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Preface

This book provides an introduction to Lie groups, Lie algebras, and repre-
sentation theory, aimed at graduate students in mathematics and physics.
Although there are already several excellent books that cover many of the
same topics, this book has two distinctive features that I hope will make it a
useful addition to the literature. First, it treats Lie groups (not just Lie alge-
bras) in a way that minimizes the amount of manifold theory needed. Thus,
I neither assume a prior course on differentiable manifolds nor provide a con-
densed such course in the beginning chapters. Second, this book provides a
gentle introduction to the machinery of semisimple groups and Lie algebras by
treating the representation theory of SU(2) and SU(3) in detail before going
to the general case. This allows the reader to see roots, weights, and the Weyl
group “in action” in simple cases before confronting the general theory.

The standard books on Lie theory begin immediately with the general case:
a smooth manifold that is also a group. The Lie algebra is then defined as the
space of left-invariant vector fields and the exponential mapping is defined in
terms of the flow along such vector fields. This approach is undoubtedly the
right one in the long run, but it is rather abstract for a reader encountering
such things for the first time. Furthermore, with this approach, one must either
assume the reader is familiar with the theory of differentiable manifolds (which
rules out a substantial part of one’s audience) or one must spend considerable
time at the beginning of the book explaining this theory (in which case, it
takes a long time to get to Lie theory proper).

My way out of this dilemma is to consider only matrix groups (i.e., closed
subgroups of GL(n;C)). (Others before me have taken such an approach, as
discussed later.) Every such group is a Lie group, and although not every Lie
group is of this form, most of the interesting examples are. The exponential
of a matrix is then defined by the usual power series, and the Lie algebra g of
a closed subgroup G of GL(n;C) is defined to be the set of matrices X such
that exp(tX) lies in G for all real numbers ¢. One can show that g is, indeed,
a Lie algebra (i.e., a vector space and closed under commutators). The usual
elementary results can all be proved from this point of view: the image of the
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exponential mapping contains a neighborhood of the identity; in a connected
group, every element is a product of exponentials; every continuous group
homomorphism induces a Lie algebra homomorphism. (These results show
that every matrix group is a smooth embedded submanifold of GL(n;C), and
hence a Lie group.)

I also address two deeper results: that in the simply-connected case, every
Lie algebra homomorphism induces a group homomorphism and that there
is a one-to-one correspondence between subalgebras h of g and connected Lie
subgroups H of G. The usual approach to these theorems makes use of the
Frobenius theorem. Although this is a fundamental result in analysis, it is
not easily stated (let alone proved) and it is not especially Lie-theoretic. My
approach is to use, instead, the Baker-Campbell-Hausdorff theorem. This
theorem is more elementary than the Frobenius theorem and arguably gives
more intuition as to why the above-mentioned results are true. I begin with the
technically simpler case of the Heisenberg group (where the Baker-Campbell-
Hausdorff series terminates after the first commutator term) and then proceed
to the general case.

Appendix C gives two examples of Lie groups that are not matrix Lie
groups. Both examples are constructed from matrix Lie groups: One is the
universal cover of SL(n;R) and the other is the quotient of the Heisenberg
group by a discrete central subgroup. These examples show the limitations of
working with matrix Lie groups, namely that important operations such as the
of taking quotients and covers do not preserves the class of matrix Lie groups.
In the long run, then, the theory of matrix Lie groups is not an acceptable
substitute for general Lie group theory. Nevertheless, I feel that the matrix
approach is suitable for a first course in the subject not only because most of
the interesting examples of Lie groups are matrix groups but also because all
of the theorems I will discuss for the matrix case continue to hold for general
Lie groups. In fact, most of the proofs are the same in the general case, except
that in the general case, one needs to spend a lot more time setting up the
basic notions before one can begin.

In addressing the theory of semisimple groups and Lie algebras, I use repre-
sentation theory as a motivation for the structure theory. In particular, I work
out in detail the representation theory of SU(2) (or, equivalently, sl(2; C)) and
SU(3) (or, equivalently, sl(3; C)) before turning to the general semisimple case.
The sl(3; C) case (more so than just the sl(2;C) case) illustrates in a concrete
way the significance of the Cartan subalgebra, the roots, the weights, and the
Weyl group. In the general semisimple case, I keep the representation theory
at the fore, introducing at first only as much structure as needed to state the
theorem of the highest weight. I then turn to a more detailed look at root
systems, including two- and three-dimensional examples, Dynkin diagrams,
and a discussion (without proof) of the classification. This portion of the text
includes numerous images of the relevant structures (root systems, lattices of
dominant integral elements, and weight diagrams) in ranks two and three.
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I take full advantage, in treating the semisimple theory, of the correspon-
dence established earlier between the representations of a simply-connected
group and the representations of its Lie algebra. So, although I treat things
from the point of view of complex semisimple Lie algebras, I take advantage of
the characterization of such algebras as ones isomorphic to the complexifica-
tion of the Lie algebra of a compact simply-connected Lie group K. (Although,
for the purposes of this book, we could take this as the definition of a com-
plex semisimple Lie algebra, it is equivalent to the usual algebraic definition.)
Having the compact group at our disposal simplifies several issues. First and
foremost, it implies the complete reducibility of the representations. Second,
it gives a simple construction of Cartan subalgebras, as the complexification
of any maximal abelian subalgebra of the Lie algebra of K. Third, it gives a
more transparent construction of the Weyl group, as W = N(T)/T', where T
is a maximal torus in K. This description makes it evident, for example, why
the weights of any representation are invariant under the action of W. Thus,
my treatment is a mixture of the Lie algebra approach of Humphreys (1972)
and the compact group approach of Brocker and tom Dieck (1985) or Simon
(1996).

This book is intended to supplement rather than replace the standard texts
on Lie theory. I recommend especially four texts for further reading: the book
of Lee (2003) for manifold theory and the relationship between Lie groups
and Lie algebras, the book of Humphreys (1972) for the Lie algebra approach
to representation theory, the book of Brocker and tom Dieck (1985) for the
compact-group approach to representation theory, and the book of Fulton and
Harris (1991) for numerous examples of representations of the classical groups.
There are, of course, many other books worth consulting; some of these are
listed in the Bibliography.

I hope that by keeping the mathematical prerequisites to a minimum, 1
have made this book accessible to students in physics as well as mathematics.
Although much of the material in the book is widely used in physics, physics
students are often expected to pick up the material by osmosis. I hope that
they can benefit from a treatment that is elementary but systematic and
mathematically precise. In Appendix A, I provide a quick introduction to the
theory of groups (not necessarily Lie groups), which is not as standard a part
of the physics curriculum as it is of the mathematics curriculum.

The main prerequisite for this book is a solid grounding in linear algebra,
especially eigenvectors and the notion of diagonalizability. A quick review of
the relevant material is provided in Appendix B. In addition to linear algebra,
only elementary analysis is needed: limits, derivatives, and an occasional use
of compactness and the inverse function theorem.

There are, to my knowledge, five other treatments of Lie theory from the
matrix group point of view. These are (in order of publication) the book Linear
Lie Groups, by Hans Freudenthal and H. de Vries, the book Matriz Groups,
by Morton L. Curtis, the article “Very Basic Lie Theory,” by Roger Howe,
and the recent books Matriz Groups: An Introduction to Lie Group Theory,
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by Andrew Baker, and Lie Groups: An Introduction Through Linear Groups,
by Wulf Rossmann. (All of these are listed in the Bibliography.) The book of
Freudenthal and de Vries covers a lot of ground, but its unorthodox style and
notation make it rather inaccessible. The works of Curtis, Howe, and Baker
overlap considerably, in style and content, with the first two chapters of this
book, but do not attempt to cover as much ground. For example, none of
them treats representation theory or the Baker—Campbell-Hausdorff formula.
The book of Rossmann has many similarities with this book, including the
use of the Baker—-Campbell-Hausdorff formula. However, Rossmann’s book is
a bit different at the technical level, in that he considers arbitrary subgroups
of GL(n; C), with no restriction on the topology.

Although the organization of this book is, I believe, substantially different
from that of other books on the subject, I make no claim to originality in any
of the proofs. I myself learned most of the material here from books listed
in the Bibliography, especially Humphreys (1972), Brocker and tom Dieck
(1985), and Miller (1972).

I am grateful to many who made corrections, large and small, to the text
before publication, including Ed Bueler, Wesley Calvert, Tom Goebeler, Ruth
Gornet, Keith Hubbard, Wicharn Lewkeeratiyutkul, Jeffrey Mitchell, Ambar
Sengupta, and Erdinch Tatar. I am grateful as well to those who have pointed
out errors in the first printing (which have been corrected in this, the second
printing), including Moshe Adrian, Kamthorn Chailuek, Paul Gibson, Keith
Hubbard, Dennis Muhonen, Jason Quinn, Rebecca Weber, and Reed Wickner.

I also thank Paul Hildebrant for assisting with the construction of mod-
els of rank-three root systems using Zome, Judy Hygema for taking digital
photographs of the models, and Charles Albrecht for rendering the color im-
ages. Finally, I especially thank Scott Vorthmann for making available to the
vZome software and for assisting me in its use.

I welcome comments by e-mail at bhall@nd.edu. Please visit my web site
at http://www.nd.edu/ bhall/ for more information, including an up-to-date
list of corrections and many more color pictures than could be included in the
book.

Notre Dame, Indiana Brian C. Hall
May 2004
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General Theory



1

Matrix Lie Groups

1.1 Definition of a Matrix Lie Group

We begin with a very important class of groups, the general linear groups. The
groups we will study in this book will all be subgroups (of a certain sort) of
one of the general linear groups. This chapter makes use of various standard
results from linear algebra that are summarized in Appendix B. This chapter
also assumes basic facts and definitions from the theory of abstract groups;
the necessary information is provided in Appendix A.

Definition 1.1. The general linear group over the real numbers, denoted
GL(n;R), is the group of all n x n invertible matrices with real entries. The
general linear group over the complex numbers, denoted GL(n;C), is the group
of all n x n invertible matrices with complex entries.

The general linear groups are indeed groups under the operation of matrix
multiplication: The product of two invertible matrices is invertible, the iden-
tity matrix is an identity for the group, an invertible matrix has (by definition)
an inverse, and matrix multiplication is associative.

Definition 1.2. Let M,,(C) denote the space of all nxn matrices with complex
entries.

Definition 1.3. Let A, be a sequence of complex matrices in My(C). We
say that A,, converges to a matriz A if each entry of A,, converges (as
m — 00) to the corresponding entry of A (i.e., if (Am),, converges to Ag for
all 1 <kl <n).

Definition 1.4. A matrixz Lie group is any subgroup G of GL(n; C) with the
following property: If A, is any sequence of matrices in G, and A, converges
to some matriz A then either A € G, or A is not invertible.

The condition on G amounts to saying that G is a closed subset of GL(n; C).
(This does not necessarily mean that G is closed in M, (C).) Thus, Definition
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1.4 is equivalent to saying that a matrix Lie group is a closed subgroup of
GL(n; C).

The condition that G be a closed subgroup, as opposed to merely a sub-
group, should be regarded as a technicality, in that most of the interesting
subgroups of GL(n;C) have this property. (Most of the matrix Lie groups G
we will consider have the stronger property that if A,, is any sequence of
matrices in G, and A,, converges to some matrix A4, then A € G (i.e., that G
is closed in M, (C)).)

1.1.1 Counterexamples

An example of a subgroup of GL(n;C) which is not closed (and hence is not a
matrix Lie group) is the set of all n x n invertible matrices all of whose entries
are real and rational. This is in fact a subgroup of GL(n;C), but not a closed
subgroup. That is, one can (easily) have a sequence of invertible matrices
with rational entries converging to an invertible matrix with some irrational
entries. (In fact, every real invertible matrix is the limit of some sequence of
invertible matrices with rational entries.)

Another example of a group of matrices which is not a matrix Lie group
is the following subgroup of GL(2;C). Let a be an irrational real number and

let .
e 0
G_{<0 e““) teR}.

Clearly, G is a subgroup of GL(2,C). Because a is irrational, the matrix —I is
not in G, since to make e® equal to —1, we must take ¢ to be an odd integer
multiple of 7, in which case ta cannot be an odd integer multiple of 7. On the
other hand (Exercise 1), by taking t = (2n + 1)7 for a suitably chosen integer
n, we can make ta arbitrarily close to an odd integer multiple of 7. Hence,
we can find a sequence of matrices in G which converges to —I, and so G is
not a matrix Lie group. See Exercise 1 and Exercise 18 for more information.

1.2 Examples of Matrix Lie Groups

Mastering the subject of Lie groups involves not only learning the general the-
ory but also familiarizing oneself with examples. In this section, we introduce
some of the most important examples of (matrix) Lie groups.

1.2.1 The general linear groups GL(n;R) and GL(n;C)

The general linear groups (over R or C) are themselves matrix Lie groups.
Of course, GL(n; C) is a subgroup of itself. Furthermore, if A, is a sequence
of matrices in GL(n;C) and A,, converges to A, then by the definition of
GL(n; C), either A is in GL(n;C), or A is not invertible.
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Moreover, GL(n;R) is a subgroup of GL(n;C), and if A,, € GL(n;R) and
A,, converges to A, then the entries of A are real. Thus, either A is not
invertible or A € GL(n;R).

1.2.2 The special linear groups SL(n;R) and St (n;C)

The special linear group (over R or C) is the group of n x n invertible
matrices (with real or complex entries) having determinant one. Both of these
are subgroups of GL(n;C). Furthermore, if A, is a sequence of matrices with
determinant one and A, converges to A, then A also has determinant one,
because the determinant is a continuous function. Thus, SL(n; R) and SL (n; C)
are matrix Lie groups.

1.2.3 The orthogonal and special orthogonal groups, O(n) and
SO(n)

An n x n real matrix A is said to be orthogonal if the column vectors that
make up A are orthonormal, that is, if

> Ak =0, 1< k<n.
=1

(Here ;1 is the Kronecker delta, equal to 1 if j = k and equal to zero if j #
k.) Equivalently, A is orthogonal if it preserves the inner product, namely if
(x,y) = (Az, Ay) for all vectors z, y in R"™. ( Angled brackets denote the usual
inner product on R™, (z,y) = >, xxyk.) Still another equivalent definition
is that A is orthogonal if A" A = I, i.e., if A" = A~Ll. (Here, A" is the
transpose of A, (A'),, = Ai.) See Exercise 2.

Since det A" = det A, we see that if A is orthogonal, then det(A"A4) =
(det A)2 = det I = 1. Hence, det A = +1, for all orthogonal matrices A.

This formula tells us in particular that every orthogonal matrix must be
invertible. However, if A is an orthogonal matrix, then

(A7 'z, A y) = (A(A7'2), A(A™'y)) = (z,y) .

Thus, the inverse of an orthogonal matrix is orthogonal. Furthermore, the
product of two orthogonal matrices is orthogonal, since if A and B both
preserve inner products, then so does AB. Thus, the set of orthogonal matrices
forms a group.

The set of all n x n real orthogonal matrices is the orthogonal group
O(n), and it is a subgroup of GL(n;C). The limit of a sequence of orthogonal
matrices is orthogonal, because the relation A" A = I is preserved under
taking limits. Thus, O(n) is a matrix Lie group.

The set of n x n orthogonal matrices with determinant one is the special
orthogonal group SO(n). Clearly, this is a subgroup of O(n), and hence of
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GL(n; C). Moreover, both orthogonality and the property of having determi-
nant one are preserved under limits, and so SO(n) is a matrix Lie group. Since
elements of O(n) already have determinant +1, SO(n) is “half” of O(n).
Geometrically, elements of O(n) are either rotations or combinations of
rotations and reflections. The elements of SO(n) are just the rotations.
See also Exercise 6.

1.2.4 The unitary and special unitary groups, U(n) and SU(n)

An n x n complex matrix A is said to be unitary if the column vectors of A
are orthonormal, that is, if

> A A = 6.

=1

Equivalently, A is unitary if it preserves the inner product, namely if {x,y) =
(Az, Ay) for all vectors z,y in C™. (Angled brackets here denote the inner
product on C", (x,y) = >, Tryx. We will adopt the convention of putting
the complex conjugate on the left.) Still another equivalent definition is that
A is unitary if A*A = I, i.e., if A* = A~!. (Here, A* is the adjoint of A,
(A*);x, = Ax;.) See Exercise 3.

Since det A* = det A, we see that if A is unitary, then det(A*A) =
|det A[2 =det I = 1. Hence, |det A| = 1, for all unitary matrices A.

This, in particular, shows that every unitary matrix is invertible. The same
argument as for the orthogonal group shows that the set of unitary matrices
forms a group.

The set of all n x n unitary matrices is the unitary group U(n), and it
is a subgroup of GL(n;C). The limit of unitary matrices is unitary, so U(n) is
a matrix Lie group. The set of unitary matrices with determinant one is the
special unitary group SU(n). It is easy to check that SU(n) is a matrix Lie
group. Note that a unitary matrix can have determinant e* for any 6, and so
SU(n) is a smaller subset of U(n) than SO(n) is of O(n). (Specifically, SO(n)
has the same dimension as O(n), whereas SU(n) has dimension one less than
that of U(n).)

See also Exercise 8.

1.2.5 The complex orthogonal groups, O(n;C) and SO(n; C)

Consider the bilinear form (-,-) on C* defined by (z,y) = >, ZxYyk- This form
is nmot an inner product (Section B.6) because, for example, it is symmetric
rather than conjugate-symmetric. The set of all n x n complex matrices A
which preserve this form (i.e., such that (Az, Ay) = (z,y) for all z,y € C") is
the complex orthogonal group O(n;C), and it is a subgroup of GL(n;C).
Repeating the arguments for the case of SO(n) and O(n) (but now permitting
complex entries), we find that an n x n complex matrix 4 is in O(n; C) if and
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only if A" A = I, that O(n;C) is a matrix Lie group, and that det A = +1
for all A in O(n;C). Note that O(n; C) is not the same as the unitary group
U(n). The group SO(n;C) is defined to be the set of all A in O(n;C) with
det A =1 and it is also a matrix Lie group.

1.2.6 The generalized orthogonal and Lorentz groups

Let n and k be positive integers, and consider R"**. Define a symmetric
bilinear form [+, -], x on R"** by the formula

[T Yk = T1Y1 + 0 F TnYn = Tnt1¥n+1 — *° — TntkYntk (1.1)

The set of (n + k) X (n + k) real matrices A which preserve this form (i.e.,
such that [Az, Ayl, , = [z,y],, for all z,y € R"**) is the generalized
orthogonal group O(n; k). It is a subgroup of GL(n+ k;R) and a matrix Lie
group (Exercise 4).

If Aisan (n+ k) x (n + k) real matrix, let A®) denote the i*h column
vector of A, that is,

A
A@ — .

An+k,i

Then, A is in O(n; k) if and only if the following conditions are satisfied:

[A(l)’A(j)]nk =0 [#3
[AD AD] =1 1<I<n, (1.2)

[AD,A0] " =1 n+l<i<n+k

Let g denote the (n + k) x (n + k) diagonal matrix with ones in the first
n diagonal entries and minus ones in the last k diagonal entries. Then, A is
in O(n; k) if and only if A"gA = g (Exercise 4). Taking the determinant of
this equation gives (det A)? det g = det g, or (det A)? = 1. Thus, for any A in
O(n; k), det A = £1.

Of particular interest in physics is the Lorentz group O(3;1). See also
Exercise 7.

1.2.7 The symplectic groups Sp(n;R), Sp(n;C), and Sp(n)

The special and general linear groups, the orthogonal and unitary groups, and
the symplectic groups (which will be defined momentarily) make up the clas-
sical groups. Of the classical groups, the symplectic groups have the most
confusing definition, partly because there are three sets of them (Sp(n;R),
Sp(n; C), and Sp(n)) and partly because they involve skew-symmetric bilin-
ear forms rather than the more familiar symmetric bilinear forms. To further
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confuse matters, the notation for referring to these groups is not consistent
from author to author.
Consider the skew-symmetric bilinear form B on R2?" defined as follows:

n
B[‘T, y] = Z TkYn+k — Tn4+kYk- (13)
k=1

The set of all 2n x 2n matrices A which preserve B (i.e., such that B [Az, Ay] =
Blz,y] for all z,y € R®") is the real symplectic group Sp(n;R), and it is
a subgroup of GL(2n;R). It is not difficult to check that this is a matrix
Lie group (Exercise 5). This group arises naturally in the study of classical
mechanics. If J is the 2n x 2n matrix

01
7= (50)

then Bz, y] = (z, Jy), and it is possible to check that a 2nx 2n real matrix A is
in Sp(n; R) if and only if A*"JA = J. (See Exercise 5.) Taking the determinant
of this identity gives (det A)* det J = det J, or (det A)> = 1. This shows that
det A = +1, for all A € Sp(n;R). In fact, det A = 1 for all A € Sp(n;R),
although this is not obvious.

One can define a bilinear form on C** by the same formula (1.3). (This
form involves no complex conjugates.) The set of 2n x 2n complex matrices
which preserve this form is the complex symplectic group Sp(n;C). A
2n x 2n complex matrix A is in Sp(n;C) if and only if A" JA = J. (Note:
This condition involves A*", not A*.) This relation shows that det A = =+1,
for all A € Sp(n;C). In fact, det A = 1, for all A € Sp(n;C).

Finally, we have the compact symplectic group Sp(n) defined as

Sp(n) = Sp (n; C) N U(2n).

See also Exercise 9. For more information and a proof that det A = 1 for all
A € Sp(n; C), see Section 9.4 of Miller (1972). What we call Sp (n; C) Miller
calls Sp(n), and what we call Sp(n), Miller calls USp(n).

1.2.8 The Heisenberg group H

The set of all 3 x 3 real matrices A of the form

labd
A=[o01c], (1.4)
001

where a, b, and c are arbitrary real numbers, is the Heisenberg group. It is
easy to check that the product of two matrices of the form (1.4) is again of
that form, and, clearly, the identity matrix is of the form (1.4). Furthermore,
direct computation shows that if 4 is as in (1.4), then
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1l —-aac—0»
Al=(0 1 —-¢
0 0 1

Thus, H is a subgroup of GL(3;R). Clearly, the limit of matrices of the form
(1.4) is again of that form, and so H is a matrix Lie group.

The reason for the name “Heisenberg group” is that the Lie algebra of
H gives a realization of the Heisenberg commutation relations of quantum
mechanics. (See especially Chapter 4, Exercise 8.)

See also Exercise 10.

1.2.9 The groups R*, C*, S, R, and R™

Several important groups which are not naturally groups of matrices can (and
will in these notes) be thought of as such.

The group R* of non-zero real numbers under multiplication is isomorphic
to GL(1;R). Thus, we will regard R* as a matrix Lie group. Similarly, the
group C* of nonzero complex numbers under multiplication is isomorphic to
GL(1;C), and the group S! of complex numbers with absolute value one is
isomorphic to U(1).

The group R under addition is isomorphic to GL(1; R)* (1 x 1 real matrices
with positive determinant) via the map = — [e*]. The group R™ (with vector
addition) is isomorphic to the group of diagonal real matrices with positive
diagonal entries, via the map

e’1 0
(21,...,2p) >

0 etn

1.2.10 The Euclidean and Poincaré groups E(n) and P(n;1)

The Euclidean group E(n) is, by definition, the group of all one-to-one, onto,
distance-preserving maps of R” to itself, that is, maps f : R® — R"™ such that
d(f(x), f(y)) = d(z,y) for all z,y € R™. Here, d is the usual distance on R™:
d(z,y) = |z — y|. Note that we do not assume anything about the structure
of f besides the above properties. In particular, f need not be linear. The
orthogonal group O(n) is a subgroup of E(n) and is the group of all linear
distance-preserving maps of R” to itself. For x € R", define the translation
by z, denoted T, by

Te(y) =z +y.

The set of translations is also a subgroup of E(n).

Proposition 1.5. Every element T of E(n) can be written uniquely as an
orthogonal linear transformation followed by a translation, that is, in the form
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T=T,R
with x € R™ and R € O(n).

We will not prove this. The key step is to prove that every one-to-one,
onto, distance-preserving map of R™ to itself which fixes the origin must be
linear. We will write an element T' = T, R of E(n) as a pair {z, R}. Note that
for y € R™,

{z,R}y=Ry+=

and that
{z1, Ri}{z2, Re}y = R1(Roy + x2) + 1 = Ri Roy + (21 + Rix2).
Thus, the product operation for E(n) is the following:
{z1, RiH{x2, Ro} = {x1 + Riza, R Ro}. (1.5)
The inverse of an element of E(n) is given by
{z,R}7' = {-R'z,R7'}.

As already noted, E(n) is not a subgroup of GL(n; R), since translations are
not linear maps. However, E(n) is isomorphic to a subgroup of GL(n + 1;R),
via the map which associates to {z, R} € E(n) the following matrix:

T

R |, (1.6)

This map is clearly one-to-one, and direct computation shows that multipli-
cation of elements of the form (1.6) follows the multiplication rule in (1.5), so
that this map is a homomorphism. Thus, E(n) is isomorphic to the group of
all matrices of the form (1.6) (with R € O(n)). The limit of things of the form
(1.6) is again of that form, and so we have expressed the Euclidean group
E(n) as a matrix Lie group.

We similarly define the Poincaré group P(n;1) to be the group of all trans-
formations of R®*! of the form

T=T,A

with z € R**! and A € O(n;1). This is the group of affine transformations
of R**! which preserve the Lorentz “distance” dp(x,y) = (z1 —y1)? + -+
(T, — Yn)? = (Tny1 — Yns1)?. (An affine transformation is one of the form
x — Ax +b, where A is a linear transformation and b is constant.) The group
product is the obvious analog of the product (1.5) for the Euclidean group.
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The Poincaré group P(n; 1) is isomorphic to the group of (n+2) x (n+2)
matrices of the form
Ty

A (1.7)
Tn+1
0---0 1

with A € O(n;1). The set of matrices of the form (1.7) is a matrix Lie group.

1.3 Compactness

Definition 1.6. A matriz Lie group G is said to be compact if the following
two conditions are satisfied:

1. If A, is any sequence of matrices in G, and A, converges to a matriz A,
then A is in G.

2. There exists a constant C' such that for all A € G, |A;j] < C for all
1<i,j<n.

This is not the usual topological definition of compactness. However, the
set M, (C) of all n x n complex matrices can be thought of as C"’. The above
definition says that G is compact if it is a closed, bounded subset of C™. Tt is
a standard theorem from elementary analysis that a subset of c"’ s compact
if and only if it is closed and bounded.

All of our examples of matrix Lie groups except GL(n;R) and GL(n;C)
have property (1). Thus, it is the boundedness condition (2) that is most
important.

1.3.1 Examples of compact groups

The groups O(n) and SO(n) are compact. Property (1) is satisfied because
the limit of orthogonal matrices is orthogonal and the limit of matrices with
determinant one has determinant one. Property (2) is satisfied because if A is
orthogonal, then the column vectors of A have norm one, and hence |Ag| < 1,
for all 1 < k,! < n. A similar argument shows that U(n), SU(n), and Sp(n)
are compact. (This includes the unit circle, S* = U(1).)

1.3.2 Examples of noncompact groups

All of the other examples given of matrix Lie groups are noncompact. The
groups GL(n;R) and GL(n;C) violate property (1), since a limit of invertible
matrices may be noninvertible. The groups SL(n; R) and SL (n; C) violate (2),
(except in the trivial case n = 1) since
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has determinant one, no matter how large m is.

The following groups also violate (2), and hence are noncompact: O(n;C)
and SO(n;C); O(n; k) and SO(n; k) (n > 1, k > 1); the Heisenberg group H;
Sp(n;R) and Sp(n;C); E(n) and P(n;1); R and R™; R* and C*. It is left to
the reader to provide examples to show that this is the case.

1.4 Connectedness

Definition 1.7. A matriz Lie group G is said to be connected if given any
two matrices A and B in G, there exists a continuous path A(t), a <t <b,
lying in G with A(a) = A and A(b) = B.

This property is what is called path-connected in topology, which is not
(in general) the same as connected. However, it is a fact (not particularly
obvious at the moment) that a matrix Lie group is connected if and only if it
is path-connected. So, in a slight abuse of terminology, we shall continue to
refer to the above property as connectedness. (See Section 1.8.)

A matrix Lie group G which is not connected can be decomposed (uniquely)
as a union of several pieces, called components, such that two elements of
the same component can be joined by a continuous path, but two elements of
different components cannot.

Proposition 1.8. If G is a matriz Lie group, then the component of G con-
taining the identity is a subgroup of G.

Proof. Saying that A and B are both in the component containing the identity
means that there exist continuous paths A(t) and B(t) with A(0) = B(0) =1,
A(1) = A, and B(1) = B. Then, A(t)B(t) is a continuous path starting at I
and ending at AB. Thus, the product of two elements of the identity compo-
nent is again in the identity component. Furthermore, A(t)~! is a continuous
path starting at I and ending at A~!, and so the inverse of any element of
the identity component is again in the identity component. Thus, the identity
component is a subgroup. ad

Note that because matrix multiplication and matrix inversion are contin-
uous on GL(n; C), it follows that if A(t) and B(t) are continuous, then so are
A(t)B(t) and A(t)~!. The continuity of the matrix product is obvious. The
continuity of the inverse follows from the formula for the inverse in terms
of cofactors; this formula is continuous as long as we remain in the set of
invertible matrices where the determinant in the denominator is nonzero.
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Proposition 1.9. The group GL(n; C) is connected for alln > 1.

Proof. Consider first the case n = 1. A 1 x 1 invertible complex matrix A is
of the form A = [A] with A in C*, the set of nonzero complex numbers. Given
any two nonzero complex numbers, we can easily find a continuous path which
connects them and does not pass through zero.

For the case n > 2, we will show that any element of GL(n;C) can be
connected to the identity by a continuous path lying in GL(n;C). Then, any
two elements A and B of GL(n;C) can be connected by a path going from A
to the identity and then from the identity to B.

We make use of the result that every matrix is similar to an upper tri-
angular matrix (Theorem B.7). That is, given any n x n complex matrix A,
there exists an invertible n x n complex matrix C such that

A=CBC™!
where B is upper triangular:
)\1 *
B = .
0 An

If we now assume that A is invertible, then all the A;’s must be nonzero,
since det A = det B = Ay - -+ \,,. Let B(t) be obtained by multiplying the part
of B above the diagonal by (1 —t), for 0 < ¢ < 1, and let A(t) = CB(t)C~.
Then, A(t) is a continuous path which starts at A and ends at CDC ™', where
D is the diagonal matrix

0 A
This path lies in GL(n;C) since det A(t) = A1 --- A, = det A for all ¢.

Now, as in the case n = 1, we can define A;(¢), which connects each \; to 1
in C* as t goes from 1 to 2. Then, we can define A(t) on the interval 1 <t <2
by
A1(t) 0
Alt)y=C . c1.
0 ()

This is a continuous path which starts at CDC~! when t = 1 and ends at
I (= CIC™') when t = 2. Since the A\ (t)’s are always nonzero, A(t) lies in
GL(n; C). We see, then, that every matrix A in GL(n; C) can be connected to
the identity by a continuous path lying in GL(n;C). a

An alternative proof of this result is given in Exercise 12.
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Proposition 1.10. The group SL(n;C) is connected for alln > 1.

Proof. The proof is almost the same as for GL(n; C), except that we must be
careful to preserve the condition det A = 1. Let A be an arbitrary element
of SL(n;C). The case n = 1 is trivial, so we assume n > 2. We can define
A(t) as before for 0 < t < 1, with A(0) = A and A(1) = CDC™!, since
det A(t) = det A = 1. Now, define A\ (t) as before for 1 < k < n—1 and define
An(t) to be [A;(t) -~ A_1(t)] "', (Note that since Ay -« A, = 1, An(1) = Ap)
This allows us to connect A to the identity while staying within SL(n;C). O

Proposition 1.11. The groups U(n) and SU(n) are connected, for alln > 1.

Proof. By a standard result of linear algebra (Theorem B.3), every unitary
matrix has an orthonormal basis of eigenvectors, with eigenvalues of the form
et Tt follows that every unitary matrix U can be written as

et 0
U=U, Ut (1.8)

0 gifn

with Uy unitary and 6; € R. Conversely, as is easily checked, every matrix of
the form (1.8) is unitary. Now, define

ei(l—t)el 0

Ut)=U, Ut
0 ei(l—t)en

As t ranges from 0 to 1, this defines a continuous path in U(n) joining U to
I. Thus, any two elements U and V of U(n) can be connected to each other
by a continuous path that runs from U to I and then from I to V.

A slight modification of this argument, as in the proof of Proposition 1.10,
shows that SU(n) is connected. O

Proposition 1.12. The group GL(n;R) is not connected, but has two com-
ponents. These are GL(n;R)™, the set of n x n real matrices with positive
determinant, and GL(n;R)™, the set of n x n real matrices with negative de-
terminant.

Proof. GL(n;R) cannot be connected, for if det A > 0 and det B < 0, then
any continuous path connecting A to B would have to include a matrix with
determinant zero and hence pass outside of GL(n;R).

The proof that GL(n;R)* is connected is sketched in Exercise 15. QOnce
GL(n;R)* is known to be connected, it is not difficult to see that GL(n;R)~
is also connected. Let C' be any matrix with negative determinant and take
A and B in GL(n;R)~. Then, C~'4 and C~!B are in GL(n;R)* and can be
joined by a continuous path D(¢) in GL(n;R)*. However, then, CD(t) is a
continuous path joining A and B in GL(n;R)~. O
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The following table lists some matrix Lie groups, indicates whether or not
the group is connected, and gives the number of components:

Group Connected? Components

GL(n;C) yes 1
SL(n;C) yes 1
GL(n; R) no 2
SL(n; R) yes 1
O(n) no 2
SO(n) yes 1
U(n) yes 1
SU(n) ves 1
O(n;1) no 4
SO(n; 1) no 2
Heisenberg yes 1
E(n) no 2
P(n;1) no 4

Proofs of some of these results are given in Exercises 7, 13, 14, and 15.

1.5 Simple Connectedness

Definition 1.13. A matriz Lie group G is said to be simply connected if it
s connected and, in addition, every loop in G can be shrunk continuously to
a point in G.

More precisely, assume that G is connected. Then, G is simply connected
if given any continuous path A(t), 0 < t < 1, lying in G with A(0) = A(1),
there exists a continuous function A(s,t), 0 < s,t <1, taking values in G and
having the following properties: (1) A(s,0) = A(s,1) for all s, (2) A(0,t) =
A(t), and (3) A(1,t) = A(1,0) for all t.

One should think of A(t) as a loop and A(s,t) as a family of loops, pa-
rameterized by the variable s which shrinks A(t) to a point. Condition 1 says
that for each value of the parameter s, we have a loop; condition 2 says that
when s = 0 the loop is the specified loop A(t); and condition 3 says that when
s =1 our loop is a point.

Proposition 1.14. The group SU(2) is simply connected.

Proof. Exercise 8 shows that SU(2) may be thought of (topologically) as the
three-dimensional sphere S? sitting inside R*. It is well known that S3 is
simply connected. g

The condition of simple connectedness is extremely important. One of our
most important theorems will be that if G is simply connected, then there is a
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natural one-to-one correspondence between the representations of G and the
representations of its Lie algebra.

For any path-connected topological space, one can define an object called
the fundamental group. See Appendix E for more information. A topolog-
ical space is simply connected if and only if the fundamental group is the
trivial group {1}. I now provide the following tables of fundamental groups,
first for compact groups and then for noncompact groups. See Appendix E
for the methods of proof. Here, SO.(n; 1) denotes the identity component of
SO(n; 1) (since one defines the fundamental group only for connected groups).
In each entry, the result is understood to apply for all n > 1 unless otherwise
stated.

Group Simply connected? Fundamental group

SO(2) no Z
SO(n) (n > 3) no Z)2
U(n) no Z
SU(n) yes {1}
Sp(n) yes {1}
Group Simply connected? Fundamental group
GL(n;R)T (n > 2) no same as SO(n)
GL(n; C) no Z
SL(n;R) (n > 2) no same as SO(n)
SL(n;C) yes {1}
SO(n; C) no same as SO(n)
SO.(1;1) yes {1}
SO.(n;1) (n > 2) no same as SO(n)
Sp(n; R) no Z
Sp(n; C) yes {1}

We conclude this section with a discussion of the case of SO(3). If v is a unit
vector in R?, let R, ¢ be the element of SO(3) consisting of a “right-handed”
rotation by angle 6 in the plane perpendicular to v. Here, right-handed means
that if one places the thumb of one’s right hand in the v-direction, the rotation
is in the direction that one’s fingers curl. To say this more mathematically,
let v denote the plane perpendicular to v and let us choose an orthonormal
basis (u1,uz) for v1 in such a way that the basis (u1,ug,v) for R® has the
same orientation as the standard basis (e, e2, e3). (This means that the linear
map taking (uy,us,v) to (e1, e, e3) has positive determinant.) We then use
the basis (u1,u2) to identify v+ with R?, and the rotation is then in the
counterclockwise direction in R2.

It is easily seen that R_, ¢ is the same as R, -g. It is also not hard to
show (Exercise 16) that every element of SO(3) can be expressed as R, g, for
some v and # with —7 < 6 < 7. Furthermore, we can arrange that 0 <0 <=
by replacing v with —v if necessary.

Now let B denote the closed ball of radius 7 in R? and consider the map
® : B — SO(3) given by
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®(u) = Ry u, u#0,
B(0) = I.

Here, 4 = u/||u| is the unit vector in the u-direction. The map ® is con-
tinuous, even at I, since R, p approaches the identity as 6 approaches zero,
regardless of how v is behaving. The discussion in the preceding paragraph
shows that ® maps B onto R?. The map ® is almost injective, but not quite.
Since R, = = R_, r, antipodal points on the boundary of B (i.e., pairs of
points of the form (u, —u) with |jul| = ) map to the same element of SO(3).

This means that SO(3) can be identified (homeomorphically) with B/~
where ~ denotes identification of antipodal points on the boundary. It is known
that B/~ is not simply connected. Specifically, consider the loop in B/™ that
begins at some vector u of length © and goes in a straight line through the
origin until it reaches —wu. (Since v and —u are identified, this is a loop in
B/~.) 1t can be shown that this loop cannot be shrunk continuously to a point
in B/". This, then, shows that SO(3) is not simply connected. In fact, B/~
is homeomorphic to the manifold RP? (real projective space of dimension 3)
which has fundamental group Z/2.

1.6 Homomorphisms and Isomorphisms

Definition 1.15. Let G and H be matriz Lie groups. A map ® from G to H
is called a Lie group homomorphism if (1) ® is a group homomorphism
and (2) ® is continuous. If, in addition, ® is one-to-one and onto and the
inverse map ®~! is continuous, then ® is called a Lie group isomorphism.

The condition that ® be continuous should be regarded as a technicality, in
that it is very difficult to give an example of a group homomorphism between
two matrix Lie groups which is not continuous. In fact, if G = R and H = C*,
then any group homomorphism from G to H which is even measurable (a very
weak condition) must be continuous. (See Exercise 17 in Chapter 9 of Rudin
(1987).)

Note that the inverse of a Lie group isomorphism is continuous (by defi-
nition) and a group homomorphism (by elementary group theory), and thus
a Lie group isomorphism. If G and H are matrix Lie groups and there exists
a Lie group isomorphism from G to H, then G and H are said to be iso-
morphic, and we write G = H. Two matrix Lie groups which are isomorphic
should be thought of as being essentially the same group.

The simplest interesting example of a Lie group homomorphism is the
determinant, which is a homomorphism of GL(n;C) into C*. Another simple
example is the map ® : R — SO(2) given by

B(0) = (cos@ -sin@) .

sinf cos@
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This map is clearly continuous, and calculation (using standard trigonometric
identities) shows that it is a homomorphism. (Compare Exercise 6.)

1.6.1 Example: SU(2) and SO(3)

A very important topic for us will be the relationship between the groups
SU(2) and SO(3). This example is designed to show that SU(2) and SO(3)
are almost (but not quite!) isomorphic. Specifically, there exists a Lie group
homomorphism ® which maps SU(2) onto SO(3) and which is two-to-one. We
now describe this map.

Consider the space V of all 2 x 2 complex matrices which are self-adjoint
(i.e., A* = A) and have trace zero. This is a three-dimensional real vector
space with the following basis:

01 0 i 10
w=(lo)in= (%) 6-(5)

We may define an inner product (Section B.6 of Appendix B) on V by the
formula

(A, B) = %trace(AB).

(Except for the factor of %, this is simply the restriction to V' of the Hilbert—
Schmidt inner product described in Section B.6.) Direct computation shows
that {A;, Az, A3} is an orthonormal basis for V. Having chosen an orthonor-
mal basis for V, we can identify V with R3.

Now, suppose that U is an element of SU(2) and A is an element of V, and
consider UAU . Then (Section B.5), trace(UAU ~!) = trace(A) = 0 and

(UAU Y = (UY*AU* = UAU Y,

and so UAU ! is again in V. Furthermore, for a fixed U, the map A — UAU !
is linear in A. Thus for each U € SU(2), we can define a linear map @y of V

to itself by the formula
Oy (A) = UAU .

Note that U3Ux AU, 'UTY = (U1U2)A(U Us) ™, and so @y,u, = Pu, oy,
Moreover, given U € SU(2) and A, B € V, we have

(®y(A), @y (B)) = %trace(UAU‘lUBU‘l) = %trace(AB) = (A,B).

Thus, ®y is an orthogonal transformation of V.

Once we identify V with R? (using the above orthonormal basis), then we
may think of @y as an element of O(3). Since ¢, y, = Py, Pu,, we see that
(i.e., the map U — @) is a homomorphism of SU(2) into O(3). It is easy to
see that @ is continuous and, thus, a Lie group homomorphism. Recall that
every element of O(3) has determinant +1. Now, SU(2) is connected (Exercise
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8), ® is continuous, and @ is equal to I, which has determinant one. It follows
that ® must actually map SU(2) into the identity component of O(3), namely
SO(3).

The map U — ®y; is not one-to-one, since for any U € SU(2), &y = D _y.
(Observe that if U is in SU(2), then so is —U.) It is possible to show that
®y is a two-to-one map of SU(2) onto SO(3). (The least obvious part of this
assertion is that ® maps onto SO(3). This will be easy to prove once we have
introduced the concept of the Lie algebra and proved Theorem 2.21.) The
significance of this homomorphism is that SO(3) is not simply connected, but
SU(2) is. The map ® allows us to relate problems on the non-simply-connected
group SO(3) to problems on the simply-connected group SU(2).

1.7 The Polar Decomposition for SL(n;R) and SL(n;C)

In this section, we consider the polar decompositions for SL(n; R) and SL(n; C).
These decompositions can be used to prove the connectedness of SL(n;R) and
SL(n;C) and to show that the fundamental groups of SL (n;R) and SL (n;C)
are the same as those of SO(n) and SU(n), respectively (Appendix E). These
decompositions are supposed to be analogous to the unique decomposition of
a nonzero complex number z as z = up, with |u| =1 and p real and positive.
A real symmetric matrix P is said to be positive if (z, Pz) > 0 for all
nonzero vectors x € R™. (Symmetric means that P*" = P.) Equivalently, a
symmetric matrix is positive if all of its eigenvalues are positive. Given a
symmetric positive matrix P, there exists an orthogonal matrix R such that

P=RDR™!,
where D is diagonal with positive diagonal entries Aq,...,\,. (If we choose
an orthonormal basis vy,...,v, of eigenvectors for P, then R is the matrix
whose columns are vy, ...,v,.) We can then construct a square root of P as

P1/2 — RDI/QR—I,

where D'/2 is the diagonal matrix whose (positive) diagonal entries are
)\1/2, .. .,)\3/2. Then, P'/? is also symmetric and positive. It can be shown
that P/2 is the unique positive symmetric matrix whose square is P (Exer-
cise 21).

We now prove the following result.

Proposition 1.16. Given A in SL(n;R), there exists a unique pair (R, P)
such that R € SO(n), P is real, symmetric, and positive, and A = RP. The
matriz P satisfies det P = 1.

Proof. If there were such a pair, then we would have A" A = PR™'RP = P2.
Now, A*" A is symmetric (check!) and positive, since (z, A" Az) = (Az, Az) >
0, where Az # 0 because A is invertible. Let us then define P by
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P= (AtTA)1/2,

so that P is real, symmetric, and positive. Since we want A = RP, we must
set R = AP~! = A((A*" A)Y/2)~1. We check that R is orthogonal:

RRtr — A((AtrA)1/2)—1((AtrA)1/2)~1Atr
= A(ATA) AT = 1.

This shows that R is in O(n). To check that R is in SO(n), we note that
1 = det A = det Rdet P. Since P is positive, we have det P > 0. This means
that we cannot have det R = —1, so we must have det R = 1. It follows that
det P =1 as well.

We have now established the existence of a pair (R, P) with the desired
properties. To establish the uniqueness of the pair, we recall that if such a
pair exists, then we must have P? = A" A. However, we have remarked earlier
that a real, positive, symmetric matrix has a unique real, positive, symmetric
square root, so P is unique. It follows that R = AP~! is also unique. a

If P is a self-adjoint complex matrix (i.e., P* = P), then we say P is
positive if (x, Pz) > 0 for all nonzero vectors  in C". An argument similar
to the one above establishes the following polar decomposition for SL(n; C).

Proposition 1.17. Given A in SL(n;C), there ermists a unique pair (U, P)
with U € SU(n), P self-adjoint and positive, and A = UP. The matriz P
satisfies det P = 1.

It is left to the reader to work out the appropriate polar decompositions
for the groups GL(n;R), GL(n;R)*, and GL(n;C).

1.8 Lie Groups

As explained in this section and in Appendix C, a Lie group is something that
is simultaneously a smooth manifold and a group. As the terminology suggests,
every matrix Lie group is a Lie group. (This is not at all obvious from the
definition of a matrix Lie group, but it is true nevertheless, as we will prove in
the next chapter.) The reverse is not true: Not every Lie group is isomorphic
to a matrix Lie group. Nevertheless, I have restricted attention in this book to
matrix Lie groups for several reasons. First, not everyone who wants to learn
about Lie groups is familiar with manifold theory. Second, even for someone
familiar with manifolds, the definitions of the Lie algebra and exponential
mapping for a general Lie group are substantially more complicated and ab-
stract than in the matrix case. Third, most of the interesting examples of Lie
groups are matrix Lie groups. Fourth, the results we will prove for matrix Lie
groups (e.g., about the relationship between Lie group homomorphisms and
Lie algebra homomorphisms) continue to hold for general Lie groups. Indeed,
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the proofs of these results are much the same as in the general case, except
that one can get started more quickly in the matrix case. Although in the
long run the manifold approach to Lie groups is unquestionably the right one,
the matrix approach allows one to get into the meat of Lie group theory with
minimal preparation.

This section gives a very brief account of the manifold approach to Lie
groups. Appendix C gives more information, and complete accounts can be
found in standard textbooks such as those by Brocker and tom Dieck (1985),
Varadarajan (1974), and Warner (1983). Appendix C gives two examples of
Lie groups that cannot be represented as matrix Lie groups and also discusses
two important constructions (covering groups and quotient groups) which can
be performed for general Lie groups but not for matrix Lie groups.

Definition 1.18. A Lie group is a differentiable manifold G which is also a
group and such that the group product

GxG=G

1

and the inverse map g — g~ are differentiable.

A manifold is an object that looks locally like a piece of R™. An example
would be a torus, the two-dimensional surface of a “doughnut” in R3, which

looks locally (but not globally) like R2. For a precise definition, see Appendix
C.

Example. As an example, let
G=RxRx 85" ={(z,y,u)lzr eR,yeRuc S cC}
and define the group product G x G — G by

(z1,y1,w1) - (T2, Y2, u2) = (21 + T2, Y1 + Y2, € Pusuy).

Let us first check that this operation makes G into a group. It is not obvious
but easily checked that this operation is associative; the product of three
elements with either grouping is

(T1 + T2 + T3, Y1 + Yo + y3, e T12TTVIEE) 0 5),

There is an identity element in G, namely e = (0,0,1) and each element
(z,y,u) has an inverse given by (—z, —y, e¥u~1).

Thus, G is, in fact, a group. Furthermore, both the group product and the
map that sends each element to its inverse are clearly smooth, and so G is
a Lie group. Note that there is nothing about matrices in the way we have
defined Gj; that is, G is not given to us as a matrix group. We may still ask
whether G is isomorphic to some matrix Lie group, but even this is not true.
As shown in Appendix C, there is no continuous, injective homomorphism of
G into any GL(n;C). Thus, this example shows that not every Lie group is
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a matrix Lie group. Nevertheless, G is closely related to a matrix Lie group,
namely the Heisenberg group. The reader is invited to try to work out what
the relationship is before consulting the appendix.

Now let us think about the question of whether every matrix Lie group
is a Lie group. This is certainly not obvious, since nothing in our definition
of a matrix Lie group says anything about its being a manifold. (Indeed, the
whole point of considering matrix Lie groups is that one can define and study
them without having to go through manifold theory first!) Nevertheless, it is
true that every matrix Lie group is a Lie group, and it would be a particularly
misleading choice of terminology if this were not so.

Theorem 1.19. Every matriz Lie group is a smooth embedded submanifold
of M,(C) and is thus a Lie group.

The proof of this theorem makes use of the notion of the Lie algebra of a
matrix Lie group and is given in Chapter 2. Let us think first about the case
of GL(n;C). This is an open subset of the space M,,(C) and thus a manifold
of (real) dimension 2n2. The matrix product is certainly a smooth map of
M, (C) to itself, and the map that sends a matrix to its inverse is smooth
on GL(n;C), by the formula for the inverse in terms of the classical adjoint.
Thus, GL(n;C) itself is a Lie group. If G C GL(n;C) is a matrix Lie group,
then we will prove in Chapter 2 that G is a smooth embedded submanifold
of GL(n;C). (See Corollary 2.33 to Theorem 2.27.) The matrix product and
inverse will be restrictions of smooth maps to smooth submanifolds and, thus,
will be smooth. This will show, then, that G is also a Lie group.

It is customary to call a map ® between two Lie groups a Lie group
homomorphism if ® is a group homomorphism and ® is smooth, whereas
we have (in Definition 1.15) required only that ® be continuous. However,
the following proposition shows that our definition is equivalent to the more
standard one.

Proposition 1.20. Let G and H be Lie groups and let ® be a group homo-
morphism from G to H. If ® is continuous, it is also smooth.

Thus, group homomorphisms from G to H come in only two varieties: the
very bad ones (discontinuous) and the very good ones (smooth). There simply
are not any intermediate ones. (See, for example, Exercise 19.) We will prove
this in the next chapter (for the case of matrix Lie groups). See Corollary 2.34
to Theorem 2.27.

In light of Theorem 1.19, every matrix Lie group is a (smooth) manifold.
As such, a matrix Lie group is automatically locally path-connected. It follows
that a matrix Lie group is path-connected if and only if it is connected. (See
the remarks following Definition 1.7.)
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1.9 Exercises

1. Let a be an irrational real number and let G be the following subgroup of

GL(2;C): )
o-{(z 4 )2}
_ eit 0
=10 e)

where G denotes the closure of the set G inside the space of 2 x 2 matrices.
Assume the following result: The set of numbers of the form e27"¢ n € Z,
is dense in S*.

Note: The group G can be thought of as the torus S' x S, which, in
turn, can be thought of as [0,27] x [0, 27], with the ends of the inter-
vals identified. The set G C [0, 27] x [0, 27] is called an irrational line.
Drawing a picture of this set should make it plausible that G is dense in
[0,27] x [0, 27].

2. Orthogonal groups. Let (-,-) denote the standard inner product on R™:
(,y) = >k TkYk. Show that a matrix A preserves this inner product if
and only if the column vectors of A are orthonormal.

Show that for any n x n real matrix B,

(B, y) = (=, B'y),

where (B'"),, = Bjx. Using this, show that a matrix A preserves the inner
product on R™ if and only if A"A = 1.

Note: A similar analysis applies to the complex orthogonal groups O(n; C)
and SO(n; C).

3. Unitary groups. Let {-,-) denote the standard inner product on C™:
(x,y) = > 1 Twyk. Following Exercise 2, show that (Az, Ay) = (z,y) for
all z,y € C™ if and only if A*A = I and that this holds if and only if the
columns of A are orthonormal. Here, (A4*),, = Aj.

4. Generalized orthogonal groups. Let [-, -], x be the symmetric bilinear form
on R™"** defined in (1.1). Let g be the (n + k) x (n + k) diagonal matrix
with first n diagonal entries equal to one and last k diagonal entries equal

to minus one:
(I, O
9=\ 0-1 )"

Show that for all z,y € R*+k,

Show that

t,seR},

(@, ylr = (2 9Y) -

Show that a (n + k) X (n + k) real matrix A is in O(n; k) if and only if
A'"gA = g. Show that O(n; k) and SO(n; k) are subgroups of GL(n +k;R)
and are matrix Lie groups.
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Symplectic groups. Let Blz,y] be the skew-symmetric bilinear form on
R?" given by Blz,y] = Y r_,(TkYn+k — Tnikyx). Let J be the 2n x 2n

matrix
07
Eh

Blz,y] = (z, Jy)

Show that for all z,y € R?”,

Show that a 2n x 2n matrix A is in Sp(n;R) if and only if A" JA = J.
Show that Sp(n;R) is a subgroup of GL(2n;R) and a matrix Lie group.
Note: A similar analysis applies to Sp(n;C).

The groups O(2) and SO(2). Show that the matrix

cosf —sinf
sinf cos6
is in SO(2) and that

cosf —sinf\ (cosp —sing\ [ cos(@ + ¢) —sin(0 + ¢)
sinf cosf ) \ sing cos¢ ) \sin(@+¢) cos(@+¢))"

Show that every element A of O(2) is of one of the two forms:
cosf —sind cosf sind
4= (sin& c059> or A= (sin@ —c080> ’
(Note that if A is of the first form, then det A = 1, and if A is of the
second form, then det A = —1.)
Hint: Recall that for A to be in O(2), the columns of A must be orthonor-

mal.
The groups O(1;1) and SO(1;1). Show that the matrix

cosht sinht
sinht cosht
is in SO(1;1) and that
(cosht sinh¢ ) (cosh s sinh s ) _ <cosh(t + s) sinh(t + s) )

sinht cosht sinh s cosh s sinh(t + s) cosh(t + s)

Show that every element of O(1; 1) can be written in one of the four forms:
cosht sinht \ —cosht sinht)
sinht cosht /' sinht —cosht /’

cosht —sinht \ —cosht —sinht
sinht¢ —cosht /)’ sinht cosht /"’
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11.

12.

13.
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(Note that since cosht is always positive, there is no overlap among the
four cases. Note also that matrices of the first two forms have determinant
one and matrices of the last two forms have determinant minus one.)
Hint: Use condition (1.2).

. The group SU(2). Show that if o and 3 are arbitrary complex numbers

satisfying |a|® + |8 = 1, then the matrix

a—f3
= (57)
is in SU(2). Show that every A € SU(2) can be expressed in this form
for a unique pair (o, 3) satisfying |a|® + |8]* = 1. (Thus, SU(2) can be
thought of as the three-dimensional sphere S? sitting inside C? = R*. In
particular, this shows that SU(2) is simply connected.)
The groups Sp(1;R), Sp(1;C), and Sp(1). Show that Sp(1;R) = SL(2; R),
Sp(1;C) = SL(2;C), and Sp(1) = SU(2).
The Heisenberg group. Determine the center Z(H) of the Heisenberg group
H. Show that the quotient group H/Z(H) is abelian.
A subset E of a matrix Lie group G is called discrete if for each A in E
there is a neighborhood U of A in G such that U contains no point in F
except for A. Suppose that G is a connected matrix Lie group and N is
a discrete normal subgroup of G. Show that N is contained in the center
of G.
This problem gives an alternative proof of Proposition 1.9, namely that
GL(n;C) is connected. Suppose A and B are invertible n x n matrices.
Show that there are only finitely many complex numbers A for which
det (AA+ (1 — A)B) = 0. Show that there exists a continuous path A(t)
of the form A(t) = A(t)A + (1 — A(t)) B connecting A to B and such that
A(t) lies in GL(n;C). Here, A(t) is a continuous path in the plane with
A(0) =0 and A(1) = 1.
Connectedness of SO(n). Show that SO(n) is connected, using the follow-
ing outline.
For the case n = 1, there is nothing to show, since a 1 x 1 matrix with
determinant one must be [1]. Assume, then, that n > 2. Let e; denote the
unit vector with entries 1,0,...,0 in R™. Given any unit vector v € R™,
show that there exists a continuous path R(¢) in SO(n) with R(0) = I
and R(1)v = e;. (Thus, any unit vector can be “continuously rotated” to
61.)
Now, show that any element R of SO(n) can be connected to a block-
diagonal matrix of the form
1
(")

with R; € SO(n — 1) and proceed by induction.
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14.

15.

16.

17.

18.

19.

20.
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The connectedness of SL(n;R). Using the polar decomposition of SL(n; R)
(Proposition 1.16) and the connectedness of SO(n) (Exercise 13), show
that SL(n; R) is connected.

Hint: Recall that if P is a real, symmetric matrix, then there exists a real,
orthogonal matrix R; such that P = RlDRl_l, where D is diagonal.

The connectedness of GL(n;R)™. Using the connectedness of SL(n; R) (Ex-
ercise 14) show that GL(n;R)* is connected.

If R is an element of SO(3), show that R must have an eigenvector with
eigenvalue 1.

Hint: Since SO(3) € SU(3), every (real or complex) eigenvalue of R must
have absolute value 1.

Show that the set of translations is a normal subgroup of the Euclidean
group E(n). Show that the quotient group E(n)/(translations) is isomor-
phic to O(n). (Assume Proposition 1.5.)

Let a be an irrational real number. Show that the set of numbers of the
form €2™% n € Z, is dense in S1. (See Problem 1.)

Show that every continuous homomorphism @ from R to S! is of the form
®(z) = e'® for some a € R. (This shows in particular that every such
homomorphism is smooth.)

Suppose G C GL(n;;C) and H C GL(ng;C) are matrix Lie groups and
that @ : G — H is a Lie group homomorphism. Then, the image of G
under  is a subgroup of H and thus of GL(ng; C). Is the image of G under
® necessarily a matrix Lie group? Prove or give a counter-example.
Suppose P is a real, positive, symmetric matrix with determinant one.
Show that there is a unique real, positive, symmetric matrix ¢ whose
square is P.

Hint: The existence of Q) was discussed in Section 1.7. To prove uniqueness,
consider two real, positive, symmetric square roots @1 and @2 of P and
show that the eigenspaces of both @1 and ()2 coincide with the eigenspaces
of P.
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Lie Algebras and the Exponential Mapping

2.1 The Matrix Exponential

The exponential of a matrix plays a crucial role in the theory of Lie groups.
The exponential enters into the definition of the Lie algebra of a matrix Lie
group (Section 2.5) and is the mechanism for passing information from the Lie
algebra to the Lie group. Since many computations are done much more easily
at the level of the Lie algebra, the exponential is indispensable in studying
(matrix) Lie groups.

Let X be an nxn real or complex matrix. We wish to define the exponential
of X, denoted eX or exp X, by the usual power series

(oo}

xm
X _ E

We will follow the convention of using letters such as X and Y for the variable

in the matrix exponential.

Proposition 2.1. For any n X n real or complex matriz X, the series (2.1)
converges. The matriz exponential eX is a continuous function of X.

Before proving this, let us review some elementary analysis. Recall that
the norm of a vector x = (z1,...,2,) in C" is defined to be

n 1/2
[zl = V(z,2) = <Z Iwk12) :

k=1
We now define the norm of a matrix by thinking of the space M,,(C) of all
n x n matrices as C"’. This means that we define

1/2
n

IXI=1{ > 1xXul*| - (2.2)

k=1
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This norm satisfies the inequalities

IX + Y[ <X+ 1Y (2:3)
XY < I XY (2.4)

for all X,Y € M, (C). The first of these inequalities is the triangle inequal-
ity and is a standard result from elementary analysis. The second of these
inequalities follows from the Schwarz inequality (Exercise 1). If X,,, is a se-
quence of matrices, then it is easy to see that X,, converges to a matrix X in
the sense of Definition 1.3 if and only if || X,, — X|| — 0 as m — oo.

The norm (2.2) is called the Hilbert—Schmidt norm. There is another
commonly used norm on the space of matrices, called the operator norm,
whose definition is not relevant to us. It is easily shown that convergence in
the Hilbert—-Schmidt norm is equivalent to convergence in the operator norm.
(This is true because we work with linear operators on the finite-dimensional
space C™.) Furthermore, the operator norm also satisfies (2.3) and (2.4). Thus,
it matters little whether we use the operator norm or the Hilbert—-Schmidt
norm.

A sequence X, of matrices is said to be a Cauchy sequence if

| Xm — Xil| = 0

as m,l — oo. Thinking of the space M, (C) of matrices as C"" and using a
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