an anti-Hermitian operator are pure imaginary.

(d) A positive (positive definite) operator has eigenvalues that are real and
nonnegative (positive).

Proof (a) If H is Hermitian, v # 0, and Hv = Av, we have

A, Vi ={v, AW = (v, Hv) = (HTv, V) = (Hv, v)
=(Av, V)= A*¥(v, v) .

But (v, v) # 0, and hence A = \*,
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(b) If Qis an isometry, v # 0, and Qv = Av, then we have (using Theorem
2.17)
vl = 1Qvl = IAvl = [M vl .

But [vl # 0, and hence [A| = 1.
(¢) IfHT =-H, v#0, and Hv = Av, then

A, vy ={v, W)= (v, Hy) = (HTv, Vi={(=Hv, v)=(-Av, V)
=-A¥v, v) .

But (v, v) # 0, and hence A = —A*. This shows that A is pure imaginary.
(d) Let P =STS be a positive definite operator. If v # 0, then the fact that

S is nonsingular means that Sv # 0, and hence (Sv, Sv) = ISvI? > 0. Then, for
Pv = (STS)v = Av, we see that

My, v) = (v, \v) = (v, Pv) = (v, (STS)v) = (Sv, Sv) .

But (v, v) = [v|*> >0 also, and therefore we must have A > 0.
If P is positive, then S is singular and the only difference is that now for

v # 0 we have (Sv, Sv) = [SvI? = 0 which implies that A = 0. B

We say that an operator N is normal if NTN = NNT. Note this implies that
for any v € V we have

INVI?= (Nv, Nv) = (NTN)v, v) = (NN, v) = (NTv, NTv)
= INTvI? .

Now let A be a complex number. It is easy to see that if N is normal then so is
N - Al since (from Theorem 10.3)

(N=AD'(N=AD)=(NT=A*1)(N=A)=N'N = ANT = A*N + L * Al
=(N=ADNT=A25)=(N=ADN =AD" .

Using N — Al instead of N in the previous result we obtain
INv = AvI® = INTv = v]?

Since the norm is positive definite, this equation proves the next theorem.
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Theorem 10.10 Let N be a normal operator and let A be an eigenvalue of N.
Then Nv = Av if and only if NTv = A*v,

In words, if v is an eigenvector of a normal operator N with eigenvalue A,
then v is also an eigenvector of N7 with eigenvalue A*. (Note it is always true
that if A is an eigenvalue of an operator T, then A* will be an eigenvalue of T,
See Exercise 10.3.6.)

Corollary If N is normal and Nv = 0 for some v € V, then NTv = 0.

Proof This follows from Theorem 10.10 by taking A = A* = 0. Alternatively,
using NN = NNT along with the fact that Nv = 0, we see that

(NTv, NTv) = (v, NNT)v) = (v, NTN)v) = 0 .
Since the inner product is positive definite, this requires that NTv =0. B

Theorem 10.11 (a) Eigenvectors belonging to distinct eigenvalues of a
Hermitian operator are orthogonal.

(b) Eigenvectors belonging to distinct eigenvalues of an isometric opera-
tor are orthogonal. Hence the eigenvectors of a unitary operator are orthogo-
nal.

(c) Eigenvectors belonging to distinct eigenvalues of a normal operator
are orthogonal.

Proof As we note after the proof, Hermitian and unitary operators are special

cases of normal operators, and hence parts (a) and (b) follow from part (c).

However, it is instructive to give independent proofs of parts (a) and (b).

Assume that T is an operator on a unitary space, and Tv; = Av; fori =1, 2

with A, # A,. We may then also assume without loss of generality that A, # 0.
(a) If T =TT, then (using Theorem 10.9(a))

Avi, o) = (v, Avy) =(vy, Tvy) = (TTvl, V) =(Tv,, v,)

= (A, o) = A% (v, vy) = Ay, vy)

But A, # A\, and hence (v,, v,) = 0.
(b) If T is isometric, then T™T = 1 and we have

(Vi, Vo) = (vy, (TTT)Vz) = (Tvy, Tvy) = N¥Ny(vy, V)

But by Theorem 10.9(b) we have P = A%, = 1, and thus A% = 1/A,.
Therefore, multiplying the above equation by A,, we see that A(v,, v,) =
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M (v,, v,) and hence, since A, # A, this shows that (v, v,) = 0.
(¢) If T is normal, then

(Vi, Tvy) = Ay{vy, vy)
while on the other hand, using Theorem 10.10 we have
(vi, Tvy) = (TTvy, vy) = (A*vy, Vo) = MV, v,)
Thus (v,, v,) =0 since A, ZA,. I

We note that if Hf = H, then H'H = HH = HHT so that any Hermitian
operator is normal. Furthermore, if U is unitary, then UTU = UUT ( = 1) so
that U is also normal.

A Hermitian operator T defined on a real inner product space is said to be
symmetric. This is equivalent to requiring that with respect to an orthonormal
basis, the matrix elements a; of T are given by

a; = (e, Tey)) = (Te;, ) = (g, Tei) = a; .

Therefore, a symmetric operator is represented by a real symmetric matrix. It

is also true that antisymmetric operators (i.e., TT = -T) and anti-Hermitian
operators (HT = —H) are normal. Therefore, part (a) and the unitary case in
part (b) in the above theorem are really special cases of part (c).

Theorem 10.12 (a) Let T be an operator on a unitary space V, and let W be
a T-invariant subspace of V. Then W+ is invariant under TT.

(b) Let U be a unitary operator on a unitary space V, and let W be a U-
invariant subspace of V. Then W+ is also invariant under U.

Proof (a) For any vE W we have Tv € W since W is T-invariant. Let w €
W+ be arbitrary. We must show that T Tw € W=, But this is easy because

(Ttw,v) = (w,Tv) =0
by definition of W*. Thus TTw € W so that W+ is invariant under TT.
(b) The fact that U is unitary means U™ = UT exists, and hence U is non-
singular. In other words, for any v’ € W there exists v E W such that Uv = v".
Now let w € W be arbitrary. Then

(Uw, v') = (Uw, Uv) = (w, (UTU)V) = (w,v) =0

by definition of W*. Thus Uw € W+ so that W is invariant under U. &
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Recall from the discussion in Section 7.7 that the algebraic multiplicity of
a given eigenvalue is the number of times the eigenvalue is repeated as a root
of the characteristic polynomial. We also defined the geometric multiplicity as
the number of linearly independent eigenvectors corresponding to this eigen-
value (i.e., the dimension of its eigenspace).

Theorem 10.13 Let H be a Hermitian operator on a finite-dimensional
unitary space V. Then the algebraic multiplicity of any eigenvalue A of H is
equal to its geometric multiplicity.

Proof Let Vy = {v € V: Hv = Av} be the eigenspace corresponding to the
eigenvalue A. Furthermore, V; is obviously invariant under H since Hv =
Av € V,, for every v € V. By Theorem 10.12(a), we then have that V,* is
also invariant under HT = H. Furthermore, by Theorem 2.22 we see that V =
Vi @ V. Applying Theorem 7.20, we may write H = H; ® H, where H, =
H|V; and H, = H|V,*.

Let A be the matrix representation of H, and let A; be the matrix represen-
tation of H; (i = 1, 2). By Theorem 7.20, we also have A = A; ® A,. Using
Theorem 4.14, it then follows that the characteristic polynomial of A is given
by

det(xI = A) = det(xI — A)) det(xI - A,) .

Now, H, is a Hermitian operator on the finite-dimensional space V3 with only
the single eigenvalue A. Therefore A is the only root of det(xI — A,) =0, and
hence it must occur with an algebraic multiplicity equal to the dimension of
V. (since this is just the size of the matrix A,). In other words, if dim V; =m,

then det(xI — A,) = (x = A™). On the other hand, A is not an eigenvalue of A,
by definition, and hence det(xI — A,) # 0. This means that det(xI — A) contains
(x — A) as a factor exactly m times. W

Corollary Any Hermitian operator H on a finite-dimensional unitary space
V is diagonalizable.

Proof Since V is a unitary space, the characteristic polynomial of H will
factor into (not necessarily distinct) linear terms. The conclusion then follows
from Theorems 10.13 and 7.26.

In fact, from Theorem 8.2 we know that any normal matrix is unitarily
similar to a diagonal matrix. This means that given any normal operator T €
L(V), there is an orthonormal basis for V that consists of eigenvectors of T.
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We develop this result from an entirely different point of view in the next
section.

Exercises

1. Let V be a unitary space and suppose T € L(V). Define T, = (1/2)(T + TT)
and T_ = (1/2i)(T - TT).
(a) Show that T, and T- are Hermitian, and that T =T, + iT_.
(b) If TI', and T'_ are Hermitian operators such that T = T', + iT'_, show
that ', =T,and T'_=T_.
(c) Prove that T is normal if and only if [T, T_] =0.

2. Let N be a normal operator on a finite-dimensional inner product space V.
Prove Ker N = Ker NT and Im N = Im NT. [Hint: Prove that Im NT)* =
Ker N, and hence that Im NT = (Ker N)*.]

3. Let V be a finite-dimensional inner product space, and suppose T € L(V)
is both positive and unitary. Prove that T = 1.

4. Let H &€ Mp(C) be Hermitian. Then for any nonzero x € C" we define the
Rayleigh quotient to be the number

(x, Hx)

lxll?

R(x) =

Prove that max{R(x): x # O} is the largest eigenvalue of H, and that
min{R(x): x # 0} is the smallest eigenvalue of H.

5. Let V be a finite-dimensional unitary space, and suppose E € L(V) is such
that E? = E=E. Prove that V= Im E @ (Im E)*.

6. If V is finite-dimensional and T € L(V) has eigenvalue A, show that T
has eigenvalue A*.

10.4 DIAGONALIZATION OF NORMAL OPERATORS

We now turn to the problem of diagonalizing operators. We will discuss sev-
eral of the many ways to approach this problem. Because most commonly
used operators are normal, we first treat this general case in detail, leaving
unitary and Hermitian operators as obvious special cases. Next, we go back
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and consider the real and complex cases separately. In so doing, we will gain
much insight into the structure of orthogonal and unitary transformations.
While this problem was treated concisely in Chapter 8, we present an entirely
different viewpoint in this section to acquaint the reader with other approaches
found in the literature. If the reader has studied Chapter 8, he or she should
keep in mind the rational and Jordan forms while reading this section, as many
of our results (such as Theorem 10.16) follow almost trivially from our earlier
work. We begin with some more elementary facts about normal transforma-
tions.

Theorem 10.14 Let V be a unitary space.
(a) If TE L(V) and (TTT)v =0 for some v E V, then Tv =0.

(b) If H is Hermitian and HXv =0 for k = 1, then Hv = 0.
(¢) If N is normal and NKv =0 for k = 1, then Nv = 0.

(d) If N is normal, and if (N = A1)Xv = 0 where k = 1 and A € C, then
Nv = Av.

Proof (a) Since (TTT)v = 0, we have 0 = (v, (TTT)v) = (Tv, Tv) which
implies that Tv = 0 because the inner product is positive definite.

(b) We first show that if H ™y = 0 for some positive integer m, then Hv =
-1
0. To see this, let T = H2™" and note that T* = T because H is Hermitian (by
induction from Theorem 10.3(c)). Then TT'T =TT = H? m, and hence

0 = (H2"V, V) = (TTT)v,v) = (Tv, Tv)

which implies that 0 = Tv = Hzm_]v. Repeating this process, we must eventu-
ally obtain Hv = 0.

Now, if H*v = 0, then H? "y =0 for any 2™ > k, and therefore applying the
above argument, we see that Hv = 0.

(c) Define the Hermitian operator H = NTN. Since N is normal, we see
that

(NTN)? = NTNNTN = NT2N?2

and by induction,
(NTN)¥ = NTNK |

By hypothesis, we then find that

HYv = (NTN)Kv = (NTENK)y = 0
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and hence (NTN)v = Hv = 0 by part (b). But then Nv = 0 by part (a).
(d) Since N is normal, it follows that N — A1 is normal, and therefore by
part (c) we have (N-Al)v=0.

Just as we did for operators, we say that a matrix N is normal if NTN =
NNT. We now wish to show that any normal matrix can be diagonalized by a
unitary similarity transformation. Another way to phrase this is as follows. We
say that two matrices A, B € M(C) are unitarily similar (or equivalent) if
there exists a unitary matrix U € My(C) such that A = UTBU = U"BU. Thus,
we wish to show that any normal matrix is unitarily similar to a diagonal
matrix. This extremely important result is quite easy to prove with what has
already been shown. Let us first prove this in the case of normal operators
over the complex field. (See Theorem 8.2 for another approach.)

Theorem 10.15 Let N be a normal operator on a finite-dimensional unitary
space V. Then there exists an orthonormal basis for V consisting of eigenvec-
tors of N in which the matrix of N is diagonal.

Proof Let A, ..., A be the distinct eigenvalues of the normal operator N.
(These all exist in C by Theorems 6.12 and 6.13.) Then (by Theorem 7.13) the
minimal polynomial m(x) for N must be of the form

mx) = (x =AM (X = A"

where each n; = 1. By the primary decomposition theorem (Theorem 7.23), we
can write V=W, ® - - - @ W, where W, = Ker(N — A\;1)"i. In other words,

(N - Kil)nivi =0

for every v; € W,. By Theorem 10.14(d), we then have Nv; = A;v; so that
every v; € W, is an eigenvector of N with eigenvalue A;.

Now, the inner product on V induces an inner product on each subspace
W, in the usual and obvious way, and thus by the Gram-Schmidt process
(Theorem 2.21), each W; has an orthonormal basis relative to this induced
inner product. Note that by the last result of the previous paragraph, this basis
must consist of eigenvectors of N.

By Theorem 10.11(c), vectors in distinct W; are orthogonal to each other.
Therefore, according to Theorem 2.15, the union of the bases of the W; forms
a basis for V, which thus consists entirely of eigenvectors of N. By Theorem
7.14 then, the matrix of N is diagonal in this basis. (Alternatively, we see that
the matrix elements n;; of N relative to the eigenvector basis {e;} are given by
n; = (e, Nej) = (e;, Ae) = A0;;.)

1)



516 LINEAR OPERATORS

Corollary 1 Let N be a normal matrix over C. Then there exists a unitary
matrix U such that U'NU = U'NU is diagonal. Moreover, the columns of U
are just the eigenvectors of N, and the diagonal elements of UTNU are the
eigenvalues of N.

Proof The normal matrix N defines an operator on a finite-dimensional
unitary space V with the standard orthonormal basis, and therefore by
Theorem 10.15, V has an orthonormal basis of eigenvectors in which the
matrix N is diagonal. By Theorem 10.6, any such change of basis in V is
accomplished by a unitary transformation U, and by Theorem 5.18, the matrix
of the operator relative to this new basis is related to the matrix N in the old
basis by the similarity transformation U'NU (= UTNU).

Now note that the columns of U are precisely the eigenvectors of N (see
the discussion preceding Example 7.4). We also recall that Theorem 7.14 tells
us that the diagonal elements of the diagonal form of N are exactly the eigen-
values of N.

Corollary 2 A real symmetric matrix can be diagonalized by an orthogonal
matrix.

Proof Note that a real symmetric matrix A may be considered as an operator
on a finite-dimensional real inner product space V. If we think of A as a com-
plex matrix that happens to have all real elements, then A is Hermitian and
hence has all real eigenvalues. This means that all the roots of the minimal
polynomial for A liein R. If A, . . ., A; are the distinct eigenvalues of A, then
we may proceed exactly as in the proof of Theorem 10.15 and Corollary 1 to
conclude that there exists a unitary matrix U that diagonalizes A. In this case,
since W; = Ker(A — A; )" and A — A; I is real, it follows that the eigenvectors
of A are real and hence U is actually an orthogonal matrix. W

Corollary 2 is also proved from an entirely different point of view in
Exercise 10.4.9. This alternative approach has the advantage of presenting a

very useful geometric picture of the diagonalization process.

Example 10.6 Let us diagonalize the real symmetric matrix

(27

The characteristic polynomial of A is
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Aa(x) = detxI -A) = x-2)(x-5)-4 = x-1)(x-6)

and therefore the eigenvalues of A are 1 and 6. To find the eigenvectors of A,
we must solve the matrix equation (A1 — A)v; = 0 for the vector v;. For A, = 1
we have v, = (X, y,), and hence we find the homogeneous system of equations

These imply that x, = 2y,, and hence a nonzero solution is v, = (2, 1). For A, =
6 we have the equations

which yields v, = (1, -2).

Note that (v,, v,) = 0 as it should according to Theorem 10.11, and that
Iv,l =+5 = llv,l. We then take the normalized basis vectors to be e; = vi/V5
which are also eigenvectors of A. Finally, A is diagonalized by the orthogonal
matrix P whose columns are just the e;:

[ ]

We leave it to the reader to show that

ron (10
PTAP= :
0 6

Another important point to notice is that Theorem 10.15 tells us that even
though an eigenvalue A of a normal operator N may be degenerate (i.e., have
algebraic multiplicity k > 1), it is always possible to find k linearly indepen-
dent eigenvectors belonging to A. The easiest way to see this is to note that
from Theorem 10.8 we have |det Ul = 1 # O for any unitary matrix U. This
means that the columns of the diagonalizing matrix U (which are just the
eigenvectors of N) must be linearly independent. This is in fact another proof
that the algebraic and geometric multiplicities of a normal (and hence
Hermitian) operator must be the same.

We now consider the case of real orthogonal transformations as indepen-
dent operators, not as a special case of normal operators. First we need a gen-
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eral definition. Let V be an arbitrary finite-dimensional vector space over any
field ¥, and suppose T € L(V). A nonzero T-invariant subspace W C V is said
to be irreducible if the only T-invariant subspaces contained in W are {0}
and W.

Theorem 10.16 (a) Let V be a finite-dimensional vector space over an
algebraically closed field ¥, and suppose T € L(V). Then every irreducible T-
invariant subspace W of V is of dimension 1.

(b) Let V be a finite-dimensional vector space over R, and suppose T €
L(V). Then every irreducible T-invariant subspace W of V is of dimension
either 1 or 2.

Proof (a) Let W be an irreducible T-invariant subspace of V. Then the
restriction Tw of T to W is just a linear transformation on W, where T w(w) =
Tw € W for every w € W. Since ¥ is algebraically closed, the characteristic
polynomial of T has at least one root (i.e., eigenvalue A) in . Therefore T
has at least one (nonzero) eigenvector v € W such that Tv = Av € W. If we
define S(v) to be the linear span of {v}, then S(v) is also a T-invariant sub-
space of W, and hence S(v) = W because W is irreducible. Therefore W is
spanned by the single vector v, and hence dim W = 1.

(b) Let W be an irreducible T-invariant subspace of V, and let m(x) be the
minimal polynomial for T . Therefore, the fact that W is irreducible (so that
W is not a direct sum of T-invariant subspaces) along with the primary
decomposition theorem (Theorem 7.23) tells us that we must have m(x) =
f(x)" where f(x) € R[x] is a prime polynomial. Furthermore, if n were greater

than 1, then we claim that Ker f(T)“‘] would be a T-invariant subspace of W
(Theorem 7.18) that is different from {O} and W.

To see this, first suppose that Ker f(T)"~! = {0}. Then the linear transfor-
mation f(T)"~! is one-to-one, and hence f(T)"~'(W) = W. But then

0 = f(T)"(W) = {(DIT)"(W) = (T)(W) .

However, f(T)W # 0 by definition of m(x), and hence this contradiction shows
that we can not have Ker f(T)"~! = {0}. Next, if we had Ker f(T)"~' = W, this
would imply that f(T)“‘] (W) = 0 which contradicts the definition of minimal
polynomial. Therefore we must have n = 1 and m(x) = f(x).

Since m(x) = f(x) is prime, it follows from the corollary to Theorem 6.15

that we must have either m(x) = x — a or m(x) = x% + ax + b with a> — 4ab < 0.
If m(x) = x — a, then there exists an eigenvector vE W with Tv =av € W, and
hence S(v) = W as in part (a). If m(x) = x% + ax + b, then for any nonzero w €
W we have
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0 = m(Mw = T 2w + aTw + bw
and hence

T’w = T(Tw) = —aTw -bw € W .

Thus S(w, Tw) is a T-invariant subspace of W with dimension either 1 or 2.
However W is irreducible, and therefore we must have W = S(w, Tw). 1

Theorem 10.17 Let V be a finite-dimensional Euclidean space, let T € L(V)
be an orthogonal transformation, and let W be an irreducible T-invariant sub-
space of V. Then one of the following two conditions holds:

(a) dim W =1, and for any nonzero w € W we have Tw = +w.

(b) dim W = 2, and there exists an orthonormal basis {e,, €,} for W such
that the matrix representation of Ty relative to this basis has the form

(cos@ - sine)

sinf cosf

Proof That dim W equals 1 or 2 follows from Theorem 10.16(b). If dim W =
1, then (since W is T-invariant) there exists A € R such that Tw = Aw for any
(fixed) w € W. But T is orthogonal so that

Iwl = ITwl = IAwl = [MIwl

and hence |\| = 1. This shows that Tw = Aw = +w.

If dim W = 2, then the desired form of the matrix of Tw follows essen—
tially from Example 10.5. Alternatively, we know that W has an orthonormal
basis {e,, e,} by the Gram-Schmidt process. If we write Te, = ae, + be,, then

ITe,l = lle,Il = 1 implies that a> + b? = 1. If we also write Te, = ce, + de,, then
similarly +d>=1. Using (Te,, Te,) = (e,, e,) = 0 we find ac + bd =0, and
hence ¢ = —bd/a. But then 1 = d2( 1+ bz/az) = d%/a” so that a®> = d? and ¢* = b.
This means that Te, = x(-be, + ae,). If Te, = -be, + ae,, then the matrix of T

1s of the form
a -b
b a

and we may choose 8 € R such that a = cos 0 and b = sin 0 (since det T = a” +

b* = 1). However, if Te, = be, — ae,, then the matrix of T is

-
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which satisfies the equation x 2 1= x-1Dx+1)=0(and has det T = -1).
But if T satisfied this equation, then (by the primary decomposition theorem
(Theorem 7.23)) W would be a direct sum of subspaces, in contradiction to
the assumed irreducibility of W. Therefore only the first case can occur. B

This theorem becomes quite useful when combined with the next result.

Theorem 10.18 Let T be an orthogonal operator on a finite-dimensional
Euclidean space V. Then V=W, ®@ - - - ® W, where each W; is an irreducible
T-invariant subspace of V such that vectors belonging to distinct subspaces
W, and W; are orthogonal.

Proof 1If dim V =1 there is nothing to prove, so we assume dim V > 1 and
that the theorem is true for all spaces of dimension less than dim V. Let W, be
a nonzero T-invariant subspace of least dimension. Then W, is necessarily
irreducible. By Theorem 2.22 we know that V=W, @ W,* where dim W * <
dim V, and hence we need only show that W,* is also T-invariant. But this
follows from Theorem 10.12(b) applied to real unitary transformations (i.e.,
orthogonal transformations). This also means that T(W,*) C W*, and hence
T is an orthogonal transformation on W,* (since it takes vectors in W,* to
vectors in W *). By induction, W,* is a direct sum of pairwise orthogonal
irreducible T-invariant subspaces, and therefore sois V=W, ®W*. &

From Theorem 10.18, we see that if we are given an orthogonal transfor-
mation T on a finite-dimensional Euclidean space V,then V=W, ® .- ® W;
is the direct sum of pairwise orthogonal irreducible T-invariant subspaces W;.
But from Theorem 10.17, we see that any such subspace W; is of dimension
either 1 or 2. Moreover, Theorem 10.17 also showed that if dim W, = 1, then
the matrix of T|W; is either (1) or (-1), and if dim W, = 2, then the matrix of
TIW, is just the rotation matrix R; given by

cosf; —sinb,
- sinf,  cosH,)

Since each W, has an orthonormal basis and the bases of distinct W, are
orthogonal, it follows that we can find an orthonormal basis for V in which
the matrix of T takes the block diagonal form (see Theorem 7.20)

He---2HBEEHD-- - B(-1))OR,®--- DRy, .
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These observations prove the next theorem.

Theorem 10.19 Let T be an orthogonal transformation on a finite-dimen-
sional Euclidean space V. Then there exists an orthonormal basis for V in
which the matrix representation of T takes the block diagonal form

MLG')@Mr

where each M, is one of the following: (+1), (1), or R; .

Exercises

1.

Prove that any nilpotent normal operator is necessarily the zero operator.

2. Let A and B be normal operators on a finite-dimensional unitary space V.

For notational simplicity, let v, denote an eigenvector of A corresponding
to the eigenvalue a, let vy be an eigenvector of B corresponding to the
eigenvalue b, and let v, denote a simultaneous eigenvector of A and B,
i.e., Av,ap = avyp and Bv,p = bvgy,.

(a) If there exists a basis for V consisting of simultaneous eigenvectors of
A and B, show that the commutator [A, B] = AB - BA =0.

(b) If [A, B] =0, show that there exists a basis for V consisting entirely of
simultaneous eigenvectors of A and B. In other words, if [A, B] = 0, then
A and B can be simultaneously diagonalized. [Hint: There are several
ways to approach this problem. One way follows easily from Exercise
8.1.3. Another intuitive method is as follows. First assume that at least one
of the operators, say A, is nondegenerate. Show that Bv, is an eigenvector
of A, and that Bv, = bv, for some scalar b. Next assume that both A and B
are degenerate. Then Av,; = av,; where the v,; 1 =1, ..., m,) are
linearly independent eigenvectors corresponding to the eigenvalue a of
multiplicity m,. What does the matrix representation of A look like in the
{Va.,iy basis? Again consider Bv, ;. What does the matrix representation of
B look like? Now what happens if you diagonalize B?]

If N, and N, are commuting normal operators, show that the product NN,
is normal.

Let V be a finite-dimensional complex (real) inner product space, and
suppose T € L(V). Prove that V has an orthonormal basis of eigenvectors
of T with corresponding eigenvalues of absolute value 1 if and only if T is
unitary (Hermitian and orthogonal).
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5. For each of the following matrices A, find an orthogonal or unitary matrix
P and a diagonal matrix D such that PTAP = D:

w (2 o [0 ! of 2 30
Dl 10 Y1343 s

0 2 2 2 11
d 12 0 2 e) [1 2 1
2 20 1 1 2

6. Let A, B and C be normal operators on a finite-dimensional unitary space,
and assume that [A, B] = 0 but [B, C] # 0. If all of these operators are
nondegenerate (i.e., all eigenvalues have multiplicity equal to 1), is it true
that [A, C] # 0? Explain. What if any of these are degenerate?

7. Let V be a finite-dimensional unitary space and suppose A € L(V).
(a) Prove that Tr(AAT) =0 if and only if A = 0.
(b) Suppose N € L(V) is normal and AN = NA. Prove that ANT = NTA.

8. Let A be a positive definite real symmetric matrix on an n-dimensional
Euclidean space V. Using the single variable formula (where a > 0)

f_i exp(—axz/z)dx _ (2ﬂ/a)1/2

show that

[ expl(=1/2)(%, A%)]d"x = 2m)"* (det AY
where d"x = dx; - - - dx,. [Hint: First consider the case where A is
diagonal.]

9. (This is an independent proof of Corollary 2 of Theorem 10.15.) Let A =

(a;) € M3(R) be a real symmetric matrix. Thus A: R?® — R3 is a Hermitian
linear operator with respect to the inner product ( , ). Prove there exists an
orthonormal basis of eigenvectors of A using the following approach. (It
should be clear after you have done this that the same proof will work in
R" just as well.)

(a) Let S? be the unit sphere in R?, and define f: S> — R by

f(x) = (Ax, x) .
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Let M = sup f(x) and m = inf f(x) where the sup and inf are taken over S2.
Show that there exist points xi, x| € S? such that f(x;) = M and f(x;') = m.
[Hint: Use Theorem A15.]

(b) Let C = x(t) be any curve on S? such that x(0) = xq, and let a dot
denote differentiation with respect to the parameter t. Note that X(t) is
tangent to C, and hence also to S2. Show that (Axq, X(0)) = 0, and thus
deduce that Ax; is normal to the tangent plane at x;. [Hint: Consider
df(x(t))/dtl;=p and note that C is arbitrary.]

(c) Show that (x(t), x(t)) = 0, and hence conclude that Ax; = A\x;. [Hint:
Recall that S? is the unit sphere.]

(d) Argue that Ax;" = A;'x;’, and in general, that any critical point of f(x) =
(AXx, x) on the unit sphere will be an eigenvector of A with critical value
(i.e., eigenvalue) A; = (Ax;, Xj). (A critical point of f(x) is a point xo where
df/dx = 0, and the critical value of f is just f(xg).)

(e) Let [x1] be the 1-dimensional subspace of R3 spanned by x;. Show that
[x1] and [x;]* are both A-invariant subspaces of R3, and hence that A is
Hermitian on [x]* C RZ. Note that [x1]* is a plane through the origin of
S2.

(f) Show that f now must achieve its maximum at a point X, on the unit
circle S' C [x;]*, and that Axy = Ayx, with Ay < Ay.

(g) Repeat this process again by considering the space [x2]* C [x;]*, and
show there exists a vector x3 € [xa]* with Ax3 =A3x3 and A3 <Ay < A,

10.5 THE SPECTRAL THEOREM

We now turn to another major topic of this chapter, the so-called spectral
theorem. This important result is actually nothing more than another way of
looking at Theorems 8.2 and 10.15. We begin with a simple version that is
easy to understand and visualize if the reader will refer back to the discussion
prior to Theorem 7.29.

Theorem 10.20 Suppose A € M,(C) is a diagonalizable matrix with distinct
eigenvalues A,, . . ., A.. Then A can be written in the form

A = 7\,1E1+"'+7\.rEr

where the E; are n x n matrices with the following properties:

(a) Each E; is idempotent (i.e., EZ= E).
(b) EEE;=0fori=].
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(c) E;+---+E. =1L
(d) AE; =E,A forevery E..

Proof Since A is diagonalizable by assumption, let D = P”' AP be the diago-
nal form of A for some nonsingular matrix P (whose columns are just the
eigenvectors of A). Remember that the diagonal elements of D are just the
eigenvalues A; of A. Let P; be the n x n diagonal matrix with diagonal element
1 wherever a A; occurs in D, and 0’s everywhere else. It should be clear that
the collection {P;} obeys properties (a) — (c), and that

P_IAP=D=)\,1P1+"'+)\.I‘PI‘.
If we now define E; = PP,P™', then we have
A=PDP_1 =7\,1E1+"'+7\,rEr

where the E; also obey properties (a) — (c) by virtue of the fact that the P; do.
Using (a) and (b) in this last equation we find

AEi = (7\.1E1 +---+ 7\'I‘EI‘)E1 = 7\'1Ei

and similarly it follows that E;A = ME; so that each E; commutes with A, i.e.,
EiA = AEi. [ |

By way of terminology, the collection of eigenvalues A, . . ., A; is called
the spectrum of A, the sum E; + - - - + E; =1 is called the resolution of the
identity induced by A, and the expression A = M\E, + - - - + ME; is called the
spectral decomposition of A. These definitions also apply to arbitrary normal
operators as in Theorem 10.22 below.

Corollary Let A be diagonalizable with spectral decomposition as in
Theorem 10.20. If f(x) € C[x] is any polynomial, then

f(A) = f(ME, +- - - + f(ME; .

Proof Using properties (a) — (c¢) in Theorem 10.20, it is easy to see that for
any m >0 we have

Am = 7\,1mE1+"'+7\.rmEr .

The result for arbitrary polynomials now follows easily from this result.
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Before turning to our proof of the spectral theorem, we first prove a simple
but useful characterization of orthogonal projections.

Theorem 10.21 Let V be an inner product space and suppose E € L(V).
Then E is an orthogonal projection if and only if E> = E = E.

Proof We first assume that E is an orthogonal projection. By definition this

means that E2 = E, and hence we must show that ET = E. From Theorem 7.27
we know that V=Im E @ Ker E = Im E @ (Im E)*. Suppose v, w € V are
arbitrary. Then we may write v=v, + v, and w = w, + w, where v;,, w, EIm E
and v,, w, € (Im E)*. Therefore

(V, Ew) = (Vi + vy, W) = (v, W)) + (vy, Wy) = (v;, W)
and

(v, Efw) = (Ev, W) = (v, W, + Wy) = (v, W) + (v, Wy) = (v, W) .

In other words, (v, (E — Ef)w) = 0 for all v, w € V, and hence E = ET (by
Theorem 10.4(a)).

On the other hand, if E’=E = E', then we know from Theorem 7.27 that
E is a projection of V on Im E in the direction of Ker E, 1.e., V=ImE ®
Ker E. Therefore, we need only show that Im E and Ker E are orthogonal
subspaces. To show this, let w € Im E and w' € Ker E be arbitrary. Then
Ew =w and Ew' =0 so that

w,w) = (W,Ew) = (ETwW, w) = (Ew,w) =0 .
(This was also proved independently in Exercise 10.3.5.) 1

We are now in a position to prove the spectral theorem for normal opera-
tors. In order to distinguish projection operators from their matrix representa-
tions in this theorem, we denote the operators by ; and the corresponding
matrices by E;.

Theorem 10.22 (Spectral Theorem for Normal Operators) Let V be a
finite-dimensional unitary space, and let N be a normal operator on V with
distinct eigenvalues A, . . ., A.. Then
(@) N=A,m + - - - + A7t where each ; is the orthogonal projection of V
onto a subspace W, = Im ;.
(b) mar; = 0 fori# .
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© m+---+m=1.
(d V=W, ®- .- ® W; where the subspaces W, are mutually orthogonal.
(e) W; =Im m = Ker(N - A;1) is the eigenspace corresponding to A;.

Proof Choose any orthonormal basis {e;} for V, and let A be the matrix rep-
resentation of N relative to this basis. As discussed following Theorem 7.6,
the normal matrix A has the same eigenvalues as the normal operator N. By
Corollary 1 of Theorem 10.15 we know that A is diagonalizable, and hence
applying Theorem 10.20 we may write

A = 7\,1E1+"'+7\.rEr

where Eiz =E,EE =0ifi#j, and E, + - - - + E; = I. Furthermore, A is
diagonalized by a unitary matrix P, and as we saw in the proof of Theorem
10.20, E; = PP,PT where each P; is a real diagonal matrix. Since each P; is
clearly Hermitian, this implies that E;" = E;, and hence each E; is an orthogo-
nal projection (Theorem 10.21).

Now define m € L(V) as that operator whose matrix representation
relative to the basis {e;} 1s just E;. From the isomorphism between linear
transformations and their representations (Theorem 5.13), it should be clear
that

N=Am +--+Am,
T

mw' =
2

T+, =1

Since niz = = m; T, Theorem 10.21 tells us that each t; is an orthogonal

projection of V on the subspace W; = Im ;. Since T, + - - - + 71, = 1, we see
that forany vE Vwehavev=myv+---+mvsothat V=W, +...+W;.To
show that this sum is direct suppose, for example, that

Wl E Wlm(W2++Wr) .
This means that w, =w, + - - - + w, where w; € W, foreachi=1, ..., r. Since

w; € W, = Im m;, it follows that there exists v; € V such that m;v; = w; for each
1. Then

and if 1 # j , then m7; = 0 implies
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.Tl:in = (J'CiJ'CJ-)Vj =0.

Applying &, to w, = w, + - - - + W, we obtain w, = ;t;w; = 0. Hence we have
shown that W, N (W, + - - - + W;) = {0}. Since this argument can clearly be
applied to any of the W; , we have proved that V=W, ® .- - ® W,.

Next we note that for each i, m; is the orthogonal projection of V on W; =
Im m; in the direction of W;* = Ker 7, so that V = W; @ W;*. Therefore, since
V=W, ®---®W,, it follows that for each j # i we must have W; C W;*, and
hence the subspaces W; must be mutually orthogonal. Finally, the fact that
W, = Ker(N - A1) was proved in Theorem 7.29. B

The observant reader will have noticed the striking similarity between the
spectral theorem and Theorem 7.29. In fact, part of Theorem 10.22 is essen-
tially a corollary of Theorem 7.29. This is because a normal operator is diag-
onalizable, and hence satisfies the hypotheses of Theorem 7.29. However,
note that in the present case we have used the existence of an inner product in
our proof, whereas in Chapter 7, no such structure was assumed to exist. We
leave it to the reader to use Theorems 10.15 and 7.28 to construct a simple
proof of the spectral theorem that makes no reference to any matrix represen-
tation of the normal operator (see Exercise 10.5.1).

Theorem 10.23 Let X5-/AE; be the spectral decomposition of a normal oper-

ator N on a finite-dimensional unitary space. Then foreachi1=1, ..., r there
exists a polynomial fi(x) € C[x] such that f,(A;) = §;; and f;(N) =E..

Proof Foreachi=1,...,r we must find a polynomial f;(x) € C[x] with the
property that f;(A;) = 9;. It should be obvious that the polynomials fi(x)
defined by
xX=-A;
j
fi(x) H i,

have this property. From the corollary to Theorem 10.20 we have p(N) =
2.p(M)E; for any p(x) € C[x], and hence

fl(N) = ijl(KJ)EJ = ZJ&JE = Ei

J
as required. W
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Exercises

1. Use Theorems 10.15 and 7.28 to construct a proof of Theorem 10.22 that
makes no reference to any matrix representations.

2. Let N be an operator on a finite-dimensional unitary space. Prove that N is
normal if and only if NT = g(N) for some polynomial g. [Hint: If N is
normal with eigenvalues A, . . . , A, use Exercise 6.4.2 to show the exis-
tence of a polynomial g such that g(A;) = A;* for each i.]

3. Let T be an operator on a finite-dimensional unitary space. Prove that T is
unitary if and only if T is normal and |A| = 1 for every eigenvalue A of T.

4. Let H be a normal operator on a finite-dimensional unitary space. Prove
that H is Hermitian if and only if every eigenvalue of H is real.

10.6 THE MATRIX EXPONENTIAL SERIES

We now use Theorem 10.20 to prove a very useful result, namely, that any
unitary matrix U can be written in the form e’ for some Hermitian matrix H.
Before proving this however, we must first discuss some of the theory of
sequences and series of matrices. In particular, we must define just what is
meant by expressions of the form e'™. If the reader already knows something
about sequences and series of numbers, then the rest of this section should
present no difficulty. However, for those readers who may need some review,
we have provided all of the necessary material in Appendix B.

Let {S;} be a sequence of complex matrices where each S, € M;(C) has
entries s(r)ij. We say that {S;} converges to the limit S = (s;;) € M,(C) if each
of the n? sequences {s(r)ij} converges to a limit s;;. We then write S, — S or
lim; _, » Sy =S (or even simply lim S; = S). In other words, a sequence {S;} of
matrices converges if and only if every entry of S; forms a convergent
sequence.

Similarly, an infinite series of matrices

r=1

where A, = (a(r)ij) is said to be convergent to the sum S = (s;)) if the sequence
of partial sums

Sm = ﬁ Ar
r=1
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converges to S. Another way to say this is that the series XA, converges to S

if and only if each of the n? series Za(r)u converges to s;; foreachi,j=1,...,
n. We adhere to the convention of leaving off the limits in a series if they are
infinite.

Our next theorem proves several intuitively obvious properties of
sequences and series of matrices.

Theorem 10.24 (a) Let {S;} be a convergent sequence of n X n matrices
with limit S, and let P be any n x n matrix. Then PS; — PS and S;P — SP.

(b) If S; — S and P is nonsingular, then P”'S,P — P~'SP.

(c) If 2ZA; converges to A and P is nonsingular, then 2P~ AP converges
to P AP.

Proof (a) Since S; — S, we have lim s(r)ij =g foralli,j=1,...,n
Therefore

lim(PSr)ij = lim(zkpiks(r)kj) = kaiklim S(r)kj = kaikskj = (Ps)ij .

Since this holds for all 1, j =1, ..., n we must have PS; — PS. It should be
obvious that we also have S; P — SP.
(b) As in part (a), we have

Km(P™'S,P); = im(Z, 0™ 55" i Pry)
)

-1 . (r
=2k,mp ikpmj lims km

-1
= 2k,mp ikpmjskm

=(P7'sP); .
Note that we may use part (a) to formally write this as
lim(P”'S,P) = P'lim(S,P) = P'SP .

(c) If we write the mth partial sum as

m
Su= P AP=P P
r=1

r=1

then we have
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lim,, e (S,,); = Elim{ Pl (E a(r)kl] pzj}
k,1

r=1

m
= EP ikpljhmza Y
k,l r=1

-1
= E P PGy
k.l

=P'AP . 1

Theorem 10.25 For any A = (a;) € M;(C) the following series converges:

oo

2 r
Eﬁ=I+A+A_+...+A_+... .
r! 2! r!

r=0
Proof Choose a positive real number M > max{n, |a;|} where the max is
taken over all i, j=1, ..., n. Then |al <M and n <M < MZ2. Now consider
the term A? = (b;) = (Xka;ay;). We have (by Theorem 2.17, property (N3))

n n
|b;| < Elaikllakjl < EMZ =nM?*<M* .
k=1 k=1
Proceeding by induction, suppose that for A" = (c;)), it has been shown that
lc;;l < M?2". Then A™! = (d;;) where

n
|dlfi| = Elaiknckj| <nMM?2" = nM 2" < pp20+D
k=1
This proves that A" = (a®";) has the property that [a(,| < M2 for every r> 1.

Now, for each of the n? terms ,j=1,...,nwe have
o0 (r) o0 2r
a M
El U|<E =exp(M?)
r=0 rl r=0 rl
so that each of these n® series (i.e., foreach 1, j=1, ..., n) must converge
(Theorem B26(a)). Hence the series I + A + A%/2! + - - - must converge

(Theorem B20).

We call the series in Theorem 10.25 the matrix exponential series, and

denote its sum by e” = exp A. In general, the series for e” is extremely diffi-

cult, if not impossible, to evaluate. However, there are important exceptions.
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Example 10.7 Let A be the diagonal matrix

A0 - 0
O A, - 0
A=| . 2 .
o o - )\'n
Then it is easy to see that
A0 0
AI‘ — 0 )\«zr 0
0 0 A
and hence
M0 0
2 I
epr=I+A+%+...= 0 ol
0 0 o™

Example 10.8 Consider the 2 x 2 matrix

and let

ol

where 0 € R. Then noting that 2= -1, we see that A% = —621, Al = —63J, A% =
641, A =90] , Ab = —661, and so forth. From elementary calculus we know
that

sin® = 0-0%31+0%5! ...

and

cos® = 1-0%2!+0%4! ...

and hence
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A =T+A+ A2+
=1+60J-0%1/21-0%71/31+0*1/41+6° 1 [51-6°1 /61 +---
=1(1-0%/2146* /41— )+ J(0-0°/31+6° /51— ..
=(cosO)I +(sinB)J .

In other words, using the explicit forms of I and J we see that

4 (cos@ —sinf
e =
sinf cosf

so that ¢% represents a rotation in R? by an angle 0. /

Theorem 10.26 Let A € M,(C) be diagonalizable, and let A, . . . , A, be the
distinct eigenvalues of A. Then the matrix power series

oo

E a A’

s=0
converges if and only if the series

[e¢)

E as)LiS

s=0
converges foreachi=1,...,r.

Proof Since A is diagonalizable, choose a nonsingular matrix P such that D =
P~ AP is diagonal. It is then easy to see that for every s > 1 we have

a,D’ = a,P"ASP = P'a AP

where the n diagonal entries of D® are just the numbers A;*. By Theorem
10.24(c), we know that 2agA® converges if and only if XasD® converges. But

by definition of series convergence, 2asD*® converges if and only if Xag\;®
converges foreveryi=1,...,r. i

Theorem 10.27 Let f(x) = a, + a,X + a,x> + - - - be any power series with

coefficients in C, and let A € M,(C) be diagonalizable with spectral decom-
position A = ME, + - - - + M E;. Then, if the series

f(A) = al + a,A + a,A% +- - -

converges, its sum is
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f(A) = f(ME, +- - - + f(ME; .
Proof As in the proof of Theorem 10.20, let the diagonal form of A be
D =P'AP = AP, +-- -+ NP,
so that E; = PP,P"'. Now note that

P f(A)P =ayP'P+a,P"'AP + a,P"' APP™'AP + ..
= f(P'AP)
=a01+a1D+a2D2 4o

=fD) .

Using properties (a) — (c) of Theorem 10.20 applied to the P;, it is easy to see
that DX = A, X P, + - - - + ., P, and hence

f(D) = f(A)P + - - - + f{(A)P; .

Then if f(A) = 2A; converges, so does 2P AP = P'f(A)P = f(D) (Theorem
10.24(c)), and we have

f(A) = f(PDP™") = P(D)P™" = f(ADE, +- - -+ f(A)E; . B

Example 10.9 Consider the exponential series e where A is diagonalizable.
Then, if A, . . ., Ag are the distinct eigenvalues of A, we have the spectral

decomposition A = ME, + - - - + A E,. Using f(A) = e, Theorem 10.27 yields
eh = eklE1 +- -+ eME,
in agreement with Example 10.7. /

We can now prove our earlier assertion that a unitary matrix U can be

written in the form e'H for some Hermitian matrix H.

Theorem 10.28 Every unitary matrix U can be written in the form e¢'H for

H

some Hermitian matrix H. Conversely, if H is Hermitian, then '™ is unitary.

Proof By Theorem 10.9(b), the distinct eigenvalues of U may be written in

the form & kl, ce, e/ where each A; is real. Since U is also normal, it fol-
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lows from Corollary 1 of Theorem 10.15 that there exists a unitary matrix P
such that PTUP = P UP is diagonal. In fact

P'UP = MP, + .. +e/MP,

where the P; are the idempotent matrices used in the proof of Theorem 10.20.

From Example 10.7 we see that the matrix eMP, 4+ . - -+ eMP s just e
where
D = 7\'1P1+"'+7\'kPk

is a diagonal matrix with the A; as diagonal entries. Therefore, using Theorem
10.24(c) we see that

U = PeiD P! = eiPDP’] — eiH

where H = PDP'. Since D is a real diagonal matrix it is clearly Hermitian, and
since P is unitary (so that P = PY), it follows that HY = (PDPT)" = PDPT = H
so that H is Hermitian also.

Conversely, suppose H is Hermitian with distinct real eigenvalues A, . . .,
M. Since H is also normal, there exists a unitary matrix P that diagonalizes H.
Then as above, we may write this diagonal matrix as

P_IHP = 7\'1P1+"'+7\'kPk

so that (from Example 10.7 again)

pletHp = ¢PTHP — ofMp 4. .4 efMp, |

Using the properties of the P;, it is easy to see that the right hand side of this
equation 1is diagonal and unitary since using

(&MP, + - 4 MP)T = e MP 4. .. 4 eI MP,

we have
@MPy + - - - + e MPYTEMP, +- - 4 e™™P) = 1

and
EMP, + - -+ eMPY)EMP 4+ - - - +MPY)T = T .

Therefore the left hand side must also be unitary, and hence (using P = PT)



10.6 THE MATRIX EXPONENTIAL SERIES 535

=Pl Py (Pl P)
=PI PPl P
_ P%(eiH )T 1 p

so that PP = 1= (e/)Te'H. Similarly we see that e'H(e'H)T =1, and thus e’ is
unitary. H

While this theorem is also true in infinite dimensions (i.e., in a Hilbert
space), its proof is considerably more difficult. The reader is referred to the
books listed in the bibliography for this generalization.

Given a constant matrix A, we now wish to show that

delA

" = Ae" . (1

To see this, we first define the derivative of a matrix M = M(t) to be that
matrix whose elements are just the derivatives of the corresponding elements
of M. In other words, if M(t) = (m;;(t)), then (dM/dt);; = dm;;/dt. Now note that
(with M(t) = tA)

e = T+tA + (tA)/2! + (tA /3! + - - -

and hence (since the a;; are constant) taking the derivative with respect to t
yields the desired result:

de 1dt =0+ A+1tA” +(tA) A/21+-+-
= A{l +1A+(tA)? /21 + -}
= AelA
Next, given two matrices A and B (of compatible sizes), we recall that
their commutator is the matrix [A, B] = AB - BA = —[B, A]. If [A, B] =0,
then AB = BA and we say that A and B commute. Now consider the function

f(x) = e Be *A. Leaving it to the reader to verify that the product rule for

derivatives also holds for matrices, we obtain (note that Ae*A = e"AA)

dfldx = Ae™ Be™ — ¢ Be™ A = Af — fA =[A, f]
d*fldx* =[A, dfldx] =[A, [A, f1]
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Expanding f(x) in a Taylor series about x =0, we find (using f(0) = B)

F(x) = £O)+(df ldx)y x + (d*fldx* )y x* /21 +---
= B+[A, Blx+[A, [A, B]]x*/2!+---.

Setting x = 1, we finally obtain
e*Be™® = B+[A, B]+[A, [A, BIl/)2!+[A, [A, [A, B)/3!+-- (2)

Note that setting B = I shows that e*e™* =1 as we would hope.
In the particular case that both A and B commute with their commutator

[A, B], then we find from (2) that e“Be™® =B + [A, B] and hence eB =
Be” + [A, B]eA or
[e", B]=[A, Ble" . (3)

Example 10.10 We now show that if A and B are two matrices that both
commute with their commutator [A, B], then

e*e? =exp{A+B+[A, B2} . (4)

(This is sometimes referred to as Weyl’s formula.) To prove this, we start
with the function f(x) = eX*Ae*Be~*(A+B) Then

df/dx - exAAexBe—x(A+B) + eerxBBe—x(A+B) _ eerxB(A + B)e—x(A+B)

— exAAexBe—x(A+B) _ eerxBAe—x(A+B) (5)

— exA [A, exB]e—x(A+B)

As a special case, note [A, B] = 0 implies df/dx =0 so that f is independent of
x. Since f(0) =1, it follows that we may choose x = 1 to obtain efeBe-(A+B) =
ILore®eB =eA*B (as long as [A, B] =0).

From (3) we have (replacing A by xB and B by A) [A, e*B] = x[A, Ble*B.
Using this along with the fact that A commutes with the commutator [A, B]

(so that e*A[A, B] = [A, Ble*?), we have
df/dx = xe**[A, Ble*Be X(A+B) = x|A BIf .

Since A and B are independent of x, we may formally integrate this from O to
X to obtain

In f(x)/f(0) = [A, B]x*/2 .
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Using f(0) = 1, this is f(x) = exp{[A, B]X2/2} so that setting x = 1 we find
efeBe~(A+B) = exp{[A, B]/2} .

Finally, multiplying this equation from the right by e”*® and using the fact
that [[A, B]/2, A + B] =0 yields (4). /

Exercises

1. (a) Let N be a normal operator on a finite-dimensional unitary space.
Prove that

deteN = eTrN |

(b) Prove this holds for any N € M,(C). [Hint: Use either Theorem 8.1 or
the fact (essentially proved at the end of Section 8.6) that the diagonaliz-
able matrices are dense in M,(C).]

2. If the limit of a sequence of unitary operators exists, is it also unitary?
Why?

3. Let T be a unitary operator. Show that the sequence {T™ n=0,1,2,...}
contains a subsequence {T"™: k =0, 1, 2, ... } that converges to a unitary

operator. [Hint: You will need the fact that the unit disk in €2 is compact
(see Appendix A).]

10.7 POSITIVE OPERATORS

Before proving the main result of this section (the polar decomposition

theorem), let us briefly discuss functions of a linear transformation. We have

already seen two examples of such a function. First, the exponential series e *

(which may be defined for operators exactly as for matrices) and second, if A
is a normal operator with spectral decomposition A = 2XAE;, then we saw that
the linear transformation p(A) was given by p(A) = 2Xp(A)E; where p(x) is any
polynomial in C[x] (Corollary to Theorem 10.20).

In order to generalize this notion, let N be a normal operator on a unitary
space, and hence N has spectral decomposition XAME;. If f is an arbitrary
complex-valued function (defined at least at each of the A;), we define a linear
transformation f(N) by

f(N) = Zf(h)Ei .
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What we are particularly interested in is the function f(x) = vx defined for all
real x = 0 as the positive square root of x.

Recall (see Section 10.3) that we defined a positive operator P by the
requirement that P = STS for some operator S. It is then clear that PT = P, and
hence P is normal. From Theorem 10.9(d), the eigenvalues of P = XAE; are
real and non-negative, and we can define VP by

VP = SV E,
where each A; > 0.

Using the properties of the E;, it is easy to see that (VP)? = P. Furthermore,
since E; is an orthogonal projection, it follows that E; = E; (Theorem 10.21),
and therefore (VP)T = vP so that VP is Hermitian. Note that since P = STS we
have

(Pv,v) = ((STS)v, v) = (Sv,Sv) = ISvI? = 0 .

Just as we did in the proof of Theorem 10.23, let us write v = 2ZE;v = 2,
where the nonzero v; are mutually orthogonal. Then

VP(v) = ZVA Ev = ZVA v,
and hence we also have (using (v;, vi) =0 1if j # k)
(VP (), V) = (Z; Vv, Zpvp) =2, V(v v = Z VA (v, v,)

J°

2
=Zj\/Xj||vj|| =0 .
In summary, we have shown that VP satisfies

(a) (VP)* =P
(b) VP)T =vP
(c) (WVP(v), v)=0

and it is natural to ask about the uniqueness of any operator satisfying these

three properties. For example, if we let T = X +VA, E;, then we still have T 2=
2 ME; = P regardless of the sign chosen for each term. Let us denote the fact
that VP satisfies properties (b) and (c) above by the expression VP > 0. In
other words, by the statement A > 0 we mean that AT = A and (Av, v) > 0 for
every v E V (i.e., A is a positive Hermitian operator).

We now claim that if P=T? and T > 0, then T = vP. To prove this, we
first note that T = O implies TT = T (property (b)), and hence T must also be
normal. Now let 2XF; be the spectral decomposition of T. Then
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S(w)’F, = T? = P = 3IAE, .

If v; # 0 1s an eigenvector of T corresponding to w;, then property (c) tells us
that (using the fact that each w; is real since T is Hermitian)

0 < (Tvi,vi) = (Wi, vi) = M1"V1"2 .

But [v;l >0, and hence w; = 0. In other words, any operator T > 0 has non-
negative eigenvalues. Since each w; is distinct and nonnegative, so is each uiz,

and hence each w;> must be equal to some A; . Therefore the corresponding F;
and E; must be equal (by Theorem 10.22(e)). By suitably numbering the

eigenvalues, we may write uiz =\, and thus w; = VA, . This shows that

T = JwF, = VM E = VP
as claimed.
We summarize this discussion in the next result which gives us three
equivalent definitions of a positive transformation.

Theorem 10.29 Let P be an operator on a unitary space V. Then the follow-
ing conditions are equivalent:

(a) P =T? for some unique Hermitian operator T = 0.
(b) P =STS for some operator S.
(¢) PT =P and (Pv, v) 20 for every vE V.

Proof (a)=>(b): f P=T? and Tt =T, then P=TT = T'T.

(b) = (c): If P = STS, then PT = P and (Pv, v) = (STSv, v) = (Sv, Sv) =
ISvI? = 0.

(c) = (a): Note that property (c) is just our statement that P > 0. Since
PT =P, we see that P is normal, and hence we may write P = XAE;. Defining
T = 3VA, E; , we have T =T (since every E; is Hermitian), and the preceding
discussion shows that T = 0 is the unique operator with the property that P =
2. 1

We remark that in the particular case that P is positive definite, then P =
STS where S is nonsingular. This means that P is also nonsingular.

Finally, we are in a position to prove the last result of this section, the so-
called polar decomposition (or factorization) of an operator. While we state
and prove this theorem in terms of matrices, it should be obvious by now that
it applies just as well to operators.
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Theorem 10.30 (Polar Decomposition) If A € M;(C), then there exist
unique positive Hermitian matrices H;,, H, € M,(C) and (not necessarily
unique) unitary matrices U;, U, € M(C) such that A = U H, = H,U,. More-
over, H, = (ATA)"? and H, = (AAT)"? . In addition, the matrices U, and U,
are uniquely determined if and only if A is nonsingular.

Proof Let 7»12, R knz be the eigenvalues of the positive Hermitian matrix
ATA, and assume the A; are numbered so that \; >0 fori=1,...,kand A, =0
fori=k+1,...,n (see Theorem 10.9(d)). (Note that if A is nonsingular, then
ATA is positive definite and hence k = n.) Applying Corollary 1 of Theorem
10.15, we let {v,, . .., vu} be the corresponding orthonormal eigenvectors of
ATA. Foreachi=1,. ..,k we define the vectors w; = Av,/A;. Then

(wi, W)= (Av,/A;, Av,IA}) = (v, ATAv )AL,

so that w,, . . ., wy are also orthonormal. We now extend these to an ortho-
normal basis {w,, . .., wy} for C". If we define the columns of the matrices
V., W € M,;(C) by vi= v; and Wi = w;, then V and W will be unitary by
Theorem 10.7.

Defining the Hermitian matrix D € M, (C) by

D = diag(A,, ..., An)

it is easy to see that the equations Av; = A;w; may be written in matrix form as
AV = WD. Using the fact that V and W are unitary, we define U, = WVT and
H, = VDVT to obtain

A = WDVT = (WVH)(VDVT) = UH, .

Since det(Al — VDVT) = det(Al — D), we see that H, and D have the same
nonnegative eigenvalues, and hence H, is a positive Hermitian matrix. We can
now apply this result to the matrix AT to write AT = UH, or A = H,1U,T =
H,U,f. If we define H, = H, and U, = U,7, then we obtain A = H,U, as
desired.

We now observe that using A = U H, we may write

ATA = HLULTULHL = (H1)2
and similarly
AAT = H,U,U,TH, = (H,)
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so that H, and H, are unique even if A is singular. Since U, and U, are
unitary, they are necessarily nonsingular, and hence H, and H, are nonsingular
if A =UH, = H,U, is nonsingular. In this case, U, = AH,” and U, = H,"'A
will also be unique. On the other hand, suppose A is singular. Then k # n and

Wi, . .

., Wy are not unique. This means that U, = WVT (and similarly U,) is

not unique. In other words, if U, and U, are unique, then A must be non-
singular. W

Exercises

Let V be a unitary space and let E € L(V) be an orthogonal projection.
(a) Show directly that E is a positive transformation.
(b) Show that [Evl < vl forall vE V.

Prove that if A and B are commuting positive transformations, then AB is
also positive.

This exercise is related to Exercise 7.5.5. Prove that any representation of
a finite group is equivalent to a unitary representation as follows:
(a) Consider the matrix X = X,eg Df(a)D(a). Show that X is Hermitian

and positive definite, and hence that X = S? for some Hermitian S.
(b) Show that D(a)"XD(a) = X.
(c) Show that U(a) = SD(a)S™ is a unitary representation.

Supplementary Exercises for Chapter 10

1.

Let T be a linear transformation on a space V with basis {e;, . . ., ep}. If
T(e) = Zj=iaje;foralli=1,...,nand T(e,) # ce, for any scalar ¢, show
that T is not normal.

Let A be a fixed n X n matrix, and let B be any n x n matrix such that A =
B2. Assume that B is similar to a diagonal matrix and has nonnegative
eigenvalues Ay, . . . , Ay. Let p(x) be a polynomial such that p(?»iz) = )\ for

eachi=1, ..., n Show that p(A) = B and hence B is unique. How does
this relate to our discussion of VP for a positive operator P?

Describe all operators that are both unitary and positive.

Is it true that for any A € Mp(C), AAT and ATA are unitarily similar?
Explain.
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10.

11.
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In each case, indicate whether or not the statement is true or false and
give your reason.

(a) For any A € M(C), AAT has all real eigenvalues.

(b) For any A € M,(C), the eigenvalues of AAT are of the form I\
where A is an eigenvalue of A.

(c) For any A € M, (C), the eigenvalues of AAT are nonnegative real
numbers.

(d) For any A € Mp(C), AAT has the same eigenvalues as ATA if A is
nonsingular.

(e) For any A € M(C), Tr(AAT) = [Tr A%,

(f ) For any A € M(C), AAT is unitarily similar to a diagonal matrix.

(g) For any A € M(C), AAT has n linearly independent eigenvectors.

(h) For any A € M,(C), the eigenvalues of AAT are the same as the
eigenvalues of ATA.

(i) For any A € M, (C), the Jordan form of AAT is the same as the Jordan
form of ATA.

(j) For any A € My(C), the null space of ATA is the same as the null
space of A.

Let S and T be normal operators on V. Show that there are bases {u;} and
{v;} for V such that [S], = [T]y if and only if there are orthonormal bases
{u';} and {Vv';} such that [S]y =[T]".

Let T be normal and let k > 0 be an integer. Show that there is a normal S
such that Sk =T.

Let N be normal and let p(x) be a polynomial over C. Show that p(N) is
also normal.

Let N be a normal operator on a unitary space V, let W = Ker N, and let
N be the transformation induced by N on V/W. Show that N is normal.
Show that N is also normal.

Discuss the following assertion: For any linear transformation T on a
unitary space V, TTT and TTT have a common basis of eigenvectors.

Show that if A and B are real symmetric matrices and A is positive defi-
nite, then p(x) = det(B — xA) has all real roots.



CHAPTER 11

Multilinear Mappings and
Tensors

In this chapter we generalize our earlier discussion of bilinear forms, which
leads in a natural manner to the concepts of tensors and tensor products. While
we are aware that our approach is not the most general possible (which is to
say it is not the most abstract), we feel that it is more intuitive, and hence the
best way to approach the subject for the first time. In fact, our treatment is
essentially all that is ever needed by physicists, engineers and applied
mathematicians. More general treatments are discussed in advanced courses
on abstract algebra.

The basic idea is as follows. Given a vector space V with basis {e;}, we
defined the dual space V* (with basis {w'}) as the space of linear functionals

on V. In other words, if ¢ = Sip;0' € V¥ and v = Zjvjej €V, then

¢(V) = (¢’ V) = <2i¢iwi, Zjvjej) = Zi’j(pivjé’.j
= Zi¢ivi .

Next we defined the space B(V) of all bilinear forms on V (i.e., bilinear map-
pings on V x V), and we showed (Theorem 9.10) that B(V) has a basis given

by {fi = o' ® w} where

fiu, v) = o' ® w(u, v) = o'(wwi(v) = uv .

RAR
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It is this definition of the fi that we will now generalize to include linear func-
tionals on spaces such as, for example, V¥ x V¥ x V¥ x V x V.

11.1 DEFINITIONS

Let V be a finite-dimensional vector space over F, and let V' denote the r-fold

Cartesian product V x V x - - - x V. In other words, an element of V" is an r-
tuple (v, . . ., vy) where each v; € V. If W is another vector space over ¥,

then a mapping T: V' — W is said to be multilinear if T(v,, . . ., v;) is linear
in each variable. That is, T is multilinear if foreachi=1, ..., r we have

T(v,...,av;+bv'i, ..., vy
=alT(v,...,vi,...,vp)+bT(v, ..., Vi, ..., Vp)

for all v;, v/, €V and a, b € 7. In the particular case that W = F, the mapping
T is variously called an r-linear form on V, or a multilinear form of degree
r on V, or an r-tensor on V. The set of all r-tensors on V will be denoted by
7. (V). (It is also possible to discuss multilinear mappings that take their
values in W rather than in F. See Section 11.5.)

As might be expected, we define addition and scalar multiplication on
7: (V) by

S+T)vy, ooy v)=SWy, oo, v )+T (v, ...y v,)
@ar)vy, ...,v,)=al (v, ..., v,)

forall S, T € 7, (V) and a € . It should be clear that S + T and aT are both r-
tensors. With these operations, 7, (V) becomes a vector space over ¥. Note
that the particular case of r = 1 yields 7; (V) = V*, i.e., the dual space of V,
and if r = 2, then we obtain a bilinear form on V.

Although this definition takes care of most of what we will need in this
chapter, it is worth going through a more general (but not really more
difficult) definition as follows. The basic idea is that a tensor is a scalar-
valued multilinear function with variables in both V and V*. Note also that by
Theorem 9.4, the space of linear functions on V* is V** which we view as
simply V. For example, a tensor could be a function on the space V* x V x V.
By convention, we will always write all V* variables before all V variables,
so that, for example, a tensor on V x V* x V will be replaced by a tensor on
V* x V x V. (However, not all authors adhere to this convention, so the reader
should be very careful when reading the literature.)
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Without further ado, we define a tensor T on V to be a multilinear map on
V*S x VI
T:V¥xV =V % xV'xVx---xV—>F

s copies I copies

where r is called the covariant order and s is called the contravariant order
of T. We shall say that a tensor of covariant order r and contravariant order s
is of type (or rank) (}). If we denote the set of all tensors of type (§) by Z3#(V),
then defining addition and scalar multiplication exactly as above, we see that
7:(V) forms a vector space over F. A tensor of type (8) is defined to be a
scalar, and hence TOO(V) = F. A tensor of type (6) is called a contravariant
vector, and a tensor of type () is called a covariant vector (or simply a
covector). In order to distinguish between these types of vectors, we denote
the basis vectors for V by a subscript (e.g., €;), and the basis vectors for V* by
a superscript (e.g., o'). Furthermore, we will generally leave off the V and
simply write 7, or 7.

At this point we are virtually forced to introduce the so-called Einstein
summation convention. This convention says that we are to sum over
repeated indices in any vector or tensor expression where one index is a
superscript and one is a subscript. Because of this, we write the vector com-
ponents with indices in the opposite position from that of the basis vectors.
This is why we have been writing v = Z;vle; € V and ¢ = X¢;0' € V*. Thus
we now simply write v = vie; and ¢ = (I)j(uj where the summation is to be
understood. Generally the limits of the sum will be clear. However, we will
revert to the more complete notation if there is any possibility of ambiguity.

It is also worth emphasizing the trivial fact that the indices summed over
are just “dummy indices.” In other words, we have vie; = Vjej and so on.
Throughout this chapter we will be relabelling indices in this manner without
further notice, and we will assume that the reader understands what we are
doing.

Suppose T € 7;, and let {e,, . .., ey} be a basis for V. Foreachi=1, ...,
r we define a vector v; = ejaji where, as usual, aji € ¥ is just the jth component
of the vector v;. (Note that here the subscript 1 is not a tensor index.) Using the
multilinearity of T we see that

T, ..., vy = T(ejlajll, e, ejrajfr) = ajll e ajfr Tej,...,¢€5) .
The n" scalars T(ej, , . . ., ej,) are called the components of T relative to the

basis {e;}, and are denoted by Tj, ... ;. This terminology implies that there
exists a basis for 7, such that the T}, ... are just the components of T with
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respect to this basis. We now construct this basis, which will prove that 7 is
of dimension n".

(We will show formally in Section 11.10 that the Kronecker symbols Bij
are in fact the components of a tensor, and that these components are the same
in any coordinate system. However, for all practical purposes we continue to
use the &' ; simply as a notational device, and hence we place no importance on
the position of the indices, i.e., Bij = Bji etc.)

For each collection {i,, . . ., i;} (where 1 < i, < n), we define the tensor
Q" I (not simply the components of a tensor Q) to be that element of 7;
whose values on the basis {e;} for V are given by

T : ,
Qu r(ejl""’ejr)=61j1"'6rjr

and whose values on an arbitrary collection {v,, .. ., v;} of vectors are given
by multilinearity as

Qi vy e V)= Qi i (ejlajll, oo ejraj"r)
=aj11---ajrr§2i""i’ (ejl, e, ejr)
= ajll . ..ajrr 6ilj] ...5irjr

= aill ...airr .

That this does indeed define a tensor is guaranteed by this last equation which

shows that each QU " " Ir is in fact linear in each variable (since v, + V', =

(ajll + a’jll)ejl etc.). To prove that the n' tensors Qi1 it form a basis for T

we must show that they linearly independent and span ‘Z;.

Suppose that aj, ... Q""" ir = ) where each ai, - .- i, € F. From the

definition of Q' *** I, we see that applying this to any r-tuple (€jy»--.,ej) of
basis vectors yields o, . . . ., = 0. Since this is true for every such r-tuple, it
follows that a;, . . . ;, = 0 for every r-tuple of indices (i}, . . . , i;), and hence the

Q'+ I are linearly independent.
Now let T;, ...i, =T(ej, , . . . , €i,) and consider the tensor

Til...irQil’“ir
in 7;. Using the definition of Qi+ if, we see that both T, . .. irQil drand T
yield the same result when applied to any r-tuple (e, . . . , €j,) of basis
vectors, and hence they must be equal as multilinear functions on V'. This
shows that {Q" """ i1} spans 7;.
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While we have treated only the space 7, it is not any more difficult to

treat the general space 7. Thus, if {e;} is a basis for V, {(uj} is a basis for V*
and T € 7, we define the components of T (relative to the given bases) by

17 -« -1 i i
Th Sj]"’jr=T(wl?""ws,ejl""’ejr)'

Defining the n™** analogous tensors Q;ll." i/, it is easy to mimic the above
procedure and hence prove the following result.

Theorem 11.1 The set 7, of all tensors of type (}) on V forms a vector space

of dimension n"*3.

Proof This is Exercise 11.1.1. B

Since a tensor T € 7 is a function on V** x V', it would be nice if we
could write a basis (e.g., Qi{".'.'.' isjf) for 7 in terms of the bases {e;} for V and
{w} for V¥. We now show that this is easy to accomplish by defining a
product on 7, called the tensor product. The reader is cautioned not to be
intimidated by the notational complexities, since the concepts involved are
really quite simple.

Suppose that SET,ISl and T ETQSZ. Letu, ..., Uy Vi, . . ., Vp, bE
vectors in V, and o', . .., a®, Bl, ..., p%2 be covectors in V*. Note that the
product

S, ...,a%u,..., ur,) TR, ..., %% vy, ... s Vr,)

is linear in each of its r; + s, + r, + s, variables. Hence we define the tensor
product S® TE€ 7 151+ ’;252 (read “S tensor T”) by

1 1
S®T)(a',...,a’ B .. ., B2 uy, ..., Uy, Ve ovy Vpy) =

1 1
Sta', ...,a’uy, . ..,u ) TP, ..., B2, v,y V)

It is easily shown that the tensor product is both associative and distribu-
tive (i.e., bilinear in both factors). In other words, for any scalar a € ¥ and
tensors R, S and T such that the following formulas make sense, we have

(R®S)®T =RP®S®T)

R®(S+T)=R®S+RAT

(R+S)®T =R®T +S®T
@S)®T =S®@l)=a(S®T)
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(see Exercise 11.1.2). Because of the associativity property (which is a conse-
quence of associativity in F), we will drop the parentheses in expressions such
as the top equation and simply write R ® S ® T. This clearly extends to any
finite product of tensors. It is important to note, however, that the tensor
product is most certainly not commutative.

Now let {e,, ..., en} be a basis for V, and let {(uj} be its dual basis. We
claim that the set {o'' ® - - - ® 0’} of tensor products where 1 < j, <n forms
a basis for the space 7; of covariant tensors. To see this, we note that from the
definitions of tensor product and dual space, we have

W' ® - ®wley, ..., e) = olife;) - wle;) = 8y - Oy

so that o' ® - - - ® ' and Q' " " I take the same values on the r-tuples
(i, - - - » €i,), and hence they must be equal as multilinear functions on V".
Since we showed above that {le e jr} forms a basis for 7, we have proved
that {0 ® - - - ® wi"} also forms a basis for ;.

The method of the previous paragraph is readily extended to the space 7.
We must recall however, that we are treating V** and V as the same space. If
{e;} is a basis for V, then the dual basis {(uj} for V* was defined by wl(e;) =
((uj, e )= Bji. Similarly, given a basis {(uj} for V*, we define the basis {e;} for
V*#* =V by ei(u)j) = (uj(ei) = Bji. In fact, using tensor products, it is now easy
to repeat Theorem 11.1 in its most useful form. Note also that the next
theorem shows that a tensor is determined by its values on the bases {e;} and

{0}

Theorem 11.2 Let V have basis {e,, . . ., e}, and let V* have the corre-
sponding dual basis {w', . .., ®"}. Then a basis for 7} is given by the collec-
tion

{,® - ®e;, R0 ®- - @ w}
where 1 <j,,...,jn 1, ...,1s<n, and hence dim 7% = n"*>,
Proof In view of Theorem 11.1, all that is needed is to show that
e ® - ®e, @ ® - @or = Qi il
The details are left to the reader (see Exercise 11.1.1). I

Since the components of a tensor T are defined with respect to a particular
basis (and dual basis), we might ask about the relationship between the com-
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ponents of T relative to two different bases. Using the multilinearity of
tensors, this is a simple problem to solve.

First, let {e;} be a basis for V and let {u)j} be its dual basis. If {&;} is
another basis for V, then there exists a nonsingular transition matrix A = (aj D
such that

€ = ejaji . (1)

(We emphasize that al; is only a matrix, not a tensor. Note also that our defini-

tion of the matrix of a linear transformation given in Section 5.3 shows that a/;

is the element of A in the jth row and ith column.) Using (u)i, €)= Bij, we have
(0, 2) = (0, eal) = al (0, ¢) = ald} = a', .

Let us denote the inverse of the matrix A = (aij) by A" =B = (bij). In other

words, aijbjk = &', and bijajk = 8l,. Multiplying (), &,) = al, by bl and

summing on 1 yields

(bji(ﬂi,ék) = bjiaik = 6jk .

But the basis {mi} dual to {&;} also must satisfy (mj, k) = éjk, and hence
comparing this with the previous equation shows that the dual basis vectors
transform as

o = bl (2)

The reader should compare this carefully with (1). We say that the dual
basis vectors transform oppositely (i.e., use the inverse transformation matrix)
to the basis vectors. It is also worth emphasizing that if the nonsingular transi-
tion matrix from the basis {e;} to the basis {&€;} is given by A, then (according
to the same convention given in Section 5.4) the corresponding nonsingular
transition matrix from the basis {u)i} to the basis {mi} is given by BT =
(A™M)T. We leave it to the reader to write out equations (1) and (2) in matrix
notation to show that this is true (see Exercise 11.1.3).

We now return to the question of the relationship between the components
of a tensor in two different bases. For definiteness, we will consider a tensor
T € 7;%. The analogous result for an arbitrary tensor in 7 will be quite

obvious. Let {e;} and {(uj} be a basis and dual basis for V and V* respective—
ly. Now consider another pair of bases {€;} and {mj} where €; = ejaji and ®' =
bij(uj. Then we have TY | = T(o', o, ex) as well as TPY, = T(®P, ®9, €,), and
therefore
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TPY, = T@P, ®%, &) = bPibdjak, T(w!, 0, ex) = bP;jbYjak, Tl .

This is the classical law of transformation of the components of a tensor of
type (%). It should be kept in mind that (aij) and (bij) are inverse matrices to
each other. (In fact, this equation is frequently taken as the definition of a
tensor (at least in older texts). In other words, according to this approach, any
quantity with this transformation property is defined to be a tensor.)

In particular, the components v' of a vector v = v ¢; transform as
v o= bijVj
while the components o; of a covector o = ociwi transform as
a; = ocjaji .

We leave it to the reader to verify that these transformation laws lead to the
self-consistent formulas v = Viei = v g and o = ociwi = ﬁ@j as we should
expect (see Exercise 11.1.4).

We point out that these transformation laws are the origin of the terms
“contravariant” and “covariant.” This is because the components of a vector
transform oppositely (“contravariant”) to the basis vectors e;, while the com-
ponents of dual vectors transform the same as (“‘covariant”) these basis vec-
tors.

It is also worth mentioning that many authors use a prime (or some other
method such as a different type of letter) for distinguishing different bases. In
other words, if we have a basis {e;} and we wish to transform to another basis
which we denote by {e;i’}, then this is accomplished by a transformation

matrix (aij') so that ey’ = ejaji'. In this case, we would write ol = ai'j(uj where
(ai'j) is the inverse of (aij'). In this notation, the transformation law for the
tensor T used above would be written as

TP d r = bP ibqjakr’Tijk .

Note that specifying the components of a tensor with respect to one coor-
dinate system allows the determination of its components with respect to any
other coordinate system. Because of this, we shall frequently refer to a tensor
by its “generic” components. In other words, we will refer to e.g., Ty, as a
“tensor” and not the more accurate description as the “components of the
tensor T.”
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Example 11.1 For those readers who may have seen a classical treatment of
tensors and have had a course in advanced calculus, we will now show how
our more modern approach agrees with the classical.

If {Xi} is a local coordinate system on a differentiable manifold X, then a
(tangent) vector field v(x) on X is defined as the derivative function v =

vi(a/axi), so that v(f) = Vi(af/axi) for every smooth function f: X — R (and

where each v' is a function of position x € X, i.e., v! = v!(x)). Since every
vector at X € X can in this manner be written as a linear combination of the

d/0x!, we see that {9/0x'} forms a basis for the tangent space at x.
We now define the differential df of a function by df(v) = v(f) and thus
df(v) is just the directional derivative of f in the direction of v. Note that

dxi(v) = v(x}) = vi(axi/ax)) = vidi, = vi

and hence df(v) = Vi(af/axi) = (af/axi)dxi(v). Since v was arbitrary, we obtain

the familiar elementary formula df = (of/ axi)dxi. Furthermore, we see that
dxi(9/9x)) = ax'/ox) = d,

so that {dxi} forms the basis dual to {a/axi}. In summary then, relative to the
local coordinate system {Xi}, we define a basis {e; = a/axi} for a (tangent)
space V along with the dual basis {o' = dx'} for the (cotangent) space V*.

If we now go to a new coordinate system {X'} in the same coordinate
patch, then from calculus we obtain
a/0x' = (9xI/9x1)a/ox]
so that the expression &; = ejaji implies aji = 9xI/ox Similarly, we also have
dx! = (9x/0x))dx!

so that @' = biju)j implies bij = 9%!/9xJ. Note that the chain rule from calculus
shows us that

al,b¥ = (ax'/9x¥)(0x/9x)) = axl/ox) = 8}

and thus (bij) is indeed the inverse matrix to (aij).

Using these results in the above expression for TP9,, we see that
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—p a=q ok
7 pa _ox” ox? ox i

ox' ox’ ox”

k

which is just the classical definition of the transformation law for a tensor of

2
type (7).
We also remark that in older texts, a contravariant vector is defined to

have the same transformation properties as the expression dx' = (9x'/9xJ)dx/,
while a covariant vector is defined to have the same transformation properties

as the expression 9/9x ! = (axi/axi)a/axi. 7

Finally, let us define a simple classical tensor operation that is frequently
quite useful. To begin with, we have seen that the result of operating on a

vector v = vie; € V with a dual vector a = ocju)j € V* is just (a, v) =
ocjvi(u)j, ei) = ocjviéji = ocivi. This is sometimes called the contraction of o with
v. We leave it to the reader to show that the contraction is independent of the

particular coordinate system used (see Exercise 11.1.5).
If we start with tensors of higher order, then we can perform the same sort

of operation. For example, if we have S € TZ] with components S kand T €
72 with components TPY, then we can form the () tensor with components

Sijijq, or a different (%) tensor with components Sijkij and so forth. This
operation is also called contraction. Note that if we start with a (1]) tensor T,

then we can contract the components of T to obtain the scalar T';. This is
called the trace of T.

Exercises

1. (a) Prove Theorem 11.1.
(b) Prove Theorem 11.2.

2. Prove the four associative and distributive properties of the tensor product
given in the text following Theorem 11.1.

3. If the nonsingular transition matrix from a basis {e;} to a basis {&;} is
given by A = (a' ;), show that the transition matrix from the corresponding
dual bases {u)i} and {mi} is given by (AHT,

4. Using the transformation matrices (aij) and (bij) for the bases {e;} and {&;}
and the corresponding dual bases {u)i} and {mi}, verify that v = vie, = v g

and o = ;0" = ;.
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5. If vE V and a € V*, show that (o, v) is independent of the particular
basis chosen for V. Generalize this to arbitrary tensors.

6. Let Aj be a covariant vector field (i.e., Aj = Aj(x)) with the transformation
rule

ox’
P

Show that the quantity 9;A; = aAi/axj does not define a tensor, but that
Fjj = 0iA; — 0jA| is in fact a second-rank tensor.

11.2 SPECIAL TYPES OF TENSORS

In order to obtain some of the most useful results concerning tensors, we turn
our attention to the space 7, of covariant tensors on V. Generalizing our
earlier definition for bilinear forms, we say that a tensor S € 7, is symmetric
if for each pair (1, j) with 1 <1, j<r and all v; € V we have
S(Vis e ooy Vi oo o Voo, V) = SV oo, Vi e, Vi, V)
Similarly, A € 7; is said to be antisymmetric (or skew-symmetric or alter-
nating) if
AWV ooV ooy Vs oo, Vi) = AV, o, Vo, Vi, V)
Note this definition implies that A(v,, . . ., v{) = 0 if any two of the v, are
identical. In fact, this was the original definition of an alternating bilinear
form. Furthermore, we also see that A(v,, . .., vy) = 0 if any v; is a linear
combination of the rest of the v;. In particular, this means that we must always
have r < dim V if we are to have a nonzero antisymmetric tensor of type (2) on
V.
It is easy to see that if S,, S, € 7, are symmetric, then so is aS, + bS,
where a, b € #. Similarly, aA, + bA, is antisymmetric. Therefore the symmet-

ric tensors form a subspace of Z; which we denote by Z'(V), and the anti-
symmetric tensors form another subspace of 7; which is denoted by A’(V)

(some authors denote this space by AT(V*)). Elements of A"(V) are generally
called exterior r-forms, or simply r-forms. According to this terminology,

the basis vectors {w'} for V* are referred to as basis 1-forms. Note that the
only element common to both of these subspaces is the zero tensor.
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A particularly important example of an antisymmetric tensor is the
determinant function det € 7,(R") (see Theorem 4.9 and the discussion pre-
ceding it). Note also that the definition of a symmetric tensor translates into
the obvious requirement that (e.g., in the particular case of 73) S;; = S;;, while
an antisymmetric tensor obeys A;; = —A;. These definitions can also be
extended to include contravariant tensors, although we shall have little need to
do so.

It will be extremely convenient for us to now incorporate the treatment of
permutation groups given in Section 1.2. In terms of any permutation o € S,
we may rephrase the above definitions as follows. We say that S € 7; is sym-
metric if for every collection v,, ..., v, € V and each o0 € S; we have

S(Vi, ..., V) = S(Vo1, ..., Vor) -
Similarly, we say that A € 7, is antisymmetric (or alternating) if either

Ay, ..., V) = (sgn 0)A(Veol s ..., Vor)
or
Aol , ..., Vor) = (sgn O)A(Vy, ..., V)

where the last equation follows from the first since (sgn 0)*> = 1. Note that
even if S, T € Z'(V) are both symmetric, it need not be true that S ® T be
symmetric (i.e., S ® T & X™"(V)). For example, if S;; = S;; and Tpq = Tqp, it
does not necessarily follow that S;;Tq = S;pTjq. It is also clear that if A, B €
AT(V), then we do not necessarily have A ® B € A™(V).

Example 11.2 Suppose a € APV), let {e,, ..., en} be abasis for V, and for
eachi=1,...,nletv,= ejaji where aji € F. Then, using the multilinearity of
o, we may write

o(vy,...,vp) = ally---alale;, ..., e

where the sums are over all 1 < j, < n. But a € A"(V) is antisymmetric, and

hence (ej, , . . ., €j,) must be a permutation of (e, . . . , €y) in order that the e;j,
all be distinct (or else a(e;j, , . . . , €j,) = 0). This means that we are left with
(Vi ..., V) = gl .- -alny o€ ,...,€j,)

where Xy denotes the fact that we are summing over only those values of j,
such that (j,, . . ., jn) is a permutation of (1, . . ., n). In other words, we have
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a(Vi,...,Vn) = Sees, 2% - -a%" ool s - ., Con) -
But now, by the antisymmetry of o, we see that a(eg1, . . . , €on) =
(sgn o)a(ey, . . . , €y) and hence we are left with
a(vVi,...,Vn) = Sees, (sgn o) a®l - a%"ale,...,en) . (*)
Using the definition of determinant and the fact that au(e,, . . . , e,) is just some

scalar, we finally obtain
oV, ..., V) = det(aji) o(e;,...,en) .

Referring back to Theorem 4.9, let us consider the special case where
o(ey, ..., en) = 1. Note that if {(uj} is a basis for V*, then

09(v) = 0%exa") = ak 0%y = a5 8% = a%; .
Using the definition of tensor product, we can therefore write (*) as
det(al) = a(v,,...,vn) = Zoes, (5gn )0 ® - - - ® w(v,, ..., Vo)
which implies that the determinant function is given by
a = ees, (sgn 0)w?' @ - - - ® wo"

In other words, if A is a matrix with columns given by v,, ..., v, then det A =
o(Vy, ..., Vp).

While we went through many detailed manipulations in arriving at these
equations, we will assume from now on that the reader understands what was
done in this example, and henceforth leave out some of the intermediate steps
in such calculations. /

At the risk of boring some readers, let us very briefly review the meaning
of the binomial coefficient (}) = n!/[r!(n - r)!]. The idea is that we want to
know the number of ways of picking r distinct objects out of a collection of n
distinct objects. In other words, how many combinations of n things taken r at
a time are there? Well, to pick r objects, we have n choices for the first, then
n — 1 choices for the second, and so on downton — (r— 1) =n - r + 1 choices
for the rzh . This gives us

nn-1)---(n-r+1) = n!/(n -r)!
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as the number of ways of picking r objects out of n if we take into account the
order in which the r objects are chosen. In other words, this is the number of
injections INJ(r, n) (see Section 4.6). For example, to pick three numbers in
order out of the set {1, 2, 3, 4}, we might choose (1, 3, 4), or we could choose
(3, 1, 4). It is this kind of situation that we must take into account. But for
each distinct collection of r objects, there are r! ways of arranging these, and
hence we have over-counted each collection by a factor of r!. Dividing by r!
then yields the desired result.

If {e;,...,eqtisabasisfor Vand T € /\r(V), then T is determined by its
values T(ej, , . . ., ej) for1, <- - - <1, Indeed, following the same procedure

as in Example 11.2, we see that if v; =e;al; fori=1, ..., rthen
T(vy, ..., vy = a'p---a" T, ,...,ei)
where each sum is over 1 < i, < n. Furthermore, each collection {e;, , ..., e;}

must consist of distinct basis vectors in order that T(e;, , . . . , €;,) # 0. But the
antisymmetry of T tells us that for any o € S,, we must have

T(eci;»---»eci) = (sgno)T(e;,...,e;)
where we may choose 1, < - - - < i;. Thus, since the number of ways of choos-
ing r distinct basis vectors {€;, , . . ., €;,} out of the basis {e,, ..., en}is (}), it

follows that
dim A"(V) = @) = n!/[r!(n-1)!] .

We will prove this result again when we construct a specific basis for A’(V)
(see Theorem 11.8 below).

In order to define linear transformations on Z; that preserve symmetry (or
antisymmetry), we define the symmetrizing mapping S: 7, —7; and alter-
nation mapping 4: 7. —7; by

STV, ..., v) = (1) 2Zses, T(Vor - -5 Vor)
and
AT)(Vy, ..., V) = (1) Zses, (sgn 0)T(Vor 5 ..., Vor)
where T € 7. (V) and v,, . . ., v; € V. That these are in fact linear transforma-

tions on Z; follows from the observation that the mapping T ; defined by
To(vi, ... ve) = T(Vor 5. -+ Vor)

is linear, and any linear combination of such mappings is again a linear trans-
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formation.
Given any o € S,, it will be convenient for us to define the mapping
6: VI — V' by
6(Vis...»Ve) = (Vol - - -5 Vor) -

This mapping permutes the order of the vectors in its argument, not the labels
(i.e. the indices), and hence its argument must always be (vi, va, . .., Vy) or
(W1, Wa, . .., wy) and so forth. Then for any T € 7, (V) we define oT € Z; (V)
by

ol =To6

which is the mapping T defined above. It should be clear that o(T, + T,) =
oT, + oT,. Note also that if we write

6(vVi,..., VD) = (Vol 5. -5 Vor) = (Wi oo, Wi)

then w; = v and therefore for any other T € S; we have

ToO6(vVi,...,Vp) = T(W[, ..., W)
= (Wels - -+ Wep)
= (Votls - - - » Vo)
= 0ot (Vy, ..., Vy) .
This shows that
06 = Oot

and hence
o(tT) = o(To%) = To(®R°6) = To(0ot) = (01T .
Note also that in this notation, the alternation mapping is defined as
AT = (I/r)2ses, (sgn 0)(0T) .

Theorem 11.3 The linear mappings A and § have the following properties:
(@) TE AY(V)if and only if AT =T, and T € 2(V) if and only if ST = T.
(b) A(T: (V) = A"(V) and S(T; (V) = Z(V).
(c) 4% =4 and §* = S, 1.e., 4 and § are projections.

Proof Since the mapping A is more useful, we will prove the theorem only
for this case, and leave the analogous results for S to the reader (see Exercise
11.2.1). Furthermore, all three statements of the theorem are interrelated, so
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we prove them together.

First suppose that T € A’(V). From the definition of antisymmetric tensor
we have T(vg1, ..., Vor) =(sgn 0)T(vy, . . ., vy), and thus using the fact that
the order of S, is r!, we see that

AT vy, ..., v,) = (Ur)Z;eg (5gnO)T (Vyys -5 Vy,)
= (l/r!)ZOESrT(Vl’ cee o Vr)
=T(V1, cee o V}") .

This shows that T € A'(V) implies AT =T.
Next, let T be any element of Z; (V). We may fix any particular element
0 € S; and then apply AT to the vectors vg; , . . ., Vgr to obtain

ﬂT(Vgl, ceey Ver)=ﬂT6(V1, cee sy Vr
= (UrhZ;es (sgn0)Ty(Vyps - s Vo,
= (/rhZ;es (sgnO)T Woprs -+ » Vo) -

Now note that sgn o = (sgn o)(sgn 0)(sgn 0) = (sgn c0)(sgn 0), and that S; =
{¢ = 00: o € S;} (this is essentially what was done in Theorem 4.3). We now
see that the right hand side of the above equation is just

(l/r!)(sgnﬁ)zoesr (sgno)T (vygys -+ > Voor)
= (UrD)(sgn0)Zycs (sgn )T (vyy, ... s Vy,)
=(sgnHAT (v, ..., v,)

which shows (by definition) that AT is antisymmetric. In other words, this
shows that AT € A(V) for any T € Z; (V), or A(7; (V)) C A'(V).

Since the result of the earlier paragraph showed that T = AT € A(Z;(V))
for every T € A'(V), we see that A"(V) C A(Z; (V)), and therefore 4(T; (V))
= A'(V). This also shows that if AT = T, then T is necessarily an element of
AT(V). Tt then follows that for any T € 7; (V) we have AT € A(V), and
hence A°T = A(AT) = AT so that 2> = 4. N

Suppose Aj, . . ., and Th i (wherer<sn=dim Vand 1 <ix <n) are

both antisymmetric tensors, and consider their contraction Aj, ... T'" "'

For any particular set of indices iy, . . . , i; there will be r! different ordered
sets (i, . . . , ;). But by antisymmetry, the values of A;, ... corresponding to

each ordered set will differ only by a sign, and similarly for T' ** * i This
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means that the product of A;, ... times T " r summed over the r! ordered
sets (i, . . . , 1;) 1s the same as r! times a single product which we choose to be
the indices iy, . . . , i; taken in increasing order. In other words, we have

ip---ip — T
A, T T=rl Ay T r

where [ij - - - i;] denotes the fact that we are summing over increasing sets of
indices only. For example, if we have antisymmetric tensors Ajjx and TUX in
|R3, then

AT = 31Ap T = 6A13T'?
ijk

(where, in this case of course, Ajjx and TY" can only differ by a scalar).

There is a simple but extremely useful special type of antisymmetric
tensor that we now wish to define. Before doing so however, it is first
convenient to introduce another useful notational device. Note that if T € 7,
and we replace v, . . ., v; in the definitions of § and A by basis vectors e;,
then we obtain an expression in terms of components as

STi...r = (/tHXZ6es,To1 - -- or
and
ATy ...r = (M) 26es, (sgn 0)To1 - - - or -

We will write Ty ... ) =S8T;...rand Ty ... = AT ... . For example, we
have

g

=

S
|

= (1/2!)(Tij + Tji)
and

!
=
—

|

= (1721)(Ty - Ty) -
A similar definition applies to any mixed tensor such as

Tk(pq)[ij] - (1/2!){Tk(PtI)ij _ Tk(pq)ji}

= (V4T + T T,

kqp
i~ Tk

Note that if T € Z°(V), then T¢j,...j)=Ti, ...i, , whileif T € AT(V), then
T - i1=Ti, i

Now consider the vector space R®> with the standard orthonormal basis

e

{e|, e,, e3}. We define the antisymmetric tensor ¢ € /\3(|R3) by the require-
ment that
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Since dim A3(R?) = 1, this defines all the components of & by antisymmetry:
€13 = —€p31 = €391 = -l etc. If {§; = ejaji} is any other orthonormal basis for R3

related to the first basis by an (orthogonal) transition matrix A = (aji) with
determinant equal to +1, then it is easy to see that

g(él, éz, é?,) = detA = +1

also. This is because ¢(e;, €;, €x) = sgn o where o is the permutation that takes
(1, 2, 3) to (1, j, k). Since € € /\3(|R3), we see that [jjk] = &jjx. The tensor ¢ is
frequently called the Levi-Civita tensor. However, we stress that in a non-
orthonormal coordinate system, it will not generally be true that €123 = +1.

While we have defined the ¢jjx as the components of a tensor, it is just as
common to see the Levi-Civita (or permutation) symbol ¢;j defined simply
as an antisymmetric symbol with €123 = +1. In fact, from now on we shall use
it in this way as a convenient notation for the sign of a permutation. For nota-
tional consistency, we also define the permutation symbol ¥ to have the
same values as g;jx. A simple calculation shows that &;jk gik=31=6,

It should be clear that this definition can easily be extended to an arbitrary
number of dimensions. In other words, we define

+1 if (i}, ..., i,) is an even permutation of (1,2, ..., n)
Ei, = -1 1if (i, ..., i;) 1s an odd permutation of (1,2, ..., n)
0 otherwise

This is just another way of writing sgn ¢ where o € S;,. Therefore, using this
symbol, we have the convenient notation for the determinant of a matrix A =

(a')) € My(F) as
det A = Eil...inaill . --ai“n .

We now wish to prove a very useful result. To keep our notation from

i Wi - . sifk _ si sjsk
getting too cluttered, it will be convenient for us write 8, =6,6,6, . Now

note that €, = 66;1;3]. To see that this true, simply observe that both sides are

antisymmetric in (p, q, r), and are equal to 1 if (p, q, r) = (1, 2, 3). (This also
gives us a formula for €,q, as a 3 x 3 determinant with entries that are all

Kronecker delta’s. See Exercise 11.2.4) Using £!>* = 1 we may write this as

gl?3 Epqr = 66&,1[;3]. But now the antisymmetry in (1, 2, 3) yields the general

result

ijk — (SLik]
€7 Epgr _66qu (D
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which is what we wanted to show. It is also possible to prove this in another
manner that serves to illustrate several useful techniques in tensor algebra.

Example 11.3 Suppose we have an arbitrary tensor A € A3(R?), and hence

Alijk] = Ajjk- As noted above, the fact that dim /\3(|R3) = 1 means that we
must have Ajjx = Agjjk for some scalar A € R. Then

Aks s —)Lgks €,qr = OAE,, =0Ag ké’é’ék .

p-q-r

Because ¢jjx = €[jjk], we can antisymmetrize over the indices i, j, k on the right
[ijk]
par
you do not believe it, and see Exercise 11.2.7). This gives us

hand side of the above equation to obtain 6A¢;;0,, (write out the 6 terms if

Lik] _ [Gk]
Ayks s =6Ag;3 0, =640, .

Since the antisymmetric tensor Ajjk is contracted with another antisymmetric
tensor on both sides of this equation, the discussion following the proof of
Theorem 11.3 shows that we may write

ijk _ [ijk]
Alijklg gpqr - 6A1ijkl(5pqr

or
123 123
A1238 gpqr = 6A1236E7qr ] .
Cancelling Aj;3 then yields el = 6626]2,3] as we had above, and hence (1)

again follows from this.
In the particular case that p = k, we leave it to the reader to show that

Lik] _ sif Ji_ SIS/ _ 8§/ 8
g’ squ =00, =0, —0; =0,0/ - 9,0,
which is very useful in manipulating vectors in R®. As an example, consider

the vectors A, B, C € R? equipped with a Cartesian coordinate system.
Abusing our notation for simplicity (alternatively, we will see formally in

Example 11.12 that Al = A, for such an A), we have

(B xC)! = ¢, B CK
and hence

A+eBxC) = Alg;,BICX = +¢,BICKA! = B« (CxA) .
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Other examples are given in the exercises. /

Exercises

1. Prove Theorem 11.3 for the symmetrizing mapping .S.

2. Using the Levi-Civita symbol, prove the following vector identities in R>
equipped with a Cartesian coordinate system (where the vectors are actu-
ally vector fields where necessary, f is differentiable, and Vi=g i= a/axi):
(@ Ax(BxC)=(A+C)B-(AB)C
(b) (AxB)e(CxD)=(AeC)(BeD)-(A*D)BC)

(c) VxVIf=0

(Ve (VxA)=0

() Vx(VxA)=V(VeA)-V?A
(f)Ve(AxB)=Be(VxA)-Ae+(VxB)

(g Vx(AxB)=A(VeB)-B(VeA)+(B+V)A-(A+V)B

3. Using the divergence theorem (fy V¢ A d*x =[5 A « fi da), prove that

[ VxAd’x= [ iixAda .
14 S
[Hint: Let C be a constant vector and show that
- =~ 3 e = ~ -
Cof VxAd'x= [ (ixA)Cda=C-[ iixAda ]

4. (a) Find the expression for €4, as a 3 x 3 determinant with all Kronecker
delta’s as entries.

(b) Write eijkepqr as a 3 x 3 determinant with all Kronecker delta’s as
entries.

5. Suppose V = R? and let Ajj be antisymmetric and Sl be symmetric. Show
that AijSij =0 in two ways:

(a) Write out all terms in the sum and show that they cancel in pairs.
(b) Justify each of the following equalities:
AiSY = A;ST = —A;ST = —A;ST =0 .
6. Show that a second-rank tensor Tjj can be written in the form Tj; = T +

Ttij, but that a third-rank tensor can not. (The complete solution for ten-
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sors of rank higher than two requires a detailed study of representations of
the symmetric group and Young diagrams.)

7. Let Aj, ..., be antisymmetric, and suppose Th -k is an arbitrary
tensor. Show that

Ai1-~-i Til’”ir”’... = Ail...irT[il’”ir]”’... .

T

8. (a) LetA= (aij) be a 3 x 3 matrix. Show
Eijk aip ajq akr = (det A)epqr -
(b) Let A be a linear transformation, and let y(;) = Ax(j). Show
detly), ..., yml = (det A) det[xq), ..., Xm)]

9. Show that under orthogonal transformations A = (aij) in R3, the vector
cross product X = § x 7 transforms as X' = Eijk §1z* = (det A)aijxj. Discuss
the difference between the cases det A = +1 and det A = 1.

11.3 THE EXTERIOR PRODUCT

We have seen that the tensor product of two elements of A'(V) is not gen-—
erally another element of A™'(V). However, using the mapping 4 we can
define another product on A'(V) that turns out to be of great use. We adopt

the convention of denoting elements of A"(V) by Greek letters such as o, B
etc., which should not be confused with elements of the permutation group S;.

If o € A'(V) and p € A%(V), we define their exterior product (or wedge
product) oA to be the mapping from A"(V) x AS(V) = A™5(V) given by

_ (r+s)!

anf Aa®p) .

rls!

In other words, the wedge product is just an antisymmetrized tensor product.
The reader may notice that the numerical factor is just the binomial coeffi-
cient ", *%) = ("4*%). It is also worth remarking that many authors leave off this
coefficient entirely. While there is no fundamental reason for following either
convention, our definition has the advantage of simplifying expressions
involving volume elements as we shall see later.
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A very useful formula for computing exterior products for small values of
r and s is given in the next theorem. By way of terminology, a permutation
o€ S;,ssuchthat ol <---<orando(r+ 1) <---<0o(r + s) is called an
(r, s)-shuffle. The proof of the following theorem should help to clarify this
definition.

Theorem 11.4 Suppose o. € A*(V) and p € A%(V). Then for any collection
of r + s vectors v; € V (withr + s <dim V), we have

OAB(VE, o ooy Vigg) = Z2¥ (SEN O)UVoi s - - - s Vor)P(Vo(r+l)s - - - » Vo(r+s))

where 2* denotes the sum over all permutations 0 € S, such that ol <- - - <
orand o(r + 1) <- - - <o(r + s) (i.e., over all (r, s)-shuffles).

Proof The proof is simply a careful examination of the terms in the definition
of aap. By definition, we have

anPBO, ooy Vi)
=[(r+s)/r!sNA(a® B)(vys ... s Viys) (*)
=[1/r!s1Z, (sgno)a(Vyys .. s Vo DBVoritys -+ » Vo(res))

where the sum is over all 0 € S;,s. Now note that there are only (*;*%) distinct

collections {ol, . . ., or}, and hence there are also only (‘s*%) = (";**) distinct
collections {o(r + 1), ..., o(r + s)}. Let us call the set {vg1, ..., Vgr} the “o-
variables,” and the set {Vg(r+1)s - - - s Vo(r+s)) the “P-variables.” For any of the

(*;*9) distinct collections of a- and B-variables, there will be r! ways of order-
ing the a-variables within themselves, and s! ways of ordering the B-variables
within themselves. Therefore, there will be r!s! possible arrangements of the
a- and f-variables within themselves for each of the (";*%) distinct collections.
Let 0 € S, be a permutation that yields one of these distinct collections, and
assume it is the one with the property that 61 <. <orando(r+1)<---<
o(r + s). The proof will be finished if we can show that all the rest of the r!s!
members of this collection are the same.

Let T denote the term in (*) corresponding to our chosen o. Then T is
given by

T = (sgno)a(Ver s ..., Vo)B(Vore1) » - - - » Volrss) -

This means that every other term t in the distinct collection containing T will
be of the form

t = (Sgﬂ O)a(ver ..., VGr)B(VG(Hl) see e V6(r+s))
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where the permutation 0 € S, is such that the set {01, . . ., Or} is the same
as the set {01, . . ., or} (although possibly in a different order), and similarly,
the set {O(r + 1), ..., O(r + s)} is the same as the set {o(r + 1), ..., o(r + s)}.
Thus the o- and p-variables are permuted within themselves. But we may then
write O = ¢o where ¢ € S, is again such that the two sets {01, ..., or} and
{o(r +1),...,0(r+s)} are permuted within themselves. Because none of the
transpositions that define the permutation ¢ interchange o- and f-variables,
we may use the antisymmetry of o and f§ separately to obtain

1 =(gnPO)A(Vgo1s -+ > Vorr BVpo(ratys -+ s Vgo(res))
= (8gn o) P)aA(Vyys -+ s Vo IBVo(ra1ys -+ s Vo(res))
= (sgno)a(val, ter var)ﬁ(va(r+1)’ cee Vor(r+s))
=T .

(It was in bringing out only a single factor of sgn ¢ that we used the fact that
there is no mixing of o- and (-variables.) In other words, the original sum
over all (r + s)! possible permutations ¢ € S, has been reduced to a sum
over (;* %) = (r + s)!/rls! distinct terms, each one of which is repeated r!s!
times. We are thus left with

OAB(VE, o ooy Vigg) = Z¥ (SEN O)UVei s - - - s Vor)P(Vo(r+l)s - - - » Vo(r+s))

where the sum is over the (r + s)!/r!s! distinct collections {vg1, ..., Vgr} and
{Vo(r+l) s - - - » Vo(r+s)) subject to the requirements 01 < - - - < or and o(r + 1)
<---<0(r+s). 1

Let us introduce some convenient notation for handling multiple indices.
Instead of writing the ordered set (ij, . . . , 1;), we simply write I where the
exact range will be clear from the context. Furthermore, we write I to denote
the increasing sequence (i, < - - - < 1). Similarly, we shall also write vy instead
of (vi,, ..., vi). To take full advantage of this notation, we first define the
generalized permutation symbol € by

+1 if (jj, ..., j.) is an even permutation of (i, ..., i,)
elflllr” =4-11if (jj, ..., j,) is an odd permutation of (i, ... i,)
0 otherwise

For example, e%g% = +1, 8?21] = -1, €237 = 0 etc. In particular, if A = (aji) 1S an

n X n matrix, then

1 oo n

iy
detA=¢/!  "a i
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because

R
el =g =€ :

Using this notation and Theorem 11.4, we may write the wedge product of
a and 3 as

A
anB,....v; )= el T Bav v B s )

or most simply in the following form, which we state as a corollary to
Theorem 11.4 for easy reference.

Corollary Suppose o. € A"(V) and f € AS(V). Then for any collection of
r + s vectors v; € V (withr + s < dim V) we have

anB) =Y et a)Bg) -
LK

Example 11.4 Suppose dim V =5 and {e,, . . ., es} is a basis for V. If a €
A%(V) and B € A(V), then

an fes, e, e3)
— Jiiak
= thz,ksslzf a(ejl, €, )B(e;)
235 253 352
= €£55300e,, €3)P(es) +€5330(ey, €5)P(e3) + E5p30(e3, e5)P(e;)

=a(e,, e3)B(es) —ale,, es)B(ez) +ales, es)B(ey) . /

Our next theorem is a useful result in many computations. It is simply a
contraction of indices in the permutation symbols.

Theorem 11.5 LetI=(G;,...,1¢),J =G ..., jr+s) K=(ky, ..., ky) and
L =d,...,1). Then

J KL IKL
281--~q+r+s €1 T &l gir+s
J

where I, K and L are fixed quantities, and J is summed over all increasing
subsets j; <- - - <]Jr4s Of {I,...,q+1+5s}.

Proof The only nonvanishing terms on the left hand side can occur when J is
a permutation of KL (or else £;XI = 0), and of these possible permutations, we
only have one in the sum, and that is for the increasing set J . If J is an even
permutation of KL, then eXl = +1, and /.. qtr+s = gf KL q+r+s SINCE an even
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number of permutations is required to go from J to KL. If J is an odd permu-
tation of KL, then e = -1, and ¢} . qtrts = —ef KL q+r+s since an odd
number of permutations is required to go from J to KL. The conclusion then
follows immediately. W

Note that we could have let ] = (jy, . . . , jr) and left out L entirely in Theorem
11.5. The reason we included L is shown in the next example.

Example 11.5 Let us use Theorem 11.5 to give a simple proof of the asso-
ciativity of the wedge product. In other words, we want to show that

an(Bay) = (arp)ay

for any o € A4V), p € A(V) andy € AS(V). To see this, let I = (i, . . ., ig),
J=QG - sjres), K=(ki, ..., kpand L =(,, ..., ). Then we have

a A ([3 A )/)(Vl, oo q+r+s) 2I ng q+r+sa(vl )(/3 A y)(VJ)
2:1 151 grr+sQ(Vy )ZK LgfLﬁ(VK (v

=3 kL e @BV,

It is easy to see that had we started with (aAp)Ay, we would have arrived at
the same sum.

As was the case with the tensor product, we simply write aAfAy from
now on. Note also that a similar calculation can be done for the wedge product
of any number of terms. /

We now wish to prove the basic algebraic properties of the wedge product.
This will be facilitated by a preliminary result on the alternation mapping.

Theorem 11.6 If S &7, and T € 75, then
A(AS)®T) =AS®T) =AS ®(AT)) .
Proof Using the bilinearity of the tensor product and the definition of A4S we
may write
AS)®T = (1/rh)2ses, (sgn 0)[(0S) ®T] .

For each o € S;, let G C S, be the set of permutations ¢ defined by

@1,...,0(r+s)) = (ol,...,or,r+1,...,1r+59) .



568 MULTILINEAR MAPPINGS AND TENSORS

In other words, G consists of all permutations ¢ € S;,s that have the same
effecton 1,...,ras o € S, but leave the remaining termsr+ 1, ..., r+s
unchanged. This means that sgn ¢ = sgn o, and ¢(S ® T) = (0S) ® T (see
Exercise 11.3.1). We then have

A ®T = (IrhZpec (sgn P)o(S ® T)

and therefore

A(AS)RT)=[1/(r+ S)!]Zresm (sgn 17)1:((1/1’!)24,66 (sgn)p(S®T))
= [/ +)NArDZyegZrcs,, (sgnT)(gnP)Td(SQT) .

But for each ¢ € G, we note that S, = {0 = t}: T € S}, and hence

[1/(r+ )12 g5, (sgnT)(sgn ) (S ®T')
=[1/(r+ s)!]zresm (sgnTP)TP(S ®T')
= [V + ) Zpes, (sgnOOS ®T)
=AS®T) .

Since this is independent of the particular ¢ € G and there are r! elements in
G, we then have

A(AS)®T) = (1r)ZyccAS®T)
= AS®T)(1/r)Z,e61
- A ®T) .

The proof that A(S ® T) = A(S ® (AT)) is similar, and we leave it to the
reader (see Exercise 11.3.2). i

Note that in defining the wedge product oA, there is really nothing that
requires us to have o € AT(V) and BE AS(V). We could just as well be more
general and let oo € 7, (V) and € 7 (V). However, if this is the case, then
the formula given in Theorem 11.4 most certainly is not valid. However, we
do have the following corollary to Theorem 11.6.

Corollary For any S € 7. and T € 75 we have ASAT = SAT = SA 4AT.

Proof  This follows directly from Theorem 11.6 and the wedge product
definition SAT = [(r + s)!/r!s!]AS ®T).

We are now in a position to prove some of the most important properties
of the wedge product. Note that this next theorem is stated in terms of the
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more general definition of the wedge product.

Theorem 11.7 Suppose o, o, o, € Tq(V), B, B, B € T, (V), y € T (V) and
a € . Then
(a) The wedge product is bilinear. That is,

(0 + )AR = AP + 0nAP
aA(B + B2) = anf; +anaf,

(a)Af = an(ap) = a(arp)

(b) arp=(-1)Baa.
(c) The wedge product is associative. That is,

aA(PAY) = (arP)ay = [(@+r+9)/qir!s! A @B ®Yy) .

Proof (a) This follows from the definition of wedge product, the fact that &®
is bilinear and A4 is linear. This result may also be shown directly in the case
that o, o, o, € A4V) and B, B, B € AT(V) by using the corollary to
Theorem 11.4 (see Exercise 11.3.3).

(b) This can also be shown directly from the corollary to Theorem 11.4
(see Exercise 11.3.4). Alternatively, we may proceed as follows. First note
that for o € S, we see that (since for any other T € S; we have t(oa) =
(T ° 0)a, and hence T(oca)(vy, ..., V) =AUVl » - - - » Vror))

AW, .. s v,) = Ur)Ees (senDIT@(W, .. V,)
=(/r !)ZTES, (sgnT)a(v

Tol> *0 Vror)

Tols " vror)

= (sgno)(l/rHZpes (sgnO)a(vpy, - » vg,)
=(sgno)Ao(v,, ..., Vv,) .

= (/rHZ g5 (sgnto)(sgno)a(v

Hence A(oa) = (sgn o) Ao
Now define 0, € Sq4, by

oo(l,...,q+r) =(@q+1,...,q+r,1,...,q) .

Since 0, is just a product of gr transpositions, it follows that sgn o, = (-1)9".
We then see that

a® Py, ..., Ve ) =(BOW(Vy 1> - s Vo, (ger))
=O—0(ﬁ®a)(vl, e o Vq+r) .



570 MULTILINEAR MAPPINGS AND TENSORS

Therefore (ignoring the factorial multiplier which will cancel out from both
sides of this equation),

anf=Aa® P)=A(c0,(fR®a))=(sgnoy) AP X® )
=(-D"Bra .

(c) Using Theorem 11.6, we simply calculate

(anB)ny=[(g+r+s)!/(g+r)'sJA(arB)®y)
=[(g+r+s)/(g+r)'s'll(g+nr)/q'r']A(A(a® B)®y)
=[(g+r+s)(g'r!'s'A(a®BXRY) .

Similarly, we find that aA(BAY) yields the same result. We are therefore justi—
fied (as we also saw in Example 11.5) in writing simply aApAy. Furthermore,
it is clear that this result can be extended to any finite number of products. W

Example 11.6 Suppose o € 7Z; and p € Z;. Since aaf = (-1)"*para, we see
that if either r or s is even, then aAp = pAa, but if both r and s are odd, then
anp = —paa. Therefore if r is odd we have aara = 0, but if r is even, then
aAo 1s not necessarily zero. In particular, any I-form o always has the
property that aaa=0. /

Example 11.7 If oy, ..., asare 1-forms on R>, let us define

[3 = O1AO03 + O3A05
and
Y = 200A04A05 — OLACLAOY .

Using the properties of the wedge product given in Theorem 11.7 we then
have

BAy = (ajA03 + 03A05)A(20A04AQs — CLIACLRACLY)
= 20L1AOL3AOL2AOL4AOL5 — O AO3AOAO2AOY
+ 203A05A0)A04A05 — OL3ACL5A0ACL) AOY
= —20L1AOL2AOL3AOL4AOL5 -0+0 - AIACQAO3AOC4AAS
= 30 AOLAC3AC4ACS . /

Example 11.8 Suppose oy, . .., o € /\](V) and v, ..., vy € V. Using
Theorem 11.5, it is easy to generalize the corollary to Theorem 11.4 to obtain
(see Exercise 11.3.5)
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oA A (V) =2 el oy (v ) a, (v;)

(Note that the sum is not over any increasing indices because each a; is only a

1-form.) As a special case, suppose {e;} is a basis for V and {w'} is the cor-

responding dual basis. Then w!(e;) = &; and hence

. i ky ook, i
L N (TN )=2kl~-~k,8‘11--~j;wl(ek1)"'wr(ekr)

Jr j

=gh i

Jir
In particular, if dim V = n, choosing the indices (i}, . .., 1) =(1,...,n) =
(i - - - » Jn), We see that
o'A A0 (e, .. .,en) =1 ./
Exercises
1. Show that ¢(S ® T) = (0S) ® T in the proof of Theorem 11.6.
2. Finish the proof of Theorem 11.6 by showing that
AS ®T) =A4(S ® (AT)).
3. Using o; € A4V) and B; € A'(V), prove Theorem 11.7(a) directly from
the corollary to Theorem 11.4.
4. Use the corollary to Theorem 11.4 to prove Theorem 11.7(b).
5. Suppose a4, ..., 0 E /\](V) andv,,..., v, € V. Show that
QA - AO(Vy, ..o, V) = det(ou(vy)) -

6. Suppose {e;, . .., en} is a basis for V and {u)], ..., "} is the corre-

sponding dual basis. If o € AT(V) (where r < n), show that
o = Zloc(el)wl = i< <i, WCips - - - eir)will\ e AT

by applying both sides to (e, . . . , €j,). (See also Theorem 11.8.)
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7. (Interior Product) Suppose o € A(Vyand v, v,, ..., v, EV. We
define the (r — 1)-form iyo by

i,a=0 ifr=0.
i,o=a(v) ifr=1.
i,a(vy, ..., v, )=a, vy, ..., v,) ifr>1.

(a) Prove thatiy,y =iy + iy.
(b) If a € A'(V) and B € A%(V), prove that i: A™5(V) = A™57 (V) is
an anti-derivation, i.e.,

iv(aAB) = iy o)A+ (=D'anly B) .
(c) If v= Viei and o = Xjaj, . .. irooil/\ .+« A@'r where {u)i} is the basis
dual to {e;}, show that

Iyo. = Zi2< ... <irbi2 o ir(DizA- . -A(L)ir
where

. R Ja.. .
bi, ..., = ZVaj,. i, .

(d) If . =flA - - - Af", show that

io

DS PR U A A FEU A R A A fT

I
N

k=1

O FE @ A A n fT

I
(N R

k=1

where the ~ means that the term f* is to be deleted from the expression.

8. Let V = R" have the standard basis {e;}, and let the corresponding dual
basis for V* be {u)i}.
(a) If u, veE V, show that
o' A @’ (u, v)=| '
Jooy

u 1%

and that this is + the area of the parallelogram spanned by the projection

of u and v onto the x! x-plane. What do you think is the significance of
the different signs?
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(b) Generalize this to ®'A - - - A®'r where 1 < n.

Suppose V = F", and let vy, . . ., v, € V have components relative to the
standard basis {e;} defined by v; = ejvji. Forany | <r<n,lets=n-r
and define the r-form o by

1 1
vl oo vr
Ot(Vl, cee g Vr)=
r r
v v,
and the s-form 3 by
1 1
Vorsl Vion
ﬁ(\/‘l,...,vs)= .
N N
Vol Vo

(a) Use Theorem 4.9 to show that aAf is the determinant function D on
Fn
(b) Show that the sign of an (r, s)-shuffle is given by

£{lrl’r]i1]f,+s = (_1)11+ +z,+r(r+1)/2

where iy, ..., 1y and Jj, . . ., js are listed in increasing order.

(c) IfA= (ai i) € M,(‘F), prove the Laplace expansion formula

iy i Ji Ji
a’y a a4 ra ar,
i+ +i4+r(r+1)/2 | ¢ : :
detA=Zl(—l)1 r : : :
i i || g j
a rl a rr av’ r+l a rn
where I = {i;, .., 1y and J = {j;, . . . , js} are “complementary” sets of

indices,i.e., INJ=Fand1UJ={1,2,...,n}.

Let B =r!4 where 4: 7, —7; is the alternation mapping. Define aAf in
terms of B. What is B(f' ® - - - ® ) where f' € V*?

Let I = (if,...,ig), J = (1,...,]p), and K = (kj, ..., kq). Prove the
following generalization of Example 11.3:

JI Lp+q _ 1 _ sl . sl
281-“p+q8ﬂ( = EK = n6k1 6kq
YU
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11.4 TENSOR ALGEBRAS

We define the direct sum of all tensor spaces Z;(V) to be the (infinite-
dimensional) space 7o (V) @ T1(V) @ - - - @2, (V) @ - - -, and 7 (V) to be all
elements of this space with finitely many nonzero components. This means
that every element T € Z(V) has a unique expression of the form (ignoring
zero summands)

T = T(])il + -+ T(r)ir

where each T(k)ik €7, (V)and i, < - - - <i,. The tensors T(k)ik are called the
graded components of T. In the special case that T € 7, (V) for some r, then
T is said to be of order r. We define addition in 7 (V) componentwise, and we
also define multiplication in Z (V) by defining ® to be distributive on all of
7 (V). We have therefore made 7' (V) into an associative algebra over F which
is called the tensor algebra.

We have seen that A"(V) is a subspace of 7 (V) since AT(V) is just the
image of 7, (V) under 4. Recall also that A°(V) = 75 (V) is defined to be the
scalar field F. As might therefore be expected, we define A(V) to be the
direct sum

AV) = ANVye ANV @ - dAN V)@ --- C T(V) .

Note that A*(V) =0 if r > dim V.

It is important to realize that if a € A'(V) C 7;(V) and p € A%(V) C
7s(V), then even though o ® B € Z,s(V), it is not generally true that
a®pPE A(V). Therefore A(V) is not a subalgebra of 7 (V). However, the
wedge product is a mapping from A*(V) x AS(V) — A™%V), and hence if
we extend this product in the obvious manner to a bilinear mapping A(V) x
AV) = A(V), then A(V) becomes an algebra over ¥ = /\O(V). In other
words, if . = o, + - - - + o with each o; € AT(V), and B=p +: -+ Pswith
each B; € A%i(V), then we define

a/\ﬁ=ijai/\ﬁj .

i=1 j=1
This algebra is called the Grassmann (or exterior) algebra.

The astute reader may be wondering exactly how we add together the ele-
ments o, € A"(V) and o, € A™(V) (with 1, # r,) when none of the opera—
tions (0, + 0)(Vy, . . ., Vp), (0 + Q)(Vy, . . ., Vp,) DOr (0 + A)(Vy, . . .,
Vr,+1r,) makes any sense. The answer is that for purposes of the Grassmann
algebra, we consider both o, and a,, to be elements of A(V). For example, if
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a, is a I-form and a, is a 2-form, then we write o, =0+ a;, + 0+ 0 + - - - and
o0, =0+0+0a,+0+---,and hence a,0, + a,a, (Where a; € F) makes sense
in A(V). In this way, every element of A(V) has a degree (recall that an r-
form is said to be of degree r), and we say that AV)is a graded associative
algebra.

Unlike the infinite-dimensional algebra 7 (V), the algebra A(V) is finite-
dimensional. This should be clear from the discussion following Example 11.2

where we showed that dim A"(V) = (%) (where n = dim V), and hence that
dim A'(V) = 0 if r > n. Let us now prove this result again by constructing a
specific basis for A(V).

Theorem 11.8 Suppose dim V = n. Then for r > n we have A(V) = {0}, and
if 0 <r < n, then dim A"(V) = ®). Therefore dim A(V) = 2". Moreover, if
{0, ..., ®"} is a basis for V* = A!(V), then a basis for A'(V) is given by
the set

{W"A - AT 1 <0, <---<i<n} .

Proof Suppose 0. € A"(V) where r > dim V = n. By multilinearity, o is
determined by its values on a basis {e,, . . ., en} for V (see Example 11.2).
But then we must have a(e;j, , . . ., €j,) = 0 because at least two of the e;, are
necessarily the same and a is antisymmetric. This means that o(v,, . .., vy) =

0 for all v; € V, and hence o = 0. Thus A"(V) = {0} if r >n.

Now suppose that {u)], ..., "} is the basis for V* dual to {e;}. From
Theorem 11.2, we know that {00il ®---Qwnl= i,,...,1i; <n} forms a
basis for Z; (V), and since the alternation mapping A4 maps Z; (V) onto AT(V)
(Theorem 11.3(b)), it follows that the image of the basis {w" ® - - - ® o'} for
7. (V) must span A'(V). If a € AT(V), then o € 7; (V), and hence

o = Otil...iru)ll@-"@(ﬂlr

where the sum is overall 1 <i,,..., ;<nand o, ...; =oa(ej, ..., €.
Using Theorems 11.3(a) and 11.7(c) we have
a=Aoa = ozl-l,,,i)_,‘?[(a)’.1 R ®aw")
=0 (Urho'"A--rw"
where the sum is still over all 1 <1, ..., 1, < n. However, by the antisymme-

try of the wedge product, the collection {i,, . . . , iy} must all be different, and
hence the sum can only be over the (}) distinct such combinations. For each
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such combination there will be r! permutations ¢ € S; of the basis vectors. If
we write each of these permutations in increasing order i, < - - - < 1, then the
wedge product changes by a factor sgn o, as does a;, . .. i, = a(e;, , . . ., €i,).
Therefore the signs cancel and we are left with

a = oc|il...ir|u)i1/\ AT
where, as mentioned previously, we use the notation i, - - . j,| to mean that the
sum is over increasing sets i; < - - - < i. Thus we have shown that the (}) ele—
ments ®'IA - - - A" with 1 < 1, <---<Ip<nspan AT(V). We must still show

that they are linearly independent.
Suppose ayj; - - - ir|u)il/\ .- A®' = 0. Then for any set {€j,...,ej  with
1 <j,<:--<jr=<n we have (using Example 11.8)

— il e ir . .
0—0‘|i1 e JOT A A (eh,..., ejr)
O
a;, "'lr|8j] )
= ajl =
since the only nonvanishing term occurs when {i,, . . ., i} 1s a permutation of
{Ji, - - - » Jry and both are increasing sets. This proves linear independence.

Finally, using the binomial theorem, we now see that
n n n
dimAV) =Y dim A"(V) = E( )= 1+1)"=2" .
r=0 r=0 r

Example 11.9 Another useful result is the following. Suppose dim V = n,
and let {u)], ..., "} be a basis for V¥, If oc], ..., a™are any other 1-forms in
A(V) = V*, then we may expand each o! in terms of the o' as o' = aijwj. We
then have

= N n
=a; a; g0 AAD

=det(aij)a)1 A A@"

Recalling Example 11.1, if {o' = dx'} is a local basis for a cotangent space V*

and {a' = dy'} is any other local basis, then dy' = (9y'/9x/)dx) and
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Ay ")

e ) = T

is just the usual Jacobian of the transformation. We then have

Ay
a(xl---x”)

n

dy' A ndy" = dx' A Adx

The reader may recognize dx'A - - - Adx™ as the volume element on R", and
hence differential forms are a natural way to describe the change of variables
in multiple integrals. /

Theorem 11.9 If o', ..., a" € AY(V), then {d, ..., a}isa linearly

dependent set if and only if a'A - - - Aa" = 0.

Proof If {oc], ..., a'} is linearly dependent, then there exists at least one

vector, say o, such that al = Zj,ﬁlajaj . But then

ala-na” =(Zj=1ajaj)/\a2/\---/\ar

2

=Zj¢1aj(aj/\a Anal)

=0

since every term in the sum contains a repeated 1-form and hence vanishes.
Conversely, suppose that !, . . ., of are linearly independent. We can

then extend them to a basis {oc], ..., a"} for V¥ (Theorem 2.10). If {e;} is the

corresponding dual basis for V, then aln - - Aa(e,, . . ., ey = 1 which

implies that a'A - - - Ao’ # 0. Therefore {0, . . ., o'} must be linearly depen-

dentif ola--- A" =0. 11

11.5 THE TENSOR PRODUCT OF VECTOR SPACES

We now discuss the notion of the tensor product of vector spaces. Our reason
for presenting this discussion is that it provides the basis for defining the
Kronecker (or direct) product of two matrices, a concept which is very useful
in the theory of group representations.

It should be remarked that there are many ways of defining the tensor
product of vector spaces. While we will follow the simplest approach, there is
another (somewhat complicated) method involving quotient spaces that is also
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frequently used. This other method has the advantage that it includes infinite-
dimensional spaces. The reader can find a treatment of this alternative method
in, e.g., in the book by Curtis (1984).

By way of nomenclature, we say that a mapping f: U x V. — W of vector
spaces U and V to a vector space W is bilinear if f is linear in each variable.
This 1s exactly the same as we defined in Section 9.4 except that now f takes
its values in W rather than the field #. In addition, we will need the concept of
a vector space generated by a set. In other words, suppose S = {s;, ..., sp} is
some finite set of objects, and ¥ is a field. While we may have an intuitive
sense of what it should mean to write formal linear combinations of the form
a;S; + - - - + apsp, we should realize that the + sign as used here has no
meaning for an arbitrary set S. We now go through the formalities involved in
defining such terms, and hence make the set S into a vector space T over ¥.

The basic idea is that we want to recast each element of S into the form of
a function from S to #. This is because we already know how to add functions
as well as multiply them by a scalar. With these ideas in mind, for each s; € S
we define a function s;: S — ¥ by

si(s) = 161j

where 1 is the multiplicative identity of . Since addition in ¥ is well-defined
as 1s the addition of functions and multiplication of functions by elements of
F, we see that for any a, b€ ¥ and s;, s; €S we have

(a+Db)s;(s;) = (a+b)6l-j = aéij +b6ij = asi(sj)+bsl~(sj)

= (as; + bsi)(sj)

and therefore (a + b)s; = as; + bs;. Similarly, it is easy to see that a(bs;) =
(ab)s;.

We now define T to be the set of all functions from S to F. These func-
tions can be written in the form a;s; + - - - + a8, with a; € F. It should be
clear that with our definition of the terms a;s;, T forms a vector space over 7.
In fact, it is easy to see that the functions 1s,, . . . , 1s, are linearly
independent. Indeed, if 0 denotes the zero function, suppose a;s; + - - - + apSp
= 0 for some set of scalars a;. Applying this function to s; (where 1 <1 <n) we
obtain a; = 0. As a matter of course, we simply write s; rather than 1s;.

The linear combinations just defined are called formal linear combina-
tions of the elements of S, and T is the vector space generated by the set S. T
is therefore the vector space of all such formal linear combinations, and is
sometimes called the free vector space of S over ¥.
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Theorem 11.10 Let U, V and W be finite-dimensional vector spaces over F.
Then there exists a finite-dimensional vector space over ¥ denoted by T and a
bilinear mapping t: U x V — T denoted by t(u, v) = u ® v satisfying the fol-
lowing properties:

(a) For every bilinear mapping f: U x V — W, there exists a unique linear
transformation f : T — W such that f = f o t. In other words, for all u € U and

v € V we have
fu,v) = T, v)) = TU®v) .

(b) If {uy,...,un}is abasis for U and {v,, ..., vy} is a basis for V, then
{u; ® v;} 1s a basis for T and therefore

dimT = mn = (dim U)(dim V) .

Proof Let {u, ..., uny} beabasis for U and let {v, ..., vy} be a basis for
V. For each pair of integers (i, j) with 1 <i<mand 1 <j<n we let t; be a
letter (i.e., an element of some set). We now define T to be the vector space
over ¥ consisting of all formal linear combinations of the elements t;;. In other

words, every element of T is of the form al t; where ale TI.
Define the bilinear map t: U x V — T by

u; ® vy = t(ug, vj) = tj

and hence to all of U x V by “bilinear extension.” In particular, if u = x'u; € U

and v = ijj €V, let us define u ® v to be that element of T given by
u®v = t(u,v) = xiyj t; .
It should be obvious that this does indeed define a bilinear map.

Now suppose that f: U x V. — W is any bilinear map, and remember that
every element of T is a linear combination of the t;. According to Theorem
5.1, we may define a unique linear transformation f : T — W by

f (t;) = f(uw, vy) .

Using the bilinearity of f and the linearity of f we then have

f, vy = fu, yv) = X'y flug, vy = x'y fy) = F(x'yty)
= fu®v) = f(t(u, v)) .
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This proves the existence and uniqueness of the mapping f such that f = f o t
as specified in (a).

We have defined T to be the vector space generated by the mn elements
t; =u; ® v; where {uy, ..., un} and {v,, ..., vu} were particular bases for U
and V respectively. We now want to show that in fact {u’; ® v';} forms a basis
for T where {u’;} and {V';} are arbitrary bases for U and V. For any u =

x'0;EUandv=y" v'; € V, we have (using the bilinearity of ®)
1RV = X/i y/J (u,i ® V,j)

which shows that the mn elements u’; ® v'; span T. If these mn elements are
linearly dependent, then dim T < mn which contradicts the fact that the mn
elements t;; form a basis for T. Hence {u’; ® v';} is a basis for T. W

The space T defined in this theorem is denoted by U ® V and called the
tensor product of U and V. Note that T can be any mn dimensional vector

space. For example, if m =n we could take T = T»(V) with basis t;; = o'® (uj,
I =1, j=n. The map t(uj, vj) = u; ® v; then defines u; ® v; = o' ® wl.

Example 11.10 To show how this formalism relates to our previous treat-
ment of tensors, consider the following example of the mapping T defined in
Theorem 11.10. Let {e;} be a basis for a real inner product space U, and let us

define the real numbers g; = (e;, ;). If &; = ejpji is another basis for U, then

g; = (@,8) = piip’ler, es) = p'ipY grs

so that the g;; transform like the components of a covariant tensor of order 2.
This means that we may define the tensor g € 7,(U) by g(u, v) = (u, v). This
tensor is called the metric tensor on U (see Section 11.10).

Now suppose that we are given a positive definite symmetric bilinear form
(i.e., an inner product) g = ( , ): U x U — #. Then the mapping g is just the
metric because

ge®e) = gle,e) = (ene) = g -

Therefore, if u = uiei and v = Vjej are vectors in U, we see that
gU®V) = gu,v) = (uv) = uvife,e) = guv.

If {u)i} is the basis for U* dual to {e;}, then according to our earlier formal-

ism, we would write this as g = gijooi ®w. /
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Some of the main applications in mathematics and physics (e.g., in the
theory of group representations) of the tensor product of two vector spaces are
contained in the next two results. While the ideas are simple enough, the nota-
tion becomes somewhat awkward because of the double indices.

Theorem 11.11 Let U and V have the respective bases {u,, . . . , uy} and
{Vi, ..., Vn}, and suppose the linear operators S € L(U) and T € L(V) have

matrix representations A = (aij) and B = (bij) respectively. Then there exists a
linear transformation S® T: U® V — U ® V such that forallu &€ U and v €
V we have (S ® T)(u ® v) = S(u) ® T(v).

Furthermore, the matrix C of S ® T relative to the ordered basis

{4, ®v, ..., ;@ Vv, LAV, ..., LV, ..., U PV, ..., Uy & vy}

for U ® V is the mn x mn matrix given in block matrix form as
allB alzB cre almB

C=| : :
amlB asz cre ammB

The matrix C is called the Kronecker (or direct or tensor) product of the
matrices A and B, and will also be written as C = A ® B.

Proof Since S and T are linear and ® is bilinear, it is easy to see that the
mapping f: U x V — U ® V defined by f(u, v) = S(u) ® T(v) is bilinear.
Therefore, according to Theorem 11.10, there exists a unique linear transfor-
mation f € L(U ® V) such that f (u ® v) = S(u) ® T(v). We denote the map-
ping f by S® T. Thus, (S ® T)(u ® v) = S(u) ® T(v).

To find the matrix C of S ® T i1s straightforward enough. We have S(u;) =

u; aji and T(v)) = ijji, and hence

S ®T)(w ®v) = S(u) ®T(v) = a'b%(u, @ vy) .
Now recall that the iz2 column of the matrix representation of an operator is
just the image of the it basis vector under the transformation (see Theorem
5.11). In the present case, we will have to use double pairs of subscripts to

label the matrix elements. Relative to the ordered basis

{4, ®v,...,0;®Vvp, LAV, ..., ULV, ..., U PV, ..., Uy & vy}
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for U ® V, we then see that, for example, the (1, 1)th column of C is the
vector (S ® T)(u; ® v,) = a"b* (u; ® vy) given by

(allbll, ey allbnl, azlbll, ey azlbnl, ey amlbll, ey amlbnl)
and in general, the (i, j)th column is given by
(a]ib]j, ey a]ib“j, azib]j, ey azibnj, ey amib]j, ey amibnj) .
This shows that the matrix C has the desired form. B

Theorem 11.12 Let U and V be finite-dimensional vector spaces over ¥.
(@) IfS,, S, €L(U)and T,, T, € L(V), then

(SL®T1)(SZ®T2) = SLSZ®T1T2 .

Moreover, if A; and B; are the matrix representations of S; and T; respectively
(relative to some basis for U ® V), then (A, ® B,)(A, ® B,) = A,A, ® B,B,.
(b) If SeL(U)and T € L(V), then Tr(S ® T) = (Tr S)(Tr T).
(c) IfSELU)and TE L(V), and if S™ and T exist, then

S®T)' =S"®T' .

Conversely, if (S ® T)™ exists, then S™ and T also exist, and (S ® T)™ =
ST®T.

Proof (a) Foranyu €& Uand vE V we have

S, TS, ®T,)u®v)=(S; ®T))(S,(u)®T,(v))
=55, w)®T\T,(v)
=55 T T u®v) .

As to the matrix representations, simply note that A; ® B; is the representation
of S; ® T;, and A A, ® BB, is the representation of S;S, ® T,T, (since the
representation of a product of linear operators is the product of their matrices).

(b) Recall that the trace of a linear operator is defined to be the trace of
any matrix representation of the operator (see Theorem 5.19). Therefore, if

A= (aij) is the matrix of S and B = (bij) is the matrix of T, we see from
Theorem 11.11 that the diagonal blocks of A ® B are the matrices al B, ...,
a™nB and hence the diagonal elements of A ® B are alb', ..., ab",...,

am bl ..., a™m,b",. Therefore the sum of these diagonal elements is just
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TA®B)=a' (b)) +---+a" , (Zb',)
=(Z,a/ HED)
=(TrA)(TrB) .

(c) We first note that if 1 denotes the identity transformation, then
1I®DHu®v) =u®v

and hence ] ® 1 = 1. Nextnotethat u® v=(u+0)®v=u®v+0® v, and
hence 0 ® v = 0. Similarly, it is clear that u ® 0 =0. This then shows that

S®0O)u®v) = S(uy®0 =0

so that S ® 0 =0, and similarly 0 ® T = 0.
Now, if S and T are invertible, then by part (a) we see that

STX®THES®T) =SS"®T'T=1®1 =1

and similarly for (S ® T)(S™ ® T™). Therefore (S® T)" =S* ® T

Conversely, suppose that S ® T is invertible. To prove that S and T are
also invertible we use Theorem 5.9. In other words, a surjective linear
operator is invertible if and only if its kernel is zero. Since S ® T is invertible
we must have T # 0, and hence there exists v € V such that T(v) # 0. Suppose
u € U is such that S(u) = 0. Then

0=SW®TV) = SC®T)(u®v)

which implies that u ® v =0 (since S ® T is invertible). But v # 0, and hence
we must have u = 0. This shows that S is invertible. Similarly, had we started
with S # 0, we would have found that T is invertible. H

Exercises

1. Give a direct proof of the matrix part of Theorem 11.12(a) using the
definition of the Kronecker product of two matrices.

2. Suppose A € L(U) and B € L(V) where dim U =n and dim V = m. Show
that

det(A ® B) = (det A)™ (det B)" .



584 MULTILINEAR MAPPINGS AND TENSORS

11.6 VOLUMES IN R?

Instead of starting out with an abstract presentation of volumes, we shall first
go through an intuitive elementary discussion beginning with R?, then going
to R3, and finally generalizing to R" in the next section.

First consider a parallelogram in R? (with the usual norm) defined by the
vectors X and Y as shown.

Note that h = [Y] sin © and b = Y| cos 0, and also that the area of each tri-
angle is given by A, = (1/2)bh. Then the area of the rectangle is given by A, =
(IXI' - b)h, and the area of the entire parallelogram is given by

A=2A4,+A, =bh+ (X1 - b)h = I1XIh = IXIIYlsin6 . (1)

The reader should recognize this as the magnitude of the elementary “vector
cross product” X x Y of the ordered pair of vectors (X, Y) that is defined to
have a direction normal to the plane spanned by X and Y, and given by the
“right hand rule” (i.e., out of the plane in this case).

If we define the usual orthogonal coordinate system with the x-axis
parallel to the vector X, then

X = (x',x%) = (X1, 0)
and
Y

(y', v = (IYl cos 6, Y] sin 0)

and hence we see that the determinant with columns formed from the vectors
X and Y is just

1l
XY

x2 y2

IXI 1YllcosO )
= =IXIlYlsin@=A . (2)

0 IYlsin®

Notice that if we interchanged the vectors X and Y in the diagram, then the
determinant would change sign and the vector X x Y (which by definition has
a direction dependent on the ordered pair (X, Y)) would point into the page.
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Thus the area of a parallelogram (which is always positive by definition)

defined by two vectors in R? is in general given by the absolute value of the
determinant (2).

In terms of the usual inner product (or “dot product™”) (, ) on R?, we have
(X, X) = IXI? and (X, Y) = (Y, X) = IXIIY] cos 6, and hence

A% =IXIPIlY1%sin? 6
= IXIPIYI>(1 = cos? 0)
= IXIPIYIP- (X, Y)* .

Therefore we see that the area is also given by the positive square root of the
determinant

3)

It is also worth noting that the inner product may be written in the form

(X, Y) =x'y! + x%y?, and thus in terms of matrices we may write

X, X) (X,7)) («' )y
v, x) .0 2\ 2
Hence taking the determinant of this equation (using Theorems 4.8 and 4.1),

we find (at least in IRZ) that the determinant (3) also implies that the area is
given by the absolute value of the determinant in equation (2).

It is now easy to extend this discussion to a parallelogram in R>. Indeed, if
X = (X], X2, X3) and Y = (y], yz, y3) are vectors in R, then equation (1) is
unchanged because any two vectors in R® define the plane R? spanned by the
two vectors. Equation (3) also remains unchanged since its derivation did not
depend on the specific coordinates of X and Y in R2. However, the left hand
part of equation (2) does not apply (although we will see below that the three-
dimensional version determines a volume in |R3).

As a final remark on parallelograms, note that if X and Y are linearly
dependent, then aX + bY =0 so that Y = —(a/b)X, and hence X and Y are co-
linear. Therefore 0 equals O or 7 so that all equations for the area in terms of
sin 0 are equal to zero. Since X and Y are dependent, this also means that the
determinant in equation (2) equals zero, and everything is consistent.
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We now take a look at volumes in R®. Consider three linearly independent
vectors X = (x], X2, X3), Y = (y], yz, y3) and Z = (z], zz, z3), and consider the
parallelepiped with edges defined by these three vectors (in the given order
X, Y, 2)).

We claim that the volume of this parallelepiped is given by both the positive
square root of the determinant

(Y, X) (¥,Y) (Y, Z2) 4)

Xy z
42 y2 2| . (5)
3 y3 2

To see this, first note that the volume of the parallelepiped is given by the
product of the area of the base times the height, where the area A of the base
is given by equation (3) and the height [U| is just the projection of Z onto the
orthogonal complement in R® of the space spanned by X and Y. In other
words, if W is the subspace of V = R? spanned by X and Y, then (by Theorem
2.22) V=W* ® W, and hence by Theorem 2.12 we may write

Z = U+aX +bY
where U € W* and a, b € R are uniquely determined (the uniqueness of a and

b actually follows from Theorem 2.3 together with Theorem 2.12).
By definition we have (X, U) = (Y, U) =0, and therefore
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(X, Z)=alXI*+ b(X, Y)
Y, Z)=alY, X)+ blYI? (6)
(U, z)=Iul* .

We now wish to solve the first two of these equations for a and b by Cramer’s
rule (Theorem 4.13). Note that the determinant of the matrix of coefficients is
just equation (3), and hence is just the square of the area A of the base of the
parallelepiped. Applying Cramer’s rule we have

=<
~ ~

(X
(Y,
(X
{

b b

aA’®

N N

) (X, Y)
) )

b

b 9

bA?

B

~ = =
N N

{
{
{

) )
Y, X) )

b

Denoting the volume by Vol(X, Y, Z), we now have (using the last of equa-
tions (6) together with U =7 — aX - bY)

Vol2(X,Y,Z) = AYIUI? = A%(U,Z) = AX(Z,Z) - a(X, Z) - b(Y, Z))

so that substituting the expressions for A%, aA? and bA?, we find

) ‘(X, X) (X,Y) ‘(X, Y) (X, Z)
Vol*(X, Y, Z)=(Z, Z) +(X, Z)
(Y, X) (Y,Y) , (Y, Z)
7.7 X, X) (X,2)
Y, X , Z)

Using (X, Y) = (Y, X) etc., we see that this is just the expansion of a determi-
nant by minors of the third row, and hence (using det AT = det A)

Vol*(X,Y,Z)=|(X,Y) (Y.Y) (Z,Y)
(X,72) (¥Y,zZ) (Z, Z)
12 3l 1 o1 1)?
x xT xXlx oy oz Xy z
| P A ! (| [ R
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We remark that if the collection {X, Y, Z} is linearly dependent, then the
volume of the parallelepiped degenerates to zero (since at least one of the
parallelograms that form the sides will have zero area). This agrees with the
fact that the determinant (5) will vanish if two rows are linearly dependent.
We also note that the area of the base is given by

IX x Y| =1XIYlsin £(X, Y)

where the direction of the vector X x Y is up (in this case). Therefore the pro-
jection of Z in the direction of X x Y is just Z dotted into a unit vector in the
direction of X x Y, and hence the volume of the parallelepiped is given by the
number Z ¢ (X x Y). This is the so-called scalar triple product that should be
familiar from elementary courses. We leave it to the reader to show that the
scalar triple product is given by the determinant (5) (see Exercise 11.6.1).

Finally, note that if any two of the vectors X, Y, Z in equation (5) are
interchanged, then the determinant changes sign even though the volume is
unaffected (since it must be positive). This observation will form the basis for
the concept of “orientation” to be defined later.

Exercises
1. Show that Z ¢ (X x Y) is given by the determinant in equation (5).

2. Find the area of the parallelogram whose vertices are:
(@) (0,0),(1,3),(-2, 1), and (-1, 4).
(b) (2,4),(4,5),(5,2),and (7, 3).
(c) (-1,3),(1,5),(3,2),and (5, 4).
(d) (0,0,0),(1,-2,2),(3,4,2),and (4, 2, 4).
(e) (2,2,1),(3,0,6),(4,1,5),and (1, 1, 2).

3. Find the volume of the parallelepipeds whose adjacent edges are the
vectors:
(a) (1,1,2),(3,-1,0),and 5, 2, -1).
(b) (1,1,0),(1,0, 1), and (0, 1, 1).

4. Prove both algebraically and geometrically that the parallelogram with
edges X and Y has the same area as the parallelogram with edges X and
Y + aX for any scalar a.
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5. Prove both algebraically and geometrically that the volume of the paral-

lelepiped in R® with edges X, Y and Z is equal to the volume of the paral-
lelepiped with edges X, Y and Z + aX + bY for any scalars a and b.

6. Show that the parallelepiped in R* defined by the three vectors (2, 2, 1),
(1, -2,2)and (-2, 1, 2) is a cube. Find the volume of this cube.

11.7 VOLUMES IN R"

Now that we have a feeling for volumes in R® expressed as determinants, let
us prove the analogous results in R". To begin with, we note that parallelo-

grams defined by the vectors X and Y in either R? or R? contain all points
(i.e., vectors) of the form aX + bY for any a, b € [0, 1]. Similarly, given three
linearly independent vectors X, Y, Z € R, we may define the parallelepiped
with these vectors as edges to be that subset of R? containing all vectors of the
form aX + bY + ¢Z where 0 < a, b, ¢ < 1. The corners of the parallelepiped are
the points 8; X + 8,Y + 83Z where each 9, is either O or 1.

Generalizing these observations, given any r linearly independent vectors

X, ..., X €R", we define an r-dimensional parallelepiped as the set of all
vectors of the form a1 X, +--- +a, X, where 0 <a; <1 foreachi=1,...,r. In

R3, by a 1-volume we mean a length, a 2-volume means an area, and a 3-
volume is just the usual volume. To define the volume of an r-dimensional
parallelepiped we proceed by induction on r. In particular, if X is a nonzero
vector (i.e., a 1-dimensional parallelepiped) in R", we define its 1-volume to
be its length (X, X)!2. Proceeding, suppose the (r — 1)-dimensional volume of
an (r — 1)-dimensional parallelepiped has been defined. If we let P, denote the
r-dimensional parallelepiped defined by the r linearly independent vectors X,

. » X, then we say that the base of P; is the (r — 1)-dimensional paral-
lelepiped defined by the r — 1 vectors X, . . ., X;-1, and the height of P, is the

length of the projection of X, onto the orthogonal complement in R" of the
space spanned by X, . . ., X;j. According to our induction hypothesis, the
volume of an (r — 1)-dimensional parallelepiped has already been defined.
Therefore we define the r-volume of P, to be the product of its height times
the (r — 1)-dimensional volume of its base.

The reader may wonder whether or not the r-volume of an r-dimensional
parallelepiped in any way depends on which of the r vectors is singled out for
projection. We proceed as if it does not and then, after the next theorem, we
shall show that this is indeed the case.
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Theorem 11.13 Let P, be the r-dimensional parallelepiped defined by the r

linearly independent vectors X, . . . , X; € R". Then the r-volume of P; is the
positive square root of the determinant

X, Xp) (X, X)X, X
X,, X)) Xy, Xp) - (X5, X,
Do Xi) 0 X) e (g X) -
<Xr’ Xl) (Xr’ X2> <Xr’ Xr>

Proof For the case of r = 1, we see that the theorem is true by the definition
of length (or 1-volume) of a vector. Proceeding by induction, we assume the
theorem is true for an (r — 1)-dimensional parallelepiped, and we show that it
is also true for an r-dimensional parallelepiped. Hence, let us write

(X1, X]) (Xla Xz) (Xla Xr_1)

(Xp, Xp) (X5, X5) - (X, X))
A2=V012(R_1)= 2: 1 2: 2 2 . 1

<Xr—1’ X1> <Xr—1’ X2> (Xr—l’ Xr—1>

for the volume of the (r — 1)-dimensional base of P;. Just as we did in our

discussion of volumes in R?, we write X, in terms of its projection U onto the
orthogonal complement of the space spanned by the r — 1 vectors X, . . . , X;.
This means that we can write

Xe=U+a X, +---+a,1X—

where (U, X;)=0fori=1,...,r-1, and (U, X;) = (U, U). We thus have the
system of equations

al(X2, Xl) +(,12(X2, X2> + 0+ ar_1<X2, Xr—l) = (X2, Xr)

X)) +ayX,_y, Xol+ - +a, (X, X, ) =Xy,

a(X

r-1»

X))

We write M,, . . ., M, for the minors of the first r — 1 elements of the last
row in (7). Solving the above system for the a; using Cramer’s rule, we obtain
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Ala; = (-1)"*M,
Ala, =(-1)"M,

Ala,_ =M

r—1

where the factors of (—1)r‘k‘] in A%a, result from moving the last column of
(7) over to become the kti column of the kti minor matrix.
Using this result, we now have

AU = A*(~a X, -, X, ——a,_ X, +X,)
=D MX A D TEML X, e+ (DM, X, + APX,

and hence, using |UI? = (U, U) = (U, X,), we find that (since (-1)~¥ = (-1)¥)

A’IUIP= AXU, X,)
= (=7 M(X,, X))+ (DD T MGX, X)
+-+ AYX, X))
= (-7 IMX,, X)) - MyiX,, X,)
+or (-DTTARX L, X))

Now note that the right hand side of this equation is precisely the expansion of
(7) by minors of the last row, and the left hand side is by definition the square
of the r-volume of the r-dimensional parallelepiped P,. This also shows that
the determinant (7) is positive. B
This result may also be expressed in terms of the matrix ((X;, X)) as
Vol(Py) = [det({X;, X;))]'

The most useful form of this theorem is given in the following corollary.

Corollary The n-volume of the n-dimensional parallelepiped in R" defined

by the vectors X, . . ., X;, where each X; has coordinates (X]i ,...,Xx")is the
absolute value of the determinant of the matrix X given by
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X1 Xo Xn
2 2
x x e x
X = 1 .2 .n
n n n
xl xz P xn

Proof Note that (det X)2 = (det X)(det XT) = det XX T is just the determinant
(7) in Theorem 11.13, which is the square of the volume. In other words,
Vol(P,) =|det X|. B

Prior to this theorem, we asked whether or not the r-volume depended on
which of the r vectors is singled out for projection. We can now easily show
that it does not. Suppose that we have an r-dimensional parallelepiped defined
by r linearly independent vectors, and let us label these vectors X, . . ., X.
According to Theorem 11.13, we project X; onto the space orthogonal to the
space spanned by X, . . ., X;_i, and this leads to the determinant (7). If we
wish to project any other vector instead, then we may simply relabel these r
vectors to put a different one into position r. In other words, we have made
some permutation of the indices in (7). However, remember that any permuta-
tion is a product of transpositions (Theorem 1.2), and hence we need only
consider the effect of a single interchange of two indices.

Notice, for example, that the indices 1 and r only occur in rows 1 and r as
well as in columns 1 and r. And in general, indices 1 and j only occur in the ith
and jth rows and columns. But we also see that the matrix corresponding to
(7) 1s symmetric about the main diagonal in these indices, and hence an inter-
change of the indices 1 and j has the effect of interchanging both rows i and j
as well as columns 1 and j in exactly the same manner. Thus, because we have
interchanged the same rows and columns there will be no sign change, and
therefore the determinant (7) remains unchanged. In particular, it always
remains positive. It now follows that the volume we have defined is indeed
independent of which of the r vectors is singled out to be the height of the
parallelepiped.

Now note that according to the above corollary, we know that Vol(P,) =
Vol(X;, ..., X;,) = |det X| which is always positive. While our discussion
just showed that Vol(X,, . . ., X;) is independent of any permutation of
indices, the actual value of det X can change sign upon any such permutation.
Because of this, we say that the vectors (X, . . . , X;) are positively oriented
if det X > 0, and negatively oriented if det X < 0. Thus the orientation of a
set of vectors depends on the order in which they are written. To take into
account the sign of det X, we define the oriented volume Vol (X, . . ., X;)
to be +Vol(X,, ..., Xy) if det X =0, and -Vol(X,, . . ., X;) if det X < 0. We
will return to a careful discussion of orientation in a later section. We also
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remark that det X is always nonzero as long as the vectors (X, . . ., X;) are
linearly independent. Thus the above corollary may be expressed in the form

Volo(X,, ..., Xy = det(X,,...,Xp)
where det(X,, . . ., X;) means the determinant as a function of the column
vectors X.
Exercises

1. Find the 3-volume of the three-dimensional parallelepipeds in R* defined
by the vectors:
(@ (2,1,0,-1),(3,-1,5,2),and (0, 4, -1, 2).
(b) (1, 1,0,0),(0,2,2,0), and (0, 0, 3, 3).

2. Find the 2-volume of the parallelogram in R* two of whose edges are the
vectors (1, 3, -1, 6) and (-1, 2, 4, 3).

3. Prove that if the vectors Xj, X», . . ., X; are mutually orthogonal, the r-
volume of the parallelepiped defined by them is equal to the product of
their lengths.

4. Prove that r vectors Xj, X, . . ., X; in R" are linearly dependent if and
only if the determinant (7) is equal to zero.

11.8 LINEAR TRANSFORMATIONS AND VOLUMES

One of the most useful applications of Theorem 11.13 and its corollary relates
to linear mappings. In fact, this is the approach usually followed in deriving
the change of variables formula for multiple integrals. Let {e;} be an ortho—

normal basis for R™, and let C,, denote the unit cube in R™. In other words,
Cn = {tlel++tnenE|RnOStlsl} .

This is similar to the definition of P, given previously.
Now let A: R™ — R™ be a linear transformation. Then the matrix of A
relative to the basis {e;} is defined by A(e;) = ejaji. Let us write the image of ¢;

as X;, so that X; = A(e;) = ejaji. This means that the column vector X; has
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components (a]i , . ..,a"). Under the transformation A, the image of C,
becomes
ACp) = A2 te) = ZtA(e) = 26X,

(where 0 < t; < 1) which is just the parallelepiped P, spanned by the vectors
(X, . .., Xp). Therefore the volume of P, = A(C,) is given by

det(X, , ..., Xp)l = Idet (a))] .

Recalling that the determinant of a linear transformation is defined to be the
determinant of its matrix representation, we have proved the next result.

Theorem 11.14 Let C, be the unit cube in R" spanned by the orthonormal

basis vectors {e;}. If A: R®™ — R" is a linear transformation and P, = A(C,),
then Vol(Py,) = Vol A(C,) = |det Al.

It is quite simple to generalize this result somewhat to include the image
of an n-dimensional parallelepiped under a linear transformation A. First, we
note that any parallelepiped P, is just the image of C, under some linear
transformation B. Indeed, if P, = {1\ X, + - - - + t, X,: 0 <t; < 1} for some set

of vectors X;, then we may define the transformation B by B(e;) = X;, and
hence P, = B(C,). Thus

A(Pn) = AB(Cp)) = (A°B)(Cp)

and therefore (using Theorem 11.14 along with the fact that the matrix of the
composition of two transformations is the matrix product)

Vol A(P,)=Vol[(A°B)(C,)] = |det(A o B)| = |det Al|det B
=|det A|Vol(P,) .

In other words, |det Al is a measure of how much the volume of the parallel-
epiped changes under the linear transformation A. See the figure below for a

picture of this in R?.
We summarize this discussion as a corollary to Theorem 11.14.

Corollary  Suppose Py is an n-dimensional parallelepiped in R", and let
A: R™ — R" be a linear transformation. Then Vol A(P,) = |det A|Vol(P,).
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C, > A(X>) A(P,)
2
By Ay
€ X2 X A(Xl)
> 1 /
€1 X1 =B(ep
X, =B(ey)

Now that we have an intuitive grasp of these concepts, let us look at this
material from the point of view of exterior algebra. This more sophisticated
approach is of great use in the theory of integration.

Let U and V be real vector spaces. Recall from Theorem 9.7 that given a
linear transformation T € L(U, V), we defined the transpose mapping T* €
L(V*, U*) by

T*0w = woT

for all € V*. By this we mean if u € U, then T*w(u) = w(Tu). As we then
saw in Theorem 9.8, if U and V are finite-dimensional and A is the matrix

representation of T, then AT is the matrix representation of T*, and hence
certain properties of T* follow naturally. For example, if T, € L(V, W) and
T, € LU, V), then (T, o T,)* = T,* o T,* (Theorem 3.18), and if T is
nonsingular, then (T™)* = (T*)™ (Corollary 4 of Theorem 3.21).

Now suppose that {e;} is a basis for U and {f;} is a basis for V. To keep
the notation simple and understandable, let us write the corresponding dual
bases as {ei} and {fj}. We define the matrix A = (al;) of T by Te; = fjaji. Then
(just as in the proof of Theorem 9.8)

(T*e; = f1(Te;) = f1(fia* ) =a" ,f (f)=a" ;0 =d'; = ', &,

=aikek(ej)

which shows that
T*f' =d' " . (8)

We will use this result frequently below.
We now generalize our definition of the transpose. If ¢ € L(U, V) and T €
7. (V), we define the pull-back ¢* € L(Z; (V), Z;: (U)) by

(O*T)(uy, ..., up) = T(d(uy), . .., ¢(ur)
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where u,, . . ., u; € U. Note that in the particular case of r = 1, the mapping ¢*
is just the transpose of ¢. It should also be clear from the definition that ¢* is
indeed a linear transformation, and hence

¢*(aT, + bT,) = ap*T, + bop*T, .

We also emphasize that ¢ need not be an isomorphism for us to define ¢*.
The main properties of the pull-back are given in the next theorem.

Theorem 11.15 If ¢ € L(U, V) and y € L(V, W), then
(@) (Yo d)* =o¢* op*.
(b) If I € L(U) is the identity map, then I* is the identity in L(Z(U)).
(c) If ¢ is an isomorphism, then so is ¢*, and (¢p*)™ = (¢™)*.
(d If T,€7,(V)and T, € 7;,(V), then

O*(T, @ Ty) = (§*T) @ (¢*T>) .

(e) Let U have basis {e, ..., en}, V have basis {f,, . . ., f;} and suppose
that ¢(e;) = fjaji. If T € 7 (V) has components Tj, .. .;. = T(fj, , . . ., fj,), then
the components of ¢*T relative to the basis {e;} are given by

= T. .4l ir,
@*T )j- -, = Ty @ty - - - a’

r -

Proof (a) Note that ¢ o ¢: U — W, and hence (¢ o ¢p)*: 7, (W) =7, (U).
Thus forany T € 7, (W) and u,, . . ., u; € U we have

(Yo @) T)(uy, ... ,u,) =T W(p(wy)), ..., Y(@(u,))
=@W*T) (), ..., p(u,))
=((@* o))y, ..., u,)

(b) Obvious from the definition of I*.
(c) If ¢ is an isomorphism, then ¢ exists and we have (using (a) and (b))

0% o @) = @7 o) = 1% .
Similarly (¢™)* o ¢* = I*. Hence (¢*) exists and is equal to (¢p~)*.

(d) This follows directly from the definitions (see Exercise 11.8.1).
(e) Using the definitions, we have
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(@*T);,...;, =(@*T)Xej .. e;)
=T(#(e; )., ple; ))
=T(f,a";..... f,a";)
=T(fyys..o f)a" o

r

= 71il "'iralljl o alrjr :
Alternatively, if {ei}and {fj} are the bases dual to {e;} and {f;} respec-
tively, then T =Tj,. . ., e ®- .- ®e' and consequently (using the linearity of
¢*, part (d) and equation (8)),

¢*T =T, ...,-r¢*eil ® - ® grer
=Ti| ~~~i,all , "'alrj,fh ®--® fr

J1
which therefore yields the same result. W

For our present purposes, we will only need to consider the pull-back as
defined on the space (V) rather than on Z; (V). Therefore, if ¢ € L(U, V)
then ¢* € L(Z; (V), Z; (U)), and hence we see that for € A(V) we have
(@*o)(uy, . .., u) = o(d,), . . ., ¢(u,)). This shows that ¢*(A'(V)) C A(U).
Parts (d) and (e) of Theorem 11.15 applied to the space AT(V) yield the fol-

lowing special cases. (Recall that |ij - - - i;| means the sum is over increasing
indices i, < - - - <1i;.)

Theorem 11.16 Suppose ¢ € L(U, V), a € A"(V) and p € AS(V). Then

(@) ¢*(anp) = (¢*o)A(P*P).
(b) Let U and V have bases {e;} and {f;} respectively, and let U* and V*

have bases {ei} and {fi}. If we write ¢(e;) = fjaji and (])*(fi) = aijej, and if a =
aji,. i f A Afir € AT(V), then

Pra = Bkl eNiA - neke
where
~ _ ]1"'jr il e i’
alk1~--k,|_a|i1"'ir|€k1"'kra J a i

Thus we may write

2 I
ag,- -k, = 4y --i,] det(a’ g)

where
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det(a’ ;)=

Proof (a) For simplicity, let us write (¢p*a)(uy) = o(dp(uy)) instead of
¢*o)(uy, . . ., u) = aPp(uy), . . ., ¢(uy)) (see the discussion following
Theorem 11.4). Then, in an obvious notation, we have

[¢*(an B)Iu;) = (Ot A BY(¢(u;)
LKED (@) B(Plug))
T, kel (9 )y )@*B)ug)
=[(@*a) A (™ B)Iu;)

By induction, this also obviously applies to the wedge product of a finite
number of forms.

(b) From o= aji,...iy 1A - - - af i and ¢*(f1) = a'; e/, we have (using part
(a) and the linearity of ¢*)

p*a=ay . P*(f A A H(T)

= X . il' ir' jl jr
Qj..p @' At et A e
But
e n-nel =Zel T Ireh L n et
K%k ok,
and hence we have
Jid B k k
p*a=ay .. l|2Ksk k'aJ aJe A-oneT
_ ky k
—a|kl,”kr|€ A---ANe
where
a =q gl Irgh g
lky -k, | iy < il Sy o k0 Jro

Finally, from the definition of determinant we see that
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Example 11.11 (This is a continuation of Example 11.1.) An important
example of ¢*a is related to the change of variables formula in multiple
integrals. While we are not in any position to present this material in detail,
the idea is this. Suppose we consider the spaces U = R3(u, v, w) and V =
R3(x, y, z) where the letters in parentheses tell us the coordinate system used
for that particular copy of R®. Note that if we write (x, y, z) = (x!, x2, x*) and
(u, v, w) = (u], uz, u3), then from elementary calculus we know that dx' =
(9x'/gu)dw’ and 8/9u’ = (9xI/au’)(9/0xJ).

Now recall from Example 11.1 that at each point of |R3(u, v, w), the tan-
gent space has the basis {e;} = {0/du'} and the cotangent space has the corre-
sponding dual basis {ei} = {dui}, with a similar result for R3(x, y, z). Let us
define ¢: |R3(u, v, W) —> |R3(X, y, z) by

d(a/u’) = (axi/oul)(a/ox)) = al,(a/ox]) .
It is then apparent that (see equation (8))
o*(dx’) = aldu! = (9x/gul)du

as we should have expected. We now apply this to the 3-form

o = a3 dx' adx?adx? =dxadyadz € /\3(V) .

Since we are dealing with a 3-form in a 3-dimensional space, we must
have
¢*a = aduadvadw

where 4 = 223 consists of the single term given by the determinant

al1 al2 a13 ox'fou'  ox'/ou*  ox'/ou’

a21 a22 a23= ax*ou'  ax*/ou*  ax*/ou’

a a, a33 ax>lou'  oax>lou®  oax>lou’

which the reader may recognize as the so-called Jacobian of the transforma-
tion. This determinant is usually written as d(x, y, z)/d(u, v, w), and hence we
see that

¢*(dxAdy/\dz)=Mdu/\dw\dw .

ou, v, w)
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This is precisely how volume elements transform (at least locally), and
hence we have formulated the change of variables formula in quite general
terms. /

This formalism allows us to define the determinant of a linear transforma-
tion in an interesting abstract manner. To see this, suppose ¢ € L(V) where

dim V = n. Since dim A"(V) = 1, we may choose any nonzero w, € A™(V) as
a basis. Then ¢*: A™V) = A™V) is linear, and hence for any o = cym, €
A™(V) we have

P*w = ¢*(cowy) = codp*wy = cocwy = ¢(Cowy) = cW

for some scalar ¢ (since ¢*w, € AY(V) is necessarily of the form cw,). Noting
that this result did not depend on the scalar ¢, and hence is independent of w =
Cow,, We see that the scalar ¢ must be unique. We therefore define the deter-
minant of ¢ to be the unique scalar, denoted by det ¢, such that

¢*w = (det p)o .

It 1s important to realize that this definition of the determinant does not
depend on any choice of basis for V. However, let {e;} be a basis for V, and
define the matrix (aij) of ¢ by ¢(e;) = ejaji. Then for any nonzero w € A™(V)
we have

(¢*w)(e, . .., en) = (det P)w(e,, ..., en) -

On the other hand, Example 11.2 shows us that

(p*w)(ey, ..., e,)=w(P(e), ..., Ple,))

gl

=dad 1 "'Cll”nﬂ)(eil, cee ,ein)

= (det(d’ ey, ... ,e,) -
Since w # 0, we have therefore proved the next result.

Theorem 11.17 If V has basis {e,, . . ., en} and ¢ € L(V) has the matrix
representation (aij) defined by ¢(e;) = ejaji, then det ¢ = det(aij).

In other words, our abstract definition of the determinant is exactly the
same as our earlier classical definition. In fact, it is now easy to derive some
of the properties of the determinant that were not exactly simple to prove in
the more traditional manner.
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Theorem 11.18 If V is finite-dimensional and ¢, 1 € L(V, V), then
(a) det(¢ ° p) = (det )(det 1p).
(b) If ¢ 1s the identity transformation, then det ¢ = 1.
(c) ¢ is an isomorphism if and only if det ¢ # 0, and if this is the case, then
det o' = (det ).

Proof (a) By definition we have (¢ © y)*w = det(¢p o P)w. On the other hand,
by Theorem 11.15(a) we know that (¢ ° P)* =p* o ¢*, and hence

(oY) o =y*(¢*w) = y*[(detp)w] = (det p)y*w
= (detg)(dety)w .

(b) If ¢ =1 then ¢* = 1 also (by Theorem 11.15(b)), and thus w = ¢*w =
(det ¢)w implies det ¢ = 1.

(c) First assume that ¢ is an isomorphism so that ¢ exists. Then by parts
(a) and (b) we see that

1 = det(¢pdp™) = (det p)(det ¢™)

which implies det ¢ # 0 and det ¢~ = (det ¢)™'. Conversely, suppose that ¢ is
not an isomorphism. Then Ker ¢ # 0 and there exists a nonzero €, € V such
that ¢p(e;) = 0. By Theorem 2.10, we can extend this to a basis {e,, . . ., e} for

V. But then for any nonzero w € A"(V) we have

(detp)aw(e, ... .e,) =(9p*w)(e, ... ,e,)
= (I)(¢(€1), ’¢(en))
= (1)(0, ¢(62)’ cee s ¢(€n))
=0

and hence we must have det ¢ =0. B

Exercises
1. Prove Theorem 11.15(d).

2. Show that the matrix ¢*T defined in Theorem 11.15(e) is just the r-fold
Kronecker product A® - - - @ A where A = (al 9.
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The next three exercises are related.

3. Let ¢ € L(U, V) be an isomorphism, and suppose T € Z.5(U). Define the
push-forward ¢, € L(Z3(U), 75(V)) by

(I)*T(oc], ooty ..., ) = T((I)*oc], o 0%at 0y, L., 07y

where oc], ..,ot€U*anduy,...,u, € U. If ¢y € L(V, W) is also an iso-
morphism, prove the following:

(@) (Pod)y =1y ° Py

(b) If I € L(U) is the identity map, then so is I, € L(Z$(U)).

() ¢y is an isomorphism, and (¢y)™" = (¢7),.

(d) IfTi € 7, " (U) and T, € T, (U), then

$0.(T1 ®T2) = (¢p4T1) ® (,T2) .

4. Let ¢ € L(U, V) be an isomorphism, and let U and V have bases {e;} and
{fi} respectively. Define the matrices (aij) and (bij) by ¢(ey) = fjaji and
o7'(fp) = ejbji. Suppose T € 7.*(U) has components Th isjl ... j, relative
to {e;}, and S € 7.%(V) has components Sir- - isjl .. . j, relative to {fj}.
Show that the components of ¢, T and ¢S are given by

) g
@IV, =db,

hocdg  _pi L Bl QP Ds aoqr
(§sS)175 ;. =D, b8, S TR A T

e pls P1oc Ps a .. par
a psT ql“'qrb N b Jr

5. Let {u)i} be the basis dual to {e;} for R>. Let
T =200 -e®0 +3e; ®n
and suppose ¢ € L(IRZ) and Y € L(|R3, IRZ) have the matrix representations
¢=( 2 1) ond ¢=(0 1 —1) .
-1 1 1 0 2

Compute Tr T, ¢*T, p*T, Tr(yp*T), and ¢, T.
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11.9 ORIENTATIONS AND VOLUMES

Suppose dim V = n and consider the space A"(V). Since this space is 1-
dimensional, we consider the n-form

o =ela---ae” € ANV)

where the basis {ei} for V* is dual to the basis {e;} for V. If {v; = ejvji} is any
set of n linearly independent vectors in V then, according to Examples 11.2
and 11.8, we have

o(Vy, ..., Vp) = det(Vji)w(el, ...,€n) = det(Vji) .

However, from the corollary to Theorem 11.13, this is just the oriented n-

volume of the n-dimensional parallelepiped in R" spanned by the vectors {v;}.
Therefore, we see that an n-form in some sense represents volumes in an n-
dimensional space. We now proceed to make this definition precise, beginning
with a careful definition of the notion of orientation on a vector space.

In order to try and make the basic idea clear, let us first consider the space

R? with all possible orthogonal coordinate systems. For example, we may
consider the usual “right-handed” coordinate system {e,, €,} shown below, or
we may consider the alternative “left-handed” system {e';, e',} also shown.

6,1
%) )

-
S

In the first case, we see that rotating e, into e, through the smallest angle
between them involves a counterclockwise rotation, while in the second case,
rotating €', into e, entails a clockwise rotation. This effect is shown in the
elementary vector cross product, where the direction of e, x €, is defined by
the “right-hand rule” to point out of the page, while e, x €', points into the
page.

We now ask whether or not it is possible to continuously rotate €', into e,
and e, into e, while maintaining a basis at all times. In other words, we ask if
these two bases are in some sense equivalent. Without being rigorous, it
should be clear that this can not be done because there will always be one
point where the vectors e’; and e', will be co-linear, and hence linearly
dependent. This observation suggests that we consider the determinant of the
matrix representing this change of basis.
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In order to formulate this idea precisely, let us take a look at the matrix
relating our two bases {e;} and {e';} for R%. We thus write ¢; = ejaji and

investigate the determinant det(aij). From the above figure, we see that

¢ =ea', +e,a’, wherea', <0 and a*, >0

¢,=ea',+e,a’, wherea', <0 and a?, >0

and hence det(aij) = a]1 az2 - a]2 az1 <0.
Now suppose that we view this transformation as a continuous modifica-
tion of the identity transformation. This means we consider the basis vectors

e'; to be continuous functions e';(t) of the matrix aji(t) for 0 <t <1 where aji(O)
= d), and al,(1) = aJ,, so that e';(0) = ¢; and €';(1) = ¢',. In other words, we write
e'i(t) = eal(t) for 0 <t < 1. Now note that det(a’;(0)) = det(d’) = 1 >0, while
det(aij(l)) = det(aij) < 0. Therefore, since the determinant is a continuous

function of its entries, there must be some value t, € (0, 1) where det(aij(to)) =
0. It then follows that the vectors e'i(t,) will be linearly dependent.

What we have just shown is that if we start with any pair of linearly inde-
pendent vectors, and then transform this pair into another pair of linearly
independent vectors by moving along any continuous path of linear transfor-
mations that always maintains the linear independence of the pair, then every
linear transformation along this path must have positive determinant. Another
way of saying this is that if we have two bases that are related by a transfor-
mation with negative determinant, then it is impossible to continuously trans-
form one into the other while maintaining their independence. This argument

clearly applies to R™ and is not restricted to R?.
Conversely, suppose we had assumed that e'; = ejaji, but this time with

det(aij) > 0. We want to show that {e;} may be continuously transformed into
{e';} while maintaining linear independence all the way. We first assume that
both {e;} and {e';} are orthonormal bases. After treating this special case, we
will show how to take care of arbitrary bases.

(Unfortunately, the argument we are about to give relies on the topological
concept of path connectedness. Since a complete discussion of this topic
would lead us much too far astray, we shall be content to present only the
fundamental concepts in Appendix C. Besides, this discussion is only motiva-
tion, and the reader should not get too bogged down in the details of this
argument. Those readers who know some topology should have no trouble
filling in the necessary details if desired.)

Since {e;} and {e';} are orthonormal, it follows from Theorem 10.6

(applied to R rather than C) that the transformation matrix A = (aij) defined by
e = ejaji must be orthogonal, and hence det A = +1 (by Theorem 10.8(a) and
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the fact that we are assuming {e;} and {e';} are related by a transformation
with positive determinant). By Theorem 10.19, there exists a nonsingular
matrix S such that S™AS = Mg where My is the block diagonal canonical form
consisting of +1’s, —1’s, and 2 x 2 rotation matrices R(0;) given by

RO, cost); —sinb,
v sinf,  cosB;)

It is important to realize that if there are more than two +1’s or more than
two —1’s, then each pair may be combined into one of the R(0;) by choosing
either 0; = &t (for each pair of —1’s) or 0; = 0 (for each pair of +1’s). In this
manner, we view Mg as consisting entirely of 2 x 2 rotation matrices, and at
most a single +1 and/or —1. Since det R(6;) = +1 for any 0;, we see that (using
Theorem 4.14) det Mg = +1 if there is no -1, and det Mg = -1 if there is a
single —=1. From A = SMpS™, we see that det A = det My, and since we are
requiring that det A > 0, we must have the case where there is no —1 in M.

Since cos 0; and sin 8; are continuous functions of 6; € [0, 2m) (where the
interval [0, 27) is a path connected set), we note that by parametrizing each 0;
by 0:i(t) = (1 - t)6;, the matrix Mg may be continuously connected to the
identity matrix I (i.e., at t = 1). In other words, we consider the matrix Mg(y)
where Mg (0) = Mg and Mg(j) = I. Hence every such Mg (i.e., any matrix of the
same form as our particular Mg, but with a different set of 0,’s) may be
continuously connected to the identity matrix. (For those readers who know
some topology, note all we have said is that the torus [0, 2T) x - - - x [0, 27) is
path connected, and hence so is its continuous image which is the set of all
such Mg.)

We may write the (infinite) collection of all such Mg as M = {Mg}.
Clearly M is a path connected set. Since A = SMS™ and I = SIS™, we see
that both A and I are contained in the collection SMS™ = {SMgS™'}. But
SMS™ is also path connected since it is just the continuous image of a path
connected set (matrix multiplication is obviously continuous). Thus we have
shown that both A and I lie in the path connected set SMS™, and hence A may
be continuously connected to I. Note also that every transformation along this
path has positive determinant since det SMgS™ = det Mg = 1 > O for every
Mg E M.

If we now take any path in SMS™ that starts at I and goes to A, then
applying this path to the basis {e;} we obtain a continuous transformation
from {e;} to {e';} with everywhere positive determinant. This completes the
proof for the special case of orthonormal bases.

Now suppose that {v;} and {v';} are arbitrary bases related by a transfor-
mation with positive determinant. Starting with the basis {v;}, we first apply
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the Gram-Schmidt process (Theorem 2.21) to {v;} to obtain an orthonormal
basis {e;} = {ijji}. This orthonormalization process may be visualized as a
sequence v;(t) = ijji(t) (for 0 =t < 1) of continuous scalings and rotations that
always maintain linear independence such that v;(0) = v; (i.e., bji(O) = Bji) and
vi(1) = ¢; (i.e., bl,(1) = b;). Hence we have a continuous transformation bi(t)
taking {v;} into {e;} with det(bji(t)) > (0 (the transformation starts with
det(b’;(0)) = det I > 0, and since the vectors are always independent, it must
maintain det((bji(t)) # 0). Similarly, we may transform {v’;} into an orthonor-
mal basis {e';} by a continuous transformation with positive determinant.
(Alternatively, it was shown in Exercise 5.4.14 that the Gram-Schmidt process
is represented by an upper-triangular matrix with all positive diagonal ele-
ments, and hence its determinant is positive.) Now {e;} and {e';} are related
by an orthogonal transformation that must also have determinant equal to +1
because {v;} and {Vv';} are related by a transformation with positive determi-
nant, and both of the Gram-Schmidt transformations have positive determi-
nant. This reduces the general case to the special case treated above.

With this discussion as motivation, we make the following definition. Let
{vi,...,vprand {Vv'}, ..., vy} be two ordered bases for a real vector space

V, and assume that v/, = Vjaji. These two bases are said to be similarly

oriented if det(aij) > 0, and we write this as {v;} = {V';}. In other words,
{vi} = {Vv'i} if Vv'; = ¢(v;) with det ¢ > 0. We leave it to the reader to show that
this defines an equivalence relation on the set of all ordered bases for V (see
Exercise 11.9.1). We denote the equivalence class of the basis {v;} by [vi].

It is worth pointing out that had we instead required det(aij) < 0, then this
would not have defined an equivalence relation. This is because if (bij) is

another such transformation with det(bij) < 0, then
det(albl,) = det(al)det(bl,) > O .

Intuitively this is quite reasonable since a combination of two reflections
(each of which has negative determinant) is not another reflection.

We now define an orientation of V to be an equivalence class of ordered
bases. The space V together with an orientation [v;] is called an oriented
vector space (V, [v;]). Since the determinant of a linear transformation that
relates any two bases must be either positive or negative, we see that V has
exactly two orientations. In particular, if {v;} is any given basis, then every
other basis belonging to the equivalence class [v;] of {v;} will be related to
{vi} by a transformation with positive determinant, while those bases related
to {v;} by a transformation with negative determinant will be related to each
other by a transformation with positive determinant (see Exercise 11.9.1).
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Now recall we have seen that n-forms seem to be related to n-volumes in
an n-dimensional space V. To precisely define this relationship, we formulate
orientations in terms of n-forms. To begin with, the nonzero elements of the 1-

dimensional space A"(V) are called volume forms (or sometimes volume
elements) on V. If w, and w, are volume forms, then w, is said to be equiv-
alent to w, if w, = cw, for some real ¢ > 0, and in this case we also write w, =

,. Since every element of A"(V) is related to every other element by a rela-
tionship of the form w, = aw, for some real a (i.e., —® < a < ), it is clear that
this equivalence relation divides the set of all nonzero volume forms into two
distinct groups (i.e., equivalence classes). We can relate any ordered basis
{vi} for V to a specific volume form by defining

® = ViAo Ay

where {Vi} is the basis dual to {v;}. That this association is meaningful is
shown in the next result.

Theorem 11.19 Let {v;} and {¥;} be bases for V, and let {v'} and {¥'} be
the corresponding dual bases. Define the volume forms

and

Then {v;} = {V;} if and only if w = ®.

Proof First suppose that {v;} = {v;}. Then V; = ¢(v;) where det ¢ > 0, and
hence (using

OV, ... Vp) = VIA - AV (v, ..., vp) = 1
as shown in Example 11.8)

OV, ..., V,) =0(p(vy), ... ,0(v,))
=(¢*w)(vy, ... ,v,)
= (detp)w(vy, ... ,v,)
=det¢ .

If we assume that o = c® for some —® < ¢ < o, then using ®(V,, ..., V) =1
we see that our result implies ¢ = det ¢ > 0 and thus w = ®.
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Conversely, if ® = ¢ ® where ¢ > 0, then assuming that v; = ¢(v;), the
above calculation shows that det ¢ = ¢ >0, and hence {v;} = { v;}. I

What this theorem shows us is that an equivalence class of bases uniquely
determines an equivalence class of volume forms and conversely. Therefore it
is consistent with our earlier definitions to say that an equivalence class [w] of
volume forms on V defines an orientation on V, and the space V together
with an orientation [w] is called an oriented vector space (V, [w]). A basis
{vi} for (V, [w]) is now said to be positively oriented if w(v,, ..., vy) > 0.
Not surprisingly, the equivalence class [-w] is called the reverse orientation,
and the basis {v;} is said to be negatively oriented if w(v,, ..., vy) <0. Note
that if the ordered basis {v, v, , ..., vy} 1s negatively oriented, then the basis
{vy, Vi, ..., vp}y will be positively oriented because w(v,, v;, ..., V) =
—o(v;, vy, ..., vy > 0. By way of additional terminology, the standard

orientation on R" is that orientation defined by either the standard ordered

basis {ey, . . ., €n}, or the corresponding volume form ela - Ae

In order to proceed any further, we must introduce the notion of a metric
on V. This is the subject of the next section.

Exercises

1. (a) Show that the collection of all similarly oriented bases for V defines
an equivalence relation on the set of all ordered bases for V.
(b) Let {v;} be a basis for V. Show that all other bases related to {v;} by a
transformation with negative determinant will be related to each other by a
transformation with positive determinant.

2. Let (U, w) and (V, n) be oriented vector spaces with chosen volume ele-
ments. We say that ¢ € L(U, V) is volume preserving if ¢*u = w. If
dim U = dim V is finite, show that ¢ is an isomorphism.

3. Let (U, [w]) and (V, [u]) be oriented vector spaces. We say that ¢ €
L(U, V) is orientation preserving if ¢*u € [w]. If dim U = dim V is
finite, show that ¢ is an isomorphism. If U = V = R?, give an example of a
linear transformation that is orientation preserving but not volume
preserving.
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11.10 THE METRIC TENSOR AND VOLUME FORMS

We now generalize slightly our definition of inner products on V. In particu-
lar, recall from Section 2.4 (and the beginning of Section 9.2) that property
(IP3) of an inner product requires that (u, u) =0 for all u € V and (u, u) =0 if
and only if u = 0. If we drop this condition entirely, then we obtain an
indefinite inner product on V. (In fact, some authors define an inner product
as obeying only (IP1) and (IP2), and then refer to what we have called an
inner product as a “positive definite inner product.”) If we replace (IP3) by the
weaker requirement

(IP3") (u, v) =0 for all veE Vif and only if u =0

then our inner product is said to be nondegenerate. (Note that every example
of an inner product given in this book up to now has been nondegenerate.)
Thus a real nondegenerate indefinite inner product is just a real nondegenerate
symmetric bilinear map. We will soon see an example of an inner product
with the property that (u, u) = 0 for some u # 0 (see Example 11.13 below).

Throughout the remainder of this chapter, we will assume that our inner
products are indefinite and nondegenerate unless otherwise noted. We further-
more assume that we are dealing exclusively with real vector spaces.

Let {e;} be a basis for an inner product space V. Since in general we will
not have (e;, ¢;) = d;;, we define the scalars g;; by

g = (ei, € ) .
In terms of the g;, we have forany X, Y €V
(X,Y) = (xe, yle) = x'ylei, e)) = gixly) .

If {&;} is another basis for V, then we will have &; = ejaji for some nonsingular
transition matrix A = (aji). Hence, writing g;; = (€;, §;) we see that

g; = (8,8) = (e}, ea’) = a'ia’ler, es) = a'ia’igs

which shows that the g; transform like the components of a second-rank
covariant tensor. Indeed, defining the tensor g € 75 (V) by

gX,Y) = (X,Y)
results in
g(ei,ej) = (ei,ej) = g
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as it should. We are therefore justified in defining the (covariant) metric
tensor

g = gijooi®(uj eET,(V)

(where {u)i} is the basis dual to {e;}) by g(X, Y) = (X, Y). In fact, since the
inner product is nondegenerate and symmetric (i.e., (X, Y) = (Y, X)), we see
that g is a nondegenerate symmetric tensor (i.e., g;; = g;;).

Next, we notice that given any vector A € V, we may define a linear func-
tional (A, ) on V by the assignment B — (A, B). In other words, for any A €
V., we associate the 1-form o defined by au(B) = (A, B) for every B € V. Note
that the kernel of the mapping A — (A, ) (which is easily seen to be a vector
space homomorphism) consists of only the zero vector (since (A, B) = 0 for
every B € V implies that A = 0), and hence this association is an iso—
morphism. Given any basis {e;} for V, the components a; of o € V* are given

in terms of those of A = a'e; € V by
a = a(e) = (A e) = (de,e) = ale, &) = alg;

Thus, to any contravariant vector A = a'e; € V, we can associate a unique
covariant vector oo € V* by

o = a' = (ag)w'

where {u)i} is the basis for V* dual to the basis {e;} for V. In other words, we
write

a = alg;
and we say that a, arises by lowering the index j of a/.

Example 11.12 If we consider the space R" with a Cartesian coordinate sys-
tem {e;}, then we have g; = (e;, ¢; ) = d;;, and hence a; = Bijaj =al Therefore,
in a Cartesian coordinate system, there is no distinction between the compo-
nents of covariant and contravariant vectors. This explains why 1-forms never
arise in elementary treatments of vector analysis. /

Since the metric tensor is nondegenerate, the matrix (g;) must be nonsin-
gular (or else the mapping a' — a, would not be an isomorphism). We can

therefore define the inverse matrix (g') by

glg, = gy = 8
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Using (g!l), we see that the inverse of the mapping al — a; is given by
gijaj =al .

This is called, naturally enough, raising an index. We will show below that
the g do indeed form the components of a tensor.

It is worth remarking that the “tensor” gij = gikgkj = Bij (= Bji) 1S unique in
that it has the same components in any coordinate system. Indeed, if {e;} and
{&;} are two bases for a space V with corresponding dual bases {u)i} and {mi},
then €; = ejaji and ® = bji(ni =(a” )jiu)i (see the discussion following Theorem
11.2). Therefore, if we define the tensor d to have the same values in the first
coordinate system as the Kronecker delta, then Bij = B(wi, e;). If we now define
the symbol?\)ij byEij = (®', €;), then we see that

8 =8@', 2)=((a”), 0, ea )= (a7 a0 e,)

“INi sk SNk i
=(a")ya 0, =(a )a ;=0 .

This shows that the Bij are in fact the components of a tensor, and that these
components are the same in any coordinate system.

We would now like to show that the scalars g are indeed the components
of a tensor. There are several ways that this can be done. First, let us write

gijgjk = 8¥; where we know that both g;; and ¥, are tensors. Multiplying both

sides of this equation by (a™)"als and using (a™)"a'd¥; = 8" we find
gig!a 'y = O .
Now substitute g;; = g;d"; = gira'q(a™)9; to obtain
[a'sa'g gidl@) %@ ¥ = &'
Since gj; is a tensor, we know that aisatq git= Zsq. If we write
29" = @)%
then we will have defined the g/* to transform as the components of a tensor,

and furthermore, they have the requisite property that gsq g9 = 8. Therefore
we have defined the (contravariant) metric tensor G € 7#(V) by
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G = gle; ® €

where gijgjk =8l

There is another interesting way for us to define the tensor G. We have
already seen that a vector A = a'e; € V defines a unique linear form o =
aj(uj € V* by the association o = gijai(uj. If we denote the inverse of the matrix
(gi;)) by (gY) so that gijgjk = 8!, then to any linear form o = a,0' € V* there
corresponds a unique vector A = a'e; € V defined by A = gijaiej. We can now
use this isomorphism to define an inner product on V*. In other words, if { , )
is an inner product on V, we define an inner product ( , ) on V* by

(o, B) = (A, B)

where A, B € V are the vectors corresponding to the 1-forms o, § € V*.
Let us write an arbitrary basis vector €; in terms of its components relative

to the basis {e;} as e; = f)jiej. Therefore, in the above isomorphism, we may
define the linear form &; € V* corresponding to the basis vector e; by

A~ ik k
& = gWdio" = gk

and hence using the inverse matrix, we find that

Applying our definition of the inner product in V* we have (&;, &) = (e;, ;) =
g;;» and therefore we obtain

(0, 0)=(g"e,, g"e)=g"g"e., e)=g"g"g,=g"0 =g"

which is the analogue in V* of the definition g;; = (e;, ¢;) in V.

Lastly, since o = (a™ )ji(ni, we see that

g =@, @)= (a0 (@Y w') = (@) (@) (o, o)

— (a—l)ir(a—l)jsgrs

so the scalars gl may be considered to be the components of a symmetric
tensor G € T3°(V) defined as above by G = glle; ® €;.

Now let g = (, ) be an arbitrary (i.e., possibly degenerate) real symmetric
bilinear form on the inner product space V. It follows from the corollary to
Theorem 9.14 that there exists a basis {e;} for V in which the matrix (g;;) of g
takes the unique diagonal form
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wherer + s + t =dim V =n. Thus

1 forl=is<r
gle, e)=1-1 forr+l=sisr+s .
0 forr+s+l=<isn

If r + s < n, the inner product is degenerate and we say that the space V is
singular (with respect to the given inner product). If r + s = n, then the inner
product is nondegenerate, and the basis {e;} is orthonormal. In the orthonor-
mal case, if either r = 0 or r = n, the space is said to be ordinary Euclidean,
and if O < r < n, then the space is called pseudo-Euclidean. Recall that the
number r — s =1 — (n — r) = 2r — n is called the signature of g (which is
therefore just the trace of (g;;)). Moreover, the number of —1’s is called the
index of g, and is denoted by Ind(g). If g =(, ) is to be a metric on V, then by
definition, we must have r + s = n so that the inner product is nondegenerate.
In this case, the basis {e;} is called g-orthonormal.

Example 11.13 If the metric g represents a positive definite inner product on
V, then we must have Ind(g) = 0, and such a metric is said to be Riemannian.
Alternatively, another well-known metric is the Lorentz metric used in the
theory of special relativity. By definition, a Lorentz metric 1 has Ind(n) = 1.
Therefore, if m is a Lorentz metric, an m-orthonormal basis {e,, . . . , ey}
ordered in such a way that n(e;, e;)) =+1 fori=1,...,n -1 and n(ey,, €,) =
-1 is called a Lorentz frame.

Thus, in terms of a g-orthonormal basis, a Riemannian metric has the form

o1 -0
(gij)= :

while in a Lorentz frame, a Lorentz metric takes the form

01 0
(nij)= co :
00 - -1
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It 1s worth remarking that a Lorentz metric is also frequently defined as
having Ind(m) = n - 1. In this case we have n(e;, ;) = 1 and n(e;, €;) = -1 for
eachi=2,...,n We also point out that a vector v € V is called timelike if
Nn(v, v) <0, lightlike (or null) if n(v, v) =0, and spacelike if (v, v) > 0. Note
that a Lorentz inner product is clearly indefinite since, for example, the
nonzero vector v with components v = (0, 0, 1, 1) has the property that (v, v) =
nv,v)=0. /

We now show that introducing a metric on V leads to a unique volume
form on V.

Theorem 11.20 Let g be a metric on an n-dimensional oriented vector space
(V, [w]). Then, corresponding to the metric g, there exists a unique volume
form p = u(g) € [w] such that w(e,, ..., e,) =1 for every positively oriented
g-orthonormal basis {e;} for V. Moreover, if {v;} is any (not necessarily g-

orthonormal) positively oriented basis for V with dual basis {v'}, then

w = Idet(g(vi, V)" ViAo AvD .

In particular, if {v;} = {e;} is a g-orthonormal basis, then u = eln - nem

Proof Since o # 0, there exists a positively oriented g-orthonormal basis {e;}
such that w(e,, . . . , en) > 0 (we can multiply e, by -1 if necessary in order
that {e;} be positively oriented). We now define u € [w] by

we,...,en) = 1.

That this defines a unique n follows by multilinearity. We claim that if {f;} is
any other positively oriented g-orthonormal basis, then w(f,, . . ., f;) = 1 also.
To show this, we first prove a simple general result.

Suppose {v;} is any other basis for V related to the g-orthonormal basis

{e;} by vi = ¢(e)) = ejaji where, by Theorem 11.17, we have det ¢ = det(aij).
We then have g(v;, v;) = a";a’g(e,, e;) which in matrix notation is [g], =
AT[g] A, and hence

det(g(v;, v;)) = (det 0)* det(g(e,, €,)) . 9)

However, since {e;} is g-orthonormal we have g(e, e5) = +0,s, and therefore
|det(g(er, es))| = 1. In other words

|det(g(v;, v;)I"? =|detg| . (10)
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Returning to our problem, we have det(g(f;, f;)) = %1 also since {f;} =
{¢(e;)} is g-orthonormal. Thus (10) implies that |det ¢p| = 1. But {f;} is posi-
tively oriented so that u(f,, . . . , f;) >0 by definition. Therefore

0<ulfiy e s fi)=1@er), ... (e, ) = @10y . ve,)
= (detp)u(e, ..., e,)=detg

so that we must in fact have det ¢ = +1. In other words, w(f,, ..., fy) =1 as
claimed.

Now suppose that {v;} is an arbitrary positively oriented basis for V such
that v; = ¢(e;). Then, analogously to what we have just shown, we see that
w(vy, ..., vy) =det ¢ >0. Hence (10) shows that (using Example 11.8)

u(vy, ..., v,)=detg
=|det(g(v;, v;)['

=|det(g(v;, vj))ll/zv1 A AV (Ve )

which implies
w = |det(g(vi, Vj))|]/2 via-ooavt L B

The unique volume form w defined in Theorem 11.20 is called the g-
volume, or sometimes the metric volume form. A common (although rather
careless) notation is to write |det(g(v;, Vj))|]/ 2= Vgl . In this notation, the g-
volume is written as

Vgl via - av®
where {v,, ..., vo} must be positively oriented. If the basis {v, v,, ..., vp}
is negatively oriented, then clearly {v,, vi, . . ., vn} will be positively

oriented. Furthermore, even though the matrix of g relative to each of these
oriented bases will be different, the determinant actually remains unchanged
(see the discussion following the corollary to Theorem 11.13). Therefore, for
this negatively oriented basis, the g-volume is

Vgl vV2AviA- - av® = —VTg[ VIAVZA - - AvD .
We thus have the following corollary to Theorem 11.20.

Corollary Let {v;} be any basis for the n-dimensional oriented vector space
(V, [w]) with metric g. Then the g-volume form on V is given by

+V g VIA- - AvD



616 MULTILINEAR MAPPINGS AND TENSORS

[T

where the “+” sign is for {v;} positively oriented, and the sign is for {v;}

negatively oriented.

Example 11.14 From Example 11.13, we see that for a Riemannian metric g
and g-orthonormal basis {e;} we have det(g(e;, €;)) = +1. Hence, from equa-
tion (9), we see that det(g(vi, v;)) > O for any basis {v; = ¢(e;)}. Thus the g-

volume form on a Riemannian space is given by Vg v'a - - - av™,

For a Lorentz metric we have det(f(e;, ¢;)) = —1 in a Lorentz frame, and

therefore det(g(v;, v;)) < 0 in an arbitrary frame. Thus the g-volume in a
n

Lorentz space is given by V=g vIA - - - av™,

Let us point out that had we defined Ind(n)) = n — 1 instead of Ind(n) =1,
then det(n(e;, €)) < 0 only in an even dimensional space. In this case, we
would have to write the g-volume as in the above corollary. /

Example 11.15 (This example is a continuation of Example 11.11.) We
remark that these volume elements are of great practical use in the theory of
integration on manifolds. To see an example of how this is done, let us use
Examples 11.1 and 11.11 to write the volume element as (remember that this
applies only locally, and hence the metric depends on the coordinates)

dt = Vigldx!A - - - Adx™ .
If we go to a new coordinate system {X'}, then

_ ax" ax’

| r—
oaxtaxd "

so that [g] = (J7)?|g| where J™ = det(9x"/6x") is the determinant of the inverse

Jacobian matrix of the transformation. But using dx' = (6)‘(i/axj)dxj and the
properties of the wedge product, it is easy to see that

—1 —n
dx' Ao ndx" =ail. ax. dx" Ao A dx
axh ax'n
—i
=det(axj )a’xl Acendx”
o0x

and hence

dx!A- - -AdX™ = JTdx!A - .- Adx®



11.10 THE METRIC TENSOR AND VOLUME FORMS 617

where J is the determinant of the Jacobian matrix. (Note that the proper
transformation formula for the volume element in multiple integrals arises
naturally in the algebra of exterior forms.) We now have

dT = Jlgldx' A adx" =T Jlgl Jdx' A--- A dx”
= Jlgldx' A---ndx" =dt

and hence dt is a scalar called the invariant volume element. In the case of

R* as a Lorentz space, this result is used in the theory of relativity. /

Exercises

1.

Suppose V has a metric g;; defined on it. Show that for any A, B € V we
have (A, B) = aibi = aibi.

According to the special theory of relativity, the speed of light is the same
for all unaccelerated observers regardless of the motion of the source of
light relative to the observer. Consider two observers moving at a constant
velocity B with respect to each other, and assume that the origins of their
respective coordinate systems coincide at t = 0. If a spherical pulse of light
is emitted from the origin at t = 0, then (in units where the speed of light is

equal to 1) this pulse satisfies the equation x> + y? + z2 — t> = 0 for the first

2 _ T2 =0 for the second observer. We shall use

the common notation (t, X, y, z) = (XO, X], X2, X3) for our coordinates, and

hence the Lorentz metric takes the form

observer, and X> + y + 2

where 0 < u, v <3.

(a) Let the Lorentz transformation matrix be A so that X# = A#,, x". Show
that the Lorentz transformation must satisfy ATnA =n.

(b) If the {X*} system moves along the x'-axis with velocity B, then it
turns out that the Lorentz transformation is given by

0 = y(x"-pxh
X' = y(x' - px°)

>
1]

>
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>

>

where yz =1/(1 - [32). Using A#, = 9x#/9x", write out the matrix (A¥,),
and verify explicitly that AThA = 0.
(c) The electromagnetic field tensor is given by

0 -E, -E, -E,
E, 0 B, -B,
w-|E, -B, 0 B,
E. B, -B, 0

Using this, find the components of the electric field E and magnetic field
B in the {X*} coordinate system. In other words, find F uv - (The actual
definition of Fy is given by F,\ = d,Ay - dvA, where 9, = d/0x* and
Ay = (¢, A1, Az, A3z) is related to E and B through the classical equations
E=-V¢-0A/otand B =V x A. See also Exercise 11.1.6.)

Let V be an n-dimensional vector space with a Lorentz metric 1, and let
W be an (n — 1)-dimensional subspace of V. Note that

W+ = {vEV:n(v,w) =0 forall w € W}

is the 1-dimensional subspace of all normal vectors for W. We say that W
is timelike if every normal vector is spacelike, null if every normal vector
is null, and spacelike if every normal vector is timelike. Prove that m
restricted to W is

(a) Positive definite if W is spacelike.

(b) A Lorentz metric if W is timelike.

(c) Degenerate if W is null.

(a) Let D be a 3 x 3 determinant considered as a function of three contra-
variant vectors Al(j), Al), and Al(3). Show that under a change of coordi-
nates, D does not transform as a scalar, but that DVI?I does transform as a
proper scalar. [Hint: Use Exercise 11.2.8.]

(b) Show that eijk\/ngl transforms like a tensor. (This is the Levi-Civita
tensor in general coordinates. Note that in a g-orthonormal coordinate
system this reduces to the Levi-Civita symbol.)

(c) What is the contravariant version of the tensor in part (b)?



CHAPTER 12

Hilbert Spaces

The material to be presented in this chapter is essential for all advanced work
in physics and analysis. We have attempted to present several relatively diffi-
cult theorems in sufficient detail that they are readily understandable by
readers with less background than normally might be required for such results.
However, we assume that the reader is quite familiar with the contents of
Appendices A and B, and we will frequently refer to results from these
appendices. Essentially, this chapter serves as an introduction to the theory of
infinite-dimensional vector spaces. Throughout this chapter we let E, F and G
denote normed vector spaces over the real or complex number fields only.

12.1 MATHEMATICAL PRELIMINARIES

This rather long first section presents the elementary properties of limits and
continuous functions. While most of this material properly falls under the
heading of analysis, we do not assume that the reader has already had such a
course. However, if these topics are familiar, then the reader should briefly
scan the theorems of this section now, and return only for details if and when
it becomes necessary.

For ease of reference, we briefly repeat some of our earlier definitions and
results. By a norm on a vector space E, we mean a mapping |l I: E — R satis-

fying:

R1Q
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(N1) lull = O for every u € E and lull = 0 if and only if u = 0 (positive
definiteness).
(N2) licull = [c] lull for every u € E and ¢ € ¥.

(N3) llu + vl < lull + vl (triangle inequality).

If there is more than one norm on E under consideration, then we may denote
them by subscripts such as |l I, etc. Similarly, if we are discussing more than
one space, then the norm associated with a space E will sometimes be denoted
by I Ilg . We call the pair (E, | |) a normed vector space.

If E is a complex vector space, we define the Hermitian inner product as
the mapping (, ): E x E — C such that for all u, v, w € E and ¢ € C we have:

(IP1) (u, v+ w)={(u, v) + {(u, w).

(IP2) (cu, v) =c*{u, v).

(IP3) (u, v) = (v, u)*

(IP4) (u,u) =0 and (u, u) =0 if and only if u=0.

where * denotes complex conjugation. A Hermitian inner product is some-
times called a sesquilinear form. Note that (IP2) and (IP3) imply

(u, cv) = {cv,u)* = c{v,u)* = c{u, v)

and that (IP3) implies (v, v) is real.
As usual, if (u, v) = 0 we say that u and v are orthogonal, and we some-
times write this as u L v. If we let S be a subset of E, then the collection

{u€E: (u,v)=0forevery vE S}

is a subspace of E called the orthogonal complement of S, and is denoted by
S*.

It should be remarked that many authors define (cu, v) = c(u, v) rather than
our (IP2), and the reader must be careful to note which definition is being fol-
lowed. Furthermore, there is no reason why we could not have defined a map-
ping E x E — R, and in this case we have simply an inner product on E
(where obviously there is now no complex conjugation).

The most common example of a Hermitian inner product is the standard

inner product on C" = C x - - - x C defined for all x = (x,, ..., Xy) and y =

(Y1 - - - » ¥n) in C" by

n
(x, y) = Exi*yi .
il
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We leave it to the reader to verify conditions (IP1) — (IP4). Before defining a

norm on C", we again prove (in a slightly different manner from that in
Chapter 2) the Cauchy-Schwartz inequality.

Example 12.1 Let E be a complex (or real) inner product space, and let u,
v € E be nonzero vectors. Then for any a, b € C we have

0 < (au +bv, au + bv) = [a*(u, u) + a*b(u, v) + b*a(v, u) + |bl3(v, v) .

Now note that the middle two terms are complex conjugates of each other, and
hence their sum is 2Re(a*b(u, v)). Therefore, letting a = (v, v) and b = —(v, u),
we have

0 < (v, vP{u, u) = 2v, v)l{u, V)2 + I, v)P(v, v)
which is equivalent to

2

(v, Vltu, )P < (v, v)%(

u,u) .

Since v # 0 we have (v, v) # 0, and hence dividing by (v, v) and taking the
square root yields the desired result

)1/2 (

l{u, v)| < (u,u v, V)]/2 i

If a vector space E has an inner product defined on it, then we may define
anorm on E by

vl = (v, v)!/?

for all v € E. Properties (N1) and (N2) for this norm are obvious, and (N3)
now follows from the Cauchy-Schwartz inequality and the fact that Re(u, v) <
I{u, v)I:

lt + VP = (u + v, u+v)
2 2
= lul“+2Re{u, v)+ vl
< lul®+2|(u, v)|+ IVI?
< Il + 2l + Ivl?

= (lull + W2 .

We leave it to the reader (Exercise 12.1.1) to prove the so-called parallel-
ogram law in an inner product space (E, (, )):

ha+ vI? + lu = vI? = 20l + 2IvI? .



622 HILBERT SPACES

The geometric meaning of this formula in R? is that the sum of the squares of
the diagonals of a parallelogram is equal to the sum of the squares of the sides.
If (u, v) =0, then the reader can also easily prove the Pythagorean theorem:

lu+vl? = lul?+IvI2 ifulv.

In terms of the standard inner product on C", we now define a norm on C"
by

n
Il = x, x) = bl
i=1

The above results now show that this does indeed satisfy the requirements of a
norm.

Continuing, if (E, Il ) is a normed space, then we may make E into a
metric space (E, d) by defining

d(u,v) = lu-=vl .

Again, the only part of the definition of a metric space (see Appendix A) that
is not obvious is (M4), and this now follows from (N3) because

du, v)=lu-vl=lu-w+w-vl<llu-wl+lw-vl

=du, w)y+dw,v) .

The important point to get from all this is that normed vector spaces form
a special class of metric spaces. This means that all the results from Appendix
A and many of the results from Appendix B will carry over to the case of
normed spaces. In Appendix B we presented the theory of sequences and
series of numbers. As we explained there however, many of the results are
valid as well for normed vector spaces if we simply replace the absolute value
by the norm.

For example, suppose A C E and let v € E. Recall that v is said to be an
accumulation point of A if every open ball centered at v contains a point of
A distinct from v. In other words, given € > 0 there exists u € A, u # v, such
that lu — vl < €. As expected, if {v,} is a sequence of vectors in E, then we say
that {v,} converges to the limit v € E if given ¢ > 0, there exists an integer
N > 0 such that n = N implies v, — vl < &. As usual, we write lim v, =
limy_, vy = v. If there exists a neighborhood of v (i.e., an open ball contain-
ing v) such that v is the only point of A in this neighborhood, then we say that
v is an isolated point of A.
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Example 12.2 Suppose lim v, = v. Then for every € > 0, there exists N such
that n = N implies llv — vyl < €. From Example 2.11 we then see that

[IVIE=lvpll | < v =—vull < &
and hence directly from the definition of lim llv,l we have

[ lim v, | = vl = lim vyl .
This result will be quite useful in several later proofs. /

Note that if v is an accumulation point of A, then for every n > O there
exists v, € A, vy # v, such that v, — vl < 1/n. In particular, for any ¢ > 0,
choose N so that 1/N < €. Then for all n > N we have v, — vl < 1/n < € so that
{vn} converges to v. Conversely, it is clear that if v, = v with v, E A, v, # v,
then v must necessarily be an accumulation point of A. This proves the fol-
lowing result.

Theorem 12.1 If A CE, then v is an accumulation point of A if and only if it
is the limit of some sequence in A — {v}.

A function f: (X, dx) — (Y, dy) is said to be continuous at x, € X if for each
¢ > 0 there exists § > 0 such that dx(X, X,) < & implies dy(f(x), f(X,)) < €. Note
though, that for any given ¢, the & required will in general be different for
each point x, chosen. If f is continuous at each point of X, then we say that f is
“continuous on X.”

A function f as defined above is said to be uniformly continuous on X if
for each & > 0, there exists 8 > 0 such that for all x, y € X with dx(x, y) < 8
we have dy(f(x), f(y)) < €. The important difference between continuity and
uniform continuity is that for a uniformly continuous function, once ¢ is
chosen, there is a single 6 (which will generally still depend on ¢€) such that
this definition applies to all points x, y € X subject only to the requirement
that dx(x, y) < d. It should be clear that a uniformly continuous function is
necessarily continuous, but the converse is not generally true. We do though
have the next very important result. However, since we shall not have any
occasion to refer to it in this text, we present it only for its own sake and as an
(important and useful) illustration of the concepts involved.

Theorem 12.2 Let A C (X, dx) be compact, and let f: A — (Y, dy) be con-
tinuous. Then f is uniformly continuous. In other words, a continuous function
on a compact set is uniformly continuous.
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Proof Fix € > 0. Since { is continuous on A, for each point x € A there exists
Ox > 0 such that for all y € A, dx(X, y) < O« implies dy(f(x), f(y)) < €/2. The
collection {B(x, 0x/2): x € A} of open balls clearly covers A, and since A is
compact, a finite number will cover A. Let {X,, . . ., X} be the finite collec-
tion of points such that {B(x;, 0x,/2)},i=1,...,n covers A, and define d =
(1/2)min({dx,}). Since each d4, > 0, d must also be > 0. (Note that if A were
not compact, then d = inf({dx}) taken over all x € A could be equal to 0.)

Now let x, y € A be any two points such that dx(x, y) < 9. Since the
collection {B(x;, 0x,/2)} covers A, x must lie in some B(x;, 04,/2), and hence
dx(X, x;) < 0x,/2 for this particular x;. Then we also have

dx(y, x;) < dx(x,y) +dx(x, x;) < 0 +08/2 =< dy, .

But f is continuous at x;, and 84, was defined so that the set of points z for
which dx(z, x;) < 9y, satisfies dy(f(z), f(x;)) < &/2. Since we just showed that x
and y satisfy dx(X, x;) < 8x/2 < 8y, and dx(y, x;) < dx, , we must have

dy(f(x), f(y)) = dy(f(x), f(x;)) + dy(f(y), f(x;)) < €/2+¢€/2 = ¢ .

In other words, for our given ¢, we found a § such that for all x, y € A
with dx(x, y) <8, we have dy(f(x), f(y)) <e. I

Example 12.3 Consider the function f: E — R defined by f(u) = llull. In other
words, f is just the norm function on E. Referring to the above discussion, we
say that a function g is uniformly continuous if given € > 0, there exists & >0
such that lu — vl < § implies that [g(u) — g(v)| < € (note that the norm on E is
I I while the norm on R is | |). But for our norm function f and for any & > 0,
we see that for all u, v € E, if we choose d = ¢ then lu — vl < § = ¢ implies

lf(w) = fV)| = [l =Ivl] < lu-vll < ¢

(where we used Example 2.11). Thus the norm is in fact uniformly continuous
on E.

We leave it to the reader (see Exercise 12.1.2) to show (using the Cauchy-
Schwartz inequality) that the inner product on E is also continuous in both
variables. /

There is an equivalent way to define continuous functions in terms of
limits that is also of great use. Let X and Y be metric spaces, and suppose {:
A CX — Y. Then if x, is an accumulation point of A, we say that a point L €
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Y is the limit of f at x,, if, given &€ > 0, there exists 0 > 0 (which may depend
on f, X, and ¢€) such that for all x € A we have 0 < dx(x, X,) < & implies
dy(f(x), L) < €. This is written as limy_,x, f(x) = L or simply “f(x) — L as
X — X,.”

Note that while x, is an accumulation point of A, X, is not necessarily an
element of A, and hence f(x,) might not be defined. In addition, even if x, €
A, it is not necessarily true that limy_, y, f(x) = f(x,). However, we do have the
following result.

Theorem 12.3 Iff: A C (X, dx) — (Y, dy) and x, € A is an accumulation
point of A, then f is continuous at X, if and only if

limy_, x, f(x) = f(xo) .

Proof This obvious by comparison of the definition of continuity of f at x,,
and the definition of the limit of f at x,. }

Before we can prove the basic properties of continuous functions, we must
prove some elementary properties of limits. First we need a definition. A
product on E x F — G is a mapping denoted by (u, v) — uv that is bilinear
and satisfies lluvlg < lulglvlg. For example, using the Cauchy-Schwartz
inequality, we see that the usual inner product on R" is just a product on R" x
R" — R.

Example 12.4 We say that a function f: S — F is bounded if there exists
M > 0 such that If(x)l = M for all x € S. Now consider the space E = B(S, R)
of real-valued bounded functions on any nonempty set S. Let us define a norm
Il on B(S, R) by

Ifl, = supxes [f(x)I

for any f € B(S, R). This important norm is called the sup norm. For any f,
g € B(S, R) suppose Ifl, = C, and lgl, = C,. Then it follows that [f(x)| < C,
and |g(x)| = C, for all x € S. But then for all x € S we have

f(x)gx)| = fx)|Igx)| = C,C, = Ifl,lgls
so that the usual product of (real-valued) functions is also bounded. Therefore
we see that

Ifel,, < Ifl.lgl..

and since the usual product is obviously bilinear, we have a (general) product
onExE —E. /
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With the notion of a product carefully defined, we can repeat parts (a) —
(c) of Theorem B2 in a more general form as follows. The proof is virtually
identical to that of Theorem B2 except that here we replace the absolute value
by the norm.

Theorem 12.4 (a) Let u, — uand v, — v be convergent sequences of vec-
tors in E. Then lim,_, (U + V) =u + V.

(b) Let v, — v be a convergent sequence of vectors in E, and let ¢ be a
scalar. Then limy_, (cvy) = cv.

(¢) Letu, — uand v, — v be convergent sequences of vectors in E and F
respectively, and let E x F — G be a product. Then limy_, «(upvy) = uv.

Theorem 12.5 (a) Suppose that A C E and v is an accumulation point of A.
Let f and g be mappings of A into F, and assume that lim, _,, f(u) = w, and
limy_,y g(u) = w,. Then

limy o y(f+ g = w,+w, .

(b) Let A be a subset of some normed space, and let v be an accumulation
point of A. Let f: A — E and g: A — F be mappings, and assume further that
limy_,y f(u) = w, and limy_,, g(u) = w,. If E x F — G is a product, then

limy_,y f(u)gu) = wiw, .

Proof (a) Given ¢ >0, there exists 8, > 0 such that if u € A with llu - vl < §,
then [f(u) — w,| < &/2. Similarly, there exists 8, > 0 such that lu - vl < 9,
implies |g(u) — w,| < /2. Choosing 6 = min{d,, §,} we see that if u € A and
lu — vl < & we have

ICf + &) @) = (wy +wy)ll =1 f(u) = w; + g(u) = w,
<l f(u)-wl+1g@)—w,l
<el2+¢€/2

=€ .
(b) Given & >0, there exists 8, > 0 such that [u - vll < , implies
If(u) — w,ll < €/[2(1 + Iw,I)] .
Similarly, there exists 0, > 0 such that lu — vll < §, implies

lg(u) = w,ll < &/[2(1 + Iw,l)] .
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From the definition of limit, given € = 1 there exists 63 > 0 such that lu - vl <
03 implies
If(w) - wil < 1.

But from Example 2.11 we see that
Il = Iw, Il < If(u) - will < 1

which implies
Il < 1 +1Iw,l .

If we let 8 = min{d,, d,, 83}, then for all u € A with llu — vl < 8 we have

I @) = wiwal =1 FG)g(u) = Fwy + Fpwy —wiw, |
<l f)lg)—wy I+ I[f () —w;Iw,l
<l f@)g(u)—w,ll+ 1 () —w;llw,l
< (1 + IwyDe/[2(1+ Iwy D]+ e/[2( + lw, D] Tw, |
<el2+¢€/2
=¢ . 1

The reader should realize that the norms used in the last proof are not
defined on the same normed space. However, it would have been too cluttered
for us to distinguish between them, and this practice is usually followed by
most authors.

It will also be of use to formulate the limit of a composition of mappings.

Theorem 12.6 Suppose ACEand BCF,andletf: A —=Bandg:B — G
be mappings. Assume that u is an accumulation point of A and that
limy_,, f(x) = v. Assume also that v is an accumulation point of B and that
limy_,y g(y) = w. Then

limyy (go £)(x) = limy_u g(f(x)) = w .

Proof Given € >0, there exists §, > 0 such that for all y € B with ly - vl <§,,
we have lig(y) — wl < €. Then given this 9,, there exists §, > 0 such that for all
X € A with Ix — ull < 9,, we have lIf(x) — vl < §,. But now letting y = f(x), we
see that for such an x € A we must have lg(f(x)) - wl <e. 1

We are now in a position to prove the basic properties of continuous func-
tions on a normed space.
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Theorem 12.7 (a) If ACE and f, g: A — F are continuous at v € A, then
the sum f + g is continuous at v.

(b) Letf: A — E and g: A — F be continuous at v € A and suppose that
E x F — G is a product. Then the product map fg is continuous at v.

(¢) Suppose ACE,BCF,and letf: A — B and g: B — G be mappings.
Assume that f is continuous at v € A with f(v) = w, and assume that g is con-
tinuous at w. Then the composite map g ° f is continuous at v.

(d) A mapping f: E — F is continuous at v if and only if for every
sequence {v,} in E we have v, — v implies f(v,) — f(v). In other words, we
have lim f(v,) = f(lim v,).

Proof (a) If v is an isolated point there is nothing to prove, so assume that v
is an accumulation point. Then by Theorems 12.5 and 12.3 we have

lim,_,(f+g)u)=lim,_,, f(u)+lim,_, g(u)
=f()+gv)
=(f+8)O) .

(b) This also follows from Theorems 12.5 and 12.3.

(c) Left to the reader (see Exercise 12.1.3).

(d) We first assume that f is continuous at v, and that the sequence {v,}
converges to v. We must show that f(v,) — f(v). Now, since f is continuous,
we know that given € > 0, there exists 8 > 0 such that |lu — vl < 6 implies
If(u) — f(v)ll < €. Furthermore, the convergence of {v,} means that given d >0,
there exists N such that llv, — vl < 8 for every n = N. Therefore, for every n =
N we have llv, — vl < § implies If(vy) — f(v)l < e.

We now prove that if f is not continuous at v, then there exists a conver-
gent sequence v, — v for which f(vy) - f(v). It will be notationally simpler
for us to formulate this proof in terms of open balls defined by the induced
metric (see Appendix A). If f is not continuous at v, then there exists B(f(v), €)
with no corresponding B(v, 8) such that f(B(v, 8)) C B(f(v), €). Consider the
sequence of open balls {B(v, 1/n)} forn=1, 2, ... . Since f is not continu-
ous, we can find v,, € B(v, 1/n) such that f(v,) & B(f(v), €). It is clear that the
sequence {vnp} converges to v (given €, choose n = N = 1/¢), but that f(v,)
does not converge to f(v) since by construction B(f(v), €) contains none of the
f(vy).

Since the notion of open sets is extremely important in much of what fol-
lows, it is natural to wonder whether different norms defined on a space lead
to different open sets (through their induced metrics). We shall say that two
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norms |l [, and Il |, defined on E are equivalent if there exists a number C such
that for all u € E we have

C'lul; < Iul, < Clull .

We leave it to the reader to show that this defines an equivalence relation on
the set of all norms on E (see Exercise 12.1.4).

Example 12.5 It is easy to see that this definition does exactly what we want
it to do. For example, suppose U C E is open relative to a norm | [l,. This
means that for any u € U, there exists &, > 0 such that llu - vl, < &, implies v E
U. We would like to show that given an equivalent norm | |, then there exists
€, > 0 such that lu — vl, < ¢, implies v € U. We know there exists C > 0 such
that C'lll, = II'l, = CIl'll;, and hence choosing ¢, = ¢,/C, it follows that for all
v € E with [lu - vll, < &, we have

lu-vl, < Clu-vl, < Cep = g

so that v € U. Therefore we have shown that if a set is open with respect to
one norm, then it is open with respect to any equivalent norm. /

Example 12.6 It is also easy to give an example of two non-equivalent norms
defined on a space. To see this, consider the space E of all real-valued contin-
uous functions defined on [0, 1]. We define a norm on E by means of the
scalar product. Thus for any f, g € E we define the scalar product by

. 8= [, f(0)g) dx

and the associated norm by Ifl, = (f, f )12, This norm is usually called the L2-
norm. Alternatively, we note that any continuous real function defined on
[0, 1] must be bounded (Theorems A8 and A14). Hence we may also define
the sup norm [fl,, by

Ifl, = sup [f(x)|

where the sup is taken over all x € [0, 1].
Now suppose f € E and write lfl, = C. Then we have

S0P dus [ C* dx=C?

and hence [fl, < Ifl.. However, this is only half of the inequalities required by
the definition. Consider the peaked function defined on [0, 1] by
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If we let this function become arbitrarily narrow while maintaining the height,

it is clear that the sup norm will always be equal to 1, but that the L?-norm can
be made arbitrarily small. /

The source of the problem that arose in this example is a result of the fact
that the space E of continuous functions defined on [0, 1] is infinite-
dimensional. In fact, we will soon prove that this can not occur in finite-
dimensional spaces. In other words, we will see that all norms are equivalent
in a finite-dimensional space.

The reader may wonder whether or not the limits we have defined depend
in any way on the particular norm being used. It is easy to show that if the
limit of a sequence exists with respect to one norm, then it exists with respect
to any other equivalent norm, and in fact the limits are equal (see Exercise
12.1.5). It should now be clear that a function that is continuous at a point v
with respect to a norm |l |, is also continuous at v with respect to any equiva-
lent norm [ I,.

Now recall from Appendix B that a metric space in which every Cauchy
sequence converges to a point in the space is said to be complete. It was also
shown there that the space R" is complete with respect to the standard norm
(Theorem B8), and hence so is the space C" (since C" may be thought of as
R"™ x R™ = R?™). Recall also that a Banach space is a normed vector space
(E, I ) that is complete as a metric space (where as usual, the metric is that
induced by the norm). If an inner product space (E, ( , )) is complete as a
metric space (again with the metric defined by the norm induced by the inner
product), then E is called a Hilbert space.

It is natural to wonder whether a space that is complete relative to one
norm is necessarily complete relative to any other equivalent norm. This is
answered by the next theorem. In the proof that follows, it will be convenient

to use the nonstandard norm | ly defined on R" (or C") by

n
I, ol = Y|
i=1
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where (u!, . .., u" is a vector n-tuple in R™ (or C"). In R?, the unit ball
{(u,, u,): I(u', u?)lly < 1} looks like

Theorem 12.8 Let E be a finite-dimensional vector space over either R or C.
Then

(a) There exists a norm on E.

(b) All norms on E are equivalent.

(c) All norms on E are complete.

Proof Let{e, ..., ey} beabasis for E so that any u € E may be written as
u=Jule,.
(a) We define the norm |l |, on E by

n .
luly = Y ||
i=1

Properties (N1) and (N2) are trivial to verify, and if v = Svie; is any other

vector in E, then u + v = 2(u' + v')e;, and hence

lu+vl=Zlu' +v 1 <Z(u' 1+ ) =2l 1421V

—lull, + vl

so that (N3) is also satisfied.
This norm is quite convenient for a number of purposes. Note that it yields

the same result for any v = Svie, € E as does the nonstandard norm |l Iy for
the corresponding (v', ..., v®) ER™ (or C).

(b) Let |l I, be any other norm on E, and let u, v € E be arbitrary. Using
Example 2.11 and properties (N3) and (N2), we see that
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A

ey = vl < lu—vl,

12’ —v'el,
' —vHe;l,
lu’ -vilel,

max,_,_, {le,,}Z|u’ —v']

A

()

A

max,__, {le, @', ..., u") -, ..., vy

Define the mapping f: C" — R by x = (x!, . . ., x™) — [Zx'el, € [0, ). To
say that f is uniformly continuous on C" with respect to the norm | lly means
that given ¢ > 0, we can find & > 0 such that for all x, y € C" with

Ix —yly = Ixh, . x™) =y Lyl < O

we have
f(x) - f(y)l = |1Zxlel, - IZy'el, | < ¢ .

If we define B = max;<j<p{le;l,}, then choosing & = ¢/B, we see (*) shows that
f is (uniformly) continuous with respect to the norm Il lly on C".

We now note that the unit sphere S = {x € C™ Ixly = 1} is closed and
bounded, and hence S is compact (Theorem A14). The restriction of the func-

tion f to S is then continuous and strictly positive (by (N1)), and hence
according to Theorem A15, f attains both its minimum m and maximum M on

S. In other words, for every x = (x', ..., x™ € C"with Ixly = 1 we have 0 <
m < I3xlell, < M. Since lIxly =1 (x!, ..., x") Iy =1, we may write
mix', ..., xDly < IZxlel, < M, ..., x"ly

or, using part (a) with u = x'e; € E, we find that
mllul; < llul, < Miul, .

Choosing C = max{1/m, M}, we see that |l [, and I I, are equivalent. The fact
that || I, was arbitrary combined with the fact that equivalent norms form an
equivalence class completes the proof that all norms on E are equivalent.

(c) It suffices to show that E is complete with respect to any particular
norm on E. This is because part (b) together with the fact that a sequence that
converges with respect to one norm must converge with respect to any equiv-
alent norm then shows that E will be complete with respect to any norm.
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Recall from the corollary to Theorem 2.8 that E is isomorphic to either R" or

C™. The result then follows from Theorem B8 or its obvious extension to C"
(see Exercise 12.1.6).

We shall see that closed subspaces play an important role in the theory of
Hilbert spaces. Because of this, we must make some simple observations.
Suppose that Y is a closed subset of a complete space (X, d), and let {x,} be a
Cauchy sequence in Y. Then {x,} is also obviously a Cauchy sequence in X,
and hence x, — x € X. But this means that X E C1 Y =Y (Theorem B13(b) or
B14(a)) so that {x,} converges in Y.

On the other hand, suppose that Y is a complete subset of an arbitrary
metric space (X, d) and let {x,} be any sequence in Y that converges to an
element x € X. We claim that in fact x € Y which will prove that Y is closed
(Theorem Bl14(a)). Since x, — x € X, it follows that {x,} is a Cauchy
sequence in X (since any convergent sequence 1s necessarily Cauchy). In other
words, given € > 0 there exists N > 0 such that m, n = N implies Ix, — x,ll < e.
But then {x,} is just a Cauchy sequence in Y (which is complete), and hence
Xn > xXx€eY.

This discussion proves the next result.

Theorem 12.9 Any closed subset of a complete metric space is also a com-
plete metric space. On the other hand, if a subset of an arbitrary metric space
is complete, then it is closed.

Corollary A finite-dimensional subspace of any real or complex normed
vector space 1s closed.

Proof This follows from Theorems 12.8 and 12.9. 1

Now suppose that A C E and that we have a mapping f: A — F where F =
F, x - - - x F, is the Cartesian product of normed spaces. Then for any v € A
we have f(v) = (f,(v), . . ., fn(v)) where each f;: A — F, is called the it/ coor-
dinate function of f. In other words, we write f = (f,, . . ., f5).
If w=(w, ..., wp €F, then one possible norm on F, the sup norm, is
defined by
Iwl = sup;<i<n{lw;ll}

where lw;l denotes the norm in F;. However, this is not the only possible
norm. Recall that if x = (X;, ..., X)) ER" =R x - - - x R, then the standard
norm in R™ is given by IxI* = X |x;|*. The analogous “Pythagorean” norm I Il

on F would then be defined by Iwl,? = X Iw;l?. Alternatively, we could also
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define the “nonstandard” norm lwly = X Iw;ll. We leave it to the reader to
show that these three norms are equivalent on F (see Exercise 12.1.7).

The next result should come as no surprise. Note that we will use the sup
norm on F as defined above.

Theorem 12.10 Suppose AC Eand letf: A - F=F, x- - - xF, be a map-
ping. If v is an accumulation point of A, then lim,_, f(u) exists if and only if
lim,_, v fi(u) exists for eachi =1, ..., n. If this is the case and if lim,_, f(u)
=w=(W,...,Wp), then lim,_,y fi(u) =w, foreachi=1,...,n.

Proof First assume that limy_., f(u) = w = (w,, . . ., wy). This means that
given € > 0, there exists d such that llu — vl < 6 implies If(u) - wll < &. If we
write f(u) = (fi(u), . . ., fy(u)), then for all u € A with lu — vl < 9, the defini-
tion of sup norm tells us that

If;(u) = will < If(u) - wl < ¢ .
This proves that lim_, f;(u) = w;.
Conversely, suppose lim,_.y f;(u) = w; foreachi=1, ..., n. Then given
e > 0, there exists 0; such that lu — vl < §; implies If;(u) — w;ll < €. Defining 0 =
min{9,;}, we see that for all u € A with llu - vl < d, we have If;(u) — w;ll < € for
eachi=1,... ,nand therefore
If(u) - wil = sup{lfi(u) - wil} < ¢ .

This shows that lim,_,, f(u) =w.

Corollary The mapping f defined in Theorem 12.10 is continuous if and
only if each f; is continuous.

Proof Obvious from the definitions. W

Exercises

1. Ifu,ve(, ,)) prove:
(a) The parallelogram law: lu + vI? + lu — vI* = 2lul® + 2IvI?.
(b) The Pythagorean theorem: lu + vI? = lul® + IvI? if u L v.

2. Show that an inner product on E is continuous in both variables by
showing that limy_, y, (X, y) = (X, yo) and limy_,x, (X, y) = (X0, y).
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3. Prove part (c) of Theorem 12.7.

4. Show that equivalent norms define an equivalence relation on the set of all
norms on E.

5. (a) Suppose {vpn} is a sequence in a normed space E. Show that if v, = v
with respect to one norm on E, then v, — v with respect to any equivalent
norm on E.

(b) Show that if a function is continuous at a point with respect to one
norm, then it is continuous at that point with respect to any equivalent
norm.

6. Fill in the details in the proof of Theorem 12.8(c).

7. Let F=F, x .- - x F, be a Cartesian product of normed spaces, and sup-
pose W = (Wy, . .., wy) € F. If Iw,ll denotes the norm on F;, show that the
norms [wl = sup;<j<n{lw;l}, IIWllp2 = 20 lw;l? and Iwly = 3P llw,l are

equivalent on F.

8. Show that the set B(S, E) of all bounded functions from a nonempty set S

to a normed vector space E forms a vector space (over the same field as
E).

12.2 OPERATOR NORMS

Suppose E and F are normed spaces, and let A: E — F be a linear map. If
there exists a number M > 0 such that |Avlg < Mlvlg for all v € E, then A is
said to be bounded, and the number M is called a bound for A. In other
words, to say that A is bounded means that it takes bounded values on
bounded sets. Note that we labeled our norms in a way that denotes which
space they are defined on. From now on though, we shall not complicate our
notation by this designation unless it is necessary. However, the reader should
be careful to note that the symbol |l | may mean two different things within a
single equation.

Recall also that a linear map A: E — F is said to be continuous at v, € E
if given &€ > 0, there exists § > 0 such that for all v € E with llv, - vl < 6, we
have [Av, - Avl = [A(v, - V) | < &.
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Theorem 12.11 Let E be a finite-dimensional normed space, and let A: E —
F be a linear map of E into a normed space F (not necessarily finite-
dimensional). Then A is bounded.

Proof Let{e, ..., ey} beabasis for E so that any v € E may be written in

the form v = Xv'e;. Using the defining properties of the norm and the linearity
of A, we then have

IAVI = IAS Vel = IZviAel < X IviAel = 3 vl IAel .

Since all norms on E are equivalent (Theorem 12.8), we use the norm | [,

defined by IIvl, = Z|v|. Thus any other norm | I, on E will be related to |l I, by
C'lI'l,<I'l, =Cl I, for some number C. Since [Ae;l < o« for each i, we define
the real number M = max{llAe;l}. Then

IAVI < MZV]| = Mivl; < MClvl, . B

Our next result is quite fundamental, and will be referred to again several
times.

Theorem 12.12 Let A: E — F be a linear map of normed spaces. If A is
bounded, then A is uniformly continuous, and if A is continuous at O then A is
bounded.

Proof If A is bounded, then there exists M > 0 such that IAvl < Mlvl for
every v € E. Then for any € > 0, we choose 6 = ¢/M so that for all u, v E E
with u - vl < &, we have

[Au - Avl = l[A(u-v)I <= Mlu-vl < ¢ .

This proves that A is uniformly continuous.

Conversely, suppose A is continuous at 0 € E. Then given € = 1, there
exists 0 >0 such that [lvl < & implies IAvI < € = 1. In particular, we see that for
any nonzero v € E we have [dv/(2IvI)l = 6/2 < § which implies IA(&v/2IvI))
< 1. Taking out the constants yields IAvl < (2/8)lIvl. This shows that A is
bounded with bound M = 2/5. 1

As shown in Exercise 12.2.1, there 1s nothing special about the continuity
of A at the origin.
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Corollary 1 A linear map A: E — F is bounded if and only if A is continu-
ous.

Proof Obvious. 1

Corollary 2 Let E be finite-dimensional, and let A: E — F be a linear map.
Then A is uniformly continuous.

Proof This follows directly from Theorems 12.11 and 12.12. &

Let E and F be normed spaces, and let A: E — F be a continuous (and
hence bounded) linear map (if E is finite-dimensional, then the continuity
requirement is redundant). We define the operator norm of A by

Al = sup{lAvl/Ivl: vE E, v =0}
= sup{lAvl: Ivl=1} .

If vl < 1, then we may write v = ¢V where [Vl = 1 and |c| < 1. Then lAvl =
lcl IA¥I < IA¥] and therefore, since we are using the sup, an equivalent defini—
tion of Al is

IAI' = sup{lAvl: vl <1} .

From the first definition, we see that for any v € E we have [Avl/lIvl < IAl,
and hence we have the important result

IAVI < IAllvI .
This shows that another equivalent definition of l|All is
IAl' = inf{M > 0: |Avll < Mllvl for all vEE} .

Another useful result follows by noting that if A: E — F and B: F — G,
then for any v € E we have

I(B o A)vl = IB(Av) I < IBIlIAvI < IBIIAl'lvI
and hence from the definition of the operator norm we have

IB o Al < IBI'IAI .
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We denote the space of all continuous linear maps from E to F by L(E, F).
That L(E, F) is in fact a vector space will be shown below. Since for any A €
L(E, F) we have IAl = sup{lAvl: Ivl < 1}, we see that by restricting A to the
unit ball in E, the space L(E, F) is just a subspace of the space B(S, F) of all

bounded maps from S into F that was defined in Example 12.4 (where S is just
the unit ball in E).

Theorem 12.13 The space L(E, F) with the operator norm is a normed
vector space. Moreover, if F is a Banach space, then so is L(E, F).

Proof Suppose that A € L(E, F). We first verify requirements (N1) — (N3)
for a norm. From the definitions, it is obvious that [All > 0 and [0l = 0. In addi-

tion, if Al = O then for any v € E we have l|Avl < [Al vl = 0 which implies
that A = 0. This verifies (N1). If c € F, then

lcAll = sup{ll(cA)vI: IVl < 1}
= |c|sup{lAvll: IVl =1}
=|c|IAll

which verifies (N2). Now let A, B € L(E, F). Then using Theorem 0.5 we see
that (leaving out the restriction on [lvl)

IA + Bl = sup{l(A + B)vl}
= sup{llAv + Bvl}
= sup{llAvl + IBvll}
= sup{lAvl} + sup{lIBvl}
= Al + Bl

which proves (N3). That L(E, F) is in fact a vector space follows from
Theorem 12.7(a) and (b).

Now suppose that F is a Banach space and let {A,} be a Cauchy sequence
in L(E, F). This means that for every € > 0O there exists N such that m, n = N
implies |Ay, — Apll < €. In particular, for any v € E and & > 0, there exists N
such that for all m, n > N we have

IAmV = Apvl = I(Am — Ap)vll < 1AL = Al IVl < (e/IvIDIvl = €

so that {A,v} is a Cauchy sequence in F. Since F is a Banach space this
sequence converges, and hence we define Av € F by

Av = lim,_, » Apv .
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This defines a map A: E — F. Since each A, is linear, it should be clear
(using Theorem 12.4) that A is linear. We must still show that A is continuous
(so that A € L(E, F)) and that A, — A.

Given ¢ > 0, there exists N such that [A,, = Apll < e forallm,n=N.If v E
E is such that [vll < 1, then

IApmv — Apvl < 1Ay = Apll vl < € .
But {A,v} converges to Av, and hence letting m — o« yields
I(A = AVl = AV = Apvl < ¢

for every v € E with IIvl < 1. This shows that A — A, is continuous at 0, and
hence A — Ay is in L(E, F) (by Theorem 12.12 and its Corollary 1). Thus A €
L(E, F) (since each A, is). Finally, since A — A, € L(E, F), we may apply the
definition of operator norm to obtain

IA = Al = sup{l(A - Apvl: Ivl <1} < ¢

for every n = N, and hence A, — A. 1

Exercises

1. Let A: E — F be linear and continuous a some point vo € E. Prove
directly that A is continuous at every v € E.

2. (Linear Extension Theorem) Let E be a normed vector space, F a sub-
space of E, and G a Banach space. Suppose A € L(F, G) and assume that
IAl = M. Prove:

(a) The closure Fof FinEisa subspace of E.

(b) There exists a unique extension AELEF,G of A [Hint TvEF,
then there exists {v,} € F such that v, — v (why?). Show that {Av,} is
Cauchy in G, and converges to a unique limit that is independent of {vy}.
Define Av = lim Avy, and show that A is linear. Also show that Av = Av
for any v € F. Next, show that A is bounded so that A € L(F , G) (why?),
and finally show that the A so defined is unique.]

(c) 1Al = 1Al
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3. Let E be a normed vector space. A completion (E, A) of E is a Banach
space E together with a continuous injective linear mapping A: E — E
that preserves the norm and is such that A(E) is dense in E. Show that
(E, A) is unique in the sense that if (F, B) is another completion of E, then
there exists a unique invertible element C € L(E, F) such that B = C o A.
[Hint: Apply the previous exercise to the mappings B A™ and A > B™.]

12.3 HILBERT SPACES

Discussing infinite-dimensional vector spaces requires a certain amount of
care that was not needed in our treatment of finite-dimensional spaces. For
example, how are we to express an arbitrary vector as a linear combination of
basis vectors? For that matter, how do we define a basis in an infinite-
dimensional space? As another example, recall that in our treatment of
operator adjoints, we restricted our discussion to finite-dimensional spaces
(see Theorems 10.1 and 10.2). While we cannot define the adjoint in an
arbitrary infinite-dimensional space (e.g., a Banach space), we shall see that it
is nevertheless possible to make such a definition in a Hilbert space.

Unfortunately, a thorough treatment of Hilbert spaces requires a knowl-
edge of rather advanced integration theory (i.e., the Lebesgue theory).
However, it is quite easy to present a fairly complete discussion of many of
the basic and important properties of Hilbert spaces without using the general
theory of integration.

As in the previous sections of this chapter, we consider only vector spaces
over the real and complex fields. In fact, unless otherwise noted we shall
always assume that our scalars are complex numbers. Recall from Section
12.1 that a Hilbert space is an inner product space which is complete as a
metric space. We shall generally denote a Hilbert space by the letter H.

To begin with, we recall that a linear space E is n-dimensional if it con-
tains a set of n linearly independent vectors, but every set of n + 1 vectors is
linearly dependent. If E contains n linearly independent vectors for every pos-
itive integer n, then we say that E is infinite-dimensional. Let us rephrase
some of our earlier discussion of (infinite) series in a terminology that fits in
with the concept of an infinite-dimensional space.

We have already seen that a sequence {v,} of vectors in a space (E, Il l)
converges to v € E if for each € > 0, there exists an N such that n = N implies
lvyp — vl < e. We sometimes write this as v, — v or vy, — vl — 0. Similarly,
we say that an infinite linear combination X< a,w, of vectors in E con-
verges if the sequence of partial sums v, = Xf=ja,w, converges. In other
words, to write v = 2= 1a,w, means that v, — v. If no explicit limits on the
sum are given, then we assume that the sum is over an infinite number of
vectors.
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Just as we did with finite linear combinations, we define the addition of
infinite linear combinations componentwise. Thus, if x = Xapv, and y =
2byvn, then we define the sum x + y by x + y = 2(ap + by)vn. If X =
2R=1a,v, converges to x, and y, = 2Zf=b, v, converges to y, then it is quite
easy to see that x, + yn = 2f=i(a, + by)v, converges to X + y (see Exercise
12.3.1). Furthermore, we define scalar multiplication of an infinite linear
combination x = Xa,vy by cx = X(cap)vy. It is also easy to see that if the nth
partial sum x, converges to x, then cx, converges to cx.

In our next two examples we define the general Banach spaces [ and [,
and we then show that both /8 and /, may be made into Hilbert spaces. (In
more advanced work, the space [, may be generalized to include measure
spaces.) Remember that our scalars may be either real or complex numbers.

Example 12.7 If p is any real number such that 1 <p < o, we let /5 denote
the space of all scalar n-tuples x = (x,, . . . , X,) with the norm [l [, defined by

n 1/p
I, = (Ew) .
i=1

We first show that this does indeed define a norm on [j. Properties (N1) and
(N2) of the norm are obvious, so it remains to show that property (N3) is also
obeyed. To show this, we will prove two general results that are of importance
in their own right. In the derivation to follow, if p occurs by itself, it is defined
as above. If the numbers p and q occur together, then q is defined the same
way as p, but we also assume that 1/p + 1/q = 1. (If p and q satisfy the relation
1/p + 1/q = 1, then p and q are said to be conjugate exponents. Note that in
this case both p and q are strictly greater than 1.)
Let o and P be real numbers = 0. We first show that

a"B" <alp+Blg . (1)

This result is clear if either o or f is zero, so assume that both o and f§ are
greater than zero. For any real k € (0, 1) define the function f(t) for t = 1 by

f(t) = k(t—1) -t +1 .
From elementary calculus, we see that f'(t) = k(1 — tk‘]), and hence f'(t) =0

for every t= 1 and k € (0, 1). Since f(1) = 0, this implies that f(t) = 0, and thus
the definition of f(t) shows that
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t" < k(t-1+1 =kt+(-k) .
Ifa=p, welett=o0o/p and k = 1/p to obtain
(/)P < a/fp + (1 - 1/p) = a/Pp + 1/q .

Multiplying through by p and using p'~"P = p!9 yields the desired result.
Similarly, if oo < f we let t = /o and k = 1/q.

To help see the meaning of (1), note that taking the logarithm of both sides
of (1) yields

l10goz+110g[3’ < log(g+ﬁ) .
p q P q

The reader should recognize this as the statement that the logarithm is a
“convex function” (see the figure below).

log t
(1/p)log a + (1/q)log B

/ a
t=a/p + p/q

We now use (1) to prove Holder’s inequality:
n
E|x,.y,.| < lxll, Iyl
i=1

Again, we assume that x and y are both nonzero. Define o; = (Ix;| / Ixll,)? and

Bi = (ly:l / lyl)4. From (1) we see that

Ixiyil / (Ixll, Iyllg) < ou/p +Bi/q .

Using the definition of | I, it follows that X%=jo; = 1 and similarly for .
Hence summing the previous inequality over 1 =1, . . ., n and using the fact
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that 1/p + 1/q = 1 yields Holder’s inequality. We remark that the particular
case of p =q =2 yields

1/2
Sl = (Ew) (iw]
i1 i=1 i=1

172

which is called Cauchy’s inequality.
Finally, we use Holder’s inequality to prove Minkowski’s inequality:

Ix + yly, < Ixly + Iyl

If p = 1 this is obvious since |x; + y;| < Ixi| + ly;l, so we may assume that p > 1.
In this case we have

n
(e 1,7 = 3 |x + yl”
i=1

=E|xi+yi| |xi+yi|p_l (2)

i=1
n
-1
Sz(lxil"‘lyil)lxi"‘yilp .
i=1

Using Holder’s inequality with y; replaced by |x; + y;|P’d results in the
inequality

n
/ /
Y lxl 1x + y17 < el (x4 y1,)P

i=1
with a similar result if we interchange x; and y;. Since 1/p + 1/q = 1 implies
p/q=p - 1, we now see that (2) yields

(Ix + ylp)P < (Ixly + Iyl)(x + ylp)P

Dividing this by (Ix + yll,)P ~! yields Minkowski’s inequality.

We now see that Minkowski’s inequality is just the requirement (N3), and
thus we have shown that our norm on /j is indeed a norm. Finally, it follows
from Theorem 12.8 that /j; is complete and is thus a Banach space.

We now consider the particular case of /3, and define an inner product in

the expected manner by
n

(x, y) = Exi*yi .

i=1
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Defining the norm by
12

Il = {x, x)"'* = (Elx |2]

it is easy to see that /3 satisfies all of the requirements for a Hilbert space. /

In our next example, we generalize this result to the case of infinite-
dimensional spaces.

Example 12.8 As in the previous example, let p be any real number such that
I < p < . We let [, denote the space of all sequences x = {X;, X,, . . . } of

scalars such that 2= [x,|P < o, and we define a norm on [, by

o 1/p
Ixl,= (Emv’)
k=1

We must show that this definition also satisfies the properties of a norm,
which means that we need only verify the not entirely obvious condition (N3).

From the previous example, we may write Minkowski’s inequality for the
space [ in the form

n I/p n 1/p " 1/p
E X + Vil ) = (Elxklp] + (E|)’k|p)
k=1 k=1

Now, if x, y € [, then both (Z= Ix,IP)!P and (Z= kalp)]/p exist since
they are convergent by definition of [,. Hence taking the limit of
Minkowski’s inequality as n — o shows that this equation also applies to
infinite series as well. (This requires the observation that the pth root is a
continuous function so that, by Theorem 12.7(d), the limit may be taken inside
the root.) In other words, the equation Ix + yl, < Ixll, + llyl, also applies to the
space [, . This shows that our definition of a norm is satisfactory. It should
also be clear that Holder’s inequality similarly applies to the space /.

It is more difficult to show that [, is complete as a metric space. The origin
of the problem is easily seen by referring to Theorems B3 and B8. In these
theorems, we showed that a Cauchy sequence {x,} in R" led to n distinct
Cauchy sequences {x,J} in R, each of which then converged to a number x! by
the completeness of R. This means that for each j =1, . .., n there exists an N;

such that |x,J - xI| < &/vn for all k > N; . Letting N = max{N;}, we see that
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n
Ix, - Al = Elxkj —x'* < n(e®/In) = &
j=1
for all k = N, and hence x, — x. However, the case of [, we cannot take the
max of an infinite number of integers. To circumvent this problem we may
proceed as follows.
To keep the notation as simple as possible and also consistent with most
other authors, we let x = {X,, X,, . . . } be an element of [, with components x;,

and we let {x(M} be a sequence in l,. Thus, the ki component of the vector

xW e [, 1s given by x, ‘™. Note that this is the opposite of our notation in the
finite-dimensional case.

Let {x(™} be a Cauchy sequence in [,. This means that for any € > 0, there

exists M >0 such that m, n = M implies [x(™ — x(™ I, < €. Then, exactly as in
the finite-dimensional case, for any k=1, 2, .. . we have

|xk(m (n)| p E|x xj(n)|p - ("x(m) _x(n)"p)p <gP

and hence [x,(™ - x, (V| < &. Therefore, for each k the sequence {x, (M} of the
kth component forms a Cauchy sequence. Since R (or C) is complete, these
sequences converge to a number which we denote by x,. In other words, for
every k we have

limy o x, ™ = x,

To show that [, is complete, we will show that the sequence x = {X,} is an

element of /,, and that in fact Ix(™ — xlp = 0.
Using Minkowski’s inequality, we have for every N and any n,

N 1/p
k=1

N 1/p
E|xk _ xk(n) + xk(n)|p)
k=1

1/p N 1/p
| x, —xk(")l”) + (Elxk(”)lp) (3)

I\
=

=~
I
—

A
M=

1/p
_ (mp (n)
lx, —x, "™ ) + 1™,

=~
Il
—_
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Now write the nzh term of the sequence {x™} as x(™ — x(™ 4 x(M to obtain
Ix (™I, = IxM™ = x (M 4 x (M) < fx ™ — x4 x5

Since {x(M} is a Cauchy sequence , we know that given any & > 0, there exists
M, such that m, n = M, implies Ix™ — x(™ |, < &. Thus for any fixed m >
M,, the set {IIX(“)IIP: n = M} of real numbers is bounded by ¢ + ||X(m)||p.

Moreover, we may take the max of the (finite) set of all IIX(“)IIp with n < M,. In
other words, we have shown that the norms of every term in any Cauchy
sequence are bounded, and hence we may write (3) as

1/p

N 1/p N
k=1 k=1

where IIX(“)IIp < B for all n.

Since x, (™ — x, for each of the finite number of terms k=1, . .., N, we
can choose n sufficiently large (but depending on N) that the first term on the
right hand side of (4) is < 1, and hence for every N we have

N
Ylxl? s1+B) .
k=1

This shows that the series 2= |x,|P? converges, and thus by definition of lp,
the corresponding sequence x = {X} is an element of /,,. We must still show

that x(™ — x.
Since {x(™} is a Cauchy sequence, it follows that given & > 0, there exists

M such that m, n = M implies Ix(™ - x(™ |, < &. Then for any N and all m,
n = M we have (using the Minkowski inequality again)

N 1/p
(Elxk _xk(n)|p)
k=1
N 1/p N
(E|xk _xk(m)|p) + (E|xk(m) _xk(n)|p)
k=1

k=1

1/p

A

A

N 1/p
( |x, — xk(m)|p) + lIxt™ - x(")llp

k=1
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N 1/p
k=1

But x,(™ — x, foreach k=1, ..., N and hence (by the same argument used
above) we can choose m sufficiently large that the first term in the last line of
(5) is < €. This means that for every N and all n = m (where m is independent
of N) we have

N 1/p
(E|xk—xk(")|p) < 2¢

k=1
and hence taking the limit as N — o yields

[ee]

1/p
lx = x"™Il, = (E|xk—xk(")|p) < 2¢ .
k=1

Since this inequality holds for all n = M, we have shown that IIx — x(“)llp -0

or, alternatively, that xX(™ — x. We have therefore shown that the space Iy is
complete, i.e., it is a Banach space.

It is now easy to show that /, is a Hilbert space. To see this, we define the
inner product on /» in the usual way by

{x, y) =Exk*yk .
k=1

Using the infinite-dimensional version of Holder’s inequality with p =q =2
(i.e., Cauchy’s inequality), we see that this series converges absolutely, and
hence the series converges to a complex number (see Theorem B20). This
shows that the inner product so defined is meaningful. The rest of the verifi-
cation that /, is a Hilbert space is straightforward and left to the reader (see
Exercise 12.3.2). /

Recall that a subset A of a metric space X is said to be dense if Cl A = X.
Intuitively, this simply means that any neighborhood of any x € X contains
points of A (see Theorems B13 and B15). A space is said to be separable if it
contains a countable dense subset. An important class of Hilbert spaces are
those that are separable.

Example 12.9 Let us show that the space /; is actually separable. In other
words, we shall show that /> contains a countable dense subset. To see this, we
say that a point x = {X,, X,, . . . } € b, is a rational point if x, # 0 for only a
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finite number of the indices n, and if each of these nonzero components is a
rational (complex) number. It should be clear that the set of all such rational
points is countably infinite. We must now show that any neighborhood of any
point in /; contains at least one rational point.

To do this, we show that given any x € [ and any € > 0O, there exists a
rational point r = {r, r,,...,0,0, ... } € [ such that Ir - xll, < ¢. Since x €

[, the series 2= kal2 converges, and hence there exists N such that

[ee]

E kal2 < &2
k=N+1
(see Theorem B17). Next, foreachk =1, ..., N we find a rational number ry

with the property that

€
lr, — x| < )
k~ Xk N
(That this can be done follows from Theorem 0.4 applied to both the real and

imaginary parts of x,.) Then the distance between x and the rational point r =
{r,ry,...,1N,0,0,...}1is given by

1/2

N 00
Ir—xl, = Elrk—xkl2 + E |x,[*
k=1 k=N+1

< [NE*2N)+€* 1212 = ¢ . /

As the last remark of this section, the reader should note that the proof of
the Cauchy-Schwartz inequality in Example 12.1 made no reference whatso-
ever to any components, and thus it clearly holds in any Hilbert space, as does
the parallelogram law. Furthermore, as mentioned in Example 12.3, the
Cauchy-Schwartz inequality also shows that the inner product is continuous in
each variable. Indeed, applying Theorem 12.7(d) we see that if x, — x and
Yn —> Y, then

[(x, =X, y, =) +{x, —x, Y +{x, y, -
Ix, —xlly, —yl+1x, —xllyl+lxlly, -yl — 0

[(x,0, ) = (x, )

IA

This is sometimes expressed by saying that the inner product is jointly
continuous. Alternatively, we can note that

I(x,, y) = (X, Y)l = |{x, - Xy, Y)| < Ix; = x,l ||y||
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which shows that the map x — (x, y) is actually uniformly continuous, with
the same result holding fory — (x, y).

Exercises

f—

. If xp = 2fRoavi — x and y, = 2= ib,vi — y, show that x, + y, — X + .

2. Complete the proof (begun in Example 12.8) that [ is a Hilbert space.
[Hint: Note that if x = {X,, X5, ... }andy = {y,, y,, . . . } are vectors in /[,
then you must show that x + y € /5 also.]

3. Prove that every compact metric space (X, d) is separable. [Hint: For each
integer n = 1 consider the collection U, of open spheres

U, = {Bx, I/m): x€ X} .]

4. Let H be a Hilbert space and suppose A € L(H) is a positive symmetric
operator. Prove the generalized Schwartz inequality:

l(Ax, y)I* < (Ax, x)(Ay, y)

where x, y € H. [Hint: Let c be a real number and consider the vector z =
X + c{AX, y)y.]

5. Let [, denote the linear space consisting of all bounded sequences x =
{X1, X2, ..., Xp, - . . } of scalars with norm Ixll = sup |x,|. Show that [, is a
Banach space.

12.4 CLOSED SUBSPACES

Since the norm on a vector space induces a metric topology on the space (i.e.,
defines the open sets in terms of the induced metric), it makes sense to define
a closed subspace as a subspace which is a closed set relative to the metric
topology. In view of Theorem B14, we say that a set A of vectors is closed if
every convergent sequence of vectors in A converges to a vector in A. If E is a
vector space, many authors define a linear manifold to be a subset S C E of
vectors such that S is also a linear space. In this case, a subspace is defined to
be a closed linear manifold. From the corollary to Theorem 12.9, we then see
that any finite-dimensional linear manifold over either C or R is a subspace.
We mention this terminology only in passing, and will generally continue to
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use the word “subspace” in our previous context (i.e., as a linear manifold).
As a simple example, let V = R be a vector space over the field Q. Then the
subspace W C V defined by W = Q is not closed (why?).

Recall from Theorem 2.22 that if W is a subspace of a finite-dimensional
inner product space V, then V= W @ W*. We now wish to prove that if M is
a closed subspace of a Hilbert space H, then H = M @ M. Unfortunately, this
requires that we prove several preliminary results along the way. We begin
with a brief discussion of convex sets.

We say that a subset S of a vector space V is convex if for every pair
X, Yy € S and any real number t € [0, 1], the vector

z=({1-tx+ty

is also an element of S. Intuitively, this is just says that the straight line
segment from x to y in V is in fact contained in S. It should be obvious that
the intersection of any collection of convex sets is convex, and that every sub-
space of V is necessarily convex.

It follows by induction that if S is convex and x,, . . . , X, € S, then the
vector t,X; + - - - + tgXy where O <t; <l andt, +---+t,=11s alsoin S.
Conversely, the set of all such linear combinations forms a convex set. It is
trivial to verify that if S is convex, then so is any translate

S+z={x+z:z€Visfixedand x € S} .

Moreover, if A: V — W is a linear map and S C V is convex, then A(S) is a
convex subset of W, and if T C W is convex, then A (T) is convex in V. We
leave the proofs of these elementary facts to the reader (see Exercise 12.4.1).

The main result dealing with convex sets that we shall need is given in the
next theorem.

Theorem 12.14 Every nonempty closed convex subset S of a Hilbert space
H contains a unique vector of smallest norm. In other words, there exists a
unique x, € S with the property that lx,/l < Il for every x € S.

Proof Let d = inf{lxl: x € S}. By definition of inf, this implies the existence
of a sequence {x,} of vectors in S such that Ix,l — d. Since S is convex,
(Xn + Xm)/2 is also in S (take t = 1/2 in the definition of convex set), and hence
I(xn + xm)/2l = & or Ixy + xmll = 20. Applying the parallelogram law we see
that
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2 2 2
2lx, 17 + 2lx,1° = lx, + x|

20x, 1% + 2lx, IF - 46% .

2
Ix, —x,,|

A

Taking the limit of the right hand side of this equation as m, n — % shows
that Ix, — xpl — 0, and hence {x;,} is a Cauchy sequence in S. By Theorem
12.9, S is complete, and thus there exists a vector x € S such that x, — Xx.

Since the norm is a continuous function, we see that (see Examples 12.2 and
12.3 or Theorem 12.7(d))

IxI' = llim x,ll = lim Ixpl = & .

Thus x € S is a vector with smallest norm 9 = inf{lxl: x € S}.
To show that this x is unique, suppose that y € S is such that Iyl = 6.
Applying the parallelogram law again to the vectors x/2 and y/2 yields

Ix — yI?/4 = IxI7/2 + Iyl?/2 = I(x + y)/21 .
But (x + y)/2 € S implies I(x + y)/2l = §, and thus we have
Ix - ylI? < 2lxI? + 2lyl? - 48° .
If Il = llyl = §, then this equation implies that x =y. B

The notion of orthogonality is extremely important in the theory of Hilbert
spaces. We recall from Section 12.1 that two vectors x and y in a Hilbert
space H are said to be orthogonal if (x, y) =0, and we write thisas x Ly. If S
is a (nonempty) subset of H and x € H is orthogonal to every y € S, then we
express this by writing x L S. Thus the orthogonal complement S* of S is
defined by S* = {x EH: x L S}.

As an example, we consider the orthogonal complement x* of any x € H.
If x Lyand x L z, then x L (y + z) and x L (ay) for any scalar a. Therefore
x* is actually a subspace of H. If we define a continuous linear map fy: H —
C by fx(y) = (x, y), then x* = {y € H: fx(y) = 0}. In fact, if {y,} is a sequence
in x* that converges to an element y € H, then the continuity of the inner
product yields

(x,y) = (x,limyy) = lim(x,y,) =0

and hence y € x™* also. This proves that x* is in fact a closed subspace of H.
Carrying this idea a little farther, if S is a subset of H, then we can clearly
write St = Nyes x*. Since this shows that S* is the intersection of closed
subspaces, it follows that S* must also be a closed subspace (see Exercise
12.4.2). Alternatively, if y € S and {x,} C S* with x, — X, then we again
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have (x, y) = lim (x,, y) = 0 so that x € S* and S* is therefore closed. We
leave it to the reader to prove the following (see Exercise 12.4.3):

0*=Hand H* =0.

SN S* C {0},

SC S =(SH* .

S, C S, implies S,* C S;*.

Furthermore, using the next theorem, it is not hard to show that a subset M of
a Hilbert space H is closed if and only if M** = M (see Exercise 12.4.6).

Theorem 12.15 Let M be a proper closed subspace of a Hilbert space H (i.e.,
M # H). Then there exists a nonzero vector x, € H such that x, 1 M.

Proof  Suppose x € H and x & M. Since any subspace is automatically
convex, it follows that the set x - M = {x — y: y € M} is closed and convex.
By Theorem 12.14, this set contains a unique vector X, = X — Yo, € x — M of
smallest norm. By definition, this means that lIx — y I = inf{lx - yl: y € M}. If
we had Ix - y,l = 0, then x would be an accumulation point of M, contra-
dicting the assumption that M is closed and x & M. Thus we must have x, # 0,
and we claim that x, L M.

Since x, is of smallest norm, we see that for any y € M and any o € C we
have

Ix 1% < lx, + ocyll2
Expanding this out in terms of the inner product on H we find that
0 < 2Re{a(xo, y)} + laf? lyl? .

In particular, if we let o = c(y, x,) where ¢ € R is nonzero, then this equation
becomes

0 < cl(xo, y)l2 (2+c||y||2) .

If y € M i1s such that (x,, y) # O, then the fact that this equation holds for all

nonzero ¢ € R leads to a contradiction if we choose ¢ such that —2/lyl? < ¢ <
0. It therefore follows that we must have (x,, y) = 0 for every y € M, and
hence x, L M. i

We are now in a position to prove our earlier assertion. After the proof we
shall give some background as to why this result is important.
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Theorem 12.16 Let M be a closed subspace of a Hilbert space H. Then H =
M® M*.

Proof We first show that M + M™ is a closed subspace of H. To see this, we
note that M N M* = {0} (since M is a subspace and hence contains the zero
vector), and every z € M + M* may be written in the unique form z = x +y
with x € M and y € M*. (See the proof of Theorem 2.12. Note also that we
have not yet shown that every z € H is of this form.) Now let {z,} =
{xn + yn} be any sequence in M + M* that converges to an element z € H.
We must show that z € M + M*. Using the Pythagorean theorem we see that

I(x,, +y,,) - (x, +y,l)||2

"('xm _xn)+(ym _yn)”2
12

lz,, = 2,117

2
Ix,, —x,01°+ Iy, -,

and therefore {z,} is a Cauchy sequence in M + M if and only if {x,} is a
Cauchy sequence in M and {y,} is a Cauchy sequence in M*. Since both M
and M™ are closed they are complete (Theorem 12.9). Therefore, since {z,} is
a convergent sequence in H it is a Cauchy sequence in H, and in fact it is a
Cauchy sequence in M + M™ since every z, = X, + Yo € M + M*. But then
{xn} and {yn} are Cauchy sequences in M and M* which must converge to
points x € M and y € M*. Hence

z = limzy, = lim(Xp +yy) = limx, +limy, = x+y € M+ M* .

This shows that M + M™* is a closed subspace of H.

We now claim that H = M + M™*. Since we already know that M N M+ =
{0}, this will complete the proof that H=M @ M*. If H # M + M*, then
according to Theorem 12.15 there exists a nonzero z, € H with the property
that z, L (M + M™). But this implies that z, € M* and z, € M**, and hence

Izol? = (2o, z4) = O (or observe that zg € M* N M** = {0}) which contradicts
the assumption that z, # 0. |

To gain a little insight as to why this result is important, we recall our dis-
cussion of projections in Section 7.8. In particular, Theorem 7.27 shows that a
linear transformation E on a finite-dimensional vector space V is idempotent
(i.e., E> = E) if and only if V = U @ W where E is the projection of V on U =
Im E in the direction of W = Ker E. In order to generalize this result to
Banach spaces, we define an operator on a Banach space B to be an element
of L(B, B). In other words, an operator on B is a continuous linear trans—
formation of B into itself. A projection on B is an idempotent operator on B.
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Thus, in order that an operator P on B be idempotent, it must obey both the

algebraic requirement that P> = P as well as the topological condition of
continuity. The generalization of Theorem 7.27 to Banach spaces is given by
the next two theorems, the proofs of which are left to the reader since we will
not be needing them again.

Theorem 12.17 Let P be a projection on a Banach space B and let M = Im P
and N = Ker P. Then M and N are closed subspaces of B, and B=M @ N.

Proof See Exercise 12.4.5. 1

Theorem 12.18 Let B be a Banach space and let M, N be closed subspaces
of B such that B=M @ N. Then forany z=x + y € M @ N, the mapping P
defined by P(z) = x is a projection on B with Im P = M and Ker P = N.

Proof The only difficult part of this theorem is the proof that P is continuous.
While this may be proved using only what has been covered in this book
(including the appendices), it is quite involved since it requires proving both
Baire’s theorem and the open mapping theorem. Since these are essentially
purely topological results whose proofs are of no benefit to us at this point, we
choose to refer the interested reader to, e.g., the very readable treatment by
Simmons (1963).

As mentioned in Section 7.8, if we are given a space V and subspace U,
there may be many subspaces W with the property that V =U @ W. Thus, if
we are given a closed subspace M of a Banach space B, then there could be
many algebraic projections defined on B with image M, and in fact none of
them may be projections as defined above (i.e., they may not be continuous).
In other words, there may not exist any closed subspace N such that B=M ®
N. However, Theorem 12.16 together with Theorem 12.18 shows that if we
have a Hilbert space H together with a closed subspace M, then there always
exists a projection P defined on H =M ® M* with Im P =M and Ker P = M*.

Exercises
1. Let V and W be vector spaces, and let S C V be convex.

(a) Show that the intersection of any collection of convex sets is convex.
(b) Show that every subspace of V is convex.
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(c) Show that any translate S + z = {x + z: z € V is fixed and x € S} is
convex.

(d) If »: V — W is linear, show that A(S) is a convex subset of W, and if
T C W is convex, then A (T) is convex in V.

2. Let H be a Hilbert space and S a nonempty subset of H. Show that S* =
Nxes x* is a closed subspace of H.

3. Let H be a Hilbert space and S a nonempty subset of H. Prove the
following:
(a) O*=Hand H* =0.
(b) SN S+ C{0}.
(c) SCS*+*.
(d) S, CS, implies S,* C S;*.

4. Show that a subset M of a Hilbert space H is closed if and only if M** =
M.

5. Prove Theorem 12.17.

12.5 HILBERT BASES

Let us now turn our attention to the infinite-dimensional analogue of the
expansion of a vector in terms of a basis. (We recommend that the reader first
review Sections 0.3 and 0.4 before continuing on with this material.) Suppose
that x is a vector in a Hilbert space H such that [Ixll # 0, and let y € H be arbi-
trary. We claim there exists a unique scalar ¢ such that y — cx is orthogonal to
x. Indeed, if (y — cx) L x, then

0 = (x,y-cx) = (x,y) —¢{x, X)
implies that
c = (x, y)/(x, x)

while if ¢ = (X, y)/(x, X), then reversing the argument shows that (y — cx) L x.
The scalar ¢ is usually called the Fourier coefficient of y with respect to (or
relative to) x.

To extend this idea to finite sets of vectors, let {x;} = {x;,..., Xp} be a
collection of vectors in H. Furthermore assume that the x; are mutually
orthogonal, i.e., (x;, x;) = 0 if 1 # j. If ¢; = (x;, y)/{x;, X;) is the Fourier coeffi-
cient of y € H with respect to x;, then
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{x;, y—Eijj) = {5, y) - Ecj<xi’ X;)
j=1 Jj=l
= {x;, )= cilx;, x;)
=0

which shows that y — XI'=; ¢;x; is orthogonal to each of the x;. Geometrically,
this result says that if we subtract off the components of a vector y in the
direction of n orthogonal vectors x;, then the resulting vector is orthogonal to
each of the vectors x;.

We can easily simplify many of our calculations be requiring that our
finite set {x;} be orthonormal instead of just orthogonal. In other words, we
assume that (x;, x;) = d;;, which is equivalent to requiring that i # j implies that
xi L x; and lIx;ll = 1. Note that given any x; € H with [x;|# 0, we can normalize
x; by forming the vector e; = x;/lIx;ll. It is then easy to see that the above cal-
culations remain unchanged except that now we simply have ¢; = (x;, y). We
will usually denote such an orthonormal set by {e;}, and hence we write

(e, e) = & .
Suppose {e;} is a finite orthonormal set in a Hilbert space H and x is any

element of H. We claim that the expression
n

lx— Y ageyl
k=1
achieves its minimum value in the case where each of the scalars a, is equal to
the Fourier coefficient ¢, = (e, X). To see this, we note that the above discus-
sion showed that x — 2f- c,e, is orthogonal to each e; fori=1,...,nand
hence we may apply the Pythagorean theorem to obtain

n n

n
lx= Y arel? = lx= Y crep + 3 (o - ap el

k=1 k=1 k=1
n n
2 2
= Ix= Y el + 1Y (¢ —ap)el
k=1 k=1

It is clear that the right hand side of this equation takes its minimum value at

a, =cfork=1,...,nand hence we see that in general
n n
lx - E el = lx - Eakekll
k=1 k=1

for any set of scalars a,. Moreover, we see that (using ¢, = (ey, X))
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] ]
= =
== |

I (\%E
(Y ERS
LT
_* =
%‘ I
= LM

| L2
M=

n
2
c,{x, e,) + E le,|
=1 =1 k=1

n
lxl? = Yl
k=1

which implies

n
Sleel = Slteg. 1P < el
k=1 k

=1

This relationship is frequently called Bessel’s inequality, although this des-
ignation also applies to the infinite-dimensional version to be proved below.

We now seek to generalize these last two results to the case of arbitrary
(i.e., possibly uncountable) orthonormal sets. We begin with a simple
theorem.

Theorem 12.19 Let {e;}, i € I (where I may be uncountable) be an arbitrary
orthonormal set in a Hilbert space H. Then if x is any vector in H, the set S =
{ei: {ei, x) # 0} is countable (but possibly empty).

Proof For each n € Z™* define the set
Sn = {e:: (e, x)1* > IxI?/n} .

We claim that each S, can contain at most n — 1 vectors. To see this, suppose
Sy contains N vectors, i.e., S, = {e, . . ., en}. Then from the definition of S,
we have

N
Slie 0 > (lxd*im)N
i=1

while Bessel’s inequality shows that

N
Ylie, 2P = 1d?
i=1

Thus we must have N < n which is the same as requiring that N <n - 1. The
theorem now follows if we note that each S, consists of a finite number of
vectors, and that S = U5%S,, since S, — Sasn — oo, |
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Theorem 12.19 now allows us to prove the general (i.e., infinite-
dimensional) version of Bessel’s inequality. Keep in mind that an arbitrary
orthonormal set may consist of an uncountable number of elements, and in

this case we do not write any limits in the sum 2|(e;, x)[2.

Theorem 12.20 If {e;} is any orthonormal set in a Hilbert space H and x is
any vector in H, then 3(e;, x)I” < IxI?.
Proof First note that if e, € {e;} is such that (e, x) = 0, then this e will not

contribute to X|(e;, X)|2. As in Theorem 12.19, we again consider the set

S = {ei: (e, x)#0} .

If S = &, then we have X(e;, x)|> = 0 and the conclusion is obviously true. If S
# J, then according to Theorem 12.19 it must contain a countable number of
vectors. If S is in fact finite, then we write S = {e,, . . ., e, } and the theorem
follows from the finite-dimensional Bessel inequality proved above. Thus we
need only consider the case where S is countably infinite.

We may consider the vectors in S to be arranged in any arbitrary (but now

fixed) order {e,, €,, ..., €n, ... }. From the corollary to Theorem B20 we
know that if X25%l(e;, x)l2 converges, then this sum is independent of any
rearrangement of the terms in the series. This then gives an unambiguous
meaning to the expression 2|(e;, x)[? = 3% l(e;, x)I?. Therefore we see that the
sum is a nonnegative (extended) real number that depends only on the set S

and not on the order in which the vectors in S are written. If we let

n

2

50 = D lle;,
i=1

be the nth partial sum of the series, then the finite-dimensional version of

Bessel’s inequality shows that s, < [xI* for every n, and hence we must have

«©
Ylie, 2P = Ix1” . W
i=1

Theorem 12.21 Let {e;} be an orthonormal set in a Hilbert space H, and let x
be any vector in H. Then (x - X(e;, x)e;) L e; for each j.

Proof Just as we did in the proof of Theorem 12.20, we must first make
precise the meaning of the expression 2{e;, x)e;. Therefore we again define the
set S = {e;: (e, x) # 0}. If S = I, then we have X(e;, x)e; = 0 so that our
theorem is obviously true since the definition of S then means that x L ¢; for
every J. If S is finite but nonempty, then the theorem reduces to the finite case
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proved in the discussion prior to Theorem 12.19. Thus, by Theorem 12.19, we
are again left with the case where S is countably infinite. We first prove the
result for a particular ordering S = {e,, e,, . . . }, and afterwards we will show
that our result is independent of the ordering chosen.

Let s, = 2= (e;, x)e;. Since the Pythagorean theorem may be applied to
any finite collection of orthogonal vectors, the fact that {e;} is an orthonormal
set allows us to write (for m > n)

m m
2 2 2
s, = 5,02 = 1Y {e, xlelP= Y lie, 2

i=n+l i=n+l

Now, Bessel’s inequality shows that 2% l(e;, x)l2 must converge, and hence

for any € > 0 there exists N such that m >n > N implies 2= 41 |{e;, x)l2 <¢?
(this is just Theorem B17). This shows that {s,} is a Cauchy sequence in H,
and thus the fact that H is complete implies that s, — s = 252 (e;, x)e; € H. If
we define X(e;, x)e; = 2% (e;, X)e; = s, then the continuity of the inner product
yields

(e;, x—5)=(e; x)—(ej, s)=(ej,x)—(ej,1imsn)

= (e x)—lim(ej, sn)=(ej, x)—limz(ei, x)(ej, e;)
i=1

=(ej,x)—(e- x)=0 .
Thus we have shown that (x —s) L e; for every j.

We now show that this result is independent of the particular order chosen
for the {e;} in the definition of s. Our proof of this fact is similar to the proof
of the corollary to Theorem B20. Let {e';} be any other arrangement of the set
{ei}, and let s'y, = X['=(e’;, X) €';. Repeating the above argument shows that s’y
converges to a limit s' = 22(e’;, X)e';. We must show that s" = s. Since {s},

{s'n} and X% l(e;, x)[? all converge, we see that for any € > 0, there exists N >
0 such that n = N implies

s, = sl < ¢

s’y =s'll < ¢
and

TN len )P < €2

(this last inequality follows by letting m — o in Theorem B17). We now note
that since there are only a finite number of terms in sy and {e';} is just a
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rearrangement of {e;}, there must exist an integer M > N such that every term
in sy also occurs in s’y . Then s’y — SN contains a finite number of terms,
each of which is of the form (e;, X)e; fori=N+ 1, N + 2, ... . We therefore
have

Ishy = SylI? = Y le, P <&
i=N+l1
and hence ls"y — snll < €. Putting all of this together, we have

Is" = sl < lIs" = s"mll + Is"p = sl + sy = sl < 3¢
and hence s’ =s. 11

At last we are in a position to describe the infinite-dimensional analogue
of the expansion of a vector in terms of a basis. Let H be a nonzero Hilbert
space, and let {x;} be an arbitrary collection of vectors in H such that IIx;ll # 0
for each 1. (We required H to be nonzero so that such a collection will exist.)
For each finite subcollection {x;, , . . ., Xj,} of {x;}, we can form the vector
space spanned by this subcollection of vectors. In other words, we can con-
sider the space consisting of all linear combinations of the form c¢ix;, + - - - +
cnXi, where each c; is a complex number. In order to simplify our notation, we
will generally omit the double indices and write simply {X,, ..., Xn}.

Now consider the union of all vector spaces generated by such finite sub-
collections of {x;}. This union is clearly a vector space itself, and is called the
subspace generated by the collection {x;}. Let us denote this space by E. We
say that the collection {x;} is total in H if E is dense in H (i.e., Cl E = H). In
other words, {x;} is total in H if every vector in H is the limit of a sequence of
vectors in E (see Theorem B14(b)). A total orthonormal set {e;} is called a
Hilbert basis (or an orthonormal basis). Be careful to note however, that
this is not the same as a basis in a finite-dimensional space. This is because
not every vector in H can be written as a linear combination of a finite number
of elements in a Hilbert basis.

An equivalent way of formulating this property that is frequently used is
the following. Consider the family of all orthonormal subsets of a nonzero
Hilbert space H. We can order this family by ordinary set inclusion, and the
result is clearly a partially (but not totally) ordered set. In other words, if S,
and S, are orthonormal sets, we say that S, < S, if S; C S,. We say that an
orthonormal set {e;} is complete if it is maximal in this partially ordered set.
This means that there is no nonzero vector x € H such that if we adjoin e =
x/lIxll to {e;}, the resulting set {e;, e} is also orthonormal and contains {e;} as a
proper subset. We now show the equivalence of this approach to the previous
paragraph.
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Let {e;} be a complete orthonormal set in a Hilbert space H, and let E be
the subspace generated by {e;}. If Cl E # H, then by Theorem 12.15 there
exists a nonzero vector x € H such that x L CI E. In particular, this means that
x L E and hence the set {e;, e = x/Ixl} would be a larger orthonormal set than
{e;}, contradicting the maximality of {e;}.

Conversely, suppose that {e;} is a Hilbert basis for H (i.e., a total ortho-
normal set). If {e;} is not complete, then there exists a nonzero vector x € H
such that {e;, e = x/lxl} is an orthonormal set that contains {e;} as a proper
subset. Then e L {e;}, and hence the subspace E generated by {e;} must be a
subset of e*. Since e* is closed, it follows that C1 E C e*. But thene L Cl E
which contradicts the assumption that C1 E = H.

Theorem 12.22 Every nonzero Hilbert space H contains a complete ortho-
normal set. Alternatively, every such H has a Hilbert basis.

Proof Note that every chain of orthonormal sets in H has an upper bound
given by the union of the sets in the chain. By Zorn’s lemma, the set of all
orthonormal sets thus has a maximal element. This shows that H contains a
complete orthonormal set. That H has an orthonormal basis then follows from
the above discussion on the equivalence of a complete orthonormal set and a
Hilbert basis. |

Some of the most important basic properties of Hilbert spaces are con-
tained in our next theorem.

Theorem 12.23 Let {e;} be an orthonormal set in a Hilbert space H. Then
the following conditions are equivalent:

(1) {e;} is complete.

(2) x L {e;} implies x = 0.

(3) For any x € H we have x = X(e;, X)e;.

(4) For any x € H we have IxI* = 3(e;, x)I%.

Proof (1) = (2): If (2) were not true, then there would exist a nonzero vector
e = x/Ixl € H such that e L {e;}, and hence {e;, ¢} would be an orthonormal
set larger than {e;}, contradicting the completeness of {e;}.

(2) = (3): By Theorem 12.21, the vector y = x — X(e;, X)e; is orthogonal
to {e;}, and hence (2) implies that y = 0.

(3) = (4): Using the joint continuity of the inner product (so that the sum
as a limit of partial sums can be taken outside the inner product), we simply
calculate



662 HILBERT SPACES

Ixl? = (x, x)

(Z(e;, x)e;, 2le;, xle;)

J°

= 2e;, x)*2e;, x)e;, e;)

J?

(4) = (1): If {e;} is not complete, then there exists e € H such that {e;, e}
is a larger orthonormal set in H. Since this means that e L {e;}, statement (4)

yields llel’> = Xl(e;, e)|*> = 0 which contradicts the assumption that llel = 1. B

Note that the equivalence of (1) and (3) in this theorem is really just our
earlier statement that an orthonormal set is complete if and only if it is a
Hilbert basis. We also remark that statement (4) is sometimes called
Parseval’s equation, although this designation also applies to the more gen-
eral result

(x,y) = 2(x, e)e;, y)
(see Exercise 12.5.1).

It should be emphasized that we have so far considered the general case
where an arbitrary Hilbert space H has a possibly uncountable orthonormal
set. However, if H happens to be separable (i.e., H contains a countable dense
subset), then we can show that every orthonormal set in H is in fact countable.

Theorem 12.24 Every orthonormal set {e;} in a separable Hilbert space H
contains at most a countable number of elements.

Proof We first note that by the Pythagorean theorem we have
le; — ejll2 = lel? + IIeJ-II2 =2

and hence le; — ¢l = V2 for every i # j. If we consider the set {B(e;, 1/2)} of
open balls of radius 1/2, then the fact that 2(1/2) = 1 < v2 implies that these
balls are pairwise disjoint. Now let {x,} be a countable dense subset of H.
This means that any neighborhood of any element of H must contain at least
one of the x,. In particular, each of the open balls B(e;, 1/2) must contain at
least one of the x,, and hence there can be only a countable number of such
balls (since distinct balls are disjoint). Therefore the set {e;} must in fact be
countable. B

It is worth remarking that if we are given any countable set of linearly
independent vectors {x;} in a Hilbert space H, then the Gram-Schmidt proce-
dure (see the corollary to Theorem 2.21) may be applied to yield a countable
orthonormal set {e;} such that for any n, the space spanned by {e,, ..., ey} is
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the same as the space spanned by {x,, ..., Xp}. It then follows that {e;} is
complete if and only if {x;} is complete.

Finally, suppose that we have a countable (but not necessarily complete)
orthonormal set {e;} in a Hilbert space H. From Bessel’s inequality, it follows
that a necessary condition for a set of scalars c;, c,, . . . to be the Fourier coef-
ficients of some x € H is that 2= lc.|* < IxI%. In other words, the series
Zﬁ":llcklz must converge. That this is also a sufficient condition is the content
of our next result, which is a special case of the famous Riesz-Fischer
theorem.

Theorem 12.25 (Riesz-Fischer) Let {e;} be an orthonormal set in a Hilbert

space H, and let {c;} be a collection of scalars such that the series Zﬁ":llcklz
converges. Then there exists a vector x € H with {c;} as its Fourier coeffi-

cients. In other words, 2¢4lc,|? = IxI? where ¢, = (e,, x).

Proof For each n, define the vector
n

Xy = E Cr€x

k=1
and note that ¢, = (e, Xp) for k < n. Since Zﬁ":llcklz converges, it follows from
Theorem B17 that for each € >0, there exists N such that n > m = N implies

n

le.| <¢ .
k

k=m+1

Using the Pythagorean theorem, we then see that n > m = N implies

n n n
2 2 2 2
I, =5, 17 = 1Y el = Y leed? = Y ol <e

k=m+1 k=m+1 k=m+1

and hence {x,} is a Cauchy sequence in H. Since H is complete, there exists a
vector x € H such that lIx,, — xI — 0. In addition, we note that we may write

(ep, x)=(e, x,)+ (e, x—x,) (6)

where the first term on the right hand side is just c,. From the Cauchy-
Schwartz inequality we see that

(e, X = Xn)| < lell Ix = xpll = Ix = x,ll

and thus letting n — o shows that (e, x — x5) — 0. Since the left hand side of
(6) is independent of n, we then see that
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(ex, X) = ¢k

Using this result, we now let n — o to obtain (since lx — xpll — 0)

n n

2
Ix —x, 17 =(x - Eckek, x- Eckek)

k=1 k=1

n
=lx?- Yl l? =0 .
k=1

In other words, we have

n o
lim, e Y legl? = Ylegl® = 1xl> . W
k=1 k=1

Exercises

. If {&;} is a complete orthonormal set in a Hilbert space H and x, y € H,
prove that (x, y) = 2i(x, ei)(ei, y)-

. Let e, denote the sequence with a 1 in the n#h position and 0’s elsewhere.
Show that {e;, ez, ..., €n, ...} is a complete orthonormal set in /5.

. Prove that a Hilbert space H is separable if and only if every orthonormal
set in H 1s countable.

(a) Show that an orthonormal set in a Hilbert space is linearly indepen-
dent.

(b) Show that a Hilbert space is finite-dimensional if and only if every
complete orthonormal set is a basis.

. Let S be a nonempty set, and let [>(S) denote the set of all complex-valued
functions f defined on S with the property that:

(1) {s € S:1(s) #0} is countable (but possibly empty).

(i) SIf(s)P < .
It should be clear that /»(S) forms a complex vector space with respect to
pointwise addition and scalar multiplication.
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(a) Show that [»(S) becomes a Hilbert space if we define the norm and
inner product by Iifl = (ZUf(s)[*)"? and (f, g) = Sf(s)*g(s).

(b) Show that the subset of [»(S) consisting of functions that have the
value 1 at a single point and O elsewhere forms a complete orthonormal
set.

(c) Now let S = {e;} be a complete orthonormal set in a Hilbert space H.
Each x € H defines a function f on S by f(e;) = (ej, x). Show that f is in
[>(S).

(d) Show that the mapping x + f is an isometric (i.e., norm preserving)
isomorphism of H onto />(S).

12.6 BOUNDED OPERATORS ON A HILBERT SPACE

One of the most important concepts in quantum theory is that of self-adjoint
operators on a Hilbert space. We now begin a discussion on the existence of
operator adjoints. While the existence of the adjoint in a finite-dimensional
space was easy enough to prove, the infinite-dimensional analogue requires
slightly more care. Therefore, our first goal is to prove one version of a
famous result known as the Riesz representation theorem, which is the Hilbert
space analogue of Theorem 10.1.

As usual, we let E* denote the dual space (which is also frequently called
the conjugate space) to the Banach space E. In other words, E* is just the
space L(E, C) of continuous linear maps of E into C. Elements of E* are
called functionals, and it is important to remember that this designation
implies that the map is continuous (and hence bounded). If f € E*, we may
define the norm of f as usual by

Il = sup{Ifx)|: Ixl=1} .

Since C is clearly a Banach space, it follows from Theorem 12.13 that E* is
also a Banach space (even if E is not).

If y is any (fixed) vector in a Hilbert space H, then we define the function
fy: H — C by fy: x = (y, x). Since the inner product is continuous, it follows
that fy is continuous. Furthermore, we note that for any x;, x, EHand a € C
we have

fy(Xi +X2) = {y, Xi +X2) = (y, X)) +{y, X2) = fy(x)) +fy(x2)

and
fy(ax)) = (y, oax;) = afy, x;) = afy(x,)
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and hence fy is linear. This shows that fy € H* = L(H, C), and therefore we

may define
Ifyl = sup{lfy)l: Ixll =1} .

Using Example 12.1, we see that |(y, x)| < lyll Ixl, and thus (by definition
of sup)
It = sup{l(y, x)I: Ixl =1} < lyl .

On the other hand, we see that y = 0 implies lfyl = 0 = lyl, while if y # 0 then
(again by the definition of sup)

Ifyl = sup{lfyCOl: Ixl =1} = Ify(y/lyDl = [y, y/lyl)l = lyl .

We thus see that in fact Ifyll = lyl, and hence the map y — fy preserves the

norm.
However, the mapping y — fy is not linear. While it is true that

fy1+ yz(X) = (y1+ys,X) = (fyl + fyz)(X)
and hence fy , y, = fy, + fy, , we also have
fay(x) = {ay,x) = a*{y, x) = a*fy(x)

so that fy = a*fy. This shows that the map y — fy is really a norm preserving
antilinear mapping of H into H*. We also note that

Iy, = £y, = Iy, - g, = ly, — y,l

which shows that the map y — fy is an isometry.

What we have shown so far is that given any y € H, there exists a linear
functional fy € H* where the association y — fy = (y, ) is a norm preserving
antilinear map. It is of great importance that this mapping is actually an iso-
morphism of H onto H*. In other words, any element of H* may be written in
the form fy = (y, ) for a unique y € H. We now prove this result, which is a
somewhat restricted form of the Riesz representation theorem.

Theorem 12.26 (Riesz Representation Theorem) Let H be a Hilbert space.
Then given any f € H*, there exists a unique y € H such that

f)=(y, x) (7)

for every x € H. Moreover we have lyl = Ifl.
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Proof Assuming the existence of such a y € H, it is easy to show that it must
be unique. To see this, we simply note that if f(x) = (y,, x) and f(x) = (y,, X)
for every x € H, then 0 = (y,, X) — (y,, X) implies O = (y, — y,, X). But this
holds for all x € H, and hence we must have y, — y, = 0 which implies y, = y,.
(If (y, x) =0 for all x € H, then in particular, 0 = (y, y) = ||y||2 implies y =0.)

We now prove that such a y does indeed exist. First note that if f = 0, then
we may choose y = 0 to satisfy the theorem. Therefore we now assume that
f#0. Let M = Ker f. We know that Ker f is a subspace of H, and since f # 0
we must have M # H. Furthermore, if {x,} 1s a sequence in M that converges
to some x € H, then the continuity of f shows that

f(x) = f(lim xp) = limf(xp) = 0

and hence x € M. This shows that M is a proper closed subspace of H (by
Theorem B14(a)). By Theorem 12.15, there exists a nonzero y, € H such that
yo L M. We claim that y = ay, will satisfy our requirements for a suitably
chosen scalar a.

First note that for any scalar o and any x € M, we have f(x) = 0 on the one
hand, while (ay,, x) = a*(y,, X) = 0 on the other (since y, L x). This shows
that (7) is true for every x € M no matter how we choose a.. However, if we
now require that (7) hold for the vector x =y, (where yo & M by definition),
then we must also have

f(yo) = (0tyo, Yo) = a¥lly,l?

which leads us to choose a = f(y,)*/ ||y0||2. With this choice of o, we have then

shown that (7) holds for all x € M and for the vector x = y,. We now show
that in fact (7) holds for every x € H.
We observe that any x € H may be written as

X = X = [f(x)/f(yo)]yo + [{(X)/f(yo)]yo

where x — [f(X)/f(y,)]yo, € M. In other words, any x € H may be written in the
form x = m + By, where m € M and f = f(x)/f(y,). Since f is linear, we now
see that our previously shown special cases result in (setting y = ay,)

fx)=f(m+ Byy) = f(m)+ Bf(yy) =y, m)+ By, y)
=(y, m+ Byy) =(y, x)

and hence f(x) = (y, x) for every x € H.
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Finally, the fact that llyl = [Ifl was shown in the discussion prior to the
theorem. N

If H 1s a Hilbert space, we define an inner product on H* by
(f}/? fX) = (X? Y) .

Note the order of the vectors x and y in this definition. This is to ensure that
the inner product on H* has the correct linearity properties. In other words,
using the fact that the mapping y — fy is antilinear, we have

(afy, fx) = (fa*y, £x) = (x, a¥y) = a*(x,y) = a*(fy, fx)
and
(f)'? G,fx) = (f)’? fOL*X) = (G*X, Y) = G(X, Y) =a(f)’? fx) .

Using fy, +fy, =fy,, y, it is trivial to verify that
(fy, + fy,, fx) = (fy,, fx) + (fy,, fx) .

This inner product induces a norm on H* in the usual way.

We claim that H* is also a Hilbert space. To see this, let {fx,} be a Cauchy
sequence in H*. Given € > 0, there exists N such that m >n = N implies that
If, —f, I <e. Then, since every fy, corresponds to a unique Xy (the kernel of

the mapping x — fx is {0}), it should be obvious that {x,} will be a Cauchy
sequence in H. However, we can also show this directly as follows:

I, = f V= (fo, = Fo o) = 1)
= (fxm’ fxm)_<fxm’ fxn)_<fxn’ fxm)+<fxn’ fxn>

= (x,,, X,,) = (X, X,) = {x,, x,,) +{x,, x,)
= (x,, —X,, X,)—{x,, = x,, x,)

= (x,, —X,, X, — X,)

= lx, —x, 17 .

This shows that {x;,} is a Cauchy sequence in H, and hence x, — x € H. But
then fy, — fx € H* which shows that H* is complete, and hence H* is also a
Hilbert space.
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Example 12.10 Recalling the Banach space /j defined in Example 12.7, we
shall show that if 1 <p <o and 1/p + 1/q = 1, then (/5)* = [§. By this equality
sign, we mean there exists a norm preserving isomorphism of /g onto (/p)*. If
{e:} is the standard basis for R", then any x = (X;, ..., Xp) € 5 may be
written in the form
X= E xe; .
i=1

Now let f be a linear mapping of /j into any normed space (although we shall
be interested only in the normed space C). By Corollary 2 of Theorem 12.12,
we know that f is (uniformly) continuous. Alternatively, we can show this
directly as follows. The linearity of f shows that

fx) =Y x:f(e)
i=1

and hence

I ol = |Iixif(ei)|| < i|xi|||f(ei)|| < max{llf(ei)ll}ilxil )

i=1 i=1 i=1

But

n
i=1

and therefore | x;| < Ixllp. If we write K = max{llf(e;)l}, then this leaves us with
If(x) I < nK Ixll,

which shows that f is bounded and hence continuous (Theorem 12.12).

We now restrict ourselves to the particular case that f: /[j — C, and we
then see that the set of all such f’s is just the dual space (/p)*. Since f is
bounded, we can define the norm of f in the usual way by

Ifl = inf{K > 0: [f(x)| < Klxl, for all x € I3} .
Now note that for each i =1, .. ., n the result of f applied to e; is just some

scalar y; = f(e;) € C. Since f(x) = 21-xif(e;) = X%=1X;y;, we see that speci-
fying each of the y;’s will determine f, and conversely, f determines each of

the y;’s. We therefore have an isomorphism y = (y,, . . ., yn) — { of the space
of all n-tuples y = (y,, . . . , yn) € C of scalars onto the space (/p)* of all linear
functionals f on /j defined by f(x) = 21'<ix;y;. Because of this isomorphism,

we want to know what norm to define on the set of all such y’s so that the
mapping y — f is an isometry.
For any x € [j, Holder’s inequality (see Example 12.7) yields
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| fol =

< ilx,-y,-l
3] (3]

i=1

=lxll, Iyl
By definition, this implies that [fl < llyly (since IIfll is just the greatest lower
bound of the set of all bounds for f). We will show that in fact Ifl = llyl,.

Consider the vector x = (X, . . . , Xp) defined by x; =0 if y; =0, and x; =
ly:|y; if y; # 0. Then using the fact that 1/p =1 - 1/q we find

1/p 1/q
NG EA
Il Iy, = Eﬁ Dyl
i=1 1Yi

i=1
n ’p n g
= Eb’l ) (E|)’i|q)
i=1
n 1-1/q n 1/q
= El)’ilq) (Elyilq)
i=1 =
n
2|)’i|q .
i=1

On the other hand, we also see that for this x we have

|

| fol =

n
E XYl =
i=1

n
= E|yl’|q .
i=1

Thus, for this particular x, we find that [f(x)| = xll, lylg, and hence in general
we must have [fl = llylq (since it should now be obvious that nothing smaller
than K = llyl4 can satisfy [f(x)| < K [xll, for all x).

In summary, defining a norm on the space of all n-tuplesy = (y,, ... , yn)
by lyl4, we have constructed a norm preserving isomorphism of /g onto (/p)*
as desired.
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In the particular case of p = q = 2, we know that /8 is a Hilbert space, and
hence (/%)* = /% . Note also that in general,

Up*> = (1* = 13

Any normed linear space E for which E** = E is said to be reflexive. Thus we
have shown that /j is a reflexive Banach space, and hence [} is a reflexive
Hilbert space. In fact, it is not difficult to use the Riesz representation theorem
to show that any Hilbert space is reflexive (see Exercise 12.6.1). /

Example 12.11 Recall the space [, defined in Exercise 12.3.5, and let cg
denote the subspace consisting of all convergent sequences with limit 0. In
other words, X = {X1, X2, . . . , Xp, . . . ; has the property that x, — 0 as n — oo,
We shall show that co** = [1* = [, and hence ¢ is not reflexive.

Let us first show that any bounded linear functional f on c( is expressible
in the form

f@ = fix;
where -
DIfl <o
i=1
To see this, lete; = {0,0,...,1,0,... } be the sequence with a 1 in the ith

position and 0’s elsewhere. Now let f(x) be any bounded linear functional on
co, and define f; = f(e;). Note that if

X={X;, X5, ..., X

0 0,0 ) *)

then
X = X1€1 + X9€2 + - - - + X€y

and

f(x)=ifixi .

i=1

Observe that if 25 |fj| = oo, then for every real B it would be possible to find
an integer N such that

N
E|fi| > B .
i=1
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But then consider an element x defined by

1 ifisNandf;, >0
-1 iffisNandf; <0
7Y 0 ifisNandf =0
0 ifi>N

Clearly Ixll = sup [xij| = 1, and

| fol =

N
E Jixi
i=1

N
- Y1fl > B = Bl
i=1

which contradicts the assumed boundedness of f. Therefore we must have

oo}
Y Ifl <
i=1

It is not hard to see that the set of all elements of the form (*) is dense in
co. Indeed, suppose we are given any z = {7z, 7z, . . . , Zp, . . . } € ¢o. Then
given ¢ >0, we must find an x of the above form with the property that

lz - xI = sup; |z; - xi| < ¢ .

Since any sequence x € cq has the property that x, = 0 as n — o, it follows
that given & > 0, there exists M such that [x,| < € for all n = M. If we choose
x=A{21,22,...,2M, 0, . .. }, then clearly we will have llz — xll < e.

By Corollary 1 of Theorem 12.12 any bounded linear functional is con-
tinuous. Together with Theorem 12.7(d), this shows that any bounded linear
functional on ¢y is uniquely defined by its values on the dense set of elements
of the form (*), and hence for every x € ¢y we must have

f@ = fix; -
We now claim that the norm of anyl =sluch linear functional is given by
£l = E £l .
First note that .
| f(ol = i | fllx| = ||x||§ |£] = Ixla
i=1 i=1

where
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a3 11l
i=1

Then

|f(X)| < Elf;l - a
i=1

Ixl

and hence

Ifl = sup{%:x;éO} <
X

On the other hand, it follows from Theorem B17 (see Appendix B) that given
€ > 0, there exists N such that

N
a-¢ < Elfil i
i=l

If we define x again by

Il ifisNandf;, >0
-1 ifisNandf; <0
"] 0ifisNandf,=0
0 ifi>N
then Ixl = 1 and

oo

N
f =Y fx = YA
i=1

i=1

so that [f(x)| > a — €. Therefore [f(x)I/Ix]l = a since € >0 was arbitrary. But then
Ifl > a, and hence we must have [fl = a as claimed.

In summary, we have shown that co* = /;. In Exercise 12.6.2 the reader is
asked to show that [;* = [, and hence this shows that co** = [,. /

We now proceed to define the adjoint of an operator exactly as we did in
Section 10.1. Therefore, let H be a Hilbert space and let T € L(H, H) be a
linear operator on H. If y € H is an arbitrary but fixed vector, then the
mapping x — (y, Tx) is just a linear functional on H. We can thus apply the
Riesz representation theorem to conclude that there exists a unique vector z €
H such that (y, Tx) = (z, x). We now define the adjoint T™ of T by TTy = z.
Since y was arbitrary, we see that the definition of TT may be stated as

(TTy,x) = (y, Tx)
for all x, y € H.
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To prove TT is unique, suppose that T' € L(H, H) is defined by (T'y, x) =
(y, Tx). Then (T'y, x) = (TTy, x) and hence (T'y — TTy, x) = 0. But this must
hold for all x € H, and therefore T'y — Ty = 0, i.e., T'y = TTy. Since this is
true for all y, it then follows that T' = TT.

Let us show that TT as we have defined it is really an element of L(H, H).
In other words, we must show that TT is both linear and continuous. But this is
easy since for any X, y, z€ H and a € C we have

(TT(x+y), 2) = x4y, T2) = (x, TR)+ (0, T2) = (T'x, 2+ (T"y, 2)

= (TTx+TTy, 2)
and
(TT(ax),y) = (ax, Ty) = a*(x, Ty) = a*(TTx,y) = ((aTHx,y) .
Therefore
TiI(x +y) = TTx + Ty
and

TH(ax) = (aTHx .

To prove the continuity of TT, we first show that it is bounded. Using the
Cauchy-Schwartz inequality we have

IT™I? = (Tfx, TTx) = (x, TT*x) < IxIITT™xI < IxI ITIIT#xI

which shows that ITTxll < ITI Ixll for all x € H. Since [Tl < o, this shows that
TT is continuous (Theorem 12.12). We can therefore define the norm of TT in
the usual manner to obtain

ITTl = sup{ITTxll: Ixl=1} < ITI .
In fact, we will show in the next theorem that ITl = [TI.

Theorem 12.27 Suppose S and T are operators on a Hilbert space H. Then
there exists a unique linear operator TT on H defined by (T Ty, x) = (y, Tx) for
all x, y € H. Moreover, this operator has the following properties:

(@ (S+T)T=ST"+TT.

(b) (aT)T = a*TT,

(c) (ST)T =T 7ST.

(d) TTT =(TT)"=T.

(e) IT™ I =ITI.
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(f) ITTTI = ITI*
(g)0T=0and 17 =1.
(h) If T is invertible, then (T 7)™ = (T™)T.

Proof The existence and uniqueness of TT was shown in the above discus-
sion. Properties (a) — (d) and (g) — (h) follow exactly as in Theorem 10.3. As
to property (e), we just showed that ITTl < ITl, and hence together with
property (d), this also shows that ITI = || (T")Tl < IT*l. To prove (f), we first
note that the basic properties of the norm along with property (e) show that

ITTTI < ITTITI = ITI?

To show that ITI?> < ITTTI, we observe that the Cauchy-Schwartz inequality
yields

ITxI? = (Tx, Tx) = (TTTx, x) <ITTTxl Ixl < ITTI IxI?

which (by definition of ITl) implies ITI < ITTTI"2 . ®

While we have defined the adjoint in the most direct manner possible, we
should point out that there is a more general approach that is similar to our
discussion of the transpose mapping defined in Theorem 9.7. This alternative
method shows that a linear operator T defined on a Banach space E leads to a
“conjugate” operator T* defined on the dual space E*. Furthermore, the map-
ping T — T* is a norm preserving isomorphism of L(E, E) into L(E*, E*).
However, in the case of a Hilbert space, Theorem 12.26 gives us an isomor-
phism between H and H*, and hence we can consider T* to be an operator on
H itself, and we therefore define TT = T*. For the details of this approach, the
reader is referred to, e.g., the very readable treatment by Simmons (1963).

Exercises

1. Let H be a Hilbert space. We define a mapping H — H** by x — Fy
where Fx € H** is defined by F«(f) = f(x). We can also consider the com-
posite mapping H — H* — H** defined by x — fx +— F¢_where fx(y) =
(y, x) and Fr,(f) = (f, f).

(a) Show that H** is a Hilbert space with the inner product (Fy, Fg) =
(g, f).

(b) By considering the two mappings defined above, show that H is
reflexive.

(¢) Show (Fy, Fy) = (x, y).
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2. (a) Show ([[M*=12and (ID)*=1;.
(b) Show [1* =14 and [,* = [;. [Hint: Refer to Example 12.11.]

3. Let V be infinite—dimensional with orthonormal basis {e;}. Define T €
L(V) by Te; = e;_;. Show TTe; = ej,1.

12.7 HERMITIAN, NORMAL AND UNITARY OPERATORS

Let us denote the space L(H, H) of continuous linear maps of H into itself by
L(H). In other words, L(H) consists of all operators on H. As any physics
student knows, the important operators A € L(H) are those for which AT = A.
These operators are called self-adjoint or Hermitian. In fact, we now show
that the set of all Hermitian operators on H is a closed subspace of £L(H).

Theorem 12.28 The set of all Hermitian operators on a Hilbert space H
forms a real closed subspace of L(H). Moreover, this subspace is a real
Banach space containing the identity transformation on H.

Proof We showed in Theorem 12.27 that O and 1 are Hermitian. If A, B €
L(H) are Hermitian operators and o, 3 € R, then

(aA +BB)T = (aA)T + (BB)T = aAT + BT = aA + BB

so that aA + B is also Hermitian, and hence the set of Hermitian operators
forms a real subspace of L(H). If {A,} is a sequence of Hermitian operators
with the property that A, — A € L(H), then (using A," = A, and Theorem
12.27(e))

A

lA-ATI < 1A-A,l + I(A, - Al
A=Al + 1A, - Al
214, - Al .

Since this shows that [A — ATl — 0 as n — o, we see that A = A" and hence
A is also Hermitian. Therefore the subspace of all Hermitian operators on H is
closed (Theorem B14(a)).

Finally, since L(H) is a Banach space (Theorem 12.13), the fact that the
closed subspace of Hermitian operators forms a real Banach space follows
from Theorem 12.9. i
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It should be clear by now that most of the basic properties of Hermitian
operators on an infinite-dimensional Hilbert space are exactly the same as in
the finite-dimensional case discussed in Chapter 10. In particular, the proofs
of Theorems 10.4, 10.9(a) and 10.11(a) all carry over verbatim to the infinite-
dimensional case.

Recall from Section 10.3 that an operator N on H is said to be normal if N
and NT commute, i.e., if NTN = NNT. It should be obvious that any Hermitian
operator is necessarily normal, and that aN is normal for any scalar .
However, even if N, and N, are normal, it is not generally true that either
N, + N, or N|N, are normal, and hence the subset of L(H) consisting of
normal operators is not a subspace. We do however have the following two
results.

Theorem 12.29 The set of all normal operators on H is a closed subset of
L(H) that is also closed under scalar multiplication.

Proof All that remains to be shown is that if {N,} is a sequence of normal
operators that converges to an operator N € L(H), then N is normal. Since
N, — N, it follows from Theorem 12.27(a) and (e) that N, T — NT. We thus
have (using the fact that each Ny is normal)

INNT=N'NIl < INNT =N NI + INN,-N,'N, I + IN'N, -N'NI
INNT =N NI + IN,'N, -N'NI = 0

A

which shows that NN = NTN, and hence N is normal. B

Theorem 12.30 Let N, and N, be normal operators with the property that
one of them commutes with the adjoint of the other. Then N, + N, and NN,
are normal.

Proof Suppose that N\N,T = N,"N,. Taking the adjoint of both sides of this
equation then shows that N,N,;T = N, 7N,. In other words, the hypothesis of the
theorem is equivalent to the statement that both operators commute with the
adjoint of the other. The rest of the proof is left to the reader (see Exercise

12.7.1). 1

Probably the most important other type of operator that is often defined on
a Hilbert space is the unitary operator. We recall that unitary and isometric
operators were defined in Section 10.2, and we suggest that the reader again
go through that discussion. Here we will repeat the essential content of that
earlier treatment in a concise manner.
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We say that an operator Q € £ (H) is isometric if Qx| = [x] for every x €
H. Note that we do not require that Q map H onfo H, and hence Q™' need not
exist (at least if we assume that Q™ must be defined on all of H). The defini-
tion of an isometric operator shows that [Qxl = O if and only if x = 0, and
hence an isometric operator €2 is a one-to-one mapping of H info H (since
Qx = Qy implies 1Q(x — y)I = 0 which then implies x = y).

Theorem 12.31 If Q € L(H), then the following conditions are equivalent:
(a) QTQ=1.
(b) (Qx, Qy)=(x,y)forall x,y € H.
(c) lexl = IIxll.

Proof Letx,y € H be arbitrary.

(a) = (b): (Qx, Qy) = (x, QTQy) = (x, 1y) = (x, y).

(b) = (¢): 1Qx1? = (Qx, Qx) = (x, x) = IxI*.

(c) = (a): 1QxI? = IxI? implies (Qx, Qx) = (x, x) or (x, QTQx) = (x, x), and
hence (x, (QTQ - 1)x) = 0. It now follows from Theorem 10.4(b) that QTQ —
1=0,and hence QTQ=1. K

Isometric operators are sometimes defined by the relationship QTQ = 1,
and we saw 1n Section 10.2 that in a finite-dimensional space this implies that
QQ" =1 also. However, in an infinite-dimensional space, the property QQ" =
1 must be imposed as an additional condition on €2 in one way or another. A
unitary operator U € L(H) is an operator that satisfies UTU = UUT = 1. Since
inverses are unique (if they exist), this implies that an equivalent definition of
unitary operators is that they map H onto itself and satisfy Ut = U™.
Alternatively, our next theorem shows that we can define a unitary operator as
an isometric operator that maps H onfo H.

Theorem 12.32 An operator U € L(H) is unitary if and only if it is a one-to-
one isometry of H onto itself. In other words, U € L(H) is unitary if and only
if it is a bijective isometry.

Proof 1If U is unitary then it maps H onto itself, and since UTU = 1, we see
from Theorem 12.31 that |Uxll = lIxl. Therefore U is an isometric isomorphism
of H onto H.

Conversely, if U is an isomorphism of H onto H then U™ exists, and the
fact that U is isometric shows that UTU = 1 (Theorem 12.31). Multiplying
from the right by U™ shows that UT = U™, and hence UTU = UUT = 1 so that
U is unitary. W
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One reassuring fact about unitary operators in a Hilbert space is that they
also obey the analogue of Theorem 10.6. In other words, an operator U on a
Hilbert space H is unitary if and only if {Ue;} is a complete orthonormal set
whenever {e;} is (see Exercise 12.7.2 for a proof).

There is no all-encompassing treatment of eigenvalues (i.e., like Theorems
10.21 or 10.26) for Hermitian or unitary operators in an infinite-dimensional
space even close to that for finite-dimensional spaces. Unfortunately, most of
the general results that are known are considerably more difficult to treat in
the infinite-dimensional case. In fact, a proper treatment involves a detailed
discussion of many subjects which the ambitious reader will have to study on
his or her own.

Exercises
1. Finish the proof of Theorem 12.30.

2. Prove that U € L(H) is unitary if and only if {Ue;} is a complete orthonor-
mal set if {e;} is.
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Metric Spaces

For those readers not already familiar with the elementary properties of metric
spaces and the notion of compactness, this appendix presents a sufficiently
detailed treatment for a reasonable understanding of this subject matter.
However, for those who have already had some exposure to elementary point
set topology (or even a solid introduction to real analysis), then the material in
this appendix should serve as a useful review of some basic concepts. Besides,
any mathematics or physics student should become thoroughly familiar with
all of this material.

Let S be any set. Then a function d: S x S — R is said to be a metric on S
if it has the following properties for all x, y, z € S:

M1) d(x,y) =0;

(M2) d(x,y)=01if and only if x =y;
(M3) d(x,y) =d(y, x);

M4) d(x,y) +d(y, z) = d(x, z).

The real number d(x, y) is called the distance between x and y, and the set S
together with a metric d is called a metric space (S, d).

As a simple example, let S = R and let d(x, y) = |x — y| for all x, y € R.
From the properties of the absolute value, conditions (M1) — (M3) should be
obvious, and (M4) follows by simply noting that

RARN
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X-zl = x-y+y-zl < [x-yl+ly-2 .

For our purposes, we point out that given any normed vector space (V, I I)
we may treat V as a metric space by defining

dx,y) = Ix -yl

for every x, y € V. Using Theorem 2.17, the reader should have no trouble
showing that this does indeed define a metric space (V, d). In fact, it is easy to
see that R" forms a metric space relative to the standard inner product and its
associated norm.

Given a metric space (X, d) and any real number r > 0, the open ball of
radius r and center X is the set By(x,, r) C X defined by

Ba(xy, 1) = {xE€X: d(x,Xy) <1} .

Since the metric d is usually understood, we will generally leave off the sub-
script d and simply write B(X,, r). Such a set is frequently referred to as an r-
ball. We say that a subset U of X is open if, given any point x € U, there
exists r >0 and an open ball B(x, r) such that B(x, r) C U.
Probably the most common example of an open set is the open unit disk
D, in R? defined by
D, = {(X,y)EIRZ:X2+y2< 1} .

We see that given any point x, € D,, we can find an open ball B(x,, r) C D,
by choosing r = 1 — d(x,, 0). The set

Dy = {(x,y) ER* x> +y> < 1}

is not open because there is no open ball centered on any of the boundary

points x> + y> = 1 that is contained entirely within D».
The fundamental characterizations of open sets are contained in the
following three theorems.

Theorem A1 Let (X, d) be a metric space. Then any open ball is an open
set.

Proof Let B(Xx, r) be an open ball in X and let x be any point in B(x,, r). We
must find a B(x, r') contained in B(x,, r).
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B(xo, 1)

Since d(x, xg) < r, we define r' = r — d(x, Xg). Then for any y € B(x, 1) we
have d(y, x) <1’, and hence

d(y, xo) < d(y, x) +d(X,X9) < r'+d(x,X9) =1
which shows that y € B(x,, r). Therefore B(x, r') C B(x,, r). B

Theorem A2 Let (X, d) be a metric space. Then
(a) Both X and & are open sets.
(b) The intersection of a finite number of open sets is open.
(c) The union of an arbitrary number of open sets is open.

Proof (a) X is clearly open since for any x € X and r > 0 we have B(x, r) C
X. The statement that & is open is also automatically satisfied since for any
X € I (there are none) and r > 0, we again have B(x, r) C &.

(b) Let {Uj}, 1 €1, be a finite collection of open sets in X. Suppose {U;}
is empty. Then NU; = X because a point is in the intersection of a collection
of sets if it belongs to each set in the collection, so if there are no sets in the
collection, then every point of X satisfies this requirement. Hence NU; = X 1s
open by (a). Now assume that {U;} is not empty, and let U = NU;. If U = &
then it is open by (a), so assume that U # . Suppose x € U so that x € U; for
every 1 € 1. Therefore there exists B(x, r;) C Uj for each 1, and since there are
only a finite number of the r; we may let r = min{r;}. It follows that

Bxx,r) C B(x,r;)) C U

for every 1, and hence B(x, r) C NU; = U. In other words, we have found an
open ball centered at each point of U and contained in U, thus proving that U
is open.
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(c) Let {U;} be an arbitrary collection of open sets. If {U;} is empty, then
U = UU; = I is open by (a). Now suppose that {U;} is not empty and x €
UUj . Then x € Uj for some i, and hence there exists B(x, r;) C U; C UU; so
that UUj is open. B

Notice that part (b) of this theorem requires that the collection be finite. To
see the necessity of this, consider the infinite collection of intervals in R given
by (=1/n, 1/n) for 1 < n < «. The intersection of these sets is the point {0}
which is not open in R.

In an arbitrary metric space the structure of the open sets can be very
complicated. However, the most general description of an open set is con-
tained in the following.

Theorem A3 A subset U of a metric space (X, d) is open if and only if it is
the union of open balls.

Proof Assume U is the union of open balls. By Theorem A1 each open ball is
an open set, and hence U is open by Theorem A2(c). Conversely, let U be an
open subset of X. For each x € U there exists at least one B(x, r) C U, so that
Uxeu B, r) C U. On the other hand each x € U is contained in at least
B(x, r) so that U C Uyey B(x, r). Therefore U = UB(x, r). i

As a passing remark, note that a set is never open in and of itself. Rather, a
set is open only with respect to a specific metric space containing it. For
example, the set of numbers [0, 1) is not open when considered as a subset of
the real line because any open interval about the point 0 contains points not in
[0, 1). However, if [0, 1) is considered to be the entire space X, then it is open
by Theorem A2(a).

If U is an open subset of a metric space (X, d), then its complement U® =
X — U is said to be closed. In other words, a set is closed if and only if its
complement is open. For example, a moments thought should convince you

that the subset of R? defined by {(x, y) € R%: x> + y* < 1} is a closed set. The
closed ball of radius r centered at x, is the set B[x,, r] defined in the obvious
way by

Bx,, 1] = {x€X:d(Xg, X) <1} .

We leave it to the reader (see Exercise A.3) to prove the closed set ana-
logue of Theorem A2. The important difference to realize is that the intersec-
tion of an arbitrary number of closed sets is closed, while only the union of a
finite number of closed sets is closed.

If (X, d) is a metric space and Y C X, then Y may be considered a metric
space 1n its own right with the same metric d used on X. In other words, if we
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let d|Y denote the metric d restricted to points in Y, then the space (Y, d|Y) is
said to be a subspace of the metric space (X, d).

Theorem A4 Let (X, d) be a metric space and (Y, d|Y) a metric subspace of
X. Then a subset W C Y is open in Y (i.e., open with respect to the metric
dlY) if and only if W =Y N U where U is open in X.

Proof Let W C Y be open in Y and suppose x € W. Then there exists r > 0
such that the set

Bay(x,n) = {y €Y: (dY)(x,y) <r}
is a subset of W. But this is clearly the same as the open set
Ba(x,1) = {y EX: d(x,y) <1}

restricted to only those points y that are in Y. Another way of saying this is
that
Bgiy(x,1) = Ba(x,1)NY .

Since W = Uyew Byjy(X, 1), it follows that (see Exercise 0.1.1(b)) W =U N
Y where U = Uyew By(x, r) is open in X (by Theorem A2(c)).

On the other hand, let W =Y M U where U is open in X, and suppose x €
W. Then x € U so there exists r >0 with

Byx,1r) = {yeX:dx,y)<r} C U .

But Y N By(x, r) is just Bgjy(x, r) = {y € Y: dlY)(x, y) < r} C W which
shows that Wisopenin Y. i

Note that all of our discussion on metric spaces also applies to normed
vector spaces where d(x, y) = IIx — yl. Because of this, we can equally well
discuss open sets in any normed space V.

Let f: (X, dx) — (Y, dy) be a mapping. We say that f is continuous at
xo € X if, given any real number & > 0, there exists a real number d > 0 such
that dx(f(x), f(x,)) < € for every x € X with dy(x, X,) < 8. Equivalently, f is
continuous at X, if for each B(f(x,), &) there exists B(x,, &) such that
f(B(x,, 0)) C B(f(x,), €). (Note that these open balls are defined with respect
to two different metrics since they are in different spaces. We do not want to
clutter the notation by adding subscripts such as dx and dy to B.) In words,
“if you tell me how close you wish to get to the number f(x,), then I will tell
you how close x must be to X, in order that f(x) be that close.” If f is defined
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on a subset S C X, then f is said to be continuous on S if f is continuous at
every point of S.

For example, consider the mapping f: (0, ) CR — (0, ) C R defined by
f(x) = 1/x. For any x, € (0, ©) we have (using the absolute value as our
metric)

If(x) — f(x)l = 11/x = 1/x,] = [x¢ = xI/Ix X0l .

If x is such that |x — x,| < 0, then we see that
If(x) — f(x,)] < &/x x| = 8/(xX,) .

In particular, choosing & < x,/2, it follows that x > x,/2 (since |[x — Xo| < 0 =
Xo/2), and hence 8/(x x,) < 28/x,%. Therefore, given any ¢ > 0, if we pick 8 =
min{x,/2, €x,2/2} then we will have |f(x) — f(x,)| < €.

Fortunately one can usually tell by inspection (i.e., by drawing a picture if
necessary) whether or not a particular function is continuous without resorting
to clever calculations. The general definition is a powerful technique for prov-
ing theorems about classes of continuous functions satisfying given properties.
Moreover, there is an intrinsic way to characterize continuous mappings that
is of the utmost importance.

Theorem AS Let f: (X, dx) — (Y, dy). Then f is continuous if and only if
£7(U) is open in X for all open sets U in Y.

Proof Suppose f is continuous and U is an open subset of Y. If x € f(U),
then f(x) € U so there exists B(f(x), €) C U (since U is open). But the continu-
ity of f then implies that there exists B(x, ) such that

f(B(x, 8)) C B(f(x),e) C U .

Therefore B(x, ) is an r-ball centered on x and contained in f(U), and hence
£ (U) is open.

Conversely, assume that f(U) is open whenever U is, and let x € X be
arbitrary. Then the open ball B(f(x), €) is an open set, so its inverse image is
an open set containing x. Therefore there exists an open ball B(x, §) contained
in this inverse image, and it clearly has the property that f(B(x, 8)) C
B(f(x), €), hence proving that f is continuous. W

Corollary If f: (X, dx) — (Y, dy), then f is continuous if and only if f™'(F) is
closed in X whenever F is closed in Y.



686 APPENDIX A

Proof It was shown in Exercise 0.2.1 that if A C Y, then f'(A°) = f'(A).
Therefore if F C Y is closed, then F = U for some open set U C Y and so by
Theorem AS, f(F) = f(U°) = f'(U)° must be closed if and only if f is con-
tinuous. N

Note that if f: X — Y is continuous and U C Y is open, then f”(U) is
open, but if A C X is open, then it is not necessarily true that f(A) is open. As

a simple example, consider the function f: R — R? defined by f(x) = (x, Xz). It

should be clear that the open ball U C R? shown below is an open set whose
inverse image is an open interval on R U {{J} (since some points of U are not
the image under f of any point in R), but that the image under f of an open

interval is part of the parabola y = x> which is not open as a subset of R?.

f(x)

Now suppose that (X, d) is a metric space, and let {U;} be a collection of
open subsets of X such that UU; = X. Such a collection of subsets is called an
open cover of X. A subcollection {V;} of the collection {U;} is said to be an
open subcover of X if UV, = X. A space (X, d) is said to be compact if every
open cover has a finite subcover. Similarly, given a subset A C X, a collection
{Ui} of open subsets of X with the property that A C UUj is said to be an
open cover of A. Equivalently, the collection {U;} of open subsets of X is an
open cover of A in X if the collection {U; M A} is an open cover of the subset
A in the metric d|A (i.e., in the subspace A). We then say that A is compact if
every open cover of A has a finite subcover, or equivalently, A is compact if
the subspace A is compact. While this is not a particularly easy concept to
thoroughly understand and appreciate without detailed study, its importance to
us is based on the following two examples.

Example A1 Consider the subset A = (0, 1) of the real line R. We define the
collection {U}, U,, ... } of open sets by
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Uy = (12" 1 = 1727+

Thus U, = (1/4, 3/4), U, = (1/8, 7/8) etc. The collection {U,} clearly covers A
since for any x € (0, 1) we can always find some U, such that x € U,,.
However, A is not compact since given any finite number of the U, there
exists € >0 (so that € € (0, 1)) which is not in any of the U,. /

Example A2 Let us show that the subspace [0, 1] of the real line is compact.
This is sometimes called the Heine-Borel theorem, although we shall prove a
more general version below.

First note that the points O and 1 which are included in the subspace [0, 1]
are not in the set (0, 1) discussed in the previous example. However, if we
have positive real numbers a and b with a < b < 1, then the collection {U,}
defined above together with the sets [0, a) and (b, 1] does indeed form an open
cover for [0, 1] (the sets [0, a) and (b, 1] are open by Theorem A4). It should
be clear that given the sets [0, a) and (b, 1] we can now choose a finite cover
of [0, 1] by including these sets along with a finite number of the U,. To
prove that [0, 1] is compact however, we must show that any open cover has a
finite subcover.

Somewhat more generally, let {O,} be any open cover of the interval
[a, b] in R. Define

A = {x & [a,b]: [a, x] is covered by a finite number of the O} .

We see that A # J since clearly a € A, and furthermore A is bounded above
by b. Therefore (by the Archimedean axiom) A must have a least upper bound
m=sup A <b. If A is to be compact, then we must have b € A. We will show
that this is true by first proving that m € A, and then that m = b.

Since {Oy} covers [a, b] and m € [a, b], it follows that m € O, for some
Om € {Oy}. Now, Oy, is an open subset of [a, b], and hence there are points in
O, that are less than m, and points in O, that are greater than m.

~~

Since m = sup A, there is an X < m with X € Oy, such that the interval [a, x] is
covered by a finite number of the Oy, while [x, m] is covered by the single set
Om. Therefore [a, m] is covered by a finite number of open sets so that m €
A.
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Now suppose that m < b. Then there is a point y with m <y < b such that
[m, y] C Op,. But we just showed that m € A, so the interval [a, m] is covered
by finitely many O, while [m, y] is covered by Op,. Therefore y € A which
contradicts the definition of m, and hence we must have m =b. /

An important property of metric spaces is the following. Given two dis-
tinct points x, y € X, there exist disjoint open sets U and V in X such that x €
U and y € V. That this does indeed hold for metric spaces is easy to prove by
considering open balls of radius d(x, y)/2 centered on each of the points x and
y. This property is called the Hausdorff property. We sometimes refer to a
metric space as a “Hausdorff space” if we wish to emphasize this property.

The following theorems describe some of the most fundamental properties
of compact spaces.

Theorem A6 Any closed subset of a compact space is compact.

Proof Let F C X be a closed subset of a compact space X. If {U;} is any
open cover of F, then (UU;) U F€ is an open cover of X. Since X is compact,
we may select a finite subcover by choosing F¢ along with a finite number of

the U,. But then F is covered by this finite subcollection of the U;, and hence F
is compact. il

Theorem A7 Any compact subset of a metric space is closed.

Proof Let F be a compact subset of a metric space X. We will show that F€ is
open. Fix any x € F¢ and suppose y € F. Since X is Hausdorff, there exist
open sets Uy and V, such that x € U,, y € V, and Uy N V, = J. As the point
y varies over F, we see that {V,: y € F} is an open cover for F. Since F is
compact, a finite number, say Vy,, ..., Vy  will cover F. Corresponding to
each Vy, there is a Uy, and we let U = N;Uy, and V = U;Vy,. By construction
xE€U,FCVand UNV =. But then U is an open set containing X such
that U N F = J, and hence F° is open. B

Theorem A8 Let (X, dx) be a compact space and let f be a continuous func-
tion from X onto a space (Y, dy). Then Y is compact.

Proof Let {U;} be any open cover of Y. Since f is continuous, each f™(U;) is
open in X, and hence {f"(U;)} is an open cover for X. But X is compact, so
that a finite number of the f”(Uj), say {f"(Uj), . . ., f'(Uj )} cover X.
Therefore {U;, . . ., Ui} form a finite subcover for Y, and hence Y is
compact. i
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Theorem A9 Let {K;} be a collection of compact subsets of a metric space
X, such that the intersection of every finite subcollection of {K;} is nonempty.
Then MK is nonempty.

Proof Fix any K, € {K;} and assume that K; N (N, K,) = <. We will show
that this leads to a contradiction. First note that by our assumption we have
(N;.;K;) CK;¢, and hence from Example 0.1 and Theorem 0.1 we see that

K; C mi#lKiC = Ui#lKiC .

Thus {K;°}, i # 1, is an open cover of K;. But K; is compact so that a finite

number of these sets, say K;,, . . ., Kj ¢ cover K;. Then
K, C (UE=1 Kiac) = (ﬂ§=1 Kia )¢

which implies
K, m(mgleia) = .

However, this contradicts the hypothesis of the theorem. W

Corollary If {K,} is a sequence of nonempty compact sets such that
Kn D Kn+], then mKn * @

Proof This is an obvious special case of Theorem A9. i

As a particular application of this corollary we see that if {I,} is a
nonempty sequence of intervals [a,, by] C R such that I, D I, then NI, #
. While this result is based on the fact that each I, is compact (Example A2),
we may also prove this directly as follows. If I, = [a,, by], we let S = {a,}.
Then S # & and is bounded above by b,. By the Archimedean axiom, we let
x =sup S. For any m, n € Z* we have a; < ap4n <bmn < by so that x <bgy,
for all m. Since a,, < x for all m, we must have x € [a;y, bm] = I, for each
m=1, 2,...so that NI, # &J. We now show that this result holds in R" as
well.

Suppose a, b € R™ where a' < b' for eachi =1, ..., n. By an n-cell we

mean the set of all points x € R™ such that a' < x! < b' for every i. In other
words, an n-cell is just an n-dimensional rectangle.

Theorem A10 Let {I,} be a sequence of n-cells such that I, D Iy,;. Then
NI, # A.
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Proof Foreachk =1, 2, ... the n-cell I, consists of all points x € R" with

the property that aki <x < bki for every 1 <1 <n, so we let Iki = [aki, bki].

Now, foreachi=1, ..., n the sequence {Iki} satisfies the hypotheses of the
corollary to Theorem A9. Hence for each i = 1, . . . , n there exists A=
[a,}, b,] for everyk =1,2,... .If we define z = (Z', ..., z") ER", we see
thatz€ I, foreveryk=1,2,... . 1

Theorem A11 Every n-cell is compact.

Proof Let I be an n-cell as defined above, and set 6 = [2%=(b; — ai)z]]/z.
Then if x, y € I we have Ix - yll <6 (see Example 2.9). Let {U;} be any open
cover of I and assume that it contains no finite subcover. We will show that
this leads to a contradiction.

Let ¢/ = (aj + bj)/2 for each j = 1, ..., n. Then we have 2" n-cells Q;
defined by the intervals [aj, Cj] and [cj, bj] such that UQ; = I. Since I has no
finite subcover, at least one of the Q;, which we call I,, can not be covered by
any finite number of the U;. Next we subdivide I, into another 2" n-cells and
continue in the same manner. We thus obtain a sequence {I,} of n-cells with
the following properties:

@ IDL[DL, D
(b) I 1s not covered by any finite subcollection of the Uy;

(c) x,y €I, implies IIx — yl <27% 4.

By (a) and Theorem A10, there exists z € NI, , and since {U;j} covers I,
we must have z € Uy for some k. Now, Uy is an open set in the metric space

R", so there exists ¢ > 0 such that |z — yl < ¢ implies that y € U,. If we

choose a sufficiently large that 27%0 < & (that this can be done follows from
Theorem 0.3), then (c) implies that I, C U, which contradicts (b). I

We are now in a position to prove the generalized Heine-Borel theorem.
Before doing so however, we first prove a simple result which is sometimes
taken as the definition of a compact set. By way of terminology, any open set
U containing a point x is said to be a neighborhood of x, and the set U — {x}
is called a deleted neighborhood of x. We say that a point x € (X, d) is an
accumulation point of A C X if every deleted neighborhood of x intersects
A.

Theorem A12 Any infinite subset A of a compact set K has a point of accu-
mulation in K.
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Proof Suppose every point x € K is not an accumulation point of A. Then
there exists a neighborhood Ux of x such that Ux contains at most a single
point of A, namely x itself if x € A. Then clearly no finite subcollection of
{Ux} covers A C K so that K can not possibly be compact. H

Theorem A13 A subset A of a metric space (X, d) is closed if and only if A
contains all of its accumulation points.

Proof First suppose that A is closed. Let x € X be an accumulation point of
A and assume that x ¢ A. Then x € A® which is an open set containing x that
does not intersect A, and hence contradicts the fact that x is an accumulation

point of A. Therefore x must be an element of A.
Conversely, suppose A contains all of its accumulation points. We show

that A€ is open. If x € A® and hence is not an accumulation point of A, then
there exists an open set U containing x such that A N U = . But then x €

U C A° which implies that A is open. &

We say that a subset A C R" is bounded if it can be enclosed in some n-
cell. The equivalence of (a) and (b) in the next theorem is called the
(generalized) Heine-Borel theorem, while the equivalence of (a) and (c) is a
general version of the Bolzano- Weierstrass theorem.

Theorem A14 Let A be a subset of R". Then the following three properties
are equivalent:

(a) A is closed and bounded .

(b) A is compact.

(c) Every infinite subset of A has a point of accumulation in A.

Proof (a) = (b): If (a) holds, then A can be enclosed by some n-cell which is
compact by Theorem A11. But then A is compact by Theorem A6.

(b) = (¢): This follows from Theorem A12.

(c) = (a): We assume that every infinite subset of A has an accumulation
point in A. Let us first show that A must be bounded. If A is not bounded,
then for each positive integer k = 1, 2, . . . we can find an xx € A such that
Ixll > k. Then the set {xy} is clearly infinite but contains no point of accumu—
lation in R", so it certainly contains none in A. Hence A must be bounded.

We now show that A must be closed. Again assume the contrary. Then
there exists xo € R" which is an accumulation point of A but which does not

belong to A (Theorem A13). This means that for each k =1, 2, . . . there exists
Xk € A such that [xx — xoll < 1/k. The set S = {xx} is then an infinite subset of
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A with x¢ as an accumulation point. Since xo & A, we will be finished if we

can show that S has no accumulation point in A (because the assumption that
A 1s not closed then leads to a contradiction with the property described in

(©)).
First note that if a, b € R", then Example 2.11 shows us that

la +bl = lla —(-b)l = llall—1bl .

Using this result, if y is any point of R" other than x¢ we have

x, =yl = llx, —xy + x5 =yl
= llxy -yl = lx; —x
> lxg -yl - Uk .

No matter how large (or small) Ixg — yll is, we can always find ak, € Z™
such that 1/k < (1/2)llxg - yll for every k > k, (this is just Theorem 0.3). Hence

Ix, =yl > (1/2)lxg - yl

for every k = k,. This shows that y can not possibly be an accumulation point
of {xx} = S (because the open ball of radius (1/2)lIxg — yl centered at y can
contain at most a finite number of elements of S). H

We remark that the implication “(a) implies (b)” in this theorem is not true
in an arbitrary metric space (see Exercise A.5S).

Let f be a mapping from a set A into R". Then f is said to be bounded if
there exists a real number M such that [f(x)l < M for all x € A. If f is a con-

tinuous mapping from a compact space X into R", then f(X) is compact
(Theorem AS8) and hence closed and bounded (Theorem A14). Thus we see

that any continuous function from a compact set into R" is bounded. On the
other hand, note that the function f: R — R defined by f(x) = 1/x is not
bounded on the interval (0, 1). We also see that the function g: R — R defined
by g(x) = x for x € [0, 1) never attains a maximum value, although it gets
arbitrarily close to 1. Note that both f and g are defined on non—-compact sets.

We now show that a continuous function defined on a compact space takes
on its maximum and minimum values at some point of the space.

Theorem A15 Let f be a continuous real-valued function defined on a com-
pact space X, and let M = supxex f(x) and m = infyex f(x). Then there exist
points p, q € X such that f(p) = M and f(q) = m.
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Proof The above discussion showed that f(X) is a closed and bounded subset
of R. Hence by the Archimedean axiom, f(X) must have a sup and an inf. Let
M = sup f(x). This means that given € > 0, there exists x € X such that

M-¢ < f(x) <M

(or else M would not be the least upper bound of f(X)). This just says that any
open ball centered on M intersects f(X), and hence M is an accumulation point
of f(X). But f(X) is closed so that Theorem A13 tells us that M € f(X). In
other words, there exists p € X such that M = {(p). The proof for the minimum
is identical. W

As an application of these ideas, we now prove the Fundamental Theorem
of Algebra.

Theorem A16 (Fundamental Theorem of Algebra) The complex number
field C is algebraically closed.

Proof Consider the non—constant polynomial
f(z) = ag+a;z+---+ayz" € Clz]

where a, # 0. Recall that we view C as the set R x R = IRZ, and let R be any
(finite) real number. Then the absolute value function |f|: C — R that takes
any z € C to the real number |f(z)| is continuous on the closed ball B[O, R] of
radius R centered at the origin. But B[O, R] is compact (Theorem A14) so that
[f(z)| takes its minimum value at some point on the ball (Theorem A15). On
the other hand, if we write f(z) in the form

f(z) = anz™(a/anz" + a,/anz™"!

+---+ap-1/apz+ 1)
we see that [f(z)| becomes arbitrarily large as |z| becomes large. To be precise,
given any real C > 0 there exists R > 0 such that |z| > R implies [f(z)| > C.

We now combine these two facts as follows. Let z, be arbitrary, and define
C = [f(z))|. Then there exists R, > 0 such that [f(z)| > |[f(z,)| for all z € C such
that |z - z,| > R, (i.e., for all z outside B[z, R,]). Since B[z, R,] is compact,
there exists a point z, € B[z, R] such that |f(z,)| < [f(z)| for all z € B[z,, R,].
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Blz;, Ro]

In particular, [f(z,)| < If(z,)| and hence we see that [f(z,)| < [f(z)| for all z € C.
In other words, z, is an absolute minimum of [f|. We claim that f(z,) = 0.

To show that f(z,) = 0, we assume that f(z,) # 0 and arrive at a contradic-
tion. By a suitable choice of constants c;, we may write f in the form

f(z) = co+ci(z—2y))+---+cn(z—29)" .

If f(z,) # O then c, = f(z,) # 0. By assumption, deg f = 1, so we let m be the
smallest integer greater than O such that ¢y, # 0. Defining the new variable w =
z -z, , we may define the polynomial function g by

f(z) = g(W) = co+cuw™ + wm*h(w)

for some polynomial h.

Now let w, be a complex number such that w,™ = —c,/c, and consider all
values of w = Aw, for real A with O <A < 1. Then

CmW™ = ¢ APw,™ = —c, A™

and hence

f(2)= g(}\'wl) =Cy— }meo + }LmHWlmHh()\.Wl)

=coll= A"+ 2w e h(Aw))] .

But A € [0, 1] which is compact, and hence |w,™*'c,"h(Aw,)| is a continuous
function defined on a compact set. Then the image of this function is a
compact subset of R (Theorem A8) and so is closed and bounded (Theorem
A14). This means there exists a number B > 0 such that

lw,™* ¢, "h(Aw,)| < B

for all A € [0, 1], and therefore (since 0 <A < 1 implies that 0 <A™ < 1)
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lg(Aw)| = lcol 1= A™ + A w, ™ e h(Aw))|
< leol {I=A"1 + A" w, " ey h(Aw))|}
< leol (1=A" + A™'B) .

Now recall that |c,| = If(z,)| < |f(z)| for all z € C. If we can show that

0 < 1-Am4pAmHB <

for sufficiently small A with O < A < 1, then we will have shown that [f(z)| =
lg(Aw )| < Icol, a contradiction. But it is obvious that A can be chosen so that

0<1-A™+A™B. And to require that I — A™ + A™*'B < I is the same as
requiring that AB < 1 which can certainly be satisfied for small enough A. R

Exercises
1. Show the absolute value function is continuous on R.
2. Show that the norm on a vector space V defines a metric on V.

3. Let (X, d) be a metric space. Prove:
(a) Both X and J are closed sets.
(b) The intersection of an arbitrary number of closed sets is closed.
(c¢) The union of a finite number of closed sets is closed.

4. Let A be the subset of [0, 1] consisting of all x € [0, 1] whose decimal
expansion contains only the digits 4 and 7. Explain whether or not A is
countable, dense in [0, 1], or compact.

5. Show that {x: Ixl, < 1} is closed and bounded but not compact in the
space [, (see Example 12.8).

6. A metric space is said to be separable if it contains a countable dense
subset. Prove that R" is separable. [Hint: Consider the set of all points in

R™ with rational coordinates.]
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Sequences and Series

In this appendix we briefly go through all of the theory necessary for an
understanding of Section 10.6 and Chapter 12. Furthermore, as we mentioned
at the beginning of Appendix A, rather than being simply an overview, we
want the reader to understand this material even if it has not been studied
before. We do assume however, that the reader has studied Appendix A, and
part of this appendix is a direct extension of that material.

A sequence {x,} = {X, X,, ... } inaset S is any function from the set Z*
of positive integers into S. If (X, d) 1s a metric space, then a sequence {X,} in
X is said to converge to the limit x if for each B(x, ¢) there exists N € Z*
such that x,, € B(x, €) for every n = N. In other words, given € > 0, there exists
a positive integer N such that n = N implies d(x,, x) < €. This is usually
written as lim x, = x or X, — X. If a sequence {x,} does not converge, then it
is said to diverge. Furthermore, if for every real number M there exists an
integer N such that n = N implies x, = M, then we write x, — +. Similarly,
if for every real number M there exists an integer N such that n = N implies
X, < M, then we write x,, — —©,

(We remark that the small, always positive number ¢ will be used exten-
sively in many proofs, and it is important to realize that for proofs of
convergence there is no real difference between the number € and certain
simple functions of € such as 2e. For example, suppose we can show that
given g, there exists N such that n = N implies d(x,, X) < 2e. We claim this
also proves that x, — x. Indeed, let ¢’ = €¢/2. Then, by assumption, there exists

ROAR
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N’ such that n = N implies d(xy, x) < 2¢’ = ¢ which shows that x is the limit of
the sequence. It should be clear that the statement “given € > 0” is equivalent
to saying “given Ce > 0” for any finite C >0.)

The set of all points x, forn=1, 2, . . . is called the range of the sequence
{xn}. This may be either a finite or an infinite set of points. A set A C (X, d)
is said to be bounded if there exists a real number M and a point xg € X such
that d(x, xg) <M for all x € A. (The point X is almost always taken to be the
origin of any given coordinate system in X.) The sequence {x,} is said to be
bounded if its range is a bounded set. It is easy to show that any convergent
sequence is bounded. Indeed, if x, — X then, given 1, there exists N such that
n = N implies d(xy, x) < 1. This shows that {x,: n = N} is bounded. To show
that {x,:n=1,..., N -1} is bounded, let

r = max{l, d(x;, x),...,dxXN-1, X)} .

Since X, € X, it must be true that each d(x,, X) is finite, and hence d(x,, X) <r
foreachn=1,... ,N-1.

We now prove several elementary properties of sequences, starting with
the uniqueness of the limit.

Theorem B1 If {x,} is a sequence in a metric space (X, d) such that x, — x
and x;, =y, thenx =y.

Proof Given ¢ > 0, there exists N such that n = N implies d(x,, Xx) < € and
d(xp, y) < €. But then d(X, y) < d(xy, X) + d(Xp, y) < 2¢. Since this holds for all
€ >0, we must have x =y (see Appendix A, definition (M2)). i

Theorem B2 Lets, — s and t, — t be convergent sequences of complex
numbers. Then

(a) lim (sp +ty) =s +t.

(b) lim csy =cs and lim (¢ + sp) =c + s for any c € C.

(c) lim syt = st.

(d) lim 1/s, = 1/sif s # 0 and s, # 0 for all n.

Proof (a) Given ¢ > 0, there exists N and N> such that n = N, implies that
Isp, — sl < €/2 and n = N, implies that |t, — t| < /2. Let N = max{Nj, N,}. Then
n = N implies

l(sp=8)+(th =) < Isp—sl+ty,—t] < ¢ .

(b) This is Exercise B.1.
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(c) Note the algebraic identity
Sntn =St = (Sp = S)(ty —t) + sty —t) + t(Sp, —S) .

By parts (a) and (b) we see that lim s(t, — t) = 0 = lim t(s, — s). Now, given
€ > 0, there exists Nj and Nj such that n = Nj implies

Isp —s| < Ve
and n = N; implies

Ity -t < Ve .
If N = max{Ny, N>}, then n = N implies that
l(sn = S)(th =D < €

and hence lim (spt, — st) = lim (s, — s)(t, —t) =0.

(d) At the end of Section 0.4 we showed that |a] — |b|] < |a + b| for any a,
b € R. Reviewing the proof shows that this applies to complex numbers as
well. Letting b — —b then shows that |a| — [b| < |a - b|.

Given |s|/2, there exists m such that n = m implies |s, — s| < [s|/2 (this
follows from the fact that s, — s). But [s| — [sp| < [sy — s| < [s|/2 implies [sp| >
Isl/2 .

Alternatively, given € > 0, there exists N (which we can always choose
greater than m) such that n = N implies |s, — s| < |s|°e/2. Combining these
results, we see that for all n = N we have

s —s| |s —s| 2|s —s|
n =z < ”2 <e . 11
Isllsal 5]

S,

Intuitively, we expect that a sequence {x,} of points in R" converges to a

point in R" if and only if each of the n coordinates converges on its own. That
this 1s indeed true is shown in our next theorem.

Theorem B3 Suppose xi = (xk', ..., xk™) € R™ Then {x} converges to X
=xL,...,x"e IR“ifandonlyikai — x'foreachi=1,...,n.
Proof First note that for any j=1, ..., n we have

n
= = P -y = - y7)
i=1
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which implies [x/ - yI| < [x - y |. Now assume that x; — x. Then given & > 0,
there exists N such that k = N implies |x}) — y/| < |xi — x| < &. This shows that
Xk — X implies ij — xJ,

Conversely, assume ij — x for every j=1, ..., n. Then given € > 0,

there exists N such that k = N implies |xJ — xJ| < e/vn . Hence k = N implies

1/2

n
X, —Xx|= x, = x7)? <ne*/n)'? =¢
k k

=1

so that xxy — x. I

A sequence {xx} in a metric space (X, d) is said to be a Cauchy sequence
if given € > 0, there exists N such that n, m = N implies d(Xp, Xm) < €. It is
easy to see that every convergent sequence is in fact a Cauchy sequence.
Indeed, simply note that if xx — X, then given € > 0, there exists N such that
n = N implies d(x;, X) < €/2. Hence if n, m = N we have

d(Xp, Xm) < dXp, X) +d(Xm, X) < €/2+¢€/2 = ¢ .

However, it is not true that a Cauchy sequence need converge. For exam-
ple, suppose X = (0, 1] C R and let {xx} = {1/k} fork=1,2,....Thisisa
Cauchy sequence that wants to converge to the point O (choose N = 1/¢ so that
[1/n = 1/m| < |[1/n| + [1/m| < 2¢ for all m, n = N). But 0 & (0, 1] so that the
limit of the sequence is not in the space. This example shows that convergence
is not an intrinsic property of sequences, but rather depends on the space in
which the sequence lies. A metric space in which every Cauchy sequence
converges is said to be complete (see Appendix A).

We have shown that any convergent sequence is necessarily a Cauchy
sequence, but that the converse is not true in general. However, in the case of
R", it is in fact true that every Cauchy sequence does indeed converge, i.e., R"
is a complete metric space. This is easy to prove using the fact that any n-cell
in R" is compact (Theorem A11), and we outline the proof in Exercise B.10.
However, it is worth proving that R" is complete without using this result. We
begin by proving several other facts dealing with the real number line R. By
way of terminology, a sequence {x,} of real numbers with the property that
Xp < Xp+1 18 said to be increasing. Similarly, if x, = x4 then the sequence is
said to be decreasing. We will sometimes use the term monotonic to refer to
a sequence that is either increasing or decreasing.
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Theorem B4 Let {xx} be an increasing sequence (i.e., Xy < Xy1) of real
numbers that is bounded above. Then the least upper bound b of the set {xy}
is the limit of the sequence.

Proof 1t should be remarked that the existence of the least upper bound is
guaranteed by the Archimedean axiom. Given € >0, the number b — €/2 is not
an upper bound for {xx} since b is by definition the least upper bound.
Therefore there exists N such that b — €/2 < xn < b (for otherwise b — €/2
would be the least upper bound). Since {xy} is increasing, we have

b-e2 <xy=Xp =D

for every n = N. Rearranging, this is just b — x,, < €/2 < € which is the same as
x,-bl<e. N

Since the Archimedean axiom also refers to the greatest lower bound of a
set of real numbers, it is clear that Theorem B4 may be applied equally well to
the greatest lower bound of a decreasing sequence.

Let (X, d) be a metric space, and suppose A is a subset of X. Recall from
Appendix A that a point x € X is said to be an accumulation point of A if
every deleted neighborhood of x contains a point of A. The analogous term for
sequences is the following. A number x is said to be a cluster point (or limit
point) of a sequence {x,} if given € > 0, there exist infinitely many integers n
such that [x,, — x| < €. Equivalently, x is a cluster point if given € >0 and given
N, there exists some n = N such that |x, — x| < €. Note that this does not say
that there are infinitely many distinct x,, such that [x, — x| < €. In fact, all the
Xy could be identical. It is important to distinguish between the indices n and
the actual elements x, of the sequence. It is also important to realize that a
limit point of a sequence is not the same as the limit of a sequence (why?).
Note also that a sequence in X may be considered to be a subset of X, and in
this context we may also refer to the accumulation points of a sequence.

Our next result is known as the Bolzano-Weierstrass Theorem.

Theorem BS (Bolzano-Weierstrass) Let {xy} be a sequence of real num-
bers, and let a, b € R be such that a < xi < b for all positive integers k. Then
there exists a cluster point ¢ of the sequence witha<c <b.

Proof For each n, the sequence {Xp, Xp+1, - - - } 1s bounded below (by a), and
hence has a greatest lower bound (whose existence is guaranteed by the
Archimedean axiom) which we denote by ¢, . Then {c,} forms an increasing
sequence cp < Cp4 < - - - which is bounded above by b. Theorem B4 now



SEQUENCES AND SERIES 701

shows that the sequence {c,} has a least upper bound c (with a < ¢ <b) which
is in fact the limit of the sequence {c,}. We must show that c is a cluster point
of the sequence {xy}.

To say that c is the limit of the sequence {c,} means that given € > 0 and
given any N, there exists some m = N such that

lcm —cl < €/2 .

By definition, cy, is the greatest lower bound of the set {Xm, Xm+1, - . . } which
means there exists k > m such that ¢, < xXx <cp + €/2 or

Xk —cml < €/2 .
Therefore k > m = N and
Xk —¢l = [Xk—=Cm+em—cl < [Xk—cml+lem—cl < ¢
which shows that c is a cluster point of the sequence {xy}. W
Note that Theorem B5 also follows from Theorem A12.
Theorem B6 If {x,} is a Cauchy sequence of numbers, then it is bounded.
Proof By definition of a Cauchy sequence, given € = 1 there exists N such
that n = N implies |x, — xn| < 1. Hence [xp| — [xn| = Xy — xn| < 1 implies [xp| <
Ixn| + 1 for every n = N. Define B = max{|xil, . . ., [xnl, Ixn| + 1}. Then B is
clearly a bound for {x,}. B

Theorem B7 Any Cauchy sequence {x,} of numbers converges.

Proof From Theorem B6 the sequence {x,} has a bound B, and hence we
have -B < x, < B for all n. Hence by Theorem B35, the sequence {x,} has a
cluster point c. We claim that c¢ is the limit of the sequence. Since the
sequence is Cauchy, given € > 0 there exists N such that m, n = N implies
Ixm — Xnl < €/2. Using this €, we see that because c is a cluster point, there
exists m = N such that |xy, — c| < €/2. Combining these last two results shows

that for all n > N
Xp—cl < |Xp=Xml +Xm—cl < ¢ . N

We are now in a position to prove our principal assertion.
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Theorem B8 R" is a complete metric space. In other words, every Cauchy

sequence in R" converges to a point in R".

Proof Let {xx} be a Cauchy sequence in R". Then X = Xoll < X = Xal (see
the proof of Theorem B3) so that {x}/} is also a Cauchy sequence in R for

each j = 1, ..., n. Hence by Theorem B7 each of the sequences {x;/} also
converges in R. Therefore (by Theorem B3) the sequence {xy} must converge

inR™ N

We have seen that any convergent sequence is a Cauchy sequence and
hence bounded. However, the converse is not generally true. (For example,
the sequence {1, 2, 1, 2, . . . } is clearly bounded but does not converge to
either 1 or 2.) There is, however, a special case in which the converse is true
that will be of use to us.

Theorem B9 A monotonic sequence {x,} converges if and only if it is
bounded.

Proof We consider increasing sequences. The proof for decreasing sequences
is similar. It was shown above that any convergent sequence is bounded, so
we need only consider the converse. But this was proved in Theorem B4. |

Finally, accumulation points are useful in determining whether or not a set
is closed. The principal result relating these concepts is the following.

Theorem B10 A subset A of a metric space (X, d) is closed if and only if A
contains all of its accumulation points.

Proof This is also Theorem A13. B

Before continuing, we must make a digression to discuss some more basic
properties of metric spaces. If the reader already knows that a point x in a
subset A of a metric space X is in the closure of A if and only if every neigh-
borhood of x intersects A, then he/she may skip to Theorem B16 below.

Let (X, d) be a metric space, and suppose A C X. We define

(a) The closure of A, denoted by CI A, to be the intersection of all closed
supersets of A;

(b) The interior of A, denoted by Int A (or A°), to be the union of all
open subsets of A;
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(c) The boundary of A, denoted by Bd A, to be the set of all x € X such
that every open set containing x contains both points of A and points
of A=X-A;

(d) The exterior of A, denoted by Ext A, to be (Cl A)*=X -Cl A;

(e) The derived set of A, denoted by A’, to be the set of all accumulation
points of A.

Example B1 Let X = R? with the Pythagorean metric. Let A be the open unit

ball defined by A = {(x, y): x> + y?> < 1}. Then the following sets should be
intuitively clear to the reader:

CIA={(x,y):x*+y>=<1};
IntA=A;
BdA={Xxy):x>+y*=1};
ExtA={(x,y): x> +y>>1};
A'=ClA. /

Theorem B11 Let (X, d) be a metric space and suppose A, B C X. Then
(a) ACCIA.
(b) CI(CI A) =CI A.
(¢) CI(A UB)=(Cl A) U (CI B).
d Clg=0.
(e) Aisclosed if and only if A = Cl A.
(f) CI(A N B) C (C1 A) N (C1B).

Proof Parts (a), (b), (d) and (e) are essentially obvious from the definition of
Cl A, the fact that the intersection of an arbitrary number of closed sets is
closed (see Exercise A.3), the fact that the empty set is a subset of every set,
and the fact that if A is closed, then A is one of the closed sets which contains
A.

(c) First note that if S C T, then any closed superset of T is also a closed
superset of S, and therefore Cl1 S C Cl T. Next, observe that A C A U B and
B C A U B, so that taking the closure of both sides of each of these relations
yields

ClIA C CI(AUB)
and
CIB C CI(AUB) .

Together these show that (C1 A) U (Cl B) C CI(A U B). Since Cl A and C1 B
are both closed, (CI A) U (Cl B) must also be closed and contain A U B.
Hence we also have
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CI(AUB) C (ClA)U (CIB) .

This shows that CI(A U B) = (C1 A) U (Cl B).

(f) By (a) wehave ANBCACCIAand AN B CBCCIB, and hence
A N B is a subset of the closed set (C1 A) N (Cl B). But by definition of
closure this means that

C(ANB) C (ClIA)N(CIB) .

Theorem B12 Let (X, d) be a metric space and suppose A C X. Then
(a) CTA=AUA'"
(b) ClA=Int A UBdA.
(c) Bd A=BdA°“.
(d) IntA=ClA-BdA.

Proof (a) Assume x € Cl A but that x & A. We first show that x € A". Let U

be any open set containing x. If U N A = &, then U€ is a closed superset of A

which implies Cl1 A C U€. But this contradicts the assumption that x € U since
it was assumed that x € Cl A. Therefore, since x & A, we must have

U-XHNA % D

so that x € A". This shows that CTAC A U A"

Now assume that x € A U A". If x € A, then obviously x € Cl A (since
A CCl A), so suppose x € A'. We will show that x is contained in any closed
superset of A. Let F be any closed superset of A not containing x. Then F€ is
an open set containing x and such that (F¢ - {x}) N A = & which says that
x & A’, a contradiction. Thus x is contained in any closed superset of A so
that x € Cl A. Since this shows that A U A’ C Cl A, it follows that A U A’ =
Cl A.

(b) We first suppose that x € Cl A but x & Bd A. Since x & Bd A, there
exists an open set U containing x such that either U C A or U C A€, If it were
true that U C A€, then U® would be a closed superset of A (see Example 0.1)
so that C1 A C U° which contradicts the assumption that x € Cl A. We must
therefore have U C A, and hence x € Int A. Since the assumption that x € CI
A but x & Bd A led to the requirement that x € Int A, we must have

ClIA C IntAUBdA .
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Now assume x € Int A U Bd A, but that x & Cl A. Note Int AC ACCIA
so that x & Int A, and hence it must be true that x € Bd A. However, since

x & Cl A, (Cl A)¢ is an open set containing x with the property that (C1 A)° N
A = . But this says that x & Bd A which contradicts our original assump—
tion. In other words, we must have Int A U Bd A C Cl A, so that

ClIA = IntAUBdA .

(c) If x € Bd A and U is any open set containing x, then U N A # J and
UN A®#J. But A = (A°° so that we also have U N (A°)¢ # J. Together
with U N A® # ), this shows that x € Bd A°. Reversing the argument shows

that if x € Bd A€, then x € Bd A. Hence Bd A = Bd A€.
(d) This will follow from part (b) if we can show that Int A N Bd A = &.
Now suppose that x € Int A N Bd A. Then since x € Bd A, it must be true

that every open set containing x intersects A. But this contradicts the
assumption that x € Int A (since by definition there must exist an open set U
containing x such that U C A), and hence we must have Int A NBdA=J. 1

It should be remarked that some authors define Bd A as Cl A — Int A so
that our definition of Bd A follows as a theorem. This fact, along with some
additional insight, is contained in the following theorem.

Theorem B13 Let A be a subset of a metric space (X, d), and suppose x €
X. Then

(a) x €Int A if and only if some neighborhood of x is a subset of A.

(b) x € Cl Aif and only if every neighborhood of x intersects A.

(c) BAA=ClA - Int A.

Proof (a) If x € Int A, then by definition of Int A there exists a neighbor—
hood U of x such that U C A. On the other hand, if there exists an open set U
such that x € U C A, then x € Int A.

(b) By Theorem B12(a), C1 A=A U A". If x € Cl A and x € A, then
clearly every neighborhood of x intersects A. If x € Cl A and x € A’, then
every neighborhood of x also intersects A. Conversely, suppose that every
neighborhood of x intersects A. Then either x € A or x € A’, and hence x €
AUA'=CIA.

(c) By definition, x € Bd A if and only if every open set containing x
contains both points of A and points of A°. In other words, x € Bd A if and
only if every open set containing x contains points of A but is not a subset of
A. By parts (a) and (b), this is just BAA=ClI A-Int A.
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Example B2 An elementary fact that will be referred to again is the follow-
ing. Let A be a nonempty set of real numbers that is bounded above. Then by
the Archimedean axiom, A has a least upper bound b = sup A. Given ¢ > 0,
there must exist X € A such that b — € < x < b, for otherwise b — € would be an
upper bound of A. But this means that any neighborhood of b intersects A,
and hence b € C1 A. Thus b € A if A'is closed. /

Our next example yields an important basic result.

Example B3 Let X = R with the standard (absolute value) metric, and let
Q CR be the subset of all rational numbers. In Theorem 0.4 it was shown that
given any two distinct real numbers there always exists a rational number
between them. This may also be expressed by stating that any neighborhood
of any real number always contains a rational number. In other words, we
have CIQ=R. /

From Theorems B10 and B12(a), we might guess that there is a relation-
ship between sequences and closed sets. This is indeed the case, and our next
theorem provides a very useful description of the closure of a set.

Theorem B14 (a) A set A C (X, d) is closed if and only if for every
sequence {X,} in A that converges, the limit is an element of A.

(b) If A C (X, d), then x € CI A if and only if there is a sequence {x,} in
A such that x, — x.

Proof (a) Suppose that A is closed, and let x, — x. Since any neighborhood
of x must contain all x, for n sufficiently large, it follows from Theorem B10
that x € A.

Conversely, assume that any sequence in A converges to an element of A,
and let x be any accumulation point of A. We will construct a sequence in A
that converges to x. To construct such a sequence, choose x, € B(x, 1/n) N A.
This is possible since x is an accumulation point of A. Then given € > 0,
choose N = 1/¢ so that x, € B(X, €) for every n = N. Hence x,, — x so that x €
A. Theorem B10 then shows that A is closed.

(b) This is Exercise B.4. i

If (X, d) is a metric space, then A C X is said to be somewhere dense if
Int(Cl A) # J. The set A is said to be nowhere dense if it is not somewhere
dense. If C1 A = X, then A is said to be dense in X.
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Example B4 Let X = R with the usual metric. The set A = [a, b) has closure
Cl A = [a, b], and therefore Int(Cl A) = (a, b) # J. Hence A is somewhere
dense. Example B3 showed that the set Q is dense in R. Now let A = Z, the set
of all integers. Z° = R — Z is the union of open sets of the form (n, n + 1)
where n is an integer, and hence Z is closed. It should also be clear that Z' =
& since there clearly exist deleted neighborhoods of any integer that do not
contain any other integers. By Theorem B13(a), we also see that Int(Cl Z) =
Int Z = & so that Z is nowhere dense. /

Theorem B15 A subset A of a metric space (X, d) is dense if and only if
every open subset U of X contains some point of A.

Proof Suppose A is dense so that Cl A = X. If U C X is open, then the fact
that any x € U C CI A implies that every neighborhood of x intersects A
(Theorem B13). In particular, U is a neighborhood of x so that U N A # .
On the other hand, suppose that every open set U intersects A. If x € X, then
every neighborhood U of x must intersect A so that x € Cl A. Since x was
arbitrary, it must be true that CIA =X. i

After this topological digression, let us return to sequences of numbers.
Given a sequence {x,}, we may consider a sequence {nx} of positive integers
that forms a subset of Z* such that nj < np < - - - . The corresponding subset
{Xn,y of {xp} 1s called a subsequence of {x,}. If {x,,} converges, then its
limit is called a subsequential limit of {x,}. From the definitions, it should
be clear that any cluster point of {x,} is the limit of a convergent subse-
quence. It should also be clear that a sequence {x,} converges to x if and only
if every subsequence also converges to x (see Exercise B.5).

Theorem B16 The set of all subsequential limits of a sequence {x,} in a
metric space (X, d) forms a closed subset of X.

Proof Let S be the set of all subsequential limits of {x,}. If y is an accumu-
lation point of S, we must show that y € S (Theorem B10), and hence that
some subsequence of {x,} converges to y. Choose n; such that x,, #y (why
can this be done?), and let & = d(xy,, y). Now suppose that nj, np, . . . , ng—g
have been chosen. Since y is an accumulation point of S, there exists z € S,
z #y, such that d(z, y) < 27%5. But z € S implies that z is a subsequential

limit, and hence there exists nx > nk-; such that d(z, xp,) < 2-Ks. Therefore,
foreachk=1,2,...we have

d(Xp,., y) < d(Xp,,z) +d(z,y) < 2!7%8
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so that the subsequence {x,, } convergestoy. H

Given a sequence {a,} of complex numbers (which can be regarded as

points in R?), we may define the infinite series (generally called simply a
series)

Ean =a1+a2 + e

0
i=1

as the sequence {s,} where

n
k=1

If the sequence {s,} converges to a number s, we say that the series
converges and we write this as X;%1a, = s. Note that the number s is the limit
of a sequence of partial sums. For notational convenience, the lower limit in
the sum may be taken to be O instead of 1, and we will frequently write just
2ap when there is no danger of ambiguity and the proper limits are under—
stood.

The reader should note that 272 a, stands for two very different things.
On the one hand it is used to stand for the sequence {s,} of partial sums, and
on the other hand it stands for lim,_, . S,. This is a common abuse of notation,
and the context usually makes it clear which meaning is being used.

We have seen that any convergent sequence is Cauchy, and in Theorem
B8 we showed that any Cauchy sequence in R" converges. Thus, a sequence
in R" converges if and only if it is Cauchy. This is called the Cauchy
criterion. Since the convergence of a series is defined in terms of the
sequence of partial sums, we see that the Cauchy criterion may be restated as
follows.

Theorem B17 A series of numbers 2a, converges if and only if given ¢ >0,
there exists an integer N such that m = n = N implies

m
S <e .
k=n

Proof If the series Xa, converges, then the sequence {s,} of partial sums
Sy = 2§=1 a, converges, and hence {s,} is Cauchy. Conversely, if the sequence

of partial sums s, is Cauchy, then {s,} converges (Theorem B8). In either
case, this means that given € > 0, there exists N such that p = q = N implies
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p q P
s =SSl S al<e
k=1 k=1 k=g+1

The result now follows by choosingm=pandn=q+1. §

Another useful way of stating Theorem B17 is to say that a series Xa,
converges if and only if given € > 0O, there exists N such that k = N implies
that |ay + - - - + ay.pl < € for all positive integersp=0, 1,2, ... .

Corollary If Xa, converges, then given ¢ > 0 there exists N such that |a,| < €
for all n = N. In other words, if Xa, converges, then lim;_., , a, = 0.

Proof This follows from Theorem B17 by lettingm =n. i

While this corollary says that a necessary condition for Xa, to converge is
that a, — 0, this is not a sufficient condition (see Example B5 below).

If we have a series of nonnegative real numbers, then each partial sum is
clearly nonnegative, and the sequence of partial sums forms a non-decreasing
sequence. Thus, directly from Theorem B9 we have the following.

Theorem B18 A series of nonnegative real numbers converges if and only if
its partial sums form a bounded sequence.

One consequence of this theorem is the next result.

Theorem B19 Suppose Xa, is a series such that a, > a, > - - - = 0. Then Xa,
converges if and only if

[oe}

k
EZ a, =a +2a, +4a, +--
k=0

converges.

Proof Letsn=a1+a2+---+anandlettk=a1+2a2+---+2ka2k.Sinceall

terms in the series Ya, are nonnegative we may write for n < 2*

Sp=ap+(ay +azy)+(ay+as+ag+a;)+ -+ Ay + -+ Ay _ )

since this is just adding the nonnegative term a +- -+ a5kl 1O S,k = Sp.

2Ky
But {a,} is a decreasing sequence, so noting that the last term in parentheses

consists of 2K terms, we have
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k
Spsap+2ay+4ag+-+27a, =1 .

Similarly, if n > 2* we have

S,za;+a,+(az+ay)+-+(a +otay)

24 2
k-1
=(1/2)a; +ay +2a, +---+2" a,

=(1/2)t, .

We have now shown that n < 2K implies s, < tg, and n > 2k implies 2s; = ty.
Thus the sequences {s,} and {t } are either both bounded or both unbounded.
Together with Theorem B18, this completes the proof. W

The interesting aspect of this theorem is that the convergence of Xa, is
determined by the convergence of a rather “sparse” subsequence.

Example B5 Let us show that the series 2Xn~P converges if p > 1 and
diverges if p < 1. Indeed, suppose p > 0. Then by Theorem B19 we consider

the series
E ok .o=kp _ E 2k-p)
k=0 k=0

By the corollary to Theorem B17, we must have 1 — p <0 so that p > 1. In this
case, > 2K0-P) = F(2I-P)k is a geometric series which converges as in
Example B1, and hence Theorem B19 shows that Xn~P converges for p > 1. If
p <0, then X n~P diverges by the corollary to Theorem B17. /

If we are given a series 2a,, we could rearrange the terms in this series to
obtain a new series 2a'y. Formally, we define this rearrangement by letting
{kn} be a sequence in which every positive integer appears exactly once. In
other words, {k;} is a one-to-one mapping from Z* onto Z*. If we now define
a'n = ag, forn =1, 2, ..., then the corresponding series 2a’, is called a
rearrangement of the series 2a,,.

For each of the series Xa, and Xa’,, we form the respective sequences of
partial sums {sx} and {s'x}. Since these sequences are clearly different in
general, it is not generally the case that they both converge to the same limit.
While we will not treat this problem in any detail, there is one special case
that we will need. This will be given as a corollary to the following theorem.

A series Xa, is said to converge absolutely if the series XJa,| converges.

Theorem B20 If Xa, converges absolutely, then Xa, converges.
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Proof Note |ZP'=, ay| < 2=, layl and apply Theorem B17. 1

Corollary If Xa, converges absolutely, then every rearrangement of Xa,
converges to the same sum.

Proof Let 2a', be a rearrangement with partial sums s',. Since 2a, con-

verges absolutely, we may apply Theorem B17 to conclude that for every € >

0 there exists N such that m = n = N implies
m

E|ai|<s . (*)

i=n

Using the notation of the discussion preceding the theorem, we let p € Z* be

such that the integers 1, . . ., N are contained in the collection k, , . . . , kj
(note that we must have p = N). If for any n > p we now form the difference
Sn — S'n, then the numbers a,, . . ., an will cancel out (as may some other num-

bers if p > N) and hence, since (*) applies to all m = n = N, we are left with
Isp — s'nl < €. This shows that {s,} and {s',} both converge to the same sum
(since if s, — s, then |s'y — s| < [s'y = syl + Isp — s| < 2& which implies that
s'hn = s also).

We remark that Theorems B17 and B20 apply equally well to any com-
plete normed space if we replace the absolute value by the appropriate norm.

Before presenting any examples of series, we first compute the limits of
some commonly occurring sequences of real numbers.

Theorem B21 (a) If p >0, then lim,_, ,, 1/n? =0.
(b) If p >0, then limy_,  p'/™ = 1.
(c) limy_on'/M=1.
(d) If p>0 and r is real, then limy_, ., n"/(1 + p)" = 0.
(e) If x| < 1, then lim,_,  x" = 0.

Proof (a) Given ¢ >0, we seek an N such that n > N implies 1/nP < €. Then
choose N = (1/¢)"/P,

(b) If p = 1, there is nothing to prove. For p > 1, define x, = p"/" - 1 >0
so that by the binomial theorem (Example 0.7) we have

p=>U0+xy)" = 1+nx, .

Thus 0 < x, < (p — 1)/n so that lim x, =0, and hence lim p]/n =1.If0O<p<1,
we define y, = (1/p)"/" - 1 >0. Then
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p=~U+y)" = 1+nyy

so that y, — 0, and hence we again have lim p'/" = 1.

(¢c) Let x, =n!/™ = 1 =0, so that using only the quadratic term in the

binomial expansion yields

nn-1) an .
2

n=(1+x,)" = (’;)x,f _

Thus (for n = 2) we have 0 < x, < [2/(n — 1)]"? so that x, — 0. Therefore
limn'" = 1.

(d) Let k be any integer > O such that k > r. Choosing the k#h term in the
binomial expansion we have (since p > 0)

LepY =" k_nn-1)--(n-(k-1) .
(I+p) (p)p ! p

If we letn > 2k, thenk<n/2sothatn>n/2,n-1>n/2,...,n-(k-1)>n/2
and hence (1 + p)" > (n/2)*p*/k! . Thus (for n > 2k)

r k
n 2 k!nr_k

0< —<—
(I+p) p

Since r - k <0, it follows that "% — 0 by (a).
(e) Chooser=0in(d). i

Corollary If N >0 is any finite integer, then lim,_, , (n™)"/" = 1.

Proof (™M) =N/ = (n!/m)N 5o that (by Theorem B2(c))

lim@MN = dimn/MN = 1N =1 . 1
Example B6  The geometric series 2720 x" converges for x| < 1 and
diverges for [x| = 1. Indeed, from elementary algebra we see that (for x # 1)

1-x
l+x+x> 4+ +x" =

If x| < 1, we clearly have lim x"*!1 =0, and hence
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If [x| > 1, then |x|™*! — o and the series diverges. In the case that [x| = 1, we

see that x" - 0 so the series diverges. /

Let {x,} be a sequence of real numbers. In general this sequence may
have many cluster points, in which case it will not converge to a definite limit.
Now define the sequences

Un = supken Xk
and

Ln insz,l Xk -

Note that U, is a decreasing sequence and L, is an increasing sequence. If a is
the largest cluster point of {x,}, then clearly the U, will approach a as n
increases. Furthermore, no matter how large n gets, U, will always remain >
o.. Similarly, if  is the smallest cluster point of {x,}, then all the L, must be
< B. This situation is represented schematically in the figure below.

L, L, --- L, U, - U, U,
— e ‘ I I R

Let U = inf,U,. By Theorem B4 and the remarks following it we see that
U, converges to U. The limit U is called the upper limit (or limit superior)
of the sequence {x,} and will be denoted by X. In other words,

X = inf, supks>p Xx = limp_, & SUPk>p Xk -
The upper limit is frequently also written as lim sup x.
Similarly, L, converges to L = sup, L. The limit L is called the lower
limit (or limit inferior) of the sequence {x,}, and is denoted by x. Thus

X = suppinfysp Xk = limy_, & infyx>, Xk

which is also written as lim inf x,. Note that either or both X and x could be

*00,

Theorem B22 If x, <y, for all n greater than or equal to some fixed N, then
lim sup x, < lim sup y, and lim inf X, < lim inf y,,.
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Proof This is Exercise B.6. 1

We have already remarked that in general a sequence may have many (or
no) cluster points, and hence will not converge. However, suppose {x,} con-
verges to x, and let lim U, = U. We claim that x = U.

To see this, we simply use the definitions involved. Given ¢ > 0, we may
choose N such that for all n > N we have both |x — x,| < € and |[U - U,| < &.
Since UN = supx>N Xk , we see that given this €, there exists k = N such that
Uy - € <xg or Uy — Xk < €. But then we have

U -x| < |[U-=Unl+IUN =%kl +|xx = x| < 3¢

which proves that U = x. In an exactly analogous way, it is easy to prove that
L =1im L, = x (see Exercise B.7). We have therefore shown that x, — x
implies lim sup x, = lim inf x, = X. That the converse of this statement is also
true is given in the next theorem. It should be clear however, that all but a
finite number of terms in the sequence {x,} will be caught between U and L,
and hence if U = L it must be true that x, — x=U=L.

Theorem B23 A real-valued sequence {x,} converges to the number x if
and only if lim sup x, = lim inf X, = X.

Proof Let Uy = supg>y Xk and L, = infy>y Xk , and first suppose that lim U, =
lim L, = x. Given ¢ > 0, there exists N such that [U, — x| < € for all n > N, and
there exists M such that |L,, — x| < € for all n = M. These may be written as
(see Example 0.6) x —e < Uy, <x+eforalln=N,and x — e <L, <x + ¢ for
all n = M. But from the definitions of U, and L, we know that x, < U, and
L, <X, Hence x, <x + ¢ foralln =N and x - € < x;, for all n > M. Therefore
|xn — x| < € for all n > max{N, M} so that x, — X.
The converse was shown in the discussion preceding the theorem. W

Define S to be the set of all cluster points of {x,}. Since any cluster point
is the limit of some subsequence, it follows that S is just the set of all
subsequential limits of {x,}. From the figure above, we suspect that sup S =X
and inf S = x. It is not hard to prove that this is indeed the case.

Theorem B24 Let {x,} be a sequence of real numbers and let S, X and x be
defined as above. Then sup S =X and inf S = x.

Proof This is Exercise B.8. 1
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Example B7 Let x, = (-1)"/(1 + 1/n). Then it should be clear that we have
lim sup x, = 1 and lim inf x, = -1. /

Our next theorem will be very useful in proving several tests for the con-
vergence of series.

Theorem B25 Let {x,} be a sequence of real numbers, let S be the set of all
subsequential limits of {x,}, and let X = lim sup X, and x = lim inf x,,. Then
(a) xES.
(b) If r > X, then there exists N such that n = N implies x, <.
(c) X is unique.
Of course, the analogous results hold for x as well.

Proof We will show only the results for X, and leave the case of x to the
reader.

(a) Since S (the set of all subsequential limits) lies in the extended number
system, we must consider three possibilities. If —© < X < +o0, then S is
bounded above so that at least one subsequential limit exists. Then the set S is
closed (by Theorem B16), and hence X = sup S € S (see Example B2).

If X = 4+, then S is not bounded above so that {x,} is not bounded above.
Thus there exists a subsequence {Xxp, } such that x,, — +%. But then +© € S
so that X € S.

If X = —o, then there is no finite subsequential limit (since X is the least
upper bound of the set of such limits), and hence S consists solely of the
element —c. This means that given any real M, x, > M for at most a finite
number of indices n so that X, — —o, and hence X = -0 € S.

(b) If there existed an r > X such that x,, = r for an infinite number of n,
then there would be a subsequential limit X" of {X,} such that x" = r > X. This
contradicts the definition of X.

(c) Let X and y be distinct numbers that satisfy (a) and (b), and suppose
X <§. Letr be any number such that X <r < ¥ (that such an r exists was shown
in Theorem 0.4). Since X satisfies (b), there exists N such that x, <r for alln >
N. But then y can not possibly satisfy (a). H

We now have the background to prove three basic tests for the conver-
gence of series.

Theorem B26 (a) (Comparison test) If >b, converges, and if |a,| < b, for
n = N, (N, fixed), then Xa, converges. If 2c, diverges, and if a, > ¢, = 0 for
n = N, then Xa, diverges.

(b) (Root test) Given the series Xa,, let @ = lim supla,|'/™ If a < 1, then
2an converges, and if a > 1, then Xa, diverges.
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(c) (Ratio test) The series 2a, converges if lim sup |ay41/a| < 1, and
diverges if |ap41/ap] = 1 for n = N (N fixed).

Proof (a) Given ¢ > 0, there exists N = N, such that m = n = N implies that
|Zf=p be| < & (Theorem B17). Hence Xa;, converges since

<€ .

m
2
k=n

m m
sE|ak|sEbk=
k=n k=n

2 b
k=n

By what has just been shown, we see that if 0 < ¢, < a, and Xa, converges,
then Xc, must also converge. But the contrapositive of this statement is then
that if 2c, diverges, then so must Xay,.

(b) First note that a = 0 since |a,|'™ = 0. Now suppose that a < 1. By
Theorem B25(b), for any r such thata < r < 1, there exists N such that n = N
implies |ay|'/" < r, and thus |a,| < ™. But 31" converges (Example B5) so that
2a, must also converge by the comparison test.

Ifa > 1, then by Theorems B22(a) and B14(b), there must exist a sequence
{n} such that Iankll/ "k — @ . But this means that |ay| > 1 for infinitely many n

so that a, - 0 and Xa, does not converge (corollary to Theorem B17).
(c) If lim suplap41/an| < 1 then, by Theorem B25(b), we can find a number
r < 1 and an integer N such that n > N implies |a, 41/ay| < r. We then see that

2
P
‘amp‘ <r |aN| .
Therefore, letting n = N + p we have
lanl < 1" Nyl = r~Naylr
for n = N, and hence X2a, converges by the comparison test and Example B6.
If |ap 41l = lag| for n = N (N fixed), then clearly a, - 0 so that Xa, can not

converge (corollary to Theorem B17). i

Note that if a = 1 when applying the root test we get no information since,

for example, 21/n and >1/n” both have a = 1 (corollary to Theorem B21), but
the first diverges whereas the second converges (see Example B5).
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Example B8 Consider the function e* ( = exp x) defined by
2 © n

X
ex=1+x+—‘+---= —

where X may be real or complex. To test for convergence, we observe that
lay41/ap] = [x/(n+1)] so that

lim sup =1lim,,_,, sup;.,

=
a, k+1

X

=lim,_,,
n+l

=0

and hence the series converges by the ratio test.
It is of great use in both mathematics and physics to prove that

e =lim,_,, (1 + f) :
n

While this can be proved by taking the logarithm of both sides and using

I’Hospital’s rule, we shall follow a direct approach. Let x, = (1 + x/n)".
Expanding x, by the binomial theorem we have (for n > 2)

v Erwl)

3 n
=1+x+n(n—l)x_+n(n—l)(n—2)x_+m+x_'
! n? 3! n’ n"

If we write

I nl'l 1nn-1)(n-2)---(n-(n-1))

n

n! n

a2

then
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X, =1+x+i(1—l)x2+i(1—l)(l—%)x3
2! n 3! n n
+...+l(1_l)(1_%)...(1_E)xk
k! n n n
++l(1_l)(l_%)(l_n__l)xn .
n! n n n

We now treat each x, as an infinite series by defining all terms with k > n to
be zero, and we consider the difference

R S 8 T

Applying Theorem B17 to the convergent series e* = X[x|"/n!, we see that for
fixed x and € > 0, we can choose an integer m sufficiently large that

< Bl
E 7<€/2 .

k=m+1

Writing (*) in the form 2=, = 2= + 2X=m+ and noting that the coef-

ficient of x¥ in the (second) sum is = 0 but < 1/k!, we obtain (for n > m)

le* - x,| = §%[1—(1—%)(1—%)---(1—%)}|xk| +el2 .

k=2""

Since the sum in this expression consists of a finite number of terms, each of
which approaches 0 as n — o, we may choose an N > 0 such that the sum is

less than €/2 for n > N. Therefore, for n > N we have |e* - x,| < € which
proves that x, —¢e*. /

Exercises
1. Prove Theorem B2(b).

2. Let {x,} and {yn} be sequences of real numbers such that x, <y, for all
n = N where N is fixed. If x, — x and y, — y, prove that x <.

3. If A is a subset of a metric space X and x € X, prove that x € Ext A if
and only if x has some neighborhood disjoint from A.



10.

11.

12.

13.
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Prove Theorem B14(b).
Prove that any cluster point is the limit of a subsequence.
Prove Theorem B22.

If {x,} 1s a sequence of real numbers converging to x, and L, = infy>, Xk
converges to L, show that x = L.

Prove Theorem B24.
Let R denote the extended real number system, and let f: (a,b) CR — R.
Define
limy_, ysup f(x) = infs > supo<|x-y| < s f(X)
and suppose that limy_,y f(x) = L (i.e., limx_, y f(X) exists). Show
limy_,ysup f(x) = L .

[Hint: Let S§ = sup|x-y| < 5 f(x) and define S = infs S5 . Then note that

IS - LI < IS = Ssl + 1S5 - f(x)| + [f(x) = LI .]

(a) Let {xp} be a Cauchy sequence in R", and assume that {x,} has a
cluster point c. Prove that {x,} converges to c.

(b) Using this result, prove that any Cauchy sequence in R" converges to

a point of R™.
Show that Bd A=Cl AN Cl A°.

If UC (X, d)is open and A C X is dense, show that C1 U = CI(U N A).

If {xn} 1s a Cauchy sequence with a convergent subsequence {xy, }, show
that {x,} converges.
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Path Connectedness

In order to avoid having to define a general topological space, we shall phrase
this appendix in terms of metric spaces. However, the reader should be aware
that this material is far more general than we are presenting it. We assume that
the reader has studied Appendix A.

In elementary analysis and geometry, one thinks of a curve as a collection
of points whose coordinates are continuous functions of a real variable t. For

example, a curve in the plane R? may be specified by giving its coordinates
(x =1(t), y = g(t)) where f and g are continuous functions of the parameter t. If
we require that the curve join two points p and q, then the parameter can
always be adjusted so that t =0 at p and t = 1 at q. Thus we see that the curve
is described by a continuous mapping from the unit interval I = [0, 1] into the
plane.

Let X be a metric space, and let I = [0, 1] be a subspace of R with the
usual metric. We define a path in X, joining two points p and q of X, to be a
continuous mapping f: I — X such that f(0) = p and (1) = q. This path will be
said to lie in a subset A C X if f(I) C A. It is important to realize that the path
is the mapping f, and not the set of image points f(I). The space X is said to be
path connected if for every p, q € X there exists a path in X joining p and q.
If A C X, then A is path connected if every pair of points of A can be joined
by a path in A. (We should note that what we have called path connected is
sometimes called arcwise connected.)

720
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Let us consider for a moment the space R". If x;, x; € R", then we let TXJ

denote the closed line segment joining x; and x;. A subset A C R" is said to be
polygonally connected if given any two points p, q € A there are points x, =
P> Xi5 X2, - - ., Xm = q 1n A such that U'T-x-1x; C A.

A CR?

Just because a subset of R" is path connected does not mean that it is

polygonally connected. For example, the unit circle in R? is path connected
since it is actually a path itself, but it is not polygonally connected.

Example C1 The space R" is path connected. Indeed, if p € R" has coordi-
nates (x, . .., x") and q € R" has coordinates (y], ..., y", then we define the
mapping f: I — R™ by f(t) = (fi(t), . . . , f(t)) where fi(t) = (1 - t)x' + ty'.
This mapping is clearly continuous and satisfies f(0) = p and f(1) = q. Thus f

is a path joining the arbitrary points p and q of R", and hence R" is path con-
nected. /

The following is a simple consequence of Theorem A5 that we shall need
for our main result (i.e., Theorem C2).

Theorem C1 Let f: (X,, d)) = (X,, d,) and g: (X,, d,) = (X3, d3) both be
continuous functions. Then g o f: (X, d;) — (X3, d3) is a continuous function.

Proof 1f U C X3 is open, then the continuity of g shows that g7 (U) C X, is
open. Therefore (g o f)"(U) = (f o g™")(U) = (g™ (U)) is open by the con-
tinuity of f. W

Theorem C2 Let f be a continuous mapping from a metric space X onto a
metric space Y. Then Y is path connected if X is.
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Proof Let x', y' be any two points of Y. Then (since f is surjective) there
exist X, y € X such that f(x) = x" and f(y) = y'. Since X is path connected,
there exists a path g joining x and y such that g(0) = x and g(1) = y. But then
f o g is a continuous function (Theorem C1) from I into Y such that (f o g)(0)
=x"and (f o g)(1) = y'. In other words, f o g is a path joining x" and y’, and
hence Y is path connected. Wl

It is an obvious corollary of Theorem C2 that if f is a continuous mapping
from the path connected space X into Y, then f(X) is path connected in Y
since f maps X onto the subspace f(X).
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Cayley’s theorem 52
Chain 8
Characteristic

equation 309

matrix 309

of integral domain 58

polynomial 309

root 302

value 302

vector 302
Closed ball 683
Closed interval 14
Closed set 649, 683
Closure of a set 702
Cluster point 700
Cofactor 187
Column space 128
Compact space 686
Companion matrix 412
Comparable 8
Comparison test 715
Complete metric space 630, 699
Complete orthonormal set 660
Completely reducible 333
Completeness relation 113
Complex conjugate 20
Complex number 19

imaginary part 19

modulus 20

nth root 24

real part 19
Conductor 335
Congruent matrices 465
Conjugate exponents 641
Conjugate linear 452
Conjugate space 665
Continuous 623, 684
Continuous linear map 635

INDEX

Contravariant vector 545

Convergent sequence of vectors 640

Convex set 650
Coordinate function 633
Coordinates 3, 79
Coprime 28
Coset 61
Covariant vector 545
Cramer’s rule 200
Critical

point 523

value 523
Cyclic group 290

order of 290
Cyclic subspace 336, 432
Cyclic vector 433

De Moivre’s theorem 24
De Morgan formulas 3
Dense 13, 647, 706

nowhere 706

somewhere 706
Derived set 703
Determinant 171, 600

of a linear operator 246

order 171
Determinantal divisors 397
Diagonal subgroup 34
Diagonalizable 248, 317
Differential of a function 551
Direct sum 90

external 89

internal 88

of matrices 333

of operators 332
Division algorithm 26, 258
Division ring 54
Double dual 222, 452
Dual basis 222
Dual space 222, 446, 665

Eigenspace 306
Eigenvalue 302

spectrum 346, 524
Eigenvector 302
Elementary divisor theorem 439
Elementary divisor 398
Elementary matrix 163
Elementary row operations 121
Empty set 2
Equivalence class 9
Equivalence relation 9
Equivalent norms 629
Equivalent representations 335



Euclidean algorithm 27, 265
Euclidean space 99, 508
Expansion by minors 189

(see also Laplace expansion)
Extended real number system 14
Exterior of a set 703
Exterior algebra 574
Exterior product 563
Exterior r-forms 554

Factor group 64
Factor theorem 262
Factorial 18
Field 54
characteristic of 58
Field of quotients 284
Finite field
characteristic of 291
order of 288
Finite-dimensional 77
Formal linear combinations 578
Fourier coefficients 106, 655
Free variables 142
Free vector space 579
Function 4
Functional 665
Fundamental Theorem of Algebra 276, 693
Fundamental Theorem of Arithmetic 29

Gaussian elimination 124
Generalized permutation symbol 565
Gershgorin’s theorem 307
Graded associative algebra 575
Graded components 574
Gram-Schmidt process 109
Gramian 197
Grassmann algebra 574
Greatest common divisor 26, 263
Greatest lower bound 8
Group 30

abelian 30

center of 67

class 35

conjugate elements of 35

cyclic 291

direct product 34

finite 31

homomorphism 49

infinite 31

multiplication 30

order of 31

representation 33, 335
g-volume 615
Hausdorff property 687

INDEX
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Heine-Borel theorem 687, 691
Hermitian adjoint 383
Hermitian form 481
associated quadratic form 482
nonnegative semidefinite 482
positive definite 482
Hermitian inner product 620
Hilbert basis 660
Hilbert space 630, 640
Homomorphic groups 49
Homomorphism 49
kernel of 50
vector space 79
Holder’s inequality 642
Hypercompanion matrix 420
Hyperplane 457
Hyperspace 457

Ideal 59

generated by 275

unit 275
Idempotent 157, 232, 353
Identity mapping 6, 227
Identity matrix 136
Indeterminate 115, 255
Index set 2
Induction 17
Infimum 8
Infinite series 708
Infinity symbols 14
Injective 5
Inner product 98

Hermitian 98

indefinite 609

nondegenerate 451, 609
Inner product space 99

complex 99

real 99
Integers

modulo n 57, 285
Integral domain 57
Interior of a set 702
Interior product 572
Invariant direct sum decomposition 332
Invariant factors 398
Invariant subspace 329
Invariant volume element 617
Irrational number 12
Irreducible representation 335
Isolated point 622
Isometry 113, 498
Isomorphic 59, 79
Isomorphic groups 50
Isomorphism 50, 79

inner product space 501
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Jacobian 599

Jointly continuous 648

Jordan form 376, 422
uniqueness of 427

Kronecker delta 105
Kronecker product 581

Lagrange interpolation formula 280

Lagrange’s theorem 61
Laplace expansion 573
Law of cosines 96
Law of inertia 478
Least common multiple 29, 272
Least upper bound 8
Least upper bound property 12
Left identity 31
Left inverse 31, 157
Left zero divisor 163
Levi-Civita
symbol 560
tensor 560
Limit 625
Limit inferior 713
Limit point 700
Limit superior 713
Linear extension theorem 639
Linear algebra 227
Linear combination 72
Linear equations 115
coefficients of 115
constant term 115
solution vector 115
system of 116
equivalent 118
homogeneous 138
nonhomogeneous 138
nontrivial solution 138
trivial solution 138
Linear functional 221
Linear manifold 649
Linear operators 227
Linear span 72
Linear transformation 79, 215
diagonalizable 318
image 224
inverse 228
invertible 228
kernel 225
matrix representation of 235
negative of 219
nonsingular 229

INDEX

nullity 225
orientation preserving 608
range 225
rank 225
reducible 332
restriction of 330
singular 229
volume preserving 608
Linearly dependent 75
Linearly independent 75
Lorentz frame 613
Lorentz transformation 616
Lower bound 8
Lower limit 713
Lowering the index 610

Mapping 4
alternating 180
associative 6
bilinear 578
commutative 6
composite 6
domain 4
image 4
inverse 5
inverse image 4
multilinear 180, 544
one-to-one 5
onto 5
range 4
restriction 4

Matrix 117
adjoint 183, 383
anticommutator 156, 184
antisymmetric 156, 184, 469
block 204
canonical form 169
classical adjoint 191
column rank 128
columns 117
commutator 154, 156
conjugate transpose 183
derogatory 409
diagonal 154, 165
direct product 581
distinguished elements 124
equivalent 515

equivalent over P 393
Hermitian 383, 482
Hermitian adjoint 482
idempotent 157
inverse 157

invertible 157
irreducible 427



lower-triangular 156, 162, 177
negative 148
nilpotent 184
nonderogatory 409
nonsingular 157
normal 383, 515
orthogonal 183, 249, 384, 502
product 148
rank 136
reduced row-echelon form 123
reducible 333, 427
row equivalent 123
row rank 128
row-echelon form 123
row-reduced form 125
rows 117
singular 157
size 117
skew-Hermitian 388
skewsymmetric 156
square 148
sum 147
supertriangular 376
symmetric 156, 184, 384,470
tensor product 581
trace 155, 246
transpose 152
unit 392
unitarily similar 515
unitary 183, 383, 502
upper-triangular 156, 162, 177
Matrix exponential series 530
Matrix of coefficients 116
Maximal element 8
Metric 104, 680
Metric space 680
complete 699
Metric tensor 580
contravariant 611
covariant 610
index of 613
Lorentz 613
Riemannian 613
Metric volume form 615
Minimal element 9
Minimal polynomial 299, 313, 326
of a vector 323
Minkowski’s inequality 643
Minor 188
Minor matrix 187
Module 69
Multilinear form 544
Multiplicity
algebraic 345
geometric 345

INDEX 731

Natural mapping 453
Natural numbers 2
n-cell 689
Neighborhood 690
deleted 690
Nilpotent 233
index of nilpotency 369
operator 306, 369
Nondegenerate 462
Nonnegative 2
Norm 619
Normal coordinates 489
Normal matrix 515
Normed vector space 101, 620
Null space 154, 225

1-forms 447
Open
ball 681
cover 686
interval 14
set 681
subcover 686
Operator 490, 653
adjoint 673
anti-Hermitian 508
antisymmetric 511
Hermitian 495, 676
isometric 498, 499, 677
nonnegative 508
normal 509, 677
orthogonal 499, 501
positive 508
positive definite 508
positive semidefinite 508
self-adjoint 495, 676
skew-Hermitian 508
symmetric 511
unitary 499, 678
Operator norm 637
Order of a vector 440
Ordered by inclusion 8
Orientation 606, 608
negative 592, 608
positive 592, 608
Oriented vector space 606, 608
Oriented volume 592
Orthogonal 102
compliment 105, 620
projection 217, 354
set 105
Orthonormal set 105
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Parallelogram law 103, 621
Parallelpiped
base 589
height 589
r-dimensional 589
r-volume 589
Parseval’s equation 662
Partial isometry 507
Partial ordering 7
bounded above 8
induced 8
largest element 8
smallest element 8
upper bound 8
Partially ordered set 7
Partition 9
induced 10
Path 720
Path connected 720
Pauli spin matrices 156
P-elementary operations 390
Permutation 35
even 44
odd 44
one-line notation 36
sign of 46
two-line notation 35
Permutation group 40
cycle 41
degree of 40
equivalent elements in 41
orbit 41
Permutation symbol 560
Perpendicular 102
Polar decomposition 540
Polar form identities 103
Polygonally connected 721
Polynomial 253
associates 262
coefficients of 253
constant 256
degree of 256
factor of 261
greatest common divisor 397
irreducible 262
leading coefficient of 256
minimal 300, 314, 327
monic 256
norm of 397
reducible 262
root 261, 297
zero 261, 297
Polynomial equation 261
solution 261
Polynomial function 255

INDEX

Positive integers 2
Positive transformation 539
Power set 7
Preimage 4
Primary decomposition theorem 339
Prime number 25
Prime polynomial 262
Principal ideal 60
generator of 60
Product 625
Projection 157,232, 352, 654
Pull-back 595
Push-forward 602
Pythagorean theorem 95, 103, 622

Quadratic
form 471
diagonal representation 477
polynomial 471
Quaternions 280
Quotient 25
Quotient group 64
Quotient ring 64
Quotient space 362

Raising an index 611
Rank
of a bilinear form 465
of a matrix 135
Ratio test 717
Rational canonical form 416
Rational numbers 2
Rayleigh quotient 513
Rearrangement lemma 34
Reducible representation 333
Reflexive space 671
Relation 7
Relatively prime 28, 263
Remainder 25
Remainder theorem 261
Resolution of the identity 524
r-forms 554
Riesz representation theorem 666
Riesz-Fischer theorem 663
Right identity 31
Right inverse 31, 157
Right zero divisor 163
Ring 53
associates 262
associative 53
commutative 53
embedded 282
extension 282
homomorphism 56



kernel of 59

isomorphism 59

with unit element 53
Ring of sets 4
r-linear form 544
Root 261

multiplicity of 281, 305
Root test 717
Row canonical form 125
Row space 128
Row-column-equivalent 169

Scalar 69
Scalar mapping 301
Scalar multiplication 68
Scalar product 94
Scalar triple product 588
Schur canonical form 384
Schur’s lemma 335
Schwartz’s inequality 20
generalized 649
Second dual 222, 452
Secular equation 309
Separable 647, 695
Sequence 696
Cauchy 699
decreasing 699
increasing 699
limit of 622, 696
monotonic 699
range 697
Series 708
rearrangement of 710
Sesquilinear form 620
Set 2
closed 683
complement of 2
countable 11
countably infinite 11
disjoint 3
family of 2
finite 11
infinite 11
intersection 3
open 681
symmetric difference 4
uncountable 11
union 2
Shuffle 563
Signature 477
Signed permutation matrix 389
Similar matrices 184, 245
Similarity class 329
Similarity invariants 408
Similarity transformation 184, 245

INDEX

Simple root 305
Smith canonical form 400
Solution set 116
Space of linear functionals 222
Space of linear transformations 220
Spectral decomposition 524
Spectral theorem 525
Spectrum 346

degenerate 346
Square root 15
Standard basis 79
Standard inner product 99, 620
Standard orientation 608
Subdeterminant 185
Subgroup 33

index of 62

normal 62
Submatrix 185, 193, 209
Subsequence 707
Subsequential limit 707
Subset 2

proper 2
Subspace 72, 649

closed 649

generated by 72, 660

intersection of 86

invariant 243, 329

irreducible 518

null 618

of a metric space 684

proper 72

spacelike 618

spanned by 72

sum of 74, 86

timelike 618

trivial 72
Summation convention 545
Sup norm 625, 629, 633
Superdiagonal 155, 370
Superset 2
Supremum 8
Surjective 5
Sylvester’s theorem 478
Symmetric group 37
Symmetrizing mapping 556

T-cyclic subspace 432
generated by 432
T-invariant subspace 243
Tensor 545
antisymmetric 553, 554

classical law of transformation 550

components 545, 547
contraction 552
contravariant order 545

733



734

covariant order 545
rank 545
skew-symmetric 553
symmetric 553, 554
trace 552
type 545
Tensor algebra 574
Tensor product 462, 464, 547, 580
Total 660
Total ordering 8
Trace 155
Transcendental number 17
Transition matrix 243
orthogonal 249
Transpose
of a linear transformation 459
of a matrix 153
Transpositions 44
Triangle inequality 101
Triangular form theorem 367, 376
Two-sided inverse 157

Uniformly continuous 623
Unique factorization theorem 266
Unit (of aring) 262

Unit cube 593

Unit matrix 392

Unit vector 99

Unitarily similar 385, 515
Unitary 183, 383, 499, 502, 678
Unitary space 99, 508
Unknowns 115

Upper limit 713

Vandermonde matrix 195
Vector 69
length of 99
lightlike 614
norm of 99
spacelike 614
timelike 614
Vector multiplication 227
Vector space 68
complex 69
dimension of 77, 83
generated by 578
infinite-dimensional 640
isometric 113
normed 101
ordinary Euclidean 613
pseudo-Euclidean 613
real 69
singular 613
Vector space homomorphism 79

INDEX

Volume forms 607
equivalent 607

Wedge product 462, 563
Well-defined 4
Well-ordered 17
Weyl’s formula 536

Zero divisor 57
Zero mapping 219
Zero matrix 148
Zorn’s lemma 9
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