
MTHM024/MTH714U Group Theory

Revision Notes Autumn 2010

Group theory is a central part of modern mathematics. Its origins lie in geometry
(where groups describe in a very detailed way the symmetries of geometric objects)
and in the theory of polynomial equations (developed by Galois, who showed how to
associate a finite group with any polynomial equation in such a way that the structure
of the group encodes information about the process of solving the equation).

These notes contain preliminary material for the course MTHM024/MTH714U,
Group Theory (Masters/level 7) at Queen Mary. The preliminary material mostly
occurs in the courses MTH4104 Introduction to Algebra, MTH5100 Algebraic Struc-
tures I, and MTH6104 Algebraic Structures II. You can find notes the first two of
these courses on the lecturers’ web pages (Dr Tomašić and Professor Wilson). Older
versions of these notes are on my web page, while Professor Bailey has notes for Al-
gebraic Structures II. You can also find the material in any algebra textbook, including
my own book Introduction to Algebra, published by Oxford University Press.

Material which is not in the above courses will be marked with [∗∗∗] in the text.
The course will begin with a review of this material.
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1 Groups
This section defines groups, subgroups, homomorphisms, normal subgroups, and di-
rect products: some of the basic ideas of group theory. The introduction to any kind of
algebraic structure (e.g. rings) would look rather similar: we write down some axioms
and make some deductions from them. But it is important to realise that mathemati-
cians knew what was meant by a group long before they got around to writing down
axioms. We return to this after discussing Cayley’s Theorem.

1.1 Definition
A group consists of a set G with a binary operation ◦ on G satisfying the following
four conditions:

Closure: For all a,b ∈ G, we have a◦b ∈ G.

Associativity: For all a,b,c ∈ G, we have (a◦b)◦ c = a◦ (b◦ c).

Identity: There is an element e ∈ G satisfying e◦a = a◦ e = a for all a ∈ G.

Inverse: For all a∈G, there is an element a∗ ∈G satisfying a◦a∗ = a∗◦a = e (where
e is as in the Identity Law).

The element e is the identity element of G. It is easily shown to be unique. In
the Inverse Law, the element a∗ is the inverse of a; again, each element has a unique
inverse.

Strictly speaking, the Closure Law is not necessary, since a binary operation on a
set necessarily satisfies it; but there are good reasons for keeping it in. The Associative
Law is obviously the hardest to check from scratch.

A group is abelian if it also satisfies

Commutativity: For all a,b ∈ G, we have a◦b = b◦a.

Most of the groups in this course will be finite. The order of a finite group G,
denoted |G|, is simply the number of elements in the group. A finite group can in
principle be specified by a Cayley table, a table whose rows and columns are indexed
by group elements, with the entry in row a and column b being a ◦ b. Here are two
examples.

◦ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

◦ e a b c
e e a b c
a a e c b
b b c e a
c c b a e
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They are called the cyclic group and Klein group of order 4, and denoted by C4 and V4
respectively. Both of them are abelian.

Two groups (G1,◦) and (G2,∗) are called isomorphic if there is a bijective map f
from G1 to G2 which preserves the group operation, in the sense that f (a) ∗ f (b) =
f (a◦b) for all a,b∈G1. We write (G1,◦)∼= (G2,∗), or simply G1 ∼= G2, to denote that
the groups G1 and G2 are isomorphic. From an algebraic point of view, isomorphic
groups are “the same”.

As an exercise, show that the two groups above are not isomorphic. The numbers
of groups of orders 1, . . . ,8 (up to isomorphism) are given in the following table:

Order 1 2 3 4 5 6 7 8
Number 1 1 1 2 1 2 1 5

We have given the definition rather formally. For most of the rest of the course,
the group operation will be denoted by juxtaposition (that is, we write ab instead of
a◦b); the identity will be denoted by 1; and the inverse of a will be denoted by a−1.
Occasionally, the group operation will be +, the identity 0, and the inverse of a is −a.

If g and a are elements of a group G, we define the conjugate ga of g by a to be the
element a−1ga. If we call two elements g,h conjugate if h = ga for some a ∈ G, then
conjugacy is an equivalence relation, and so the group is partitioned into conjugacy
classes. (If a group is abelian, then two elements are conjugate if and only if they are
equal.)

1.2 Subgroups
A subset H of a group G is called a subgroup if it forms a group in its own right (with
respect to the same operation).

Since the associative law holds in G, it automatically holds in H; so we only have
to check the closure, identity and inverse laws to ensure that H is a subgroup. (Since
the associative law is the hardest to check directly, this observation means that, in
order to show that a structure is a group, it is often better to identify it with a subgroup
of a known group than to verify the group laws directly.)

We write “H is a subgroup of G” as H ≤ G; if also H 6= G, we write H < G.
A subgroup H of a group G gives rise to two partitions of G:

Right cosets: sets of the form Ha = {ha : h ∈ H};

Left cosets: sets of the form aH = {ah : h ∈ H}.

The easiest way to see that, for example, the right cosets form a partition of G is to
observe that they are equivalence classes for the equivalence relation ≡R defined by

3



a ≡ b if and only if ba−1 ∈ H. In particular, this means that Ha = Hb if and only if
b ∈ Ha. In other words, any element of a coset can be used as its “representative”.

The number of right cosets of H in G is called the index of H in G, written |G : H|.
(The number of left cosets is the same.)

The cardinality of any right coset Ha of H is equal to |H|, since the map h 7→ ha
is a bijection from H to Ha. So G is partitioned into classes of size |H|, and so
|G|= |G : H| · |H|. We conclude:

Theorem 1.1 (Lagrange’s Theorem) The order of a subgroup of a group G divides
the order of G.

The term “order” is also used with a different, though related, meaning in group
theory. The order of an element a of a group G is the smallest positive integer m
such that am = 1, if one exists; if no such m exists, we say that a has infinite order.
Now, if a has order m, then the m elements 1,a,a2, . . . ,am−1 are all distinct and form a
subgroup of G. Hence, by Lagrange’s Theorem, we see that the order of any element
of G divides the order of G.

Exercises

(a) Show that, if C is a right coset of H in G, then C−1 = {c−1 : c ∈ C} is a left
coset of H. Show also that the map C 7→ C−1 is a bijection between right and
left cosets. Deduce that the numbers of left and right cosets are equal.

(b) Let H be a subgroup of G. Prove that a−1Ha = {a−1ha : h ∈ H} is also a
subgroup of G. (It is called a conjugate of H.)

(c) Prove that any right coset is a left coset (of a possibly different subgroup).

(d) Let H and K be subgroups of G, Show that H ∩K is a subgroup. Give an
example to show that HK = {hk : h ∈ H,k ∈ K} is not always a subgroup.

1.3 Homomorphisms and normal subgroups
Let G1 and G2 be groups. A homomorphism from G1 to G2 is a map θ which preserves
the group operation. We will write homomorphisms on the right of their arguments:
the image of a under θ will be written as aθ . Thus the condition for θ to be a homo-
morphism is

(ab)θ = (aθ)(bθ) for all a,b ∈ G1,

where ab is calculated in G1, and (aθ)(bθ) in G2.
With a homomorphism θ are associated two subgroups:
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Image: Im(θ) = {b ∈ G2 : b = aθ for some a ∈ G1};

Kernel: Ker(θ) = {a ∈ G1 : aθ = 1}.

A subgroup H of G is said to be a normal subgroup if it is the kernel of a homo-
morphism. Equivalently, H is a normal subgroup if its left and right cosets coincide:
aH = Ha for all a ∈ G. We write “H is a normal subgroup of G” as H EG; if H 6= G,
we write H CG.

If H is a normal subgroup of G, we denote the set of (left or right) cosets by G/H.
We define an operation on G/H by the rule

(Ha)(Hb) = Hab for all a,b ∈ G.

It can be shown that the definition of this operation does not depend on the choice of
the coset representatives, and that G/H equipped with this operation is a group, the
quotient group or factor group of G by H.

Theorem 1.2 (First Isomorphism Theorem) Let θ : G1 → G2 be a homomorphism.
Then

(a) Im(θ) is a subgroup of G2;

(b) Ker(θ) is a normal subgroup of G1;

(c) G1/Ker(θ)∼= Im(θ).

The moral of this theorem is: The best way to show that H is a normal subgroup
of G (and to identify the quotient group) is to find a homomorphism from G to another
group whose kernel is H.

There are two further isomorphism theorems which we will recall if and when we
actually need them. This one is the most important!

1.4 Direct products
Here is a simple construction for producing new groups from old. We will see more
elaborate versions later.

Let G1 and G2 be groups. We define the direct product G1×G2 to be the group
whose underlying set is the Cartesian product of the two groups (that is, G1×G2 =
{(g1,g2) : g1 ∈ G1,g2 ∈ G2}), with group operation given by

(g1,g2)(h1,h2) = (g1h1,g2h2) for all g1,h1 ∈ G1,g2,h2 ∈ G2}.
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It is not hard to verify the group laws, and to check that, if G1 and G2 are abelian, then
so is G1×G2.

Note that |G1×G2|= |G1| · |G2|. The Klein group is isomorphic to C2×C2.
The construction is easily extended to the direct product of more factors. The

elements of G1×·· ·×Gr are all r-tuples such that the ith component belongs to Gi;
the group operation is “componentwise”.

This is the “external” definition of the direct product. We also need to describe it
“internally”: given a group G, how do we recognise that G is isomorphic to a direct
product of two groups G1 and G2?

The clue is the observation that, in the direct product G1×G2, the set

H1 = {(g1,1) : g1 ∈ G1}

is a normal subgroup which is isomorphic to G1; the analogously-defined H2 is a
normal subgroup isomorphic to G2.

Theorem 1.3 Let G1, G2, G be groups. Then G is isomorphic to G1×G2 if and only
if there are normal subgroups H1 and H2 of G such that

(a) H1 ∼= G1 and H2 ∼= G2;

(b) H1∩H2 = {1} and H1H2 = G.

(Here H1H2 = {ab : a ∈ H1,b ∈ H2}.
There is a similar, but more complicated, theorem for recognising direct products

of more than two groups.

1.5 Presentations[∗∗∗]
Another method of describing a group is by means of a presentation, an expression
of the form G = 〈S | R〉. Here S is a set of “generators” of the group, and R a set
of “relations” which these generators must obey; the group G is defined to be the
“largest” group (in a certain well-defined sense) generated by the given elements and
satisfying the given relations.

An example will make this clear. G = 〈a | a4 = 1〉 is the cyclic group of order 4. It
is generated by an element a satisfying a4 = 1. While other groups (the cyclic group of
order 2 and the trivial group) also have these properties, C4 is the largest such group.

Similarly, 〈a,b | a2 = b2 = 1,ab = ba〉 is the Klein group of order 4.
While a presentation compactly specifies a group, it can be very difficult to get any

information about the group from a presentation. To convince yourself of this, try to
discover which group has the presentation

〈a,b,c,d,e | ab = c,bc = d,cd = e,cd = a,ea = b〉.
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2 Examples of groups
In this section we consider various examples of groups: cyclic and abelian groups,
symmetric and alternating groups, groups of units of rings, and groups of symmetries
of regular polygons and polyhedra.

2.1 Cyclic groups
A group G is cyclic if it consists of all powers of some element a ∈ G. In this case we
say that G is generated by a, and write G = 〈a〉.

If a has finite order n, then 〈a〉= {1,a,a2, . . . ,an−1}, and the order of 〈a〉 is equal to
the order of a. An explicit realisation of this group is the set {e2πik/n : k = 0,1, . . . ,n−
1} of all complex nth roots of unity, with the operation of multiplication; another is
the set Z/nZ of integers mod n, with the operation of addition mod n. We denote the
cyclic group of order n by Cn.

If a has infinite order, then 〈a〉 consists of all integer powers, positive and negative,
of a. (Negative powers are defined by a−m = (a−1)m; the usual laws of exponents hold,
for example, ap+q = ap ·aq.) An explicit realisation consists of the set of integers, with
the operation of addition. We denote the infinite cyclic group by C∞.

The cyclic group Cn has a unique subgroup of order m for each divisor m of n; if
Cn = 〈a〉, then the subgroup of order m is 〈an/m〉. Similarly, C∞ = 〈a〉 has a unique
subgroup 〈ak〉 of index k for each positive integer k.

A presentation for the cyclic group of order n is Cn = 〈a | an = 1〉.

Proposition 2.1 The only group of prime order p, up to isomorphism, is the cyclic
group Cp.

For if |G| = p, and a is a non-identity element of G, then the order of a divides
(and so is equal to) p; so G = 〈a〉.

2.2 Abelian groups[∗∗∗]
Cyclic groups are abelian; hence direct products of cyclic groups are also abelian. The
converse of this is an important theorem, whose most natural proof uses concepts of
rings and modules rather than group theory. We say that a group G is finitely generated
if there is a finite set S which is contained in no proper subgroup of G (equivalently,
every element of G is a product of elements of S and their inverses).

Theorem 2.2 (Fundamental Theorem of Abelian Groups) A finitely generated abelian
group is a direct product of cyclic groups. More precisely, such a group can be written
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in the form
Cm1 ×Cm2 ×·· ·×Cmr ×C∞×·· ·×C∞,

where mi |mi+1 for i = 1, . . . ,r−1; two groups of this form are isomorphic if and only
if the numbers m1, . . . ,mr and the numbers of infinite cyclic factors are the same for
the two groups.

For example, there are three abelian groups of order 24 up to isomorphism:

C24, C2×C12, C2×C2×C6.

(Write 24 in all possible ways as the product of numbers each of which divides the
next.)

2.3 Symmetric groups
Let Ω be a set. A permutation of Ω is a bijective map from Ω to itself. The set of
permutations of Ω, with the operation of composition of maps, forms a group. (We
write a permutation on the right of its argument, so that the composition f ◦ g means
“first f , then g”: that is, α( f ◦ g) = (α f )g. Now as usual, we suppress the ◦ and
simply write the composition as f g.)

The closure, identity and inverse laws hold because we have taken all the permu-
tations; the associative law holds because composition of mappings is always associa-
tive: α( f (gh)) = α(( f g)h) (both sides mean “apply f , then g, then h”). The group of
permutations of Ω is called the symmetric group on Ω, and is denoted by Sym(Ω). In
the case where Ω = {1,2, . . . ,n}, we denote it more briefly by Sn. Clearly the order of
Sn is n!.

A permutation of Ω can be written in cycle notation. Here is an example. Consider
the permutation f given by

1 7→ 3,2 7→ 6,3 7→ 5,4 7→ 1,5 7→ 4,6 7→ 2,7 7→ 7

in the symmetric group S7. Take a point of {1, . . . ,7}, say 1, and track its succes-
sive images under f ; these are 1,3,5,4 and then back to 1. So we create a “cycle”
(1,3,5,4). Since not all points have been considered, choose a point not yet seen, say
2. Its cycle is (2,6). The only point not visited is 7, which lies in a cycle of length 1,
namely (7). So we write

f = (1,3,5,4)(2,6)(7).

If there is no ambiguity, we suppress the cycles of length 1. (But for the identity per-
mutation, this would suppress everything; sometimes we write it as (1). The precise
convention is not important.)
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The cycle structure of a permutation is the list of lengths of cycles in its cycle de-
composition. (A list is like a sequence, but the order of the entries is not significant; it
is like a set, but elements can be repeated. The list [apple,apple,orange,apple,orange]
can be summarised as “three apples and two oranges”.)

Any permutation can be written in several different ways in cycle form:

• the cycles can be written in any order, so (1,3,5,4)(2,6) = (2,6)(1,3,5,4).

• each cycle can start at any point, so (1,3,5,4) = (3,5,4,1).

One can show that, if a1,a2, . . . are non-negative integers satisfying ∑ iai = n, then the
number of elements of Sn having ai cycles of length i for i = 1,2, . . . is

n!
∏ iaiai!

For if we write out the cycle notation with blanks for the entries, there are n! ways of
filling the blanks, and the denominator accounts for the ambiguities in writing a given
notation in cycle form.

The significance of this number is the following:

Proposition 2.3 Two elements of the symmetric group Sym(Ω) are conjugate if and
only if they have the same cycle structure.

Hence the numbers just computed are the sizes of the conjugacy classes in Sn.
For example, the following list gives the cycle structures and conjugacy class sizes

in S4:
Cycle structure Class size

[4] 6
[3,1] 8
[2,2] 3

[2,1,1] 6
[1,1,1,1] 1

The cycle structure of a permutation gives more information too.

Proposition 2.4 The order of a permutation is the least common multiple of the lengths
of its cycles.

9



Exercise What is the largest order of an element of S10?
We define the parity of a permutation g ∈ Sn to be the parity of n− c(g), where

c(g) is the number of cycles of g (including cycles of length 1). We regard parity as
an element of the group Z/2Z = {even,odd} of integers mod 2 (the cyclic group of
order 2).

Proposition 2.5 For n ≥ 2, parity is a homomorphism from Sn onto the group C2.

The kernel of this parity homomorphism is the set of all permutations with even
parity. By the First Isomorphism Theorem, this is a normal subgroup of Sn with in-
dex 2 (and so order n!/2), known as the alternating group, and denoted by An. The
above calculation shows that A4 the set of permutations with cycle types [3,1], [2,2]
and [1,1,1,1]; there are indeed 12 such permutations.

2.4 General linear groups
The laws for abelian groups (closure, associativity, identity, inverse, and commutativ-
ity) will be familiar to you from other parts of algebra, notably ring theory and linear
algebra. Any ring, or any vector space, with the operation of addition, is an abelian
group.

More interesting groups arise from the multiplicative structure. Let R be a ring
with identity. Recall that an element u ∈ R is a unit if it has an inverse, that is, there
exists v∈ R with uv = vu = 1. Now let U(R) be the set of units of R. Since the product
of units is a unit, the inverse of a unit is a unit, and the identity is a unit, and since the
associative law holds for multiplication in a ring, we see that U(R) (with the operation
of multiplication) is a group, called the group of units of the ring R.

In the case where R is a field, the group of units consists of all the non-zero ele-
ments, and is usually called the multiplicative group of R, written R×.

A very interesting case occurs when R is the ring of linear maps from V to itself,
where V is an n-dimensional vector space over a field F. Then U(R) consists of the
invertible linear maps on V . If we choose a basis for V , then vectors are represented
by n-tuples, so that V is identified with Fn; and linear maps are represented by n× n
matrices. So U(R) is the group of invertible n×n matrices over F. This is known as
the general linear group of dimension n over F, and denoted by GL(n,F).

Since we are interested in finite groups, we have to stop to consider finite fields
here. The following theorem is due to Galois:

Theorem 2.6 (Galois’ Theorem) The order of a finite field is necessarily a prime
power. If q is any prime power, then there is up to isomorphism a unique field of order
q.

10



For prime power q, this unique field of order q is called the Galois field of order q,
and is usually denoted by GF(q). In the case where q is a prime number, GF(q) is the
field of integers mod q. We shorten the notation GL(n,GF(q)) to GL(n,q).

For example, here are the addition and multiplication table of GF(4). We see that
the additive group is the Klein group, while the multiplicative group is C3.

+ 0 1 α β

0 0 1 α β

1 1 0 β α

α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β

α 0 α β 1
β 0 β 1 α

Exercise In the case q = 2, so that GF(2) = {0,1} is the field of integers mod 2,
show that the invertible matrices are(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
.

Show that the group GL(2,2) of order 6 consisting of these matrices is isomorphic to
the symmetric group S3.

Note that GL(1,F) is just the multiplicative group F× of F. From linear algebra,
we recall that, for any n×n matrices A and B, we have

det(AB) = det(A)det(B);

so the determinant map det is a homomorphism from GL(n,F) to F×. The kernel of
this homomorphism (the set of n×n matrices with determinant 1) is called the special
linear group, and is denoted by SL(n,F). Again, if F = GF(q), we abbreviate this to
SL(n,q).

2.5 Dihedral and polyhedral groups
A symmetry of a figure in Euclidean space is a rigid motion (or the combination of a
rigid motion and a reflection) of the space which carries the figure to itself. We can
regard the rigid motion as a linear map of the real vector space, so represented by a
matrix (assuming that the origin is fixed). Alternatively, if we number the vertices of
the figure, then we can represent a symmetry by a permutation.

Let us consider the case of a regular polygon in the plane, say a regular n-gon.
Here are drawings for n = 4 (the square) and n = 5 (the regular pentagon).
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The n-gon has n rotational symmetries, through multiples of 2π/n. In addition,
there are n reflections about lines of symmetry. The behaviour depends on the parity
of n. If n is even, there are two types of symmetry line; one joins opposite vertices, the
other joins midpoints of opposite sides. If n is odd, then each line of symmetry joins a
vertex to the midpoint of the opposite side.

The group of symmetries of the regular n-gon is called a dihedral group. We see
that it has order 2n, and contains a cyclic subgroup of order n consisting of rotations;
every element outside this cyclic subgroup is a reflection, and has order 2. We denote
this group by D2n (but be warned that some authors call it Dn).

In the case n = 4, numbering the vertices 1,2,3,4 in clockwise order from the top
left as shown, the eight symmetries are

(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(
−1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −1
−1 0

)
,

and the corresponding permutations are

1,(1,2,3,4),(1,3)(2,4),(1,4,3,2),(1,2)(3,4),(1,4)(2,3),(2,4),(1,3).

(The ordering is: first the rotations, then the reflections in vertical, horizontal, and
diagonal lines.)

The group D2n has a presentation

D2n = 〈a,b | an = 1,b2 = 1,ba = a−1b〉.

I won’t prove this in detail (I haven’t given a proper definition of a presentation!), but
note that every product of as and bs can be reduced to the form am or amb by using the
relations, where 0≤m≤ n−1, so there are just 2n elements in the group given by the
presentation. But the dihedral group does satisfy these relations.

There are only five regular polyhedra in three dimensions: the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron. Apart from the tetrahedron, they fall
into two dual pairs: cube and octahedron, dodecahedron and icosahedron. If you take
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six vertices at the face centres of the cube, they are the vertices of an octahedron;
and similarly the face centres of the octahedron are the vertices of a cube. A similar
relation holds for the other pairs. So dual pairs have the same symmetry group. The
following table describes the symmetry groups and the rotation groups (which are
subgroups of index 2 in each case). As usual, Cn, Sn and An are the cyclic group of
order n and the symmetric and alternating groups of degree n respectively.

Polyhedron Rotation group Symmetry group
Tetrahedron A4 S4

Cube S4 S4×C2
Dodecahedron A5 A5×C2
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3 Group actions
A group is an abstract object, and often we need to represent it in a more concrete
way, for example, by permutations of a set, or by matrices over a field. We want
the multiplication of the permutations or matrices to reflect the operation in the given
group; that is to say, we want to have a homomorphism from the group to either a
symmetric group or a general linear group. Using a homomorphism allows us a little
extra flexibility: it is possible that the homomorphism is not injective, so that different
group elements are represented by the same permutation or matrix.

In this chapter we look at representations by permutations, describe their struc-
ture, and look briefly at some other counting problems which are developed further in
Enumerative Combinatorics.

3.1 Definition
An action of a group G on a set Ω is a homomorphism from G to the symmetric group
Sym(Ω). In other words, to each group element we associate a permutation, and the
product of group elements is associated with the composition of the corresponding
permutations. We will always have in mind a fixed action θ ; so gθ is a permutation
of Ω, and we can talk about α(gθ) for α ∈ Ω. To simplify notation, we suppress the
name of the action, and simply write αg for the image of α under the permutation
corresponding to g.

Alternatively, we can define an action of G on Ω as a map µ from Ω×G to Ω

satisfying the two laws

(a) µ(µ(α,g),h) = µ(α,gh) for all g,h ∈ G, α ∈ Ω.

(b) µ(α,1) = α for all α ∈ Ω.

Again we simplify notation by suppressing the name µ: we write µ(α,g) as αg.
Then (a) says that (αg)h = α(gh); it follows from (a) and (b) that the map α 7→
αg is a permutation of Ω (its inverse is α 7→ αg−1), and so we do indeed have a
homomorphism from G to Sym(Ω).

Example Let G = S4, and let Ω be the set of three partitions of {1,2,3,4} into two
sets of size 2. Any permutation in G can be used to transform the partitions: for
example, g = (1,3,4) maps 12|34 7→ 23|14 7→ 13|24. This gives an action of G on
a set of size 3, that is, a homomorphism from S4 to S3. It is easily checked that this
homomorphism is onto, and that its kernel is the Klein group V4 consisting of the
identity, (1,2)(3,4), (1,3)(2,4) and (1,4)(2,3). Thus V4 is a normal subgroup of S4,
and S4/V4 ∼= S3 (by the First Isomorphism Theorem).

14



Example There are several ways of making a group act on itself (that is, we take
Ω = G):

Right multiplication: µ(x,g) = xg.

Left multiplication: µ(x,g) = g−1x (the inverse is needed to ensure that acting with
g and then with h is the same as acting with gh).

Conjugation: µ(x,g) = g−1xg.

The first of these actions has an important consequence. The action by right multi-
plication is faithful: if µ(x,g) = µ(x,h) for all x ∈ G, then g = h. This means that the
action homomorphism from G into Sym(G) is one-to-one (its kernel is the identity).
By the First Isomorphism Theorem, the image of this map is a subgroup of Sym(G)
which is isomorphic to G. Hence:

Theorem 3.1 (Cayley’s Theorem) Every group is isomorphic to a subgroup of some
symmetric group.

As well as motivating the study of symmetric groups and their subgroups, this the-
orem has historical importance. As noted earlier, group theory had existed as a mathe-
matical subject for a century before the group laws were written down by Walther von
Dyck in 1882. In those days the word “group” meant what we would now describe
as a permutation group or transformation group, that is, a subgroup of the symmetric
group. (In detail, a group was a set of transformations of a set which is closed under
composition, contains the identity transformation, and contains the inverse of each of
its elements. Since composition of transformations is associative, we see that every
transformation group is a group in the modern sense. In the other direction, Cayley’s
theorem shows that every group is isomorphic to a transformation group; so, despite
the change in foundations, the actual subject matter of group theory didn’t change at
all!

Finally, we note that the permutation group given by Cayley’s Theorem can be
written down from the Cayley table of G: the permutation of G corresponding to the
element g ∈ G is just the column labelled g of the Cayley table. Referring back to the
two Cayley tables on page 2, we see that as permutation groups

C4 = {1,(e,a,b,c),(e,b)(a,c),(e,c,b,a)},
V4 = {1,(e,a)(b,c),(e,b)(a,c),(e,c)(a,b)}.

Both these groups are abelian so we could have used rows rather than columns to get
the same result; but in general it makes a difference.
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3.2 Orbits and stabilisers
Let G act on Ω. We define a relation ≡ on Ω by the rule that α ≡ β if there is an
element g ∈ G such that αg = β . Then ≡ is an equivalence relation. (It is instructive
to see how the reflexive, symmetric and transitive laws for ≡ follow from the identity,
inverse and closure laws for G.) The equivalence classes of this relation are called
orbits; we say that the action is transitive (or that G acts transitively on Ω) if there is
just one orbit.

We denote the orbit containing a point α by OrbG(α).
For example, the action of G on itself by right multiplication is transitive; in the

action by conjugation, the orbits are the conjugacy classes.
Given a point α , the stabiliser of α is the set of elements of G which map it to

itself:
StabG(α) = {g ∈ G : αg = α}.

Theorem 3.2 (Orbit-Stabiliser Theorem) Let G act on Ω, and choose α ∈ Ω. Then
StabG(α) is a subgroup of G; and there is a bijection between the set of right cosets
of StabG(α) in G and the orbit OrbG(α) containing α .

It follows from the Orbit-Stabiliser Theorem that |StabG(α)| · |OrbG(α)|= |G|.
The correspondence works as follows. Given β ∈ OrbG(α), by definition there

exists h ∈ G such that αh = β . Now it can be checked that the set of all elements
mapping α to β is precisely the right coset (StabG(α))h.

Every subgroup of G occurs as the stabiliser in a suitable transitive action of G.
For let H be a subgroup of G. Let Ω be the set of all right cosets of H in G, and
define an action of G on Ω by, formally, µ(Hx,g) = Hxg. (Informally we would write
(Hx)g = Hxg, but this conceals the fact that (Hx)g means the result of acting on the
point Hx with the element g, not just the product in the group, though in fact it comes
to the same thing!) It is readily checked that this really is an action of G, that it is
transitive, and that the stabiliser of the coset H1 = H is the subgroup H.

So the Orbit-Stabiliser Theorem can be regarded as a refinement of Lagrange’s
Theorem.

3.3 The Orbit-Counting Lemma
The Orbit-Counting Lemma is a formula for the number of orbits of G on Ω, in terms
of the numbers of fixed points of all the permutations in G. Given an action of G on
Ω, and g ∈G, let fix(g) be the number of fixed points of g (strictly, of the permutation
of Ω induced by g). The Lemma says that the number of orbits is the average value of
fix(g), for g ∈ G.
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Theorem 3.3 (Orbit-Counting Lemma) Let G act on Ω. Then the number of orbits
of G on Ω is equal to

1
|G| ∑

g∈G
fix(g).

The proof illustrates the Orbit-Stabiliser Theorem. We form a bipartite graph with
vertex set Ω∪G; we put an edge between α ∈Ω and g ∈G if αg = α . Now we count
the edges of this graph.

On one hand, every element g ∈ G lies in fix(g) edges; so the number of edges is
∑g∈G fix(g).

On the other hand, the point α lies in |StabG(α)| edges; so the number of edges
passing through points of OrbG(α) is |OrbG(α)| · |StabG(α)| = |G|, by the Orbit-
Stabiliser Theorem. So each orbit accounts for |G| edges, and the total number of
edges is equal to |G| times the number of orbits.

Equating the two expressions and dividing by |G| gives the result.

Example The edges of a regular pentagon are coloured red, green and blue. How
many different ways can this be done, if two colourings which differ by a rotation or
reflection of the pentagon are regarded as identical?

The question asks us to count the orbits of the dihedral group D10 (the group of
symmetries of the pentagon) on the set Ω of colourings with three colours. There are
35 colourings altogether, all fixed by the identity. For a colouring to be fixed by a
non-trivial rotation, all the edges have the same colour; there are just three of these.
For a colouring to be fixed by a reflection, edges which are images of each other under
the reflection must get the same colour; three colours can be chosen independently, so
there are 33 such colourings.

Since there are four non-trivial rotations and five reflections, the Orbit-Counting
Lemma shows that the number of orbits is

1
10

(1 ·243+4 ·3+5 ·27) = 39.
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4 Sylow’s Theorem
Sylow’s Theorem is arguably the most important theorem about finite groups, so I am
going to include a proof.

To begin, let’s ask the question: is the converse of Lagrange’s Theorem true? In
other words, if G is a group of order n, and m is a divisor of n, does G necessarily
contain a subgroup of order m? We note that this statement is true for cyclic groups. As
an exercise, verify it for abelian groups (using the Fundamental Theorem of Abelian
Groups).

In fact it is not true in general. Let G be the alternating group A4. Then G is a
group of order 12, containing the identity, three elements with cycle type [2,2], and
eight elements with cycle type [3,1]. We claim that G has no subgroup of order 6. Such
a subgroup must contain an element of order 3, since there are only four elements not
of order 3; also it must contain an element of order 2, since elements of order 3 come
in inverse pairs, both or neither of which lie in any subgroup, so there are an even
number of elements not of order 3, one of which is the identity. But it is not hard to
show that, if you choose any element of order 2 and any element of order 3, together
they generate the whole group.

4.1 Statement
Cauchy proved the first partial converse to Lagrange’s Theorem:

Theorem 4.1 (Cauchy’s Theorem) Suppose that the prime p divides the order of the
group G. Then G contains an element of order p.

Sylow’s Theorem is a far-reaching extension of Cauchy’s. It is often stated as three
separate theorems; but I will roll it into one here.

Theorem 4.2 (Sylow’s Theorem) Let G be a group of order pa ·m, where p is a prime
not dividing m. Then

(a) G contains subgroups of order pa, any two of which are conjugate;

(b) any subgroup of G of p-power order is contained in a subgroup of order pa;

(c) the number of subgroups of order pa is congruent to 1 mod p and divides m.

Subgroups of order pa of G, that is, subgroups whose order is the largest power of
p dividing |G|, are called Sylow p-subgroups of G.

The smallest positive integer which has a proper divisor whose order is not a prime
power is 12; and we have seen that the group A4 of order 12 has no subgroup of order 6.
So Sylow’s theorem cannot be improved in general!
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4.2 Proof
This is quite a substantial proof; you may skip it at first reading. You can find different
proofs discussed in some of the references. The crucial tool is the Orbit-Stabiliser
Theorem, which is used many times, sometimes without explicit mention.

The proof uses two different actions of G. First, we consider the action on the set
Ω consisting of all subsets of G of cardinality pa, by right multiplication: µ(X ,g) =
Xg = {xg : x ∈ X}. Each orbit consists of sets covering all elements of G. (For, if
x ∈ X , and y is any element, then y ∈ X(x−1y).) So there are two kinds of orbits:

(A) orbits of size m, forming a partition of G;

(B) orbits of size greater than m.

Now by the Orbit-Stabiliser Theorem, the size of any orbit divides |G|; so an orbit of
type (B) must have size divisible by p. But |Ω|=

(pam
pa

)
is not a multiple of p (this is

a number-theoretic exercise); so there must be orbits of type (A). Again by the Orbit-
Stabiliser Theorem, the stabiliser of a set in an orbit of type (A) is a subgroup of order
pa (and the orbit consists of its right cosets). This shows that subgroups of order pa

exist.
Now consider a different action of G, on the set ∆ of all Sylow subgroups of G by

conjugation (that is, µ(P,g) = g−1Pg).
We first observe that, if Q is a subgroup of G of p-power order which stabilises a

Sylow subgroup P in this action, then Q≤ P; for otherwise PQ is a subgroup of order
|P| · |Q|/|P∩Q|, a power of p strictly greater than pa, which is not possible. (Further
discussion of this point is at the end of this section.)

Take P∈∆. Then P stabilises itself, but no other Sylow subgroup (by the preceding
remark), so all other orbits of P have size divisible by p. We conclude that |∆|, the
number of Sylow p-subgroups, is congruent to 1 mod p.

Now G-orbits are unions of P-orbits, so the G-orbit containing P has size congru-
ent to 1 mod p, and every other G-orbit has size congruent to 0 mod p. But P was
arbitrary; so there is only a single orbit, whence all the Sylow p-subgroups are conju-
gate. The number of them is |G : N|, where N = StabG(P); since P ≤ N, this number
divides |G : P|= m.

Finally, if Q is any subgroup of p-power order, then the orbits of Q on ∆ all have
p-power size; since |∆| is congruent to 1 mod p, there must be an orbit {P} of size 1,
and so Q ≤ P by our earlier remark.

All parts of the theorem are now proved.

Here is a two-part lemma which we made use of in the above proof. The proof
is an exercise. If H is a subgroup of G, we say that the element g ∈ G normalises

19



H if g−1Hg = H; and we say that the subgroup K normalises H if all its elements
normalise H. Thus H is a normal subgroup of G if and only if G normalises H. By
HK we mean the subset {hk : h ∈ H,k ∈ K} of G (not in general a subgroup).

Lemma 4.3 Let H and K be subgroups of G. Then

(a) |HK|= |H| · |K|/|H ∩K|;

(b) if K normalises H, then HK is a subgroup of G.

4.3 Applications
There are many applications of Sylow’s Theorem to the structure of groups. Here is
one, the determination of all groups whose order is the product of two distinct primes.

Theorem 4.4 Let G be a group of order pq, where p and q are primes with p > q.

(a) If q does not divide p−1, then G is cyclic.

(b) If q divides p−1, then there is one type of non-cyclic group, with presentation

G = 〈a,b | ap = 1,bq = 1,b−1ab = ak〉

for some k satisfying kq ≡ 1 mod p, k 6≡ 1 mod p.

Proof Let P be a Sylow p-subgroup and Q a Sylow q-subgroup. Then P and Q are
cyclic groups of prime orders p and q respectively. The number of Sylow p-subgroups
is congruent to 1 mod p and divides q; since q < p, there is just one, so PCG.

Similarly, the number of Sylow q-subgroups is 1 or p, the latter being possible
only if p ≡ 1 mod q.

Suppose there is a unique Sylow q-subgroup. Let P and Q be generated by el-
ements a and b respectively. Then b−1ab = ak and a−1ba = bl for some r,s. So
ak−1 = a−1b−1ab = b−l+1. This element must be the identity, since otherwise its or-
der would be both p and q, which is impossible. So ab = ba. Then we see that the
order of ab is pq, so that G is the cyclic group generated by ab.

In the other case, q divides p− 1, and we have b−1ab = ak for some k. Then an
easy induction shows that b−sabs = aks

. Since bq = 1 we see that kq ≡ 1 mod p. There
are exactly q solutions to this equation; if k is one of them, the others are powers of k,
and replacing b by a power of itself will have the effect of raising k to the appropriate
power. So all these different solutions are realised within the same group.

In particular, the only non-cyclic group of order 2p, where p is an odd prime, is
the dihedral group 〈a,b | ap = 1,b2 = 1,b−1ab = a−1〉.
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There are two groups of order 21, the cyclic group and the group

〈a,b | a7 = 1,b3 = 1,b−1ab = a2〉;

in this group, if we replace b by b2, we replace the exponent 2 by 4 in the last relation.
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5 Composition series
A non-trivial group G always has at least two normal subgroups: the whole group
G, and the identity subgroup {1}. We call G simple if there are no other normal
subgroups. Thus, a cyclic group of prime order is simple. We will see that there are
other simple groups.

In this section we will discuss the Jordan–Hölder Theorem. This theorem shows
that, in a certain sense, simple groups are the “building blocks” of arbitrary finite
groups. In order to describe any finite group, we have to give a list of its “composition
factors” (which are simple groups), and describe how these blocks are glued together
to form the group.

5.1 The Jordan–Hölder Theorem
Suppose that the group G is not simple: then it has a normal subgroup N which is
neither {1} nor G, so the two groups N and G/N are smaller than G. If either or both
of these is not simple, we can repeat the procedure. We will end up with a list of
simple groups. These are called the composition factors of G.

More precisely, a composition series for G is a sequence of subgroups

{1}= G0 CG1 CG2 C · · ·CGr = G,

so that each subgroup is normal in the next (as shown), and the quotient group Gi+1/Gi
is simple for i = 0,1, . . . ,r−1.

We can produce a composition series by starting from the series {1}CG and refin-
ing it as follows. If we have Gi CGi+1 and Gi+1/Gi is not simple, let it have a normal
subgroup N; then there is a subgroup N∗ of Gi+1 containing Gi by the Correspondence
Theorem, with Gi CN∗CGi+1, and we may insert another term in the sequence.

(The Correspondence Theorem, sometimes called the Second Isomorphism The-
orem, asserts that, if A is a normal subgroup of B, then there is a bijection between
subgroups of B/A and subgroups of B containing A, under which normal subgroups
correspond to normal subgroups. The bijection works in the obvious way: if C≤ B/A,
then elements of C are cosets of A, and the union of all these cosets gives the corre-
sponding subgroup C∗ of B containing A.)

Now, given a composition series for G, say

{1}= G0 CG1 CG2 C · · ·CGr = G,

we have r simple groups Gi+1/Gi. We are interested in them up to isomorphism; the
composition factors of G are the isomorphism types. (We think of them as forming a
list, since the same composition factor can occur more than once.)
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For a simple example, let G = C12. Here are three composition series:

{1}CC2 CC4 CC12

{1}CC2 CC6 CC12

{1}CC3 CC6 CC12

The composition factors are C2 (twice) and C3, but the order differs between series.

Theorem 5.1 (Jordan–Hölder Theorem) Any two composition series for a finite group
G give rise to the same list of composition factors.

Note that the product of the orders of the composition factors of G is equal to the
order of G.

5.2 Groups of prime power order
In this section, we will see that a group has order a power of the prime p if and only if
all of its composition factors are the cyclic group of order p.

One way round this is clear, since the order of G is the product of the orders of its
composition factors. The other depends on the following definition and theorem. The
centre of a group G, denoted by Z(G), is the set of elements of G which commute with
everything in G:

Z(G) = {g ∈ G : gx = xg for all x ∈ G}.
It is clearly a normal subgroup of G.

Theorem 5.2 Let G be a group of order pn, where p is prime and n > 0. Then

(a) Z(G) 6= {1};

(b) G has a normal subgroup of order p.

To prove this, we let G act on itself by conjugation. By the Orbit-Stabiliser Theo-
rem, each orbit has size a power of p, and the orbit sizes sum to pn. Now by definition,
Z(G) consists of all the elements which lie in orbits of size 1. So the number of ele-
ments not in Z(G) is divisible by p, whence the number in Z(G) is also. But there is at
least one element in Z(G), namely the identity; so there are at least p such elements.

Now, if g is an element of order p in Z(G), then 〈g〉 is a normal subgroup of G of
order p.

This proves the theorem, and also finds the start of a composition series: we take
G1 to be the subgroup given by part (b) of the theorem. Now we apply induction to
G/G1 to produce the entire composition series. We see that all the composition factors
have order p.

We note in passing the following result:
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Proposition 5.3 Let p be prime.

(a) Every group of order p2 is abelian.

(b) There are just two such groups, up to isomorphism

For let |G| = p2. If |Z(G)| = p2, then certainly G is abelian, so suppose that
|Z(G)| = p. Then G/Z(G) is a cyclic group of order p, generated say by the coset
Z(G)a; then every element of G has the form zai, where z ∈ Z(G) and i = 0,1, . . . , p−
1. By inspection, these elements commute.

Finally, the Fundamental Theorem of Abelian Groups shows that there are just two
abelian groups of order p2, namely Cp2 and Cp×Cp.

This theorem shows that the list of composition factors of a group does not de-
termine the group completely, since each of these two groups has two composition
factors Cp. So the “glueing” process is important too. In fact, worse is to come. The
number of groups of order pn grows very rapidly as a function of n. For example, it is
known that the number of groups of order 1024 = 210 is more than fifty billion; all of
these groups have the same composition factors (namely C2 ten times)!

Remark At this point, we have determined the structure of all groups whose order
has at most two prime factors (equal or different); so we know all the groups of order
less than 16 except for the orders 8 and 12.

5.3 Soluble groups
A finite group G is called soluble if all its composition factors are cyclic of prime
order.

Historically, soluble groups arose in the work of Galois, who was considering
the problem of solubility of polynomial equations by radicals (that is, the existence
of formulae for the roots like the formula (−b±

√
b2−4ac)/2a for the roots of a

quadratic. It had already been proved by Ruffini and Abel that no such formula exists
in general for polynomials of degree 5. Galois associated with each polynomial a
group, now called the Galois group of the polynomial, and showed that the polynomial
is soluble by radicals if and only if its Galois group is a soluble group. The result on
degree 5 comes about because the smallest simple group which is not cyclic of prime
order (and, hence, the smallest insoluble group) is the alternating group A5, as we shall
see.

I will not discuss soluble groups in detail here, but note just one theorem.

Theorem 5.4 A finite group G is soluble if and only if it has a series of subgroups

{1}< H1 < H2 < · · ·< Hs = G
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such that each Hi is a normal subgroup of G, and each quotient Hi+1/Hi is abelian for
i = 0,1, . . . ,s−1.

(Note that in the definition of a composition series, each subgroup is only required
to be normal in the next, not in the whole group.)

This theorem is important because the definition we gave of a soluble group makes
no sense in the infinite case. So instead, we use the condition of the theorem as the
definition of solubility in the case of infinite groups.

5.4 Simple groups
In the course, we will spend some time discussing simple groups other than cyclic
groups of prime order. Here, for a starter, is the argument showing that they exist.

Theorem 5.5 The alternating group A5 is simple.

The group G = A5 consists of the even permutations of {1, . . . ,5}. (Recall that
even permutations are those for which the number of cycles is congruent to the degree
mod 2.) Their cycle types and numbers are given in the following table.

Cycle type Number
[1,1,1,1,1] 1

[1,2,2] 15
[1,1,3] 20

[5] 24

Since a normal subgroup must be made up of entire conjugacy classes, our next
task is to determine these.

It is easy to see that all the elements of order 2 are conjugate, as are all those of
order 3. The elements of order 5 are not all conjugate, but the subgroups of order 5 are
(by Sylow’s Theorem), and a potential normal subgroup must therefore either contain
all or none of them.

So if N is a normal subgroup of A5, then |N| is the sum of some of the numbers 1,
15, 20, 24, certainly including 1 (since it must contain the identity), and must divide
60 (by Lagrange’s Theorem).

It is straightforward to see that the only possibilities are |N|= 1 and |N|= 60. So
A5 is simple.
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Exercise Show that there is no simple group of non-prime order less than 60.

In perhaps the greatest mathematical achievement of all time, all the finite simple
groups have been determined. We will say more about this in the course. But, by way
of introduction, they fall into four types:

(a) cyclic groups of prime order;

(b) alternating groups An (these are simple for all n ≥ 5);

(c) the so-called groups of Lie type, which are closely related to certain matrix
groups over finite fields — for example, if G = SL(n,q), then G/Z(G) is simple
for all n ≥ 2 and all prime powers q except for n = 2 and q = 2 or q = 3;

(d) twenty-six so-called sporadic groups, most of which are defined as symmetry
groups of various algebraic or combinatorial configurations.

The proof of this simply-stated theorem is estimated to run to about 10000 pages!
This theorem means that, if we regard the Jordan–Hölder theorem as reducing

the description of finite groups to finding their composition factors and glueing them
together, then the first part of the problem is solved, and only the second part remains
open.
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