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PREFACE

EVERY SERIOUS student of mathematics should early become
acquainted with the elements of the theory of groups of finite
order, since the concepts employed in this subject will illus- |
trate for him many large domains of mathematics and since
these concepts can be acquired more readily and more satis-
factorily from a study of group theory than in any other
way. What such a student needs for an introduction to this
subject is an exposition which first of all prepares him for the
development of the theory and then rapidly introduces him to
a few fundamental theorems by which the construction of a
large part of the theory may be effected. The first reason
for the existence of this book lies in these facts and in the fre-
quently expressed desire of students for a clear and direct
presentation of the more important ideas and theorems be-
longing to this subject in the order and with the type of
exposition best suited to the needs of the learner.

The second reason for the existence of the book arises from
the fact that the author has established important connec-
tions of the theory of finite groups with other domains of
mathematics and desires an opportunity of adequately relat-
ing these matters to the whole theory of finite groups. Since
the ideas involved are in the main essentially elementary in
character, they are well adapted to the purposes of a system-
atic exposition. By including them in the book it is possible
to take the reader in one direction to the boundary of present
knowledge and to’give him an outlook on domains yet to
be explored. It has been found possible to do this without
introducing such complicated details as would render the
material unsuited to such an exposition.

v



vi Groups of Finite Order

In preparing the book, and especially the earlier part of it, I
have drawn freely on the existing expositions of the theory as
well as on numerous older and newer memoirs in the journals;
but references have been supplied only when they seemed
useful to a learner. The books which have principally served
me in this way are the following : Burnside’s Theory of Groups,
Hilton’s Finite Groups, Miller, Blichfeldt, and Dickson’s
Finite Groups, and Dickson’s Linear Groups. When it has
been necessary to employ theorems from the theory of num-
bers, I have assumed familiarity on the part of the reader with
such very elementary material as is included in my Theory of
Numbers. The further knowledge, apart from a certain
requisite intellectual maturity, needed for the reading of this
exposition of group theory belongs mainly to elementary
algebra and (for Chapter VIII) the elements of the theory of
matrices.*

The learner can master the theory of groups only by doing
much practice work in connection with his reading and fre-
quent re-reading of the text. This will not only familiarize
him with the theorems and give him a needed facility in ap-
plying them, but it will also render him an especially important
service in helping him to understand the relative importance
of the principal theorems. Accordingly many exercises are
inserted for his use. Not a few of them are taken from the
books already mentioned, with the purpose of inducing him
to consult those books frequently in the course of his study;
this is particularly true in the case of Chapter V. Problems in
the miscellaneous exercises may be omitted (if desired) with-
out destroying continuity as regards problems in the other
exercises. Of the remaining exercises in Chapter I, and per-
haps in other chapters, the more difficult may be left at first,
to be taken up again later. Throughout the book a much
greater number of problems is given than any one student will
wish to solve.

* The student is advised to acquaint himself with Chapters I to VI of Bécher’s

Higher Algebra and to use other parts of this book for reference as occasion
may demand.



Preface vii

Chapter I is introductory in character. The learner is led
to some of the principal elementary ideas of group theory and
is given an opportunity of becoming familiar with them by
using them in the analysis of several notions which are im-
portant in the later development. In particular, he is intro-
duced to operations with permutations, to the definition of
“group” and to certain permutation groups, to the concept of
subgroup and of generators of a group, and to the notion
of simple isomorphism and of abstract groups. The chapter
* is intended to prepare him for a systematic exposition of the
theory.

The main novelty in the organization of the earlier ma-
terial consists in bringing together in Chapter II five funda-
mental theorems of group theory and in giving the proofs of
these as rapidly as is possible without sacrificing the comfort
of the learner. The reason for this ordering of material lies in
the fact that an important part of the remaining theory may
then be made to depend on these five fundamental theorems
and that much of it may be associated directly with them.
Additional properties of groups in general are then developed
in Chapter III.

Chapters IV and V contain introductions to the general
theory of Abelian groups and of prime-power groups. An
elementary account of permutation groups constitutes Chap-
ter VI, while Chapter VII contains a few of the known (frag-
mentary) results pertaining to defining relations for abstract
groups.

In Chapter VIII is given a very brief introduction to some
of the main results belonging to the theory of groups of linear
transformations, including the theory of group characteristics.
Some of the more remarkable applications of these theories
are included; but the celebrated theorem of Burnside con-
cerning groups of prime degree (first demonstrated by means
of group characteristics) is proved in § 60 by the more ele-
mentary method of Schur. The later chapters may be read
independently of Chapter VIII.

A general introduction to the theory of Galois fields follows
in Chapter IX; and,this is employed in Chapter X in investi-
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gating the properties of the groups of isomorphisms of Abelian
groups of prime-power order p™ and type (1, 1,..., 1).

An introduction to the theory of the finite geometries
PG (B, p*) is to be found in Chapter XI. A representation of
these geometries is given by means of Abelian groups of
prime-power order p™ and type (1,1,...,1). By means of this
representation a very significant part of projective geometry
becomes capable of translation into a corresponding part of
the theory of these groups (see § 87). Thus by a single act
of thought a significant extension is given to the theory of
Abelian groups.

The principal theorems concerning collineation groups in
the finite geometries are developed in Chapter XII.

In Chapter XIII, on algebras of doubly transitive groups
of degree p* and order p~ (p™ — 1), is given a development of
the theory of certain algebras introduced by Dickson in 1905,
together with further results concerning the named doubly
transitive groups. There are also some applications to the
theory of finite geometries.

The final Chapter XIV contains a brief introduction to
tactical configurations and the groups characterized by them.

More than 750 exercises are included. Many of these are
easy and are intended for practice work on the part of the
reader. Others give important results which might be in-
cluded in the text of a larger exposition. Interspersed
throughout the exercises are many particular results which
have never before been published ; they consist in the main
of special theorems whose demonstration is not difficult.

In a book containing so many propositions, it can hardly be
hoped that the author has always escaped error. He will be
grateful to any of his readers who will give him notice of
necessary corrections. He wishes now to express his cordial
appreciation of the valuable assistance rendered him by two
younger colleagues, Mr. Paul R. Halmos and Mr. Robert M.
Thrall, who have read all the proofsheets and have made

numerous helpful suggestions.
R. D. CARMICHAEL
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CHAPTER 1

Introduction

1. Sets, Systems, and Groups. A mathematical object is an
object so clearly conceived or defined or so fully characterized
by relevant properties as to be subject to the precise treatment
required in mathematics. The positive integers 1, 2, 3, 4, - - -
are among the mathematieal objects which have been longest
in use. The negative integers, zero, the rational fractions, the
so-called imaginary number V—1 and the complex numbers
of algebra defined by means of it, points, lines, triangles,
spheres, displacements (rotations, translations, etc.), algebraic
roots of unity, arrangements, combinations, matrices, determi-
nants, functions, collineations, transformations in general, un-
defined elements in systems of postulates — all these furnish
examples of mathematical objects. We shall employ the word
element to denote a mathematical object.

A moment’s consideration will convince one that such ele-
ments are constantly being presented to our thought in sets, or
classes. Such a set, or class, may contain either a finite or an
infinite number of elements. As examples of sets each of which
has an infinite number of elements we may mention the fol-
lowing: (1) all positive integers; (2) all prime numbers;
(3) all lines in a plane and through a given point in the plane;
(4) all lines intersecting each of two given lines; (5) all the
rotations of a plane about a line perpendicular to it. As ex-
amples of sets each of which has a finite number of elements
we may mention the following: (1) all the »nth roots of unity
for a given value of the positive integer z; (2) all the combina-
tions of a given finite set of # elements taken 7 at a time when
r is less than #; (3) the set of non-negative integers less than
a given positive integer n; (4) all the possible linear arrange-
ments of a given finite set of elements.

3
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The conception of a set, or class, is of such generality and is
so often met with that it may be said to afford the logical
foundation of all mathematics.

In many cases the sets of elements appearing in mathe-
matical investigations are of such sort that every two elements
in a given set are subject to one or more rules of combination
by means of which a new element is obtained from the two
elements when they are combined in a given order. The new
object, in general, may or may not belong to the set. Thus the
numbers of ordinary algebra are subject to the two fundamen-
tal rules of addition and multiplication, and in each case the
resultant number is a number of ordinary algebra. The process
by which two points determine a line in ordinary geometry
affords a rule of combination of these objects such as to pro-
duce a new object of a different sort. The combination of two
displacements produces a third displacement. The product of
two nth roots of unity is an nth root of unity.

A set of objects, with the associated rule or rules of combination,
is called a system, or, more explicitly, a mathematical sysiem. More
generally, any set of mathematical objects which admit either
(one or more) rules of combination of elements or relations
among elements may be said to form a mathematical system.
Systems, as so defined, underlie nearly the whole of mathemati-
cal science. For instance, the positive integers with the relation
of greater and less form a system in this extended sense.*

Certain important and frequently occurring mathematical
systems are called groups. Before giving the definition by
which groups are characterized and isolated within the more
general class of mathematical systems, it will be convenient
to introduce to the learner and to treat briefly a class of ele-
ments which are of great importance in the construction and
study of those groups each of which has only a finite number
of elements and to afford him an opportunity to become famil-
iar with the rule of combination to which they are subject.
These elements are treated in the following section.

* The reader will find a useful and interesting treatment of the subject of
this section in a paper by Maxime Bocher in Bull. Amer. Math. Soc. (2) 11
(1904), 115-135.
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9. Permutations. Let a1, a3, - - -, a, denote n distinct letters
or other objects, finite in number. Let &, b2, - - -, b, be any
arrangement of the same # objects. The operation of replacing
a; by b1, az by bs, az by bs, - - -, @, by b, is called a permutation
performed on the n objects.* It is denoted by the symbol

a1z - - Gy .
(e )
A permutation involving » distinct letters is said to be of de-
gree n. It is obvious that in the symbol for a permutation the
order of letters in either line of the symbol is immaterial if
only the order in the other line is so taken that the symbol
represents that replacement of letters which is required by the
given permutation.

If the arrangement in the second line of the symbol is the
same as that in the first, so that each letter is replaced by itself,
the permutation is called the identical permutation. The iden-
tical permutation is often denoted by the symbol I.

If i, c3, - - -, ¢, 1s also an arrangement of the same letters,
the operation of replacing b, by ¢1, b2 by ¢2,- - -, ba by ca is a
permutation denoted by the symbol

(blbz e bn)
CiC2 * * * Cn
If we call the first of the two given permutations S and the

second 7, then the permutation S followed by the permutation
T is a permutation U whose symbol is

(alaz “ e an)-

C1€2 * * * Cp

We say that U is the product of S and T in the order indicated,
and we write ST = U, or

(a1az~ . ”) (b1b2 ce b,.) _ (a102 . a”).
b1b2“'bn Ci1C2 * * * Cp CiC2 ** - Cp

* It is often called a substitution on the n objects. But we shall always use
the term “permutation,” since we shall have occasion to employ the term

“substitution” in another sense. We shall restrict the term * permutation”
to the case of a finite number of objects.
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This law, or method, or rule, of combination of permutations is
called multiplication of permutations.

It is clear that all the permutations which can be formed
from a given set of letters, with multiplication as the rule of
combination, form a system of mathematical objects, in the
sense in which this term is used in § 1. Moreover, the result
of combining two of these objects, according to this rule, is
another object in the system. This system and certain sub-
systems contained in it are of great importance in the theory
of those groups each of which has only a finite number of
elements.

It is obvious that multiplication of permutations, as we have
defined it, obeys the associative law of algebra; that is, if
S1, Sz, Ss are permutations, then we have (5152)S3 = S;(S2S3).
Accordingly we may write each of these products in the form
513233.

But the multiplication of two permutations is not always
commutative; that is, we may have two permutations whose
product in one order is different from their product in the
other order. Thus we have

(abc) (abc) _ (abc) (bca) _ <abc
beal \bac/ ~ \bca/ \acb/ — acb)’
whereas (abc) (abc) _ (abc) (bac) _ (abc)
bac/ \bca/ ~ \bac/ \cba/ — \cba/"
If the product of two permutations is the identical permu-

tation, then each of them is said to be the inverse of the other.
Thus each of the permutations

(alaz e an>’ (b1b2 PP bn)
b1b2 e bn aas - - - Gy
is the inverse of the other, since their product is the identical
permutation
@0z - - - an\,
(0102- .- a,.)

It is obvious that there is a unique inverse corresponding to
any given permutation. Moreover, the product of a permuta-



Introduction 7

tion and its inverse is independent of the order in which the
multiplication is performed.
A permutation such as

(alaz <o an-—lan)
aza3z - - A, a1

is called a circular permutation or a cyclic permutation. For
the sake of brevity~it is denoted by the symbol (aiaz - - - a,).
This represents the operation of replacing each letter in the
symbol by the one which follows it, it being understood that
the first letter a; is the letter which follows the last letter a,.
It is obvious that

(@182 - - - a@n) = (@203 - - - Gna1) = (A3Gs - - - A1G2) = - - -

A circular permutation on two letters, such as (ab), is called
a lransposition. We denote by (@) the operation of replacing
a by a. The product of two circular permutations may be
found directly, as is illustrated by the example (abcde)(bced)
= (acbe)(d).

We shall now prove the following theorem:

I. Any given permutation is a product of circu-
lar permutations no two of which have a letter in
common.

Let the given permutation be denoted by the two-line sym-
bol already employed. Let a be any letter in the first line and
let b be the letter in the lower line standing under ¢ in the
upper. Let ¢ be the letter in the lower line under & in the upper,
and so on. Continuing this process, we must arrive finally at
a letter [ in the upper line under which a stands. Then the
letters a, b, c, - --, 1 are permuted according to the circular
permutation (abc - - - I). If there is an additional letter o’ in
the original permutation, we can proceed from it in a similar
way and form a cycle which may be denoted by the symbol
(@'b’c’ - - - I"). It is obvious that we may continue this process
until we have broken up the given permutation into a product
of cycles of the form

(abc e . l)(alblcl e ll)(allb//cll ... lll) « ..
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Since no two of these cycles have a letter in common, the truth
of the theorem is now apparent.

If a cycle consists of a single letter that letter is often
omitted from the symbol for the permutation.

As examples illustrating the foregoing theorem we may give
the following :

(;igggg;?) = (1248)(3)(56)(7) = (1248)(56) ;
(samsoaton) = (129450789

II. Any given permutation can be expressed as a
product of transpositions.
In view of the preceding theorem this theorem may be es-

tablished by showing that it holds for circular permutations.
Now we have

(mazas - - - @) = (@1a2)(@1a3)(@1a4) - - - (@may),
as one may readily verify by forming the product of the trans-
positions in the second member of this equation. Then Theo-
rem II follows by aid of Theorem I.

Since (a.a;) = (ma.)(a1a;)(a1a,) when r and s are different
fromeach other and from 1, it follows that we have the corollary :

CoR. Any given permutation on the letters a;, a,,

. -, a, can be expressed as a product in terms of the
transpositions (@:a.), (@:as), - - -, (G1a,).

It is easy to see (from the fact that relations of the form
(ab) = (aa)(ab)(aa) exist) that the number of ways in which
a given permutation may be represented as a product of trans-
positions may be unlimited. Concerning these ways we may
prove the following theorem:

III. In the various expressions of a given permuta-
tion as products of transpositions on its letters the
number of transpositions is always odd or always
even.
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Let us consider the determinant.

1 1 eer 1

a1 as cee Qn
D=|a?2 a2 vee an2
01"_1 a2n—l . e a,{“l

The effect on D of any transposition of two letters is to change
D into — D. Hence a permutation expressed as a product of
an odd number of transpositions changes D into — D, whereas
one expressed as a product of an even number of transpositions
leaves D unaltered. But a given permutation, however ex-
pressed, must always have one and the same effect upon D.
Then, since D is obviously not identically equal to zero, it
follows that in every expression of a given permutation as a
- product of transpositions on its letters the number of transpo-
sitions appearing must be always odd or always even.

A permutation is said to be odd if it is expressible as a prod-

uct of an odd number of transpositions; otherwise it is said
to be even,

IV. Any even permutation may be expressed as
a product of circular permutations each involving
just three symbols.

From Theorem III and the corollary to Theorem II it fol-

lows that every even permutation on @i, ao,- - -, @, can be
expressed as a product of an even number of transpositions
each of which belongs to the set (@1az), (@1a3), - - -, (@1a,). This

product itself may evidently be taken as a product of pairs
of transpositions, each pair being taken as a product in the
form (a1a.)(a1a,), where r and s are different from each other
and from 1. But we have (aa,)(a14,) = (@10.a,), Whence it
follows that the given even permutation can be expressed as
a product of cyclic permutations of the form (ea.a.), where
r and s are different from each other and from 1. Therefore
the theorem is established.
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Now if 1, 2, 7, s are all different, we have
(a102a,) (a1a26.)(a1a20,) (a1620,) = (618,85),

as one may readily verify by forming the product of the cyclic
permutations in the first member of the equation. Hence

CoR. An even permutation on the letters ai, a,,
- -+, @, can be expressed as a product of permutations
each of which belongs to the set (a10:as), (a16:2a4),
ey ((11(12(1").

The product formed by taking 7 factors, each of which is a
given permutation S, is denoted by S7 and is called the rth power
of S. From the associative law it follows that S$*S” = §»+*,

Now consider the set of permutations

S, 52, S8, 84, .- .,

Since there is only a finite number of distinct permutations
on a given set of letters, it follows that there must be repeti-
tions in this sequence of powers. Then let S* and S* be two
of these that are equal, p being greater than u. Then if S_, is
the inverse of S*, we have

S§P = S*, SPTESH = S, SPTESHS_, = S*S_4;

whence it follows that S*~* = I, where I denotes the identical
permutation.

--In the given sequence of powers of S let S™ be the first one
which is equal to I. Then m is called the order of S. It is obvi-
ous that S™~1 is the inverse of S.

If S is of order m (m > 2), then no two of the permutations
S, 82, 83, .., S™! are equal. For, if S*=S*and \ < u < m,
then, if S_, is the inverse of S*, we have

I=8"S_,=58"S_,=8"""S*S_, = S+,

contrary to the hypothesis that S is of order m.

If & is a positive integer and S* = I, then it may be shown
that & is a multiple of the order m of S. For if % is not a mul-
tiple of m it is greater than m (in view of the result in the
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preceding paragraph), and we have k= am 4 3, where 8 is a
positive integer less than m and « is a positive integer. Hence

I =Sk =S"m+8 = (Sm)°SF = I*SP = SP,

contrary to the hypothesis that S is of order m.

Now the equation S*+* = S*S” holds when u and » are posi-
tive integers. If it be assumed to hold when the exponents
u and v range over all integral values, positive or negative or
zero, then it is easy to show that S° is the identical permutation
and that S~ is the inverse of S*. For

SoS* =8 and S™'S'=S9,

whence S =T and S~ is the inverse of S*. The conception of
powers of S will be extended to include the cases of zero and
negative integral exponents. It is easy to see that the extension
introduces no contradictions.

We shall now prove the following theorem :

V. If a given permutation S is written as a prod-
uct of circular permutations no two of which have a
letter in common, then the order of S is the least
common multiple of the degrees of the circular per-
mutations which compose it.

It is obvious that the order of a circular permutation is
equal to its degree. Then the order of S must be a multiple
of the degree of any one of its named components, and hence
it must be at least as great as the least common multiple u of
their respective degrees. But it is obvious that S* = I. Hence
u is the order of S.

When a given permutation S is written as a product of
circular permutations no two of which have a letter in com-
mon, these component circular permutations will be called the
cycles of S, and we shall say that S itself is written in standard
form. 1f all the cycles of S are of the same degree, S is said
to be regular. If two permutations have the same number
of cycles and the cycles can be made to correspond uniquely,
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those of the one permutation to those of the other, so that
two corresponding cycles always have the same degree, then
these permutations are said to be similar. Thus (abcde) (fg) (hif)
and (12)(345)(67890) are similar. The third power of the
circular permutation (123456789) is the regular permutation
(147)(258)(369).

From the representation of a circular permutation as a
product of transpositions, as in the proof of Theorem II, it
is obvious that a circular permutation is odd or even accord-
ing as its degree is even or odd. Hence any permutation is
even or odd according as the difference between its degree and
the number of its cycles is even or odd.

If S and T are two permutations, the permutation 7—1ST
is called the transform of S by T, or the result of transforming
Sby T; and S is said to be transformed by T when one forms
T-1ST. Since

(TU)7IS(TU) = (UTA\T-H)S(TU)=U"1- T7IST - U,
it follows that the transform of S by TU is equal to the trans-
form by U of the transform of S by T.

VI. The transform of S by 7T may be found by
performing the permutation 7 on the cycles of S.

Let S and T be denoted by the symbols

S=(abcd--Y(mno--.)---,
T_(abc v oo Imno ...>
aB'Y"’)\HVP"°
Then

_ _ aﬁ'y...)\py...
T lsr_(abc lmn.‘_){(abcd--.)(zmno--f)--.}(

(0113‘7"-7\1“/"-)
bed --- mno---

(ag,y...)\”,,
Byo---uvp-

abc --- Imno--- )
a[)"y---)\p.vp---

(abc - Imno--- )
aﬁ’y"'xl"”p‘"

) = (afy-) (Auv--)---.
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The last member gives the value of 7-1ST in the form stated
in the theorem.

It is obvious that the permutation T7-1ST is similar to the
permutation S. In particular cases it may happen that
T-1ST = S. When thisis so we have TT-1ST = TS,or ST = TS.

When ST =TS we say that S and T are commutative or
permutable. It is evident that two circular permutations which
have no letter in common are commutative. It is easy to see
that a necessary and sufficient condition that S and T shall
be commutative is that the transform of S by 7 shall be equal
to S. For we have seen that T-1ST = S implies that ST = TS,
while it is true that the latter relation implies that T-1ST
= T~1TS=S. Moreover, if S is permutable with both T and
U, it is also permutable with their product TU, since (TU)S
= TUS = TSU = STU = S(TU).

When S and T are commutative, we have ST = TS, whence
T-1ST =S and S~1T-1ST = 1. In general, if S and T are any
two permutations, then S~1T-1ST is called the commutator of
S and 7. The commutator of T and S is 7-1S~17S. Since the
product of these two commutators is the identity, it follows
that each of them is the inverse of the other. A necessary and
sufficient condition that two permutations shall be commuta-
tive is that their commutator (in either order) shall be the
identical permutation.

If S; and S; are two permutations, we have S3S;=S;"1-5152-S1.
Hence S:S: and S;S: are similar permutations, since one of
them is a transform of the other. But from Theorem V it fol-
lows at once that two similar permutations are of the same
order. Hence (Theorem VI) a permutation and its transform
are of the same order; in particular, SiS2 and S:S; are of the
same order.

It is important that the learner shall have a ready facility
in handling operations involving permutations. To increase
his mastery of the processes we now give a set of exercises for
his practice. He is advised to add to this set by constructing
other exercises for himself.
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EXERCISES

1. Show that the total number of permutations on # letters is #n!.
Write down in standard form the 24 permutations on g, b, ¢, d. How
many of these are of order 2? of order 3? of order 4?

2. Find the product of (@182 - - - @))(@14+1 - - « @,) and (@@141).

8. Prove that any power of a circular permutation is either the
identical permutation or a circular permutation or some other regular
permutation.

4. Prove that the order of a permutation of degree m is a factor
of m!.

5. Show that the permutations (ab)(cd) and (ac)(bd) are commu-
tative. Show that the permutations

1, (ab)(cd), (ac)(bd), (ad)(bc)

are all the permutations that can be formed from the two given permu-
tations by multiplication, however many times each of them is used
as a factor.

6. Find all the permutations that can be obtained by forming prod-
ucts from the permutations (ab), (cd), (ac)(bd), these being taken as
factors. Show that they consist of the following eight permutations :
I, (ab), (cd), (ab)(cd), (ac)(bd), (ad)(bc), (adbc), (achd).

7. Show that the function @b + cd is unaltered when its letters are
interchanged in accordance with any one of the permutations in Ex. 6.
[Thus the permutation (ac)(bd) replaces ab + cd by cd + ab, and this is
equal to ab + cd.]

8. If S and T are two similar permutations, show that there exists
a permutation U such that U~!'SU=T.

9. If A and B are similar permutations, find two permutations
whose commutator is A~ !B.

10. Find the commutator of (2142 - - - &) and (@iay41 - - - @3).

11. Show that the commutator of two permutations is an even
permutation.

12. If S= (@142 - - - a,), show that

a a ---a
St= ( » )’
Gi41Ge42 - Qeyn
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where each subscript in the second line is to be replaced by the least
positive remainder obtained when that subscript is divided by n.

13. The only permutations on a, a3, - - -, @, which are permutable
with the circular permutation (a1a; - - - @,) are the powers of the latter.

14. Find all the permutations on the ten symbols ¢, b, ¢, d, e, 1, 2, 3,
4, 5 which are permutable with the permutation (abcde)(12345),
Show that their number is 50.

15. In the proof of Theorem II of §2 we saw that a circular permus-
tation of degree # can be expressed as a product of # — 1 transpositions.
Show that it cannot be expressed as a product of any smaller number
of transpositions.

16. Show that

(@182 - - - G21) = (@1827-1)(A2G2-2) - * + (Gn-18ni1)
- (8102,)(2a20-1) - * * (@n@rt1),
(@183 - - - G2n41) = (8182,) (8202n-1) - * - (@nns1)
* (ala2n+l)(a2a2n) ttt (anan+2);

and thence show that every permutation can be expressed as a product
of two permutations of order 2 on the same letters.

17. Show that every permutation on the letters ay, as, - - +, @, can be
expressed as a product in terms of the permutations

(a1a2), (8203 - - - a,).

18. Show that every even permutation on the letters ay, aa, - - -, @,
can be expressed as a product in terms of the permutations

(a182a3), (azas - - - @,).

19. Show that every even permutation on the letters ay, a, - - -
a2,.1 can be expressed as a product in terms of the permutations

(@1a2a3), (G18485), - - -, (@102n82n41).

20. Show that every even permutation on the letters a;, ag, - - -, 2,
can be expressed as a product in terms of the permutations

(@102a3), (0104a5), - - -, (@1020-2020-1), (G10202,,).

3. Definition of Group. Mathematical systems of a certain
very important type are known as groups. A group may be
defined in the following manner.

Let G be a system consisting of a set of distinct elements
and one rule R of combination for uniting any pair of them in
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a given order, this rule being such that the result is always
uniquely determined. If @ and b are two elements of G, we
shall denote by ab the element resulting from the operation
of combining ¢ with b in the order written and in accordance
with the rule R. By such a symbol as (ab)c we shall mean the
result of combining with ¢ the result obtained when a is com-
bined with b, both combinations being in accordance with the
rule R. A similar interpretation will be given to the symbol
a(bc). If two symbols or combinations of symbols denote the
same element, we shall express this fact by writing one of them
equal to the other, using for this purpose the usual sign of
equality. The elements in the system G are said to form a
group, and the system itself is said to be a group, if the follow-
ing conditions * are satisfied :

1. If aand b are elements of G, whether the same
or different, ab is also an element of G.

II. 1f a, b, ¢ are elements of G, then (ab)c = a(bc).

III. The set G contains a single element 7, called
the identical element or the identity, such that for
every element ¢ of G we have ai = ig = a.

IV. If a is an element of G, there is a unique
element @’ of G, called the #nverse of a, such that
ad =ad'a=1.

A system satisfying Postulate I alone is sometimes said to
have the group property. This postulate was the only one usu-
ally mentioned explicitly by the older writers on the subject,
but they generally tacitly assumed the remaining postulates.

It is convenient to use the name multiplication for the rule
R of combination and to say that ab is the product of a and b
in the given order and to use for products the customary sym-

bols of algebra. Then Postulate II asserts that the associative
law holds for the multiplication of the elements of a group G.

* See § 100 for the removal of certain redundancies.
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Since the identity plays the role of unity in multiplication,
it is often denoted by the symbol 1. It is evidently always its
own inverse. 4

A group G is said to be finite or infinite according as the num-
ber of elements in it is finite or infinite. If the number of
elements in G is the finite number #, then # is said to be the
order of the finite group G. An infinite group is sometimes said
to be a group of infinite order.

The following afford examples of groups (as one may read-
ily verify) :

1. The set of integers, positive and negative and zero, the rule of
combination being ordinary addition. (The identity is zero; the in-
verse of an element is its negative.)

2. The set of all real numbers, the rule of combination being addi-
tion.

3. The set of all real numbers except zero, the rule of combination
being ordinary multiplication. (Here unity is the identical element,
and the inverse of an element is its reciprocal.)

4. The set of numbers + 1, -1, +V—1, —V— 1, the rule of com-
bination being ordinary multiplication.

5. The set of all nth roots of unity, with ordinary multiplication as
the rule of combination, » being a fixed positive integer.

6. The set of permutations in Ex. 5 on page 14.

7. The set of permutations in Ex. 6 on page 14. (It may be shown
that this group contains within itself five groups of order 2 and three
groups of order 4.)

8. The set of all distinct powers of any given permutation.

As another example let us consider certain rotations of a
plane about a fixed line / perpendicular to the plane. Let w be
an angle such that nw = 360°, where # is a given integer greater
than unity. Then let the elements of G consist of the rotations
about [/ of angular measures w, 2 w, 3 , - - -, nw. We shall call
(n 4 k)w the same rotation as kw, since it leaves the plane in
the same final position. Let the rule of combination be that
of addition of rotations. The identity is the rotation nw. The
inverse of the rotation kw, where 0 < & < n, is the rotation
(n — k)w. It is now easy to see that this set of rotations forms
a group of order z.
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The set of transformations

’__ ’ l’ A ’r—
x-—x,x-xx—l X, X — p Py |
forms a group of order 6, the rule of combination being that of
multiplication of transformations. Thus, the product of the
sixth and the third may be obtained in the following manner:

From
x

x—1

x"=1—x’, x =

t4

x " 1
or x''= ;
x—1 1—x’

we have ' =1-

and this is the fourth transformation of the set. It is easy to
complete the verification of the fact that the set forms a group.
It may be observed that all six of these transformations may be
obtained by taking products with the second and the third as
the factors.

A group of order 6 is formed by the transformations

X=x,x=x+1,x=x+2,x=2x2=2x+1,x=2x+2,

the rule of combination being that of multiplication of trans-
formations followed by a reduction of coefficients modulo 3 to
their least non-negative values. As a part of the verification
we note that from x'' =2 x/, 2’ = x + 2 we have x"' =2 x + 4,
or 2’ =2 x+ 1 when reduced modulo 3. It may readily be
shown that all six of these transformations may be obtained by
taking products with the second and the fourth as the factors.
Consider the transformations S and 7, namely,

xY=x+1, x¥’=2zx,

respectively, and those which may be obtained from them by
multiplication of transformations followed by reduction of co-
efficients modulo 5 to their least non-negative values. When
so treated S is of order 5 and T is of order 4. The products
S T8 (@=0, 1,2, 3,4; =0, 1, 2, 3) are twenty in number
and are all distinct, as the reader may readily verify. It may
also be shown that these twenty transformations are all that
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can be obtained by means of products formed from S and 7,
all transformations being taken modulo 5. These transforma-
tions form a group of order 20, as the reader may verify.

Since we are concerned (in this book) only with finite groups,
we shall hereafter often use the word ‘‘group” to denote a finite
group when there is no danger of confusion.

4. Certain Permutation Groups. A group whose elements are
permutations on a given (finite) set of symbols is called a per-
mulation group on those symbols, the rule of combination being
multiplication, as defined in § 2. If the given symbols are # in
number, the group is said to be of degree n.

It is easy to see that a set of permutations involving only a
finite number of symbols and satisfying condition I in the defi-
nition of “‘group” in § 8 also satisfies the remaining conditions.
For multiplication of permutations is associative; an appro-
priate power of any permutation is the identical permutation ;
and the next lower power is the inverse of the given permu-
tation. This observation will sometimes shorten the labor
of determining whether a given set of permutations forms
a group.

The total set of permutations on # letters ay, az, - - -, @, con-
tains #! permutations. In view of the properties of permuta-
tions it is easy to see that this set of permutations constitutes
a group. It is called the symmetric group on the n given letters.
It is of degree 7 and order »n!.

Consider the even permutations on a, @z, - -, a, (n> 1).
The product of any one of them by the transposition (a:a2) is
an odd permutation, and no two such products are equal,
whence it follows readily that the number of odd permutations
on a, az---, @, is at least as great as the number of even
permutations. Similarly, from the facts that the product of an
odd permutation by (a;@2) is an even permutation and that no
two such products are equal, it follows that the number of
even permutations on gy, az, - - -, 4, is at least as great as the
number of odd permutations on the same letters. Hence the
number of even permutations on ax, @z, - - -, @, ts equal to the num-
ber of odd permultations on the same letters.

Now the inverse of an even permutation is even, and the
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product of two even permutations is even. Therefore it fol-
lows readily that the even permutations on @, @, - - -, @, form
a group. It is called the alternating group on these letters. It
is of degree n and order 3 -n!. When #n =2 the alternating
group consists of the identical element alone.

The method of proof used in the preceding paragraph may
be employed to show that all the permutations of any given per-
mulation group G are even, or else exactly half of them are even
and the even permuliations form a group. In such proof the
transposition (a:142), of the former argument, is to be replaced
by a fixed odd permutation belonging to the group G, in case G
contains odd permutations.

In the case of four letters the symmetric group is of order 24
and the alternating group is of order 12. The permutations in
Ex. 6 on page 14 constitute a group of degree 4 and order 8
known as the octic group; those in Ex. 5 on page 14 constitute
a group of degree 4 and order 4. There are also other groups
of degree 4. An important problem in the theory of finite
groups is that of constructing all the permutation groups of
given degree. This problem has been completely solved only
for the lower degrees.

It is easy to verify (see Ex. 7 on page 14) that the function
ab + cd is unaltered when its letters are interchanged in accord-
ance with any one of the following permutations:

1, (ab), (cd), (ad)(cd), (ac)(bd), (ad)(bc), (adbc), (acbd).

Thus the fourth permutation in the set leaves the terms of
ab + cd unaltered, while the fifth interchanges its terms. In all
cases the function itself is left unaltered. The permutation (ac)
changes this function into bc + ad; the same is true of the
product obtained from each of the given eight permutations on
multiplying on the right by (ac). Thus (adbc) - (ac) = (adb)(c),
and the last permutation changes ab + cd into ad + bc. Like-
wise each of the eight permutations obtained by multiplying
the eight given permutations on the right by (ad) changes
ab + cd into bd + ac. It is easy to verify that the eight original
permutations and the two sets of eight each obtained in the
way just indicated exhaust the total set of 24 permutations on
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the letters a, b, ¢, d. Hence the original eight permutations are
all the permutations on g, b, ¢, d each of which leaves unaltered
the function ab + cd.

Consider the total set of permutations on a;, @, - - -, @, each
of which leaves unaltered a given polynomial P in the argu-
ments ay, a, - - -, @,. This set contains the identical permuta-
tion. It also contains the inverse of every permutation in the
set. Moreover, the product of any two permutations in the set
is itself in the set. Hence such a set of permutations constitutes
a permutation group. It is said to be the group under which
P is invariant, or the group to which P belongs.

The group so associated with a symmetric polynomial in
ay, Gz, - - -, a, is obviously the symmetric group. It is easy to
prove that it is the alternating group which is so associated
with the function D employed in the proof of Theorem III of
§ 2, since an odd permutation changes D into — D, whereas D is
left unaltered by an even permutation.

Let us consider the seven sets of three letters each contained
in the seven columns of the following array :

A B C D E F G
B C D EF G A
D EF G A B C

These sets are permuted among themselves by each of the per-
mutations P = (ABCDEFG) and Q = (BD)(EF). The total set
of permutations on A, B, C, D, E, F, G, each of which permutes
among themselves these seven sets of three letters each, con-
stitutes a group T, as one sees from the obvious fact that the
product of any two permutations in the set is also in the set.
Let us determine the order of this group T'.

Let S be a permutation in I' that leaves each of the triples
ABD and BCE fixed as a triple. Then S must replace B by B;
it must interchange A and D or replace each of them by itself;
it must interchange C and E or replace each of them by itself;
and it must interchange F and G or replace each of them by
itself. Hence S must be one of the following eight permuta-
tions: I, (AD), (CE), (AD)(CE), (FG), (AD)(FG), (CE)(FG),
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(AD)(CE)(FG). Upon testing these it is found that only four
of them afford suitable values of S, namely, the following:

1, (AD)(CE), (AD)(FG), (CE)(FG).

Hence there are in I' only these four permutations each of
which leaves each of the first two triples fixed. We denote
them in order by Si, Sz, Ss, Sa.

If T is a permutation in I' which replaces ABD and BCE in
order by any other ordered pair « and § of triples in the given .
set, then each of the elements S,T (1 =1, 2, 3, 4) replaces ABD
and BCE by « and 3 respectively. If U is any permutation in
T" which replaces ABD and BCE by « and (3 respectively, then
UT-1! leaves ABD and BCE both fixed, so that UT—! = S; for
some 7, and hence U =S;T. From this it follows that there
are just four elements in I' each of which replaces ABD and
BCE by « and (3 respectively. But the totality of ordered pairs
a and B from the given set of seven triples is 7 - 6 in number.
Hence T has at most 7- 6 - 4 (= 168) elements.

We shall now prove that I' has at least 168 elements, by
showing that there are 168 permutations which can be ex-
pressed as products in terms of the permutations P and @
already introduced. We have

P~2QP3 = (BCDG)(EF),
P~2QP?QP = (BEG)(CDF).

Now the powers of the first of these yield four distinct permu-
tations. On multiplying each of them by @, we have four more,
making eight in all. On multiplying each of these eight by each
of the three distinct powers of (BEG)(CDF), we obtain all to-
gether 24 distinct permutations. On multiplying each of these
24 by each of the seven distinct powers of P, we have 168
(=7 - 24) distinct permutations expressed as products in terms
of P and Q.

Therefore T has just 168 elements, and all these elements
may be expressed as products in terms of P and Q. This group
T of order 168 is one of the most interesting groups of degree 7.

Two permutation groups are usually said to be identical if
there is a permutation T which transforms all the permutations
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of one of the groups into the permutations of the other group.
Thus the group

1, (ab), (cd), (ab)(cd)
is identical with the group

1, (ac), (bd), (ac)(bd),

into which it is transformed by the permutation (bc) ; it is also
identical with the group

I, (aP), (v), (@B)(vd),
into which it is transformed by the permutation
(@) (BB) (cv) (dd).

But if two notationally distinct groups are contained in a
given permutation group G, they are reckoned as different
groups in regard to their relation to G, even though they may
be the same in the sense of the preceding paragraph. Thus the
first two groups of that paragraph are considered as different
groups contained in the symmetric group on g, b, ¢, d.

EXERCISES

1. Show that the permutations mentioned in Ex. 14 on page 15
form a group of order 50.

2. Find all the permutations on 1, 2, 3, 4, 5, 6, 7, 8 each of which is
commutative with each of the permutations (12345) and (678), and
show that they form a group of order 15.

8. Find all the permutations ona, b, ¢, d, ¢, f, 1, 2, 3, 4, 5, 6 each of
which is commutative with (abedef) (123456), and show that they form
a group of order 72.

4. Find all the permutations on 1, 2, 3, 4, 5, 6, 7, 8, 9 each of which
is commutative with (123)(456) (789), and show that they form a group
of order 162.

5. If w is a primitive sth root of unity, show that the transforma-
tions
wk
x' = wkx, x’=—x— *k=12,:---,m)
form a group of order 2 ».
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6. Construct all the transformations which can be formed by
taking products of the transformations

=V-1z, x’—-—- x'= z+1
-1

and show that they form a group of order 24.

7. Show that the largest permutation group on x1, x2, 3, 4« Which
leaves invariant the function (x1 + x2 — x3 — x4)2 is the octic group.

8. Determine the largest permutation group on x1, x2, x3, x4 under
which the function (x; + x2)(¥s + x4) is invariant.

9. Show that the symmetric group of degree m contains the sym-
metric group of any lower degree. State and prove the corresponding
theorem for the alternating group of degree m.

10. Show that the largest permutation groupon 4, B, C, D, E, F, G,
each element of which leaves invariant the function
ABD + BCE + CDF + DEG + EFA + FGB + GAC,
is a group of order 168. (Compare with the array on page 21.)
11. Consider the 42 transformations
x'=ax+b @=1,2,3,4,506; b=0,1,2,3,4,5,6)
and a rule of combination which consists of ordinary multiplication
of transformations followed by a reduction of coefficients modulo 7 to
their least non-negative values. Show that these transformations so
considered form a group G of order 42, and prove that each of the
transformations of G can be expressed as a product in terms of the
transformations x’ = x + 1 and ' =3 x.
12. Similarly, show that the transformations
x=ax+b @=1,2,4;5=0,1,2,.--., 6)
give rise to a group of order 21. Show also that the transformations
x’=ax+b (¢=1,6;6=0,1,2,.--,6)
similarly give rise to a group of order 14.

13. Show that the eleven sets of five letters each contained in the
eleven columns of the array

A B C D EVF G HI J K
B C D EVF G HI J KA
¢C DEF G HI J K A B
E F 6 HI J K A B C D
HI J KA B C DE F G
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are permuted among themselves by a permutation group of order 660
on the letters 4, B, C, - - -, K and by no larger group on these letters.
[SUGGESTION. Observe that the array is invariant for the permuta-
tions (ABCDEFGHIJK) and (CEH)(DKG)(FIJ); prove that it is left
invariant by only six permutations each of which leaves two columns
unaltered; and thence proceed as on pages 21 and 22.]

14. Find a function of 4, B, C, - - -, K which is left invariant by the
permutations of the group in Ex. 13 and by no other permutation of
its arguments.

15. Arrange seven letters in seven sets of four each so that every
two of these sets shall have just two letters in common while every two
letters shall occur together in just two sets. Show that these sets must
be (apart from change in notation) the seven sets afforded by the
columns of the array

OO W
SRS RN
O W
o
SN IS
o W
RO I

F

]
)

G G

[SUGGESTION. Choose the notation so that three of the sets are
those in the first three columns, and show that the remaining sets
are then determined successively by means of the first two letters
in them.]

16. Show that the seven sets of four letters each afforded by the
array in Ex. 15 are interchanged among themselves as sets by each of
the permutations (ABCGFDE) and (BG)(FD), and prove that the
group obtained by forming all the distinct products with these permu-
tations as factors is of order 168 and that it contains all the permuta-
tions on 4, B, C, D, E, F, G, each of which merely interchanges the
given sets among themselves.

17. Arrange eleven letters in eleven sets of five each so that every
two of these sets shall have just two letters in common while every two
letters shall occur together in just two sets, and show that these sets
must be (apart from change in notation) the eleven sets afforded by
the columns of the array in the foregoing Ex. 13.

18. Demonstrate that the distinct powers of the permutation
(ABCDEFGHIJK) constitute the largest permutation group on these
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letters the elements of which merely permute among themselves the
eleven sets of five letters each afforded by the columns of the array

A B C D EVF G HI J K
B C DEVF G HI J KA
C D EVF G HTI J KAB
D EF G HI J K A B C
J K A B C D EVF G HI

19. Consider the 14 quadruples defined by the columns of the
following array :

H HHHHHHGABCDEF
A B C D EVF G CDETVF G A B
B C D EVF G AEVF G A B C D
D EF G A B CVF G A B C D E

Show that these quadruples are permuted among themselves by a
permutation group of order 8 - 7 - 6 - 4 on these eight letters and by no
larger group on these letters.

20. Arrange the eight letters 4, B, C, D, E, F, G, H into 14 sets of
four each so that each triple of these letters shall occur in one and in
just one of the 14 quadruples, and show that (except for a permutation
of the letters) these 14 quadruples are those afforded by the columns
of the array in Ex. 19.

5. Properties of the Elements of a Group.* If A, B, C are ele-
ments of a group and AB = AC, we have A’AB = A’AC, where
A’ is the inverse of A, whence it follows that B ="C. Similarly,
if BA = CA, we have B = C.

If S is an element of a group, then the product of 2 factors
each equal to S is denoted by S* and is called the kth power of S.
The infinite sequence of symbols

S, 82, 83, - -
obviously represents a finite number of distinct elements if S

is an element of a finite group. If S*=S"and u> v, andif S_,
is the inverse of S*, we have, using 1 for the identity,

1=88_,=8S_,=8"SS_,=8"""

* Many of these properties are given in § 2 for the special case of elements
which are permutations. They are now treated for the more general abstract
situation.
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Hence there is some power of S which is equal to the identity.
IfS"=1landm> 1, whileS*=%1forx=1,2,..-,m—1,then
m is said to be the order of S. (The identity is said to be of order
unity.) It is easy to prove that no two of the elements 1, S, S?%,
..., S™~1 are equal. For, if $*=5* (0 <v <u < m), then as
before we have 1 = $*~*; and this is contrary to the hypoth-
esis that S is of order m. If S'=1 (I> m), and we write
I=mg+17r (0< r=m), then

1=§l=Sm+ = (™). 5 =S,

whence it follows that r =m. Therefore [/ is divisible by m.
Hence, if St =1, then | is a multiple of the order m of S.

The relation S*S* = S*+* obviously holds if u and » are
positive integers. If we assume (as we may consistently) that
this relation holds when p and » are any integers, then it is
easy to show that S° =1 and that S—* is the inverse of S*; for

§0S* = S* and S—kSk = S0,

If Sy, S, - - -, S, are elements of a group, then the inverse of
S1Sz- - S,is S,71S,_171- - - S;71S; 7Y, since the product of one
of these elements by the other is evidently the identity.

We have seen that the elements of a group obey the associa-
tive law of multiplication. But multiplication is not always
commutative, as we saw in connection with the study of per-
mutations in § 2. That is, if A and B are elements of a group,
the product AB may be different from the product BA. In the
case when AB = BA we say that A and B are commutative or
that they are permutable. 1f A is permutable with both Band C,
then A is permutable with BC, since

(BC)A = BCA = BAC = ABC = A(BC).

The element 7-1ST is said to be the transform of S by T, or
the result of transforming S by 7. In the special case when
T-1ST =S we have ST = TS. Conversely, from the relation
ST = TS we have T-1ST = S. Moreover, if T-1ST = U, then
T—1S*T = U*, since

U= (T-IST)¢ = T~IST - T~IST - --- - T~IST = T-1S*T.
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The element S—!7T-1ST is called the commutator of S and T.
Its inverse is the commutator 7-!S~!TS of T and S. A neces-
sary and sufficient condition that S and T shall be commutative
is that their commutator shall be the identity, as the reader will
easily verify.

Since
U-l.STIT\ST .- U=U-1STWU - UTITTWU - UTISU - UTITU

= (UTISU)"W(UTITU)" Y (UTISU)(UTITD),
it follows that the transform of a commutator by any element is
itself a commutator.

Since

(TU)~1S(TU) = (U-'T-Y)S(TU) = U-1 - T-1ST - U,
it follows that the transform of S by TU is equal to the trans-
form by U of the transform of S by T.

6. Subgroups. If a group G contains within itself a set of
elements H which forms a group with the same law of combina-
tion of elements as G itself, then H is said to be a subgroup of G.
Every group contains a subgroup of order 1 consisting of the
identity alone. It is usually convenient to include the group G
itself among the subgroups of G. A subgroup of G which is not
identical with G is called a proper subgroup of G.

In §10 we shall prove that the order of a subgroup of a finite
group G is a factor of the grder of G.

If S is an element of order 7 in a group G, then the elements
1, S, 8%, ..., S™"! form a group of order m which is a subgroup
of G. It is a proper subgroup when the order of G is greater
than m.

The eight permutations in Ex. 6 on page 14 form a subgroup
of the symmetric group on g, b, ¢, d; and this subgroup does not
consist of the powers of one of its elements. The permutations
in Ex. 5 on page 14 form a subgroup of order 4 of this group of
order 8.

Every group G of order greater than unity contains a set of
elements each of which is permutable with each of the others;
for the set of all the distinct powers of a given element (not the
identity) has this property. Let

19 SZ’ S3v R Sk
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be a set of elements of G having this property that each of them
is permutable with each of the others and having moreover the
property that no other element of G is permutable with each
element of the set. This set evidently contains the inverse of
every element in it, and the product of every two elements in it.
The set therefore constitutes a subgroup of G.

If G is a group of order g (g >1), then commutators in G (that
is, commutators each of which is formed from two elements in G,
the same or different) may be formed in g2 ways, since each of
the two elements used to form a commutator may be chosen in
g ways. Since G has only g elements, these g2 commutators can-
not all be distinct elements. Consider the set of all distinct
elements of G each of which is equal to a commutator in G.
This set contains the identity, since the commutator of 1 and S
is the identity. The set contains the inverse of every element
in it, since the commutator of T and S is the inverse of the com-
mutator of S and 7. But it does not always contain the product
of every two commutators, since (as is shown by Ex. 30 on
page 39) the product of two commutators in G is not necessarily
a commutator in G. Then form from these commutators all the
elements which may be obtained by taking products each factor
of which is a commutator. This new set of elements constitutes
a subgroup of G. It is called the commutator subgroup of G or the
first derived group of G. 1f the commutator subgroup of G coin-
cides with G, then G is called a perfect group.

7. Some Classes of Groups. If all the elements in a group G
may be obtained by taking the powers of some appropriately
chosen element in G, then G is said to be a cyclic group. A
group which is not cyclic is said to be noncyclic. Every group
G contains one or more cyclic subgroups, since the distinct
powers of any element in G form a cyclic subgroup of G. If a
group G is noncyclic the distinct powers of any element in it
constitute a proper subgroup. If G is a cyclic group of com-
posite order m and if S is an element whose distinct powers
constitute the elements of G, then, if d is any proper divisor
of m different from unity, the distinct powers of S¢ constitute
a proper cyclic subgroup of G. Hence every group whose order
is a composite number contains a proper subgroup other than
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that consisting of the identity alone. We shall see later (§ 10)
that a group whose order is a prime number contains no
proper subgroup other than that consisting of the identical
element alone. .

If each element of a group G is permutable with every other
element in G, then G is said to be an Abelian group or a com-
mutative group; otherwise it is said to be non-Abelian or non-
commulative. Since the powers of any element are permutable
with each other, it follows that every cyclic group is an Abelian
group. The permutations

1, (ab), (cd), (ab)(cd)
or the permutations
1, (ab)(cd), (ac)(bd), (ad)(bc),

constitute a noncyclic Abelian group. The octic group, con-
sisting of the eight permutations in Ex. 6 on page 14, is a non-
Abelian group.

A group whose order is a prime number or a power of a
prime number is called a prime-power group. The three per-
mutation groups mentioned in the preceding paragraph are
prime-power groups. We shall see later (§ 13) that a finite
group which is not a prime-power group always contains cer-
tain important subgroups which are prime-power groups. For
this reason the theory of prime-power groups is of great im-
portance in constructing a general theory of finite groups.

8. Generators of Groups. If a set of elements contained in a
finite group G has the property that all the elements of G may
be obtained by forming products whose factors all occur in the
given set, then this set of elements is said to constitute a set
of generating elements of G or a set of generators of G, and G is
said to be generated by this set of elements. The set of gen-
erators is said to be independent if no one of them is in the
group generated by the remaining ones. (An element which
generates a cyclic group is said to be an independent generator
of that group.) In the case of independent generators no proper
subset of the set of generators will generate the entire group G.

The group consisting of the permutations

1, (abc), (acb), (de), (abe)(de), (ach)(de)
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is generated by the permutation (abc)(de) and also by the per-
mutation (acb)(de). Moreover, it is also generated by the two
permutations (abc) and (de); and these form a set of inde-
pendent generators of the group.

It is evident that every cyclic group contains at least one
single element that generates it, and that every noncyclic.
group requires at least two generators to generate it. The
example in the preceding paragraph shows that even a cyclic
group may have a set of independent generators consisting of
more than one element. In fact, it is not difficult to show that
a cyclic group may be constructed of such sort as to possess #
independent generators, where » is any given positive integer ;
for, if P is a permutation which in standard form is composed
of n cyclic factors of distinct prime orders, then the cyclic group
generated by P can also be generated by the » independent
generators each of which is represented by a single cycle of P.

If g1, g, - - -, gx constitute a set of generators of a group G the
group itself is often represented by the symbol {gi, go, - - -, gi} ;
that is, this symbol denotes the group generated by g1, g, - - -, Z&.

From the corollary to Theorem II in § 2 it follows readily
that the transpositions (@14z), (@18s), - - -, (@14,) form a set of
independent generators of the symmetric group on a, az, - - -, Gn.
Similarly, from the corollary to Theorem IV in § 2 it follows
that (@18:203), (m@q0s), - - -, (@162a,) constitute a set of inde-
pendent generators of the alternating group on ay, az, « - -, Gn.
From a result in § 4 it follows that (ABCDEFG) and (BD)(EF)
generate a group of degree 7 and order 168. The octic group is
generated by (ab) and (adbc).

9. Simple Isomorphism. Abstract Groups. If G, is a group of
order m and if Gz is a group of order m, and if each element of
G: can be made to correspond uniquely to an element of Gz in
such a way that each element of Gz is the correspondent of an
element of G; while the product of any two elements in G, cor-
responds to the product of the corresponding two elements in
G2, then G, and G are said to be simply isomorphic and the re-
lation so established between G, and G: is said to be a simple
isomorphism of G; and G:; each of the groups is said to be
simply isomorphic with the other. In such a correspondence
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the identity in G; must correspond to the identity in Gz; for
if S corresponds to the identity, then every power of S corre-
sponds to the identity, whence it follows that S itself must be
the identity, since the correspondence of elements is unique.

If G, and G: are the same group, this correspondence is said
to exhibit an isomorphism of the group with itself.

The two permutation groups I, (ab), (cd), (ab)(cd) and I,
(ab)(cd), (ac)(bd), (ad)(bc) are exhibited as simply isomorphic
by the correspondences

I ~ I, (ab) ~ (ab)(cd), (cd) ~ (ac)(bd), (ab)(cd) ~ (ad)(bc).

If two groups have the same number of elements of order 2,
the same number of order 3, the same number of order 4, and
so on, they are said to be conformal.

Two simply isomorphic groups are conformal. For if S in
one of them corresponds to T in the other, then S* corresponds
to T*, whence it follows that S and T have the same order,
since the identity always corresponds to itself. But groups may
be conformal without being simply isomorphic; an example
illustrating this fact is given in Ex. 28 on page 38.

If two groups are each simply isomorphic with a third group,
then they are simply isomorphic with each other, and the
isomorphism may be established as follows: if 4 in the first
group corresponds to C in the third while B in the second cor-
responds to C in the third, then take 4 and B as corresponding
elements in the isomorphism of the first two groups.

It is evident that two simply isomorphic groups have cer-
tain of their more abstract properties in common. Let us
render more precise the conception of the common character-
istics of two simply isomorphic groups.

For this purpose consider the multiplication table of a given
group G, that is, a table exhibiting the product (in each order)
of every pair of elements in G. As an example of such a table,
we have for the group

S1=1, Sz = (abc), S3 = (acb), Sy = (ab), S5 = (bc), Se = (ca)

the multiplication table given below, where the element oppo-
site S; in the first column and under S; in the first row is the
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product S;S;. If from the elements of a group all properties
are abstracted except those implied by its multiplication table,
then the new abstract elements so formed constitute a group
which is known as an abstract group. 1t is simply isomorphic
with the given group, the correspondence being established by
making each element of the original group correspond to the
abstract element formed from it in constructing the abstract
group. We may call this abstract group the abstract form of
the given group or the abstract group corresponding to the
given group.

Si Sa S3 Sy Ss Se
Si S1 Se Ss3 S Ss Se
Sz Sz S3 St Ss Se Ss
S3 Sa S1 Sz Se S4 Ss
S Sa Se Ss S1 S3 S2
Ss Ss Sq Se Sz S1 S3
Se Se Ss S4 S3 S2 Si

If two groups are simply isomorphic, it is evident that they
have the same abstract group corresponding to them. We may
say, then, that the two groups are abstractly identical. It is evi-
dent that the abstract properties of a group constitute, in one
respect at least, its essential properties as a group.

It is possible to define the multiplication table of a group
completely by means of certain relations governing a set of
generators of the group. We shall illustrate this matter by
considering the group {S, T} where S and T are subject only to

the conditions
S2=1, T2=1, (ST)¥=1,

and such conditions as may be implied by these. The group
contains the following elements:

a1 =1, 0’2=ST, g3 = (ST)Z, 04 = T, 0’5=S, o= STS.



34 Groups of Finite Order

In order to make sure that no two of these elements are equal,
we observe that if we put o= (bc) and 7 = (ab) we have
d2=1, 12=1, (¢7)3 =1, while 1, o7, (67)2, 7, 0, 070 are six
distinct permutations on the letters @, b, ¢c. But ¢ and 7 satisfy
all the relations assigned to S and T; hence those relations
are consistent and the corresponding six elements formed from
S and T must be all distinct, since otherwise S and T would
satisfy at least one relation not implied by the given relations.

It may now be shown that the given relations on S and T
imply that the elements ¢; have a multiplication table identi-
cal with the foregoing multiplication table except that S; is
replaced by o; for 1 =1, 2, 3, 4, 5, 6. We verify a few of the
36 products: thus 632 = (ST)2 =03, 0203 = (ST)3 = 01, 0204
=ST- T=S=0'5, 0'20’5=ST' S=0’6, 0'20'6=ST- STS = (ST)2S
= (ST)"'S=TS:-S=T =04 Since the product o0, is some
o, it is evident that the elements oy, o9, - - -, 0 constitute a
group of order 6. From this it follows that the group {S, T} is
completely determined by the sole relations $2 = 72 = (ST)3 =1.
Since we know nothing about the elements of {S, T} other than
what is implied by its multiplication table, it follows that
{S, T} is an abstract group. Such a set of conditions as those
used in defining {S, 7}, namely, the sole conditions

St=T?=(ST)3=1,

is called a set of defining relations for the abstract group deter-
mined by them.
It is evident (from the existence of the multiplication table)
- that every abstract finite group may be defined by means of a
certain finite number of independent generators and a finite
number of independent defining relations connecting them.
The conception of an abstract group, to which this fact gives
rise, is of such importance that we shall at once illustrate it
by another example. In Chapter VII we shall take up a more
systematic consideration of the matter.
Let us now determine a set of defining relations for the ab-
stract group which is simply isomorphic with the alternating
group of degree 4. As generators of the permutation group

we may take o = (abc), 7= (abd).
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Then o3=13=(o7)?=1.

Since the permutations ¢ and 7 satisfy these relations and gen-
erate a group of order 12, it follows that any abstract generators
S and T which are subject solely to the conditions implied by
the (necessarily consistent) relations

S3=T8=(ST)?=1

must generate a group whose order is at least as great as 12.
We shall next show that the order of this abstract group
{S, T} cannot be greater than 12. For this purpose we con-
sider the following twelve elements of {S, T}, namely,

1 ) S?

ST STS STS?
S2T2  S2T2S  S?T2S?
T2ST? T2ST2S T?ST2S?

The corresponding elements in {¢, 7} are distinct, the corre-
spondence being established by making ¢ and 7 correspond to
S and T respectively. Hence these are twelve distinct elements
of {S, T}. If each of these is multiplied on the right by S, then,
since S3 =1, we obtain merely the same elements in another
order. If each of them is multiplied on the right by 7, then, by
a repeated use of the relations $3 = 73 = (ST)?=1], it may be
shown that the same set of elements is again obtained (in a
new order). Thus we have

1. T=7S-8%?=S"1T"152 = §?T2S?,
ST-T=S- S2T?S?%. S?T28?% = T2ST2S?,

S2T2. T = S?,
T2ST?. T = T-'S"1§2 = STS?,
S.T=ST,

STS-T=(ST)2=1,

S2T28.T=S.ST-TS-T=S-T"1S"1.S~1T-1. T=ST- TS
= T-1§-1. §-1T-1 = T2ST?,

T2ST2S - T=T-TS-T2-ST=T-S"'T-1.T2.T-1S"1 =TS
= S—1T-1 = §27T?2,
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S2. T =S2T2. T2 = T2ST2ST - T2 = T2ST?S,

STS?. T =ST - S?T = ST - T?ST2S = S2T?S,

S2T28%. T=S2. T-1S-1. T=S§2.ST - T = T2 = (ST)2T?
= STSTT? = STS,

T2ST2S?. T=T2S-T-1S~!1- T=T2S.ST-T=T2. S~1T-1
= T2TS=S.

From these results it follows that the twelve elements in the
foregoing table are replaced by themselves (in some order) on
multiplication on the right by either Sor 7T, and hence on such
multiplication by any element of {S, T}. Hence {S, T} is a
group of order 12. The correspondence S ~ o, T ~ 7 exhibits
it as simply isomorphic with the alternating group {c, 7}, as the
reader may easily verify. Hence {S, T} is the abstract form of
the alternating group on four letters. Therefore

The abstract alternating group of degree four is
generated by the abstract elements S and 7 when
they are subject to the sole defining relations

S3=1T3=(ST)2=1.

EXERCISES

1. Show that the group generated by the permutations (12345),
(abed), (aB) is a cyclic group of order 60, and find an element in it
by which it may be generated.

2. Show that there exists a cyclic group of every finite order m.
8. Prove that every subgroup of a cyclic group is cyclic.

4. Show that the two permutations (1234) (5678) and (1638) (5274)
are commutative and that they generate a group of order 8.

5. Construct the multiplication table for the octic group.

6. Find the commutator subgroup (1) of the octic group, (2) of the
alternating group of degree 4.

7. Show that the commutator subgroup of an Abelian group con-
sists of the identity alone, and that the commutator subgroup of every
non-Abelian group is of order greater than unity.
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8. Show that an Abelian group cannot be simply isomorphic with
a non-Abelian group.

9. If each generator in a set of generating elements of a group is
permutable with every other generator in the set, then the group is
Abelian.

10. A group each of whose elements other than the identity is of
order 2 is an Abeliar group.

11. Prove that the product of two commutators is a commutator
whenever the last factor of the first is the inverse of the first factor of
the second; that is, prove that (S—!7-1ST)(T-'U~'TU) is a com-
mutator.

12. If H is a subgroup of G show that the commutator subgroup of
H is a subgroup of the commutator subgroup of G.

18. If @ and b are elements of a group G, there exist elements g and
h in G such that ag = b and ha = b.

14. If S and T are two elements subject to the sole conditions that
’ S$3=T2=(ST)2=1,
show that they generate a group {S, T} abstractly identical with the
group whose multiplication table is given in § 9.

15. If @, b, c are elements of orders 4, 2, 2 respectively, and are sub-
ject to the sole remaining conditions that ab = ba3, ac = ca, bc = ¢b,
then the group {a, b, ¢} is of order 16, and g, b, ¢ form a set of independ-
ent generators of this group.

16. Construct a set of defining relations for the abstract octic group.

17. Construct a set of defining relations for the abstract group which
is simply isomorphic with the group generated by (ab), (cd), (¢f).

18. Construct a set of defining relations for the abstract group which
is simply isomorphic with the group generated by (1234)(5678) and
(1638) (5274).

19. If S and T are subject to the sole defining relations
St=T¢=1, STITS=T"1, S2=T%,
show that {S, T} is a group of order 8.

20. Construct five groups of order 8 no two of which are simply iso-
morphic. (Compare Exs. 2, 16, 17, 18, 19.) Show that a group of
order 8 is necessarily simply isomorphic with one of these five.
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21. Construct a permutation group of order and degree 8 which has
six elements of order 4. Show that no group of order 8 can have more
than six elements of order 4.

22. If @ and b are elements which generate a finite group G and if
ab = ba*, show that every element in the subgroup generated by a is
transformed by & into an element in that subgroup.

23. Show that the commutator subgroup of the symmetric group
of degree # is the alternating group of degree n. (Use the corollaries to
Theorems II and IV in §2.)

24. Show that the alternating group of degree # is a perfect group
if n > 4. (Use the corollary to Theorem IV in §2.)

25. If a cyclic group G is of order p™, where p is a prime number,
and if 0 < r = m, then G contains just p” elements such that the order
of each is a factor of p*; it contains just p*~!(p — 1) elements of order
b

26. Show that the permutations
(c1€10€19) (C2€11620) (€3€12€21) (C4C13C22) (€5€14€23) (CoC15C24) (C7C16C25) (CsC17C20)

(coc18C27),

(c164€7) (C25C8) (C3CaCo) (C10C15€17) (€11€13C18) (€12€14C16) (C19C23C27) (C20C24C25)

(c21€22€326)
generate a non-Abelian group of order 27 containing as a subgroup an
Abelian group of order 9 generated by the first of the given permuta-
tions and the following :

(c162€3) (€4€5Cs) (c7¢8C9) (C10€11€12) (€13€14€15) (C16€17C18) (C19€20C21 ) (C22€23C24)
(Ca5C26C27)-

27. Show that the commutator of the first two permutations in
Ex. 26 is of order 3 and is permutable with each of them.

28. Show that the group of order 27 defined in Ex. 26 is conformal
(but not simply isomorphic) with the Abelian group generated by
(123), (456), and (789).

29. Let Q and R be two abstract elements and write Q" 'R~ 1QR = P.
If @ and R are subject to the sole defining relations

PP=@Q3=R3=P-RTIPR=P-IQ"1PQ=1,

show that they generate a group of order 27 simply isomorphic with
the group of order 27 defined in Ex. 26.
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80. Show that the group generated by the elements

(ac) (ba), (eg) (fh), (i) (j1), (mo)(np), (ac)(eg)(ik), (ab)(cd)(mo),
(ef)(gh) (mn) (0p), (47) (kD)

is of order 256, that its commutator subgroup is of order 16 and is
generated by the first four of the given permutations, and that the
commutator subgroup contains just one element which is not a com-
mutator, namely, (ik)(#) (mo) (np).

MISCELLANEOUS EXERCISES

1. Show that a regular permutation is always a power of a circular
permutation.

2. Show that the commutator of two permutations having just two
letters in common is of order 1 or 2 or 3 or 5.

8. Let S be a permutation having at least one cycle of even order
or at least two cycles of equal odd order. Show that S is commutative
with some odd permutation on the letters involved in S.

4. Determine what permutations can be expressed in terms of the
two permutations

(@102 - - - Gn_2Ga_1), (@162 - Gn_2a,).

5. Consider the following permutations on m#» + 1 letters, where m
is an integer greater than unity:

(@182 + * * Gny1), (B18ng2 - - G2ni1)s * - o (@18(m —1)ns2 " * * Gmns).

Show that every permutation on this set of mn + 1 letters can be ex-
pressed in terms of the given permutations when # is odd, and that
every even permutation on these letters can be expressed in terms of
the given permutations when # is even.

6. For what values of k£ from the set 1, 2, - - -, n — 1 is it possible
to express every permutation on the letters @i, aq, - - -, a, in terms of
the permutations (@1a;,1) and (a1az2 - - - a@,)?

7. If S and T are commutative regular permutations on the same
mn letters, m and n being relatively prime integers greater than unity,
and if S is of order m and T is of order n, show that ST is a circular
permutation on the m# letters. [SUGGESTION. Show that the 7 cycles
of S are permuted cyclically among themselves when S is transformed
by T.]
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8. Consider the 13 sets of four letters each afforded by the columns
in the array

A B C D EVF G HI J KL M
B ¢ DEVF G HI J KL MA
D EF G HI J KL MA B C
J KL MA B C DEF G HI

Show that these sets are permuted among themselves as sets by the
permutations (ABC - - - M) and (ABCDKLHGM JEFI), that the prod-
ucts formed from these permutations lead to a group of order
13.12 .9 .4, and that this group contains all the permutations on the
given letters each of which merely permutes among themselves the
given thirteen sets of four letters each.

9. By omitting the letters A, B, D, J from the array in Ex. 8 form
a new array defining 12 sets of three letters each and show that the
sets thus defined are permuted among themselves by a group of order
9 - 8 - 6 on the nine letters involved and by no larger group on these
letters.

10. Form a function left invariant by the group in Ex. 8 and by no
permutations of its arguments except those in this group.

11. Let p be an odd prime number. Show that the totality of dis-
tinct congruences

X' = ax + bmod p, (@£ 0mod p)

with multiplication of transformations modulo p as the rule of combi-
nation, constitutes a group of order p(p — 1). (Compare the special
case in Ex. 11 on page 24.)

Similarly show that the totality of distinct congruences

2’ =a2x + bmod p, (a0 mod p)

constitutes a group of order 4 p(p — 1).

12. If @ and b are elements which generate a finite group G and if
ab = ba*, show that every element of G may be written in the form bva=.

13. The permutations
0= (a1az * + * Gz5), T = (G26@27823G29030)
generate an Abelian group H of order 125. The permutations
S = (c1623 - - - €25),
T = (C2€7€12C17C22) (€3€13€23C8C18) (C4€19€9€24€1 4) (C5€25C20€15C10)s
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generate a non-Abelian group G of order 125. Prove these statements
and show that G and H are conformal but are not simply isomorphic.
[SUGGESTION., Observe that ST = TS°, apply Ex. 12, and show that
T=Sv and 7°0¥ are of the same order.]

14. If the commutator ¢ = a~1b~'ab of @ and b is permutable with

both a and b, show that
a—°b—Ba*bd = c*B, (bvg®)* = bvia*‘ctvi(t—D),
(agby)t —_ bytaztcr}zvt(t*k l)_

15. If aga—1 = g= and bgb—! = gé, then the commutator of ¢ and b
is permutable with g.

16. If TS = S272, show that

TS? = S2(TS2)T2", (TS)2 = (S4T)™(TS)2(ST*)".
17. If S and T are elements of orders m and n respectively and if

7S = S272, show that S2 and T2 are of the same order and hence that
=1mn,n, or 2 n. Show also that S*7 and ST* are of the same order.

18. Let S be an element of order m~ contained in a finite group G,
m and % being relatively prime. Show that integers « and 8 exist such
that S = S* - S® while S* is of order m and S? is of order n. Show
furthermore that if S = P - @, where P and Q are permutable elements
in G of orders m and 7 respectively, then P = $* and Q = S*.

19. If S7!17S=T-'and T-'ST = S™!, show that S*=T¢=1.

20. If p is any prime number and & is any primitive root modulo p,
show that cyclic permutations S and T exist of orders p and p — 1 re-
spectively such that ST = T'S*.

21. Show by aid of Ex. 20 that a permutation group exists (1) of
degree p and order p(p — 1), (2) of degree p and order } p(p — 1), for
every odd prime number p.

22. Show that the abstract group whose generators ¢ and 7 are sub-
ject to the sole defining relations

oB=7"=g"lr7lgr=1
is simply isomorphic with the permutation group {e, 7} of Ex. 13.

23. Show that the abstract group whose generators S and T are sub-
ject to the sole defining relations

, §2=T5=T-1STS"¢=1
is simiply isomorphic with the permutation group {S, T} of Ex. 13.
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24. If p is any prime number and £ is any primitive root modulo p,
show that the abstract group whose generators S and T are subject to
the sole defining relations

SP=T?P"1=T"1STS * =
is simply isomorphic with the permutation group of order p(p — 1) in
Exs. 20 and 21.

25. If the elements ¢ and b are of finite order and each of them is
permutable with their commutator ¢ = @¢~15~1ab, then show (by aid
of Ex. 14) that each of the elements in the group {a, b} is representable
in the form a%b¥c>. Show that the order of ¢ is a common factor of the
orders of @ and b, and thence that {a, b} is a finite group.

26. If ¢ and b are two noncommutative elements of odd prime
order p and if each of them is permutable with their commutator, show
that {a, b} is a group of order p3. (Use Ex. 25.)

27. Show that the abstract group whose generators S and 7T are sub-
ject to the sole defining relations

SB=1=1, 7TS=ST2
is of order 12 and that its distinct elements are
1, S, T, 8%, ST, TS, T?, S2T, ST?, TS?, TS, ST2S.

28. Show that the group {S, T} of Ex. 27 is simply isomorphic with
the alternating group of degree 4.

29. Show that the abstract groups {S, 7} and {P, Q} whose sole
defining relations are

St=T¢=1, TS=S2T? and Pi=@*=1, PQ=QP?
respectively, are identical as abstract groups and that their order is 20,

30. By means of the adjoining scheme form 16sets 4 B C D
of 6 letters each by taking for each letterinthescheme g r ¢ g
the 6 which are aligned with it (excluding that letter
itself). Thus we have the 16 sets afforded by the rJj kL
columns in the following array : M N O P
B A A AF EEE J I I I NMMM
c ¢C B B G G F F KK J J O 0O NN
D D D C HHHGIULULL KU&PUPPO
E F G H A B CD ABUCDABTCD
I J KL I J KL EVF G HEVF G H
M N O P MNO P MNO PI J KL
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Determine the largest permutation group on the 16 given letters each
element of which merely permutes among themselves these 16 sets of
6 letters each, and show that its order is 16 - 15- 12 - 4. Show that
the largest subgroup which leaves the first column fixed permutes its
letters according to the symmetric group of degree 6 and that it per-
mutes the remaining 10 letters according to a simply isomorphic group
of degree 10 and order 10-9 - 8.
31. By omitting P from each sextuple in Ex. 30 in which P appears,
form the 6 quintuples in the columns of the following array :
) A E I N MM
B F J 0 O N
C 6 K A B C
H D D E F G
L L HI J K

Determine the largest permutation group on these 15 given letters each
element of which merely permutes among themselves these 6 quin-
tuples, and determine the permutation group according to which the
quintuples are thus interchanged. What is the relation between the

two named permutation groups?



CHAPTER II

Five Fundamental Theorems

10. Orders of Subgroups. The following may be regarded as
the most fundamental theorem in the theory of finite groups:

I. FIRST FUNDAMENTAL THEOREM.* The order of
a subgroup of a finite group G is a factor of the order
of G.

Let G be of order » and let H be a proper subgroup of G of
order 7. We have to show that 7 is a factor of n. Let s; =1,
s2, 3, * + -, S» be the elements of H. Form the following array
containing all the elements of G:

81, S2, 8§3, 0 Sry
t2sls 1232, t253) Tt Y t2sr;
1331, 1352) t353, %y t3sn

tAsly tASZ’ t)\s3r ] tAsr’

where /2 is any element not in the first row and in general ¢; is
any element not in the first 7 — 1 rows. It is evident that the
elements of G may be exhausted in a scheme of this sort; it is
next to be shown that no element of G occurs twice in this array.
Let #; be another symbol for the identity. Now {;s; and #;s; are
elements in the 7th row. If ¢, = ¢:s;, then s, =s; and hence
k=1. Hence each row of the array consists of r distinct ele-
ments. If 7> ¢ and if {5, = t;5;, we have ¢; = ;51501 = 1S,,
where s, is an element of H. Hence {; is in the ¢th row, contrary
to hypothesis. Therefore no element in one row is equal to any

* This has sometimes been called the theorem of Lagrange.
44
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element in another row. Therefore the elements in the array
are all distinct. Hence the array contains all the elements of G
and no element of G occurs twice in the array. Now the num-
ber of elements in the array is Ar, since there are A rows of ele-
ments with r elements in each row. Hence Ar = 7, whence it
follows that 7 is a divisor of 7.

The quotient »/r is called the index of H in G.

The learner will find it an excellent exercise to construct a
similar proof by means of an array of the form

sl’ 321 33, Tty s"

S$1T2, S2T2, S3T2, - -, ST
$1T3, S273, 8373, -°, SrT3
S1Tuy  S2Tu, S3Tws** %5 STy,

where 73 is any element not in the first row and in general 7; is
any element not in the first 7 — 1 rows. It isconvenient to use 7,
as an additional symbol for the identity ; and this we do.

These two arrangements of the elements of G in rectangular
arrays are often useful in developing the theory of finite groups.
It is convenient to denote the elements in the sth row of the first
array by ¢;H and those in the sth row of the second array by Hr,.

An element of G of order m generates a subgroup of G of order
m. Hence,

CoR. I. The order of an element of G is a factor
of the order of G.

If G is a group of prime order p, then every element of G
except the identity is of order . Hence,

Cor. II. A group whose order is a prime is a cyclic
group. It contains no proper subgroup except that
consisting of the identity alone.

11. Miscellaneous Theorems. Conjugate Elements and Sub-
groups. We shall now give some definitions and theorems which
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are important in themselves and are essential in the proofs of
the remaining four fundamental theorems.

II. The elements * common to two finite groups
G; and G: form a finite group H known as the com-
mon subgroup of G, and G..

Any two groups have the identity in common. If Sand T
are elements common to G; and Gz, then ST is in each group and
the inverse of each of them is in each group. Therefore these
common elements form a group, and this group is necessarily of
finite order.

The elements of G, and G» generate a group which may be
either finite or infinite. It is denoted by the symbol {G;, G2}.
If G, and G» are permutation groups, then it is obvious that
{G1, G2} is a finite group.

More generally the elements Sj, Sy, - - -, S, (of finite order)
and the elements of the finite groups Gy, Gz, - - -, G, generate a
group (finite or infinite) which is denoted by the symbol

{Sly SZ, R Sn) Gl, G21 tt Y Gm}-

In case all the elements involved are permutations this group
is necessarily a finite group. .
If S and T are elements of a group G, then S and T-1ST are
said to be conjugate elements of G and T—!ST is said to be a con-
Jjugate of S or to be conjugate to S. Every element S is conjugate
to itself, since S™!SS = S. If every conjugate of S in G is equal

to S, then S is said to be a self-conjugate, or normal, or tnvariant,
element of G.

III. Two elements which are conjugate in a given
finite group G have the same order.

For if S is of order m and T is any other element of G, then
(TST)"=T-1ST - T~IST- ... - T-IST=T"1S"T=1;

* In such matters as this, where the relations of two or more groups or the
relations of an element to a group are considered, it is to be understood that
all the elements involved are subject to the same law of combination.
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and if 771ST is of order m we have
Sm=T.T-1S"T - T-1= T(T-IST)"T-1=1.

Let H be a group and let S be an element which combines
with the elements of H. Then we denote by S~'HS the set of
elements obtained on transforming the separate elements of H
by S. If h; and k; are two elements of H, we have

S~U;S . S sS =S"1. hyhy- S.
Hence,

IV. If H is a finite group and S is an element
which combines with the elements of H, then H and
S—1HS are simply isomorphic groups.

The isomorphism is established by making each element in
H correspond to that element in S™1HS into which it is trans-
formed by S. If S belongs to H, then this process exhibits H
as simply isomorphic with itself.

If the groups H and S~1HS are identical, then S is said to
be permutable with H. In this case the two sets of elements
HS and SH are identical, as may be readily proved; for, if
ST1pS = hj, then 4,5 = Sh_,

If H is a subgroup of G and S is an element of G, then H
and S—!HS are called conjugate subgroups of G and S~1HS is
said to be a conjugate of H or to be conjugate to H. Further-
more, H is said to be transformed by S into S~'HS. Every
subgroup H of G is conjugate to itself, since it is transformed
into itself by each of its own elements. If H and S—!HS are
identical for every element S of G, then H is called a self-
conjugate, or normal, or invariani, subgroup of G.

It is evident that the total set of self-conjugate elements in
a finite group G forms a self-conjugate subgroup of G. This
subgroup is called the central of G.

If S, is a given element of G and if all the conjugates of S; in
G are Sy, S2,- -+, S;, then Sy, Ss, - - -, S; are said to form a com-
plete conjugate set of elements of G.

If H, is a given subgroup of G and if all the conjugates of
H, in G are the subgroups H,, Hs, - - -, Hy, then H,, Ho, - - -, H,,
are said to form a complete conjugate set of subgroups of G.
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If a group G has no self-conjugate proper subgroup other
than that consisting of the identity alone, then G is said to
be a simple group; otherwise it is said to be a composite group.

Let Sy, Sz, - -+, Si be the complete set of conjugates of
the element S; of the group G. Then any S; of the set obvi-
ously has the same complete set of conjugates, since the re-
lations S;=T,71$;T; and S;= T,;71S,T; imply the relation
S; = (T:71T;)~1S«(T;~1T;). Hence no two complete sels of con-
jugate elements have an eiement in common. Therefore the ele-
ments of G may be distributed into a certain number of complete
sets of conjugate elements in such a way as to exhaust the
elements of G without repetition. Let 7 be the number of these
complete sets of conjugates and let #; = 1, kg, k3, - - -, k, be the
numbers of elements in the different sets, #; being the number
of elements conjugate to the identity. Then if # is the order

of G, wehave 14 jthy .-+,

Let Hy, Hs, - - -, H;, be the complete set of conjugates of the
subgroup H; of the group G. Then it is easy to show (compare
the previous paragraph) that any H, of the set has the same
complete set of conjugates. Hence no two complete seis of con-
jugate subgroups contain one and the same subgroup. Again, if
S, is an element occurring in a subgroup H of G, it is obvious
that all of its conjugates occur in the complete set of conju-
gates of H.

V. The elements common to the subgroups of a
complete set of conjugate subgroups of a finite group
G form a self-conjugate subgroup H of G.

That these elements form a group H follows readily from
Theorem II. The named complete set of conjugate subgroups
of G is transformed into itself by any element whatever in G.
In this process an element of the group H is necessarily trans-
formed into an element of H. Hence the theorem.

This group H often consists of the identical element alone.

VI. The elements of a finite group G which are
permutable with a given element S of G form a sub-
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group H of G. The number of elements conjugate
to S in G is equal to the index of H in G.

This group H is called the normalizer of S in G.

If T, and T are permutable with S, then T,7:S = T,ST:
= ST,T;, whence it follows that T,T: is permutable with S.
Thence it is easily shown that the elements of ¢ which are
permutable with S form a subgroup H of G.

Let 7 be the order of H and let U; = 1, Us, Us, - - -, U, be the
elements of H, and let V be any element of G. Then we have

(U:V)~1S(U,V) = V-IU,~ISU;V = V1SV,

whence it follows that each of theelements U,V (/=1,2,-- ., 1)
transforms S into the same element V—1SV. Againif Wisanele-
ment of G which transforms S into the element V—1SV, we have
W-iISW = V~1SV, whence VW ISWV~-1= VV-1ISVV—1 = §;
whence it follows that WV~! belongs to H so that WV~! ig
equal to some U;. Then W= U;V, so that W belongs to the
set U,V (i=1,2,---,7). Therefore this set contains all the
elements of G which transform S into V—1SV. Hence the num-
ber of elements of G each of which transforms S into a given one
of ils conjugates is r. If n is the order of G, it follows then that
the number of elements conjugate to S in G (including S itself)
is n/7, and this number is the index of H in G.

VII. The elements of a finite group G which are
permutable with a given subgroup H of G form a
subgroup K of G which is either the same as H or
contains H as a self-conjugate subgroup. The num-
ber of subgroups conjugate to H in G is equal to the
index of K in G.

This group K is called the normalizer of H in G.

If T, and 7. are elements of G which are permutable with
H so that T,7'HT;=H (i =1, 2), then (T17%)~'H(T:1T2)
=T T\~ 'HT T, = T, 'HT2 = H; therefore T;T: is permut-
able with H. Thence it follows readily that the elements of
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G which are permutable with H form a subgroup K of G.
This group obviously contains H, since H is permutable with
each of its own elements. If S is any element of K, we have
S—1HS = H, so that H, when not identical with K, is contained
in K as a self-conjugate subgroup.

If Uis an element of G not contained in K, then the elements
KU, and no other elements of G, transform H into U~!HU, as
may be shown by the method employed in the proof of the
corresponding part of the preceding theorem. From this it fol-
lows readily that the number of subgroups conjugate to H in
G is equal to the index of K in G.

VIII. Let Sy, Sa, - - -, Sk be a complete set of con-
jugate elements of a finite group G, and let H denote
the group {Si, Sz, - - -, St}. Then H is a self-conjugate
(proper or improper) subgroup of G; and no self-
conjugate subgroup of G of lower order contains the
element S;.

The named generators of H are transformed, by any given
element of G, into the same set of elements,.either in the same
order or in some other order. Hence this given element of G
transforms H into itself. Therefore H is contained in G
self-conjugately.

If K is any self-conjugate subgroup of G containing the ele-
ment S;, then K must contain every element into which S; may
be transformed by elements of G. Hence K must contain all
the elements Si, Sz, - - -, Sk, and hence it must contain H itself.

An exactly similar argument may be used to prove the fol-
lowing theorem :

IX. If Hy, Hs, - - -, Hy, is a complete set of conju-
gate subgroups of a finite group G and H is the group
{H, Hy, - - -, Hy}, then H is a self-conjugate (proper
or improper) subgroup of G; and it is the smallest
self-conjugate subgroup of G that contains H;.
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X. Let S be an element of order » which is per-
mutable with a finite group G of order g and let S™
be the lowest positive power of S in G. Then m is
a factor of # and the order of {S, G} is gm.

Since S is permutable with G, it follows that every prod-
uct ST,, where T; is an element of G, can be put in the form
T,;S where T; is an element of G. Hence all the elements of
{S, G} can be obtained by multiplying the elements of G on the
right by 1, S, S%, - - -, S™~1, so that the elements of {S, G} are
all contained in the sets

G, GS, GS?, - - -, GS™~ L.

No element of {S, G} occurs twice in these sets; for if T,S* = T;S!
where T; and T; are in G and % and / are non-negative integers
less than m, k being greater than I, we have S¥~!= T,~1T}, so
that S¥~! is in G, contrary to hypothesis. Hence {S, G} is of
order gm.

If m is not a factor of n, let u be the greatest common divisor
of m and n. Then integers x and y exist such that xm + yn = u.
But S™ and S* are in G. Hence (S™)*(S™)Y, or S#mtwn or S*,
is in G, a result which contradicts the hypothesis that u is less
than m. Hence m is a divisor of z.

XI. If G and H are two finite groups such that
every element of G transforms H into itself and every
element of H transforms G into itself, and if G and
H have no common element except the identity, then
every element of G is permutable with every element
of H.

Let S be any element of G and let T be any element of H.
Then T—1ST is an element of G, since T transforms G into itself;
likewise S~1T-1S belongs to H. Therefore S™17-1ST belongs
to both G and H, since it is the product of S—! and T—1ST, both
belonging to G, and is also the product of S~17-1S and 7, both
belonging to H. But G and H have only the identity in common,
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Therefore S~1T-1ST =1, or ST = TS. Hence every element of
G is permutable with every element of H.

If G and H are two groups having no common element except
the identity and if every element of G is permutable with every
element of H, then {G, H} is called the direct product of G and H.
Similarly, we may speak of the direct product of several groups,
the direct product of » groups being the direct product of one
of them and the direct product of the other » — 1.

The reader will easily prove that the order of the direct product
of two finite groups G and H (when this direct product exists) is
equal to the product of the orders of G and H.

EXERCISES

1. If G is a cyclic group of order % and if 4 is any factor of #n, show
that G has one and just one subgroup of order d.

2. In the group {a, b} the elements ab and ba are conjugates.

3. Every element of an Abelian group is self-conjugate.

4, Every subgroup of an Abelian group is self-conjugate.

5. If S1, Ss, - - -, S, generate a finite group G, show that the ele-
ments $1Sz - - - S, and S.Sy.1 ¢ - - SxS1S2 - - S,—1 are conjugate in G.

8. If the order of an Abelian group G is a multiple of a prime num-
ber p, then G contains an element of order p. (This theorem will later
be extended to non-Abelian groups. See Cor. III in §15.)

7. An Abelian group whose order is a product of % different prime
factors is a cyclic group.

8. The elements of a finite group G which are permutable with
each subgroup of a complete set of conjugate subgroups of G form a
self-conjugate subgroup of G.

9. If His a subgroup of G and S is an element combining with the
elements of G, then S—1HS is a subgroup of S—1GS.

10. Let H be a self-conjugate subgroup of a finite group G. If H con-
tains a subgroup K of G, then it contains every conjugate of K in G.

11. If a finite group G contains a subgroup of index 2, that subgroup
is self-conjugate in G.

12. The elements which are common to two or more self-conjugate
subgroups of a finite group G form a self-conjugate subgroup of G.
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13. If S and T are conjugate elements of a finite group G, then
T = SC, where C is a commutator of two elements of G.

14. The commutator subgroup of a finite group G is self-conjugate
in G.

15. If a finite group contains only one subgroup of a given order,
that subgroup is self-conjugate.

16. If two self-conjugate subgroups of a finite group G have only
the identity in common, then every element of one of these subgroups
is permutable with every element of the other.

17. If G and H are two finite groups such that every element of G
transforms H into itself and every element of H transforms G into it-
self, then a commutator formed with an element of G and an element
of H is in the common subgroup of G and H.

18. If G and G: are two groups of order p™, where p is a prime
number, and if neither of them contains an element of order p2, then
the two groups are conformal.

19. Construct a group of order 12 which has no subgroup of order 6.

20. Denote in order by a, b, ¢, d, ¢, f, g the seven triples of three
letters each defined by the array in §4. Show that the permutations
(ABCDEFG) and (BD)(EF) permute these triples according to the
permutations (abcdefg) and (bc)(df), and prove that the two groups
{(ABCDEFG), (BD)(EF)} and {(abcdefg), (bc)(df)} are identical as
permutation groups.

21. Solve the similar problem for the array in Ex. 13 on page 24.

22. Show that the group {(ABCDEFG), (BD)(EF)} has a subgroup
of order 24 each element of which leaves A fixed, and find the complete
set of conjugates of this subgroup.

23. Show that the group {( ABCDEFG), (BD)(EF)} has a subgroup
of order 4 each element of which leaves both A and B fixed, and find
the complete set of conjugates of this subgroup.

24. For the group defined in Ex. 13 on page 24 solve the problems
similar to those in Exs. 22 and 23.

12. Representation of an Abstract Finite Group as a Regular
Permutation Group. Let G be a permutation group of degree n
on the letters a4, @, - - -, a,. If G contains permutations Si,S,
..., S, replacing @; by a, az, - - -, @, respectively, then G con-
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tains the permutation S,~!S; which replaces a; by @;. A per-
mutation group which has this property of containing a permu-
tation which replaces any given one of its letters by any other
given one is called a transitive group. A permutation group
which does not have this property is said to be iniransitive.

The group {(@iaz--- a@.)}, generated by (aaz-- - ay), is
transitive. As another example of a transitive group we have
the group consisting of the permutations

1, (ab)(cd), (ac)(bd), (ad)(bc).

These elements in order replace a by a, b, ¢, d. The octic group
affords another example of a transitive group.

A transitive group whose order is equal to its degree is called
a regular permutation group.

If the letters involved in a regular permutation group G are
ai, as, - -+, G, then there are » distinct permutations S;;, S,

.+, S;n in G which replace a; respectively by ai, az, - - -, @n.
Since there are only » permutations in G, the named permuta-
tions uniquely exhaust the elements of G. Hence the permuta-
tion S;; is the only element of G which replaces a; by @;. If T'is
an element of G which leaves any given a; fixed, then 7S;; re-
places a; by a;, whence it follows that TS;; = S;;, so that T is
the identity. Therefore the identily is the only element of a
regular permutation group which leaves fixed a leiter involved in
the group. From this it follows that all the permutations of a
regular permutation group are regular permutations.

The cyclic group {(abc)(def)} is an example of a group which
is not regular though every permutation in it is regular. It is
intransitive.

Regular groups are of great importance on account of their
applications. In fact, as we shall see in the next theorem, every
finite group can be represented as simply isomorphic with a
regular permutation group. From this it follows that many of
the general properties of finite groups may be developed by aid
of their representations as permutation groups. In practice this
is often found to be more effective than an investigation of the
properties of groups by means of any purely abstract mode of
representing them.
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‘We shall now prove the following theorem:

XII. SECOND FUNDAMENTAL THEOREM. Every
group G of finite order » can be represented as a
regular permutation group on % symbols, the latter
being simply isomorphic with G. In fact, such a
representation can be set up in two ways (as in the
following proof) and the two representations are dis-
tinct when G is not an Abelian group. Moreover,
every permutation in one of these permutation
groups is permutable with every permutation in the
other, and the n permutations of one of these permu-
tation groups are the only permutations on its letters
permutable with every permutation of the other.
Furthermore, these two simply isomorphic regular
permutation groups are conjugate under the sym-
metric group on the letters involved in them.

Let S;=1, S,, S3, ---, S. be the n elements of the given
group G. Then the z elements S;S;, S2S;, - - -, S.S; are all dis-
tinct and all belong to G, whence it follows that they are the
elements of G in some order. Then

Sl, S2’ Y Sn )
S$1Ss,  S2Si - -+, SiS:

is a permutation s; performed on the n symbols representing the
elements of G. For brevity we denote s; by the symbol

(S
= (S)

The permutation s;~s; replaces S; by S;. Hence the permu-
tation group P, consisting of the permutations sy, sg, * - -, Sy, is
transitive. Since its order is equal to its degree, it is regular. If
S; is made to correspond with s;, for every ¢, then G and P are
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exhibited as simply isomorphic, since S;S; corresponds with s;s;,
as may be seen from the relations

ss=(S (s =(s (ssi [/ S
#1=\ssi/\ss;) T \ss./\ss;s;) T \ss:s;)

The process by which this representation of G has been ob-
tained may be called post-multiplication, since in forming s; we
multiplied the elements of G on the right by S.. If we use pre-
multiplication and write

SI_ —_ Sl’ s2’ AR sn — ( S
PSS, SiTISe, -re, SiTIS.) T \STIS)

then we have a permutation group P’, consisting of the permu-
tations s§'1, §’s, - - -, §'x. Since S;7! is replaced by S;~! by the
permutation (s’;) ~!s’;, it follows that this group P’ is transitive
and thence that it is regular. Moreover, we have

= (529559 = (629) (5 He2)
VITASTIS/\SiS S.~1S/\S;718,71S

- (sj-lgi-ls) - ((sfsf)-IS)

and this is the permutation corresponding to S;S;. Hence by
making S; and s’; correspond for every ¢ the groups G and P’ are
exhibited as simply isomorphic.

Now if s; = §’;, we have

(sii) B <s,-§ls>’

whence SS; = S;!S for each element S of G. Taking S; for S,
we have S; = S;71. Hence SS; = S;S, so that S; is permutable
with every element of the group. From this it follows that the
two representations of G are distinct except in the case when
G is an Abelian group. That is, when G is not Abelian the per-
mutation groups P and P’ are distinct as permutation groups
in the sense that the set of permutations in one is not the same
as the set of permutations in the other. But they are simply
isomorphic, since each is simply isomorphic with G.
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From the relations

o S S (S SS; — S e
585= (ssi> (sj-15> = (s&) (s,--lssn) (s,--lssi) = S

we see that every permutation in one of the groups P and P’ is
permutable with every permutation in the other.

Let s be any permutation on Si, S, - - -, S, which is permut-
able with every permutation in P’ and let S be the letter by
which S; is replaced by s. Then s—!s; leaves S; unchanged
and it is permutable with every permutation in P’. By aid of .
Theorem VI in § 2 it follows readily that such a permutation
leaves fixed each of the letters Sy, S, - - -, S,, since P’ is transi-
tive on these letters. Hence s—1s; is the identity, and therefore
s =s; Hence P contains every permutation (on its letters)
which is permutable with every permutation in P’. In a similar
way it may be proved that P’ contains every permutation (on
its letters) which is permutable with every permutation in P.

Let t denote the permutation

t=(sln SZ’ t Y S’n =(S .
Sl_l, Sz'-l, sy Sn—l - S“l

Then from the relations

(s§1>—l<s§i)<s§1>=(sg 1)<s§sz~>(<s§§>i~l)=<si§:sl-l)=(srs 18)

it follows that {—1s,f = s;/. Hence the group P’ is conjugate to
the group P under the symmetric group on Sy, Sz, - - -, Sy.

This completes the proof of the theorem.

The groups P and P’, occurring in the foregoing proof, are
called conjoint groups. If P is Abelian, it coincides with its
conjoint ; otherwise the conjoints (though conjugate) are dis-
tinct in the sense that the set of permutations in one of them
is not the same as the set in the other.

We shall now prove the following corollary :

Cor. Two simply isomorphic regular permutation
groups K and K’ on the same set of »n letters are
conjugate subgroups of the symmetric group on those
letters.
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Let ay, a, - - -, a, be the = letters involved, and for each 7
of the set 1, 2, - - -, n let S; be that permutation of K which
replaces a; by a;. Let S’; denote the permutation in K’ which
corresponds to S; in K in the isomorphism of K and K’, and
let S'; replace a1 by ax;. Let o, be the transform of S’; by the

permutation
(alr ak2! Tty akn).

a1, G2, -, Gy

Then o, as well as S;, replaces a@; by a;. To establish the corol-
lary it is sufficient to show for each 7 that S; and ¢; denote the
same permutation.

The group composed of the permutations g1, o2, - - -, 0, is
simply isomorphic with K, o; corresponding to S; for each .
Then S corresponds to o*; hence they both replace @, by
the same letter. Therefore the cycle in S; which contains a; is
the same as the cycle in ¢; which contains @, this result holding
foreach7of theset 1, 2, - - -, n.

Let (aibib: - - - b,) be a cycle of Sy not containing @, (in case
such a cycle exists) and let (aicice - - - ¢») be a cycle of o, not
containing @;. Then S,~*S;~! replaces b, by a1 while g, %g;™1
replaces ¢, by ;. Hence b, and ¢, denote the same letter, since
S\?S;7! and o0,7P¢;”! have the same cycle containing a;.
Therefore Sy and ¢, denote the same permutation. Since this
holds for A =1, 2, - - -, n, the proof of the corollary is complete.

13. Sylow’s Theorem. We shall now prove the following theo-
rem, which is known as Sylow’s theorem :

XIII. THIRD FUNDAMENTAL THEOREM. Let G be
a group of order » and let p* be the highest power
of a prime p contained in # as a factor, a being a
positive integer. Then G contains at least one sub-
group of order p*. All its subgroups of order p°
form a single complete conjugate set, and their num-
ber is 1 4 kp, where k is an integer (positive or zero).

Such a subgroup of order p° is called a Sylow subgroup.
Write » = p*m. Then m is prime to p. If m =1sothat Gis
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of order p%, then G itself is the only subgroup of G of order p*;
whence it follows that the theorem is true in this case. Hence-
forth suppose that m > 1.

In order to prove the existence of at least one subgroup of
order p* we represent G as a regular permutation group P on
Sy, Ss, - -+, Sn, as in the proof of the preceding theorem. Let
p? be the highest power of p which is less than p*m. Let T
denote any permutation of order p and degree p# on part of
the letters Sy, Ss, - - -, S.. Then T cannot be transformed into
itself by every permutation of P (since P is a transitive group),
as one sees by aid of Theorem VIin § 2. Let T, =T, To,---, T},
where r > 1, be the total set of distinct permutations into
which T is transformed by the permutations of P. The totality
of permutations in P each of which transforms T into itself
evidently forms a group Pr; let & denote the order of this
group. Let V; be a permutation in P which transforms T into
T;. Then if U is any permutation in Pr the permutation UV;
transforms T into T;, since

(UV)IT(UV) =V, 1- U\ TU- V; =V, 1TV, =T..

Conversely, if W is any permutation in P which transforms T
into T, then W has the form UV, where U belongs to Pr, since
from the relation W—I1TW = T; = V,;"1TV; we have

ViW-ITWV;"1=T or (WV, ") IT(WV,"1))=T,

so that WV;~! is a permutation U which transforms 7T into
itself, whence W = UV;. Hence the number of permutations in
P each of which transforms T into T;is &, & being the order of
Pr. Then, writing 7, for r and 4, for h, we have

pm = rh. n>1)

Now consider the totality M of permutations of order p and
degree p# on the letters Si, Se, - - -, S». Let their number be s.
If s> r,let T, denote one of these permutations not in the set
Ty, To, - -+, Tr. Let the number of conjugates into which it is
transformed by the permutations in P be 7, and let 2 be the
order of the subgroup of P each permutation of which transforms
T.;1 into itself. Then, as in the preceding case, we have
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pm = rehe and 72 > 1. If the totality M is not exhausted, con-
tinue the process. Since it must finally be exhausted, we shall
have sequences of numbers 7; and #; with 7 varying from 1 to u
(say) such that

s=n+r+--41.
p“m:nki. (T,'> 1; 1= 1, 2’ ceey #)

We shall next show that s is prime to p. For this purpose we
observe first that the totality M forms the complete set of con-
jugates of T under the symmetric group on S;, Se, - - -, Sn, since
each permutation in M can be transformed into any other by a
permutation in this symmetric group, as one sees readily by aid
of Theorem VI in § 2. Now consider the following permutation
inthe set M:

D= (5182 Sp)(Sp41 -+ Sep) * + * (SpB—ps1 -+ Sph).
It is transformed into itself by each element of the group
{(S1S2 - - - Sp), (Sp41- -+ Sep)y * =+ (SpBpt1 - SpB)},

a group whose order is p”ﬁ—l. It is also transformed into itself
by any permutation on its letters which permutes the cycles of
D and retains the letters in each cycle in their given order;
and the totality of such permutations obviously forms a group
of order (p#—1)!, this being the number of permutations of p8—!
objects, here taken as the cycles of D. Thus we have two groups
such that D is transformed into itself by each element in either
of them. These two groups have no element in common except
the identity. If « is an element of the first group and 8 is an
element of the second group, then it is easy to show that
B~ 'af is an element o’ of the first group. From the relation
B laf = o' we have a8 = Ba’. From this it follows that every
permutation in the group K generated by the elements of these
two groups can be written as a product AB, where A belongs to
the first group and B to the second. Hence the order of K is
equal to the product of the orders of these two groups and

hence is
@t P
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Moreover, D is also transformed into itself by the symmetric
group on Sy8,1, - - -, S;em. The direct product of K and this
symmetric group is a group L of order
(rm — pP)! - (PP 7
Since this group L is contained in the largest subgroup of the
symmetric group on Si, Se, - - +, S, under which D is transformed
into itself, it follows from Theorem VI of § 11 and Theorem I
of § 10 that the number s of conjugates of D under this symmet-
ric group is a factor of the quotient
(rm)! = [(p*m — p9)! - (== H)1- p7 7],

which quotient is prime to p, as may be shown * from the fact
that pé is the largest power of p which is less than p*m. Hence
s is prime to p, as was to be proved.

Since s is prime to p and we have shownthats=7+---+7,
it follows that at least one of the numbers 7; is prime to p.
Let 7, be such a number. Then, from the relation pem = 1,h,
(r, > 1), we see that &, is divisible by p= and is less than pem.

But %, is the order of a proper subgroup of P; whence it
follows that G has a proper subgroup of order &,. If &, > p*, we
may apply to this subgroup of G of order 4, the same process as
that just applied to G itself, and with the conclusion that it con-
tains a proper subgroup whose order is divisible by pe. It is
clear that this process may be continued until we arrive at a
subgroup of G of order p=. This proves the existence of at least
one subgroup of order p* in G.

Let H be a subgroup of G of order p* and let S be an element
of G of order p» (v = 0) which is permutable with H. Let p° be.
the order of the greatest subgroup which is common to {S} and
H. Then from Theorem X in § 11 it follows that the group {S, H}
is of order p*t7—%, But G does not contain a subgroup of order
p*, where p > a. Hence v = 4. Therefore the element Sis in H.

*To prove this observe first that the named quotient may be written in the
form
1-2:3---- - pB B+ V(pB +2)(pE +3) - - - (PP +[pem — pF])
p-2p.3p.....pp—1p 1'2'3""'@%—-1)9)
and then that the denominator in the first fraction contains every multiple of p -
appearing in its numerator.
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If G contains only one subgroup of order p=, then our theorem
is true for G. For the remainder of the proof we may then sup-
pose that G contains more than one subgroup of order p=.

We shall now prove that the number of conjugates of H in
G is equal to a multiple of p increased by unity. If H is self-

- conjugate, the fact is granted. If H is not self-conjugate, let
H’ be any subgroup which is conjugate to H in G and is differ-
ent from H. Let p» be the order of the greatest subgroup &
which is common to H and H’. When H’ is transformed by all
the elements of H, the only elements which transform H’ into
itself are those of %, and these are p7 in number. Hence H’ is
transformed by the elements of H into p—» distinct conjugate
groups. If these do not exhaust the conjugates of H in G, let
H'’’ be a new conjugate of H in G. If p*’ is the order of the great-
est subgroup common to H and H'’, then the elements of H
transform H’’ into p=— distinct conjugates of H different from
H. No subgroup of this set is identical with a subgroup of the
previous set ; for, if

P, 1H"P, = P, 1H'P,
and P; and P; belong to H, then we have
(PP, Y)"1H'(P:Py~ ') = H"

so that H” is in the first set, contrary to hypothesis. If the set
of subgroups conjugate to H is not yet exhausted, the process
may be continued. Finally, we must exhaust the set of conju-
gates of H in G. Then their number has the form

14 poon po=r' - -,

where each of the exponents a — 5, &« — %, - - - is greater than
zero. Therefore the set of groups conjugate to H in G is in
number 1 + kp, where % is an integer.

We shall now show that there is no subgroup of G of order
P~ which is not conjugate to H. For, if H; is such a subgroup,
the number of its conjugates is 1+ k;p, where %, is an integer,
as one sees from the result in the previous paragraph. But if
we transform H; by the elements of H, then a set of p*~< (a > o)
conjugates of H, is obtained, p= being the order of the greatest
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subgroup common to H and H;. If these are not all the con-
jugates of H; in G, an additional conjugate of H; can be trans-
formed similarly into p*—°’ conjugates, where o — o’ > 0. By
continuing this process we must finally exhaust the conjugates
of H; and thus show that the number of them is a multiple of
p. This contradicts the conclusion that their number is 1 + kip.
Hence all the subgroups of G of order p= are contained in the
conjugate set treated in the preceding paragraph.
This completes the proof of the theorem.
Cor. I. The only elements of G which are per-
mutable with a Sylow subgroup of G of order p= and
whose orders are powers of p are the elements of that

Sylow subgroup.
This was proved in the course of the argument.

CoR. II. The number 1 + kp of Sylow subgroups
of G of order p* is a factor of the order of G.
This follows from the latter part of Theorem VII of §11

| and the fact that the Sylow subgroups of order p* constitute a
complete set of conjugate subgroups of G.

Cor. III. The number 1 + kp in the theorem may
be written in the form
1+kp=1+kp+kep?+---+kp*
where k,p" is the number of Sylow subgroups of order
p* each of which has with a given one of these sub-
groups a greatest common subgroup of order p*~".

This follows readily from the arrangement of the Sylow sub-
groups of G into the sets given in the proof of the theorem.

Cor. 1IV. If K is a subgroup of G of order p?,
where \ < «, then K is contained in a subgroup of
G of order p°.
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It is sufficient to prove that K is contained in a subgroup
of order p**1, for then the process can be continued until it is
shown that K is contained in a subgroup of order p=. If K is
not contained in a subgroup of order p*+1, then the only ele-
ments whose orders are powers of p, such that each of them
transforms K into itself, are elements of K, a fact which may
be established in the same way as a similar result was derived
in the proof of Sylow’s theorem. Then the methods used in
the proof of the theorem may be employed to show that the
number of conjugates of K in G must be 1 4 ksp, where &, is an
integer, and also that this number must be divisible by p. Since
this contradiction arises under the hypotheses employed, we
see that K must be contained in a subgroup of order p*+1,

The three fundamental theorems already given have been
called by G. A. Miller * the three most important theorems
about finite groups.

EXERCISES
1. Show that the symmetric group of degree 4 has just three Sylow
subgroups of order 8 and just four Sylow subgroups of order 3.

2. The greatest common subgroup of the Sylow subgroups of order
p*= of a finite group G is a self-conjugate subgroup of G.

3. Find the self-conjugate subgroup of the symmetric group of
degree 4 which is common to its Sylow subgroups of order 8.

4. If two Sylow subgroups of G of the same order are in a subgroup
K of G, then they are conjugate in K.

5. Show that a group of order 200 contains a Sylow subgroup
which is self-conjugate, and hence show that no group of order 200
can be siraple.

6. Show that there is no simple group having its order equal to one
of the following numbers: 204, 260, 2540, 9075.

7. Show that there is no simple group of order 12 or 30 or 56 or 520.
8. Find the Sylow subgroups of the alternating group of degree 4.

9. A group of order pg, where p andg are primes and p > g, con-
tains only one subgroup of order p and is therefore a composite group.

* Miller, Blichfeldt, and Dickson, Finite Groups, pp. 23, 30, 64.
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10. Show that every group of order 15 is cyclic.

11. Show that the number of cyclic permutations of order p that can
be formed from p letters is (p — 1)!. If p is a prime number, show that
the number of Sylow subgroups of order p in the symmetric group of de-
gree p is (p — 2)!, and thence prove that (p — 1)! + 1 is divisible by p.

12. If a prime number p is a factor of the order of a finite group G,
then G contains an element of order p.

13. Show that a group of order p2, where p is a prime number, is
either a cyclic group or an Abelian group generated by two elements
each of order p. Represent the latter as a regular permutation group.

14. Represent the alternating and the symmetric group of degree 4
each as a regular group.

15. Determine the Sylow subgroups of order 7 in the group T,
T = {(ABCDEFG), (BD)(EF)}, of order 168, first showing that their
number is 8.

16. Show that the group of order 660 in Ex. 13 on page 24 has just
twelve Sylow subgroups of order 11, and find them.

17. Denote by ai, @, - - -, ag (in some convenient order) the eight
Sylow subgroups of order 7 in the group I' of Ex. 15, and construct
the permutations on a;, as, - + +, as according to which these Sylow sub-

groups are permuted when they are transformed by (ABCDEFG) and
(BD)(EF), and show that these permutations generate a transitive
group of degree 8 which is simply isomorphic with T'.

18. Construct a transitive group of degree 12 which is simply iso-
morphic with the group of degree 11 mentioned in Ex. 16. (Compare
Ex. 17.)

19. If p# (8 > 0) is the highest power of a prime p which does not
exceed an integer n, show that the number of permutations of degree
p? and order p in the symmetric group of degree % is prime to p.

20. Show that the number of permutations on nk letters each of
which is permutable with a given regular permutation of order » and
of degree nk on these letters is n* - k!.

21. If a group G has only one Sylow subgroup of order p=, then G
contains just p* elements whose orders are factors of p=.

22. If n is an integer greater than 3 and p is a prime not greater
than #, then the symmetric group of degree # contains more than one
Sylow subgroup of order p°.
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23. Let H be a self-conjugate subgroup of order p# contained in a
group G. Then H is contained in every Sylow subgroup of G of order
.

24. The greatest common subgroup of the groups P and P’ intro-
duced in the proof of Theorem XII of § 12 is simply isomorphic with
the central of the group G of that theorem.

14. Generators of Abelian Groups. Since all the Sylow sub-
groups of a given order in a finite group G form a single com-
plete conjugate set, it follows that a given Abelian group can
have only one Sylow subgroup of a given order. Hence, since
two of these subgroups have no element in common except
the identity, we have the following theorem :

XIV. An Abelian group whose order is not a
power of a prime number is the direct product of
all its Sylow subgroups.

From this it follows that two Abelian groups which have
their Sylow subgroups simply isomorphic are themselves simply
isomorphic. Therefore the problem of determining all possible
abstract Abelian groups is reduced to the case of prime-power
Abelian groups.

We shall now prove the following theorem, called by G. A.
Miller * the most important theorem relating to Abelian groups :

XV. FoURTH FUNDAMENTAL THEOREM. A non-
cyclic Abelian group G whose order is a prime-power
p™ is the direct product of cyclic groups no two of
which have any element in common except the
identity.
Let S; be an element of G whose order p™: is not less than
that of any other element in G. We take {S;} to be one of the

cyclic groups named in the theorem. If any element of G is
raised to the power whose exponent is p™, the result is the iden-

* Miller, Blichfeldt, and Dickson, Finite Groups, p. 89.
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tity and hence is in {S;}. Let m; be such that the (p™2)th power
of every element of G is in {S}, while G contains an element T3
whose (p™:—1)th power is not in {S;}. Since {Si} is cyclic and
since G contains no element of order greater than p™, it follows
that every element which is in {S;} and is the (p™)th power of
an element of G is a (p™)th power of an element of {S;}. Let
T2’ be an element in {S;} whose (p™)th power is the inverse of
the (p™)th power of T>. Then the (p™)th power of To'Ts is the
identity. Moreover, no lower power of T»'T; is in {S;}, since
such a power is the product of two factors one of which is in
{S1} while the other is not. Put T5'T; =S,. Then {S;} is the
second one of the cyclic groups named in the theorem.

If {S1, Sz} is not identical with G, let m3 be such that the
(p™)th power of every element of G is in {S;, Sz}, while G con-
tains an element T3 whose (p™~1)th power is not in {Si, Sz}.
Then there is an element T3’ in {S;, Sz} whose (p™)th power is
the inverse of the (p™s)th power of 7'5. Then, if we put T3’ Ts=Ss,
the element S; is of order pms, while no power of S; lower
than the (p™)th is in {S;, Sz}. We take {Ss} to be the third
one of the cyclic groups named in the theorem. If {Si, S, S}
is not the same as G, we may continue the process. Finally we
have G expressed as a direct product {S;, Sg, - - -, Si} of cyclic
groups, as demanded in the theorem.

If the orders of Si, S, - - -, Si are p™, p™s, . . ., p™ respec-
tively, then we say that G is of type (m1, ms, - - -, m;). Obviously
we have m = m; + ms + - - - + m.

That an Abelian group of order p™ and type (m1, mo, - - -, m;)
exists for every possible separation of m into the sum
m = my 4+ mg + - - - + my, where mi, mp, - - -, m;, are positive
integers, is readily seen. For, if the a;; form a set of distinct
letters, such a group is generated by the permutations

Si= (aaatz - -+ ay;). (mi=pm™;i=1,2,---, k)

By means of Theorems XIV and XV and the examples of
permutation groups just indicated, all possible abstract Abelian
groups may be determined (see § 23).

15. Prime-Power Groups. From Sylow’s theorem it follows
that every group whose order is not a power of a prime contains
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two or more prime-power subgroups. Moreover, from the first
fundamental theorem it follows that a given group may be
generated by the elements in a set of Sylow subgroups if this
set contains one Sylow subgroup of each possible order; for
these subgroups generate a group whose order is at least as
great as that of the given group, and hence the group so gen-
erated coincides with the given group. This fact shows the
great importance of prime-power groups in the development of
the general theory of finite groups.

We shall now prove the following theorem, called by G. A.
Miller * the most important theorem relating to prime-power

groups:

XVI. FIFTH FUNDAMENTAL THEOREM. A prime-
power group G of order p™ contains a self-conjugate
element of order p.

When G is an Abelian group the theorem is obvious. Then
suppose that G is non-Abelian. Let S be an element of G which
is not self-conjugate, and consider the complete set of conju-
gates to which S belongs. From Theorem VI of § 11 it follows
that the number of conjugates of S is a factor of p™, and hence
the number is p*, where « is some positive integer. Therefore
the elements of G which are not self-conjugate fall into sets, each
set containing a number of elements which is divisible by p.
Since no two of these sets have an element in common (§ 11), it
follows that the number of elements in G each of which is non-
self-conjugate is a multiple of p, say that it is /. But the num-
ber of elements in G besides the identity is p™ — 1. Let & be the
number of self-conjugate elements in G besides the identity.
Then &+ Ip = p™ — 1, whence it follows that & + 1 is divisible
by p. This conclusion is not valid if & is zero. Hence G has a
self-conjugate element besides the identity; and the order of
such an element is necessarily a power of p. An appropriate
power of such an element is of order p and is self-conjugate in G.
Hence the theorem follows..

* Miller, Blichfeldt, and Dickson, Finite Groups, p. 119.
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Cor. I. The number of self-conjugate elements in
G is a power of p.

For the self-conjugate elements in G obviously form a group
(which is Abelian), and this is a subgroup of G.

Cor. II. A group H of order p2 is Abelian.

If H contains an element of order p?, it is cyclic and hence
Abelian. If H is not cyclic, let S be a self-conjugate element of
order p and let T be an element of H which is not in {S}. Then
T-1ST = S, so that S and T are permutable. It is obvious that
they generate the group H.

Cor. III. Every group whose order is a multiple
of a prime p contains an element of order p.

This is an immediate consequence of Sylow’s theorem and
Theorem XVI.

EXERCISES

1. A prime-power group of order pm is composite if m > 1.

2. If a group G of order p3 contains more than one self-conjugate
subgroup of order p, then G is Abelian and noncyclic.

3. If every Sylow subgroup of G is self-conjugate, then G is the
direct product of its Sylow subgroups. (Use Theorem XI of § 11.)

4. If G is a cyclic group of prime-power order p=, then every ele-
ment of G of order p=, where 0 < a < m, is the pth power of just p dis-
tinct elements of order p=+1!.

5. If G is a cyclic group of prime-power order p=, then a single
generating element of G may be chosen in just p= — p™~! ways.

6. If G is an Abelian group of order p2 and type (1, 1), then two
elements to generate G may be chosen in just (p2 ~ 1)(p2 — p) differ-
ent ways.

7. Determine all abstract groups of order less than 16 and thus
verify that the number of each order is that given in the following
scheme:

ORDER

1 23 456 7 8 910 11 12 13 14 15
Numeer 1 11 212152 2 1 5 1 2 1
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8. If G is an Abelian group, the totality of elements of G whose
orders are factors of a given integer k form a subgroup of G.

9. If G is an Abelian group, the totality of elements of G which are
kth powers of elements of G form a subgroup of G.

10. An Abelian group of prime-power order p7 contains a subgroup
of order p»—1 and hence of every order k where £ is a factor of pm.

11. An Abelian group of order n contains a subgroup of order &
where % is any factor of .

12. Let # be a number such that a group G of order » and a factor d
of n exist of such sort that G has no subgroup of order d. Prove that »
is the product of three or more (equal or distinct) prime factors.
Thence show that 12 is the least possible value of #.

13. How many elements of each order are there in each of the four
Abelian groups of order 36?

14. Let G be a group of order p2q, where p and g are primes such
that ¢ is less than p and 1s not a factor of p2 — 1. Show that G is an
Abelian group.

15. Show that the elements of highest order in a prime-power
Abelian group G generate G.

16. If a group G of order 56 contains eight subgroups of order 7,
then every proper subgroup of G is an Abelian group.

17. If a group G is the direct product of its Sylow subgroups, so is
every subgroup of G the direct product of its Sylow subgroups.

18. If the commutator of every pair of elements in a finite group G
is permutable with each element in the pair, then G is the direct
product of its Sylow subgroups.

19. Two conformal Abelian groups are simply isomorphic.

20. Let G be a finite group half of whose elements are of order 2
while the remaining elements form a subgroup H of order n. Show
that H is Abelian and that z is odd, first proving that an element of
order 2 transforms an element not of order 2 into its inverse and hence
that H is self-conjugate in G.

21. Construct a group G of order 2 # having the properties assigned
to G in the preceding exercise.
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MISCELLANEOUS EXERCISES

1. If each element of a finite group H transforms a finite group G
into itself, then {G, H} is a finite group whose order is the order of
G multiplied by the index in H of the greatest common subgroup of G
and H.

2. Show by an example that when G and H are given, H being a
subgroup of the finite group G, it is not always possible to choose
ti, &3, - - -, I, in the first rectangular array in § 10 so that they form
a group. Give an example in which they do form a group.

8. If H is a proper subgroup of G, then the complete set of conju-
gates of H cannot contain all the elements of G.

4. If H is a proper subgroup of G, then H cannot contain elements
from every complete set of conjugate elements in G.

5. If p is an odd prime, show that a non-Abelian group of order p3
exists which is conformal with the Abelian group of order p3 and type
(1,1, 1). (Use Ex. 18 on page 53 and Ex. 26 on page 42.)

6. Show that a necessary and sufficient condition that the two sets
4LH, :H, - - -, t,H and Hr,, Hrs, - - -, HT), of elements of G, employed in
§ 10, shall be identical as sets (except possibly for order) is that H shall
be a self-conjugate subgroup of G.

7. The elements which are permutable with each element in a
complete set of conjugate subgroups of a finite group G themselves
form a self-conjugate subgroup of G.

8. If for every complete set Sy, S, - - -, Sk of conjugate elements of
a finite group G, other than that consisting of the identity alone, the
group {Si1, Sy, - - -, Sk} coincides with G, then G is simple; otherwise
G is composite.

9. For a given group G of order =, define numbers &, ks, - - -, h,
as in the second paragraph preceding Theorem V in § 11. If no sum
s=hy + ha + - - - formed with a proper subset of two or more of these
A’s, which set includes h,, is a factor of #n, show that G is simple.

10. Let S be an element of the finite group G and let H be a sub-
group of G. Then the group generated by the complete set of conju-
gates of S and the complete set of conjugates of H is self-conjugate in G.

11. The tth powers of the elements of a finite group G generate a
self-conjugate (proper or improper) subgroup of G.
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12. Let G and H be two groups of orders m and # respectively, and
suppose that every element of G transforms H into itself and that every
element of H transforms G into itself. Let N be the order of {G, H},
and let 8 be the order of the greatest common subgroup D of G and H.
Then prove that mn = N6.

13. Determine the permutation group according to which the 13
quadruples defined by the array in Ex. 8 on page 40 are permuted by
the permutation group defined in that exercise, and investigate the
relation between this new group and that defined in the named
exercise. (Compare Ex. 20 on page 53.)

14. Show that the group defined in Ex. 8 on page 40 contains a sub-
group of order 12 - 9 - 4 each element of which leaves A fixed, and find
the complete set of conjugates of this subgroup.

15. Show that the group defined in Ex. 8 on page 40 contains a sub-
group of order 9 - 4 each element of which leaves both A and B fixed,
and find the complete set of conjugates of this subgroup.

16. By means of the preceding Ex. 13 and Ex. 9 on page 40, con-
struct two simply isomorphic groups of degrees 12 and 9 respectively,
the order of each being 9 - 8 - 6.

17. Show that the group of order 13 - 12 - 9 - 4, defined in Ex. 8 on
page 40, has 144 Sylow subgroups of order 13, and show how to find
these subgroups.

18. If a group of order 60 has no self-conjugate subgroup of order 5,
then it must have just 6 subgroups of order 5. Show that there is one
and only one abstract group of order 60 which has 6 subgroups of order
5, and prove that it is simply isomorphic with the alternating group of
degree 5.

19. Show that there exists a single abstract group of order 84 con-
taining just 28 subgroups of order 3.

20. If p is a prime of the form 6 % + 1, show that there are just 6
abstract groups of order 6 p.

21. If p is a prime of the form 6 & + 5, show that there are just 4 ab-
stract groups of order 6 p.

22. Show that there are just 15 abstract groups of order 24.

23. Determine all the abstract groups whose orders do not exceed
26. (Compare Ex. 7 on page 69 and Ex. 22 on this page.) Show that
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the number of each order from 16 to 26 is that given in the following
scheme:

ORDER 16 17 18 19 20 21 22 23 24 25 26
NumBer 14 1 5 1 5 2 2 115 2 2

24, If G is a prime-power group of order p™ in which no conjugate
set contains more than p* elements, show that the (p*)th power of every
element is self-conjugate.

25. Let G be a prime-power group of order p™ in which any (what-
ever) element is either self-conjugate or belongs to a complete set of p
conjugates. Show that an element of G is either self-conjugate in G or
self-conjugate in a subgroup of G of index p.

26. Show that every commutator in the group G of Ex. 25 is a self-
conjugate element.

27. Show that an Abelian group of order 32 and type (1, 1, 1) has 13
subgroups of order 3 and also 13 subgroups of order 9 and that the sub-
groups of order 3 are distributed into 13 sets of four each, the four in
each set belonging to a subgroup of order 9. By means of this result
construct an array like that in Ex. 8 on page 40.

28. Show that a prime-power Abelian group of order p3 and type
(1, 1, 1) has p2 + p + 1 subgroups of order p and the same number of
order p? and that a subgroup of order p2 contains just p + 1 of these
subgroups of order p.

29. By aid of the result in Ex. 28 arrange 31 (= 52 + 5 + 1) letters
into 31 sets of six each so that any given pair of the letters occurs in one
and just one set of six and so that any two sets of six have one and just
one letter in common. (Compare Ex. 27.)

30. Determine the number of subgroups of each of the orders
b, p2, p® in a prime-power Abelian group of order p* and type (1,1, 1,1).

31. Show that a prime-power Abelian group of order p™ and type
(1,1, -+, 1)hasjust p=~—1 + p™=2 4 ... 4 p + 1 subgroups of order p
and the same number of subgroups of index p.

32. Let G be an Abelian group of order 16 and type (1, 1,1, 1). Show
that its 15 elements of order 2 may be separated into five sets of three
each so that each set of three with the identity forms a group of order

4, and prove that this separation into sets may be carried out in just
56 distinct ways.



CHAPTER III

Additional Properties of Groups in General

16. Isomorphism. Let G and T" be two groups among whose
elements a correspondence of the following sort may be es-
tablished: To each element v of I' there corresponds one or
more elements g, g’, g”’, - - - of G; to each element g of G there
corresponds one or more elements vy, v/, v/, - - - of I'; if g; and
g; are any elements of G, and v, and +; are any elements of I’
corresponding, respectively, to g; and g;, then the element g.g; of
G corresponds to the element -y;v; of I'. Two groups G and T’
so related are said to be isomorphic, and the named relation is
said to constitute an dsomorphism, or a general isomorphism, be-
tween Gand I'.

In order to have an example of the general isomorphism of
two groups, consider the groups G and I', namely,

1 (abc) (ach)

. (@b)(cd) (acd) (bed) . 1 (@B7)  (avB)
(ac)(bd) (bdc) (aba) (ab) (aBy)(ad) (avPB)(ab)
(ad)(bc) (adb) (adc)

The required isomorphism is established by making each ele-

ment in the sth column of elements of G correspond to each

element in the ith column of elementsof T for s =1, 2, 3. That

this exhibits an isomorphism the reader may readily verify.
We shall now prove the following theorem :

I. Let G and T be isomorphic groups. Then the
elements of G which correspond to the identity in T
constitute a self-conjugate subgroup H of G. If &
is the order of H, then k elements of G correspond

to each element of T'.
74
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If both g; and g in G correspond to 1 in T, then g;g; corre-
sponds to 1-1, or 1, in I'. Hence the elements named in the
second sentence of the theorem constitute a subgroup H of G.
If g is any element of G and v is one of its correspondents in I',
and if g, is any element in G which corresponds to 1 in I', then
g 1.g;-g corresponds to y~!-1-+, or 1. Hence H is self-
conjugate in G.

If g; and g; in G correspond to v in T', then g;~!g; corresponds
toy~lv,or 1,inI'. Hence g;~1g, isin H. From this it follows
readily that each element g; in G which corresponds to v in T’
belongs to the set g;H, where g; is a particular one of them. But
if A is in H, then g;h; corresponds to v - 1, or v. Hence the ele-
ments g;H, and these alone, are elements in G which correspond
to v. Since their number is %, the last part of the theorem is
established.

From the foregoing theorem we see that if G and I are iso-
morphic groups, and if the largest group in G whose elements
correspond to 1 in T is of order &, while the largest group in T’
whose elements correspond to 1 in G is of order 7, then to each
element in T there correspond % elements in G while to each
element in G there correspond 7 elements in I'.  The group G is
then said to have an (h, 1) isomorphism with the group I'.
When % = = 1 the two groups are said to be simply isomorphic.
The notion of simple isomorphism we have already met in §9
and have used it on several occasions. The case which is next
in importance is that in which £#>1and n=1 (or k=1 and
n>1). When 2>1 and n=1, then G is said to be multiply
isomorphic with T'. In this case only one element in T’ corre-
sponds to each element in G, while to each element in I' there
correspond % elements in G.

II. When G has an (k, 1) isomorphism with T,
the order of each element in T is a factor of the order
of each corresponding element in G.
For if S in G corresponds to T in T' and T is of order 7, then

S corresponds to 77 and hence to 1. Then §” is the lowest posi-
tive power of S in the subgroup of G consisting of those elements
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of G each of which corresponds to 1 in I". Hence the order of S
is a multiple of 7.

III. If G and T, of orders » and » respectively,
have an (%, 5) isomorphism, then ny = vh.

Suppose that all correspondences of elements of G with ele-
ments of I' are written down, each correspondence appearing
just once. Then each element of G occurs just 5 times and each
element of I' occurs just % times. Hence the number of corre-
spondences is #n. It is also vh. Hence nn = vh, as was to be
proved.

17. Isomorphisms of a Group with Itself. If g is an element
of a group G and if each element of G is made to correspond to
its transform by g, then G is exhibited as simply isomorphic
with itself, since the product gig» corresponds to g 1g1g.g
=g-lg,g- g~ gg. In this isomorphism not every element will
correspond to itself unless g is permutable with every element
of G. In the case of an Abelian group the only correspondence
which can be established in this way is that in which each ele-
ment corresponds to itself. But if G is Abelian and u is prime
to the order of G, then an isomorphism of G with itself can be
established by making each element correspond to its own uth
power. For then g;g2 will correspond to (gig2)* = gi*ge*. Thus
we have two special ways of establishing an isomorphism of a
group with itself.

In general, if a correspondence is established among the ele-
ments of a group G such that to every element there corresponds
a unique element and such that when S and T are any two ele-
ments of G and their correspondents are the elements S’ and 77
of G it is true that S’T’ is the correspondent of ST, then the
group G is said to be exhibited as simply isomorphic with ilself.
If each element corresponds to itself, the isomorphism is called
the identical isomorphism.

IV. In every isomorphism of a group with itself
two corresponding elements have the same order; in
particular, the identity always corresponds to itself.
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If 1 corresponds to S and S is of order # (» > 1), then 1 cor-
responds to S*, or 1, so that the identity has two correspond-
ents; and this is impossible. Hence the identity always cor-
responds to itself. If S corresponds to o, then S* corresponds to
o*. Hence, unless S and ¢ have the same order, we should have
the identity corresponding to another element if we take & to be
the order of S and S is of lower order than ¢.

Let the elements of a finite group G be denoted by S; =1,
Sz, S3, - - -, S.. In an isomorphism of G with itself let S; corre-
spond to S’;. This isomorphism we may use to define a permuta-
tion on the elements of G, namely, the permutation

G5 8w )
1y 2y - Sl T\
We shall say that this is the permutation corresponding to the
given isomorphism. It is obvious that the permutations thus
corresponding to two distinct isomorphisms are themselves
distinct.

To the totality of isomorphisms of G with itself there corre-
sponds in this way a certain totality of permutations. This

totality of permutations constitutes a group, as we shall now
show. If two isomorphisms of G with itself lead to the two

permutations
S S’
s’ and s ’

then we have to show that the product permutation

($)5) or (s}

corresponds to an isomorphism of G with itself. From the first
isomorphism it follows that if S,S,=S,, then $,S’, = S’,; and
then, from the second, that S$"/,S”’, = S",. Hence if S,S,=S,,
we have S§”/,S”, = S",. Therefore the named product permuta-
tion corresponds to an isomorphism of G with itself.

Hence the totality of permutations corresponding to the
totality of isomorphisms constitutes a permutation group P.

The abstract group which is simply isomorphic with this
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permutation group P is called the group of isomorphisms of the
given group G.

An isomorphism which can be obtained by making each ele-
ment of ‘G correspond to the transform of that element by a
single appropriately chosen element of G (the same for every
correspondence in a given isomorphism) is called an inner iso-
morphism; an owuier isomorphism is one which does not have
this property. '

V. The inner isomorphisms of a finite group G
constitute a group to which G itself is isomorphic of
type (k, 1), where k is the number of self-conjugate
elements in G. This group of inner isomorphisms is
a self-conjugate subgroup of the group of isomor-
phisms of G.

Represent the group of isomorphisms as a permutation group

as in the preceding treatment. Forming the product of two
inner isomorphisms, we have

(g-rse) (etse) = (ot (ot ot - )
g1715g1/ \ga"1Sg> g1718g1/ \g2a"1 - 2171Sg; - &2

=(srses)
gs~1Sgs)’

where gz = g182. Hence the product of two inner isomorphisms
is an inner isomorphism. Therefore the inner isomorphisms
form a group.

Let us take the inner isomorphism

(50

(that is, the inner isomorphism corresponding to the given
permutation) formed by means of any given element g of G as
corresponding to g itself. Then to every element of G there cor-
responds a definite and unique inner isomorphism of G. More-
over, to the product of two elements corresponds the product
of the two corresponding isomorphisms. Hence G and its group
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of inner isomorphisms are isomorphic. It is evident that the
isomorphism is of the general type (%, 1). If G contains no self-
conjugate element besides the identity, then the isomorphism
is necessarily (1, 1); that is, the two groups are simply iso
morphic. If G contains just k self-conjugate elements, then &
elements in G correspond to the identity in the group of inner
isomorphisms; and the isomorphism of the two groups is (%, 1).

Let us now transfofm an inner isomorphism of G by any iso-
morphism of G with itself. Thus we have

(g’)—l<g-ISSg> (2') - (§/> (g:?Sg> ((g%)——lfég’) = ((g’) is’g’>'

Hence an isomorphism of G with itself transforms every inner
isomorphism of G into an inner isomorphism of G. The group
of inner isomorphisms is therefore self-conjugate in the entire
group of isomorphisms.

18. The Holomorph of a Group. Let S =1, S, Ss, - -+, S. be
the elements of a group G of order #, and let L of order 7 be the
group of isomorphisms of G. Represent G as a regular permu-
tation group by the first method of § 12, and let G’ be this per-
mutation group. Corresponding to S; in G we have in G’ the

permutation S
(ss.)

Represent L as a permutation group L’ in accordance with the
method of § 17. The two permutation groups G’ and L’ have
no permutation in common except the identity, since every ele-
ment in L’ replaces S; by itself while an element in G’ other than
the identity replaces S; by another symbol. Now on transform-
ing an element of G’ by an element of L’, we have

@)_1(52) (g) B (Zl) (si) (Ssg) - (s'ss,'>

Hence every element of L’ transforms each element of G’ into
an element of G’, so that every element of L’ is permutable with
G’. Therefore every element of {G’, L'} may be written in the
form I'g’, where I’ and g’ belong, respectively, to L' and G'.



80 Groups of Finite Order

Hence the group {G’, L'} is of order mn. We shall denote it by
K'. Ttis clear that G’ is a self-conjugate subgroup of K”.

The abstract group which is simply isomorphic with the per-
mutation group K’ is called the holomorph of G.

Now the transform of ( SZ,») by ( SS,) is ( Sg’)’ and these two

permutations of G’ correspond to S; and §’;, respectively, in G.
Hence, if the permutations in G’ are transformed by any permu-

tation ( g,) of L, an isomorphism of G is set up which is repre-
sented by the permutation ( g,)

Now we have

(sismm1) (58 = (ss9-) serns) = (s5)
S.SS;71/\SS; S:SS;~1/\S.85;18; A

The first factor is in L’ and the second is in G’; hence the
product is in K’. Hence K’ contains the set of permutations

S .

But these (see §12) form a permutation group G”’ which is
simply isomorphic with G. Moreover, G’ contains the totality
of permutations (on the symbols involved) each of which is
permutable with every permutation in G/, while G’ has the same
property with relation to G”.

That G is a self-conjugate subgroup of K’ may now be
proved in a way similar to that by which the corresponding
property was established for G'.

It will now be shown that K’ contains those permutations on
the symbols S, S, - - -, S, each of which is permutable with G'.
For this purpose let ¢ be any permutation on the named sym-
bols which is permutable with G’. On transforming G’ by ¢ and
making each element correspond to its transform we set up
some isomorphism of G with itself. This may be represented by

some permutation, say (g,), ofL’. Theng (g,)
tion on Sy, S, - - +, S, which is permutable with every permuta- _

1
1S a permuta-
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tion in G’ ; therefore it belongs to G/, and hence isin K’. There-
fore ¢ is in K’, as was to be proved.

In a similar way it may be shown that K’ contains those per-
mutations on Sy, Sz, - - -, S, each of which is permutable with G”’.

Now G’ and G'" are both contained self-conjugately in K’,
while G’ is transformed into G’ and G’ is transformed into G’ by
the permutation 7, S

= (s—l)’

as we saw in §12. Hence 7 transforms the permutations that
are permutable with G’ into those that are permutable with G”/;
it also transforms those that are permutable with G’/ into those
that are permutable with ¢’. But X’ is composed of all the per-
mutations each of which is permutable with both G’ and G”.
Hence 7 transforms K’ into itself. When G is not Abelian, in
which case (see §12) the groups G’ and G’/ are distinct, the
permutation 7 does not belong to K’. Hence when G is not
Abelian the order of the group {K’, 7} is twice the order of K’;
moreover {K’, r} contains K’ self-conjugately.

When G is not an Abelian group, the abstract group which is
simply isomorphic with {K’, 7} is called the double holomorph
of G.

If a group G admits no outer isomorphism and if it contains
no self-conjugate element besides the identity, it is said to be a
complete group. If G is a complete group, then (Theorem V of
§ 17) it is simply isomorphic with its group of isomorphisms.
Therefore if the order of the complete group G is #, its holo-
morph is of order »2.

19. On Certain Subgroups of a Group G. A subgroup of 6 all
of whose elements correspond to elements in that subgroup in
every isomorphism of G with itself is called a characteristic sub-
group of G. It is necessarily a self-conjugate subgroup of G since
it is transformed into itself by every element of G; but G may
contain self-conjugate subgroups which are not characteristic.
It is obvious that a characteristic subgroup of G is a self-
conjugate subgroup of the holomorph K of G, and, conversely,
that every self-conjugate subgroup of K which is contained in G
is a characteristic subgroup of G.
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That the commutator subgroup of a given finite group G
(when it does not coincide with G) is a characteristic (proper)
subgroup is readily proved. For, if Sand T correspond to ¢ and 7,
respectively, in an isomorphism of G with itself, then S—17-1ST
corresponds to o~ 17" lg7, so that every commutator in G cor-
responds to a commutator ; whence the theorem follows at once.

Another important characteristic subgroup of ¢ may be
defined as follows. We have seen (§ 8) that a set of independent
generators of G is any set of generators such that no one of them
is contained in the group generated by the remaining ones. Now
the elements of G may be separated into two mutually exclusive
classes, the one class containing all those elements of G each of
which occurs in at least one set of independent generators of G
while the other contains the remaining elements of G. The ele-
ments of the second class generate a proper subgroup of G known
as the ¢-subgroup of G. Itisevidently a characteristic subgroup,
since in any isomorphism of G with itself the elements of the
first class must correspond only to elements of the first class,
leaving the elements of the second class to correspond among
themselves only.

If H is a proper subgroup of G such that {H, S} coincides with
G for every Sin G and not in H, then H is called a maximum or a
maximal subgroup of G. A given subgroup may have several
maximal subgroups of the same or of different orders.

If G, is a self-conjugate subgroup of a finite group G not con-
tained in any other self-conjugate subgroup of G except G itself,
then G, is called a maximum or a maximal self-conjugate sub-
group of G. A given group may have several maximal self-
conjugate subgroups, and these may be of different orders.

Let H be any maximal subgroup of G. Then there is at least
one set of independent generators of G that includes any given
one Of the elements in G and not in H, the remaining elements
in the set being taken from H. Furthermore, if S is any element
in a particular set of independent generators of G, there is at
least one maximal subgroup of G which does not contain S.
Hence the ¢-subgroup of G is the largest common subgroup of the
maximal subgroups of G — a property of the ¢-subgroup which
might be taken as its defining property. From these considera-
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tions it follows also that the ¢-subgroup contains no element
which can appear in a set of independent generators of G, so that
it consists of the elements of the second class of elements in the
classification made earlier in this section.

EXERCISES
1. If two simple groups are isomorphic, they are simply isomorphic.

2. An isomorphism of an Abelian group with itself may be set up
by making each element correspond to its inverse. In what case is
this isomorphism the identical isomorphism ?

3. The totality of elements of a finite group G each of which cor-
responds to itself in a given isomorphism of G with itself constitutes a
subgroup of G.

4. If p is an odd prime, the group of isomorphisms of a cyclic group
of order p= is a cyclic group of order p*~! (p — 1).

5. The group of isomorphisms of a cyclic group of order 2* (o > 2)
is an Abelian group of order 2*-! and type (a — 2, 1).

6. A simple group cannot have a characteristic proper subgroup
besides the identity.

7. The central of a group is a characteristic subgroup.
8. Any subgroup of a cyclic group is a characteristic subgroup.

9. The Sylow subgroups of an Abelian group are characteristic
subgroups.

10. The kth powers of the elements of an Abelian group constitute a
characteristic subgroup.

11. Let G be the noncyclic group of order 4. Show that the group
of isomorphisms of G is simply isomorphic with the symmetric group
of degree 3, and that its holomorph is simply isomorphic with the sym-
metric group of degree 4.

12. Show that the symmetric groups of degrees 3 and 4 are complete
groups. Construct their holomorphs.

13. Let G be a cyclic group of order n. Prove that a necessary and
sufficient condition that the ¢-subgroup of G is of order 1 is that 2 shall
be divisible by no square greater than unity.
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14. Let G be a group containing elements of order greater than 2.
Then the elements of order greater than 2 in G are even in number, and
they generate a characteristic (proper or improper) subgroup of G.

15. Let G be a group of order » and let # be a number prime to #.
Show that every element in G is the mth power of one and just one
element in G.

16. Find the holomorph of the group {(@og1a: - - « @, _1)}, where p is
an odd prime number, showing that the order of this holomorph is
b —1).

17. Let H be the subgroup of a group G which is generated by all
the elements of G whose orders are factors of a given number r. Prove
that H is a characteristic subgroup of G.

18. Prove that a characteristic proper subgroup of an Abelian group
G cannot contain an element of maximum order in G.

19. Find the group of isomorphisms of a cyclic group of order » and
show that its order is ¢(n), where ¢(n) denotes Euler’s ¢-function of n.

20. Show that n¢(n) is the order of the holomorph of a cyclic group
of order .

21. Let U be a noninvariant element or a noninvariant subgroup
of a group G, and suppose that it is in the ¢-subgroup of G. Show that
the number of conjugates of U under G is greater than the number of
its conjugates under the ¢-subgroup of G.

29. Show that the group of degree 7 and order 168 which leaves in-
variant the configuration on seven letters in § 4 is simply isomorphic
with the group of isomorphisms of the Abelian group of order 22 and
type (1, 1, 1).

23. Show that the group of isomorphisms of the Abelian group of
order 32 and type (1, 1, 1) is of order 26 - 24 . 18.

24. Show that the group of isomorphisms of the Abelian group of
order 5% and type (1, 1, 1) is of order 124 - 120 - 100.

20. Factor-Groups. Let H be a self-conjugate subgroup of
order r in a finite group G of order » = Ar. By means of multi-
pliers &, =1, #s, 13, - - -, & Write G as X sets of r elements each
as in the first rectangular array in § 10, denoting these com-
ponents, or partitions of G as to H, by the usual symbols 4 H,
LH, - - -, tH. Let the elements of H, as in § 10, be denoted by
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S1, S2, + + -, S». Then ¢;s, - 1;s, is an element of the same partition
as #;1;, say the partition £;H ; for, since H is self-conjugate in G,
the element #;,71s,l; is an element s, (say) of H, whence it follows
that ;5. - t;s, = t:t; - {;71s,8; - 5, = 1:1;5.5,, an element which is in
(t:4;)H, and hence in {,H. Hence if ti; is in {,H, so is every
element of the form #;s, - ¢;5,; that is, every product of an ele-
ment ¢;5, in #;H by an element ¢;s, in {;H is an element in /. H.

Now write v, fgr tH (=1, 2,---,A). Then the symbols
Y1, Y2, - - -, YA Obey a unique law of combination defined for
each 7 and j by the relation y;y; = v The symbols therefore
satisfy Condition I in the definition of a group in § 8.

That they obey the associative law, in accordance with Con-
dition II in this definition of a group, may be shown as follows :
If every element of the set t;H - ;H (that is, the set of elements
formed by taking the product of each element in ¢;H by each
element in ¢;H) is in {,H and every element of {;H - {;H is in
l,H, the elements ¢,H - {;H and {;H - t,H are in the same parti-
tion of G, since the elements of G obey the associative law. Hence
(Y¥i)vs = vi(vi7vs), as was to be shown.

If 1, =1, as we have supposed, then v; has the property of
the identity, since ¥1v:= v¥:Y1= 7., as is obvious from the dis-
cussion in the first paragraph of this section.

Again, each element +; is of finite order, whence it follows
that its inverse is in the set 1, ¥z, - * *, V»-

From these considerations it follows that the elements v,
Y2, - * *» Y With the named rule of combination, form a group
G, of order A\. It is completely determined by the given group G
and its given self-conjugate subgroup H. It is called the
quotient of G by H; it is also called a factor-group of G or a
quotient group of G. It is denoted by the symbol G/H. Iis order
1s equal to the index of H in G.

From the way in which G/H is formed it is evident that G is
multiply isomorphic with G/H, the subgroup H in G corresponding
- to the identily in G/H. The elements {;H correspond to +;.

Factor-groups afford a means of illuminating the concept of
the general isomorphism of two groups. Let H be a self-
conjugate subgroup of G of order %, and let H’ be a self-conjugate
subgroup of G’ of order A’'; and suppose that these several
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groups are so related that G/H is simply isomorphic with G’/H’.
Separate G as to H into the partitions £ H, t:H, - - -, t,H in the
usual way; similarly, separate G’ as to H’ into the partitions
U\H', t'oH,---, I',H': let the notation be so chosen that in
the simple isomorphism of G/H with G'/H’ the partitions $H
and #';H' are corresponding partitions for each 7 of the set
1, 2,---, A\. Then take the set #;H’ of elements in G’ as the
elements corresponding to each element in #;H, and take the
set #;H of elements in G as the elements corresponding to each
element in #;H’. This correspondence exhibits G and G’ as
having a general (%, k') isomorphism, as we shall now show.
Denote the elements of H by the symbols %, and those of H’ by
the symbols #',. Let ¢4, and ¢;k, in G correspond, respectively,
to t;h's and ';#’, in G’. Then if ¢k, - t;h, is in the partition
1H, the element ;4 - t';#/, is in the partition #:H’, so that
the product £k, - t;h, corresponds to the product ¢4’ - t';h,.
Hence the groups G and G’ have the named isomorphism.
We shall now prove the following theorem:

VI. If H is a self-conjugate subgroup of a finite
group G, and if G, denotes the factor-group G/H,
then to each subgroup L, of G: corresponds a sub-
group L of G, containing H, such that L, is simply
isomorphic with L/H. If L, is self-conjugate in G,
then L is self-conjugate in G and G/L is simply iso-
morphic with Gi/L;.

We retain the earlier notation of the section. In the isomor-
phism already established between G and G; every element v,
in L; corresponds to the elements ¢{.H in G. If for v, is taken
in turn every element in L, then the corresponding elements
t.H form a set of elements L of G. Since to ~,vs where v,
and ~; are in G, corresponds every product of an element in
1,H by an element in #H, it follows that the set L constitutes
a group containing H and that L, is simply isomorphic with L/H.

If L, is self-conjugate in G;, then for every element v, of
L, and every element v of G; we have in y~1v,y an element
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which is in L;. Then if g is any element of G, we have in
g7 1-t,H- g a set of elements of L, whence it follows that L
is self-conjugate in G. If we separate G; as to L; into the par-
titions 8;1L1, 2Ly, 03Ly, - - -, and if every element formed by
taking the product of an element in 6,L; by an element in
8;L; is in the set 6,L;, then every element formed by taking the
product of an element in §,L by an element in §,L is in 8,L.
Hence G/L and G;/L; are simply isomorphic.

VII. If C is the central of a finite group G, then
G/C is simply isomorphic with the group A of inner
isomorphisms of G.

Let ¢y =1, ¢o, - - -, ¢, be the elements of C, and arrange the
elements of G into the partitions y;=#C(7=1,2,---,A). Then,
since (tic,) ~1G(tic,) = ¢,~ i~ 1Glic, = ¢, 1Gt,, it follows that the
group of inner isomorphisms of G, when represented as a per-
mutation group by the method of §17, consists of the following

permutations: S
(t,"ISti)' G=12--5N

Letting these permutations correspond in order to the elements
Y1, Y2, ** * Ya We have the isomorphism whose existence is
asserted in the theorem. For if ¢,¢;is in the partition #,C, we have

(s (s) = (6 () = (s
8ISt/ \G; 1St T \GTISE/ \G TSt T\ IS

and also y:y; = vz, the latter in accordance with the first para-
graph of the section.

VIII. When G is non-Abelian, the group A of in-
ner isomorphisms is noncyclic.

If A is cyclic, let @ be an element which generates 4; and
let g be an element of G which corresponds to a in the usual
multiple isomorphism of G with A. Then the elements of G fall
into the sets C, gC, g2C, - - -, g~1C. Now gic, - gic, = gigic,c,
= gigic,c, = gic, + g'c;, SO that any two elements of G are per-
mutable, contrary to the hypothesis.
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IX. Let A be the commutator subgroup of a
given finite group G, and let H be any self-conjugate
subgroup of G. Then {H, A}/H is simply isomorphic
with the commutator subgroup of G/H.

Let a, b be any two elements of G, and let «, 8 be the corre-
sponding elements of G/H in the usual isomorphism of G with
G/H. Then the elements ¢~1b~1abH of G correspond to the ele-
ment a~ 18 1aB of G/H. Hence any commutator in G corre-
sponds to a commutator in G/H. To a product of commutators
of G/H correspond products of commutators of G by elements
of H, and conversely. Hence the commutator subgroup of G/H
corresponds to the subgroup {H, A} of G, and therefore this
commutator subgroup is abstractly the same as the group
{H, A} /H, in accordance with Theorem VT of this section.

Cor. I. If the self-conjugate subgroup H of G
contains the commutator subgroup A of G, then
G/H is Abelian.

For in this case {H, A}/H consists of the identity alone.

Hence the commutator subgroup of G/H consists of the identity
alone. Hence G/H is Abelian.

Cor. II. Conversely, if G/H is Abelian, then H
contains A.

For the commutator subgroup of G/H then consists of the
identity alone, so that {H, A}/H consists of the identity alone.
These two corollaries imply the following :

Cor. ITII. The commutator subgroup of G is the
smallest self-conjugate subgroup of G such that the
quotient group of G with respect to it is Abelian.

21. The Composition-Series of a Group. Let G; be a maximal

self-conjugate proper subgroup of a given finite group Go, let G2
be a maximal self-conjugate proper subgroup of Gi, Gs of Gz, Gs
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of Gs, and so on, till the series terminates with the identity,
Then the series Go, G1, Gz, - - - is called a composition-series of Go.
A given group may have more than one composition-series.
Every composition-series of Go terminates with the group which
consists of the identity alone. Although G; is self-conjugate in
G:_1, it is not necessarily true that G; is self-conjugate in G;_a.

The groups Go/G1, G1/Gz, G2/Gs, - - - are known as composition-
Sactor-groups of Go, and their orders are known as composition-
factors of Go. From Theorem VI of §20 it follows that these
composition-factor-groups are simple. From the same theorem
the converse also readily follows; it may be stated thus: if G,
is self-conjugate in Go, G2 in Gi, G3 in Gz, and so on, and if
Go/G1, G1/Gg, - - - are all simple, then Go, Gi1, G, - - - constitute a
composition-series of G.

Concerning the composition-series of a group Go we shall now
prove the following theorem:

X. Two composition-series of a finite group Go
lead to two sets of composition-factor-groups of Go
which are abstractly identical except for the sequence
in which they occur.

Let any two composition-series of Go be denoted by the
symbols

(1) GO) Gl) G2; DAY Gi: Gi+1y Gi+2’ Tty
(2) GO) Glr G2’ Tty Gi’ Fi+19 F‘i+2: Tty

where ¢ = 0 and where G, is different from Fi ;.

Let D be the greatest common subgroup of G;;; and Fi,;.
Then D is self-conjugate in G, since both G;,, and F;,, are self-
conjugate in G;. Hence D is a self-conjugate subgroup of both
Gi+1 and F5+1.

Let K denote the group {Gi 1, Fir1}. Then K is self-
conjugate in G;, since both G;,; and F;, are self-conjugate in
G.. Then from the maximal character of G;;; and F;4 in G; it
follows that K is identical with G;. With respect to the sub-
group D the elements of the group G;, fall into sets of the form
gD, gD, gD, - - -, each element appearing just once. Now
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every element of G; is a product of an element in G;,; by an
element in F;., since Gi= {Giy1, Fiy1} and G;,; is self-
conjugate in G;. Hence any element in G; may be written as a
product g.def, where f, is in F;,; and dg is in D. Now the prod-
ucts dgf, are the elements in F,,;. Hence every element in G;
is contained in the sets g1F;.1, g2Fiy1, - - -. If g,Fiyy and gF; 1
have an element in common, then g,~1g, is in F;,; as well as in
Gi;1, and hence it is in D, whence it follows that ¢t = s. Therefore
the elements in G; are contained without repetition in the sets
&iF i1, 8oFiv, - - .

From these partitions of G; and G,,; by means of their re-
spective subgroups F;,1 and D it follows that G;/F;,; is simply
isomorphic with G;,1/D. Similarly the simple isomorphism of
Gi/Giy1 and F,,.;/D may be established. Now G;/F;.; is a
simple group, since F;,; is maximal in G;. Hence G;,;/D is a
simple group, whence it follows that D is a maximal self-
conjugate subgroup of G;,;. Similarly it may be shown to be a
maximal self-conjugate subgroup of F, ;.

Now let D, Dy, Ds, - - - be a composition-series of D. Then Gp
has the following two composition-series in addition to (1) and
(2), namely :

(3) GO’ Gls G2’ M) G;’, Gi+l’ D’ Dh D2’ Tty
(4) GO, Gly GZ} Tty Giy Fi+l$ Ds Dl, D2, MY

Since G;/G:+1 is simply isomorphic with F;,1/D, and G;/F;,, is
simply isomorphic with G;,1/D, it follows that the composition-
factor-groups obtained from the series (3) and (4) are ab-
stractly identical except for a single transposition in their order.

The group of order 2 has only one composition-series. Let n
be a number such that every group L of order # or less has the
following property: either it has only one composition-series,
or, if it has more than one, any two composition-series give
rise to simply isomorphic composition-factor-groups, except for
possible difference in sequence. We shall now complete the
proof of the theorem by mathematical induction.

Suppose that Go is of order n 4 1. Then, whatever value 7 in
(1) and (2) may have, the group G;.: is of order less than 7.
Hence the two composition-series (1) and (3) give rise to simply
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isomorphic composition-factor-groups of Go. Likewise the
series (2) and (4) give rise to simply isomorphic composition-
factor-groups of Go. But we have already seen that (3) and (4)
give rise to simply isomorphic composition-factor-groups.
Hence (1) and (2) have this property. The theorem as stated
then follows by mathematical induction.

CoRr. I. The composition-factors arising from any
two composition-series of a group are identical ex-
cept for the sequence in which they occur.

Cor. II. The product of the composition-factors
of a group is equal to the order of the group.

XI. Let H be a given self-conjugate subgroup of
a given finite group G. Then there is a composition-
series of G one group of which is H. The composition-
factor-groups of G are simply isomorphic with those
of G/H and H taken together.

Denote G/H by L, and let L, L;, Ly, - - - be a composition-
series of L. In the usual multiple isomorphism of G with L let
Gi, Gz, Gs, - - - be the subgroups of G corresponding to L;, Lg, L3,
.- -in L. Then from Theorem VI of § 20 it is seen that we have
the following pairs of simply isomorphic groups:

G/Gy, L/Ly; G1/Ge, Ln/Lz; G2/Gs, LafLg; - - -

The second group in each pair is simple. Hence the first is
also. Therefore G, Gy, Gz, - - - is a part of a composition-series
of G, this part terminating with H. Then continue this compo-
sition-series by means of a composition-series of H; in this
way we obtain a composition-series of G which includes H as
one of the groups in the series. Then it is clear that the compo-
sition-factor-groups of G have the properties of isomorphism
stated in the theorem.

A soluble (or solvable) group is a group all of whose composi-
tion-factors are primes. The composition-factor-groups of a
soluble group are cyclic.
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Every Abelian group is soluble. For it contains a self-
conjugate subgroup of order p, where p is any prime factor of
the order of the group, and the quotient group corresponding
to this subgroup is itself an Abelian group. The proof may
then be completed by mathematical induction with the aid of
the preceding Theorem XI.

Every prime-power group is soluble. 1f p= is the order of such
a group, the group contains a self-conjugate subgroup of order p
(Theorem XVI of § 15). The corresponding quotient group is
of order p=~1. Then complete the proof by mathematical in-
duction as in the previous paragraph.

22. The Theorem of Frobenius. We shall now prove the fol-
lowing important theorem due to Frobenius:

XII. Let G be a group of order g and let # be any
factor of g. Then the number of elements in G, in-
cluding the identity, whose orders are factors of =,
is a multiple of #.

The theorem is obviously true when » =1 and when n = g.
1t is true also for a group whose order is a prime, for then » has
one of the values just named.

Now let # be a number such that the theorem is true for all
groups of order less than A.. We shall then prove that it is true
for groups of order %, whence the theorem as stated will follow
by mathematical induction.

Now the theorem holds for g = & provided that #» = k. Then
let m be a factor of & such that the theorem holds for all larger
factors n of k in every group of order %, and suppose that
m > 1. We shall prove that the theorem also holds for the
factor m of h, whence it will follow by induction that it holds
for all factors of %#; and therefore that the theorem holds in
general as stated.

Let H be the group of order % now to be considered. Let
N, be the number of elements in H whose orders are factors
of x. Let p be a prime factor of #/m. Now

Nmp=Nm+Nrm
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where N,, denotes the number of elements in H whose orders
are factors of mp but not of m. Now N, is divisible by mp
according to hypothesis, and hence it is divisible by . Then
if we prove that N, is divisible by m, it will follow that N, is
divisible by m.

Let U be the set of elements in H each of which has for its
order a number which is a factor of mp but not of m. Write

= prs, where s is"an integer which is not divisible by p. The
order of every element in U is divisible by p**1. If % is an
element in U, then #;* is an element in U if « is prime to p.
Since we may therefore associate with each element u; of U
those powers of u; each of whose orders is divisible by p*+1,
it follows that the number N,, of elements in the set U is a
multiple of ¢(p*+1) = p(p — 1), and hence of p*. It remains
only to prove that N,, is divisible by s.

If H contains no element whose order is a multiple of p*+1,
then N,,, = N,.; in this case N, = 0 and hence N, is divisible
by s. In what follows we may therefore confine ourselves to
the case in which the set U contains an element of order p**1,
since such an element exists in H if H contains an element whose
order is a multiple of p*+1.

Then let P be an element in U of order p**1. Let K be the
subgroup of H which is formed of all those elements in H each
of which is permutable with P, and let the order of K be de-
noted by p*+1p. The quotient group K/{P} is of order p, and
p < h. Let 7 be the greatest common divisor of s and p. From
the hypothesis formed for the induction argument it follows
that the number of elements in K/{P} whose orders are fac-
tors of 7 is a multiple ¢r of 7. If the order of an element in
K/{P} is a factor of s, it is also a factor of 7. Hence c7 is the
number of elements in K/{P} whose orders are factors of s.
Therefore there are ¢r elements common to the set U and the
group K.

The number of conjugates of P under H is g/(p**1p). With
each of these is associated cr elements of U. With all of them
there are then associated gcr/(p**1p) elements of U. Now g
is divisible by s and by p, whence it follows that gr is divisible
by ps. Hence s is a factor of gr/p and therefore of ger/(p**+'p),
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since s is prime to p*+!. Therefore the number of elements in
U thus associated with P and its conjugates is a multiple of s.
The same will be true for any element @ of order p*+! which is
not conjugate to P in H. When all such subsets of U are con-
sidered, it is obvious that the set U is exhausted and that no
element in U is taken twice. Hence N, is divisible by s.

We have already seen that this result is sufficient to complete
the proof of the theorem.

EXERCISES

1. If H is a self-conjugate subgroup of G of prime index, then G/H
is a cyclic group.

2. If H is a self-conjugate subgroup of G such that the partitions of
G as to H may be written in the form H, gH, g2H, g3H, - - -, then G/H
is a cyclic group.

3. Every factor-group of an Abelian group is an Abelian group.

4, A prime-power cyclic group has only one composition-series.

5. If a prime-power group has only one composition-series it is a
cyclic group.

8. Construct all possible composition-series for each abstract group
of order 8 (see Ex. 20 on page 37).

7. A soluble noncyclic group is composite.

8. There is no perfect group which is soluble.

9. A direct product of two soluble groups is a soluble group.

10. A group whose order is the product of two primes is a soluble
group.

11. A factor-group of a soluble group is itself a soluble group.

12. The order of an element of a quotient group G/H is a factor of
the order of each element in G which corresponds to it in the isomor-
phism described in § 20.

13. If G has a subgroup of index 2, that subgroup contains all the
elements of odd order in G.

14, A group of order 4 n + 2 has just 2 # + 1 elements of odd order.

15. If a group G has just 1 + p Sylow subgroups of order p°, these
subgroups have just p=—? elements in common.
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16. If a group G has just 1 + p Sylow subgroups of order p¢, then G
contains just p*+! elements whose orders are factors of pe.

17. If a group G has more than 1 4 p Sylow subgroups of order p¢,
then.G contains more than p*+! elements whose orders are factors of p=.

18. If G is a group of order pq, where p and ¢ are primes and p > ¢,
then G contains just p — 1 elements of order p. Show that G is cyclic
unless p — 1 is divisible by ¢g. If p — 1 is divisible by ¢, show that there
is just one abstract group of order pg and noncyclic.

19. If # is an integer which is divisible by a square greater than
unity, then there are at least two abstract Abelian groups of order ».

20. If n is a product pgr - - - of distinct primes and if p—1 is
divisible by ¢, then there are at least two abstract groups of order ».

21. Let » be a product of distinct prime factors no one of which is a
divisor of any number obtained by diminishing another prime factor
by unity. Show that there is but one abstract group of order #, namely,
the cyclic group. (Compare Exs. 19 and 20.)

MISCELLANEOUS EXERCISES

1. Let Gy, Gs, G, - - - be a finite set of finite groups such that the
orders of any two of them are relatively prime and such that {Gi, G,
Gs, - - *} is their direct product. Let their groups of isomorphisms be
Ly, L,, L, - - - respectively. Then the group of isomorphisms of {Gi,
Gz, Gs, - - -} is the direct product of groups which are simply isomor-
phic with L,, L,, L3, - - - respectively.

2. If there is an isomorphism of a group G with itself in which more
than three fourths of its elements correspond each to its inverse, then
G is an Abelian group.

3. Let 4 and B be two complete groups having a direct product G,
and let L be the group of isomorphisms of G. If 4 is simply isomorphic
with B, then G is simply isomorphic with a self-conjugate subgroup of
index 2 in L; otherwise G is simply isomorphic with L.

4. The holomorph of a complete group G is the direct product of
two groups each of which is simply isomorphic with G.

5. If A and B are simply isomorphic complete groups of order n
such that 4 and B have a direct product G, then the holomorph of G is
of order 2 n2.
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6. If G is a complete group of order %, then the holomorph of the
holomorph of G is of order 2 nt.

7. That totality of isomorphisms of a group G with itself, each iso-
morphism of which changes every conjugate set of elements of G into
itself, forms a self-conjugate subgroup of the group of isomorphisms of
G. This subgroup contains the group of inner isomorphisms of G.

8. An isomorphism of a group G with itself, the order of which con-
tains a prime factor not occurring in the order of G, interchanges some
of the conjugate sets of G.

9. A group which has no characteristic subgroup other than that
consisting of the identity alone is either a simple group or the direct
product of simply isomorphic simple groups.

10. If a group G contains a complete group H as a self-conjugate
subgroup, then G is the direct product of H and some other group.

11. No group of composite order exists having the property that
every cyclic proper subgroup in it besides the identity is transformed
into itself only by its own elements.

12. If the order of a group G is p1pz - - - pe, where p, pa, - - -, p; are
distinct primes in ascending order of magnitude, show that G contains
a self-conjugate subgroup of order p,p..1 - - - p: for each r of the set
1, 2, - - -, t. Thence show that G is a soluble group.

18. An Abelian group of order p™ and type (1, 1, - - -, 1) has

@r=DEri= D@m= p—1)
®-D"

composition-series.

14. If G, G1, G, - - - is a composition-series of a group G, and if the order
of G; is prime to its index in G, then show that G; is a self-conjugate
subgroup of G by first establishing the following theorem: If 4 is a
self-conjugate subgroup of H whose order « is prime to its index in H,
then every subgroup of H whose order divides « is contained in A.

15. A subgroup of a soluble group is itself a soluble group.

16. Let u; be the number of cyclic subgroups of order p* in a group
G whose order is divisible by p*, p being a prime number. Then
@1 —1)+ (8 — Dp + (i — 1)p? + - - - + (s — 1)p*~* = 0 mod p*.
17. If for each divisor d of the order n of a group G the number of
elements whose orders are factors of d is equal to d, then G is a cyclic
group.
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18. If the group of inner isomorphisms of a group G is of order 4,
then G has just three Abelian subgroups of index 2.

19. If G is a non-Abelian group which has more than one Abelian
subgroup of index 2, then the group of inner isomorphisms of G is of
order 4.

20. Let G, be the commutator subgroup of Go, Gz of G;, G of G, and

soon. Wemay call Gy, G1, Gz, - - - the commutator-series of Go. In order
that Gy shall be a soluble group it is necessary and sufficient that the
commutator-series Gp, G1, G, - - - shall contain a group consisting of

the identity alone.

21. Let I, be the group of inner isomorphisms of a given group Io,
let 7; be the group of inner isomorphisms of I, I5 of I, and so on. If
in the sequence Iy, I1, I, - - - there is a group of order unity, show that
Ip is a soluble group.

22. In the case of the commutator-series of a group (see Ex. 20)
show that each group after the first is a characteristic self-conjugate
subgroup of each group which precedes it.

28. Show that a composition-series of Go exists containing among
its groups the groups of the commutator-series of Go. (Use Theorem
XIin § 21.)

24, Let G; be a maximal self-conjugate proper subgroup of Gp and
let Gy, Ga, Gs, - - - be a series of self-conjugate subgroups of G such that
G; contains the proper subgroup G;,: but contains no larger self-
conjugate subgroup of G which contains G;, and is a proper subgroup
of G;. Then Gy, Gi1, Gs, - - - is called a chief-series of Go. Show that a
composition-series of Gy exists containing among its groups any given
chief-series of Gy. (Use Theorem XI of § 21.)



CHAPTER IV
Abelian Groups

23. Classification of Abelian Groups. Several theorems con-
cerning Abelian groups have appeared in the earlier chapters.
We have shown (§14) that an Abelian group whose order is not
a power of a prime number is the direct product of all its
Sylow subgroups. From this’it follows that two Abelian groups
are simply isomorphic when and only when their Sylow sub-
groups are simply isomorphic. Therefore the problem of deter-
mining all possible abstract Abelian groups is readily reduced
to that of determining all prime-power Abelian groups. This
latter problem may be solved by aid of the fourth fundamental
theorem (given in §14), namely, the following: A noncyclic
Abelian group G whose order is a prime-power p™ is the direct
product of cyclic groups no two of which have any element in
common except the identity. If the orders of these cyclic sub-
groups are, respectively,

D™, Py - e e, P™, (m=m1+m2+"'+mk)

then the group G is said to be of type (m, mg, -+ - -, mi). It is
convenient to choose the notation so that

M EZMe=Z- =My,

and we shall suppose that it is so chosen.

Let Py, Pe, - - -, Py, respectively, be generators of the cyclic
subgroups of orders p™, pm™, . .., p™ named in the preceding
paragraph. Then it is obvious that the elements of G may be
written in the form ,

P1*1P2% « « « Pi%,
where .
=01,2:--,p™—1, (s=1,2,---,k)
98
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each element having a unique representation in this form. From
this it follows that Py, Ps, - - -, Px are independent generators
of G.

If the orders of two elements A and B of G are factors of
p* (u>0), then the order of AB is a factor of p«. Hence the
totality of elements of G, each of which has for its order a factor
of p» constitutes a subgroup G, of G. If the element

Plﬁxpzﬁa e Pkﬁk

belongs to G,, then
Plﬁll”‘ Pzﬂzp"‘ - Pkﬁkp"= 1.

Let m., 1 be the first number less than u in the sequence m;, ms,
-+, M, My, Where my 1 =0. Let P, be a symbol denoting
the identity. Adjoin (3.1 to the sequence Bi, B, - - -, Bx. Then
Bii1, - - +» Brsy1 may have any values whatever, whereas any re-
maining §; must be a multiple of p™:~+. From this it follows
that G, is generated by the elements

Plpm!—“y Pz”mz_", DAY P‘ipml\_“) Pi-(-l, A Pk, Pk+1.
Hence the order of G, is p’, where
v=pi+ Mip1+ - -+ Mpy1).

In particular, the identity and the totality of elements of G
each of which is of order p constitute a group G, of order p*.
Let us now suppose that the same group G is generated by
the set
Ql) Q2: ) Qt

of independent generators of orders p*:, p*z, - .-, p*, respec-
tively, wherem = s +pe+- - -+ mand p1 = pe =- - - = ue > 0,
these generators being such that every element of G may be
written uniquely in the form

Q171Q272 e Qt‘lg,
where
'Ya=0,1,2,---,p#8—1. (s=1,2,...’t)

We shall then show that ¢ = & and that u; = m; for each 7 of the
setl,2,---, k.
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By considering the group G, of order p* with reference to
this new set of generators it may now be shown that

v=w+ (Ujp1+ -+ pegr),

where j is defined by the fact that u,,, is the first number less
than u in the sequence w1, p2, - + -, fe Mey1 (ues1 =0). A com-
parison of the two forms of the value of » will enable us to
establish the proposition stated at the end of the preceding
paragraph.

Thus if we take u =1 we have v = £ and » = ¢, whence it
follows that { = &.

Suppose that m, =y, for s=44+1, i+2, ---, k4+1. If
m; > u; We choose u so as to satisfy the condition m; = u > ..
Then we have

v=pi+ (Mip1 4 - -+ myyp),
v=uplE =1+ pit Mg+ - - -+ mpg).

Hence u; = u, contrary to hypothesis. Similarly we can prove
the untenability of the hypothesis that u; > m;. Hence u; = m..
But m.1 = pr+1. Hence by an induction argument we may
show that u;=m;fori=1,2, .-, k.

Let G’ be a second Abelian group of the same order and type
as G. Then there exist independent generators Ry, Rs, - - -, Ry
of G’ whose orders are p™, p™, - - ., p™ respectively. Then the
correspondence P; ~ R,, for =1, 2, - - -, k, exhibits the fact
that G and G’ are simply isomorphic. It is obvious from the way
in which the generators are determined in § 14 that two prime-
power Abelian groups cannot be simply isomorphic unless they
are of the same order and type.

These conclusions justify our use of the symbol (m;, ms,
-+ -, My) as a representation of the Abelian group G of order p™
and given type. For every partition of # into a sum my -+ ms
=+ -+ m; of positive summands a corresponding abstract
Abelian group 6 of order pm™ exists (see §14, near end) and
(when p is given) there is just one such group for each par-
tition of m.

This affords a complete determination of all abstract prime-
power Abelian groups.
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Now let g1, g2, - - -, & be any set of elements such that
grmi=1 (i=12.--k)
&8 = 8k (2, j= 1,2,--- k)

and let it be supposed that there are no additional conditions
satisfied by the elements g; except those which are implied by
the given conditions. Then we shall show that the group G,
G=1{g, g, - -, &)}, is an Abelian group of order p™ and type
(my, mg, - - -, my), Where m =my + mz+ - - - + ms, so that the
given relations afford a set of abstract defining relations for G.

It is evident that G is Abelian and that its order is a power of
p. Moreover, its order cannot be greater than p™, since every
element in G is certainly contained in the set

g1%1g2% - -+ &%,
where o;=0,1,2,---, p™—1. (Z=1,2,---, k)
But its order is at least as great as p™, since the elements
vi = (ncuz - - - ;) (pi=pmi;1=1,2,---, k)

satisfy the conditions imposed on the corresponding g’s and at
the same time generate a group of order p™. Hence the group G
is of order p™. It is obvious that its type is (m,, mg, - - -, m).

24. Abelian Groups of a Given Order. We shall now deter-
mine all possible abstract Abelian groups G of order g,
g=D1*%ipe® - - - p%, where p1, po, - - -, ps are distinct primes
and oy, ao, - - -, @, are positive integers. Every such group G, as
we have seen (§ 14), is the direct product of its Sylow subgroups
of orders p\*, po%, - - -, p%. The Sylow subgroup of order p;=
may be of any type (o1, e, - - -, aux,), Where the a; are positive
integers such that o = o1 + a2 + - - - + ;. By taking every
possible such partition of each o; we get every possible set of
Sylow subgroups of groups of order g; the direct products ob-
tained from them give every possible Abelian group G of the
named order g.

From this it follows that the number of abstract Abelian
groups G of the named order g is equal to the product obtained
by multiplying together the numbers which separately represent
the numbers of partitions of the a; into positive summands.
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Thus the number of abstract Abelian groups of order p;2p;3p53
is 18; the number of those of order p5ps2pst is 70.

We have thus reduced the problem of determining the num-
ber of abstract Abelian groups of given order » (where the fac-
torization of # is known) to a problem in the theory of numbers,
namely, the problem of determining the number of partitions of
a positive integer into positive summands. This problem in the
theory of numbers has received considerable attention, but it is
yet far from being completely solved.

25. Subgroups of a Prime-Power Abelian Group. Let us
now consider the possible types of subgroups of an Abelian
group G of order p™ and type (m;, ms, - - -, my), where m; = my =

--=my; > 0. Such a subgroup H is Abelian and of order p~,
where n =m. Let (n, ns, - - -, n;) denote the type of H, the
notation being so chosen that ny=Z#n;=...-=%,>0. We
shall prove that t = kand that n; = m; fori=1,2,.- ., 1.

For this purpose it is convenient to consider the subgroup
G® which consists of the totality of distinct elements of G ob-
tained by raising each element of G to the (p#)th power. If
m; > u = m;.1, then the (p#)th power of the element

Py21Po% - « - Py
where P;, Ps, - - -, P have the same meaning as in § 23, is
PP PyP® . . . Proad®,
Hence G® is generated by the 7 elements
PP PP, ..., PP,
Therefore the order of G® is p* where
A=(m+me+---+m) — ui.

Consider the subgroup H of G already mentioned. Form its
subgroup H; consisting of the identity and the elements of order
p. This is a subgroup of order p¢ of the group G; of order p* con-
sidered in § 23. Hence ¢ = £, one of the propositions which we
were to prove.

Now the subgroup H® of H is a subgroup of the subgroup
G® of G, so that the number of generating elements of H® is
equal to or less than the number of generating elements of GW,
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in accordance with the result in the preceding paragraph. If
n; > u = i1, then the number of generators of H® is j. But
the number of generators of G® is 7. Hence j = 1.

Now it is obvious that n; = m,, since p™ is the greatest
possible order of an element of G. Suppose that n, = m, for
p=1,2,.--, & but 7,41 > May1. Then let u=mn,,1. Then we
have i =« and j = a4 1, contrary to the conclusion that j = 4.
Hence n; = m; for 1= 1, 2, - - -, {, as was to be shown.

From these results we see that the subgroup H of G exists
only wheni=kandn;=m;fori=1,2,---, L

Now it is obvious that G has a subgroup of type (n1, %2, - - -, %)
in all casesin whicht=kand n,=m; fori1=1,2,---, ¢

A part of the results obtained in this section and § 23 may
now be summarized into the following theorem:

I. The number of distinct types of abstract Abel-
ian groups of order p™, where p is a prime number
and m is a positive integer, is equal to the number of
partitions of m into positive summands. If one such
partition is m = m; 4 m2 + - - - + m;, then there is
one and just one abstract Abelian group of order p™
and type (mi, mg,---, m). If the notation is so
chosen that m;=Zm.=---=my, then the group
of type (mi, m., - - -, m;) has a subgroup of type
(m, ng, -+, n;) with n, =Zn, =---=n, when and
only whent=kand n;=m; fori=1,2,---, ¢

26. Number of Elements of a Given Order. Let G be an
Abelian group of order p™ and type (mi, ms, - - -, m) with
mz=me=---=m>0. We saw in § 28 that the subgroup
G,, which consists of those elements of G whose orders divide p»,
is itself of order p*, where

v=pui+ Mipg1+--- + myy1),

m;, 1 being the first number less than u in the sequence m;, me,
ooy My, My41 (M1 =0). Now let A be any positive integer not
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greater than m,. Then G contains elements of order p*; more-
over any given element of G (other than the identity) has for its
order a number of the form p», where p is a positive integer not
greater than m;. The number of elements of G of order p* is
obviously equal to the number obtained by subtracting from
the order of G\ the order of G,_i, since every element whose
order is a factor of p* is contained in G,, while G,_; contains
every element whose order is a factor of p»~1. Now let « and 8
be such that *

‘ MaZ=ND> May1, Mg= N— 1> mp,;.
Then the orders of G, and G, _, are, respectively, p” and p?, where

v= A+ (Mag1+ -+ M),
0= A=D1+ mpyp1+-- -+ mypy1).

The difference pr — p? gives the number of elements of G each
of which is of order p* where A is a positive integer not greater
than m;.

27. Groups of Isomorphisms of Cyclic Groups. Let G be a
cyclic group of order g. We shall now determine the group I of
isomorphisms of G with itself and shall show that it is an
Abelian group.

Let S be a generator of the group G. Then every possible
single generator of G is included in the set S*, where A ranges over
the set of integers not greater than g and prime to g; and every
such element is a generator of G. In any isomorphism of G
with itself a generator of G must correspond to a generator of G.
From this it follows readily that the group I of isomorphisms of
G with itself may be obtained by taking all correspondences of
the form S ~ S, where A is a positive integer not greater than
g and prime to g. Hence the order of I is ¢(g), where ¢ denotes
Euler’s ¢-function of g.

Let S ~ Sh and S ~ S* define two elements of I. The first
may equally well be defined by the relation S*: ~ S*, where
0 < A3 = gand MA2 = As modulo g. Likewise the second may
equally well be defined by the relation S ~ S*. Hence their

* An obvious modification is needed when A =1.
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product in either order may be defined by the relation S ~ S*.
From this it follows that the group I is Abelian. Groups formed
in this way constitute an important special class of Abelian
groups.

Once the generator S of G is given, the element of I defined
by the relation S ~ S may be uniquely represented by the
number A;. If two elements S ~ S and S~ S* of I are
given, their product is S ~ S», where A3z is the least positive
residue of A \z modulo g. Hence the isomorphisms which we
represent by \; and \., respectively, have as their product the
isomorphism represented by As, where As is the least positive
residue of \;A2 modulo g. The group I is thus represented as
simply isomorphic with the group I’ whose elements are the
positive integers not greater than g and prime to g, the rule of
combination being ordinary multiplication together with a re-
duction modulo g.

EXERCISES

1. If G is an Abelian group and H is ahy subgroup of G, then the
factor-group G/H exists and is Abelian.

2. Construct a non-Abelian group G having an Abelian self-
conjugate subgroup H such that G/H is Abelian.

3. Let G be an Abelian group of order p™. Let G. and G®) be its
subgroups denoted by these symbols in §§ 23 and 25 respectively.
Prove that G, and G® are characteristic subgroups of G. Prove also
that the greatest common subgroup K,.,» of G. and G® is a charac-
teristic subgroup of G.

4. Determine the group I of isomorphisms of the group whose
elements are the eight eighth roots of unity, the law of combination
being ordinary multiplication.

6. Show that no group I of the class discussed in § 27 can be of
order 14 or 26; show that these numbers are the smallest even num-
bers that cannot be obtained as the orders of groups of isomorphisms
of cyclic groups.

6. The elements of highest order in an Abelian group G generate G.

7. Construct a non-Abelian group which is not generated by its
elements of highest order.
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8. In order that a given group G shall be Abelian it is necessary
and sufficient that G may be exhibited as simply isomorphic with
itself by making each element in G correspond to its inverse.

9. Show that the only Abelian groups each of which has no char-
acteristic proper subgroup (other than that consisting of the identity
alone) are those of prime-power order pm and type (1, 1, - -+, 1).

10. If S and P are elements satisfying the relations
pPp=87"1=1 and S~ !PS= P2

where p is an odd prime and « is a primitive root modulo p, and if S
and P satisfy no conditions except those implied by the relations
already given, show that {S, P} is simply isomorphic with the holo-
morph of the cyclic group of order p. (See Ex. 16 on page 84.)

11. Represent the group {S, P} of Ex. 10 as a permutation group
. of degree p.

12. Let G be a cyclic group of order p», where p is an odd prime.
Show that the holomorph of G is of order p2»~1(p — 1) and that it
has the abstract defining relations

PPt =" lp-1) =1, S-1PS= pa
where « is a primitive root of the congruence
a?" Ho-1) =1 mod p~.

13. Obtain for cyclic groups of order 2» the results corresponding
to those given in Ex. 12 fof the group G there defined.

14, Show that the holomorph of a cyclic group of odd order is a
complete group.

15. Determine the cases in which the group I of isomorphisms of

a cyclic group G of order g is itself a cyclic group. In particular, show
that no such cyclic group I can be of order 8 or 14.

16. Show that any given Abelian group G is simply isomorphic with
a subgroup of some group I’ of the class discussed at the end of § 27.

17. If H is any subgroup of an Abelian group G, show that G con-
tains a subgroup simply isomorphic with G/H.

18. Construct a non-Abelian group G having a self-conjugate sub-
group H such that the factor-group G/H is simply isomorphic with no
subgroup of G.
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19. Show that for every Abelian group G a set of independent gen-
erating elements Si, Sz, - - -, Sp exists such that the order of each ele-
ment in the set (after the first) is a (proper or improper) factor of the
order of each element which precedes it.

20. Show that the number of ways in which a set of independent
generating -elements of an Abelian group of order pi#(**1) and type
(n,n—1,---,2,1) may be selected is p*(p — 1)", where » is such that
6r=n(rn+1)2n+1)—6n

28. Properties of an Abelian Group G of Order p™ and Type
@, 1,---, 1). The elements of G (other than the identity) are
all of order p. Hence a subgroup of G of order p= is of type

ai,---1).
Let us consider the number of ways in which an ordered
set Sy, S, - - -, Sm Of generators of G may be chosen. Since G

contains p™ — 1 elements of order p, the first generator S; may
be chosen in p™ —1 ways. The group {Si} contains p—1
elements of order p. The remaining elements of order p in G
are p™ — p in number. Hence the second generator S; of G
may be chosen in any one of p™ — p ways. The group {Si, Sz}
contains p2 — 1 elements of order p, so that the remaining
elements of order p are p™ — p? in number. Since any one of
these may be taken for Ss, it follows that Ss may be chosen in
any one of p™ — p2 ways. By continuing this process one finds
that the ordered set Si, S, - - -, S» Of generators of G may be
chosen in

@"=DE@"=p)"—pH--- @™ -

ways. A given set of m generators may be arranged in m! dif-
ferent orders. Hence the number of distinct sets of generators
of G, considered apart from their order, is
@Gr=1HP"—pPpm—p%--- Pp"—p™ Y,
m!

By a similar argument the number of subgroups of G of
order p= is readily determined. Such a subgroup has o genera-
tors of order p. The first may be chosen from G in p™—1
ways; the second, in p™ — p ways; the third, in p™ — p? ways;
and so on till finally the ath may be chosen in p™ — p*~1 ways.
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Hence the ordered set of a generators to give rise to a subgroup
of G of order p= may be chosen in

@"=DE@" =)™ =% - ™ —p*Y)

ways. But an ordered set of generators of a given group of
order p= and type (1, 1, - - -, 1) may be selected in

@ = D= p)p*— b - - - p=—p*7Y)

ways. The number of subgroups of order p= in G is evidently
the quotient of these two numbers and hence is equal to

@r=—D@Er=p)P"—=p--- Pm—p"Y
Pr—=1)@=—D)p*— DY - -+ (p=—p=Y)

From this it follows readily that the number of subgroups
of order p* in G is the same as the number of subgroups of
order p™—k,

Now let Py, Ps, - - -, Pm be any fixed set of generators of G.
Then an isomorphism of G with itself may be set up by means

of the symbol
P11P2,"'1Pm]’
Sl, S2, Tty Sm

where Sy, Sz, - - -, S, is any ordered set of generators of G, this
symbol implying that P, corresponds to S; for i =1,2,-- ., m.
The totality of isomorphisms of G with itself is obtained by
varying the ordered set Si, Ss, - - -, S» in every possible way.
Hence the order of the group I of isomorphisms of G with itself
is equal to the number of ways in which the ordered set of
generators Sy, S, - - -, S, may be chosen and hence is equal to

@"=DE"—-p)@™—p» - ™ —p™ ).

From § 18 it follows that the order of the holomorph X of
G is p™ times the preceding number.

29. Analytical Representations of G, I, and K. Employing the
symbols G, I, and K with the same meanings as in the preceding
section, we shall now obtain certain useful analytical represen-
tations of the groups G, I, and K.

As before, we let Py, Py, - - -, P, denote a fixed set of genera-
tors of the Abelian group G of order p™ and type (1, 1, - - -, 1).
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Then the elements of G are all uniquely represented by the
symbols PyyPgbz - . - P, tm

where i, p2, -+ + <5 fm TUD independently over the set 0, 1, 2,
..., p—1 of p numbers. An element of G may therefore be
represented uniquely by the symbol

{ur, piz, - - Mom} s

where each u is a number of the set 0, 1, 2, - -, p — 1, pro-
vided it is understood that the symbol represents the product
P#1 Py - . - P#». We shall employ the more general symbol
{v1, v2,++*, vm}, where the »’s belong to the class of all
integers, with the understanding that two symbols of this form
are to be considered equivalent if their corresponding ele-
ments are congruent modulo p. Thus {ui, us, - -+, un} and
{v1, v2, - - -, ¥m} are equivalent if p;=w;mod p for i=1, 2,
..., m. For the multiplication of these symbols (corresponding
to the multiplication of elements in G) we obviously have the
formula

{”19 M2 ¢+ 0y )u'm} * {Vl’ V2, -y Vm}= {”'1+ Viy** o “m+ Vm}-
Now consider the set of elements

{1, B2, ¢y Mhbm)s

where w1, u2, - * +, Mm constitute a fixed set of m numbers taken
modulo p and not all of them congruent to zero modulo p,
u being a variable integer taken modulo p. This set of elements
forms a group of order p having {u1, us, - - -, im} fOr a generator.
This group of order p may be denoted by the symbol

, (1, M2y -+ 5 Bom)-
The same group is also represented by the symbol

(V”‘b V2, * 2y V”'m)y

provided only that » is a fixed integer incongruent to zero
modulo p. The symbol (u, usg, - - -, um) may therefore be
treated as exhibiting a set of homogeneous co-ordinates for the
given subgroup, analogous to the homogeneous co-ordinates
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of a point in a space of m — 1 dimensions. (The geometrical
interpretation thus suggested will be generalized and developed
in Chapter XI.) In a similar way the symbol {u;, us, - - -, Mm}
denotes the nonhomogeneous co-ordinates of an element of G,
analogous to the nonhomogeneous co-ordinates of a point in a
space of m dimensions.

Let us now consider the conditions under which the symbols

P: .
(lepzazi ... P,,,ﬂma')’ t=12---,m)

define an isomorphism of G with itself. In accordance with
these symbols an element Py#Py® - - - P,*m is replaced by the
element P,%1Py% - - . P,¥m where

Yi=aax+ asxe+ -+ - + dim¥n mod p. (t=12,..-,m)

This represents a transformation of the element {xi, %o, - - -, X}
of G into the element {y;, y2, - - -, ¥m} Of G. In order that this
may represent an isomorphism of G with itself, it is necessary
and sufficient that {yi, ¥2, - - -, ¥m} shall run over all the ele-
ments of G when {x;, x2, - - -, ¥} runs over all the elements of
G. Hence for a given set {y1, ¥2, - - -, ¥»} there must be a single
set {xi, %2, - - -, ¥m}. Therefore the foregoing set of m simulta-
neous congruences must have a unique solution {x;, x2, - - -, ¥}
when the set {y1, ¥2, - - -, ¥m} is given. A necessary and suffi-
cient condition for this is that the determinant D,

Q11 Q12 - Oy

Qg1 Qg * » + U
D= 21 (v22 2m ,

Cp1 A2 * * * Oy

shall be incongruent to zero modulo p.

From these considerations it follows that the symbols at
the beginning of the preceding paragraph define an isomor-
phism of G with itself when and only when the foregoing deter-
minant D is incongruent to zero modulo p. When this condition
is satisfied, every set of simultaneous congruences of the fore-
going form represents an isomorphism of G with itself, and two
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distinct sets of congruences represent two distinct isomorphisms
of G with itself. Moreover, every isomorphism of G with itself
may be represented in such a form. Furthermore, to the
product of two isomorphisms of G with itself will correspond
the product of the two corresponding transformations of x’s
into y’s.

From these results it follows that the group I of isomor-
phisms of G with itself is simply isomorphic with the group of
elements defined by all congruences of the form

yi=anxi+ apxe+- - - + dimtnmodp (G=12,---,m)

when the coefficients «;; are subject to the condition that the
determinant D, or | a,; |, shall be incongruent to zero modulo p.

The group last mentioned is known as the linear homogeneous
group modulo p. Its order is found from § 28 and the fact that
it is simply isomorphic with I'; this order is

@ =D —p)P"—p%--- P™—p" ).

This group and its generalizations (see Chapters X and XI)
are of importance in several branches of mathematics.

The corresponding linear nonhomogeneous group modulo p
consists of the transformations

yi=aaxi+aote+ - -+ Qimm+ B: mod p, (1=1,2,---,m)

where again the determinant D is restricted to be incongruent
to zero modulo p. It will now be shown that this group K is
simply isomorphic with the holomorph K of G. Since each of
the integers (3; may be selected in p ways which are distinct
modulo p, it follows that the set 8, B2, - - -, B may be se-
lected in p™ ways. Hence the order of the group K is p™ times
the order of 1, since the 3’s may be assigned values quite inde-
pendently of the o’s. Therefore the order of K is

@™ =1 —p)@™—p2) - (™ —p™ Hp™,
and this is the same as the order of K. The transformations
y‘iExi+ﬁim0dp (i=1’2"",m)

form an Abelian group of order p™ and type (1, 1, - - -, 1), as one
may easily verify. Hence it is simply isomorphic with G. More-
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over, this subgroup is self-conjugate in K. Furthermore, it is
not difficult to show that the only elements of K which are
permutable with every element in this subgroup are the elements
of this subgroup. From these facts, and the isomorphism of the
linear homogeneous group modulo p with 7 and the known order
of K, it follows readily that K and K are simply isomorphic, as
was to be proved.

30. Groups of Isomorphisms of Abelian Groups in General.
Let G be an Abelian group of order pi1«pee - - - p,*» where p;,
be, - -, P are distinct primes and ay, o, - - -, a, are positive
integers. Then G, as we have seen, is the direct product of its
Sylow subgroups Gi, Gz, - - -, G, of orders P11, po=e, - - -, p,on, re-
spectively. In any isomorphism of G with itself the elements of
the subgroup G: must correspond to elements of G.. If I; is any
isomorphism of G; with itself, then G admits an isomorphism in
which the elements of G: correspond in accordance with the
isomorphism I; while the elements of the remaining subgroups
in the set Gi, Gz, - * -, G, correspond each to itself. This isomor-
phism of G with itself is permutable with any isomorphism of G
with itself in which the elements of G; correspond each to itself.
From these facts it follows that the group of isomorphisms of G
with itself is the direct product of the groups Ly, Ls, - - -, L, of
isomorphisms of Gy, Gs, - - -, Gn, respectively, each with itself.

In a similar way it may be shown that the holomorph of G is
the direct product of the holomorphs of Gy, G, - - -, Ga.

Now let m be the least common multiple of the orders of the
elements of G. Then G has elements of order m and no element
of order greater than m. Let u be any number not greater than
m and prime to m. Then the symbol

()
S*
denotes an isomorphism of G with itself, as one may easily

verify. It is obvious (compare § 27) that the product of any
two such isomorphisms is an isomorphism of the same sort; for

-
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where us is the least positive residue of uiuz modulo m. Giving
to u in turn all its possible values, ¢(m) in number, we have
¢(m) distinct isomorphisms of G with itself; and these consti-
tute a subgroup of the group of isomorphisms of G with itself.
When G is a cyclic group this group of ¢ () isomorphisms is the
entire group of isomorphisms of G with itself, as we have seen
in §27. When G is noncyclic, it is clear that this group is a
proper subgroup of the group of isomorphisms of G with itself;
we shall now show that it is a self-conjugate subgroup.
For this purpose let the symbol

(5)

denote any isomorphism of G with itself. Then we have
() ) =) =) =)
s/ \se/\s'/ T~ \s/\se/\s'u/ T \s'w) T \sw/"
This shows that the elements of the named subgroup are self-
conjugate in the group of isomorphisms of G with itself.

31. Hamiltonian Groups. A Hamillonian group is a non-
Abelian group all of whose subgroups are self-conjugate. Since
every subgroup of such a group is self-conjugate, it follows that
there is only one Sylow subgroup of each order. Now let g and
k be elements from two Sylow subgroups. If ¢ is the element
c=g 1. h-1gh=g~h~lg- h, then ¢ is in each of these sub-
groups and therefore is the identity. Hence g and % are per-
mutable. Hence it follows that a Hamiltonian group is the

direct product of its Sylow subgroups.
Two elements a and b subject to the sole conditions

at =1, a%? = (ab)? = b?,

generate a group of order 8, as the reader may easily verify.
This is known as the quaternion group. The reader may show
that it is a Hamiltonian group. It has, besides the identity, six
elements of order 4 and one of order 2.

We shall now prove the following theorem (by the method
given in Hilton’s Finite Groups) :
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II. Let G be a Hamiltonian group. Then
(1) G is the quaternion group @; or,
(2) G is the direct product of @ and A, of @ and
B, or of @ and A and B,
where A is an Abelian group of odd order % and B is
an Abelian group of order 2™ and type (1, 1, - - -, 1).
Every such direct product is a Hamiltonian group.

We first prove that the direct product G; of @ and 4 and B
is a Hamiltonian group. Let % be any element of a subgroup H
of Gy and write & = abc, where a, b, ¢ belong, respectively, to
A, B, Q. Let g be any element of G, and write similarly g = a7,
where «, 8, v belong, respectively, to 4, B, Q. Then we have
g7ihg = vy 1B la Yabcafy = v labcy = vy~ leyab. Since
¢t =1 and {c} is self-conjugate in Q, it follows that y~lcy =¢
or ¢3. Hence g~'hg =% or c2h. Now H contains the element
h?* = (abc)®* = a?*bh%*c%* = c%*. But ¢ = ¢?, since ¢t=1 and %
is odd. Therefore H contains both % and ¢2k and hence contains
g 'hg. Therefore H is self-conjugate in G;. Therefore G, is a
Hamiltonian group.

That the direct product of @ and A alone or of Q and B
alone is also a Hamiltonian group is now evident.

Let I'" be a Hamiltonian group of order p=, where p is a prime.
Let p* be the lowest order of an element in I' which is not
self-conjugate in T', and let g be an element of I' of order p*
which 1s not self-conjugate in I'. Let % be any element of T’
which is not permutable with g and denote the order of % by
P (uz=N).

Since I' is Hamiltonian, it follows that A~gh is in {g}.
Then h~'gh is a power of g. Write g~1. h~1gh=¢. Then cis
a power of g. In a similar way it may be shown that ¢ is a
power of 2. Hence c¢ is in the greatest common subgroup D
of {g} and {#}. Every subgroup (of order greater than 1) of
{g} contains {g”'}, and every subgroup (of order greater
than 1) of {} contains {#**”'}. But, since ¢ 1, D does not
consist of the identity alone. Therefore D contains both {g** ™'}
and {#*~1}. Hence g#* ' is some power of ¢; likewise ##*~* is
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some power of ¢. Therefore g ™! = h***~!, where u is an appro-
priate integer which is prime to p. Since g and & are not per-
mutable, it follows that D does not coincide with {g}. Therefore
A> 1L

From the relation 2—!gh = gc and the fact that g and ¢ are
permutable we have 2~ 1gPh = gpc?. But g7 is self-conjugate in
T by hypothesis; therefore ¢? = 1.

Since ¢ is permutable with both g and % and g~ '~ gk =g,
we have
g hig=ch™}, g7 h™Pg = cPhb, h™FPgh? = gcb, h—Pgehf = gocb.
In particular, gh? = hfgc. Hence (hg)2=h-gh-g="h-hgc- g
= h2g%c, (hg)3® = hgh2g%c = h - h2gc? - g2c = h3g3¢3. By induction
it may now be shown that (hg)t= h‘gic?**~V. But from the
established relation hA—¥g*h¥ = g=c*, it follows * that ¢* is the
commutator of g and k¥. Hence

(hyga:)t —_ hytgctcixyt(t-—l)’

as one may show from the result just preceding.
In the last relation put

=1 y=—up™, t=p"L

Then we have (h¥g)t = civ*¢*~D, Hence if p is odd, or if p=2
and y is even, or if p =2 and \ > 2, we have (h¥g)! = 1, since
c¢»=1. Now h¥g is not permutable with #; hence we cannot
have (#¥g)t =1, for then we should have an element of lower
order than g and yet not permutable with %, contrary to hy-
pothesis. Therefore we must have p =2, A= 2 (since A > 1),
y an odd number, and therefore u =X =2. Then we have
gt=h*=1, g2=h2 and g~ kg = k3. From this it follows that
{8, h} is the quaternion group.

From this it follows that any two nonpermutable elements
in a Hamiltonian group I' of order 2= generate a quaternion
group.

An element ¢ of order 2 in I' is self-conjugate, since {e} is
self-conjugate. The elements of order 2 therefore constitute
an Abelian subgroup H of type (1,1,---,1). Let @ be any

* This result is of some interest in itself apart from the use made of it here.
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quaternion subgroup of I' generated by elements a and » sub-
ject to the conditions a* = 1, a? = (ab)2 = b2. If d is an element
of I' which is not permutable with @, then {g, d} is a quater-
nion group and we have d? = @2, in accordance with a previous
result in the argument.

If v is an element of I" which is permutable with both ¢ and
b, then -yb is not permutable with g, and hence a2 = (vb)2 = y2bh2?
= ~2a2. Therefore y2 =1 and hence v is in H.

If v is an element of I" which is not permutable with both
a and b, then we have either (1) y~lay=a, v 1bg= b3,
@) v~lay=2a3, vy lby=b, or 3) v lay=a3, vy by =053
In the respective cases it may be shown that @ and b are both
permutable with (1) av, (2) by, (3) aby. In each case v is in
{Q, H}. Then T is generated by Q and H, and H is the central
of I'. The greatest common subgroup of Q and H is {a?}. If
B is that subgroup of H of index 2 which does not contain a2,
then B is an Abelian group of order 2=—3 and of type (1, 1, ---, 1),
when o« > 3, while T itself is the direct product of Q@ and B.

From this it follows that a Hamiltonian group of order 2« is
the direct product of the quaternion group Q and an Abelian
group B of order 1 when o =3 and of order 2a—3 and type
1,1,---,1) when o > 3.

Now any Hamiltonian group is the direct product of its
Sylow subgroups. From the foregoing argument it follows that
the Sylow subgroups of odd order are Abelian. The direct
product of these Sylow subgroups of odd order is an Abelian
group A of odd order. The Sylow subgroup of even order 2« is
either the quaternion group Q or the direct product of B and @,
as we have seen. Hence G itself is a group of one of the types
described in the theorem.

This completes the proof of the theorem.

EXERCISES

1. If K is the holomorph of a cyclic group G of order 8, show that
G is not a characteristic subgroup of K.

2. In the group 4 of inner isomorphisms of a group G no element other
than the identity is a power of every other element except the identity.
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8. There is no group G having the quaternion group for its group
of inner isomorphisms.

4, A subgroup of a Hamiltonian group is either Hamiltonian or
Abelian.

5. A factor-group of a Hamiltonian group is either Hamiltonian
or Abelian.

6. The holomorph of the cyclic group of order 4 is simply iso-
morphic with the octic group.

7. The group of inner isomorphisms of a Hamiltonian group is an
Abelian group of order 4 and type (1, 1).

8. An element of the group {B, Q} of § 31 is of order 1 or 2 or 4.

9. If s and ¢ are subject to the sole conditions s'¢ =1, 2=1,
tst = s then the group {s, ¢} is of order 32 and is conformal with the
Abelian group of order 25 and type (4, 1).

10. Show that the holomorph of the cyclic group of order n con-
tains a subgroup of order nd for every factor d of ¢(n), where ¢(n)
denotes Euler’s ¢-function of .

11, Show that the number of subgroups of type (2, 1) in a prime-
power Abelian group of order p5 and type (2, 2, 1, 1) is
P+ 1)@+ p+1).

12. In order that a prime-power group of order p™ (m > 1) shall
be Abelian, it is necessary and sufficient that more than p™—! of its
elements shall correspond each to its inverse in some isomorphism
of the group with itself.

13. Let Hy, H,y, Hs, - -+, H, be the p 4+ 1 subgroups of order p in
an Abelian group G of prime-power order p2? and type (1, 1). Show
that the group of isomorphisms of G with itself permutes these p + 1
subgroups according to a transitive permutation group K of degree
p+1and order (p + 1)p(p —1).

14. Show that the group K of the foregoing Ex. 13 contains a transi-
tive subgroup K; of degree p and order p(p — 1) each element of which
leaves Hj fixed ; show further that K; has a cyclic transitive subgroup
of degree and order p — 1 each element of which leaves H; fixed.

15. Show that the group K of the foregoing Ex. 13 has a transitive
subgroup L of index 2 such that L itself has a transitive subgroup L,
of degree p and order 4 p(p — 1) each element of which leaves Hj fixed.
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16. Let G be a prime-power Abelian group of order p™ and type
(my, mg, - - -, m;) and let r be less than or equal to £ Show that the
number of subgroups in G of order p* and type (1,1, - -+, 1) is

(Qk — 1)(2]:—1 — 1) .. (pk-—r+l —_— 1).
(pr___ 1)(pr-—l _1) e (p— 1)

MISCELLANEOUS EXERCISES

1. Let G be an Abelian group of order greater than unity such
that every element in it besides the identity is of one given order k.
Show that % is a prime number p and that G is of order p™ and type
1,1, -, 1), where m is some positive integer.

2. Let S be an element of prime order ¢ which is permutable with
a prime-power Abelian group G of order p= but not with any proper
subgroup of G except that consisting of the identity alone. Show
that ¢ = a.

3. Let G be any group of finite order. Show that a number m
exists such that the group of isomorphisms of the Abelian group of
prime-power order p™ and type (1, 1, - -, 1) contains a subgroup
simply isomorphic with G.

4. Let G be an Abelian group having the property that it contains
a set of subgroups such that any given element of G other than the
identity occurs in one and just one subgroup of the named set. Show
that G is of prime-power order p™ and of type (1, 1, - - -, 1).

5. Let G be a prime-power Abelian group of order p?+# and
type (2,2,---2,1,1,- -+ 1), the latter symbol containing y 2’s and
z 1’s. Show that the number N, of cyclic subgroups of order p2? in G
and the number N of noncyclic subgroups of order p2 in G are given
by the formulas

P g and e @ =DEHI])
M=p T ad M= e -

- 6. Find the number of subgroups of type (3, 2, 1) in a prime-power
Abelian group of order p'2 and type (3, 3, 2, 2, 1, 1).
7. Let G be an Abelian group of prime-power order p™ and type
21,1, .-+, 1). Show that the number of subgroups of index p in G
is (™ 1-—-1)/(p—-1).
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8. If P is an element of order p= in the group I of §§ 28 and 29,
show that ¢ =1 m or a = 1(m + 1) according as m is even or odd.

9. Show that the group of isomorphisms of the Abelian group G
of order 32 and type (1, 1), when represented in the usual way as a
permutation group, contains two abstractly distinct regular subgroups
of order 8. Show in each case that the corresponding subgroup of the
holomorph of G, when represented in the usual way as a permutation
group, is a transitive group of degree 9 and order 9 - 8 which contains
as a subgroup a transitive group of degree 8 and order 8.

10. Show that the group of isomorphisms of the Abelian group G
of order 52 and type (1, 1), when represented in the usual way as a
permutation group, contains three abstractly distinct regular sub-
groups of order 24. Show in each of the three cases that the corre-
sponding subgroup of the holomorph of G, when represented in the
usual way as a permutation group, is a transitive group of degree 25
which contains as a subgroup a transitive group of degree 24 and
order 24.

11. Show that the prime-power Abelian group G of order p* and
type (1, 1, 1, 1) has a set of p2 + 1 subgroups each of order p? such
that the identity is the only element common to any two of them.

12. Show that a prime-power Abelian group G of order p® and type
1,1, --- 1) has a set of p3 + 1 subgroups each of order p3 such that
the identity is the only element common to any two of them.

13. Show that a prime-power Abelian group G of order p® and type
(1,1, ---, 1) has a set of p* + p2 + 1 subgroups each of order p2 such
that the identity is the only element common to any two of them.

14. Show that the group I of isomorphisms of the Abelian group G
of order 33 and type (1, 1, 1) is (2, 1) isomorphic with a group H which
permutes the 13 subgroups of G of order 9 according to a transitive
group of degree 13 and order 1312 -9 . 4.

15. Show that the group I of isomorphisms of the Abelian group G
of prime-power order p3 and type (1, 1, 1) is (p — 1, 1) isomorphic
with a group H which permutes the p2+ p + 1 subgroups of G of
order p? according to a transitive group of degree p2 + p + 1 and order
@2+ p + 1)(p2 + p)p2(p — 1)%

16. Show that the group H of the foregoing Ex. 15 contains a sub-
group of index p2 4 p + 1 which is transitive of degree p2 + p.




CHAPTER V

Prime-Power Groups

82. General Properties. In § 15 we saw that any group may
be generated by any set of its Sylow subgroups which contains
one such subgroup of each possible order. Since these Sylow
subgroups are prime-power groups, it follows that the theory of
prime-power groups is of central importance in the theory of
finite groups in general. In the previous chapter we have made
an analysis of the prime-power Abelian groups. In this chapter
we shall treat the prime-power groups without the restriction
that they shall be Abelian.

The most important theorem relating to prime-power groups
has already been proved in § 15. It may be stated as follows:

I. A prime-power * group G of order p™ contains
a self-conjugate element of order p.

From this theorem we drew the following corollaries: the
number of self-conjugate elements in G is a power of p; a
group of order p2 is Abelian; a group whose order is a multiple
of p contains an element of order p.

In § 21 we saw that every prime-power group is soluble.

Every subgroup of a group G of order p™ has for its order a
power of p (§10). Hence the number of elements of G each of
which is conjugate to a given element must (by Theorem VI of
§11) be a power of p.

If G is a non-Abelian group of order p™, its central H is a
proper subgroup of order p?, where s is a positive integer less
than m. The factor-group G/H is of order p™—2. We call it the
central factor-group of G. If this group is non-Abelian, we form

* Throughout the chapter the syml;g:)p will always denote a prime number,
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its central factor-group. Continuing this process, we must
finally arrive at a central factor-group which is Abelian. It is
to be observed that this central factor-group is noncyclic. This
follows at once from Theorems VII and VIII of § 20 and the
fact that this Abelian factor-group is the factor-group of a non-
Abelian group with respect to its central.

Now G is multiply isomorphic with its central factor-group
G/H, the central H (of order p*) of G corresponding to the
identity in G/H. And G/H contains a self-conjugate subgroup
of order p, as one sees from Theorem I. Corresponding to such
a subgroup of G/H is a self-conjugate subgroup of G of order
p*tl, in accordance with Theorem VI of § 20; and this self-
conjugate subgroup contains the central H of G as a subgroup
of index p. This subgroup of order p*+! is an Abelian group,
since it is generated by the central of G and one other (suitably
chosen) element of G. From this result we have the following
theorem:

II. Every non-Abelian prime-power group G con-
tains a self-conjugate Abelian subgroup some of the
elements of which are not self-conjugate in G; in
fact, it contains an Abelian self-conjugate subgroup
having as a proper subgroup the central H of G.

Let H,, Hy, - - -, H; be any complete set of conjugate sub-
groups of a group G of order p™. Then the elements of G each
of which transforms H, into itself form a subgroup whose order
is a power of p. Therefore (Theorem VII of § 11) the number £
of subgroups in this conjugate set is itself a power of p. Let
K; be the largest subgroup of G the elements of which transform
H; into itself. Then K, contains H;, When %> 1, the elements
of H; transform at least p — 1 other H’s of the set Hi, Hs, - - -,
H, each into itself, since the number of conjugates of H; under
transformation by the elements of H; is a power of . Hence we
have the following theorem :

ITI. The number of subgroups in any complete
set of conjugate subgroups of a group G of order p™
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is a power of p. If this number is greater than one,
then each subgroup in the set transforms into itself
at least p — 1 other subgroups in the set.

In particular,

IV. Every subgroup of order p™—! in a group of
order p™ is self-conjugate in this group.

For if H; and H; are two subgroups of order p™~! in a con-
jugate set such that H; is transformed into itself by the elements
of Hi, we may take g to be an element of H; which is not in Ho.
Then {H,, g} coincides with G while H, is self-conjugate in
{H2, ¢} contrary to the hypothesis that H; is a conjugate of Ha.

33. Some Self-conjugate Subgroups. We shall now prove the
following theorem:

V. A prime-power group G of order p™ contains a
set of self-conjugate subgroups Gi, Gz, - - -, Gn_1, Gn
with G, = G, of orders p, p2, - - -, p™~1, p™, respec-
tively, such that G; is a self-conjugate subgroup of
Gis1, 0f Giy2y - -, Of Gy, for 1=1,2, ..., m—1.

Let g be a self-conjugate element of order p in G. Then
G/{g1} is of order p™~1 and contains a self-conjugate element
42 of order p. In the usual multiple isomorphism of G with
G/{gi}, let g2 be an element which corresponds to v.;. Then
gP is in {g}, since it corresponds to ¥2?, or 1. Let g be any ele-
ment of G and vy the corresponding element of G/{g;}. Then
¥y~ lys 1y, =1, and therefore g~!g>"1gge is in {gi}. Hence
{g1, g2} is a self-conjugate subgroup of G of order p2 consisting of
the p? elements

g17182%2. (alv Qg = 1’ 29 s p)
It contains self-conjugately the self-conjugate subgroup {g;} of G.

Let 3 be a self-conjugate element of order p in the group
G/{g1, g2}, and let g3 be a corresponding element in G in the
usual multiple isomorphism of G with G/{gi, g2}. Then gz? and
g71gs™1ggs are in {g1, g2}, g being any element of G. Thence it
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may be shown that {gi, g, gs} is a self-conjugate subgroup of
G of order p3 consisting of the p3 elements

8171827283 (as, a2, @3=1,2,--+, D)
Moreover, {gi, g2, ga} contains both {g, g2} and {g} self-
conjugately.
Continuing this process, we prove the existence in G of ele-
ments gi, g, - - -, gm Such that the groups
Gi={g, g2, -+ &} ¢=12,---,m)
have the properties named in the theorem.

Cor. I. The group G (= G,,) contains a set of ele-
ments g, g2, - - -, gn such that g7 and g-lg,~lgg;
(where g is any element of G) are in the group
Gii={g, g2+ g1} for i=2, 3, ---, m, while
G; itself consists of the p* elements

191272 .+« g, (Olk=1,2,--',ﬁ; k=1,2,...,i)
for each7of theset 1, 2,- - -, m.

Cor. II. If H is any proper subgroup of order p*
in a group G of order p™, then H is contained self-
conjugately in a subgroup of G of order p*+1.

If H does not contain g;, then {H, g} contains H, Hg,, Hg,?,
«+., Hgi*71, and these constitute the required subgroup of
order pi*l. If H contains g, g, - - -, gi—1 but not g; then
{H, g:} contains the elements H, Hg;, Hg?, - - -, Hg? 1 and these
constitute the required subgroup of order pt+1.

34. Number of Subgroups of Index p. We shall now prove the
following theorem :

VI. Let D of order p* be the greatest common sub-
group of the subgroups of order p™~! in a group G
of order p™. Then G contains just

prr—1
p—1
subgroups of order p™-1.
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Let Hy, Ha, Hs, - - - be the subgroups of G of index p. Then
(Theorem 1V of §32) each H; is self-conjugate in G. Hence
their greatest common subgroup D is self-conjugate in G. Let
g be an element of G, v; the corresponding element in G/H; in
the usual multiple isomorphism of G with G/H,, and v the
corresponding element in G/D in the usual multiple isomorphism
of G with G/D. Now G/H; is of order p, and hence y2# = 1.
Hence g7 is in H; for each value of 7, and therefore g7 is in D.
That is, D contains the pth power of every element in G. Since
g7 is in D, it follows that the corresponding element v? in G/D
is the identity. Hence G/D consists of the identity and pm—+* — 1
elements each of order p.

To each subgroup of index p in G/D there corresponds one
and just one subgroup of index p in G, in the named isomor-
phism of G with G/D. Therefore the number of subgroups of
index p in G is the same as the number of subgroups of index p
in G/D. It remains to determine the latter number.

For this purpose it is convenient to prove first that G/D is
Abelian. Since G/H, is Abelian, owing to the fact that it is
of order p, it follows from Corollary II of Theorem IX of § 20
that H; contains the commutator subgroup A of G; hence D
contains A. Then from Corollary I of the same theorem it
follows that G/D is Abelian. Since the elements of G/D, other
than the identity, are of order p, it follows that G/D is of type
1,1,---,1). Since its order is p™—+, it follows from § 28 that
the number of its subgroups of index p is (p™*—1)/(p — 1).
Hence this is the number of subgroups of index p in G, as was
to be proved. (The reader may note that u is zero when G is
Abelian of type (1, 1, - - -, 1).)

Cor. I. The pth power of every element of G is
in D.

Cor. II. The group G/D is Abelian of order p™—*
and type (1, 1,--.,1).

85. Number of Subgroups of Any Given Order. We shall
prove the following theorem :
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VII. The number of subgroups of order p* in a
group G of order p™ is of the form 1+ kp, where &
is an integer.

In view of Theorem III of § 32 it is sufficient to prove the
following, in order to establish the foregoing, theorem:

VIII. The number of self-conjugate subgroups of
order p* in a group G of order p™ is of the form 1 + kp,
where k is an integer.

From Theorem V of § 88 it follows that G has at least one
self-conjugate subgroup of order p*. Let H), He,- - -, H, de-
note its self-conjugate subgroups of order p*. Let K;, Kz, - -+, K,
be the subgroups of G of order p™~1. Then from Theorem VI
of § 34 it follows that »=1 mod p. We have to prove that
u=1mod p.

Let s; be the number of the subgroups Hi, Hs, - - -, H, each
of which is in K;. Let {; be the number of the subgroups
Ky, Ks, - - -, K, each of which contains H;. Then the number
of cases in which a group Hisina group Kiss; +sz4- -+ 8;
itisalsoti 4+ ¢ +-- -+ t. Hence

si+st+---+s,s=t+b+--+ b

The groups K containing a given subgroup H; are the sub-
groups of G which correspond to subgroups of index p in G/H;
in the usual multiple isomorphism of G with G/H;. But the
number of these subgroups of index p in G/H; is congruent to
unity modulo p, in accordance with Theorem VI of § 34. Hence
t;=1mod p. Then from the result at the end of the preceding
paragraph it follows that

sits2+---+5 =pumodp.

Since » =1 mod p, it will follow that x =1 mod p when it
is shown that s; = 1 mod p. The latter fact we shall now prove.
From Theorem VI of § 34, together with Theorem IV of
§ 82, it follows that the number of self-conjugate subgroups of
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order p* in any (whatever) given group of order p*+! is con-
gruent to unity modulo p. Let us suppose that the number
of self-conjugate subgroups of order p* contained in any
(whatever) given group of order p*+2 has the same property;
and likewise for any (whatever) given group of order p*+3, - - -,
p™~1, If from this hypothesis it follows that the same is true
for any (whatever) given group of order p™, it is clear that the
truth of the theorem is established by induction. Now from
the hypothesis we see that the number of self-conjugate sub-
groups of order p* contained in K; is congruent to unity mod-
ulo p. These include the s; groups H contained in K; and also
(possibly) certain other subgroups Li, Ls, - - -, L, of order p*,
which are self-conjugate in K; but not in G. Since K; is self-
conjugate in G, it follows that K; contains every subgroup
conjugate in G to any of the groups L;, Lo, - - -, Ly; whence we
conclude that A =0 mod p, since these groups fall into conju-
gate sets in G, the number of elements in each set being a
power of p. Therefore s, =1 mod p. From this conclusion the
theorem follows, as we have already seen.

The foregoing theorem will enable us to prove an important
theorem due to Frobenius which is in the nature of an extension
of a part of Sylow’s theorem, namely, the following :

IX. If G is any group whose order is divisible by
the prime-power p* (s > 0), then the number of sub-
groups of order p* in G is of the form 1 + kp.

Let p™ be the highest power of p contained as a factor in the
order of G. Let G; be a Sylow subgroup of order p™ contained
in G. If a given subgroup of G of order p* is not a self-conjugate
subgroup of G,, then it is transformed by the elements of G, into
a set of conjugates whose number is a power of p, as one may
easily verify. Now (Theorem VIII of this section) the number
of self-conjugate subgroups of order p* in G; is congruent to
unity modulo p. Combining the propositions in the last two
sentences, we see that the number of subgroups of G of order p*
is of the form 1 + kp, as was to be proved.
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EXERCISES

1. The central of a direct product of prime-power groups is of
order greater than unity.

9. A simple prime-power group is of prime order.

3. No prime-power group can be a complete group.

4. A self-conjugate subgroup of a prime-power group G has ele-
ments in common with the central of G.

5. The central of a non-Abelian group G of order p™ contains at
least p commutators of G.

8. If the commutator subgroup of a prime-power group G is of
prime order, then each commutator of G is a self-conjugate element
of G.

7. A prime-power group is never a perfect group.

8. If S is an element of order p in a prime-power group G and if
S is not self-conjugate in G, then S is not conjugate in G to any power
of S. :

9. Let @ and b be two nonpermutable elements in a prime-power
group G each having just p conjugates in G. Show that their com-
mutator ¢ is of order p and is permutable with both a and b.

10. Let G be the direct product of prime-power groups and let m
be any factor of the order of G. Show that G contains a self-conjugate
subgroup of order m.

11. Any self-conjugate subgroup of order p*(s=m—2) in a
group G of order p™ is itself contained self-conjugately in self-
conjugate subgroups of G of orders p*+1, p**2, ..., p™~i,

12. The commutator subgroup of a group G of order p™ is a sub-
group of G of index equal to or greater than p2.

13. In a group G of order p™ the number of elements of order p is
of the form kp — 1.

14. The total number of subgroups of a group G of order p™ is
congruent to 1 4+ 7 mod p.

15. Every self-conjugate subgroup of a group G of order p™ contains
a subgroup of index p which is self-conjugate in G.

16. Let u be defined as in Theorem VI of § 34. Then show that G
contains no element of order greater than ps+1,
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17. If E is a self-conjugate subgroup of a group G of order p™ such
that G/E is an Abelian group of type (1, 1, - - -, 1), then E contains
the group D of Theorem VI of § 34.

18. In a non-Abelian group of order 3 an element is either self-
conjugate or belongs to a complete set of p conjugates.

36. Prime-Power Groups Each with a Single Subgroup of a
Given Order. We shall now prove the following two theorems:

X. If a prime-power group G of odd order p™ con-
tains only one subgroup G, of order p*, where s is a
given positive integer less than m, then G is a cyclic
group.

XI. If a group G of order 2™ contains only one
subgroup G, of order 2¢, where s is a given integer
greater than 1 and less than m, then G is a cyclic
group. If G contains only one subgroup G; of order 2,
then G is either a cyclic group or a group of the type
defined by the relations

S2ml = 1, T2 = Szm—z, T-1ST = S, (m > 2)

The proofs of the two theorems coincide through a certain
part of the argument ; therefore we carry them together as far
as is convenient.

Let P be an element of G not contained in G,. If the order of
P is less than p*+1, then (Corollary II of Theorem V of § 33) ¢
contains a subgroup of order p* containing P, and this subgroup
is necessarily different from G,. Since this contradicts the hy-
pothesis that G contains only one subgroup of order p*, it follows
that an element P which is not in G, is of order p**¢, where ¢is a
positive integer. Then {P?%} is a cyclic subgroup of G of order
p*; it must therefore coincide with G,. Hence G, is a cyclic
group.

Now let p” be the largest number which is the order of an
element of G, and let P be an element which is of order p". Then
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(Corollary II of Theorem V of § 83) {P} is either identical with
G or is contained self-conjugately in a noncyclic subgroup
G,,1 of order pr+1. In the first case both theorems are granted.
It remains to consider the second alternative.

The group {P} is a self-conjugate subgroup of G.,, as we
have already seen. Hence if P; is an element of G, which is
not contained in {P}, then integers o and 8 exist such that

P,~'PP, = P, P*=P-

Now B is divisible by p, since, if it were not, P; would be an ele-
ment of order p7+1, contrary to hypothesis. Then write 8 = yp,
so that P = P», Moreover, o cannot be unity, for then
{P, P;} would be an Abelian group of type (r, 1) and would
therefore contain an element of order p not occurring in {P},
contrary to the conclusion reached in the first paragraph of the
proof. Let P;* be the lowest positive integral power of P; which
is permutable with P. Then we have P,~#*PPy = P, But from
the relation P;—'PP; = P= we have P;~*PP,» = P**, Hence
P =P and therefore a*=1mod p’. Furthermore, in the
group {P, P} the element P is one of a complete set of p con-
jugates. Therefore p is a power of p, say, p = p*. But we have
seen that P;» = P?; hence A =1. Therefore

o? =1 mod p7,
while az1mod p.

Since x? = x mod p for every positive integer x, we may write
= 1+ kp#, where u is so chosen that % is prime to p. Then

aP=1+kprti4. ..
Hence u =7 — 1. Therefore we have
P,"'PP, = pitk™" 1 pip = prw,

where k is prime to p.
From the first of the last two relations we have

P,~1pzp; = p=(+is™™ 1)
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for all values of the integer x. Hence
P?P; = P,P*, where o =1+ kpr—},
(P?Py)? = Py - PPy - P% = P;2p=C+),

(P?Py)P = PpprC+ot+ - 4P
= pppidle+a+2t - +pkpr 1]

= pppelo+ive+1ke 1],

Now consider the case when p is odd. Then the last member
of the foregoing equation is equal to P,»P*». Hence, taking
¥ = — v and remembering that P,» = P*», we see that (P—-7P,)?
=1 while P~"P; is not contained in {P}. Since this con-
tradicts a result obtained in the first paragraph of the proof,
the second alternative named in the second paragraph must be
excluded. Hence G is a cyclic group. This completes the proof
of Theorem X.

Consider now the case of Theorem XI. From the previous

argument we have
P*P; = P, P*

where 0 =1+ 27", k being odd; whence it follows that

(Pzpl)4 = p14Pa:(a+c%+a3+u‘)
= p,4pr@4+10k . 2r—1

= P 14P4I.

Again take x = — v ; then since P;2 = P?», we have PP~ %=1
and hence (P~"P;)* =1 while P~"P; is not in {P}. If s=2,
we have as before a contradiction with a result obtained in the
first paragraph of the proof. Thence it follows that G is cyclic
when s = 2.

It remains to consider the case when G in Theorem XI is
supposed to have only one subgroup G; of order 2. Then G is
cyclic unless m > 2. Hence in the further argument we sup-
pose that m > 2. In the case to be considered now we put on
P, the further restriction that its order is as small as possible
consistent with the other condition already placed on it,
namely, that P; is an element of G,,; which is not contained
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in {P}, while P has the largest possible order 2" of an element
in G. We shall then determine what noncyclic group or groups
(if any) can satisfy the named conditions. As before we have
(P~"P1)t=1 while P~"P; is not in {P}. Since P~7P; is of
- order not greater than 4, it follows that P; is of order not
greater than 4, since by hypothesis P; is of minimum order
consistent with the fact that it is in G,4; and is not in {P}.
But from a result in the first paragraph of the proof it follows
that the order of P; is not less than 4. Hence P, is of order 4.
Since G by hypothesis contains only one subgroup of order 2,
it follows that P?"~! is identical with P;2. Now from the rela-
tion P;~1PP; = P= we have P,~2PP;2= P**, But P;2 and P
are permutable. Hence P«*=P. Hence a2=1mod 2'. The
cases a=1 and a =41+ 2! may now be excluded, leaving
a=—1mod 2. Therefore we have P;~1PP; = P~1, By writ-
ing S and T for P and P;, respectively, we see that the proof of
the theorem will be completed when it is further shown that
r=m — 1, since it is easy to prove the existence of a group
with the defining relations given in the theorem and to show
that it has the requisite property of containing but one sub-
group of order 2. [To show the existence and uniqueness of a
group with the given defining relations, note that its elements
are S* and ST for 1=0, 1, 2,---, 271 —1 and that these
elements are permuted among themselves in a determinate
way when they are multiplied on the left by either S or 7, the
resulting permutations ¢ and 7 having the properties assigned
to S and T and generating a group of order 2™. Then show that
this group has only one element of order 2.]

Now 7 < m, since we are considering the case when G is not
cyclic. If r were less than m — 1, then (Corollary II of Theo-
rem V of §33) the group {P, Pi} would be contained self-
conjugately in a subgroup of G of order 2'+2. Let P, be
an element of this latter group not contained in {P, Pi}.
Since {P, P} is transformed into itself by P; and {P} is the
only cyclic subgroup of order 27 in {P, P}, then {P} is trans-
formed into itself by P,. If P,2 is in {P}, then, by an argu-
ment like the foregoing, we show that P;~1PP; = P—1. Hence
Py71P;~1PP,Py = P. Then {P, P,P;} is a noncyclic Abelian
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group which contains 3 subgroups of order 2. Hence Ps2 is
not in {P}. Now {P, Py} is of order 2'+2 at most; hence Ps*
is in {P}; it is therefore the lowest positive integral power of
P; which is in {P}, whence it follows that {P, Py} is of order
2'+2 and that {P, P2?} is of order 2"*1, Now P,2 and P can-
not be permutable; for, if so, we should have in {P, Py%}
three subgroups of order 2. But from the relation P,~1PP,
=P} we have Py;2PP;2= P¥ and P> *PP;*= P*. Hence
02%1 mod 2, 6*=1 mod 2. But 62+ 1=0 mod 2 and
624+ 10 mod 4. Hence 62=1 mod 271, while, as we have
seen, 621 mod 2’. Hence 62 =14 21k, where % is odd.
Hence P;~2PP;2= P1+2" "' Therefore P;~2P2P,2= P2, so
that P2 and P? are permutable. Therefore the group {P:2, P2}
is Abelian and contains three subgroups of order 2, contrary
to. hypothesis. Hence 7 $m — 1. Then we conclude that
r=m— 1.

This completes the proof of the theorem.

37. Groups of Order p™ Each with a Cyclic Subgroup of Index p.
We now prove the following theorem :

XII. If p is an odd prime and m > 2, there is one
and only one abstract non-Abelian group G of order
p™ containing an element of order p™-1. It is the
group {P, R}, where P and R are subject to the sole
defining relations

P"l=Rr=1, R-IPR=P1+s"2

The groups of order p and p2 are Abelian, as we have al-
ready seen.

Let P be an element of order p™~! in a non-Abelian group G
of order p™, if such a group exists. The group {P} contains
just one subgroup of order p. Hence, since G is noncyclic, it
follows from Theorem X of the preceding section that G con-
tains an element @ of order p not contained in {P}. Since {P}
is self-conjugate in G, it follows that {P} is transformed into
itself by @, and hence that @ 'PQ = P+, where « is some
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positive integer between 1 and p™—1! exclusive of these bounds;
moreover, « is prime to p.

Now P =Q?PQ® = P-*., Hence a? =1mod p™~L. Buta?
=amod p. Hence a=1mod p. Then write a =1+ kp*, where
k is prime top. It is clear that 0 < u<m—1. Nowa?r=1
+ kprtl 4. ... Hence u=m — 2. Therefore a =1+ kp™~2,

Now Q~*P@ = P<*. We have of =1+ kxp™=2 4 pm1],
where I is an integer since 7 > 2. Let x be such that kx=1mod p
and put R for @*. Then R-1PR = P'+?™ 2 while R itself is of
order p. Then {P, R} is the group G, in case this group exists.
It is of order p™, and its generators satisfy the conditions

p"l=pRr=1, RTIPR=P1+"7E
If such a group exists, its elements are
Pi, PR, PR?, - - -, PiRP~!, (§=0,1,2,---, pm 1 —=1)

On multiplying these elements on the left by P and by R we
obtain determinate permutations = and p respectively; and
these permutations generate a group G having the requisite
properties. Hence the group G exists and is unique.

XIII. If m > 3, there are just four abstract non-
Abelian groups of order 2™ each of which contains
an element of order 2™-1. (See Ex. 1 on page 134.)

Let G be a non-Abelian group of order 2™ containing an ele-
ment P of order 271, m being greater than 3.

Let us first suppose that G contains no element of order 2
except the single element of this order contained in {P}. Then G
is a non-Abelian group having only a single subgroup of order 2.
It is therefore of the last type defined in Theorem XI of § 36.

There remains the case in which G contains an element Q
of order 2 not contained in {P}. Since {P} is self-conjugate
in G, it follows that Q—1PQ = P>, where « is some odd positive
integer between 1 and 2”~1 exclusive of these bounds. Then
P=Q2PQ?= P%; hence a2=1mod 2™~1, Writing a=1+2,
where % is odd, we have

a?—1=(142"%)2—1=2"+1(k+ k%- 2*~1) =0 mod 2™1,
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Hence (1) u=m —2,0r (2) u=1and 21+ k) =0 mod 273,
In case (1) we have a =1+ 2™"2, In case (2), since % is odd,
we must have 2 =—142m"3), and hence a=— 14 2m—2),
where X is an integer. Then the only possible values for A are
A=1 and A=2. The three cases thus obtained give rise, re-
spectively, to the following three sets of conditions:

(1) prl=q2=1, QPQ= P1+2""2;
(2) P2m—l —_ Qz — 1’ (PQ)2 = P2m—2;
@ P"Tl=@2= (PQ)2=1.

It is not difficult to show (by methods now familiar to the
reader) that each of these sets of conditions (when taken as the
sole defining relations of {P, Q}) leads uniquely to an abstract
group and that the three groups so defined are distinct.

From the conclusions already reached the theorem follows.

EXERCISES

1. Show that there are just two abstract non-Abelian groups of
order 8 and that they have, respectively, the following defining re-
lations:

Q) at=v=(ah)2=1; @) at=1, a2=(ab)?=02

2. Let p be an odd prime. Show that there are just two abstract
non-Abelian groups of order p3 and that they have, respectively, the
following defining relations:

Q) e =b7=1, b~lab=a'*+?;

(2yar=br=c?=1, c'bc=ba, clac=a, b lab=a.

3. Let G be the abstract group of odd order p™ (m > 2) generated
by two elements ¢ and b subject to the sole conditions

" ' =pr=1, gb=balt*™"2,
Prove the following propositions:

(1) The elements b and ae” are permutable.

(2) The central of G is {a?}.

(3) If ¢ = a—1b~1ab, then ¢ is permutable with ¢ and with b and we
have ¢? = 1.

(4) The subgroups of G of index p» (A < m) are the p cyclic groups
{6ia®*"'} (=0, 1, ---, p~1) and the Abelian group {a**, b}. The
latter is noncyclic if A < m — 1.
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(5) The commutator subgroup of G is {a*™ 2} of order p.
(6) Every proper subgroup of G is Abelian.
(7) Every noncyclic subgroup of G is characteristic.
(8) A factor-group of G is an Abelian group.
4. If G is a non-Abelian group of order 2™ containing two and just
two cyclic subgroups of order 28 and no cyclic subgroup of order
26+1 show that 3 cannot be greater than m — 2.

5. If G is a prime-power non-Abelian group of order p3, show that
G is generated by any two noncommutative elements in it.

6. If a group of order p!5 has its central of order p2, then it contains
an Abelian subgroup of order pé. [SUGGESTION. Let C be the central
of G and let g be an element of G corresponding to a self-conjugate
element ¥ of order p in G/C in the usual multiple isomorphism of G
with G/C. Then show that {C, g} is Abelian of order p3 and is con-
tained in the central C, of a subgroup G, of G of order at least as great
as p'3. Repeat the process with G; and Ci, and so on.]

7. If a group of order p!% has its central of order p*, then it con-
tains an Abelian subgroup of order p7.

8. Let G be a non-Abelian group of order p™ containing two
Abelian subgroups H and K of index p. Show that the greatest com-
mon subgroup of H and K is the central C of G. Show also that the
derived group of G and the group of inner isomorphisms of G are both
Abelian and of type (1, 1, - - -, 1), the latter being of order p2.

9. The greatest common subgroup of all self-conjugate subgroups
of index p2? in a group G of order p™ contains the commutator sub-
group of G. ‘

10. Let P and Q be two noncommutative elements of a group G
of odd order p™ each of which corresponds to its inverse in some iso-
morphism of G with itself; show that in this isomorphism the com-
mutator of P and @ cannot correspond to its inverse.

11. Let G be a group of order 2™ containing only one cyclic sub-
group of given order 22, where 1 < a < m; then show that it contains
no more than one cyclic subgroup of order 28, where a < 8 < m.

12. If a group of order 2™ contains just 1 + 2 k cyclic subgroups of
order 2°, where o > 2 and £ is an integer, then k must be zero.

13. If G is a group of order p™ (m > 1), and if s < m, then the number
of subgroups of G of order p*+1 each of which contains a given subgroup
of order p* is congruent to unity modulo p.
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14. If G is a non-Abelian group of order p™, then the number of
Abelian subgroups of index p in Gis 0, 1, or 1+ p. In the last case
the central is of index p2.

15. If a group G of order p™ contains an Abelian subgroup of order p3,
then the number of its Abelian subgroups of order p? is of the form
14+ kp.

MISCELLANEOUS EXERCISES

1. There is one and just one abstract non-Abelian group of odd
order p? all of whose elements except the identity are of order p.

2. A non-Abelian group of order p™ contains a self-conjugate
commutator of order p. ,

8. If G is a non-Abelian group of order p™ and if every subgroup
of G is self-conjugate in G, show that p must be 2.

4. If a group of order p* has its central of order p, then it contains
just 2 p2 — 1 conjugate sets of elements.

5. If a group of order p* has its central of order p2, then it contains
just p3 + p2 — p conjugate sets of elements.
6. A group of order p™ cannot be generated by two elements which
are conjugate within it.
7. If the elements C, A;, A2, - - -, A4, are subject to the sole de-
fining relations
c2=1,A2=1 ¢G=12,---,4n),
CAAjAA; =1 GE=j;4,i=12,---4n),
they generate a group G of order 24"+! whose central is the group {C}
of order 2. Moreover, the numbers of elements in G of orders 4 and
2 are, respectively,
24n+ (_ 1)n+122n and 24n — (_ 1)n+122n — 1-

8. Let G be a group of order 3™ which contains no element of order
9. Show that any two conjugate elements in G are permutable. If n
is the number of elements in a set of independent generators of G,
show that 2" — 1 = m.

9. Show that a group of order p™ contains a self-conjugate Abelian
subgroup of order p< if a(a — 1) < 2 m.
10. The number of subgroups of order p in a noncyclic group of
odd order p™ is congruent to 14+ p mod p2.
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11. Show that there are just three abstract groups of order 3¢ each
of which contains three and only three cyclic subgroups of order 9.

12. Determine the abstract non-Abelian groups of odd order p*
each of which has all its elements of order p except the identity. When
p = 3 show that there is only one such group. When p > 3 show that
there are two such groups, one having its central of order p and the
other having its central of order p2.

13. Let G be a noncyclic group of odd order p™, and let o be an
integer such that 1 < o < m. Show that the number of noncyclic
subgroups of order p* in G is of the form 1 + kp.

14. Let G be a group of order p™, and let p™ be the highest power of
p contained in the order of the group of isomorphisms of G. Show
that #n = 4 m(m — 1). Show, furthermore, that » attains the maxi-
mum value % m(m — 1) when G is Abelian and of type (1, 1, - -+, 1)
orof type 2,1,1,---, 1).

15. Let R, S, T be three elements each of odd prime order p such
that the commutators S~!7-1ST, T-1R~!TR, R~1S~!RS are each of
order p while each of them is permutable with each of the elements
R, S, T. If the elements R, S, T are subject to no conditions except
those implied by the conditions already stated, show that the group
{R, S, T} is of order p8®, that each of its elements besides the identity
is of order p, and that any given element in the group either is self-
conjugate or is one of a complete set of p2 conjugates.

16. Let G be a non-Abelian group of order p™*+2 (m = 2) which is
generated by two elements P and Q of orders p™ and p?2 respectively
such that the groups {P} and {Q} have no common element besides
the identity. Show that G must belong to one of the four cases (1),
(2), (3), (4) determined, respectively, by the further conditions:

(1) pP-1Q-1pQ = PP},

(2) P-1Q-1pQ = p*™ %,

(3 P-1Q71PQ = @7,

@ Pm1Q—rpPQr = PP"7!, PT1QT1PQ= P?"?Qer,

How many abstractly distinct groups can be obtained in case (4) by
suitably varying a:?



CHAPTER VI

Permutation Groups

38. Introduction. In § 4 we have defined the terms permuta-
tion group and degree of a permutation group. The z! per-
mutations on # letters form (see § 4) the symmetric group of
degree n and order z!, and the even permutations on # letters
form the alternating group of degree n and order $(n!). We saw
(in § 4) that in any permutation group the permutations are all
even or exactly half of them are even; in the latter case the
even permutations form a subgroup of index 2 in the given
group. The question of the identity of two permutation groups
was also discussed in § 4.

It is obvious that any alternating group is a self-conjugate
subgroup of the symmetric group on the same letters. More
generally, if G is any permutation group containing odd permu-
tations, then the even permutations in G constitute a self-
conjugate subgroup of G.

In § 12 we defined the terms iransitive and intransitive as
applied to permutation groups. A transitive group whose order
is equal to its degree is called a regular permutation group.

Furthermore, in § 12 we showed that every group G of finite
order n can be represented as a regular permutation group on zn
symbols, the latter group being simply isomorphic with G. In
fact, we set up this representation in two ways; whenever the
group G is non-Abelian (and only then) these two ways give rise
to two conjugate permutation groups each of which contains
permutations not in the other. Moreover, several properties
concerning the relations of these two groups were determined.
In particular we showed that two simply isomorphic regular
groups on the same set of # letters are conjugate under the sym-

metric group on those letters.
138
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It is obvious that a given group G may be represented in an
unlimited number of ways as a permutation group simply iso-
morphic with G. In fact, if G is so represented as a permutation
group on each of two distinct sets of letters, then it is also rep-
resentable as a permutation group on the set composed of all
the letters in the two given sets by taking as the correspondent
of each element g of G the product of the two elements which
correspond to g in the given permutation groups, one of the
factors being taken from one of the given representations and
the other from the other representation.

In the preceding chapters we have frequently employed per-
mutation groups as a tool in the study of abstract groups,
particularly in the case of the group of isomorphisms and the
holomorph of a given group. Now we shall proceed to develop
some properties of permutation groups as such.

39. Transitive Groups. A transitive permutation group G on
the symbols a1, as, - - -, @,, as we have seen in § 12, is a permu-
tation group on those symbols containing permutations S;, Sa,
-+, S, which replace a; by @, az- - -, a,, respectively. Then
S;~1S; replaces a; by a;, so that any symbol in ¢ may be re-
placed by any other symbol in G by a permutation belonging
to G. A permutation group G which contains a permutation
replacing any whatever given ordered pair of symbols in G
by any whatever other given ordered pair of symbols in G is
called a doubly transitive group. More generally, a permutation
group G which contains a permutation replacing any whatever
given ordered set of 2 symbols in G by any whatever other
given ordered set of 2 symbols in G is called a k-ply transitive,
or a k-fold transitive, group. For k=3, 4, 5 one often uses the
terms iriply, quadruply, quintuply transitive. A group which
is transitive but not doubly transitive is often said to be
singly transitive or simply transitive. If a group is k-ply transi-
tive but is not (k+ 1)-ply transitive, then % is said to be the
degree of transitivity of the group. If the degree of transitivity
of a transitive group is greater than unity, the group is said to
be multiply transitive,

If the permutation group G on the symbols ay, a3, - - -, @, con-
tains permutations replacing the given ordered set a1, az, - - -, ax
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of 2 symbols in G by every other ordered set of %2 symbols in
G, it is evident that G is k-ply transitive in accordance with
the foregoing definition; for, if P; and P; are permutations
in G replacing the given ordered set a1, as, - - -, ax by any two
given ordered sets, then P;~1P, replaces one of these lat-
ter by the other. Again, if G contains permutations replacing
every given ordered set of k2 symbols in G by the ordered set
a1, dg, - - +, O, then G is obviously k-ply transitive.

Let G be a k-ply transitive group on # symbols. If Sand T are
two permutations in G each of which leaves fixed a given ordered
set of £ symbols in G, then ST leaves fixed the same ordered set
of % symbols. Hence we are led to the following theorem:

I. The totality of permutations of a given k-ply
transitive group G each of which leaves fixed a given
ordered set of £ symbols of G forms a subgroup H
of G.

If this subgroup H is l-ply transitive, then G itself is (k+ I)-
ply transitive; for if a1, ao, - - -, @, @11, - -+, Ge+11s any ordered
set of 41 symbols in G and by, by, - - -, biy; is any other,
then G has an element replacing b, be, - - -, by by a1, @, - - -, ax;
if bry1, - - -, bry: are replaced by this element by cey1, © + <, Cetts
then there is an element in H which replaces the latter ordered
set by the ordered set @41, - - -, ax+:; then the product of these
two elements is an element in G replacing the ordered set
by, - - -, by by the ordered set ay, - - -, Gy

Now let G be any k-ply transitive group of degree », where
k> 1. Then G is also (2 — [)-ply transitive, where / is any
positive integer less than k.. Therefore (Theorem I) G contains
a subgroup H consisting of all the elements of G leaving fixed
each of a given set of £ — [ symbols. This group H is I-ply
transitive; for if ay, as, - - -, @, are the symbols in G and if
@y, Gz, - - -, Gx_; are the symbols left separately fixed by the
elements of H, then H contains an element replacing the ordered
set a1, @z, - - -, &, by the ordered set a1, a2, - -+, Gx—y, b1, bo, - - -,
b,, where by, bs, - - -, b, is any ordered set of / symbols in G not
containing one of the symbols ai, a2, - - -, Gr_i.
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We shall now prove the following theorem:

II. The order of a k-ply transitive group G of
degree n is n(n —1)--- (n — k+ 1)m, where m is
the order of the largest subgroup H of G each ele-
ment of which leaves fixed a given ordered set of
k symbols. The subgroup H is contained self-
conjugately in a subgroup of G of order k! - m.

The number u of ordered sets of the # symbols of G, when
these symbols are taken £ at a time, isn(r—1) - - (n— k+1).
Denote these ordered sets by Py, P, - - -, P,, where P; is an
ordered set of the k symbols left fixed by each element of H.
Let g, g2, - - -, g, be permutations in G, such that g; replaces
the ordered set P; by the ordered set P;, Then G consists
of the following elements and no others: Hg,, Hgs, - - -, Hg..
For, if g and g; replace P, by P,, then gg;~! replaces P; by
P; and is therefore contained in H; hence g is contained in
Hg;. The sets Hg, - - -, Hg, of elements of G form a set of
um distinct elements. Hence the order of G is that stated in
the theorem.

Let P, be the ordered set ai, a2, - - -, . Then each element
of H leaves this ordered set unchanged. If a'i, a's,-- -, @'s is
any ordered set of the same % symbols, then G contains a per-
mutation « of the form

o= (alr Qaz, ¢+ -y Gk, bl; b29 .t ')
a'y, @', - -, @'k by, by - -

There are k! permutations of the form « no two of which are
alike as regards the ordered set @'y, @'z, - - -, @+; and each of
them is permutable with H, since it interchanges among them-
selves the symbols left unchanged by H. If a; and o2 are two
permutations of the foregoing class a which are alike as re-
gards the sequence a’y, @'z, - - -, @'s, then an~laz is in H. There-
fore the permutations a constitute a subgroup of G of order
k!-m, and this subgroup contains H self-conjugately.



142 Groups of Finite Order

This completes the proof of the theorem.

Cor. I. The order of a transitive group is divisible
by its degree.

Cor. II. The number of elements in G each
of which replaces the ordered set P; by the ordered
set P; is m; and these m elements are the elements

g:1Hg;.

If m =1, then H consists of the identity alone, and there is
just one permutation in G which replaces a given ordered set of
% symbols by another given ordered set of k£ symbols. In the
same case G contains elements displacing # — 2+ 1 symbols;
but there is no element of G other than the identity which dis-
places fewer than » — & + 1 symbols.

By taking 2=1 in the foregoing theorem we have the
following :

III. If G is a transitive group, the order of the
subgroup H formed by all the permutations of G
each of which leaves a given letter fixed is equal to
the order of G divided by its degree.

Now let S; =1, Sz, - - -, Sm be the elements of this group H,
and form for G the following rectangular array asin §10:
SITI, S2Tl’ tt %y SmTl; (Tl = 1)
S172, S272, * * *, SmT2,

SlTn; S21'n, ) San-

Let a; be the letter held fixed by H, and let a; be the letter by
which 7; replaces @;. Then every element in the ith row of the
foregoing array replaces a; by a;, and no other element of G has
this property. Hence a; is left unchanged by » permutations
in G and is changed into another letter by m(n — 1) permutations



Permutation Groups 143

in G. In the same way it may be shown that any other letter a;
occurs similarly in G; that is, it is left fixed by m elements of G
and is changed into another letter by m(n — 1) elements of G.
Hence mn(rz — 1) is the total number of replacements of one
letter by another in all the elements of G. But the order of G is
mn. Hence we have the following theorem :

IV. The average number of letters displaced by
the permutations of a transitive group is equal to
the degree of the group diminished by unity.

40. Examples of Multiply Transitive Groups. Let G be a mul-
tiply transitive group of degree » and order n(nz — 1). We shall
show that # is necessarily a power of a prime number. The sub-
group H of order n — 1, leaving a given symbol fixed, is itself
transitive of degree and order » — 1. It is therefore a regular
permutation group. Hence all its elements except the identity
are regular permutations changing exactly #»— 1 symbols.
Therefore every element in G besides the identity changes all or
all but one of the symbols of G. But the average number of
symbols displaced by the permutations of G is # — 1. Hence G
has exactly » — 1 elements each of which displaces all the sym-
bols of G. If these # — 1 elements, together with the identity,
form a subgroup, then this subgroup must be self-conjugate in G,
since it obviously contains the transform of each of its elements.
The order of an element leaving just one symbol unchanged is
a factor of » — 1. Hence the n — 1 elements each of which dis-
places all the symbols are the only elements besides the identity
which satisfy the equation S =1. The other elements in G
satisfy the equation S*~1 =1,

No element which leaves just one symbol unchanged can be
permutable with an element which displaces all the symbols.
There are just » — 1 elements each of which displaces all the
symbols. Therefore these # — 1 elements form a complete set
of conjugate elements.

Let us write n = p1=ps= - - - peos, where p1, pa, - - -, p, are
primes and (when s > 1) no two of them are equal and where
the o; are positive integers. The number of elements of G whose
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orders are factors of n/p.% is (by Theorem XII of § 22) a multi-
ple of n/p:*, say kn/p:%. Hence the number of elements of G
whose orders are multiples of p; is » — k#n/p,~, a number nec-
essarily different from zero since G contains an element of order
p: (by Corollary 111 of Theorem XVI in § 15). Each of these
elements satisfies the equation S» = 1; and hence each of them
displaces all the symbols of G. Therefore the elements of G whose
orders are multiples of p, form a conjugate set of » — 1 elements.
Therefore n — kn/p*i=n—1. But n— kmn/p;% is less than
n — 1 unless 7 is a power of a prime and k; = 1. Hence # is nec-
essarily a power of a prime number, say, n = p=.

Now there are just # — 1 elements of G each of which dis-
places all the symbols of G, and these form a conjugate set, as
we have seen. Their orders are factors of p=. Since they all have
the same order (owing to the fact that they form a conjugate
set) it follows that the order of each is p. There is no other
element in G besides the identity whose order is a power of p,
since these other elements satisfy the equation S*~! = 1, where
n = p>. But G contains a Sylow subgroup of order p~. Hence
the p= — 1 elements of order p, together with the identity, con-
stitute the sole Sylow subgroup I' of order p= in G. It follows
that T is a self-conjugate subgroup of G.

‘We shall next show that I" is an Abelian group. Incase p =2
all the elements of I' except the identity are of order 2. If S
and T are two of these elements, we have STST =1 or T—1ST
=S. Hence I' is Abelian if p =2. In the further argument
suppose that p is odd. Then the group G has an element A4; of
order 2 (by Corollary III of Theorem XVI in § 15). Since the
number of symbols in G is odd, A; must leave one letter fixed.
Let a; be that letter. Then A; has a set of conjugate elements
Ay, Ag, - - -, A, (n = p%) such that A;leaves fixed the sole symbol
a;. These n elements involve % n(z — 1) transpositions; no
two elements can have a common transposition, since their
product would then leave at least two letters fixed and yet
not be the identity; for this reason also the # given elements
of order 2 are all the elements of order 2 in G. Now consider
the set

A Az, A1A3, - - -, A14,
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of n» — 1 elements. Since no two A’s have a common transposi-
tion, each of these elements displaces all the symbols of G.
Hence these are the elements of order p in G. Now the trans-
" form of A4,4; by A, is A;A1; hence A4; transforms each of the
elements of order p into its inverse. Then, since I' is self-
conjugate in G, it follows that I' admits an isomorphism with
itself in which each element corresponds to its inverse. Hence
I' is an Abelian group; for we have S~ S~ T ~ T,
ST ~ (ST)~! and ST ~ S™1T71, so that (ST)"1=S"1T"! or
T~-1S~1 = 8~1T7-1 whence S and T are permutable.
Then we have the following theorem:

V. A doubly transitive group G of degree » and
order n(n — 1) does not exist unless # is a power p*
of a prime number. In case G exists, it has just n — 1
elements each of which displaces all the » symbols
of G, and these elements, together with the identity,
constitute a self-conjugate Abelian subgroup I'" of G
of order p~ and type (1, 1, - - -, 1). Every element of
G not in I is a regular permutation on just n —1
symbols.

Now suppose that G is a k-ply transitive group of degree n
and order n(z — 1) - - - (n — k + 1), k being greater than unity.
Then G contains a doubly transitive group of degree n — £ 4 2
and order (n — &k + 2)(n — k+1). Hence » — k+ 2 must be a
power of a prime, in accordance with the preceding theorem.
Therefore we have the following corollary :

CoRr. A k-ply transitive group G of degree n and
order n(n — 1) --. (n — k4 1) does not exist for k
greater than unity unless # — k42 is a power of
a prime.

When % = n the group G is obviously the symmetric group.
When 2=#%n—2 the group is the alternating group, as one
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may see by aid of Theorem VI in § 41 below. If in this corol-
lary & < n— 2, then % cannot exceed 3 except when # = 11 and
n=12, a fact which is established by Jordan in Liouville’s
Journal (2) 17 (1872), pp. 357-363. [See Ex. 12 on page 151.]
The actual existence of triply transitive groups of degree p» + 1
and order (p” + 1)p*(p” — 1), where p is a prime number, will
be established here for the case »=1 and in § 68 for every
positive integral value of ».

Let p be any odd prime number and let us consider the exist-
ence of a doubly transitive group G of degree p and order
p(p—1). The elements of G which displace all the symbols
are of order p. Let P be such an element, and let us take for

P the permutation
P = (apmas - - - ap_1).

Let a be any primitive root modulo p, and consider the per-

mutation
S= (alaaaaeaaa . ~),

where it is to be understood that a subscript greater than
p — 1 is to be reduced modulo p to a number of the set 0, 1, 2,
«++, p—1. Then S is of order p — 1, and we have

ST1PS = (0802403 * ) = P*.

Hence the subgroup {P} of {P, S} is self-conjugate. More-
over, since S™1PS= P« it follows that all the elements of
{P, S} may be written in the form S¥P*; for S . S*P* = Sw+1p*
and P - SkP* = Sk . S~#PSk . P> = Sk. P* . P = SsPMek whence
the elements S#P* are merely permuted among themselves on
multiplication on the left by S or by P. From these facts it
follows readily that {P, S} is of order p(p —1). In order to
show that this group is doubly transitive, we observe that any
given ordered pair of symbols a,, @, is changed into the fixed
ordered pair ao, a1 by the permutation P~*S~", where 7 is
suitably chosen.

Transitive subgroups of {P, S} are readily constructed,
namely, those which are generated by P and the subgroups of
{S}. There is obviously such a subgroup of order pd for every
divisor d of p — 1. Thus when p = 13 we obtain in this way
six transitive groups of degree 13.
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One may readily verify that the group {(0123456), (124)(365)}
of degree 7 and order 21 displaces every unordered pair of its
symbols by every other unordered pair, though the group is
only singly transitive. This example shows the importance of
the notion of ordered sets in the definition of multiply transitive
groups.

Now in the general case the permutation P is completely
defined by the transformation

x’'=x+1modp

on the subscripts x attached to the symbols a. Similarly, the
permutation S is defined by the transformation

2 =axmod p

on these subscripts. These two transformations generate all
transformations of the form

12’ = ax + bmod p, (a;éOmodp)

and no others, as one may easily verify. This is a special case
of the linear nonhomogeneous group modulo p introduced in
§ 29. The order in this case is p(p — 1).

Let us now consider the set of transformations of the form

(A4) x'E:;‘i'Zmodp, (ad — bc £ 0 mod p)

where it is to be understood that £/0 is to be replaced by oo
when k%0 mod p and that a corresponding @, namely, a,, is
to be adjoined to the set of symbols @ so that we now have
p + 1 symbols a.

Let us first determine the number of transformations in the
set (4). If c=0 mod p we may take d =1 without loss of
generality. Then the transformation is linear. We have just
seen that the number of such transformations is p(p — 1).
When ¢ # 0 mod p we may take ¢ = 1 without loss of generality.
Then @ and d may be chosen at will, each from p incongruent
numbers, and then b may have any one of p — 1 incongruent
values and no more, since we must have ad — bc 0 mod p.
Hence the number of nonlinear transformations in (4) is
p2(p — 1). Therefore the total number of transformations in
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the set (4) is p2(p— 1 +p(@®—1), or (p+ )p(p—1). But
the product of any two transformations in the set (4) is also a
transformation of the same set. Thence it follows that the
transformations (4) constitute a group of order (p + 1)p(p — 1).

The transformation group (4) may be represented as a per-
mutation group on the symbols @, ao, a1, - + -, @p_1. Assuch it
is transitive, since any symbol may obviously be replaced by a_
by a suitable transformation of the form (4). Hence the largest
subgroup each element of which leaves @, fixed is of order
p(p—1). It must therefore coincide with the group {P, S}
already determined, since the elements of this group correspond
to transformations leaving g, unchanged. But {P, S} is doubly
transitive on ao, a1, - - -, @p—1, as we have already seen. Therefore,
the named permutation group of order (p+1)p(p—1) on the p+1
symbols a,, ao, @1, - - -, Gp_1 1S lriply transitive on these symbols.

If p is an odd prime, this triply transitive group of order
(»+ 1)p(p —1) has a doubly transitive subgroup of index 2
and degree p + 1, consisting of even permutations alone, as one
will readily verify by aid of the fact that this subgroup contains
elements of order p.

41. An Upper Limit to the Degree of Transitivity. We shall
now prove the following theorem :

VI. No group of degree #n, other than the sym-
metric and alternating groups of this degree, can be
more than [-ply transitive, where [ is the greatest in-
teger not exceeding L »n + 1.

Let G be a nonsymmetric k-ply transitive group of degree n,
where 1 < k< n. Then it is obvious that 2 < n — 1. Let S be
any permutation of G which displaces more than % and fewer

than » symbols. Suppose that the notation is so chosen that we
may write

S=(maz- - - a;)--- (- aj—laj)(aj+l e @1t t) .
Let s denote the number of symbols displaced by S. Ifj < k—1,
take (al, az, + - -, Qp_1, G, - )
T= ’
ay, G2, -y Gh—1y by, - - -
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where b, is some other symbol displaced by S. Ifj=k — 1, take

Q1 G2, * *y Qg—1, Gk, * * *
T= s
@y, G2, ¢ * *y Qk—1, Cky = ° *

where ¢; is a symbol not displaced by S. Ineach case T is to be
an element of G; such an element T certainly exists in G since
G is k-ply transitive. Now in either case it may readily be shown
that T-1ST - S~! is not the identity. Moreover, T71ST - S~!
displaces at most 2 s — 2 &£+ 2 symbols, since it leaves a1, a,

. -, G,z unaltered in both cases and also leaves a;_; unaltered
in the second case and since b is in S.

If2s—2k+2<s, or s< 2k—2, the group G contains a
permutation displacing fewer than s symbols. By continuing
the process we must then arrive ﬁna11y¢at a permutation which
displaces not more than & symbols. Let Z be such a permuta-
tion in G, where

E:(ala2...ap)...(a’...a.’).

Then G contains a permutation of the form

P= (a1a2 S Q10 )
Q102 + * a‘,_lB' « o

where 8. is different from «,. Then
z-1. p-1ZP = (a.f3a).

Hence if G contains a permutation displacing fewer than
2 k — 2 symbols, it contains a circular permutation of order 3.
If G is triply transitive, it follows from this that G must contain
every circular permutation of order 3 and hence (Theorem IV
of § 2) it must contain the alternating group.

Now since % > 1, a k-ply transitive group of degree » contains
permutations displacing just » — &+ 1 symbols, since the sub-
group leaving 2 — 1 symbols fixed is of degree » — k-1 and is
transitive. Hence if G does not contain the alternating group on
its n symbols, we must have k=2 or n—k+142k—2, the
latter condition implying that 2 $ 47+ 1. From this con-
clusion the theorem follows, since 4 is the lowest possible degree
for a group which is neither alternating nor symmetric.
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In the course of the proof of the preceding theorem we have
also established the following result :

VII. If G is a k-ply transitive group of degree =,
not containing the alternating group of this degree,
and if £ = 3, then every permutation of G except the
identity displaces at least 2 £ — 2 symbols.

A much more effective limit to the degree of transitivity of a
group of degree » than that contained in Theorem VI has been
given by G. A. Miller (Bull. Amer. Math. Soc. (2) 22 (1915):
68-71). Miller’s theorem may be stated as follows:

VII1. If » = kp + r, where p is a prime greater
than the positive integer k£ and where r > &, then a
group G of degree 7, not containing the alternating
group of degree 7, cannot be more than 7-fold tran-
sitive unless k=1 and r = 2.

We shall not give a proof of this theorem or of the following
corollary which Miller (loc. cit.) derives from it:

Cor. When n > 12, a group of degree », not con-
taining the alternating group of degree n, cannot be
s-fold transitive if s = 3 n% — 2.

EXERCISES

1. There is no transitive group of degree n whose degree of tran-
sitivity is 7 — 1.

2. Construct two transitive groups and one intransitive group of
degree and order 4.

8. An Abelian transitive group is regular.

4, The subgroup H of the group G in Theorem II of § 39 contains
no self-conjugate subgroup of G of order greater than unity.

5. A self-conjugate element (other than the identity) in a transi-
tive group G is a regular permutation displacing every symbol in G.
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6. The order of the central of a transitive group is a factor of its
degree.

7. In every transitive group on n symbols there are at least n — 1
permutations each of which displaces all the » symbols.

8. Show that the only group of degree 2 is the symmetric group,
and that the only groups of degree 3 are the alternating and sym-
metric groups.

9. Show that there are just seven groups of degree 4 and that they
are those in the following list: (1) the symmetric group; (2) the al-
ternating group; (3) the octic group (§ 4); (4) {(abcd)}; (5) {(ad)(cd),
(ac)(bd)}; (6) {(ab), (cd)}; (7) {(ab)(cd)}.

10. Show that there are just three intransitive groups of degree 5
— one of order 12 and two of order 6. Show also that there are just
five transitive groups of degree 5, their orders being, respectively, 120,
60, 20, 10, 5. Give generators for each of these eight groups of de-
gree 5. What is the degree of transitivity of each of the transitive
groups in the set?

11. Show that if a group of degree 12 is 5-fold transitive but not
6-fold transitive, then its order is12 - 11 - 10 - 9 - 8. (Use Theorem VII
of § 41.)

12. Let us write

S = (xox1%2 - * - X10),

T = (x4%5X3%9) (X10X7%2X6),

U = (%X ) (X1%10) (¥2%5) (¥3%7) (X4%s) (Xe%o).
Show that {S, T} is a 4-fold transitive group of degree 11 and order
11.10-9-8. Show also that {S, T, U} is a 5-fold transitive group of
degree 12 and order 12-11-10-9-8. (These are known as Mathieu
groups.)

13. Construct generators for the triply transitive group of degree 10
and order 10 -9 - 8 contained in the group {S, T} of Ex.12. Show
that the permutations

(612 - + - @s), (@0@s0s)(810207)(a2a605), (@0G103020409G5C6G705)

generate a different triply transitive group of degree 10 and order
10 - 9 - 8, and prove that this latter group contains a doubly transitive
group of degree 10 and order 10-9 - 4.
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14. Construct two doubly transitive groups of degree 9 and order
9 . 8 and show that there is no other doubly transitive group of this
degree and order.

15. Construct three doubly transitive groups of degree 25 and order
25 - 24 and show that there is no other doubly transitive group of this
degree and order.

16. Construct a triply transitive group of degree 6 and order 6 - 5 - 4
and show that it has a doubly transitive subgroup of degree 6 and order
6-5-2. Show that these are the only multiply transitive groups of
degree 6 other than the alternating and symmetric groups.

17. Let G be a transitive group of degree n and order n#m each
element of which (except the identity) displaces all or all but one of
the symbols. Prove the following propositions:

(1) There are just n — 1 elements of G each of which displaces all
the symbols. If these elements, together with the identity, form a
group, then this group is self-conjugate in G.

(2) If H is the subgroup of order m leaving one symbol fixed, then
the elements of H permute, in sets of m each, the elements which dis-
place all the symbols. Therefore m is a factor of # — 1. The number
of elements in a complete conjugate set of elements each of which
displaces all the symbols is a multiple of m.

(3) If p= (a > 0) is the highest power of a prime p which divides #,
then the number of elements whose orders are multiples of p is of the
form n — kn/p= and m is a factor of the positive number p= — k,.

@ lfm= V', then # is a power of a prime.

(5) If n is twice an odd number, then G is a regular group.

(6) If m is even, then G contains a self-conjugate regular Abelian
group of degree and order 7.

18. Show that the permutations

(a1az)(az2as) (asaz), (8182030405a487a5),

(@0a5a.4) (a1a207) (a3a6a5), (G001030204090306G705)

generate a triply transitive group of degree 10 and order 10-9-8-2
containing the two triply transitive groups of Ex. 13.

19. Construct a doubly transitive group of degree 25 and order
25 .24 .- 2 containing two doubly transitive groups of degree 25 and
order 25 - 24,
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20. Construct a doubly transitive group of degree 49 and order
49 - 48 - 2 containing two doubly transitive groups of index 2.

42. Simplicity of the Alternating Group of Degree n# 4. We
shall prove the following theorem:

IX. The alternating group of degree # is simple
except when n = 4.

When 7 = 3 the alternating group is of order 3 and is there-
fore simple. When n = 2 it consists of the identity alone. Hence
in the proof we may consider only the case when n = 4.

Now the alternating group G of degree » is (» — 2)-ply transi-
tive. If P is a permutation of G displacing fewer than n —1
symbols, then, as in § 41, we may construct a permutation 2
such that Z-1P-1¥ . P is a circular permutation of order 3.
But 2-1p-1T = (Z-1'PZ)~L. Hence P and its conjugate per-
mutations generate the group G. If Sis a permutation of G dis-
placing # — 1 symbols, then, as in § 41, we may construct a
permutation T such that S—17-1ST displaces not more than
2(n—1) — 2(n—2) + 2, or 4, symbols. If S is a permutation
of G displacing z» symbols, then T may be found so that S—1T-1ST
displaces not more than 2 n — 2(n — 2) + 2, or 6, symbols.

From these considerations it follows that the group G is
certainly generated by any given permutation Q of G and its
conjugates, except possibly in the case of a permutation dis-
placing #n — 1 symbols when #» =5 and in the case of a per-
mutation displacing # symbols when n =4, 5, or 6.

When # =5 and S is an even permutation on 4 symbols, we
may write S= (12)(34). Then if we take T = (12)(35), we
have S—1T~1ST = (354). Hence S and its conjugates generate G.

When # =6 and S is an even permutation on 6 symbols,
we may take for S either (12)(3456) or (123)(456). If T is
(12)(3645), we have for S™1T~IST the permutation (356) or
(14263) in the respective cases. In either case S and its con-
jugates generate G.

When # =5 and S is an even permutation on 5 symbols, we
may take S = (12345). Putting T = (345), we have S™1T-1ST
= (134), so that again S and its conjugates generate G.
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When # = 4 and S is an even permutation on 4 symbols, we
may take S = (12)(34). The permutations conjugate to S in
G are S and (13)(24) and (14)(23). These generate a group of
order 4 which is self-conjugate in G. Hence G is not simple
when n=4.

When % > 4, the group G is generated by any one of its
elements (other than the identity) and the conjugates of that
element. Hence, when 7> 4, G contains no self-conjugate
proper subgroup except that consisting of the identity alone;
hence G is simple when 7 > 4, and therefore when » > 4.

43. Self-conjugate Subgroups of Symmetric Groups. We shall
prove the following theorem :

X. The alternating group of degree 7 is the only
self-conjugate proper subgroup (of order greater
than unity) contained in the symmetric group of
degree »n except when n = 4.

When n =4 the self-conjugate subgroup of order 4 in the
alternating group is also self-conjugate in the symmetric group,
as one may easily verify. When »# = 2 or #» = 3 the theorem is
obvious. Hence we have left to consider the case when n > 4.

As in the proof of the previous theorem, it may be shown
that the conjugates of any even permutation (other than the
identity) in the symmetric group of degree n (n > 4) generate
the alternating group. It is obvious that a subgroup of order 2
is not self-conjugate in the symmetric group of degree n (n > 4).
Any other subgroup containing odd permutations also contains
an even permutation besides the identity; hence if it is self-
conjugate it must contain the alternating group and therefore
must coincide with the given symmetric group itself.

Since a subgroup of index 2 in a group is self-conjugate in
the group, we readily obtain the following corollary :

Cor. The alternating group of degree n is the
only subgroup of index 2 in the symmetric group of
degree ».
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44. Representation of a Group as a Transitive Group. We
have seen (in § 12) that every finite group can be represented
as simply isomorphic with a regular permutation group. It
is often desirable to represent a given abstract group as a
transitive group of lowest possible degree, in order to facilitate
the study of the properties of the group. Therefore we shall
now give some theorems concerning the representation of an
abstract group as a transitive permutation group.

X1. Let G be a group of finite order g which con-
tains a subgroup H of index m. Then G has a (%, 1)
isomorphism with a transitive group of degree m,
where £ is the order of some subgroup of H which is
self-conjugate in G. The isomorphism is simple if
H contains no self-conjugate subgroup of G of order
greater than unity.

Let G be separated into the partitions Hry (11 =1), Hr,- -+,
Hr,, according to the second method of §10; and denote
these partitions in order by the symbols v1, ¥z, -, Ym If @
is any element of G, then every element in Hr;- @ belongs to
the same partition, say v’;, as 7;- @. If b is any element of G,
then every element in Hr,ab belongs to the same partition, say
" as T.ab. Now if we write

S = (‘Yl, Y2, " 'Ym ), T = <’Y’1, '7,2’ Y 'Y':)’
YuY2 Y m Y'Y e Y
we have
ST = (‘yl, Yor cc 0 Ym )
,Ylll’ ,yllz’ RN ,.yllm

From this it follows that if the permutations S and T on
Y1, Y2 *°* Ym correspond to ¢ and b, respectively, then the
product ST corresponds to ab. Hence all_the permutations
such as S, T, - - - form a permutation group G on 71, ¥2,* **, ¥Ym
which is isomorphic with G. This group G is transitive, since
the element v, is carried into the element v; by the permutation
corresponding to the element 7; of G.
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The identity in G is the only element in G corresponding to
the identity in G. The totality of elements in G each of which
corresponds to the identity in G forms a self-conjugate sub-
group H; of G, in accordance with Theorem I of § 16. Let &
denote the order of H;. Then G is (&, 1) isomorphic with G.
If &, is any element of Hy, then H7;k; is the same set of elements
as Hr; for each 7 of the set 1, 2, - - -, m. In particular, Hb, is
the same set as H. Therefore %, is in H. Therefore H contains
the self-conjugate subgroup H; of G. Hence when H contains
no self-conjugate subgroup of G of order greater than unity, the
isomorphism of G with G is simple.

Cor. If a group G contains a complete set of m
conjugate elements Si, Se, - - -, S, Or a complete set
of m conjugate subgroups Hi, Hs, - - -, H,, then G is
isomorphic with a transitive permutation group of
degree m.

For G contains a subgroup of index m in accordance with
Theorem VI, or Theorem VII, of § 11.

If a group G of order ¢ is a transitive group of degree 7 on
the # letters a;, as, - - -, a,, then, as we have seen, G contains
subgroups Gy, Gs, - - -, G, of index » such that G; consists of all
those elements of G each of which leaves a; fixed. Moreover, G;
contains no self-conjugate subgroup of G of order greater than
unity, as one may readily show. If G leaves « letters fixed, so
that it is of degree » — ¢, then the groups G, Gz, - - -, G, fall into
sets of « each so that the a groups in each set are identical. In
any case the distinct groups in the set Gi, Ge, - - -, G, form a
complete set of conjugate subgroups of G. If G is nonregular,
the groups Gi, G, - - -, G, cannot all coincide, so that in this case
there are at least two distinct groups in the set. Hence a group
cannot be represented in the form of a nonregular transitive
permutation group to which it is simply isomorphic unless it
contains a non-self-conjugate subgroup H which itself contains
no self-conjugate subgroup of the given group except that con-
sisting of the identity alone. Combining this result with the
preceding theorem, we have the following :
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XII. A necessary and sufficient condition that an
abstract group G of order g may be represented as
simply isomorphic with a transitive permutation
group of degree n (n < g) is that G shall contain a
subgroup H of index #n such that neither H nor any
proper subgroup of H (other than that of order unity)
is self-conjugate in G.

Now let G be a transitive permutation group on the # letters
a1, a3, - - -, @, which contains no subgroup of degree » and index
n but does contain subgroups displacing just #—1 letters.
Then G contains distinct subgroups Gi, Ge, - - -, G, of index n
such that G; displaces all the letters except a;. These n sub-
groups must correspond to these # subgroups in every isomor-
phism of G with itself. An element of G which replaces a; by
a; transforms G; to G;; therefore a permutation P in G trans-
forms the subgroups G; according to a permutation which trans-
forms to P by the permutation

(Gl, G, -+ vy Gn).

al, a2’ LN a”

Hence, if each G corresponds to itself in an isomorphism of G
with itself, then every element of G corresponds to itself in that
isomorphism. Therefore the group of isomorphisms of G may
be represented as a permutation group on Gi, Ga, -+, Gn.
Furthermore, G is simply isomorphic with its group of inner
isomorphisms. Therefore the latter group may be represented
as a transitive permutation group of degree n which contains G

as a self-conjugate subgroup. Hence we have the following
theorem:

XIII. If Gisa transitive permutation group which
contains subgroups of index # displacing just #» —1
letters, but no subgroup of index # displacing all the
n letters, then G is simply isomorphic with its group
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of inner isomorphisms, and the group of isomorphisms
of G may be represented as a transitive permutation
group of degree » which contains G as a self-conjugate
subgroup.

45. Intransitive Groups. Let G be an intransitive group.
Let x; be any letter on which it operates, and let x;, %z, - -, x- be
the letters into which x; may be changed by the elements of G.
Then any permutation in G merely permutes these letters among
themselves. Moreover any letter x; may be displaced by any
letter x; by a permutation of G; for if g displaces x; by x; and
h displaces x; by x;, then g—1% displaces x; by x;. Hence the
elements of G permute the letters x;, x2, - - -, % transitively.
These letters form what is called a transitive set of letters in G.

Since G is intransitive it operates on some other letters than
those contained in the transitive set x;, x2, - - -, 2. Let y; be
such a letter, and let yi, ¥, - - -, 95 be the transitive set con-
taining y;. If this does not exhaust the letters on which G
operates, then there is another transitive set 2, 2, - - -, z; among
the letters of G. This process may be continued until all the
letters of G are exhausted, so that the letters on which G
operates are thus separated into a certain number (two or more)
of independent transitive sets.

Let o be the totality of letters in a certain number (not all)
of the transitive sets of the letters on which G operates; and
let 7 denote the totality of the remaining letters in G. If g; and
g2 are any elements in G which do not displace any of the letters
in the set 7, and if g is any element of G, then the letters in 7 are
left fixed both by gig2 and by g~gig. Hence the totality of
elements in G each of which leaves fixed the symbols = forms a
self-conjugate subgroup H; of G. Similarly, the elements which
leave fixed the symbols o form a self-conjugate subgroup H; of G.

Now the totality of different permutations on the letters in ¢
alone, each of which is produced by an element of G, evidently
forms a permutation group G; on the letters ino. Let g and g’
be any two elements of G, and let % and %’ be the elements of G;
which permute the letters in ¢ in the same way as g and g’ re-
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spectively. Then gg’ and k&’ permute the letters in o in the same
way. Hence G and G, are isomorphic, the elements of H: in G
corresponding to the identity in G,. Therefore G; is simply iso-
morphic with G/H,. It is evident that G, contains H; as a self-
conjugate subgroup.

Now the identity is the only element common to H; and Ho.
Moreover every element in one of these groups is permutable
with every element in the other. Hence {H, Hz} is the direct
product of H; and H,. Since H; and H; are both self-conjugate
in G, it follows that {Hi, Ha} is self-conjugate in G. Moreover
G/{H:, Hy} and G,/H, are of the same order.

The permutations effected on the letters in ¢ by {Hi, Hz}
constitute the group H,, while the permutations effected by G
on the letters in ¢ constitute the group Gi. Let &1, k2, k3 be ele-
ments of {H,, Hz}, and let g, g2, g3 be elements of G such that
kigy - kogo = kags. Let k1, k's, k'3, g'1, g2, g'3 be the permutations
effected on the letters in o by the elements ki, k2, ks, g1, g2, €3
respectively. Then it is evident that £'1g'i- k'2g'2= k'sg's.
Hence the groups G/{Hi, Hs} and G;/H; are isomorphic. But
we have seen that they are of the same order and that G is
simply isomorphic with G/H,. Hence G/{H:, Hz} and G:/H, are
simply isomorphic.

If G; is the permutation group effected on the letters in 7 by
the group G, then it may be shown similarly that G/H is simply
isomorphic with G/{H., Hz}. Hence Gi/H:and Gz/H; are simply
isomorphic.

Now let G be an intransitive group of degree » having just &2
transitive constituents. That the average number of symbols
displaced by the permutations of G is # — k is readily seen from
the fact that the average number of letters of each transitive set
displaced by the permutations of G is one less than the number
of symbols in that set (Theorem IV of § 39).

46. Primitive and Imprimitive Groups. Let G be a transitive
group on z symbols. Suppose that the # symbols may be di-
vided into 7 sets o1, o2,---, 0r (r> 1), each set containing
s(s> 1) symbols (so that z=7rs), such that any whatever
given permutation of G either permutes the s symbols of oy
among themselves or replaces these symbols by the symbols



160 Groups of Finite Order

of another set g;, this holding for each 7 of the set 1, 2, - - -, 7.
Then G is called an imprimitive group and the sets a1, o2, - - -, 0»
are called imprimitive systems or systems of imprimitivity. If
no such separation of the » symbols into systems is possible,
then the transitive group G is called a primitive group.

The group {(xyz)(abc), (xa)(yb)(zc)} has two sets of imprimi-
tive systems, namely, x, ¥, 2; a,b,cand x, a; ¥, b; 2, c.

An imprimitive group cannot be multiply transitive; for
if it were as much as doubly transitive, it would contain a
permutation displacing any two given symbols by any other
two, and the first two could be selected from the same system
of imprimitivity and the second two from different systems.
Hence every multiply transitive group is a primitive group. There
are also primitive groups which are only singly transitive; in
fact it is obvious that any transitive group of prime degree is
primitive.

Now let G be a nonregular transitive group on the z symbols
@, Gz, - - -, 4n, and let G; be the group consisting of all those
permutations in G each of which leaves a; fixed. Let « be the
number of the letters ay, a2, - - -, @, left fixed by G, and suppose
that « > 1. Let Gy, Go, - - -, G be the conjugates of G; in G.
Then each of these subgroups leaves fixed a different set of
« letters, so that ka=n. The k sets of « letters each, left
fixed by Gi, Gz, - - -, G, respectively, form a set of systems of
imprimitivity of G, since the subgroups Gi, Gz, - - -, G; are trans-
formed among themiselves by any element of G. Hence a neces-
sary condition in order that a nonregular transiiive group shall
be primitive is that the largest subgroup which leaves fixed one
given symbol shall leave fixed only that one symbol; but this con-
dition is not sufficient, as one may see from the corollary to
Theorem XIV below.

XIV. Let Si, Sz, ---, S» be a complete set of
conjugate elements or conjugate subgroups of a
given abstract group G. A necessary and sufficient
condition that the symbols S;, Sa, - -, S, shall be
transformed under G according to an imprimitive
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permutation group is that the subgroup H: of G
which consists of the totality of elements of G trans-
forming S; into itself shall be contained in a larger
proper subgroup of G.

In order to prove the condition sufficient, let us suppose
that H; is contained in a larger proper subgroup K; of G. Now
the number of conjugates of S; under K; is the quotient A
of the order of K; by the order of H;. Moreover K; contains
all the elements of G each of which transforms these A conju-
gates among themselves. Therefore every element of G not in
K; transforms these \ conjugates from the set Si, Sz, - -+, Sm
into another set of A conjugates from the same set. In this
way these symbols are separated into sets of X each such that
the sets remain intact as sets under transformation by the
elements of G and are merely permuted among themselves.
Hence they constitute a set of systems of imprimitivity of the
transitive group on Si, Sz, - - , S obtained on transforming by
the elements of G in the way indicated.

To prove the necessity of the condition, we notice that if
the symbols Sy, S, - - -, S, are transformed by the elements of
G according to an imprimitive group, then there is a proper
subgroup K of G which contains Hj, this subgroup being formed
of those elements of G each of which transforms among them-
selves the symbols of the imprimitive system containing Sj.

This completes the proof of the theorem.

Cor. Let G be a transitive group of degree =
whose largest subgroup G, leaving one symbol fixed
is of degree » — 1. Then a necessary and sufficient
condition that G shall be imprimitive is that G, shall
be contained in a larger proper subgroup of G.
This follows at once from the theorem and the fact that G

transforms the conjugates of G, in exactly the same way as it
permutes the symbols ai, @z, - - -, @, on which G operates.
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EXERCISES

1. Construct a transitive group of degree 6, an intransitive group
of degree 6, and an intransitive group of degree 7, each of which is
simply isomorphic with the symmetric group on 4 symbols.

2. Let x1, x2, - -, Xy Y1, V2o -y V3 21, Z2, -+, 2¢) - - - be the
transitive sets of letters in an intransitive group G. Prove the follow-
ing propositions :

(1) The group G is a subgroup of the direct product of the symmetric
groups on the symbols [x1, %z, « - -, %], [¥1, Y2« + - ¥, - - -

(2) The order of G is a factor of 7!-s!-¢!.-. and is a common
multiple of 7, s, £, - - -.

(3) The permutations leaving x, fixed constitute a subgroup of
index 7.

8. Construct a doubly transitive group of degree 10 which is
simply isomorphic with the alternating group of degree 6.

4. Construct a transitive group of degree 15 which is simply iso-
morphic with (a) the alternating group of degree 6, (b) the symmetric
group of degree 6.

6. The alternating group of degree 5 is simple and is of order 60.
Show that 60 is the lowest possible composite order of a simple group.

6. The central of a primitive group consists of the identity alone.

7. The group of inner isomorphisms of a primitive group 6 is
simply isomorphic with G. .

8. If a transitive group contains an element of prime order p
greater than the largest proper factor of its degree n, then G is a
primitive group.

9. Those permutations of an imprimitive group G which permute
among themselves the letters in each of a given complete set of im-
primitive systems of G constitute a self-conjugate subgroup of G.

10. All the primitive groups of degrees 2 to 20 have been con-
structed, and it has been found that their number for each degree is
as follows:

DEGREE 2345678 91011 12 13 14 15 16 17 18 19 20
NumBer 122547711 9 8 6 9 4 62210 4 8 4

Many of these can readily be found by the methods already described.
For each of the degrees 2, 3, 4, 5, 6, 14, 18, 19, 20 construct as many
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primitive groups as are indicated for that degree in the foregoing
table, and for each of the degrees 2, 3, 4, 5, 6 show that these are all
the primitive groups of these degrees.

11. Show that the permutations (123)(456) and (17)(26) generate
a doubly transitive group of degree 7 and order 168 and prove that
this group is simple.

12. Construct seven primitive groups of degree 7 and show that
these are all the primitive groups of degree 7. (See Exs. 10 and 11.)

13. A self-conjugate subgroup (of order greater than unity) in a
primitive group G is transitive. Hence its order is a multiple of the
degree of G.

14. The symmetric group of degree # is the only primitive group of
degree n one of whose elements is a transposition.

15. The alternating and symmetric groups of degree n are the only
primitive groups of degree n containing a circular permutation of
order 3.

16. A regular group of composite order is imprimitive.

17. The ¢-subgroup of a primitive group consists of the identity
alone.

18. Let G be a prime-power Abelian group of order p" and type
1,1, --- 1), and let K be the holomorph of G expressed in the usual
way as a permutation group of degree p". Show that K is doubly
transitive when p is an odd prime and that it is triply transitive
when p = 2.

19. Show that the doubly transitive group of prime degree p and
order p(p — 1), constructed in § 40, is simply isomorphic with its
group of isomorphisms.

20. Assuming the theorem that the symmetric group of degree n
contains no subgroup of degree z and index # when 7 5 6, prove that
the symmetric group of degree n, when 77 2 and n > 6, is simply
isomorphic with its group of isomorphisms.

MISCELLANEOUS EXERCISES

1. Let G; and Gz be two transitive groups of degree n such that
the permutations in G: which displace all the symbols are the same as
the permutations in Gz which displace all the symbols. Show that the
two groups can differ only in the permutations which leave just one
symbol unchanged.
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2. Let G be a transitive group of degree # and order g. Let g, be
the number of permutations in G each of which leaves just r symbols
fixed. Show that n

2 6=6 ﬁrgr=g-
r=1

7=0

If G is k-fold transitive, show that

g=Drr =D r—l+Dg (=125
r=1

In particular, if G is triply transitive, show that

é 73g, =5¢.
r=1

8. Let G be a transitive group of order p™, where p is a prime num-
ber. Let H be the largest subgroup of G each element of which leaves
fixed a given symbol of G. Then H leaves fixed p= symbols of G, where
« is a positive integer.

4. If p is the index of a proper subgroup H of the symmetric
group G of degree n, then p =2 or p is at least as great as the largest
prime number less than n.

6. The group G of degree n (n > 4) which is generated by all the
permutations of the form (12)(34) on a given set of n letters is the
alternating group of degree #.

6. By means of Theorem VIII of § 41 prove that, besides the
alternating and symmetric groups, there are no groups of degree not
greater than 100 which are as much as 8-fold transitive.

7. The totality of circular permutations of order r on m symbols
generates the symmetric or the alternating group on these m symbols
according as 7 is even or odd.

8. Write n# in the form n=rkoppo+ kip*=14+ .-+ ku_1p + ke,
where ko, k1, - - -, ka are positive integers less than the prime p. Then
a Sylow subgroup of order p™ in the symmetric group of degree » has
its central of order p! where I=ky+ by + + - + + ka_1.

9. Let us write

A = (X%X1%2X3 - * * X33),

B = (x3%16X9%6%s) (¥4X3%12X13%18) (¥ 10%11¥22X7% 17) (¥20¥15X14¥ 19%21),

C = (%0x0) (X1%22) (¥2x11) (Xa%15) (X 4%17) (X5%9) (X6X10) (X7%13) (X5X30)

(x10%16) (X12%21) (*18%14).
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Show that {4, B} is a 4-fold transitive group of degree 23 and
order 23-22-21-20-16-3. Show also that {4, B, C} is a 5-fold
transitive group of degree 24 and order 24 -23-22-21-20-16-3.
(These groups are known as Mathieu groups.)

10. Construct all the permutation groups of degree 6.

11. Construct all the permutation groups of degree 7.

12. A transitive group of order pe is imprimitive if p is a prime
and a> 1.

13. A primitive group of degree #, not containing the alternating
group of degree #, does not contain two transitive subgroups which
can be transformed into each other by a transposition.

14. A doubly transitive group G does not contain an intransitive
subgroup whose index in G is less than the degree of G.

15. A self-conjugate subgroup of a k-ply transitive group of degree
n (2 < k< n)is at least (¢ — 1)-ply transitive except in the case of a
triply transitive group of degree 27, in which case there may be a
self-conjugate subgroup of order 2™,

16. Construct seven primitive groups of degree 8 as follows:
(1) the symmetric group; (2) the alternating group; (3) a triply
transitive group of order 8-7 -6 -4 whose existence is asserted in
Ex. 18 on page 163; (4) the triply transitive group of degree 8 and order
8.7 -6 whose existence is shown at the end of § 40; (5) a doubly
transitive subgroup of index 2 in the group described in (4) and hence
oforder 8 - 7 - 3; (6) another doubly transitive group of order 8 - 7 - 3;
(7) a doubly transitive subgroup of the latter of order 8 -7. Show
that these are all the multiply transitive groups, and indeed all the
primitive groups, of degree 8. (Compare Ex. 10 on page 162.)

17. Show that the 5-fold transitive group of degree 12 defined
in Ex. 12 on page 151 contains as a subgroup a 3-fold transitive group
of degree 12 and order 7920. Then construct six multiply transitive
groups of degree 12 and eight primitive groups of degree 11. (Compare
Ex. 10 on page 162.)

18. Construct nine primitive groups of degree 13.
19. Construct six primitive groups of degree 15.

20. Construct six multiply transitive groups of degree 16 contain-
ing, respectively, the six groups of Ex. 19 as the largest subgroups
leaving one letter fixed.



CHAPTER VII

Defining Relations for Abstract Groups

47. Introduction. Two General Theorems. In § 9 we illus-
trated by means of examples the notion of defining relations
for abstract groups. A group may have several independent
sets of generators; but it is completely defined as an abstract
group by means of any independent set of abstract generators
and all the independent relations by which they are connected.
The theory of defining relations for abstract groups, so far as
it has been developed up to the present time, consists mainly
of isolated theorems. In § 24 we obtained defining relations
for prime-power Abelian groups; and it is obvious how one
would pass from these to defining relations for abstract Abel-
ian groups in general. In Chapter V, on prime-power groups,
we have incidentally met a number of defining relations for
particular classes of abstract groups. In this chapter we shall
give a few additional results concerning defining relations. In
the present section we prove two general theorems.

I. Let G denote an abstract finite group whose
generators #, f, - - -, # are subject to the sole defin-
ing relations

filty, toy - -, ) =1, ¢t=12,..., m)
where fi(ti, b, - - -, ;) denotes a product of powers
of some or all of the elements ¢, t5, - - -, f,. Let T be
an abstract group whose generators 7, To, + + +, T} ArE
subject to the sole defining relations

f;'(Tl, T2y * = oy Tk) = 1, (‘i= 1, 2, ey M)

Fi(Tl,T2,"',7'k)=19 (i=1,2t"'9“)'
166
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where F(r1, 72, - - -, T&) denotes a product of powers
of some or all of the elements 74, 72, - - -, &= Then the
elements Fi(ty, 2, - - &) (¢=1,2,---, u) generate a
self-conjugate subgroup H of G, and G/H is simply
isomorphic with TI'.

The groups G and I' are exhibited as isomorphic by making
1; and 7; correspond for each value 7 of the set 1, 2, - - -, 2. To
each element in G there corresponds only a single element in
I'; but to the identity in I' corresponds every element of G
which is in H and no other element of G. Hence the isomorphism
of G with T is multiple; and the subgroup H of G which corre-
sponds to identity in T is (§ 16) a self-conjugate subgroup of G,
and G/H is (§ 20) simply isomorphic with T'.

II. If H denotes an abstract finite group whose

generators s, &1, £z, - - -, Iy, are subject to the sole de-
fining conditions

fils, tytey - t)=1, (E=12,---,m)

where fi(s, t, t2, - - -, ;) denotes a product of powers
of some or all of the elements s, , &, - - -, &, and if »
is any number prime to the order n of s, then the
generators o, 1, Iz, - - -, & subject to the sole defining
conditions

I,"ld'"t,-cr" =fi(0'” tl’ l2y -+~ tk) = 1’

(G=1,2--k;i=12,---,m)

generate an abstract group which is the direct prod-
uct of H and the cyclic group of order ».

Let & be the order of H, and let H be written as a regular
permutation group on % symbols. Let S, T; be the concrete
forms of s, ¢; in this representation. Since » is prime to n,
there exists a regular permutation S; on the same /% symbols
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such that S;» = S. Define X by the relation Z = S; - (b1b2 - - - b.),
where (b1 b2 - - - b,) is a cyclic permutation on symbols distinct
from the % symbols on which H is represented as a permutation
group. Then 2’ = Sy»=S. Moreover 2" is the nth power of
(b1bs - - - b,), so that Z* is permutable with each of the permu-
tations Ty, Ty, - -, Tx. Hence the group {o, #, #5, - - -, &} has at
least as many elements as the group {Z, Ty, Tq, - - -, Ty} and is
(Theorem I) isomorphic with it. Moreover the group {¢”, t, iz,
- - -, &z} has at least as many elements as the group {Z*, Ty, T2,
-« +, Ty} and is isomorphic with it. Hence {7, &1, t2 - - -, lx} has
at least as many elements as H and is isomorphic with it. But
it cannot contain more elements than H, since o?, 1, lg, « + -, L
satisfy all the conditions imposed on s, {3, f2, - - -, & in the defini-
tion of H. Hence {0”, 11, I, - - -, &} is simply isomorphic with H.
It may therefore be denoted by H.
Let us consider the » sets of elements

H, Ho™, Ho?", ..., HgU~ 17,

each element of which belongs to the group {o, 4, f2, - - -, &i}.
On multiplying on the right by any ¢; these sets are unaltered
as sets, since o™ is permutable with each ¢; and H contains each
t;. The foregoing sets, except for order, are the same as the sets

H, He, Ho?, - - -, He"™1,

since the numbers #n, 2%, 3%, - - -, (v — 1)n are in some order
congruent modulo » to the numbers 1, 2, - . -, v — 1 (owing to
the fact that » and » are relatively prime), and since Ho™ = H.
If the last sets are multiplied on the right by o they are per-
muted cyclically in the order written. The » sets are then per-
muted but left intact as sets by multiplication on the right by
any of the elements o, iy, #3, - - -, {;. Hence all the elements of
{o, 4, t2, - - -, &} are contained in these sets. The latter have
not more than vk distinct elements. Hence the order of {, #,
t2, « - -, tx} is not greater than »A. But this group is isomorphic
with {Z, T4, Ts, - - -, Tx} and contains at least as many elements
as the latter. It is easy to see that the latter group is simply
isomorphic with the direct product of H and the cyclic group of
order » (and hence is of order »k), since it clearly contains the
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subgroup {Z’, Ti, T, - - -, T}, simply isomorphic with H, and
the permutation (b1bz - - - b,) which is on letters not in this sub-
group. Thence follows readily the conclusion of the theorem.

It is clear that the theorem may be applied again to the
generational relations in the conclusion so as to generalize one
of the elements #;; and that the process may be continued until
each of the elements has been replaced by a new one. In this
way we obtain a formal extension of the theorem which will be
of use in the next section.

48. Symmetric and Alternating Groups. Several sets of ab-
stract defining relations for the symmetric and alternating
groups are known. We reproduce here in Theorems III and IV
those which we consider the most pleasing.

III. If »> 2 and if the n — 1 distinct elements
S1, S25 * * *, Su—1, Sa(= 1) satisfy the relations
S,;2 = (S¢Si+1)3 = (Si3i+1s.:3j)2 = 1, [1]
where 7 and j range over the set 1,2, ..., n—1, ex-
cept that j is different from ¢ and 7 4 1, and if these
elements satisfy no conditions except those implied
by relations [1], then they generate a group which
is simply isomorphic with the symmetric group of
degree n.

For the case # = 3 it is to be understood that these relations
become §;2 = s22 = (s152)> = 1. From § 9 it is seen that these
conditions define a group which is simply isomorphic with the
symmetric group of degree 3.

In general it is easy to state descriptively the conditions on
the s; in [1]. Each element s; is of order 2; if any two consecu-
tive elements of the set sy, Sz, - - -, Sn_1, 1 are chosen, their
product is of order 3 and the transform of the second one in the
pair by the first is permutable with every element s; not in
the pair.

The concrete instance s; = (@ma:41) (¢=1, 2, ---, n—1)
shows that conditions [1] are consistent. These concrete ele-
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ments generate the symmetric group on ay, ao, - - -, a@,. Hence
the abstract group {si, 2, - - -, S»—1} is isomorphic with the sym-
metric group of degree #; and it contains at least n! elements,
since the s; are subject to no conditions except those implied by
[1]. To complete the proof of the theorem we must show that
the named isomorphism is simple. It is clearly sufficient to this
purpose to show further (compare Theorem I) that the order of
the abstract group {si, sz, - - -, S._1} is not greater than »!.

For the purpose of making this proof it is convenient to es-
tablish the following lemma :

LEMMA. If » > 3 and the » — 1 distinct elements
S1, S2, * * +, Su_1, So(= s1) are subject to the conditions

$2 = (8iSi+1)% = (SiSi+18:85;)2 =1,

where 7 and j run over the set 1,2, - - ., 7 — 1, except
that j is different from 7 and 7 4 1, then they are also
subject to the larger set of similar conditions

52 = (8:5;)% = (ssi5:85;)2 =1,

where the 7, j, k are any three distinct numbers from
theset1,2,.-., 2 —1.

For 0 < £ < n—1 we have

Si+kSi+k+1Sit+k - SiSitk * St+kSi+k+1Si+k

= 8:Si+kSi4b+1Si+kSi+k+1Si+k

= §iSi+kSi+kSi+k+1

= S$iSi+k+1.
[We understand that subscripts greater than # — 1 are reduced
modulo z — 1 to numbers of the set 1, 2, ---,  —1.] Hence
s:S;+k+1 has the same order as s;s;.:; thence by induction it
follows that s;s; has the same order as s;5;,1, so that (ss;)3 =1

for every two distinct subscripts 7 and j from the set 1, 2, - - -,
n—1.
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Transforming s5:4+15:5; by SiSisx, where j is different from ¢
and 7 + 1, and where £ is different from 7, ¢ + 1, j, we have

SkSiSk * SiSi+1S: * SkSiSk * SkSiSk * Sj * SkSiSk
= §)8:SkSkSiSi+15:5:5k * SkSiSk * Sj * SkSiSk
= S$kSi+1Sk * SkSiSkS; * SkSiSk-

Since the square of this element is the identity, we see readily
that s; is permutable with sis:.18, if it is permutable with
siSise. Hence (5;5i41515;)% = 1 1f (sisis157)% = 1. But (spSe.41555)2
=1 if 7 is different from % and £+ 1. Hence we see by induc-
tion that (seSks«sis;)? =1 if j is different from each of the
numbers £, E+1,---, k+ o That is, (sisusis))?=11if i<k
and 7 does not belong to the set 4, £+ 1, - - -, k. Consider next
the product ss;s:s;, when ¢ < k and j is a number of the set
i+1,i+2,---, k—1. It has the same order as ss;5:5:. Here
we have 7 < j and % not of the set 7, ¢4 1, --,j. Therefore
(sis;8:51)2 = 1, and hence (sisisis;)2 = 1. Hence (sisisis;)? =1 if
i, §, k are distinct and ¢ < k. If k< 7 and j is different from %
and 7, we have from the foregoing that (sis:sis;)2=1. But

SiSKSiSkSjSi = SkSiS;S; = 8+ Si * Sp5:85 * Si.

Hence (s:Sis:s;)2 =1 in this case also. Hence we conclude
finally that (s:sisis;)2 = 1 whenever 4, 7, k are distinct numbers
oftheset1,2,---,—1.

This completes the proof of the lemma.

Now let G, denote the group {si, sz, - - -, S»—1} Of the theo-
rem. Then G; is of order 6, as we have already seen. Let %
be any number such that G; is of order not greater than k!
We shall then prove that G.,; is of order not greater than
(¢+1)!. Let H denote the group {sz, s3, - - -, Sx}. Its order is
not greater than k!, since its elements satisfy all the conditions
on the elements of G;. Form the sets of elements

H, Hs,, Hs1s2, Hs183, * * -, HS1Sk.

If we multiply on the right by s;, the first two sets are inter-
changed, and the others remain unaltered since by aid of the
lemma it may be shown that Hs;s.s1 = HS1515.515« = H$1S« if
a> 1. If we multiply on the right by s. (> 1), the second
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and the (a+ 1)th sets are interchanged; the remaining sets
are unaltered, since for a > 1, 8> 1, a = 8, we have Hs;sgs,
= H$15.555.58 = HSa555.5158 = Hs155, as may be shown by aid of
the lemma.

Now from the fact that the foregoing %2+ 1 sets are thus
interchanged among themselves as sets by multiplication on
the right by any one of the elements sy, s, - - -, s;, it follows
that the group Gi.: contains not more than 24 1 times as
many elements as H, and hence not more than (£4-1)! elements.
Thence it follows by induction that G, contains not more than
n! elements, since Gs contains just 3! elements. In view of the
previous analysis this completes the proof of the theorem.

IV. If n — 2 elements sy, s, « - -, Sp—2 (7 > 2) sat-
isfy the relations
s3=1, ¢(=12,---,n-2) [2]
(si$s5)2=1, ¢(=142,.---,n—3;

j=i+4+1,i42,--,n-2) [3]

and if these elements satisfy no conditions except

those implied by these relations, then they generate

a group which is simply isomorphic with the alter-
nating group of degree #.

The same theorem may be formulated in descriptive terms
as follows: If k elements are subject o the sole defining conditions
that each is of order 3 and the product of each pair of them is of
order 2, then they generale a group which is simply isomorphic
with the alternating group of degree kb + 2.

For n=3 in the theorem there is but a single element s
and conditions [3] are absent. The theorem is therefore obvious
for n=3.

For n=4 the given conditions reduce to the following:
513 =528 = (s152)2 = 1. In § 9 it has been shown that these are
defining relations for the abstract alternating group. From
this it follows that for the proof of the theorem in general it is
sufficient to show that if the theorem is true for » = & then it
is also true for n =%+ 1.
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The concrete elements
$i= (GiGn—-1Gn) ¢=12---,m-2)

are generators of the alternating group on ay, a3, -, @s, aS
one sees from the corollary to Theorem IV of §2; and they
satisfy the conditions on the corresponding abstract elements
in the theorem. Hence the abstract group is isomorphic with
the named alternating group, and it has at least 4(n!) elements,
since the s; are subject to no conditions except those implied
by the relations in the theorem. To complete the proof of the
theorem it is sufficient to show that the order of the abstract
group {s, Sz, - - -, Sa_2} is not greater than ¥(n!), on the hy-
pothesis that sy, s3, - - -, S._2 generate the abstract alternating
group H of degree n — 1 when they satisfy the sole conditions
stated in the theorem for these elements alone.

Form the sets of elements

H, Hs,, Hs:?, Hss2?, Hsiss% - - -, Hs1Sn—2% [4]
Now for o > 1 we have
Hs154251 = HS1SaSa81 = HSe 1517151715, = Hs18.2.

Hence, under multiplication on the right by si, the first three
sets in [4] are left intact as sets and are permuted cyclically in
the order H, Hs;, Hs;2, while the remaining sets are unchanged
as sets. For o > 1 we have

Hs, = H, Hs;S.25. = Hsi1, Hs15,= Hs,~'$17! = Hs\?,
Hs:125, = Hsy 15,7 15,2 = HS.$18.2 = HS15.%;
and for « > 1 and B # «a and = 1 we have
Hs18525, = Hs15p5p50 = Hsp 1851715, 18571 = HSa$156° = Hsis%

whence it follows that under multiplication on the right by s,
a > 1, the sets are left intact as sets and Hs;, Hs;%, Hsis.? are
permuted cyclically in the order written while the remaining
sets are unchanged as sets. Hence the 7 sets of elements in [4]
contain all the elements of {si, Sz, - - -, Sa—2}, 50 that the number
of them is not more than # times the number of those in H and
hence is not greater than %(n!).

In view of the preceding analysis this completes the proof of
the theorem.
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V. From Theorems II and III we have readily an
abstract definition of the group which is simply isomor-
phic with the direct product of the symmetric group of
degree n and n — 1 cyclic groups of any odd orders
v1, v2, - - -, ¥n—1 (equal to or greater than unity).

VI. From Theorems II and IV we have readily
an abstract definition of the direct product of the al-
ternating group of degree n by n — 2 cyclic groups
of any orders prime to 3, including the order unity.

It is sometimes desirable to know whether any of the condi-
tions in the defining relations for a given abstract group are
redundant in the sense that one or more of them may be deduced
from the remaining ones. To show that a particular one of the
relations is not redundant it is sufficient to exhibit elements
failing to satisfy that one but satisfying all the other conditions.
It is evident that this problem may vary greatly in complexity
with variation in the form of the several conditions so as to
leave the total set of conditions equivalent to their first form.
We shall illustrate this matter by examining the defining rela-
tions already given for the symmetric group.

If the set of conditions in Theorem III is replaced by the
equivalent set of 2 # — 1 conditions

1) s2=1, ¢t=1,2,---,n—1)

(2) (sisip1)2=1, t=12,--,mn—1, s,=51)

(3) the transform of each element in the sequence si, ss, - - -,
Sa-1, $1 by the one which precedes it in that sequence is
permutable with every element s; other than these two,

then the nonredundancy of each of the several conditions is
readily shown by means of the elements indicated as follows:
WD i=k: si= (B18ry1)(C16263), S; = (18j41); (= k)
@) i=k: sj=(ma;41), (=1,2,--k)
si= (m8;11)(C16j41); G=k+1, -, n—1)
@) si=(38,41) (J=1,--+, 8=2), Su_1=(G18n-1). (#>4)
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Moreover, the example given under (2) shows that no one of the
conditions (s;s:+1)® = 1 is redundant even when the conditions
are listed as in Theorem III itself, that is, when the defining
equations are all taken separately and not partly combined as
in condition (3) in this paragraph.

EXERCISES

1. If n > 2 and if two elements s and { are subject to the conditions*
stl=p=(st)r=(-s"Us)3=(t-s"Us-L -5~ Hs¥)2=1,
*k=2,3,:--,n—3)
and to no conditions except those implied by these relations, they

generate a group which is simply isomorphic with the symmetric
group of degree .

9. If n> 2 and if two elements s and ¢ are subject to the conditions
sh=2=(st)" = (1 -s"Ms)3=(t-sFts¥)2 =1,
(k=2,3,---,3n—1)or 3n)
and to no conditions except those implied by these relations, they

generate a group which is simply isomorphic with the symmetric
group of degree 7.

3. If the n — 1 elements a1, 03, - - -, 0n—1 are subject to the con-
ditions
o2=1, (¢(t=12--,n—-1)
(00i41)3 =1, (=12,---,n—2)

(oigi)2=1, (¢(=1,2--n—-3;j=i+2,i+3,--,n—1)
and to no conditions except those implied by these relations, they
generate a group which is simply isomorphic with the symmetric
group of degree n.

4. The conditions on the elements o1, 02, * -+, 0a—1 in Ex.3 are
equivalent to the following:
6)) e2=1; (=1,2,--,n—1)
(2) (ioie1)?=1; (1=1,2,.--,n—2)
(3) every two nonconsecutive elements in the sequence 03, 02, * *
o._1 are permutable.

* If » =3 or 4 the relations involving % are absent. A convention similar
to this is to be understood in several problems belonging to this set.
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Show that when » > 3 there is no redundant condition in the set of
2 n — 2 conditions counted as follows: n — 1 conditions in (1); 7 —2
conditions in (2); one condition in (3).

5. If s and ¢ are subject to the sole defining relations
st=2=(st)2=1,
show that {s, #} is simply isomorphic with the octic group.
6. If s and ¢ are subject to the sole defining relations
=13 = (s12)2 = s2(sf)2 =1,
show that {s, ¢} is of order 18 and discuss its properties.

7. Prove that {s, } is simply isomorphic with the alternating group
of degree 4 if s and ¢ are subject solely to either one of the following
two sets of conditions:

Q) s*==6n?=1, @ st=8=(st)*=1.

8. Prove that {s, ¢} is simply isomorphic with the symmetric group
of degree 4 if s and ¢ are subject solely to any one of the following three
sets of conditions:

Ost=2=(tp=1 (2sP=t=(st)2=1, @) st=t=(st)®=1.

9. If s and ¢ are subject solely to any one of the three sets of de-
fining conditions

M st=p=(t)s=1 (2)s2=6=(s)3=1, 3)*=06=(st)2=1,

they generate a group which is simply isomorphic with the alternating
group of degree 5.

10. If a finite group is generated by two elements s and ¢ such that
t is of period 2 and s is not in the group {st, ts}, then {st, ts} is a sub-
group of {s, ¢} of index 2.

11. Let » and r be relatively prime positive integers, and let % be
the exponent to which 7 belongs modulo #. If s and ¢ are subject to
the sole defining relations

sh==1, ("lst=s",
show that {s, #} is a group of order nk which is simply isomorphic
with the group generated by the permutation (aoaiaz - - - @,—1) and
the permutation which changes a; to a. (1=0, 1,-.., #—1), the
latter subscript being reduced modulo 7.
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12. If two elements s and ¢ are subject to the sole defining relations
sk=tr=t"1(s— 2~ IsN(s~ s =1, @=1,2,---,k—1)

they generate a group of order ku* which is simply isomorphic with
the permutation group generated by

(@182 - - - @) (Br410k42* * * G2x) * * * (Bu—Dk+1" * * Guk)
and (184182541 * * * Gu_1)k+1)-
13. If two elements s and ¢ are subject to the sole defining relations
st=2=(s"its)2=1, (1=1,2,--3(k—1)orkk
they generate a group of order k - 2* which is simply isomorphic with
the permutation group generated by
(@182 - - - @) (G4 10k42 - - - G2) and  (818k41).
14. Construct abstract defining relations for each of the permuta-
tion groups of degrees 2, 3, 4, 5. (Compare Exs. 8, 9, and 10 on page
151.)

15. Construct abstract defining relations for each of the primitive
groups of degree 6. (Compare Ex. 10 on page 162.)

49. Finite Groups {s, t} such that s*=#. We shall now de-
termine the finite groups {s, #} which are generated by two ele-
ments s and ¢ having a common square. We let m denote the
order of st—1. Then we have

s2=12, (st)m=1.

Now we have t—1s2f = 1—1#2t = {2 = s2. Hence s? is permut-
able with every element in {s, #}. Again, we have

st-l=s"1s2f~1 =1, (s~ =1"1s=(st"1)~L,

From this it follows that st~ is transformed into its inverse by
both s and ¢. Hence the cyclic group {st~!} is self-conjugate in
{s, . Moreover, it follows also that {s?, st~} is an Abelian
group H which is self-conjugate in {s, }.

If we suppose that o and 8 are integers such that we have
s2e = (st~1)8, then s is permutable with (st=1)%. From the fact
that s—1(st—1)s = (st~1)~! it follows that s~I(st™1)fs = (st™1)7%.
But s—1(st—1)8s = (st~1)8. Hence (st~1)? = (st~1)~#, whence we
have (st—1)26 = 1. Now if u is the exponent of the lowest pos-
itive power of s¢—! which is equal to a power of s, then the only
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powers of st~ which are equal to powers of s? are those of the
form (st~ 1), But (st~1)2» =1, as we have seen. Hence the cy-
clic groups {s?} and {st~'} have at most two elements in com-
mon; and they certainly have only one element in common if
m is odd. Likewise it may be shown that they have only one
element in common when s is of odd order. Therefore the group
H is of order my or of order 4 my, where » is the order of s2, and
the latter case cannot arise unless m and » are both even.
If s is of odd order 2 A 4+ 1, then we have

s= 32x+2 = (82))‘+1 — (12))\-}'1’

so that s is in the group generated by ¢. If ¢ is of odd order, then
likewise ¢ is in the group generated by s. Hence if either of the
elements s and ¢ is of odd order, the group {s, #} coincides with
the cyclic group generated by one of these elements.

Then consider the case when both s and ¢ are of even order.
Let 2 n be the order of s. Since s2 = {2 it follows that ¢ is also
of order 2 n.

Now consider the sets H and Hs of elements of {s, #}. Since s2
isin H, it follows that the sets H and Hs are interchanged on mul-
tiplying on the right by s. That they are also interchanged on
multiplying on the right by ¢ is shown by the following relations:

H!=Hst™'.t=Hs, Hst=Hst™!-12= Hi? = Hs? = H.

Hence all the elements of {s, {} are in the sets H and Hs. If sis
in H these sets are identical; then ¢ is in H and {s, ¢} coincides
with the Abelian group H. If s is not in H, then H and Hs are
distinct sets such that no element in the one set is equal to an
element in the other set; and the order of {s, #} is then twice the
order of H. We have to examine these two possibhilities.

In the first case the group {s, ¢} coincides with the Abelian
group {s?, st—1}. In this case st~1is of order 1 or 2, since (st~1)2
=s2"2=1. If st-! =1, then s = and {s, #} coincides with the
cyclic group {s}. If st~1is of order 2 and the cyclic groups {s?}
and {st—!} have two elements in common, then ¢ is a power of s
and {s, ¢} coincides with {s}. If st~!is of order 2 and the cyclic
groups {s?} and {st~1} have only one element in common, then
H is of order 2 » and again {s, ¢} coincides with the cyclic group
{s}. Therefore if {s, ¢} coincides with H, then {s, &} = {s}.
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It remains to consider the case when {s, ¢} does not coincide
with H. Then s is not in H.

Suppose first that {s, #} is Abelian. Since s is not in {s?, st—1}
it follows that s is of even order; we denote its order by 2 n.
Now (si~1)2=s2"2=1. Hence st~!is of order 1 or 2: in the
former case s = ¢ and {s, #} = {s}; if, in the latter case, H is of
order », then {s, ¢} is of order 2# and is identical with {s},
while if H is of order 2 », the group {s, #} is of order 4 » and is
an Abelian group generated by s and st~! of orders 2 n and 2
respectively.

It remains to consider the case when s and ¢ are not permut-
able. Then s is of even order 2. Moreover st~! is of order
greater than 2, since if (st=1)2 =1 we have st"!s=1, st™2s =1,
s—lis = ¢. Hence in this case we have m > 2. In this case also
{s, t} is of order twice the order of H and is therefore of order
2 mn or mn, the latter case not arising unless both m and n
are even.

Except in the cases named in the last paragraph the group
{s, #} is necessarily Abelian; it is evident that the named
Abelian groups exist.

It is next to be shown that non-Abelian groups actually
exist satisfying the named conditions for every pair of positive
integers m and n with m > 2.

For the case when {s, ¢} is of order 2mn (m > 2) we have
the following generators: *

m
s=T1@®a:® - - - a2, ),
i=1
m
t =T (@Pa+tPasPasC+D . . . O2n—1Da2,61D),
i=1

where it is to be understood that the superscript m + 1 is to
be replaced by 1. Then

st1= (@, (™a, (Vg (m=D ... g; Vg, D) (a2 VaxPay® - - - @™) - -«
(@201 @21 D - -« G2 _1D)(32: V020 P82,D - - - G20™).

* If m were equal to 2, we should have here the case of an Abelian group
{s, 1},



180 Groups of Finite Order

It is easy to see that s2 = ¢2 and that st—! is of order m, while s
is of order 2. Hence this permutation group {s, #} belongs
to the category of groups under investigation. Now the only
power of st~ which is equal to a power of s? is that which is
equal to the identity, as one sees by the way in which the sub-
scripts on the @’s enter into the powers of st—! and s2 respec-
tively. Hence the Abelian group {s2, st~!} is of order mmn.
Moreover s is not in {s?, st~!}, since no element in the latter
group displaces an ¢ with an odd subscript by one with an
even subscript. Therefore {s, {} is of order 2 mn. Moreover,
{s, t} is non-Abelian, since we are taking m to be greater than 2.

Let us next exhibit s and ¢ such that {s, ¢} is non-Abelian
and of order mn. In this case both m and » must be even, with
m > 2; hence we writemm =2 yand n =2 », with u > 1. Then
for s and ¢ we take the following generators :

"
s= ] (@90,9a:8,D - - - a5,8,,),

f=1
i= (a1(1>b,+1‘"’az‘l)b,+2(") N a.“)bz,,‘"’ayﬂ(1)b1(*‘)a,+2(1)b2‘“’

u—1

-0 a2,05,W) - ] (@14 Db D+ . . . gy G+ (),
i=1
Then we have

v
st—1 =]:[ (ai(l)ai(2) c e ai(")av+i(l)aV+i(2) .« e a’+i(“))
i=1

14

T 0w =0 .. pWp,  Wp,, H=D ... p, +iD).

i=1
Then s and ¢ are of order 4 » and st~! is of order 2 u, while
s2=1? and (st~!)» = s>. Hence the group {s?, st~} is of order
2 uv and {s, } is of order 4 uv = mn. Therefore the groups
{s, t} are groups of the class whose existence was to be shown.
The results obtained imply the following three theorems:

VII. Let G be the finite group {s, #} generated by
two distinct elements s and ¢ such that s2 =72. If

either s or ¢ is of odd order, then G coincides with the
cyclic group generated by the other one of these ele-
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ments. If s and ¢ are both of even order, then their
orders are equal; in this case we denote their com-
mon order by 2 n. Let m be the order of si=!; then
m > 1, since s = t. Then when s and ¢ are both of
even order, we have
s-2=sm=(st—)" = 1.

In this case the group H, H = {s?, st"1}, is an Abel-
ian self-conjugate subgroup of G of order mn or % mn,
the latter case not arising unless m and » are both
even. Moreover, if in this case G coincides with H,
then G is either the cyclic group {s} or an Abelian
group of order 4 n generated by s and s¢~! of orders
2n and 2 respectively or a non-Abelian group of
order mn or 2 mn, with m > 2, the former of the two
latter cases not arising unless both m and » are even.
Moreover, in all cases named, groups actually exist
having the stated properties.

VIII. Let s and ¢ be two elements which are sub-
ject to the sole defining relations

s 2=g = (st )" =1; (m>1)
then {s, #} is completely defined as an abstract group
of order 2 mn.

IX. Let s and ¢ be two elements which are subject
to the sole defining relations

s Z=st& (st~ =1; (p>1)
then {s, &} is completely defined as an abstract group
of order 4 pv.

50. Dihedral and Dicyclic Groups. A dihedral group is a
group which is generated by two elements of order 2 whose
product is of order m (m >1). By taking #=1 in Theorem VIII
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of § 49, it follows from that theorem that such a group is of
order 2 m and that there is one and just one dihedral group of
each even order greater than 2. If s and ¢ are the generators
of order 2 and st is of order m (m > 2), then the dihedral group
{s, &} of order 2 m is non-Abelian, since both s and ¢ transform
st into its inverse s.

A dicyclic group is a group generated by an element s of
order 2# (# > 1) and an element ¢ of order 4 such that 2 is
in {s} and ¢ transforms s into its inverse. That such a group
is of order 4 # and that there is one and just one dicyclic group
of each order 47 (n> 1), is seen at once from the following
theorem, which we now prove.

X. If s and ¢ are subject to the sole defining re-
lations s =§"2={"1st.5=1,
then {s, t} is completely defined as a group of order 4 #.

From the named conditions we have 2 =s—", so that { is
of order 4 at most, since s?* = 1. Moreover, we have {~!st=s"1,
so that ¢ transforms s into its inverse.

That the named conditions are consistent is seen at once
from the following permutations satisfying them :

S = (a1a2 [ azn)(blbz e b2”)’
t = (alenan+ lbn) (a2b2n—lan+2bn—1)
- (@3D2n—281n 1300 _2) + - + (Gnbn 11G2:01).

From this and the fact that ¢ in the abstract group {s, # is of
order not greater than 4, it follows that this ¢ is of order 4. The
given permutations generate a group of order 4 n. Hence the
abstract group in the theorem is of order at least as great as 4 #.
Moreover it is isomorphic with the permutation group {s, t}.
To complete the proof of the theorem it is sufficient to show that
the order of the abstract group is not greater than 4 n, whence
it will follow that it is simply isomorphic with the permutation
group {s, #}. Let H denote the abstract group {s}, and form the
sets H and Ht of elements in the abstract group {s, #}. These sets
are interchanged on multiplying them on the right by ¢, since #2
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is in H. They are left unchanged on multiplying on the right
by s, since Hs=H and His = Hs~'{=Ht. Hence all the ele-
ments of {s, &} are in the sets H and H¢; therefore {s, ¢} is of
order 4 » at most. This conclusion, as we have seen, completes
the proof of the theorem.

Unless # = 1 the abstract group {s, #} of Theorem X is non-
Abelian. Hence every dicyclic group is non-Abelian.

In Theorem IX put » = 1. Then the group of that theorem
is of order 4 u, with x> 1. That it is the dicyclic group of order
4 p is seen by putting o = st~! and 7 =51, whence it follows
that ¢ and T satisfy just the conditions imposed on s and { in
Theorem X, with » replaced by u. Hence the dicyclic as well
as the dihedral groups belong to the category of groups treated
in § 49.

If in Theorem VIII we take n = 2 while m is odd, we have in
{s, &} the element s of order 4 and the element st~! - s? = st~1 - 2
= st of order 2 m, while s2 is in {st}. Moreover s transforms st
into its inverse. Hence we have the dicyclic groups of order 4 m,
where m is odd.

EXERCISES
1. Show that no dicyclic group can be simply isomorphic with a
dihedral group.
2. Show that there are at least two abstract groups of every even

order greater than two and that there are at least three abstract groups
of every order which exceeds 4 and is divisible by 4.

3. Show that the dihedral group of order 2 m may be defined as
the group generated by a cyclic group H of order m and an element
of order 2 which transforms each element of H into its inverse.

4. Show that the dicyclic group of order 8 is identical with the
quaternion group and that the dihedral group of order 8 is identical
with the octic group.

5. If a and b are subject to the sole defining relations

a?»=1, ar=(ab)2="8, (n>1)
show that {a, b} is the dicyclic group of order 4 n.

6. For the group {s, #} of Theorem X of § 50 show that s* is the
square of every element not in {s}.
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7. A finite group generated by two elements having a common
square can also be generated by two elements one of which transforms
the other into its inverse, and vice versa.

8. If a, b, ¢ are subject to the sole defining relations
A=PB=c3=1, b-lab=a*, c lac=a’, bc=ch,
show that they generate a unique abstract group and that this group
is conformal with the Abelian group of order 3¢ and type (2, 1, 1).

9. Groups {a, b} and {c, d} are determined by the following sole
defining conditions respectively :

D a3=b=1, b lab=db 2)c"=d3=1, d'cd=c2
Show that {a, b} and {c, d} have a (43, 7) isomorphism, {¢} in {a, b}
corresponding to the identity in {c, d}, and {c} in {c¢, d} corresponding
to the identity in {a, b}.

10. Let s and ¢ be two elements which are subject to the sole
conditions §P = (P—1 = 1, 1—1st = Sk,

where p is an odd prime and % is a primitive root modulo p. Show
that {s, {} is completely defined as an abstract group and is a group
of order p(p —1). (Such a group is called a metacyclic group.) Prove
the following propositions :

(1) A metacyclic group contains a dihedral subgroup.

(2) The Sylow subgroups of a metacyclic group are cyclic.

(3) A metacyclic group is a complete group.

(4) A metacyclic group of order p(p — 1) may be represented as
simply isomorphic with a doubly transitive group of degree p.

11. Determine the order of the group {s1, sz, ss} whose sole defining

relations are

512 = 822 = 832 = (5152)% = (5283)3 = (s2s5153)2 =1
and represent it as simply isomorphic with a permutation group of
lowest possible degree.

12. Let s and ¢ be elements which are subject to the sole defining
relations =1 (sHh2=1.

Show that {s, £} is a group of order 96. Show how to adjoin other
conditions to those already given so that the group {s, {} as thus
further restricted shall be simply isomorphic with (a) the alternating
group G of degree 4, (b) the direct product of G and the cyclic group
of order 2, (c) the direct product of G and the cyclic group of order 4.
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Show that no other non-Abelian groups can be obtained by this process
of adjoining conditions to those initially given.

13. Show that there are just four non-Abelian groups {s, £} such that
=0, (st)p=1,
and determine their defining relations and their orders.

14. Show that there are just six non-Abelian groups {s, f} such that
s2 = #3 and st is of order 4, their orders being 24, 48, 96, 120, 240, 480,
and determine their defining relations.

15. Determine the non-Abelian groups {s, {} such that
sB=1p, (sH)2=1,
and construct defining relations for each of them.

MISCELLANEOUS EXERCISES

1. If for n> 3 two elements s and ¢ are subject for odd # to the
conditions

4)) s2=1, B=1,

2) (sHr=1,

3) (¢ -s—ksk)2=1, (k=1,2,:--,3(n—23)
and for even n to the conditions

0Y) svi=1, B=1,

) (sHm~1=1,

@) @PrsHsr=1, (k=1,2 30 —2)

and to no conditions except those implied by these, then these ele-
ments generate a group which is simply isomorphic with the alter-
nating group of degree n.

9. Construct abstract defining relations for each of the primitive
groups of degree 7. (Compare Ex. 12 on page 163.)

3. Construct abstract defining relations for each of the primitive
groups of degree 8. (Compare Ex. 16 on page 165.)

4. Let s and ¢ be two noncommutative elements each of prime
order p and suppose that the elements {, s=ts, s™2s2, - - -, s™P+1{sP~1
are commutative. If s and ¢ satisfy no conditions except those im-
plied by these, show that {s, ¢} is of order p**! and is simply iso-
morphic with a Sylow subgroup of order p?*! in the symmetric group
of degree p2.
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5. Construct abstract defining relations for a Sylow subgroup of
order pr*+»+1 in the symmetric group of degree p3, where p is a prime
number.

6. If kis a positive integer less than the prime p, show that there is
one and but one abstract group of order p?** which can be represented
as simply isomorphic with a permutation group of degree p2 + (k— 1)p.
Show that it is non-Abelian and construct its defining relations.

%. If k is a positive integer less than the prime p, show that there
is one and but one abstract group of order p#**+»+* which can be rep-
resented as simply isomorphic with a permutation group of degree
p3 + (k—1)p. Show that it is non-Abelian and construct its defining
relations.

8. Generalize the results in Exs. 4-7.

9. If s and ¢ are subject to the sole defining relations

sim — 2 = 1’ Ist = sl+2m'

show that {s, {} is a group G, of order 8 m, that every subgroup of
G is either Abelian or of the type G, and that the group of isomor-
phisms of G, with itself is of order 2 ¢(4 m) or 4 ¢(4 m) according as
m is odd or even.

10, If s and ¢ are subject to the sole defining relations
stm=y2=1, st =s2""1,
show that {s, ¢} is a group of order 8 m and that its group of isomor-
phisms with itself is of order 2 m¢(4 m).
11. Show that the permutations

"
s =H (@199, 9a; Db + + « 23,Db,, D),
i=1

1= (a1 Vb, Pa; Vb Waz W@ . . . g5, Wy, _,#)

-1
i‘I (@, Dh D gy G+Dp® . .. az, G0y, D),
i=1
1 being greater than 1, generate a group of order 4 u»2, and construct
defining relations for the abstract group which is simply isomorphic
with {s, #}. Show that the groups {s, #} include the dicyclic groups.
12. A group G whose Sylow subgroups are cyclic is a group {a, b}
such that b transforms a into a power of @. Find a group of the latter
class whose Sylow subgroups are not cyclic.
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13. Let a and b be elements of orders A and u, respectively, such that
b—1ab = a*; let a* be the lowest positive power of @ which is equal to
a power of b and write @* = b*; and let b be the lowest positive power
of b which is equal to a power of @ and write b¥ = a". Show that {ag, b}
is of order AB and discuss the general properties of {a, b}.

14. Obtain abstract defining relations for the symmetric group of
degree # as generated by three elements, each of order 2.

15. If for » = 3, » any number prime to z, and u any odd integer,
two elements ¢ and 7 are subject to the sole defining relations
o™ = 1 = g~ "rhgnTh = o~ irtoTE = (a'TH)* T = (7% - 0 TH0”)3

= (tho~rEgh)2 =1, (k=2,3, -, 3(n—1) or i m),
show that they generate a group of order ur-n! which is simply
isomorphic with the direct product of the symmetric group of degree n
and the cyclic groups of orders u and ».

16. Construct defining relations for the abstract group which is
simply isomorphic with the direct product of the symmetric group of
degree » and cyclic groups of orders u and », where » is odd and u is
prime to n — 1.

17. Construct defining relations for the abstract group which is
simply isomorphic with the direct product of the symmetric group
and the cyclic groups of orders u and v, where u and » are any positive
integers prime to 7z and n — 1 respectively.

18. If two abstract elements s and { are subject (for m > 1 and
k> 1) to the sole defining relations
s =tm= (s )E=¢"1 . smo s p s se =1, (@a=1,2,--, k—1)
they generate a group of order % - m* which is simply isomorphic with
the permutation group

{(@maz - - - Gnp), (G1Gr4102041 ° * a(m—l)k+1)}-

19. Determine all the non-Abelian groups {s, f} such that s2 =1,
(s)3 =1, and construct defining relations for each of them.

20. Show that there are just six non-Abelian groups {s, f} such that
s2 =13, (st)> =1, and construct defining relations for each of them.

21. If two elements are of order 4 and their product is of order 2,
while the square of one element is permutable with the other element,
show that they generate a group of order 16, and represent this group
as a regular group.



CHAPTER VIII

Groups of Linear Transformations

b1. Properties of Linear Substitutions. The system of » linear
homogeneous equations

yi=Xayx, (=12---n) [1]
j=1

in which the »? coefficients a,; are n? given (real or complex)
numbers of ordinary algebra, uniquely determines the » com-
plex variables y in terms of the » complex variables x. Such a
system of equations is called a linear homogeneous substitution ;
it is said to be performed on the x’s to produce the new variables
y. (If to the second member of the sth equation we add the
constant &;, for 1 =1, 2, - . -, n, we obtain a linear nonhomogene-
ous substitution on the x’s.)
In case the determinant | @;; | of system [1], namely,

11412 * * Q1n

|aij| — |G21@22 -+ - G2q , [2]

Qn1Gn2 * ¢ * Gpn

is different from zero, that system can be solved uniquely
for the x’s in terms of the y’s. Then we call [1] a lnear ho-
mogeneous transformation on the x’s into the y’s. (In the
corresponding case (namely, when |a;; | 0) the linear non-
homogeneous substitution is called a lnear nonhomogeneous
transformation.)

The array of elements in the determinant |a;;|, as written
out in [2], will be called the matrix of the substitution and will
be denoted by || a@;||. It is clear that the character of the sub-
stitution is determined by the matrix of its coefficients and is

. 188
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independent of the variables used in the transformation. Con-
sequently we shall call two transformations identical if they
have the same matrix of coefficients even if they are written on
different sets of variables.

If A;; is the cofactor of g;; in the determinant | a;; | and if we
write a;; = A;;/| ai; |, then we may solve for the x’s in terms of
the #’s in the transformation A, namely,

A: Y =2ai,~x,~, (1= 1,2,---, n) [3]
=1

and so obtain the transformation A4’, namely,

A': X =2a;,-y,~. (1= 1,2,--,m)
=1

Then A’ is called the transformation énverse to A. It is then
easy to see that A is also the inverse of A’.

If in addition to A we have a second transformation B,
which we may write in the form

B: 21=2 blkykv (l= 11 2) D) n) [4]
k=1

and if we eliminate from [3] and [4] the variables y, we have a
new transformation C, namely,

C: zt=20toxs, (t=1’ 2:"'9 n)

s=1 n
where Cts = 2 bixBis.
k=1

We call C the product * of A and B, and we write AB=C. This
process of combination of transformations is called multiplica-
tion. From the usual rule for the multiplication of determinants
we have |c.|=|bis|-|dis|; that is, the determinant of the
product of two transformations 4 and B is equal to the product
of the determinants of A and B.

*If , B, ¥ are the matrices of the transformations A, B, C, respectively,
then we call v the product of & and 8 and write o =7. The same law of
multiplication is used even if one or more of the corresponding substitutions
have zero determinants.
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The transformation A4 we denote by A2; more generally, we
write AA™"1 = A" and we call the transformation A" the nth
power of A. The inverse of A we denote by A-! and its nth
power we denote by A=". Then we have A»A* = A#+» for all
integers u and », provided we use A° for the identical transforma-
tion 7, namely,

I: Yi = X;. (z'=1,2,---,n)

The product of a transformation and its inverse is the identical
transformation.

If A and B are two transformations whose product AB is
denoted by D, and if the product BC of B and C is denoted by
E, we have (AB)C = DC and A(BC) = AE. By a direct com-
putation it may readily be shown that DC = AE. Hence we
have (AB)C = A(BC); that is, the associative law holds for
the multiplication of transformations. (Similarly, it may be
shown to hold for substitutions even when the determinants are
allowed to have the value zero.)

From the various properties of transformations thus set
forth and from the definition of group in § 3, it follows that
transformations with the indicated rule of multiplication are
suitable to serve as the elements of groups. We may therefore
take over at once (without further definition) the terminology
which we have already introduced in dealing with elements of
the most general kind belonging to abstract groups. As an
example, if S and T are two transformations, then S~!7TS is
called the transform of S by T. We may also take over for
transformations the theorems already established for general
elements belonging to groups.

If A and B are defined as in [3] and [4], then the transform
A™1BA is the transformation

n

A™1BA: yi=2, 2

j=1lk=11

a'i]'bjkaklxl, (2‘ = 1, 2’ LN n)

M=

|
—

as one shows by a direct computation. The properties of trans-
forms in general may evidently be carried over to transforms
of this type.
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The two linear transformations

2 Qii%j, Yi= Ea,,x,, (¢=1,2,--,m

=1

are said to be each the transposed of the other. If A, A,;
B, B,; C, C, are three pairs of transposed transformations,
and if AB = C, it is readily shown by direct computation that
C.= B.A, and hence that 4,71B,~1 = C,~1. Hence if the linear
homogeneous transformations I, A, B, C, - - - form a group G,
then the transposed transformations I, 4, B;, Ci--- form a
group G, simply isomorphic with G, each transformation in G
corresponding to the inverse of its transposed in the simple
isomorphism thus indicated. Each of these groups G and G, is
called the transposed of the other. When we speak of the iso-
morphism of G and G;, we shall always mean the one here indi-
cated unless the contrary is expressly stated.

Using @ to denote the conjugate imaginary of «, we call each
of the transformations

” n
yi=D ik, ¥i=2 &%, ({=12--n)
=1 s |

the conjugate imaginary of the other. If the linear homoge-
neous transformations I, A, B, C, --- form a group G, then
the conjugate-imaginary transformatlons I, A, B, C,-- - form
a group G which is simply 1somorph1c with G, with the corre-
spondences A ~ A, B~ B, - - -, since the relation 4B=C
implies that AB = C, as one may readily verify. Each of
the groups G and G is called the conjugate imaginary of the
other. When we speak of the isomorphism of G and G, we shall
always mean the one here indicated unless the contrary is ex-
pressly stated.
Let kix; + koxs + - - - 4 k,x. be a linear homogeneous func-
tion of the x’s which is changed into a multiple of itself by a
transformation A4, so that we have the identity

2 kaix; =\ 2 kix;,

i,j=1
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where A is the multiplier of the linear function under the named
transformation; then we have

Dka;=Nes.  (G=1,2,---,7m)
=1

Hence A must satisfy the characteristic equation of the trans-
formation, namely, the equation

an— N a2 R/, T
axn Q22— NGz, =0.
Gn1 Gnz c Gun— A

The determinant in this equation is called the characteristic
determinant of A. The roots \ of this equation are the only
multipliers possible for a linear homogeneous function of the
x’s under the transformation 4 ; and for each root of this equa-
tion there is evidently at least one linear homogeneous function
of the x’s having this root as such a multiplier.

We shall now prove the following theorem :

I. A transformation has the same characteristic
equation as any transformation into which it can be
transformed by another transformation on the same
number of variables.

Let B be the given transformation and let A be the trans-
forming transformation. The characteristic determinant D of
AT1BA may be put in the form

n ”
D=3 2 aibpon — M|,

=1 k=1
the element written being that in the sth row and the /th col-
umn and A;; denoting A or zero according as /=1¢ or [ 4.
By means of the usual rule for the multiplication of determi-
nants, and by aid of the relations existing among the quantities
a; and oy; in view of the definition of the latter in terms of
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_the former, it is easy to show that

[ b — Ne | = @i | - | bx— Nia| - | ot |

- | o |

n
2 aijbjk _ aik)\
j=1

i é a.;,-bjkak; —_ )\u ( = D.
k=1 j=1

Hence the characteristic equation for B is the same as that
for A-1BA.

The sum of the roots of the characteristic equation of B is
b+ baa+ - - - + ban; that is, it is equal to the sum of the main
diagonal elements in the matrix || b;; || of the transformation.
This is called the ckaracteristic of the transformation. From the
foregoing theorem it follows that the characteristic is unaltered
when the transformation is transformed into a new one by means
of any transformation A on the same number of variables.
Therefore, in a group of linear homogeneous transformations any
two conjugate elements have the same characteristic. They also
have the same characteristic equation.

A transformation of the form

Y1 =G1X1, Y2 = G2X2, * "y Yn = QnXn

is called a multiplication. The coefficients ai, a, - - -, a, are
called the multipliers of the transformation. Any two multipli-
cations are permutable and their product is a multiplication.
If in the foregoing multiplication all the coefficients a: are equal,
then the transformation is called a similarity transformation. A
transformation of the form

V1= A1%Xa, Y2 = G2Xp, * * *y Yn = GnXy

where @, (3, - - -, u are the symbols 1, 2, - - -, # in some order, is
called a monomial transformation. If the coefficients in a mono-
mial transformation are all equal to unity, then the transforma-
tion is called a permutation and represents merely a permutation
of the given symbols. Thus linear transformations afford a
generalization of ordinary permutations.



194 Groups of Finite Order

52. Finite Groups of Linear Transformations. Thus far we
have said nothing explicitly which would restrict our transfor-
mations to belong to finite groups or indeed to be transforma-
tions of finite order. The transformation ' =x, y =x+ y is
obviously not of finite order. In using linear transformations
for the study of finite groups we shall need to know (among other
things) conditions on a transformation which will ensure its being
of finite order. Accordingly we now prove the following theorem :

II. A necessary condition in order that a linear
homogeneous transformation A, namely,

A: Vi =D Q:iiXj, ¢=12,---,m)
Z} i

shall be of finite order N is that a transformation S
shall exist such that S—1AS shall be of the form

Yi = wiXy, (t'—"-l, 2, n)
where w;, ws, - - -, w, are Nth roots of unity.

For every S the transformations 4 and S—1A4S are of the same
order, if either is of finite order. Hence, whenever S exists such
that S—1A4S is a multiplication whose multipliers are roots of
unity, it follows that A is of finite order.

In order to prove the theorem let us suppose that A is of
finite order N. Let ¢, be a linear function of the x’s which is not
identically zero, let #; be the function into which it is changed
by A, let #3 be the function into which #; is changed by 4, and
soon; and suppose that in each case the variables yy, y2, - - -, ¥»
are replaced by x1, x2, - - -, X,, respectively, after the transforma-
tion, so that each ¢; is a function of x1, %2, - - -, x,. Then, since
A is of finite order, there exists a number » such that #,, &, - - -, £,
are all the distinct functions thus obtained from #;. Then the
sequence /4, ts, - - -, ¢, is changed in cyclical order by A, ¢, going
into #;. Let us now consider the linear functions %o, 71, - - -, 7,—1
defined by the following equations, where w is a primitive vth
root of unity :

hWtow i+ w 234+ D, =9, (¢=0,1,---, v— 1)
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Now by hypothesis #; is not identically zero; hence not all the
7’s are identically zero, since the determinant of the coefficients
in the foregoing set of equations is different from zero. Let m
be the number of the n’s each of which is not identically zero.
If 1, is one of them, then 7, is replaced by w'n; when the variables
are changed by A. Therefore the m n’s which are different from
zero are linearly independent. We retain just these m 7’s.

If m is less than #, then there exists a linear function s; of the
x’s which is linearly independent of the retained »'s. We may
treat s; as we treated #; and so arrive at a new set {’o, {'1, - - -
¢’,—10f linear functions of the x’s which are linearly independent.
These cannot all be hinearly dependent on the 7’s, since this
would imply that s; is linearly dependent on them, contrary to
hypothesis. Retaining those which are linearly independent of
the retained n’s we have an enlarged set of linearly independent
linear functions of the x’s each of which is changed into a mul-
tiple of itself by A4, the multiplier being a root of unity.

If we do not yet have % linearly independent linear functions
of the x’s, we may continue the process. Finally we must obtain

“n linearly independent functions of the x’s each of which is
changed by 4 into a product of itself by a root of unity. The
existence of this set of functions may be employed in showing
the existence of an S such that S~1AS is a multiplication with
multipliers equal to roots of unity. For if these functions are
denoted by the symbols uy, u, - - -, #n, Where

U; =zsijxi) (i= 1’ 29 tt %y n)

. . j=1
and if we write

n .
v; =zsiiyf’ (i= L2---n)
i=1
we have . o
v; =zsijzajkxk’ ¢=1,2---,m)
=1 k=1

;= WUy, (i= 1) 2’ Tty n)
where the w; are roots of unity ; whence it follows that

n
E Si;Qjk = WiSik.
=1
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Hence if S is the transformation whose matrix is Il s;; Il and we
denote the matrix of the inverse of S by Il ¢;; Il, then for S—148
we have
n ” n n
STIAS: y,-=2 2 zsijajkaklxl 2 szslka'klxl— WiX;.
j=1k=11=1 k=11=1

It is obvious that the w; must be Nth roots of unity, since S—14S
is of order N. Hence S is the required transforming transforma-
tion. :
Cor. The characteristic of any element in a finite

group of linear homogeneous transformations on #
variables is a sum of » roots of unity.

In order to obtain a standard form to which any finite group
of linear homogeneous transformations may be brought, it is
convenient to introduce certain auxiliary considerations.

A bilinear form in the » variables X1, X2 c 0y Xn and their
conjugates, namely,

2 c,-jx,-?j,

f,j=1

is called a Hermitian form if the coefficients c;; satisfy the
relations € = i (G,7i=1,2---, 1)

A Hermitian form is obviously real-valued for every set of (real
or complex) values of the variables. We shall say that a Her-
mitian form is definite if it cannot take a negative value, what-
ever values are given to the variables.

It is easy to verify directly that any Hermitian form is
changed into a Hermitian form when the variables in it are sub-
jected to any linear homogeneous transformation.

We shall now reduce a definite Hermitian form to a certain
standard type by means of a linear homogeneous transforma-
tion on its variables. Let H be the definite Hermitian form

H: 2 cuxsz (ciJ' = Efi)

i, j=1
If ¢ is negative, then H has a negative value if x, = 1 and the
other x’sare all zero. Hence ¢ =0 (k=1,2,---, n). If =0,
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then we must have ¢,; =0 fori=1, 2, - - -, n; for if we take
each x; equal to zero except x and x;, where /> &, and if ¢ =0,
then the value of H reduces to the value of c;xix; 4 criXiX:
+ cuxixe: if cu= 0, put x; = ¢x; and xx = — ¢y, whence H is
negative in value unless ¢;; =0; if ¢;; =0, put x,=—1 and
X, = cx;, whence H is negative in value unless ¢;; = 0. Therefore
Cry = 0if Crr = 0.

From this it follows, in particular, that at least one of the
coefficients ¢11, €22, - - *, Can is different from zero unless all the
coefficients in H are zero (a case which we shall exclude from
consideration). By a suitable change of subscripts (equivalent
to a linear homogeneous transformation) it may be brought
about that c¢;; # 0; and we suppose this transformation to be
already carried out. Now we put

Ve b= cuX1 + ca1xe + - -+ + €n1%a,
Veu b= cui + ciz¥%2 + - - - + C1nXn.

Then the given Hermitian form H is changed to a new Her-
mitian form

nh + 2, dixids.
i, j=2
If the coefficients d;; are not all zero, we may repeat the process
as applied to the form indicated by the summation in the fore-
going expression and obtain a form

bl + folz + 2 X %j.
i 7=3
It is clear that the process may be continued until we change H
to the form tily + tola + - - - + Lol

where s = n. It is evident that the linear forms #, &, - - -, I, of
x1, Xz, - - -, %, are linearly independent, since each of them con-
tains a variable x which is not in those that follow it. This form

in ¢ is equal to zero when and only when {y =tp=--- =1, =0.
When s = », and only in this case, this implies the conclusion
that H has a zero value only when x; = x2=.-- =%, =0. We

shall follow the terminology of W. Burnside (Theory of Groups,
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2d ed., p. 254) and call H a nonzero definite Hermitian form when
s=mn. When s < n we shall call the form zero definite. It may
readily be shown that the determinant | ¢,; | is equal to zero when
s < n and is different from zero when s = #.

Now let G and G be two conjugate-imaginary finite groups of
linear homogeneous transformations, and denote corresponding
elements in G and G by the respective symbols

n n
y: =Za,-,~x,-, 5.- =251’j§j. (i= 1, 2, ey n)
=1 Jj=1
It is obviously legitimate to use the conjugate variables y and
x in the second transformation.
By means of these transformations the form x,%; + x2%. +
« « « 4 x,%, is changed into

n n n
2 2 za,',-ﬁ,-kx,-‘x'k.
i=1 j=1 k=1

The new form has a positive value for all values of the x’s except
the simultaneous set x; = x; =" - . = x,, =0, since this is a prop-
erty of the form from which it was obtained (or the fact may
be readily verified directly). Now construct such a transform
of x1%1 + - - - + x,.%, for each pair of corresponding elements in
G and G and take the sum of the resulting expressions. Since
each of the summands is positive except for simultaneous zero
values of the variables, it follows that the same is true for this
sum and hence that the sum is a nonzero definite Hermitian
form. But this sum is obviously invariant when the variables
x and ¥ undergo corresponding transformations in G and G.
Hence we have the following theorem :

ITI. If G and G are any two conjugate-imaginary
finite groups of linear homogeneous transformations,
then there exists a nonzero definite Hermitian form
which is invariant when its two sets x and % of vari-
ables are subjected to corresponding transformations
of G and G.
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Let H be the Hermitian form whose existence is asserted by
this theorem, and let the conjugate-imaginary transformations

S and S, namely,
= tixj, 1 2? X, ¢=1,2---,n)
j=1 i=1

be transformations by which # is changed into the standard
form tf; + ol + - - - + .. Then this latter form is left in-
variant when its variables are subjected to corresponding
transformations of the conjugate-imaginary groups S—1GS
and S-1GS.
This fact will enable us to prove the following theorem:
IV. Any group G of finite order, whose elements
are linear homogeneous transformations, may be
transformed by means of a suitable linear homo-
geneous transformation S into a group S—1GS such
that the coefficients ¢;; in any element

Yi =zcijxj (i = 1: 2’ t n)

j=1

of S—1GS satisfy the conditions
3ot ._{lifz'=j,
& E T 00 6= g

Let S be a transformation (already proved existent) such
that x,x; + xex2 + - - - + x2,%, is unaltered when its variables
are subjected to corresponding transformations of S—!GS and
S-1GS. Then we have [the identity

n n n n
2 z z Elck{fk,-x,-f,-.
k=1 k=1 §=1 j=

Equating coefficients of like terms on the two sides of this
identity, we have the relations asserted in the conclusion of
the theorem.

lll
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Cor. The conjugate imaginary of an element C
in S—1GS is the inverse of the transposed C; of C;
and hence the conjugate-imaginary group and the
transposed group are identical.

For if || ¢; || is the matrix of C, then the matrix of the prod-
uct CC, is "
2 CkiEkj
k=1

and this is the matrix of the identical transformation in view
of the relations in the theorem.

53. Reducible and Irreducible Groups. Let G be a group of
linear homogeneous transformations in the »n variables x;, x,
.-+, %n. If for some s (0 < s < 7) there exist s linear functions
t, Iz, - -+, 1 of the x’s such that these s functions are trans-
formed among themselves by each element of G according to
a linear homogeneous transformation on the #'s, then G is said
to be reducible. Otherwise G is said to be srreducible. If for v
greater than unity there exist » sets of linear functions of the
x’s such that these sets together form # linearly independent
functions of the x’s and such that the functions in each set
are transformed among themselves by each element of G while
the group of linear transformations in each set is by itself
irreducible, then G is said to be completely reducible, and these
v sets are called completely rediced sets for G.

It may be shown that the only homogeneous substitutions S
On X1, X2, - + -, Xn, Which are permulable with every transformation
of an irreducible group G of linear homogeneous transformations
on the same variables are those in which S has the form x'; = ax;
¢=1,2,---,m). For T~IST is then permutable with 7-1GT,
where T is any transformation on the same variables. If A is
a root of the characteristic equation of S, then T may be chosen
so that 7-1ST replaces each of a certain number of the vari-
ables by A times itself. Then a transformation permutable
with 7T-1ST transforms these variables among themselves;
hence this must be true of all the transformations in T-1GT.
Since the latter is an irreducible group, it follows that 7-!ST

.
?
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replaces each of the » variables by A times itself. Therefore
S itself also has this property, as was to be proved.

V. If Gand G are two conjugate-imaginary groups
of linear homogeneous transformations such that
there exists a zero definite Hermitian form which is
invariant when its variables are subjected to corre-
sponding transformations of G and G, then G is a
reducible group.

By the process employed in the foregoing section, ex-
press the zero definite invariant Hermitian form in the form
bl + tols + - - - 4 t1,, where s < n, n being the number of vari-
ables on which G operates. Let #;,t2, - -, sy loay1,+ -~ I De @
set of n linearly independent linear functions of the original
variables on which G operates. Transform G into a group H
on these new variables by means of a transformation S so that
H=S"1GS. Let H be the conjugate imaginary of H so that
H=_S5"1GS. Then the foregoing standard form is invariant
for H and H. But if

S; =2(lﬁt,~, §.‘ =. aijff’ (1= 19 2. n)

are corresponding elements of H and H, then from the invari-
ance of tfy + - - - + LI, it follows that

tdi=
This identity implies that
2 a565;=0 if j=s+1,54+2,---,n
i=1

Hence a,;=0 if i=1,2,---,s and j=s+1, s+ 2,---,n
Therefore H transforms the variables ¢y, 3, - - -, {, among them-
selves and hence is reducible. Therefore G itself is reducible.
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VI. If a group G of linear homogeneous transfor-
mations is of finite order, then G is either irreducible
or completely reducible.

If G is reducible, let it be transformed to a set of variables
X1, X2y * * *y Xry Xr i1y xr+2y sty Xrgos [1]

such that the last s variables are transformed among them-
selves by the elements of the transformed group H. Let I be
a nonzero definite Hermitian form which is invariant for H
and H. Reduce I to the standard form by the step-by-step
process of § 52, taking the variables in the order given in [1];
and let the new variables be i, f2, - - -, t.4s. The last s of these
are functions of the last s x’s in [1]; hence they are trans-
formed among themselves by H. Transform H to the new
variables ¢ and denote the group in this form by K and its
conjugate imaginary by K. Then thfi+- - -+ tryorys 1S in-
variant for K and K, while the last s s and the last s s are
transformed among themselves by K and K respectively. Now
(§ 52, Theorem 1V, corollary) K is identical with the trans-
formed K, of K. Hence the last s s are transformed among
themselves by K,: therefore the first r ’s are transformed
among themselves by K. Hence K transforms among them-
selves the variables in each of the two sets

tl’ 12; Y] tr and tr+1: tr+2, D) tr+s-

If the group in either of these sets is reducible, the process
may be repeated for that set. By continuing the process we
arrive finally at a separation of variables which implies the
theorem as stated.

VII. Let G be a finite group of linear homogene-
ous transformations on the variables xi, x3, - - -, %5,
and let H be a simply isomorphic group of linear ho-
mogeneous transformations on the variables yi, s,

-+, ¥m- Let f be a function of the form

f=Xii+ XY+ - -+ XY, (O<k<n)
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where Xi, Xz, - - -, X, are linearly independent linear
homogeneous functions of xi, x2, - - -, x, and Yi, Yo,
..+, Y, are such functions of yi, y2, -+ -, ¥m. If fis
left unaltered when the x’s are changed by any
(every) element of G, and the y’s by the correspond-
ing element of H, then G is a reducible group.

We suppose that G and H are so transformed that f is the
function x1y; + x2y2 + - - - + xx¥e. Since this function has the
stated property of invariance, it follows that xi, x3, - - -, % must
be transformed into linear homogeneous functions of them-
selves by every element in G. Since 0 < k < #, it follows that
G is reducible.

Cor. If two linearly independent functions of the
form i -
2 diixix;

1, ;=1
are left unchanged by every element of G, then G is
reducible.

Let G, the conjugate imaginary of G, be the group H of the
theorem, and suppose that the variables are so chosen (§ 52)
that one of the forms in the corollary is I, where

I=x% + %22+ - -+ + XnXn.
Let F be the other form. Then F may be written
F=8bx+ &Ex+ - - -+ EnXn,

where &, &, - - -, £, are linear homogeneous functions of x;, xz,
-+ -, x,. If \is any constant, then F 4 AI is also left unchanged
by all the elements of G. But A may be so chosen that & + Az,
£ + Mg, - - -, £n + A%, are linearly dependent. We may then
suppose that the notation is so chosen that £, + Ax, is a linear
function of the form

Ent Ma=aiE+ M)+ - - F Ga1(Ea1 + Mn1)-

Then ~ _
F+N= &+ M)E +ax,) +- - _
+ Enc1+ AMn_1)Tno1 + Gn1Xa).
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This process of reducing the number of terms may be continued
until we have a function possessing the properties demanded
in the theorem. Then if we apply the theorem, the corollary
follows at once.

54. Composition of Isomorphic Groups. Let G and G’ be two
simply isomorphic groups of finite order, their elements being
linear homogeneous transformations, the first on # variables
and the second on m variables; and let 4 and A’, namely,

n

A: Y= gaﬁxﬁ, (i‘: 17 21 ct n)

j=
A o5 =2a’k,ul, (k=1,2,---,m)
I=

be corresponding elements in a given simple isomorphism of G
and G’. From these two systems of equations we may form
the new system

n m
yoe=2, 2 ai@ vk, (E=1,2--n; k=12, m)
j=1i=1
defining a linear homogeneous transformation « on the m#» vari-
ables xu;. If B and B’ constitute another pair of correspond-
ing elements from G and G’ respectively, we may similarly form
a transformation 8 on the mn variables x;u;. If now AB=C
and A’B’ = ¢’ and we similarly form < on the x;#; correspond-
ing to € and C’, it may easily be shown by a direct computation
that a8 = +v. Hence the transformations «, 8, 7v,--- form a
group which is simply isomorphic with G and with G'.
This process of forming this third group from the two groups
G and G’ and a given simple isomorphism of them is called a
composition of the two groups with respect to the given simple
“isomorphism, and the resulting third group is called the com-
pound of the two given groups with respect to this isomorphism.
If A and A’ are written as multiplications, in accordance
with Theorem II of § 52, then « is a multiplication in which
the mn multipliers are the m#» products formed with factors one
of which is a multiplier of A, while the other is a multiplier of
A’. Hence the characleristic of o is the product of the character-
istics of A and A'.
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Now suppose that a finite group G is written as a set of
transformations changing x’s into ¥’s and also as a set of trans-
formations changing #’s into ¢’s, and exhibit the two forms of
G as simply isomorphic by making each transformation in the
one form correspond to that transformation in the other form
which has with it the same matrix of coefficients. Now carry
out the process of composition on the two forms of 6. If G
itself is written on #n variables, we obtain in this way a new
group on n2 variables which is simply isomorphic with G and
we have the correspondences which imply this isomorphism.
We shall call it the first compound of G with itself. By means
of this isomorphism of G with its first compound, form the
second compound of G with itself, namely, the group resulting
from carrying out the process of composition of G with its first
compound with respect to the named simple isomorphism of
the two groups. It is evident that this process may be continued
indefinitely and that we shall thus have a third compound, a
fourth compound, and so on, of G with itself.

Now let 4 be any element of G and write the group on such
variables as will reduce A to a multiplication with multipliers
w1, Wz, * + +, Wy, in accordance with Theorem II of § 52. Then
the multipliers of the element corresponding to A in the first
compound of G with itself will evidently be the n? products
w;wj. In fact it is easy to see that the multipliers of the element
corresponding to A in the (o — 1)th compound of G with itself
are the n= notationally distinct products of « factors each, each
factor being a number of the set wi, we, - -+, Wy

When G and G’ are two groups of linear homogeneous trans-
formations between which exists a general isomorphism of the
sort described in § 16, then we may apply to them a process of
composition similar to that applied to simply isomorphic groups
at the beginning of the present section. We suppose that to
every element of G there correspond p elements of G/, while to
every element of G’ there correspond ¢ elements of G. Let 2,
22, - - - be the elements of an abstract group which is simply
isomorphic with G, and let 2y, 2’3, - - - be the elements of an
abstract group which is simply isomorphic with ¢/, and such
that each Z, is permutable with every 2’;. Let 2/, 25, « - -,
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2'.» be the p elements of the second group, each of which corre-
sponds to Z; in the first in accordance with the named isomor-
phism. Let K of order % be the group whose elements are

ziz'ily E,’E’ﬂ, Tty zizl‘ip

where Z; varies over the elements of G ; this group K is multiply
isomorphic with both G and G’, the isomorphism with G and ¢’
being, respectively, (p, 1) and (g, 1).

Denote by S, (=1, 2, - - -, k) the elements of K, and let

y'i=2aijaxj, (i.= 17 29 t Yy n)

=1

m
Us =2afstauty (s = 1’ 20 M ] m)
t=1

be the transformations of G and G’, respectively, which corre.
spond to S, in the indicated isomorphisms. With this notation,
each of the elements of G appears p times and each of the ele-
ments of G’ appears ¢ times. By the method employed in the
preceding case it may be shown that the % transformations on
the mn products of x’s and #’s, namely, the transformations

n m

YiUs= zaija“,ataxjul (i= 1) 29 ey, Ny S= 1’ 2) AR (S
j=11t=1

a=1,2 .-, k)

constitute a group which is simply isomorphic with X, the ele-
ment written being that corresponding to S, in this isomorphism.
The group which thus results by composition of G and G’ is
called the compound of G and G’ with respect to the named
general isomorphism between G and G'.

55. Representation of a Finite Group as a Group of Linear
Homogeneous Transformations. Let G be an abstract group of
order g whose elements are S; =1, Sz, S3, - -+, S;. Let I' be a
group of linear homogeneous transformations to which G is
(u, 1) isomorphic, where u = 1. Let the correspondences be
given by which a given (u, 1) isomorphism of G with I" may be
exhibited. Then, with respect to this explicit isomorphism, I'
is said to afford a representation of G as a group of linear homo-
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geneous transformations. If I' is a permutation group, then we
have a representation of G as a permutation group.

Let I and I, each on a given number # of variables, be two
representations of a given group G. Let s; and s’; be the elements
in I' and IV, respectively, which correspond to S; in G in the
given isomorphisms. If there exists a linear homogeneous trans-
formation 7 on » variables such that T-1s";T=s; for i =1, 2,
-+, g then I and I are said to be equivalent representations of
G; if no such T exists, then the representations are said to be
nonequivalent.

The terms equivalent and nonequivalent are similarly used
for any groups I" and IV without reference to the group G.

The two groups I" and IV may be identical and yet give non-
equivalent representations of the group G. Thus the Abelian
group G of order p2 and type (1, 1), where p is a prime, may be
represented by the transformation group y = wix (=0, 1, - - -,
p— 1), where w is a primitive pth root of unity, by making two
independent generators s and ¢ of G correspond to the transfor-
mations y = w;x and y = wex, respectively, where «; and w; are
pth roots of unity, one of them at least being different from
unity. Thus we have p2? — 1 representations of the group G by
one and the same transformation group; and it is easy to see
that these p? — 1 representations are such that no two are
equivalent, for no two of the relevant p2 — 1 pairs of elements
y=wix and y = wex have, respectively, the same characteristics.

If a finite group G is represented as a reducible group I" of
linear homogeneous transformations, and if T' is written in such
a way as to exhibit the sets of variables in each of which the
variables are changed according to an irreducible group, then the
transformations on each of these sets afford an ¢rreducible rep-
resentation of G, that; is, a representation of G as an irreducible
group. The most important representations of G are the irre-
ducible representations.

Among the irreducible representations of a finite group G
occurs always that afforded by the group consisting of the
single element y = x. It is known as the identical representation ;
we denote it by I';. Let us use the symbols

I‘ly P2, P3: tee
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to denote the totality of nonequivalent irreducible representa-
tions of G. Let I" be any representation of G, and let I" be written
in completely reduced form, that is, in such a form as to exhibit
the sets of variables in each of which the variables are changed
according to an irreducible group. If the number of times which
T'; occurs in this form of I' is ¢;, then I' may be represented by

the symbol el

The T'; which actually occur here, that is, those for each of
which the coefficient ¢; is different from zero, will be called the
trreducible components of T'.

EXERCISES

1. Show that a similarity transformation is permutable with any
linear homogeneous transformation on the same variables.

2. Construct a group of linear homogeneous transformations on %
variables which shall be simply isomorphic with the prime-power
Abelian group of order p™ and type (m1, ms, - - -, mz).

8. A similarity transformation contained in a group G of linear
homogeneous transformations belongs to the central of G.

4. In a group G of order » of linear homogeneous transformations
the determinant of every element is equal to an »th root of unity.

5. Let G be a finite group of linear homogeneous transformations
some of the elements of which have their determinants different from
unity. Show that the transformations whose determinants are unity
constitute a self-conjugate subgroup H of G and that the quotient
group G/H is cyclic.

6. Let G be a finite group of linear homogeneous transformations
containing an element whose determinant is a primitive (pe)th root
of unity, where p is a prime number and « is a positive integer, but not
containing an element whose determinant is a primitive (p=+1)th root
of unity. Let K be the totality of elements in G such that the determi-
nant of each is a primitive »th root of unity where » is not divisible
by p= but otherwise assumes every value possible for elements in G.
Then show that K is a self-conjugate subgroup of G of index p.

7. Determine all the linear homogeneous transformations of order 2
on (1) one variable, (2) two variables, (3) three variables.
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8. The characteristic of a transformation of order 2 is an integer.

9. A representation of a finite group G asa group I of linear homo-
geneous transformations is simply isomorphic with a factor-group of G.

10. A representation of a factor-group of G is a representation of G.

11. A permutation group is always reducible.

12. The group T’ obtained by the composition of a group G with
its conjugate-imaginary group G is rgducible, the isomorphism em-
ployed being the usual one for G and G.

13. Show that the elements
=uy =9, u=—x,0V=—y; ¥=3,¥=—x,u=9,vV=—u;

x=1ix,9y=—1y, u' =—iu, v =1y, where i2 =—1,
generate a group of order 16 which is reducible.

14. Show that the elements
Y=y y = u=—x,0=—y; ¥’=y, YV=—2x, U =09,0V=—u;

X=oax, ¥ =aly, v =cau, v =a 3, where st = —1,
generate a group of order 32 which is irreducible.

15. Using 4;; to denote 1 or 0 according as =1 or j# ¢, show that
the relations

2 ckiEIr,jz 5;’; (4,7=12,---,n)
k=1

imply and are implied by the relations
2 CxiCii = Opa. (b,1=1,2,- -, m)
=1

16. Let G be a finite group of linear homogeneous transformations
on x1, xz, - - -, X, such that the coefficients in each transformation are
real numbers. Show that there exists a quadratic function of xi, x2,
- - +, X, Which is invariant for all the elements of G and which vanishes
for real values of the variables only when x; = %3 =+ - =x,=0.

17. Let G be the abstract group {s, #} of order 21 whose sole de-
fining relations are S=p=1 (-1si=s
Construct two nonequivalent representations I' and IV of G, each on
three variables such that G is simply isomorphic both with I" and with
I' and such indeed that T" and I" are the same transformation group
related in two ways to G.
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56. Group Characteristics. Let G be a group of linear homo-
geneous transformations of order g in the z variables x, x2,
. -, xn, the variables into which these are changed by the ele-
ments of G being now represented by x'y, x’s, - - -, ¥’». Denote
the elements of G by Sy =1, Ss, S3, - - -, Sg. The characteristic
of S, we denote by x(S:); we have seen (§ 52, Theorem II,
corollary) that x(S.) is a sum of » roots of unity. Since the
conjugate imaginary of a root of unity is its reciprocal, and
since the multipliers of S,~! (when written as a multiplication)
are the reciprocals of those of S,, it follows that x(S:;) and
x(S;~1) are conjugate imaginaries. Hence if we denote by
@ the conjugate imaginary of «, we have X(S:) = x(S.™!) and
x(Se) = X(S:™).
It is obvious (from Theorem I of § 51) that the elements of
a complete set of conjugate elements in G all have the same
characteristic. Let 7 be the number of complete sets of conju-
gate elements in G, and let 4 (=1), ke, ks, - - -, k- be the num-
bers of elements in the respective conjugate sets, 4, being the
number of elements conjugate to the identity. Then G has at
most r distinct characteristics, the 7th conjugate set having
just k; elements, all with the same characteristic. We call this
the characteristic of the corresponding conjugate set.

VIII. If ] is the number of linearly independent
linear homogeneous functions of x1, xe, - - -, X, €ach
of which is changed into itself by (is invariant for)
every element of G, then we have

Zﬂw=&

Let L, be an arbitrary linear homogeneous function of xi,
%a, - - -, X»; and let L; be the function into which L, is changed
by S.. Then the function L, L = Ly + Lo + - - - 4+ Ly, is changed
into itself by every element of G. If L does not vanish identi-
cally, it is one such invariant as is described in the theorem.
If L, = cux; + azx2 + - - - + @n%s, then the sum of the coeffi-
cients of ayx1, qaxs, - - -, AaXn in L; is x(S:), as one may read-
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ily verify by direct computation. Hence L cannot be identically
zero for all coefficients « unless x (S1) + x(S2) + - - - + x(Sg) =0.
Therefore I 0 when this equation is not satisfied.

If now we suppose that [ 0, we may transform G to new
variables 1y, #2, - - -, I, such that #, &, - - -, {; are left unaltered
by all the elements of the transformed group H. Let T; be the
element into which S; is thus transformed, and let 7’; be the
corresponding transformation on #; 1, {42, - - -, . Then x(S;)
= x(T:) =1+ x(T;). Now Zx(T’;) =0, since otherwise we
would have an additional linear invariant, so that the number
would not be precisely I. Therefore Zx(S;) =lg, as was to
be proved. Since this relation also holds when [ = 0, the proof
of the theorem is completed.

In the case of an irreducible group it is evident that /= 0.
Hence we have the following corollary:

Cor. I. If G is an irreducible group, we have
£
21 x(S:) = 0.
Applying the theorem to the (m — 1)th compound of G with

itself (§ 54), we readily have the following corollary :

Cor. II. If [, is the number of linearly independ-
ent homogeneous functions of xi, x, - - -, x, of degree
m (m > 1) each of which is changed into itself by
every element of G, then

£
EX(Sz‘(m)) =19,
=1

where x(S;™) denotes the sum of all the »™ nota-
tionally distinct homogeneous products of degree m
in the » multipliers of S..

IX. If X is the conjugate imaginary of x and if
G is irreducible, then we have

éx(smsi) —¢.
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Let G be the conjugate imaginary of G, and let K be the
compound of G and G formed by means of the usual simple
isomorphism between G and G. If S’ is the element in K cor-
responding to the elements S and S of G and G respectively,
then x(S") = x(S)xS) = x(S)X(S) (§54). Hence (Theorem
VIII) Zx(S:)x(S:) = lg, where [ is the number of linearly in-
dependent linear functions of the #2 variables x x; each of which
is left unchanged by each element of K. From the corollary
to Theorem VII in § 53 and Theorem III in § 52, it follows that
/=1. Hence we have the required conclusion.

X. Let H, with elements 7, =1, 75, T3, - - -, T,
be a group of linear homogeneous transformations
on the m variables yy, y2, - - -, ¥, such that H is ex-
hibited as simply isomorphic with G by means of the
correspondences S; ~ T; (1=1,2,--- g); and let G it-
self be irreducible. Then if T is the conjugate imagi-
nary of T;, we have

ix(Si)x(Te) =g,

=1
where [ is a non-negative integer. If /=1, then H
is equivalent to G. If I > 1, then H is reducible, and
just ! of its completely reduced sets are transformed
according to ! groups each of which is equivalent to G.

Let K be the compound of G and H formed by means of the
isomorphism between G and H gotten from the isomorphism
in the theorem and the usual isomorphism between the con-
jugate-imaginary groups H and H. Applying Theorem VIII
to K and employing the result in § 54 relative to the charac-
teristics of K, we have the required equation of the theorem
where [ is the number of linearly independent invariants of K
of the form ayxiy +-- -+ anmxnj;rm

For the other required results we have /= 1. We sup-
pose that the variables of G are so chosen (§52) that. the
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form x;%; + x2X2 + - - - + XaXn is left unaltered by each of the
elements of G. We then suppose that H is so transformed
that one of the [ linear invariants for K has the form x;y;
+ x3¥2+ - - - + x.¥a, this being certainly possible since G is
irreducible (as one sees by aid of Theorem VII of § 63). Then

H transforms the variables 31, ¥s, - - -, ¥» according to a group
which is equivalent to G, as one may easily verify. Therefore
H transforms the vdriables yi, ys, - - -, ¥» according to a group

which is equivalent to G. Hence H is reducible if m > » and
is irreducible if m = n. Furthermore, when m =#n we must
have /=1, to avoid a contradiction with the corollary to
Theorem VII of § 53 —-since G is irreducible by hypothesis.
When m > » there is at least one additional invariant of K
besides x1¥1 + - - - + X.¥n, Whence !> 1 in this case. There-
fore H is equivalent to G when /=1 and H is reducible when
I>1.

If I > 1 we may treat each of the named [ invariants of K
after the manner employed in the preceding paragraph and thus
show that H has I completely reduced sets each of which is
transformed according to a group which is equivalent to G.
Moreover, H has no additional such set whose elements are so
transformed among themselves; for, if so, this would give rise
to an additional invariant of K, and hence there would be more
than / of them.

- Cor. I. When G and H are equivalent, we have
g —
Zl x(S)x(T:) = g.

This follows at once from Theorems IX and X and the fact
that S; and T; have the same characteristic (owing to the
equivalence of G and H).

Cor. II. When G and H are nonequivalent and
are both irreducible, we have

§x<s,->x(i~> —o0.
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For in this case the number / in the theorem is necessarily
equal to zero, since G and H are equivalent when /=1 and H is
reducible when [ > 1.

From Corollary II and the meaning assigned to ! in the
proof of the theorem we have the following result :

Cor. III. When G and H are nonequivalent and
are both irreducible, they have no (nonidentically
vanishing) invariant of the form

auxyi + axiyz + - - - + GumXnIme

Again, from Corollaries I and II we have the following :

CoR. IV. In order that G and H (both assumed to
be irreducible) shall be equivalent it is necessary and
sufficient that they shall have the same character-
istics.

XI. Let T be an irreducible representation of a
group G which contains 7 complete conjugate sets of
elements having, respectively, # (= 1), he, - - -, k. ele-
ments of G, and let x; denote the characteristic of
the elements of T' corresponding to the ith set of G.
Then

;X': "ﬂ-‘z Csti —— 1X1’ (S,t=1, 2,--- 7)

where the coefficients c,;; are non-negative integers
and where m is the number of variables on which I’
operates.

Let M; denote the matrix which is equal to the sum of the
matrices of the elements corresponding to the 7/th complete set
of conjugate elements, the number in the kth row and ith
column of M; being the sum of the numbers which stand in the
kth row and Ith column of the several matrices of these elements
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of I'. Since any element T of I' transforms among themselves
these conjugate elements, it follows that the corresponding ma-
trix T transforms M; into itself so that we have 7 M,T = M,.
The relations thus obtained by varying T over the elements of
I’ imply that the matrix M, has the form of the matrix of a
similarity transformation, as one sees from the result in the
second paragraph of § 53. To find the value of the multiplying
factor «; in the main diagonal of M; we observe that me; is equal
to the sum of the characteristics of the elements corresponding
to the 7th conjugate set of elements in G; hence ma; = k;x;, or
a; = h,'x,‘ / m.

Now consider the product M,M,. We shall show that we have
a relation of the form

MM, = C;uMy + Co2M2 + SRR cster’

where the c,;; are non-negative integers. For M, and M, are
sums of matrices of elements of I', and hence their product may
be written as such a sum; since the latter sum is transformed
into itself by every element T in I"' (for T-M.M,T = T~'M,T
- T7IM, T = M,M,), it follows that these summands enter in sets,
each set corresponding to a complete conjugate set in G. From
the foregoing relation we see that

Qs = Cop1001 + Corplz -+ - =+ Cotrly.

In view of the relations «; = h;x;/m, this implies the relations
to be established.

Cor. 1. The quantity «, or &:x:/m, is an algebraic
integer and is the sum of a finite number of roots ‘of
unity.

The equations
a0t = Con0ly + Coztz + - -+ +Corrty,  (§=1,2,---,7)
for fixed ¢, imply that «, is an algebraic integer, that is, a root
of an equation of the form x4+ g~ 1+ - - -+ a, =0, where
a1, Gz, - - -, @, are ordinary integers; this is readily proved by

eliminating from the foregoing equations all the o’s except «a..
But ma;, is a sum of roots of unity, since it is a sum of character
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istics of I'.  The truth of the corollary is now a consequence of
the following lemma :

LEMMA. If « is an algebraic integer and u« is a
sum of roots of unity, u being an integer, then « is
itself a sum of roots of unity.

This lemma from the theory of numbers is a consequence of
the lemma employed in § 58.

Cor. II. If G is an irreducible group of linear ho-
mogeneous transformations, the number » of vari-
ables transformed by G is a factor of the order g of G.

With the present notation the equation of Theorem IX may
be written in the form

g=hxiX1+ hex2Xe + - - - + b XX s

g_hxig (hxeo L hXeo
or non X1+—-—n Xz+---+ S Xre

Since products and sums of algebraic integers are themselves
algebraic integers, it follows that g/z is an algebraic integer.
But g/n is a rational number ; therefore it must be an ordinary
integer.

XII. If the completely reduced form of G is de-
noted by the symbol Z¢,T';, in accordance with § 55,
then the conjugate-imaginary groups G and G have
just Zc¢;? linearly independent invariants (functions
left unchanged by each element of G) of the form
Ecijxﬁj.

By aid of Corollary III to Theorem X it may be shown that
no one of these invariants has a term of the form asf, where s is
a variable in one I'; and ¢ is a variable in another and hence

nonequivalent one. Therefore the number of these invariants
is equal to the sum of the numbers of the invariants for the
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separate I';. It is therefore sufficient to prove that the number
for a particular T'; is ¢;,2. We may suppose that the ¢; sets of
variables in these ¢; equivalent representations are

Xe1y X425 © 5 Xits, (t = 1’ 2) C Y C.‘)

and we may assume that the variables have been so transformed
that for each element in G these ¢; sets all undergo the same
transformation and that the corresponding (unique) invariants
for these separate sets are

xtlitl + thElZ + s + xts-x-ts- (t = 1’ 2’ Sty ci)

Let Zaipixkpxi; be one of the invariants in consideration ;
and let

S
x,kp = zapw'xkq (p = 1’ 2’ Ct Yy S)
q=1
be a typical transformation on the x’s. Then we have
Quly = 2 akplqapujaq‘vj-
p’ q

These relations imply that the form Zaiuwx.%, is invariant for
the group whose transformations are

s
xp= 2 pgiXq- @®=12---9)
q=1

Since x;%1 + x2%2 + - - - + x.x, is the only invariant for this
group, we have

Qiplg = 0 if b#q, Qrplp = Brqlg = bkl (Say).
Then the most general invariant of the required form in the
named ¢;s variables and their conjugates may be written
2 buixipXip ;

k1 p

and this is invariant for arbitrary values of the ¢;? coefficients
b Hence we have just ¢;? linearly independent invariants of
the specified form on these ¢;s variables. We have already seen
that this result implies the theorem to be established.

57. Regular Permutation Groups. Let H be a regular permuta-
tion group of order g whose elements are Ty =1, To, T3, - - -, T,.
The permutation T; defines a linear homogeneous transforma-
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tion Z; on the g symbols on which H operates. Thus we have
a group I' whose elements 2, =1, 2, Z3,--+, I, are linear
homogeneous transformations on g variables. Since 7, is the
only element of H which leaves a symbol fixed, it follows that
the matrix of Z; ( > 1) has only zeros in its principal diagonal.
Therefore x(Z;) =0 if ¢> 1. It is obvious that x(Z;) =g.
That the group I' is reducible follows from the fact that the
sum of the variables on which it operates is left unchanged by
every element in I'.

Let K be a subgroup of I" of index « and let g/a =a. The
characteristic of the identity in K is g and that of every other
element is zero. Then if we apply Theorem VIII of § 56, we
see that o is the number of linearly independent linear homo-
geneous functions of the variables of I' each of which is left
unchanged by every element in K. It is easy to construct a
set of « such linear invariants. Let xy, %3, - - -, x, be the vari-
ables of I' and suppose that the notation is chosen so that the
transitive sets in K are the following:

X1 X2y * 3 Xas Xatly Xag2y* 9 X2a5 * " x(a—l)a+l, **y Xaas

Then the following are « linearly independent invariants of the
type in consideration :

Tt xat s Tay Bagt o B2 Famtyar1 -+

Consider next the compound of the conjugate-imaginary
groups I' and I'. The characteristic of the identity is g2 and
that of every other element is zero. The g2 variables of the
group are the symbols x,%;. Then from Theorem VIII of § 56
it follows that g is the number of linearly independent linear
homogeneous functions of the g2 variables x.x; each of which
is left invariant by every element of this compound group.
Therefore I' and T" have just g linearly independent invariants of
the form Zc.x.%;.

Now if the completely reduced form of I' is denoted by the
symbol Z¢.I';, in accordance with § 55, we see from Theo-
rem XII of § 56 and the result in the preceding paragraph that

£= Zc2.
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But if m, is the number of variables on which I'; operates, then,
since the number of variables in I' is equal to the order g of T,
it is obvious that
g = Zcm;.

Therefore Seam; = Zc2.

Now let G, with the elements s; =1, ss,- - -, 5, be an irre-
ducible group of linear homogeneous transformations on #
variables, and suppose that G is simply isomorphic with I', with
the correspondences s; ~Z; (=1, 2, --, g). Then by aid of
the foregoing values of x(Z:) we find that

g X(59xE) = ng.

From this relation and Theorem X of § 56 we see that just
n of the completely reduced sets of T' are transformed, each accord-
ing to a group which is equivalent to G.

More generally, let G be any irreducible group of linear ho-
mogeneous transformations which affords a representation of I'
(§ 55), and let z be the number of symbols on which G operates.
Then T is (u, 1) isomorphic with G, where u=1. Let A be
the self-conjugate subgroup of I' which consists of those ele-
ments of I' (4 in number) each of which corresponds to the
identity in this isomorphism of I with G; and with respect to
A separate I into the partitions

hA, LA, A, - - hA, (H=1)

by the method of § 10. On multiplying these sets on the left
by any element of I, the sets are permuted among themselves
(compare § 20). If this operation is performed for every ele-
ment in I', a permutation group K on the A sets is induced.
The group K is obviously transitive, since such multiplication
by #; replaces the first set by the sth set. Now if s is any ele-
ment of A4, we have st.A =1, - t;'st; - A = {;A, since {;71st; is in
A; therefore each of the \ sets is left unaltered as a set when
the named operation is performed with an element of A. There-
fore the order of K is not greater than A. Since K is transitive
on A symbols, it follows that the order of K is precisely A.



220 Groups of Finite Order

Hence K is a regular group on its symbols. It is clear that K
is simply isomorphic with the quotient group I'/4, and thence
that K and G are simply isomorphic. Hence G affords an irre-
ducible representation of K by means of a simply isomorphic
group. From the result in the preceding paragraph it follows
then that just » of the completely reduced sets of K are trans-
formed, each according to a group which is equivalent to G.

We have seen that the notation may be chosen so that each
of the A functions

xl+x2+"'+xm x»+1+"'+x2m D x(x-l)#+l+"'+xlp

is left invariant by each element of A. Since the variables in
any one of the functions constitute a transitive set for A4, it
follows that the notation may be further restricted so that ¢;
replaces x, by x;,; and we suppose that this restriction is made.
Then these N linear functions are obviously permuted by T in
the same way as I' permutes the sets 4,4, &4, - - -, 44 in accord-
ance with the method of the preceding paragraph. Therefore
if T is written in the completely reduced form denoted by the
symbol Z¢,I';, there must be a I'; which is equivalent to G, and
the number of such I'; equivalent to G is at least as large as the
number of symbols on which I'; operates, as one sees from the
result attained in the preceding paragraph. Hence c; = m;, where
m; is the number of variables on which I'; operates. But we
have seen that Zcgn; = Z¢,2. Then it follows readily that c; = m..
Therefore the coefficient ¢, in the symbol Z¢,I'; is equal to the
number of variables on which T', operates. The order of the
group T, is a factor of g, since I' is multiply isomorphic with
T',; the order of T, is (§ 56, Theorem XI, Corollary II) a mul-
tiple of ¢,; hence ¢, is a factor of g.

We are to show next that the number % of nonequivalent I';
in the symbol Z¢,T'; for T is equal to the number 7 of complete
conjugate sets of elements in I'.  For this purpose we employ the
symbols M, My, - - -, M, with the meanings given to them in
the proof of Theorem XI of § 56, except that they now refer to
the group I' in its completely reduced form; and we use without
further reference the properties of them deduced in the course
of that proof. We denote by ki (= 1), ks, ks, - - -, h, the numbers
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of elements in the respective conjugate sets, the first set con-
sisting of the identity alone.
Let us consider the matrix M defined by the equation

M =wuMy + usMz+ - - - + u.M,,

where %, ug, - - -, %, are independent parameters. Then M has
the form of the matrix of a multiplication transformation, as
we shall now show. Let x1j, Xz2j» - - » Xr; D& the characteristics
of sets of elements in I'; corresponding to the various conjugate
setsin I. Then, so far as the ¢; variables of I'; are concerned, M
has the form of the matrix of a similarity transformation whose
multiplier §; is

Bi = (1 x1; + hoteax2; + - - + + b Xr5) /5.

Since %y, us, - - -, 4, are independent parameters, it follows (by
aid of Corollary IV to Theorem X in § 56) that two 8; formed
for different I'; are distinct. Therefore we have just k different
8;, where £ is the number of the groups I';. A like result is true
not only for M but for any transform of M by a linear homo-
geneous transformation. Hence the f; cannot furnish more
than % linearly independent linear homogeneous functions of
ui, Uz, - - -, %,. But M contains just 7 such functions, namely,
uy, ug, - - -, . Hence k= r and just 7 of the §; are linearly in-
dependent. We suppose the notation so chosen that these are
61’ 62’ vty Br'

If £ > 7 and we replace i, s, - - -, %, by the conjugate imagi-
naries of the characteristics xi1, X2 - -+, X- Of the elements in
T',,1 corresponding to the r conjugate sets of I', we have (by
Corollary II to Theorem X in § 56) the relations 8, =2 = - - -
=B, =0. But Xi, X2 - - -» X~ are not all zero, since one of them
(that corresponding to the identity) denotes the number of
variables on which I, , ; operates. This contradicts the fact that
the Bi, B2, - -+, B are linearly independent. Hence k is not
greater than 7. Therefore we conclude finally that k=7, so that
the number of the I'; in the symbol Z¢,T; is precisely 7.

Among the results which we have now obtained are all of
those included in the following theorem:
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XIII. Let H be the representation of a given finite
group of order g as a simply isomorphic regular per-
mutation group, and let 7 be the number of complete
conjugate sets of elements in H. Let T be the group
of linear homogeneous transformations of order g
on g variables defined by H; and let Z¢,T'; represent
the completely reduced form of I'. Then the number
of symbols operated upon by T, is ¢;, so that we have

g=c?+c?+ -+ 0%
and each ¢; is a factor of g. Moreover, every irredu-
cible representation of H occurs among the groups
Iy, Teye oo, T
Cor. The relations

zaiXti=O’ (t= 1’ 29 t T)
=1

where a, a, - - -, a, are constants, imply that
a=a=---=a=0.

For these relations imply that

i aiciﬁ; =0
=1

as a function of u;, uo, - - -, u,, whereas the c; are all different
from zero and the functions (i, B2, - - -, B, are linearly independ-
ent; whence it follows that a1 = a2 =---=a, =0.

Let us now suppose that in the symbol Z¢,I'; for I" at least
two of the I'; operate each on a single symbol, say that I'; and
T'; are two such groups. Then for I'; we have the form y; = x;,
but for I'; we have the form y; = ax., where ¢ is different from
unity, since we have seen (by aid of Theorem VIII in § 56) that
T leaves invariant just one linear homogeneous form. If T is
simply isomorphic with I';, then T itself is a cyclic group; if T
is multiply isomorphic with I's, then I" has a self-conjugate sub-
group different from itself and from unity. Hence T is a com-
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posite group unless its order is a prime number. Hence we have
the following theorem :

XIV. If T' is a group of composite order, and if
in the symbol Z¢.T'; for T' there are two nonequivalent
groups I'; each of which operates on a single symbol,
then T is a composite group.

Using 7 =1, ks, - - -, b, as before to denote the numbers of
elements in the respective complete conjugate sets of I', we
have for the order g of T the relations

g=012+c22+"'+cr2r g=h1+h2+ "+hrs

where each ¢; and each &; is a factor of g. The group is com-
posite if two ¢’s or two #’s are each equal to unity. It is simple
if no partial sum of the form #; + 4. + ks + - - -, containing 7,
and at least one other 4, is a factor of g, since such a sum must
arise from a self-conjugate proper subgroup of I' of order
greater than unity. For a given g the foregoing equations im-
ply great restrictions on the possible values of 7. If 7 is pre-
assigned, the possible values of g are restricted.

Let us return to the group I' of Theorem XIII, whose com-
pletely reduced form is I' = Z¢.I';. As before, denote by
h (=1), he, - - -, h, the numbers of elements in the 7 complete
conjugate sets of elements in I'. Let x1: X2i -+ Xr: be the
characteristics of the sets of elements in I'; corresponding to
the various conjugate sets in I. The set of quantities X1,
X2i» + - X 15 called a set of group characteristics. If Z, (=1),
s, - -+, 2, denote the elements of I', we have seen that
x(Z:) =0if 7> 1 and that x(Z,) =g. Hence

hiXil =g and 2 hiXij =0 lf] > 1. [A]
i= i=1
Since x1; is the number of symbols on which I'; operates, it
follows from Theorem XI of § 56 that we have the relations

hiliXaXin = Xk 3, CigohaXots (57, k=1,2,--+,7)  [B]

s=1

where the coefficients c;;, are non-negative integers.
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To each element of I' there corresponds a single element of
T'; and a single element of T'; in the usual isomorphism of T’
with these groups. By means of this fact a general isomorphism
is established between I'; and T'j, an element of the one corre-
sponding to an element of the other when and only when these
two elements correspond to one and the same element in T
With respect to this isomorphism form the compound of T;
and I'; according to the method of § 564 and denote this com-
pound group by I'.T'; or I';T";. This compound affords a repre-
sentation of I'; and its completely reduced form may be denoted
by the equation

I‘il‘j = I‘,—I‘,« = 2 gijsFSy
s=1
where the coefficients g;;, are non-negative integers.

The condition g;;; # 0 indicates the existence of one or more
invariants of the form aux1y; + ai2x1y2+ - - - for the groups
T'; and I';, By aid of Corollary III to Theorem X in § 56, it
may then be shown that g;; =0 when I'; and T'; are non-
equivalent, while from Theorem X itself it follows that g;;; =1
when I'; and T'; are equivalent.

The characteristic of any transformation in I';T'; is the prod-
uct of the characteristics of the corresponding transformations
inT;and I';, Then from the foregoing completely reduced form
of I',I'; it follows that

XeiXes = 2 GijaXks  (k=1,2,--+,7) [a
s=1
Multiplying by % and summing with respect to %, we have
7h i'=ri's7h s — £ij18,
2:1 k X ki Xkj glgj k2=1 % Xk gijng

as one sees by aid of [4]. Then, from the already determined
value of g;;, we have

T
2 hxrixei =8 or 0O
k=1

according as I'; and I'; are or are not equivalent representations
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of I'. If I'y is the representation which is equivalent to f,-,
then we have , gifj=i
_Jeitj=17,

2, hexwirs ~(§ii=v (D]

These results will afford a ready proof of the following
theorem :

XV. In order that two representations of a group
of finite order as groups of linear homogeneous trans-
formations shall be equivalent it is necessary and
sufficient that the characteristic of each conjugate
set shall be the same in the two.

We show first that no two distinct irreducible representa-
tions I'; and I'; have the same set of characteristics. For if
they have the same set of characteristics, then we have
Xki = Xij for k=1,2,-.-, 7. 1f I'v and T'y are the representa-
tions equivalent to I'; and I'; respectively, then X/ = Xxs,
and we have

T T
D, hxwixe’ =2, hexuixed = €5
k=1 k=1
whereas

2 ki xrixe = 0 when 7/ = 7',
k=1

Hence T'; and T'; have not the same set of characteristics.

Now let 3, ¥, - - -, ¥, be the characteristics of any represen-
tation of T, and let Z+.T'; be the completely reduced form of
this representation. Then we have

d’s = E'Yix.n'- (S = 1, 29 Sty T)

But from the corollary to Theorem XIII it follows that the
determinant |x.; | is different from zero. Hence the coefficients
~: are completely determined by the foregoing system of equa-
tions. They are therefore the same for any two representations
of T which have the same set of characteristics. They are ob-
viously different for any two representations which have differ-
ent sets of characteristics.
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From these considerations the truth of the theorem follows.
It is desirable to obtain here two other important relations
among the characteristics xx;. For this purpose we observe first
~ that the characteristic of the identity in I' is g while that of
every other element is zero. Then, since I' = Z¢,I'; and ¢; = x3;,

it follows that
2 . ._{gwhenk=1, E]
X1Xki =10 when £ 5 1. L

=1

Hence if we sum with respect to % in [B] we have
hihi 3, XaXit = Cijig. [F]
k=1

From the definition of the coefficients ¢;;, in the proof of
Theorem XI in § 56 it follows that ¢;;; = &, when an element in
the 7th conjugate set is conjugate to the inverse of an element
in the jth conjugate set, whereas c,;; otherwise is equal to zero.
Then from the fact that X (s;) = x(s;~ 1) it follows that ¢;;/; = &
and that ¢;;; = 0 when j = /. Hence from [F] we have the

relations
> x: ._{g/hiifj=z", [cl
PR (A

58. Certain Composite Groups. We shall now prove the
following theorem :

XVI. If in the symbol Z¢,I'; for the complete re-
duction of the regular permutation group I' the
number ¢; of variables in some T'; different from the
identical representation of T' is prime to the number
of elements in some complete conjugate set of I';
different from that consisting of the identity alone
(say to the number #; of elements in the jth set),
then either (1) the characteristic of the jth set is
zero or (2) the multipliers of any given element in
that set are all the same. In the latter case the group
I" is necessarily composite unless it is of prime order.



Groups of Linear Transformations 227

Let m be the order of the elements in the jth conjugate set of
T';, and let S be one of the elements in that set. Then if u is
prime to m, the element S*is an element of a conjugate set con-
taining #; elements; and the characteristic of S¥, which we
denote by X;, is obtained from the characteristic x; of S by
replacing each of the multipliers of S by its uth power and
taking the sum of the resulting elements. Then consider the

product P, h
=TT ZXiw
P= 1;[ P

where the product is taken for u running over the ¢(m) positive
integers less than m and prime to m. Each factor in this product
is an algebraic integer (§ 56, Theorem XI, Corollary I), and
hence the product itself is an algebraic integer. But P is a ra-
tional number, since the product is a symmetric function of the
¢(m) primitive mth roots of unity. Since P is an algebraic
integer and is a rational number, it follows that P is an ordinary

integer. But
1} Xiwy = {I | X5

where | o | denotes the absolute value of «. We may therefore
write P in the form
AN
P= . I;I | X5l

Now if ¢; is prime to k; it follows that II | x| must be divisi-
ble by c#™. But|x;uw|/c: is either zero or a real positive
number less than unity unless the ¢;mth roots of unity whose
sum makes up Xjq are all the same. Therefore x;ju), and
hence yx; itself, is zerc or else the c¢; mth roots whose sum
constitutes x; are all the same, provided that c; is prime to &;.
In the latter case the multipliers of S are all the same.

It remains to prove the proposition in the last sentence of
the theorem. If ¢; =1 this proposition follows from Theorem
XIV of § 57. In any case I'; contains a self-conjugate element,
namely, this element whose multipliers are all equal. Hence I';
is composite unless it is of prime order ; therefore I' (when not
of prime order) is composite if it is simply isomorphic with I';,
and it is evidently composite if it is multiply isomorphic with I'..
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Cor. I. If the number of elements in some conju-
gate set of a group is a prime power p” (n > 0), then
the group is composite.

Represent the group as a simply isomorphic regular permu-
tation group I' of order g, and let Z¢,I'; be the symbol for the
complete reduction of I'. We assume that I" is simple and show
that the hypothesis in the corollary then leads us to a contradic-
tion. Since g is divisible by p™ and g=¢;2+¢22+- - - +¢,2, and
since ¢; =1, it follows that there is at least one representation
T';, other than the identical one, in which the number ¢; of
variables is prime to p. Since I' is assumed to be simple, it
follows from the theorem that the characteristics of elements
other than the identity in such a representation are equal to
zero. Now if x1s X2i * * *» Xr: denote the characteristics of the
elements in I'; corresponding to the complete conjugate sets of
T', then, since the characteristic of an element of I' other than
the identity is zero, we have

2 Ce Xik = 0. (t' = 1)
k=1

But we have just seen that x is zero when ¢; is prime to p and
k> 1. Therefore, since c; =1 and x,;; =1, and since every xi
is a sum of roots of unity, the preceding equation implies the
relation 14 pN=0,

where N is a sum of a finite number of roots of unity. That this
equation is impossible and hence that the corollary is established
is implied by the following lemma :
LEMMA. Ifas + e+ -+ a,=0and ay, s, - - -,
a, are s roots of unity, then these s roots fall into
sets, each containing a prime number of roots such
that the sum in such a set is zero and such that if ¢
is the number of roots in any one of these sets and
a is a primitive gth root of unity, then these g roots
aree, ea, ca?, - - -, ea?"!, where e is some root of unity.
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For results implying this lemma from the theory of numbers
see Kronecker, Journ. de Math. (1) 19 (1854): 177-192.

Cor. II. A group whose order contains only two
distinct prime factors is soluble.

Represent the group as a simply isomorphic regular permu-
tation group T of order g = p~¢8, where p and ¢ are distinct
primes, and let Z¢,I'; be the symbol for the completely reduced
form of I'. Then

pF=1+c?+c?+---+c

where 7 is the number of complete conjugate sets of elements in
I'. Then some c¢; ( > 1) is prime to ¢; if such a ¢; is equal to
unity, the group is composite (Theorem XIV of § 57); if such
a c; is greater than unity, then it is of the form p*, where n > 0;
then from the preceding corollary it follows that I' is composite.
Therefore, in any case, I' is composite. Then let H be a proper
self-conjugate subgroup of I of order greater than unity. Then
G/H and H (when not of prime order) are both composite, as
we see from what we have already proved and the fact that a
prime-power group is composite if its order is not a prime. Then
from Theorem XI of § 21 we readily conclude that I' is soluble,
since it is now easy to show by induction that its composition-
factors are primes.

59. Transitive Groups in Which Only the Identity Leaves Two
Symbols Fixed. As another important application of the theory
of group characteristics we have that involved in the proof of
the following theorem :

XVII. If G is a transitive permutation group in
which the identity is the only element leaving two
symbols fixed, then the identity and the n — 1 ele-
ments each of which permutes all the symbols of G
constitute a self-conjugate subgroup.

That there are indeed just z» — 1 elements each of which

permutes all the symbols of G follows readily from Theorem IV
of § 39. :
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Represent G as a simply isomorphic regular permutatioms
group I, and let 2¢,I'; be the symbol for the completely reduced
form of I'. Let g be the order of G. Let K be a subgroup of G,
of order v (v = g/n), each element of which leaves fixed a given
symbol; represent K as a simply isomorphic regular permuta-
tion group H, and let 2+,H; be the symbol for the completely
reduced form of H. Then we have

g=cltel+ - tod y=g/m=v2+yl2+-- -+ 5 [

where 7 is the number of complete conjugate sets of elements in
I" and p is the number of complete conjugate sets of elements
in H.

If T'; is any one of the irreducible representations of G, and
if we fix attention on the usual multiple isomorphism of G with
I';, then in this isomorphism the subgroup K of G corresponds
to a subgroup L; of T';, while L; affords a representation of K
whose irreducible components are contained among the groups
H;. If H; occurs c;; times among these irreducible components,
then we may represent the reduced form of L; by means of the

equation
L;=cqH1+cpHo+ -+ - + ¢;,H,. 2]

Since L; = Hy, it follows that ¢;; = 1, ¢12=0, ¢;3=0, - - -, ¢, =0.

Now let x1i, X2 * - *» X+: De the characteristics of the ele-
ments of L; corresponding, respectively, to the elements T; (=1),
Ty, - -+, T, in H, and let 6y, 035, - - -, 6,; be the corresponding
characteristics of H;. Then we have x1; =¢; and 8;;=v;. We
also have 6y, = 1. Then from [2] we have the relation

Xki = €1 + Ci2bha + Ci3bhs + - - - + ¢, 0. (3]
Now consider the sum

S= xnxuou + X3172102t +--+ Xle-rlOw
+ Xe2X1201¢ + Xs2X2202: + ¢ - - + Xs2Xr20ye
[4]
+ Xsrilrolt + Xar72r02t + R + xsr-)z‘vfe‘)‘b
where 1 < s = 4. We shall write S in two forms, one obtained
on summing by columns and the other on summing by rows.
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On summing by columns we have
S= 010, XeiXui + O2¢ 2, XoiXzi+ + - -+ Ope D, Xoi Xoie
i=1 i=1 i=1
This may be simplified by means of equation [G] at the end of
§ 57 and the fact that X,; = x,%. Thus we have
S= 70“

since if #’ is the number of elements of K in the conjugate set
containing 7, we have k’g/vy conjugates of 7, in G.

Now in [4] substitute for the X their values obtained from
[3], sum by lines and simplify by aid of Corollaries I and II to
Theorem X in § 56 and equation [D] of § 57; thus we have

S= ; x“’i 0jtzp: Ciagja
= 7=1 a=1

= 2 (Ci1Cit + Os2CizCie + - - - + OspCisCir).

=1

Equating the two values of S and omitting the common factor
+, we obtain the equation

A+ A0+ - -+ A,0,=0, l<s=%) [5]
where A, =—1+4 %, A= Cwls When o s.
=1 =1

This will enable us to establish the relations
(A1 —q) + (A2 — qv2)02 + - - - + (4, — ¢7,)0,, =0,
1=s=1v) [6]
where a=v.&—7)/7%

When s > 1, equations [6] are implied by [5] since the charac-
teristic of T, in H is zero and is also 1 + 20,2 + - - + + 7,05, as
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one sees from the completely reduced form of H. In order to
verify [6] when s =1, we observe that the left member of [6]
may then be put in the form

(A1 — @) + v2(A2 —qv2) + - - - + V(4. — q7,)
=A1+72A2+"'+7pAo—q(1+722+'"+'Yp2)

=2 CitCi — Y8/,
=1
as one sees by inserting the values of ¢ and the A’s, employing
the second relation in [1] and the equation

Cit+ Y€zt - - -+ YiCi, = Ci
obtained from [2] by considering the characteristic of the iden-

tity. In order to establish [6] for s = 1, it is therefore necessary
and sufficient to show that

gcitci = v:&/7. (7]

Now consider the subgroup L of I" which corresponds to the
subgroup K of G in the simple isomorphism between G and T.
In L the group K appears g/v (= n) times, once for each sub-
group of G of order v which leaves fixed a single letter. Hence
H, occurs just v.g/v times in the completely reduced form of
L. But H, occurs here just Zc;c; times, as one sees by aid of
[2] and the fact that I'; occurs just ¢; times in the completely
reduced form of I'. Therefore the last equation is established.
This completes the verification of equation [6] for all values of s.

From the corollary to Theorem XIII in § 57 it follows that
[6] implies the relations

Ai—gqvi=0. (=12,--+ p) [8]

By taking 1 =1, 2 and { = 1, 2 we obtain the relations
ca12+ ez cn=(@g—7)/7v% [9:]
C21C22 + €132 + - - - + €raCr2 = Yv2(g — V) /Y5 [92]

c22® +ca2? 4. - -+ =7122(g— v)/¥?+ 1. [9]
Thence we have
(c22 — 7y2€21)2 + (€32 — Ya2€31)2 + - - - + (cr2 — Yo€1)2 = 1.
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This equation can be satisfied only when one of the terms in
the first member is unity and the others are all zero (since each
term is obviously a non-negative integer). We may suppose
the notation so chosen that the first term is unity; then we
have
€22 =yotz1 £ 1, €32 =1ya€31, +* -, C2= Y201.

By substituting these values in [9z2] and combining the result-
ing equation with [9,], we find that ¢z, = 0.

From this result and equation [3] we see that

Xr2 = €220k + €236k3 + - - - + €2,0%,. [10]

Now let o denote the sum of the n characteristics of elements
in T corresponding to the identity and the » — 1 elements of
G each of which displaces all the # symbols on which G oper-
ates. Now no two different subgroups of G of order 7, each
omitting one of the letters of G, can have any element in com-
mon except the identity. Then, by aid of Corollary I to Theo-
rem VIII in § 56, we have

0=o'+n2 xk2=0'+n(—02+2)(k2)
k=2 k=1

Y Y
=0+ n(—cz+c2 z Oz +---+c2 z 0x) (by [10D)
k=1 k=1
= 0 — NCe,

since the sums denoted by Z in the second preceding line are
all zero, owing to the fact that H is a regular permutation
group. Therefore ¢ = nce, while at the same time ¢ is a sum
of »n characteristics each of which is itself a sum of ¢z roots of
unity. Hence each of these roots of unity must be unity itself
and therefore each of the named characteristics is c..

From this it follows that the corresponding transformations
of T2 must be the identity in each case, as one may see by aid
of Theorem II in § 52. Hence, in the multiple isomorphism of
G with T'y, every element of G which does not belong to K or
its conjugates corresponds to the identity in I's. Therefore
the » — 1 elements each of which permutes all the symbols of
G generate a self-conjugate subgroup G; of G whose order is
less than g since cs; = 0. If the-order of this group G is not
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n, apply the foregoing process to G, itself and thus obtain a
self-conjugate proper subgroup G: of G;. Continuing this proc-
ess we must finally come to a group of order » which contains
the » — 1 elements of G, each of which displaces all the symbols
of G. It is then obvious that this subgroup is self-conjugate.
Thence we conclude to the theorem as stated.

60. Simply Transitive Groups of Prime Degree. We shall now
prove the following theorem of Burnside, using a method due
to 1. Schur *:

XVIII. A simply transitive group of prime de-
gree p is contained as a proper subgroup in the doubly
transitive group of degree p and order p(p — 1),
namely, in the group '

{(aoa: - - - ap-1), (@ma@ae---)},
where { is a primitive root modulo p and the sub-
scripts in the second generator are to be reduced
modulo p to numbers of the set 0, 1,.---, p—1.
(Compare § 40.)

From this theorem it follows at once that a group of prime
degree p containing more than one Sylow subgroup of order p
is necessarily multiply transitive.

-- The proof is divided into four parts.

1. Let T be a permutation group on the » symbols 0, 1, - . -,

n — 1. The bilinear form

n-1
F=72 ajxy;

i, j=0
is said to be invariant under I' if every permutation 4 in T
transforms F into itself in case the subscripts on the x’s and the
»’s undergo simultaneously the permutation A. If A replaces
the subscripts ¢, 7 by ¢/, j/, then F is invariant under A if and
only if a;; = a;» for every pair 7, j of subscripts. From this it

* Jahresber. d. Deut. Math.-Ver. 17 (1908) : 171-176.
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follows readily that a necessary and sufficient condition that F
shall be invariant under a doubly transitive group I is that

Q11 = Q22 ="-"- "= Qnn,
a12=013=...=a1"=021=az3=---=an_1,n;

and these conditions are equivalent to the condition that F shall
be the form ¢E + bJ, where a and b are constants and

n—1 n—1
E=Yxy, J=2 %
i=0 i, 7=0
On the other hand, a simply transitive group I" admits other
invariants F, since the ordered pairs of subscripts are not per-
muted transitively by it.
If the two forms

n-1

n—1
F= 2 aiix:Yi, G= zobiixiyi

1, j=0 i, j=
are invariant under T, so is the form K,

n-1

n—1
K=72 cixyn (5= 2 Giibi;)
k=0

i, j=0
as one may readily verify. We denote K by the symbolic prod-
uct FG. The product of A factors each equal to F is denoted by
F*. We also write F° for E. If
o (x) = ao+ a1x + ax% + - - - + Gmx™,
we denote by ¢(F) the form
O(F) = aoF® + a1F + agF% + - - - + anF™.

2. Now let # be the prime number p and let I" be a transitive
group. We assume, as we may without loss of generality, that
T contains the permutation P, where

P:‘(O’ 1,"'9p_1)'

If F is to be invariant under I', then it must be invariant under
P. A necessary and sufficient condition that F shall be invariant -
under P is that it shall have the form

p—1 p—1 p-1 p—1
F=ao 2 XYt @ 2 XYiy1t+az Z XYivzt-o-+ap1 2 XiYivp-1,
i=0 i=0 i=0 i=o
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the subscripts being reduced modulo p to numbers of the set 0,
1, .-, p—1. If we denote the second summation in this equa-
tion by R, then the (A 4+ 1)th summation is R} while R? = E,
as one may easily verify. Then the bilinear invariant F may
be written in the form

F=¢(R)=aE+ @R+ aR*+---+a,_ 1RPL

The condition that F shall be invariant under the remaining
permutations of I' may be expressed by means of the fact that
certain of the coefficients a; are equal. One may therefore limit
attention to those invariants F in which the coefficients a; are
rational numbers; and this we do.

3. Let us now suppose that the transitive group I' is not
doubly transitive. Then I' admits at least one invariant ¢(R)
which is not of the form ¢E + /. In this invariant the coeffi-
cients ai, @, - - -, a,_1 are not all equal, as one sees from the
fact that 7 may be written in the form

J=E+R+R2+---+ Rr 1,

From this it follows that if p is a primitive pth root of unity,
then the algebraic number ¢(p) is not a rational number. Then
this number ¢(p) must satisfy an irreducible equation of degree
¢ (e> 1), where ¢ is a factor of p —1. We write p— 1 =¢f.
Then from the theory of roots of unity (see Weber’s Algebra,
Vol. I, 2d ed., §175) it follows that a polynomial y(x) exists

Such that 6ol = p+ o7+ o7 4+ o',

where v belongs modulo p to the exponent f. This is equivalent
to the equation

PR S N
=Y[o@)]+ xX){x°+ x4+ 22+ ... F 2771},

where x(x) is a suitable polynomial in x. Replacing x by the
bilinear form R, we have still a true equation. Hence, since
RMJ = J (as is readily verified), we have

X(R{R*+ R+ -+ R*"1} =x(R) - J=cJ,
where ¢ is the sum of the coefficients of x(R).




Groups of Linear Transformations 237

Since Y[$(R)] = ¥(F) and both ¢(R) and cJ are invariants
of I, it follows that H is an invariant of I, where
H=R+R +R"+-- - +R "= yF) +cJ.
4. We next investigate what permutations 4,

A= (0 1 p= 1):
Qo ay o e o p—1
can leave the bilinear form H invariant. Now H may be written
in the form

p-1
H=2 Zi(Yit1 + Yigy + Vit + - - F Yigas-1)

£=0
p=1
=%xa¢(ya,~+l + Vajir + Vajrrr + - + Va4l ~ 1.
=
Under the permutation A the form H is to be transformed into
itself. Applying this permutation to the first form of H and

comparing the result with the second form, we see that for each
value of ¢ the numbers

Olitly, Olipyy Oigyn, = t°y Qigy’ ™
taken modulo p, must be in some order the numbers
a;+1, o+, oat+v% .-, ity
Now let g(x),
g(x) =co+ c1x + - - - + crxk,
be a polynomial in x with integral coefficients and of degree
k (k < p) such that the congruences
g(0) =oa; mod p #=0,1,---,p—1)
are satisfied ; such a function, for instance, is
() =3 0 2E=DE=2) - G=pt )
i=0

xX—1

Then from the named properties of the numbers «; it follows
that for each exponent r we have

-1 -1
Y, {g@) + v} =2, {26 + )} mod p. 11
w=0

p=0
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Since y*/ =1 mod p, it follows that
¥=1l=@—1DE—7)x—7%) - (x— /1) mod p.
Then if ss=14+P+y24... —y(f-l))\

it follows that s, is congruent to f or 0 modulo p according as A
is or is not divisible by f. Therefore if 0 < 7 < f, we have

f-1 7
3, {80+ 1) = 2} Joule@y =7 g@y mod p. [2]
#=0 A=0
Writing 4(x) for {g(x)}" and employing Taylor’s formula
h(x +3) = h(x) +y 4-2 + y"'h—;(!ﬁ) +

(the functions 2™ (x)/\! being polynomials with integral coeffi-
cients), we have

f-1 rre o
3 B 9) =140 + 51 BO B0
Ef-{h(i)+h—(%ﬂ+w+...}modp’

@nt
Then from [1] and [2] we have

%Q _((;Lfngz -+ =0mod p. (¢=0,1,--,p—=1)

Then the function
h(f) (x) h(2f) (x)

I7 CNn!

is divisible modulo p by x» — x. If kr < p and if this function
does not vanish identically, then its degree is kr — f. Hence a
number kr — f, where 7 belongs to the set 1, 2, --., f—1, is
either negative or greater than p — 1 —f; in particular, if f> 1
it follows that & — f is negative, since & < p.

We shall now show that k=1. If f=1, we have a,,;
=oa;+ 1 modulo p, whence a;=ao+7¢ mod p; therefore
k=1. Then suppose f> 1. Let s be the least integer such
that ks = f. Then, if 2> 1, we have s < f, while ks> p—1
and £ < f by a result at the end of the preceding paragraph.
Then k(s—1)>p—1—k>p—1—f But p—1=¢f and
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e>1. Hence p—1= 2f, whence p— 1—f= f. Therefore
k(s — 1) > f, contrary to the hypothesis on s. Since this con-
tradiction is reached on supposing & > 1, it follows that 2= 1.

Then g(x) is of degree 1. Hence A is induced by a linear sub-
stitution modulo p. Therefore I' is contained in the metacyclic
group. This result implies the theorem as stated.

EXERCISES

1. Construct the p irreducible nonequivalent representations of a
group of prime order ».

9. Construct the p3 irreducible nonequivalent representations of
an Abelian group of prime-power order p3 and type (2, 1).

3. By means of the theory of group characteristics prove that a
group of order p2, where p is a prime, is an Abelian group.

4. Show that an irreducible representation of a group of order p3
or p*, where p is a prime, involves one variable or p variables.

5. By means of the theory of group characteristics prove that a
group of prime-power order p™ (m > 1) is composite.

8. Determine all possible groups G each of which has just two or
three or four complete conjugate sets of elements.

7. Determine all possible groups G each of which has just five
complete conjugate sets of elements.

8. Prove that the order of a transitive group of odd prime degree p
is of the form (kp + 1)pu, where kp + 1 is the number of Sylow sub-
groups of order p and u is some factor of p — 1; prove that & is zero
or an odd number.

9. Show that the number of Sylow subgroups of order p in a
transitive group G of odd prime degree p is completely determined
by the order g of G. '

10. Show that there is no group of degree 31 which is 3-fold but
not 4-fold transitive.

11. If G is a transitive group of degree 13 or 61 not containing the
alternating group of its degree, show that G is not triply transitive.

12. If G is a finite Abelian group of linear homogeneous transforma-
tions, show that a linear homogeneous transformation S exists such
that the elements of S~!GS are all multiplications.
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13. Let G be a group of finite order and let the commutator sub-
group of G be of index «; show that there are just « nonequivalent
representations of G each in a single variable.

14. Let H be a self-conjugate subgroup of a finite group G, and let
p be the number of complete conjugate sets of elements in G/H. Show
that there are at least p nonequivalent irreducible representations of
G in each of which the identity corresponds to every element in H.

15. Prove that the group {s, {} whose sole defining conditions are
S="T=¢"2%"s=1

has just 15 complete conjugate sets of elements and that its irreducible
representations consist of 9 on a single variable and 6 on 3 variables.

MISCELLANEOQOUS EXERCISES

1. The number of abstract finite groups each having just a given
number 7 of complete conjugate sets of elements is finite.

2. Let p and ¢ be different primes such that p is not a factor of
- q2—1. Let s and ¢ be elements subject to the sole defining relations
sP=tpr=1, t~lsUs=1
Show that {s, ¢} is a group of order p¢2? having just ¢2? representations
in a single variable. If p < ¢2, show that the other irreducible represen-
tations are p — 1 in number and that each of them is on ¢ variables.
Show that the number of complete conjugate sets of elements is

e+p—-1

8. The only substitution of zero determinant which is permutable
with every element of an irreducible group of linear homogeneous
transformations on the same variables is the substitution which re-
places each variable by zero.

4. Let x4, x2, - - -, x, be the variables operated on by an irreducible
group G of linear homogeneous transformations. Show that kxi, kxo,
- - -, kx,, where k is an arbitrary constant different from zero, are the
only linear functions of the x’s which, for every element of G, undergo
the same linear transformation as the x’s undergo in that element.

5. Show how to form the most general group of linear homogeneous
transformations on a given set of variables each of whose elements is
permutable with every element of a given finite group G of linear
homogeneous transformations on the same variables.
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6. Let I'; have the meaning assigned to it in Theorem XIII of
§ 57. Show that I'; and I'; are equivalent representations of I' when
and only when each group characteristic for I'; is real.

7. Employing the notation of the latter part of § 57, show that
sk = Lijk = 8i'kj = &j'ki = Bi'j'k = &ik'y’ = &jk'i's
Show also that r
2 8ijkBkst
k=1
is unaltered by any permutation of the symbols t, j, s.
8. Employing the notation of the latter part of § 57, show that
1
gixk=¢8) 7
i,%k ; h”

9. Let s be an element of order m in a group G, and let x, be the
characteristic of s in an irreducible representation of G. Then x, may
be written in the form

Xe=w"+a”+ -+ ¥
where w is a primitive mth root of unity and the @’s are integers. The
characteristic x . of s* in the same representation is then
X,u=w“a'+w“a2+ B (A

If s and s+ are conjugate under G, then these characteristics must be
equal, so that in each irreducible representation of G it is true that x,
is unchanged when w* is put for w. Show, conversely, that if this last
condition is satisfied, then s and s+ are conjugate elements of G.

10. In a group of odd order no element other than the identity is
conjugate to its inverse.

11. In a group of odd order some of the characteristics of every
conjugate set must be imaginary.

12. In a group of odd order the number of conjugate sets of elements
is odd.

18. For a group of odd order no irreducible representation, other
than the identical one, is equivalent to its conjugate imaginary.

14. A group of linear homogeneous transformations of odd order
with real coefficients is necessarily reducible.

15. If G is a group of odd order g, and r is the number of complete
sets of conjugate elements in G, then g =7 mod 16.



CHAPTER IX
Galois Fields

61. Introduction. There exist certain remarkable doubly
transitive groups of prime-power degree p* by means of whose
properties many interesting results in the theory of finite
groups may be obtained. They are contained as subgroups in
the holomorph of the Abelian group of order p» and type
1,1,.---,1). Instead of undertaking a direct proof of their
existence, based on this fact, it seems more convenient to de-
velop first the auxiliary theory of finite fields (defined in the
next section) and then to employ the tool afforded by this
theory as a means of facilitating the proof of the existence of
these groups and of deriving their properties. Consequently
this chapter is devoted to the theory of these finite fields and
to some of its immediate applications to the theory of finite
groups.

62. Finite Fields. Let wo, w1, %2, - - -, 4,_1 be aset of s (s > 1)
distinct symbols or marks or elements which may be combined
by addition in accordance with the formal laws

Wity =u;+ Ui Ui+ 5+ we) = (i + %) + e

Let the sum of any two of these marks be a mark of the set.
Let the set be such that for every pair %; and #; of the marks
there exists a single mark #; such that u; + #; = u; then u; is
said to be determined by subtraction, and we write #; = u;, — u,.
We call #; the difference of #; and u;. The set then contains
every difference u; — u;; such a difference has the additive
property of zero, since u; + (#; — u;) = u;. From the last equa-
tion we have u,—u;,=u;—u;. Hence all the differences
u; — u; are equal; we shall suppose that the notation is so
chosen that »; — u;, =uo; then %, is the (unique) mark hav-~
242
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ing the additive property of zero, since the relation u; + «’ = u;
requires that @’ = wu; —u;=uo. Two marks are said to be
equal if their difference is uo; otherwise they are said to be
distinct. It is obvious that the s marks form an Abelian group
of order s, the law of combination in the group being that of
addition as here defined. The identity in this group is uo.
This group is called the additive group of the field (presently
to be defined).

Let us next suppose that the marks o, %, - - *, %,—1 may be
combined by multiplication in accordance with the formal laws

ua; = Uity Wi(uue) = (Wid;)uhr, wi(U; = tr) = Ut 3= Uy

Let the product of any two marks of the set be itself a mark of
the set. From the relations

Uoth; = Uto = (U — U;) = Ulhj — Ul; = Uo

it follows that #o has the multiplicative properties of zero.
Let us suppose that the marks » have the further property
that if any two marks »; and u, are given such that ;> uo,
then there exists one and just one mark #; of the set such that
um; = w. We say that u; is determined by division, u; = wi/u:;
and we call »; the quotient of #, by u,;. The set contains every
quotient u;/u; where u; # uo; such a quotient has the multi-
plicative properties of unity, since wu;/u;=u;. From this
equation we see also that u;/u; = u;/u; if u; = uo and u; > uo.
If en; = u; or u;e = u; and u; # up, we have e = u;/u;, so that
there is only one mark in the set having the multiplicative
properties of unity. We suppose that the notation is chosen
so that this mark is #;. It is evident that the s — 1 marks
w1, Us, - - -, Us—1 form an Abelian group in which the law of
combination is that of multiplication as here defined. The
identity in this group is ;. This group is called the multiplica-
tive group of the field (presently to be defined).

A set of s distinct marks wo, %1, %2, - - -, %s—y satisfying the
conditions named in the two preceding paragraphs is said to
form a finite field of order s. A finite field is characterized by
the property that the rational operations of algebra may be
performed upon the marks in the field and that they lead in
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every case to marks of the field. We may therefore take over,
without further definition, many terms of algebra and the cor-
responding notations and employ them for finite fields.

We may observe that the conditions named imply that a
product of two factors is #, when and only when one of the
factors is wo. For w.uo = uo, as we have seen; moreover, if
u; # Uo, Ur # ug, and uu;, = uo, then we have

UMy = Uh; + o = uk; + uhy, = w;(u; + i)

so that u.u; gives rise to two distinct quotients, »; and #; + u,
when divided by u,, contrary to the hypothesis that division by
a nonzero element is unique.

We exhibit an example of a finite field. Let p be a prime
number and let us write 4o =0, =1, u2=2, -, up_;
=p — 1. Let addition and multiplication of these marks be
the ordinary addition and multiplication of the numbers to
which they are equal followed by a reduction modulo p to a
number of the set. It is easy to see that the marks so defined
constitute a finite field of order p. We may easily verify the
property of division, the divisor being different from u,, by
observing that the congruence

ax=bmodp (az0mod p)

has always a unique solution x when a and 5 are given.

In the general case the marks #o and #; have the properties
of zero and unity, respectively, as we have already seen. Every
sum of the form u; + u; + - - - + 1 is a mark of the field. The
marks defined in this way are called the infegral marks of the
field. Consider the infinite sequence of symbols

Uy =U1, Uy =1+ U, Uz =1+ ur+ 4y, - - -

Since there is only a finite number of marks in the field, two of
these symbols must be equal, say #¢,=us (r>s). Then
Uo = Uy — Us) = Ug—s. Hence the named sequence contains
the zero mark uo. Let p be the least integer such that u ), = uo.
Then u«y (=u0), uay, %@y, - - -1y are all distinct, while
U@y = U@ if a = Bmod p. Hence there are just p integral marks
in the field. We suppose that the notation is so chosen that
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ui=uu ((=0,1,---, p—1), so that the integral marks of the
field are wuo, %1, - - *» #p_1. When there is no danger of ambiguity,
we shall write 0, 1, - - -, p — 1 for these marks in the order given.
These integral marks obviously combine by ordinary addition
and multiplication with a reduction modulo p. Moreover, if p
is a prime, they form a field of order p, as we have already seen.

1. The number p of integral marks in the field is
a prime number.

For if p =pip2 (b > p1), we have u, # uo, while u, %,
= U(pp,) = U = %o; Whence it follows that u,,) = o so that
p2 must be a multiple of p, and hence equal to p since p2 = p.
Hence p1 = 1. Therefore the only factors of p are 1 and p.

II. The number s of marks in the field is a power
of the prime p, say s = p™.

Let v, be any mark of the field different from . Then

Y19 (71=09 1’ 2""rp_1)

give p distinct marks of the field. If s> p there is a mark »; in
the field and not in the foregoing set. Then

')/1111+’sz2 ('719 72=0s 1!"')p—1)
give p? distinct marks of the field. If s> p? there is a mark o3
in the field and not in the last-named set. Then
Y01+ vyav2 + vz (v1, ¥2, ¥v3=0,1,- -+, p—1)

give p? distinct marks of the field. We may continue similarly
till all the marks are exhibited in the form

")’11)1+'Yzﬂz+° - +7nvm (’Yi=09 1’29 .t ',17"1; i=1y29 Sty n)
and these give p™ marks, so that s = p™.
In § 64 we shall show that a finite field exists of every order
p™ where p is a prime and # is a positive integer.
III. The additive group of a field of order p™ is
an Abelian group of type (1, 1, - - -, 1).
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We have seen that this group is Abelian. Its order s is p* by
Theorem II. It remains to be observed that each element
(besides the identity) in the group is of order p; and this is
obvious, since w;+ u;+ - - -+ % = wau; + v + - - - 4 wn;
=wu;(u1+u1+- - -+ u;) and this is »y when the number of
terms in the parenthesis is p.

A rational integral function in any number of variables x;, xa,

«+, Xn is said to belong fo the field if its coefficients are marks of
the field. It is drreducible in the field if it is not identically the
product of two functions belonging to the field, each involving
one or more of the variables x;. An equation between functions
which belong to the field is itself said to belong to the field. Let
u be any mark of the field and form the % -4 1 marks

uo, ul, u?, - - -, un,

These, as we have seen, may be expressed in the form
ui =Calh + Ci202 + e + Cinln, (i = 0’ 1’ c n)

where 91, 95, - - -, v, are the marks denoted by these symbols in
the proof of Theorem II and where the ¢;; are integral marks of
the field. Hence integral marks po, p1, - - -, o, DOt all zero, exist

such that PO + p1ut + potiZ + -+« + pu™ =0,

as one sees by eliminating vy, 93, - - -, v,, from the foregoing n + 1
equations. Therefore we have the following theorem:

IV. Any mark u of a finite field of order p» sat-
isfies an equation of degree k = n,

X’ o114 Fax+c=0, (cx %= 0)
where ¢, c1, - - -, ¢ are integral marks of the field.

If & is taken to be the lowest possible degree for such an equa-
tion satisfied by a given mark %, then the equation is evidently
irreducible in the sense that the first member cannot be
separated into factors of positive degrees and with coefficients
which are integral marks of the field. The term irreducible
equation, when used without_qualification, will have the mean-
ing here assigned to it.
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As we have already seen, the marks u;, %z, - - -, %,—1 form an
Abelian group if the law of combination of symbols is that of
multiplication of the marks of the field. The order of this group
is s—1=pm—1. The order of an element « of this group is
therefore a factor of p™ — 1; this order is called the order of the
mark % in the field. Every mark « of the field, different from

uo, satisfies the equation
2" 1=1,

as one sees from the properties of the multiplicative group of
the field. Hence,

V. Every mark of a field of order p" satisfies the

equation " —x=0;
-1

and we have 2" —x =[] (x — u).
i=0

As in algebra, one may prove the following theorem:

VI. If an equation of degree & (and not an iden-
tity) belongs to the field it has at most & roots in
the field.

VIL. If d is a divisor of p" — 1, the equation

¥-1=0
has exactly d roots in a field of order p".

For we have an identity of the form
a1 — 1= (xd — 1)(xGDd 4 xb=Dd .. 4y 1),

where u= (p»—1)/d; the last factor is zero for at most
(v — 1)d marks of the field while the first member is zero for
every nonzero mark of the field; whence it follows that x4 —1
is zero for d marks of the field.

Let us write PP — 1= preupata s - ik,
where pi, ps, - - -, D are the distinct prime factors of p" — 1.
Then the equations
#%—1=0 and = '—1=0
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have p,% and p;%™" as roots respectively. Hence there are

a5 __ p ol a _l)

pt—ps7h or p(1-1),

marks of the field having the order p,*. Let w; be a mark

having the order p;= (=1, 2,---, k). Then wiws- - w; has

for its order p,"'p2™ - - - Py, or p* — 1. A mark of the field

having p — 1 for its order is called a prémitive mark of the field.

If w is a primitive mark of the field, then the marks
w, w2’ way t %y wp"—l

are all distinct. They are therefore in some order the marks

UL, U2y * * °y Us—1.

VIII. All the marks of the field except the mark
uo are powers of any given primitive mark of the
field. Hence the multiplicative group of the field
is cyclic.
Let w be any primitive mark in a field of order p*. Then
(Theorem IV) it satisfies an equation of the form
axt 1k 14 o ax40=0, (k=n;a=0)
where ¢, ¢1, - - -, ¢ are integral marks of the field. Then w*,
and hence every power of w, can be expressed in the form
Vi1~ 4 - - 4 100 + Yo,
where vo, 71, - - -, Yx—1 are integral marks of the field not all
equal to zero, as one sees readily by repeated multiplication
by w and reduction of the degree by means of the relation of
degree k satisfied by w. The number of expressions of the
named form is p* — 1 and the number of distinct powers of
w is p» — 1; hence, since £ = n, we see that £ = »n. From this
result and the remark following Theorem IV we have the
following theorem :

IX. A primitive mark of a finite field of order p»
satisfies an irreducible equation of the form
texrt4 - 46, =0,
where ¢, ¢, - - -, ¢, are integral marks of the field.
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Cor. I. A primitive mark satisfies no equation of
degree less than # the coefficients of which are inte-
gral marks of the field.

Cor. II. The quotient

2" —x
b A XU S o 2
can be expressed as a polynomial in x with coefficients
which are integral marks of the field.

In order to establish this corollary let us apply to the func-
tions in the numerator and the denominator of the fraction
Euclid’s process for finding the greatest common divisor. Every
quotient and every remainder obtained by this process will
be a polynomial in x with coefficients which are integral marks
of the field. Hence the greatest common divisor is either a
constant or a polynomial with integral coefficients. But it can-
not be a constant, since the two given functions have the com-
mon factor x — w. Since it is a polynomial with integral coeffi-
cients, it must be the denominator polynomial itself, owing
to the fact that that polynomial is irreducible. The named
quotient can then be expressed in the form described in the
theorem.

COR. III. The equation in the theorem has » dis-
tinct roots in the field.
This follows at once from Corollary II and the fact that the
equation x?" — x = 0 has p~ distinct roots in the field.
Let p be any root of the equation in Theorem IX. Then
every power of p can be expressed in the form
Yoo1p® 14 -+ v1p + Yo,

where o, Y1, - - -» Yn1 are integral marks of the field, the
method being that employed in the proof of Theorem IX.
Likewise every power of w can similarly be expressed in the form

Y1014 -+ 710+ Yo
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The ordered set of coefficients in the expression for p! is the
same as that in the expression for f, as is evident from the
way in which the expressions are formed. But the p»—1
ordered sets of coefficients y corresponding to the powers w,
w?, - - -, wP"~1 are distinct, since w is a primitive mark. Hence
the p™ — 1 ordered sets of coefficients v corresponding to the
powers p, p2,---, p»"~! are distinct. Therefore if any two of
these powers of p are equal, the mark p satisfies an equation
(not an identity) of degree at most as great as » — 1 and with
integral coefficients. But this is impossible, since p satisfies an
irreducible equation of degree » with integral coefficients and
therefore satisfies no such equation of degree lower than #, as
may be shown by means of Euclid’s algorithm for finding the
greatest common divisor. Hence the powers p, p2, ..., p? !
are all distinct. Therefore p is a primitive mark of the field.
Hence,

X. Every root of the equation in Theorem IX is
a primitive mark of the field.

We are now in a position to prove the following fundamental
theorem :

XI. Any two finite fields of the same order are
abstractly identical.

Let F[p~] and F[p~] be any two finite fields of order p=.
Each of them has the integral marks 0, 1, 2,---,p — 1. We
make each of these marks in one of the fields correspond to the
same mark in the other field. Their laws of combination in
the two fields are evidently the same. Let w be a primitive
mark of F{p]. Then (Theorem IX) w satisfies an irreducible
equation of the form

Wax) =a"4cx®1+4---+¢, =0,

where ¢, ¢2, - - -, ¢, are integral marks of the field. The function
W.(x) (Theorem IX, Corollary II) is a factor of x*" — x, the
complementary factor having integral coefficients. The only
marks of the field F[p"] which are employed in effecting the



Galois Fields 251

division of 2" — x by W,(x) are the integral marks. Hence
the same division may be effected, and in the same way, in the
field F[p~], since that field has the same integral marks as
F[p~] with the same laws of combination. Hence Wa.(x) is a
factor of x*" — z in F[p"]. From Theorem V it follows then that
the equation W,(x) = 0 has # distinct roots in the field F{p™.
Let @ be any one of these roots. Then we establish a corre-
spondence between the two fields F[p"] and F[p"] by making
each power of w correspond to the like power of @ and by making
the zero element in one field correspond to the zero element in
the other. We have to show, among other things, that this is
consistent with the correspondence of integral marks already
set up. If a given power of w is expressed in the form

Yn—1@0™ 14 -+ Y100+ Yo,
and the like power of @ in the form

Fa1@" 1+ - -+ 1@ + Yo,
as in the proofs of Theorems IX and X, then it is evident that
¥i=v:(i=0,1,---,n—1). From this it follows that the
integral marks correspond in the way already described. Asin
the proof of Theorem X, it may now be shown that @ is a primi-
tive mark of F[p*]. Moreover, since the integral marks in the
two fields have the same laws of addition, it follows from the fore-
going expressions for the powers of w and @ that all the corre-
sponding marks have the same laws of addition in such a way
that the indicated correspondence exhibits the additive groups
of the two fields as simply isomorphic. This correspondence
evidently exhibits the multiplicative groups of the two fields as
simply isomorphic. Since these two simple isomorphisms are
exhibited by one and the same correspondence of marks in the
two fields, the two fields are said to be abstractly identical ; and
the theorem is proved.

From this theorem it follows that a particular finite field, so
far as its abstract properties are concerned, is completely
specified by its order.

63. Galois Fields. In order to prove the existence of finite
fields we develop, in this section and the next, the properties of
a particular form of finite fields known as Galois fields.
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Let P(x) be a given polynomial in x of degree » with integral
coefficients not all divisible by the given integer p. Let F(x) be
any polynomial in x with integral coefficients. On dividing
F(x) by P(x) we obtain a quotient Q(x) and a remainder of
degree » — 1 at most, which remainder may be written in the
form f(x) + pg(x), where

f@)=a+ax+ax?+- -+ a,_ 12"},

each of the coefficients a; belonging to the set 0,1,2, ---, p— 1,
and where ¢(x) is a polynomial with integral coefficients. Then

Webave  p) =)+ 4) + PR) - Q).
We call f(x) the residue of F(x) modulis p and P(x) and we write
F(x) = f(x) [modd p, P(x)].

This is said to be a congruence with a dowble modulus. The
totality of functions F(x) which can be obtained by holding
J(x) fixed and varying ¢(x) and Q(x) in all possible ways subject
to maintaining the named properties of ¢(x) and Q(x) constitutes
a class of residues which is completely determined by f(x) and
the given p and P(x). Two polynomials in x with integral
coefficients will be called congruent modulis p and P(x) when
and only when they belong to the same class of residues modulis
b and P(x). The number of distinct classes of residues modulis
p and P(x) is equal to the number of functions of the form f(x)
with the stated restrictioris, and hence this number is p*, since
each of the » independent coefficients a; may have any one of
p-values. If each a; is zero, we shall denote the corresponding
class by Co; Co is said to be the zero class.
If we have

Fi(x) = fu(x) + p - q:(x) + P(x) - Qi(x), (t1=1,2)

then it is obvious that the class to which any one of the func-
tions Fi(x) + Fa(x), Fi(x) — Fa(x), F1(x)F2(x) belongs is com-
pletely determined by the corresponding function fi(x) + f2(x),
Ji(x) — fa(x), fi(x)f2(x). Hence classes of residues modulis p and
P(x) combine uniquely under addition, subtraction, and multi-
plication. In order that the division of an arbitrary class by any
class C different from the zero class C, shall lead uniquely to a
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third class, it is necessary that the equation C.C = Co shall imply
that C; = Co. In order that the equation C.C = Co shall always
imply that C; = Co, it is necessary that p shall be a prime num-
ber, as one may see readily from a consideration of those classes
for which the coefficients a;, as, - - -, @.—1 of the corresponding
f(x) are all zero (compare the proof of Theorem Iin §62). Itis
also necessary that P(x) shall be irreducible modulo p, that is,
shall be incapable of verifying an equation of the form
P(x) = P1(x)P2(x) + pP3(x)

where the P;(x) are polynomials in x with integral coefficients,
the degrees of P;(x) and P(x) being positive and less than the
degree of P(x); for, if P(x) is reducible modulo p, so that we
have an equation of the foregoing form, then the classes corre-
sponding to Pi(x) and Ps(x) are both different from C, while
their product is Co. Hence if the classes of restdues are 1o con-
stitute a finile field it is necessary that p be a prime and that P(x)
be irreducible modulo p. We shall show that this condition is
also sufficient.

It is convenient first to introduce a definition and demon-
strate a theorem needed in the proof.

If F(x) is a polynomial in x with integral coefficients, and if
polynomials Gi(x), G2(x), G3(x) in x with integral coefficients ex-
ist such that F(x) = G1(%)G2(%) + pGa(x),

then F(x) is said to have modulo p the factors or divisors Gi(x)
and Gz(x) and we write F(x) = G1(x)Gz(x) mod p.
XII. If F(x) and G(x) are two polynomials in x
with integral coefficients, and if they have modulo a
prime p no common factor containing x, then poly-
nomials Fi(x) and Gi(x) in x with integral coefficients
exist such that
F1(x)F(x) — Gi(x)G(x) = 1 mod p.
For every integer a prime to p there exists an integer B
such that 8 =1 mod p. Hence we have congruences of the
form F(x) = 6A(x), G(x)=bB(x) mod p
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where the coefficient of the highest power of x in A(x) and in
B(x) is unity and where the remaining coefficients are integers.
For definiteness, suppose that the degree of A(x) is not less
than that of B(x). Now apply to A(x) and B(x) the usual
process for finding the greatest common divisor, modified by
a reduction modulo p, writing each remainder in the form
7R(x), where 7 is an integer and the leading coefficient of R(x)
is unity. Then we have modulo p a set of congruences of the
form A= BQ; +nR,

B = R1Q2+ 72R2,

Rl = R2Q3 + TsRa,

Ri_ 2= Rk-—le + 1'kRk (Rx=1)
From these congruences we derive readily congruences mod-
ulo p of the following form :
nkR = Ai1A — BlB
7’11’2R2 = A2A B2B

1172 - n,R,, = AkA BkB

where the A: and B; are polynomials in x having integral
coefficients.

Now 71, 73, - - -, 7, are all prime to p, since otherwise A(x)
and B(x) would have modulo p a common divisor containing x,
contrary to hypothesis. Hence an integer r exists such that
7-abnre- - - 1,=1mod p. Then we have

l=rabrirs- - - . =rabArA — rabBBmod p ;
or 19AF — 16ByG = 1 mod p.
This result implies the theorem stated.

Cor. If pisaprime and P(x) is irreducible modulo
p and if F(x) 5 0 [modd p, P(x)], then a polynomial
F1(x) with integral coefficients exists such that
Fi(x)F(x) =1 [modd p, P(x)].

Let us now return to the classes of residues modulis p and
P(x), where p is a prime and P(x) is irreducible modulo p.
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Let C denote any one of these classes different from the zero
class Co. Then from the preceding corollary it follows that a
class T exists such that CT is the class 1, that is, the class of
polynomials congruent to 1 modulis p and P(x). Hence if Cis
any one of the classes, we have

cr

o= cr.

Since CT belongs to the class of residues, it follows that the quo-

tient class C/C always exists when C is different from the zero

class Co. If C = CQ, and C = CQs, then Co=C — C = C(Q1 — Q2),

whence it follows that @ — Q= I'Co = Co; therefore division

of these classes is unique, the divisor being different from Co.
We have thus proved the following theorem:

c_
C

XIII. The classes of residues modulis p and P(x)
form a finite field of order p™ when and only when
p is a prime and P(x) is a polynomial with integral

- coefficients which is irreducible and of degree n
modulo p.

The finite field formed by these p™ classes of residues is
called a Galois field of order p». It is denoted by the symbol
GF[p"].

It is evident that the GF[p"], when existent, contains the
marks 0, 1, 2,---,p — 1 and that these constitute the GF[p]
formed by taking x for P(x).

The absence of the symbol P(x) from the symbol GF[p"]
for the field is justified by the following fact, a consequence of
Theorem XI: If a second polynomial P(x), irreducible and of
degree # modulo p with integral coefficients, is used in the
formation of a Galois field of order p~, that field is abstractly
identical with the field formed by means of the given poly-
nomial P(x); whence it follows that a particular Galois field,
so far as its abstract properties are concerned, is completely
determined by its order. Moreover, it is abstractly identical
with any finite field of the same order.
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64. Existence of Galois Fields. It remains to establish the ex-
istence of Galois fields of every order p* by proving the follow-
ing theorem :

XIV. A Galois field of order p* exists for every
prime p and positive integer 7.

For the proof of this theorem it is sufficient, in view of
Theorem XIII, to demonstrate the following theorem :

XV. For every prime p and positive integer »
there exists a polynomial P(x) with integral coeffi-
cients which is irreducible and of degree #» modulo .

When # =1, we may take x + 1 for P(x). Hence the GF[p]
exists. We may therefore employ this field in the proof.
Theorem XV will be proved by aid of a sequence of theorems
which will be given next.

XVI. If F(x) and G(x) are polynomials belong-
ing to the GF[p] and if they have no common divisor
containing x and belonging to the GF[p] and if G(x)
is a factor of E(x)F(x), then G(x) is a factor of E(x).

From the hypothesis we have an equation of the form
E(x) - F(x) = G(x) - S(x).
But from Theorem XII we have in the GF[p] the equation
F(x)F1(x) = 1 + G(x)G1(x).
From these two equations we have
E(x) = G(x) [S(x)F1(x) — E(x)G1(x)],
whence the conclusion of the theorem follows.
XVII. A polynomial F(x) in x belonging to the

GF[p] can be separated into factors belonging to and
irreducible in the GF[p] in just one way.
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It is evident that there exists a factorization of the sort
described ; for a reducible polynomial may be separated into
factors, and a reducible factor may again be so separated, and
so on. If we have

F(x)=FFz2---Fx=fife---fu
and the F;(x) and f;(x) are irreducible in the GF[p], then F; must
(by Theorem XVI) be equivalent to one of the f;, say fi. Then
we have Fy- - - F equivalent to fa- - - f.. Thence we find F2
equivalent to f; in a similar way, and so on. It is now obvious
that A = u.

XVIIIL. If F(x) is a polynomial in x of degree n
which belongs to and is irreducible in the GF[p], then
F(x) is a factor of x*" — x, and the complementary
factor belongs to the GF[p].

Since F(x), by hypothesis, has integral coefficients, is of degree
n, and is irreducible modulo p, it may be employed in the forma-
tion of the GF[p"]. Let u be any mark of this GF[p~] different
from the zero mark. Then (Theorem V)

w"—u=0;
w" — u =0 mod F(x),
the congruence being taken in the GF[p]. Taking x for #, we have

the result stated in the theorem, since actual division obviously
leads to a complementary factor of the form stated.

that is,

XIX. Let f(x) be a polynomial in x belonging to
the GF[p] and let ¢ be any positive integer; then in
the GF[p] we have

F(x*"y = [f(2) "
If we write f(x) = @ + a1x + - - - + axx*, then we have

[f(x)]p = qoP? + aPxP 4+ - - - + akﬂxpk
=a+taxr+---+ ax* = f(xP).
Raising to the pth power successively for ¢ times, we have

FOP = a0+ ax?* + - - - + @™ = f(22°).
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XX. If F(x) is a polynomial of degree m belong-
ing to and irreducible in the GF[p], and if F(x) is a
factor of x*° — x in the GF[p], then ¢ is a multiple
of m.

If we write t=sm+7 (0= 7<m) and employ Theorem

XVIII, we have in the GF[p]
O=x"'—x= @™ —x=2" — x mod F(x).
Then if f(x) is any mark of the GF[p™] formed with F(x),
we have, by aid of Theorem XIX and the congruence
#* = x mod F(x), the relation
[f(x)" = f(x*") = f(x) mod F(x).
Hence every mark of the GF[p™] satisfies the congruence
w” —u=0mod F(x).

Now this congruence is satisfied by p™ distinct marks, while
pr< p™ Hence (Theorem VI) the congruence must be an
identical congruence. Therefore r = 0, and hence ¢ is a multiple
of m.

From the foregoing theorem we have readily the following :

XXI. A factor of x*" — x which belongs to and is
irreducible in the GF[p] will be of degree » if and
only if it is a factor of no function of the form

xP" — x,
where » is a proper divisor of x.

We next prove the following theorem :

XXII. The function x** — x contains no repeated
factor belonging to and irreducible in the GF[p].

To establish this proposition we suppose that x* — x con-
tains modulo p a factor [F(x)]2, where F(x) is a polynomial of
positive degree belonging to and irreducible in the GF[p], and
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then show that we are led to a contradiction. Let G(x) be a
polynomial of degree p* such that [F(x)]? is a factor of G(x) in
the ordinary sense of algebra while at the same time G(x)
=x*' — x mod p. Then the derivative G’'(x) of G(x) with re-
spect to x is divisible by F(x) in the ordinary sense of algebra,
as one sees from the usual theory of multiple roots of poly-
nomials. Hence G'(x) is divisible by F(x) in the GF[p]. But
G'(x) = — 1 mod p, so that G’'(x) = — 1in the GF[p]. But—1is
obviously not divisible, in the GF[p], by a polynomial of the
form of F(x), for we should then have a contradiction with
Theorem XVII. Since we are thus led to such a contradiction,
we conclude to the truth of the theorem.

We are now able to determine the number of polynomials in
x of degree »n each of which belongs to and is irreducible in the
GF[p]. For this purpose let g1, gz, - - -, ¢x be all the distinct
prime factors of z, and form the expression

[n]-H[—l‘—-]-H[ n ]
_ q:4; q:9;9xq1 ,

Vp=
q: URVEL

where [u] denotes the expression [u] = x** — x and where the
products II are taken for all the combinations of distinct ¢’s
in the numbers indicated, each product IT in the numerator re-
ferring to an even number of the ¢’s and each one in the de-
nominator to an odd number of the ¢’s. Let F(x) be a factor of
x*" — x of degree v (v < n) belonging to and irreducible in the
GF[p]. Then v is a proper factor of n (Theorem XX). Let ¢ be
the number of the primes ¢; each of which enters into # to a
higher power than that to which it enters into ». Then F(x)
enters into the numerator of the expression for V, to a power
whose exponent is

1+Ce+Cu+---
and in the denominator to a power whose exponent is

Ca+Ca+Cs+---

where C, denotes the number of combinations of ¢ things
taken k at a time. The last two sums are equal, since their
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difference is equal to (1 — 1)t. Hence (Theorem XXI) every
factor of V, which belongs to and is irreducible in the GF[p]
is of degree n. If N, denotes the number of such factors, each
with leading coefficient unity, then »nN, is the degree of V,;
hence

NN, = p* — Spr/ai 4 Zpr/agi - « . 4 (— 1)pr/agz-- o,

The number in the second member is not zero, since its quo-
tient by its last term is congruent to 1 modulo p. Therefore
N, > 0. Hence there exists a polynomial in x of degree » which
belongs to and is irreducible in the GF[p]; and N, is the num-
ber of such polynomials, as one sees by aid of Theorems XXII
and XVIII.

This conclusion contains the proposition stated in Theo-
rem XV. Therefore a Galois field exists of order p” for every
prime p and positive integer n. But we have seen that the
order of any finite field is of the form p* (Theorem II) and that
any two fields of the same order are abstractly identical (Theo-
rem XI). From these considerations we have the following
theorem :

XXIII. A finite field of order p» exists for every
prime p and positive integer #, and every such field
is abstractly identical with the Galois field of the
same order.

Hereafter we shall use the symbol GF[p™] to denote indiffer-
ently the Galois field or the abstract field of order p™.

65. Inclusion of One Finite Field within Another. We shall
now prove the following theorem :

XXIV. A finite field of order p" contains a finite
field of order p* when and only when £ is a factor of ».

The larger field is said to contain the included field as a
subfield.

If % is a mark of the field F{p"] of order p™ and is a primitive
mark of an included field F[p*] of order p*, then u is of order
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p*—1, and therefore p*—1 is a factor of p»—1. Write

n = ak + 8, where o and 8 are integers and 0 < 8 = k. Then
pr—1=p*+6—1= (pr)pf—1=pf — 1 mod p* — 1.

Hence k= 3, since p* — 1 is a factor of p" — 1 and therefore
of p# — 1; hence k is a factor of z.
Let v and w be marks of F[p"] such that

=1, w? = w.
Then (o) = vw, (0 + w)* = =04+ w.

Moreover, if v 0 and 9; is the mark of the field F[p] such
that v9; = 1, then we have

9?*~19,7*~1 = 1 whence 9,7"~1=1.

From these results it follows that the zero mark and the
marks whose orders are factors of p* — 1 constitute a field.
This field contains a mark of order p* —1, since p*—1is a
factor of p» — 1; and it does not contain any mark of order
higher than p* — 1. Hence the field is of order p*

These results imply the truth of the theorem.

Cor. The integral marks in the field constitute a
field of order p.
EXERCISES
1. For the case of the field GF[22] show that the function P(x) of
§64isx2+x+ 1.
9. For the case of the GF[32] show that for the function P(x) of
§ 64 we may take x2+ 1, 22+ x + 2, or x2+2x + 2.

3. Construct addition and multiplication tables for the GF(22],
GFI[5], and GF[32).

4. The number of primitive marks in the GF[p™] is ¢ (p™ — 1), where
¢ denotes Euler’s ¢-function.

5. If w is a primitive mark of the GF[p"] and d is any factor of
p™ — 1, then w®"~V/d is a mark of order d; and the number of marks
of order d is ¢(d).
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6. A nonzero mark of the GF[p™] is called a square if it is the square
of some mark in the field; otherwise it is called a noi-square. Prove
the following propositions:

(1) If p = 2 every nonzero mark in the field is a square.

(2) If p is odd the even powers of a primitive mark are squares and
the odd powers are not-squares; and the reciprocal of a square
[not-square] is a square [not-square].

7. Show that a root w of the equation x* — x + 1 = 0 in the GF[3%]
is a primitive mark in the field.

8. In the GF[29] show that a root x of the equation x°+ x4+ 1=0
is of order 73 while x + x* + x8 + x7 + x® is of order 7, and thence
show that x(x + x* + x6 + 2"+ x8),or 1 +x +x2+ x5+ 27+ 18, is a
primitive mark in the field and that it satisfies the equation

Y+yE++2 4+ +y+1=0.

9. In the Galois fields indicated below, the given equations have
as roots primitive marks of the corresponding fields, #» in each case
denoting the degree of the given equation :

GF2"]: x2=x+1, 23 =x+ 1, xt=x+1, x°=2241, x6=x+1,

AM=x+1 8=xt+x3+22+1, ¥=a8+4xt+23+22+x+1;

GF[3"]: x2=2x+1, x3=x+4+2, x*=2x34+2x24+x+1,2°=2+2,
x¥=x+1;

GF[5"]: x2=2x+2, x3=2x+4+3, #*=23+2x+2, 25=x+2,
x6=x5 —xt+ 3 —2x—2;

GF[7T"]: x2=x—3,x3=x—2, x4 =223+4+2x+2,25=6x+3;

GF[11"]: x2=4x—2;

GF[13"]: x2=x 4+ 1.

Verify at least a part of this table of equations having primitive marks
as roots.

10. Show that the group G generated by the transformations
’=x4+1, x'=x", '=x+23

in the GF[33] permutes the 24 nonintegral marks of the GF[32] accord-
ing to an imprimitive (transitive) group of degree 24.

11. Consider the totality of transformations of the form

x' = P(x)
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in the GF[p~] (2> 1), where P(x) is a polynomial in x whose coeffi-
cients belong to the included field GF[p*], v being a proper divisor of
n, and P(x) is such that the transformation induces a permutation
on the marks of the GF[p~]. Show that this totality of transformations
induces a permutation group on those marks of the GF[p~] which are
not in the included field GF[p*], and prove that this cannot be a
primitive group.

12. Show that the transformations x' =x+ 1, x’ =—25—2x2in
the GF[7] generate a group which permutes the seven marks of the
field according to a doubly transitive group of degree 7 and order 168.

13. Using o to represent /0 when ¢5 0 and adjoining o to the
GF[7), show that the transformations in Ex. 12 and the transformation
%’ = — 1/x induce on the eight symbols named a triply transitive
group of degree 8 and order 8 -7 -6 - 4.

14. Show that in the GF[11] to which o has been adjoined to stand
for /0, where 7 > 0, the transformations
x=x+1 x=4x2-31%7, x':—%
induce a quintuply transitive group of degree 12 and order
12.11-10-9-8, and that this group contains as a subgroup a
triply transitive group of degree 12 and order 12 -11 - 10 - 6 induced
by the first and third of the given transformations and the square
of the second, namely, the transformation x’ = 7 x* — 6 1°. (Compare
Ex. 12 on page 151 and Ex. 17 on page 165.)

15. Show that in the GF[23] to which oo has been adjoined to stand
for i/0, where 75 0, the transformations
M=x+1, x'=-3x%+42, = “:lc

induce a quintuply transitive group of degree 24 and order
24.23-22-21-20-16-3. (Compare Ex. 9 on page 164.)

66. Analytical Representation of Permutations. Let wo, 1, %2,
.+, #s_1 (s = p™) denote the marks of the GF[p"]. Let any given
permutation on these marks be denoted by the symbol

<uo u1 Uz ---us_1>
Us0) Uy Up@) " Ups—1)

An analytic representation of this permutation is afforded by
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the Lagrange formula for interpolation. In fact it is easy to
verify that the equation

_s—l U, (Qngg
V() _ZE, (x :ui)F’(ue)’

where F(x) = ﬁ (x — us)
=0

and F’(x) denotes the derivative of F(x) with respect to x,
defines a function ¥(x) such that the transformation x’ = ¥(x)
induces precisely the given permutation of marks of the field.
It is obvious that y(x) is a polynomial in x, of degree less than
p™, whose coefficients belong to the GF[p™]. A polynomial
¥(x) belonging to the GF[p"] and such that the transformation
%' = yY(x) induces a permutation on the marks of the field is
called a substitution polynomial in GF[p~]. We shall always
suppose that the degree of such a polynomial is less than p*,
since any polynomial in GF[p"] may be reduced to one of such
degree by means of the relation x?" = x, which is verified by
every mark in the field.

XXV. Two distinct substitution polynomials,
¥1(x) and ¢2(x), both belonging to the GF[p"], can-
not induce the same permutation on the marks of
the field.

If we assume ¥, () = ¢o2(u;) (=0, 1,--., p»—1), then the
equation ¥;(x) — Y2(x) = 0 has p™ roots in the field, while its

degree is less than p™; a result in contradiction with Theo-
rem VI of § 62.

XXVI. A necessary and sufficient condition that
¥(x) shall be a substitution polynomial in the GF[p"]
is that ¢(x) shall be a polynomial in the GF[p™], of de-
gree less than p*, such that each of the equations

Y(x) = u; (:=0,1,2,---,p"—1)
shall have a solution.
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For in this case the marks ¢ (uo), ¥ (1), - - -, ¥ (us_1) are in
some order the marks wo, %1, - - -, #,—1, since the former set
contains at most s distinct marks and contains all the s marks
in the second set.

Cor. I. The condition in the theorem is equiva-
lent to the requirement that the marks y(uo), ¢ (u1),
-+, Y(us—1) shall all be distinct.
Cor. II. If m isless than p” — 1, then a necessary
and sufficient condition that x™ shall be a substitu-
tion polynomial is that  shall be prime to p™ — 1.

When m and p™ — 1 have a common divisor greater than
unity, the marks ™, @™, ---, us,—1™ are not all distinct
(Theorem VII, § 62). If m and p™ — 1 are relatively prime, then
integers « and (3 exist such that am + 8(p™ — 1) =1. Then if
¢ and 7 are nonzero marks of the field such that ™ = ™,
we have fom=n°m whence EomtB®"—1) = yem+8E"-1  whence
£=7. Thence the required result follows by aid of Corollary I.

67. Linear Groups in One Variable in GF[p"]. Let us con-
sider the totality of transformations of the form

x’:ax-l—b (a#O)

on the marks of the GF[p™], the coefficients ¢ and b being marks
of this field. Each of these induces a permutation of the marks
of the field (Theorem XXVI), since the equation ax + b=
obviously has a solution x in the GF[p"] whenever a, b, 8 are
marks of this field and @ = 0. The product of two transforma-
tions of the given set obviously belongs to the set. Since the
number of transformations in the set is finite, it follows that the -
named totality constitutes a group. The order of this group is
p*(p™ — 1), since a and b range independently over all the marks
of the field except that a must not be the zero mark.

Now if « and B are any two given distinct marks of the field,
the transformation ¥=B—a)r+a

replaces the values 0 and 1 of x by the respective values @ and 8
of #'. Therefore the permutation group induced on the p™ marks
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of the field by the transformation group in consideration is a
doubly transitive group. The subgroup leaving the mark zero
unchanged is induced by the transformations x' =ax; and
this is a cyclic group, since it is generated by the transformation
x’ = wx, where w is a primitive mark of the GF[p™]. Hence we
have the following theorem (generalizing a result obtained in
§ 40):

XXVII. For every prime p and positive integer »
there exists a doubly transitive group of degree p"
and order p"(p™ — 1) which contains a cyclic sub-
group of degree and order p™ — 1.

68. Linear Fractional Groups in One Variable in GF[p"]. Let
us now adjoin to the GF[p™] the symbol oo to represent any
formal quotient /0, where u is a nonzero mark of the field.
Then we have all told p™ + 1 symbols. It is easy to show that
these symbols are permuted among themselves by every trans-
formation of the form

x'=g§—j_—3, (ad — bc = 0)

where g, b, ¢, d are marks of the GF[p™] and x and x’ are variables
ranging over these marks and the symbol 0. The number of
transformations of this form is obviously finite, while it is easy
to show that the product of any two of them is also a transforma-
tion of the same form. Hence the totality of transformations
of this form constitutes a group; and this group induces a
permutation group on the named p™ + 1 symbols.

The order of the transformation group is readily determined.
If ¢ = 0 we may take d = 1 without loss of generality ; then we
obtain the p*(p™ — 1) transformations employed in the previous
section. If ¢ > 0 we may take ¢ = 1 without loss of generality.
Then @ and d may range independently over the p™ marks of the
field, while for each pair of values of ¢ and d the symbol & may
take just p™ — 1 values, since ad — bc = 0; thus, when ¢ 0
we have just pm-p"(p™ — 1) transformations. Adding this
number to the number of linear transformations, we obtain the
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sum (p"+ 1)p™(p™ —1); and this number is the order of the
transformation group.

Now the corresponding permutation group G on the p"+-1
symbols is transitive, since it is transitive on the symbols ex-
clusive of o and contains the element x’ = 1/x which replaces
o by 0. The largest subgroup of G each element of which leaves
oo fixed is the doubly transitive group described in the preceding
section. Hence we have the following theorem (generalizing a
result obtained in § 40) :

XXVIII. For every prime p and positive integer
n there exists a triply transitive group of degree
p"+1 and order (p" + 1)p™(p™ — 1) which contains
a cyclic subgroup of degree and order p" — 1.

69. Certain Doubly Transitive Groups of Degree p” Let us
consider the totality of transformations of the form

¥ =ax** +b, (@#0;t=0,1,---, n—1)

where a and b are marks of the GF[p™] and x and x’ are variables
running over the marks of the GF[p~]. It is easy to see that
each of these transformations induces a permutation on the
marks of the field, that the product of two transformations in
the set is a member of the set, and hence that these transforma-
tions form a group which induces a permutation group G of
degree p™ on the marks of the field. It is evident from § 67 that
this group is doubly transitive and that its order is p*(p™ — L)n.
The elements W=z tl, *=wr, x =17,

where w is a primitive mark of the field, obviously generate the
group G; for the last two generate a group of order (™ — 1)n
which is transitive on the nonzero marks of the field, whence it
follows that the three elements generate the entire group. The
last generator transforms each of the others into itself. There-
fore, if « is any factor of #, the first two of the given generators
and the ath power of the last generate a group which is con-
tained in G as a subgroup of index «, and this subgroup is doubly
transitive. Hence we have the following theorem:
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XXIX. In the GF[p"] the transformations
¥=x4+1 x=owx, x=2x"

where w is a primitive mark of the field and « is a
factor of n, generate a group of order p"(p™ — 1)n/a
whose transformations consist of the totality

¥ =ax*' + b, (a#O;t=a,2a,---,ga)

where ¢ and b are marks of the field. This group in-
duces on the marks of the field a doubly transitive
group of degree p" and order p*(p™ — 1)n/a.

When a = n this is the doubly transitive group of degree
p™ and order pr(p™ — 1) described in Theorem XXVII. We
shall now determine the other doubly transitive groups of this
degree and order contained in the group of Theorem XXIX
for the case a = 1. Such a group contains a regular permuta-
tion group M of degree and order p™ — 1 on the nonzero marks
of the field. It is obvious that the corresponding transforma-
tion group T consists of transformations of the form

¥ =axtt. (=1,2,--,p"—1; 0= ;< n)

Such a transformation replaces the mark x =1 by the mark
x’ = a;. Since M is regular on the nonzero marks of the GF[p™],
it follows that the coefficients a; are in some order the nonzero
marks of the field without repetition

Now the totality of linear transformations in T constitutes
a subgroup of 7'; and this subgroup is contained in the cyclic
group generated by the transformation S,

S: x = wx,

where w is a primitive mark of the field. Then there exists a
least positive integer ¢ such that this linear subgroup is gen-
erated by Se. It is clear that ¢ is a factor of the order p™ — 1 of
S. If o =1 we recover the case of § 67; therefore, in what
follows, we shall suppose that ¢ > 1. Then some of the ex-
ponents f; are positive.
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Let ¢ be the least positive value of ¢; appearing among the
exponents Z; in the transformations of T; and let the transfor-
mation U,

U: x' = ax®’,

be one of the transformations in which ¢; =¢. By taking suc-
cessive powers of U we obtain transformations with the ex-
ponents ¢, 2¢,31,--- on p. Since these are to be reduced
modulo 7 (on account of the equation u?" = for marks of
the GF[p™]), it follows that ¢ is a factor of ». Moreover, since
¢ is the least positive value of an exponent {;, each ¢; must be
a multiple of ¢; whence one concludes that the exponents #;
are t, 21,3t,---. If Ty and T are two transformations in T
with the same value of the exponent {;, then 7,772 is a linear
transformation and hence is in {S°}. Therefore all transfor-
mations in T having a given value of ; are products of the form
T.S1, where S; is in {S¢}. Therefore T is generated by S* and
U. The smallest positive value of A such that U* is in {S°} is
A =n/t. Since T and {S°} are of orders p" — 1 and (p" — 1)/0,
it follows that ¢ = n/¢ and hence that ¢ is a factor of ».

We have now to determine the further conditions on o, {,
and a such that the group {S°, U} shall indeed induce a per-
mutation group of the type prescribed for M. If d is the great-
est divisor of o such that a is a dth power of a mark in the
GF[p™], then every coefficient in {Sv, U} is a dth power. Since
d is a factor of p» — 1 and every mark of the GF[p™] occurs
among the coefficients in the transformations belonging to
{S°, U}, it follows that d=1. Therefore if v is such that
a = w*, we must have v prime to ¢. We may now combine
the transformation U with an appropriate power of S° such that
in the resulting transformation U, of the form U (with the
same value of ¢) we shall have the corresponding coefficient of
the form o', where 0 < ! < ¢ and /is prime to ¢. Then we have

Uie: ¥ = o™ O<l<o;lprimetoo; gt=n)

Then {S°, U} ={S°, U,+}-
The sth power of U, may be written in the form

U 5 = @ta+ptrptte 4p "V ypet
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The least positive value of s for which this is in {S°} is s =n/t
=o¢. In order that the induced permutation group M shall be
regular, it is further necessary that the least value of s for which

14 pt+ p2t4-- <o 4 ple—DE

shall be a multiple of ¢ is s = o, since otherwise at least one
mark of the GF[p*] would occur as a coefficient in two trans-
formations belonging to {S°, Uy }.

When the necessary conditions now obtained are satisfied,
we shall easily show that {S¢, U, ;} permutes the nonzero marks
of the GF[p*] according to a regular permutation group M.
The coefficients in the transformations belonging to {S¢, Ui}
are the marks

Wk« i+ ptpttte s plem DY) *k=12,---,(p"—1)/0;
s=1,2,---,0'—1)

together with the oth power marks appearing as coefficients
in the transformations of {S°}. No two of these coefficients
are equal, since the second exponent on w in the foregoing
expressions is not a multiple of ¢ and no two such exponents
have their difference a multiple of . Therefore no two trans-
formations in {S°, U;.} have the same coefficient, and hence
that group replaces the value 1 of x by every nonzero mark
of the field; whence it follows that {S°, U, .} induces a regular
permutation group M on the nonzero marks of the field.

Since ¢ > 1 it is easy to verify that the group {S°, U} is
non-Abelian; for the equation S~°U,.S° = U,, would imply
that o(p*— 1) =0 mod p™ — 1, and this is impossible, since

o(p'~1) < W=D~ D= =Dt~ < p—1
when o < 2.
Among the results now established we have the following :

XXX. Every noncyclic group T which is con-
tained in the transformation group G,

% =ax* + b, (@=0;¢t=0,1,2,.--,m—1)
where a and b are marks of the GF[p"], subject to
the condition that T shall be of order p" — 1 and
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shall permute according to a regular permutation
group M the nonzero marks of the GF[p"], is a non-
Abelian group {S°, U,}, where ¢ (¢ > 1) is a com-
mon factor of » and p» — 1 such that s =¢ is the
least value of s for which 1 4 pt + p2t + . - - 4 ple—Dt
is divisible by g, where {=n/o; and every such
group {S°, U, ;} is such a group T.

The following corollary is now immediate :

Cor. I. If the elements of {S’, U,,} are the trans-

formations
% = ax®®, ¢t=1.,2,---,p"—1)

then the transformations

X =ax*"+b, (=12,---,p"—1)
where for each value of 7 the symbol b; runs over all
the marks of the GF[p"], induce a doubly transitive
group of degree p™ and order p™(p™ — 1) on the marks
of the GF[p"], in which M is the largest subgroup
each element of which leaves zero fixed.

Cor. II. If n =0t (¢ > 1) and p is a prime of the
form ¢z + 1, then there exists a doubly transitive
group of degree p* and order p"(p™ — 1) whose sub-
groups of degree and order p* — 1 are non-Abelian.

Cor. III. Whenever # and p™ — 1 are not rela-
tively prime, there exist * at least two doubly tran-
sitive groups of degree p" and order p*(p" — 1).

* This is in contradiction with a conjecture of Burnside (Messenger of
Mathematics, 25 (1896) : 147-153; see also the footnote on page 184 of the
second edition of his Theory of Groups) to the effect that, with an exception in
the case when p" = 32, there is always one and just one doubly transitive
group of degree p* and order p"(p™ — 1), and in particular with the cases
n =2 and n =3 in which he offered a supposed proof of the conclusion.
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The existence of one of these groups is asserted by Theo-
rem XXVII of § 67. The existence of another is asserted by
the foregoing Corollary I, as may be seen by taking for o a
common prime factor of n and p» — 1. For if p*t — 1 is divis-
ible by the prime o, it follows that p* = p°* = 1 mod ¢ ; whence
s = ¢ is the smallest value of s for which 1 4 pt + p2* + - . .
+ pt—D¢t is divisible by o.

From this corollary it follows that there are at least two
distinct doubly transitive groups of degree p2? and order
p2(p?2—1) for every odd prime p. (See Ex. 15 on page 152
and Ex. 12 on page 286.) For every p of the form 3 z+ 1 there
are at least two distinct doubly transitive groups of degree p3
and order p3(p® — 1).

70. Certain Doubly and Triply Transitive Groups of Degree
p" + 1. The totality of transformations of the form

t
x'=@%+——é: (ad—bc#0;t=0,1,2,--,n—1)
cx? +d

where q, b, ¢, d are marks of the GF[p*] and x and x’ are vari-
ables running over these marks and the symbol co, constitutes
a group G which induces a permutation group I’ on the p* + 1
symbols involved. It is easy to show (compare § 68) that
the order of G is (p™+ 1)p™(p™ — 1)n and that the induced
group I is a triply transitive group of degree p” + 1 and order
(p™ 4+ D)p™(p™ — 1)n. Moreover, if ¢ is confined to the mul-
tiples of a divisor « of n, then we obtain a subgroup of Gor T’
of index «, this subgroup of I' being triply transitive. The
corresponding doubly transitive subgroups of degree p* are
evidently those defined in Theorem XXIX of § 69. Hence we
have the following theorem:

XXXI. The transformations

t

=3 10 <ad—bc?£0; t=a,2a,--.,ﬁa)
cx? +d @

in the GF[p™] induce on oo and the marks of the field a

triply transitive group T, of degree p™ + 1 and order

" + Dp*(p" — 1)n/a, a being a given factor of 7.
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When p is odd each of these groups I'. contains transforma-
tions having determinants which are not squares of marks in
the field. In such a case just half the elements have determi-
nants which are squares, since the product of an element with
a square [not-square] determinant by one with a not-square
determinant is an element with a not-square [square] de-
terminant. The elements in T',, each of which has a square
determinant, then constitute a subgroup of I', of index 2. It
is easy to see that the elements in such a subgroup may be
written so that ad — bc=1; for if ad — bc = k2, then on re-
placing «, b, ¢, d by k~'a, kb, k~'c, k~'d, we have a transfor-
mation of the named form. Moreover, it is easy to see that
such a subgroup of index 2 in I', induces a doubly transitive
group on the p™+ 1 symbols, since O and o may be replaced by
any given elements A and u respectively by a suitably chosen
element of the group. Hence we have the following corollary :

Cor. When p is an odd prime each of these groups
T'. contains a subgroup of index 2 whose transfor-
mations have square determinants; such a subgroup
induces a doubly transitive permutation group of
degree p™ + 1 and order $(p" + 1)p™(p" — 1)n/a on
oo and the marks of the field.

For the case when # is even and p is an odd prime the per-
mutation group induced by the group I'; of Theorem XXXI
contains one or more additional triply transitive subgroups in
accordance with the following theorem :

XXXII. Let p be an odd prime and # be an even
integer, and let p be any factor of 4 n. Consider the
totality of transformations of the two forms

28p p(28+1)p b
1) = ax”"+ b ) =% ___+0
( ) Cxpzap+d ( ) Cxp(zs+l)p+d

where 2 sp and (2 s + 1)p together run over all the
multiples of p in the set 0, 1, 2, - - -, # — 1 and where
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ad — bc is a square in case (1) and is a not-square in
case (2). These transformations form a group H, of
index 2 in the group I', of Theorem XXXI. This
group H, induces on oo and the marks of the field a
triply transitive permutation group of degree p* + 1
and order (p* + 1)p"(p" — 1)n/p.

That these transformations form a group H, follows from
the readily verified fact that the product of any two of them
is a transformation of the set. It is obvious that H, is a sub-
group of I',; to see that it is of index 2 it is sufficient to ob-
serve that H, contains just half the elements of I', of each of
the forms (1) and (2), a fact which is readily verified. To show
that the permutation group induced by H, on o and the
marks of the field is triply transitive, we observe first that it is
at least doubly transitive, since it obviously contains the sub-
group of index 2 in Tz, described in the preceding corollary.
Then there is an element of the group which takes any two
distinct symbols A and u to zero and oo respectively, and hence
an element which takes any three distinct symbols A, u, » to
0, o, 7 respectively, where ¥ is some symbol distinct from 0
and oo; then there is an element in H, which leaves 0 and o
fixed and replaces # by 1; hence there is an element in H,
which replaces N\, u, v inrorder by 0, o0, 1; and therefore the
induced group is triply transitive. It is now obvious that this
permutation group has the named order.

It is obvious that each of the groups H, contains Hy,.. In
the case of H;, we have a triply transitive group of degree
p~ 41 and order (p™ 4 1)p™(p™ — 1). The subgroup of degree
and order p™ — 1 contained in this group and leaving 0 and
oo fixed is induced by the elements

(1) x =ax, 2) x =ax",

where ¢ is a square in case (1) and a not-square in case (2).
That this subgroup is non-Abelian is readily verified. Hence
the triply transitive group induced by Hj, is different from
the triply transitive group of the same degree and order de-
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scribed in Theorem XXVIII of § 68. But it is easy to verify
that the two groups have a common subgroup of index 2, this
subgroup in each case being induced by the transformations
having square determinants.

From these conclusions we have the following theorem :

XXXIII. When p is an odd prime and # is an
even integer, there exist two triply transitive groups
of degree p* 4+ 1 and order (p"+ 1)p"(p”—1). In
one of these the regular subgroups of degree and order
p™ — 1 are cyclic; in the other these subgroups are
non-Abelian and contain cyclic subgroups of index 2.

We shall now prove the following theorem :

XXXIV. The triply transitive groups described
in Theorems XXVIII and XXXIII are the only
triply transitive groups of degree p™ + 1 and order
(p™ + 1)p™(p™ — 1) contained as subgroups in the per-
mutation group induced by the group I'i of Theo-
rem XXXI.

Let G be a triply transitive group of order (p" + 1)p™(p™ — 1)
contained as a subgroup in the permutation group induced
by the group I'; of Theorem XXXI, and let G be the sub-
group of G which consists of the elements of G each of which
leaves oo fixed. Then G; must contain the cyclic group in-
duced by the transformation x’ = wx, where w is a primitive
mark of the field, or it must contain a group M described in
Theorem XXX.

Now elements exist in G; which are of order p and replace
0 by w and by 1 respectively, where w is a primitive mark of
the field. The corresponding transformations have the form

=Mt ¥=Dk"41,

where u and m are non-negative integers less than z. Since
these must be permutable (Theorem V of § 40) it follows read-
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ily that m=0. Then /=1 and hence /=1. Therefore G,
contains the permutations induced by the transformation
2’ =x 41 and its inverse x’ = x — 1.

Now G contains an element which interchanges 0 and o0
and leaves 1 fixed. The corresponding transformation is of the
form x’ = 1/x*". This transforms the transformationx’ = x —1
into the transformation

= X ']
—x+1
from which r is absent. Forming the product of the transfor-
mations ) L x
= _— =
¥=x+1, x ——x+1’ x=x+1,

we find that the transformation group by which G is induced con-
tains the transformation ) 1

X = — —-

X

Hence G is generated by the permutation which corresponds
to this transformation and any susteble doubly transitive group
G of degree p™ and order p"(p™ — 1).

If G; contains a cyclic subgroup of order and degree p» — 1,
then we have the triply transitive group described in Theo-
rem XXVIII. Otherwise G, contains a group {S°, U, of
Theorem XXX. Since the transformation x’ =—1/x inter-
changes 0 and o, it must transform the last-named group into
itself. Now this transformation transforms U, into the trans-
formation ¥ = w—lxrt,
In order that this shall be in the group {S°, U}, an in-
teger £ must exist such that w!t* = w™!, whence !4 ko
=—{mod p*— 1. Since ¢ is greater than unity and is a fac-
tor of p*» — 1, while 0 < I/ < ¢ and ! is prime to o, the foregoing
congruence requires that we must have ¢ = 2 and / = 1. Hence
G: is uniquely determined by Theorem XXX and its first cor-
ollary. Then G is uniquely determined as the second group
described in Theorem XXXIII. Thus we have established the
given proposition. ,

71. A Class of Simple Groups. We shall now prove the fol-
lowing theorem:
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XXXV. The group consisting of all the transfor-

mations of the form . n b,

Tex+d
where a, b, ¢, d are marks of the GF[p"] such that
ad — bc is the square of a nonzero mark of the field,
is a simple group when p™ > 3.

When p* = 2 or 3 this group has a self-conjugate subgroup
of order p* 4 1.

When p™ > 3 we denote by G either the named transforma-
tion group or the induced permutation group on oo and the
marks of the field. This permutation group is doubly transi-
tive when p is odd and is triply transitive when p =2 (see
Theorem XXXI and its corollary, § 70). Let H be the largest
subgroup of the permutation group G each element of which
leaves oo fixed, and let K be the largest subgroup of H each
element of which leaves zero fixed.

Let P be any element in G other than the identity, and let
L be the group generated by P and its conjugates in G; we
consider L both as a transformation group and as a permuta-
tion group. Since G is doubly transitive, the group L contains,
as a conjugate of P, an element which replaces « by 0. The
conjugates under H of such an element replace « by each
other symbol in G, since H is transitive on its p™ symbols.
Therefore the permutation group L is transitive. Since K is
not the identity, it follows that L has more than one element
replacing o« by 0; if S and T are two of these, then S7T-1
leaves o fixed and is not the identity. Hence the largest sub-
group L, of L each element of which leaves oo fixed is of order
greater than unity. Let Q be an element of L, other than the
identity ; if @ leaves fixed two symbols of G, then a transform
of Q@ by some element in H displaces one of these symbols;
therefore L, is of degree p™.

From this it follows that Z; contains an element R replacing
0 by some other symbol, and hence elements replacing O by
each of the other symbols when p = 2 and by at least half of
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them when p is odd, as one sees by transforming R by the
elements of K. Similarly it may be shown that L; replaces
any mark of the field by the same number of symbols. Thence
it follows that L, is transitive on its p» symbols, since any
transitive set contains all the symbols when p = 2 and at least
2(p™— 1) + 1 of them when p is odd. Therefore L is doubly
transitive. Its order is then a multiple of p». Hence L contains
a Sylow subgroup of G of order p*, and therefore all the Sylow
subgroups of G of this order, since these subgroups form a
single conjugate set. Therefore L contains every element of

order p in G.
In particular, L contains the transformation 1’ = x + « and
the transform of x’ = x— 3 by x2’= — 1/x, where « and 8 are

any marks of the field. Then L contains the product of these
transformations, namely,
5 = x+a

Bx+af+1

Then it may be shown that L contains the transformation
x' = w2x, where w is a primitive mark of the field; for this
purpose take the product of the two transformations gotten
from the foregoing by putting a =— w1, 8 =w — 1 for one
and a =1, 8= w™!—1 for the other. Since L is doubly tran-
sitive and contains this transformation, it follows that L co-
incides with G. Hence G is a simple group. The theorem is
therefore established.

XXXVI. Let T and S,, where ) ranges over the
p™ marks of the GF[p"], be abstract elements subject
to the sole defining relations

T2 = 1, S() = 1, s;sa = Sp+¢n [1]
TS -1 TS-pu-0TSr-1 TS, TS, =1, [2]
Au—1 Au—1

where p, ¢, A\, u range independently over all the
marks of the field except that Au > 1. Then the ab-
stract group I generated by these elements is simply
isomorphic with the group G of linear fractional
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transformations in the GF[p"] whose elements have
their determinants equal to squares of nonzero marks
in the field.

We shall denote this linear fractional group by LF(2, p").
By means of the concrete forms,

T: x'=—-%; S,: ¥=x+4p,

of T and S, it may be verified directly that the given defining
relations are consistent. That G is the group generated by
these concrete elements may be seen by observing that co and
the marks of the field are permuted according to a doubly
transitive group and then employing the argument used in
the last paragraph preceding the theorem. Therefore, in order
to prove the theorem, it is sufficient to show further that the
order of T is not greater than that of G.

For this purpose we consider the following sets of elements

inT': TS,TS.TS,, Sa-1TS.TS.,,  (a 0) [3]

where o, a, 7 run independently over all the marks of the field
except that a = 0.

We shall first show that these two sets contain all the ele-
ments of I' by proving that the elements in these sets are
permuted among themselves on multiplication on the left by
T and by each of the elements S,.

On multiplying the second set on the left by T we obviously
have part of the first set. If in the first set we take ¢ = ™1
and then multiply on the left by T we obtain the second set.
When ¢ a~! the first set, when multiplied on the left by
T, gives rise to the elements

S,TS4TS.. (e # 1; a=0) (4]

If in [2] we take A = — ¢, u = — « and solve for S, 7S.TS,, we
obtain these elements in the form of elements in the first set
in [3]. Hence the elements [3] are permuted among themselves
on multiplication on the left by 7.

Since So = 1, we next multiply on the left by S,, with p # 0.
The second set in [3] then gives rise to the set S,;o-17S.TS:;
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this is of the type [4], since ap > 0, and hence the set is in the
first set in [3]. Then consider the elements

S,TS,TS.TS,

obtained by multiplying the first set in [3] on the left by S,.
When a0 # 1, we put

u=1l—ac and A=

l—«
1—-ao

and then obtain from [2] the relation
S, TS,TSaT - S:=S,+S_1-a TSay_1TSs-1 - S,

l—ac l-ac

== S 1-a TS.,,_l TStr+1— l—aot.

1—ac T 1-as

When (p— 11 )(aa-— 1)

is different from 1, the last member is of the form [4] and
hence is in the first set in [3]; when this product is 1, the last
member is of the form of the second set in [3]. Hence the
named multiplication of the elements [3] by S, permutes these
elements when ao # 1.

In the excluded case ¢ = a~! we have to consider the prod-

uct elements S,TSaniTS.TS..

We shall prove that these elements belong to the first set in [3]
by establishing the equation

S,TSa- TSaT = TSa-1TSaTSpa-2. [5]
We consider separately the two cases p= a and p =
When p= o we put A= pa~2 and p=a in [2] and thus
obtain the equation
TS a-1 TS_(a-1-1yTSa-1-1 T - TSq-1TSeTS,e-2 =1,

pa—1-1 pa—1-1
as one easily verifies by replacing 72 by 1 and then combining
the two adjacent $’s. Thence it follows that [5] is verified if
the following relation is true:

TS a1 TS_(pa-l I)TSa_l 1- T'S,,TS‘,—xTS,,T=1.

pa~1-1 pa—1-1
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Taking A =a~! and u = p in [2], one readily verifies this
relation.

Taking p=« in [5], we interchange the members of the
equation and make obvious reductions to obtain the following
relation to be established :

S_oTSa~1TSeT = TSa-1TSaTS_a-1. [6]

This is relation [5], with p = — «, and hence it is established
by the argument in the foregoing paragraph when — a7 a.
Since a0, it follows that [6] is established except when
p =2. But we may write [6] in the form

Sa-1TSeTSe-1T = TSaTSe-1TSa.

This is the special case of [5] when « is replaced by «~! and
p=oa"1; and hence the relation is established except when
a-l'=a and p=2; but in this case we have a=1. Then
[6] follows from the fact that (7'S;)3 =1, a relation which fol-
lows from [2] by taking A=1 and u=0.

Therefore all the elements of I" are in the sets [3].

Now in [3] ¢ and 7 may range over the p™ marks of the field
and « over all these marks except 0. Hence the number of
distinct elements in the sets [3] is not greater than

Pt —1) +prp~—1) = (pm+ Lp™(p"—1). [71
When p = 2 this is the order of G; and therefore I' and G are
simply isomorphic when p = 2. When p > 2 the order of G is
just half the number in [7], while the order of I' is a multiple of
that of G and is not greater than the number in [7]. Hence G
and T are simply isomorphic when p > 2 in case it is true that
two notationally distinct elements in [3] represent the same
element of I'; and this is true of the two elements

TSl T51T51 and TS_lTS_lTS_l,

since these are notationally distinct when p > 2 but both denote
the element 1 since (7S;)3 = 1, as we have seen, whence (S_,7T)3
=1and (TS_;)®=1. Hence I and G are simply isomorphic in
all cases.

When 7 =1 the group G is generated by two elements of
orders 2 and 3 respectively; and in terms of such elements an
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abstract definition of considerable interest may be given as in
the following theorem :
XXXVII. Let p be an odd prime, let p be a primi-
tive root modulop, and let o be such that pe=1mod p.
In terms of two abstract elements 7 and S define R
by the relation
R = T(TS)*T(TS)°T(TS)".
Then if T and S satisfy the sole defining relations
T2 = 83 = (TS)? = R~Y(TS)"1R(TS)”
=R~ T(TS)"T(TS)"T(TS)” =1,
for v=2,3,---,p—1, they generate an abstract
group {S, T} which is simply isomorphic with the
group G of linear fractional transformations of de-
terminant unity in the GF[p]. '

Consider the concrete elements

t: »==1 and s: x’=x_1;
x x
then we have s x¥=x+1
Form 7, r=l(Is)et(ts)°t(ts)>: x' = px.

Then it is easy to see that {s, ¢} is the group G of order
3+ 1Dp(p —1). Moreover, s and ¢ satisfy the conditions on
S and 7T in the theorem, as one may readily verify; whence it
follows that {S, T} is simply isomorphic with {s, ¢}, or G, if it is
true that the order of {S, T} is not greater than (p+1)p(p—1);
and we shall establish the theorem by showing that this condi-
tion is indeed satisfied.

Let H be the subgroup {R, TS}. From the given conditions

we see that (TS)» =1, R-Y(TS)R = (TS)~".

Taking v = %(p — 1) in the conditions of the theorem and re-
membering that pt®—V = — 1 mod p, we find that

R¥—1D =1,
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But 7 and #s are of orders 4#(p — 1) and p respectively; and
therefore these are the orders of R and 7S. The conditions now
established for R and TS imply that H is of order % p(p — 1).

Now consider the p + 1 sets of % p(p — 1) elements each,
namely :

HT, HST).. (=0,1,---,p—1)

These are distinct, since the corresponding elements of {s, t}
are distinct. Now HT: ST =HTS-T=HT, H(ST)!- ST =
H(ST)*!; hence these sets are permuted among themselves
on multiplication on the right by ST. That they are also per-
muted among themselves by multiplication on the right by T
follows from the relations

HT-T=H=H(ST), H-T=HT,
H(ST)?T = H(ST)” T(ST)”(TS)? (TS)~*"(ST)~
= HT(TS)" T(TS)” T(TS)” - (TS)~*(ST)~"
= HR*(TS)-*"(ST)~"
= H(ST)~".
Hence these p 4 1 sets contain all the elements {S, 7}. There-
fore the order of {S, T} is not greater than ¥(p + 1)p(p — 1), a

proposition from which the theorem follows, as we have already
seen.

EXERCISES
1. Show that each of the groups LF(2,5) and LF(2, 22) is simply
isomorphic with the alternating group of degree 5.

2. Show that LF(2, 32) is simply isomorphic with the alternating
group of degree 6.

3. Show that the fourfold transitive group of degree 11 and the
fivefold transitive group of degree 12 are both simple groups. (See
Ex. 12 on page 151.)

4. Show that Mathieu’s fivefold transitive group of degree 24 and
the fourfold and threefold transitive groups of degrees 23 and 22 con-
tained in it are all simple groups. (See Ex. 9 on page 164.)

5. Show that the totality of linear transformations of the form
xi=ax1+ bixz + cxs (t=1,2,3)
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in the GF[p™], with nonzero determinants A,

a b o
az b2 C2
as b3 C3

A=

constitute a group and prove that its order is
@%" = 1)@ — p™)(p*" — p*7).

[SUGGESTION. Show first that the number of transformations leaving
x, fixed is (p™ + 1)p™(p™ — 1)2p2", and then that x; may be changed
by the elements of the set into just p3” — 1 distinct linear functions
Axy + pxz + vxs.)

6. Show that the totality of linear homogeneous transformations
of the form pr'i=axi+bxe+cxs (1=1,2,3)
in the GF[p"], with nonzero determinants A (see Ex.5), constitute
a group of order

group (p3" — 1)p2n(p2n — 1)p™.

If the determinants are further restricted to be cubes of elements
in the field, show that the resulting transformations form a subgroup
(denoted by H(3, p*)) whose order is

€ — Dp(p* — 1)p",
where € is 1/3 or 1 according as p™ — 1 is or is not divisible by 3.

7. Consider the p2"+ p»+ 1 distinct symbols (N, u, »), where
A, u, v range independently over the marks of the GF[p*] except that
they are not simultaneously zero, and where (A, u, ») and (p)\, pu, pv)
are considered identical if p is a nonzero mark of the field. Show that
these symbols are permuted by the group H(3, p*) of Ex. 6 according
to a simply isomorphic doubly transitive group of degree p2* + p» + 1

and order e(p2” + pn + 1)@27; + pn)pZn(pn _ 1)2,
where e =1/3 or 1 according as p™ — 1 is or is not divisible by 3.

8. It is known that the group H(3, p) of Exs. 6 and 7 is simple in
all cases. Verify this for the cases in which the order is less than
1,000,000; that is, for p» =2, 3, 22, 5. Show that H(3, 2) is simply
isomorphic with LF(2, 7), and that H(3, 22) is not simply isomorphic
with the alternating group of degree 8. [SUGGESTION. Show that the
elements of order 2 in H(3, 22) form a single conjugate set, while this
is not true of the alternating group of degree 8.]
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9. Dickson (Linear Groups, pp. 309-310) has given a list of the 53
known simple groups of composite orders less than 1,000,000. By
means of the foregoing exercises and of Theorems XXXV of § 71 and
IX of § 42 form a list of 48 of these simple groups. Then complete
a list of 53 by establishing the following five propositions :

(1) In the case p™ =32 just 28 of the symbols (A, u, ») of Ex.7
satisfy the equation At + ut+ »*=0. The largest subgroup of the
group H(3, 32) of Ex. 6 which permutes these among themselves in-
duces on them a doubly transitive group of degree 28 and order
28 - 27 - 8, and this group is simple.

(2) In the case p™ =24 just 65 of the symbols (A, u, ») of Ex. 7
satisfy the equation N5 + w® + »»=0. The largest subgroup of the
group H(3, 24) of Ex. 6 which permutes these among themselves in-
duces on them a doubly transitive group of degree 65 and order
65 - 64 - 15, and this group is simple.

3) In the case p™ =52 just 126 of the symbols (A, g, ») of Ex. 7
satisfy the equation A6+ ué+ »86=0. The largest subgroup of
H(3, 5%) of Ex. 6 which permutes these among themselves induces
on them a doubly transitive group of degree 126 and order 126 - 125 - 8,
and this group is simple.

(4) In the GF[22] just 45 of the symbols (A, u, ¥, p), where N, u, », p
are not simultaneously zero and (\, u, », p) = (6\, ou, ov, op) if
o= 0, satisfy the equation A3+ u®+ 13+ p®=0. Show that the
totality of linear homogeneous transformations of the form

4
ax'; = 2 aiXi (1 = 1’ 2r 3! 4)
j=1

in the GF[2?], and of nonzero determinant, each of which permutes
these 45 symbols among themselves induces on them a transitive group
of degree 45 and order 25920, and prove that this group is simple.

(5) Consider the totality of transformations

4 4
*i= 2 a;ixi, yi= 2 a;iy; (i=1,2,3,9
j= =1

of nonzero determinants, in the GF[22], each of which leaves formally
invariant the function y.%; + ¥1%2 + yaxs + ¥sx4. Show that this
totality constitutes a simple group of order

979200 = (28 — 1)26(2¢ — 1)22 = 256 - 255 - 15.

10. Show that each of the 53 known simple groups of composite
order less than 1,000,000 (see Ex.9) is simply isomorphic with a
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multiply transitive permutation group, with the possible exceptions
of the groups named in parts (4) and (5) of Ex. 9.

11. Prove the existence of two triply transitive and four doubly
transitive groups of degree 28, and of four triply transitive and three
doubly transitive groups of degree 65.

12. Show that there are three and just three doubly transitive
groups of degree 49 and order 49 - 48.

13. For every positive integer L and prime p there exists a positive
integer n such that the number of triply transitive groups of degree
p"+ 1 is greater than L.

14. For every positive integer L there exist a prime p and a positive
integer #z such that the number of doubly transitive groups of degree
p™ and order p*(p™ — 1) is greater than L. [SUGGESTION. Let # be a
product of suitably chosen distinct primes and take p to be of the form
nx 4+ 1. Use Theorem XXX and consider the centrals of the groups
whose existence is asserted by that theorem.]

15. For every integer m greater than 2 prove, by aid of the GF[22],
the existence of a non-Abelian group of order 3™ which contains an
Abelian subgroup of order 3»~! and type (1, 1, - - -, 1). [SUGGESTION.
Let the Abelian subgroup of order 3! consist of the transformations

pxi=ax;fori=1,2, -, ml]

MISCELLANEOUS EXERCISES

1. If w is a primitive mark of the GF[p™], show that w, w?, w?? - - -,
wP™! are roots of the same irreducible equation of degree » and with
integral coefficients.

9. If w is a primitive mark of the GF[p"] satisfying the equation
W™ = 10" ! + c2w™ 2+ - - - + ¢,, where the coefficients c; are integers,
and if we define the sequences %, u:1¢), ug"), us®, - - - by means of
the relation o _ , n—1 4 5 D=2 ... 44,0,
where the «.9 have integral values, show that we have modulo p
the relations, o 1@ = 12,0 + 4, P,

Uz 1D = cot,V + u,®,

u,+1(”'l) =c, —lux(l) + uz(n)’
uz+l(") = c”ux(l),
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and that for 0 =x <7 we have ., equal to zero except when
x = n — 1, in which case the value is 1. Show, moreover, that each of
the functions u. of x satisfies modulo p the recurrence relation

Uzyn = C1lUz4n-1 + v + Crn—1Uz+1 + Cnlly
8. Consider a recurrence relation of the form
Usin=CllUzpn—1+ "+ Co1Uzy1 + Cnliz x=0,1,2,.--3

in which the coefficients ¢; are integers belonging to the set
0,1,2,---, p—1, where p is a prime; and let . (i=1,2,---, %)
be the solution satisfying the initial conditions %, =0 forO0=x<n
except that #,(»~? =1, Let R, be the least non-negative residue
of .9 modulo p. Suppose that ¢,> 0. Show that the sequence
Ry, R@, R, ... is periodic for each ¢ of the set 1,2, - - -, #, and
prove that for just ¢(p™ — 1)/n sets ¢, €3, -+, €, the period of each
of these sequences is p™ — 1.

4. Let F,(x) be the polynomial with leading coefficient unity whose
roots are the primitive nth roots of unity without repetition. Let
b1, b2, - - - by be the distinct prime factors of #». Show that

(xr—=1) - II (xn/ 7?5 — 1) - II(x"/ PiPiPgPr — 1) . .« -
M(xn/?i — 1) - I(x»/??Pk — 1) -+ +

where the products II are taken for all the combinations of distinct p’s

in the numbers indicated, each product II in the numerator referring

to an even number of the p’s and each one in the denominator to an

odd number of the p’s. Thence show that the coefficients in the

polynomial F,(x) are integers.

5. With the notation of Ex. 4 show that
1 —1=TFy(),
where the product II is takén for all divisors d of #.

6. Show that the irreducible factors modulo p of x?" — x are x and
the irreducible factors modulo p of the polynomials F.(x) (see Ex. 4),
where 7 runs over the divisors of p™ — 1.

7. In the GF[p"] there exists a mark p such that F,(p) =0, 7 being
any factor of p» — 1 (see Ex.6). A mark p such that F,(p) =0 is of
order 7. It is therefore primitive when and only when r = p» — 1.

8. Let w be a mark of the GF[p™] satisfying the equation
A)=x"+aix*14+..-4+a,=0,

Fp(x) =

’
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where the a; are integral marks of the field. A necessary and sufficient
condition that w shall be a primitive mark is that A(x) shall be a
factor modulo p of Fyn_1(x) (see Exs. 4-7).

9. Let g1(a, B) and g:(e, B) be the polynomials
a =101, 4o, 5= AO=U@, (10) =F, )

where a + b = — a and ab = 8. Show that a necessary and sufficient
condition that the polynomial x2 + ax + 8 with integral coefficients
shall be irreducible modulo p and shall have for a solution in the
GF[p?] a primitive mark of that field is that both g;(«, 8) and g(«, B)
shall be congruent to zero modulo p. . (See Exs. 4-7.)
10. Show that a necessary and sufficient condition that the se-
quences in Ex. 3 shall have modulo p the period p» —1 is that
X" — clxn—l —_— chn—2 — e —=Cp
shall be a factor modulo p of the polynomial F,» _;(x) (compare Ex. 4).
11. Let p and ¢ be odd primes such that p=2¢+ 1. Let g be a
primitive root modulo p; and let m and # be primitive roots modulo g.
Let B be any odd integer. Let x, ({=0,1, 2, - . -, p—1) be a set of
p letters. Consider the transformations
S: v=t+1,
So: = %{(gﬂ(p—n)tn—m + l)lm — (gp(p—n)tn—m — 1)tm+q}
in the GF[p] and the permutations S and S, induced by them on the
x’s. Let S, =S"%S,S* (k=0,1, ---, p—1). Show that each permu-
tation S, leaves three x’s fixed while each x is left fixed by just three
of the permutations So, Sy, - - +, Sp_1.

12. When p =11, g=m=n =2, $=3, show that the permuta-
tion group {S, So} of Ex. 11 is the Mathieu fourfold transitive group
of degree 11.

13. In the same case (Ex. 12) show that {S, Sy2} is the doubly
transitive group of degree 11 and order 11 - 10 - 6.

14. When p =23, g=—2, m=n=2, 8=1, show that the per-
mutation group {S, So?}, and hence {S, So} of Ex. 11, is the alternat-
ing group of degree 23.

15. When p =23, g=5, m=n =2, 8 =1, show that the permu-

tation group {S, So2} of Ex. 11 is the Mathieu fourfold transitive
group of degree 23.




CHAPTER X

Groups of Isomorphisms of Abelian Groups
of Order p" and Type (1, 1,- ., 1)

72. Analytical Representation of Elements and Subgroups. Let
G+ Or G, be an Abelian group of order p*+r and type
1, 1,---,1), where p is any prime and 2+ 1 and » are any
positive integers. We shall represent the elements of G and
certain subgroups of G by a sort of “systems of co-ordinates”
based on the Galois field GF[p"], thus generalizing certain rep-
resentations employed in § 29.

Let us denote a particular set of (¢ + 1)n independent gen-
erating elements of G11y. by

Qo1, G2, Qo3, * * *y QOny
a1, 12, A13, * * *, G1n,

Qi1s k2, Qk3, ° * *y Ckne

Then any given element in G may be written uniquely in the
form

k

S LR S
[Ia" a2 am,
i=0

where the exponents s are integers taken modulo p. The ele-
ment denoted by this product for a fixed set of exponents s
will be represented by the symbol

{l-"Oy M1y M2y © c 0y Mk}’

where u; ({=0, 1, 2, - - -, k) denotes that mark of the Galois
field GF[p*] which may be written in the form

Mi = S + Sipw + Sizw? 4+ - - 4 Sipw™ 7Y,
w being a fixed primitive mark of GF[p~]. This correspondence

of elements and symbols is unique in the sense that to each

element there corresponds a single symbol and to each symbol
289
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there corresponds a single element. The marks u; in the sym-
bol {uo, m1, - - -, ux} are obviously analogous to nonhomogene-
ous co-ordinates, while the elements of G represented by these
symbols are analogous to points in a Euclidean space of 2+ 1
dimensions.

For the multiplication of these symbols, corresponding to
the multiplication of elements in G, we have the following obvi-
ous formula:

{mo, p1, -« - i} {wo, w1, -+, v} = {wo+vo, pr+ v1, - -, g+ vi}.

Now suppose that wo, p1, - - -, s is any fixed set of 241
marks of GF[p~], at least one of them being different from
zero; and consider the set of elements

V{MMOs MM1y * - ey ”'Mk}y
where p is a variable running over the p™ marks of GF[p*]. It
is obvious that the p™ elements in this set are all distinct.
Moreover, the product of any two of them is in the set, as one
sees immediately from the law of multiplication and the prop-
erties of the marks of a Galois field. This set of elements
therefore constitutes a subgroup of G of order p*. The elements

{wiﬂo, wilu'lv Tty wi“k} (i= 09 1: 2’ ey — 1)
constitute a set of independent generators of this subgroup.

If ¢ is any nonzero mark of GF[p™], the same subgroup consists
of the set of elements

{MO’}J.O, MO ML, « -y #a“k}y
where u varies as before. The subgroup itself may therefore
be represented by the symbol

(MO’ M1, ° 0y /“k)s

where wo, M1, - - -, Mz are interpreted as the ‘‘homogeneous
co-ordinates”” of the subgroup. On multiplying each of the
co-ordinates by one and the same nonzero mark of the field, we
have merely proportional homogeneous co-ordinates of the same
subgroup. To each ordered set of co-ordinates, at least one of
them being different from zero, there corresponds a subgroup of
G of order p». [The geometric interpretation which is implicit
here will be developed in the next chapter.]
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The number of subgroups in the total set denoted by
(uo, i, - - -» ux) for varying sets of u’s is readily determined.
The symbols u may be chosen independently, each in p™ ways,
except that they cannot all be zero in any given set. Hence
the number of choices is p*+D» — 1. To obtain the number
of subgroups we must divide this by the number p™ —1 of
possible factors of proportionality in the various notations
for the same subgroup. Hence the number of subgroups

(“0, M1, * 00y Mk) is
p(k+l)n -1
o1

Once G has been given, this selection of subgroups depends
on two things: the ordered set of (k-4 1)n independent gen-
erators and the primitive mark « by means of which the
marks u; were first introduced. With reference to this selected
basis of determination we shall call the set of subgroups just
determined a geometric set of subgroups. The reason for this
terminology will appear in the next chapter. By means of
other sets of generators and other primitive marks we might,
in cases not too restricted, select other geometric sets of sub-
groups of G. Since we shall have no occasion to change the
basis in any particular discussion, we shall speak of the fore-
going geometric set of subgroups without reference to the basis
on which it has been defined.

For the case when n =1 a geometric set of subgroups con-
sists of all the subgroups of order p.

No two subgroups of a geometric set of subgroups have any
element in common except the identity, as one readily shows
by means of the symbols which represent their elements. More-
over, any given element of G occurs in some subgroup of a
geometric set, as is obvious from the way in which such a set
is defined.

73. The General Linear Homogeneous Group GLH(k + 1, p™).
Let us consider the totality of linear homogeneous transforma-
tions

»oor 1+prprt -+ pin.

k
= aux, (E=0,1,2--.k)
j=0
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where the coefficients a;; are marks of the GF[p~] such that the
determinant |a;| is different from zero. The product of any two
of these transformations is in the set, whence it follows readily
that the totality constitutes a group. It is called the general
linear homogeneous group on % 4 1 variables with coefficients
in the GF[p~]. We shall denote the group by GLH(k + 1, p*)
and its order by GLH[k+ 1, p™].

Let us determine the order of this group. The number of
distinct linear functions aoxo + aix1 + - - - + ayx; by which the
transformations of this group can replace xo is p*+D» —1, since
the coefficients may be chosen independently, each from the p»
marks of GF[p™], except that they cannot all be simultaneously
zero. Let Ry, Ry, - - -, Ry be all the transformations in the group
each of which leaves xo fixed, and let T be any transformation
of the group. Then the transformations TRy, TR, - - -, TRy all
replace xo by that linear function by which T replaces xo. If U
is any transformation in the group which has the property of
replacing xo by the same linear function as that by which T re-
places xo, then T-1U leaves x fixed and hence is some R; so that
U= TR;, and hence Uis in the set TRy, TRz, - - -, TRy. There-
fore the order of GLH(%k + 1, p™) is

GLH[k+ 1, p"] = N(p*+Dm»—1).
The transformations R, have the form

k
x’O = Xo, x’i =z @;iXj, (i= 1’ 2’ MY k)
7=0
where the coefficients a0, @20, - - -, @0 are arbitrary while the
remaining coefficients are such that their determinant is dif-
ferent from zero. Therefore
N = p™*GLH[k, p"],
whence it follows that
GLH[k + 1, p*] = p™*(p*+V™ — 1)GLH[k, p™].
Now GLH[1, p*]=p™— 1. From this fact and the preceding
recursion relation we have
GLH[k+1, p™]
=pnk(p(k+l)n_1)pn(k—l) (pnk_ 1) . pn(pZn_ 1) (pu — 1)
= (D""‘“)—l)(p"(’““) _pn) (pn(k+1)_p2n) e (pn(k-f-l) _plm)'
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If in a particular transformation of GLH(k+ 1, p~) the
symbols xo, %3, - - -, X vary so that {xo, x1, - - -, X} runs over all
the elements of the group Gg.1)» Of the preceding section, then
{xo/, %1, - - -, &'} likewise runs over all the elements of G. The
transformation thus establishes a one-to-one correspondence of
the elements of the group to its elements in some order. The
identity (0, O, ---, 0) corresponds to itself. Moreover, if

{10, p1, - - -, px} and {vo, vy, - - -, v} correspond respectively to
{wo, p'1, -+ i} and {¥'o, ¥'1, ---, ¥}, then the product
{uo + vo, - - -, wx + v} of the first pair of elements corresponds
to the product {u'o+ ¥, - -+, u'x+ ¥’x} of the second pair.

Hence the correspondence of elements brought about by the
given transformation effects an isomorphism of the group with
itself. It is obvious that two distinct transformations effect
different isomorphisms. Hence the group GLH(k+1, p™)
induces a set of isomorphisms of G 1)» With itself, and this set
constitutes a subgroup of the group I of isomorphisms of G with
itself. This is a proper subgroup when and only when n > 1,
since (§ 28) the order of I is

(p¥tvm —1)(p*+n — D) (p*tDn — p2) ... (p*+Dn — ptDn-1)

Let us consider more closely those isomorphisms of G with
itself which are thus induced by GLH(k +1, p™). Let {uo, 1,
..., w} be any element of G other than the identity and let
{0, 4’1, - + -, w'x} be the element to which it corresponds under
a given transformation belonging to GLH(k+ 1, p*). Then
the element {umo, mm1, - - -, e} corresponds to the element
{um'o, up'1, - - -, uu'x} under the same transformation. Hence the
subgroup (uo, i1, - - +, Mx) corresponds to the subgroup (u'o, u'1,

- -, w'x). Therefore every transformation in GLH(k+-1, p*) in-
duces an isomorphism of G with itself such that every subgroup
in the geometric set of subgroups corresponds to a subgroup
of this set. Moreover, the multiplication of each coefficient a;;
in the transformation by one and the same nonzero mark o
of the field gives a new transformation in which the correspond-
ence of subgroups in the geometric set is unaltered, whereas any
other modification of the transformation leads to a different
correspondence of these subgroups.
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Then consider the transformations

k
px’i = 2 Qi Xj, (i= 09 1’ M) k; Iai]’l# 0)
7=o

where two transformations are treated as identical if it is
possible to write them with the same coefficients a.; even though
in order to do this it is necessary to have different values for p.
Then two distinct transformations of this set induce different
correspondences of subgroups in the geometric set of subgroups.
This transformation group, and the simply isomorphic permu-
tation group induced by it on the symbols (xo, %1, - - -, %) for
subgroups, will be denoted by P(k, p~). From the foregoing
paragraph it follows that GLH(k + 1, p*) has (p™ — 1, 1) isomor-
phism with P(k, p™). Hence the order of P(k, p*) is

1 k )
. I i=0(p(k+1)n _pzn)'
As a permutation group on the symbols (xo, 21, - - -, %) the
group P(k, p*) is of degree
1+pr4p2n - - - 4 pin

When k=0 it consists of the identity alone. When & is
positive we shall show that it is doubly transitive. The
transformation

k
px';= 2 AiiX; (#=0,1,---, k; |a;] = 0)
7=0

replaces (1,0,0,---,0) and (0, 1,0, - - -, 0) by
(@00, @10, @20, - - -, aro) and (@01, au1, @21, - - -, 1)

respectively. It is evident that the a’s may be chosen so that
these symbols represent any two distinct subgroups belonging
to the geometric set. Therefore the permutation group is
doubly transitive. That P(1, p") is triply transitive follows
from the readily verified fact that P(1, p") is identical with
the group I', of Theorem XXXI of § 70; or the result may
be easily established directly.
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In the next two chapters the group P(k, p™) will be treated
in detail from another point of view.

74. Analytical Representations of the Group I of Isomorphisms
of the Group G+1n Wwith Itself. Let us now consider the
transformation

n k
¥ =s§1 ];)aij,xjp”_‘ (2 =0,1,2,---,k)

where the coefficients a;;, are marks of GF[p"] such that these
transformation equations have a unique solution for the sym-
bols x; in terms of the symbols ;. (See Ex. 12 on page 305.) If

n k
x',' =s§1 jgob,-j.xj””" (Z‘ = 0, 1, 2, c ey, k)

is a second transformation of the same kind, the product of
the two may be written in the form

Il
M~
)
Py
>3
NN
M=
M-
S
£
3
3
|
&
x®
£
N
2
|
@
d
N

s=15=0 c=1a=0
n k n k 2
n—s n—s—a
= au’sbj)\ap P
e=1A=0s=1 ;=0

a

—9 (i‘_—'ovl’zy"')k)

i
I
(=)
8
R
s
Ej

the o’s being defined in a way which is obvious from a com-
parison of the last two members of the equation in the light of
the fact that x?" = x,. Thus the product of two transforma-
tions of the class in consideration belongs also to the class. The
named class of transformations therefore constitutes a group.
This we shall call the group 7. We shall show that T induces
the group I of isomorphisms of G + 1y» With itself.

Let {u'o, p'1, - - -, w'x} and {¥'o, ¥'1, - - -, ¥/} be the elements
of G +1yn corresponding to {wo, m1, - -+ Me} and {»o, ¥1, - - -, Vi}
respectively, under the given transformation with coefficients
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a.5,. Then under the same transformation we have

M+ ”1—2 zam(ﬂy pre V'pn_‘)

s=1j5=

Hence {#'o-l- Vo, ++, s+ vy} corresponds to {uo -+ vo, - - -, ux+ vic}
under the same transformation. Thence we see that if two
given elements of G correspond respectively to two other given
elements of G under a given transformation belonging to T,
then under the same transformation the product of the first
pair of elements of G corresponds to the product of the second
pair. Hence the transformation sets up an isomorphism of G
with itself. Therefore T induces on G a group which is contained
in the group I of isomorphisms of G with itself. It remains to
be shown that every element of I is in this induced group.

For the latter purpose it is convenient to represent the
group T in a different form. We retain the symbol w to denote
a primitive mark of the GF[p"]. Then any mark of GF[p"]
may be written in the form

Yo+ viw 4+ v2w? 4 - - F Yp1w™ !

where each v, is a mark of the GF[p] and hence is an integer
taken modulo p. Then we may write

n—1 n—1 n—1
X = 2 Eaw?, x;= 2 Eawh, Qijs = 2 it
A=0 A=0 A=0

where the £, £4, aij. are integers taken modulo p. Then the
transformation = of T which has the coefficients a,;, may be
written in the form

n kE n—1 n—1 n—sg
2 E aw) = 2 2 1,,)‘0) < 2 Ej,,w")”
=0
= 2 2 zia)\fjupn_sw"pn—”-x

7 k
2 2 2 2 1]3)\£ijl‘pn-‘+k, (Z.= O’ 1, 2’ ey k)

L

aus(M’J + V])p" ’ (i= Oy 1) 29 ) k)

I Ma-
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Now every power of w can be expressed linearly in terms of
°, w!, w?, -, w1 with coefficients which are integers taken
modulo p, since w satisfies an equation of degree n with coeffi-
cients which are integers taken modulo p. On effecting this
reduction we may write the last equation in the form

n—1n—

2 § i = 2 2 Eamws:uw ¢=0,1,---, k)

w=00=0;=0

where the «;;,, are integers taken modulo p. Equating coeffi-
cients of like powers of w, we have

n—1 &
=22aijﬂ)\£jﬂ’ (i=0911"'?k; )\_—'0,1,"‘,"—'1)
p=0;=0

Thus we have a linear transformation on the (k+ 1)z quan-
tities £,,, the coefficients of the transformation being integers
taken modulo p. Since the x; are uniquely expressible in terms
of the #/;, it follows that the £, are uniquely expressible in
terms of the £, and thence that the transformation on the
£'s is nonsingular. Now the condition that the transformation
on the £'s shall be nonsingular is equivalent to the condition
that the determinant of that transformation shall be different
from zero.

The totality of such linear transformations on the &, is simply
isomorphic with the group I of isomorphisms of G with itself,
as we see from a result in § 73 when # of that section is 1 and
k+1 is our present (k4 1)n. Hence in order to complete the
proof that T induces the whole group [ it is sufficient to prove
that each nonsingular linear homogeneous transformation on
the £, with coefficients in the GF[p] is equivalent to a corre-
sponding transformation in 7.

In order to attain this end let the last foregoing transforma-
tion now be any nonsingular linear homogeneous transforma-
tion on the £a with coefficients which are integers taken
modulo p. Change A to o, in the resulting equation (for fixed o)
multiply both sides by wr, then sum as to ¢ from O to » — 1.
Thus we have the preceding system of equations. From it we
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may go to the one which next precedes provided that we are
able to write

n—1ln- n—1n—

1 1
n—s
@i A,
A=0 u=0

k n &k
> Cjuebpe” =2 >
j=0 s=1j=0

1 1
n=00=0;

(i:O,l,...’k)

where the coefficients a;;, are integers taken modulo p. If we
have this relation we may readily continue the reverse trans-
formations through the equations written till we reach a trans-
formation in the group 7, with the coefficients a.;,, these being
marks in GF[p™]. Hence in order to show that every transforma-
tion on the £;, of the type now in consideration, leads to an
equivalent transformation of the group 7, it is sufficient to prove
the existence of integers a.;, modulo p such that the last fore-
going system of equations reduces to an identity in the £;,. For
this purpose it is necessary and sufficient to show that integers
a:j» modulo p exist such that the equation

n—1 n n—1

n—
2 aijnawv = 2 Zaijs)\wl‘? &4
c=0

s=1A=0
is valid for each set of values of 7, 7, u. Let us write

n-—1

S FO 2 Prosn @’
=0
where the coefficients p,.. are integers taken modulo p. Then
for the existence of the quantities @, it is necessary and suffi-
cient that we have the relations

)
s=1

for every 7, 7, u, o. If 7and j are held fixed, these become 72
equations in the »2 unknown quantities @, (s=1, 2, - -+, n;
A=0,1, ..., n—1). Inorder that they shall have a solution, it
is sufficient that their determinant D shall not vanish modulo p.

In order to prove that D does not vanish modulo p, we show
that we are led to a contradiction if we suppose that D =0mod p.

n—1
Puesn@ijsh = ijpo
A=0
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If D =0 mod p, then integers {, exist, not all congruent to zero
modulo p, such that

n n-—1
EZt.,xmeO. (M o=0,1,---,2—1)

For fixed o multiply both members by «°; then, summing as to
g, we have a result which may be put in the form

"Mg

i: Epmw =0;  (w=0,1,---,n—1)
=0 o=0

or, in view of the definition of the quantities p,

)
s=1

n—1
ta)\w”pn = 0 ’

or

n n—1
2 w“pn—l+)‘<2 tdw)‘) =0. (”’ = O! 1’ B — 1)
s=1 =

Now no given one of the sums in the parenthesis can be zero un-
less every ¢, in that sum is zero. Hence, since not every i is
zero, one at least of these sums in the parenthesis is different
from zero. Then the consistency of the foregoing system of
equations requires that the determinant

1 1 oo 1
w7t w2 2

A = w2pn—1 wzl’n_z .« e w2p
w(n_l)p"_l w(n—l)p"—2 oo @—Dp

shall vanish. But this determinant is, apart from a nonvanish-
ing factor, equal to a product of factors each of which is of the
form

phTe __ p”"’,

(O} w

where « and (3 are distinct numbers from theset 1,2, - - -, n— 1.
Since w is a primitive mark of GF[p"] it follows that no one of
these factors can vanish. Hence A # 0. We have been led to
this contradiction by assuming that D=0 mod p. Hence this
congruence is not valid.
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Summing up the argument, we have the following result :

The transformation group 7, defined at the be-
ginning of this section, induces the group I of iso-
morphisms of G ..1)» With itself, and the two groups
are simply isomorphic.

If G is an Abelian group of order p™ and type (1, 1, - - -, 1),
then we have an analytical representation of the group I of
isomorphisms of G with itself for each factorization of 7 in the
form m = (k+ 1)n. For the group I itself we have the simplest
representation when # =1. The different possible representa-
tions, however, will furnish varying information concerning
certain subgroups of I.

75. On Certain Subgroups of I. When the group 7 of isomor-
phisms of G is written in the form of the transformation group
T of § 74, certain interesting classes of subgroups become obvi-
ous. Let d be any divisor of » and write # = dv». Then in the
typical transformation of T put a,;, equal to zero when s is not
divisible by d. Then the transformation takes the special form

v k
2= D a7 (6=0,1,--, k)
t=1j5=0

The product of this transformation by another of the same form
may be written as a transformation of this form, the method
of reduction being the same as that employed at the beginning
of § 74. The named transformations therefore form a group
T, which is a subgroup of 7. It induces a corresponding simply
isomorphic subgroup of the group I of isomorphisms of G..1)x
with itself. It is obvious that 7, is identical with T.

That the group 7, is equivalent to a corresponding linear
homogeneous group with coefficients in the GF[p?] may be
shown by an easy generalization of the method employed in
the preceding section to establish this fact for the case d = 1.
It is sufficient merely to sketch the argument. By means of a
primitive mark w of the GF[p"] any mark of this field may be
written in the form

Yo+ iw+ -+ y,_10"7Y
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where each v, is a mark of GF[p?]; for these symbols are p*¢ in
number and no two of them represent the same mark, since if
two of them represented the same mark the primitive mark w
would satisfy an equation of order » — 1 at most with coeffi-
cients in the GF[p?], and this is easily shown to be impossible
(by the method used in proving the special case of this result
given in connection with the demonstration of Theorem IX
of § 62). Then we may write

v—1 v—1
=2 taw, Xi= D Eaw, ige= > Gipet,
A=0 A=0 ' =
where the £, £, @in are marks of GF[p?]. The argument
now proceeds in the same way as in the previous case, and we
find that

v—1

”‘—E Za”l‘)\g.‘lm (i=0,1,'°',k;)\=0,1,"',V—1)

p=0;=

where the @;;,, are marks of GF[p?]. Thus a given transforma-
tion in T; may be put into the form just written. Conversely,
any transformation of the latter form may be put into the form
of a transformation belonging to T the method of proof being
that employed in the preceding section.

We have thus exhibited the group T, as a general linear
homogeneous group in the GF[p?].

We shall now determine certain subgroups of I the elements
of which induce correspondences among the subgroups of
G@+1y» Which belong to the geometric set of subgroups. Let
us consider the transformation

k
=Y ayx?  (=0,1,---k)
j=0

belonging to the group T of § 74. On combining this transfor-
mation with the similar transformation

k

x"x 2 ﬁurxj ’ (i= 0, 1’ M) k)
l—
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k
¢
1;!( 2 ,xrxx” )p

we have

k
=

k k
2 2 au'tBj)\rp ‘x"pH"
; =0
)

Yk pH-’ (1 =0, 1, Tty k)

i

where the definition of the v, is obvious and where the ex-
ponent ¢+ 7, when not less than #, is to be reduced modulo 7.

From this it follows that the foregoing set of transformations
constitutes a group I if the coefficients a;;; are marks of GF[p"]
and ¢ varies over the set 0, 1, 2,- .-, — 1. If d is any divisor
of » and ¢ ranges over the multiples of d in the set 0, 1, 2, - - -,
n— 1, we have a subgroup I'; of the group I". Thus we have
a group I'; for each divisor d of n. Evidently I'; is the same
as I We denote by I'y the group in which ¢ has the value 0
alone, this being a linear group.

Now in any particular transformation belonging to T' the
quantities x; enter homogeneously. Hence T’ has (p»—1, 1)
isomorphism with the group of transformations

k
pr'i =2 ayx?,  (=0,1,--, k; t=0,1,---,n—1)
=0

where it is understood that two transformations are to be
treated as identical if the exponent ¢ is the same in the two and
if it is possible to write them with the same coefficients oz,
even though in order to do this it is necessary to have different
values for p. This new group we denote by C(k, p"). The
subgroup corresponding to the subgroup I'; of I' we shall de-
note by Ca(k, p™). The group Co(k, p™) is identical with the
group P(k, p™) introduced in § 73.
It is easy to show that the element

px’i =x? (Z = O’ 1’ Sty k)
transforms Co(k, p™) into itself. Hence C(k, p™) is generated by

this element and Co(k, p™), while Cy(k, p™) is generated by the
dth power of this element and Co(%, p™). Then from the known
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order of Co(k, p™), or P(k, p™) (§ 73), it follows that the order
of C(k, p™) is

p" — H (p+Dn — pin),

It is easy to see that C(k, p™), and hence each C,(k, p™), per-
mutes among themselves the symbols (uo, mi, - - -, px) for the
subgroups in the geometric set of subgroups, and hence induces
on them a permutation group. Such a permutation group we
shall denote by the same symbol as the corresponding trans-
formation group. Since Ci(k, p™) contains P(k, p*), it follows
that Cy(k, p™) is triply transitive when 2= 1 and is doubly
transitive when & > 1.

In the next two chapters the groups Ci(k, p™) will be treated
in detail from another point of view.

76. The Holomorph of G. The set of transformations of the

form .
x’i=xi+ai’ (Z=0’ 1)"‘;k)

where the a; are marks of GF[p"], clearly form an Abelian group
G of order p®*+1» and type (1, 1, - - -, 1). It is therefore simply
isomorphic with the Abelian group Gu.1n. and may be taken
as a representation of it. The group generated by this group
and the group T of § 74 is a representation of the holomorph of
Ga+1n — a fact which generalizes a result obtained in § 29.
The holomorph of G .1)» may therefore be represented by the
set of nonsingular transformations of the form

n k
= 2 zaijsxjpn_s + a;, (Z= 0’ 1, "ty k)
s=145=0

where the @’s are marks of the GF[p"]. The transformation
group so defined will be represented by the symbol H.

It is evident that the group G is a self-conjugate subgroup
of H. It is therefore a self-conjugate subgroup of every sub-
group of H which contains G. In particular, G is transformed
into itself by the group 7, defined in § 76. Hence the group
{T4, G} is a subgroup of H of the same index as that of T in T.
We thus have a ready means of constructing it. An analytical
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representation of {T,, G} is afforded by the set of nonsingular
transformations

v k
#i=Y a4 a,  ((=0,1--- k)

1=15=0
where the a’s are marks of GF[p"] and d is any factor of » and
v=n/d.

Again we may form other subgroups of H in a similar manner
by taking the groups I'; of § 75 and combining each of them with
G. The forms of the analytical representations of these groups
are obvious.

EXERCISES

1. By means of the groups C(2, 22) and P(2, 22) show the existence
of four doubly transitive groups of degree 21, their orders being
21.20-16-9-2, 21-20-16-9, 21-20-16-3-2, 21-20-16-3,
respectively.

2. The powers of the permutation (ABCDEFGHI JKLMNOPQRSTU)
replace the quintuple A4, B, G, I, S by a set of 21 quintuples. Show
that the largest permutation group on the 21 letters each element of
which permutes these quintuples among themselves is conjugate to
the permutation group C(2, 22).

3. The permutation group P(3, 2) is a doubly transitive group of
degree 15 and order 15-14 - 12 - 8 = 5(8!). Prove that this group is
simply isomorphic with the alternating group of degree 8 by showing
that the latter group has a conjugate set of 15 triply transitive sub-
groups of order 8 - 7 - 6 - 4 and that these are transformed by the ele-
ments of this alternating group according to a permutation group
which is conjugate to P(3, 2).

4. Employ the results of the foregoing Ex. 3 in constructing four
primitive groups of degree 15, their orders being 1514 -12.8,
15-14 - 12, 15 - 48, 15 - 24, respectively; show that the first two are
doubly transitive and that the last two are singly transitive. (See
Ex. 10 on page 162.)

6. Prove the existence of at least twelve transitive groups of de-
gree 31.

6. Prove that P(2, 5) is generated by any two elements in it of
order 31, provided that neither of them is a power of the other, and
show that there are 7,198,200,000 such pairs of generators of P(2, 5).
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7. Construct four doubly transitive groups of degree 121.

8. When p is a prime of the form p =2"—1 (v > 2), show that there
exists a doubly transitive group of degree p and order

v—1
H (2v — 29).
i=0
Show that the number of Sylow subgroups of order p in this group is
v—1
oI1 @ -2,
i=2

where p is a factor of p — 1.

9. When p is a prime of the form p = 22" + 1, show that there
exist m + 1 triply transitive groups of degree p, their orders being
P =1 —2)2:, (:1=0,1,2,:---,m
Show that the number of Sylow subgroups of order p in each of these
groups is 3(p — 3)p + 1.

10. Construct at least thirteen doubly (but not triply) transitive
groups of prime degrees less than 1000, no one of them being the meta-
cyclic group of its degree.

11. Construct ten transitive groups of degree 17. (See Ex. 10 on
page 162.)

12. Determine a necessary and sufficient condition on the coeffi-
cients a;;, such that the transformation at the beginning of § 74 shall
have a unique solution for the x; in terms of the x’;. [SUGGESTION.
From the given equations form new equations by successively raising
both members to the pth power, and thus make the determination of
the condition depend on linear equations in the symbols

2 n—=1,
Xiy XiPy XP% <0 4 XP ’

express the condition by means of a determinant.]

13. The Abelian group of order 53 and type (1, 1, 1) has 31 sub-
groups of order 5 and 31 subgroups of order 25; each subgroup of
order 25 contains 6 of these subgroups of order 5; form the 31 sets
of six subgroups thus indicated and show that these sets constitute a
configuration of the 31 symbols such that P(2, 5) is the largest per-
mutation group on these 31 symbols each element of which leaves this
configuration invariant.

14. Formulate and solve a similar problem for the Abelian group
of order 33 and type (1, 1, 1).
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15. Show that there exists a triply transitive group of degree 32
and order 32-31-30-28-24-16. [SuGGESTION. Consider the
group I of isomorphisms and the holomorph of the Abelian group
of order 2% and type (1, 1, 1, 1, 1) and the relation of I to the permu-
tation group P(4, 2).]

77. Doubly Transitive Groups of Degree p” and Order p*(p"—1).
Let G be a doubly transitive group of degree p™ and order
p*(p*—1). Then (Theorem V of § 40) G contains a single
Sylow subgroup H of order p™, and this subgroup is Abelian of
type (1, 1, ---, 1). Let ao, @1, - - -, @m (m = p™ — 1) be the p»
symbols permuted by G. Then H permutes these symbols
among themselves according to a regular group. Hence there
is one and just one element %; of H which replaces ao by any
given symbol a,.

Let us denote by M the subgroup of order p» — 1 in G each
element of which leaves ao fixed. It is a regular group on gy, as,

- -, a@n. Hence there is one and just one element m; of M which
replaces a; by any given symbol a..

Now each element of M transforms H into itself. Hence the
correspondences k; ~m;~1h,m;, where in a particular correspond-
ence j is fixed and 7 runs over the set 0, 1, - - -, m, exhibit an
isomorphism of H with itself. On giving to j the values 1, 2, - - -,
m, we have thus m distinct isomorphisms of H with itself; for
if mj‘lh,mj = m:h;m,, we have h; = (mtm,-‘l)‘lhi(mgm,-"l) and
hence mm;~!=1 and therefore t =j.

The totality of these isomorphisms of H with itself constitutes
a subgroup I; of order m of the group I of isomorphisms of H
with itself. Since m;~1him; = h;, it follows that the isomorphism
induced by m; replaces &, by #;. 1f we represent the isomorphism
(in the usual way) as a permutation on A, ke, - - -, sm, then the
isomorphism induced by m; is transformed by the permutation P,

P=(h0’ hla AR hm>’

Qo, Q1 - * *y Om

into a permutation ¢; which replaces a; by a;.. Now the cor-
respondence m; ~ o, sets up a simple isomorphism between M
and the group consisting of the permutations oy, 02, - - -, Om,
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while both m; and ¢ replace a; by ¢;. Hence the permutations
m;and g; are identical for each ¢ of the set 1, 2, - - -, m; for if m;
replaces a; by ai, we have m; = m;,~m,;, whence ¢; = o, 1o; and
therefore o; replaces a; by a;. Therefore the permutation group
on hy, he, - - -, ham, induced by the group I of isomorphisms, is
conjugate to the group M. Now the holomorph of H contains a
single subgroup of order p™(p™ — 1) generated by I; and H, each
being written in the usual way as a permutation group on #ky,
hi, - - -, hm. This subgroup is transformed into G by the permu-
tation P, since its regular subgroups on ko, %1, - - -, h, and kb, ke,
.« -, hn, are transformed into the corresponding subgroups of G.
Thus we are led to the following theorem :

I. Every doubly transitive group G of degree p*
and order p"(p™ — 1) is contained in the holomorph of
the Abelian group H of order p™ and type (1,1, -- -, 1)
when that holomorph is written in the usual way as a
permutation group. Moreover, the regular subgroup
M of G, consisting of those elements which leave one
symbol fixed, is contained in the group I of isomor-
phisms of H.

Now let I; be any regular group of degree and order p» —1
contained in the group I of isomorphisms of an Abelian group
H of order p™ and type (1, 1, - - -, 1). The holomorph of H has
a (p~, 1) isomorphism with I. Let G; be the subgroup of this
holomorph which corresponds to 7; in the named isomorphism.
Then G, is a doubly transitive group of degree p” and order
p*(p™ — 1), such that its singly transitive subgroup of degree
p» — 1 is conjugate to I .

Hence we have the following theorem:

II. For every regular group I, of degree and
order p™ — 1 contained in the group I of isomorphisms
of an Abelian group of order p™ and type (1,1, ---,1)
there exists a doubly transitive group G of degree p™
and order p"(p™ — 1) containing 7, as a subgroup.
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Let G and G be two permutation groups on ao, a1, - - -, Gm
(m = p™ — 1) each of which is doubly transitive and of order
pr(p™—1), and let them be such that their respective subgroups
M and M of order p* — 1 on @i, as, - - -, an are simply isomorphic.
Let the notation be so chosen that G and G have a common
Abelian subgroup H of order p” and type (1,1, ---,1); and let
h; be the element in H which replaces ap by a;. Let S; be the
element in M which replaces a; by a;; then ;= S;,7'/S;. Let
S: be the element in A which corresponds to S; in M in the
simple isomorphism™postulated in the hypothesis; and let ax; be
the element by which S; replaces a:; then &, = S;~'1S;. Now
the permutation P,

P (ao, a1, iy * *5 Gy )
Qo, G1, A2, ** *y Om

transforms S; into S;, as one sees from the proof of the corollary
to Theorem XII in § 12. Also, P transforms H into itself; for
we have

he; =SS =571 S;hS;71 - S = (S718) T hi(S1SY),

whence it follows that P belongs to the group of isomorphisms
of H (when written on the a’s) and therefore transforms H into
itself. From these results and from the relations G = {H, M}
and G ={H, M} it follows that P transforms G into G. There-
fore G and G are identical as permutation groups.

Hence we have the following theorem :

III. If G and G are two doubly transitive permu-
tation groups of degree p™ and order p*(p™ — 1) whose
regular subgroups of order p™ — 1 are simply isomor-
phic, then G and G are identical (conjugate) as per-
mutation groups.

A doubly transitive group of degree u and order u(u — 1)
exists (Theorem V of § 40) when and only when u is a prime-
power. From the results in this section it follows therefore
that the problem of constructing all doubly transitive groups
of degree u and order u(u — 1) is equivalent to the problem
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of constructing all regular subgroups I; of degree p* —1 con-
tained in the group I of isomorphisms of the Abelian group H
of order p* and type (1, 1, - - -, 1) when this group [ is written
in the usual way as a permutation group. (In § 103 it is shown
that these problems are also equivalent to the problem of
constructing all finite algebras of a certain type.) These equiv-
alent problems have been only partially solved ; it seems to be
difficult to effect a_complete solution.

78. Analytical Forms of M. Employing the notation of the
preceding section, let # = kv, where k and » are positive integers
(either or both of which may be unity). Then (§§ 28 and 74)
the group I of isomorphisms of H with itself is of order

" — D" =Y —p?) - - B —P77)

and is simply isomorphic with the transformation group T of
all transformations of the form

v k
=2 Deux Y, ((=1,2,-k)
s=1j5=1
where the coefficients a;;, are marks of the GF[ p”] such that the
transformation equations have a unique solution for the symbols
x; in terms of the symbols x’;

There are two particular forms of the transformations which
are of special use: the first is that in which k=1, and the
second is that in which » = 1. The advantage of the first lies in
the fact that there is but one variable x (and related variable
#’) and that we have at our disposal the largest possible Galois
field. The advantage of the other lies in the fact that the trans-
formations are linear.

Now we have seen (§ 77) that the group M is simply isomor-
phic with a subgroup I; of 1. Therefore in the case when k=1,
and hence » = , the elements of the group M may be represented
analytically in the form

T;:  ¥=a0%"%  (i=0,12--,p"—2)
s=1

Since the group M is regular, it follows that the mark 1 must be
carried to any given nonzero mark by one and just one trans-
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formation 7;. Hence we may (and we do) suppose the notation
so chosen that

al(t)+a2(l)+~ . -+an(i)=wi. (i=0, 1, 2: DY pn—z)

When v =1, and hence k= », the transformatlons may be
written in the form

n
Sa ¥i=269%, G=1,2---n)
i=1
where o runs over theset 0,1, 2, - - -, p» — 2.

In developing the theory of these groups we shall sometimes
use the transformations 7; and sometimes the transformations
Sea-

79. On Certain Elements and Subgroups of M. The transfor-
mation group T of § 78, when 2 =1 and hence » = », contains
the element x’ = wx of order p™— 1, where w is a primitive
mark of the GF[p™]. Hence T has a cyclic subgroup of order
p*— 1. Now let ¢ (when existent) be any prime factor of
p"— 1 which is not a factor of any p*—1 for 1 = ¢t < n, and
let ¢= be the highest power of ¢ contained in p» — 1. Then
¢~ is the highest power of ¢ contained in the order of 7. Hence
the Sylow subgroups of T of order ¢~ are cyclic. Therefore the
group M contains a cyclic Sylow subgroup of order g-.

This result may be extended. Suppose, if possible, that M
contains a noncyclic subgroup K of order p2 where p is a
prime. If H is transformed by the elements of K, then the
elements of H are permuted transitively in sets of p2 elements
each. So far as one of these sets is concerned, the generators
of these isomorphisms of H may be written in the form

= (auaiz “01,) (@222 - - - G2p) - -+ (@2 - - - Gy),

= (011821 * - * @1)(G12G22 « * - G2) - - - (1,02, " - Gy,p).

Then in P;Ps* the cycle containing ai; is
(@11G144,20142:,3° - G1_i, ,),

the subscripts being reduced modulo p. The identity is the
only element in H left fixed by any of these isomorphisms;
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hence the product of the elements of H in any cycle must be
the identity E. Therefore

a11812 <+, =E,

@11021 ¢ apl = E’

Gtz G_i,=E, (i= 1, 2”",P—1)
Hence

P
an’ H a;; = E, or an*=E.
i,j=1

But this is impossible. Hence M contains no noncyclic sub-
group of order p2. Therefore a Sylow subgroup of order p= in
M contains only a single subgroup of order p; for it contains
a self-conjugate subgroup of order p (Theorem I of § 32) and
hence contains a noncyclic subgroup of order p2 in case there
is in it a second subgroup of order p. Applying Theorems X
and XI of § 86, we conclude to the following result :

I. If M is a regular subgroup of order p~ — 1 in
a doubly transitive group G of degree p™ and order
p(p™ — 1), then the Sylow subgroups of M of odd
order are cyclic and those of even order are either
cyclic or of the sole noncyclic type containing a
single element of order 2.

The part of this theorem which relates to elements of order 2
is extended in the following theorem:

II. The group I of isomorphisms of an Abelian
group H of odd order p" and type (1, 1, - - -, 1), when
represented in the usual way as a permutation group
on the elements of H other than the identity, con-
tains just one element of period 2 which leaves fixed
none of the p” — 1 symbols of I. This element is
therefore self-conjugate in I. The corresponding iso-
morphism of H with itself is that in which each ele-
ment corresponds to its inverse.
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In order to prove this, we represent the group 1, as in § 29,
by the transformations

x'i = 2 QiiXjs (Z. = 19 2: c Y n)
j=1
where the g,; are marks of the GF[p]. Now let the transforma-
tion n
x’. = Za,-,-x,- (1 = 1, 2, ey n)
j=1

be of period 2 and let it leave fixed no element of H except the
identity. The square of the transformation is

? é}a,axs Zj(z%az,,)xs (G=1,2,---,n)

1Yy=1

Since this is to be the identity, we must have

3 s = b= {0117 s
Ao =% = 1 i=s.

'~ Since the identity is the only element of H left fixed by the
transformation under consideration, it follows that the system

> (o —8:)%=0 (E=1,2---,n)
i=1

has no solution except that in which each x; is zero. Therefore
the determinant | a;; — 0;; | is different from zero. Now we have

2 (0tij — 835) (@tjs + 0js) = 2 Qij0tjs — Cis + iy — 045 = 0.
j=1 j=1

Therefore we must have a;, -+ 6;, =0. These conditions uniquely
determine the transformation under consideration to be the fol-

lowing : = — % (=1,2---,n)
From this the theorem follows readily.
The elements of H besides the identity are permuted transi-

tively under transformation by the elements of M, as we have



Isomorphisms of Abelian Groups 313

seen; therefore if P is any element of order p in H and A is
any primitive root modulo p, then there is an element S in M
such that S—1PS= P) Then S?~! transforms P into itself,
while no lower power of S transforms P into itself. Then the
order of S is at least as great as p — 1. But the identity is
the only element in M which transforms P into itself. Hence
S7-1 ig the identity and the order of S is p — 1. Therefore,

III. The subgroup M of G contains a cyclic sub-
group of order p — 1.

Applying Theorem III of §77, we have the following
corollary :

Cor. There is one and just one doubly transitive
group of degree p and order p(p — 1).

This is a special case of the following theorem, which is an
immediate corollary of results in Chapter XIII (see Ex. 11
on page 403):

IV. If a regular subgroup M of order p — 1 in a
doubly transitive group G of degree p™ and order
pm(p™ — 1) is Abelian, then M is cyclic and the group
G is uniquely determined (see Theorem XXVII
in § 67).

80. The Case of Certain Invariant Subgroups of M. Let us
now consider those doubly transitive groups G of degree p" and
order p*(p™ — 1) in which it is true that a regular subgroup M
of degree p® — 1 contained in G has an invariant subgroup of
order ¢# (8> 0), where ¢ is a prime factor of p™ — 1 which isnota
divisor of any p» — 1 for 1 = p < n. For this purpose it is con-
venient to represent the elements of M analytically in the form
T; of § 78, namely :

T #=2a9%""  (i=0,1,2---p"—2)
s=1
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An invariant subgroup of M of order ¢f is contained in a
Sylow subgroup of M of order ¢=. Since such a Sylow subgroup
of M is also a Sylow subgroup of the group I of isomorphisms
of H with itself (in the notation of § 77), and since Sylow sub-
groups of a given order constitute a single conjugate set, it
follows that we may without loss of generality suppose that M
contains any given Sylow subgroup of order ¢+, since any such
case is conjugate to any other such case under /. Now if we
write p™ — 1 = ¢gou and if w is any primitive mark of the GF[p"],
then a Sylow subgroup of I of order ¢~ is generated by the trans-
formation 1’ = w*x. We take this to be a Sylow subgroup of M,
as we may without loss of generality. Then the invariant group
of order ¢f in M is contained in this Sylow subgroup. Hence if
we write pm — 1 = ¢f], it follows that this invariant subgroup of
order ¢? is generated by the transformation x’ = wx.

Let T be a particular transformation 7'; of M and let U be the
transformation ¥’ = w*x. Since {U} is invariant in M, it follows
that 7-1UT = U~ for a suitable value of 7. Hence UT = TU".
Writing T in the form

T: i P 0

we have for UT and TUr the transformations
UT: = auwrr"
$

[l
-

TU: =D a0,

M=

1

s

These two transformations are to be identical. This requires
that nes

s = @GM?" ", s=1,2,--.,n)
Now a, # 0 for at least one s. Let [ be such that a; > 0. Then
we have

W = ", or " TI=D =1, or A(rp™~t — 1) =0mod pn— 1.
Since p"—1=¢f\, we then have 7p*~'—1=0 mod ¢ or

Tpr=p'mod ¢?, or 7 = p* mod ¢f. If a;, = O for ,; > [/, then
we have also 7 = p" mod ¢#, and therefore p* = p* mod ¢#, where
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both I and /; belong to the set 1,2, - - -, ». But this is impossible,
since ¢ is a divisor of p» — 1, which is not a divisor of any p# —1
forl=p<mn

From this it follows that T has the form
2 =ax"

Therefore the transformations 7; are all of the form x’ = ax?’.
Hence all the possible groups M of the class now under considera-
tion (and indeed all those whose transformations are of the last
foregoing form) are contained among those determined in § 69.
There is just one case in which M is cyclic. All possible non-
cyclic groups M are described in Theorem XXX of § 69.

Thus we have a complete determination of all groups G
whose subgroups M have the property stated at the beginning
of the section. That there are other groups G besides those here
determined is shown by the cases p =52 and p~=72. The
theorems of this section yield exactly two doubly transitive
groups G of every odd degree p? and order p?(p? — 1). But for
p*="52 and for p” =72 there are just three groups G (see Ex. 15
on page 152 and Ex. 12 on page 286).

In connection with the determination of certain finite alge-
bras (see our Chapter XIII) Dickson (Gottingen Nachrichten,
1905) has conjectured the following theorem :

Any group G of order p"—1, where p is a prime
and z is an odd integer greater than unity, contains
an invariant subgroup of order a power of a prime g,
where ¢ is a factor of p—1 but not of any pr—1
forl=p <n.

Dickson verified this empirical theorem for all groups of each
of 144 orders of the named form p* — 1. The author has ex-
tended the verification to 15 additional orders. In so far as this
theorem is true, the determination of the groups G is complete.
In fact this determination is complete when the conclusion of
the theorem holds for groups of the named order p™ — 1 which
are restricted to satisfy conditions developed in § 79.
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The determination of groups G is also complete in so far as
the following (extended) proposition is true :

Let K be a group of order p™ — 1, where p is a
prime and # is an integer greater than two (the cases
n =4, 6 being excluded). Then K contains a self-
conjugate subgroup of order ¢° (8 > 0), where g is
a prime factor of p” — 1 but is not a factor of any
number of the form p* — 1 for 1 = p < n.

That pm—1 (in the cases named) always has such a prime
factor ¢ is known from the theory of numbers (see Annals of
Mathematics, 15 (1913), 30-70, especially page 61). The veri-
fications of the next preceding empirical theorem afford 159
verifications of this one. The latter has been verified in 24 addi-
tional cases, no exception having been found. The presence of
the exceptional cases in the theorem as stated indicates that it
is probably not universally true. But it is true in a sufficiently
wide range of cases to be significant for the present problem.

Since these empirical theorems are of interest on their own
account, and since no like theorem in the theory of groups seems
to have been demonstrated, it may be well to record here certain
related empirical results. The principal one is contained in the
following empirical proposition :

Let r and s be real numbers, not both numerically
equal to unity, such that 7 + s and rs are relatively
prime integers. Let » be an integer greater than two.
Let D,(7, s) denote the integer
77— "

D,(r,s) = P

’

and let # be further restricted (see Annals, loc. cit.,
Theorem XXI) so that D,(r, s) shall have at least one
prime factor ¢ which is not a factor of any D,(r, s)
for 1 = p < n. Then a group of order D,(r, s) has a
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self-conjugate subgroup whose order is of the form
¢* (o > 0), where g is a factor of Dy(r, s) subject to
the conditions just named.

This theorem has been verified for 285 orders D,(r, s) and no
case of exception has been found. From certain considerations
arising from the theory of numbers it seems that the most
probable cases of exception are those for which #» = 6. But no
such case of exception has been found.

Another related empirical proposition is the following:

Let 7, s, » have the same meanings as in the fore-
going proposition. Let F, (7, s) = (s*™)P.(7/s), where
P, (%) is the polynomial with leading coefficient unity
whose roots are the ¢ () primitive zth roots of unity
without repetition. Then a group of order F.(r, s)
has a self-conjugate subgroup of order ¢ (a > 0),
where ¢ is a prime factor of F,(7, s) but is not a fac-
tor of n.

This theorem has been verified for 639 orders F,(r, s) and
no case of exception has been found.

For none of these empirical theorems have the verifications
suggested any method of general proof.

Let us next consider those doubly transitive groups G of de-
gree p? and order p2*(p? — 1) in which it is true that a regular
subgroup M of degree p2” — 1 contained in G has an invariant
subgroup of order ¢# (8 > 0), where ¢ is an odd prime factor
of p» — 1 which is not a divisor of any pr—1 for 1=p<v.
We denote by H the regular Abelian subgroup of G of order
p2» and by I the group of isomorphisms of H with itself. If
g= is the highest power of ¢ contained in p” — 1, then ¢% is the
highest power of ¢ contained in the order of I, as one sees by
inspection of the order of I (§ 78).

We now make a further restriction, namely, that the invari-
ant subgroup of order ¢f in M is contained in the group gen-



318 Groups of F inite Order

erated by the transformation x’ = wx, where w is a primitive
mark of the GF[p?r]. If we write p2» — 1 = ¢g#\, then M contains
self-conjugately the subgroup generated by the transformation
x’ = w*x. We denote this transformation by U.

Any transformation T of M may be written in the form

2y
9 y—
T: =2 ax",
s=1

where the coefficients are in the GF[p2’]. An integer 7 exists
such that T-1UT = U’, whence UT = TU". For UT and TU"
we have transformations similar to those denoted by the same
symbols in the earlier part of the section. Proceeding as in
the former case, we show that if @ 0 and a; > 0, then we
have p'=ph4 mod ¢f%. From this relation and the assumed
property of ¢ we see that / and /;, when not equal, differ by ».
Hence T has the form

T: ¥ =t o

Since M is of order p2» — 1 and permutes the nonzero marks
of the field transitively and hence must have just one element
which replaces the mark 1 by any given nonzero mark «?, the
transformations of M may be written in the form

Si: ' = aix”'ﬂ" + 3ixp"’ (@i + Bi=w'; 1=0,1,-- % —2)

The coefficients «; and ; are in the GF[p2+].

We shall now consider all the groups M whose transforma-
tions may be written in the foregoing form S; whether or not
these groups M have the properties employed in arriving at
this form. [If » =1 we have o; =0. Comparing with § 78, one
sees that we have here all cases M of degree p2 — 1.]

Let us consider the set I' of all transformations of the form

. _ n+
A: x' = ax?P"" 7 4 Bx?°,

where « and B range over the marks of the GF[p2’] and ¢ runs
over the set 0,1, 2, - -+, »— 1. The condition on « and S in
order that A shall be nonsingular is that

ap"+l # Bp"+ 1.



Isomorphisms of Abelian Groups 319

Since the product of two transformations of the form A is also
of this form, the set I' constitutes a group. There are » pos-
sible values for o. When a« =0 we have for 8 any one of
p?» — 1 marks; when 8 =0 we have for @ any one of p2» —1
marks; when of8 # 0 we have for « any one of p2» — 1 marks,
while for each o we have for 8 any one of p2» — p* — 2 marks.
Hence the order of T is

% = D@* —p)v.

If ¢ is further restricted to be a multiple of d, where d is a di-
visor of v (» = dd), then the resulting group is a subgroup of I'
of index 8. Each of these groups is in the group I of isomor-
phisms of H. The corresponding subgroup of the holomorph of
H, in its usual isomorphism with I, is doubly transitive. Hence,

For every divisor d of » there exists a doubly tran-
sitive group of degree p2” and order

p(p = V(> - p)d.

The groups M under consideration here are subgroups of the
group I We shall not attempt a general determination of
them but shall content ourselves with applications of the re-
sults attained.

In order to construct a doubly transitive group of degree 25
and order 25- 24, we seek a transformation of order 4 of the

f
orm 2 = ax® + Bx.

Its square (§79) must be 2’ = — x. Hence we have af+ 32
=—1, af(Bt+ 1) =0. These conditions are satisfied by the
transformation

2 = w'2x5 + w?ly,

where w?=w+3. Adjoining the transformations x’ = w8x
and x' = x 4+ 1, we have the required doubly transitive group.

In a similar way one may find doubly transitive groups of
degree p2 and order p2(p2 — 1) when p is a suitable odd prime.
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EXERCISES

1. By the method of § 80 construct three doubly transitive groups
of degree p? and order p2(p2 — 1) for each value p of the set 7, 11, 23.

2. Determine all the doubly transitive groups G of degree » and
order n(n — 1) for which n» < 81.

3. Show that there is just one doubly transitive group G of degree
p™and order p*(p™ — 1) when p™ = 27, 29, 211 213 217 219 35 37 39 313,

4. Show that there are just two distinct doubly transitive groups
of degree 81 and order 81 - 80. Show that each of them has a cyclic
Sylow subgroup of order 16.

5. Prove the existence of at least seven doubly (but not triply)
transitive groups of degree 81.

6. Show that there are just 2” + 1 conjugate sets of elements in
the triply transitive group of degree 2 + 1 and order 27+ 1)27(2»—1) -
whose regular subgroups of degree 2" — 1 are cyclic.

7. Show that the symmetric group of degree 8 contains 30 triply
transitive subgroups of degree 8 and order 8 - 7 - 6 - 4 and that in the
alternating group of degree 8 these subgroups fall into two distinct
conjugate sets of 15 each.

8. Show that the alternating group of degree 8 may be represented
as simply isomorphic with a transitive group of degree 15 in such a
way that the subgroups each of which leaves just one symbol fixed
constitute one of the conjugate sets of 15 subgroups mentioned in
Ex. 7 while the other set of 15 subgroups of order 8-7-6-4 are
permuted in two transitive sets of 7 and 8 symbols respectively.

9. When the alternating group of degree 8 is represented as a
transitive group of degree 15, as in Ex. 8, show that there is a set of
seven of the 15 symbols which takes only 15 values under the permu-
tations of the group. Construct this group of degree 15 and form the
indicated configuration consisting of 15 sets of seven symbols each
from the indicated 15 symbols.

10. The Abelian group G of order 2¢ and type (1, 1, 1, 1) has
15 subgroups of order 8. Show that the fifteen elements of order 2
in G fall into 15 sets of 7 each so that each set of 7 with the identity
constitutes a subgroup of G of order 8, and prove that this configura-
tion is conjugate to that described in Ex. 9.
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11. Show that any two sets of 7 in the configuration in Ex. 10
have just three symbols in common and that these three symbols
also occur in a third set of 7 in the configuration. There are just 35
of these sets of three each.

12. Represent the alternating group of degree 8 as simply iso-
morphic with a transitive group of degree 35 (see Ex. 11).

MISCELLANEOUS EXERCISES

1. Discuss the number of ways in which it is possible to select a
geometric set of subgroups of order p” in the group Gu+1y» of § 72.

2. The group of isomorphisms of an Abelian group G can always
be represented in just one way as a transitive permutation group on
letters corresponding to the elements of G except when the order of
G is twice an odd number, in which case there are just two such tran-
sitive representations.

3. In order that the group of isomorphisms of an Abelian group G
shall itself be Abelian it is necessary and sufficient that G shall be
cyclic.

4. If m is the highest order for an element of an Abelian group G,
then the group of isomorphisms of G contains just ¢ (m) self-conjugate
elements, ¢ (m) being Euler’s ¢-function.

5. If G is a non-Abelian group, then G cannot be represented as
simply isomorphic with a permutation group on symbols correspond-
ing to a set of relatively permutable elements of G.

6. If the group I of isomorphisms of a given group G is represented
as a simply isomorphic permutation group on symbols corresponding
to elements of G, then I is at most doubly transitive.

v. Exhibit a group G containing a self-conjugate subgroup H such
that the group of isomorphisms of H is of greater order than the
group of isomorphisms of G.

8. If G is a group which admits an isomorphism with itself in
which each element corresponds to the square of that element, then G
is an Abelian group of odd order.

9. If G is a group which admits an isomorphism with itself in
which each element corresponds to its cube, then G is an Abelian group
whose order is prime to 3.
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10. The group of isomorphisms of an Abelian group cannot be a
non-Abelian group whose only representation as a simply isomorphic
transitive permutation group is that afforded by a regular group.

11. The order of the group I of isomorphisms of an Abelian group ¢
is of the form mk, where m is the number of elements of highest order.
A necessary and sufficient condition that the order of I shall be m
is that G shall be cyclic.

12. Show that just two of the five groups of order 8, namely, the
cyclic group and the quaternion group, have each the property that it
cannot be the group of isomorphisms of any group with itself.




CHAPTER XI

Finite Geometries

81. Definition of the Finite Projective Geometries. Abelian
groups of order p*+V» and type (1, 1, - - -, 1) admit of an inter-
pretation which affords a representation of the so-called finite
projective geometries PG(k, p™); and these groups and these
geometries throw light each upon the other. The object of this
chapter is to develop that part of the theory of the finite geom-
etries which will be useful to us in its applications to the theory
of groups.

Veblen and Bussey (Trans. Amer. Math. Soc. 7 (1906), 241-
259) have defined a finite projective geometry in the following
way. It consists of a set of elements, called points for sugges-
tiveness, which are subject to the following five conditions or
postulates:

I. The set contains a finite number of points. It
contains one or more subsets called lines, each of
which contains at least three points.

II. If A and B are distinct points, there is one
and only one line that contains both A and B.

III. If A, B, C are noncollinear points and if a
line / contains a point D of the line AB and a point E
of the line BC but does not contain A or B or C, then
the line / contains a point F of the line CA.

IV.. If m is an integer less than k, not all the
points considered are in the same m-space.

V.. If IV, is satisfied, there exists in the set of

points considered no (k + 1)-space.
323
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The geometry so defined is said to be a geometry of a k-
dimensional space.

In the foregoing system of postulates the terms point and line
are left undefined. A point is called a 0-space and a line is called
a l-space. An m-space, or a space of m dimensions, may be
defined inductively as follows. A point is a O-space. If P;, Ps,
-+ -, Pmyy are points not all in the same (m — 1)-space, then the
set of all points each of which is collinear with P, and some
point of the (m — 1)-space (Pi, Ps, ---, Pnm) is the m-space
(Py, P, - -+, Pmyy). A 2-space is called a plane.

82. Representation of Finite Geometries by Means of Galois
Fields. By means of the marks of a Galois field we shall now
give a concrete representation of a finite 2-dimensional projec-
tive geometry. We denote a point of the geometry by the
ordered set of homogeneous coordinates

(AU'O’ M1, -y Mk)

where wo, w1, - - -, Mz are marks of the GF[p*] at least one of
which is different from zero, and where it is understood that the
foregoing symbol denotes the same point as the symbol (uuo,
Mp1, - - -, MMz), Where u is any one of the p» — 1 nonzero marks
of the field. Since the ordered set of marks uo, 1, - - -, 4z May
be chosen in p ®+D» — 1 ways, and since each point is represented
in p™—1 ways by p™— 1 sets of symbols in this totality, it
follows that the number of points defined is

1+ pm+p+ - -« + P

For the line containing the two distinct points (uo, M1, * * 5 M)
and (v, v1, - - -, v;) We take the set of points

(pso -+ vvo, pps =+ vy, -+ +, MMz + V21,

where u and » run independently over the marks of the GF[p™]
subject to the condition that u and » shall not be simultaneously
zero. The number of possible combinations of the u and » is
then p2» —1; and for each of these the corresponding symbol
denotes a point, since not all the 24 1 coordinates are zero.
But the same point is represented by p™ — 1 of these combina-
tions of u and », owing to the factor of proportionality involved
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in the definition of points. Therefore a line as so defined con-
tains p™ 4+ 1 points. It is obvious that any two points on the
line may be used in this way to define the same line.

It must now be shown that the five postulates given in § 81
are satisfied by the concrete elements thus introduced. The
existence of lines containing p™ 4 1 points each is sufficient to
show that Postulate I is satisfied. That Postulate II is satisfied
is evident from the way in which a line containing two given
points has been defined.

Let (>\0: )‘lr Tt >\k)r (”0’ M1y = =0y ﬂk)’ (VO, Vi, *t % Vk) be any
three noncollinear points A, B, C. Let [ be a line containing a
point D, say (ANo + Mmo - - -, ANz + uuz), of the line AB and a
point E, say (puo+ ovo, - -+, pur + o), of the line BC, and
suppose that ! does not contain A or B or C, whence it follows
that \, u, p, o are all different from zero. In order to prove that
Postulate 111 is satisfied we have to show that / contains a point
of CA. Now [ consists of the points

(a@XNo + apuo + Bpuo+ Bovo, - - -, a N, + s+ Bpprk + Bove)

where o and $ run independently over the marks of the GF[p"]
subject to the condition that they shall not be simultaneously
zero. Now, whatever nonzero marks u and p may be, there exist
nonzero marks o and B such that aup+ Bp=0. For such
values of « and 8 we have the point

(@Ao + Bowo, - - -, aXN + Bov)

on /; and this point ison CA. Hence Postulate III is satisfied.

It is convenient, before verifying the other two postulates,
to determine the number of points in an m-space belonging
to the concrete representation of the geometry which we are
considering.

Let (poo, Moty * = 5 Mow), (M10, M1y * = *5 M1k)s (M0, M21, * * 5 M2k)
be three noncollinear points in the geometry, such points being
surely existent if 2> 1. The first two of these determine a
line /; and this line and the third point determine a 2-space.
It is obvious that the points on this 2-space are the points

(Mopoo + M1p10 + fzioo, * - -5 MoMok + M1Mik + MeMa2r),
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where po, u1, ue run independently over the p™ marks of the
GF[p™] except that they cannot be simultaneously equal to
zero. The number of the sets wo, p1, uz is therefore p3» —1;
taking out the factor p" — 1, due to the factor of proportion-
ality, we have for the number of points in a 2-space the number

1+ p™+ p2~.
It is obvious that any three noncollinear points in this 2-space
define the same 2-space.

In general, if the pOintS (ﬂiO’ Mi1y ©° 2y I-"'ik) (1. = 0, 1, 2, Ty m)
are any m -+ 1 points not in the same (m — 1)-space (certainly
existent in the geometry if m = k), they may be used in the same
way to define an m-space consisting of the points

(iﬂimo, Tty i ﬂil-‘ik)a
i=0 i=0

where o, u1, - - -, um run independently over the marks of the
GF[p™] except that they shall not be simultaneously zero. Then
the m-space consists of

1+pn+p2n+,,_+pmn

points, as one sees by noting that there are pm+1» — 1 combi-
nations of the u; and that these fall into sets of p* — 1 each
such that all the symbols in a set represent the same point.

Now the points of the m-dimensional geometry so defined
may be represented uniquely by the homogeneous co-ordinates
(mo, M1, - -+, um), once the base set of m + 1 points has been
chosen. Thence it is not difficult to see that this m-dimensional
geometry is of the same general character as the k-dimensional
geometry which contains it.

From the foregoing results it follows that if m < % there
are points in the geometry which are not in any given m-space
and that the geometry does not contain any (k- 1)-space.
Therefore the last two postulates in § 81 are satisfied by the
concrete representation which we have given of the geometry.

The concrete finite projective k-dimensional geometry so de-
fined by means of the GF[p"] we denote by the symbol PG(%, p).
We shall also use the same symbol to denote any finite pro-
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jective geometry which is abstractly equivalent to the concrete
geometry so defined, that is, is such that a one-to-one corre-
spondence may be established between the points of the two
geometries in such a way that the points which form a line in
one geometry always correspond to points which form a line
in the other.

Veblen and Bussey (loc. cit.) proved that when &2 > 2 every
finite projective k-dimensional geometry satisfying the defini-
tion reproduced in the foregoing § 81 is a geometry of points
whose homogeneous co-ordinates may be taken as the marks
of the GF[p™] in precisely the same way as we have used homo-
geneous co-ordinates to represent the points of the PG(%, p™).
Hence, when £ > 2, we have in the PG(k, p™) geometries which
are abstractly identical with all possible finite projective geom-
etries of more than two dimensions. Since we do not require
to make explicit use of this interesting theorem, we shall not
give a proof of it here. (See § 108 for finite plane geometries
of types different from the PG(2, p™).)

It is convenient to insert here the determination of the
number of m-spaces PG(m, p™) (m < k) contained in the given
k-space PG(k, p*). The number of ways in which a given set
of m + 1 base points for the PG(m, p™) may be selected in a given
order from the points of the PG(%, p™), subject as they are to
the condition that they do not all lie in any given (m — 1)-
dimensional space, is

(1+P"+P2n++Pk")(p”+P2"++pk”)
(p2"+"'+pk")"'( mn+p(m+1)n+,,,+pkn),

the factors in this expression, in the order written, being the
number of ways in which the first point, the second point, the
third point, --., the (m+ 1)th point, respectively, may be
selected. The number of ways in which m + 1 points of a
given PG(m, p™) may be selected in a given order so that they
do not all lie in any (m — 1)-dimensional space is similarly
shown to be

A4p"+- -+ o™ @+ p> - - -+ p™)
P (p(m—l)n +pmn)(pmn).
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The number of m-dimensional spaces PG(m, p™) in the given
PG(k, p™) is the quotient of the first of the foregoing two prod-
ucts by the second; hence this number is equal to

(p(k+1)n — 1)(pkn _ 1)(p(k—l)n _ 1) . (p(k—m+l)n — 1)
@R =T)(pm = 1)+ B — 1) ("= 1)

83. Representation of Finite Geometries by Means of Abelian
Groups. Let G be an Abelian group of prime-power order
p**tVr and type (1, 1,---,1). In § 72 we introduced a set of
subgroups of G, each of order p», and represented these sub-
groups by the symbols (uo, ui, - - -, ux), Where in each symbol
the u’s are marks of GF[p*] and at least one of them is different
from zero. Such a set of subgroups we called a geometric set
of subgroups.

These subgroups (uo, mi, - - -, ux) Of order p*, constituting
the geometric set of subgroups of G, will be taken as the points
of the finite geometry in the concrete representation of the
geometry which is now to be set up. An m-space in this geom-
etry will be defined as the set of points denoted by the groups
of the geometric set which are contained as subgroups in the
group generated by m + 1 of the groups in the geometric set,
these m + 1 groups being such that no one of them is contained
in the group generated by the other m. Again we call a point
a O-space; a l-space is called a line. With point and line thus
defined, it is evident that the definition of an m-space here
given is equivalent to the inductive definition given in § 81.

If (uo, 1, - - -, uz) and (vo, v1, - - -, ») are two distinct points
in this set, then the line determined by them consists of the
p™+ 1 points

(upo + vvo, pus + voy, - - -, ppx + i),

where u and v run independently over the marks of the GF [p™]
except that they are not simultaneously zero.

Since the points and lines of the geometry are now repre-
sented by the same symbols as the points and lines in § 82, it
follows readily that the elements here set up constitute the
PG(k, p™). Hence every PG(k, p™) is capable of a concrete rep-
resentation by means of an Abelian group G of order p*+bn
and type (1, 1,-- -, 1).
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From this it follows that every abstract theorem relating to
PG(k, p™) may be translated into a corresponding theorem
about the group G. Conversely, a certain class of theorems
about the group G are likewise individually capable of inter-
pretation as theorems in the PG(k, p™). This interaction of
two theories, in the first place apparently quite distinct, affords
a matter of considerable interest.

84. Euclidean Finite Geometries EG(k, p"). Let us consider
the subset (o, u1, - - -, ux) of points in the PG(k, p™), for each
of which uo= 0. Without loss of generality we take wo=1.
Then the points considered are (1, ui, ue, - - -, 4x). Since the
marks u, pe, - - -, ux may run independently over the p” marks
of the PG(k, p™), it is evident that the points in consideration
are p*" in number. They are said to constitute a Euclidean
finite geometry; this Euclidean finite geometry is denoted by
EG(k, p™). The excluded points (0, ui, pe,- - -, ux) obviously
constitute a PG(k — 1, p™) the homogeneous co-ordinates of
whose points are of the form (ui, ue, - - -, ). More generally,
if we omit from the PG(k, p™) any given PG(k — 1, p™) contained
init, the retained points are said to constitute a Euclidean finite
geometry EG(k, p™) ; and this geometry contains just p*" points.

The particular form of the EG(k, p~) first mentioned in the
preceding paragraph has for the homogeneous co-ordinates of
its points those of the form (1, w1, ue, - - -, ux). When consider-
ing the EG(k, p™) alone, it is therefore possible to represent its
points by the nonhomogeneous co-ordinates

{m1, p2, - - -, pi}

But we have seen that the elements of the Abelian group of
order p** and type (1, 1,---, 1) may be represented by non-
homogeneous co-ordinates {u1, us, - - -, ux}. Hence the elements
of this group afford concrete representations of the EG(%, p*).

From the definition of points and lines of the PG(k, p*), given
in § 82, it follows that the PG(k, p™) is transformed into itself
when its points (xo, %1, - - -, &) are transformed in accordance
with any transformation of the form

k
px’i = 2 QX jy (i = 01 1: Tt k)
j=0
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where the a;; are marks of the GF[p™] such that the determinant
|ai; | is different from zero. By such a transformation the
PG(k—1, p™) defined by the equation x, =0, that is, the
PG(k — 1, p™) consisting of the points (0, u1, pe, - - -, ), 1S re-
placed by a PG(k — 1, p») whose equation is x’o = 0, or

ooXo + corx1 + - - -+ + corxe = 0.

At least one of these coefficients ao; is different from zero.
Conversely, if we have any equation of the foregoing form, with
at least one coefficient different from zero, then there exists a
transformation of the named type by which the PG(k — 1, p™)
defined by the equation xp = 0 is transformed into the given
equation. Therefore every equation of the named form defines
a PG(k — 1, p™) contained in the given PG(k, p*). Furthermore,
every PG(k — 1, p*) contained in the given PG(k, p™) consists of
points (xo, 1, - - -, ) whose co-ordinates satisfy an equation of

the form Boxo + Bix1 +- - - + Bt =0;
for (§ 82) such a PG(k — 1, p™) consists of a set of points of the

form
k—1 k-1
(2 Pitkioy ** vy 2 mmk),
{ =0 £=0

where the points (u.0, -« -, ) =0, 1, - -+, k—1) are a set of
base points for defining the given PG(k — 1, p*), and for every
such set of points the coefficients 8 exist such that these points
are just the points (xo, x1, - - -, xx) Whose co-ordinates satisfy the
last foregoing equation. From these considerations it follows
that a transformation of the named type exists by which any
given PG(k — 1, p™) contained in the PG(k, p*) may be trans-
formed into any other such PG(k — 1, p*). Therefore all the
EG(k, p™) contained in PG(k, p*) have the same structure.

85. The Principle of Duality. In the postulates in § 81 the
terms poin! and line are undefined. Therefore we may give
these names to any entities having the properties assigned to
point and line in the postulates. We shall establish the property
of duality by showing that certain other entities in the PG(%, p™)
have the properties of points and lines respectively. To prevent
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confusion we shall temporarily use the terms punct and rect for
the entities having the properties of point and line respectively.
During the argument we shall suppose that 2> 1.

A (k— 1)-space in PG(k, p™) we shall call a punct; and a
(k — 2)-space we shall call a rect. We shall now show that two
given puncts have one and only one rect in common. Let
(pio, Mits - - - wix) =1, 2, - - -, k) be a set of k points in PG(k, p™)
which are not on the same (k — 2)-space. They may be used as
the base points by means of which to define a (¢ — 1)-space, or
a punct, as in § 82. Let a second punct be defined by the set
(vi0, Vi1, - - - va)(E =1, 2, - - -, k) of k base points which are not
on the same (%2 — 2)-space. Then the points contained in these
two puncts are

k k ) k
(E Milkis = = s 2 ﬂz‘ﬂrik) and (2 ViVios * * *y z ViVik)
i=1 i=1 i=1 i=1

respectively, where the u;, and likewise the »;, run over the
marks of the GF[p"] except that neither all the u; nor all the »;
can be simultaneously zero.

Let us consider the system of equations

k
Sau;=0 (G=12--k
j=0

in the unknown quantities ao, a1, - - -, @x. Since the & points of
the first system of base points do not lie on a (k — 2)-space, it
follows that the matrix

Mi0 M11 -t Mk
M20 M21 M2k
Mro  Mr1 - 0 Mk

is of rank k. Hence the foregoing system of equations has a
solution for the @’s which is unique except for a factor of pro-
portionality belonging to the GF[p"]. Thence it follows that the
points of the first punct are precisely the points (xo, x1, - - -, %)
for which the equation

aoxo+ axy+ -+ axx =0
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is satisfied. We may therefore denote this punct uniquely by
the **homogeneous co-ordinates’ [ao, a1, - - -, ax]. Likewise there
exists an equation

coxo+c1x1+4---Feaxr=0

whose solutions (xo, x1, - - -, ;) afford precisely the points of the
second punct, whence we denote the second punct by [co, c1,
-, ¢x). Then the common solutions of these two equations
define precisely the points which are common to the two given
puncts. Since the two given puncts are different (by hypothe-
sis), it follows that the matrix

aO al DRI ak
Co €1 +++ C

is of rank two. Hence the common solutions of the two equa-
tions can be expressed linearly and homogeneously in terms of
k — 1 suitably determined solutions, and the £ — 1 points de-
fined by these particular solutions do not all lie on the same
(& — 3)-space. Therefore the solutions define a (k£ — 2)-space,
or a rect. Hence the two puncts have one and only one rect in
common.

We shall say that the puncts which may be used in thus de-
termining a given rect are the puncts on that rect; and we
shall say also that the rect contains these puncts. -

Putting punct and rect for point and line, respectively, in
the postulates of § 81, we see that the results just proved indi-
cate that Postulates I and II in their new form are satisfied.

In order to show that Postulate III in the new form is
satisfied, let us consider three puncts 4, B, C with the respective
defining equations

@oxo+arxy+- - -+ arx =0,

boxo + b1x1 + - b= 0:

€o%o + €1%1 + - - - 4 crxr = 0,
no one of these puncts being on the rect common to the other
two. Let / be a rect such that one of the puncts D on [ is also

on the rect AB which is common to 4 and B and such that one
of the puncts E on / is also on the rect BC, while I does not con-
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tain A or B or C. There exist nonzero marks d; and d- of the
GF[p™] such that the equation

(drao + dobo)xo + - - + + (diar + dobi)xr =0

is the defining equation for the punct D. Likewise nonzero
marks e; and e: exist in the GF[p*] such that the equation

(e1bo + e2c0)x0 + - - - + (e1br + excr)xx =0

is the defining equation for the punct E. The puncts on the rect
DE, this being the rect /, have defining equations of the form

{ae(d1a0 + dabo) + B(erbo + exc0)} o+ - - - =0,

where o and 8 are marks of the GF[p"]. Now nonzero marks «
and S exist such that ad; + Be; = 0. For these values of o and
(B the last named punct is on CA. This is the punct F called for
in the new form of Postulate III. Hence that postulate is
satisfied.

Now the rect which contains the two given puncts [ao, ai,

-+, ax] and [Bo, B, - - -, B«] consists of the puncts [Aao + ©Bo,
.+ -, Ao+ ], where A and u run independently over the marks
of the GF[p™] except that they cannot be simultaneously zero.
It is this fact on which the proof in the preceding paragraph
rests; and that proof is evidently abstractly the same as a
corresponding proof given in § 82.

That the new forms of the Postulates IV, and V, are satisfied
may now be proved by means of an argument which is ab-
stractly the same as that employed in a corresponding proof in
§ 82. This proof will not be given.

Furthermore, we have incidentally given an analytical rep-
resentation of puncts and rects which is in all abstract respects
the same as that which we gave for points and lines in § 82.

From these considerations it follows that the puncts and
rects of a PG(k, p») may be employed in place of points and
lines in setting up a new representation of the same abstract
PG(k, p™).

Now a 0-space (or punct) in the new sense is a (¢ — 1)-space
in the old sense, and a l-space (or rect) in the new sense is a
(k — 2)-space in the old sense. More generally, we shall show
that an l-space in the new sense is a (¢ — [ — 1)-space in the old
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sense. For an l-space in the new sense consists of the points
(%0, x1, - - -, xx) wWhose co-ordinates satisfy /4 1 independent
equations of the form

k
Zcijxj——'o; (i=1a2""$l+1)
i=0

and these equations have 2 — [ independent solutions in terms
of which all their solutions may be expressed linearly and homo-
geneously, whence it follows that these equations define a
(k— [ — 1)-space of points in the old sense.

From these considerations it follows that every theorem re-
lating to PG(k, p™) may be translated into a new theorem
relating to PG(k, p™) by replacing O-space by (k& — 1)-space,
1-space by (k — 2)-space, and, in general, /-space by (£ — [ — 1)-
space for every value of / less than k. This is the principle of
duality. We have established this principle for 2> 1; it ob-
viously holds (in a trivial way) when k£ = 1.

Since the PG(k, p™) may be represented by means of a
geometric set of subgroups of the Abelian group G of order
p®+vnand type (1, 1, - - -, 1), we see that any theorem concern-
ing the geometric set of subgroups of G may be translated into
a new theorem by means of the principle of duality.

The new theorem obtained in either of these cases is called
the dual of the original theorem. It is clear that the original
theorem is then the dual of the new theorem. In case the dual
of a theorem is that theorem itself, the theorem is said to be
self-dual. In all other cases the truth of one of the theorems
implies the truth of the other without further argument, so
that the principle of duality gives rise to economy of thought.
It also exhibits clearly certain aspects of beauty which might
not be realized without its aid.

86. Finite Geometries Contained within Finite Geometries. Let
us consider the finite projective geometry PG(k, p™), where
n> 1. Let v be any proper divisor of # (including the possi-
bility that » shall be unity). Then the GF[p*] contains a sub-
field GF[p*], as we saw in § 65. Let us consider the set of points

(po, p1,* -+, Px)
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in PG(k, p™), where the p,; run independently over the p* marks
of the GF[p’] except that they shall not be simultaneously
zero. This set of points constitutes a finite projective geom-
etry PG(k, p’), and this geometry is contained within the
PG(k, p™) as a subgeometry. Therefore, when »> 1 the
PG(k, p™) always contains one or more subgeometries PG (%, p*),
one for each proper divisor » of n.

Let us consider as an illustrative example the PG(2, 22)
based on the GF[2?] defined by means of the function x2 4+ x 4 1.
The marks of the GF[22] may be denoted by 0, 1, w, w;, where
w; = w-+ 1. Then we have the following relations:

l+w=w, l1+wi=0w, w+w=1, 1+w+4+w; =0,
Www = w;, Ww =w, ww;=1.

The points of PG(2, 22) are 21 in number, since 1 4 22 4 2¢ = 21.
They will be denoted by letters in accordance with the follow-
ing scheme :

(001) (010) (011) (Olw) (Olw;) (100)  (101)

A B c D E F G
(10w) (10w1) (110) (111) (11w) (Qlw) (1w0)
H I J K L M N
(1wl) (ow) (Awwi)) (00) Awml) (Qww) (Jwie)
0 P Q R S T U

The 21 lines are those given in the following scheme, the letters
in a given column denoting a line :

AAAAABBBBCCCCDDDDETETETE
BF J NRF GHI FGHIVFGHTIVFGHII
CG KOS JKLMKJMLLMJKMLIK]J
DHLPTNOUPQPQNOQPONONQFP
EI MQ URSTUUTSRSU RUTTURS

The points 4, B, C, F, G, J, K, in the junction into lines defined
by this scheme, constitute the PG(2, 2) of 7 points whose lines
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are denoted by the columns in the following scheme :

A B F C J K G
B F C J KG A
cC J KG A B F

This is a subgeometry PG(2, 2) contained within the given
PG(2, 22).
EXERCISES

1. Show directly from the postulates in § 81 that a two-dimensional
finite projective geometry having just three points on a line consists
of a set of seven points which may be labeled A4, B, C, D, E, F, G in
such a way that the lines of the geometry are the sets of three each
in the columns of the following scheme :

A B C D E F G
B ¢ D EVF G A
D EF G A B C

Show that the largest permutation group on A4, B, C, D, E, F, G each
element of which transforms this geometry into itself in the sense
that points are replaced by points and lines are replaced by lines is
the doubly transitive group {(ABCDEFG), (BD)(EF)} of degree 7 and
order 168. Denoting the lines of this geometry, in the order in which
they appear in the foregoing scheme, by a, b, ¢, 4, e, f, g, set up the
dual form of the geometry; find the groupona, b, ¢, d, e f, ginduced by
the group {(ABCDEFG), (BD)(EF)} and examine the relation between
these groups. Are the two groups conjugate as well as isomorphic ?

2. Treat similarly the two-dimensional finite projective geometries
having (a) just four points on a line, (b) just five points on a line.

3. Determine the 12 lines of 3 points each belonging to the EG(2, 3)
of 9 points. Determine the largest permutation group on these nine
points each element of which transforms this EG(2, 3) into itself.

4. Denote the 15 points of the PG(3, 2) by the symbols A, B, C,
«++, 0, as follows:

(0001) (0010) (0O11) (0100) (0101) (0110) (0111) (1000)
A B c D E F G H

(1001) (1010) (1011) (1100) (1101) (1110) (il1l)
I J K L M N o
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Determine the 15 planes of 7 points each contained in this PG(3, 2);
and then determine its 35 lines by means of the intersections of its
planes in pairs.

5. Show that the largest permutation group on the 15 points of the
PG(3, 2), each element of which transforms this geometry into itself,
is a doubly transitive group of degree 15 and order 15-14-12 - 8.

6. Note that the points H, I, J, K, L, M, N, O in Ex. 4 constitute
an EG(3, 2) of 8 points. Find the largest subgroup of the doubly
transitive group named in Ex. 5 which subgroup has the property
that its elements permute among themselves the points of the named
EG(3, 2). Show that this subgroup permutes the points of the EG(3, 2)
according to a triply transitive group of degree 8 and order 8 - 7 - 6 - 4.

7. Show that the doubly transitive group of degree 15 named in
Ex. 5 can be represented as simply isomorphic with a transitive group
on the 35 lines of the PG(3, 2).

8. By aid of the principle of duality in the finite geometries show
that an Abelian group of order p™ and type (1, 1, - - -, 1) has just as
many subgroups of index p?, 0 < [ < m, as it has subgroups of order p*.

9. Arrange the 35 lines of the PG(3, 2) (see Ex. 4) in seven sets
of five each so that each point appears once and just once in each set
of five lines.

10. Show how 15 girls may go walking in five sets of three each on
each of seven consecutive days so that any whatever given two of the
girls shall be together in a set of three on one and just one of the
seven days.

11. Show that successive powers of the permutation (xox1xz « * - x12)
change the set xo, x1, 3, X9 into 13 distinct sets defining the lines of
the PG(2, 3) whose points are xo, X1, X2, * - *, X12.

12. Show that successive powers of the permutation (xox1x2 - - - ¥30)
change the set x1, x5, ¥11, X24, X25, X27 into 31 distinct sets defining the
lines of the PG(2, 5) whose points are xp, x1, X2, * - *, ¥30.

87. Interrelations of Finite Geometries and Abelian Groups.
We begin this section with a proof of the following theorem :
THE THEOREM OF DESARGUES. Let ABC and abc
be two triangles in the same plane in a PG(k, p™) and
let them be perspective from a point O so that 0, 4, a
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are collinear, 0, B, b are collinear, and 0O, C, c are
collinear. Let 4 be the point of intersection of AB
and ab, B8 that of AC and ac, and « that of BC and
bc. Then the points a, B, v are collinear.

An analytical proof of the theorem may be readily developed
by means of the analytical geometry of the PG(k, p™) exhibited in
the preceding pages. But we prefer to give a geometric proof.

Let A,, Az, A3z, A4, As be a set of five points in PG(k, p™)
(k= 3) no four of which lie on the same plane. Then these
points define 10 lines 4.4, and 10 planes A;4;A4x. Let us take
a plane section of this configuration of points and lines in such
a way that the section contains no one of the points A;. If 7
denotes the cutting plane, then = is pierced in 10 points by the
10 lines A;A;; it is also cut in 10 lines by the planes A;A;Ax.
We may suppose the figure so made that the points As, A4, 4s
project from A, into the points A4, B, C, respectively, and from
A2 into the points a, b, ¢, respectively, of the theorem, while
the line A4; A, pierces = in the point 0. Then the points «, 8, vy
of the theorem are on the line in which the plane A3A445 cuts
the plane 7. From these considerations the truth of the theorem
follows.

Let us translate this result into a theorem concerning the
Abelian group G of order p*+V» and type (1, 1, - - -, 1), viewed
as in § 83 in the light afforded by the geometry PG(k, p»), it
being assumed now that 2 > 1.

Let A, B, C be three subgroups of a geometric set of sub-
groups of G such that no one of them is in the group generated
by the other two. We select other subgroups of the geometric
set as follows, each of them to be in the group {4, B, C}: 0 is
any such subgroup which is not contained in any one of the
subgroups {4, B}, {B, C}, {C, A}; a, b, ¢ are such subgroups
different from 0, A, B, C and contained, respectively, in the
groups {0, 4}, {0, B}, {0, C}. Let ¥, «, B be the subgroups of
the geometric set of subgroups common to the respective pairs
of groups

{Ar B}) {a’ b}; {B, C}, {b, C}; {C, A}, {C, a}.
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Then each of the subgroups «, 83, « is in the subgroup generated
by the other two.

The generalizations of the theorem of Desargues to higher
dimensions yield likewise interesting theorems concerning Abel-
ian groups. As phrased abstractly, the theorems seem to be
rather complicated; but in their geometric formulation they
are easily comprehended and retained in mind.

As affording another illustration of this method of translat-
ing geometric theorems into theorems about Abelian groups,
let us consider the following which gives rise to the configura-
tion of Pappus (Veblen and Young, Projective Geometry, Vol. 1,
p. 98): If A, B, C are any three distinct points of a line /, and
A’, B', C’ are any three additional distinct points on another
line /" meeting / in O, then the three points v, «, B of intersec-
tions of the respective pairs of line

AB', A'B; BC', B'C; CA’, C'A
are collinear.

We shall not give a proof of this geometric theorem but shall
content ourselves with translating it into a theorem concerning
the group G.

Let 0, A, A’ be three subgroups of a geometric set of sub-
groups of G such that no one of them is in the group generated
by the other two. Let B and C be two additional subgroups
contained in the group {0, A} and belonging to the geometric
set, and let B’ and C’ be two additional such subgroups con-
tained in the group {0, A’}, these groups being existent when
and only when p* > 2 and k£ > 1. Let v, «, 8 be the subgroups
of the geometric set which are common to the respective pairs
of groups

{4, B}, {4, B}; {B, C'}, {B, C}; {C, 4%}, {C', 4}.

Then each of the subgroups «, B3, v is in the subgroup generated
by the other two.

The analysis and development of projective geometry given
by O. Veblen and J. W. Young (Projective Geometry, Vol. I,
1910; Vol. II, 1918) afford a convenient means of ascertaining
what geometries have direct applications to the theory of
Abelian groups by means of the representations of finite geome-
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tries given in the foregoing pages. In Volume II (p. 36) of this
work Veblen describes nine classes of geometries characterized
by means of the assumptions which underlie them. Using capital
letters to denote assumptions and employing the notation of
Veblen and Young (see the index to Volume II under the word
*assumption’’), we select for our purposes four of these geome-
tries, as follows: A space satisfying assumptions

A E is a general projective space ;

A, E, P is a proper projective space;

A, E, H is a modular projective space;

A, E, H, Q is a rational modular projective space.

It is easy to verify that the assumptions involved in these
four geometries are all valid in the case of the geometry PG(k, p™),
except that Q is valid when and only when » = 1. Since the
points of this geometry have been represented by certain sub-
groups of the Abelian group G (see § 83), it follows that every
theorem in any one of the four geometries named is capable of
immediate translation into a theorem concerning the given
Abelian group. In many cases a given theorem is capable of
being so translated in a variety of ways, there being at least one
such translation for every factorization of the number (£ 4- 1)»
into a product of two factors £ + 1 and # such that & and » are
positive integers.

Each of the four geometries may be divided into two parts.
Iri one part we have the assumption Ho, namely :

Hy. The diagonal points of a complete quadrangle are non-
collinear.

In the other we have the assumption that these diagonal
points are collinear. The consequences of this latter assumption
are not developed in detail by Veblen and Young, but many of
the theorems given as dependent on A, E, P, Ho (so far as the
given proofs go) are provable without the use of Hp (compare
Vol. I, p. 261, exercise). We shall presently show that Hy is valid
in PG(k, p™) when and only when the prime p is different from 2.

Now in Volume I of the work named no assumptions are used
except those which are valid for PG(k, p™). Hence every
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theorem in Volume I may be translated, in the way indicated,
into a theorem about Abelian groups. The same remarks may
be made about certain parts of Volume II, and in particular
about Chapter III and the first part of Chapter IV. It is thus
apparent that the representation of the PG(k, p™) by means of
Abelian groups carries at once a large part of the results of pro-
jective geometry into the domain of Abelian groups and that
they there become theorems about Abelian groups. Thus by a
single act of thought a significant extension is given to the
theory of Abelian groups and a method is made apparent by
which the theory may be further developed. Conversely, a cer-
tain part of the theory of Abelian groups can be translated into
corresponding results in the finite geometries.

In the finite projective geometries PG(k, p™), as we have
already said, an important distinction is to be made according
as the prime p is equal to 2 or is odd. This distinction will be-
come apparent from an examination of the diagonal points of a
complete quadrangle, that is, the figure formed by the six lines
A;:A; defined by means of four points A;, A2, A3, A4 on the same
plane but with no three on the same line. Anticipating The-
orem I in § 92, we see that we may without loss of generality
take % to be 2 and choose for the points A the following :

Aly (100); A2’ (010); A3’ (001); A4, (111).

The three diagonal points of the quadrangle are then the inter-
sections of the following pairs of lines:

A1Az, A3Ay; A14s, A2A4; A1A4, A2As.

Hence they are the points (110), (101), (011). These are col-
linear when and only when p = 2. Therefore, the diagonal points
of a complete quadrangle in PG(k, p™) are collinear when and only
when p = 2. Thus an important and simple geometric fact sharply
distinguishes between two cases of these finite geometries.
This difference in the geometries according as p is odd or even
is reflected in an important way in the theory of Abelian groups
of order p™ and type (1, 1, - - -, 1). Early in the development
of the theory of these groups it became apparent that their
properties differ according as p is 2 or is an odd prime. From



342 Groups of Finite Order

the geometric interpretation of these groups and the facts
just adduced, the fundamental basis for this difference is ap-
parent. Hence, in investigating these groups, one sees precisely
from what place to begin for developing those features of the
theory which depend on the odd or even character of p.

For the case of the Abelian group G, with the geometry
PG(k, p™) constructed from it in § 83, the distinguishing differ-
ence of the two cases may be stated in group-theory language
as follows (it being assumed now that 2> 1): Let A, B, C, D
be four subgroups of a geometric set of subgroups of G such
that no one of them is contained in the group generated by
another two, while D is contained in the group {4, B, C}. Let
E be the (unique) subgroup of the geometric set common to
the groups {4, B} and {C, D}, F that common to the groups
{4, C} and {B, D}, and G that common to the groups {4, D}
and {B, C}. Then each of the subgroups E, F, G is in the group
generated by the other two when and only when p = 2.

A large part of the theory of the geometry PG(k, p™), as we
have seen, may be developed independently of any hypothesis
as to the collinearity or noncollinearity of the diagonal points
of a complete quadrangle. These theorems will give rise to
corresponding theorems about Abelian groups of order p™ and
type (1, 1,---, 1) which are independent of the odd or even
character of p.

88. Some Generalizations. Let us now consider more gen-
erally an Abelian group A whose order is a power of a prime p
and whose type is (m1, Mo, - - -, Me+1ya). Let us denote a set
of independent generators of A by

Qo1, Qo2, @03, * * 5 Q0n,
a, Qi2, 013, * * *y Q1n,
Qx1s Q25 Qr3y * * *5 Ckn,y

these being chosen so that a;; is of period p™»+i, Then every
element of A may be represented uniquely in the form

k
S Siz Sin
la; a; ---a,
i=0
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where the exponent s;; is a number of the set O, 1, 2, .-,
p"‘in +i—1.
Consider the following subset of these elements, namely,

3
%5 Tiz Tin
ey ey ---a,"
i=0

where each ¢ runs over the set O, 1, 2,---, p—1, or, more
generally, the exponent o; runs over the set Ip®i for [ =0, 1, 2,
..., p—1, the fixed integer «;; being non-negative and less
than m,,.;. An element of this sort, for the fixed set of ex-

ponents 0 = Lip™,

the a;; and the «;; having been chosen once for ali, may be
uniquely represented by the symbol

{mo, pa, - -+, lik},
where u; (=0, 1, 2,- - -, k) denotes that mark of the GF[p"]
which may be written in the form

pi=la+ low + lizw? + - - - + Lipw™ 7,
w being a fixed primitive mark of the field.
Now let uo, 1, - - -, ux be a fixed set of 2+ 1 marks of the
GF[p™], at least one of them being different from zero; and
consider the set of elements

{mpo, pps, - - -5 pu}s

where p is a variable running over the p® — 1 nonzero marks
of the field. These elements generate a certain subgroup of 4
which we denote by the symbol (uo, 1, - - -, 4x). The same
subgroup is denoted by the symbol (oo, opy, - - -, ouz),
where ¢ is any nonzero mark of the field. The total set of such
subgroups we shall call a geometric set of subgroups of A.

The subgroups each of which is denoted by a symbol of the
type (o, M1, - - -, ) Will be taken as the points of the geom-
etry we are constructing. The point corresponding to the
subgroup (wo, M1, - - -, ux) Wwill be denoted by the symbol
(Mo, M1, - - -, mx), and uo, g1, - - -, x Will be called the homo-
geneous co-ordinates of the point. In the geometry thus con-
structed the points are denoted by the same symbols as those
employed in § 82 in constructing the geometry PG(k, p™), and
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the number system, namely the GF{p"], bears the same rela-
tion to the geometry in the new case as in the old. Hence the
two geometries are abstractly the same, provided we employ
(as we shall agree to do) a definition of lines similar to that
employed in § 82. That is to say, the geometry constructed in
this section is but another concrete representation of the ab-
stract geometry PG(k, p™).

It follows that certain properties of the group A in the gen-
eral case are identical with those for the special case when the
type is (1, 1, - -, 1); namely, those properties which may be
expressed in terms of the points (and classes of points — lines,
etc.) of the geometry PG(k, p™). For simplicity we shall deal
with the special case when the group is of type (1,1,.--,1);
but the results will have the obvious extension indicated.

89. Geometric Sets of Subgroups. In §§ 72 and 83 we have
given an analytic method for determining geometric sets of
subgroups of G. It is desirable to have such a set characterized
by means of properties which are immediately group-theoretic
in character. The subgroups of a given geometric set have the
following properties, as we have already seen:

I. Each of these subgroups is of order p=.

II. No two of them have a common element ex-
cept the identity.

ITI. Any given element of G is contained in some
subgroup of a geometric set.

IV. If A, B, C are three subgroups of a geometric
set such that no one of them is in the group generated
by the other two, and if D is a subgroup of {4, B}
and is different from A and B and belongs to the geo-
metric set, and finally if E is a subgroup of the group
{B, C} and is different from B and C and belongs to
the geometric set, then the groups {C, A} and {D, E}
have in common a group F which belongs to the
geometric set.
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Any set of subgroups of G which have these properties alone
satisfy the postulates of § 81. They therefore afford a rep-
resentation of a finite geometry. But Veblen and Bussey
(as cited in §81) have shown that every finite projective
k-dimensional geometry is a PG(k, p"), provided that 2> 2.
Hence one can introduce co-ordinates into this geometry by
means of the GF[p™]. On doing this in the case of the given
group-theoretic representation of the geometry, we may ex-
hibit the geometric set of subgroups in the notation employed
in §83. Therefore when k2> 2 the properties I, II, III, IV
furnish a complete group-theoretic characterization of a geo-
metric set of subgroups. The conclusion will also hold for
k=1 or 2 if we suppose that the geometric set of subgroups is
so chosen that it may be taken as a part of the geometric set
of subgroups in a group of order p** and type (1, 1,---,1)
which contains the given group G for k=1 or 2.

90. Another Analytical Representation of PG (&, p"). Another
analytical representation of PG(k, p*) may be obtained as
follows. Denote the points of the geometry by the symbols (p),
where p is a nonzero mark of the GF{p%+ "] and where (p)=(ap)
for every nonzero mark « of the included field GF[p"]. Since
the symbols (p) are p*+D» — 1 in number, and since the factor
o of proportionality has p* — 1 values, it follows readily that
the number of points defined by the symbols (p) is

L+ pr+p>n -+

If (p1) and (p.) are any two distinct points of the geometry,
then a line of the geometry will by definition be the set of points
(A1p1 + A2p2), where A\; and A\, are marks of the included field
GF[p"] and are not simultaneously zero; then the number of
points on a line is 14 p*. Then one defines planes, 3-spaces,
4-spaces, etc., inductively, as in § 81. Thus the points
(4101 + M2p2 + m3ps) constitute a plane containing the non-
collinear points (p;), (pz2), (p3), provided that ui, uz, us run in-
dependently over the marks of the included GF[p™] except that
they shall not be simultaneously equal to zero.

It is easy to show that the points and lines so defined lead to
a finite projective geometry. That Postulates I, II, IV, V of
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§ 81 are satisfied follows at once. That Postulate III is verified
may be shown by a method in all respects similar to that em-
ployed in § 82. That this geometry is the PG(k, p™) follows from
the fact that there is only one finite projective k-dimensional
geometry when k> 2; or it may be shown directly that what
we have here defined is equivalent to the more usual representa-
tion of PG(k, p*) by means of 2+ 1 co-ordinates from the
GF[p™].

Since we shall not further employ the present form of
PG(k, p™) we shall not develop these results in detail.

91. Configurations in PG(k, p™). By a tactical configuration of
rank two is meant a combination of / elements into m sets, each
set containing A distinct elements and each element occurring
in u distinct sets; it is to be understood that order of sets and
order within a set are both immaterial. For such a configura-
tion we use the symbol

» AbE

It is obvious that lu =mA. A general development of the prop-
erties of these configurations is reserved for Chapter XIV. A
few of the configurations arising from the PG(%, p™) will be
here indicated.

The finite geometries PG(k, p™) (k> 1) furnish at once a cer-
tain infinite class of these tactical configurations. The points
of the geometry constitute the / elements, and the lines of the
geometry constitute the m classes. Then we have a configura-
tion with the symbol A;’%, where [ is the number of points in the
geometry, m is the number of lines, X is the number of points
on a line, and u is the number of lines on a point; whence it
follows that we have

l=1+ﬁ"+p2n+ . '+pkn9 >\=1+Pn, M=l—pkna m=lﬂ/x'

When 2=2 and p" =2, 3, 4 we have configurations with the
respective symbols AY3, A >4 A>S. For k=3 and p=2
we have A 2 . '

From the Euclidean geometry EG(k, p*) (k> 1) we may
readily construct other tactical configurations of rank two. Let
an EG(k, p™) be formed from the PG(k, p™) by omitting a given
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(k — 1)-space Sx_;. Each line of the EG(%, p™) will contain one
point which is in the omitted S;_;, leaving p™ points on the line
and in EG(k, p*). Now let the p** points of EG(k, p™) be the
elements from which the tactical configuration is to be con-
structed, and let the sets of points be made up by taking for a
set the p* points of EG(k, p™) which lie on a given line, doing
this for each line of the EG(k, p™). Thus we are led to a con-
figuration Ay, where

I=pt A=p", w=1+p +p"+- %0 m=lu/\

For k=2 and p" = 2, 3 we have the respective configurations
A3 A3,

"This configuration A% § belongs also to another infinite class
of tactical configurations of rank two. It consists of four things
taken in pairs; since the number of pairs is six, it follows that
all possible pairs appear. Now from # elements one can form
% n(n — 1) pairs, each element occurring in # — 1 pairs. This
gives rise to a configuration with the symbol

2,n—-1
An, n(n—-1)
The last configuration may readily be generalized. From
n given elements form all sets consisting each of a combination

of & distinct elements, k being less than n. This gives rise to a
configuration A}’% with

n—l)(n-—2)---(n—k+1),

I=n, A=k m="

(n—l)(n-—Z) (n—k+1),
(k-—l)'

The first configuration of this section was obtained by group-
ing the points of PG(k, p™) into the sets defined by the lines
of the geometry. We may similarly group the points into the
sets formed by the subspaces of a given number s of dimensions,
where s is any positive integer less than k; and in each case
we shall be led to a tactical configuration of rank two. The
case when s = k — 1 is of particular interest, since the configu-
ration then has a certain dual character owing to the dual
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character of points and (¢ — 1)-spaces. This configuration has
the symbol A;’) where

l=m=1+4p"+p*+---+ptn,
A=p=1+4p"+p2"+. .. ph-bn,

In a similar manner configurations may be obtained from
EG(k, p™). In particular the p*" points of EG(k, p™) fall p*—1n
at a time on the (k — 1)-spaces of PG(k, p™) other than the one
omitted in forming the EG(k, p™), thus giving rise to a configura-
tion A’} where

I=pF" N=pt=Dn, p=1+4pr+- .. 4 pk-dr,
m=p"+p2"+-"+ﬂk”.

In the case when p =2 and & > 1 we have in EG(k, 2)
the number 2* of points. Any three points in EG(k, 2) deter-
mine a plane of EG(k, 2), and this plane contains just one
additional point of EG(k, 2). Moreover, any three of the
points in such a quadruple uniquely determines the quadruple
itself. Hence the 2* points of EG(k, 2) may be taken in fours,
in the way indicated, so that any given triple of these 2* points
occurs in one and in just one of the named quadruples. Thus
we have a tactical configuration A;,‘,‘, where, as is easily shown,
we have

l= 2k’ )\ = 4’ M= %(2’0 - 1)(2k—1 - 1)9
m=1%. 2622k — 1)(21— 1)

Thus for k=2 we have just one quadruple — a trivial case.
For k=3 we have 14 quadruples, containing each triple just
once. For k=4 we have 140 quadruples of 16 things.

We have already determined certain dual configurations by
means of the PG(k, p™). It is of interest to construct certain
others from the special case of PG(2, p*). From PG(2, p™) omit
a line and all the points on that line; also omit an additional
point and all the lines on that point. Then we have left p2» — 1
points and p?*—1 lines; there are p* retained points on
a retained line and also p" retained lines on a retained point.
Considering the points as elements and the lines as sets of
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elements, we are thus led to a configuration with the symbol
Ay} where

l=m=p2"—1, A=u=p~
For p» =2, 3 these configurations are A%3, AY3. The latter
configuration may be exhibited explicitly by the symbols

136, 147, 158, 238, 245, 267, 357, 468,

where the 8 digits’ are the elements and the triples are those
indicated.

Let us next consider the configuration obtained from PG(2, p™)
by omitting all the points on a line and all the lines on one
point of this line. There remain p2* points and p?” lines; each
retained line contains p™ of the retained points, and each re-
tained point is on p™ of the retained lines. Thus we have a
A" with l—m p?", A=pu = p~. For p=3 we have a
conﬁguratlon Ag o of considerable interest.

Let us now consider the dual configuration formed from the
PG(2, p*) in the following manner. We omit all the points
on two lines, leaving p2® — p* points. We also omit all the
lines on the common point of these first two lines and also all
the lines on one other point of one of these lines. We have
thus omitted two lines of points, these two lines having a
common point, and also two bundles of lines, these two bundles
having a common line. The omitted configuration is dual in
character. Hence the points which remain form a set that is
dual in character. Grouping these remaining 3" — p* points
in collinear sets on the retained lines, we have a dual configu-
ration A’} where

l=m=p2"—p“ )\:M‘_—p"—l

as one may readily venfy For p" =4 this gives rise to an in-
teresting configuration Al2 1o formed from the PG(2, 22). Using
the scheme of § 88 for this geometry, and omitting the lines
BFJNR and AFGHI with their points and also the lines on
A and F, we have a concrete representation of A12 12 in the form

CLO, CQT, CMS, DKT, DMP, DOU,
EPS, ELU, EKQ, MQU, KQ@S, LPT.
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Let us next omit from PG(2, p™) three noncollinear points
and all the points on the three lines determined by pairs of
them, and also all the lines on each of these three points. There
remain of the PG(2, p™) the same number of lines and of points,
namely, (p™ — 1)2; they fall into sets of p» — 2 each on p» — 2
lines, thus giving a configuration A » With l=m = (p" — 1)2,
A=pu=p"—2. Special cases of th1s configuration have the
symbols Ay and A 335

This configuration may readily be generalized. Let P, de-
note a polygon in PG(2, p*) whose vertices are Ay, Az, - - -, A,
and whose sides are Ai1As, A243, Asdg, - -, Ar_1As, ArAl.
Omit all the points on these 7 lines and also all the lines on
these 7 vertices. The number of omitted points [omitted lines]
is 7p™. Each of the retained lines holds p™ — r 4+ 1 of the re-
tained points, while each of the retained points is on the same
number of retained lines. We suppose that 7 is such that
p*—17r+41 is an integer s greater than unity and less than
p"—1 (in order to avoid trivial cases). Then we have a dual

configuration
Ay (s=pr—1+1; l=m=spr+1)

Let us now consider the PG(2, 2*) (z > 2). Let Q be any com-
plete quadrangle in this plane. Since its diagonal points are
collinear, it consists of seven points and seven lines. Omitting
all the lines on these seven points and all the points on these
seven lines, we have from the retained points and lines a A'\ »h
for which one readily shows that

l=m=2%"—-6-2"4+8, A=u=2"—6.

For n =23 we have a Azi 2

Several of the configurations which we have obtained from
PG(2, p™) are readily extended to the case of PG(k, p») for
k> 1. We shall now exhibit two of these generalizations.

Let us omit from the PG(%, p™) (k> 1) one particular (£ — 1)-
dimensional subspace PG(k — 1, p™), together with all its points.
There remains an EG(k, p™) containing p*» points. Omit one
of these points and each of the (% — 1)-dimensional subspaces
PG(k—1, p™) which contain this omitted point. The number
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of (k— 1)-dimensional subspaces retained is then p¥» —1; in
each of these we take only those points which are in the named
EG(k, p™). By means of these subspaces we have thus grouped
the p** — 1 retained points into p*» — 1 sets, each set containing
p*~D= points and each point appearing in p®~D» sets. Thus
we are led to a dual configuration A;’}. where

l=m=pr—1, A=p=pk-on,

In constructing another configuration A, let us omit from the
PG(k, p™) (k> 1) one particular (k— 1)-space PG(k— 1, p™),
together with its points, thus forming an EG(k, p™) of p** points.
Omit also all (¥ — 1)-spaces on a particular one of the points
already omitted, retaining the remaining p** (k — 1)-spaces.
Each of these remaining (k — 1)-spaces has p*~1" points of the
EG(k, p™) on it, while each of these points is on p*~1=» such
spaces. Thus we are led to a dual configuration A}\,’; where

l=m =Pk", A= m =p(k—1)n_

Of particular interest are the cases p» =2, k=3; pr=2,k=4;
»=3, k=3: these lead to configurations with the respective
SymbOIS A4, 4 A 8,8 A 9,9
8, 82 16, 16? 27,27

It is possible to construct various other dual configurations
generalizing several of those here given. In particular, con-
figurations may be constructed in which the elements are lines
or other subspaces. But these seem to be of less interest than
those already given.

On pages 351-354 are numerous exercises concerning the
groups characterized by the foregoing configurations.

EXERCISES

1. From the PG(3, 2) construct the Alg: ;5 described in the second
paragraph of § 91 and determine the largest permutation group on
its letters leaving it invariant.

2. Construct a configuration of 7 triples and also a configuration of
7 quadruples left invariant by the group {(@oa: - - - as), (@10204) (asa6as5)}
and in each case determine the largest group leaving the configuration
invariant.
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3. Treat the similar problem for a configuration of 13 quadruples
left invariant by {(aoa: - - - 612), (8183s)(026a5)(a4a12a10)(azasa11)}.
Note that these permutations may be defined by the congruences

t=t+1mod13, ¢=3¢mod13

on the subscripts.

4. Solve the similar problem for configurations of 31 sextuples left
invariant by the permutation group defined similarly by the con-
gruences

t!=t4+1mod3l, ¢ =5¢mod3l.

5. The group {(@oa; - - * @10), (@4184a5a9a3)(a2a3a10a7a5)} permutes
the set a4, a3, a4, as, ao into 11 sets, thus forming a tactical configura-
tion Alf: ?1- Determine the largest permutation group on its symbols
which leaves this configuration invariant.

6. From PG(2, 3) construct the Ag: ‘1‘2 described in the third para-
graph of §91 and determine the largest permutation group on its
symbols which leaves the configuration invariant.

7. Construct the groups determined by the configurations Ag:g

and Alg: fe of § 91.

8. Construct from PG(2, 22) the configuration Alg' :5 of § 91 and
the group characterized by it.
9. Construct from the PG(2, 3) the configuration Agg of § 91 and
the group characterized by it. '
10. Construct from the PG(2, 22) the configuration Alg’ ?2 of §91
and the group characterized by it. ’
11. Discuss the properties of the configuration Ay > of §91, where
l=m=spr+1. '
12. Form from the PG(3, 2) the configuration Ag"g described at the
end of § 91, and construct the group characterized by it.

MISCELLANEOUS EXERCISES

1. In the PG(3, 3) determine the 16 points which lie on the quadric
surface x? 4+ y2 + 22 + /2 = 0. Show that these fall seven at a time on
16 planes, and construct the resulting configuration. Determine the
largest permutation group on these 16 points each element of which
leaves this configuration invariant, and discuss its properties.
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9. The set ABCEHLQW is permuted into 29 sets of eight symbols
each by the cyclic permutation (ABC --- XYZ af3y) of order 29.
Show that the resulting configuration characterizes a group of
order 29.

3. In the PG(2, 22) let the point (001) be denoted by 4, and choose
the notation for points so that the transformation

=y yY=wxt+wytw:, 2=z,

where w is a primitive mark of the GF[22], shall permute the points
of the PG(2, 22) according to the cyclic permutation (ABC - - - STU).
Show that ABGIS constitutes one line of this geometry and that the
powers of the given permutation permute this line into the 21 lines
of the geometry. Thence determine the largest permutation group on
the points of the geometry whose elements permute among themselves
the lines of the geometry.

4. Form from 8 things a set of 14 quadruples such that any
(whatever) triple of these 8 things appears in one and just one quad-
ruple of the set, and show that the resulting configuration characterizes
the triply transitive group of degree 8 and order 8 - 7 - 6 - 4.

5. Form from 16 things a set of 140 quadruples such that any
(whatever) triple of these 16 things appears in one and just one quad-
ruple of the set, and construct the permutation group characterized
by the configuration.

6. Form from 10 things a set of 30 quadruples such that any
(whatever) triple of these 10 things appears in one and just one quad-
ruple of the set and such that the group characterized by the configura-
tion is the triply transitive group of degree 10 and order 10-9-8 - 2.
Determine how many distinct (that is, nonconjugate) systems of
30 quadruples can be formed from 10 things so that each triple ap-
pears in one and just one quadruple of each system.

7. Show that in the GF[13] to which o has been adjoined (as in
§ 68) the general linear fractional group permutes the quadruple
0, 1, 3, 9 into 182 quadruples such that each triple of the 14 marks
is in just two quadruples. From these 182 quadruples select four sets
of 13 quadruples each so that each set shall form the geometry
PG(2, 3), the quadruples being the lines of the geometry.

8. For the GF[31] formulate and solve a problem similar to that
in Ex. 7 for the GF[13].
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9. From 32 symbols form a system of quadruples such that each
triple occurs in one and just one quadruple of the system.

10. Exhibit in detail the analytical representation of the geometries
PG(2, 2) and PG(2, 3) by the method of § 90.

11. From the An 11 of Ex. 5 on page 352 form a set of 66 quintuples
as follows: retain the 11 quintuples of the Au fl, from every pair
of quintuples in An “;‘1 form a new quintuple by taking the two ele-
ments common to this pair and the three elements not in either quin-
tuple of the pair, thus obtaining the remaining 55 quintuples.

12. Determine the group characterized by the 66 quintuples of
Ex. 11 and by aid of it investigate the properties of the configuration
formed by the 66 quintuples. In particular, show that each quadruple
of the 11 symbols appears in one and just one of the quintuples.



CHAPTER XII

Collineation Groups in the Finite Geometries

92. The Projective Group in PG(k, p"). We have seen (§ 73)
that the totality of transformations of the form

k
A: px',‘- = za’ijxj’ (i: 0’ 1’ 2’ <oy k)
=0

on the symbols (%o, 1, - - *, Xx) constitutes a group P(k, p*), the
coefficients a;; (in each case) being marks of the GF[p"] such
that the determinant | c;; | is different from zero. If the symbols
(%o, %1, - - +, %) are taken to represent the points of a PG(k, p™),
then this P(k, p™) is a group of point transformations in the
PG(k, p™). In § 84 we saw that the PG(k, p*) is transformed into
itself by each element of the linear group P(k, p™) in the sense
that lines are transformed into lines. Therefore we shall call
P(k, p™) the projective group in the PG(k, p™). By a projective
transformation in PG(k, p™) we shall mean a transformation in
the group P(%, p™).
In § 73 we saw that the order of P(k, p™) is

1 k .
;"_——1 1 (p(lc+1)n — pm)_

Let us consider the particular ordered set S of %+ 2 points
in PG(k, p™):

S: (1’0’0’“'90)’ (O,l,O,---,O),°",
’ (010,"'90’ 1); (1’ 1)"" 1)

the last having all its co-ordinates equal to 1 and each of the
others having a single co-ordinate 1 while the other co-ordinates
355



356 Groups of Finite Order

are all zero. By a transformation of the form A the points of the
set S are carried in order to the set T':

(ctoi, a3y - = +5 Qks) 3 #=0,1,-..., k)
( k k k )
Qojy , X1jy * * 2y (2473 B
i§> ! Eo Y Eo +

Now the set S consists of 2+ 2 points no £+ 1 of which are on

the same (% — 1)-space. We shall show that the coefficients a;

may be so chosen that the set 7" will coincide with any given set

of £ + 2 points no &+ 1 of which are on the same (% — 1)-space.
Let B,

B: (Yoir Y16 * * *5 Vi), (=0,1,---, k)

be any set of £+ 1 points in PG(k, p*). Any (k — 1)-space con-
tained in PG(k, p*) is (§ 85) the locus of an equation of the form

CoXo + C1x1 + - - - + cex =0,

where the c; are constants not all equal to zero. If the given
points B are on this (k¢ — 1)-space, then we have

CoYoi + C1Y1i+ - o -+ Cyri= 0. (¢(=0,1,---, k)

Since at least one of the ¢; must be different from zero, it follows
that a necessary and sufficient condition that the given set B
of k£ + 1 points shall be on a (k — 1)-space is that the determinant
| s | of order k4 1 shall be zero.

On applying this criterion to each of the &+ 2 sets of £+ 1
points each contained in the % 4 2 points in the set 7, and re-
membering that the determinant | «;; | is different from zero, we
see that no %+ 1 points of the set T are on the same (k — 1)-
space.

Let U,

U: (O'Oi’ O1iy * * ° Uh'), (i= 0’ 17 R k+ 1)

be any ordered set of £ + 2 points no & + 1 of which are on any
(k— 1)-space. A necessary and sufficient condition that this
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given set shall coincide in order with the set T is that nonzero

marks po, p1, - - *» pr+1 shall exist such that
Pi0 i = Oy, (Z, l= 0, 1, sy k) [1]
3
Pr+101, k+1 = Zaljo (¢=0,1,---, k) [2]
j=0

We are to show that coefficients a;; in the transformation exist
such that these relations are satisfied. Substituting in [2] the
values of the ay; from [1], we have

‘ﬁLdzj=0'z,k+1. (l=0, 1,,k)
j=0Pk+1

Since the determinant |o;; | of this system of equations is dif-
ferent from zero, owing to the nonincidence of £+ 1 of the
points U on a (k— 1)-space, it follows that these equations
may be solved uniquely for p;/px41 (7=0,1,---, k) in the
usual form of quotients of determinants. Moreover, no one
of these quantities can be zero, since no numerator determinant
in these solutions is zero, owing to the properties of the points
U. Taking pr,; to be any nonzero mark of the GF[p"], we
have suitable values for the marks p;. Then if the «;; are de-
termined by [1], we have the coefficients a;; for the transfor-
mation, and they have the property that the determinant
| a; | is different from zero. Moreover, the «;; are uniquely
determined except for a single factor of proportionality. For
these values of the «y; the set T coincides in order with the
set U.

From this it follows that the ordered set S can be carried
by a transformation of P(k, p™) into any given ordered set of
k+ 2 points no k4 1 of which are on the same (& — 1)-space.
Moreover, the transformation is completely determined by the
set of points U into which the set S is carried.

Now let T; and T: be any two ordered sets of &+ 2 points
each in PG(k, p™), each set having the property that no &+ 1
points in the set are in the same (k£ — 1)-space. Let R, and
R; be the (unique) transformations in P(k, p*) which carry
the set S in order into the sets T; and T: respectively. Then
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the transformation R;~!R. carries the ordered set 7; into the
ordered set T2. Moreover, R;~!R; is the only transformation
in P(k, p™) having this property; for if R carries the set 7y in
order into the set 7., then RR,~! carries T, into S, so that
RR,~'= R;~1, whence R = R1~'Rs.

The principal results obtained may be summarized into the
following theorem :

I. The projective group P(k, p™) in PG(k, p"),
consisting of the homogeneous transformations

k
px’i = 2 X5, (2 =0,1,..., k)
j=0

where the «;; are marks of the GF[p™], subject to the
condition that the determinant |a;;| shall be differ-
ent from zero, is a group of order
1 £ (k+1)n __ pin
S LL 40" — p).
If 7y and T are any two ordered sets of & + 2 points
each in PG(k, p™), each set having the property that
no k+ 1 points in it lie on a (k — 1)-space, then
P(k, p™) contains one and just one transformation
which carries the set 7; in order into the set 7>. In
particular, a transformation of P(k, p™) is completely
determined when the ordered set of points is given
into which the ordered set
(1,0,0,---,0),(0,1,0,---,0),---,
©,0,---,01),(1,1,1,---,1)
is carried.
93. The Collineation Group in PG(k, p"). We have seen that
a projective transformation in PG(k, p™) transforms the lines

of the geometry into its lines. Hence a projective transforma-
tion is a collineation, in accordance with the following definition :
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A collineation in PG(k, p™) is a point transformation in
PG(k, p™) which has the property that it transforms the lines
of PG(k, p™) into its lines.

When #z > 1, the (nonprojective) transformation

px,i =x7, (i = O, 1: Tt k)

is glso a collineation, as we shall now prove. It transforms the
points (M;Jo + o, - - -, upe+ VVE)
of the line joining

(Mo, p1, -+ = ) and  (vo, ¥1, - -+, i)

into the points
(MPUo® + VPV, - - -y PPIP + VPVRP)
these are the same as the points
(pue? + ov0?, - - -, pps® + Vi)
of the line joining the points
(Mop, sy Mkp) and (Vo”, R )

since A? ranges over all the marks of the GF[p™] when A ranges
over all these marks. Hence the special transformation given
is a collineation.

The product of any two collineations is evidently a collinea-
tion. If we combine the powers of the special transformation
of the preceding paragraph with the transformations of P(k, p*),
we get all transformations of the following form and no others:

k

px’i=26ij7xjpr’ (i=0y19"')k;T=0’1;"'9n—l)

j=0

where the (;;, are marks of the GF[p"] such that the determi-
A, ..

nant A=1Biul,  Gi=01,-k

is different from zero for each value O, 1,-..,#—1 of 7.
Hence all these transformations are collineations. They con-
stitute the group C(k, p™) introduced in § 75. When n =1 the
groups C(k, p*) and P(k, p™) are obviously identical.
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The group C(k, p™) is called the collineation group in the
PG(k, p™) on account of the following theorem, which will now
be proved :*

II. Every collineation in the PG(k, p™) is in the
group C(k, p™); and every element in this group is
a collineation in the PG(k, p™).

Let S be the ordered set of points

(1’O9O:°‘ ‘10)’ (O’ 1,0,' * "0)" "y
(O, 0’ Ct Y O’ 1)’ (1) 1’ Tty 1)'

It is a set of £+ 2 points no 2+ 1 of which are on a (k— 1)-
space. Any collineation V must replace this ordered set S by
some ordered set S; having the same property that no 2+ 1
of its points are on a (k— 1)-space. From Theorem I it fol-
lows that a projective transformation U exists which also
replaces the ordered set S by the ordered set S;. Then VU-1
is a collineation T which leaves fixed each of the points of S.

We are next to determine the collineations T having this
property of leaving fixed each of the points S. We first carry
out the demonstration for the case £ =2. Then the set S is
the set

S: 1,0,0), 0,1,0), 0,0, 1), (1, 1, 1).

The intersection point of two lines each through fixed points
of T is also a fixed point of T. By means of this fact it may
be shown that the points (0, p, 1) of the line joining (0, 0, 1)
and (0, 1, 0) are fixed, where p is an integral mark of the field.
Denote the points of the line x = 0 by the nonhomogeneous
co-ordinates «, 0, 1, - - -, where these symbols (except o) are
the marks of the GF[p"] and denote the ratios x;/x2. Then the
points ©, 0, 1, 2,---,p— 1 are fixed. From the quadrangle
construction, and the fact that a collineation transforms a
complete quadrangle into a complete quadrangle, it may be
shown that if three points &, b, ¢ of this line are so related that

at+b=c or ab=c,

S:

*See Veblen, Trans. Amer. Math. Soc. 8 (1907), 366-368.
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then the points, with co-ordinates ¢(a), ¢(b), ¢(c) into which
they are respectively transformed, are so related that

d@) + o) = ¢(c) or ¢(@)d(®) = ¢(c).
Hence the transformation of the points of this line is subject to

the conditions  ¢(q) + ¢(8) = ¢(a +b),
¢(a) - o(b) = ¢(ad),
If w is a primitive mark of the GF[p"], then every nonzero
mark of the field may be written in the form «*. From the
conditions on ¢ it follows then that

¢ (o*) = [p(w)]~.
Hence if ¢(w) = o™, we have
$(et) = W = (W)™,
Since ¢(0) = 0, it follows from this that every mark of the field
is transformed into its mth power.

But for an integral mark p we have ¢(p) = p; therefore,
since p = p™ for every integral mark p, we must have for the
value of m a power p' of p. Then all the required conditions on
¢ are satisfied.

Going back to homogeneous co-ordinates, we see that the
resulting transformation 7, so far as it affects points on the
line xo = 0, must be of the form

Xo=x?, ¥1=mP, Xo2=2xs.
When this transformation is applied to the whole plane, it in-
duces a collineation in the plane, as we have already seen.

Now the transformation T is completely determined by the
named transformation on the line xo =0 and the fact that it
leaves (1, 0, 0) and (1, 1, 1) fixed, as one may see from the fact
that it completely determines the lines into which the lines
through (1, 0, 0) and (1, 1, 1) are displaced.

Among the transformations T is the transformation

x'o= %P, X1=uP, X'2=2x";
all other transformations T are powers of this transformation;
and this itself is a collineation, as we have already seen. There-
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fore all the collineations are generated by this particular one
together with the projective transformations of the plane.

This implies the theorem for the case k = 2.

By means of the theorem for 2 = 2 one readily establishes it
for k = 3, by a process similar to the latter arguments for 2 = 2.
Then it is readily extended by induction to a general value of .

94. Subgroups of the Collineation Group. We are now in posi-
tion to prove the following theorem concerning the collineation
group in PG(k, p™) and certain of its subgroups:

ITII. (1) The collineation group C(k, p") in
PG(k, p™) is represented analytically by the homo-
geneous transformations

k
(4) px's = Qﬁij,xjp’, (=01, k;r=0,1,---,n—1)
J=

where the 8;;- are marks of the GF[p"] such that the
determinant A,, Boo:Botr -+ + Boks

A = 61016111 fc Blkr ’
T =
BkOTBklf M Bkk‘f

is different from zero for each value of r. Its order is
n times the order of its projective subgroup P(%, ),
or Co(k, p"), made up of those transformations of (A)
in each of which r = 0, and is therefore
n £ )
o 1,~=0(p(k+l)n — pm).
The group G is generated by C, and the collineation
px’,-=x,~”. (1=O, 1,---, k)
The last element transforms C, into itself.

(2) If d is any proper divisor of #n, then we have a
subgroup Cu(k, p") of C(k, p™) (with C; = C) gener-
ated by C, and the collineation

pxi=x#,  (1=0,1,--- k)
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and C; is of index d in C. The transformations in C,
are of the form of (A), with the restriction on 7 that
it shall be confined to the multiples of d belonging to
the sequence 0, 1, 2, - - -, n — 1.

(3) Those transformations in C; whose determi-
nants A, are (k + 1)th powers in the GF[p"] form a
subgroup Cu(k, p™) of C; of index p, where u is the
greatest common divisor of £+ 1 and p" — 1.

(4) The projective group P(k, p™), considered as a
permutation group on the points of PG(k, p"), is
triply transitive when k& = 1 and is doubly transitive
when £ > 1. The same property of transitivity be-
longs to each of the previously named groups which
contains P(k, p) as a subgroup.

(5) The group Ca(k, p*) is doubly transitive when
considered as a permutation group on the points of
PG(k, p™).

(6) Finally, in a special case, we have another sub-
group of C defined as follows. Let &+ 1 be a divisor
of n, and let ¢ be a fixed divisor of n/(k + 1). More-
over, let £+ 1 be a factor of p* — 1. Any multiple
of cinthesetO,1, ..., % —1 can be written in just
one way in the form {(k 4+ 1)s + a} 5, where O =a =k
and s is a non-negative integer. For every such mul-
tiple of ¢ form the entire set of homogeneous trans-
formations

k
(B) px’i — 2 3ij8axjp{(k+l)a+a}¢’ (i—':o, 1’ .. k)
j=0

in which each determinant | 3| of a transforma-
tion (s and « being fixed for a particular determinant)
is equal to w= times a (k 4+ 1)th power in the GF[p"],
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w being a primitive mark of the GF[p"]. The totality
of these transformations forms a subgroup H,(k, p*)
of C(k, p*) which is of index (2 + 1)¢ in C. More-
over, H, is contained in C, and is of index £ + 1 in
C.. The group H, is generated by C, and the trans-
formations of the form

(C) px: —_ wtixip{(k+l)s+a}v’ (i - 0’ 1’ oo k)

where fp+t +-- -+ fr=amod (k+1). When con-
sidered as a permutation group on the points of
PG(k, p™), the group H,(k, p™) is triply transitive
when k=1 and is doubly transitive when & > 1.

The results in paragraph (1) of the theorem were proved in
the preceding two sections.

The proof of the statement in paragraph (2) of the theorem
is almost immediate ; it is therefore omitted.

If two transformations in C, have their determinants equal
to (k4 1)th powers in the GF[p"], then their product has its
determinant equal to such a (% + 1)th power, as one may prove
easily by combining these transformations and making use of
the fact that the pth power of a determinant D whose elements
are in the GF[p"] is equal to a determinant D whose elements
are the pth powers of the corresponding elements of D. This
proves the existence of the groups named in paragraph (3) of
the theorem.

That C; is of index u in Cp is proved in the following manner :
By multiplying each coefficient in a given transformation of C,
by A (A= 0) we obtain another form of the same transforma-
tion; the determinant in the new form is A*+! times that in the
original form; hence if A = wr and if w= is the original value of
the determmant its new value is wete®+D = wetptt D +e(pm—1),
and this may be made equal to a number of the set 1, w, w?, - -
w*~1, since integers p and ¢ exist such that p(k + 1) + o(p" — 1)
is any given multiple of the greatest common factor u of £+ 1
and p* — 1. We now suppose that each transformation in C, is
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taken in such form that its determinant is one of the numbers
1, o, w?, -, w*=L. Then C, is evidently the subgroup of Co
whose elements have their determinants equal to unity. Let
T; and T: be any two transformations in Co(k, p™) whose deter-
minants have any given preassigned value w” from the set 1, w,
w2, ---, w1, Then ToT;~! has the determinant unity and
hence belongs to Co. Hence every transformation T: with deter-
minant w’ belongs to the set CoT1, and every transformation of
this set is of determinant w*. T herefore the number of transforma-
tions in Co(k, p™) having determinant w™ is equal lo the number
having determinant unity. Hence Co is of index u in Co.

If d is any proper factor of 7, then Cp and the transformation
px';=x (1=0, 1, - --, k) generate the group C;; and the
order of C, is n/d times that of Co. It is readily proved that Co
and the same transformation generate the group C; and that
the order of C, is n/d times that of Co. Since Co is of index u in
Co, it follows that C; is of index u in C,.

This completes the proof of the proposition in paragraph (3).

The transitivity properties named in paragraph (4) of the
. theorem are immediate consequences of the fact that (§ 92,
Theorem I) there exists in P(k, p*) a transformation which
carries any ordered set of &+ 2 points of PG(k, p™), no k+ 1 of
which are in the same (k — 1)-space, into any like ordered set of
k + 2 points.

To show that C, is doubly transitive, in accordance with
paragraph (5) of the theorem, we note first that the transforma-
tion (A4) carries the points (1,0,0,---,0)and (0, 1, O, - - -, 0)
into the points (Boor, Biors - - *» Bror) and (Borr, Pur, * - -, Brar)
respectively. Call these the points C and D respectively. The
transformation may be so chosen that C and D are any two
assigned points of PG(k, p™). Since C and D are different points,
there exist integers A and u such that the determinant
BrorBurr — BriBuor is different from zero. Suppose now that
k> 1. From the transformations (4), which carry the first-
named points into C and D respectively, choose one as follows:
take By, =0 = B, for s=2, 3, - - -, k; choose the remaining
Bii» for which 7> 1 so as to give to the determinant A, any
preassigned value different from zero. It is obvious that this
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can be done. Hence the choice of the 8’s and 7 can be made so
that the transformation (A) thus constructed belongs to the
group C;. Hence C; is doubly transitive when 2> 1. Suppose
next that 2= 1. We have to see that any two points (a0, a0)
and (a1, ou1) can be represented as (Boor, Bio-) and (Borr, Buir)
respectively in such a way that Boo.B11- — Bo1-B10. iS a square;
and this is obvious, as one sees by utilizing the factor of pro-
portionality in the co-ordinates of the points. Hence the group
Ci(k, p™) is doubly transitive in all cases.

It remains to prove the statements in the last paragraph of
the theorem.

To show that the system of transformations named consti-
tutes a group, consider two transformations of the named form,
in one of which s and « are replaced by s; and «; and in the
other of which they are replaced by sz and a2. A product of
these two transformations may be written in the form

k k
(k+1)sy+as}eo p{(k+1)‘1+¢1}’
px’i=26’ifsxa1{ Bjmzale‘p{ 2t az} }
(1] 1]

j u=

k ]
= 2 (k+1)s,+ k+1) (83 +8.) + ay + ao o
{Zﬁiislal(ﬁjuazaz)?{ 8 au}a}x"p{ 1+82) +ayFag)

p=0 0

=

fori=0,1,---, k. The determinant of this product transforma-
tion may be written as a product of determinants in the form

(k+1)e;+
| Biissan |+ | Binsgay | 2101007,

Now the exponent on the second determinant is congruent to 1
modulo % + 1, since p° — 1 is divisible by £+ 1. Hence the de-
terminant of the last written transformation is of the form of
a (k4 1)th power in the GF[p"] times | Bijs,a, | - | Bijoyay |- But
these two determinants (by hypothesis) are equal to (%2 1)th
powers in the GF[ p"] times w= and w= respectively. Hence the
determinant of the product transformation is equal to such a
(2 + 1)th power times w=+2:, From this and the fact that » is
a multiple of (% 4 1)¢ it follows that the product transformation
belongs to the set of transformations defined in the last para-
graph of the theorem. That set therefore forms a group H,. It
is obviously contained in C, and hence in C.
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It is obvious that a product of any given transformation (B)
of H, and a suitably chosen transformation (C) is a transforma-
tion belonging to Co. From this and the fact that every trans-
formation (C) is in H, it follows readily that H, has the named
generators.

The general transformation in C, has its determinant re-
stricted to be different from 0, while a like transformation in H,
has a further restriction that the value of its determinant shall
be of a certain form relative to (k+ 1)th powers, so that the
possible values for the determinants of transformations in C, of
given form are %+ 1 times as many in number as the possible
values for the determinants of the corresponding transforma-
tions in H,. From this it follows without difficulty that H, is of
index 2+ 1 in C,. It is therefore of index (2 + 1)o in C.

It remains to establish the transitivity properties of the
group H.(k, p™). For the case when k> 1 the same type of
argument may be used as that by means of which the double
transitivity of C; was established, and with the conclusion that
H,(k, p™) is doubly transitive when 2> 1. When k= 1 we may
write # = 2 p, since » is then even. Then ¢ is a factor of » and
we have to show that H,(1, p?*) is triply transitive. In this case
the transformation (B) carries the points (01), (10), (11) into
the points

(Botsas Bitsa)s (Boosas Brosa)s (Boose + Botsas B10sa + Pilsa)

respectively, while at the same time the determinant

ﬂOOsaﬁllsa - BlOsaﬁOlsu

is equal to w= times a square in the GF[p?*]. Subject to this con-
dition the B’s can be chosen so that for an appropriate value of
« the last ordered set of three points is any given ordered set of
three points in PG(1, p?*). Hence H,(1, p?) is triply transitive.

This completes the proof of the theorem.

The transformation groups appearing in the foregoing
theorem have been interpreted in it as permutation groups on
the points of PG(k, p™). But these groups transform lines into
lines; therefore they transform the m-spaces PG(m, p™) con-
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tained in PG(k, p™) among themselves for each value m of the
set 0,1, 2, ---, k— 1. (Here we are taking % to be greater
than unity.) Hence they may be interpreted as permutation -
groups on symbols denoting the m-spaces for each particular
value of m.

In particular, the (k— 1)-spaces are transformed among
themselves. The corresponding permutation group is of the
same degree as that on the points of PG(k, p*), since the number
of (k— 1)-spaces in PG(k, p™) is equal to the number of points
in this k-space. In view of the principle of duality it is not
difficult to show that these two permutation groups arising from
C(k, p™) are identical as permutation groups; for every trans-
formation (A) on the points of PG(k, p™) can be expressed in the
form of a transformation of the same general type on the
co-ordinates which represent in a dual way the (k& — 1)-spaces
PG(k—1, p™) in PG(k, p™). Moreover, the transformations
(A) themselves set up a one-to-one correspondence among the
elements of C(k, p™) when interpreted on the one hand as permu-
tations on the points of PG(k, p) and on the other hand as
permutations on the (k¢ — 1)-spaces in PG(k, p™). Furthermore,
it may be seen that this correspondence is not the identical cor-
respondence; for there are transformations leaving fixed the
(k — 1)-space x; = 0 without leaving fixed any point of PG(k, p™).
Detailed evidence of this fact will appear in the next section ; it
is involved in the fact that both the subspace x; =0 and the
corresponding Euclidean space EG(k, p™) may have all its points
permuted among themselves by one and the same transforma-
tion of C(%, p™).

The results of the last paragraph may be generalized to the
case of l-spaces and their duals the (¥ — [ — 1)-spaces. Each
of these sets of spaces is permuted by the transformations of
C(k, p™), and the two permutation groups thus arising are
identical as permutation groups. Again, the simple isomor-
phism which is established between them is not the identical
isomorphism, except in the special case of self-dual spaces.
This may be seen by observing that a space of the one
type may be held fixed while no space of the other type is
held fixed.
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Hence we have the following theorem :

IV. The collineation group C(k, p™), when & > 1,
transforms the (k& — 1)-spaces PGk — 1, p") in
PG(k, p™) according to the same permutation group
as that according to which it transforms the points
of PG(k, p™); it sets up a simple isomorphism of
this permutation group with itself which is different
from the identical isomorphism. More generally it
sets up a like correspondence between two identical
permutation groups the letters of one of which are
the symbols for the l-spaces of PG(k, p™) while the
letters of the other are the symbols for the dual
(k — 1 — 1)-spaces (except that the isomorphism may
be identical in the case of self-dual spaces). These
several permutation groups (of different degrees) are
all simply isomorphic with C(k, p) itself.

It is obvious that similar results are valid for each of the
subgroups of C(k, p™) described in Theorem III. Of particular
interest is the corresponding theorem for the case of the pro-
jective group P(k, p™). Thus Theorem IV becomes a new theo-
rem of interest if throughout it we replace C(k, p™) by P(k, p™)
wherever the former occurs.

For the case when k£ > 1 the lines of PG(k, p™) are per-
muted among themselves by P(k, p*) or C(k, p™) according to
a transitive group, since any k-2 points no £+ 1 of which
are on a (k— 1)-space may be transformed into any such set
of &+ 2 points by either of the named groups. If 2 > 2 the
PG(k, p™) has pairs of intersecting lines and pairs which do
not intersect: since a pair of one of these sorts cannot be
transformed into a pair of the other sort, it follows that this
permutation group on the lines of PG(k, p™) cannot be doubly
transitive when 2 > 2. When k£ = 2 the lines are transformed
according to the same permutation group as the points, the



370 Groups of Finite Order

latter being the duals of the former in this case. Hence the
lines of PG(2, p™) are transformed among themselves according
to a doubly transitive group by both C(2, p™) and P(2, p*) and
in fact by their subgroup Co(2, p™).

More generally, it may be shown in the same way that the
m-spaces PG(m, p*) in PG(k, p™), when m < k and % > 1, are
permuted according to a transitive group by either P(k, p©)
or C(k, p™). If 0 < m < 3 k, this group is simply transitive,
since there exist two sorts of pairs of m-spaces, namely pairs
in which the two spaces intersect and those in which they do
not intersect, and a pair of one sort cannot be transformed
into a pair of the other sort by either group in considera-
tion. Thence by means of the principle of duality it is seen
that this permutation group is also simply transitive when
$k<m< k—1. We have to consider further the case when
kis even and m = 4 k. Since this case has already been treated
when k= 2, we shall now suppose that 2 > 2. Then for this
case we have m = 2. It is clear, then, that there exist again
two sorts of pairs of m-spaces, namely pairs in which the ele-
ments have an (m — 1)-space in common and pairs in which
the common elements constitute a space of fewer dimensions.
Since a pair of one of these sorts cannot be transformed into
a pair of the other sort by a collineation, we conclude in this
case also that the permutation group on the m-spaces as sym-
bols is simply transitive.

Since Co(k, p™) is doubly transitive on the points of PG(k, p™),
it follows that the lines of PG(k, p™) are permuted transitively
by Co(k, p™). We shall show more generally that the m-spaces
of PG(k, p*) are permuted transitively by Co. For this purpose
it is sufficient to show that Co(k, p™) contains a transformation
which replaces the m-space (0 < m < k) containing the points
Py, Py, - -+, P, by any given m-space S,, P: being the point
whose (7 + 1)th co-ordinate is unity and whose remaining co-
ordinates are all zero. Now any transformation, of determinant
unity, which is contained in P(k, p*) belongs to Co(%, p*). From
the properties of transformation A in § 92, given there with
reference to the transformation of the points S into the points
T, it is easy to see that A may be so determined as to have
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the properties required here, since besides the coefficients in
the transformation which are required to carry Py, Py, - - -, P
to a base set of points of S,, we have others which enable us
to make the value of the determinant equal to unity.

We shall now show that the permutation group induced in
the m-spaces of PG(k, p™) by the group Co(k, p™) is primitive.
Since the group is doubly transitive when m =0 or 2 — 1, we
may confine ourselves to the case in which 0 <m < k— 1.
We assume that the group is imprimitive and show that we
are thus led to a contradiction. Since the m-spaces in any
given (m -+ 1)-space of PG(k, p™) are permuted among them-
selves in a doubly transitive way by the subgroup which leaves
this (m + 1)-space invariant, it follows that the m-spaces in
any given (m + 1)-space must all belong to the same set of
imprimitivity, for otherwise two of them belonging to one
system could be transformed to two of them taken from dif-
ferent systems. Thence it follows that the set of imprimitivity
to which any given m-space M belongs must contain all the
m-spaces included in the totality of (m -+ 1)-spaces each of
which contains M. If m+ 1< k, fix attention on all the
(m + 1)-spaces containing M and lying in one and the same
(m + 2)-space, and also on all the (m -+ 1)-spaces lying in this
(m + 2)-space and containing any m-space already obtained
by this process of construction. Since every two (m - 1)-
spaces in this (m + 2)-space contain an m-space in common, it
follows that the named process brings into consideration all
the (m + 1)-spaces in the given (m + 2)-space. Hence every
m-space in the (m 4 2)-space belongs to the same set of im-
primitivity as M itself. If m 42 < k, one can prove in a
similar manner that the set of imprimitivity containing M con-
tains also all the m-spaces in a given (m -+ 3)-space containing
the given (m + 2)-space; and so on. Hence the given set of
imprimitivity contains all the m-spaces in PG(k, p™). Since
this is impossible for a set of imprimitivity, we conclude that
the permutation group in question is primitive.

Since C; and Cg; contain Co, it follows that C; and C; both
transform the m-spaces of PG(k, p™) according to a primitive
group.
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Therefore we have the following theorem :

V. When & > 1 each of the groups Cu(k, p") and
Ci(k, p*) transforms the m-spaces of PG(k, p")
(m < k) according to a primitive permutation group;
this group is doubly transitive when m =0 or &£ — 1,
otherwise it is simply transitive.

From Theorems IV and V and from the groups Ci(k, p™)
of Theorem II we have the following theorem as an obvious
corollary :

VI. There is no upper limit K to the possible num-
ber of primitive groups (of varying degrees) in a set
of primitive groups each group of which is simply
isomorphic with each of the others in the set. For
every integer L there exist integers s [f] such that the
number of doubly transitive [triply transitive] groups
of degree s [¢] is greater than L.

EXERCISES

1. By aid of Theorem I in § 92 show that P(k, p™) contains a sub-
group which is simply isomorphic with the symmetric group of degree
k+2.

2. If G is any finite group and p~” is any prime power, show that an
integer k exists such that P(k, ™) contains a subgroup which is simply
isomorphic with G.

8. For every pair of positive integers L and % and for every prime p
there exists an integer s of the form 1+ p» + p2* 4+ - - - 4+ p*» such
that a group G, of degree s exists which is doubly transitive and con-
tains more than L doubly transitive subgroups of different orders and
each of degree s.

4. For every integer L and prime p there exists an integer s of the
form 1 + p» such that a group G, exists which is triply transitive of
degree s and contains more than L triply transitive subgroups of dif-
ferent orders and each of degree s.
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5. Prove that the set of transformations ¢’ = at + 3, where « runs
over the Ath powers in the GF[p*] and 3 over all the marks of the
GF[p"], constitute a primitive permutation group on the marks of the
GF[p™] if N is a factor of p — 1.

6. Show that the group C(3, 2) of degree 15 has a doubly transi-
tive subgroup of index 8 and of degree 15.

7. Using for the PG(3, 2) the symbols in Ex. 4 on page 336, show
that the collineations which leave 4, B, € individually fixed, together
with the nonlinear transformation

x'o =X + X1%ex3, X1 =21, X2=2x2, x'3=121s
generate a group which permutes the 12 points D, E, F, - - -, 0 accord-
ing to the symmetric group of degree 12. What group is generated
by the given nonlinear transformation and the whole collineation
group in PG(3, 2)?

8. Let G be the largest subgroup of the projective group in PG(2,
p™) in which one point P and one line / through P are held fixed. Show
that G may be represented as a permutation group of degree p2" on
the points of PG(2, p™) which are not on /, and prove that its order is
p3*(p™ — 1)2. Determine the corresponding subgroup of the collinea-
tion group in PG(2, p*). Observe that, when p" =2, the group so
obtained from the projective group is the octic group.

9. Let G be an Abelian group of order p™ and type (1, 1, - - -, 1),
and let A4, A, - -+, A, be the totality of subgroups of order p in G,
or, more generally, any geometric set of subgroups of G. Let K be
any one-to-one correspondence of the groups A to the groups A such
that for every pair of subgroups A; and 4; and corresponding pair Ay,
and Ay, it is true that the group {4z, Ak} contains the correspondent
of every group A contained in {4;, A4;}. Prove that there exists an
isomorphism of G with itself of such sort as to induce the correspond-
ence K among the groups A1, Az, - - -, A,. How many such isomor-
phisms are there?

10. Suppose that the transformation T employed in the proof of
Theorem II of § 93 is further restricted so that a point p on the line
%o = 0 is fixed, where p is a primitive mark of the GF[p*] included in
the GF[p"]. Then show that the function ¢(x) employed in that proof
is of the form ¢(x) = xr"L

11. Show that the group I of isomorphisms of an Abelian group G
of order p*+V=» and type (1, 1, - - -, 1) contains a subgroup which



374 Groups of Finite Order

permutes a given geometric set of subgroups of order p* according to
the permutation group C(k, p™). '

12. Apply Ex. 11 to the problem of constructing subgroups of the
group I of isomorphisms of the Abelian group of order p¢ and type
(1, 19 Y 1)'

95. Collineation Groups Leaving an EG(k, p*) Invariant. The
groups described in Theorem III of § 94 obviously contain cor-
responding subgroups each of which leaves invariant a given
PG(k— 1, p™) in PG (k, p™). The points of PG(k, p™) which
are not in this PG(k — 1, p™) form a Euclidean finite geometry
EG(k, p™) of p*» points; it is denoted by EG(%, p™). The named
subgroups transform among themselves the points of this
EG(k, p™). Without real loss of generality we take the fixed
PG(k—1, p™) to be that defined by the equation xy =0 and
employ the corresponding EG(k, p*). Then we have the fol-
lowing theorem, which we shall now prove:

VII. (1) The collineation group C(k, p) has a sub-
group EC(k, p*) whose transformations may be rep-
resented analytically in the form

px'o = ﬁrx0p7, (67 # 0)

(A1) .
Px',- = 2 6ijij1’" (Z = 1’ 2, - k)
j=0
where 7 runs over the sequence 0,1, ...,z — 1. Its

order is n times the order of its subgroup EP(k, p™),
or ECo(k, p*), made up of those transformations of
(A,) in each of which r =0 and is therefore

k—1
npkn ];!;(pkn — pin).
The group EC is generated by EC, and the collinea-

tion px'i = 1. (=0,1,.-., k)

The last element transforms EC, into itself.
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(2) If d is any proper divisor of », then we have
a subgroup ECy(k, p™) of EC(k, p™) (with EC, = EC)
generated by EC, and the collineation

px'i=x#,  ((=0,1,--- k)
and EC, is of index d in EC. The transformations of
EC; are those of the form (A,), with the restriction
that r shall be confined to the multiples of d belong-
ing to the sequence 0, 1, 2, - - -, » — 1.

(3) Those transformations in EC; whose determi-
nants are (k 4+ 1)th powers in the GF[p™] form a sub-
group ECy(k, p*) of EC; of index u, where u is the
greatest common divisor of £+ 1 and p" — 1.

(4) The group EP(k, p™), considered as a permu-
tation group on the p** points of the EG(k, p™), is
doubly transitive. Moreover, it is triply transitive
when 2 > 1 and p™ = 2. The same property of tran-
sitivity belongs to each of the previously named
groups which contains EP(k, p") as a subgroup.

(5) Considered as a permutation group on the p**
points of EG(k, p™), the group EC(k, p*) is doubly
transitive when 2> 1 and also when £=1 and
p =2; it is singly transitive when 2 =1 and p is an
odd prime. This singly transitive group is primitive.

(6) Finally, in a special case, we have another sub-
group of EC defined as follows. Let £+ 1 be a di-
visor of # and let ¢ be a fixed divisor of #n/(k + 1).
Moreover, let &+ 1 be a divisor of p° — 1. Any mul-
tiple of ¢ in the set 0, 1, - - -, #» — 1 can be written in
just one way in the form {(%4 1)s + a}o, where
0 = o = k and s is a non-negative integer. For every



376 Groups of Finite Order

such multiple of ¢ form the entire set of homogene-
ous transformations

_ (k+1s+a}e
px,o = ﬁ axop{
(Bl) ; .
px/i — 2 Bijmxjp{(k+1)c+a}c’ (z _ 1’ 2, ces, k)
=0 ‘

in which each determinant of a transformation is
equal to w* times a (k 4 1)th power in the GF[p"],
w being a primitive mark of the GF[p"]. The total-
ity of these transformations forms a subgroup
EH,(k, p™) of EC, which is of index 2+ 1 in EC,
and of index (k 4+ 1)o in EC. The group EH, is gen-
erated by EC, and the transformations of the form

(Cy) px'y = wtigp{k+De+a)e, (G=0,1,--- k)

whereto+ 4 +- -+ + = amod (k4 1). Considered
as a permutation group on the p*" points of the
EG(k, p™), the group EH,(k, p™) is doubly transitive.

That the transformations named in paragraph (1) of the
theorem form a group is easily verified, as is also the fact that
it is generated in the way indicated. It is also easily shown
that EC, is invariant under transformation by the last collin-
eation defined in the paragraph. As regards this first paragraph
of the theorem, it remains to be shown that the order given
for the group is correct. For this purpose we notice that a
necessary and sufficient condition on the coefficients 8, for
j >0, is that for each 7 the determinant | 83;;.| of order &
shall be different from zero. The number of choices for these
B’s and S,, satisfying this condition for fixed 7, is known (from
Theorem III in § 94) to be

I;—l
[Io(p"" — ™).

The coefficients B0, may each be chosen in p different ways
for each value of 7; and hence the set for each value of r
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may be chosen in p** different ways. Taking 7 =0, we see
that the number of transformations in EC, is the number
given in the theorem. From this it follows readily that EC has
the order stated in the theorem.

The proofs of the statements in paragraphs (2) and (3) of
the theorem are similar to the proofs of the corresponding parts
of Theorem III in § 94; they are therefore omitted.

To establish the transitivity properties named in paragraph
(4) of the theorem, note first that there is in P(k, p*) a trans-
formation that carries any ordered set of 2+ 2 points of
PG(k, p™), no k+ 1 of which are on the same (k2 — 1)-space,
into any like ordered set of £+ 2 points, and in each of two
such sets two points may be taken at will in EG(k, p"), while
the remaining %2 points may be chosen from the (k¢ — 1)-space
% =0. This transformation leaves invariant this (k& — 1)-
space ; hence it belongs to EP(k, p™). Hence EP(k, p™), con-
sidered as a permutation group on the points of EG(k, p™), is
doubly transitive.

This transitivity property may also be established analyti-
cally. Let A and B be any two points of EG(k, p™). There is
obviously a transformation in EP(k, p") replacing A by
1,0,0,---,0). Let C be the point by which this transfor-
mation replaces B. Then it is sufficient to show that EP(k, p™)
contains a transformation that leaves (1, 0, O,---,0) fixed
and replaces C by (1, 1, 0, O, - - -, 0), or, what is equivalent,
that leaves (1, 0, O, - - -, 0) fixed and replaces (1, 1,0, 0, - - -, 0)
by C. The transformations available for the latter are those
in which each B is zero. Then the point (1, 1,0,0,---,0) is
replaced by (Bo, Bi, Be210,- - -» Brio). It is obvious that the
B’s may be so chosen that this is the point C. Hence the named
transitivity property is established analytically.

It remains to treat further the case in which 2> 1 and
pr=2. For this purpose consider those transformations of
EP(k, 2) which leave fixed a given point P of EG(k, 2). This
group is obviously simply isomorphic with the projective group
in PG(k— 1, 2), whence it follows readily that it is doubly
transitive on the points of EG(k, 2) exclusive of P. Hence
EP(k, 2) is triply transitive on the points of EG(k, 2).
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The remaining statement in paragraph (4) of the theorem
is now obviously true.

To establish the transitivity properties named in para-
graph (5) of the theorem, let us denote any two points C and
D of EG(k, p™) by

(B: B1oss Bz2or, - - -, Bror) :
and (B, Bror + Biir, P20 + Boirs - - -5 Bror + Birr)- B, 0)

Since C and D are distinct (by hypothesis), it follows that at
least one B,i. is different from zero. Let \ be a fixed quantity
such that 8,1, 0. Then take By, =0 when s > 1. Taking
the quantities 3, as thus defined, to be the coefficients in the
transformation (4;) which are denoted by the same symbols,
we see that the points (1, 0, 0,---,0) and (1, 1,0, 0,---, 0)
are transformed by (4;) into C and D respectively. Now if
k > 1 the remaining coefficients in the transformation can be
so determined that the determinant of the transformation
shall have any preassigned value. Hence these coefficients and
the value of 7 may be so chosen that the transformation be-
longs to ECa(k, p*). Therefore ECy(k, p™) is doubly transitive
when 2> 1. It is easy to treat analytically the case when
k=1 and to show that EC,(1, 2") is doubly transitive, while
ECi(1, p™), for p > 2, is only singly transitive. To prove that
this singly transitive group is primitive, we observe that its
elements may be denoted in nonhomogeneous co-ordinates by
the transformations # = at + 3, where « runs over the squares
in the GF[p~] and B over all the marks of the GF[p*]. Then it
contains the transformation ¢ = w?{, where w is a primitive
mark of the GF[p~]. The corresponding permutation consists
of two cycles each of order 4(p™— 1) on nonzero marks of
the field. Hence if the group is imprimitive, the set of imprimi-
tivity containing zero must contain more than half the symbols,
and this is impossible. Hence the group is primitive.

It may be remarked in passing that the set of transforma-
tions ¢ = af + B, where a runs over the Ath powers of the
GF[p™] and B over all the marks of the field, \ being a proper
factor of p» — 1 greater than unity, form a singly transitive
group of order p*(p™ — 1)/ ; that this group is primitive when
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\is a factor of p — 1; and that in other cases it is sometimes
primitive and sometimes imprimitive.

It remains to prove the statements in the last paragraph of
the theorem.

The fact that the transformations (B;) form a group may be
proved in the same way as the corresponding fact was estab-
lished in the proof of Theorem III in § 94. That EH, has the
named generators is then established in an obvious manner.
That EH, has the named indexes in the groups mentioned is
proved in the same way as that in which the corresponding
results in Theorem III of § 94 were established. The transi-
tivity property stated in the conclusion of the theorem may be
established by the method employed in establishing the transi-
tivity properties of EC4(%, p™).

Thus the proof of the theorem is completed.

If the coefficients B0 in (A1) (=1, 2, - - -, k) are zero, then
the point (1, 0, 0, - - -, 0) is left invariant by the transformation
(A1), and conversely. Thus we have an obvious analytical
representation of that subgroup of each group in Theorem VII
which consists of all the transformations in it which leave
1,0,0,---,0) fixed. The subgroup of ECo(k, p™) which leaves
@, 0,0, ---, 0) fixed is obviously equivalent to the general
linear homogeneous group on % variables, while ECy itself is
equivalent to the corresponding general linear nonhomogeneous
group on % variables.

It is obvious that the group EC(k, p™) is multiply isomorphic
with the group C(k—1, p*) in the PG(k—1, p*) defined by the
equation xp =0. By a comparison of the orders of these two
groups one finds that the isomorphism is p**(p" —1)to 1. Ina
transformation (A4;) of EC(k, p™) a variation in the coefficients
B, Bior for i =1, 2, - - -, kand 7 fixed has no effect on the permu-
tation in the (k — 1)-space xo = 0; and the variation of these
coefficients gives p**(p»— 1) different transformations in
EC(k, p™) corresponding to a given transformation in the sub-
space. Corresponding to the identity in C(k — 1, p™) we have
in EC(k, p™) the p*»(p™ — 1) transformations

px'o = B.xo, px’i = BiosXo + Xi G=1,2,--+, k)
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It is obvious that there is a transformation in this set which
replaces (1, 0, O, - - -, 0) by any previously assigned point in
EG(k, p™), whence this subgroup is transitive on the points of
EG(k, p™). From this it follows that for every subgroup S of
C(k— 1, p™) there is a corresponding subgroup T of EC(k, p™),
transitive on the p** points of EG(k, p™), the latter subgroup
having with the former a p*»(p™ — 1) to 1 isomorphism. More-
over, if the former subgroup is transitive the latter is doubly
transitive, a fact which may be established as follows. The
largest subgroup of T which leaves fixed one point A of EG(k, p™)
contains a transformation carrying any line through A into any
other line through A. Hence any given point in EG(k, p™), other
than A4, can be carried by a transformation of 7 into a point
B of EG(k, p™) on any line through A4, while A4 itself remains
fixed. Then, holding this line fixed, as well as the point 4 on
it, we can take a transformation in 7 (namely, one of the form
o=x0, xi=Px: (B%0;71=1,2, -.., k), if Ais taken to be
1,0,0, ---, 0), as it may be without loss of generality) which
leaves point-wise invariant the subspace xp = 0 and carries B to
any preassigned point C in EG(k, p*) and on the line AB. Hence
the subgroup of T which leaves A fixed carries any given point
of EG(k, p™) other than A to any such point. Hence T is doubly
transitive on the points of EG(k, p™) when S is transitive on the
points in the subspace x, = 0. When S is intransitive it is easy
to show in a similar way that 7T is only singly transitive.

We have thus demonstrated the following theorem, except
for the statement about the primitivity of the singly transitive
subgroups of EC(k, p™); and this is an immediate consequence
of the corollary to Theorem XIV in § 46.

VIII. The group EC(k, p™) has a p*"(p” — 1) to 1
isomorphism with the group C(k—1, p*) on the
points of the subspace xo =0. The subgroup 7T of
EC(k, p™) having a p**(p" — 1) to 1 isomorphism
with a given subgroup S of C(k — 1, p*) and corre-
sponding to it in the isomorphism just mentioned is
a transitive group, when considered as a permutation
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group on the p** points of EG(k, p™). Moreover, when
Sis transitive, the group T is doubly transitive ; other-
wise it is singly transitive. When S is intransitive,
a necessary and sufficient condition that the singly
transitive group T shall be primitive is that it shall
be generated by the largest subgroup leaving the point
1,0,0,---,0) fixed and any single transformation
whatever of 7 that does not leave this point fixed.

Every line in the Euclidean k-space EG(k, p™) has a point in
common with the projective (k& — 1)-space xo =0 which was
excluded from PG(k, p) in forming EG (k, p*). With a line of
EG (k, p™) and a point of it not on this line we may form a
Euclidean plane lying in EG(k, p™); as a plane of PG(k, p™)
it contains a line in the excluded (k2 — 1)-space. With such a
plane and an additional point of EG(k, p") we may form a
three-space which is composed of a Euclidean three-space and
a plane lying in the excluded (k¢ — 1)-space. It is clear that this
process may be continued and that one may conclude to the
existence in EG(k, p™) of a Euclidean m-space EG(m, p*) for
every value m of the set 1, 2, - - -, k—1; and in each case the
remainder of the projective space PG(m, p™) which contains
EG(m, p™) lies in the excluded (& — 1)-space xo = 0.

Now any collineation group in EG(k, p™) obviously per-
mutes among themselves the m-spaces EG(m, p™) contained
in EG(k, p™). Hence each of the named groups in Theorems VII
and VIII, interpreted there as a permutation group on the
points of EG(k, p™), may likewise be interpreted as a permuta-
tion group on the lines of EG(k, p™), or on its planes, or in
general on its m-spaces. The several permutation groups arising
in this way from one and the same transformation group are
obviously simply isomorphic each to each. Hence we have the
following theorem :

IX. Any collineation group in EG(k, p™) may be
interpreted as a permutation group on the included
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m-spaces EG(m, p™) for each value m of the set
1, 2,---,k—1. The several permutation groups
obtained by varying the value of m are simply iso-
morphic each to each.

We shall next prove the following theorem :

X. Let T and S have the same meanings as in
Theorem VIII. If S is transitive on the points of
the (k — 1)-space xo = 0, then the group T is transi-
tive when interpreted as a permutation group on the
lines of EG(k, p™). If S is transitive on the projective
l-spaces contained in the projective (k — 1)-space
%0 =0, / being less than £ — 1, then T is transitive
on the (I + 1)-spaces contained in EG(k, p™); this
group T is imprimitive.

The truth of the statement in the second sentence of the
theorem is a consequence of Theorems VIII and IX. To prove
the statement in the last sentence, we observe first that 7T
contains a transformation carrying one point of EG(%, p*) into
any other, while at the same time the projective (£ — 1)-space
%o = 0 is left point-wise invariant. Now any Euclidean (/ + 1)-
space in EG(k, p™) may be defined by a projective l-space in
the subspace xp = 0 and a point of EG(k, p™), it being under-
stood that each point of EG(k, p™) collinear with the given
point and a point of the given l-space is to be a point of the
named (/+ 1)-space. Now let A and B be two Euclidean
(I 4+ 1)-spaces so defined, and let P and Q be the points in
EG(k, p™) used in thus defining them. Leaving the subspace
X0 = 0 point-wise invariant, take P to @ by means of a trans-
formation belonging to T. Then, holding Q fixed, take the
l-space of A which is in the subspace %o = 0 into the correspond-
ing l-space of B by means of an element of 7. These two trans-
formations taken in order carry A into B. Hence T has the
stated property of transitivity.
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It remains to be shown that the group T is imprimitive on
the named ([ + 1)-spaces. For this purpose it is sufficient to
observe that all the (I+ 1)-spaces of EG(k, p*) which are
based, in the way indicated, on a given /-space of the subspace
%o =0 are permuted among themselves when that /-space is
left invariant, and that they are transformed into a like set of
(I + 1)-spaces when the given l-space is transformed into an-
other like /-space.

96. Collineation Groups Leaving Other Subspaces Invariant.
We shall now prove the following theorem:

XI. The group C®(k, p™), consisting of all trans-
formations of the form

4
le,- = E ﬁij,xjp" (i = O’ 1, SRR l)
(Az2) j=0

£
px's = zﬁij,x,-”’, G=1+1,142,.---,k)
j=0

where 0 =/ < k, = runs over the sequence 0, 1, - - -,

n — 1, and the coefficients 8 are marks of the GF[p"]

such that the determinant of the transformation is

different from zero, is a collineation group in PG(k, p™)

which leaves invariant the subspace PG(k — I — 1, p™)

defined by the equations x;=0 (1=0,1,---,0). It

also leaves invariant the complementary set of
p(k—l)n +p(k—l+l)n + e +pkn

points in PG(%, p") Its order is

k=D {+Dn k—1—-1

—p—;)%—)— H (p@+Dr — pit) - H (p*=bm — pim).

The group is generated by its subgroup Co®(k, p™)

for which 7 = 0 and the collineation

(B2) px'; = x°. (=0,1,---, k)

The last element transforms Co(k, p) into itself.
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For each proper divisor d of n the group C®(k, p™)
has an obvious subgroup C,;%(k, p™) of index d gen-
erated by Co(k, p™) and the dth power of the col-
lineation (B;). Moreover, C;®(k, p™) has an obvious
subgroup C;®(k, p*) of index u consisting of those
transformations of C;¥(k, p") whose determinants
are (k + 1)th powers, u being the greatest common
divisor of £ 4 1 and p™ — 1.

The group Co“(k, p™) is transitive when inter-
preted as a permutation group on the set of
p*=bm 4. .. + p*" points mentioned in the first para-
graph of the theorem.

That the given set of transformations forms a group leaving
invariant the named subspace, and hence the complementary
set of points, is obvious. To determine the order of the group,
we notice first that the determinant of the coefficients 3;;, for
7 and 7 running over the set 0, 1, - - -, ] must be different from
zero; whence it follows (from a comparison with Theorem III
of § 94) that these coefficients can be chosen in

ﬁ (p(l-l—l)n —_— pin)

=0
different ways, 7 remaining fixed. The coefficients S, for ¢
and j running over the set /41, [+ 2, - - -, £ and 7 remaining
fixed, can be chosen independently in any way so that their
determinant shall be different from zero, and hence can be
chosen in A1

H (p(k-—l)n — pin)

i=0
different ways. Then for 7 still fixed each of the remaining
(B—I0)(I+ 1) coefficients B8 can be chosen independently in
p* ways, so that altogether this set of coefficients can be chosen

In PpE—DU+Dn
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different ways. Finally, there are » values for 7. Hence the
order of the group is the product of » and the three numbers
just determined, divided by p” — 1 to allow for the factor of
proportionality. This gives the order stated in the theorem.

It is obvious that the group is generated in the way stated.
The second paragraph of the theorem is established by the
method used in proving the corresponding part of Theo-
rem VII in § 95.

The truth of the last proposition in the theorem is readily
established by means of the following considerations: since
any ordered set of &+ 2 points, no £+ 1 of which are on a
(k — 1)-space, can be carried by the projective group into any
other such ordered set, it is obvious that an /-space may be
held fixed while any point not on it is transformed into any
other such point.

The common subgroup of C®(k, p*) and the group H,(k, p™)
of Theorem III of § 94 may be constructed in an obvious manner.

97. Some Special Cases. Let G be a permutation group of
degree v on the symbols @y, a2, - - -, @»; and let Ly, Ly, - -+, L,
(u=v(@—1)--- (v —k+1)/(k) be the combinations of these
symbols a@; taken k at a time. Let P be any permutation be-
longing to G. This permutation P on the ¢’s induces a permu-
tation on the symbols L;. Hence to the totality of permutations
of G there corresponds a totality of permutations on the L’s,
and these constitute a permutation group G of degree u on
Ly, La, - - -, L,. It is obvious that G is simply isomorphic with G.

Now if G is k-ply transitive on its symbols, it contains a
permutation replacing any given L; by any given L;. Hence
the group G is transitive on its u symbols L;. Moreover, it is
only simply transitive when 1 < 2 < »—1; for the ordered
sets a1, @z, - - -, @ and @y, @z, - - -, Gr_1, Gr41 Can be carried into
two other ordered sets only if these latter two sets have their
first £ — 1 symbols alike. This singly transitive group G may
be either primitive or imprimitive. (See Ex. 3 on page 391.)

The results of the previous two paragraphs may be inter-
preted (somewhat artificially, it is true) in the finite geometries.
If we have a group G in PG(v — 2, p™) which permutes among
themselves » points @i, @z, - - -, @, of the geometry, no v—1
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of which are in the same (v — 3)-space, then the combinations
Ly, Ly, - - -, L, may be interpreted as the (k— 1)-spaces gen-
erated by all subsets of & points each formed from the given
v points. Corresponding to the transformations on the » points,
we have permutations of these (¢ — 1)-spaces among themselves,
giving rise to the permutation group G on the (£ — 1)-spaces.

XII. For every transitive group G of degree 4
there exists a doubly transitive group of degree 9
having an (18, 1) isomorphism with G.

The group C(1, 3) is the symmetric group of degree 4. Hence
every transitive group G of degree 4 is a subgroup of C(1, 3).
From Theorem VIII in § 95 it follows then that there exists in
the EG(2, 3) of 9 points a doubly transitive group of degree 9
having an (18, 1) isomorphism with G.

XIII. For every transitive group G of degree 5
there is a doubly transitive group of degree 16 hav-
ing a (48, 1) isomorphism with G.

The group C(1, 22) is of degree 5 and order 120; hence it is
the symmetric group of degree 5. Then apply Theorem VIII
as in the proof of Theorem XII. '

We shall now prove the following special theorem, extending
~ in one respect the results in Theorem VIII.

XIV. For every transitive group G of degree
142+ 224 ...+ 2% contained in the group C(%, 2)
of this degree there exists a multiply transitive group
H of degree 2¥+1, contained in EC(k + 1, 2) and hav-
ing a (2¥+1, 1) isomorphism with G and having its
degree of transitivity greater than that of G by unity.
This theorem is implied by Theorem VIII, except for the

fact relating to the degree of transitivity of H; and this part
of the theorem is an immediate consequence of the fact that the
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largest subgroup of H leaving one point fixed is simply isomor-
phic with G.

98. Generators of Certain Multiply Transitive Groups of Prime
Degree. It is convenient to insert in this section and the next
certain theorems concerning multiply transitive groups of prime
degree.

Let G be a nonsymmetric multiply transitive group of odd
prime degree p different from the metacyclic group of degree p,
and let / denote the degree of transitivity of G. Choose the
notation so that one permutation in G is P, where

P = (xox1%2 * * * Xp—1)-

Now G contains a transitive subgroup on the letters x;_1, x5, - - -,
%p—1. On transforming P by suitable elements from this sub-
group one proves the existence in G of a set of permutations of

the form
P, = (xoxl e Xp_oXpt - .)’

Piii= (%ox1+ -« Xi—2%i41+ * *),

Pp_1= (XoX1++* X1_2%p_1° " +),

where the second continuation sign in each parenthesis is used
to denote the presence in some order of the x’s not otherwise
assigned a place in the symbol for the corresponding permuta-
tion. We denote by these symbols P any elements in G having
the form indicated.

We shall now prove the following theorem :

XV. Any set of elements in G having the form of
the elements P, P;, P;,1, - - -, P,_1 generate a (proper
or improper) subgroup H of G which is at least (I — 1)-
ply transitive; moreover, H is certainly /-ply transi-
tive if the elements P, ; P~ (:+=0,1,.-- -, p —1—1)
leave x,_; fixed.

Let us consider the largest subgroup K in
{P, Pl: Pl+ly"’9Pp—1}
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each element of which leaves fixed xo, 13, - - -, x;_3. It contains
the elements P;,.; P71 (=0, 1, ---, p—1—1). The element
P, ; P~1 replaces x;_2 by x;,,_1. Hence K contains permuta-
tions changing x;_s respectively into x;_s, X;_1, - * -, ¥,_2. There
are now two cases to be distinguished. If K does not leave x,_;
fixed, then it is clear that K is transitive on the symbols x,_,
X1, - -+, X,_1; Otherwise it is transitive on the symbols x;_»,
X1, ***, ¥%p-2. Then P71KP is a transitive group on x;_i, x,,

-+, Xp_1, %o Or on all these except xp according to the case in
consideration. Hence {K, P~!KP} is at least doubly transitive
on the symbols which it displaces. If these are not all the
symbols xo, x1, - - -, ¥p—1, We may adjoin successively the groups
P-2KpP2, p~3KP3, ... and thus establish the result stated in
the theorem.

XVI. The same group G contains P and elements
of order p and of the form Q;.1, Qi42, -+, Qp_1,
where each element @ replaces xo by x;, x1 by x2, - - -,
X1-2 by x;_1, while Q;.; replaces x;_1 by x;,; for
t=1,2,-..,p—1—1. These elements generate an
I-ply transitive group contained in G.

The named elements @, ; are of the form
Qupi= (XoX1X2 -+ * X11Xyq i~ - +). (=12--,p—1-1)

That G contains elements of this form may be shown by the
following considerations. Since G contains a transitive subgroup
on %;_1i, X1, - - +, Xp_1, it contains for each 7 of the set 1, 2, - - -,
p—1—1 an element replacing x;_1 by x;,;_1 and leaving xo,
X1, - - -, x;_2 fixed. This element followed by P gives an element
of the form Q;, ;. The largest subgroup L in

{P, Qiy1, Quy2, - -+, Qu1}

which leaves fixed xo, x1, - - -, ¥;_2 contains elements replacing
x1-1 respectively by the elements x;, x;,1, - - -, %,_2, as may be
shown by the method used in the proof of the preceding theorem.
Then L must not leave x,_; fixed, for in that case G would con-
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tain a transitive subgroup on p — [ symbols, and this is im-
possible since by hypothesis G is I-ply transitive but not
({4 1)-ply transitive. Hence L is transitive on the symbols
%Xi-1, X1, -+ Xp_1. Then by adjoining successively PT1LP,
P~2LP2 ... we show finally that the group

{P, Qiy1, Quy2, « + y Qp_1}

is [-ply transitive, as asserted in the theorem.

Groups illustrating these theorems are afforded by the
collineation groups in PG(k, p*) when the number of points in
the geometry is a prime. Thus for 2 = 2 we have examples for
groups of degrees 13, 31, 307, etc.

99. Groups of Certain Prime Degrees. We begin with a proof
of the following theorem :

XVIIL. If pand p — 2 are primes and p > 5, there
exists no triply transitive group of degree p which is
not also quadruply transitive.

Let G be a triply (but not quadruply) transitive group of
prime degree p (= 5), where p — 2 is also a prime. We shall
show that p must then be equal to 5, from which fact the
theorem follows. Let G2 be the group composed of all permu-
tations in G each of which leaves two given letters fixed.
Then G; is simply transitive and hence (Theorem XVIII of
§ 60) is of order (p — 2)», where » is a proper factor of p —3;
in case Gz has only even permutations, then » is a factor of
1(p — 3). But the order of G is of the form (kp 4 1)pu, where
u is a factor of p — 1, as one sees from Sylow’s theorem and
Theorem XVIII of § 60; in case G has only even permutations,
then u is a factor of §(p — 1). Therefore

(kp+1V)pu=pp—1)(p—2)v; or, (kp+Dp=(p—1)( — 2)».
Hence =2 v mod p, while u and » are both positive numbers
less than p. In case G contains only even permutations, then
u and 2 v are both less than p. Therefore in this case u =2,
while u and » are factors of £(p — 1) and 4(p — 3) respectively,
so that the highest common factor of uand »is 1. Hence, when
G contains only even permutations, we have »=1 and u = 2.
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Now suppose that » = 1, whether or not G consists of even
permutations only. Then the order of G is p(» — 1)(p — 2).
The largest subgroup of G leaving one given letter fixed is
doubly transitive of degree p — 1 and order (p — 1)(p — 2);
hence (Theorem V of § 40) p — 1 is a power of a prime. Since
p—11is even, we must have p=27+4+1and p—2=2m—1.
Since 2™ — 1 is prime, m itself must be a prime; since 2741
is prime, m must be a power of 2. Therefore m = 2 and p = 5.
The alternating group of degree 5 is therefore the only group
belonging to the case when » = 1.

There is left for further examination the case in which G con-
tains odd permutations and » > 1. The subgroup of G consist-
ing of all its even permutations is then of order 3 up(kp + 1),
and this is equal to 4 p(p — 1)(p — 2)v. Hence this subgroup
of G is not contained in the metacyclic group of degree p. It is
therefore at least doubly transitive, as one sees from Theo-
rem XVIII of §60. But the largest subgroup leaving just
two given letters fixed is of order 4 v(p — 2); it is therefore
transitive on its p — 2 symbols, since p — 2 is a prime. Hence
the named subgroup of index 2 in G is triply transitive. Then
from the conclusion in the preceding case it follows that we
must have p=5. Then G must be the symmetric group of
degree 5, contrary to the hypothesis that it is only triply
transitive.

From these results the theorem follows as stated.

If 3(p — 3) is a prime ¢, whence p = 2 ¢ + 3, it follows, from
Miller’s theorem (Theorem VIII of § 41) and a separate con-
sideration of transitive groups of degree 7, that a group G of
degree p which does not contain the alternating group of de-
gree p cannot be more than triply transitive. Combining this
fact with the foregoing theorem and the facts associated with
the metacyclic group in Theorem XVIII of § 60, we have the
following theorem :

XVIII. If p is a prime number greater than 5
such that p — 2 and %(p — 3) are both primes, then
a transitive group G of degree p, which does not con-
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tain the alternating group of degree p and is not
contained in the metacyclic group of degree p, is
itself doubly transitive but not triply transitive.

From this theorem we see that, for all primes p of the sort
described in it, the degrees of transitivity of transitive groups
of degree p are precigely 1, 2, p — 2, p. The metacyclic group
is doubly transitive; it contains singly transitive subgroups;
and the alternating and symmetric groups are respectively
(p — 2)-fold and p-fold transitive. That these groups do not
always contain the totality of transitive groups of such prime
degree p follows from the example afforded by the case p = 13,
whence p —2=11 and 4(p —3) =5. The collineation group
in the PG(2, 3) permutes the 13 points of the geometry ac-
cording to a doubly transitive group of degree 13 and order
13-12-9-4.,

EXERCISES

1. The theorem in Ex. 3 on page 372 persists when s is of the form
pkn.

2. For every integer L and odd prime p there exists an integer s of
the form p» such that a group G, exists which is of degree s and is
singly transitive and primitive and which contains more than L singly
transitive primitive subgroups of different orders and each of degree s.

3. Let the group G of the first three paragraphs of § 97 be of de-
gree 6 and take £=2. Then the group G is of degree 15. If G is the
alternating or the symmetric group of degree 6 show that G is primi-
tive. If G is the triply transitive group C(1, 5) of degree 6, show that
G is imprimitive.

4. By means of Theorem XII in § 97 show that there are five doubly
transitive groups of degree 9 having orders 432, 216, 144, 72, 72 re-
spectively. Then by aid of EC(2, 3) and C(1, 23) and their subgroups
show how to construct 11 primitive groups of degree 9. (See Ex. 10
on page 162.)

5. By means of Theorem XIII in § 97 show that there are five
doubly transitive groups of degree 16 having orders 5760, 2880, 960,
480, 240 respectively.



392 Groups of Finite Order

6. In Ex. 10 on page 162 is found a table of the number of primitive
groups of each degree less than 21. Exercises have already been given
calling for the construction of the indicated number of primitive groups
for certain of these degrees, as follows: For degrees 2, 3, 4, 5, 6, 14,
18, 19, 20 see Ex. 10 on page 162; for degree 7 see Ex. 12 on page 163;
for degree 8 see Ex. 16 on page 165; for degrees 11 and 12 see Ex. 17
on page 165; for degree 13 see Ex. 18 on page 165; for degree 15 see
Ex. 19 on page 165 and Ex. 4 on page 304 ; for degree 17 see Ex. 11 on
page 305; and for degree 9 see Ex. 4 on page 391. The following are
suggestions and exercises for completing the determination of the
indicated number of primitive groups of each degree less than 21,
alternative methods being given for some of the degrees already
listed.

(1) Use Theorem III in § 94 and Ex. 5 on page 373 in constructing
ten primitive groups of degree 17 and nine primitive groups of de-
gree 13.

(2) By aid of theorems in this chapter construct seven primitive
groups of degree 8 and nine primitive groups of degree 10. (See Ex. 3
on page 162 and Ex. 30 on page 42.)

(3) Construct 22 primitive groups of degree 16, obtaining twenty of
them as subgroups of EP(4, 2), utilizing for the latter purpose the fact
that EP(4, 2) is (16, 1) isomorphic with P(3, 2) and hence with the
alternating group of degree 8 (Ex. 3 on page 304).

7. Let p be a prime of the form 4 £+ 3, and let G be the doubly
transitive group of degree p + 1 and order £(p + 1)p(» — 1) on the
symbols oo, O, 1, - - -, p — 1 which is induced by the linear fractional
transformations modulo p of square determinant. Show that G (al-
though it is only doubly transitive) contains an element which dis-
places any given three of its symbols in some order into any other
given three of its symbols.

8. Show that the (singly transitive) subgroup of index 2 in the
metacyclic group of prime degree p (p =4 k + 3) contains a permu-
tation which displaces any given pair of its symbols in some order
into any other given pair.

9. Show that for every prime p there exist at least twelve multiply
transitive groups of degree p6. Discuss cases in which the number is
still larger.

10. For degrees p* and p® investigate the existence of multiply
transitive groups after the manner suggested by Ex. 9.
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11. Determine the number of points on the “conic’ x;2 — xox2 =0
in the PG(2, p™) when p is odd. Determine the permutation group on
the points of the conic induced by the largest subgroup of the C(2, p™)
each element of which transforms this conic into itself.

12. In the PG(2, p*), where p > 2, show that the conic

aooxo? + a11%12 + aeax2? + 2 apixox1 + 2 Goexoxz + 2 a1px122 =0
breaks up into (distinct or coincident) straight lines if and only if
Qoo Qo1 Qo2
Go1 411 Q2
Qo2 Q12 Q22

=0.

MISCELLANEOUS EXERCISES

1. From the array in the margin form the triples a
abe, def, ghi, adg, beh, cfi, aei, ceg Z ‘
of elements from rows and columns and diagonals, determine the larg-
est permutation group on these letters which permutes among them-
selves the eight triples so formed, and construct the group according
to which these triples are themselves permuted.

2. Generalize Ex. 1 to the case of an array of n2 elements.

3. By a magic square is meant a square array of »#2 numbers such
that the 2 n 4+ 2 sums of elements, namely,

(1) those in each of the n rows,

(2) those in each of the » columns, and

(3) those in each of the 2 diagonals

c
s
1

[«2 30N I \U]

9
5
1

0 W

are all equal. An example for » = 3 is given in the margin, each of
the sums being 15. Determine all the permutations on 1, 2, ---, 8
each of which transforms the given magic square into a

. . . S 2 9 4
magic square. Thus the given magic square is said to be 75 3
transformed into the second one here written by the permu- 6 1 8

tation (24)(37)(68). Do these permutations form a group?
4, Treat similarly the following magic squares:
23 6 19 2 15

15 6 9 4 4 12 25 8 16
10 3 16 5 10 18 1 14 22
8§ 13 2 11 11 24 7 20 3

1 12 7 14 17 5 13 21 9
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5. Show that there are just two distinct ways in which six ele-
ments may be arranged into nine pairs in such a manner that each
element occurs in just three pairs. In each case determine the permu-
tation group leaving the configuration invariant.

6. Prove that through a given point P in PG(3, p*) and not on
either of two skew lines ! and I in PG(3, p*) there is one and only
one line meeting both the lines ! and /”. Translate this into the cor-
responding theorem about the Abelian group of order p*” and type
141, .-, 1). (See §87.)

7. Prove that any two lines in PG(3, p™) each of which meets
three given skew lines in PG(3, p™) are themselves skew to each other.
Translate this into a theorem relating to Abelian groups.

8. Generalize the results in Exs. 6 and 7.

9. Show that, if three triangles in PG(2, p*) are perspective from
the same point, then the three axes of perspectivity of the three pairs
of triangles are concurrent; and conversely. Translate this into a
theorem concerning Abelian groups.

10. Translate into a theorem concerning Abelian groups the fol-
lowing geometric theorem (Veblen and Young, Projective Geometry,
Vol. I, p. 59): If A, B, C are three points of a line [ and 4’, B’, C’ are
three points of another line I/, then A can be projected into A’, B into
B’, and C into C’ by means of two centers of perspectivity.

11. In PG(2, p™) let a triangle ABC and a point A’ be given; de-
termine two points B’ and C’ such that the triangles ABC and A’B’C’
are perspective from four different centers. Formulate and solve a
corresponding problem in the theory of Abelian groups.

12. By aid of Theorems VII and VIII construct three doubly
transitive groups of degree 27 having a (54, 1) isomorphism with
transitive groups of degree 13.




CHAPTER XIII

Algebras of Doubly Transitive Groups of
Degree p» and Order pr(p-1)

100. On the Definition of Group. In the definition of group in
§ 3 certain redundancies appear in the postulates. It is desir-
able now to restate the postulates in such a way as to avoid
these redundancies. They are accordingly presented here in
the following form:

I. If @ and b are elements of G, whether the same
or different, ab is also an element of G.

II. If g, b, ¢ are elements of G, then (ab)c = a(bc).

III. The set G contains an element 7 such that for
every element a of G we have a7 = a.

IV. If such an element 7 occurs in G, then for a
particular ¢ and for every element a of G there occurs
an element &’ such that ae’ = i.

We shall now prove that these postulates imply the other
conditions assumed in the postulates as presented in § 3.

For any given 7 and for any @ there exist in G elements a’
and @’ such that ae’ =7 and a’a’’ = i. Then we have

a=ai=a(@a’) = (aa")a" =ia";
then da=a(ia’") = (a'l)a’ =ada’ =1i.
Hence a’a = 7. Applying this result for a to the element a’, we
have a’’a’ =i. Then
ia = (i)a = [i(a"’a’)]a = (ia’’)(d'a) = ai = a.

Then for every a we have ai = ¢ = ta. Then we call ¢ an iden-
tlty with respect to the rule of combination of the group.

If j is an identity with respect to this rule, then j=j-7=1.
395
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Hence there is only one identity. Since the identity 7 is unique
and since a7 = ¢ = iag for every element a of G, it follows that
the whole of Postulate III as given in § 3 is implied by the

postulates here given.
Now we have seen that ee’ = ¢ implies that ¢’a =i. Then
we call ¢’ an inverse of @. If « is an inverse of ¢ we have

a=qu=caled) = (aa)a’ =1id =a'.

Hence there is just one inverse ¢’ of a given element g, and
aa’ = a’a = i. Hence the postulates of this section imply Postu-
late IV of § 3.

Therefore the postulates of this section imply all the prop-
ositions stated in the postulates of § 3.

101. Definition of Algebras A[s]. Dickson (Gottingen Nach-
richten, 1905), generalizing the notion of a Galois field, has
defined an important class of finite algebras each of which con-
sists of a finite set of elements or marks (two or more in number)
subject to two operations (or rules of combination) called addi-
tion and multiplication and symbolized by + and X respectively,
the set of elements of a particular finite algebra satisfying the
following system of nine postulates :

I+. If a and b are elements of the set, then a + b
is uniquely determined as an element of the set.

II+. If a, b, and ¢ are elements of the set, then
(@+bd+c=a+(®+c).

III+. There is in the set an element 7, such that
a + ¢, = a for every element a of the set.

IV+. If such an element 7, occurs in the set, then
for a particular 7, and for every element a there
occurs an element ¢’ such that a + o' =1..

I* IT*, II1*. Sameas I+, II+,III+, with x through-
out instead of +.

IV, If such an element 7, occurs in the set, then
for a particular 7, and for every element ¢ distinct
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from 7, there occurs in the set an element @’ such
that a X @’ = ix.

V. If a, b, c are elements of the set, thena X (b + ¢)
=aXxb+axXec.

If s is the number of elements in such an algebra we shall
denote the algebra itself by A[s].

We take over at once for the algebras A[s] the terminology
of ordinary algebra. We shall also use the symbol ab to denote
what is written a X b in the postulates. Thus the equation in
Postulate V will be written a(b + ¢) = ab + ac.

From § 100 it follows that all the s elements of an algebra
A[s] form a group whose law of combination is that denoted by
+ in the postulates. In particular, there is but one element 7.
This additive group of the algebra we denote by H. The
identity ¢, in this group has the additive properties of 0;
it will often be denoted by this symbol. That ¢, also has the
multiplicative properties of 0 may be shown as follows. We
have a,=a(ly+i.)=ai,+ai,.

Hence ai, =0 for every a in the set. We also have

fpe=(i47:)c=1,(i1C).

If 7,c is not 7, it has an inverse under multiplication (since all
the elements except 7, form a group under multiplication, as
one sees readily from § 100). From the foregoing equation it
follows then that 7« = 7., since 7« is the identity element in the
multiplicative group of the algebra. Then we should have
ea=aix=ai, =1, for every a. Since this is impossible, it
follows that 7. ¢ does not have an inverse under multiplication.
Therefore 7, ¢ =7, for every c in the algebra. Next, if ab=1,
and b > 7, we have

i, =1,c= (ab)c = a(bc)
for every ¢ in the algebra; taking ¢ so that bc =ix we get
i, = aix =a. Therefore, if ab=1,, then either a=17, or
b=1,. Therefore i, has the ordinary properties of zero under both
addition and multiplication.



398 Groups of Finite Order

From these considerations we have the following proposition :

The s elements of an algebra A[s] form an additive
group H whose rule of combination is that of addi-
tion in the algebra. The identity 7, in H plays the
role of zero in the algebra. The s — 1 elements of
A[s] other than 7, form a multiplicative group M
whose rule of combination is that of multiplication
‘in the algebra.

102. Construction of Algebras A[s] by Means of Certain Doubly
Transitive Groups. From Theorem V of § 40 it follows that
a doubly transitive group of degree p and order p(p—1)
exists when and only when p is a prime power p" (n=1),
that such a doubly transitive group G contains a single sub-
group H of order p=*, that this Sylow subgroup H is Abelian
and of type (1, 1, - - -, 1), that H contains all the elements of
G (p™ — 1 in number) each of which displaces all the symbols
permuted by G, that H is self-conjugate in G, and that every
element in G and not in H is a regular permutation on just
p™ — 1 symbols.

Let ao, a1, a2, - - -, a,, Where u = p» — 1, be the p» symbols
permuted by G. Then H permutes these symbols among
themselves according to a regular group, as may readily be
shown from the fact that H consists of the identity and p™ — 1
elements each of which permutes all the symbols. Then there
is one and just one element %; of H which replaces ao by a..

Let us denote by M the subgroup of order p™ — 1 in G each
element of which leaves a4y fixed. It is a regular group on g,
az, - -+, a,. Hence there is one and just one element m; of M
which replaces a; by a.. It is evident that m,"1hym; = h;.

By means of these properties of G we shall define an algebra
A[p™]. Let the p™ symbols or marks of this algebra be denoted
by wo, %1, uz, - - -, u,. We introduce a law of addition for the
marks #; in the following manner: The sum u;+ #; is the
mark u;, (4; + u; = uy), where k& is such that kk; = h; in the group
G. Then, in particular, %; + uo = u, for every mark »,. With
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this law of addition the named marks satisfy postulates I+,
II+, I+, IV* of §101 with 7, = uo.

For the purpose of defining a law of multiplication for the
marks u;, exclusive of the zero mark u, we employ the elements
of the subgroup M of G. We write uu;=w (¢>0, j> 0),
where [ is defined by the relation m;~! = m;~'m;~1 or my = mm,.
(At this point it would seem more natural to take w.u; = u,,
where my, =mgm;; but this would give b+ c)a=ba-+ ca
instead of the relation in Postulate V). We define the products
uito and uou; by the requirement that each shall have the value
#o. When multiplication is so defined, the symbols uy, %, us,
- - -, u, satisfy Postulates I*, ITx, ITI*, IV* of § 101.

It remains to be shown that the operations of addition and
multiplication, as here defined, are connected by the condition
imposed in Postulate V of § 101. As expressed in terms of the
u’s, we have to prove the following relation :

1 ui(up + us) = uu, + U,

This is immediately verified if any one of the subscripts 7, p, o
is zero. Then for the further argument suppose that each of
them is greater than zero. Since (1) involves two operations,
it is convenient to reduce the result to be proved to a corre-
sponding relation among the elements of H and M, since they
are all subject to the single rule of combination in G. From
the definitions of addition and multiplication we have the
following propositions :

U, + Uy = U, if hphu = h‘,, UUp = Uy if mom; = m,,
uls = u, if mym; =m,, UMy = Uq if mm; =m,,
u+ u, = Ug if h)\hy = hg.

In order to establish the required relation (1) it is necessary
and sufficient to show that &« = 8. Now we have

hs = h, = my~thymy - m,”  iym,
= (mem;) ™ hy(moms) - (mom;) =~ hy(mom.)
=m;" b = m;" Y hom;
=m; " 'm, " \ym.m; = (mm;) "y (m,m;)
= ma_lhlm., = h,.
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Since kg = h., it follows that a« = 8, and hence that (1) is
established.

From the foregoing analysis it follows that every doubly
transitive group of prime-power degree p* (n = 1) and order
pr(p"— 1) may be employed for the definition of an algebra
A[p™). In the next section we consider the converse problem.

103. Linear Transformations on the Marks of an Als]. Let
Yo, U1, Uz, - -+, Us_y be the elements or marks of any algebra

A[s] of s marks, and let %, be the zero mark of the algebra and
" u; the identity element in the multiplicative group of the
algebra. Then u; plays the role of unity in the algebra.

If 8 is any given mark of the algebra and x is a variable
running over the marks of the algebra, then x + 3 is a new
variable x’ running over the marks of the algebra. Thus we
have the transformation x’ = x + 8 corresponding to the ad-
dition of 8 on the right to all the marks of the algebra. By
varying 8 we obtain thus a set of s transformations. They
form a group.

More generally the set of all transformations of the form
2 ¥ =ax+ 0,
where « and $ run independently over all the marks of the
algebra except that « is different from wuo, constitutes a group
K, as one may verify by aid of the postulates of the algebra.
Its order is s(s — 1). Each element of K permutes the marks
of A[s] among themselves; thus K gives rise to a permutation
group K; of degree s on the marks uo, %1, - - -, #._1. If aand b
are any two distinct marks of A[s], then the marks u, %;, as
values of x, are replaced by the marks a, b respectively, as
values of x’, by the transformation

1= (b—a)x+ a.
Therefore K, is a doubly transitive group of degree s and
order s(s — 1).

From this it follows that the number s of marks in an algebra
A[s] is of the form s = p™, where p is a prime and n is a positive
integer (Theorem V in § 40).

Those transformations (2) in which a =wu; correspond to
the additive group of the algebra, since they may be written




Algebras of Doubly Transitive Groups 401

in the form %’ = x + 8. From the corresponding property of
doubly transitive groups of degree p™ and order p~(p™ — 1) it
follows that the additive group of the algebra is Abelian of
order p* and type (1, 1,---,1). The transformations (2) in
which 38 = up may be written in the form x’ = ax. They cor-
respond to the multiplicative group of the algebra, the element
x’ = ax corresponding to multiplication on the left by «. This
multiplicative group induces on the nonzero marks of the alge-
bra a regular permutation group of order p» — 1.

Let M denote the permutation group on the marks u;, us,
<+ u, (u=pm—1) induced by the multiplicative group of
the algebra, and denote by m; the element of M induced by the
transformation x’ = u;x (u; # uo). Let H denote the permu-
tation group on the marks wuo, #i, u2, - - -, #, induced by the
additive group of the algebra, and denote by #; the element of
H induced by the transformation x’' = x + u;. Let G be the
group generated by H and M. Then A; replaces x =wup by
x’ =u; and m; replaces x = u; by x' = u;; whence it follows
that & =m;"'hym;. Then u; + u; = w, where k is such that
hi, = h:h;; while wau; = wi, where /is such that m;~! =m;~'m; 1.

From these results it follows that the group G to which the
algebra leads by use of (2) may in turn be employed, as in
§ 102, to recover the algebra itself. Therefore every possible al-
gebra A[s) is an algebra A[p™) defined, as in § 102, by means of a
doubly transitive group of prime-power degree p™ and order
pr(p™ — 1), while, conversely, such a doubly transitive group is
induced by the totality of transformations of the form (2) on the
marks of such an algebra.

The problem of constructing all algebras A[p"] is therefore
equivalent to the problem of constructing all doubly transitive
groups of degree p» and order p*(p™ —1). We have already
seen (§ 77) that the latter is equivalent to an important prob-
lem concerning certain regular subgroups I of the group I of
isomorphisms (with itself) of an Abelian group H of order p*
and type (1,1,---,1).

From Theorem III of § 77 and from results in this section it
follows that the multiplicative group of an algebra A[p"] is
simply isomorphic with a regular subgroup I; of degree p™ —1
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contained in the group I of isomorphisms (with itself) of an
Abelian group H of order p™ and type (1, 1, - - -, 1) when [ is
represented in the usual way as a permutation group on the
elements of H exclusive of the identity.

From the connection established between the algebras
A[p™] and the doubly transitive groups of degree p™ and order
p*(p™ — 1) it follows that many properties of the latter may at
once be translated into corresponding properties of the former.

104. Simple Isomorphism of Algebras A[p?]. Two algebras
Ay[p] and Ao[p™] will be called simply isomorphic if each ele-
ment of 4; may be made to correspond uniquely to an element
of Az in such a way that each element of A, is the correspondent
of a single element of A; while, moreover, the sum [product] of
any two elements in A4; corresponds to the sum [product] of the
corresponding two elements in As;. It will be said that two
simply isomorphic algebras are identical. Any two algebras
having p” elements each are such that their additive groups are
simply isomorphic, since each of these is an Abelian group of
order p” and type (1, 1, - - -, 1). An obvious necessary condition
for the algebras to be simply isomorphic is that their multiplica-
tive groups of order p» — 1 shall be simply isomorphic. We
shall show that this condition is also sufficient.

If the multiplicative groups of Aif p™] and A.[p"] are simply
isomorphic, then they lead, as in § 103, to doubly transitive
groups of degree p" and order p"(p™ — 1) which have simply
isomorphic regular subgroups of degree p» — 1, as is seen from
the named isomorphism of the multiplicative groups of the
algebras. Hence the two doubly transitive groups of degree p»
are conjugate (Theorem III in § 77). Now, on recovering the
algebras from these conjugate groups by the method of § 103,
we exhibit the algebras themselves as simply isomorphic.

Therefore we have the following theorem :

Two algebras A,[p"] and Az[p”] are simply iso-
morphic when and only when their multiplicative
groups are simply isomorphic.
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EXERCISES

1. Show directly from §§ 100 and 101 (that is, without the use of
the properties of doubly transitive groups) that the additive group of
an algebra A[s] is Abelian of prime-power order p" and type
1,1, ..., 1) and that its multiplicative group has the property stated
near the end of § 103. (Dickson, Gottingen Nachrichien, 1905.)

2. If the multiplicative group of an algebra A[p"] is Abelian, show
that the algebra is the Galois field GF[p”]. [SUGGESTION. Compare
the postulates relating to the two cases.]

3. Show that the only algebra A[p], where p is a prime, is the
Galois field GF[p].

4. Show that there is just one algebra A[2*] whenz =1, 2, 3, 4, 5,
or 7, and determine all the algebras A[26].

5. Determine all the algebras A[s] each of which has fewer than
81 marks.

6. If p is an odd prime the multiplicative group M of an algebra
A[p"] contains just one element of order 2.

7. In the multiplicative group M of an algebra A[p~?] the Sylow
subgroups of odd order are cyclic and those of even order are either
cyclic or of the sole noncyclic type containing a single element of
order 2.

8. Give examples of algebras A[p"] to show that both types (Ex. 7)
of Sylow subgroups of M of even order are actually to be found.

9. Show that an algebra A[p*] whose multiplicative group M con-
tains a noncyclic Sylow subgroup of order 2« has in a given Sylow
subgroup of order 2 at least three subgroups of each of the orders
22’ 23’ e, 2a—1_

10. The multiplicative group M of an algebra A[p"] contains an
element of order p — 1.

11. Prove Theorem IV of § 79 by aid of the foregoing Ex. 2.

12. Show that the GF[p"] is the only algebra A[p~] when p» =27,
29, 211 213, 217' 219, 3s, 37, 39, 313,

13. Show that there are just two distinct algebras A[81].

14. For every positive integer L there exist a prime p and a positive

integer n such that the number of algebras A[p"] is greater than L.
(See Ex. 14 on page 286.)
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15. If an algebra A[p™] has, in addition to satisfying the postulates
of § 101, the property that (b + ¢)a = ba + ca when q, b, ¢ are marks
of the algebra, then this algebra is the GF[p"]. (Dickson, Gottingen
Nachrichten, 1905.)

105. Integral Elements of an Algebra A[p"]. Let the elements
of an algebra A[p"] be denoted by the symbols uo, #%;, us, - - -,
u, (u=p"—1); and let uo and «, denote the zero element and
the unit element respectively. Then an element of the form
%1 + %y + - - - + u; is called an integral element of the algebra,
while all other elements are said to be nonintegral. Since the
additive group H of the algebra is Abelian of order p* and type
1,1, ---,1),it follows that there are just p integral elements in
A[p"]. When there is no danger of confusion we shall denote
them by O, 1, 2, - - -, p — 1, where O and 1 denote the elements
uo and u; respectively and where k=u; +u; - - - to k terms,
k being a number of the set 2, 3, - - -, p — 1. Addition and mul-
tiplication of these elements in the algebra consist of addition
and multiplication of these numbers followed by a reduction
modulo p to a number of the set. For the case of addition this
result follows at once from the definition of integral elements.
For the case of multiplication we have

ab= u;+u+--- to a terms)(; + 41+ - - - to b terms)
= (U1 +u;+---toa terms) u; + (4 +u; + - - - to a terms)u,

+ - - - to b terms
=u;+ u, +- - - to ab terms.

Thence it follows that @b = c if ¢ is the number of the set 0, 1,
- -+, p—1 to which the number ab is congruent modulo p.

From this result it follows that the integral elements of the
algebra form the GF{p]. In particular, an algebra A[p] consists
entirely of integral elements and is the GF[p].

We have seen (§ 65) that a GF[p™] contains a subfield
GF[p*] when and only when % is a factor of n. We have seen
that every A[p"] contains an A[p]. If an A[p"] contains an
A[p*], then the multiplicative group of order p* — 1 of the latter
must be a subgroup of the multiplicative group of order p» — 1
of the former. Hence p* — 1 must be a factor of p» — 1, whence
it follows that & must be a factor of ».
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106. Analytical Representations of Algebras A[p"]. Let us
write # = kv, where k and » are positive integers (either or both
of which may be unity). We denote the p" elements of an
algebra A[p"] by (@1, a2, - - -, ax), where the @’s run independently
over the marks of the GF[p’]. In view of the properties of the
additive group H of the algebra it is evident that we may take
for the rule of addition in the algebra that expressed by the
formula

(al’ az c - ak) + (bly b2y ] bk) = (al + bl, vty ak+bk).

Then (0, O, - --, 0) is the zero element of the algebra. The
product of the zero element by any other element (in either
order) is taken to be the zero element. It remains to define a
suitable rule of multiplication for the nonzero elements of the
algebra.

The multiplication of the nonzero elements of the algebra is
according to a group M which permutes the nonzero elements
of the algebra according to a regular group contained in the
group of isomorphisms of H with itself. Moreover, the group
of linear transformations in the algebra permutes (§ 103) the
marks of the algebra according to a doubly transitive group of
degree p* and order p*(p™ — 1). From these facts and § 78 it
follows that if

(al! az, - - ak) * (xlr X2, -y xk) = (x'h x’2, Sty x'k)’
then we have

v k
x'i = 2 2 aijsxjpn_‘v (i= 1’ 29 t 0y k)
s=1j5=1

where the coefficients a;;, are marks of the GF[p’] which depend
on (a;, @z, - - -, ax) but are independent of (x;, xs, - - -x;). Conse-
quently the multiplicative group of the algebra may be defined
by means of a transformation group whose elements have the
foregoing form. A necessary and sufficient condition on these
transformations is that they shall permute the nonzero marks
of the algebra according to a regular group.

When » = 1 this transformation group is linear. When k=1
we have the other extreme case of the foregoing transforma-
tions. In this case » = i, and the marks of the algebra are the
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symbols (@), where a runs over the marks of the Galois field
GF[p™]. The rule of addition in the algebra, namely, (a) + (b)
= (a+b), coincides with the rule of addition in the GF[p~].
For the product (@)(x) we have (f(a, x)), where f(a, x) has the
form

n
fa, 2) =2 e
s=1

Therefore we may write

(ai) (X) = (f(ai’ x)) = ( 2 asa)xpn—a)’ (i = O’ 1: 2! R P"_Z)
s=1

where the o’s are the nonzero marks of the GF[p"] and the

a,'? are marks of the GF[p"] to be suitably determined. We

take (1) to be the unit element in the algebra. Then we have

al(i) + a2(i) 4.+ a9 = a;.

We have also (0)(x) = (f(0, x)) = (0).

It thus appears that every algebra A[p™] may be represented
analytically by means of the GF[p"]. The problem of deter-
mining all algebras A[p™] has not been completely solved.
(Compare § 77.) In the following section we shall employ the
method just indicated to set forth the analytical representations
of each of a large class of algebras A[p™].

107. The Algebras 4,,,[p"]. In Theorem XXX of § 69 and its
first corollary we have a means of defining an important class
of algebras A[p™]. We denote their elements by (@), where a
runs over the marks of the GF[p™] and (0) and (1) are to be
the zero and unit elements of the algebra respectively. Addi-
tion is defined by he relation (a) + (b) = (¢ +b). For the
product (a.)(x) we take the element (a;x*"), where the symbols
are those of the theorem cited and its first corollary. Such an
algebra will be called an algebra A, :[p"], where o and / are de-
fined in connection with Theorem XXX. They do not include
all the algebras A[p™], as is shown from an examination of the
three algebras A[52]. (Compare §§ 80 and 102.)

Now (Theorem XXX of § 69) ¢ is a factor of

pr—1

(o=t = £_=,
L pt b pit o pe D =5
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and hence it is a factor of the following multiple of the fore-
going number :

pn—1 p'—1 _pr—1
p—1p—1" p—1

Therefore the order of the group {S°} is a multiple of p — 1,
and hence that group contains a cyclic subgroup of order
p — 1 and hence contains all the transformations of the form
x’ = ax, where « is an integral mark of GF[p*]. Therefore in
Ao, 1[p™] we have (a)(x) = (ax), where (x) is any element of
the algebra. But (¢:)(a) = (¢;.«) = (aa;), since o = . There-
fore an integral element of A, ;[p™] is permutable under multi-
plication with every element of the algebra.

That this property of permutability of integral elements
with all elements is not common to all algebras A[p"] may be
seen from the example of the A[52] defined by means of the
transformations given near the end of § 80. Transforming the
element 1’ = w!2x® + w?'x by the element 1’ = w'®x, we have
the element x’ = w2%x% + w?'x. Since w?’ 4 w?! = w8 =3, we
have (3)(w) = (w?® + w??) = (v + w??) = (w?), whereas (w)(3)
= (@B w) = (w).

Let % be any factor of #, and consider the subset (7) of ele-
ments in an algebra A,,;[p"], where r runs over the marks of
the subfield GF[p*] contained in GF[p™]. Under addition these
elements () obviously form a group of order p*. Moreover,
the product of two of these elements (7) is an element of this
set. Therefore the p* elements named form a subalgebra A[p*].
Therefore an algebra A.,;[p"] contains a subalgebra A[$*] when
and only when % is a factor of #, as one sees by aid of the result
at the end of § 105.

108. Analytic Finite Plane Geometries. The algebras A[p"]
afford number systems suitable for use in constructing finite
plane geometries. In fact, this is true of the number systems
afforded by more general classes of finite algebras, as has been
shown by Veblen and Wedderburn (Trans. Amer. Math. Soc.,
8 (1907), 379-388). Accordingly we define such a finite algebra
to be one consisting of a finite number # (z > 1) of elements
satisfying the following conditions :
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1. The numbers of the algebra form an Abelian group under addi-
tion, the identical element of which is denoted by 0.

2. For any two numbers a and b there is a unique number ¢ such
that @b = ¢; and if a % O there are unique numbers d and 4’ such that
da="b and ad’ = b; also Oz = a0 = 0 for every a.

3. If a, b, ¢ are numbers of the algebra, then a(b + ¢) = ab + ac.

Neither the associative nor the commutative law of multipli-
cation is assumed, nor is there necessarily in the algebra an
identical element with respect to multiplication. And no use
is made of the other distributive law (b + ¢)a = ba + ca.

A point is defined as one of any one of the systems of three
co-ordinates

1 @yé) @) xe0, @00,
where ¢ is different from zero and is the same for all points.
If n is the number of elements in the algebra, the number of
points is #2+n+ 1. A line is defined as the set of all points
which satisfy an equation of one of the forms

M) xp+yb+2c=0, (2)w+ax=0 (3)zy=0,
where  is different from zero and is the same for all the lines.
There are then n2 4+ n + 1 lines, and each line contains 7 + 1
points, as may easily be verified. The number of lines through
a given point is # + 1.

These points and lines will be said to form a projective finite
Dblane geometry, since they will be shown to satisfy the following
postulates :

1. If A and B are any two points, there is one and
only one line containing both 4 and B.

II. If @ and b are any two lines, there is one and
only one point contained in both ¢ and ».

III. Each line contains at least three points.

The third postulate is satisfied, since » > 1 and each line
contains # -+ 1 points.

In order to show that Postulate II is satisfied, we have to
treat several cases, as follows:
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(a) Two lines of type (1):
wW+yb+2=0, xp+yb 42’ =0.

The co-ordinates of a point of intersection must satisfy the

condition
yO—¥b)+2(c—c)=0.

We cannot have both 5 =5 and ¢ = ¢, for then the two lines
would be identical. If ¢=¢’ and b5 b’, we have y =0 and
2z 0, so that the point is (a, 0, ¢), where x = « is the unique
solution of the equation xy = — ¢c¢. Similarly, when & =¥
and ¢ # ¢/, we have the unique point (8, ¢, 0), where x =
is the unique solution of the equation xy = — ¢b. If b= b’
and ¢ ¢/, we have z= ¢, and hence the point is uniquely
determined as (o, B, ¢), where B(b—b')=— ¢(c—¢’) and
BY = — (ab + ¢o).
(b) Lines of types (1) and (2):

wW+yo+2c=0, yw+ 2z’ =0.

Then z= ¢. Then y is uniquely determined from the second
equation, and then x from the first.

(c) Lines of types (1) and (3). Thenz=0and y= ¢ and x
is uniquely determined.

(d) Two lines of type (2). We have the unique point (¢, 0, 0).

(e) Lines of types (2) and (3). The only solution is (¢, 0, 0).

From these results it follows that Postulate II is satisfied.

By a similar separation into cases one may readily show that
Postulate I is satisfied.

Since the algebras A[p™] satisfy all the conditions here im-
posed upon the more general classes of algebras, it follows that
the former are suitable for use in constructing analytically cer-
tain projective finite plane geometries. When A[p"] is the
GF[p™], then the geometry is a PG(2, p™) in accordance with the
notation of Chapter XI. When A[p"] is some other algebra of
the type denoted by this symbol in the present chapter, the
geometry may be different from PG(2, p*). In each of these
geometries we may take ¢ =y =1. These remarks will be
justified by considering a special case.
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The case when p* = 32 affords the simplest case of an algebra
A[p™] which is not a GF[p™] — simplest in the sense that the
number of elements is a minimum. In this case we have 91
points in the geometry; and they fall into lines in such a way
that there are just 10 points on each line. We construct the
named geometry.

The polynomial x2+1 is irreducible modulo 3. We may
therefore use it to construct the GF[3%]. If in this GF[3%] we
denote a solution of the equation x2 4+ 1 =0 by j, then the marks
of the field may be denoted by x + yj, where x and y are integers
to be reduced modulo 3 to numbers of the set 0, 1, 2. We take
these same symbols x 4 y7 to denote the marks of the algebra
A[3?]. Since it is to be the one which is not identical with
GF[32], we have for the product (x; + y17)(%z + ¥27) the mark
obtained by multiplying the marks of the field in case x; + yij
is a square ; but when x; + y17 is not a square the corresponding
product mark in the algebra is obtained by multiplying x; + y1j
by the cube of x2 + y25 in the GF{3?]. Thus we may construct
the following multiplication table of the algebra (excluding the
zero and the unit mark) :

2 J 2j 145 142j245 242j
2 1 2j J 2425245 1425 145
i | 2i 2 1 2+4j 1+4j 2+2j 1425
2j J 1 2 1+42j2+2j145 24j
1+j 2425 1425 24j 2 2Jj J 1
142524 2425 1+j J 2 1 2j
2+7 1425 1+5 2425 25 1 2 J
2+24145 245 1+25 1 J 2j 2

Now in the PG(2, 32) the Desargues theorem is valid (§ 87).
It may be shown readily (see Ex. 1 on page 412) that in the
geometry indicated in the foregoing remarks the Desargues
theorem is not valid. Hence this new geometry is different from
the PG(2, 32).

Instead of exhibiting this new geometry explicitly we shall
employ the same algebra to construct a non-Desarguesian
geometry in another way, the new geometry so constructed
being capable of being explicitly exhibited in compact form.
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Since the number system is associative and verifies the dis-
tributive law a(b + ¢) = ab + ac, the point (x, ¥, z) may also be
represented by (kx, ky, kz), where k> 0. Then a linear trans-
formation changes points into points; and, if the coefficients
are integral, two transformations may be combined in the usual
way.

The following transformation is of order 13:

A: =2y, y=2x+2y+22 Z=x+y.

Let Ao, Bo, - - -, Go denote the points (2, 0, 1), 2427, j, 1),
@+7241,04+25,1+41),(,24+251),1+51+251),
27,24+7,1), respectively; and let Ax, Bi, -+ -, Gx (k=0, 1, ---,12)
denote the points into which Ao, By, - - -, Go are changed by the
kth power of A. Then seven of the lines of our geometry are:

Xx4+y+4+2=0: Ao Ay A3 Ag Bo Co Dy Eo Fo Gy,
x+3y/+2=0: Ao B1 Bs D3 Duy E2 E5 Ee¢ Gr Gy,
x+y27)+2=0: Ao Ci Cs E; E9 F3 F1u1 G2 G5 Gg,
x+yQ+7)+2=0: Ao By By D, D3 F2 Fs F¢ Gz G,
x+y2+25)+2=0: Ao B2 Bs Bs C3 Cu E1 Eg F1 Fy,
x+y1+25)+2=0: 40 C Co D2 Ds D¢ E3 En Fi Fg,
x+y24+7)+2=0: Ao Bz Bi1 C2 Cs Cs D7 Dy Gi Gs.

Transforming these seven sets of 10 each by the powers of A4,
we obtain altogether ninety-one sets of 10 each formed from the
91 points of the geometry. These ninety-one sets constitute the
lines of a geometry, as the reader may verify.

It is not difficult to show that this geometry is non-Desargues-
ian, the method being to exhibit a pair of triangles which are
perspective from a point while the intersections of corresponding
sides do not lie on a line (see Ex. 2 on page 412).

It is not difficult to construct the largest possible permutation
group on its points which has the property of transforming this
geometry into itself (Ex. 3 on page 412). It is a problem of
interest to determine the collineation group of all geometries
derived from particular classes of algebras A[p™].

The problem seems not to have been solved.
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EXERCISES

1. Establish the non-Desarguesian character of the first geometry
based on the noncommutative A[32] in § 108.

2. Establish the non-Desarguesian character of the geometry ex-
plicitly exhibited in the latter part of § 108.

3. Determine the collineation group of the geometry explicitly
exhibited in the latter part of § 108.

4. If a and b are elements of the algebra whose multiplication
table is given in § 108, show that ab = + ba.

5. Prove analytically that the 91 sets of 10 each described in the
latter part of § 108 form a projective geometry.

6. Consider all numbers of the form ae; + be; where @ and b are
integers reduced modulo 2 and where ¢; and e; are independent units.
Define addition by the formula

(@er + be) + (cex + deg) = (a + c)er + (b + d)es.
Writing e; for e; + e;, define multiplication by means of either of the
following tables:

€1 €2 é€3

1) e1|es ex e 2
€21 €2 e é€3
é3| €1 €3 €2

Show that multiplication is commutative in case (1). In both systems
show that the two-sided distributive law holds.

7. By the method of § 108 construct plane geometries based on
the number systems of Ex. 6. Show in each case that the geometry
is equivalent to PG(2, 22).

8. Show that there is only one projective plane geometry with
just 5 points on a line.

9. Show that there is one and just one projective plane geometry

with s points on a line when s = 3, 4, 5, 6, namely, the corresponding
PG(2, p™) in each case (see Ex. 8).

10. Show that there is no projective plane geometry having just
seven points on a line.

11. Determine all the projective plane geometries having just
8 points on a line.
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12. Form an algebra whose marks are 0, 1, 2, 3, 4, and let addition
be identical with ordinary addition modulo 5. Let @0 =02 =0 for
 every a. Otherwise define multiplication by the table

1.2 3 4
11 2 3 4
214 3 21
313 1 4 2
412 4 1 3

Use this number system to form a geometry by the method of § 108,
taking ¢ =y = 1. Show that the resulting geometry is PG(2, 5).

MISCELLANEOUS EXERCISES

1. Determine all the algebras A[pZ] by the method employed by
Dickson in Géttingen Nachrichten, 1905.

2. By aid of Ex. 1 determine all the doubly transitive groups of
degree p? and order p2(p2 — 1).

3. Determine all the algebras A[p”] each of which has the property
that its multiplicative group contains a cyclic subgroup of index 2.

4. Determine all the doubly transitive groups of degree p» and
order p*(p™ — 1) in each of which the regular subgroup of order
p™ — 1 contains a cyclic subgroup of index 2.

5. Determine all the triply transitive groups of degree p” + 1 and
order (p* + 1)p™(p® — 1) in each of which the regular subgroup of
order p™ — 1 contains a cyclic subgroup of index 2.

6. Consider the geometry built by the method of § 108 from the
A[p?] defined in § 107 by aid of Theorem XXX of § 69 and its first
corollary. Show how to represent the points of this geometry by triples
of marks in the GF[p?], with suitable definition of equivalence of sym-
bols, in such way that the lines of the geometry shall be defined by
means of suitable nonlinear equations in the GF[p?]. [SUGGESTION.
For the solution of this problem employ the function f(a, x) of § 106
associated with the definition of multiplication.]

7. Extend the results of Ex. 6 to the case of algebras A[p2"].

8. For the case p™ = 32 compare the geometry defined in Ex. 6
with those on the same number of points discussed in § 108.
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9.Let 7 and j be two independent units such that ¢2=j,
f=ji=b+ Bi, j2=— (32— 8bi — 2 B, where b and 3 are given in-
tegers such that the equation x3 — 8x — b = 0 is irreducible for a given
odd prime modulus p. Define an algebra subject to the postulates of
§ 108 and having for its marks all numbers of the form a -+ di + ¢j,
where @, d, ¢ are marks of the GF[p"]. Extend this to the case when
b and 8 are marks of the GF[p™).

10. Employ the algebra defined in Ex. 9 in the construction of a
finite plane projective geometry after the manner of § 108, simplifying
the theory by aid of the fact that the algebra is commutative. Deter-
- mine whether a Desargues theorem is valid in this geometry.

11. Discuss the special case of the geometry in Ex. 10 when p» = 3.

12. Determine all finite plane projective geometries having not
more than nine points on a line (see Exs. 9, 10, 11 on page 412), and
thus determine the smallest possible number of points on a line in a
finite plane projective geometry in which the Desargues theorem is
not valid.



CHAPTER XIV

Tactical Configurations

109. Immediate Examples. In § 91 we have defined tactical
configurations Az’ * of rank two and have given several classes
of examples based on the PG(k, p™). In this section we give
other immediate examples.

In the configurations which we shall usually consider there
is a certain symmetry in the role played by the [ elements and
the m sets. We may consider the m sets themselves as ele-
ments. The p sets which contain a given symbol may be
thought of as a combination of sets which give rise to that sym-
bol, provided that there is no additional symbol common to
these u sets. From this point of view the configuration be-
comes a new configuration having the symbol A',‘n", The two
configurations A}~ and A", are therefore closely related when
they satisfy the restrictive condition just named. They are
called associated configurations.

With each of the m sets of A elements we may associate the
complementary set of /— A elements, thus forming m sets
each of which contains [ — \ elements; in these sets each ele-
ment occurs m — u times. Thus we have a configuration
A" which is said to be complementary to the configura-
tion A} ..

From the tactical configurations afforded by the PG(k, 72|
it is apparent that the configurations A?_’ % are of importance in
the theory of groups. They have also been found useful in con-
structing poristic forms in connection with the study of geomet-
rical configurations similar to and including those associated
with the Poncelet polygons which arise in the theory of conic
sections. The same tactical problem also appears in the theory

of certain irrational invariants. Its importance is therefore clear.
415
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We now proceed to the examples promised.

From a cycle a,a; - - - a. of n elements we may select cycli-
cally the set @10z - - - ar, @203 - - - @41, - -+, G102 - -+ @1, thus
obtaining a configuration with the symbol A%,

Let us take two sets of » things each, say a, a3, - - -, @, and
oy, oy, - -+, . Each element in one set may be paired with
each element in the other set, gwmg rise to »2 pairs of the 2 n
elements. Thus we have a AZn - Again, each element in one
of the two sets may be palred with every other element in the
same set : thus we have a AZ” o - Again, we may make the
pairs from each one of the setsrunin cychcal order, thus obtain-
ing a configuration with the symbol Azn 2 nt

The three configurations of the foregoing paragraph are
capable of a ready generalization. Generalizing the first of
them we have a configuration with the symbol

1, n—1
Aln, nl

obtained from / sets of # elements each by forming all the
possible combinations of [/ elements each gotten by taking one
element from each of the [ sets. One may similarly generalize
the other two configurations in the preceding paragraph. More-
over, various other similar configurations are readily formed.

Now let us take [ sets of # things each, / being greater than
2. Let these [/ sets be arranged in cyclical order. Form pairs
by taking each element in one set with each element in the set
which follows it in cyclical order. Thus we form In? pairs from

the In elements, using each element 2 n times. This gives rise
to a configuration with the symbol

2 4>

This configuration is capable of generalization in the following
manner. Let us consider [ sets of »n things each, where I > A,
these ! sets being arranged in cyclical order; and let us form
combinations of A elements each, such combinations being
formed from A consecutive sets from the [ sets in their fixed

cyclical order by taking one element from each of the \ sets
in all possible ways. Thus we have /n elements formed into
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sets of \ elements each, the number of sets being in* and each
element appearing in An*~! sets. This gives rise to a configura-
tion with the symbol

A, A 1
Aln, m >N

For the case in which ! =7+ 1 and A = n, we have

n, n®

An(n+ 1), n%n+1)"

For n = 2 this becomes AZ},; and this configuration consists
of all the pairs of the six elements involved except the three
pairs from which the configuration was formed.

Other configurations may also be readily formed by various
modifications of the methods employed in this section.

110. Configurations Associated with Coble’s Box Porism. In
the 3-space PG(3, p™) there are p" + 1 points on a line / and
p™ + 1 planes on the same line. Let us take p™ of these planes
and a point P not on any of these p™ planes (and hence on the
remaining plane through ). Let Q be any point on /. In ad-
dition to the p» planes already retained, keep also the p2"
planes which are not on the line PQ. We thus retain p2" 4 p*
planes. Retain the p3" points which are not on the plane
through P and [; these points form an EG(3, p™). The points
retained on a given one of the p" planes first selected and the
lines in which that plane is cut by the retained planes through
P form a configuration

4%
B

Hence the p3" retained points appear in sets of p each on the

2n 4 p~ retained planes; moreover each of the retained points
appears on one of the retained planes through / and on just
p of the retained planes on P. We are thus led to a configura-
tion having the symbol

P pn+1
A pBn, p2ny pn‘
When p" =2 we have here a configuration with the symbol
A%3 1t is based on the PG(3, 2). It may be shown that this
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leads to a configuration equivalent to that defined by the
following scheme :

DEFG, LMNO, DELM, FGNO, DGLO, EFMN.

If these six quadruples in the order written are numbered 1, 2,
- -+, 6, then the eight letters contained in them are determined
by triples of digits according to the following correspondence :

135 136 145 146 235 236 245 246
D E G F L M O N

These eight triples of six elements form the configuration A §
belonging to the box porism of Coble (Amer. Journ. Math.
43 (1921),15). The latter is therefore exhibited as belonging to
an infinite class of configurations; the class was suggested by
this example.

Another infinite class of configurations having the same
symbols as the foregoing may be constructed in the following
manner. From PG(3, p~) form the corresponding EG(3, p*) by
omitting a plane with its points. Let P be a point on this plane ;
then there are p2» 4- p* additional planes on P; these are to be
retained. The p3» points of the EG(3, p™) fall on these planes,
p2" points on each plane thus considered. Moreover a given
one of these points is on each of the planes containing the
line joining this point to P, and hence it is on p* -+ 1of the
retained planes. Thus we are led to another configuration with

the symbol
P27 p 41
Aps n, pZn +pn.

111. Certain Additional Configurations. From the PG(%, p™)
(k> 2) let us omit a line of points and also all the lines on each
of these points. The number of points remaining is {, where

=24 pon - o pho,

Now the total number of lines on a point is1 4 p» 4 - - - 4 pk—0Vn,
Hence the number of omitted lines is

(1 +p")(pﬂ + p2n + e +p(k—l)n) + 1.
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Hence the number m of retained lines is

(p(k+1)n__1)(p’°“—1)_ Y (H 2n
(p2n__1)(pn_1) (1+p )(p -'_l-_?.._l_p(k—l)n)_l.

m=

The retained points fall X at a time on the retained lines, where
A=1+4+p"
each point appearing on u of the lines, where
p=pr4pin4 - + p—1im,

This gives rise to a A',‘":; where I, m, \, 1 have the values given.

To form another configuration let us omit from PG(3, p™)
the points on two nonintersecting lines and all the lines through
these points. This leaves

prp* =1 -1
lines of the PG(3, p*). Each of these contains p" + 1 points of
the PG(3, p*); and each of these retained points is on p** — p*

retained lines. Hence the retained points and lines yield a
configuration A;’}, where

I= "+ D> — 1), m=p"p"— D" — D),
A=p"+1, u=p"@"—D.
Again, from the (2 k& + 1)-dimensional space PGR2 k+1, p™)
let us omit the points of a k-dimensional subspace Sk and also

all the (2 k)-spaces containing S;. We thus retain ! points and
1 (2 k)-spaces, where

l____p(2k+1)n +p2kn + e +p(k+l)'n.
" Each of the retained (2 k)-spaces has \ retained points, where

)\=p2lm+p(2k—l)n+_ . +pkn,

and each of the retained points lies on \ of the retained (2 k)-
spaces. Thus we are led to a configuration A7} where X and !
have the values just given.

112. Subgeometries and the Complementary Sets. Let » be
any proper factor of #. Then in the PG(k, p™) there is included
(§ 86) the geometry PG(k, p”), namely, those points of PG(k, j 0]
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whose co-ordinates may be taken as marks of the GF[ p*] included
in the GF[p"]. We shall denote by C(%, p*, p*) the complemen-
tary set of points, namely, the points of PG(%, p*) which are not
contained in the included PG(%, p*). The number / of points in

C(k, p™, p7) is
= (pkn _pkv) + (p(lc—l)n _p(k—l)v) +--- 4 —p).

If aline in PG(k, p™) contains two points of PG(%, p*), it con-
tains all the points of a line in PG(k, p*). Hence the lines of
PG(k, p™) may be separated into three classes: the first class
consists of those lines each of which contains a whole line of the
PG(k, p*); the second class consists of those lines each of which
contains just one point of the PG(%, p*); the third class consists
of those lines containing no point of the PG(k, p*). The num-
bers of lines in these three classes are readily shown to be,
respectively,

(p(k+1)y — 1)@/0» — 1), (pkn _ 1 —pkv —_ 1) p(k+l)v — 1,
G-Dp-D  \pr—1 p-1) p-1

(p(k+1)n — 1)(pkn — 1) _p(k+1)v -1 <pkn —1 -pv(pkv — 1))
@ =D ~1) r—1 \p =1 p¥—1

It is not difficult to show that the third class is the null class
when and only when 2 =2 and n =2 ».

With these classes we readily construct tactical configura-
tions as follows:

Let us consider the second class of lines in the case when £ = 2
and #n=2v. Each of the p2” 4 p* 41 lines of the PG(2, p*),
when extended to a line of PG(2, p2*), contains just p2 — j7id
points of C(2, p?’, p*); and no point P of C(2, p?’, p*) occurs
on two such extended lines. Hence each of the (p2r—p»)

(»** + p’ + 1) points of C(2, p2, p*) occurs on one and just one
line which contains a line of PG(2, p*). Hence each point P of
C(2, p?», p*) lieson just p? lines of the second class, this being
the number of lines joining P to points of PG(2, p*) other than
the line of PG(2, p*) on the extension of which P lies. Moreover,
each line of the second class contains just p2” points of

C(2, p*, p7). Hence the (p2— p)(p2*+ p*+ 1) points of
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c@, p*, p) lie p*>> at a time on the (p2* — p)(P** +p+1)
lines of the second class, and each point is on just p?” of these
lines. This gives rise to a tactical configuration A}y, where

N=p=pr, I=m=@" =)+ + D

In the case when p7 = 2 this gives a Ay J,.

From the general configuration of the preceding paragraph
a certain reduced configuration is readily obtained. Let us
omit from PG(2, p*) one of its lines and at the same time omit
from PG(2, p?*) the line L, which has p” + 1 points in common
with the omitted line of PG(2, p). This line contains p2> — p”
points of C(2, p?’, P"). The remaining points of C(2, p?’, p")
are (p%* — p)(p?’ + p*) in number. These points fall p?» at a
time on the lines of the second class other than the lines con-
taining each a point of L which is in the set C(2, p?’, p”). These
latter lines are (p2” — p*)p?’ in number, since each of the ex-
cluded p2 — p» points is on just p*” lines of the second class
and no two of them are on the same line of the second class.
Excluding these lines and retaining the others of the second
class, we have p(p?>* — 1) retained lines. Each of the retained
points is on just p~ of the retained lines. Hence we have a
tactical configuration Ay, where '

l=P2"(P2"—1)» )\=p2v, “=pv’ m=pv(p2y_1)_

For pr =2 this is a A3 % The associated configuration AZ 1,
has an obvious generalization to a configuration

2,2(n—-1)
2n,2n(n—-1)
consisting of all the pairs of 2 # symbols a1, @z, * * *, O2a except
the pairs a1, az; o3, Qa; -5 021, 2n each « occurring in

2(n — 1) pairs. And this in turn is capable of an immediate
generalization to the case of kn things taken & at a time except
for the omission of # sets of k each, the latter sets involving
each symbol once and just once.

Let us consider the second class of lines in the case when
k=2and n=pv(p>2). The number ! of pointsin C(2, p**, p)
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and the number m of lines in the second class and the num-
ber N of lines in the third class are now, respectively,

I=(@"—p)+p+ 1),
m= (" — p) (> + pr + 1),
N=(p" — p) (B — ).

Moreover, each line of the second class contains just p** points
of C(2, p, p*). We may separate the points of C(2, p*, p*) into
two subclasses C1(2, p*, p*) and C2(2, p**, p*), those of the sub-
class C; being each on a line of PG(2, p**) which contains
p”+ 1 points of the PG(2, p*), while the subclass C. consists
of the remaining points of C(2, p**, p*). Now these subclasses
C:1 and C; contain /; and /» points respectively, where

Lh=@"—-—p)0>+p+1), b= (@"—p)0"—p>),

a result which may be proved as follows. The PG(2, p*) con-
tains p2”+p”+ 1 lines, and each of these lines has p» — p”
points of C;, while no point of C; is on two of these lines, since
two such lines have a point of the PG(2, p*) in common. Hence
l, has the value given; then /; is obtained from the formula
L=1-1.

Each point of C; is on just p2- lines of the second class, since
it is on just one line of the first class and this line contains just
P+ 1 of the p2» 4 p»+ 1 points of the PG(2, p*); and each
point of C: is on just p2» 4 p* 4 1 lines of the second class.
But just p+1 lines of PG(2, p**) pass through any given
point of this geometry. Hence each point of C; is on just
b — p?” lines of the third class, and each point of C; is on
just p»* — p2» — pr lines of the third class. Every line of the
second class contains just as many points of C; as there are
lines in PG(2, p*) not containing the point which this line of
the second class has in common with the PG(2, p’), and this
number is p27; therefore every line of the second class contains
just pr* — p2» points of C..

Now we have seen that the /; points of C; fall, in sets of
p?* each, on the m lines of the second class, each point of C;
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belonging to just p2* lines of the second class. Thus we have
a AY*, with

1, m?
I=m=(p — pY(p¥ +p+1), N=p=p>
For p =3 and p = 2 we have thus a A5 i

Again, the l; points of C: fall, in sets of p~» — p?» each, on
the m lines of the second class, each point of Cz belonging to
just p2r 4 p*+1 lines of the second class. Thus we have a
Ay where

A=prr—p¥, pu=pT+p+1, I= l2,
and m and I have the values already given.

Each line of the third class contains just p2v 4+ pr + 1 points
of C,, since it contains no point of PG(2, p*) and has one and
just one point in common with each of the p?’+ p+1 lines
each of which contains p” + 1 points of the PG(2, p). Hence
each line of the third class contains also p** — p% — pr points
of Co.

From the foregoing results we see that the /; points of C
fall, in sets of p**+p*+1 each, on the N lines of the third
class. This defines a tactical configuration of rank two.

Similarly, we see that the I points of C. fall, in sets of
pr — p2r — pr each, on the N lines of the third class, each
point of C; belonging to just pe» — p* — p* lines of the third
class. Thus we have a tactical configuration A%} where

N=pr—pP =1, 1= =PI — 17
It is evident that other configurations may readily be con-

structed by means of finite geometries of more than two dimen-
sions and the subgeometries contained within them.

EXERCISES

1. Construct the configuration Aé:g of the first paragraph of § 110
and determine the group characterized by it.

9. Construct the configuration Aéf; of the last paragraph of § 110
and determine the group characterized by it.

3. By means of all but one of the planes on a point P of PG(@3, p™)
and the intersecting lines of these planes, the lines being taken as ele-
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ments and the p]anes as sets of elements, construct a configuration
having the symbol A . Where
l=p2n __p2n+pn k_pn “_pn+1

4. Construct the configuration A12 1 Of the first paragraph of
§ 111 (for k=3 and p* =2) and determine the group characterized
by it.

5. Construct the configuration A o6 2 of the second paragraph of
§ 111 (for p» = 2) and determine the group characterized by it.

6. Construct the configuration A12 12 of the last paragraph of
§ 111 (for k=1 and p" = 2) and determine the group characterized
by it.

7. Construct from the PG(2, 22) the configuration A14 14 men-
tioned in § 112 and determine the group characterized by 1t

8. Construct from the PG(2, 22) the configuration A 26 Z of § 112
and determine the group characterized by it.

9. Show that the system consisting of the five sets of three pairs
each, ©0, 14,23; «1,20,34; ©2, 31, 40; 3,42,01; 4,03, 12,
is left invariant by each element of the group

{(01234), (1243), (= 0)(14)}
and by no other permutations on its symbols.
10. Show that the system consisting of the seven sets of four pairs
each,
000, 16, 25, 43; 1, 20, 36, 54; ©2, 31, 40, 65; ©3, 42, 51, 06;
w4, 53, 62, 10; 05, 64, 03, 21; 6, 05, 14, 32,
is left invariant by each element of a doubly transitive group of de-
gree 7 and order 7 - 6 and by no other permutation on its symbols.
11. Show that the system consisting of the seven sets of four pairs
each,
000, 13, 45, 26; w1, 24, 56, 30; =2, 35, 60, 41; 3, 46, 01, 52;
04, 50, 12, 63; «5, 61, 23, 04; «©6, 02, 34, 15,
is invariant under the triply transitive group of degree 8 and order
8-7-6-4 on its symbols and under no other permutations on these
symbols.
12. Solve the like problem for the four sets of three triples each,
123, 456, 789; 147, 258, 369; 159, 267, 348; 186, 294, 375.
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Discuss the isomorphism of the resulting group with the symmetric
group of degree 4.

13. Noting the way in which Ex. 12 depends on the regular group
generated by (123)(456)(789) and (147)(258)(369), construct and
solve a similar problem depending on the regular noncyclic permuta-
tion group of order 25.

14. Investigate other groups by methods suggested by the results
in the foregoing Exs. 9 to 13 inclusive.

113. Triple Systems and Triple Groups.* If n elements x1, X2,
..., %, can be arranged in triples so that each pair x.xs occurs
in one and in just one triple, then the arrangement so made is
called a triple system. The largest permutation group on xi, Xz,
.- ., x, each element of which transforms the triple system into
itself is said to be a triple group and to belong to the triple system.

It is easy to determine a necessary condition on the form
of » in order that a triple system of » elements may exist.
Since there are 4 n(n — 1) pairs of n things and since a given
triple contains three of these pairs, it follows that the number
of triples in a triple system on # elements is § n(n — 1), so
that this last number must be an integer. Moreover, a given
letter must occur with each of the others taken in pairs;
whence # must be odd. These two conditions require that
n shall have one of the forms 6m +1 and 6 m+ 3. It has
been shown (see Netto’s Lekrbuch, loc. cit.) that a triple system
exists for each n of either one of the given forms, and indeed
that at least two inequivalent triple systems exist for each
such # greater than 9, while there is just one when n=3 or
7 or 9. [Two triple systems are said to be equivalent if there
exists a permutation which transforms one of them into the
other.] The number of distinct triple systems on a given
number of elements has not yet been determined in general.

The finite geometry PG(k, 2) affords an example of a triple
system on 2f+! —1 elements, the lines of the geometry con-

* Gee Netto, Math. Annalen 42 (1893), 143-152. See also Netto, Lehrbuch
der Combinaiorik, second edition, pp. 202-227, 321-334, for a much fuller
account of this subject, with numerous references to the literature.
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stituting the triples of the system. The corresponding triple
group is then the collineation group in the finite geometry.
When % > 1 the group is doubly transitive and contains cyclic
permutations of all its elements. [It is obvious that a triple
group of degree greater than 3 cannot be triply transitive.]

The finite geometry EG(k, 3) affords an example of a triple
system on 3* elements, the lines of the geometry constituting
the triples of the system. The group belonging to the system
is the collineation group in the geometry.

A triple system on # elements leads to one on 2741 ele-
ments, in the following manner. To the z elements x;, x,

- -, %, of the given system adjoin the » + 1 additional elements

x'0, 1, + + +, *'n. From each triple x.x3x, of the first system
form the four triples

XaXpgXy, x,ax’ﬁx‘n x’axﬁx"b xax’ﬂx,‘l'
Then add the remaining triples
x'oxlx’l, x'oxlez, sy x’ox,,x’,..

No pair of the 2 # + 1 elements occurs twice. The number of

triples is 4n§n—12+n or §2n+12g2n_)’
6 ’ 6

whence it follows that the named set of triples forms a triple
system on 2 n + 1 elements.

Applying this process to the triple system on three elements,
one has a system on 7 elements; from the latter a system on
15 elements is obtained in the same way; and then one on
31 elements; and so on. The systems thus determined con-
stitute the geometries PG(k, 2), as one may readily show, the
triples being the lines of the geometry.

Let T, and T: be triple systems on #; and on %, elements
respectively ; and denote them by the symbols

(Tl) abc’ ade’ bdg9 ey (T2) C‘ﬁ’)’, a6€, 0‘(’7, St

Employ the #;7n; elements Xaq, Xap, - * *, Xbas X8, + + -. Then form
triples as follows, of the numbers indicated :
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m(nm—1) . .
n2 : 16 tr1p1681 XaaXabXacy XaaXadXaes * * 5 XpaXpbXfes ° s

nz2(N2 — 1 - . .
n —2L—6——2 trlples * XaaXapXays XaaXasXaey * * s XbaXbsXbys = ° s

niyy — D no(me—1) . .
6 16 ) ma( 2;;—ltnples: XaoXotXens XaaXon¥ets XarXoaXens

XatXtnXeas XanXbaXcts XanXbiXcas

and so on for the various pairs of triples from T; and
T, respectively.
No pair of elements occurs in two triples, while the total
number of triples has the appropriate value

7 (n1—1) N2 (nz-—l) m (nl-i) N ("lz—l} _ nlnz(mnz—l).
m g =g — 167 6~ 6

Hence the triples formed from the x;; constitute a triple system
on m72 elements.

We shall now form a triple system on p elements, where p
is a prime of the form 6 m + 1. Let g be a primitive root mod-
ulo p, and denote the residues modulo p by 0, g, g2,- -+, g2~ L.
Form the triples

kk+g k4 gmte (a=0,1,--~,m—1;k=0,1,---,6m)

the numbers in the triple in each case being reduced modulo p.
The number of triples so formed is m(@©6m + 1) = sp(p—1.
Hence, to show that they form a triple system it is sufficient
to prove that no pair occurs in two triples. Since the set of
triples is transformed into itself by the transformation V=141
mod p, it follows that if any pair occurs in two triples, then
there exists a number p such that the pair (0, p) occurs in
two triples, while the zero element is either that for which
k= — go or that for which k= — gn+e, Hence we have to
examine only the following sets:

O’gm+a_ga,_ga; (a=0’1""ym—'1)
0’__gm+a,ga__gm+a' (a=O,l,---,m——1)

Now gé™ =1 mod p, while g8"=1 mod p, whence g2" = — 1
mod p. But g™+ 1= (g"+ 1)(g*" — g™+ 1) = 0 mod p, while
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g™ # 1 mod p. Hence g" — 1 = g2" mod p. Therefore the last-
named triples may be written

O’ g2m+a’ g3m+a; (O{ — O, 1’ ce,m— 1)
0, gim+e, gomte (=0,1,---, m— 1)

No pair (0, p) occurs in two of these. Therefore the original set
of triples constitutes a triple system.

We shall next construct a triple system on 3 u elements,
where u is an odd number which is not divisible by 3. We de-
note the 3 u elements by the numbers 1, 2, ---, 3 u. Then
form the pairs (s, ¢), where

s+i=0mod u, s£0modu, t£0mod u, s=t¢=1mod3.

The numbers which are congruent to 1 modulo 3 and are not
congruent to 0 modulo u fall into u — 1 classes of residues
modulo 3 u. If s is such a number, then there is another such
number ¢, uniquely determined modulo 3 u, such that s +¢=0
mod u. Thus one has 3 (u — 1) pairs (s, {) meeting the condi-
tions named for such pairs. Then form the 4 u(3 u — 1) triples

7',1'+3,T+t; (r=0,19'°',3ﬂ_1) [1]
nr+ur+2u @¢=01---, u—1) [2]

It may be shown that these form a triple system. For this pur-
pose it is sufficient to show that no pair occurs in two triples.
Since the addition of unity to each element in each triple trans-
forms the set of triples into itself, it is sufficient to show that no
element p exists such that the pair (0, p) occurs in two triples;
moreover, there is no loss of generality in supposing that the
element O occurs in either the second or the third place in the
triple as written in [1] or in the last place as written in [2].
Then we have to examine only the triples

(“‘S, O,t—S), (—t’ S—t, O)’ (—2/“‘!'—-”'1 0)1

and to show that no pair (0, p) occurs in two of them. It is
obvious that the last does not have a nonzero element in com-
mon with either the first or the second. The reader may show
that no nonzero element occurs in two triples of the first two
sets. Thus the proof of the proposition is completed.
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114. Quadruple Systems. If # elements xi, Xz, - - -, %, Call be
arranged in quadruples so that each triple x.xsx, of distinct
elements occurs in one and just one quadruple, then the arrange-
ment so made is called a quadruple system. The number » of
elements in a quadruple system must be of one of the forms
6 m <+ 2 and 6 m + 4, as one may easily prove by showing that
each of the numbers

nin—1n—=2) m—Dn—2) n—2
4.3-2 ’ 3:-2 T2

must be an integer: the first of these numbers is the number
of quadruples in the system; the second is the number of quad-
ruples containing a given element ; while the third is the number
of quadruples containing a given pair of elements. The quad-
ruples containing a given element evidently lead to a triple
system on the remaining elements.

From a given quadruple system on the # elements 3, %2, « - -
%, one may form a quadruple system on the 2 n elements xi, x2,
s, Xm, X1, X3, -+, &, in the following manner. For each
quadruple x.xs%,%; of the given set form also the quadruple
X' x5 %'y %'s and retain x.xsxyxs. For each quadruple containing
a given pair x.xs, as for instance X XsXx Xu, form also the quad-
ruple x',x'sx,%,. Form also the quadruples x', x'sx. x5 for every
pair (a, 8) of the set 1, 2,---, n. The total number of quad-
ruples thus formed is

2(n)(n—1)(n—2)+n(n—lln—2+n(n—1)
24 2 2 2
or 2n(2n—214)(2n—2).

This is just the required number of quadruples for a quadruple
system on 2 #n elements. Therefore the named quadruples form
a quadruple system provided that no triple occurs in two quad-
ruples. That this condition is met is readily shown by consider-
ing the triples of each of the forms x,%x., XXX ny XpXoX's
x',%’.x,. Hence, from a given quadruple system on 7 elements
one may construct (in the manner indicated) a quadruple
system on 2 # elements.
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Now x;x2x3%4 forms a (trivial) quadruple system. Applying
to it the method of the previous paragraph one obtains a
quadruple system on 8 elements (see Ex. 4 on page 353). It is
easy to show that this is the only quadruple system on 8 ele-
ments. From the quadruple system on 8 elements one may
form one on 16 elements; from this, one on 32 elements; and
so on. Thus one has quadruple systems on 2* elements for
k=3,4,5,---. In § 91 the same quadruple systems were con-
structed by means of the finite geometries (see Ex. 6 on page 436).

Now consider the collineation group C(1, 3*) of the PG(1, 3%).
It has a subgroup consisting of those transformations

x’:M
¥x+ 0

for which «, 8, v, 6 belong to the GF[3]; this subgroup is of
order 4 - 3- 2; it permutes among themselves the elements oo,
0, 1, 2; these elements are left individually fixed by the trans-
formation x’' = x3; this transformation and the group of order
24 just mentioned generate a group of order 24 %, each element
of which leaves fixed the set «0, 0, 1, 2. Hence the group C(1, 3%)
transforms this quadruple into (3* 4 1)3*(3* — 1) /24 quadruples
(as does also the projective group P(1, 3*)). Since the group is
triply transitive, it follows that every triple of the 3* 4 1 points
of PG(1, 3*) occurs among these quadruples. The quadruples
therefore constitute a quadruple system. When 2 =1 we have
a trivial case. When £ = 2 we have a quadruple system on 10
elements.

From the three preceding paragraphs it follows that quad-
ruple systems of # elements certainly exist for every number #
of the form

n=3"+12. (k=123,---;1=0,1,2,--")

The general problem of the existence of quadruple systems of
n elements when # is of the form 6 m + 2 or 6 m + 4 appears not
to have been solved.

Let us return to the quadruple system on 3* 4 1 elements
already constructed. Those quadruples which contain the ele-
ment oo lead to a triple system on the 3* elements exclusive of .
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It may be shown that this is the same as the triple system
afforded by the lines of the EG(%, 3)(see Ex. 8 on page 436). Its
group is therefore the projective group EP(k, 3), a doubly transi-
tive group of degree 3* and order

3@ —-1)3*~3)(B—3% - (F—31).

This triple system may also be constructed (in a manner now
obvious) by means of the transformation group »’ = ax 4 3 in
the GF[3*]; and when so constructed it leads at once to the
larger doubly transitive group just named — a good example
of the way in which configurations may lead from a given
multiply transitive group to a larger one containing it.

115. Configurations Associated with the Mathieu Groups. The
Mathieu groups of degrees 11, 12, 22, 23, 24 (one of each
degree) are remarkable for two things: (a) they seem to be
the only known simple groups which do not appear among
the known infinite classes of simple groups; (b) among them
are found the only known fourfold and fivefold transitive
groups other than the alternating and symmetric groups.
Examples which stand apart in such a way possess a pecuiiar
interest on account of their isolation. It therefore seems worth
while to present (without any details) a very direct method
for constructing these groups by means of configurations and
to indicate some of their properties which are made manifest
by means of these configurations.

The linear fractional group modulo 11 of order 12-11-51is
often represented as a doubly transitive group of degree 12 on
the symbols 0, 0, 1, 2, - - -, 10. From the 12 symbols which this
transitive group permutes one may select a set of six, namely
0, 1, 3, 4, 5, 9, such that the set is transformed into itself by
just five elements of this group. The whole group therefore
permutes this set of six symbols into 132 such sets. If any five
symbols are selected from the twelve they appear in one and
just one of these sextuples. The 132 sextuples therefore afford
an interesting configuration on 12 symbols which may well be
called a sextuple system, in analogy with the terminology em-
ployed in the previous section. The symbol co appears in just
66 of these sextuples, whence it follows readily that these 66



432 Groups of Finite Order

sextuples afford a configuration of 66 quintuples on the set
0,1,2,---,10. These may be said to form a quintuple system,
since each set of four of the symbols appears in one and in just
one of the quintuples. Any one of the eleven elements occurs
in 30 quintuples from which a quadruple system on ten elements
may be formed by omitting that element. From this in turn
the triple system on nine elements may be constructed.

If one seeks the largest permutation group G on the twelve
symbols, each element of which leaves invariant the named
sextuple system, it is found that G is a fivefold transitive group
of degree 12 and order 12-11-10-9- 8. This is the Mathieu .
group of degree 12. Its largest subgroup each element of
which leaves one given symbol fixed is the Mathieu group of
degree 11; it is fourfold transitive of order 11-10-9-8.
Moreover, it is the group belonging to the quintuple system
already named.

From the foregoing considerations it follows also that the
Mathieu group of degree 12 contains a subgroup of order
10 - 9. 8 each element of which leaves fixed a given one of the
132 sextuples. This subgroup is intransitive, having two transi-
tive constituents each of degree 6. It thus sets up a simple iso-
morphism of the symmetric group of degree 6 with itself; and
the isomorphism so established is an outer isomorphism. This
outer isomorphism is therefore an essential element in the
structure of the Mathieu group of degree 12

The linear fractional group modulo 23 of order 24 - 23. 11
is often represented as a doubly transitive group of degree 24
on the symbols 0, 0, 1, 2, - - -, 22. This transitive group con-
tains a subgroup of order 8 each element of which transforms
into itself the set o, 0, 1, 3, 12, 15, 21, 22 of eight elements,
while the whole group transforms this set into 3-23- 11 sets
of eight each. This configuration of octuples has the remark-
able property that any given set of five of the 24 symbols
occurs in one and just one of these octuples. The largest permu-
tation group I' on the 24 symbols, each element of which leaves
this configuration invariant, is a fivefold transitive group of
degree 24 and order 24-23-22.21-20-48. This is the
Mathieu group of degree 24. Its fourfold and threefold transi-
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tive subgroups of degrees 23 and 22 are the Mathieu groups of
these degrees. With these two subgroups we may associate (in
a manner now obvious) configurations on 23 and 22 letters re-
spectively. The former consists of septuples such that any set
of four of the 23 elements occurs in one and in just one septuple ;
the latter consists of sextuples such that any set of three of the
22 elements in it occurs in one and in just one sextuple.

The latter set of sextuples on 22 symbols leads readily to 21
quintuples on 21 symbols; it may be shown that these quin-
tuples constitute the lines of the geometry PG(2, 22) of 21 points.

The Mathieu group of degree 24 contains a subgroup of
index 3 - 23 - 11 each element of which leaves invariant a given
octuple of the previously named configuration of octuples.
This subgroup permutes the eight symbols in this octuple
according to the alternating group of degree 8; it permutes the
remaining 16 symbols according to a triply transitive group of
degree 16 and order 16 - 15- 14 - 12 - 8; the latter of these two
groups is (16, 1) isomorphic with the former. This isomorphism
is essential in the structure of the Mathieu group of degree 24.
By means of this isomorphism and the known lists of groups of
degree not exceeding 8 it is easy to find all the primitive groups
of degree 16 contained in the named triply transitive group of
degree 16; it turns out that they are twenty in number: these
are all the primitive groups of degree 16 except the alternating
and symmetric groups of this degree (see Miller, Amer. Journ.
Math. 20 (1899), 229-241). By means of the named (16, 1)
isomorphism it may also be shown without much difficulty that
for every transitive group of degree 5 there exists a doubly
transitive group of degree 16 which is (48, 1) isomorphic with
the group of degree 5. (See Theorem XIII of § 97.)

116. Some Generalizations. By a complete \-u-v-configuration
of n elements we shall mean a configuration of » elements
taken » at a time so that each set of u elements shall occur
together in just X of the sets. (Compare Netto’s Lehrbuch der
Combinatorik, second edition, p.325.) Then a triple system
is a complete 1-2-3-configuration; a quadruple system is
a complete 1-3-4-configuration; and so on. A finite two-
dimensional geometry PG(2, p*) is a complete 1-2-(p™+ 1)-
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configuration. In the previous section we have shown the
existence of a complete 1-4-5-configuration on 11 elements, a
complete 1-5-6-configuration on 12 elements, a complete 1-5-8-
configuration on 24 elements, a complete 1-4-7-configuration
on 23 elements, and a complete 1-3-6-configuration on 22 ele-
ments. These examples are sufficient to show the importance
of complete A-u-»-configurations for N\ = 1.

But little has been done towards a general theory of complete
A-u-v-configurations. In the next section we shall treat certain
complete 2-2-k-configurations.

An infinite class of complete 2-3-4-configurations may be
constructed in the following manner: Let p be any prime of the
form 6 m 4+ 1 and let p be a solution of the congruence {2 — ¢
4+ 1=0mod p. The set o0, 0, 1, pis transformed into itself by
the group generated by the transformations

x—1
x

X' = mod p and x'sfmodp,

a group whose order is 12. Thence it follows readily that the
set o, 0, 1, p is transformed into (p 4 1)p(p — 1)/12 quad-
ruples by the linear fractional group modulo p, the order of
which is (p + 1)p(p — 1). Since this linear fractional group is
triply transitive, it follows that each triple of the p + 1 ele-
ments o0, 0, 1, 2,---, p— 1 occurs among the quadruples in
the named set of quadruples, and indeed that each triple oc-
curs the same number of times as any other, whence it follows
that each of them occurs twice. Thence it follows that these
quadruples constitute a complete 2-3-4-configuration. In case
m is odd (but not when m is even) this configuration breaks
up into two equivalent configurations each of which consti-
tutes a complete 1-3-4-configuration, a fact which one may
verify readily by showing that the transformations of square
determinants in the named linear fractional group then trans-
form oo, O, 1 into every triple of the p 4+ 1 elements.

117. Certain Complete 2-2-k-Configurations. We shall now
treat those complete 2-2-£-configurations of 7 elements which
are formed by # sets of k things each such that each two sets
have just two elements in common. Since each of the 4 n(n — 1)



Tactical Configurations 435

pairs of elements occurs just twice and each of the #n sets of
k elements contains just 4 k(k — 1) pairs, it follows that we
must have § k(k — 1)n= 2.1 n(n — 1), whence it is necessary

that n=3k(k—1)+1

The case k=2 is entirely trivial. When k=3 we have
n =4 and the configuration consists of the four triples which
may be formed from four things. When 2 =4 we have n=17;
then it may be shown that the configuration is equivalent to
that given in Ex. 15 on page 25; the group characterized by
the configuration is (Ex. 16 on page 25) the doubly transitive
group of degree 7 and order 168; the complementary configu-
ration is the PG(2, 2).

When 2 =5 we have n=11. The configuration is unique
(Ex. 17 on page 25) and is equivalent to that given in Ex. 13
on page 24. The group characterized by the configuration is the
doubly transitive group of degree 11 and order 660.

When 2=6 we have n=16. In Ex.30 on page 42 (see
also Ex. 17 on page 437) we have given an example of a corre-
sponding complete 2-2-6-configuration; the group character-
ized by this configuration is the doubly transitive group of
degree 16 and order 16- 15- 12 4. In this case the configura-
tion is not unique; but the total set of inequivalent configura-
tions of this class seems never to have been determined. (See
Exs. 14 and 15 on page 437.) There exists (see Ex. 18 on
page 437) a complete 2-2-9-configuration of the class here
considered ; it involves 37 symbols.

The configurations which we have named are apparently
all the known configurations of the class here in consideration ;
but there seems to be nothing known to show their nonexistence
for any value whatever of k greater than unity. In particular,
it seems not to be known whether such configurations exist
for k=7 or 8.

With every configuration of the class here in consideration
one may associate an adjoint configuration, in the following
manner. Number the sets in the configuration from 1 to =
inclusive ; let ai, ae, - - -, @, be the symbols appearing in the
configuration. Now form a configuration of the numbers 1, 2,
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- - -, » by taking for the sth set the £ numbers which designate
the % sets in which «; appears, doing this for i1=1, 2, - - -, n.
Then the » numbers appear in z sets of 2 numbers each. That
they form a complete 2-2-k-configuration of the class in con-
sideration is readily shown, as one sees by observing that if
a; and a; appear together in the \th and uth sets of the original
configuration, then \ and u appear together in just two sets
of the new configuration, namely, in those determined by means
of ¢; and a;. If the adjoint configuration is equivalent to the
original configuration, then that configuration may be called
self-adjoint. If the second of two configurations is adjoint to
the first, then the firet is also adjoint to the second.

EXERCISES

1. Show that there is just one triple system of » elements when
n=3 or 7 or 9; determine the group belonging to each of these
systems. :

2. Determine all the triple systems on 13 elements and the group
belonging to each of them.

3. If p is a prime of the form 12 £+ 7 and if g is a primitive root
modulo p, show that the triple 1, g*+2, g8%*4 is transformed into a
set of triples forming a triple system by means of the elements of
the group generated by the transformations # =¢+ 1mod p and
i’ = g% mod p.

4. Construct in two ways triple systems (1) on 15 elements,
(2) on 21 elements, (3) on 105 elements.

5. Show that there is just one quadruple system on 4 or on
8 elements.

6. Show that the quadruple systems on 2* elements (£=3,4,5, )
constructed in §§ 114 and 91 are equivalent.

7. Construct quadruple systems on 10 and on 20 elements and
determine the largest groups leaving them invariant.

8. Show that the triple system on 3* elements determined in § 114
is the same as the triple system afforded by the lines of the EG(%, 3).

9. Construct a triple system on 3* elements by the method of
§ 114 associated with the transformations ' = ax + 8.
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10. Construct a complete 1-3-5-configuration on 17 elements.

11. By means of the adjacent scheme form ninesetsof 4 B C
four each by taking for each of the nine letters theset con- D E F
sisting of the two letters in line with it and the twoincol- ¢ H [
umn with it. Construct the group determined by this configuration,
showing that it is the singly transitive primitive group of degree 9
and order 9 - 8.

12. Solve the similar problem constructed by means of a square
array of 25 letters.

13. Show that there is just one complete 2-(n — 2)-(n — 1)-con-
figuration of n things. Construct it and show that it is left invariant
by the symmetric éroup on these n things.

14. Show that the columns of the following array constitute a com-
plete 2-2-6-configuration of 16 symbols of the class treated in § 117:

A A A B B C B B CC D D A A A F
B B ¢C ¢ D b E J EHVF G EE I G
c D D F EL F K GI MI F G J H
H G F 6 H E NM O K o0 L K HL ]
L K J I I M 0 N J NHNI MMK
P 0O NM J KL P P O P P P N O L

By determining the group characterized by this configuration, show
that it is not equivalent to the configuration appearing in Ex. 30
on page 42.

15. Construct all the inequivalent complete 2-2-6-configurations
on 16 symbols and belonging to the class defined in § 117.

16. Construct the adjoint of the configuration appearing in Ex. 14
and determine whether that configuration is self-adjoint.

17. Show that
{(ab) (cd) (ef) (gh) (if) (L) (mn) (op), (boejc)(dpknl)(fhgim)}
is a primitive group of degree 16 and order 80, that it permutes the
set @ b ¢ ¢ 0 j into 16 sextuples, and that these sextuples constitute the
complete 2-2-6-configuration appearing in Ex. 30 on page 42.
18. Show that the transformations #’=¢+1 mod 37and '=16/mod 37
induce on the residues modulo 37 a transitive group of degree 37 and

order 37-9 and that this permutation group transforms the set
1,709, 10, 12, 16, 26, 33, 34 into 37 sets which constitute a complete



438 Groups of Finite Order

2-2-9-configuration of the type treated in § 117. Determine the group
characterized by this configuration.

19. Determine certain necessary conditions on & and # for the exist-
ence of configurations Ak such that every two elements occur to-
gether in just three sets. DlSCllSS the cases k=3 and £ =4. Show
that the PG(3, 2) affords such a configuration for the case £ =7.

20. Construct a AS; (1;1 belonging to the class defined in Ex. 19 and
having for its group the doubly transitive group of degree 11 and
order 11 - 10 - 6. Discuss the properties of this configuration.

MISCELLANEOUS EXERCISES

1. Determine the largest permutation group on its letters each
element of which permutes among themselves the rows and the col-
umns of the following array :

A B C D E
F 6 H I ]
K L M N O

2. Determine the largest permutation group on its letters each
element of which permutes among themselves the rows and the col-
umns of a square array of 25 letters or interchanges the rows and the
columns.

8. Generalize Exs. 1 and 2 to the case of general rectangular and
square arrays.

4, Let w be a primitive mark of the GF[p"] and let u be any
(positive) factor of p* — 1, the complementary factor being .. Form
the rectangular array whose element in ¢th row and jth column is
@~ Dk 4 i1 where ¢ and j run over the sets 1,2, ---, pand 1, 2,

- -, p™ respectively, thus forming a configuration consisting of p sets
of u elements each (one set for each column of the array). Discuss
the groups characterized by such configurations both in the general
case and for particular values of p™ and pu.

b. Let £ be the set of elements consisting of coand the (nonzero)
square marks of the GF[p], and form a configuration by transforming
this set into all the sets into which it is taken by linear fractional
transformations of square determinant in the GF[p]. Discuss the
groups characterized by these configurations both in the general case
and for special values of p.
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6. Show that the triply transitive group C(1, 25) of degree 33 and
order 33-32-31-5 (defined in § 94) transforms any set of four of
its symbols in some order into any other set of four of its symbols.

7. By means of the group C(1, 25) construct a configuration A con-
sisting of 31 - 3 - 16 distinct sets of eleven each formed from 33 ele-
ments and having the property that each set of four of these elements
occurs in just twelve sets of A while each triple occurs in just 45 sets.

8. By means of the group C(1, 25) construct a configuration B
consisting of 33 - 8 - 31 - 5 sets of five elements each such that each
four of the 33 elements occurs in just five sets. How often does
(1) each triple, (2) each pair, (3) each element occur?

9. From configuration B in Ex. 8 form a configuration of
33.8-31.5 sets of five, each set of five being formed by taking the
five elements occurring with a given quadruple of the elements in B,
and show that the configuration so formed is the same as B.

10. By means of the group C(1, 2%) form a configuration of
33-8-31-4 sets of five such that each quadruple occurs in just
four sets.

11. Show that the group of order 16 - 15 generated by the elements
(ab) (cd) (ef) (gh) (i) (kl) (mn) (op) and (bfdjinohpcmlegk)

permutes the set a, b, m, n into 20 sets of four letters each and that
the largest group leaving the resulting configuration invariant is a
doubly transitive group of degree 16 and order 16 - 15 - 12 - 2. Discuss
the properties of this configuration.

12. From the configuration of Ex. 17 on page 437 construct a con-
figuration of 120 sets of six elements each by taking for each pair of
sets in the given configuration the six elements which are absent from
both of these pairs. Discuss the properties of this new configuration
and show that the largest group leaving it invariant is a doubly
transitive group of degree 16 and order 16 - 15-12 - 4.

13. Construct a configuration by determining all the triples into
which 0, 1, 18 is transformed by the group {P, Q}, where

P= (01 ]-y 2, Sty 30)9
Q= (3, 4)(6, 30)(7, 20)(8, 22)(10, 29)(12, 28)(17, 27)(23, 26).

Discuss its properties and determine the group characterized by it.
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14. Construct a configuration of 32 things in sets of four each such
that each triple appears in one and just one of the quadruples, and de-
termine the group characterized by it.

15. Construct the configuration formed by all the triples into which
the triple O, 1, 6 is taken by the transformations ¢’ = a2t + b mod 31,
where a and b are integers; discuss its properties and determine the
group characterized by it.

16. Generalize Ex. 15 to all primes of the form 12 £+ 7, these
primes replacing the case 31 in Ex. 15.

17. The PG(2,5) consists of 31 sextuples. From each of these
sextuples form twenty distinct triples, thus constructing a configura-
tion of 3120 triples. Discuss the properties of this configuration
and determine the group characterized by it.

18. Discuss configurations of # things taken in triples so that each
pair occurs in just two triples. In particular, discuss in detail the cases
for whichn =17, 9, 6, 10, determining in each case the group character-
ized by the configuration. (Emch, Trens. Amer. Math. Soc., 1929.)

19. In a quadruple system formed from eight elements interpret
the elements as eight points in a space Sy of four dimensions; then
every quadruple will be represented by a tetrahedron. Two quadruple
systems without a common quadruple can be joined so that each face
(triple) of the fourteen tetrahedrons in one system will coincide with
the same triple-face of the tetrahedron in the second system in which
it occurs. In this manner we obtain a closed hypersurface Pss in S,
bounded by 28 tetrahedral cells. Discuss the properties of Pas.
(Emch, loc. cit.)

20. Discuss the properties of, and determine the group character-
ized by, the configuration (Emch, loc. cit.) formed by the columns in
the following array :

159131312 711 59 5910633111224
2610142443 812 610 81211 7 7 4 4 2 5 3 6 8
37111557561115 913 913141011151313 914 10 12
4812166887 12161014 12161511 1516 16 14 13 15 14 16

21. The Abelian group of order 8 and type (1, 1, 1) may be represented
as a regular group with the following elements besides the identity :

(12)(34)(56)(78), (13)(24)(57)(68), (14)(23)(58)(67), (15)(26)(37)(48),
(16)(25)(38)(47), (17)(28)(35)(46), (18)(27)(36)(45)-
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Consider as a single entity o the seven sets of four pairs each afforded
by the cycles in these permutations. Find all the conjugates of this
entity under the alternating groupon 1, 2, - - -, 8; determine the per-
mutation group according to which these conjugates are permuted
by the named alternating group; and discuss the relation between
the two groups.

22. Show that the triple system formed by the columns in the array

147123123123
2 58 4565646 45
36 97899748897

is transformed into seven conjugate systems by the powers of the per-
mutation (2345678) and that all the 84 triples of the nine elements
appear in these seven systems each just once.

23. Let G be a multiply transitive group of degree » whose degree
of transitivity is 2; and let G have the property that a set S of m ele-
ments exists in G such that when % of the elements S are changed by a
permutation of G into k of these elements, then all these m elements
are permuted among themselves; moreover, let G have the property P,
namely, that the identity is the only element in G which leaves fixed
the » — m elements not in S. Then show that G permutes the m ele-

ments S into
nn—1)---n—k+1)
mm—1)---m—k+1)

sets of m elements each, these sets forming a configuration having the
property that any (whatever) set of & elements appears in one and
just one of these sets of m elements each. Discuss necessary conditions
on m, n, k in order that the foregoing conditions may be realized.
Exhibit groups illustrating the theorem.

24. Generalize the investigation demanded in Ex. 23 by giving up
the hypothesis that G shall have the named property P.
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AN INTRODUCTION TO FOURIER METHODS AND THE LAPLACE TRANSFORMATION,
Philip Franklin. Introductory study of theory and applications of Fourier series
and Laplace transforms, for engineers, physicists, applied mathematicians, physical
science teachers and students. Only a previous knowledge of elementary calculus
is assumed. Methods are related to physical problems in heat flow, vibrations,
eletcrical transmission, electromagnetic radiation, etc. 828 problems with answers.
Formetly Fourier Methods. x + 289pp. 60452-7 Paperbound $2.50

INFINITE SEQUENCES AND SERIES, Konrad Knopp. Careful presentation of funda-
mentals of the theory by one of the finest modern expositors of higher mathematics.
Covers functions of real and complex variables, arbitrary and null sequences, con-
vergence and divergence. Cauchy's limit theorem, tests for infinite series, power
series, numerical and closed evaluation of series. Translated by Frederick Bagemihl.
v + 186pp.’ 60153-6 Paperbound $2.00

INTRODUCTION TO THE DIFFERENTIAL EQUATIONs OF PHysics, Ludwig Hopf.
No math background beyond elementary calculus is needed to follow this classroom
or self-study introduction to ordinary and partial differential equations. Approach
is through classical physics. Translated by Walter Nef. 48 figures. v 4+ 154pp.

60120-X Paperbound $1.45

DIFFERENTIAL EQUATIONS FOR ENGINEERS, Philip Franklin. For engineers, phys-
icists, applied mathematicians. Theory and application: solution of ordinary differ-
ential equations and partial derivatives, analytic functions. Fourier series, Abel’s
theorem, Cauchy Riemann differential equations, etc. Over 400 problems deal
with electricity, vibratory systems, heat, radio; solutions. Formerly Differential
Eguations for Electrical Engineers. 41 illustrations. vii 4 299pp.

60601-5 Paperbound $2.00

THEORY OF FUNCTIONS, PART II. Single- and multiple-valued functions; full pre-
sentation of the most characteristic and important types. Proofs fully worked out.
Translated by Frederick Bagemihl. x 4 150pp. 60157-9 Paperbound $1.50

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, I. More than 300 elementary
problems for independent use or for use with “Theory of Functions, 1.” 85pp. of
detailed solutions. Translated by Lipman Bers. viii 4+ 126pp.

60158-7 Paperbound $1.50

PROBLEM BooK IN THE THEORY OF FUNCTIONS, II. More than 230 problems in
the advanced theory. Designed to be used with “Theory of Functions, II" or with
any comparable text. Full solutions. Translated by Frederick Bagemihl. 138pp.

60159-5 Paperbound $1.50

INTRODUCTION TO THE THEORY OF EQUATIONS, Florian Cajori. Classic intro-
duction by leading historian of science covers the fundamental theories as
reached by Gauss, Abel, Galois and Kronecker. Basics of equation study are
followed by symmetric functions of roots, elimination, homographic and Tschirn-
hausen transformations, resolvents of Lagrange, cyclic equations, Abelian equations,
the work of Galois, the algebraic solution of general equations, and much more.
Numerous exercises include answers. ix + 239pp.  62184-7 Paperbound $2.75
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Microscory FOR CHEMIsTs, Harold F. Schaeffer. Thorough text; operation of
microscope, optics, photomicrographs, hot stage, polarized light, chemical pro-
cedures for organic and inorganic reactions. 32 specific experiments cover specific
analyses: industrial, metals, other important subjects. 136 figures. 264pp.
61682-7 Paperbound $2.50

THE ELECTRONIC THEORY OF ACIDS AND BasEs, by William F. Luder and Saverio
Zuffanti. Full, newly revised (1961) presentation of a still controversial theory.
Historical background, atomic orbitals and valence, electrophilic and electrodotic
reagents, acidic and basic radicals, titrations, displacement, acid catalysis, etc., are
discussed. xi 4 165pp. 60201-X Paperbound $2.00

OPTICKS, Sir Isaac Newton. A survey of 18th-century knowledge on all aspects
of light as well as a description of Newton's experiments with spectroscopy, colors,
lenses, reflection, refraction, theory of waves, etc. in language the layman can
follow. Foreword by Albert Einstein. Introduction by Sir Edmund Whittaker.
Preface by I. Bernard Cohen. cxxvi 4 406pp. 60205-2 Paperbound $3.50

LIGHT: PRINCIPLES AND EXPERIMENTS, George S. Monk. Thorough coverage, for
student with background in physics and math, of physical and geometric optics.
Also includes 23 experiments on optical systems, instruments, etc. “Probably the
best intermediate text on optics in the English language,” Physics Forum. 275
figures. xi 4 489pp. 60341-5 Paperbound $3.50

PIEZOELECTRICITY: AN INTRODUCTION TO THE THEORY AND APPLICATIONS OF
ELECTROMECHANICAL PHENOMENA IN CRYSTALS, Walter G. Cady. Revised 1963
edition of most complete, most systematic coverage of field. Fundamental theory
of crystal electricity, concepts of piezoelectricity, including comparisons of various
current theories; resonators; oscillators; properties, etc., of Rochelle salt; ferro-
electric crystals; applications; pyroelectricity, similar topics. “A great work,”
Naiure. Many illustrations. Total of xxx + 840pp.

61094-2, 61095-0 Two volumes, Paperbound $6.00

PuysicAL OptiCs, Robert W. Wood. A classic in the field, this is a valuable
source for students of physical optics and excellent background material for a
study of electromagnetic theory. Partial contents: nature and rectilinear propaga-
tion of light, reflection from plane and curved surfaces, refraction, absorption and
dispersion, origin of spectra, interference, diffraction, polarization, Raman effect,
optical properties of metals, resonance radiation and fluorescence of atoms, magneto-
optics, electro-optics, thermal radiation. 462 diagrams, 17 plates. xvi 4 846pp.

61808-0 Paperbound $4.25

MIRRORS, PRISMS AND LENSES: A TEXTBOOK OF GEOMETRICAL OPTICS, James
P. C. Southall. Introductory-level account of modern optical instrument theory,
covering unusually wide range: lights and shadows, reflection of light and plane
mirrors, refraction, astigmatic lenses, compound systems, aperture and field of
optical system, the eye, dispersion and achromatism, rays of finite slope, the micro-
scope, much more. Strong emphasis on earlier, elementary portions of field, utiliz-
ing simplest mathematics wherever possible, Problems. 329 figures. xxiv 4+
806pp. 61234-1 Paperbound $3.75
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LAPLACE TRANSFORMS AND THEIR APPLICATIONS TO DIFFERENTIAL EQUATIONS,
N. W. McLachlan. Introduction to modern operational calculus, applying it to
ordinary and partial differential equations. Laplace transform, theorems of opera-
tional calculus, solution of equations with constant coefficients, evaluation of
integrals, derivation of transforms, of various functions, etc. For physics, engineer-
ing students. Formerly Modern Operational Calculus. xiv + 218pp.

60192-7 Paperbound $2.50

PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICs, Arthur G. Web-
ster. Introduction to basic method and theory of partial differential equations,
with full treatment of their applications to virtually every field. Full, clear chapters
on Fourier series, integral and elliptic equations, spherical, cylindrical and ellip-
soidal harmonics, Cauchy’s method, boundary problems, method of Riemann-
Volterra, many other basic topics. Edited by Samuel J. Plimpton. 97 figures.
vii + 446pp. 60263-X Paperbound $2.75

PRINCIPLES OF STELLAR DyNAMics, Subrahmanyan Chandrasekhar. Theory of
stellar dynamics as a branch of classical dynamics; stellar encounter in terms of
2-body problem, Liouville’s theorem and equations of continuity. Also two addi-
tional papers. 50 illustrations. x 4 313pp. 5% x 834.

60659-7 Paperbound $3.00

CELESTIAL OBJECTS FOR COMMON TELESCOPES, T. W. Webb. The most used
book in amateur astronomy: inestimable aid for locating and identifying hundreds
of celestial objects. Volume 1 covers operation of telescope, telescope photography,
precise information on sun, moon, planets, asteroids, meteor swarms, etc.; Volume
2, stars, constellations, double stars, clusters, variables, nebulae, etc. Nearly 4,000
objects noted. New edition edited, updated by Margaret W. Mayall. 77 illustra-
tions. Total of xxxix + 606pp.

20917-2, 20918-0 Two volumes, Paperbound $5.00

A SHORT HISTORY OF ASTRONOMY, Arthur Berry. Earliest times through the 19th
century. Individual chapters on Copernicus, Tycho Brahe, Galileo, Kepler, Newton,
etc. Non-technical, but precise, thorough, and as useful to specialist as layman.
104 illustrations, 9 portraits, xxxi 4 440 pp. 20210-0 Paperbound $3.00

ORDINARY DIFFERENTIAL EQUATIONS, Edward L. Ince. Explains and analyzes
theory of ordinary differential equations in real and complex domains: elementary
methods of integration, existence and nature of solutions, continuous transforma-
tion groups, linear differential equations, equations of first order, non-linear equa-
tions of higher order, oscillation theorems, etc. ‘Highly recommended,” Electronics
Industries. 18 figures. viii 4 558pp. 60349-0 Paperbound $3.50

DICTIONARY OF CONFORMAL REPRESENTATIONS, H. Kober. Laplace’s equation
in two dimensions for many boundary conditions; scores of geometric forms and
transformations for electrical engineers, Joukowski aerofoil for aerodynamists,
Schwarz-Christoffel transformations, transcendental functions, etc. Twin diagrams
for most transformations. 447 diagrams. xvi + 208pp. 63 x 9V4.

60160-9 Paperbound $2.50
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THE PSYCHOLOGY OF INVENTION IN THE MATHEMATICAL FIELD, Jacques Hada-
mard. Important French mathematician examines psychological origin of ideas,
role of the unconscious, importance of visualization, etc. Based on own experi-
ences and reports by Dalton, Pascal, Descartes, Einstein, Poincaré, Helmholtz, etc.
xiii 4 145pp. 20107-4 Paperbound $1.50

INTRODUCTION TO CHEMICAL PHYSICS, John C. Slater. A work intended to bridge
the gap between chemistry and physics. Text divided into three parts: Thermo-
dynamics, Statistical Mechanics, and Kinetic Theory; Gases, Liquids and Solids;
and Atoms, Molecules and the Structure of Matter, which form the basis of the
approach. Level is advanced undergraduate to graduate, but theoretical physics
held to minimum. 40 tables, 118 figures. xiv 4 522pp.

62562-1 Paperbound $4.00

PoLAR MoLECULES, Pieter Debye. Explains some of the Nobel Laureate’s most
important theories on dielectrics, including fundamental electrostatic field relations,
polarization and molecular structure, measurements of polarity, constitution of
simple polar molecules, anomalous dispersion for radio frequencies, electrical
saturation effects, connections with quantum theory, energy levels and wave me-
chanics, rotating molecules. 33 figures. 172pp. 60064-5 Paperbound $2.00

THE CONTINUUM AND OTHER TYPES OF SERIAL ORDER, Edward V. Huntington.
Highly respected systematic account of modern theory of the continuum as a type
of serial order. Based on the Dedekind-Cantor ordinal theory. Mathematics held
to an elementary level. vii 4 82pp. 60130-7 Paperbound $1.00

CONTRIBUTIONS TO THE FOUNDING OF THE THEORY OF TRANSFINITE NUMBERS,
Georg Cantor. The famous articles of 1895-1897 which founded a new branch of
mathematics, translated with 82-page introduction by P. Jourdain. Not only a
great classic but still one of the best introductions for the student. ix 4 211pp.
60045-9 Paperbound $2.00

EssAys oN THE THEORY OF NUMBERS, Richard Dedekind. Two classic essays,
on the theory of irrationals, giving an arithmetic and rigorous foundation; and on
transfinite numbers and properties of natural numbers. Translated by W. W.
Beman. iii 4 115pp. 21010-3 Paperbound $1.50

GEOMETRY OF FOUR DIMENSIONS, H. P. Manning. Part verbal, part mathematical
development of fourth dimensional geometry. Historical introduction. Detailed
treatment is by synthetic method, approaching subject through Euclidean geometry.
No knowledge of higher mathematics necessary. 76 figures. ix + 348pp.
60182-X Paperbound $3.00

AN INTRODUCTION TO THE GEOMETRY OF N DIMENSIONs, Duncan M. Y. Som-
merville. The only work in English devoted to higher-dimensional geometry. Both
metric and projective properties of n-dimensional geometry are covered. Covers
fundamental ideas of incidence, parallelism, perpendicularity, angles between linear
space, enumerative geometry, analytical geometry, polytopes, analysis situs, hyper-
spacial figures. 60 diagrams. xvii 4+ 196pp. 60494-2 Paperbound $1.50



CATALOGUE OF DOVER BOOKS

THE THEORY OF SOUND, J. W. S. Rayleigh. Still valuable classic by the great
Nobel Laureate. Standard compendium summing up previous research and Ray-
leigh’s original contributions. Covers harmonic vibrations, vibrating systems, vibra-
tions of strings, membranes, plates, curved shells, tubes, solid bodies, refraction of
plane waves, general equations. New historical introduction and bibliography by
R. B. Lindsay, Brown Univetsity. 97 figures. lviii 4 984pp.

60292-3, 60293-1 Two volumes, Paperbound $6.00

ELECTROMAGNETIC THEORY: A CRITICAL EXAMINATION OF FUNDAMENTALS,
Alfred O’Rahilly. Critical analysis and restructuring of the basic theories and
ideas of classical electromagnetics. Analysis is carried out through study of the
primary treatises of Maxwell, Lorentz, Einstein, Weyl, etc., which established the
theory. Expansive reference to and direct quotation from these treatises. Formerly
Electromagnetics. ‘Total of xvii 4+ 884pp.

60126-9, 60127-7 Two volumes, Paperbound $4.50

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegent, intuitive ap-
proach to topology, from the basic concepts of set-theoretic topology to the concept
of Betti groups. Stresses concepts of complex, cycle and homology. Shows how
concepts of topology are useful in math and physics. Introduction by David Hilbert.
Translated by Alan E. Farley. 25 figures. iv 4+ 57pp.

60747-X Paperbound $1.25

THE ELEMENTS OF NON-EUCLIDEAN GEOMETRY, Duncan M. Y. Sommerville.
Presentation of the development of non-Euclidean geometry in logical order, from
a fundamental analysis of the concept of parallelism to such advanced topics as
inversion, transformations, pseudosphere, geodesic representation, relation between
parataxy and parallelism, etc. Knowledge of only high-school algebra and geometry
is presupposed. 126 problems, 129 figures. xvi 4 274pp.

60460-8 Paperbound $2.00

NON-EUCLIDEAN GEOMETRY: A CRITICAL AND HISTORICAL STUDY OF ITS DEVEL-
OPMENT, Roberto Bonola. Standard survey, clear, penetrating, discussing many
systems not usually represented in general studies. Easily followed by non-
specialist. Translated by H. Carslaw. Bound in are two most important texts:
Bolyai’s "“The Science of Absolute Space” and Lobachevski’s ““The Theoty of
Parallels,” translated by G. B. Halsted. Introduction by F. Enriques. 181 dia-
grams. Total of 431pp. 60027-0 Paperbound $2.75

ELEMENTs OF NUMBER THEORY, Ivan M. Vinogradov. By stressing demonstra-
tions and problems, this modern text can be understood by students without ad-
vanced math backgrounds. “A very welcome addition,” Bulletin, American Mashe-
matical Society. Translated by Saul Kravetz. Over 200 fully-worked problems.
100 numerical exercises. viii 4+ 227pp. 60259-1 Paperbound $2.50

THEORY OF SETs, E. Kamke. Lucid introduction to theory of sets, surveying dis-
coveties of Cantor, Russell, Weierstrass, Zermelo, Betnstein, Dedekind, etc. Knowl-
edge of college algebra is sufficient background. “Exceptionally well written,”
School Science and Mathematics. Translated by Frederick Bagemihl. vii 4 144pp.

60141-2 Paperbound $1.75
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INTRODUCTION TO SYMBOLIC LOGIC AND ITS APPLICATION, Rudolf Carnap. Clear,
comprehensive, rigorous introduction. Analysis of several logical languages. In-
vestigation of applications to physics, mathematics, similar areas. Translated by
Wiliam H. Meyer and John Wilkinson. xiv 4 214pp.

60453-5 Paperbound $2.25

SymBoLic Locic, Clarence I. Lewis and Cooper H. Langford. Probably the most
cited book in the literature, with much material not otherwise obtainable. Para-
doxes, logic of extensions and intensions, converse substitution, matrix system,
strict limitations, existence of terms, truth value systems, similar material. vii
518pp. 60170-6 Paperbound $2.75

VECTOR AND TENSOR ANALYSIS, George E. Hay. Clear introduction; starts with
simple definitions, finishes with mastery of oriented Cartesian vectors, Christoffel
symbols, solenoidal tensors, and applications. Many worked problems show appli-
cations. 66 figures. viii 4 193pp. 60109-9 Paperbound $2.00

GUIDE TO THE LITERATURE OF MATHEMATICS AND PHYSICS, INCLUDING RELATED
WoRrks ON ENGINEERING SCIENCE, Nathan Grier Parke III. This up-to-date
guide puts a library catalog at your fingertips. Over 5000 entries in many languages
under 120 subject headings, including many recently available Russian works.
Citations are as full as possible, and cross-references and suggestions for further
investigation are provided. Extensive listing of bibliographical aids. 2nd revised
edition. Complete indices. xviii 4 436pp.

60447-0 Paperbound $2.75

INTRODUCTION TO ELLIPTIC FUNCTIONS WITH APPLICATIONS, Frank Bowman.
Concise, practical introduction, from familiar trigonometric function to Jacobian
elliptic functions to applications in electricity and hydrodynamics. Legendre’s
standard forms for elliptic integrals, conformal representation, etc., fully covered.
Requires knowledge of basic principles of differentiation and integration only.
157 problems and examples, 56 figures. 115pp. 60922-7 Papertbound $1.50

THEORY OF FUNCTIONS OF A COMPLEX VARIABLE, A. R. Forsyth. Standard,
classic presentation of theory of functions, stressing multiple-valued functions and
related topics: theory of multiform and uniform periodic functions, Weierstrass's
results with additiontheorem functions. Riemann functions and surfaces, algebraic
functions, Schwarz’s proof of the existence-theorem, theory of conformal mapping,
etc. 125 figures, 1 plate. Total of xxviii 4 855pp. 614 x 914.

61378-X, 61379-8 Two volumes, Paperbound $5.00

THEORY OF THE INTEGRAL, Stanislaw Saks. Excellent introduction, covering all
standard topics: set theory, theory of measure, functions with general properties,
and theory of integration emphasizing the Lebesgue integral. Only a minimal back-
ground in elementary analysis needed. Translated by L. C. Young. 2nd revised
edition. xv -4 343pp. 61151-5 Papetbound $3.00

THE THEORY OF FUNCTIONS, Konrad Knopp. Characterized as “an excellent
introduction . . . remarkably readable, concise, clear, rigorous” by the Journal of the
American Statistical Association college zex:.
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A TREATISE ON THE DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES, Luther
P. Eisenhart. Detailed, concrete introductory treatise on differential geometry, de-
veloped from author’s graduate courses at Princeton University. Thorough explana-
tion of the geometry of curves and surfaces, concentrating on problems most helpful
to students. 683 problems, 30 diagrams. xiv 4+ 474pp.

60667-8 Paperbound $2.75

AN EssAy oN THE FOUNDATIONs oF GEOMETRY, Bertrand Russell. A mathe-
matical and physical analysis of the place of the a priori in geometric knowledge.
Includes critical review of 19th-century work in non-Euclidean geometry as well
as illuminating insights of one of the great minds of our time. New foreword by
Morris Kline, xx 4 201pp. 60233-8 Papetbound $2.00-

INTRODUCTION TO THE THEORY OF NUMBERS, Leonatd E. Dickson. Thorough,
comprehensive approach with adequate coverage of classical literature, yet simple
enough for beginners. Divisibility, congruences, quadratic residues, binary quad-
ratic forms, primes, least residues, Fermat's theorem, Gauss's lemma, and other
important topics. 249 problems, 1 figure. viii 4+ 183pp.

60342-3 Paperbound $2.00

AN ELEMENTARY INTRODUCTION TO THE THEORY OF PROBABILITY, B. V.
Gnedenko and A. Ya. Khinchin. Introduction to facts and principles of probability
theory. Extremely thorough within its range. Mathematics employed held to
elementary level. Excellent, highly accurate layman’s introduction. Translated from
the fifth Russian edition by Leo Y. Boron. xii -+ 130pp.

60155-2 Paperbound $1.75

SELECTED PAPERS ON NOISE AND STOCHASTIC PROCESSES, edited by Nelson Wax.
Six papers which serve as an introduction to advanced noise theory and fluctua-
tion phenomena, or as a reference tool for electrical engineers whose work involves
noise characteristics, Brownian motion, statistical mechanics. Papers are by Chan-
drasekhar, Doob, Kac, Ming, Ornstein, Rice, and Uhlenbeck. Exact facsimile of
the papers as they appeared in scientific journals. 19 figures. v + 337pp. 614 x 9%4%.

60262-1 Paperbound $3.00

STATISTICS MANUAL, Edwin L. Crow, Frances A. Davis and Margaret W. Maxfield.
Comprehensive, practical collection of classical and modern methods of making
statistical inferences, prepared by U. S. Naval Ordnance Test Station. Formulae,
explanations, methods of application are given, with stress on use. Basic knowledge
of statistics is assumed. 21 tables, 11 charts, 95 illustrations. xvii 4 288pp.
60599-X Paperbound $2.00

MATHEMATICAL FOUNDATIONS OF INFORMATION THEORY, A. 1. Khinchin. Com-
prehensive introduction to wotk of Shannon, McMillan, Feinstein and Khinchin,
placing these investigations on a rigorous mathematical basis. Covers entropy
concept in probability theory, uniqueness theorem, Shannon’s inequality, ergodic
sources, the E property, martingale concept, noise, Feinstein’s fundamental lemma,
Shanon’s first and second theorems. Translated by R. A. Silverman and M. D.
Friedman. iii 4 120pp. 60434-9 Paperbound $1.75
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A COURSE IN MATHEMATICAL ANALYsIS, Edovard Goursat. The entire “"Cours
d'analyse” for students with one year of calculus, offering an exceptionally wide
range of subject matter on analysis and applied mathematics. Available for the first
time in English. Definitive treatment.

VoLUME I: Applications to geometry, expansion in series, definite integrals, de-
rivatives and differentials. Translated by Earle R. Hedrick. 52 figures. viii +-
548pp. 60554-X Paperbound $3.00

VoLuUME II, PArT I: Functions of a complex variable, conformal representations,
doubly periodic functions, natural boundaries, etc. Translated by Earle R. Hedrick
and Otto Dunkel. 38 figures. x 4 259pp. 60555-8 Papetbound $2.25

VoLuME II, PArT II: Differential equations, Cauchy-Lipschitz method, non-linear
differential equations, simultaneous equations, etc. Translated by Earle R. Hedrick
and Otto Dunkel. 1 figure. viii 4 300pp. 60556-6 Paperbound $2.50

VoLuME III, PART I: Variation of solutions, partial differential equations of the
second order. Poincaré’s theorem, periodic solutions, asymptotic series, wave
propagation, Dirichlet's problem in space, Newtonian potential, etc. Translated by
Howard G. Bergmann. 15 figures. x 4 329pp. 61176-0 Paperbound $3.00

VoLuME III, PART II: Integral equations and calculus of variations: Fredholm’s
equation, Hilbert-Schmidt theorem, symmetric kernels, Euler's equation, transver-
sals, extreme fields, Weierstrass’s theory, etc. Translated by Howard G. Bergmann.
Note on Conformal Representation by Paul Montel. 13 figures. xi 4 389pp.
61177-9 Paperbound $3.00

ELEMENTARY STATISTICS: WITH APPLICATIONS IN MEDICINE AND THE BIOLOGI-
CAL SCIENCES, Frederick E. Croxton. Presentation of all fundamental techniques
and methods of elementary statistics assuming average knowledge of mathematics
only. Useful to readers in all fields, but many examples drawn from characteristic
data in medicine and biological sciences. vii 4 376pp.

60506-X Paperbound $2.25

ELEMENTS OF THE THEORY OF FUNCTIONS. A general background text that
explores complex numbers, linear functions, sets and sequences, conformal mapping.
Detailed proofs. Translated by Frederick Bagemihl. 140pp.

60154-4 Paperbound $1.50

THEORY OF FUuNCTIONS, PART I. Provides full demonstrations, rigorously set
forth, of the general foundations of the theory: integral theorems, series, the
expansion of analytic functions. Translated by Federick Bagemihl. vii 4 146pp.

60156-0 Paperbound $1.50

INTRODUCTION TO THE THEORY OF FOURIER'S SERIES AND INTEGRALs, Horatio
S. Carslaw. A basic introduction to the theory of infinite series and integrals, with
special reference to Fourier’s series and integrals. Based on the classic Riemann
integral and dealing with only ordinary functions, this is an important class text.
84 examples. xiii 4 368pp. 60048-3 Paperbound $3.00
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ALMOST PERioDIC FUNCTIONS, A. S. Besicovitch. Thorough summary of Boht's
theory of almost periodic functions citing new shorter proofs, extending the theory,
2nd describing contributions of Wiener, Weyl, de la Vallée, Poussin, Stepanoff,
Bochner and the author. xiii 4 180pp. 60018-1 Paperbound $1.75

AN INTRODUCTION TO THE STUDY OF STELLAR STRUCTURE, S. Chandrasekhar.
A rigorous examination, using both classical and modern mathematical methods, of
the relationship between loss of energy, the mass, and the radius of stars in a steady
state. 38 figures. 509pp. 60413-6 Paperbound $3.25

INTRODUCTION TO THE THEORY OF GROUP's OF FINITE ORDER, Robert D. Car-
michael. Progresses in easy steps from sets, groups, permutations, isomorphism
through the important types of groups. No higher mathematics is necessary. 783
exercises and problems. xiv + 447pp. 60300-8 Paperbound $3.50

THE SOLUBILITY OF NONELECTROLYTES, Joel H. Hildebrand and Robert L. Scott.
Classic, pioneering work discusses in detail ideal and nonideal solutions, inter-
molecular forces, structure of liquids, athermal mixing, hydrogen bonding, equa-
tions describing mixtures of gases, high polymer solutions, surface phenomena, etc.
Originally published in the American Chemical Society Monograph series. New
authors’ preface and new paper (1964). 148 figures, 88 tables. xiv - 488pp.
61125-56 Paperbound $3.00

INTRODUCTION TO APPLIED MATHEMATICS, Francis D. Murnaghan. Introduction
to advanced mathematical techniques—vector and matrix analysis, partial differen-
tial equations, integral equations, Laplace transform theory, Fourier series,
boundary-value problems, etc.——particularly useful to physicists and engineers. 41
figutes. ix + 389pp. 61042-X Papetbound $2.25

ELEMENTARY MATHEMATICS FROM AN ADVANCED STANDPOINT: VOLUME I—
ARITHMETIC, ALGEBRA, ANALYSIS, Felix Klein. Second-level approach, illumi-
nated by graphical and geometrical interpretation. Covers natural and complex
numbers, real equations with real unknowns, equations in the field of complex
quantities, logarithmic and exponential functions, goniometric functions, infini-
tesimal calculus, transcendence of e and =. Concept of function introduced im-
mediately. Translated by E. R. Hedrick and C. A. Noble. 125 figures. ix + 274pp.

(USO) 60150-1 Paperbound $2.25

ELEMENTARY MATHEMATICS FROM AN ADVANCED STANDPOINT: VOLUME II—
GEOMETRY, Feliex Klein. Using analytical formulas, Klein clarifies the precise
formulation of geometric facts in chapters on manifolds, geometric and higher
point transformations, foundations. “Nothing comparable,” Mathematics Teacher.
Translated by E. R. Hedrick and C. A. Noble. 141 figures. ix 4+ 214pp.

(USO) 60151-X Paperbound $2.25

ENGINEERING MATHEMATICS, Kenneth S. Miller. Most useful mathematical tech-
niques for graduate students in engineering, physics, covering linear differential
equations, series, random functions, integrals, Fourier series, Laplace transform,
network theory, etc. “Sound and teachable,” Science. 89 figures. xii + 417pp.
6 x 8. 61121-3 Paperbound $3.00
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MATHEMATICAL FOUNDATIONS OF STATISTICAL MEcHANICS, A. 1. Khinchin.
Introduction to modern statistical mechanics: phase space, ergodic problems, theory
of probability, central limit theorem, ideal monatomic gas, foundation of thermo-
dynamics, dispersion and distribution of sum functions. Provides mathematically
rigorous treatment and excellent analytical tools. Translated by George Gamow.
viii + 179pp. 60147-1 Paperbound $2.00

INTRODUCTION TO PHYSICAL STATISTICS, Robert B. Lindsay. Elementary prob-
ability theory, laws of thermodynamics, classical Maxwell-Boltzmann statistics,
classical statistical mechanics, quantum mechanics, other areas of physics that can
be studied statistically. Full coverage of methods; basic background theory. ix
+ 306pp. 61882-X Paperbound $2.75

DiALOGUES CONCERNING Two NEW SCIENCES, Galileo Galilei. Written near the
end of Galileo’s life and encompassing 30 years of experiment and thought, these
dialogues deal with geometric demonstrations of fracture of solid bodies, cohesion,
leverage, speed of light and sound, pendulums, falling bodies, accelerated motion,
etc. Translated by Henry Crew and Alfonso de Salvio. Introduction by Antonio
Favaro. xxiii + 300pp. 60099-8 Paperbound $2.25

FOUNDATIONS OF SCIENCE: THE PHILOSOPHY OF THEORY AND EXPERIMENT,
Norman R. Campbell. Fundamental concepts of science examined on middle level:
acceptance of propositions and axioms, presuppositions of scientific thought, scien-
tific law, multiplication of probabilities, nature of experiment, application of math-
ematics, measurement, numerical laws and theories, error, etc. Stress on physics,
but holds for other sciences. “‘Unteservedly recommended,” Nature (England).
Formerly Physics: The Elements. ix + 565pp. 60372-5 Paperbound $4.00

THE PHASE RULE AND ITs APPLICATIONS, Alexander Findlay, A. N. Campbell
and N. O. Smith. Findlay’s well-known classic, updated (1951). Full standard
text and thorough reference, particularly useful for graduate students. Covers
chemical phenomena of one, two, three, four and multiple component systems.
“Should rank as the standard wotk in English on the subject,” Nature. 236 figures.
xii 4 494pp. 60091-2 Paperbound $3.50

THERMODYNAMICS, Enrico Fermi. A classic of modern science. Clear, organized
treatment of systems, first and second laws, entropy, thermodynamic potentials,
gaseous reactions, dilute solutions, entropy constant. No math beyond calculus is
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calorimetry. 22 illustrations. 25 problems. x 4+ 160pp.

60361-X Paperbound $2.00

TREATISE ON THERMODYNAMICS, Max Planck. Classic, still recognized as one of
the best introductions to thermodynamics. Based on Planck’s original papers, it
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chemical laws from basic empirical facts. Planck considers fundamental definitions,
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of equilibrium. Numerous worked examples. Translated by Alexander Ogg. 5
figures. xiv 4+ 297pp. 60219-2 Paperbound $2.50
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(USCO) 60771-2 Paperbound $2.00
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DIFFERENTIAL AND INTEGRAL CALCULUS, Philip Franklin. A full and basic intro-
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THE EXACT SCIENCES IN ANTIQUITY, O. Neugebauer. Modern overview chiefly
of mathematics and astronomy as developed by the Egyptians and Babylonians.
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THE THIRTEEN Books ofF EucLip’s ELEMENTS, translated with introduction and
commentary by Sir Thomas Heath. Unabridged republication of definitive edition
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Whitehead systems. 367pp. 60164-1 Paperbound $2.25
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Publications, Inc., 180 Varick St, N.Y., N.Y. 10014. Dover publishes more
than 150 books each year on science, elementary and advanced mathematics, biology,
music, art, literary history, social sciences and other areas.



(continued from front flap)

THE ADVANCED GEOMETRY OF PLANE CURVES AND THEIR APPLICA-
" TI0NS, C. Zwikker. (61078-0) $2.50

TRIGONOMETRICAL SERIES, Antoni Zygmund. (60290-7) $2.50

ProBABILITY THEORY, A. R. Arthurs. (61724-6) $1.25

SoLuTioNs OF LAPLACE’s EQuAaTIONS, D. R. Bland. (61452-2) $1.25

VIBRATING STRINGS, D. R. Bland. (61451-4) $1.25

VIBRATING SysTEMS, R. F. Chisnell. (61453-0) $1.25

Linear EquaTions, P. M. Cohn. (61455-7) $1.25

SoLip GEOMETRY, P. M. Cohn. (61454-9) $1.25

PrINCIPLES OF DyNamics, M. B. Glauert. (61456-5) $1.25

SEQUENCES AND SERIES, J. A. Green. (61457-3) $1.25

SETs AND GROUPS, J. A. Green. (61458-1) $1.25

DirrereNTIAL CaLcuLus, P. J. Hilton. (61459-X) $1.25

PARTIAL DERIVATIVES, P. J. Hilton. (61460-3) $1.25

ELECTRICAL AND MECHANICAL OscILLATIONS, D). S. Jones. (61461-1)
$1.25

CompLEX NUMBERS, W. Ledermann. (61462-X) $1.25

INTEGRAL CALCULUS, W. Ledermann. (61463-8) $1.25

MuLTtiPLE INTEGRALS, W. Ledermann. (61723-8) $1.25

NUMERICAL APPROXIMATION, B. R. Morton. (61464-6) $1.25

ELEMENTARY DIFFerReENTIAL EQuaTions AND OPERATORS, G. E. H.
Reuter. (61465-4) $1.25

FOURIER AND LAPLACE TRANSFORMS, Peter D. Robinson. (62083-2)
$1.25

Fourier SERIES, I. N. Sneddon. (61466-2) $1.25

DIrrereNTIAL GEOMETRY, K. L. Wardle. (61467-0) $1.25

Paperbound unless otherwise indicated. Prices subject to change
without notice. Available at your book dealer or write for free
catalogues to Dept. TF 2, Dover Publications, Inc., 180 Varick
Street, N. Y., N.Y. 10014. Please indicate field of interest. Each year
Dover publishes more than 150 classical records and books on art,
science, engineering, humor, literature, philosophy, languages, chess,
puzzles, music and other areas. Manufactured in the U.S.A.



ATy

Introduction to the theory of

GROUPS OF FINITE ORDER
Robert D. Carmichael

This handy book explains for you the theory of groups and examines
fundamental theorems and their application. Beginning with dis-
cussions of sets, systems, groups, permutations, isomorphism, and
similar topics, the author progresses in casy stages through the im-
portant types of groups. Except for a single chapter when an under-
standing of theory of matrices is helpful, no knowledge of higher
mathematics is necessary for the reader to follow the author's pre-
sentation. Connections are established by Professor Carmichael be-
tween the theory of finite groups and other domains of classical
and modern mathematics.

Partial contents: Five fundamental theorems, additional properties
of groups in general, abelian groups, prime power groups, permuta-
tion groups, defining relations for abstract groups, groups of linear
transformations, Galois fields, groups of isomorphisms of abelian
groups of order pm and type (1,1, .. ., 1), finite geometries, collinea-
tion groups in the finite geometries, algebras of doubly transitive
groups of degree pn and order pn (pn— 1), tactical configurations.

Unaltered, unabridged reprint. 783 exercises and problems. Index.
xiv 4 447pp. 5% x 8l4. 60300-8 Paperbound

A DOVER EDITION DESIGNED FOR YEARS OF USE!

We have made every effort to make this the best book possible. Our
paper is opaque, with minimal show-through; it will not discolor
or become brittle with age. Pages are sewn in signatures, in the
method traditionally used for the best books, and will not drop
out, as often happens with paperbacks held together with glue.
Books open flat for easy reference. The binding will not crack or
split. This is a permanent book.
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