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Preface

Up close, smooth things look flat—the picture behind differential calculus. In
mathematical language, we can approximate smoothly varying functions by
linear functions. In calculus of several variables, the resulting linear functions
can be complicated: you need to study linear algebra.

Problems appear throughout the text, which you must learn to solve. They
often provide vital results used in the course. Most of these problems have
hints, particularly the more important ones. There are also review problems at
the end of each section, and you should try to solve a few from each section.
Try to solve each problem first before looking up the hint. Never use decimal
approximations (for instance, from a calculator) on any problem, except to
check your work; many problems are very sensitive to small errors and must
be worked out precisely. Whenever ridiculously large numbers appear in the
statement of a problem, this is a hint that they must play little or no role in
the solution.

The prerequisites for this course are basic arithmetic and elementary algebra,
typically learned in high school, and some comfort and facility with proofs,
particularly using mathematical induction. You can’t prove that all men are
wearing hats just by pointing out one example of a man in a hat; most proofs
require an argument, and not just examples. Polya [2] and Solow [3] explain
induction and provide help with proofs. Bretscher [1] and Strang [5] are excellent
introductory textbooks of linear algebra.

For teachers

These notes are drawn from lectures given at University College Cork in the
spring of 2006, for a first year introduction to linear algebra. The course aims
for a complete proof of the spectral theorem, but with two gaps: (1) the proof
for real symmetric matrices relies on the minimum principle, so requires the
existence of a minimum of any quadratic function on the sphere; (2) the proof
for complex self-adjoint matrices requires the fundamental theorem of algebra to
prove that complex matrices have eigenvalues. We fill these gaps in appendices,
but the students are not expected to work through the more difficult material
provided in these appendices. There are a number of proofs that are not quite
complete, giving only the idea behind the proof. In each case, giving a complete
proof just requires adding in summation notation, which students often find
confusing. I teach a small selection of the proofs.
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I aim to make each chapter one lecture of material, but that hasn’t always
worked out. With that aim in mind, the chapters are unusually small, but
students should find them easier to grasp. The book presents just the material
required to reach the spectral theorem for self-adjoint matrices. This gives the
course a natural focal point.

We first approach determinants by direct calculation, shying away from
proofs via permutations, and from Cramer’s rule and cofactor inversion, which
are computationally infeasible. I hope that students learn how to compute with
simple examples by hand, and then learn the theory. I ignored purely numerical
topics and paid no attention to computational efficiency.
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Matrix Calculations





Chapter 1

Solving Linear Equations

In this chapter, we learn how to solve systems of linear equations by a simple recipe,
suitable for a computer.

Elimination

Consider equations

−6− x3 + x2 = 0
3x1 + 7x2 + 4x3 = 9
3x1 + 5x2 + 8x3 = 3.

They are linear because they are sums of constants and constant multiples of
variables. How can we solve them (or teach a computer to solve them)? To
solve means to find values for each of the variables x1, x2 and x3 satisfying all
three of the equations.

Preliminaries

a. Line up the variables:

x2− x3 = 6
3x1 + 7x2 + 4x3 = 9
3x1 + 5x2 + 8x3 = 3

All of the x1’s are in the same column, etc. and all constants on the right
hand side.

b. Drop the variables and equals signs, just writing the numbers.0 1 −1 6
3 7 4 9
3 5 8 3

 .

This saves rewriting the variables at each step. We put brackets around
for decoration.
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c. Draw a box around the entry in the top left corner, and call that entry
the pivot.  0 1 −1 6

3 7 4 9
3 5 8 3

 .

Forward elimination

(1) If the pivot is zero, then swap rows with a lower row to get the pivot to
be nonzero. This gives 3 7 4 9

0 1 −1 6
3 5 8 3

 .

(Going back to the linear equations we started with, we are swapping the
order in which we write them down.) If you can’t find any row to swap
with (because every lower row also has a zero in the pivot column), then
move pivot one step to the right → and repeat step (1).

(2) Add whatever multiples of the pivot row you need to each lower row, in
order to kill off every entry under the pivot. (“Kill off” means “make into
0”). This requires us to add − (row 1) to row 3 to kill off the 3 under the
pivot, giving  3 7 4 9

0 1 −1 6
0 −2 4 −6

 .

(Going back to the linear equations, we are adding equations together which
doesn’t change the answers—we could reverse this step by subtracting
again.)

(3) Make a new pivot one step down and to the right: ↘. 3 7 4 9
0 1 −1 6
0 −2 4 −6

 .

and start again at step (1).

In our example, our next pivot, 1, must kill everything beneath it: −2. So we
add 2(row 2) to (row 3), giving 3 7 4 9

0 1 −1 6
0 0 2 6

 .



Figure 1.1: Forward elimination on a large matrix. The shaded boxes are nonzero entries, while
zero entries are left blank. The pivots are outlined. You can see the first few steps, and then a
step somewhere in the middle of the calculation, and then the final result.

We are done with that pivot. Move ↘. 3 7 4 9
0 1 −1 6
0 0 2 6

 .

Forward elimination is done. Let’s turn the numbers back into equations, to
see what we have:

3x1 +7x2 +4x3 = 9
x2 −x3 = 6

2x3 = 6

Look from the bottom equation up: each pivot solves for one variable in terms
of later variables.

1.1 Apply forward elimination to
0 0 1 1
0 0 1 1
1 0 3 0
1 1 1 1


1.2 Apply forward elimination to

0 0 1 1
0 0 1 1
1 0 3 0
1 1 1 1


1.3 Apply forward elimination to

1 1 0 1
0 1 1 0
0 0 0 0
0 0 0 −1





Figure 1.2: Back substitution on the large matrix from figure 1.1. You can see the first few steps,
and then a step somewhere in the middle of the calculation, and then the final result. You can see
the pivots turn into 1’s.

Back Substitution

Starting at the last pivot, and working up:
a. Rescale the entire row to turn the pivot into a 1.
b. Add whatever multiples of the pivot row you need to each higher row, in

order to kill off every entry above the pivot.
Applied to our example:  3 7 4 9

0 1 −1 6
0 0 2 6

 ,

Scale row 3 by 1
2 :  3 7 4 9

0 1 −1 6
0 0 1 3


Add row 3 to row 2, −4 (row 3) to row 1. 3 7 0 −3

0 1 0 9
0 0 1 3


Add −7 (row 2) to row 1. 3 0 0 −66

0 1 0 9
0 0 1 3


Scale row 1 by 1

3 .  1 0 0 −22
0 1 0 9
0 0 1 3


Done. Turn back into equations:

x1 = −22
x2 = 9
x3 = 3.



Forward elimination and back substitution together are called Gauss–Jordan
elimination or just elimination. (Forward elimination is often called Gaussian
elimination.) Forward elimination already shows us what is going to happen:
which variables are solved for in terms of which other variables. So for answering
most questions, we usually only need to carry out forward elimination, without
back substitution.

Examples

More than one solution:

x1 +x2 + x3 +x4 = 7
x1 + 2x3 = 1

x2 + x3 = 0

Write down the numbers: 1 1 1 1 7
1 0 2 0 1
0 1 1 0 0

 .

Kill everything under the pivot: add − (row 1) to row 2. 1 1 1 1 7
0 −1 1 −1 −6
0 1 1 0 0

 .

Done with that pivot; move ↘. 1 1 1 1 7
0 −1 1 −1 −6
0 1 1 0 0

 .

Kill: add row 2 to row 3: 1 1 1 1 7
0 −1 1 −1 −6
0 0 2 −1 −6

 .

Move ↘. Forward elimination is done. Let’s look at where the pivots lie: 1 1 1 1 7
0 −1 1 −1 −6
0 0 2 −1 −6

 .



Let’s turn back into equations:

x1 +x2 +x3 +x4= 7

−x2 +x3 −x4=−6

2x3 −x4=−6

Look: each pivot solves for one variable, in terms of later variables. There was
never any pivot in the x4 column, so x4 is a free variable: x4 can take on any
value, and then we just use each pivot to solve for the other variables, bottom
up.

1.4 Back substitute to find the values of x1, x2, x3 in terms of x4.

No solutions: consider the equations

x1 + x2 + 2x3 = 1
2x1 + x2 + x3 = 0
4x1 + 3x2 + 5x3 = 1.

Forward eliminate:  1 1 2 1
2 1 1 0
4 3 5 1


Add −2(row 1) to row 2, −4(row 1) to row 3. 1 1 2 1

0 −1 −3 −2
0 −1 −3 −3


Move the pivot ↘ .  1 1 2 1

0 −1 −3 −2
0 −1 −3 −3


Add −(row 2) to row 3. 1 1 2 1

0 −1 −3 −2
0 0 0 −1





Move the pivot ↘ .  1 1 2 1
0 −1 −3 −2
0 0 0 −1


Move the pivot →.  1 1 2 1

0 −1 −3 −2
0 0 0 −1



Turn back into equations:

x1 + x2 + 2x3 = 1
−x2 − 3x3 = −2

0 = −1.

You can’t solve these equations: 0 can’t equal −1. So you can’t solve the
original equations either: there are no solutions. Two lessons that save you time
and effort:
a. If a pivot appears in the constants’ column, then there are no solutions.
b. You don’t need to back substitute for this problem; forward elimination

already tells you if there are any solutions.

Summary

We can turn linear equations into a box of numbers. Start a pivot at the top left
corner, swap rows if needed, move → if swapping won’t work, kill off everything
under the pivot, and then make a new pivot↘ from the last one. After forward
elimination, we will say that the resulting equations are in echelon form (often
called row echelon form).

The echelon form equations have the same solutions as the original equations.
Each column except the last (the column of constants) represents a variable.
Each pivot solves for one variable in terms of later variables (each pivot “binds”
a variable, so that the variable is not free). The original equations have no
solutions just when the echelon equations have a pivot in the column of constants.
Otherwise there are solutions, and any pivotless column (besides the column
of constants) gives a free variable (a variable whose value is not fixed by the
equations). The value of any free variable can be picked as we like. So if
there are solutions, there is either only one solution (no free variables), or
there are infinitely many solutions (free variables). Setting free variables to
different values gives different solutions. The number of pivots is called the



rank. Forward elimination makes the pattern of pivots clear; often we don’t
need to back substitute.

We often encounter systems of linear equations for which all of the constants
are zero (the “right hand sides”). When this happens, to save time we won’t
write out a column of constants, since the constants would just remain zero all
the way through forward elimination and back substitution.

1.5 Use elimination to solve the linear equations

2x2 + x3 = 1
4x1 − x2 + x3 = 2

4x1 + 3x2 + 3x3 = 4

Review problems

1.6 Apply forward elimination to2 0 2
1 0 0
0 2 2


1.7 Apply forward elimination to−1 −1 1

1 1 1
−1 1 0


1.8 Apply forward elimination to−1 2 −2 −1

1 2 −2 2
−2 0 0 −1


1.9 Apply forward elimination to0 0 1

0 1 1
1 1 1


1.10 Apply forward elimination to

0 1 1 0 0
0 1 0 1 0
0 0 0 0 0
1 1 0 1 1





1.11 Apply forward elimination to1 3 2 6
2 5 4 1
3 8 6 7


1.12 Apply back substitution to the result of problem 1.3 on page 5.

1.13 Apply back substitution to−1 1 0
0 −2 0
0 0 1


1.14 Apply back substitution to1 0 −1

0 −1 −1
0 0 0


1.15 Apply back substitution to2 1 −1

0 3 −1
0 0 0


1.16 Apply back substitution to

3 0 2 2
0 2 0 −1
0 0 3 2
0 0 0 2


1.17 Use elimination to solve the linear equations

−x1 + 2x2 + x3 + x4 = 1
−x1 + 2x2 + 2x3 + x4 = 0

x3 + 2x4 = 0
x4 = 2

1.18 Use elimination to solve the linear equations

x1 + 2x2 + 3x3 + 4x4 = 5
2x1 + 5x2 + 7x3 + 11x4 = 12

x2 + x3 + 4x4 = 3



1.19 Use elimination to solve the linear equations

−2x1 + x2 + x3 + x4 = 0
x1 − 2x2 + x3 + x4 = 0
x1 + x2 − 2x3 + x4 = 0
x1 + x2 + x3 − 2x4 = 0

1.20 Write down the simplest example you can to show that adding one to
each entry in a row can change the answers to the linear equations. So adding
numbers to rows is not allowed.

1.21 Write down the simplest systems of linear equations you can come up
with that have
a. One solution.
b. No solutions.
c. Infinitely many solutions.

1.22 If all of the constants in some linear equations are zeros, must the equations
have a solution?

1.23 Draw the two lines 1
2 x1 − x2 = − 1

2 and 2x1 + x2 = 3 in R2. In your
drawing indicate the points which satisfy both equations.

1.24 Which pair of equations cuts out which pair of lines? How many solutions
does each pair of equations have?

x1 − x2 = 0 (1)
x1 + x2 = 1

x1 − x2 = 4 (2)
−2x1 + 2x2 = 1

x1 − x2 = 1 (3)
−3x1 + 3x2 = −3

(a) (b) (c)

1.25 Draw the two lines 2x1 + x2 = 1 and x1 − 2x2 = 1 in the x1x2-plane.
Explain geometrically where the solution of this pair of equations lies. Carry
out forward elimination on the pair, to obtain a new pair of equations. Draw
the lines corresponding to each new equation. Explain why one of these lines is
parallel to one of the axes.



x1 − x2 + 2x3 = 2 (1)
−2x1 + 2x2 + x3 = −2
−3x1 + 3x2 − x3 = 0

−x1 − x3 = 0 (2)
x1 − 2x2 − x3 = 0

2x1 − 2x2 − 2x3 = −1

x1 + x2 + x3 = 1 (3)
x1 + x2 + x3 = 0
x1 + x2 + x3 = −1

−2x1 + x2 + x3 = −2 (4)
−2x1 − x2 + 2x3 = 0

−4x2 + 2x3 = 4

−2x2 − x3 = 0 (5)
−x1 − x2 − x3 = −1

−3x1 − 3x2 − 3x3 = 0

Table 1.1: Five systems of linear equations

1.26 Find the quadratic function y = ax2 + bx+ c which passes through the
points (x, y) = (0, 2), (1, 1), (2, 6).

1.27 Give a simple example of a system of linear equations which has a solution,
but for which, if you alter one of the coefficients by a tiny amount (as tiny as
you like), then there is no solution.

1.28 If you write down just one linear equation in three variables, like 2x1 +
x2 − x3 = −1, the solutions draw out a plane. So a system of three linear
equations draws out three different planes. The solutions of two of the equations
lie on the intersections of the two corresponding planes. The solutions of the
whole system are the points where all three planes intersect. Which system of
equations in table 1.1 draws out which picture of planes from figure 1.3 on the
following page?



(a) (b) (c)

(d) (e)

Figure 1.3: When you have three equations in three variables, each one draws a plane. Solutions
of a pair of equations lie where their planes intersect. Solutions of all three equations lie where all
three planes intersect.



Chapter 2

Matrices

The boxes of numbers we have been writing are called matrices. Let’s learn the
arithmetic of matrices.

Definitions

A matrix is a finite box A of numbers, arranged in rows and columns. We write
it as

A =


A11 A12 . . . A1q

A21 A22 . . . A2q
...

...
...

...
Ap1 Ap2 . . . Apq


and say that A is p × q if it has p rows and q columns. If there are as many
rows as columns, we will say that the matrix is square.

The entry A31 is in row 3, column 1. If we have 10 or more rows or columns
(which won’t happen in this book), we might write A1,1 instead of A11. For
example, we can distinguish A11,1 from A1,11.

A matrix x with only one column is called a vector and written

x =


x1

x2
...
xn

 .

The collection of all vectors with n real number entries is called Rn.
Think of R2 as the xy-plane, writing each point as(

x

y

)
instead of (x, y). We draw a vector, for example the vector(

2
3

)
,

as an arrow, pointing out of the origin, with the arrow head at the point
x = 2, y = 3 :
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


Figure 2.1: Echelon form: a staircase, each step down by only 1, but across to the right by maybe
more than one. The pivots are the steps down, and below them, in the unshaded part, are zeros.

Similarly, think of R3 as 3-dimensional space.

2.1 Draw the vectors:(
1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
2
1

)
,

(
3
1

)
,

(
−4
2

)
,

(
4
−2

)
.

We draw vectors either as dots or more often as arrows. If there are too
many vectors, pictures of arrows can get cluttered, so we prefer to draw dots.
Sometimes we distinguish between points (drawn as dots) and vectors (drawn
as arrows), but algebraically they are the same objects: columns of numbers.

Review problems

2.2 Find points in R3 which form the vertices of a regular
(a) cube
(b) octahedron
(c) tetrahedron.

Echelon Form

A matrix is in echelon form if (as in figure 2.1) each row is either all zeros or
starts with more zeros than any earlier row. The first nonzero entry of each
row is called a pivot.

2.3 Draw dots where the pivots are in figure 2.1.

2.4 Give the simplest examples you can of two matrices which are not in echelon
form, each for a different reason.

2.5 The entries A11, A22, . . . of a square matrix A are called the diagonal. Prove
that every square matrix in echelon form has all pivots lying on or above the
diagonal.



2.6 Prove that a square matrix in echelon form has a zero row just when it is
either all zeroes or it has a pivot above the diagonal.

2.7 Prove that a square matrix in echelon form has a column with no pivot
just when it has a zero row. Thus all diagonal entries are pivots or else there is
a zero row.

Theorem 2.1. Forward elimination brings any matrix to echelon form, without
altering the solutions of the associated linear equations.

Obviously proof is by induction, but the result is clear enough, so we won’t
give a proof.

Review problems

2.8 In one colour, draw the locations of the pivots, and in another draw the
“staircase” (as in figure 2.1 on the preceding page) for the matrices

A =
(

0 1 0 1 0
0 0 0 0 1

)
, B =

1 2
0 3
0 0

 , C =
(

0 0
)
, D =

(
1 0

)
.

Matrices in Blocks

If

A =
(

1 2
3 4

)
and B =

(
5 6
7 8

)
,

then write

(
A B

)
=
(

1 2 5 6
3 4 7 8

)
and

(
A

B

)
=


1 2
3 4
5 6
7 8

 .

(We will often colour various rows and columns of matrices, just to make the
discussion easier to follow. The colours have no mathematical meaning.)

Any matrix which has only zero entries will be written 0.

2.9 What could (0 0) mean?

2.10 What could (A 0) mean if

A =
(

1 2
3 4

)
?



Matrix Arithmetic

Add matrices like:

A =
(

1 2
3 4

)
, B =

(
5 6
7 8

)
, A+B =

(
1 + 5 2 + 6
3 + 7 4 + 8.

)
.

If two matrices have matching numbers of rows and columns, we add them
by adding their components: (A+B)ij = Aij +Bij . Similarly for subtracting.

2.11 Let

A =
(

1 2
3 4

)
, B =

(
−1 −2
−1 −2

)
.

Find A+B.

When we add matrices in blocks,(
A B

)
+
(
C D

)
=
(
A+ C B +D

)
(as long as A and C have the same numbers of rows and columns and B and D
do as well).

2.12 Draw the vectors

u =
(

2
−1

)
, v =

(
3
1

)
,

and the vectors 0 and u+ v. In your picture, you should see that they form the
vertices of a parallelogram (a quadrilateral whose opposite sides are parallel).

Multiply by numbers like:

7
(

1 2
3 4

)
=
(

7 · 1 7 · 2
7 · 3 7 · 4

)
.

If A is a matrix and c is a number, cA is the matrix with (cA)ij = cAij .
Suppose that

x =
(
−1
2

)
.

The multiples x, 2x, 3x, . . . and −x,−2x,−3x, . . . live on a straight line through
0:



3x

2x

x

−3x

−2x

−x

0

Matrix Multiplication

Surprisingly, matrix multiplication is more difficult. To multiply a single row
by a single column, just multiply entries in order, and add up:(

1 2
)(3

4

)
= 1 · 3 + 2 · 4 = 3 + 8 = 11.

Put your left hand index finger on the row, and your right hand index finger on
the column, and as you run your left hand along, run your right hand down:(

→ →
)(↓
↓

)
.

As your fingers travel, you multiply the entries you hit, and add up all of the
products.

2.13 Multiply (
1 −1 2

)8
1
3


To multiply the matrices

A =
(

1 2
3 4

)
, B =

(
5 6
7 8

)
,

multiply any row of A by any column of B:(
1 2

)(
5
7

)
=
(

1 · 5 + 2 · 7
)
.

As your left hand finger travels along a row, and your right hand down a column,
you produce the entry in that row and column; the second row of A times the
first column of B gives the entry of AB in second row, first column.



2.14 Multiply (
1 2 3
2 3 4

)1 2
2 3
3 4


We write

∑
k in front of an expression to mean the sum for k taking on all

possible values for which the expression makes sense. For example, if x is a
vector with 3 entries,

x =

x1

x2

x3

 ,

then
∑
k xk = x1 + x2 + x3.

If A is p× q and B is q × r, then AB is the p× r matrix whose entries are
(AB)ij =

∑
k AikBkj .

Review problems

2.15 If A is a matrix and x a vector, what constraints on dimensions need to
be satisfied to multiply Ax? What about xA?

2.16

A =

2 0
2 0
2 0

 , B =
(

0 1
0 1

)
, C =

(
2 1 2
0 1 −1

)
, D =

(
0 0
2 −1

)

Compute all of the following which are defined:

AB,AC,AD,BC,CA,CD.

2.17 Find some 2× 2 matrices A and B with no zero entries for which AB = 0.

2.18 Find a 2× 2 matrix A with no zero entries for which A2 = 0.

2.19 Suppose that we have a matrix A, so that whenever x is a vector with
integer entries, then Ax is also a vector with integer entries. Prove that A has
integer entries.

2.20 A matrix is called upper triangular if all entries below the diagonal are
zero. Prove that the product of upper triangular square matrices is upper
triangular, and if, for example

A =



A11 A12 A13 A14 . . . A1n

A22 A23 A24 . . . A2n

A33 A34 . . . A3n
. . . . . .

...
. . .

...
Ann


,



(with zeroes under the diagonal) and

B =



B11 B12 B13 B14 . . . B1n

B22 B23 B24 . . . B2n

B33 B34 . . . B3n
. . . . . .

...
. . .

...
Bnn


,

then

AB =



A11B11 ∗ ∗ ∗ . . . ∗
A22B22 ∗ ∗ . . . ∗

A33B33 ∗ . . . ∗
. . . . . .

...
. . . ∗

AnnBnn


.

2.21 Prove the analogous result for lower triangular matrices.

Algebraic Properties of Matrix Multiplication

2.22 If A and B matrices, and AB is defined, and c is any number, prove that
c(AB) = (cA)B = A(cB).

2.23 Prove that matrix multiplication is associative: (AB)C = A(BC) (and
that if either side is defined, then the other is, and they are equal).

2.24 Prove that matrix multiplication is distributive: A(B + C) = AB +AC
and (P +Q)R = PR+QR for any matrices A,B,C, P,Q,R (again if one side
is defined, then both are and they are equal).

Running your finger along rows and columns, you see that blocks multiply
like: (

A B
)(C

D

)
= AC +BD

etc.

2.25 To make sense of this last statement, what do we need to know about the
numbers of rows and columns of A,B,C and D?





Chapter 3

Inverses of Matrices

Just as a number has a reciprocal, some matrices have an inverse matrix.

The Identity Matrix

Define matrices

I1 = (1) , I2 =
(

1 0
0 1

)
, I3 =

1 0 0
0 1 0
0 0 1

 , . . .

The n×n matrix with 1’s on the diagonal and zeros everywhere else is called
the identity matrix, and written In. We often write it as I to be deliberately
ambiguous about what size it is. An equivalent definition:

Iij =

1 if i = j

0 if i 6= j.

3.1 What could I13 mean? (Careful: it has two meanings.) What does I2
mean?

3.2 Prove that IA = AI = A for any matrix A.

3.3 Suppose that B is an n×n matrix, and that AB = A for any n×n matrix
A. Prove that B = In.

3.4 Suppose that B is an n×n matrix, and that BA = A for any n×n matrix
A. Prove that B = In.

3.5 If A and B are two matrices and Ax = Bx for any vector x, prove that
A = B.

The columns of In are vectors called e1, e2, . . . , en.

3.6 Consider the identity matrix I3. What are the vectors e1, e2, e3?

3.7 The vector ej has a one in which row? And zeroes in which rows?

3.8 If A is a matrix, prove that Ae1 is the first column of A.
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3.9 If A is any matrix, prove that Aej is the j-th column of A.

If A is a p× q matrix, by the previous exercise,

A = (Ae1 Ae2 . . . Aeq) .

In particular, when we multiply matrices

AB = (ABe1 ABe2 . . . ABeq)

(and if either side of this equation is defined, then both sides are and they are
equal). In other words, the columns of AB are A times the columns of B.

This next exercise is particularly vital:

3.10 If A is a matrix, and x a vector, prove that Ax is a sum of the columns
of A, each weighted by entries of x:

Ax = x1 (Ae1) + x2 (Ae2) + · · ·+ xn (Aen) .

Review problems

3.11 True or false (if false, give a counterexample):
a. If the second column of B is 3 times the first column, then the same is

true of AB.
b. Same question for rows instead of columns.

3.12 Can you find matrices A and B so that A is 3 × 5 and B is 5 × 3, and
AB = I?

3.13 Prove that the rows of AB are the rows of A multiplied by B.

3.14 The Fibonacci numbers are the numbers x0 = 1, x1 = 1, xn+1 = xn+xn−1.
Write down x0, x1, x2, x3 and x4. Let

A =
(

1 1
1 0

)
.

Prove that (
xn+1

xn

)
= An

(
1
1

)
.

3.15 Let

x =
(

1
0

)
, y =

(
0
2

)
.

Draw these vectors in the plane. Let

A =
(

1 0
0 1

)
, B =

(
2 0
0 3

)
, C =

(
1 1
0 0

)
,

D =
(

1 0
1 0

)
, E =

(
0 0
0 0

)
, F =

(
0 −1
1 0

)
.



(a) The
original

(b) (c) (d) (e)

Figure 3.1: Faces formed by y = Ax. Each face is centered at the origin.

For each matrix M = A,B,C,D,E, F draw Mx and My (in a different colour
for each matrix), and explain in words what each matrix is “doing” (for example,
rotating, flattening onto a line, expanding, contracting, etc.).

3.16 The first picture in figure 3.1 is the original in the x1, x2 plane, and
the center of the circular face is at the origin. If we pick a matrix A and set
y = Ax, and draw the image in the y1, y2 plane, which matrix below draws
which picture?(

2 0
1 0

)
,

(
0 −1
1 0

)
,

(
2 0
1 1

)
,

(
1 0
−1 1

)
3.17 Can you figure out which matrices give rise to the pictures in the last
problem, just by looking at the pictures? Assume that you known that all the
entries of each matrix are integers between -2 and 2.

3.18 What are the simplest examples you can find of 2×2 matrices A for which
taking vectors x to Ax
(a) contracts the plane,
(b) dilates the plane,
(c) dilates one direction, while contracting another,
(d) rotates the plane by a right angle,
(e) reflects the plane in a line,
(f) moves the vertical axis, but leaves every point of the horizontal axis where

it is (a “shear”)?

Inverses

A matrix is square if it has the same number of rows as columns. If A is a
square matrix, an inverse is a square matrix B of the same size as A so that
AB = BA = I.

3.19 If A,B and C are square matrices, and AB = I and CA = I, prove that
B = C. In particular, there is only one inverse (if there is one at all).



So we can unambiguously write the inverse of A (if there is one) as A−1.

3.20 If

A =
(

2 1
1 1

)
,

check that

A−1 =
(

1 −1
−1 2

)
.

3.21 Which 1× 1 matrices have inverses, and what are their inverses?

3.22 By multiplying out the matrices, prove that any 2× 2 matrix

A =
(
a b

c d

)
has inverse

A−1 = 1
ad− bc

(
d −b
−c a

)
as long as ad− bc 6= 0.

3.23 If A and B are invertible matrices, prove that AB is invertible, and
(AB)−1 = B−1A−1.

3.24 Prove that
(
A−1)−1 = A, for any invertible square matrix A.

3.25 If A is invertible, prove that Ax = 0 only for x = 0.

3.26 If A is invertible, and AB = I, prove that A = B−1 and B = A−1.

Review problems

3.27 Write down a pair of nonzero 2× 2 matrices A and B for which AB = 0.

3.28 If A is an invertible matrix, prove that Ax = Ay just when x = y.

3.29 If a matrix M splits up into square blocks like

M =
(
A B

0 D

)
explain how to find M−1 in terms of A−1 and D−1. (Warning: for a matrix
which splits into blocks like

M =
(
A B

C D

)
the inverse of M cannot be expressed in any elementary way in terms of the
blocks and their inverses.)



Original

Matrices Inverse matrices

Figure 3.2: Images coming from some matrices, and from their inverses.

3.30 Figure 3.2 shows how various matrices (on the left hand side) and their
inverses (on the right hand side) affect vectors. But the two columns are
scrambled up. Which right hand side picture is produced by the inverse matrix
of each left hand side picture?

Elimination by Matrix Multiplication

Take the 3× 3 identity matrix I, and swap the first two rows. Call the resulting
matrix A:

A =

0 1 0
1 0 0
0 0 1

 .

It turns out that, for any vector x, the vector Ax is just the vector x with the
first two rows swapped. Why? First, let’s see if this is true for the example of
x = e1. We know that Ae1 is the first column of A. So Ae1 is the first column



of I, but with the first two rows swapped. The first column of I is e1. So Ae1
is e1 with the first two rows swapped. The same reasoning exactly works with
e1 replaced by e2 or e3. So if x = e1 or x = e2 or x = e3, then Ax is x with the
first two rows swapped. Since we can write any vector as x = x1e1 +x2e2 +x3e3,
it is enough the check what happens if we take x = e1 and then check x = e2
and then check x = e3, as we have done. So for any vector x, the vector Ax
must be just x with the first two rows swapped. A row operation is the process
of adding a multiple of a row to another row, swapping two row, or rescaling
a row. The same reasoning works exactly if we start with the n× n identity
matrix I and let A be the result of carrying out any of the row operations that
we came across in elimination. Let’s make that more precise and summarize
what we have learned.

Lemma 3.1. Carry out some row operation on I, or more generally you can
carry out several row operations to I, as many as you like. Call the resulting
matrix A. Then for any vector x, the vector Ax is the result of carrying out
exactly those same row operations on x.

For example, if we start with the 3× 3 identity matrix I, and add 7 row 1
to row 3 then

A =

1 0 0
0 1 0
7 0 1

 .

Our lemma claims that Ax is just x with 7 row 1 added to row 3. Let’s check:

Ax =

1 0 0
0 1 0
7 0 1


x1

x2

x3


=

 x1

x2

x3 + 7x1

 .

3.31 Which 3× 3 matrix S adds −5 row 2 to row 3, and −7 row 1 to row 2?

3.32 Which 4× 4 matrix P takes row 1 to row 2, row 2 to row 3, row 3 to row
4, and row 4 to row 1?

Corollary 3.2. Carry carry out several row operations on I, as many as you
like. Call the resulting matrix A. Then for any matrix B, the matrix AB is
just the result of applying exactly those same row operations to B.

Proof. The columns of AB are A times the columns of B.

Corollary 3.3. If A is the matrix you get from I by carrying out some row
operations, and B is the matrix that you get by carrying out some other row
operations, then AB is the matrix that you get from I by carrying out first the
row operations that gave you B, and then those that gave you A.



Proof. The matrix A acts on a vector x by carrying out those row operations
that gave us A from I, and the same is true for B. But (AB)x = A(Bx), so
AB is the matrix that carries out the row operations first of B and then of A.
So then AB = ABI is the matrix you get by carrying out the row operations
of B on I, and then the row operations of A.

Corollary 3.4. If A is the matrix that you get from I by carrying out some row
operations, then the matrix A−1 is the matrix that you get from I by carrying
out the inverse row operations, in the reverse order.

Proof. Let B be the matrix that you get from I by carrying out the inverse row
operations, in the reverse order. Then AB = I and BA = I, doing and then
underdoing various operations.





Chapter 4

Matrices and Row Operations

We need some practice thinking about examples of matrices. In this chapter, we will
encounter many different examples of simple types of matrices related to the row
operations of elimination.

Permutation Matrices

A permutation matrix is a matrix obtained by scrambling up the rows of the
identity matrix. As we just saw, if A is a permutation matrix, and x is a vector,
then Ax is the result of permuting x by the same scrambling of rows that created
A in the first place. And as we just saw, the product of any two permutation
matrices A and B is a permutation matrix C = AB, and C scrambles up the
rows of a vector x by Cx = A(Bx), i.e. by permuting the rows via B and then
via A.

4.1 Prove that a matrix is the permutation matrix of some permutation just
when
a. its entries are all 0’s or 1’s and
b. it has exactly one 1 in each column and
c. it has exactly one 1 in each row.

4.2 If A is a matrix, the transpose of A is the matrix B = At with the rows
and columns swapped, so Bij = Aji for any i and j.
a. Use the result of problem 4.1 to prove that if A is a permutation matrix,

then At is also a permutation matrix.
b. Prove that for any i and j, Aij = 1 just when Aei = ej .
c. Prove that A−1 = At, a very fast method to find the inverse of any

permutation matrix.

Strictly Lower Triangular Matrices

A square matrix is strictly lower triangular if it has the form

S =


1

1
. . .

1


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with 1’s on the diagonal, 0’s above the diagonal, and anything below.

4.3 Let S be strictly lower triangular. Must it be true that Sij = 0 for i > j?
What about for j > i?

Lemma 4.1. If S is a strictly lower triangular matrix, and A any matrix, then
SA is A with Sij (row j) added to row i. In particular, S adds multiples of rows
to lower rows.

Proof. For x a vector,

Sx =


1
S21 1
S31 S32 1
...

...
...

. . .



x1

x2

x3
...



=


x1

x2 + S21x1

x3 + S31x1 + S32x2
...


adds S21x1 to x2, etc.

If A is any matrix then the columns of SA are S times columns of A.

4.4 Let S be a matrix so that for any matrix A (of appropriate size), SA is A
with multiples of some rows added to later rows. Prove that S is strictly lower
triangular.

4.5 Prove that if R and S are strictly lower triangular then RS is too.

4.6 Say that a strictly lower triangular matrix is elementary if it has only one
nonzero entry below the diagonal. Prove that every strictly lower triangular
matrix is a product of elementary strictly lower triangular matrices.

Lemma 4.2. Every strictly lower triangular matrix is invertible, and its inverse
is also strictly lower triangular.

Proof. Clearly true for 1× 1 matrices. Let’s consider an n× n strictly lower
triangular matrix S, and assume that we have already proven the result for all
matrices of smaller size. Write

S =
(

1 0
c A

)
where c is a column and A is a smaller strictly lower triangular matrix. Then

S−1 =
(

1 0
−A−1c A−1,

)



which is strictly lower triangular.

A matrix M is strictly upper triangular if it has ones down the diagonal
zeroes everywhere below the diagonal.

4.7 For each fact proven above about strictly lower triangular matrices, prove
an analogue for strictly upper triangular matrices.

4.8 Draw a picture indicating where some vectors lie in the x1x2 plane, and
where they get mapped to in the y1y2 plane by y = Ax with

A =
(

1 0
2 1

)
.

Diagonal Matrices

A diagonal matrix is one like

D =


t1

t2
. . .

tn

 ,

(with blanks representing 0 entries).

4.9 Show by calculation that1
1

1
7


1 2 3

4 5 6
7 8 9

 =

1 2 3
4 5 6
1 8

7
9
7

 .

4.10 Prove that a diagonal matrix D is invertible just when none of its diagonal
entries are zero. Find its inverse.

Lemma 4.3. If

D =


t1

t2
. . .

tn

 ,

then DA is A with row 1 scaled by t1, etc.



Proof. For a vector x,

Dx =


t1

t2
. . .

tn



x1

x2
...
xn



=


t1x1

t2x2
...

tnxn


(just running your fingers along rows and down columns). So D scales row i by
ti. For any matrix A, the columns of DA are D times columns of A.

Review problems

4.11 Which diagonal matrix D takes the matrix

A =
(

3 4
5 6

)
to the matrix

DA =
(

1 4
3

5 6

)
?

4.12 Multiply a 0 0
0 b 0
0 0 c


d 0 0

0 e 0
0 0 f


4.13 Draw a picture indicating where some vectors lie in the x1x2 plane, and
where they get mapped to in the y1y2 plane by y = Ax with each of the following
matrices playing the part of A:(

2 0
0 3

)
,

(
1 0
0 −1

)
,

(
2 0
0 −3

)
.

Encoding Linear Equations in Matrices

Linear equations
x2− x3 = 6

3x1 + 7x2 + 4x3 = 9
3x1 + 5x2 + 8x3 = 3



can be written in matrix form as0 1 −1
3 7 4
3 5 8


x1

x2

x3

 =

6
9
3

 .

Any linear equations

A11x1 +A12x2 + · · ·+A1qxq = b1

A21x1 + a22x2 + · · ·+A2qxq = b2

... =
...

Ap1x1 +Ap2x2 + · · ·+Apqxq = bp

become 
A11 A12 . . . A1q

A21 A22 . . . A2q
...

...
. . .

...
Ap1 Ap2 . . . Apq



x1

x2
...
xq

 =


b1

b2
...
bp


which we write as Ax = b.

4.14 Write the linear equations

x1 + 2x2 = 7
3x1 + 4x2 = 8

in matrices.

Forward Elimination Encoded in Matrix Multiplication

Forward elimination on a matrix A is carried out by multiplying on the left of
A by a sequence of permutation matrices and strictly lower triangular matrices.
For example

A =

0 1 −1
3 7 4
3 5 8


Swap rows 1 and 2 (and let’s write out the permutation matrix):0 1 0

1 0 0
0 0 1

A =

 3 7 4
0 1 −1
3 5 8





Add − (row 1) to (row 3): 1 0 0
0 1 0
−1 0 1


0 1 0

1 0 0
0 0 1

A =

 3 7 4
0 1 −1
0 −2 4


The string of matrices in front of A just gets longer at each step. Add 2 (row 2)
to (row 3).1 0 0

0 1 0
0 2 1


 1 0 0

0 1 0
−1 0 1


0 1 0

1 0 0
0 0 1

A =

 3 7 4
0 1 −1
0 0 2


Call this U . This is the echelon form:

U =

1 0 0
0 1 0
0 2 1


 1 0 0

0 1 0
−1 0 1


0 1 0

1 0 0
0 0 1

A.

We won’t write out these tedious matrices on the left side of A ever again, but it
is important to see it done once. We will sum up this whole process by writing
the last line as U = V A, where V is a product of permutation matrices and
strictly lower triangular matrices. Back substitution is similarly carried out by
multiplying by strictly upper triangular and invertible diagonal matrices.

Review problems

4.15 Let P be the 3× 3 permutation matrix which swaps rows 1 and 2. What
does the matrix P 99 do? Write it down.

4.16 Let S be the 3× 3 strictly lower triangular matrix which adds 2 (row 1)
to row 3. What does the 3× 3 matrix S101 do? Write it down.

4.17 Which 3× 3 matrix adds twice the first row to the second row when you
multiply by it?

4.18 Which 4× 4 matrix swaps the second and fourth rows when you multiply
by it?

4.19 Which 4 × 4 matrix doubles the second and quadruples the third rows
when you multiply by it?

4.20 If P is the permutation matrix of a permutation p, what is AP?

4.21 If we start with

A =

0 0 1
2 3 4
0 5 6





and end up with

PA =

2 3 4
0 5 6
0 0 1


what permutation matrix is P?

4.22 If A is a 2× 2 matrix, and AP = PA for every 2× 2 permutation matrix
P or strictly lower triangular matrix, then prove that A = c I for some number
c.

4.23 If the third and fourth columns of a matrix A are equal, are they still
equal after we carry out forward elimination? After back substitution?

4.24 How many pivots can there be in a 3× 5 matrix in echelon form?

4.25 Write down the simplest 3× 5 matrices you can come up with in echelon
form and for which
a. The second and third variables are the only free variables.
b. There are no free variables.
c. There are pivots in precisely the columns 3 and 4.

4.26 Write down the simplest matrices A you can for which the number of
solutions to Ax = b is
a. 1 for any b;
b. 0 for some b, and ∞ for other b;
c. 0 for some b, and 1 for other b;
d. ∞ for any b.

4.27 Suppose that A is a square matrix. Prove that all entries of A are positive
just when, for any nonzero vector x which has no negative entries, the vector
Ax has only positive entries.

4.28 Prove that short matrices kill. A matrix is called short if it is wider than
it is tall. We say that a matrix A kills a vector x if x 6= 0 but Ax = 0.

Summary

The many steps of elimination can each be encoded into a matrix multiplication.
The resulting matrices can all be multiplied together to give the single equation
U = V A, where A is the matrix we started with, U is the echelon matrix we
end up with and V is the product of the various matrices that carry out all
of our elimination steps. There is a big idea at work here: encode a possibly
huge number of steps into a single algebraic equation (in this case the tiny little
equation U = V A), turning a large computation into a simple piece of algebra.
We will use this tiny equation many times.





Chapter 5

Finding the Inverse of a Matrix

Let’s use elimination to calculate the inverse of a matrix.

Finding the Inverse of a Matrix By Elimination

If Ax = y then multiplying both sides by A−1 gives x = A−1y, solving for x.
We can write out Ax = y as linear equations, and solve these equations for x.
For example, if

A =
(

1 −2
2 −3

)
,

then writing out Ax = y:

x1−2x2 = y1

2x1−3x2 = y2.

Let apply Gauss–Jordan elimination, but watch the equations instead of the
matrices. Add -2(equation 1) to equation 2.

x1−2x2 = y1

x2 =−2 y1 + y2.

Add 2(equation 2) to equation 1.

x1 =−3 y1 + 2 y2

x2 =−2 y1 + y2.

So

A−1 =
(
−3 2
−2 1

)
.

Theorem 5.1. Let A be a square matrix. Suppose that Gauss–Jordan elimina-
tion applied to the matrix (A I) ends up with (U V ) with U and V square
matrices. A is invertible just when U = I, in which case V = A−1.

Before the proof, lets have an example. Lets invert

A =
(

1 −2
2 −3

)
.
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(
A I

)
=
(

1 −2 1 0
2 −3 0 1

)

Add -2(row 1) to row 2. (
1 −2 1 0
0 1 −2 1

)

Make a new pivot ↘. (
1 −2 1 0
0 1 −2 1

)

Add 2(row 2) to row 1. (
1 0 −3 2
0 1 −2 1

)
=
(

U V
)
.

Obviously these are the same steps we used in the example above; the shaded
part represents coefficients in front of the y vector above. Since U = I, A is
invertible and

A−1 = V

=
(
−3 2
−2 1

)
.

Proof. Gauss–Jordan elimination on (A I) is carried out by multiplying by
various invertible matrices (strictly lower triangular, permutation, invertible
diagonal and strictly upper triangular), say like(

U V
)

= MNMN−1 . . .M2M1

(
A I

)
.

So

U = MNMN−1 . . .M2M1A

V = MNMN−1 . . .M2M1,

which we summarize as U = V A. Clearly V is a product of invertible matrices,
so invertible. Thus U is invertible just when A is.

First suppose that U has pivots all down the diagonal. Every pivot is a 1.
Entries above and below each pivot are 0, so U = I. Since U = V A, we find
I = V A. Multiply both sides on the left by V −1, to see that V −1 = A. But



then multiply on the right by V to see that I = AV . So A and V are inverses
of one another.

Next suppose that U doesn’t have pivots all down the diagonal. We always
start Gauss–Jordan elimination on the diagonal, so we fail to place a pivot some-
where along the diagonal just because we move → during forward elimination.
That move makes a pivotless column, hence a free variable for the equation
Ax = 0. Setting the free variable to a nonzero value produces a nonzero x with
Ax = 0. By problem 3.25 on page 26, A is not invertible.

Review problems

5.1 Find the inverse of

A =

0 0 1
1 1 0
1 2 1

 .

5.2 Find the inverse of

A =

1 2 3
1 2 0
1 0 0

 .

5.3 Find the inverse of

A =

 1 −1 1
−1 1 −1
1 −1 1

 .

5.4 Find the inverse of

A =

1 1 1
0 1 3
1 1 3

 .

5.5 Is there a faster method than Gauss–Jordan elimination to find the inverse
of a permutation matrix?

Invertibility and Forward Elimination

Proposition 5.2. A square matrix U in echelon form is invertible just when
U has pivots all the way down the diagonal, which occurs just when U has no
zero rows.

Proof. Applying back substitution to a matrix U which is already in echelon
form preserves the locations of the pivots, and just rescales them to be 1, killing
everything above them. So back substitution takes U to I just when U has
pivots all the way down the diagonal.



For example, (
1 2
0 7

)
is invertible, while 0 1 2

0 0 3
0 0 0


is not invertible.

Theorem 5.3. A square matrix A is invertible just when its echelon form U
is invertible.

So we can quickly decide if a matrix is invertible by forward elimination.
We only need back substitution if we actually need to compute out the inverse.

Proof. U = V A, and V is invertible, so U is invertible just when A is.

For example,

A =
(

0 1
1 1

)
has echelon form

U =
(

1 1
0 1

)
so A is invertible.

5.6 Is (
0 1
1 0

)
invertible?

5.7 Is 0 1 0
1 0 1
1 1 1


invertible?

5.8 Prove that a square matrix A is invertible just when the only solution x to
the equation Ax = 0 is x = 0.



Inversion and Solvability of Linear Equations

Theorem 5.4. Take a square matrix A.
a. If the matrix A is invertible then, for any vector b, the equation Ax = b

has a unique solution x.
b. If the matrix A is not invertible then the equation Ax = b has either

no solution or infinitely many, and both of these possibilities occur for
different choices of b.

Proof. If A is invertible, then multiplying both sides of Ax = b by A−1, we see
that we have to have x = A−1b.

On the other hand, suppose that A is not invertible. There is a free variable
for Ax = b, so no solutions or infinitely many. Lets see that for different choices
of b both possibilities occur. Carry out forward elimination, say U = V A. Then
U has a zero row, say row n. We can’t solve Ux = en (look at row n). So
set b = V −1en and we can’t solve Ax = b. But now instead set b = 0 and we
can solve Ax = 0 (for example with x = 0) and therefore solve Ax = 0 with
infinitely many solutions x, since there is a free variable.

The equations

x1 + 2x2 = 9845039843453455938453
x1 − 2x2 = 90853809458394034464578

have a unique solution, because they are Ax = b with

A =
(

1 2
1 −2

)
which has echelon form

U =
(

1 2
0 −4

)
.

5.9 Suppose that A and B are n× n matrices and AB = I. Prove that A and
B are both invertible, and that B = A−1 and that A = B−1.

5.10 Prove that for square matrices A and B of the same size

(AB)−1 = B−1A−1

(and if either side is defined, then the other is and they are equal).

Review problems

5.11 Is

A =
(

0 −1
1 0

)
invertible?



5.12 How many solutions are there to the following equations?

x1 + 2x2 + 3x3 = 284905309485083
x1 + 2x2 + x3 = 92850234853408

x2 + 15x3 = 4250348503489085.

5.13 Let A be the n × n matrix which has 1 in every entry on or under the
diagonal, and 0 in every entry above the diagonal. Find A−1.

5.14 Let A be the n × n matrix which has 1 in every entry on or above the
diagonal, and 0 in every entry below the diagonal. Find A−1.

5.15 Give an example of a 3× 3 invertible matrix A for which A and At have
different values for their pivots.

5.16 Imagine that you start with a 4×4 matrix A which might not be invertible,
and carry out forward elimination on (A I). Suppose you arrive at

(U V ) =


∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 2 8 3 9
0 0 0 0 0 1 5 2

 ,

with some pivots somewhere on the first two rows of U . Fact: you can solve
Ax = b just for those vectors b which solve the equations

2b1 +8b2 +3b3 +9b4 = 0
b2 +5b3 +2b4 = 0 .

Explain why.



Chapter 6

The Determinant

We can see whether a matrix is invertible by computing a single number, the determi-
nant. We will learn how to calculate the determinant, and tricks to make it easy to
find determinants of some types of matrices.

6.1 Use forward elimination to prove that a 2× 2 matrix

A =
(
a b

c d

)

is invertible just when ad− bc 6= 0.

For any 2 × 2 matrix
(
a b

c d

)
, the determinant is ad − bc. For larger

matrices, the determinant is complicated.

Definition

Determinants are computed as in figure 6.1 on the following page. To compute
a determinant, run your finger down the first column, writing down plus and
minus signs in the pattern +,−,+,−, . . . in front the entry your finger points
at, and then writing down the determinant of the matrix you get by deleting
the row and column where your finger lies (always the first column), and add
up.

6.2 Prove that

det
(
a b

c d

)
= ad− bc.

Review problems

6.3 Find the determinant of (
3 1
1 −3

)
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det

(
3 2 1
1 4 5
6 7 2

)
= + (3) det

 3 2 1
1 4 5
6 7 2


− (1) det

 3 2 1
1 4 5
6 7 2


+ (6) det

 3 2 1
1 4 5
6 7 2


=3 det

(
4 5
7 2

)
− det

(
2 1
7 2

)
+ 6 det

(
2 1
4 5

)
=3 (4 · 2− 5 · 7)− (2 · 2− 1 · 7) + 6 (2 · 5− 1 · 4) .

Figure 6.1: Computing a 3× 3 determinant.

6.4 Find the determinant of1 −1 0
0 1 1
1 0 −1


6.5 Does A2

11 appear in the expression for detA, when you expand out all of
the determinants in the expression completely?

6.6 Prove that the determinant of

A =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


is zero, no matter what number we put in place of the ∗’s, even if the numbers
are all different.

6.7 Give an example of a matrix all of whose entries are positive, even though
its determinant is zero.

6.8 What is det I? Justify your answer.



6.9 Prove that

det
(
A B

0 C

)
= detA detC,

for A and C any square matrices, and B any matrix of appropriate size to fit
in here.

Easy Determinants

Lets find the determinant of

A =

7
4

2

 .

(There are zeros wherever entries are not written.) Running down the first
column, we only hit the 7. So

detA = 7 det
(

4
2

)
.

By the same trick:

detA = (7)(4) det(2)
= (7)(4)(2).

Summing up:

Lemma 6.1. The determinant of a diagonal matrix

A =


p1

p2
. . .

pn


is detA = p1p2 . . . pn.

We can easily do better: recall that a matrix A is upper triangular if all
entries below the diagonal are 0. By the same trick again:

Lemma 6.2. The determinant of an upper triangular square matrix

U =



U11 U12 U13 U14 . . . U1n

U22 U23 U24 . . . U2n

U33 U34 . . . U3n
. . . . . .

...
. . .

...
Unn





is the product of the diagonal terms: detU = U11U22 . . . Unn.

Corollary 6.3. A square matrix A is invertible just when detU 6= 0, with U
obtained from A by forward elimination.

Proof. The matrix U is upper triangular. The fact that detU 6= 0 says just
precisely that all diagonal entries of U are not zero, so are pivots—a pivot in
every column. Apply theorem 5.3 on page 42.

Review problems

6.10 Find

det

1 2 3
0 4 5
0 0 6

 .

6.11 Suppose that U is an invertible upper triangular matrix.
a. Prove that U−1 is upper triangular.
b. Prove that the diagonal entries of U−1 are the reciprocals of the diagonal

entries of U .
c. How can you calculate by induction the entries of U−1 in terms of the

entries of U?

6.12 Let U be any upper triangular matrix with integer entries. Prove that
U−1 has integer entries just when detU = ±1.

Tricks to Find Determinants

Lemma 6.4. Swapping any two neighbouring rows of a square matrix changes
the sign of the determinant. For example,

det
(

1 2
3 4

)
= −det

(
3 4
1 2

)
.

Proof. It is obvious for 1×1 (you can’t swap anything). It is easy to check for a
2× 2. Picture a 3× 3 matrix A: look at example 6.1 on page 46. For simplicity,
lets swap rows 1 and 2. Then the plus sign of row 1 and the minus sign of row
2 are clearly switched in the 1st and 2nd terms in the determinant. In the 3rd
term, the leading plus sign is not switched. Look at the determinant in the
3rd term: rows 1 and 2 don’t get crossed out, and have been switched, so the
determinant factor changes sign. So all terms in the determinant formula have
changed sign, and therefore the determinant has changed sign. The argument
goes through identically with any size of matrix (by induction) and any two
neighboring rows, instead of just rows 1 and 2.



Lemma 6.5. Swapping any two rows of a square matrix changes the sign
of the determinant, so detPA = −detA for P the permutation matrix of a
transposition.

Proof. Suppose that we want to swap two rows, not neighboring. For concrete-
ness, imagine rows 1 and 4. Swapping the first with the second, then second
with third, etc., a total of 3 swaps will drive row 1 into place in row 4, and
drives the old row 4 into row 3. Two more swaps (of row 3 with row 2, row 2
with row 1) puts everything where we want it.

More generally, to swap two rows, start by swapping the higher of the two
with the row immediately under it, repeatedly until it fits into place. Some
number s of swaps will do the trick. Now the row which was the lower of the
two has become the higher of the two, and we have to swap it s− 1 swaps into
place. So 2s− 1 swaps in all, an odd number.

6.13 If a square matrix has two rows the same, prove that it has determinant
0.

6.14 Find 2× 2 matrices A and B for which

det(A+B) 6= detA+ detB.

So det doesn’t behave well under adding matrices. But it does behave well
under adding rows of matrices.

Watch each row:

det
(

1 + 5 2 + 6
3 4

)
= det

(
1 2
3 4

)
+ det

(
5 6
3 4

)
.

Theorem 6.6. The determinant of any square matrix scales when you scale
across any row like

det
(

7 · 1 7 · 2
3 4

)
= 7 · det

(
1 2
3 4

)
or when you scale down any column like

det
(

7 · 1 2
7 · 3 4

)
= 7 · det

(
1 2
3 4

)
.

It adds when you add across any row like

det
(

1 + 5 2 + 6
3 4

)
= det

(
1 2
3 4

)
+ det

(
5 6
3 4

)
or when you add down any column like

det
(

1 2 + 5
3 4 + 6

)
= det

(
1 2
3 4

)
+ det

(
1 5
3 6

)
.



Proof. To compute a determinant, you pick an entry from the first column, and
then delete its row and column. You then multiply it by the determinant of
what is left over, which is computed by picking out an entry from the second
column, not from the same row, etc. If we ignore for a moment the plus and
minus signs, we can see the pattern emerging: you just pick something from
the first column, and cross out its row and column,


and then something from the second column, and cross out its row and column,


and so on: 


Finally, you have picked one entry from each column, all from different rows. In
this example, we picked A31, A52, A23, A14, A45. Multiply these together, and
you get just one term from the determinant: A31A52A23A14A45. Your term
has exactly one entry from the first column, and then you crossed out the first
column and moved on. Suppose that you double all of the entries in the first
column. Your term contains exactly one entry from that column, A31 in our
example, so your term doubles. Adding up the terms, the determinant doubles.

In the same way, scaling any column, you scale your entry from that column,
so you scale your term. You scale all of the terms, so you scale the determinant.

When you cobbled together your term, you picked out an entry from some
row, and then crossed out that row. So you didn’t use the same row twice.
There are as many rows as columns, and you picked an entry in each column,
so you have picked as many entries as there are rows, never using the same row
twice. So you must have picked out exactly one entry from each row. In our
example term above, we see this clearly: the rows used were 3, 5, 2, 1, 4. By the
same argument as for columns, if you scale row 2, you must scale the entry A23,
any only that entry, so you scale the term. Adding up all possible terms, you
scale the determinant.



Lets see why we can add across rows. If I try to add entries across the first
row, a single term looks like

1 + 6 2 + 7 3 + 8 4 + 9 5 + 10


= (4 + 9) (. . . )

where the (. . . ) indicates all of the other factors from the lower rows, which we
will leave unspecified,

= 4 (. . . ) + 9 (. . . )

=


1 2 3 4 5

+


6 7 8 9 10


since we keep all of the entries in the lower rows exactly the same in each matrix.
This shows that each term adds when you add across a single row, so the sum
of the terms, the determinant, must add. This reasoning works for any size of
matrix in the same way. Moreover, it works for columns just in the same way
as for rows.

6.15 What happens to the determinant if I double the first row and then triple
the second row?

The determinant is the sum over all choices you could make of rows to pick
at each step; and of course, there are some plus and minus signs which we are
still ignoring.

6.16 Draw pictures like those in the proof above of patterns of crossing out
rows and columns, and explain which term each one computes, for determinants
of
a. 2× 2,
b. 3× 3, and
c. 4× 4

matrices.

Proposition 6.7. Suppose that S is the strictly upper or strictly lower trian-
gular matrix which adds a multiple of one row to another row. Then

detSA = detA.

i.e. we can add a multiple of any row to any other row without affecting the
determinant.



Proof. We can always swap rows as needed, to get the rows involved to be the
first and second rows. Then swap back again. This just changes signs somehow,
and then changes them back again. So we need only work with the first and
second rows. For simplicity, picture a 3× 3 matrix as 3 rows:

A =

 a1

a2

a3

 .

Adding s (row 1) to (row 2) gives a1

a2 + s a1

a3

 ,

which has determinant

det

 a1

a2 + s a1

a3

 = det

 a1

a2

a3

+ s det

 a1

a1

a3

 .

by the last lemma. The second determinant vanishes because it has two identical
rows. The general case is just the same with more notation: we stuff more rows
around the three rows we had above.

6.17 Which property of the determinant is illustrated in each of these examples?
(a)

det

10 −5 −5
−1 0 2
−1 0 1

 = 5 det

 2 −1 −1
−1 0 2
−1 0 1


(b)

det

 1 −2 −3
−1 0 2
−3 0 2

 = −det

 1 −2 −3
−3 0 2
−1 0 2


(c)

det

1 −1 −2
4 0 2
2 −2 −1

 = det

1 −1 2
4 0 2
0 0 3





Chapter 7

The Determinant via Elimination

The fast way to compute the determinant of a large matrix is via elimination.

The fast formula for the determinant

Theorem 7.1. Via forward elimination,

detA =

± (product of the pivots) if there is a pivot in each column,
0 otherwise.

where

± =

+ if we make an even number of row swaps during forward elimination,
− otherwise.

In particular, A is invertible just when detA 6= 0.

Forward elimination takes

A =
(

0 7
2 3

)
to U =

(
2 3
0 7

)

with one row swap so detA = −(2)(7) = −14.
The fast formula isn’t actually any faster for small matrices, so for a 2× 2

or 3× 3 you wouldn’t use it. But we need the fast formula anyway; each of the
two formulas gives different insight.

Proof. We can see how the determinant changes during elimination: adding
multiples of rows to other rows does nothing, swapping rows changes sign.

7.1 Use the fast formula to find the determinant of

A =

2 5 5
2 5 7
2 6 11


53



7.2 Just by looking, find

det


1001 1002 1003 1004
2002 2004 2006 2008
2343 6787 1938 4509
9873 7435 2938 9038

 .

7.3 Prove that a square matrix is invertible just when its determinant is not
zero.

Review problems

7.4 Find the determinant of
1 0 1 −1
1 0 0 0
0 1 −1 −1
1 0 −1 0


7.5 Find the determinant of

0 2 2 0
−1 1 0 0
−1 −1 0 1
2 0 1 1


7.6 Find the determinant of 2 −1 −1

−1 −1 0
2 −1 −1


7.7 Find the determinant of 0 2 0

0 0 −1
2 2 −1


7.8 Find the determinant of 2 1 −1

2 0 2
0 2 1


7.9 Find the determinant of0 −1 −1

0 −1 2
0 1 0





7.10 Prove that a square matrix with a zero row has determinant 0.

7.11 Prove that detPA = (−1)N detA if P is the permutation matrix of a
product of N transpositions.

7.12 Use the fast formula to find the determinant of

A =

0 2 1
3 1 2
3 5 2


7.13 Prove that the determinant of any lower triangular square matrix

L =



L11

L21 L22

L31 L32 L33

L41 L42 L43
. . .

...
...

...
...

. . .
Ln1 Ln2 Ln3 . . . Ln(n−1) Lnn


(with zeroes above the diagonal) is the product of the diagonal terms: detL =
L11L22 . . . Lnn.

Determinants Multiply

Theorem 7.2. det (AB) = det(A) det(B), for any square matrices A and B
of the same size.

Proof. Suppose that detA = 0. By the fast formula, A is not invertible. Prob-
lem 5.10 on page 43 tells us that therefore AB is not invertible, and both
det(AB) and det(A) det(B) are 0. So we can safely suppose that detA 6= 0.
Via Gauss-Jordan elimination, any invertible matrix is a product of matrices
each of which adds a multiple of one row to another, or scales a row, or swaps
two rows. Write A as a product of such matrices, and peel off one factor at a
time, applying lemma 6.4 on page 48 and proposition 6.7 on page 51.

If

A =

1 4 6
0 2 5
0 0 3

 , B =

1 0 0
2 2 0
7 5 4

 ,

then it is hard to compute out AB, and then compute out detAB. But
detAB = detA detB = (1)(2)(3)(1)(2)(4) = 48.



Transpose

The transpose of a matrix A is the matrix At whose entries are Atij = Aji
(switching rows with columns). Flip over the diagonal:

A =

10 2
3 40
5 6

 , At =
(

10 3 5
2 40 6

)
.

7.14 Find the transpose of

A =

1 2 3
4 5 6
0 0 0

 .

7.15 Prove that
(AB)t = BtAt.

(The transpose of the product is the product of the transposes, in the reverse
order.)

7.16 Prove that the transpose of any permutation matrix is a permutation
matrix. How is the permutation of the transpose related to the original permu-
tation?

Corollary 7.3.
detA = detAt

Proof. Forward elimination gives U = V A, U upper triangular and V a product
of permutation and strictly lower triangular matrices. Tranpose: U t = AtV t.
But V t is a product of permutation and strictly upper triangular matrices, with
the same number of row swaps as V , so detV t = detV = ±1. The matrix U t
is lower triangular, so detU t is the product of the diagonal entries of U t (by
problem 7.13 on the preceding page), which are the diagonal entries of U , so
detU t = detU .

Expanding Down Any Column or Across Any Row

Consider the “checkerboard pattern”

+ − + − . . .

− + − + . . .
...

...

.

Theorem 7.4. We can compute the determinant of any square matrix A by
picking any column (or any row) of A, writing down plus and minus signs from
the same column (or row) of the checkboard pattern matrix, writing down the



entries of A from that column (or row), multiplying each of these entries by
the determinant obtained from deleting the row and column of that entry, and
adding all of these up.

For

A =

3 2 1
1 4 5
6 7 2

 ,

if we expand along the second row, we get

detA =− (1) det


3 2 1
1 4 5
6 7 2



+ (4) det


3 2 1
1 4 5
6 7 2



− (5) det


3 2 1
1 4 5
6 7 2


Proof. By swapping columns (or rows), we change signs of the determinant.
Swap columns (or rows) to get the required column (or row) to slide over to
become the first column (or row). Take the sign changes into account with the
checkboard pattern: changing all plus and minus signs for each swap.

7.17 Use this to calculate the determinant of

A =


1 2 0 1
3 4 0 0
0 0 0 2

839 −1702 1 493

 .

Summary

Determinants
(a) scale when you scale across a row (or down a column),
(b) add when you add across a row (or down a column),
(c) switch sign when you swap two rows, (or when you swap two columns),
(d) don’t change when you add a multiple of one row to another row (or a

multiple of one column to another column),



(e) don’t change when you transpose,
(f) multiply when you multiply matrices.

The determinant of
(a) an upper (or lower) triangular matrix is the product of the diagonal entries.
(b) a permutation matrix is (−1)# of transpositions.
(c) a matrix is not zero just when the matrix is invertible.
(d) any matrix is detA = (−1)N detU , if A is taken by forward elimination

with N row swaps to a matrix U .

7.18 If A is a square matrix, prove that

det
(
Ak
)

= (detA)k

for k = 1, 2, 3, . . . .

7.19 Use this last exercise to find

det
(
A2222444466668888)

where

A =
(

0 1
1 1234567890

)
.

7.20 If A is invertible, prove that

det
(
A−1) = 1

detA.

Review problems

7.21 What are all of the different ways you know to calculate determinants?

7.22 How many solutions are there to the following equations?

x1 + 1010x2 + 130923x3 = 2839040283
2x2 + 23932x3 = 2390843248

3x3 = 98234092384

7.23 Prove that no matter which entry of an n× n matrix you pick (n > 1),
you can find some invertible n× n matrix for which that entry is zero.



Bases and Subspaces





Chapter 8

Span

We want to think not only about vectors, but also about lines and planes. We will
find a convenient language in which to describe lines and planes and similar objects.

The Problem

Figure 8.1: The so-
lutions of an equation
forming a plane.

Look at a very simple linear equation:

x1 + 2x2 + x3 = 0. (8.1)

There are many solutions. Each is a point in R3, and together they draw out a
plane. But how do we write down this plane? The picture is useless—we can’t
see for sure which vectors live on it. We need a clear method to write down
planes, lines, and similar things, so that we can communicate about them (e.g.
over the telephone or to a computer).

One method to describe a plane is to write down an equation, like x1 +
2x2 + x3 = 0, cutting out the plane. But there is another method, which we
will often prefer, building up the plane out of vectors.

Span

Consider the equations

x1 + 2x2 − 7x4 = 0
x3 + x4 = 0

Solutions have

x1 = −2x2 + 7x4

x3 = −x4,
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giving

x =


x1

x2

x3

x4



=


−2x2 + 7x4

x2

−x4

x4



= x2


−2
1
0
0

+ x4


7
0
−1
1


But x2 and x4 are free—they can be anything. The solutions are just arbitrary
“combinations” of 

−2
1
0
0

 and


7
0
−1
1


We can just remember these two vectors, to describe all of the solutions.

A multiple of a vector v is a vector cv where c is a number. A linear
combination of some vectors v1, v2, . . . , vp in Rn is a vector

v = c1v1 + c2v2 + · · ·+ cpvp,

for some numbers c1, c2, . . . , cp (a sum of multiples). The span of some vectors
is the collection of all of their linear combinations.

The Solution

We can describe the plane of solutions of equation 8.1 on the previous page: it
is the span of the vectors  2

−1
0

 ,

 0
−1
2

 .

That isn’t obvious. (You can apply forward elimination to check that it is
correct.) But immediately we see our next problem: you might describe it as
this span, and I might describe it as the span of 2

−1
0

 ,

 1
0
−1

 .



How do we see that these are the same thing?

How to Tell if a Vector Lies in a Span

If we have some vectors, lets say

x1 =

1
2
3

 , x2 =

 1
0
−1


how do we tell if another vector lies in their span? Lets ask if

y =

1
4
7


lies in the span of x1 and x2. So we are asking if y is a linear combination
c1x1 + c2x2.

Solving the linear equations

c1 + c2 = 1
2c1 = 4
3c1− c2 = 7

just means finding numbers c1 and c2 for which

c1

1
2
3

+ c2

 1
0
−1

 =

1
4
7

 ,

writing y as a linear combination of x1 and x2. Solving linear equations is
exactly the same problem as asking whether one vector is a linear combination
of some other vectors.

8.1 Write down some linear equations, so that solving them is the same problem
as asking whether  1

0
−2


is a linear combination of  1

0
−1

 ,

2
1
1

 ,

1
1
0

 .



A pivot column of a matrix A is a column in which a pivot appears when
we forward eliminate A.

The matrix

A =
(

0 0 1
−1 1 1

)
has echelon form

U =
(
−1 1 1
0 0 −1

)
so columns 1 and 3 of A:

A =
(

0 0 1
−1 1 1

)
are pivot columns.

Lemma 8.1. Write some vectors into the columns of a matrix, say

A =
(
x1 x2 . . . xp y

)
and apply forward elimination. Then y lies in the span of x1, x2, . . . , xp just
when y is not a pivot column.

Proof. As in our example on page on the preceding page, the problem is precisely
whether we can solve the linear equations whose matrix is A, with y the column
of constants. We already know that linear equations have solutions just when
the column of constants is not a pivot column.

Applied to our example, this gives

A =
(
x1 x2 y

)
=

1 1 1
2 0 4
3 −1 7


to which we apply forward elimination: 1 1 1

2 0 4
3 −1 7


Add −2(row 1) to row 2, and −3(row 1) to row 3. 1 1 1

0 −2 2
0 −4 4





Add −2(row 2) to row 3.  1 1 1
0 −2 2
0 0 0



There is no pivot in the last column, so y is a linear combination of x1 and x2,
i.e. lies in their span. (In fact, in the echelon form, we see that the last column
is twice the first column minus the second column. So this must hold in the
original matrix too: y = 2x1 − x2.)

8.2 What if we have a lot of vectors y to test? Prove that vectors y1, y2, . . . , yq
all lie in the span of vectors x1, x2, . . . , xp just when the matrix(

x1 x2 . . . xp y1 y2 . . . yq

)
has no pivots in the last q columns.

Review problems

8.3 Is the span of the vectors  1
−1
0

 ,

1
1
1


the same as the span of the vectors0

4
2

 ,

4
2
3

?

8.4 Describe the span of the vectors1
0
1

 ,

1
0
0

 ,

1
1
0

 .

8.5 Does the vector −1
0
1


lie in the span of the vectors 0

−1
0

 ,

2
1
2

 ,

−1
−1
1

?



8.6 Does the vector 0
2
0


lie in the span of the vectors2

0
0

 ,

 2
−1
1

 ,

4
0
0

?

8.7 Does the vector −1
0
1


lie in the span of the vectors 0

1
−1

 ,

2
0
1

 ,

−1
1
0

?

8.8 Does the vector  0
−3
6


lie in the span of the vectors 1

−1
0

 ,

 1
2
−6

 ,

−3
0
6

?

8.9 Find a linear equation satisfied on the span of the vectors 1
1
−1

 ,

 2
0
−1


Subspaces

Picture a straight line through the origin, or a plane through the origin. We
generalize this picture: a subspace P of Rn is a collection of vectors in Rn so
that
a. P is not empty (i.e. some vector belongs to the collection P )
b. If x belongs to P , then ax does too, for any number a.



c. If x and y belong to P , then x+ y does too.
We can see in pictures that a plane through the origin is a subspace:

My plane is not
empty: the origin
lies in my plane

Scale a vector
from my plane:
it stays in that
plane

Add vectors from
my plane: the
sum also lies in
my plane

8.10 Prove that 0 belongs to every subspace.

8.11 Prove that if a subspace contains some vectors, then it contains their
span.

Intuitively, a subspace is a flat object, like a line or a plane, passing through
the origin 0 of Rn. The set P of vectors

x =
(
x1

x2

)

for which x1 + 2x2 = 0 is a subspace of R2, because
a. x = 0 satisfies x1 + 2x2 = 0 (so P is not empty).
b. If x satisfies x1 + 2x2 = 0, then ax satisfies

(ax)1 + 2(ax)2 = a x1 + 2a x2

= a (x1 + 2x2)
= 0.

c. If x and y are points of P , satisfying

x1 + 2x2 = 0
y1 + 2y2 = 0

then x+ y satisfies

(x1 + y1) + 2 (x2 + y2) = (x1 + 2x2) + (y1 + 2y2)
= 0.

8.12 Is the set S of all points

x =
(
x1

x2

)
of the plane with x2 = 1 a subspace?



8.13 Is the set P of all points

x =

x1

x2

x3


with x1 + x2 + x3 = 0 a subspace?

The word “subspace” really means just the same as “the span of some
vectors,” as we will eventually see.

Proposition 8.2. The span of a set of vectors is a subspace; in fact, it is the
smallest subspace containing those vectors. Conversely, every subspace is a
span: the span of all of the vectors inside it.

In order to make this proposition true, we have to change our definitions
just a little: if we have an empty collection of vectors (i.e. we don’t have any
vectors at all), then we will declare that the span of that empty collection is
the origin.

If we have an infinite collection of vectors, then their span just means the
collection of all linear combinations we can build up from all possible choices
we can make of any finite number of vectors from our collection. We don’t
allow infinite sums. We would really like to avoid using spans of infinite sets of
vectors; we will address this problem in chapter 9.

Proof. Given any set of vectors X in Rn, let U be their span. So any vector in
U is a linear combination of vectors from X. Scaling any linear combination
yields another linear combination, and adding two linear combinations yields
a further linear combination, so U is a subspace. If W is any other subspace
containing X, then we can add and scale vectors from W , yielding more vectors
from W , so we can make linear combinations of any vectors from W making
more vectors from W . Therefore W contains the span of X, i.e. contains U .

Finally, if V is any subspace, then we can add and scale vectors from V to
make more vectors from V , so V is the span of all vectors in V .

8.14 Prove that every subspace is the span of the vectors that it contains.
(Warning: this fact isn’t very helpful, because any subspace will either contain
only the origin, or contain infinitely many vectors. We would really rather only
think about spans of finitely many vectors. So we will have to reconsider this
problem later.)

8.15 What are the subspaces of R?

8.16 If U and V are subspaces of Rn:
a. Let W be the set of vectors which either belong to U or belong to V . Is
W a subspace?

b. Let Z be the set of vectors which belong to U and to V . Is Z a subspace?



Review problems

8.17 Is the set X of all points

x =
(
x1

x2

)

of the plane with x2 = x2
1 a subspace?

8.18 Which of the following are subspaces of R4?
a. The set of points x for which x1x4 = x2x3.
b. The set of points x for which 2x1 = 3x2.
c. The set of points x for which x1 + x2 + x3 + x4 = 0.
d. The set of points x for which x1, x2, x3 and x4 are all ≥ 0.

8.19 Is a circle in the plane a subspace? Prove your answer. Draw pictures to
explain your answer.

8.20 Which lines in the plane are subspaces? Draw pictures to explain your
answer.

Summary

We have solved the problem of this chapter: to describe a subspace. You write
down a set of vectors spanning it. If I write down a different set of vectors,
you can check to see if mine are linear combinations of yours, and if yours are
linear combinations of mine, so you know when yours and mine span the same
subspace.





Chapter 9

Bases

Our goal in this book is to greatly simplify equations in many variables by changing
to new variables. In linear algebra, the concept of changing variables is replaced with
the more concrete concept of a basis.

Definition Figure 9.1: Only this
plane contains 0 and
these two vectors.
Three-legged tables
don’t wobble, unless all
of the feet of the table
legs lie on the same
straight line.

A basis is a list of “just enough” vectors to span a subspace. For example, we
should be able to span a line by writing down just one vector lying in it, a plane
with just two vectors, etc.

A linear relation among some vectors x1, x2, . . . , xp in Rn is an equation

c1x1 + c2x2 + · · ·+ cpxp = 0,

where c1, c2, . . . , cp are not all zero.

Figure 9.2: The vector
sticking up is linearly in-
dependent of the other
two vectors.

A set of vectors is linearly independent if the vectors admit no linear relation.
A set of vectors is a basis of Rn if (1) the vectors are linearly independent and
(2) adding any other vector into the set would render them no longer linearly
independent.

The vectors

x1 =
(

1
2

)
, x2 =

(
2
4

)
satisfy the linear relation 2x1 − x2 = 0.

Properties

Lemma 9.1. The columns of a matrix are linearly independent just when each
one is a pivot column.

Proof. Obvious from lemma 8.1 on page 64.

9.1 Is (
0
1

)
,

(
1
1

)
a basis of R2?
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9.2 The standard basis of Rn is the basis e1, e2, . . . , en (where e1 is the first
column of In, etc.). Prove that the standard basis of Rn is a basis.

9.3 Prove that there is a linear relation between some vectors w1, w2, . . . , wq
just when one of those vectors, say wk, is a linear combination of earlier vectors
w1, w2, . . . , wk−1.

Theorem 9.2. Every linearly independent set of vectors in Rn consists in at
most n vectors, and consists in exactly n vectors just when it is a basis.

Proof. Suppose that x1, x2, . . . , xp are a linearly independent. Let

A =
(
x1 x2 . . . xp

)
.

There is either one pivot or no pivot in each row. So the number of rows is at
least as large as the number of pivots. There are n rows. There is one pivot in
each column, so p pivots. So p ≤ n.

If p = n, we have one pivot in each row, so adding another vector (another
column) can’t add another pivot. Therefore adding any other vector to the
vectors x1, x2, . . . , xp would break linear independence.

If p < n, then we have zero rows after forward elimination. Suppose that
forward elimination yields U = V A. Then (U ep+1) has more pivot columns
than U has, so

(
A V −1ep+1

)
has more pivot columns than A has. Thus adding

a new vector xp+1 = V −1ep+1 to the collection of vectors x1, x2, . . . , xp, we
have a larger linearly independent collection.

9.4 Prove that every linearly independent set of vectors in Rn belongs to a
basis.

Lemma 9.3. A set of vectors u1, u2, . . . , un is a basis of Rn just when every
vector b in Rn can be written as a linear combination

b = a1u1 + a2u2 + · · ·+ anun,

for a unique choice of numbers a1, a2, . . . , an.

Proof. Let

A =
(
u1 u2 . . . un

)
,

a =


a1

a2
...
an

 ,

and apply theorem 5.4 on page 43 to the equation Aa = b.



Review problems

9.5 Are the vectors  1
−1
0

 ,

 0
1
−1

 ,

 1
0
−1


linearly independent?

9.6 Are the vectors (
2
1

)
,

(
1
2

)
a basis?

9.7 Can you find matrices A and B so that A is 3 × 5 and B is 5 × 3, and
AB = 1?

9.8 Suppose that A is 3× 5 and B is 5× 3, and that AB is invertible. Must
the columns of B be linearly independent? the rows of B? the columns of A?
the rows of A?

9.9 Give an example of a 3× 3 matrix for which any two columns are linearly
independent, but the three columns together are not linearly independent. Can
such a matrix be invertible?

The Change of Basis Matrix

The change of basis matrix F associated to a basis u1, u2, . . . , un of Rn is the
matrix

F =
(
u1 u2 . . . un

)
.

Note that Fe1 = u1, F e2 = u2, . . . , F en = un. So taking x to Fx is a
“change of basis”, taking the standard basis to the new basis.

9.10 Prove that an n × n matrix C is the change of basis matrix of a basis
just when the equation Cx = 0 has x = 0 as its only solution, which occurs just
when C is invertible.

Suppose that you and I look at the sky and watch a falling star. You measure
its position against the fixed choice of basis e1, e2, e3, while I measure against
some funny choice of basis u1, u2, u3.

p

The actual position is some vector p in R3. Lets say

p = x1e1 + x2e2 + x3e3 as you measure it,
= y1u1 + y2u2 + y3u3 as I measure it.

Let
F =

(
u1 u2 u3

)



be the change of basis matrix, so that Fe1 = u1, etc. So F takes your basis to
mine. If we let

x =

x1

x2

x3

 and y =

y1

y2

y3


then in your basis:

p = x1e1 + x2e2 + x3e3

= x

but in mine:

p = y1u1 + y2u2 + y3u3

= y1Fe1 + y2Fe2 + y3Fe3

= F (y1e1 + y2e2 + y3e3)
= Fy.

So x = Fy converts my measurements to yours.
Suppose that we change variables by x = Fy and so y = F−1x, with F

some invertible matrix. Then any matrix A acting on the x variables by taking
x to Ax is represented in y variables as

F−1

turn x’s to y’s
A

act on x’s
F

turn y’s to x’s

the matrix F−1AF .

9.11 Take

F =

1 0 1
0 1 0
0 0 1

 , A =

1 0 0
0 2 0
0 0 2

 .

Compute F−1AF .

9.12 A shower of falling stars fall to Earth. Each star falls from a position

x =

x1

x2

x3


to a position on the ground

Ax =

x1

x2

0

 .



What is the matrix A? Suppose that I measure the positions of the stars against
the basis

u1 =

1
0
0

 , u2 =

2
1
0

 , u3 =

0
2
1

 .

Find the change of basis matrix F , and find F−1AF , the matrix that describes
how each star falls from the sky as measured against my basis.

Review problems

9.13 Is 1
2
0

 ,

0
2
0

 ,

1
1
1


a basis of R3?

9.14 If A is a matrix, show how each vector which A kills determines a linear
relation between the columns of A, and vice versa.

9.15 Are (
1
0

)
,

(
0
0

)
linearly independent?

9.16 Write down a basis of R2 other than the standard basis, and prove that
your basis really is a basis.

9.17 Is (
1
1

)
,

(
2
1

)

a basis of R2?

9.18 Is (
0 1
1 1

)
a change of basis matrix? If so, for what basis?

9.19 If x1, x2, . . . , xn and y1, y2, . . . , yn are two bases of Rn, prove that there
is a unique invertible matrix A so that Ax1 = y1, A x2 = y2, etc.



Bases of Subspaces

We can write down a subspace, by writing down a spanning set of vectors. But
you might write down more vectors than you need to. We want to squeeze
the description down to the bare simplest minimum, throwing out redundant
information.

If V is a subspace of Rn, a basis of V is a set of linearly independent vectors
from V , so that adding any other vector from V into the set would render them
no longer linearly independent.

The vectors 1
0
0

 ,

0
1
0


are a basis for the subspace V in R3 of vectors of the formx1

x2

0

 .

Obviously:

Lemma 9.4. If some vectors span a subspace, then putting them into the
columns of a matrix, the pivot columns form a basis of the subspace.

Lets find a basis for the span of the vectors1
1
1

 ,

1
1
0

 ,

0
0
1

 .

Put them into a matrix 1 1 0
1 1 0
1 0 1

 .

Forward eliminate:  1 1 0
0 −1 1
0 0 0

 ,

so the first and second columns are pivot columns. Therefore1
1
1

 ,

1
1
0


are a basis for the span.



Proposition 9.5. Every subspace of Rn has a basis. Moreover, any basis
v1, v2, . . . , vp of a subspace V of Rn lives in a basis v1, v2, . . . , vp, w1, w2, . . . , wq
of Rn.

Proof. If V only contains the 0 vector, then we can take no vectors as a basis
for V , and let w1, w2, . . . , wn be any basis for Rn. On the other hand, if V
contains a nonzero vector, then pick as many linearly independent vectors from
V as possible. By theorem 9.2 on page 72, we could only pick at most n vectors.
They must span V , because otherwise we could pick another one. If V = Rn,
then we are finished. Otherwise, pick as many vectors from Rn as possible
which are linearly independent of v1, v2, . . . , vp. Clearly we stop just when we
hit a total of n vectors.

Dimension

Do all bases look pretty much the same?

Theorem 9.6. Any two bases of a subspace have the same number of vectors.

Proof. Imagine two bases, say x1, x2, . . . , xp and y1, y2, . . . , yq, for the same
subspace. Forward eliminate(

x1 x2 . . . xp y1 y2 . . . yq

)
yielding 


.

Each x vector generates a pivot, p pivots in all, straight down the diagonal.
Forward eliminate the right hand portion of the matrix, yielding


,



giving at most p pivots because of the zero rows. Each y vector generates a
pivot. So there aren’t more than p of these y vectors. Thus no more y vectors
than x vectors. Reversing the roles of x and y vectors, we find that there can’t
be more x vectors than y vectors.

9.20 Prove that every subspace of Rn has a basis with at most n vectors.

The dimension of a subspace is the number of vectors in any basis. Write
the dimension of a subspace U as dimU .

Review problems

9.21 Consider the vectors in Rn of the form ei − ej (for all possible values of i
and j from 1 to n). Find a basis for the subspace they span.

Summary

• A subspace is a flat thing passing through 0.
• A basis for a subspace is a collection of just enough vectors to span the

subspace.
• A change of basis matrix is a basis organized into the columns of a matrix.

Uniqueness of Reduced Echelon Form

When we carry out elimination, we choose rows to swap.

9.22 Find the simplest matrix A you can with two different ways of carrying
out forward elimination, with different results.

Recall that Gauss–Jordan elimination means forward elimination followed
by back substitution. The matrix resulting from Gauss–Jordan elimination is
said to be in reduced echelon form.

Theorem 9.7. The result of Gauss–Jordan elimination does not depend on the
choices made of which rows to swap.

Proof. Suppose that U and W are two different eliminations of the same matrix
A, obtained using different choices of rows to swap. The first pivot column is
just the first nonzero column of A. The second pivot column is the earliest
column which is linearly independent of the first pivot column, etc. This is
true for A, and doesn’t change under forward elimination or back substitution.
Therefore A and U and W have the same pivot columns. After elimination, the
first pivot column becomes e1, the second becomes e2, etc. So all of the pivot
columns of U and W must be identical.

Every pivotless column is a linear combination of earlier pivot columns, and
the coefficients in this linear combination are not affected by Gauss–Jordan



elimination. Therefore the pivotless columns of U and W are the same linear
combinations of the pivot columns. The pivot columns are the same, so all
columns are the same.

9.23 The rank is the number of pivots in the forward elimination. Prove that
the rank of a matrix does not depend on which rows you choose when forward
eliminating.





Chapter 10

Kernel and Image

Each matrix A has two important subspaces associated to it: its kernel (the vectors it
kills), and its image (the vectors b for which you can solve Ax = b).

Kernel

If A is any matrix, say p× q, then the vectors x in Rq for which Ax = 0 (vectors
“killed” by A) form a subspace of Rq called the kernel of A, and written kerA.

The kernel is a subspace, because
a. 0 belongs to the kernel of any matrix A, since A0 = 0 (everything kills 0).
b. If Ax = 0 and Ay = 0, then A(x+ y) = Ax+Ay = 0 (when you kill two

vectors, you kill their sum).
c. If Ax = 0, then A (ax) = aAx = 0 (when you kill a vector, you kill its

multiples).

10.1 If a matrix is wider than it is tall (a “short” matrix), then its kernel
contains nonzero vectors.

10.2 Prove that the kernel of AB contains the kernel of B. Does it have to
contain the kernel of A?

We will often need to find kernels of matrices. To rapidly calculate the kernel
of a matrix, for example

A =

2 0 1 1
1 1 2 1
3 −1 0 1


a. Carry out forward elimination and back substitution. 1 0 1

2
1
2

0 1 3
2

1
2

0 0 0 0


b. Cut out all zero rows. (

1 0 1
2

1
2

0 1 3
2

1
2

)
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c. Change the signs of all entries after each pivot.(
1 0 − 1

2 − 1
2

0 1 − 3
2 − 1

2

)

(This corresponds to changing equations like x1 + 1
2x3 + 1

2x4 = 0 to
x1 = − 1

2 x3 − 1
2 x4. Think of it as moving everything after the pivot over

to the right hand side, although we won’t actually move anything.)
d. Stuff in whatever rows from the identity matrix you need into your matrix,

so that it ends up with nonzero entries all down the diagonal.
1 0 − 1

2 − 1
2

0 1 − 3
2 − 1

2
0 0 1 0
0 0 0 1

 .

We won’t mark the new rows with pivots. Each new row corresponds to
setting one of the free variables to 1 and the others to 0.

e. Cut out all of the pivot columns. The remaining columns are a basis for
the kernel. 

− 1
2
− 3

2
1
0

 ,


− 1

2
− 1

2
0
1

 .

10.3 Apply this algorithm to the matrix

A =

 0 1 2
2 2 2
−2 0 2


and check that Ax = 0 for each vector x in your resulting basis for the kernel.

Lemma 10.1. The algorithm works, giving a basis for the kernel of any matrix.

Proof. Each vector in the kernel is obtained by setting arbitrary values for
the free variables, and letting the pivots solve for the other variables. Let v1
be the vector in the kernel which has value 1 for the 1st free variable, and 0
for all other free variables. Similarly, make a vector v2, v3, . . . , vs for each free
variable–suppose that there are s free variables. The kernel is a subspace, so
each linear combination

c1v1 + c2v2 + · · ·+ csvs

lies in the kernel. This linear combination has value c1 for the first free variable,
c2 for the second, etc. (just looking at the rows of the free variables). Each



vector in the kernel has some values c1, c2, . . . , cs for the free variables. So each
vector in the kernel is a unique linear combination of v1, v2, . . . , vs. Suppose that
we find a linear relation among v1, v2, . . . , vs, say c1v1 + c2v2 + · · ·+ csvs = 0.
Look at the row in which v1 has a 1 and all of the other vectors have 0’s: the
linear relation gives c1 = 0 in that row. Similarly all of c1, c2, . . . , cs must
vanish, so there is no linear relation among these vectors. Therefore the vectors
v1, v2, . . . , vs form a basis for the kernel.

Finally, we need to see why these vectors v1, v2, . . . , vs are precisely the
vectors which come out of our process above. First, look at our example. The
reduced echelon form turns back into equations as

x1 + 1
2 x3 + 1

2 x4 = 0
x2 + 3

2 x3 + 1
2 x4 = 0

Solving for pivots means subtracting off:

x1 = − 1
2 x3 − 1

2 x4

x2 = − 3
2 x3 − 1

2 x4.

All free variables line up on the right hand side, and we have changed the signs
of their coefficients. Setting x3 = 1 and x4 = 0, go down the right hand side,
killing the x4 entries, and putting x3 = 1 in each x3 entry, i.e. writing down
just the entries from the x3 column:

v1 =


− 1

2
− 3

2
1
0

 .

The general algorithm works in the same way: if we put all free variables on to
the right hand side, and then set one free variable to 1 (“turn it on”) and the
others to 0’s (“turn them off”), we can picture this as “turning on” the column
associated to that free variable. Each pivot solves for a pivot variable—the
value of that pivot variable is the entry in the corresponding row of the “turned
on” column.

10.4 Give an example of a square matrix whose kernel is not the kernel of its
transpose.

10.5 Draw a picture of the kernel for each of

A =
(

1 0 0
0 1 0

)
, B =

(
1 0
2 0

)
, C =

(
1
)
, D =

(
0 0

)
.

Corollary 10.2. The dimension of the kernel of a matrix is the number of
pivotless columns after forward elimination.

Another way to say it: the dimension of the kernel of a matrix A is the number
of free variables in the equation Ax = 0.



Review problems

10.6 Find a basis for the kernel of
1 0 0 0 0
0 1 0 0 1
0 0 1 2 2
0 0 0 0 0


10.7 Find a basis for the kernel of

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


10.8 Find a basis for the kernel of

1 −1 −1 −1 1
2 2 0 0 −1
2 2 0 1 0
−1 0 2 −1 2


10.9 Find a basis for the kernel of 1 1 2

−1 −1 0
1 1 1


10.10 Find a basis for the kernel of 1 0 1

2 1 −1
−1 1 0


10.11 Find the dimension of the kernel of

A =
(

0 0
0 1

)
, B =

(
1 0
0 0

)
, C =

(
0 0
0 0

)
,

D =
(

1 1
1 1

)
, E =

(
1 1 1
0 0 1

)
, F =

(
1 0
0 −1

)
.

10.12 Prove that the kernel of A is the kernel of(
A

A

)
.



10.13 If you know the kernel of a p×q matrix A, how do you find the dimension
of the kernel of

B =

A A A

A A A

A A A

?

Image

The image of a matrix is the set of vectors y of the form y = Ax for some vector
x, written imA.

10.14 Prove that the image of a matrix is the span of its columns.

The image of

A =

 1 1 2 3
0 −1 −2 −3
−1 0 0 0


is the span of  1

0
−1

 ,

 1
−1
0

 ,

 2
−2
0

 ,

 3
−3
0

 .

10.15 Prove that the equation Ax = b has a solution x just when b lies in the
image of A.

Review problems

10.16 Describe the image of the matrix

A =

2 0
0 3
0 0

 .

10.17 (a) Suppose that A is a 2 × 2 matrix which, when taking a vector x
to the vector Ax, takes multiples of e1 to multiples of e1. Show that A is
upper triangular.

(b) Similarly, if A is a 3× 3 matrix which takes multiples of e1 to multiples
of e1, and takes linear combinations of e1 and e2 to other such linear
combinations, then A is upper triangular.

(c) Generalize this to Rn, and use it to show that the inverse of an invertible
upper triangular matrix is upper triangular.

10.18 Prove that if a matrix is taller than it is wide (a “tall” matrix), then
some vector does not belong to its image.



10.19 Find a basis for the image of 1 −1 0
−1 0 −1
2 2 −1

 .

Explain your answer.

10.20 Find a basis for the image of 2 −6 −6
−6 18 18
0 0 0

 .

Explain your answer.

10.21 Find a basis for the image of0 2 0
2 −1 2
1 1 2

 .

Explain your answer.

10.22 Find a basis for the image of 2 −1 3
−6 3 −9
0 0 0

 .

Explain your answer.

10.23 Find a basis for the image of−3 1 0
3 −1 0
3 −1 0

 .

Explain your answer.

10.24 Find a basis for the image of 2 4 0
−6 −12 0
4 8 0

 .

Explain your answer.



10.25 Find a basis for the image of 1 −1 1
1 0 2
−1 2 1

 .

Explain your answer.

10.26 Find a basis for the image of−1 0 1
1 0 1
−1 2 −1

 .

Explain your answer.

10.27 Find a basis for the image of−1 4 4
3 −12 −12
3 −12 −12

 .

Explain your answer.

10.28 Find a basis for the image of0 2 1
2 2 0
0 2 0

 .

Explain your answer.

10.29 Find a basis for the image of 2 −6 −4
−6 18 12
0 0 0

 .

Explain your answer.

10.30 Find a basis for the image of1 0 0
2 −1 −1
1 −1 0

 .

Explain your answer.



Kernel and Image

10.31 If A and B are matrices, and there is an invertible matrix C for which
B = CA, prove that A and B have the same kernel.

10.32 If A and B are two matrices, and B = CA for an invertible matrix C,
prove that A and B have images of the same dimension.

Theorem 10.3. For any matrix A,

dim kerA+ dim imA = number of columns.

Proof. The image of A is the span of the columns. By lemma 8.1 on page 64,
each pivotless column is a linear combination of earlier pivot columns. So
the pivot columns span the image. Pivot columns are linearly independent: a
basis. Each pivotless column contributes (in our algorithm) to our basis for the
kernel.

The matrix

A =

−1 1 −1 1
−1 1 1 1
−2 2 −1 1


has echelon form

U =

 −1 1 −1 1
0 0 2 0
0 0 0 −1


So columns 1, 3 and 4 of A (not of U) are a basis for the image of A:−1

−1
−2

 ,

−1
1
−1

 ,

1
1
1

 .

The image has dimension 3 because there are 3 pivot columns. The kernel has
dimension 1, because there is one pivotless column. The pivotless column is not
a basis for the kernel. It just shows you the dimension of the kernel. (In this
example, the pivotless column isn’t even in the kernel.)

10.33 Find the rank of

A =


0 2 2 2
1 2 0 0
0 1 2 2
0 2 2 2


and explain what this tells you about image and kernel.



Review problems

10.34 Find two matrices A and B, which have different images, but for which
B = CA for an invertible matrix C. Prove that the images really are different,
but of the same dimension.

10.35 Prove that rankA = rankAt for any matrix A.

Summary

a. The kernel of a matrix is the set of vectors it kills. It is large just when
linear equations Ax = b with one solution have lots of solutions (measures
plurality of solutions when they exist).

b. Our algorithm makes a basis for the kernel out of the pivotless columns.
c. The image of a matrix is the stuff that comes out of it—the vectors b for

which you can solve Ax = b (measures existence of solutions).
d. The pivot columns are a basis of the image.

Review problems

10.36 Suppose that Ax = b. Prove that A(x+ y) = b too, just when y lies in
the kernel. So the kernel measures the plurality of solutions of equations, while
the image measures existence of solutions.

10.37 What is the maximum possible rank of a 4× 3 matrix? A 3× 5 matrix?

10.38 If a 3× 5 matrix A has rank 3 must the equation Ax = b have a solution
x? Can it have more than one solution? If it has one solution, must it have
infinitely many?

10.39 As for the previous question, but with a 5× 3 matrix A.

10.40 If A = BC and B is 5× 4 and C is 4× 5, prove that detA = 0.

10.41 Write down a 2×2 matrix A so that if I choose any vector x with positive
entries, then the vector Ax also has positive entries, and lies between (but not
on) the horizontal axis and a diagonal line.

10.42 The Fredholm Alternative: for any matrix A and vector b, prove that
just one of the following two problems has a solution: (1) Ax = b or (2) Aty = 0
with bty 6= 0.

10.43 Prove that the image of AB is contained in the image of A.

10.44 Prove that the rank of AB is never more than the rank of A or of B.

10.45 Prove that the rank of a sum of matrices is never more than the sum of
the ranks.



10.46 Which of the following can change when you carry out forward elimina-
tion?
a. image,
b. kernel,
c. dimension of image,
d. dimension of kernel?

10.47 Prove that the rank of AB is no larger than the ranks of A and B.



Eigenvectors





Chapter 11

Eigenvalues and Eigenvectors

In this chapter, we study certain special vectors, called eigenvectors, associated to a
square matrix.

What are eigenvectors

Figure 11.1: An
eigenvector just gets
stretched

When a vector x is struck by a matrix A, it becomes a new vector Ax. Usually
the new vector is unrelated to the old one. Rarely, the new vector might just
be the old one stretched or squished; we will then call x an eigenvector of A.
If we have a basis worth of eigenvectors, then the matrix A just squishes or
stretches each one, and we can completely recover the matrix if we know the
basis of eigenvectors and their eigenvalues.

Eigenvalues and the Characteristic Polynomial

An eigenvector x of a square matrix A is a nonzero vector for which Ax = λx
for some number λ, called the eigenvalue of x. The eigenvalue is the factor that
the eigenvector gets stretched by.

11.1 For each of the pictures in problem 3.16 on page 25, calculate the eigen-
values of the associated matrix and draw on each face the directions that the
eigenvectors point in.

Lemma 11.1. A number λ is an eigenvalue of a square matrix A (which is to
say that there is an eigenvector x with that number as eigenvalue) just when

det (A− λ I) = 0.

Proof. Rewrite the equation Ax = λx as (A− λ I)x = 0. Recall that the
equation Bx = 0 (with B a square matrix) has a nonzero solution x just when
B is not invertible, so just when detB = 0. Lets pick B to be A− λ I; there is
an eigenvector x with eigenvalue λ just when det (A− λ I) = 0.

The expression det (A− λ I) is called the characteristic polynomial of the
matrix A.

We can restate the lemma:

Lemma 11.2. The eigenvalues of a square matrix A are precisely the roots of
its characteristic polynomial.
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The matrix

A =
(

2 0
0 3

)
has characteristic polynomial

det
((

2 0
0 3

)
− λ

(
1 0
0 1

))
= det

(
2− λ 0

0 3− λ

)
= (2− λ) (3− λ) .

So the eigenvalues are λ = 2 and λ = 3.

11.2 Prove that the eigenvalues of an upper (or lower) triangular matrix are
the diagonal entries. For example:

A =

1 2 3
0 4 5
0 0 6


has eigenvalues λ = 1, λ = 4, λ = 6.

11.3 Find a 2× 2 matrix A whose eigenvalues are not the same as its diagonal
entries.

11.4 Find 2× 2 matrices A and B for which A+B has an eigenvalue which is
not a sum of some eigenvalue of A with some eigenvalue of B.

The set of eigenvalues of a matrix is called its spectrum.
The matrix

A =
(

0 −1
1 0

)
has characteristic polynomial det (A− λ I) = λ2 + 1, which has no roots, so
there are no eigenvalues (among real numbers λ).

11.5 Why is the characteristic polynomial a polynomial in λ?

11.6 What is the highest order term of the variable λ in the characteristic
polynomial of a matrix A?

Appendix: Why the Fast Formula is So Slow

We use the slow formula to calculate determinants when we compute out
characteristic polynomials. Why not the fast formula? Lets try it on an
example. Take

A =

1 1 2
2 3 0
1 1 4

 .



Lets hunt down the eigenvalues of A, by computing the characteristic polynomial
as before. But this time, lets try the fast formula for the determinant, to find
det (A− λ I). We apply forward elimination to

A− λ I =

1− λ 1 2
2 3− λ 0
1 1 4− λ

 .

to find  1− λ 1 2
2 3− λ 0
1 1 4− λ


Add − 2

1−λ (row 1) to row 2, − 1
1−λ (row 1) to row 3. 1− λ 1 2

0 − 1−4λ+λ2

−1+λ 4 (−1 + λ)−1

0 λ
−1+λ − 2−5λ+λ2

−1+λ


Move the pivot ↘.

1− λ 1 2

0 −1− 4λ+ λ2

−1 + λ
4 (−1 + λ)−1

0 λ
−1+λ − 2−5λ+λ2

−1+λ


Add λ

1−4λ+λ2 (row 2) to row 3.


1− λ 1 2

0 −1− 4λ+ λ2

−1 + λ
4 (−1 + λ)−1

0 0 −λ
3−8λ2+15λ−2

1−4λ+λ2


Move the pivot ↘.

1− λ 1 2

0 −1− 4λ+ λ2

−1 + λ
4 (−1 + λ)−1

0 0 −λ
3 − 8λ2 + 15λ− 2

1− 4λ+ λ2





The point: at each step, the expressions are rational functions of λ, accumulating
to become more complicated at each step. This is not any faster than the slow
process, which gives:

det (A− λ I) = + (1− λ) det
(

3− λ 0
1 4− λ

)

− 2 det
(

1 2
1 4− λ

)

+ 1 det
(

1 2
3− λ 0

)
=2− 15λ+ 8λ2 − λ3.

Always use the slow process when searching for eigenvalues. There is actually a
faster method to find eigenvalues of large matrices, but it is slower on small
matrices, and we won’t ever want to work with large matrices.

Review problems

11.7 Find the eigenvalues of the matrices

A =
(

4 −2
−2 1

)
, B =

(
2 3
1 0

)
, C =

(
0 1
0 1

)
, D =

1 1 0
1 1 0
0 1 0


11.8 Prove that a square matrix A and its transpose At have the same eigen-
values.

11.9 Prove that
det
(
F−1AF − λ I

)
= det (A− λ I)

for any square matrix A, and any invertible matrix F . So the characteristic
polynomial is unchanged by change of basis.

11.10 If all of the entries of a square matrix are positive, are its eigenvalues
positive?

11.11 Are the eigenvalues of AB equal to those of BA?

11.12 Give an example of 2× 2 matrices A and B for which the eigenvalues of
AB are not products of eigenvalues of A with those of B.

11.13 What are the eigenvalues of

A =

1 1 1
1 1 1
1 1 1

?



The multiplicity of an eigenvalue λj is the number of factors of λ − λj
appearing in the characteristic polynomial.

11.14 Suppose that the characteristic polynomial of some n × n matrix A
splits into a product of linear factors. Prove that the determinant of A is the
product of its eigenvalues (each taken with multiplicity), by setting λ = 0 in
the characteristic polynomial.

11.15 From the previous exercise, if a 2× 2 matrix A has eigenvalues 0 and 1,
what is its rank?

11.16 Write out the characteristic polynomial of an n× n matrix A as

det (A− λ I) = s0(A)− s1(A)λ+ s2(A)λ2 + · · ·+ (−1)nsn(A)λn.

a. Find sn(A).
b. Prove that s0(A) = detA.
c. Prove that sj(A) is a sum of products of precisely n− j entries of A. In

particular, sn−1(A) is a polynomial of degree 1 as a function of each entry
of A.

d. Use this to prove that sn−1(A) = A11 +A22 + · · ·+Ann. (This quantity
A11 +A22 + · · ·+Ann is called the trace of A).

e. Prove that sj
(
F−1AF

)
= sj(A) for any invertible matrix F , so the

coefficients of the characteristic polynomial are unchanged by change of
basis.

f. Take a basis u1, u2, . . . , un for which the vectors ur+1, ur+2, . . . , un form
a basis of the kernel, let F be the associated change of basis matrix, and
look at F−1AF . Prove that

F−1AF =
(
P 0
Q 0

)

for some invertible r × r matrix P , and some matrix Q.
g. If A has rank r, prove that sk(A) = 0 for k ≤ n− r.
h. Write down two 2×2 matrices of different ranks with the same characteristic

polynomial.

How to find eigenvectors

To find the eigenvectors of a matrix A: once you have the eigenvalues, pick each
eigenvalue λ, and find the kernel of A− λ I.

The matrix

A =
(

2 0
1 3

)
has eigenvalues λ = 2 and λ = 3.



Lets start with λ = 2:

A− λ I =
(

2 0
1 3

)
− 2

(
1 0
0 1

)

=
(

0 0
1 1

)

Our algorithm (from section 10) for finding the kernel yields a basis(
−1
1

)

for the λ = 2-eigenvectors.

11.17 Do the same for λ = 3.

11.18 Find the eigenvectors and eigenvalues of

A =

 1 3 0
−2 6 0
0 0 4


Put it all together. How do we calculate the eigenvectors of

A =
(

3 2
0 1

)
?

a. Find the eigenvalues:

0 = det (A− λ I)

= det
(

3− λ 2
0 1− λ

)
= (3− λ) (1− λ)

So the eigenvalues are λ = 3 and λ = 1.
b. Find the eigenvectors: for each eigenvalue λ, compute a basis for the kernel

of A− λ I. For λ = 3:

A− 3 I =
(

3− 3 2
0 1− 3

)

=
(

0 2
0 −2

)



The kernel of A− 3 I has basis 1
0

 .

The nonzero linear combinations of this basis are the eigenvectors with
eigenvalue λ = 3.

For λ = 1,

A− I =
(

3− 1 2
0 1− 1

)

=
(

2 2
0 0

)

The kernel of A− I has basis (
−1
1

)
.

The nonzero linear combinations of this basis are the λ = 1-eigenvectors.

Review problems

11.19 Without any calculation, what are the eigenvalues and eigenvectors of

A =

5 0 0
0 6 0
0 0 7

?

11.20 Find the eigenvalues and eigenvectors of

A =
(

1 1
0 1

)

11.21 Find the eigenvalues and eigenvectors of

A =
(

0 3
2 1

)

11.22 Find the eigenvalues and eigenvectors of

A =

2 0 0
2 1 3
2 0 3





11.23 Prove that every eigenvector of any square matrix A is an eigenvector of
A−1, of A2, of 3A and of A− 7 I. How are the eigenvalues related?

11.24 Forward elimination messes up eigenvalues and eigenvectors. Back
substitution messes them up further. Give the simplest examples you can.

11.25 What are the eigenvalues and eigenvectors of the permutation matrix of
a transposition?

11.26 What are the eigenvalues and eigenvectors of a 2 × 2 strictly lower
triangular matrix?

11.27 What are all of the real numbers that can occur as values of the
(a) determinant
(b) trace
(c) pivots
(d) eigenvalues
of n× n permutation matrices? Justify your answers.

11.28 Find a matrix with the given eigenvectors.

11.29 Find a matrix with the given eigenvectors.

11.30 Find a matrix with the given eigenvectors.

11.31 Find a matrix with the given eigenvectors.



11.32 Find a matrix with the given eigenvectors.

11.33 Find a matrix with the given eigenvectors.

11.34 Find a matrix with the given eigenvectors.

11.35 Find a matrix with the given eigenvectors.

11.36 Find a matrix with the given eigenvectors.

11.37 Find a matrix with the given eigenvectors.

11.38 Find a matrix with the given eigenvectors.



11.39 Find a matrix with the given eigenvectors.

11.40 Find a matrix with the given eigenvectors.

11.41 Find a matrix with the given eigenvectors.

11.42 Find a matrix with the given eigenvectors.



Chapter 12

Bases of Eigenvectors

In this chapter, we try (and don’t always succeed) to organize eigenvectors into bases.

Eigenspaces

The λ-eigenspace of a square matrix A is the set of vectors x for which (A−
λ I)x = 0 (i.e. the kernel of A−λ I). The eigenvectors are precisely the nonzero
vectors in the eigenspace. In particular, if λ is not an eigenvalue, then the
λ-eigenspace is just the 0 vector.

12.1 Prove that for any value λ, the λ-eigenspace of any square matrix is a
subspace.

Review problems

12.2 Suppose that A and B are n× n matrices, and AB = BA. Prove that if
x is in the λ-eigenspace of A, then so is Bx.

Bases of Eigenvectors

Diagonal matrices are very easy to work with:(
2

3

)(
x1

x2

)
=
(

2x1

3x2

)
,

Figure 12.1: An eigenspace with eigenvalue λ = 2: anything you draw in that subspace get doubled.
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Figure 12.2: A basis of eigenvectors of a matrix. Each vector starts off as a thickly drawn vector,
and gets stretched into the thinly drawn vector. A negative stretching factor reverses the direction
of the vector. We can recover the entire matrix A from this picture: if we know the directions of
the basis vectors that are stretched and how much the matrix stretches vectors in each of those
directions, we can find the matrix.

each variable simply getting scaled by a factor. The next easiest are matrices
that become diagonal when we change variables.

Theorem 12.1 (Decoupling Theorem). If u1, u2, . . . , un is a basis of Rn, and
each of u1, u2, . . . , un is an eigenvector of a square matrix A, say Au1 =
λ1u1, Au2 = λ2u2, . . . , Aun = λnun, then

F−1AF =


λ1

λ2
. . .

λn

 ,

where
F =

(
u1 u2 . . . un

)
is the change of basis matrix of the basis u1, u2, . . . , un.

The matrix F (or the basis u1, u2, . . . , un) diagonalizes the matrix A.
We call this the decoupling theorem, because the transformation taking x

to Ax is usually very complicated, mixing up the variables x1, x2, . . . , xn in a
tangled mess. But if we can somehow change the variables and make A into
a diagonal matrix, then each of the new variables is just being stretched or
squished by a factor λi, independently of any of the other variables, so the
variables appear “decoupled” from one another.

Proof. F takes e’s to u’s, A scales the u’s, and then F−1 turns the scaled u’s
back into e’s. So F−1AFej = λjej , giving the j-th column of F−1AF . So

F−1AF =


λ1

λ2
. . .

λn

 .



12.3 Diagonalize

A =

1 0 0
0 2 0
2 0 3

 .

We save a lot of time if we notice that:

Theorem 12.2. Eigenvectors with different eigenvalues are linearly indepen-
dent.

This saves us time because we don’t have to check to see if the eigenvectors
we come up with are linearly independent, since we generate a basis for each
eigenspace, and there are no relations between eigenspaces.

Proof. Take a square matrix A. Pick some eigenvectors, say x1 with eigenvalue
λ1, x2 with eigenvalue λ2, etc., up to some xp. Suppose that all of these
eigenvalues λ1, λ2, . . . , λp are different from one another. If we found a linear
relation c1x1 = 0 involving just one vector x1, we would divide by c1 to see
that x1 = 0. But x1 6= 0 (being an eigenvector), so there is no linear relation
involving just one eigenvector. Lets suppose we found a linear relation involving
just two eigenvectors, x1 and x2, like c1x1 + c2x2 = 0. We could just replace x1
by c1x1 and x2 by c2x2 to arrange a linear relation x1 + x2 = 0. Since x1 is an
eigenvector with eigenvalue λ1, we know that (A− λ1 I)x1 = 0. Apply A−λ1I
to both sides of our relation to get (λ2 − λ1)x2 = 0. Since the eigenvalues are
distinct, we can divide by λ2−λ1 to get x2 = 0, again a contradiction. So there
are no linear relations involving just two eigenvectors.

Lets imagine a linear relation

c1x1 + c2x2 + · · ·+ cpxp = 0,

involving any number of eigenvectors, and see why that leads us into a contra-
diction. If any of the terms are 0, just drop them, so we can assume that there
are no 0 terms, i.e. that all coefficients c1, c2, . . . , cp are nonzero. So we can
rescale, replacing x1 by c1x1, etc., to arrange that our relation is now

x1 + x2 + · · ·+ xp = 0.

Applying A− λ1 I to our linear relation:

0 = (A− λ1 I) (x1 + x2 + · · ·+ xp)
= (λ2 − λ1)x2 + · · ·+ (λp − λ1)xp

a linear relation with fewer terms. Since λ1 6= λ2, the coefficient of x2 won’t
become 0 in the new linear relation unless it was already 0, so this new linear
relation still has nonzero terms. In this way, each linear relation leads to a
linear relation with fewer terms, until we get down to one or two terms, which
we already saw can’t happen. Therefore there are no linear relations among
x1, x2, . . . , xn.



12.4 Diagonalize

A =

−1 2 2
2 2 2
−3 −6 −6

 .

12.5 Diagonalize

A =

−1 3 −3
−3 5 −3
−6 6 −4

 .

12.6 Prove that a square matrix is diagonalizable (i.e. diagonalized by some
matrix) just when it has a basis of eigenvectors.

So F diagonalizes A just when the change of coordinates y = F−1x changes
the matrix A into a diagonal matrix.

12.7 Give an example of a matrix which is not diagonalizable.

12.8 If A is diagonalized by F , say F−1AF = Λ diagonal, then prove that A2

is also diagonalized by F . Apply induction to prove that all powers of A are
diagonalized by F .

12.9 Use the result of the previous exercise to compute A100000 where

A =
(
−3 −2
4 3

)
.

Review problems

12.10 Find the eigenvalues and eigenvectors of

A =

1
2

3

 .

12.11 Find the matrix A which has eigenvalues 1 and 3 and corresponding
eigenvectors (

2
4

)
,

(
−4
2

)
.

12.12 Imagine that a quarter of all people who are healthy become sick each
month, and a quarter die. Imagine that a quarter of all people who are sick die
each month, and a quarter become healthy. What happens to the dead people?
Write a matrix A to show how the numbers hn, sn, dn of healthy, sick and dead
people change from month n to month n+ 1. Diagonalize A. What happens to
the population in the long run? Prove your answer. (Keep in mind that no one
is being born in this story.)



12.13 Let A be the 5× 5 matrix all of whose entries are 1.
a. Without any calculation, what is the kernel of A?
b. Use this to diagonalize A.

12.14 Lets investigate which 2× 2 matrices are diagonalizable.
a. Prove that every 2× 2 matrix A can be written uniquely as

A =
(
p+ q r + s

r − s p− q

)

for some numbers p, q, r, s.
b. Prove that the characteristic polynomial of A is (p− λ)2 + s2 − q2 − r2.
c. Prove that A has two different eigenvalues just when q2 + r2 > s2.
d. Prove that any 2×2 matrix with two different eigenvalues is diagonalizable.
e. Prove that any 2 × 2 matrix with only one eigenvalue is diagonalizable

just when it is diagonal.
f. Prove that any 2× 2 matrix with no eigenvalues is not diagonalizable.

12.15 Find all real eigenvalues of the matrix

A =
(

0 1
2

0 −1

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.16 Find all real eigenvalues of the matrix

A =
(

1 0
1
2 2

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.17 Find all real eigenvalues of the matrix

A =
(

0 0
3 −3

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.18 Find all real eigenvalues of the matrix

A =
(
−1 −1
−1 −1

)
.

For each eigenvalue, find a basis of its eigenvectors.



12.19 Find all real eigenvalues of the matrix

A =
(

6 8
−4 −6

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.20 Find all real eigenvalues of the matrix

A =
(
−3 0
−2 −1

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.21 Find all real eigenvalues of the matrix

A =
(
−1 1
0 0

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.22 Find all real eigenvalues of the matrix

A =
(

0 −2
−1 −1

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.23 Find all real eigenvalues of the matrix

A =
(

1 −1
0 2

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.24 Find all real eigenvalues of the matrix

A =
(

3 −2
4 −3

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.25 Find all real eigenvalues of the matrix

A =
(

0 0
−1 1

)
.

For each eigenvalue, find a basis of its eigenvectors.

12.26 Find all real eigenvalues of the matrix

A =
(
− 11

3
4
3

− 4
3 − 1

3

)
.

For each eigenvalue, find a basis of its eigenvectors.



Summary

Linear algebra has two problems:
a. Solving linear equations Ax = b for the unknown x. This problem is truly

linear. It has a solution x whenever b lies in the image, and the solution x
is unique up to adding on vectors from the kernel.

b. Find eigenvectors and eigenvalues Ax = λx. This problem is nonlinear, in
fact quadratic, since λ and x are multiplied by one another. The nonlinear
part is finding the eigenvalues λ, which are the roots of the characteristic
polynomial det (A− λ I). There is an eigenspace of solutions x for each λ,
and finding a basis of each eigenspace is a linear problem. If we get lucky
(which doesn’t always happen), then the eigenvectors might form a basis of
Rn, diagonalizing A.

Table 12.1: Invertibility criteria (Strang’s nutshell [5]). A is n× n.
U is any matrix obtained from A by forward elimination.

§ Invertible Just When . . .

5 Gauss–Jordan on A yields I.
5 U is invertible.
5 Pivots lie all the way down the diagonal.
5 U has no zero rows
5 U has n pivots.
5 Ax = b has a solution x for each b.
5 Ax = b has exactly one solution x for each b.
5 Ax = b has exactly one solution x for some b.
5 Ax = 0 only for x = 0.
5 A has rank n.
7 At is invertible.
7 detA 6= 0.
9 The columns are linearly independent.
9 The columns form a basis.
9 The rows form a basis.
10 The kernel of A is just the 0 vector.
10 The image of A is all of Rn.
11 0 is not an eigenvalue of A.

12.27 Take each of the criteria in table 12.1, and describe an analogous criterion
for showing that A is not invertible. For example, instead of detA 6= 0, you
would write detA = 0. Make sure that as many as possible of your criteria
express the failure of invertibility in terms of the rank r of the matrix A. For



example, instead of turning

U has no zero rows

into
U has a zero row,

you should turn it into
U has n− r zero rows.



Orthogonal Linear Algebra





Chapter 13

Inner Product

So far, we haven’t thought about distances or angles. The elegant algebraic way to
describe these geometric notions is in terms of the inner product, which measures
something like how strongly in agreement two vectors are.

Definition and Simplest Properties

The inner product (also called the dot product or scalar product) of two vectors
x and y in Rn is the number

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn.

The vectors

x =

1
0
2

 , y =

4
5
6

 ,

have inner product

〈x, y〉 = (1)(4) + (0)(5) + (2)(6)
= 16.

In Rn,

〈ei, ej〉 =

1 if i = j,

0 if i 6= j.

13.1 Prove that 〈Aej , ei〉 = Aij .

13.2 Let P be a permutation matrix. Use the result of problem 13.1 to prove
that P−1 = P t.

Recall that the transpose At of a matrix A is the matrix with entries
Atij = Aji, i.e. with rows and columns switched.

13.3 Prove that 〈x, y〉 = xty.

Vectors u and v are perpendicular if 〈u, v〉 = 0. The length of a vector x in
Rn is ‖x‖ =

√
〈x, x〉. This agrees in the plane with the Pythagorean theorem:
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b

a
√
a2 + b2

Figure 13.1: The Pythagorean theorem. Rearrange the 4 triangles into 2 rectangles to find the
area of all 4 triangles. Add the area of the small white square.

if x =
(
a

b

)
then we can draw x as a point of the plane, and the length along x

is
√
a2 + b2.

13.4 Prove that for any vectors u and v, with u 6= 0, the vector

v − 〈v, u〉
〈u, u〉

u

is perpendicular to u.

Review problems

13.5 How many vectors x in Rn have integer coordinates x1, x2, . . . , xn and
have
(a) ‖x‖ = 0?
(b) ‖x‖ = 1?
(c) ‖x‖ = 2?
(d) ‖x‖ = 3?

13.6 a. What is wrong with the clock?

b. At what times of day are the minute and hour hands of a properly func-
tioning clock
a) perpendicular?
b) parallel?

(The answer isn’t very pretty.)

13.7 Prove that 〈Ax, y〉 = 〈x,Aty〉 for vectors x in Rq, y in Rp and A any p× q
matrix.



Symmetric Matrices

A matrix A is symmetric if At = A.

13.8 Which of the following are symmetric?(
1 2
2 1

)
,

(
1 1
0 0

)
,

0 1 2
1 3 4
2 4 5


13.9 Prove that an n× n matrix is symmetric just when

〈Ax, y〉 = 〈x,Ay〉

for x and y any vectors in Rn.

Clearly a symmetric matrix is square.

13.10 Prove that
a. The sum and difference of symmetric matrices is symmetric.
b. If A is a symmetric matrix, then 3A is also a symmetric matrix.

13.11 Give an example of a pair of symmetric 2 × 2 matrices A and B for
which AB is not symmetric.

Review problems

13.12 For which matrices A is the matrix

B =
(

1 A

A 1

)
symmetric?

13.13 If A is symmetric, and F an invertible matrix, is FAF−1 symmetric? If
not, can you give a 2× 2 example?

13.14 If A and B are symmetric, is AB + BA symmetric? Is AB − BA
symmetric?

Orthogonal Matrices

A matrix F is orthogonal if F tF = I. In problem 13.2, you proved that
permutation matrices are orthogonal.

13.15 Which of the following are orthogonal?(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
2 0
0 1

)
,

(
2 0
0 2

)
,(

1 1
0 1

)
,

(
1√
2

1√
2

− 1√
2

1√
2

)
,

(
1 1
1 1

)
,

(
0 1
−1 0

)



Orthogonal matrices are important because they preserve inner products:

13.16 Prove that a matrix is orthogonal just when

〈Fx, Fy〉 = 〈x, y〉

for x and y any vectors.

Clearly any orthogonal matrix is square.

13.17 Prove that
a. The product of orthogonal matrices is orthogonal.
b. The inverse of an orthogonal matrix is orthogonal.

13.18 If F is orthogonal, and c is a real number, prove that cF is also orthogonal
only when c = ±1.

13.19 Which diagonal matrices are orthogonal?

13.20 Prove that the matrices

P =
(

cos θ − sin θ
sin θ cos θ

)

are orthogonal. Give an example of an orthogonal 2× 2 matrix not of this form.

13.21 Give an example of a pair of orthogonal 2 × 2 matrices A and B for
which A+B is not orthogonal.

13.22 By expanding out the expressions 〈x+ y, x+ y〉 using the properties of
inner products, express the inner product 〈x, y〉 of two vectors in terms of their
lengths. Use this to prove that a matrix A is orthogonal just when

‖Ax‖ = ‖x‖ ,

for any vector x.

Orthonormal Bases

Some bases are much easier to use than others. A basis u1, u2, . . . , un is
orthonormal if

〈ui, uj〉 =

1 if i = j,

0 if i 6= j.

The standard basis is orthonormal. The basis

u1 =
(√

3
2
1
2

)
, u2 =

(
− 1

2√
3

2

)
is orthonormal.



Why Are Orthonormal Bases Better Than Other Bases?

Take any basis u1, u2, . . . , un for Rn. Every vector x in Rn can be written as a
linear combination

x = c1u1 + c2u2 + · · ·+ cnun.

How do you find the coefficients c1, c2, . . . , cn? You apply elimination to the
matrix (

u1 u2 . . . un x
)
.

This is a big job. But if the basis is orthonormal then you can just read off the
coefficients as

c1 = 〈x, u1〉 , c2 = 〈x, u2〉 , . . . , cn = 〈x, un〉 .

13.23 Prove that if u1, u2, . . . , un is an orthonormal basis for Rn and x is any
vector in Rn then

x = 〈x, u1〉u1 + 〈x, u2〉u2 + · · ·+ 〈x, un〉un.

How Do We Tell If a Basis is Orthonormal?

Proposition 13.1. A square matrix is orthogonal just when its columns are
orthonormal.

Proof. Write the matrix as

F =
(
u1 u2 . . . un

)
.

Calculate

F tF =


u1
t

u2
t

...
un

t


(
u1 u2 . . . un

)

=


u1
tu1 u1

tu2 . . . u1
tun

u2
tu1 u2

tu2 . . . u2
tun

...
...

...
...

un
tu1 un

tu2 . . . un
tun



=


〈u1, u1〉 〈u1, u2〉 . . . 〈u1, un〉
〈u2, u1〉 〈u2, u2〉 . . . 〈u2, un〉

...
...

...
...

〈un, u1〉 〈un, u2〉 . . . 〈un, un〉

 .



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 13.2: The Gram–Schmidt process

13.24 Is the basis (
1
−2

)
,

(
2
1

)

orthonormal? Draw a picture of these two vectors.

13.25 Prove that a square matrix is orthogonal just when its rows are orthonor-
mal.

Gram–Schmidt Orthogonalization

The idea: if I start with a basis v1, v2 of R2 which is not orthonormal, I can fix
it up (as in figure 13.2).

The formal definition: given any linearly independent vectors v1, v2, . . . , vp



(as input), the output are orthonormal vectors u1, u2, . . . , up:

w1 = v1,

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1,

w3 = v3 −
〈v3, w1〉
〈w1, w1〉

w1 −
〈v3, w2〉
〈w2, w2〉

w2,

wj = vj −
∑
i<j

〈vj , wi〉
〈wi, wi〉

wi,

uj = 1√
〈wj , wj〉

wj .

Each wj is just vj with all parts “pulled off” that head in the directions of
previous wi’s (the directions we are already finished with). At the final step,
each uj is just wj rescaled to unit length. We say that we are orthogonalizing
the vectors v1, v2, . . . , vp.

13.26 Orthogonalize

v1 =

 1
−1
0

 , v2 =

 2
0
−2

 .

13.27 Orthogonalize

v1 =

1
1
0

 , v2 =

1
0
1

 , v3 =

0
0
1

 .

13.28 Orthogonalize

v1 =
(

1
1

)
, v2 =

(
1
0

)
,

and then draw pictures explaining the process.

13.29 Orthogonalize

v1 =

1
1
2

 , v2 =

2
2
0

 , v3 =

0
0
1

 .

13.30 Prove that if v1, v2, . . . , vp are linearly independent vectors, then each
step of Gram–Schmidt makes sense (no dividing by zero), and the resulting
u1, u2, . . . , up are an orthonormal basis for the span of v1, v2, . . . , vp.



13.31 Prove that any set of vectors, all of unit length, and perpendicular to
one another, is contained in an orthonormal basis.

13.32 If u and v are two vectors in Rn, and every vector w which is perpendic-
ular to u is perpendicular to v, then v = au for some number a.

Review problems

13.33 What happens to a basis when you carry out Gram–Schmidt, if it was
already orthonormal to begin with?

13.34 Orthogonalize (
1
−1

)
,

(
5
3

)
.

13.35 Orthogonalize (
−1
−1

)
,

(
0
2

)
.

13.36 Orthogonalize (
−1
1

)
,

(
−1
2

)
.

13.37 Orthogonalize (
2
−1

)
,

(
−1
1

)
.

13.38 Orthogonalize (
1
2

)
,

(
0
2

)
.

13.39 Orthogonalize (
1
1

)
,

(
2
0

)
.

13.40 Orthogonalize (
1
1

)
,

(
0
2

)
.

13.41 Orthogonalize (
1
1

)
,

(
−1
2

)
.

13.42 Orthogonalize (
0
1

)
,

(
−1
1

)
.



13.43 Orthogonalize (
2
1

)
,

(
−1
2

)
.

13.44 Orthogonalize (
−1
0

)
,

(
1
−1

)
.

13.45 Orthogonalize (
2
−1

)
,

(
0
−1

)
.

13.46 Orthogonalize (
1
1

)
,

(
−1
0

)
.





Chapter 14

The Spectral Theorem

Finally, our goal: we want to prove that symmetric matrices can be made into diagonal
matrices by orthogonal changes of variable.

Statement and Proof

Proposition 14.1 (The Minimum Principle). Let A be a symmetric n × n
matrix. The function

Q(x) = 〈Ax, x〉

is a quadratic polynomial function. Restrict x to lie on the sphere of unit length
vectors. Then Q(x) reaches a minimum among all vectors on that sphere at
some vector x = u. This vector u is an eigenvector of A.

Proof. In the appendix to this chapter, we prove that the minimum occurs. So
there is some vector x = u so that 〈Ax, x〉 ≥ 〈Au, u〉 for any x of unit length.
Fixing u, consider the quadratic function

H(x) = 〈Ax, x〉 − 〈Au, u〉 〈x, x〉 .

For x of unit length, 〈x, x〉 = 1, so

H(x) = 〈Ax, x〉 − 〈Au, u〉
≥ 0.

But if we scale x, say to ax, clearly H(x) is quadratic in x, so

H (ax) = a2H(x).

So rescaling, we find that H(x) ≥ 0 for any vector x, of any length. Pick w any
vector perpendicular to u. For any number t:

0 ≤ H(u+ tw)
= 〈A(u+ tw), u+ tw〉 − 〈Au, u〉 〈u+ tw, u+ tw〉
= 〈Au, u〉+ 2t 〈Au,w〉+ t2 〈Aw,w〉 − 〈Au, u〉

(
1 + t2 〈w,w〉

)
= 2t 〈Au,w〉+ t2H(w)
= t (2 〈Au,w〉+ tH(w)) .
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First lets try t positive, so we can divide by t, and find 0 ≤ 2 〈Au,w〉+ tH(w).
Let t to go to zero, to see that 0 ≤ 〈Au,w〉. Next try t negative, and divide by t
and then let t go to zero, and see that 0 ≥ 〈Au,w〉. Therefore 〈Au,w〉 = 0. So
every vector w perpendicular to u is also perpendicular to Au. By problem 13.32
on page 120, Au is a multiple of u, so u is an eigenvector.

14.1 If two eigenvectors of a symmetric matrix have different eigenvalues, prove
that they are perpendicular.

Theorem 14.2 (Spectral Theorem). Each symmetric matrix A is diagonalized
by an orthogonal matrix F . The columns of F form an orthonormal basis of
eigenvectors. We say that F orthogonally diagonalizes A.

Proof. Start with a unit eigenvector u1, given by the minimum principle. Take
any orthonormal basis u1, u2, . . . , un that starts with this vector, and let F
be the matrix with these vectors as columns. Replace A with F tAF . After
replacement, A has e1 as eigenvector: Ae1 = λe1, so the first column of A is
λe1. Because A is symmetric, we see that

A =
(
λ I 0
0 B

)
with B a smaller symmetric matrix. By induction on the size of matrix, we can
orthogonally diagonalize B.

The previous exercise is vital for calculations: to orthogonally diagonal-
ize, find all eigenvalues, and for each eigenvalue λ find an orthonormal basis
u1, u2, . . . of eigenvectors of that eigenvalue λ. All of the eigenvectors of all of
the other eigenvalues will automatically be perpendicular to u1, u2, . . . , so put
together they make an orthonormal basis of Rn.

14.2 Find a matrix F which orthogonally diagonalizes the matrix

A =
(

7 −6
−6 12

)
,

by finding the eigenvectors u1, u2 and eigenvalues λ1, λ2.

14.3 Prove that a square matrix is orthogonally diagonalizable just when it is
symmetric.

An elegant (but longer) proof of the spectral theorem can be made along
the following lines. Once we have used the minimum principle to find one
eigenvector u1, we can then look among all unit length vectors x perpendicular
to u1, and see which of these vectors has smallest value for 〈Ax, x〉. Call that
vector u2. Look among all unit vectors x which are perpendicular to both u1
and u2 for one which has the smallest value of 〈Ax, x〉, and call it u3, etc. This
recipe will actually generate the eigenvectors for us, although it isn’t easy to
use either by hand or by computer.



Review problems

14.4 Find a matrix F which orthogonally diagonalizes the matrix

A =
(

4 −2
−2 1

)

14.5 Find a matrix F which orthogonally diagonalizes the matrix

A =

 4 −2 0
−2 1 0
0 0 3

 .

14.6 Find a matrix F which orthogonally diagonalizes the matrix

A =

 7
6 − 1

6 − 1
3

− 1
6

7
6

1
3

− 1
3

1
3

5
3


14.7 Find a matrix F which orthogonally diagonalizes

A =

− 7
25 0 24

25
0 1 0
24
25 0 7

25


14.8 Let

A =

1
2

3


What are all of the orthogonal matrices F for which F tAF is diagonal with
entries increasing as we move down the diagonal?

14.9 If A is symmetric, prove that A2 has the same rank as A.

14.10 If A is n × n, prove that AtA has no negative eigenvalues, and its
eigenvalues are all positive just when A is invertible.

Quadratic Forms

A quadratic form is a polynomial in several variables, with all terms being
quadratic (like x2 or xy). In particular, no linear or constant terms can appear
in a quadratic form.



Symmetrizing

If we have a quadratic form in variables x1 and x2, we can write it more
symmetrically; for example:

x1x2 = 1
2x1x2 + 1

2x2x1.

We just leave alone a term like x2
1, so for example

x2
1 + 8x1x2 = x2

1 + 4x1x2 + 4x2x1.

14.11 Symmetrize:
a. x2

2
b. x2

1 + x2
2

c. x2
1 + 3x1x2

d. x1 (x1 + x2)

Making a matrix

Pluck out the quadratic terms in the polynomial to make a matrix. For example:

a x2
1 + b x1x2 + c x2

2 = a x2
1 + b

2 x1x2 + b

2 x2x1 + c x2
2

becomes

A =
(
a b

2
b
2 c

)
.

More generally,
∑
ij Aijxixj becomes A = (Aij). Because we symmetrized, the

matrix is symmetric.

14.12 Make matrices for
a. x2

2
b. x2

1 + x2
2

c. x2
1 + 3

2 x1x2 + 3
2 x2x1

d. x2
1 + 1

2x1x2 + 1
2x2x1

Diagonalizing

Diagonalize our matrix, by orthogonal change of variables. Then the same
orthogonal change of variables will simplify our quadratic form, turning it into
a sum of quadratic forms in one variable each. For example, take the quadratic
form

23x2
1 + 72x1x2 + 2x2

2.

Symmetrize:
23x2

1 + 36x1x2 + 36x2x1 + 2x2
2.

The associated matrix is

A =
(

23 36
36 2

)
.



We let the reader check that A is orthogonally diagonalized by

F =
(

3
5

4
5

− 4
5

3
5

)
,

so that

F tAF =
(
−25 0

0 50

)
.

We also let the reader check that if we take new variables y, defined by y = F tx,
i.e. by x = Fy, then the same quadratic form is

−25 y2
1 + 50 y2

2 .

Theorem 14.3 (Decoupling Theorem). Any quadratic form in any number of
variables becomes a sum of quadratic forms in one variable each, after a change
of variables x = Fy given by an orthogonal matrix F .

The quadratic form is diagonalized by the orthogonal matrix.

Proof. The problem comes from the mixed terms, like x1x2. Symmetrize and
write a symmetric matrix A out of the coefficients. Then the quadratic form
is
∑
ij Aijxixj = 〈Ax, x〉. Diagonalize A to Λ = F tAF . Let y = F tx. Then

x = Fy, so

〈Ax, x〉 = 〈AFy, Fy〉
=
〈
F tAFy, y

〉
= 〈Λy, y〉
= λ1 y

2
1 + · · ·+ λn y

2
n.

Review problems

14.13 Diagonalize
(a) 3x1

2 − 2x1x2 + 3x2
2

(b) 9x1
2 + 18x1x2 + 9x2

2

(c) 11x1
2 + 6x1x2 + 3x2

2

(d) 3x1
2 + 4x1x2 + 6x2

2

(e) 8x1
2 − 12x1x2 + 3x2

2

(f) 10x1
2 + 6x1x2 + 2x2

2

(g) 4x1x2 + 3x2
2

(h) 6x1
2 − 12x1x2 + 11x2

2

(i) 10x1
2 − 12x1x2 + 5x2

2

(j) −2x1
2 − 4x1x2 + x2

2

(k) 2x1
2 − 6x1x2 + 10x2

2

(l) −2x1
2 + 6x1x2 + 6x2

2



(a)
Circle

(b) El-
lipse

(c) Pair of lines (d) Hyper-
bola

Figure 14.1: Some examples of solutions of quadratic equations

Application to Quadratic Equations

In the plane, with two variables x1 and x2, a quadratic equation Q(x) = c
(with Q(x) a quadratic form and c a constant number) cuts out a circle, ellipse,
hyperbola, pair of lines, single line, point, or empty set. The quadratic equation

4x1x2 + 3x2
2 = 0

involves the quadratic form with matrix(
0 2
2 3

)
.

Its eigenvalues are λ = −1 and λ = 4. So we can change variables (somehow)
to get to

−x2
1 + 4x2

2 = 0.
This is just

x1 = ±2x2,

a pair of lines intersecting at a point. Since the change of variables is linear, the
original quadratic equation also cuts out a pair of lines intersecting at a point.

The equation
x2

1 + 4x1x2 + x2
2 = 1

contains the quadratic form with matrix(
1 2
2 1

)
.

The eigenvalues are λ = −1 and λ = 3. So after a linear change of variables, we
get

−x2
1 + 3x2

2 = 1.
(The right hand side is a constant, so doesn’t change.)

It is well known that an equation of the form

a x2
1 + b x2

2 = 1

with a and b of different signs is a hyperbola, while if a and b have the same
signs then it is an ellipse. So our last example must be a hyperbola. Warning:
until you diagonalize the associated matrix, and look at the eigenvalues, you
can’t easily see what shape a quadratic equation cuts out. You can’t just look
at whether the coefficients are positive, or anything obvious like that.
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Figure 14.2: Various behaviours of quadratic forms in two variables

Review problems

14.14 Just by finding eigenvalues (without finding eigenvectors), determine
what geometric shape (ellipse, hyperbola, pair of lines, line, empty set) the
following are:
a. 5x2

1 + 2x2
2 − 4x1x2 = 1

b. 3x2
1 + 8x1x2 + 3x2

2 = 1
c. x2

1 − 4x1x2 + 4x2
2 = −1

d. 6x1x2 + 8x2
2 = 1

e. x2
1 − 6x1x2 + 9x2

2 = 0
f. 4x1x2 − 3x2

1 − 6x2
2 = 1

14.15 What more can you do to normalize a quadratic form if you allow
arbitrary invertible matrices instead of orthogonal ones?

Positivity

A quadratic form Q(x) is positive definite if Q(x) > 0 except if x = 0. (Clearly
if x = 0 then Q(x) = 0.) For example, Q(x) = x2 is a positive definite quadratic
form on R, while Q(x) = x2

1 + x2
2 is positive definite on Rn. But it is not at all

clear whether Q(x) = 6x2
1 − 12x1x2 + 11x2

2 is positive definite, because it has
positive terms and negative ones. As in figure 14.2, we can also define positive
semidefinite forms (Q(x) ≥ 0), negative definite forms (Q(x) < 0 for x 6= 0),
and indefinite forms (not positive semidefinite or negative semidefinite), but
they are less important.

Lemma 14.4. A quadratic form Q(x) = 〈x,Ax〉 (with a symmetric matrix A)
is positive definite just if all of the eigenvalues of A are positive.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues, and change variables to y = F−1x,
so x = Fy, to diagonalize the quadratic form:

Q = λ1 y
2
1 + λ2 y

2
2 + · · ·+ λn y

2
n.

Suppose that all of the eigenvalues are positive. Clearly this quantity is then
positive for nonzero vectors y, because each term is positive or zero, and at
least one of y1, y2, . . . , yn is not zero, so gives a positive term.



On the other hand, if one of these λj is negative, then take y = ej , and you
get Q ≤ 0 but x = Fy = Fej 6= 0.

Review problems

14.16 Which of the quadratic forms in problem 14.13 on page 127 are positive
definite?

Appendix: Continuous Functions and Maxima

There is one gap in our proof of the spectral theorem for symmetric matrices:
we need to know that a quadratic function on the sphere in Rn has a maximum.
This appendix gives the proof. Warning: students are not required or expected
to work through this appendix, which is advanced and is included only for
completeness. A sequence of numbers x1, x2, . . . converges to a number x if, in
order to make xj stay as close as we like to x, we have only to ensure that j is
kept large enough. A sequence of points(

x1

y1

)
,

(
x2

y2

)
, . . .

in R2 converges to a point (
x

y

)
if x1, x2, . . . converges to x and y1, y2, . . . converges to y. Similarly, a sequence
of points in Rn converges if all of the coordinates of those points converge.

Any sequence of increasing real numbers, all of which are bounded from
above by some large enough number, must converge to something. This fact is
a property of real numbers which we cannot prove without giving an explicit
and precise definition of the real numbers; see Spivak [4] for the complete story.
We will just assume that this fact is true.

A function f (x) of any number of variables x1, x2, . . . , xn (writing x for

x =


x1
...
xn


as a point of Rn) is continuous if, in order to get f(y) to stay as close to f(x)
as you like, you have only to ensure that y is kept close enough to x.

If two numbers are close, their sums, products and differences are clearly
close. The reader should try to prove:

Lemma 14.5. The function f (x) = x1 is continuous. Constant functions
are continuous. The sum, difference and product of continuous functions is
continuous.



Corollary 14.6. Any polynomial function in any finite number of variables is
continuous.

Proof. Induction on the degree and number of terms of the polynomial.

A ball in Rn is a set B consisting of all points closer than some distance to
some chosen point (called the center of the ball). The distance is called the
radius. A closed ball includes also the points of distance equal to the radius (an
apple with the skin), while an open ball does not include any such points, only
including points of distance less than the radius (an apple without the skin).

A set S ⊂ Rn is bounded if it lies in a ball (open or closed).
A set S ⊂ Rn is called closed if every point x of Rn not belonging to S can

be surrounded by an open ball not belonging to S.
A closed box is the set of points x = (x1, . . . , xn) for which each xj lies

in some chosen interval, aj ≤ xj ≤ bj . An open box is the same but with
aj < xj < bj .

Lemma 14.7. A closed ball is a closed set, as is a closed box.

Proof. Given a closed ball, say of radius r, take any point p not belonging to it,
say of distance R from the center, and draw an open ball of radius R− r about
p. By the triangle inequality, no point in the open ball lies in the closed ball.

Given a closed box, and a point p not belonging to it, there must be some
coordinate of p which does not satisfy the inequalities defining the closed
box. For example, suppose that the box is cut out by inequalities including
a1 ≤ x1 ≤ b1, and p fails to satisfy these bounds because p1 > b1. Then every
point q closer to p than p1 − b1 will still fail: q1 > b1. So then a ball of radius
p1 − b1 around p will not overlap the closed box.

Theorem 14.8. Every infinite sequence of points in a closed, bounded set has
a convergent subsequence.

Proof. Suppose that the set is a box. Cover the box with a finite number of
small closed boxes (perhaps overlapping). There are infinitely many points
x1, x2, . . . , and only finitely many of the small boxes, so there must be infinitely
many xj lying in the same small box.

Similarly, subdivide that small box into much smaller closed boxes. Re-
peating, we find a sequence of closed boxes, like Russian dolls, each contained
entirely in the previous one, with infinitely many xj in each. We get to choose
how small the boxes are going to be at each step, so lets make them get much
smaller at each step, with side lengths decreasing as rapidly as we like. Pick out
one of these xi points, call it yj , from the j-th nested box, as the point with
the smallest possible coordinates among all points of that box. The sequence of
points y1, y2, . . . must converge, since all of the coordinates of the point yj are
constrained by the box yj lies in, and each coordinate only increases with j.



If we face a closed, bounded set S, which is not a closed box, then find a
closed box B containing it, and repeat the argument above. The problem is
to ensure that the limit x of the sequence constructed belongs to the set S.
Even if not, it certainly belongs to B. Since S is closed, if x does not belong
to S,then there must be an open ball around x not containing any points of S.
But that open ball can not contain any of the points in the nested boxes, and
therefore x cannot be their limit.

Theorem 14.9. Every continuous function f on a closed, bounded set attains
a maximum and a minimum.

Proof. For the moment, lets suppose that our closed, bounded set is just a
closed box. Suppose that f has no maximum. So the values of f can get larger
and larger, but never peak. Let M be the smallest positive number so that f
never exceeds M ; if there is no such number let M =∞. By definition, f gets
as close to M as we like (which, if M =∞, means simply that f gets as large
as we like), but never reaches M . Let x1, x2, x3, . . . be any points of the closed
bounded set on which f (xj) approaches M . Taking a subsequence, we find xj
approaching a limit point x, and by continuity f (xj) must approach f(x), so
f(x) = M .

So every continuous function on a closed bounded set has a maximum. If
f is a continuous function on a closed bounded set, then −f is too, and has a
maximum, so f has a minimum.



Chapter 15

Complex Vectors

The entire story so far can be retold with a cast of complex numbers instead of real
numbers. Most of this is straightforward. But there turns out to be an important
twist in the complex theory of the inner product. The minimum principle doesn’t
make any sense in the setting of complex numbers, and the spectral theorem as it was
stated just isn’t true any more for complex matrices. Moreover, the natural notion
of inner product itself is quite different for complex vectors—this new notion leads
directly to the complex spectral theorem.

Complex Numbers

A complex number is a pair (x, y) of real numbers. Write 1 to mean the pair
(1, 0), and i to mean (0, 1). Addition is defined by the rule

(x, y) + (X,Y ) = (x+X, y + Y ) ,

subtraction by
(x, y)− (X,Y ) = (x−X, y − Y ) ,

and multiplication by

(x, y) (X,Y ) = (xX − yY, xY + yX) .

We henceforth write any pair as x + iy. We call x the real part and y
the imaginary part. When working with complex numbers, we draw them as
points of the xy-plane, which we call the complex plane. Complex numbers are
associative, commutative and distributive, and every nonzero complex number
z = x+ iy has a reciprocal:

1
z

= x− iy
x2 + y2 .

You can easily check all of this, but you may assume it if you prefer.

Polar Coordinates

Trigonometry tells us that any point (x, y) of the plane can be written as
x = r cos θ, y = r sin θ in polar coordinates. Therefore

x+ iy = r cos θ + ir sin θ,
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The number r is called the modulus of the complex number (written |z| if z
is the complex number). The angle θ is called the argument of the complex
number (written arg z if z is the complex number). The modulus is the distance
from 0, or the length if think of (x, y) as a vector.

Theorem 15.1 (de Moivre). Under multiplication of complex numbers, moduli
multiply, while arguments add. Under division of complex numbers, moduli
divide, while arguments subtract.

Proof. Let z and w be two complex numbers. Write them as z = r cosα +
ir sinα and w = ρ cosβ + iρ cosβ. Then calculate

zw = rρ [(cosα cosβ − sinα sin β) + i (sinα cosβ + cosα sin β)] .

A trigonometric identity:

cosα cosβ − sinα sin β = cos (α+ β)
sinα cosβ + cosα sin β = sin (α+ β) .

Division is similar.

15.1 Explain why every complex number has a square root.

The conjugate z̄ of a complex number z = x+ iy is the number z̄ = x− iy.

15.2 If z is a complex number, prove that |z|2 = zz̄

We write C for the set of complex numbers, and Cn for the set of vectors

z =


z1

z2
...
zn


with each of z1, z2, . . . , zn a complex number. We won’t go through the effort
of translating the theorems above into complex linear algebra, except to say
that all of the results before chapter 13 (on inner products) are still true for
complex matrices, with identical proofs.

Review problems

15.3 Draw the point z = − 1
2 + 1

3 i on the plane. Draw z̄, 2z, z2, 1
z .

15.4 Draw w = 1 + 2i and z = 2 + i, and draw z + w, zw, z
w .



15.5 The unit disk in the complex plane is the set of complex numbers of
modulus less than 1. The unit circle is the set of complex numbers of modulus
1. Draw the unit circle. Pick z a nonzero complex number, and consider its
integer powers zn (n ranging over the integers). Prove that either infinitely
many of these powers lie inside the unit disk, or all of them lie on the unit
circle.

15.6 Let
zk = cos

(
2πk
n

)
+ i sin

(
2πk
n

)
.

Use de Moivre’s theorem to show that znk = 1. These are the so-called nth roots
of 1. Why are they all different for k = 0, 1, . . . , n− 1? Draw the 3rd roots of 1
and (in another colour) the 4th roots of 1.

15.7 With pictures and words, explain what you know about
a. z + z̄,
b. z2 if |z| > 1,
c. z̄ if |z| = 1,
d. zw if |z| = |w| = 1.

Complex Linear Algebra

The main differences between real and complex linear algebra are (1) eigenvalues
and (2) inner products. We will consider inner products soon, but first lets
consider eigenvalues.

Theorem 15.2. Every square complex matrix has a complex eigenvalue.

Proof. The eigenvalues are the roots of the characteristic polynomial det (A− λ I) ;
a polynomial with complex number coefficients in a complex variable λ. The
existence of a complex number root of any complex polynomial is proven in the
appendix.

It may be that there are not very many eigenvectors.

A =
(

0 1
0 0

)

as a complex matrix still only has one eigenvalue, and (up to rescaling) one
eigenvector. Two linearly independent eigenvectors are just what we need to
diagonalize a 2 × 2 matrix. Clearly we cannot diagonalize A. So complex
numbers don’t resolve all of the subtleties.

15.8 Find the (complex) eigenvalues and eigenvectors of

A =
(

0 −1
1 0

)



and write down a matrix F which diagonalizes A. Moral of the story: even a
matrix like A, which has only real number entries, can have complex number
eigenvalues, and complex eigenvectors.

Hermitian Inner Product

The spectral theorem for symmetric matrices breaks down:

15.9 Prove that the symmetric complex matrix(
1 i

i −1

)

is not diagonalizable.

We will find a complex spectral theorem, but with a different concept
replacing symmetric matrices.

The equation |z|2 = zz̄ is very important. Think of a complex number as if
it were a vector in the plane:

z = x+ iy

=
(
x

y

)
.

Then |z|2 = zz̄ is the squared length x2 + y2.
The Hermitian inner product of two vectors z and w in Cn is the complex

number
〈z, w〉 = z1w̄1 + z2w̄2 + · · ·+ znw̄n.

The curious bars on top of the w terms allow us to write ‖z‖2 = 〈z, z〉, just as
we would for real vectors. Warning: the Hermitian inner product 〈z, w〉 is a
complex number, not the real number we had in inner products before.

15.10 Compute 〈z, w〉 , ‖z‖ and ‖w‖ for

z =
(

1
i

)
, w =

(
i

2 + 2i

)
,

15.11 Prove that
a. 〈w, z〉 = 〈z, w〉
b. 〈cz, w〉 = c 〈z, w〉
c. 〈z + w, u〉 = 〈z, u〉+ 〈w, u〉
d. 〈z, z〉 ≥ 0
e. 〈z, z〉 = 0 just when z = 0

for z, w and u any complex vectors in Cn and c and complex number.



Adjoint of a Matrix

The adjoint A∗ of a matrix A is the matrix whose entries are A∗ij = Āji (the
conjugate of the transpose). Note that (A∗)∗ = A.

15.12 Prove that
〈Az,w〉 = 〈z,A∗w〉

for any vectors z and w (if one side is defined, then they both are and they are
equal).

15.13 Prove that if some matrices A and B satisfy 〈Az,w〉 = 〈z,Bw〉 for any
vectors z and w for which this is defined, then B = A∗.

Self-adjoint Matrices

A complex matrix A is self-adjoint if A = A∗. This is the complex analogue of
a symmetric matrix. Clearly self-adjoint matrices are square.

15.14 Prove that sums and differences of self-adjoint matrices are self-adjoint,
and that any real multiple of a self-adjoint matrix is self-adjoint.

The matrices(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
are self-adjoint.

15.15 Which diagonal matrices are self-adjoint?

15.16 Prove that the eigenvalues of a self-adjoint matrix are real numbers.

Review problems

15.17 A matrix A is called skew-adjoint if A∗ = −A. Prove that a matrix A is
skew-adjoint just when iA is self-adjoint, and vice versa.

Unitary Matrices

A complex matrix A is unitary if A∗ = A−1. This is the complex analogue of
an orthogonal matrix. Clearly every unitary matrix is square.

15.18 Prove that a matrix is unitary just when

〈Az,Aw〉 = 〈z, w〉

for any vectors z and w.

15.19 Which diagonal matrices are unitary?

15.20 If A is a real orthogonal matrix, prove that A is also unitary.



Review problems

15.21 Prove that the eigenvalues of a unitary matrix are complex numbers of
modulus 1.

Orthonormal Bases

An orthonormal basis of Cn is a complex basis u1, u2, . . . , un for which

〈up, uq〉 =

1 if p = q

0 if p 6= q.

It may be helpful to use letters like p and q as subscripts, rather than i, j, to
avoid confusion with the complex number i.

15.22 Prove that any complex basis v1, v2, . . . , vn determines a orthonormal
basis u1, u2, . . . , un by the complex Gram-Schmidt process:

wp = vp −
∑
q<p

〈vp, uq〉 uq

up = wp
‖wp‖

.

15.23 Apply the complex Gram–Schmidt process to find a orthonormal basis
for the basis

v1 =
(

1
i

)
, v2 =

(
1
2

)
.

Normal Matrices

A complex matrix A is normal if AA∗ = A∗A.

15.24 Prove that self-adjoint, skew-adjoint and unitary matrices are normal.

15.25 Which diagonal matrices are normal?

15.26 If A is normal, and c is a constant, prove that A+ cI is also normal.

Lemma 15.3. If A is normal, and Az = 0 for some vector z, then A∗z = 0.

Proof. Suppose that Az = 0. Then

0 = ‖Az‖2
,

= 〈Az,Az〉 ,
= 〈z,A∗Az〉 ,
= 〈z,AA∗z〉 ,
= 〈A∗z,A∗z〉 ,
= ‖A∗z‖2

.



So A∗z = 0.

Lemma 15.4. If A is normal, then every eigenvector z of A with eigenvalue λ
is also an eigenvector of A∗, but with eigenvalue λ̄.

Proof. Let B = A− λI. Then Bz = 0. Moreover, B is normal since A is. By
the previous lemma, B∗z = 0, so

(
A∗ − λ̄I

)
z = 0.

The Spectral Theorem for Normal Matrices

At last, the complex version of our main theorem: normal matrices are diagonal
after change of variables by a unitary matrix.

Theorem 15.5. A square matrix is normal just when it is unitarily diagonal-
izable.

Proof. Let A be unitarily diagonalizable. So F ∗AF = Λ is diagonal, for some
unitary matrix F . Then A = FΛF ∗, and one easily checks that AA∗ = A∗A.

Let A be a normal matrix. Pick any eigenvector u1 of A, say with eigenvalue
λ. Scale u1 to be a unit vector. Pick unit vectors u2, u3, . . . , un so that
u1, u2, u3, . . . , un is an orthonormal basis. Let F be the associated unitary
change of basis matrix,

F =
(
u1 u2 . . . un

)
.

Replace A by F ∗AF . After replacement A is still normal, and Ae1 = λe1; the
first column of A is λe1. So

A =
(
λ B

0 C

)

for some smaller matrices B and C. By lemma 15.4, A∗e1 = λ̄e1, so the first
column of A∗ is λ̄e1, and so B = 0. Moreover, C is also normal, so by induction
we can unitarily diagonalize C, and therefore A.

Corollary 15.6. Self-adjoint, skew-adjoint and unitary matrices are unitarily
diagonalizable.

15.27 Let

A =
(

7
2

i
2

− i
2

7
2

)
.

a. Is A self-adjoint or skew-adjoint?
b. Find the eigenvalues and eigenvectors of A.
c. Find a unitary matrix F which diagonalizes A, and unitarily diagonalize
A.



Appendix: The Fundamental Theorem of Algebra

There was one missing ingredient in the proof of the complex spectral theorem:
we need to know that complex polynomials have zeros. This gap is filled in here.
Warning: students are not required or expected to work through this appendix,
which is advanced and is included only for completeness.

Lemma 15.7. Take

p(z) = a0 + a1z + · · ·+ anz
n

any nonconstant polynomial. In order to keep p(z) at as large a modulus as we
like, we only have to keep z at a large enough modulus.

Proof. We can assume that an 6= 0. Write

p(z)
zn

= a0

zn
+ a1

zn−1 + · · ·+ an.

All of the terms get as small as we like, for z of large modulus, except the last
one. So for large enough z, p(z)/zn is close to an. Since zn has large modulus,
p(z) must as well.

Corollary 15.8. For any polynomial p(z), there must be a point z = z0 at
which p(z) has smallest modulus.

Proof. By lemma 15.7, if we choose a large enough disk containing z0 then p(z)
has large modulus at each point z around the edge of that disk. Making the disk
even larger if need be, we can ensure that the modulus all around the edge is
larger than at some chosen point inside the disk. By theorem 14.9 on page 132,
there is a point of the disk where p(z) has minimum modulus among all points
of that disk. The minimum can’t be on the edge. Moreover, the modulus stays
large as we move past the edge. Thus any minimum modulus point in that
large disk is a minimum modulus point among all points of the plane.

Lemma 15.9. The modulus |p(z)| of any nonconstant polynomial function
reaches a minimum just where p(z) reaches zero.

Proof. Take any point z0. Suppose that p (z0) 6= 0, and lets find a reason why
z0 is not a minimum modulus point. Replace p(z) by p (z − z0) if needed, to
arrange that z0 = 0. Write out

p(z) = a0 + a1z + a2z
2 + · · ·+ anz

n.

It might happen that a1 = 0, and maybe a2 too. So write

p(z) = a0 + akz
k + · · ·+ anz

n,

writing down only the nonzero terms, in increasing order of their power of z.



Clearly a0 6= 0 because p(0) 6= 0. We can divide by a0 if we wish, which
alters modulus only by a positive factor, so lets assume that a0 = 1. We can
rotate the z variable, and rescale it, which rotates and scales each coefficient.
Thereby arrange ak = −1, so

p(z) = 1− zk + · · ·+ anz
n.

Calculate

|p(z)|2 = p(z)p(z)
= 1− zk − z̄k + . . . ,

where the dots indicate terms involving more z and z̄ factors. Write z =
r cos θ + ir sin θ. De Moivre’s theorem gives

|p(z)|2 = 1− 2 rk cos kθ + rk+1 (. . . ) .

The error term (. . . ) is some (probably very complicated) polynomial in r with
(complicated) coefficients involving cos θ and sin θ. We don’t need to work it
out. We only need to know that it is bounded for z near enough to 0, which is
clear whatever the terms involved are. For r > 0 sufficiently small,

2− r(. . . ) > 0.

Multiplying by −rk,
−2 rk + rk+1(. . . ) < 0.

Therefore |p(z)|2 gets even smaller at the point z = r than at z = 0.

Corollary 15.10. Every nonconstant complex polynomial has a root.

Theorem 15.11 (Fundamental Theorem of Algebra). Every nonconstant com-
plex polynomial p(z) can be factored into linear factors. More specifically,

p(z) = c (z − z1)d1 (z − z2)d2 . . . (z − zk)dk

where c is a constant, z1, z2, . . . , zk are the roots of p(z), and d1, d2, . . . , dk are
positive integers, with sum d1 + d2 + · · ·+ dk equal to the degree of p(z).

Proof. We have a root, say z1. Therefore p(z)/ (z − z1) is a polynomial, and
we apply induction.





Hints

1.1. 
0 0 1 1
0 0 1 1
1 0 3 0
1 1 1 1


Swap rows 1 and 3. 

1 0 3 0
0 0 1 1
0 0 1 1
1 1 1 1


Add −(row 1) to row 4. 

1 0 3 0
0 0 1 1
0 0 1 1
0 1 −2 1


Move the pivot ↘ . 

1 0 3 0
0 0 1 1
0 0 1 1
0 1 −2 1


Swap rows 2 and 4. 

1 0 3 0
0 1 −2 1
0 0 1 1
0 0 1 1


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Move the pivot ↘ . 
1 0 3 0
0 1 −2 1
0 0 1 1
0 0 1 1


Add −(row 3) to row 4. 

1 0 3 0
0 1 −2 1
0 0 1 1
0 0 0 0


Move the pivot ↘ . 

1 0 3 0
0 1 −2 1
0 0 1 1
0 0 0 0


Move the pivot →. 

1 0 3 0
0 1 −2 1
0 0 1 1
0 0 0 0



1.2. 
0 0 1 1
0 0 1 1
1 0 3 0
1 1 1 1


Swap rows 1 and 3. 

1 0 3 0
0 0 1 1
0 0 1 1
1 1 1 1





Add −(row 1) to row 4. 
1 0 3 0
0 0 1 1
0 0 1 1
0 1 −2 1


Move the pivot ↘ . 

1 0 3 0
0 0 1 1
0 0 1 1
0 1 −2 1


Swap rows 2 and 4. 

1 0 3 0
0 1 −2 1
0 0 1 1
0 0 1 1


Move the pivot ↘ . 

1 0 3 0
0 1 −2 1
0 0 1 1
0 0 1 1


Add −(row 3) to row 4. 

1 0 3 0
0 1 −2 1
0 0 1 1
0 0 0 0


Move the pivot ↘ . 

1 0 3 0
0 1 −2 1
0 0 1 1
0 0 0 0





Move the pivot →. 
1 0 3 0
0 1 −2 1
0 0 1 1
0 0 0 0



1.3. 
1 1 0 1
0 1 1 0
0 0 0 0
0 0 0 −1


Move the pivot ↘ . 

1 1 0 1
0 1 1 0
0 0 0 0
0 0 0 −1


Move the pivot ↘ . 

1 1 0 1
0 1 1 0
0 0 0 0
0 0 0 −1


Move the pivot →. 

1 1 0 1
0 1 1 0
0 0 0 0
0 0 0 −1


Swap rows 3 and 4. 

1 1 0 1
0 1 1 0
0 0 0 −1
0 0 0 0





1.4.

x1 = 7− x4

x2 = 3− x4

2
x3 = −3 + x4

2 .

1.5. Forward eliminate:  0 2 1 1
4 −1 1 2
4 3 3 4


Swap rows 1 and 2.  4 −1 1 2

0 2 1 1
4 3 3 4


Add −(row 1) to row 3.  4 −1 1 2

0 2 1 1
0 4 2 2


Move the pivot ↘ .  4 −1 1 2

0 2 1 1
0 4 2 2


Add −2(row 2) to row 3.  4 −1 1 2

0 2 1 1
0 0 0 0


Move the pivot ↘ .  4 −1 1 2

0 2 1 1
0 0 0 0





Move the pivot →.  4 −1 1 2
0 2 1 1
0 0 0 0


Move the pivot →.  4 −1 1 2

0 2 1 1
0 0 0 0



Back substitute:

Scale row 2 by 1
2 .  4 −1 1 2

0 1 1
2

1
2

0 0 0 0


Add row 2 to row 1.  4 0 3

2
5
2

0 1 1
2

1
2

0 0 0 0


Scale row 1 by 1

4 .  1 0 3
8

5
8

0 1 1
2

1
2

0 0 0 0



x1 = −3/8x3 + 5/8
x2 = −1/2x3 + 1/2

1.6. 2 0 2
0 2 2
0 0 −1





1.7. −1 −1 1
0 2 −1
0 0 2


1.10. 

0 1 1 0 0
0 1 0 1 0
0 0 0 0 0
1 1 0 1 1


Swap rows 1 and 4. 

1 1 0 1 1
0 1 0 1 0
0 0 0 0 0
0 1 1 0 0


Move the pivot ↘ . 

1 1 0 1 1
0 1 0 1 0
0 0 0 0 0
0 1 1 0 0


Add −(row 2) to row 4.

1 1 0 1 1
0 1 0 1 0
0 0 0 0 0
0 0 1 −1 0


Move the pivot ↘ . 

1 1 0 1 1
0 1 0 1 0
0 0 0 0 0
0 0 1 −1 0


Swap rows 3 and 4. 

1 1 0 1 1
0 1 0 1 0
0 0 1 −1 0
0 0 0 0 0





Move the pivot ↘ . 
1 1 0 1 1
0 1 0 1 0
0 0 1 −1 0
0 0 0 0 0


Move the pivot →. 

1 1 0 1 1
0 1 0 1 0
0 0 1 −1 0
0 0 0 0 0


Move the pivot →. 

1 1 0 1 1
0 1 0 1 0
0 0 1 −1 0
0 0 0 0 0



1.11.  1 3 2 6
2 5 4 1
3 8 6 7


Add −2(row 1) to row 2, −3(row 1) to row 3. 1 3 2 6

0 −1 0 −11
0 −1 0 −11


Move the pivot ↘ .  1 3 2 6

0 −1 0 −11
0 −1 0 −11


Add −(row 2) to row 3. 1 3 2 6

0 −1 0 −11
0 0 0 0





Move the pivot ↘ .  1 3 2 6
0 −1 0 −11
0 0 0 0


Move the pivot →.  1 3 2 6

0 −1 0 −11
0 0 0 0


Move the pivot →.  1 3 2 6

0 −1 0 −11
0 0 0 0



1.12.

Scale row 3 by −1. 
1 1 0 1
0 1 1 0
0 0 0 1
0 0 0 0


Add −(row 3) to row 1. 

1 1 0 0
0 1 1 0
0 0 0 1
0 0 0 0


Add −(row 2) to row 1. 

1 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 0





1.13.

Scale row 2 by − 1
2 .  −1 1 0

0 1 0
0 0 1


Add −(row 2) to row 1.

 −1 0 0
0 1 0
0 0 1


Scale row 1 by −1.

I

1.14.

Scale row 2 by −1.  1 0 −1
0 1 1
0 0 0



1.15. 1 0 − 1
3

0 1 − 1
3

0 0 0


1.16. I
1.17. Forward eliminate:

−1 2 1 1 1
−1 2 2 1 0
0 0 1 2 0
0 0 0 1 2





Add −(row 1) to row 2.
−1 2 1 1 1
0 0 1 0 −1
0 0 1 2 0
0 0 0 1 2


Move the pivot ↘ . 

−1 2 1 1 1
0 0 1 0 −1
0 0 1 2 0
0 0 0 1 2


Move the pivot →. 

−1 2 1 1 1
0 0 1 0 −1
0 0 1 2 0
0 0 0 1 2


Add −(row 2) to row 3.

−1 2 1 1 1
0 0 1 0 −1
0 0 0 2 1
0 0 0 1 2


Move the pivot ↘ . 

−1 2 1 1 1
0 0 1 0 −1
0 0 0 2 1
0 0 0 1 2


Add − 1

2 (row 3) to row 4.


−1 2 1 1 1
0 0 1 0 −1
0 0 0 2 1
0 0 0 0 3

2





Move the pivot ↘ .


−1 2 1 1 1
0 0 1 0 −1
0 0 0 2 1

0 0 0 0 3
2



Back substitute:

Scale row 4 by 2
3 . 

−1 2 1 1 1
0 0 1 0 −1
0 0 0 2 1
0 0 0 0 1


Add −(row 4) to row 1, row 4 to row 2, −(row 4) to row 3.


−1 2 1 1 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1


Scale row 3 by 1

2 . 
−1 2 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Add −(row 3) to row 1.


−1 2 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





Add −(row 2) to row 1.
−1 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Scale row 1 by −1. 

1 −2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



There are no solutions.
1.18. Forward eliminate: 1 2 3 4 5

2 5 7 11 12
0 1 1 4 3


Add −2(row 1) to row 2. 1 2 3 4 5

0 1 1 3 2
0 1 1 4 3


Move the pivot ↘ .  1 2 3 4 5

0 1 1 3 2
0 1 1 4 3


Add −(row 2) to row 3. 1 2 3 4 5

0 1 1 3 2
0 0 0 1 1


Move the pivot ↘ .  1 2 3 4 5

0 1 1 3 2
0 0 0 1 1





Move the pivot →.  1 2 3 4 5
0 1 1 3 2
0 0 0 1 1



Back substitute:

Add −4(row 3) to row 1, −3(row 3) to row 2. 1 2 3 0 1
0 1 1 0 −1
0 0 0 1 1


Add −2(row 2) to row 1. 1 0 1 0 3

0 1 1 0 −1
0 0 0 1 1



x1 = −x3 + 3
x2 = −x3 − 1
x4 = 1

1.19. Forward eliminate:
−2 1 1 1 0
1 −2 1 1 0
1 1 −2 1 0
1 1 1 −2 0


Add 1

2 (row 1) to row 2, 1
2 (row 1) to row 3, 1

2 (row 1) to row 4.


−2 1 1 1 0
0 − 3

2
3
2

3
2 0

0 3
2 − 3

2
3
2 0

0 3
2

3
2 − 3

2 0





Move the pivot ↘ .
−2 1 1 1 0

0 −3
2

3
2

3
2 0

0 3
2 − 3

2
3
2 0

0 3
2

3
2 − 3

2 0


Add row 2 to row 3, row 2 to row 4.

−2 1 1 1 0

0 −3
2

3
2

3
2 0

0 0 0 3 0
0 0 3 0 0


Move the pivot ↘ .

−2 1 1 1 0

0 −3
2

3
2

3
2 0

0 0 0 3 0
0 0 3 0 0


Swap rows 3 and 4.

−2 1 1 1 0

0 −3
2

3
2

3
2 0

0 0 3 0 0
0 0 0 3 0


Move the pivot ↘ .

−2 1 1 1 0

0 −3
2

3
2

3
2 0

0 0 3 0 0
0 0 0 3 0



Back substitute:



Scale row 4 by 1
3 .


−2 1 1 1 0

0 −3
2

3
2

3
2 0

0 0 3 0 0
0 0 0 1 0


Add −(row 4) to row 1, − 3

2 (row 4) to row 2.


−2 1 1 0 0

0 −3
2

3
2 0 0

0 0 3 0 0
0 0 0 1 0


Scale row 3 by 1

3 .


−2 1 1 0 0

0 −3
2

3
2 0 0

0 0 1 0 0
0 0 0 1 0


Add −(row 3) to row 1, − 3

2 (row 3) to row 2.


−2 1 0 0 0

0 −3
2 0 0 0

0 0 1 0 0
0 0 0 1 0


Scale row 2 by − 2

3 .


−2 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0





Add −(row 2) to row 1.


−2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Scale row 1 by − 1

2 . 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



x1 = 0
x2 = 0
x3 = 0
x4 = 0

1.21. You could try:
a. One solution: x1 = 0.
b. No solutions: x1 = 1, x2 = 1, x1 + x2 = 0.
c. Infinitely many solutions: x1 + x2 = 0.

1.23.

1.28. (a)=(2), (b)=(4), (c)=(1), (d)=(5), (e)=(3)
2.2.
(a) All coordinates of each vertex are ±1.
(b) The vertices of a regular octahedron lie in the centers of the faces of a

cube.
(c) Try an equilateral triangle in the plane first. This should lead you to the

points ±1
±1
±1


with an even number of minus signs.



2.3. 
∗

∗
∗

∗


2.4.

A =
(

1 0
1 0

)
, B =

(
0
1

)
.

2.9. Any matrix full of zeros with at least two columns.
2.13. 1 · 8 + (−1) · 1 + 2 · 3 = 13
2.14. (

14 20
20 29

)
2.16.

AB =

0 2
0 2
0 2


AC =

4 2 2
4 2 2
4 2 2


AD =

0 0
0 0
0 0


BC =

(
0 1 −1
0 1 −1

)

CA =
(

10 0
0 0

)
.

2.18. You could try

A =
(

1 1
−1 −1

)
.

2.20. In an upper triangular matrix, Aij = 0 if i > j. So nonzero terms have
i ≤ j. The product: (AB)ij =

∑
k AikBkj The Aik vanishes unless i ≤ k, and

the second vanishes unless k ≤ j , so the whole sum consists in terms with
i ≤ k ≤ j. The sum vanishes unless i ≤ j, hence upper triangular. Moreover,
the terms with i = j must have i ≤ k ≤ j, so just the one AiiBii term.



2.22.

(c(AB))ij = c(AB)ij

= c
∑
k

AikBkj

=
∑
k

cAikBkj

=
∑
k

(cA)ik Bkj

= ((cA)B)ij .

2.23.

((AB)C)ij =
∑
k

(AB)ik Ckj

=
∑
k

∑
`

Ai`B`kCkj .

On the other hand,

(A (BC))ij =
∑
k

Aik (BC)kj

=
∑
k

∑
`

AikBk`C`j .

Since k and ` are just used to add up, we can change their names to anything
we like. In particular, the resulting sums won’t change if we rename k to ` and
` to k. Moreover, we can carry out the sums in any order. (You still have to
show that each side is defined just when the other is.)
2.24.

(A(B + C))ij =
∑
k

Aik (B + C)kj

=
∑
k

Aik (Bkj + Ckj)

=
∑
k

AikBkj +
∑
k

AikCkj

= (AB)ij + (AC)ij .

3.2. One proof:

(IA)ij =
∑
k

IikAkj

= Aij

because Iik = 1 just when k = i.



A hint for a different proof (without using
∑

): if A is 1× 1, then the result
is clear. Now suppose that we have proven the result already for all matrices of
some size smaller than p× q, but that we face a matrix A which is p× q. Then
split A into blocks, in any way you like, say as

A =
(
P Q

R S

)
,

and write out

IA =
(
I 0
0 I

)(
P Q

R S

)
,

and calculate out the result, using the fact that since P,Q,R and S are smaller
matrices, we can pretend that have already checked the result for them.
3.3. IB = BI = I but IB = B.
3.4. IB = BI = I but IB = B.
3.6.

e1 =

1
0
0

 .

3.7. Row j. All rows except row j.
3.8. One proof:

Ae1 =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

... . . .
...

An1 An2 . . . Ann




1
0
...
0


so running your fingers along the rows of A and column of e1:

=


A11 · 1 +A12 · 0 + · · ·+A1n · 0
A21 · 1 +A22 · 0 + · · ·+A2n · 0

...
An1 · 1 +An2 · 0 + · · ·+Ann · 0



=


A11

A21
...

An1


Another proof: e1 has entries (e1)i = 1 if i = 1 and (e1)i = 0 if i 6= 1. So Ae1
has entries (Ae1)i =

∑
k Aik (e1)k. Each term is zero except if k = 1, in which

case it is Ai1. But the entries of the first column of A are A11, A21, . . . , An1.



3.10. Write x =
∑
xjej , and multiply both sides by A.

3.11. Use the fact that the columns of AB are A times columns of B.
3.12. You could try

A =
(
I3 0

)
, B =

(
I3

0

)
.

3.16.

(
2 0
1 0

) (
0 −1
1 0

) (
2 0
1 1

) (
1 0
−1 1

)
3.17. Mostly yes. You only have to try to figure out where e1 goes to, and
where e2 goes to. The vector e1 is close to her left eye. The vector e2 is close to
the top of her head, which is not really marked by anything, so harder to follow.
But you can’t figure out what matrix gives the straight line segment. Why?
3.19. C = CI = C(AB) = (CA)B = IB = B.
3.23.

B−1A−1 (AB) = B−1 (A−1A
)
B

= B−1IB

= B−1B

= I.

and similarly multiplying out (AB)B−1A−1.
3.24. By definition, AA−1 = A−1A = I. But these equations say exactly that
A is the inverse of A−1.
3.25. Multiply both sides of the equation Ax = 0 by A−1.
3.26. Multiply both sides of AB = I by A−1 to find B = A−1. Therefore
BA = I, and so A = B−1.
3.28. If x = y then clearly Ax = Ay. If Ax = Ay, then multiply both sides by
A−1.
3.29.

M−1 =
(
A−1 −A−1BD−1

0 D−1

)
.

3.30. See figure 1 on the next page.
3.31.

S =

 1 0 0
−7 1 0
0 −5 1

 .



Figure 1: Images coming from some matrices, and from their inverses

3.32.

P =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

4.1. Each column has to be a column of the identity matrix, since it has all
0’s except for a single 1. But all of the columns have to be different, in order
that no two columns have 1’s in the same row. So they are different columns
of the identity matrix. If some column of the identity matrix doesn’t show up
anywhere in our matrix, say the third column for example, then the third row
has only 0’s. So every column of the identity matrix shows up, precisely once,
scrambled in some permutation.
4.4. Sej must be ej with multiples of rows added only to later rows, so column j
of S has zeros above row j and 1 on row j. Hence S1j = S2j = · · · = Sj−1 j = 0
and Sjj = 1.
4.5. Proof (1): Multiplying by R adds entries only to lower entries, preserving
the 1’s on and 0’s above the diagonal.

Proof (2): A matrix R is strictly lower triangular just when Rij = 0 unless
i ≥ j and Rij = 1 for i = j.

(RS)ij =
∑
k

RikSkj .



But this sum is all 0’s unless we find i ≥ k and k ≥ j, so we need i ≥ j. If i = j,
then only the term k = i = j makes a contribution, which is RiiSii = 1.

Proof (3): Obvious for 1 × 1 matrices. Suppose that we have proven the
result for all matrices of size smaller than n× n. If R and S are n× n, write

R =
(

1 0
a B

)
, S =

(
1 0
p Q

)

where a and p are columns, and B and Q are strictly lower triangular. Then

RS =
(

1 0
a+Bp BQ

)

which is strictly lower triangular because B and Q are strictly lower triangular
of smaller size.
4.6. Suppose that we want to make a matrix S which is p × q. Start with
the identity matrix. Multiply it by the elementary matrix with S1q in row 1,
column q. We get one element into place. Keep going, first getting things set
up properly along the bottom row.
4.8.

4.10. If

D =


t1

t2
. . .

tn

 ,

then

D−1 =


t−1
1

t−1
2

. . .
t−1
n

 .

If one of these ti is 0, then there can’t be an inverse, because Dei = 0, so if D
has an inverse, then D−1Dei = ei, but also D−1Dei = D−10 = 0.
4.12. ad 0 0

0 be 0
0 0 cf





4.13. The original picture is

The three resulting pictures are:

4.14. (
1 2
3 4

)(
x1

x2

)
=
(

7
8

)
4.15. P 99 = P swaps rows 1 and 2.

P 99 = P =

0 1 0
1 0 0
0 0 1

 .

4.16. S101 adds 202(row 1) to row 3.

S101 =

 1 0 0
0 1 0

202 0 1

 .

4.24. Any number between 0 and 3.
4.25.
a. 1 2 3 4 5

0 0 0 6 7
0 0 0 0 8


b. Impossible: can only use 1 pivot in each row, so at most 3 pivots binding

up variables, so must have at least 2 left over free variables (or at least
one free variable, if the last column is a column of constants).

c. 0 0 1 1 1
0 0 0 1 1
0 0 0 0 0


4.28. There is at most one pivot in each row. There are more columns than
rows. So there must be a pivotless column: a free variable for the equation
Ax = 0.



5.1. Forward eliminate: 0 0 1 1 0 0
1 1 0 0 1 0
1 2 1 0 0 1


Swap rows 1 and 2. 1 1 0 0 1 0

0 0 1 1 0 0
1 2 1 0 0 1


Add −(row 1) to row 3. 1 1 0 0 1 0

0 0 1 1 0 0
0 1 1 0 −1 1


Move the pivot ↘ . 1 1 0 0 1 0

0 0 1 1 0 0
0 1 1 0 −1 1


Swap rows 2 and 3. 1 1 0 0 1 0

0 1 1 0 −1 1
0 0 1 1 0 0


Move the pivot ↘ . 1 1 0 0 1 0

0 1 1 0 −1 1
0 0 1 1 0 0



Back substitute:

Add −(row 3) to row 2. 1 1 0 0 1 0
0 1 0 −1 −1 1
0 0 1 1 0 0





Add −(row 2) to row 1. 1 0 0 1 2 −1
0 1 0 −1 −1 1
0 0 1 1 0 0



A−1 =

 1 2 −1
−1 −1 1
1 0 0

 .

5.2. Forward eliminate: 1 2 3 1 0 0
1 2 0 0 1 0
1 0 0 0 0 1


Add −(row 1) to row 2, −(row 1) to row 3. 1 2 3 1 0 0

0 0 −3 −1 1 0
0 −2 −3 −1 0 1


Move the pivot ↘ . 1 2 3 1 0 0

0 0 −3 −1 1 0
0 −2 −3 −1 0 1


Swap rows 2 and 3. 1 2 3 1 0 0

0 −2 −3 −1 0 1
0 0 −3 −1 1 0


Move the pivot ↘ . 1 2 3 1 0 0

0 −2 −3 −1 0 1
0 0 −3 −1 1 0



Back substitute:



Scale row 3 by − 1
3 . 1 2 3 1 0 0

0 −2 −3 −1 0 1
0 0 1 1

3 − 1
3 0


Add −3(row 3) to row 1, 3(row 3) to row 2. 1 2 0 0 1 0

0 −2 0 0 −1 1
0 0 1 1

3 − 1
3 0


Scale row 2 by − 1

2 . 1 2 0 0 1 0
0 1 0 0 1

2 − 1
2

0 0 1 1
3 − 1

3 0


Add −2(row 2) to row 1. 1 0 0 0 0 1

0 1 0 0 1
2 − 1

2
0 0 1 1

3 − 1
3 0



A−1 =

0 0 1
0 1

2 − 1
2

1
3 − 1

3 0

 .

5.3. Not invertible.
5.4.

A−1 =

 0 −1 1
3
2 1 − 3

2
− 1

2 0 1
2

 .

5.6. Yes, invertible.
5.7. No, not invertible.
5.8. If A is invertible, A−1Ax = x = 0. On the other hand, if Ax = 0 holds
only for x = 0, then the same is true of Ux = 0, after Gauss–Jordan elimination.
Any column of U with no pivot gives a free variable, so there must be a pivot
in each column, going straight down the diagonal, so U is invertible.
5.9. Lets use theorem 5.4. Is there a solution x to the equation Ax = b for
every choice of b? Yes: try x = Bb. So A is invertible. Multiply AB = I on
both sides by A−1 to get B = A−1.



5.10. We have already seen that if A and B are both invertible, then
(AB)−1 = B−1A−1. Suppose that AB is invertible. Then (AB) (AB)−1 = I

so A
(
B (AB)−1

)
= I. Therefore A is invertible. Multiply on the left by A−1:

B (AB)−1 = A−1. Multiply by A on the right: B (AB)−1
A = I. So B is

invertible.
5.11. Yes
5.12. Forward elimination: 1 2 3

1 2 1
0 1 15


Add −1(row 1) to row 2.  1 2 3

0 0 −2
0 1 15


Swap rows 2 and 3  1 2 3

0 1 15
0 0 −2


 1 2 3

0 1 15
0 0 −2



The matrix is invertible, so the equations have a unique solution.
5.15. You could try

A =

0 1 0
0 2 1
1 0 0


which has forward elimination

1 0 0
0 2 1

0 0 −1
2

 ,

while its transpose At has forward elimination 1 2 0
0 1 0
0 0 1

 .



5.16. Ux = V b just when V Ax = V b just when Ax = b. So to solve Ax = b
we need b to solve Ux = V b. The last two rows of Ux = V b give the conditions
above. If those are satisfied, we can then drop those rows, and start solving the
first two rows with the pivots.
6.1. If a 6= 0, use it as a pivot, and forward elimination yields a b

0 d− bc

a

 .

Therefore if a 6= 0, then A is invertible just when d− bc
a 6= 0. Multiplying by a,

we see that A is invertible just when ad− bc 6= 0.
What if a = 0? We try to swap. Forward elimination yields(

c d

0 b

)
.

Invertibility (when a = 0) is just precisely both b and c not vanishing. But
(when a = 0) ad − bc = −bc vanishes just when b or c does, so just when
invertibility fails.
6.2.

det
(
a b

c d

)
= a det

(
a b

c d

)
− c det

(
a b

c d

)
= ad− bc.

6.3.
+3 (−3)− 1 (1) = −10

6.4.

+1 det
(

1 1
0 −1

)
− 0 det

(
−1 0
0 −1

)
+ 1 det

(
−1 0
1 1

)
= −2

6.10. 1 · 4 · 6 = 24
6.11. For 1× 1 matrices U , the results are obvious:

U = (u) , U−1 =
(

1
u

)
.

Suppose that U is n × n and assume that we have already checked that all
smaller invertible upper triangular matrices. Split into blocks, in any manner
at all

U =
(
A B

0 C

)



with A and C square and upper triangular. You will have to find a way to see
that A and C are invertible. Once you do that, check that

U−1 =
(
A−1 −A−1BC−1

0 C−1

)
.

We see by induction that (1) U−1 is upper triangular, (2) the diagonal entries
of U−1 are the reciprocals of the diagonal entries of U , and (3) we can compute
the entries U−1 inductively in terms of the entries of U .
6.13. Swapping changes the sign of the determinant. But swapping doesn’t
change the matrix, so it doesn’t change the sign of the determinant. Therefore
the determinant is 0.
6.14. You can use

A =
(

1 0
0 0

)
, B =

(
0 0
0 1

)
for example.
6.15. The determinant goes up by 6 times.
6.16. A 2× 2 determinant looks like

− = A11A22 −A21A12.

7.1.  2 5 5
2 5 7
2 6 11


Add −(row 1) to row 2, −(row 1) to row 3. 2 5 5

0 0 2
0 1 6


Make a new pivot ↘.  2 5 5

0 0 2
0 1 6


Swap rows 2 and 3  2 5 5

0 1 6
0 0 2





Make a new pivot ↘.  2 5 5
0 1 6
0 0 2



So detA = −(2)(1)(2): the minus sign because of one row swap.
7.2. 0 because the second row is a multiple of the first.
7.3. From the fast formula, detA 6= 0 just when there is a pivot in each column.
7.4. Gauss–Jordan elimination with one row swap yields

1 0 1 −1
0 1 −1 −1
0 0 −1 1
0 0 0 −1


so

det


1 0 1 −1
1 0 0 0
0 1 −1 −1
1 0 −1 0

 = −1

7.5. Gauss–Jordan elimination with one row swap yields
−1 1 0 0
0 2 2 0
0 0 2 1

0 0 0 3
2


so

det


0 2 2 0
−1 1 0 0
−1 −1 0 1
2 0 1 1

 = 6

7.6. Gauss–Jordan elimination with no row swaps yields
2 −1 −1

0 −3
2 − 1

2

0 0 0


so

det

 2 −1 −1
−1 −1 0
2 −1 −1

 = 0



7.7.

+0 det
(

0 −1
2 −1

)
− 0 det

(
2 0
2 −1

)
+ 2 det

(
2 0
0 −1

)
= −4

7.8.

+2 det
(

0 2
2 1

)
− 2 det

(
1 −1
2 1

)
+ 0 det

(
1 −1
0 2

)
= −14

7.9.

+0 det
(
−1 2
1 0

)
− 0 det

(
−1 −1
1 0

)
+ 0 det

(
−1 −1
−1 2

)
= 0

7.10. Rescaling that row rescales the determinant. But rescaling that row
doesn’t change anything, so it must not change the determinant. The determi-
nant must not change when scaled, so must be 0.
7.12. To see that detA = 12, we compute 0 2 1

3 1 2
3 5 2


Swap rows 1 and 2  3 1 2

0 2 1
3 5 2


Add −(row 1) to row 3.  3 1 2

0 2 1
0 4 0


Make a new pivot ↘.  3 1 2

0 2 1
0 4 0


Add −2(row 2) to row 3.  3 1 2

0 2 1
0 0 −2





Make a new pivot ↘.

 3 1 2
0 2 1
0 0 −2


7.13. If L11 = 0, then we have a zero row, so det = 0, and the result is obviously
true. If L11 6= 0, then use it as a pivot to kill everything underneath it:



L11

0 L22

0 L32 L33

0 L42 L43
. . .

...
...

...
...

. . .
0 Ln2 Ln3 . . . Ln(n−1) Lnn


Proceed by induction.
7.15. Here is one proof: the i-th row of At is obvious the transpose of the i-th
column of A: eitAt = (Aei)t. Writing out any vector x as x = x1e1 + x2e2 +
· · ·+ xnen, and adding up, we see that xtAt = (Ax)t for any vector x. Apply
this to a column of B, say x = Bei.

ei
tBtAt = (Bei)tAt

= (ABei)t

= ei
t(AB)t.

Here is another proof, using lots of indices:

(AB)tij = (AB)ji
=
∑
k

AjkBki

=
∑
k

BkiAjk

=
∑
k

BtikA
t
kj

=
(
BtAt

)
ij
.

7.16. It is the inverse permutation; see problem 4.2 on page 31.
7.17. 4: expand down the third column.



7.18. For k = 1, A1 = A, so obvious. By induction,

det
(
Ak+1) = det

(
A ·Ak

)
= (detA)

(
detAk

)
= (detA) (detA)k

= (detA)k+1
.

7.19. det
(
A2222444466668888) = (detA)2222444466668888 = (−1)2222444466668888 =

1 (an even number of minus signs).
7.20. AA−1 = I so detAdet

(
A−1) = 1.

7.21.
a. By expanding down any column.

b. By expanding across any row.

c. By forward elimination, and then taking the product of the diagonal entries.
(The fastest way for a big matrix.)

7.22. One, because the determinant of the coefficients is 1 · 2 · 3 = 6.
8.1.

x1 + 2x2 +x3 = 1
x2 +x3 = 0

−x1 + x2 =−2

8.3. Yes.
8.4. Lets call these vectors x1, x2, x3. Make the matrix

A =
(
x1 x2 x3

)
.

Apply forward elimination:

A =

 1 1 1
0 0 1
1 0 0


Add −1(row 1) to row 3.

 1 1 1
0 0 1
0 −1 −1





Swap rows 2 and 3  1 1 1
0 −1 −1
0 0 1


 1 1 1

0 −1 −1
0 0 1



If we add any vector y, we can’t add another pivot, so every vector y is a linear
combination of x1, x2, x3. Therefore the span is all of R3.
8.5. Yes. Forward eliminate: 0 2 −1 −1

−1 1 −1 0
0 2 1 1


Swap rows 1 and 2.  −1 1 −1 0

0 2 −1 −1
0 2 1 1


Move the pivot ↘ .  −1 1 −1 0

0 2 −1 −1
0 2 1 1


Add −(row 2) to row 3. −1 1 −1 0

0 2 −1 −1
0 0 2 2


Move the pivot ↘ .  −1 1 −1 0

0 2 −1 −1
0 0 2 2





There is no pivot in the final column, so the final column is a linear combination
of earlier columns.
8.6. No. Forward eliminate: 2 2 4 0

0 −1 0 2
0 1 0 0


Move the pivot ↘ .  2 2 4 0

0 −1 0 2
0 1 0 0


Add row 2 to row 3.  2 2 4 0

0 −1 0 2
0 0 0 2


Move the pivot ↘ .  2 2 4 0

0 −1 0 2
0 0 0 2


Move the pivot →.  2 2 4 0

0 −1 0 2
0 0 0 2



There is a pivot in the final column, so the final column is linearly independent
of earlier columns.
8.9. x1 + x2 + 2x3 = 0
8.11. You can rescale and add as many times as you need to, forming any
linear combination.
8.12. No: it doesn’t contain 0.
8.13. Yes
8.14. Obviously every vector in a subspace is a linear combination of vectors
in the subspace: x = 1 · x. So the subspace lies inside the span of its vectors.
Conversely, every linear combination of vectors in a subspace belongs to the



subspace, so the span of the vectors in the subspace lies in the subspace.
Therefore a subspace is its own span.
8.15. {0} and R.
8.16.
a. Not always. Take the x and y axes in the (x, y) plane.
b. Yes.

8.17. No: it contains

x =
(

1
1

)
but doesn’t contain

2x =
(

2
2

)
.

8.18.
a. no
b. yes
c. yes
d. no

8.20. The lines through 0.
9.2. Put the standard basis into the columns of a matrix, and you have the
identity matrix. Look: there is a pivot in each column.
9.4. Try adding a vector to the set. If you can’t then you are done: a basis. If
you can, then keep going. If you end up with more than n vectors, then use
theorem 9.2.
9.5. Put them into the columns of matrix A. You find detA = 0, so these
vectors are linearly dependent.
9.6. Put them into the columns of a matrix, and apply forward elimination to
find pivots:  2 1

0 3
2

 .

A square matrix, a pivot in every column, so a basis.
9.10. Write A as columns

A =
(
u1 u2 . . . un

)
.

The equation Ax = 0 is the equation x1u1 + x2u2 + · · · + xnun = 0, which
imposes a linear relation. Therefore u1, u2, . . . , un are linearly independent just
when Ax = 0 has x = 0 as its only solution.
9.11.

F−1 =

1 0 −1
0 1 0
0 0 1

 , F−1AF =

1 0 −1
0 2 0
0 0 2

 .



9.12.

A =

1 0 0
0 1 0
0 0 0

 , F =

1 2 0
0 1 2
0 0 1

 ,

F−1 =

1 −2 4
0 1 −2
0 0 1

 , F−1AF =

1 0 −4
0 1 2
0 0 0

 .

9.14. Expand out x = x1e1 + x2e2 + · · ·+ xqeq to give

Ax = x1 (Ae1) + x2 (Ae2) + · · ·+ xq (Aeq) .

So Ax = 0 just when x1, x2, . . . , xq give a linear relation among the columns of
A.
9.15. No
9.17. Yes
9.19. Let

F =
(
x1 x2 . . . xn

)
G =

(
y1 y2 . . . yn

)
,

and let A = GF−1. But why is there only one such matrix?
9.21. The idea is that e2 − e3 = (e1 − e3) − (e1 − e2), etc. So consider the
vectors e1 − e2, e1 − e3, . . . , e1 − en−1. Clearly if i = 1, then ei − ej is one of
these vectors. But if i 6= 1, then

ei − ej = (−1) (e1 − ei) + (e1 − ej) .

So the vectors e1 − e2, e1 − e3, . . . , e1 − en−1 span the subspace. Clearly these
vectors are linearly independent, because each one has a nonzero entry just at
a spot where all of the others have a zero entry. Alternatively, to see linear
independence, any linear relation among them:

0 = c2 (e1 − e2) + c3 (e1 − e3) + . . . cn (e1 − en)
= (c2 + c3 + · · ·+ cn) e1 + c2e2 + c3e3 + · · ·+ cnen

determines a linear relation among the standard basis vectors, forcing 0 =
c2 = c3 = · · · = cn. The subspace is actually the set of vectors x for which
x1 + x2 + · · ·+ xn = 0.
9.22. You could try

A =

0 1
1 1
1 2

 .



Depending on whether you swap row 1 with row 2 or with row 3, forward
elimination yields  1 1

0 1
0 0

 or

 1 2
0 1
0 0

 .

10.3. The reduced echelon form is 1 0 −1
0 1 2
0 0 0

 .

The basis for the kernel is  1
−2
1


10.6. Remove zero rows. 1 0 0 0 0

0 1 0 0 1
0 0 1 2 2


Change signs of the entries after each pivot. 1 0 0 0 0

0 1 0 0 −1
0 0 1 −2 −2


Pad with rows from the identity matrix, to get 1’s down the diagonal.

1 0 0 0 0
0 1 0 0 −1
0 0 1 −2 −2
0 0 0 1 0
0 0 0 0 1


Keep the pivotless columns. 

0
0
−2
1
0

 ,


0
−1
−2
0
1





10.7. Remove zero rows.
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Change signs of the entries after each pivot.

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Pad with rows from the identity matrix, to get 1’s down the diagonal.

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Keep the pivotless columns. 

1
0
0
0
0


10.8. The reduced echelon form is

1 0 0 0 2
0 1 0 0 − 5

2
0 0 1 0 5

2
0 0 0 1 1


Remove zero rows. 

1 0 0 0 2
0 1 0 0 − 5

2
0 0 1 0 5

2
0 0 0 1 1


Change signs of the entries after each pivot.

1 0 0 0 −2
0 1 0 0 5

2
0 0 1 0 − 5

2
0 0 0 1 −1





Pad with rows from the identity matrix, to get 1’s down the diagonal.
1 0 0 0 −2
0 1 0 0 5

2
0 0 1 0 − 5

2
0 0 0 1 −1
0 0 0 0 1


Keep the pivotless columns. 

−2
5
2
− 5

2
−1
1


10.9. −1

1
0


10.10. The only vector in the kernel is 0.
10.11. 1, 1, 2, 1, 1, 0
10.13. The kernel of B consists in the vectors

v =

xy
z


for which Bv = 0. This is just asking for Ax + Ay + Az = 0, i.e. for
A(x+ y + z) = 0. We can pick x and y arbitrarily, and pick an arbitrary vector
w in the kernel of A, and set z = w − (x+ y). In particular, B has kernel of
dimension 2q + k where k is the dimension of the kernel of A.
10.14.

y = Ax

= A
∑
j

xjej

=
∑
j

xjAej

so a linear combination (with coefficients x1, x2, . . . , xq) of the columns Aej of A.
Therefore the vectors of the form y = Ax are precisely the linear combinations
of the columns of A.
10.16. It is the horizontal plane in R3, the xy-plane in xyz coordinates.
10.18. If A is tall, then At is short, so there are nonzero vectors c so that
Atc = 0, i.e. ctA = 0. Since c 6= 0, there must be some entry ci 6= 0. If Ax = ei,
we find 0 = ctAx = ctei = ci a contradiction. So ei is not in the image.



10.19. Forward eliminate: 1 −1 0
−1 0 −1
2 2 −1


Add row 1 to row 2, −2(row 1) to row 3. 1 −1 0

0 −1 −1
0 4 −1


Move the pivot ↘.  1 −1 0

0 −1 −1
0 4 −1


Add 4(row 2) to row 3.  1 −1 0

0 −1 −1
0 0 −5


Move the pivot ↘.  1 −1 0

0 −1 −1
0 0 −5



The pivot columns are columns 1,2,3. So the columns: 1
−1
2

 ,

−1
0
2

 ,

 0
−1
−1


form a basis.
10.20. Forward eliminate:  2 −6 −6

−6 18 18
0 0 0





Add 3(row 1) to row 2.  2 −6 −6
0 0 0
0 0 0


Move the pivot ↘.  2 −6 −6

0 0 0
0 0 0


Move the pivot →.  2 −6 −6

0 0 0
0 0 0


Move the pivot →.  2 −6 −6

0 0 0
0 0 0



The only pivot column is column 1. So the column: 2
−6
0


is a basis.
10.21. Forward eliminate:  0 2 0

2 −1 2
1 1 2


Swap rows 1 and 2.  2 −1 2

0 2 0
1 1 2





Add − 1
2 (row 1) to row 3.  2 −1 2

0 2 0
0 3

2 1


Move the pivot ↘.  2 −1 2

0 2 0
0 3

2 1


Add − 3

4 (row 2) to row 3.  2 −1 2
0 2 0
0 0 1


Move the pivot ↘.  2 −1 2

0 2 0
0 0 1



The pivot columns are columns 1,2,3. So the columns:0
2
1

 ,

 2
−1
1

 ,

0
2
2


form a basis.
10.22. Forward eliminate:  2 −1 3

−6 3 −9
0 0 0


Add 3(row 1) to row 2.  2 −1 3

0 0 0
0 0 0





Move the pivot ↘.  2 −1 3
0 0 0
0 0 0


Move the pivot →.  2 −1 3

0 0 0
0 0 0


Move the pivot →.  2 −1 3

0 0 0
0 0 0



The only pivot column is column 1. So the column: 2
−6
0


is a basis.
10.23. Forward eliminate:  −3 1 0

3 −1 0
3 −1 0


Add row 1 to row 2, row 1 to row 3. −3 1 0

0 0 0
0 0 0


Move the pivot ↘.  −3 1 0

0 0 0
0 0 0





Move the pivot →.  −3 1 0
0 0 0
0 0 0


Move the pivot →.  −3 1 0

0 0 0
0 0 0



The only pivot column is column 1. So the column:−3
3
3


is a basis.
10.24. Forward eliminate:  2 4 0

−6 −12 0
4 8 0


Add 3(row 1) to row 2, −2(row 1) to row 3. 2 4 0

0 0 0
0 0 0


Move the pivot ↘.  2 4 0

0 0 0
0 0 0


Move the pivot →.  2 4 0

0 0 0
0 0 0





Move the pivot →.  2 4 0
0 0 0
0 0 0



The only pivot column is column 1. So the column: 2
−6
4


is a basis.
10.25. Forward eliminate:  1 −1 1

1 0 2
−1 2 1


Add −(row 1) to row 2, row 1 to row 3. 1 −1 1

0 1 1
0 1 2


Move the pivot ↘.  1 −1 1

0 1 1
0 1 2


Add −(row 2) to row 3.  1 −1 1

0 1 1
0 0 1


Move the pivot ↘.  1 −1 1

0 1 1
0 0 1





The pivot columns are columns 1,2,3. So the columns: 1
1
−1

 ,

−1
0
2

 ,

1
2
1


form a basis.
10.26. Forward eliminate:  −1 0 1

1 0 1
−1 2 −1


Add row 1 to row 2, −(row 1) to row 3. −1 0 1

0 0 2
0 2 −2


Move the pivot ↘.  −1 0 1

0 0 2
0 2 −2


Swap rows 2 and 3.  −1 0 1

0 2 −2
0 0 2


Move the pivot ↘.  −1 0 1

0 2 −2
0 0 2



The pivot columns are columns 1,2,3. So the columns:−1
1
−1

 ,

0
0
2

 ,

 1
1
−1





form a basis.
10.27. Forward eliminate: −1 4 4

3 −12 −12
3 −12 −12


Add 3(row 1) to row 2, 3(row 1) to row 3. −1 4 4

0 0 0
0 0 0


Move the pivot ↘.  −1 4 4

0 0 0
0 0 0


Move the pivot →.  −1 4 4

0 0 0
0 0 0


Move the pivot →.  −1 4 4

0 0 0
0 0 0



The only pivot column is column 1. So the column:−1
3
3


is a basis.
10.28. Forward eliminate:  0 2 1

2 2 0
0 2 0





Swap rows 1 and 2.  2 2 0
0 2 1
0 2 0


Move the pivot ↘.  2 2 0

0 2 1
0 2 0


Add −(row 2) to row 3.  2 2 0

0 2 1
0 0 −1


Move the pivot ↘.  2 2 0

0 2 1
0 0 −1



The pivot columns are columns 1,2,3. So the columns:0
2
0

 ,

2
2
2

 ,

1
0
0


form a basis.
10.29. Forward eliminate:  2 −6 −4

−6 18 12
0 0 0


Add 3(row 1) to row 2.  2 −6 −4

0 0 0
0 0 0





Move the pivot ↘.  2 −6 −4
0 0 0
0 0 0


Move the pivot →.  2 −6 −4

0 0 0
0 0 0


Move the pivot →.  2 −6 −4

0 0 0
0 0 0



The only pivot column is column 1. So the column: 2
−6
0


is a basis.
10.30. Forward eliminate:  1 0 0

2 −1 −1
1 −1 0


Add −2(row 1) to row 2, −(row 1) to row 3. 1 0 0

0 −1 −1
0 −1 0


Move the pivot ↘.  1 0 0

0 −1 −1
0 −1 0





Add −(row 2) to row 3.  1 0 0
0 −1 −1
0 0 1


Move the pivot ↘.  1 0 0

0 −1 −1
0 0 1



The pivot columns are columns 1,2,3. So the columns:1
2
1

 ,

 0
−1
−1

 ,

 0
−1
0


form a basis.
10.31. Ax = 0 implies that Bx = CAx = 0. Conversely, Bx = 0 implies that
Ax = C−1Bx = 0.
10.32. Linear relations among vectors pass through C and through C−1.
10.33. Compute echelon form:

0 2 2 2
1 2 0 0
0 1 2 2
0 2 2 2


Swap rows 1 and 2 

1 2 0 0
0 2 2 2
0 1 2 2
0 2 2 2




1 2 0 0
0 2 2 2
0 1 2 2
0 2 2 2


Add −1/2(row 2) to row 3.



Add −1(row 2) to row 4. 
1 2 0 0
0 2 2 2
0 0 1 1
0 0 0 0


So the rank is 3, the number of pivots. There is 1 pivotless column. The image
is 3-dimensional, while the kernel is 1-dimensional.
10.34. You could try

A =
(

1 0
0 0

)
, B =

(
0 0
1 0

)
, C =

(
0 1
1 0

)
.

The image of A is the span of the columns, so the span of(
1
0

)
while the image of B is the span of its columns, so the span of(

0
1

)
,

which are clearly not the same subspaces, but both one dimensional.
10.35. The rank of At is the number of linearly independent columns of At
(rows of A). Let U be the forward elimination of A. When we compute forward
elimination, we add rows to other rows, and swap rows, so the rows of U are
linear combinations of the rows of A, and vice versa. Thus the rank of At is
the number of linearly independent rows of U . None of the zero rows of U
count toward this number, while pivot rows are clearly linearly independent.
Therefore the rank of At is the number of pivots, so equal to the rank of A.
10.42. If they both have solutions, then Aty = 0 so ytA = 0, so ytAx = 0. But
ytAx = ytb, so bty = 0, a contradiction.

On the other hand, if neither has a solution, then b is not in the image of A.
So b is not a linear combination of the columns of A, and the matrix M = (A b)
has rank 1 higher than the matrix A. Therefore the matrix

M t =
(
At

bt

)
also has rank one higher than At. So the dimension of the kernel of M t is one
lower than the dimension of the kernel of At, and therefore there is a vector y
in the kernel of At but not in the kernel of M t.
10.45.

A+B =
(

1 1
)(

A

B

)



so you can use the previous exercise.
10.46. (a) only
10.47. The rank of AB is the dimension of the image. But (AB)x = A(Bx),
so every vector in the image of AB lies in the image of A. The clever bit: on
the other hand, the rank of AB is the same as the rank of ABt, as shown in
problem 10.35 on page 89. But ABt = BtAt, so the rank is at most the rank of
Bt, which is the rank of B.
11.2. The determinant det (A− λ I) is the determinant of an upper (lower)
triangular matrix if A is upper (lower) triangular, with diagonal entries.
11.3. You could try

A =
(

0 1
1 0

)
which has eigenvalues λ = 1 and λ = −1.
11.4. You could try

A =
(

1 1
0 1

)
, B =

(
1 0
1 1

)
, A+B =

(
2 1
1 2

)
.

Their eigenvalues are: for A, λ = 1; for B, λ = 1, for A+B, λ = 1 or λ = 3.
11.5. Suppose that A is an n× n matrix. The determinant of a matrix A is a
sum of terms, each one linear in any of the entries of A which appear in it. The
characteristic polynomial det (A− λ I) therefore involves at most n terms with
a λ in them, coming from the n diagonal entries of A− λ, so a polynomial in λ
of degree at most n.
11.6. (−1)nλn
11.7. A : 0, 5, B : −1, 3, C : 0, 1, D : 0, 0, 2
11.8. detA = detAt for any square matrix A, so It = I and det (A− λ I) =
det (At − λ I) .
11.9.

det
(
F−1AF − λ I

)
= det

(
F−1 (A− λ I)F

)
= det

(
F−1)det (A− λ I) det (F )

= det (A− λ I) .

11.11. If A is invertible, then

det (AB − λ I) = det
(
A−1 (AB − λ I)A

)
= det (BA− λ I) .

If B is invertible, the same trick works. But if neither A nor B is invertible, we
have to work harder. Pick α any number which is not an eigenvalue of A. Then
A−α I is invertible, so (A− α I)B and B (A− α I) have the same eigenvalues.
Therefore

det ((A− α I)B − λ I) = det (B (A− α I)− λ I)

as polynomials in α. Now we can plug in α = 0.



11.13. 0,3
11.16.
a. sn(A) = 1
b. s0(A) = det (A− 0) = detA
c. The expression detA is a sum ofterms, each a product of precisely n entries

of A, as we have seen. So det (A− λ I) is a sum of terms, each involving
some A entries and some λ’s, with a total of n factors in each term.

d. If A is upper triangular, or lower triangular, then the result is obvious.
But each term of sn−1(A) involves precisely one entry of A, hence linear
in those entries. So sn−1(A) is a linear function of A, i.e. sn−1(A+B) =
sn−1(A) + sn−1(B). We can write any matrix as a sum of lower triangular
and an upper triangular.

e. Follows immediately from problem 11.9.
f. Clearly F−1AFej = F−1Auj = 0 for j > r. So we get zeros just where we

need them, to be able to write

F−1AF =
(
P 0
Q 0

)
.

P must have rank r, since there is nowhere else to put the r pivots, so P
is invertible. Since A has rank r, so must F−1AF .

g.

det (A− λ I) = det
(
P − λ I 0
Q −λ I

)
= det (P − λ I) (−λ)n−r

has no terms of degree less than n− r in λ.
h. You could try

A =
(

0 1
0 0

)
, B =

(
0 0
0 0

)
.

11.17. The λ = 3-eigenvectors are multiples of

x =
(

0
1

)
.

11.20.

λ = 1
(

0
1

)



11.21.

λ = −2
(
− 3

2
1

)

λ = 3
(

1
1

)

11.22.

λ = 1

0
1
0


λ = 2

− 1
2

2
1


λ = 3

0
3
2
1



11.27. Permutation matrices are orthogonal, so P t = P−1. Alternately: any
permutation P must generate a finite number of permutations P, P 2, P 3, . . . ,
so eventually we must find a loop: Pm = Pn for some integers m > n. Being
invertible, we see that P k = I for some integer k.
(a) ±1 since P t = P−1, so detP = detP t = 1

detP . Alternately: P k = I so
(detP )k = 1 so detP = ±1.

(b) The trace is the number of 1’s that stay on the diagonal when we permute
the columns of I to make up P , i.e. the number of fixed columns. This
number can be any value between 1 and n, except for n− 1, since you can
cyclically permute any number of elements, not fixing any, except that you
can’t permute one element without fixing it.

(c) P t = P−1 so P is the transpose of a permutation matrix. Therefore the
rows can be permuted to yield the identity matrix. So all pivots equal 1.

(d) Pick an eigenvector v so that Pv = λv. But then 〈v, v〉 = 〈P tPv, v〉 =
〈Pv, Pv〉 = λ2 〈v, v〉. So λ = ±1. Alternately: any eigenvalue will satisfy
λk = 1, i.e. λ = ±1.

11.28. (
−1 0
0 −2

)
11.29. (

−3 1
0 −2

)



11.30. (
−1 0
−2 −2

)
11.31. (

−2 0
0 −2

)
11.32. (

2 0
−4 −2

)
11.33. (

2 0
0 2

)
11.34. (

0 −1
−2 1

)
11.35. (

2 0
5 −3

)
11.36. (

−2 0
1 −3

)
11.37. (

1
2 − 3

2
− 3

2
1
2

)
11.38. (

−2 0
0 −2

)
11.39. (

2 0
3
2 −1

)
11.40. (

−3 0
0 −2

)
11.41. (

−3 0
1 −1

)



11.42. (
−1 6
0 2

)

12.1. The kernel of any matrix is a subspace.
12.2. Ax = λx so

ABx = BAx

= Bλx

= λBx.

12.3. Depending on the order in which you write down your eigenvalues, you
could get:

F =

−1 0 0
0 1 0
1 0 1


F−1 =

−1 0 0
0 1 0
1 0 1


F−1AF =

1 0 0
0 2 0
0 0 3


12.4. Again, it depends on the order you choose to write the eigenvalues, and
the order in which you write down basis vectors for each eigenspace. You could
get:

λ = −3

−1
0
1


λ = −2

−2
1
0


λ = 0

 0
−1
1





F =

−1 −2 0
0 1 −1
1 0 1


F−1 =

 1 2 2
−1 −1 −1
−1 −2 −1


F−1AF =

−3 0 0
0 −2 0
0 0 0


12.5. You could get

λ = 2

−1
0
1

 ,

1
1
0


λ = −4

 1
2
1
2
1



F =

−1 1 1
2

0 1 1
2

1 0 1


F−1 =

−1 1 0
− 1

2
3
2 − 1

2
1 −1 1


F−1AF =

2 0 0
0 2 0
0 0 −4


12.6. Suppose we have a matrix F for which

F−1AF =


λ1

λ2
. . .

λn

 .

Call this diagonal matrix Λ. Therefore AF = FΛ. Lets check that the columns
of F are eigenvectors. We need only see that FΛ is just F with columns scaled
by the diagonal entries of Λ.



12.7. You could try

A =
(

0 1
0 0

)

because it has only one eigenvector,

x =
(

1
0

)

(up to rescaling), with eigenvalue λ = 0. Therefore there is no basis of eigenvec-
tors.
12.9. You could get

λ = −1
(
−1
1

)

λ = 1
(
− 1

2
1

)

F =
(
−1 − 1

2
1 1

)

F−1 =
(
−2 −1
2 2

)

F−1AF =
(
−1 0
0 1

)

Let Λ = F−1AF . So A = FΛF−1. Clearly Λ100000 = 1, so A100000 =
FΛ100000F−1 = 1.
12.11.

A = 1
5

(
13 −4
−4 7

)

12.12.

A =

 1
2

1
4 0

1
4

1
2 0

1
4

1
4 1





λ = 3
4 v1 =

− 1
2
− 1

2
1


λ = 1 v2 =

0
0
1


λ = 1

4 v3 =

−1
1
0



F =

− 1
2 0 −1
− 1

2 0 1
1 1 0


F−1 =

−1 −1 0
1 1 1
− 1

2
1
2 0


F−1AF =

 3
4 0 0
0 1 0
0 0 1

4



Consider the coordinates of the vector

h0

s0

d0

 .

Numbers of people can’t be negative. Clearly the vector must be a linear
combination of eigenvectors, with a positive coefficient for the λ = 1 eigenvector:

h0

s0

d0

 = a1v1 + a2v2 + a3v3,



with a2 > 0. Over time, the numbers develop according tohnsn
dn

 = A

hn−1

sn−1

dn−1


= An

h0

s0

d0


=
(

3
4

)n
a1v1 + a2v2 +

(
1
4

)n
a3v3.

Since the other eigenvalues are smaller than 1, their powers become very small,
and their components in the resulting vector gradually decay away. Thereforethe
result becomes every closer to

a2v2 =

 0
0
a2

 ,

everybody dead. So everyone dies, in an exponential decay of population. (It
should be obvious, because we didn’t allow any births in our model.)
12.15.

det (A− λ I) =λ2 + λ

=λ (λ+ 1)

λ = −1

A− λ =
(

1 1
2

0 0

)
.

Gauss–Jordan elimination yields(
1 1

2
0 0

)
Remove zero rows. (

1 1
2

)
Change signs of the entries after each pivot.(

1 − 1
2

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 − 1
2

0 1

)



Keep the pivotless columns. (
− 1

2
1

)
λ = 0

A− λ =
(

0 1
2

0 −1

)
.

Gauss–Jordan elimination yields(
0 1
0 0

)

Remove zero rows. (
0 1

)
Change signs of the entries after each pivot.(

0 1
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 0
0 1

)

Keep the pivotless columns. (
1
0

)

λ = −1
(
− 1

2
1

)

λ = 0
(

1
0

)

12.16.

det (A− λ I) =λ2 − 3λ+ 2
= (λ− 1) (λ− 2)



λ = 1

A− λ =
(

0 0
1
2 1

)
.

Gauss–Jordan elimination yields(
1 2
0 0

)
Remove zero rows. (

1 2
)

Change signs of the entries after each pivot.(
1 −2

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 −2
0 1

)
Keep the pivotless columns. (

−2
1

)
λ = 2

A− λ =
(
−1 0

1
2 0

)
.

Gauss–Jordan elimination yields(
1 0
0 0

)
Remove zero rows. (

1 0
)

Change signs of the entries after each pivot.(
1 0

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 0
0 1

)
Keep the pivotless columns. (

0
1

)



λ = 1
(
−2
1

)

λ = 2
(

0
1

)

12.17.

det (A− λ I) =λ2 + 3λ
=λ (λ+ 3)

λ = −3

A− λ =
(

3 0
3 0

)
.

Gauss–Jordan elimination yields(
1 0
0 0

)
Remove zero rows. (

1 0
)

Change signs of the entries after each pivot.(
1 0

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 0
0 1

)
Keep the pivotless columns. (

0
1

)
λ = 0

A− λ =
(

0 0
3 −3

)
.

Gauss–Jordan elimination yields(
1 −1
0 0

)



Remove zero rows. (
1 −1

)
Change signs of the entries after each pivot.(

1 1
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 1
0 1

)
Keep the pivotless columns. (

1
1

)

λ = −3
(

0
1

)

λ = 0
(

1
1

)

12.18.

det (A− λ I) =λ2 + 2λ
=λ (λ+ 2)

λ = −2

A− λ =
(

1 −1
−1 1

)
.

Gauss–Jordan elimination yields(
1 −1
0 0

)
Remove zero rows. (

1 −1
)

Change signs of the entries after each pivot.(
1 1

)



Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 1
0 1

)

Keep the pivotless columns. (
1
1

)
λ = 0

A− λ =
(
−1 −1
−1 −1

)
.

Gauss–Jordan elimination yields(
1 1
0 0

)

Remove zero rows. (
1 1

)
Change signs of the entries after each pivot.(

1 −1
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 −1
0 1

)

Keep the pivotless columns. (
−1
1

)

λ = −2
(

1
1

)

λ = 0
(
−1
1

)



12.19.

det (A− λ I) =λ2 − 4
= (λ− 2) (λ+ 2)

λ = −2

A− λ =
(

8 8
−4 −4

)
.

Gauss–Jordan elimination yields(
1 1
0 0

)

Remove zero rows. (
1 1

)
Change signs of the entries after each pivot.(

1 −1
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 −1
0 1

)

Keep the pivotless columns. (
−1
1

)
λ = 2

A− λ =
(

4 8
−4 −8

)
.

Gauss–Jordan elimination yields(
1 2
0 0

)

Remove zero rows. (
1 2

)
Change signs of the entries after each pivot.(

1 −2
)



Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 −2
0 1

)
Keep the pivotless columns. (

−2
1

)

λ = −2
(
−1
1

)

λ = 2
(
−2
1

)

12.20.

det (A− λ I) =λ2 + 4λ+ 3
= (λ+ 3) (λ+ 1)

λ = −3

A− λ =
(

0 0
−2 2

)
.

Gauss–Jordan elimination yields(
1 −1
0 0

)
Remove zero rows. (

1 −1
)

Change signs of the entries after each pivot.(
1 1

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 1
0 1

)
Keep the pivotless columns. (

1
1

)



λ = −1

A− λ =
(
−2 0
−2 0

)
.

Gauss–Jordan elimination yields(
1 0
0 0

)

Remove zero rows. (
1 0

)
Change signs of the entries after each pivot.(

1 0
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 0
0 1

)

Keep the pivotless columns. (
0
1

)

λ = −3
(

1
1

)

λ = −1
(

0
1

)

12.21.

det (A− λ I) =λ2 + λ

=λ (λ+ 1)

λ = −1

A− λ =
(

0 1
0 1

)
.



Gauss–Jordan elimination yields(
0 1
0 0

)

Remove zero rows. (
0 1

)
Change signs of the entries after each pivot.(

0 1
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 0
0 1

)

Keep the pivotless columns. (
1
0

)
λ = 0

A− λ =
(
−1 1
0 0

)
.

Gauss–Jordan elimination yields(
1 −1
0 0

)

Remove zero rows. (
1 −1

)
Change signs of the entries after each pivot.(

1 1
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 1
0 1

)

Keep the pivotless columns. (
1
1

)



λ = −1
(

1
0

)

λ = 0
(

1
1

)

12.22.

det (A− λ I) =λ2 + λ− 2
= (λ+ 2) (λ− 1)

λ = −2

A− λ =
(

2 −2
−1 1

)
.

Gauss–Jordan elimination yields(
1 −1
0 0

)
Remove zero rows. (

1 −1
)

Change signs of the entries after each pivot.(
1 1

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 1
0 1

)
Keep the pivotless columns. (

1
1

)
λ = 1

A− λ =
(
−1 −2
−1 −2

)
.

Gauss–Jordan elimination yields(
1 2
0 0

)



Remove zero rows. (
1 2

)
Change signs of the entries after each pivot.(

1 −2
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 −2
0 1

)

Keep the pivotless columns. (
−2
1

)

λ = −2
(

1
1

)

λ = 1
(
−2
1

)

12.23.

det (A− λ I) =λ2 − 3λ+ 2
= (λ− 1) (λ− 2)

λ = 1

A− λ =
(

0 −1
0 1

)
.

Gauss–Jordan elimination yields(
0 1
0 0

)

Remove zero rows. (
0 1

)
Change signs of the entries after each pivot.(

0 1
)



Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 0
0 1

)

Keep the pivotless columns. (
1
0

)
λ = 2

A− λ =
(
−1 −1
0 0

)
.

Gauss–Jordan elimination yields(
1 1
0 0

)

Remove zero rows. (
1 1

)
Change signs of the entries after each pivot.(

1 −1
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 −1
0 1

)

Keep the pivotless columns. (
−1
1

)

λ = 1
(

1
0

)

λ = 2
(
−1
1

)



12.24.

det (A− λ I) =λ2 − 1
= (λ− 1) (λ+ 1)

λ = −1

A− λ =
(

4 −2
4 −2

)
.

Gauss–Jordan elimination yields(
1 − 1

2
0 0

)

Remove zero rows. (
1 − 1

2

)
Change signs of the entries after each pivot.(

1 1
2

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 1
2

0 1

)

Keep the pivotless columns. (
1
2
1

)
λ = 1

A− λ =
(

2 −2
4 −4

)
.

Gauss–Jordan elimination yields(
1 −1
0 0

)

Remove zero rows. (
1 −1

)
Change signs of the entries after each pivot.(

1 1
)



Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 1
0 1

)
Keep the pivotless columns. (

1
1

)

λ = −1
(

1
2
1

)

λ = 1
(

1
1

)

12.25.

det (A− λ I) =λ2 − λ
=λ (λ− 1)

λ = 0

A− λ =
(

0 0
−1 1

)
.

Gauss–Jordan elimination yields(
1 −1
0 0

)
Remove zero rows. (

1 −1
)

Change signs of the entries after each pivot.(
1 1

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 1
0 1

)
Keep the pivotless columns. (

1
1

)



λ = 1

A− λ =
(
−1 0
−1 0

)
.

Gauss–Jordan elimination yields(
1 0
0 0

)
Remove zero rows. (

1 0
)

Change signs of the entries after each pivot.(
1 0

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 0
0 1

)
Keep the pivotless columns. (

0
1

)

λ = 0
(

1
1

)

λ = 1
(

0
1

)

12.26.

det (A− λ I) =λ2 + 4λ+ 3
= (λ+ 3) (λ+ 1)

λ = −3

A− λ =
(
− 2

3
4
3

− 4
3

8
3

)
.

Gauss–Jordan elimination yields(
1 −2
0 0

)



Remove zero rows. (
1 −2

)
Change signs of the entries after each pivot.(

1 2
)

Pad with rows from the identity matrix, to get 1’s down the diagonal.(
1 2
0 1

)

Keep the pivotless columns. (
2
1

)
λ = −1

A− λ =
(
− 8

3
4
3

− 4
3

2
3

)
.

Gauss–Jordan elimination yields(
1 − 1

2
0 0

)

Remove zero rows. (
1 − 1

2

)
Change signs of the entries after each pivot.(

1 1
2

)
Pad with rows from the identity matrix, to get 1’s down the diagonal.(

1 1
2

0 1

)

Keep the pivotless columns. (
1
2
1

)

λ = −3
(

2
1

)

λ = −1
(

1
2
1

)



12.27. See table 1.

Table 1: Invertibility criteria. A is n×n of rank r. U is any matrix
obtained from A by forward elimination.

§ Invertible Not invertible

5 Gauss–Jordan on A yields 1. Gauss–Jordan on A yields a
matrix with n− r zero rows.

5 U is invertible. U has n− r zero rows.
5 Pivots lie on the diagonal. Some pivot lies above the di-

agonal, and all pivots after it.
5 U has no zero rows U has n− r zero rows.
5 U has n pivots. U has r < n pivots.
5 Ax = b has a solution x for

each b.
Ax = b has no solution for
some b, n−r dimensions worth
for other b.

5 Ax = b has exactly one solu-
tion x for each b.

Ax = b has no solution for
some b, many for other b.

5 Ax = b has exactly one solu-
tion x for some b.

Ax = b has no solution for
some b, many for other b.

5 Ax = 0 only for x = 0. Ax = 0 for many x.
5 A has rank n. A has rank r < n.
7 At is invertible. At is not invertible.
7 detA 6= 0. Every square block larger

than r × r has det = 0.
9 The columns are linearly inde-

pendent.
The n − r pivotless columns
are linear combinations of the
r pivot columns.

9 The columns form a basis. Each of the n − r pivotless
columns is a linear combina-
tion of earlier pivot columns.

9 The rows form a basis. One row is a linear combina-
tion of earlier rows.

10 The kernel of A is just the 0
vector.

The kernel has positive dimen-
sion n− r.

10 The image of A is all of Rn. The image has positive dimen-
sion r.



§ Invertible Not invertible

11 0 is not an eigenvalue of A. The λ = 0 eigenspace has pos-
itive dimension n− r.

13.1.

〈Aej , ei〉 = 〈Akjek, ei〉
= Aij .

13.2.

Pij = 〈Pei, ej〉
=
〈
ep(i), ej

〉
=

1, if p(i) = j,

0, otherwise.

=

1, if i = p−1(j),
0, otherwise.

=
〈
ei, ep−1(j)

〉
=
〈
ei, P

−1ej
〉

= P−1
ji .

13.3.

xty =
∑
k

xtkyk

=
∑
k

xkyk.

13.4. 〈
v − 〈v, u〉

‖u‖2 u, u

〉
= 〈v, u〉 − 〈v, u〉

‖u‖2 〈u, u〉

= 〈v, u〉 − 〈v, u〉
= 0.

13.5.
(a) One: x = 0.
(b) 2n: one xi is ±1, all other xj are 0.
(c) 2n+ 16

(
n
4
)
: one xi is ±2, all other xj are 0, or 4 xi’s are ±1 and all other

are 0.
(d) 2n+ 8(n− 2)

(
n
2
)

+ 26(n− 5)
(
n
5
)

+ 29(n
9
)
:



a. one ±3 or
b. two ±2’s and one ±1 or
c. one ±2 and five ±1’s or
d. nine ±1’s.

13.6. The hour hand starts at angle π/2, and completes a revolution every 12
hours. So the hour hand is at an angle of

θ = π

2 −
2π
12 t,

after t hours. The minute hand, if we measure time in hours, revolves every
hour, so has angle

θ = π

2 − 2πt.

a. t = 3
11 (2k + 1), any integer k

b. t = 6k
11 , any integer k.

13.11. You could try:

A =
(

0 1
1 1

)
, B =

(
0 1
1 2

)
, AB =

(
1 2
1 3

)
.

13.12. For A symmetric.
13.19. Those which have ±1 in each diagonal entry.
13.20.

P =
(

1 0
0 −1

)

is not of that form.
13.21. You could try A = B = I.
13.22.

〈x, y〉 = 1
2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
.

Preserve the right hand side, and you must preserve the left hand side.
13.25. The rows of A are orthonormal just when At is orthogonal, which occurs
just when A = (At)−1, which occurs just when At = A−1, which occurs just
when A is orthogonal.
13.26. See table 2 on the next page and table 3 on the following page.
13.27.

u1 =


√

2
2√
2

2
0

 , u2 =


√

6
6
−
√

6
6√
6

3

 , u3 =

−
√

3
3√
3

3√
3

3

 .

13.28. The pictures should look like



w1 = v1

=

 1
−1
0


w2 = v2 −

〈v2, w1〉
〈w1, w1〉

w1

=

 2
0
−2

− (2)(1) + (0)(−1) + (−2)(0)
(1)(1) + (−1)(−1) + (0)(0)

 1
−1
0


=

 1
1
−2



Table 2: Orthogonalizing vectors: the projections

u1 = 1√
〈w1, w1〉

w1

= 1√
(1)(1) + (−1)(−1) + (0)(0)

 1
−1
0


=

 1
2
√

2
− 1

2
√

2
0


u2 = 1√

〈w2, w2〉
w2

= 1√
(1)(1) + (1)(1) + (−2)(−2)

 1
1
−2


=

 1
6
√

6
1
6
√

6
− 1

3
√

6


Table 3: Orthogonalizing vectors: rescaling



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

13.29.

u1 =


1√
6

1√
6

1
2
√

6

 , u2 =


1√
3

1√
3

− 1√
3

 .

Notice that v1, v2, v3 did not give a basis, so when we try to compute u3, we
run into trouble.
13.30. The only problem that can come up is division by zero. But that
happens only when we divide by a length ‖wj‖. If this length is 0, then wj is
zero, so

vj =
∑
i

〈vj , ui〉 ui.

But each ui is a linear combination of vectors v1, v2, . . . , vi, so this is a linear
dependence.
13.32. If v is perpendicular to u, then set w = v, see that v is perpendicular
to v, so v = 0. Otherwise, if v is not perpendicular to u, then w = v − 〈v,u〉‖u‖2 u is
perpendicular to u and v, and therefore perpendicular to any linear combination
of u and v. In particular, since w is a linear combination of u and v, w must be
perpendicular to w, so w = 0. So

v = 〈v, u〉
‖u‖2 u.

13.33. Nothing.



13.34.

w1 = v1

=
(

1
−1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(

5
3

)
− (5)(1) + (3)(−1)

(1)(1) + (−1)(−1)

(
1
−1

)

=
(

4
4

)

u1 = 1√
〈w1, w1〉

w1

= 1√
(1)(1) + (−1)(−1)

(
1
−1

)

=
(

1
2
√

2
− 1

2
√

2

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(4)(4) + (4)(4)

(
4
4

)

=
(

1
2
√

2
1
2
√

2

)

See figure 2 on the next page.



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 2: Orthogonalizing vectors in the plane

13.35.

w1 = v1

=
(
−1
−1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(

0
2

)
− (0)(−1) + (2)(−1)

(−1)(−1) + (−1)(−1)

(
−1
−1

)

=
(
−1
1

)



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 3: Orthogonalizing vectors in the plane

u1 = 1√
〈w1, w1〉

w1

= 1√
(−1)(−1) + (−1)(−1)

(
−1
−1

)

=
(
− 1

2
√

2
− 1

2
√

2

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(−1)(−1) + (1)(1)

(
−1
1

)

=
(
− 1

2
√

2
1
2
√

2

)

See figure 3.



13.36.

w1 = v1

=
(
−1
1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(
−1
2

)
− (−1)(−1) + (2)(1)

(−1)(−1) + (1)(1)

(
−1
1

)

=
(

1
2
1
2

)

u1 = 1√
〈w1, w1〉

w1

= 1√
(−1)(−1) + (1)(1)

(
−1
1

)

=
(
− 1

2
√

2
1
2
√

2

)

u2 = 1√
〈w2, w2〉

w2

= 1√
( 1

2 )( 1
2 ) + ( 1

2 )( 1
2 )

(
1
2
1
2

)

=
(

1
2
√

2
1
2
√

2

)

See figure 4 on the next page.



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 4: Orthogonalizing vectors in the plane

13.37.

w1 = v1

=
(

2
−1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(
−1
1

)
− (−1)(2) + (1)(−1)

(2)(2) + (−1)(−1)

(
2
−1

)

=
(

1
5
2
5

)



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 5: Orthogonalizing vectors in the plane

u1 = 1√
〈w1, w1〉

w1

= 1√
(2)(2) + (−1)(−1)

(
2
−1

)

=
(

2
5
√

5
− 1

5
√

5

)

u2 = 1√
〈w2, w2〉

w2

= 1√
( 1

5 )( 1
5 ) + ( 2

5 )( 2
5 )

(
1
5
2
5

)

=
(

1
5
√

5
2
5
√

5

)

See figure 5.



13.38.

w1 = v1

=
(

1
2

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(

0
2

)
− (0)(1) + (2)(2)

(1)(1) + (2)(2)

(
1
2

)

=
(
− 4

5
2
5

)

u1 = 1√
〈w1, w1〉

w1

= 1√
(1)(1) + (2)(2)

(
1
2

)

=
(

1
5
√

5
2
5
√

5

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(− 4

5 )(− 4
5 ) + ( 2

5 )( 2
5 )

(
− 4

5
2
5

)

=
(
− 2

5
√

5
1
5
√

5

)

See figure 6 on the next page.



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 6: Orthogonalizing vectors in the plane

13.39.

w1 = v1

=
(

1
1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(

2
0

)
− (2)(1) + (0)(1)

(1)(1) + (1)(1)

(
1
1

)

=
(

1
−1

)



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 7: Orthogonalizing vectors in the plane

u1 = 1√
〈w1, w1〉

w1

= 1√
(1)(1) + (1)(1)

(
1
1

)

=
(

1
2
√

2
1
2
√

2

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(1)(1) + (−1)(−1)

(
1
−1

)

=
(

1
2
√

2
− 1

2
√

2

)

See figure 7.



13.40.

w1 = v1

=
(

1
1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(

0
2

)
− (0)(1) + (2)(1)

(1)(1) + (1)(1)

(
1
1

)

=
(
−1
1

)

u1 = 1√
〈w1, w1〉

w1

= 1√
(1)(1) + (1)(1)

(
1
1

)

=
(

1
2
√

2
1
2
√

2

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(−1)(−1) + (1)(1)

(
−1
1

)

=
(
− 1

2
√

2
1
2
√

2

)

See figure 8 on the next page.



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 8: Orthogonalizing vectors in the plane

13.41.

w1 = v1

=
(

1
1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(
−1
2

)
− (−1)(1) + (2)(1)

(1)(1) + (1)(1)

(
1
1

)

=
(
− 3

2
3
2

)



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 9: Orthogonalizing vectors in the plane

u1 = 1√
〈w1, w1〉

w1

= 1√
(1)(1) + (1)(1)

(
1
1

)

=
(

1
2
√

2
1
2
√

2

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(− 3

2 )(− 3
2 ) + ( 3

2 )( 3
2 )

(
− 3

2
3
2

)

=
(
− 1

2
√

2
1
2
√

2

)

See figure 9.



13.42.

w1 = v1

=
(

0
1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(
−1
1

)
− (−1)(0) + (1)(1)

(0)(0) + (1)(1)

(
0
1

)

=
(
−1
0

)

u1 = 1√
〈w1, w1〉

w1

= 1√
(0)(0) + (1)(1)

(
0
1

)

=
(

0
1

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(−1)(−1) + (0)(0)

(
−1
0

)

=
(
−1
0

)

See figure 10 on the next page.



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 10: Orthogonalizing vectors in the plane

13.43.

w1 = v1

=
(

2
1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(
−1
2

)
− (−1)(2) + (2)(1)

(2)(2) + (1)(1)

(
2
1

)

=
(
−1
2

)



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 11: Orthogonalizing vectors in the plane

u1 = 1√
〈w1, w1〉

w1

= 1√
(2)(2) + (1)(1)

(
2
1

)

=
(

2
5
√

5
1
5
√

5

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(−1)(−1) + (2)(2)

(
−1
2

)

=
(
− 1

5
√

5
2
5
√

5

)

See figure 11.



13.44.

w1 = v1

=
(
−1
0

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(

1
−1

)
− (1)(−1) + (−1)(0)

(−1)(−1) + (0)(0)

(
−1
0

)

=
(

0
−1

)

u1 = 1√
〈w1, w1〉

w1

= 1√
(−1)(−1) + (0)(0)

(
−1
0

)

=
(
−1
0

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(0)(0) + (−1)(−1)

(
0
−1

)

=
(

0
−1

)

See figure 12 on the next page.



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 12: Orthogonalizing vectors in the plane

13.45.

w1 = v1

=
(

2
−1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(

0
−1

)
− (0)(2) + (−1)(−1)

(2)(2) + (−1)(−1)

(
2
−1

)

=
(
− 2

5
− 4

5

)



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 13: Orthogonalizing vectors in the plane

u1 = 1√
〈w1, w1〉

w1

= 1√
(2)(2) + (−1)(−1)

(
2
−1

)

=
(

2
5
√

5
− 1

5
√

5

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(− 2

5 )(− 2
5 ) + (− 4

5 )(− 4
5 )

(
− 2

5
− 4

5

)

=
(
− 1

5
√

5
− 2

5
√

5

)

See figure 13.



13.46.

w1 = v1

=
(

1
1

)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1

=
(
−1
0

)
− (−1)(1) + (0)(1)

(1)(1) + (1)(1)

(
1
1

)

=
(
− 1

2
1
2

)

u1 = 1√
〈w1, w1〉

w1

= 1√
(1)(1) + (1)(1)

(
1
1

)

=
(

1
2
√

2
1
2
√

2

)

u2 = 1√
〈w2, w2〉

w2

= 1√
(− 1

2 )(− 1
2 ) + ( 1

2 )( 1
2 )

(
− 1

2
1
2

)

=
(
− 1

2
√

2
1
2
√

2

)

See figure 14 on the next page.
14.1. If Au = λu and Av = µv, then

〈Au, v〉 = λ 〈u, v〉
= 〈u,Av〉
= µ 〈u, v〉 .

So 〈u, v〉 = 0.



The original vectors.

Project the second
vector perpendicular to
the first.

Projected.
Shrink/stretch all
vectors to length 1.

Done: orthonormal.

Figure 14: Orthogonalizing vectors in the plane

14.2.

λ = 16
(
− 2

3
1

)

λ = 3
(

3
2
1

)

Gram–Schmidt the eigenvectors, and

F =
(
− 2√

13
3√
13

3√
13

2√
13

)

F−1 =
(
− 2√

13
3√
13

3√
13

2√
13

)

F−1AF =
(

16 0
0 3

)
Each eigenvector comes from a different eigenvalue, so they are already perpendicular—
you only have to rescale them to have unit length.
14.4.

det (A− λ I) =λ2 − 5λ
=λ (λ− 5)

λ = 5
(
−2
1

)

λ = 0
(

1
2
1

)



After orthogonalizing the eigenvectors,

F =
(
− 2√

5
1√
5

1√
5

2√
5

)

F−1 =
(
− 2√

5
1√
5

1√
5

2√
5

)

F−1AF =
(

5 0
0 0

)
14.5.

det (A− λ I) =λ3 − 8λ2 + 15λ
=λ (λ− 3) (λ− 5)

λ = 3

0
0
1


λ = 0

 1
2
1
0


λ = 5

−2
1
0


After orthogonalizing the eigenvectors,

F =

0 1√
5 − 2√

5
0 2√

5
1√
5

1 0 0



F−1 =

 0 0 1
1√
5

2√
5 0

− 2√
5

1√
5 0



F−1AF =

3 0 0
0 0 0
0 0 5


14.6.

det (A− λ I) =λ3 − 4λ2 + 5λ− 2
= (λ− 2) (λ− 1)2



λ = 1

1
1
0

 ,

2
0
1


λ = 2

− 1
2

1
2
1


After orthogonalizing the eigenvectors,

F =


1√
2

1√
3 − 1√

6
1√
2 − 1√

3
1√
6

0 1√
3

2√
6



F−1 =


1√
2

1√
2 0

1√
3 − 1√

3
1√
3

− 1√
6

1√
6

2√
6


F−1AF =

1 0 0
0 1 0
0 0 2


14.7.

λ = −1

− 4
3

0
1


λ = 1

0
1
0

 ,

 3
4
0
1


After orthogonalizing the eigenvectors,

F =

− 4
5 0 3

5
0 1 0
3
5 0 4

5


F−1 =

− 4
5 0 3

5
0 1 0
3
5 0 4

5


F−1AF =

−1 0 0
0 1 0
0 0 1





14.8. Such an F must preserve the eigenspaces, so preserve the span of e1, the
span of e2, and the span of e3. Therefore

F =

±1
±1

±1

 .

14.11. You only change x1x2 terms:
a. x2

2
b. x2

1 + x2
2

c. x2
1 + 3

2 x1x2 + 3
2 x2x1

d. x2
1 + 1

2x1x2 + 1
2x2x1

14.12.
a.

A =
(

0 0
0 1

)
b.

A =
(

0 0
0 1

)
c.

A =
(

1 3
2

3
2 0

)
d.

A =
(

1 1
2

1
2 0

)
14.14. Look at the eigenvalues of the symmetric matrix, to get started.
a. ellipse
b. hyperbola
c. pair of lines
d. hyperbola
e. line
f. empty set

14.15. First, by orthogonal transformations, you can get you quadratic form
to look like

λ1 x
2
1 + λ2 x

2
2 + · · ·+ λn x

2
n.

Then you can get every eigenvalue λj to be 0, 1 or −1, by rescaling the associated
variable xj . Then you can permute the order of the variables. So you can get

±x2
1 +±x2

2 + · · ·+±x2
s,

for some s between 1 and n.
15.1. Take the complex number with half as much argument, and square root
as much modulus.



15.10. 〈z, w〉 = 1(−i) + i(2− 2i) = 2 + i
15.16. Since A is self-adjoint,

〈Az, z〉 = 〈z,Az〉 .

If we pick z an eigenvector, with eigenvalue λ, then the left side becomes

〈Az, z〉 = λ 〈z, z〉 ,

and the right side becomes

〈z,Az〉 = λ̄ 〈z, z〉 .

Since 〈z, z〉 = ‖z‖2 6= 0, we find λ = λ̄.
15.21. For an eigenvector z, with eigenvalue λ,

〈z, z〉 = 〈Az,Az〉

(because A is unitary)

= 〈λz, λz〉
= λ λ̄ 〈z, z〉

= |λ|2 〈z, z〉 .

Since z 6= 0, we can divide 〈z, z〉 off of both sides.
15.23.

u1 =
(

1√
2
i√
2

)
, u2 =

(
1+2i√

10
2−i√

10

)
.

15.27.
a. A is self-adjoint.
b.

λ = 3
(

1√
2
i√
2

)

λ = 4
(

1
2 (1 + i)
1
2 (1− i)

)

c.

F =
(

1√
2

1
2 (1 + i)

i√
2

1
2 (1− i)

)

F ∗AF =
(

3
4

)
.





Bibliography

[1] Otto Bretscher, Linear algebra, Prentice Hall Inc., Upper Saddle River, NJ,
1997. iii

[2] G. Polya, How to solve it, Princeton Science Library, Princeton University
Press, Princeton, NJ, 2004. iii

[3] Daniel Solow, How to read and do proofs: An introduction to mathematical
thought processes, Wiley, New Jersey, 2004. iii

[4] Michael Spivak, Calculus, 3rd ed., Publish or Perish, 1994. 130
[5] Gilbert Strang, Linear algebra and its applications, 2nd ed., Academic Press,

New York, 1980. iii, 109

251





List of Notation

Rn The space of all vectors with n real number
entries

15

p× q Matrix with p rows and q columns 15

0 Any matrix whose entries are all zeroes 17

Σ Sum 20

I The identity matrix 23

In The n× n identity matrix 23

ei The i-th standard basis vector (also the i-th
column of the identity matrix)

23

A−1 The inverse of a square matrix A 25

det The determinant of a square matrix 45

At The transpose of a matrix A 55

dim Dimension of a subspace 78

kerA The kernel of a matrix A 81

imA The image of a matrix A 85

〈x, y〉 Inner product of two vectors 113

||x|| The length of a vector 113

|z| Modulus (length) of a complex number 134

arg z Argument (angle) of a complex number 134

C The set of all complex numbers 134

Cn The set of all complex vectors with n entries 134

〈z, w〉 Hermitian inner product 136

A∗ Adjoint of a complex matrix or complex linear
map A

137
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Index

adjoint, 137
argument, 134

back substitution, 6
ball, 131

center, 131
closed, 131
open, 131
radius, 131

basis, 71, 76
orthonormal, 116, 138
standard, 72

bounded, 131
box

closed, 131

center
of ball, see ball, center

change
of variables, 74

change of basis, see matrix, change of
basis

characteristic polynomial, see polyno-
mial, characteristic

circle
unit, 135

closed
ball, see ball, closed
box, see box, closed
set, 131

combination
linear, see linear combination

complex number, 133
imaginary part, 133
real part, 133

complex plane, 133
conjugate, 134
continuous, 130
convergence, 130

of points, 130

de Moivre, see theorem, de Moivre
decoupling

theorem, see theorem, decoupling
determinant, 45
diagonal

of a matrix, 16
diagonalize, 104, 127

orthogonally, 124
dimension

of subspace, 78
dot product, see inner product

echelon form, 16
equation, 9
reduced, 78

eigenspace, 103
eigenvalue, 93

complex, 135
multiplicity, 97

eigenvector, 93
complex, 135

elimination, 3
forward, 4
Gauss–Jordan, 7

fast formula
for the determinant, 53

Fibonacci, 24
forward, see elimination, forward
free variable, 8
fundamental theorem of algebra, 141

Gauss–Jordan, see elimination, Gauss–
Jordan

Hermitian
inner product, see inner product,

Hermitian

identity matrix, see matrix, identity
image, 85
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independence
linear, see linear independence

inner product, 113
Hermitian, 136

inverse
of a matrix, see matrix, inverse

kernel, 81
kill, 37, 81

length, 113
linear

combination, 62
equation, 3
independence, 71
relation, 71

matrix, 15
addition, 18
change of basis, 73
diagonal entries, 16
identity, 23
inverse, 25, 39
multiplication, 20
normal, 138
self-adjoint, 137
short, 37
skew-adjoint, 137
square, 15, 25
strictly lower triangular, 31
strictly upper triangular, 33
subtraction, 18
symmetric, 115
unitary, 137
upper triangular, 47

minimum
principle, 123

modulus, 134
multiplicity

eigenvalue, see eigenvalue, multi-
plicity

negative definite, see quadratic form,
negative definite

normal matrix, see matrix, normal

open
ball, see ball, open

orthogonal, 115
orthogonally diagonalize, see diagonal-

ize, orthogonally

orthonormal basis, see basis, orthonor-
mal

perpendicular, 113
pivot, 4, 16

column, 64
plane

complex, see complex plane
polar coordinates, 133
polynomial

characteristic, 93
positive definite, see quadratic form,

positive definite
positive semidefinite, see quadratic form,

positive semidefinite
product

dot, see inner product
scalar, see inner product

product, inner
see inner product, 113

Pythagorean theorem, see theorem, Pythagorean

quadratic form, 125
negative definite, 129
positive definite, 129
positive semidefinite, 129

radius
of ball, see ball, radius

rank, 10
reduced echelon form, see echelon form,

reduced
relation

linear, see linear relation
row echelon form, 9
row operation, 28

scalar product, see inner product
self-adjoint, see matrix, self-adjoint
short matrix, see matrix, short
skew-adjoint matrix, see matrix, skew-

adjoint
spectral

theorem, see theorem, spectral
spectrum, 94
square, see matrix, square

matrix, see matrix, square
standard basis, see basis, standard
subspace, 66
substitution



back, see back substitution
symmetric

matrix, see matrix, symmetric

theorem
de Moivre, 134, 141
decoupling, 104
Pythagorean, 113
spectral, 124

trace, 97
transpose, 31, 56

unit circle
see circle, unit, 135

unit disk, 135
unitary

matrix, see matrix, unitary

variable
free, see free variable

vector, 15
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