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PREFACE

The subject-matter of most of the topies developed in
this book is believed to be essentially new, though, of
course, the ideas have been both foreshadowed and over-
taken by many other writers. The aim is to provide
material, familiar in substance but unfamiliar in treat-
ment, that may catch the interest of pupils (and, dare
I say, of teachers?) as they cross into the somewhat
puzzling world of abstract mathematics. I have often
felt that the present plunge into abstraction is too sudden
and that there is a need for more elementary work to
make the immersion less exhausting.

To carry the subject forward from this stage will be
the work of others; the hope is that this book may help
to ease the start.

I am very grateful to the staff of the Cambridge
University Press for their skill and care, and for the
friendly relations that I have always enjoyed with them.

E.A. M.
Cambridge
March, 1965



INTRODUCTION

Few of us pause for long to think about the rules that we
apply automatically when performing mathematical
calculations, say in arithmetic or algebra. Thus we
‘factorise’
ab+ac = a(b+c)
or ‘multiply out’
(2¢+7b)x = 20z + Thx

by laws which are so familiar—at any rate by the stage
implied by the reading of this book—that no justification
seems necessary.

There is no intention here of codifying these laws
systematically, except perhaps by inference; the aim is
rather to exhibit alternative systems of rules for calcula-
tion, after which the basic laws themselves may appear
both clear and natural.

We propose, then, a process of abstraction, akin to the
fundamental ideas on which much so-called ‘modern’
mathematics is based. The important point, though, is
that the material itself from which the abstractions are
to spring will be selected from topics likely to be familiar
to everyone who has studied just enough mathematics to
reach ‘O’-level. The great difficulty in introducing
‘modern’ mathematics seems to be the production of a
background of experience from which it can start; and
the avowed aim of this book is the attempt to foster just
such experience.
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CHAPTER I
DIGITAL ARITHMETIC

(1. The ordinary facts of elementary arithmetic are
well known. It will be no trouble to most people who
read this book to say that

9+7 = 16,

28+ 35 = 63,

9x 7 =63,

or even 17 x 12 = 204.

The rules are familiar and ‘ counting’ is, essentially, easy

What we propose to do in this chapter is to accept this
ordinary arithmetic, but to modify it in one way. The
result of this modification will be to make computation
easier but, in return, to make thought harder for the
beginner because of the element of abstraction that now
comes in.

The new process will be called digital arithmetic. The
reason for this name is that the operations of ‘addition’
and ‘multiplication’ with which we shall be concerned
are to be the normal operations familiar in elementary
arithmetic, save that for the answers at each step only the
units digit is to be retained.

For example, whereas normally

8+17 =15,
y 9+3 =12,
we shall simply take 8§47 =5,

9+3=2;
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and whereas normally

8x 6 = 48,

Tx3=121,
we shall simply take

3x6=28,

Tx3 =1

Note at once that we have radically altered the mean-
ings of the two symbols + and x and of the corre-
sponding operations of addition and multiplication. In
order to give a meaning to, say,

7+9,

we do not imagine seven apples and nine apples put into
a box which thus contains sixteen apples; the physical
interpretation has disappeared. We have said instead
that 7+ 9 is to mean 6 (a number reached by the process
already described); and that is all about it. Our problem
is not to justify the definition itself, for we are entitled to
give any clearly-stated meaning that we wish to our
words and symbols, but to justify instead the possibility
of using the definition consistently and with significance.
We therefore begin by examining the consistency of the
addition.

(2. DigiTAL ADDITION

The laws of elementary arithmetic require us to add
any collection of numbers without ambiguity. Suppose,
for example, that we are given the three numbers

87,28
We should say at once that the sum is 34 and should
probably mean by that statement that
9+ 7418 = 34.

DIGITAL ARITHMETIC 13

On further reflection, we should probably agree also that
the statement equally means any of the following:

9+ 18+ 7 = 34,
T+18+4+9 = 34,
T+9+4+18 = 34,
184947 = 34,
184749 = 34,

In other words, the three numbers 9, 7, 18, taken in any
order, always add up to the same nwmber 34. A corre-
sponding result holds similarly for any other set of
numbers,

DIGRESSION. It may be helpful to give now as a digression
what is in fact the ultimately basic property of addition. The
fundamental facts of elementary arithmetic (as popularly
understood) are a whole collection of answers obtained succes-
sively by adding two numbers at a time. For instance, to add

34741141945,
we should probably say something like this:
34+7 = 10,
10411 = 21,
21419 = 40,
4045 = 45.

At any rate, the process would almost certainly involve the
addition step by step of twoe numbers at any one time.
Reverting to the simpler case of three numbers only, say

3+5+9,

there thus appears a choice:
(i) to group 3+ 5 and then add 9, giving

8+9,
or (ii) to take 3 and then add to it the group 5+ 9, giving
3+ 14.
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The point is, of course, that these two groupings give the same
answer. In other words,

(34+5)4+9 = 34+(5+9).

More generally, if a, b, ¢ are any three of the numbers of
ordinary arithmetic, and if the symbol + has its ordinary meaning,

then
(@a+b)+c = a+(b+ec).

This law, governing the two ways in which the three numbers
can be associated for addition two at a time (without changing
order) is called the associative law for addition.

It will have been noticed that not only can the numbers be
grouped in pairs according to the associative law, but also, as
the preceding statement of that law implied, that the actual
order in which the numbers are written is also immaterial.
For example,

5+9 = 9+5;
and, more generally, for ordinary arithmetic
a+b = b+a.

Two numbers whose order can be changed in this way are said
to commute and the general law

a+b =b+a
i called the commutative law for addition.

ExaMPLE
Check mentally that the two laws just enunciated
ensure that the sum of the five numbers
3,7, 12,15, 19
is independent of the order in which they are selected.
Returning to digital addition, consider a sum such as
5+7+9+4+34+8.
The normal sum is 32 and so the digital sum is 2. The
problem, however, is: do the two laws, the associative

and the commutative, still hold when the arithmetic is
digital? The answer is clearly yes; for what is true of the

DIGITAL ARITHMETIC 15
complete numbers must a fortiori be true of the units
digits. Hence it remains true in digital arithmetic that the
associative law for addition

(@a+b)+ec=a+(b+c)
and the commutative law for addition
a+b=>b+a
retain their validity.
Consequently all arithmetical manipulations dependent
on them, and valid in ordinary arithmetic, are equally valid
in digital arithmetic.

ExAaMPLE

Check mentally that these two laws ensure that the
‘sum’ of the numbers
20,8 8.7

is independent of the order in which they are selected.

(8. DigiTaAL MULTIPLICATION

The corresponding treatment of digital multiplication
may be discussed more briefly. The analogous laws are:
the associative law for multiplication,

(axb)xe=ax(bxc)
or, more briefly,
(ab)c = a(be);

and the commutative law for multiplication,
axb=>bxa,
or ab = ba.

Since these laws hold for ordinary multiplication, they
necessarily hold also for the units digits in the products.
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ExamrLe
Check mentally that these two laws ensure that the
‘product’ of the numbers
3,5,8,4 2,6
is independent of the order in which they are selected.

(4. Divisors orF ZERO

Without over-emphasising the point for the present,
it is of interest to demonstrate at once a feature wherein
digital arithmetic differs radically from ordinary
arithmetic.

In ordinary arithmetie, as is well known, a relation

ab =0

cannot hold unless at least one of a, b is zero. This is, for
example, the basis of the argument used to finish the
solution of a quadratic equation once it has been reduced
to the form, say, (@—1)(@—2) =

The ending is ‘Either z—1 = 0 or z—2 = 0, and so the
equation is solved when = 1 and when z = 2.

Note that this argument is only possible when the right-hand
side is zero. It is not true that the equation

(z=1) (#—2) = 3

can be completed by the argument ‘Either z—1 = 3 or
#—2 = 3, and so the equation is solved when 2 = 4 and when

x® = b.!
ExAMPLES

1. Prove that, if ¢ is not zero and if a, b are different,
then there is no set of numbers a, b, ¢ for which the

equation s i) s

DIGITAL ARITHMETIC 17
can be completed by the argument: ‘Either x —a = ¢ or

z—b = ¢ and so the equation is solved when z = a+c¢
and when z = b+e¢.’

2. Prove that, on the other hand, the equataon
(x—3)(z—4) =2

is satisfied (as to one solution) by setting x—3 = = 2, 80
that = 5; and that the equation

(4—2)(z—1) =2

is satisfied (as to both solutions) by setting 4 —2 = 2 or
x—1=2, so that x = 2 or 3.

Examine the way in which these are specially con-
structed ‘freak ’ equations and invent similar abnormali-
ties yourself.

Returiﬁng.to the main problem, we register the fact
that, in ordinary arithmetic and algebra, a product can-
not be zero unless one of its factors is. With digital
arithmetic, however, the case is very different, m virtuq
of the four products '

5x2=0, 5x4=0 5x6=0, 5x8=0.

In other words, in digital arithmetic it is possible for the
product ks

to be zero although neither factor is. This can happen when
either one of a, b is 5 while the other is an even integer.

DEFINITION. A number a is called a divisor of zero
when another number b exists such that the product ab
is zero although neither individual factor is.

2 MGM
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An immediate, and startling, consequence of the exist-
ence of divisors of zero is the possibility of producing in
digital arithmetic a quadratic equation with four distinct
roots:

Take, for example, the equation

(z—1)(z—2)=0.

It is, of course, satisfied as usual by the two solutions

=1 2z2=9
But there may also be a solution given by

x—1=5

or by x—2 =5,
provided that the second factor is an even integer.
When = 6, the left-hand side is 5 x 4, or zero; when
z =17, the left-hand side is 6 x 5, or zero. Hence the
quadratic equation P—3x+2 =0,
or (z—1)(z—2) =0,
has the four roots 1, 2, 6, 7.

ExaAMPLES
1. Find all the solutions of the equations

(i) 2®—42+3 =0,
(ii) 2®—b5z+4 = 0,
(iii) 2*—~5x+6 =0,
(iv) 2*—6z+8 = 0.
2. Prove that the quadratic equation
S22+ 52 =0

DIGITAL ARITHMETIC 19

is satisfied by all integral values of #. Explain why it is
not permissible to divide throughout by 5 without
further examination.

(5. TeE DISTRIBUTIVE LAwW

In order to demonstrate quickly the unexpected
properties of digital arithmetic we have, in fact, glossed
over one or two theoretical points of detail that now
require attention. The first of these is the distributive law

a(b+c¢) = ab+ac,
{(b+c)a = ba+ca,
which enables us to ‘remove brackets’. The truth of the
law follows, as in the previous cases, from the fact that
the law, being true for ordinary arithmetic, must, in
particular, be true for the units digits.
It was this law that enabled us to use a sequence of
argument (now given in detail) such as
(@+1)(@+2)
= (x+1)(@)+(x+1)(2) distributive
=z*+x+2(2)+1.2 distributive

=a224+2+22+2 commutative
=22+ (x4 22)+2 associative

From now on we shall normally use the associative,
commutative and distributive laws without comment.
In other words, the manipulation will *look like’ ordinary
algebra.

2-2
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(6. THE LANGUAGE OF SETS
Before passing to the next point of detail, we ought
perhaps to say a few words about sets. Not much is
required at present, but the language is convenient and
leads to precision. '
~ The effect of the definition of digital arithmetic is to
replace the infinite sequence of numbers
. -3, -2, -1,0,1, 2, 3,.
by the ten mtegers
0,1,2,38,4,5,6,17,8,9.
(The fate of the negative numbers is the next thing to be
considered.) By ord.ma,ry use of language, we may say

- that the ‘set’

M R A T
has been replaced by the ‘set’
{0,1,2,3,4,5,6,7,8, 9.

These ideas give us two things—a name and a notation.
The word set is used to denote any collection of objects
whatever, subject to the sole requirement of a rule to
determine whether a given object is a member or not;
for example, the set of all plane triangles is defined: any
given equilateral triangle is a member, but no circle
can be.

A set may be designated for reference by any con-
venient letter, usually capital, and its members may be
exhibited by enumeration within braces { }. Thus the
set with which we are dealing in digital arithmetic may
be denoted by the letter D, where

D={0,1,2,3,4,5,6,7,8, 9}.

DIGITAL ARITHMETIC 21

Membership of a set is denoted by the symbol of inclusion
¢, and non-membership by the symbol ¢. Thus

0eD, 7eD, }¢D, wéD.

(7. At this point it is convenient to review rapidly the
reader’s experience with the numbers of ordinary arith-
metic and algebra. It began, almost certainly, with the
set of positive integers

M={1,23,..1}
and was probably extended fairly quickly to the corre-
spondmg set augmented by zero

N={0,1,23,..}

After that we may imagine that there followed the
rational fractions

F = {'1" %’ %! §‘: &; 2‘, i‘, ...}.
A little later, negative numbers would be studied, giving
the set of integers

Euf..-3 -2 ~1.61%3 ..}
and the set of all rational numbers

Q={...-%-%4-10%+ 4.4, - 3

Finally there may have come the set R of all real num-
bers, rational or irrational—the latter being described
quickly as the numbers expressible as unending, non-
recurring decimals—and the set C of complex numbers
of the form a +ib, where @ and b are real numbers as just
described and where i is the ‘square root of —1°, subject
to the relation i® = — 1.

Most of this was, of course, unconscious, and it is Well
that it should have been so. But one basic point does
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arise from this classification of our number-experience
into sets, and that point may now be illustrated by
reference to a series of quadratic equations taken from
the framework of ordinary arithmetic:

Consider in turn the quadratic equations:

(i) 22—32+2=0, (iv) 2®+32+1=0,
(i) 22—32z =0, (v) 22—8z+1=0,
(iii) 22+32+2=0, (vi) 2®—32+3 = 0.
To the naked eye they are very similar, and, indeed, have
been selected to be so. The distinction between them, as
we shall now see, lies in the sets from which the solutions
are drawn, The solutions are:
(i) I: 2; (iV) 2= 1’ _%;
(i) 0, 3; (v) 3(3+4/5), $(3—4/5);
(i) -1, =2;  (vi) 3(3+iy3), $(3—iy3).

These solutions lie in the sets:

(i) M,N,F,Z,Q, R, C; (iv) @, R, C;
(ii) ¥, Z,Q, R, C; (v) R, C;
(iii) Z, Q, R, C; (vi) C.

In other words, if the problem were to find a solution
within the set @, then equations (i), (ii), (iii), (iv) would
be soluble, but equations (v), (vi) would have no solutions;
if a solution were required within Z, then equations (i),
(i), (iii) would be soluble, but (iv), (v), (vi) would have
no solutions.

The possibility of solving an equation thus depends on
the set from which solutions may be drawn.

DIGITAL ARITHMETIC 28

(8. PROPERTIES OF THE NUMBERS IN DIGITAL
ARITHMETIC

We said a little earlier (p. 19) that one or two diffi-
culties in digital arithmetic were ignored in the opening
remarks. Since then, the laws of manipulation have been
clarified, and we can now turn our attention to subtrac-
tion and ‘negative numbers’.

Whatever is done with digital arithmetic must be
accomplished within the set

D={0,1,2,3,4,5,6,78,9},

and this is true of any meaning to be given to the word
‘subtraction’, to which we now proceed.

First consider (relevantly) the basic properties of an
element, if any, to be regarded as zero and (less relevantly
for the moment) of any element to be regarded as unity.

(a) Zero. The essential requirement is that, for ze D
to be a possible zero, then, if ae D is any element what-
ever in D,

a+z=z2+a=a;
in other words, the addition of zero makes no difference,
A quick check reveals that this property belongs to 0 and
to 0 only—as was probably anticipated.

Note incidentally the multiplicative property already
observed, that, if @ is any element of D, then

Oxa=ax0=0.

It is, however, perfectly possible, because of the divisors
of zero, for a product a x b to be zero although neither
factor a, b is so itself.

(b) Unity. The requirement is that, for ze D to be a
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possible unity, then, if ae D is any element whatever
in D,

axz=zxa=a;
in other words, multiplication by unity makes no
difference. Here, again, the unity is quickly obtained as
the expected number 1.

Note. The reader may have felt some impatience at these
checks on zero and unity; but digital arithmetic is not ordinary
arithmetic, and strange things may pass unnoticed if we are
not careful; see p. 37.

(9. We move now to the consideration of negative
numbers. The problem is: given any ae D, to determine
whether there is a number z € D to which we might reason-
ably give the notation —a.

The obvious requirement is that, if possible, z should

be selected so that LT

By the very definition of digital arithmetic, the num-
ber z is obtained from the formula
z=10—a
of or‘-d.ina.ry arithmetic. Thus we interpret
-1, -2, -3, —4, -5, -6, -7, —8, —9
to be the numbers

9,8,7,6,5,4,3,21
of the set D.

The process of subtraction, intuitively ‘obvious’, now
follows. For example, ‘

T—4 = 7+(---4) =T74+6=3,
4-T=44+(-T)=4+3=1,
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and so on. The manipulation of subtraction is, in fact,
just what would be expected.

(10. DivisioN

The interpretation of a process of division is miore
complicated and is perhaps entertaining rather than use-
ful. We take the opportunity to introduce two fresh
symbols:

(i) The symbol »

is used to mean ‘for all’, as in the sentence
Vz, (—«) can be defined.

- (ii) The symbol
q

is used to mean ‘there exist(s)’, as in the sentence
Vz, Hy such that z+y = 0;
or, in even more precise form,
VzeD, UyeD suchthat z+y=0.

Returning to division, the problem is to give a mean-
ing, if possible, to expressions such as

%’ %’ §’ Lk

We begin with £. To have any meaning at all, it must
be expressible as one of the numbers of D: say Hze D
such that juz

By natural extension of the ideas of ordinary arith-
metic, we expect this to be equivalent to the relation

8=ln,
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and substitution of the nine (non-zero) possible values
of x gives x = 9 as the unique solution. Thus we may use
the interpretation 3=9

Consider next the symbol §. We require z such that
1 =22

But this is impossible, since the left-hand side is odd and
the right-hand side even. Hence

JizxeD such that 3} =g;

that is, the symbol } has no meaning.

To illustrate the dangers of unwary walking in digital
arithmetic, consider next the symbol § (which, to our
‘ordinary arithmetic’ eyes looks extremely like ). Here
we require x such that s o

and inspection reveals fwo possible interpretations,
namely « = 3 and = 8. Thus whereas we do not give any
meaning within D to the symbol }, we have two choices,
namely 3 and 8, for the symbol %.

We have here a radical difference between ordinary
arithmetic and digital arithmetic, and the cause is easily
located. Take a slightly more significant example:

If i

then 2 = 2 or # = 7, whereas if
* =z,
then no value of z can be found.

Now the reason why, in ordinary arithmetic, we
equate § with £ is the unique factorisation theorem which
states that any given number N can be resolved uniquely,
apart from order, into prime factors.

DIGITAL ARITHMETIC 27

For example, we have, uniquely,

6=2X3,
8=2x2x2,
2x3 3 §

8
80 that 8= 3x2x2 3x2_4'

For digital arithmetic, however, the argument breaks
down—thereby revealing that the ‘unique factorisation’
of ordinary arithmetic does require proof since the
properties of ordinary numbers must be in some way
bound up with it. In fact, this whole conception of prime
factors needs re-examination for digital arithmetic, as
we shall see almost immediately.

ExaMPLES
1. Verify that, whenever the symbol

2% (aeD, a+0),

has a meaning (in the sense just described) then in each
case its values can be either 3 or 8.

2. Prove that the symbols
i3
have unique interpretations,
3. Verify the relation
I=2+}

by direct computation of each side.
Examine the relation

§=1+%
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It may be helpful at this point to construct the
multiplication table for digital arithmetic (omitting
multiplication by zero):

P .08 Ba6 T 8.9
113.2-8 4 5898 9
2|12 46 8.0 24 6 8
Bl8.,6 9 8 8.8 ¥ 4 17
L e e ML I S e iy

S TR S 60026 -0 D
6,6 2 8 4 0 6 2 8 4
LT C4-1 8 5.8 9 89
8§18 6'4 208 6472
9|19 8 7 6 56 4 3 2 1

This table has several interesting features, to which
we shall draw attention in the next chapters. For the
moment, observe that, if by prime we mean a number
that cannot be expressed as a product of two other
numbers (excluding itself and unity), then there are no
primes in digital arithmetic. For example,

8="Tx9,
0=3X0=0XB=Tx0=9x85,
7=38x9,

Any argument based on prime factors thus does not even
begin, and features of ordinary arithmetic based upon
them may be expected to undergo many variations.

29

CHAPTER II

POLYNOMIALS IN
DIGITAL ARITHMETIC

( 1. We have already seen (p. 18) that quadratic poly-
nomials in digital arithmetic have surprising properties
as regards the number of their zeros. It seems therefore
worth while to look in further detail at some more general
polynomials.

Consider, as an example, the polynomial

425 4 5at + 5a® + 6.
It may be expected to take ten values, one for each
integer in the set
D=1{0,1,2,3,4,5,6,1,8,09}.
What is more unexpected is that its value is always zero,
whatever the value of zeD. In ordinary arithmetic, of

course, for a polynomial of that type to be permanently
zero would be unthinkable.

ExamMPLE

Verify that 425 + 5t + 522 + 62 = 0
for all ze D,

(2. A TABLE oF POWERS

In order to proceed, we form a table giving the first
few powers of x for all non-zero values of ze D.
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@ 2 o a2
1 1 1 1
2 4 8 6 2
3 9 /| 1 3
4 6 4 6 4
5 5 5 5 5
6 6 6 6 6
7 9 3 1 7
8 4 2 ] 8
9 1 9 1 9

The table exhibits the remarkable result that, for all
values of ze D, e

There is therefore no need to consider polynomials of
degree greater than 4, since, for instance,

e x(x“) - a:’,

27 = 28(2®) = 2°,

22 = 2%(2%)% = 24,

(8. DEpucTioNs FROM THE TABLE; RooTs oF
THE INTEGERS
(i) The square root \Ja
Suppose that ae D and that we wish to evaluate its
square root y/a: that is, to find a number y such that

a=14p
The table shows that this cannot be done if a has any of
the values 2, 3, 7, 8. Hence

V2 3, 7, 8
do not exist.

The other numbers (except 5) have two square roots:
41:101'9, J6=401‘6,
Je¢=20r8  ,J9=3or7.

POLYNOMIALS IN DIGITAL ARITHMETIC 81

In each of these four cases, the sum of the roots is zero.
Finally, J6=5

only, there being just the one value.
(i) The cube root Y/ a.
If, similarly, </a = y, then

a=y

and the table shows that each element of D has precisely
one cube root.

The reader who has dealt a little with complex num-
bers, and met w, w?, the ‘cube roots of unity’ in ordinary
complex arithmetic, may like to know where they have
gone here:

If z is any cube root of unity, then

B=1,
or z2-1=0,
or (x—1)(@2+2+1)=0.

Thus # = 1 (the normal solution) or else
22424+1=0,

Now this equation cannot be solved within the set D; for
example, we may write it in the form

2rr==1=9,
so that z(xz+1)=9.

The left-hand side is necessarily even and the right-hand
side is necessarily odd; so there is no solution.
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EXAMPLE
Prove further that the equation
(x=1)(@2+2+1)=0
has no solution arising from divisors of zero.
(iii) 7'he fourth root Y/ a.
Solutions are now very restricted. If '{'/a 7, t.hen
a = y*, so that ¢ can have only the values 1, 6, 5. Then

- Y1=1,3,7,9
and V6 =2,4,6,8.
Finally, Y56=5

only. '
The two sets {1, 3, 7, 9} and {2, 4, 6, 8} will assume
considerable significance later.

(4 Tre PoryNomiaL oFf (1
Let us return to the polynomial
4% 4 bt + 5a* + bz
Since 2% is the same as 2, this is
5a:‘+5x’+(4+6)z = bat + ba?

= Ba®(2+1).
Now 5a®is zero if z is even and 5(2®+ 1) is zero if z is odd.
Hence 4a% + bat + 52 + 6z = 0

for all ze D.

(5. Tae FacrorianL FuNcrioN
In digital arithmetic the factorial function becomes
so simple as to be useless. Thus

Wi=tl Bl=2.81=6, 4l=4
and al=0 (n>4).
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(6. PoLy~xomiaL GrAPHS

With only ten available points for plotting and only
ten available values in any case, the graphs of poly-
nomials are necessarily tenuous. In fact, each graph
consists of precisely ten dots—save that, to complete the
‘picture’, we usually add the value z = 10, giving eleven
in all. The three ‘curves’ y = 22, y = 3, y = 2% are given
below.

| | |
10 10 10
L ] L ] 8 L ] 8
8
L ]
6 el " PP
® ° . °
4_?_ 4 ° &4
2 |—1 2 2
.| @ ® ° o .|
@ o &
02 4 6B 0 246 8 100" 24 6830
ym? y= y==z
Fig. 1
EXAMPLE
Sketch the ‘curves’ for which
22ty =k

when k=0, 5, 7.

3 MGM
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CHAPTER III
THE IDEA OF A GROUP

(1. The multiplication table for digital arithmetic
(p. 28) has several curious features which are worth con-
sidering both for themselves and also for the lead that
they give into ideas of progressively greater abstraction.

Before proceeding to discuss the table in further detail,
however, we introduce one more piece of notation. The

symbol i
is to be read as ‘leads to’, or equivalent, as in the state-
ment =4 = dzx=S8;

the corresponding negation is used as in the statement
Ww=4 $ 4dx=1.
The symbol <

with the arrow-heads pointing both ways is to be read as
‘leads to and arises from’, as in the statement

=7 = z=29,
The negation is illustrated by the statement

=7 < x=8.
ExampPLES

Insert the appropriate symbol =, 4, < in place of ~

in each of the following statements for numbers in
digital arithmetic:

1. 62@+5)=0 ~ z=1.

2. Tx=19 ~ =1

3. =2 ~ =0 or z=1.
4,

22+1=56x+6 ~ z=3.
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(2. PrRoPERTIES OF THE MULTIPLICATION
TABLE

Let us now look at some of the deductions that can be
made by inspection of the table.

(i) If @ is any one of the odd numbers 1, 3, 7, 9, then
the row (or column) headed by it contains all the digits
1,2,...,9, each occurring once precisely. Thus the
relation az=b (beD also)

is satisfied by exactly one value of z, whatever value is
selected for b.

For example, SN

=4 s ln=2
=6 < z=4.

In terms of the earlier remarks about rational fractions,
the symbol b

a

has a unique interpretation within D when «a is one of
the numbers 1, 3, 7, 9.

(ii) If @ is any one of the even numbers, then the row
(or column) headed by it contains zero (corresponding
to 5a) and also the four numbers 2, 4, 6, 8 each taken twice.

Thus the relation - B

has no solution when b is odd, and two solutions when
b is even.
For example (and note the arrows carefully)

=08 = 4dr=4,
but dx=4 $ x=06;
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z=8 => 2= 6,

but 20=6 $ ax=28;
=4 => 8p=19
but 8x=2  z=4.

In each case, the second line of the argument requires

the symbol 4, since another value of z is possible in
addition to the one stated.

(iii) When a = 5, the relation
ax=>b (beD)
has no solution except when b = 5 or 0. (The value b = 0

has been excluded by implication from (i) and (ii).)
When b = 5, the equation

br=25
is satisfied by # = 1,3,5,7,9; when b = 0, the equation
5z =0

is satisfied by z = 0, 2, 4, 6, 8.

(8. Tue EvEN INTEGERS 2, 4, 6, 8 UNDER
DiciTAL MULTIPLICATION
Consider the subset of D formed by the elements
2, 4, 6, 8 taken from it. These elements form a set
E={246,8}

which we may subject to the process of digital multipli-
cation. The multiplication table (the order of the num-
bers being selected for later convenience) is:

¢ 8 2 4
6|6 8 2 4
8|8 4 6 2
22 6 48
414 2 8' 8
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Tt is observed, and is very important for later work, that
each row and each column of the table contains each element
of B once and once only. The four numbers form a closed
entity under digital multiplication.

An unexpected feature is that the set B possesses a
unity, namely the number 6; for

ba =a
for all ae E. This is an excellent example to warn us not
to be led astray by notation or preconceived ideas
(compare p. 24).

(4. Tue Opp INTEGERS 1, 3,7, 9 UNDER
Digirtar MULTIPLICATION

Working similarly with the set
F={1,37179
we have the table
1.8 7 9
B EWE
1S 9E"T
¢ 0 By A LE g
DI e R R |

This set also has a unity, this time the number 1.

The point now to be made is that these two tables are
structurally the same, in that if we form a more general
table

e a. 5. 4
ele a b ¢
ala o e b
b|b e ¢ a
¢c|lec b a e

then the first is the special case
e=6, a=8, b=2, c=4
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and the second is the special case
e=1 =38 b=1T ¢=9.

(5 TuE {¢,a,b ¢} TABLE AGAIN

It is impressive enough that the same multiplication
table should serve two such apparently different uses,
but many other particularisations are possible. We revert
for a few moments to ordinary arithmetic. Take e to be
the ordinary unity 1, and suppose that the four numbers
¢, a, b, c are all different. From the table (withe = 1) we
have, for a use to be possible,

ad=c¢, ab=1, ac=b, b¥=¢, bec=a, 2=1.

Since ¢® = 1 and ¢ # 1 (being different from ¢), it follows
that

c=-1
Hence ad=-1, 2=-1.

In elementary arithmetic, there are no possible values
for a and b; but if we allow the introduction of complex
nuwmbers, then we can take

' a=i (=y(-1)
and b (4 a) is then —1,

[The reader who has not yet met complex numbers will
find it sufficient for the present to accept i as a number
of ordinary algebra to be manipulated in accordance
with the ordinary rules save only that i2 may always be
replaced by —1. For example,

(p +1ig) (p—iq) = p*—(ig)* = p*—(—¢?)

=p*+¢]
If, then, we set

e=1l, a=4% b=—4 e=-1
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we may hope that the multiplication table

|
1 1 3 —% -1
3 T SR
| =-d 1 =T
“1|=1 =% 4§ 1

will be valid; and it is easy to check that this is so.

EXAMPLES

1. Prove that the same form of table as that given in
( 4 is obtained (when e=1,a=2,b=3,c=4) if a
‘product’ xy means the remainder after dividing the
ordinary arithmetical product of z and y by 5.

2. A set consists of the numbers 2, 4, 6, 8. The rule of
‘multiplication’ is that a ‘product’ xy means the units
digit of the ordinary arithmetical product 3zy. Obtain
the multiplication table.

( 6. Since we have touched on complex numbers, it may
be worth while to point out their analogues in digital
arithmetic. We have seen earlier the interpretation

—-1=09,

and so /(— 1) is any number which multiplied (digitally)
by itself gives 9. There are two such numbers, 3 and 7;
s0, noting that their sum is zero, we obtain the interpre-
tations ; -
1= 3, —1="1.

This s, of course, what lies behind the essential identity
of the multiplication tables for the sets {1, 3, 7, 9} and
L4, —i, =1}
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ExampLE

Prove that, under the rules of digital arithmetic, the
set {2, 4, 6, 8} has 6 as unity, 4as‘ — 1’and 2,8as‘\/(— 1),
‘—\(—1)’ respectively.

(7. Tuae InpEA OF A GrROUP
Consider again the general table

a8 G b ¢
ale a b oo
ala ¢ e b
Gephle o llg
.| enbd ogie

This involves four elements, among them the ‘unity’
element e, and sixteen products. It is easy to check that
the products satisfy the associative law for multiplica-
tion: for example,

(ab)e = (e)e = ¢,

a(be) = a(a) = a® = ¢;
and (ba)b = (e)b = b,

b(ab) = b(e) = b;

and so on. So we have four elements whose products satisfy
the associalive law.

Further, each row and each column contains each
element once and once only.

A set of elements subject to a law of combination
(‘multiplication’ in an extended sense of the word)
satisfying the above two conditions is said to form a
group.

We have introduced the idea of a group from this
somewhat pictorial point of view, since that seems to
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show quickly what is involved. In more theoretical
treatments other properties are used for the actual
definition. These will now be obtained, establishing
them from the multiplication table.

First, however, we must remove a possible source of
misconception. This particular group is a commutative
group (also called an Abelian group) in that all pairs of
elements commute for multiplication; for example we
obtain the same answer for a product ab as for its com-
muted form ba. But this need not always be so. To give
‘room for manoeuvre’ we select as an example a more
elaborate group,* of six elements, forming thirty-six
‘products’:

le a b u v w
ele o b u v w
a|la b & w u »
b|b e a v w u
'l v 'w e a b
v|v w u b e a
w|)w u v a b e

It is necessary to explain carefully what is meant here
by the word product. Take, for instance, the symbol wa.
We mean by wa that element which is in the row of w
and the column of a; thus

wae = u.
On the other hand, we mean by aw that element which
is in the row of @ and the column of w; thus
aw = v,
The two products are thus unequal; in other words,
wa £ aw,

* This group will be derived from an argument in elementary
geometry later; see p. 85. There is a slight change of notation.
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and so we must be very careful about the order in which
we write the elements of a product.
For further illustration, the table shows that

w=a, vu=~>b;

uL =V, au=w.

The first of the requirements (p.40) for the six
elements to form a group is that their ‘products’ satisfy
the associative law z(yz) = (xy)z for all , y, 2 in the given
set:

ExamPLES

Verify that the products from these elements do
satisfy the associative law, confining your attention if
you wish to the following examples:

(i) (aw)a = a(ua),
(i) (ab)u = a(bu),
(iii) (uv)w = u(vw),
(iv) (wb)v = w(bv).

Assuming, then, that the associative law has been
established, as in the above examples, note that the six
elements subject to this multiplication table do form a group,
in the sense of the definition of p. 40. The aim now is to
derive through this group the more abstract form of
general definition to which we just referred. The argu-
ment will be based on a particular case, but the reasoning
can be applied to any group with a given multiplication
table.
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(8 FunxpaMENTAL GrROUP PROPERTIES

For definiteness, the following argument, which is
perfectly general in nature, refers throughout to the
group table for the six elements e, a, b, u, v, w described
in (7.

Note first that, if three elements z, y, p are so related that

xp = yYp,

then z and y are the same element. For the column through
p contains the element which is 2p or yp once only, so
that its row is determined. Similarly,

Qo sy e iy
We come now to the basic group properties:
1. The group necessarily has a unily element. By a

unity element, it will be recalled, is meant an element
denoted (without prejudice) by e such that, for all z in

the group, €T = e = @,

Take 2 as a typical element in the group. The column
through « contains all the elements and, in particular,
z itself. Hence g1 f sothat fr=z.

Similar argument from another typical element y leads
to an element g such that
gy=y.
We cannot, without further argument, assume that
fand g will be the same. But
f:c =
= [f(fr) =fx
= (Ne=fo
= Fhwli



44 A GATEWAY TO ABSTRACT MATHEMATICS

and gy =y
= [floy) =Jfy
= (fy=Jy
= fog=/
Hence =19
so that F=g.
Hence Hf, the same for all elements, such that
Je=u=.

Similarly, %, the same for all elements z, such that
zh = z.

We have now to prove that f and & are the same:
Take for z the element k, and for z the element f; thus

fh e ks fh__.f
Hence hi=1

We have therefore established the existence of an
element, which we now call ¢, such that
x=ge=2
for all z of the group.
(The particular group exhibits e at once from the table
as a unity element, but merely to look at one group is
hardly general argument.)

2. For each element z of the group an element y can be
Sfound such that
xYy =yx =e.

The elements z, y are said to be inverse in the group.

It is natural to write 2
=g
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and easy to prove that
fetint =

To prove the main result, the table establishes, for any
given z, the existence of y and z such that

=€ e,

The problem is to prove that y and z are the same.

Now zy=e
= z(zy)=z28=2
= (22)y =2
>ey=2z
T

To recapitulate: a group may be defined abstractly as
a set S of elements subject to a rule of combination, which
we denote by the symbol x, such that

zelS, yeS = xzxyeS,
(xxy)xz=ax(y*xz),
e suchthat axe=exz =z,
Hz! such that (rY)xz=zx(x?) =e,

where z, y, z are arbitrary elements of S.
This is the definition usually used as a starting-point
for a theoretical discussion.

ExaMPLES
1. In the first table of ([ 7, identify

al, bl,cl
2. In the second table of ( 7, identify

a1, by, oL, wt,
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3. Prove that, if z, y are elements of any group 8,

(xy)™ =yl
for multiplication in the order stated.

NOoTE. A final comment may be useful. All the groups to be
considered here have a finite number of elements—four and six
have been met so far. But it is perfectly possible to construct
groups having an infinite number of elements: for example,

the set Lo =8 =S =TI L T8 )}

where the ‘product’ of two numbers @ and b is the ordinary
algebraic sum, so that

—342=-1, 64(—4) =2,

and so on; the ‘unity’ is the number 0 and the ‘inverse’ of an
element a is the number —a.

(9. ANoTHER GrROUP OF S1x ELEMENTS
Take the set of six numbers
1,2,3,4,5,6
and subject them to the rule that the product ab is to
mean the remainder after dividing the ordinary product
axb by 7. The table (where the order selected for the

numbers is adopted for the sake of points to be illustrated
later) is

13 16’8 8
11 248 8 b
2192 4 105ug 8
N G T
6|6 5 31 4 2
3(3 65 4 21
Biusl Y g Yo liiad

ExXAMPLES

1. Prove that these numbers, subject to this rule,
form a group.
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2. Find the inverses of each of the six elements.

3. Prove that the three numbers 1, 2, 4, subject to the
same rule, also form a group; and that the two numbers
1, 6, subject to the same rule, also form a group.

4. Prove that the above group and the other group of
six elements given on p. 41 are quite distinct, in spite of
obvious similarities,

5. The elements of a set are the six numbers 1, v, ?,
—1, —w?, —w, where w (a ‘ cube root of unity’) is subject
to the normal rules of arithmetic save that w?=1
although @ # 1. Prove that these six numbers form,
under multiplication, a group whose table has the same
structure as that just given.
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CHAPTER IV

A GROUP OF ‘PRODUCT’ OPERATIONS
IN GEOMETRY

(1. Tae Ficure
Let A, B, O, D be four points in general position in a
plane; denote by P, @, R the intersections

P =(BC,AD), Q= (CA,BD), R=(AB,CD).

As a complete abstraction, which the reader is advised
not to attempt to visualise, we introduce an identification
point B, which is there simply to have the properties

A

B P &,
Fig. 2
with which we shall shortly endow it. (The beginner

should not allow himself to be put off by this abstraction;
all things will work together for good.)

(2. TaE OPERATIONS

We introduce eight ‘operations’, to be denoted by the

symbols e,p,q,rdab,ec.
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(i) The operation e is quickly disposed of; it is the
identity operation leaving all the points of the configura-
tion unchanged.

(ii) The operations a, b, ¢, d are also fairly simple.
The operation a, for example, interchanges the points on
the lines collinear with A: thusitreplaces B,C, D, P,Q, R
by R, Q, P, D, C, B respectively. This process may con-
veniently be denoted by the symbolism

a(BCDPQR) = (RQPDCB).
Similarly,

b(CADPQR) = (PRQCDA),

¢(ABDPQR) = (QPRBAD,),

d(ABCPQR) = (PQRABC).

(iii) The operations p, ¢, r are a little harder to explain.
Consider first the operation p. By analogy with the
previous cases listed in (ii), it is to interchange B, C and
also 4,D. In addition, it is to interchange @, R as it
would have done if P, Q, R had been a straight line. Thus,
by definition,

p(ABCDQR) = (DCBARQ),
q(ABCDRP) = (CDABPR),
r(ABCDPQ) = (BADCQP).

(iv) In addition, any operator acting on the point
denoted by its own letter will be regarded as inter-
changing that point with the identification point E, for
example, as a matter of definition,

a(4E) = (EA),

and so on.
4 MGM



50 A GATEWAY TO ABSTRACT MATHEMATICS

(8. Tue ‘Propuct’ oF Two OPERATIONS

Suppose that the eight points EPQRDABC are sub-
jected to the operation a; thus

a(EPQRDABC) = (ADCBPERQ).

Subject the new sequence of points
ADCBPERQ

to the operation p; thus

p(ADCBPERQ) = (DABCEPQR).
In obvious sense of the notation,

P{a(EPQRDABC)} = (DABCEPQR),
and it is natural to write the left-hand side in the form
pa(EPQRDABC).

The effect is to act on (EPQRDABC) by an operation
conveniently denoted by the symbol pa. This operation is
called the product of a by p.

Note carefully that the product of p by a is

ap(EPQRDABC)
= a{p(EPQRDABC)}
= a(PERQADCB)
= (DABCEPQR).

The operations pa and ap involve a and p in reverse
orders. In this particular case the results have been the
same, but it need not be so: in this kind of ‘multiplication’
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it must not be assumed that two products uv and vu are

necessarily the same.
As a second example, form the two products ga and ag.

We have
qa(EPQRDABC) = q(ADCBPERQ)

= (CBADRQPE)
and  aq(EPQRDABC) = o(QREPBCDA)
— (CBADRQPE).

(4. THE OPERATIONS AS A CLOSED SYSTEM
Let us return to the formula

pa(EPQRDABC) =(DABCEPQR)
and consider the right-hand side. It is, in fact, identifi-
able quickly as d(EPQRDABC),

so that the effects of the two operations pa and d are the
same. In symbolic language,

pa = ap =d.
Similarly, qa = ag = c.
EXAMPLES
Prove the formulae:

(i) at=e, pt*=e, d:=e.
(ii) be=p, ca=gq, ab=r.
(iii) pd =a, gd=0b, rd=c.
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(5. A‘MurripLicaTtioN TABLE’ oF
OPERATIONS
It will be simpler to write the table down and to
explain it after:

¢ p g r d a b o

ele'pg r d a b o

plp ¢ r ¢ a d ¢ b

¢ 'a oy e phrerdia

r|ir g »p e ¢ b ad

d|d a b c e pgqgr

ala d o b p e r ¢

blbio & o g r & »p

J b otdbs gudi v g ip e

The table is to be interpreted as follows:
To identify a product such as
ap,

find the element in the same row as @ and in the same
column as p: that is, associate row with ¢ and column
with p. (Since all these products are, as it happens, com-
mutative, the insistence on row-and-column distinction
is superfluous; but there are many cases where the dis-
tinction is vital; see p. 41.)

EXAMPLE

Verify that the product of two operations, such as ag,
is found by obtaining the third point (C') on the line 4Q,
giving the operation c. The points P, Q, R are treated as
collinear for this purpose.

(6. THE AssociATIVE Law
The associative law, for example

a(gd) = (ag)d
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follows immediately from the definition of the opera-
tions, each side being in fact the result of operating first
by d, then by ¢, and then by a. The result can also be
verified, somewhat laboriously, from the table:

a(gd) = ab = r,
(aq)d = ed = 1.
EXAMPLES
Verify the relations:
a(be) = (ab)c,
b(rb) = (br)b,
q(pd) = (¢p)d.

(7. Tae GrouP PROPERTY

It follows at once from the discussion on pp. 40-45
that the set of elements subject to the multiplication table
given in ([ 5 forms a group.

(8 A SuBcrour
The top right-hand corner of the table given in ([ 5 is

| P 9

q

e
P

and brief inspection shows that this is a group in its own
right. Such a section of a given group is called a subgroup.

Ty e
L R-ELIE)
R
<
s 2=

ExaAMPLES
1. Prove that the following are also subgroups:

(i) adpe, (i) bpce.
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2. Prove that the following are not subgroups:

(i) dabe, (i) dpgr.

(9. A ComparisoN oF GrouPs

We have now obtained two groups of four elements
each, namely (p. 37)

€8 b e
& |& o b &
gla ¢ & b
b|b e ¢ a
el b b e

and (p. 53)

soiliel .0 g
ele p g r
Pp|pP e T ¢
g|9 r e p
rir g P o

It is natural to ask whether they are in fact the same
group, apart from notation. The answer is immediately
no, since all elements of the second group have their
‘squares’ equal to the unity, whereas there are two
elements of the first whose ‘squares’ are not unity.
Hence the two groups are quite distinct.

(10. ANoruEr Way To THE SAME GROUP OF
Eigar ELEMENTS

A great deal of the interest of the group in chapter mx
arose from the fact that several different approaches led
to the same end. In a similar way, we now give an
entirely different approach to the group of eight elements
considered in this chapter.
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By an ordered triplet we shall mean a set of three
numbers written in the form
(a, b, ¢),
where the order is important so that, in general,
(a, b, ¢) % (b, a, ¢) * (b, ¢, a).
The numbers themselves will be calculated in binary
arithmetic, which is very similar to the digital arithmetic
of chapter 1, save that we require only the operation of
addition. By the sum of two numbers ¢ and b we mean
the remainder on dividing the normal sum a+b by 2.

Thus T+5=0, 9+4=1
In fact, however, only the two elements 0, 1 are required,
and they are subject to the four rules

0+0=0, 0+1=1, 140=1, 1+1=0.

The available triplets, to which we now give names, are
e=(0,0,0), p»=(0,1,1), ¢=(1,0,1), r=(1,1,0),
d=(1,1,1), »=(1,0,0), »=(0,1,0), »=(001).
To combine them, we use the word ‘product’, where, as
a matter of definition, the product of the two elements

z=(a,b,e), y=(mmn)
is to be given by the formula
xy = (a+1, b+m, c+n),
the addition on the right being in accordance with binary
arithmetic as just described.
For example,
pg=(0+1,14+0,1+1)=(1,1,0),
dr=(1+1,1+1,140)= (0,0, 1),
uw = (1+0,0+0,0+1) = (1,0, 1).
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(v) dE, meaning, ‘take the mirror image of E in the
point O’—that is, take the point D such that ED is
bisected by 0;

(vi) uB, meaning, ‘take the mirror image of £ in the
line O1’—that is, take the point U such that EU is
perpendicular to the line O1 and bisected by it;
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ExaMPLES
Find the products:
() pr, (i) qu, (i) pd, (iv) wp.
It is now a simple matter to construct the table:

e

P

w

ggeyg e vaa
Rgegana s
TR e g e g aln
QD Toeyg e |
BoevxagrEgc|e
e % g eg

gegryIaSo
gegRYIay e
e g 2aey

which is identical with that given on p. 52.
Hence the two systems described in this chapter have

identical group structures.

(11. YEr ANotHER WAY TO THE SAME GrOUP
(Note the symmetry of notation used to explain Fig. 3.)
Let 01, 02, 03 be three given mutually perpendicular

lines in space. Denote by «, f, v (Greek letters alpha,

beta, gamma) the three planes, also mutually perpendi-

cular, 023, 031, 012.

Given any point E, we define eight operations:

(i) el, meaning, ‘leave E alone’;

(ii) aF, meaning, ‘take the mirror image of £ in the
plane o’—that is, take the point A such that EA is
perpendicular to the plane « and bisected by it;

(iii) bE, meaning, ‘take the mirror image of # in the
plane f’;

(iv) ¢k, meaning, ‘take the mirror image of £ in the
plane y’;
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Fig. 3

‘ (vii) »E, meaning, ‘take the mirror image of E in the

line 02;
(viii) wF, meaning, ‘take the mirror image of £ in the

line 03°.
In the diagram (Fig. 3) these points are ¥, 4, B, C, D,

U, V, W respectively.
We now require a meaning for the product of two or

more of these operations.
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Consider, for example, the meaning to be given to the

symbol ubE.

To make sense at all, this must be
u(bE),

or ulBB;

and this, by (vi) above, is the mirror image of the point B
in the line O1. The diagram shows this to be the point C.

Hence wbE = C = ¢k,
so that ub =c¢
Again, acE = a(cE) = aC,
which is the mirror image of C in the plane «; so that
aC =V =vE,
giving the relation ac =v.
As a final example,
vull = v(uB) = vU
=W
= wh,
so that U = W.
EXAMPLES
1. Verify that the products satisfy the following
table:
e u v wda b e
e le w. v d o b o
w4 8 w v g 4 ¢ D
vii'e e "w B pF s
et noaseedilt el B gLl
d|d a b ¢ e u v w
gla d ¢ b u e w v
b|ld ¢ d a v w e u
ele b a d wiw @ e
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2. Verify that these operations form a group identical
in structure with those given on pp. 52 and 56.

3. Verify that a set of elements e, a, b, ¢ satisfying
any ‘multiplication table’

e a b ¢
T e &0
ale ¢ b o
Bl & dr #
e|lb a & e

cannot form a group, there being no unity element and
the associative law not being obeyed.
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D (p. 53)
8 ik 08¢0
CHAPTER V " AT E T
b
GROUPS WITHIN GROUPS y |t
e lo ol e
We have now advanced some distance in abstraction. E (p. 41)
The next two chapters will give a gentle introduction to si@ b s ovnw
some standard results that follow fairly naturally, pre- LS R
saﬂtﬁd here ﬁ'om a more l i ays » i ' a a b e w u v
or less intuitive point of view. b b e aiv w u
% |uw v wie a b
b
(1. Tae Grouprs DISPLAYED :Jo :: 3 : a ; :
We gather together, with occasional changes of nota- F (p. 46)
tion or of the order in which elements are written, the i i s S0
groups that we have already met (including some ‘sub- LIl S
”n. ala b e iw u v
groups’): b|b ¢ aiv w u
A (p. 47) u|u w vie b a
e a v|v u wib a e
ele a w|lw v u:a e b
j a e @ (p. 52)
B (p. 47) e a b ¢ d u v w
e a b e|le aid eid uiv w
“&le o b ala eic b ud wow
ala b e b|lb cie a.v wi.d u
b|b e a ¢cle bia e iw v iu d
d|ld uiv wie a b ¢
C (p. 37). The meaning of the dotted lines in the : : - :’ : : : Z z
: y Z
following tables will appear later. w|lw viu dic bia e

.0 (2. Grours oF Two orR THREE ELEMENTS
: ; : : : Here, as always throughout this chapter, we use the
515 6 1a s symbol e for the unity element. We have seen (p. 43) that
clec bie a every group must have a unity.
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Consider first a group of two elements, ¢ and a. The
group table necessarily starts in the form

™

———

a

I~

€
a

The only uncertain product is indicated by a dot; it
must, in fact, be e, for the elements in rows (or columns)
must be distinet.

Hence the only table for a group of two elements is

®
|

[P—

)
o Q

€

a

Corollary. The element a satisfies the relation
a®=e.

Consider next a group of three elements e, a, b. The
table begins

| a

a

b
b

Q'ﬁl‘l
R e|le

The second row can thus be, in the first place, either
a, e, bor a, b, e. The former is, however, impossible, since
under it the third column would have two elements b.
The whole table is now determined, so that the only table
Jor a group of three elements is

cR o
e cala
a8 o oo

o l"l
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Corollary. The elements a, b satisfy the relations

at="b, b®=a.

EXAMPLES

1. Prove that SE gy

al=b, bl=a,
where a1, b-! are the inverses (p. 44) of a, b.
2. Establish for group C the relations
bi=e, ct=c.

(3. SuBcrouPs
In order to examine the structure of a given group,
one obvious starting-point is to consider whether there
are within the group any subgroups: sets of elements,
that is, within the group which, under the given rule for
group multiplication, have by themselves all the pro-
perties of a group.
Examples, some of which have been met already, are:
fe,a} in C;
{e,a} in D;
{e, a, b}, {e, u}, {e, v}, {e, w} in E;
fe,a, b}, {e,u} in F.
Note that, just as a given group must contain a unity
element, so the unity e must be a member of every subgroup.

ExXAMPLE

Verify that if z is any element of a given group, then
its inverse 2~ in that group is a member of every sub-
group containing .
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(4 Cosers
Once a subgroup has been selected within a given
group, an obvious question to ask is what features there
are for the products that arise when elements of the sub-
group are multiplied by the elements of the whole group.
Consider two examples:
(i) In group E, select the subgroup {e,a,b}. Then, in
obvious notation: _
{e,a,b}e = {e? ae, be} = {e, a, b},
{e,a,bla = {ea, a® ba} = {a, b, ¢},
{e,a,b}b = {eb, ab, b*} = {b, e, a},
{e,a, blu = {ew, au, bu} = {u,w, v},
{e,a,b}v = {ev, av, bv} = {v,u, w},
{e, a, b}w = {ew, aw, bw} = {w, v, u}.
(i) In group @, select the subgroup {e,c}. Then
(expressed more briefly):
' fe,cle ={e, ¢}, {e,c}d ={d, w},
{e,cla = {a,b}, {e,clu = {u, v},
{e,c}b = {b,a}, {e,c}v = {v, u},
e, cle={c, e}, {e,clw={w,d}.
The resulting ‘product’ sets divide themselves exclu-
sively into classes. In (i), the classes are
; {e,a,b}; {u,v,w};
in (ii), the classes are

fe,c}, {a,b}, {d,w}, {u,}.

These sets are-called the cosels arising from the given
subgroups.
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EXAMPLES

1. Prove that, in C, the cosets arising from the sub-
group {e,a} are {e,a}, {b,c}.

2. Prove that, in F, the cosets arising from the sub-
group {e, u} are {e, u}, {a, w}, {b,v}.

3. Prove that, in @, the cosets arising from the sub-
group {e,a,b,c} are {e,a,b, ¢}, {d, %, v,w}.

(5. SomE SpEcIAL FEATURES OF THE GROUPS
) oves G

The features which follow are common to many groups
but not to all. Our immediate aim is to illustrate the way
in which from a given group we may be able to obtain
groups within it of even greater abstraction.

Let us begin with the group C. The table (p. 60) is
exhibited as divided into four blocks, of which two con-
tain the elements ¢, @ and two the elements b, ¢. Write
the sets {¢, a}, {b,c} in the form:

H={e,a}, K={b,c},

where H, K are the cosets arising from the subgroup H.

Observe now that

(i) if two elements of H are multiplied, the result is
an H;

(ii) if an element of H is multiplied by an element of K
(in that order), the result is a K;

(iii) if an element of K is multiplied by an element of
H (in that order), the result is a K;

(iv) if two elements of K are multiplied, the result is
an H.

5 MGM
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These results may be summarised by means of the
table:
o OO 6
"l " K
o o
where, for example, the product KH means precisely
the operation described in (iii), yielding the answer K.
We thus have a group of cosets.

EXAMPLES

Repeat the argument to obtain the same ‘multiplica-
tion table’ from D, E, F and G, where, in the latter case,
only the ‘central’ dividing lines are used.

From our given groups we have therefore succeeded in
deriving other groups by an exceedingly abstract defini-
tion of the ‘products’. The resulting group, having just
the two elements H, K, is (([ 2) necessarily of the form of
group 4, as is immediately clear.

A concrete representation of H, K in a particular geo-
metrical setting is given in the next chapter.

ExaMPLE
Verify that the above products for H, K do in fact
satisfy the associative law essential (p. 40) for a group.
We pass on to the group @, considering now the full
subdivision into sixteen ‘squares’. Write
H={ae, K={,c, L={du}, M={u}
the cosets arising from the subgroup H. We define pro-

ducts by exact analogy with the simpler case just dis-
cussed. To give three examples in illustration:
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(i) K x K = the set (if any) whose elements consist of
the product of one K by another K

={bxb,bxec,cxb,exc}

={e,a,a,e¢},
and this is just the set H, the repetitions being irrelevant.
Hence KxK =H.
(ii) L x M = the set (if any) whose elements consist of

the product of one L by one M,

= {dv, dw, wv, uw}

= {b, ¢, ¢, b}

= K.

(iii) M x H = the set (if any) whose elements consist
of the product of one M by one H

= {va, ve, wa, we}

= {w, v, v, w}
=M.
Proceeding in this way, we obtain the table

B B M

T K LM

ElE H M L

E B M H YK

M|M L K H

which we recognise as identical in structure with table D.
Once again we have a group of cosets.

ExaMPLE
Verify that the sets H, K, L, M subject to the present
rule of ‘multiplication’ satisfy all the conditions for a

group.
5-2
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(6. A REMARK ON SUBGROUPS
1t is readily observed that C, D, @ all have as a ‘sub-
group’ the group described as 4. But it is important to
realise, as remarked before (compare p. 59), that the sets
~{b,¢} in C,
{b,¢} in D,
{b,¢}, {d,u}, {v,w} in @
are not subgroups: they cannot have the features of a
group since they do not possess a unity element.
In the same way, {e,a,b}

is a subgroup of F and F, but

{u, v, w}
s not; and {e,a,b,c}
is a subgroup of G, but
{d, u, v, w}

8 not,

(7. As we implied (p. 65) the work given in ([ 5 needs
care in application. We give, in fact, a group for which
modification is necessary before the calculations can be
applied:

A NEw Grour ofF Eicur ELEMENTS

Suppose that (z, %) is a number-pair consisting of two
numbers @, y in an assigned order. We apply first a group
(as it will be seen to be) of four ‘transformations’, which
give to the two elements the four possible choices of sign:

e(, y) = (x,9), b(x: Y) = (=, -Y)
a(z,y) = (—-’c,?})» o(z,y) = (—2, —y).
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Following earlier precedent (p. 50), a product such as
ab is defined by the rule
ab(z,y) = a{b(z,y)}
= a(z, —y)
= (-2, -Y)

the operation a changing the sign of the first element
while leaving the second (in this case —¥) unchanged.

Thus ab(z,y) = c(x,y),
so that ab = c.
Chaaehy ca(z,y) = cfa(x,y)}
=¢(—2,9)
= (2, —¥)
= b(z,9),
so that ca = b.

Proceeding in this way we have the table
|

oocRp®

ccgoele
oo e RN
aoo oo
epoolo

showing that the four operations, with this rule for
forming ‘products’, constitute a group (compare p. 61).

We now add four further operations obtained from the
preceding by interchanging the two elements; thus we

bt k(xs y) = (¥, x)! v(, y) = (y, -2),
u(@,y) = (-,2), w@y)=(-y —2).
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The products are perhaps a little more awkward to
calculate. We give three typical examples:

(i) au(z,y) = afu(z,y)}
= a(-y,%)
= (¥,%)
= I(z,y),

so that auw = h.

(if) ua(z, y) = wfa(x,y)}
= u(—2,y)
=(-y, -2),

since the operation u is the instruction, ‘interchange the
elements and change the sign of the new first’. Thus

ua(z,y) = w(z,y),

so that wi = w.

Note that in this case the two products aw and ua are

different. The order of the operations is of vital import-
ance,

(iii) v}(2,y) = v{v(z, y)}
= (Y, —2)
= (-2, -y),
= c(,y),
so that =g,
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Proceeding similarly for other products, we have the
table

¢ & b o K u v w
gle a b ecih u © w
g|la e ¢ biu h w o
by e ¢ al'fe il n
cle b a e iw v u h
Alk o o wi's & a6
ul|lu w h via ¢ e b
v|lv B w uib e ¢ a
w|w w v hie a b e

where, for example, a product
U

is obtained as the element in the row through » and the
column through a.

ExAMPLES

1. Verify the above table.

2. Prove that the eight elements subject to these rules
do form a group.

We may now follow the procedure given in (5 (p. 65),
taking the subgroup {¢, @, b, ¢} and setting

H = {e,a,b,¢}, K = {h,u,v,w}.

The table is
Tk H K
H|H K
ElK H
as before.

But if we seek further division on the pattern of p. 66,
with four sections of two rows each crossed by four
sections of two columns each, then the subsequent calcula-
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tion does not work. If, for instance, we take the cosets of
{e,a} and put

H={e,a}, K={be}, L={hul, M={vuw}
we can indeed give meaning to the eight products

HxH, HxK, HxL, HxM,
KxH) ExkK, "KxbL ExM,

but the other eight products do not exist:

For example, to form

LxK,
or {h, u} x {v, w}
we need the set of products

{hv, haw, wv, ww},
or ’ {a,c,e, b},

which is not one of H, K, L, M. The subgroup {e, a} thus
does not give rise to a ‘derived’ group of the four
elements H, K, L, M.

On the other hand, it is possible to obtain a ‘derived’
group of four members by rearranging the order of the
given elements with respect to the subgroup {e, c}:

_ | K o @ b
e|le ¢ciu vih wia b
e csieuwh_ﬁba
u|lu viec eia biw h
viv uie ¢cib aih w
hlh w!d oije civ u
w_wkab c e ju v
a|la b hwuv!;sc
b|b aiw hiv uic e
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Starting from the subgroup {e, ¢} and writing
H={ec}, K={uv}, L={hw), M={ab}

we can obtain the group
|H K L M
H1E K L M
KPR CHE ML
L Wi o M S e B
M|M L K H

But this group is based on {e, ¢} and not on {e,a}.

ExAMPLE
Verify the table of products for H, K, L, M and check
that the elements do form a group.

([ 8. Itisnotouraim* to get involved with the technical
abstractions of group theory; the reader, however, will
naturally wonder why the procedure just outlined gives
groups in some cases but not in others, A break-down of
the group structure will help to make this clearer, begin-
ning with an example where the procedure has been seen
to be successful.

Consider the group @ (p. 61) and select from it any
subgroup. Here, we choose, of course, the one adopted in
the earlier calculation, namely

H = {e,a}.
The first step is to multiply these two elements by each

* And, indeed, the reader may omit the remainder of this section
if preferred.
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member of the group in turn. In detail, calculations of
the cosets give:

He = {e,a}e = {ee,ae} = {e, a},
Ha = {¢,a}a = {ea,aa} = {a, e},
Hb = {e,a}b = {eb,ab} = {b, ¢},
He = {e,a}e = {ec,ac} = {c, b},
Hd = {e,a}d = {ed,ad} ={d, u},
Hu = {e,a}u = {eu,au} = {u,d},
Hv = {e,a}v = {ev,av} = {o,w},
Huw = {e,a}w = {ew, aw} = {w, v},
and so the cosets arising from {e, a} are (compare p. 66)
H={ea}, K={b¢c}, L={du}, M={vuw).
We have at once the formulae
HxH=H, HxK=K, HxL=L, HxM=M
already used; the analogous four
HxH=H, KxH=K, LxH=L MxH=M

follow similarly.

The four elements H, K, L, M have thus arisen in a
natural manner from a systematic calculation, and the
first row and the first column of the new group table are
verified:

M

| L
e & BT

K
K

Rty bl

H
K
L

M

At this stage of the argument we pause for a while.
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The next step is to make (with greater brevity of expo-
sition) the similar calculation with the ‘unsuccessful’
group tabulated on p. 72, starting with the subgroup
H = {e,a}.
Then He = {e,a}, Hh = {h,u},
Ha = {a,e}, Hu={u,h},
Hb = {b,¢}, Hv={v,w}
He = {e,b}, Hw = {w,v}.
We find again the cosets
H={a}, K={,c}, L={hul, M={puw),
and the results seem similar so far—the cosets of H are
identical to the eye.

In order to trace the trouble to its source, we now
proceed (still in the ‘unsuccessful’ case) to examine the

product LxK.
This consists of the products obtainable from the cosets

{h,u}, {b,c}

and so consists, in the first instance, of the four elements
{hb, ke, ub, uc}.

For the ‘multiplication’ to have a meaning, these four
elements must in fact consist of fwo only, namely the
elements of one or other of the cosets H, K, L, M. Now
we cannot have kb = ke, since k is not the unity, nor
hb = ub, since b is not the unity; hence we require, for
‘success’ kb = uc

and, similarly, he = ub.
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Consider, say, the first of these relations. We are
basing the whole division of the given group upon the
subgroup {¢,a} and its cosets, so it seems natural to
begin by expressing some or all of the elements %, b, %, ¢
in terms of a. Now from the table (p. 71), we have the

relations h=au, c=ab,
so that hb = uc

= aub = ual

= au = ua.

In other words, the expression of the elements of the
‘product’ L x K in terms of one or other of H, K, L, M
requires that the element w commules with a.

ExaMpPLES
1. Prove similarly the requirement
ah = ha.

2. Prove, by considering other products, that, for the
complete table with H, K, L, M to exist, it is necessary
that, for all # in the given group,

ar = xa.

3. By consulting the table on p. 71, deduce that, in the
‘unsuccessful’ case, the elements H, K, L, M certainly
cannot form a group.

The upshot of the preceding work is that, for
H,K,L M
to form a group, it is necessary that

ar = xa
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for all z in the given group. There is another way of
expressing this: if 2~ is the inverse (p. 44) of z, so that

2z )= (xV)z =e¢,

then ar = xa
= g laz = 7Y (za)
= (z7'z)a

= ea

= a.

That is, the element a of a * successful’ subgroup (0-11 which
to base the subdivision of the given group) satisfies the
relation rlax =a

for all z in the given growp. Thus the element a is unaltered
if multiplied before by x—* and behind by x  If it is altered,
the caleulation will not work.

( 9. Suppose now that, conversely, there is an element a
with this property, that

zlax = a
for all 2. Then we can prove that the sets calculated from
{e, a} as on p. 74 do form a group. Take, for example, the
two sets formed from elements 2,y of the given group.
The two sets are (compare p. 74)

{e,a}z = {ex, ax} = {x, ax}

and {e.aly = {ey, ay} = {y. ay}-
Call these X, Y respectively. Then, by definition,
Xn¥

is the set whose elements are
{xy, way, axy, avay}.
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Now zlhax=a
= ar = ra
= QXY = 2ay,
so that the elements azy and zay are the same. Further,
rlax=a
= az = 2a

= a®r = axa;
but (p. 73), the whole calculation is based on the assump-
tion that {e, a} is a subgroup and therefore a group of two
elements only, and there is thus a relation

at=e.
Hence x = aza,
so that xy = azay,

and the two elements zy and axay are therefore the same.
The product X x Y thus consists of the two elements
{2y, axy}
| = {e,a}ay,
derived from {e, a} on multiplication by that element of

the given group which is the product of z, .
We examine, finally, all the sets of the form

{e,a}z
for all  in the given group. They are equal in pairs, since
the sets {¢,a}x and {e, a}ax are the same, namely

{e,a}x = {x,ax}
and {e, a}ax = {ax, a®}

= {ax,z} (a®=e).
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They can therefore be grouped after the pattern
X = {e,a}z = {e,a}ax,
Y = {e,a}y = {e,a}ay,
Z = {e,a}z = {e,a}az,

and so on. By what we have just done, these sets may
be subjected to the ‘rule of multiplication’

X xY = {e,a}ay,

which is clearly defined.
Now the set {X, ¥, Z, ...} under this rule has a ‘unity’

{e,ale;
and each element such as

{e,a}x
has an inverse fe,a}z1.

Subject only to confirmation of the associative law (p. 40)
the elements therefore form a group; and the rule
([{e, a}x] x [{e, a}y]) x [{e, a}z]
= [{e, a}a] x ([{e, a}y] x [{e, a}z])
is an automatic consequence of the rule for ‘multiplica-
tion’ together with the associative law

(xy)z = x(y2)
for the given group.

The elements X, ¥, Z, ... therefore belong to a group.

( 10. The argument of (( 8, 9 has been cast into that
particular form so as to exhibit how the expression

zlax
must arise in order for the theory to develop. The case
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when the subgroup, instead of two elements such as {e, a},
consists of four elements such as {¢, @, b, ¢} is more diffi-
cult, though the general principles are similar. A text-
book on group theory should be consulted.

ExaMPLES
1. Prove for the form of group table given on p. 72

that the element ¢ of the subgroup {e,c} satisfies the
relation zlex =¢

for all z in the given group.

2. Prove that, if the given group is commutative
(p. 41), then the rule ‘z~lax = a’ always holds.

( 11. The point that we have reached, then, is that,
with care, it may be possible from a given group to select
one of its subgroups and then to define a new group by
means of a definition of ‘multiplication’ involving con-
siderable abstraction.

The chapter which follows gives geometrical flesh to
some of these very abstract ideas.
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CHAPTER VI
GROUP STRUCTURE ON A CIRCLE

I. A Grour oF S1x PoINTs
( 1. Given a straight line », divide the ‘straight angle’
defined by it at any one of its points into three equal
parts by the lines », w (Fig. 4). The three directions u, v, w
are to be the basic directions for subsequent work.

B vV

w v

Fig. 4

In the plane of these lines, let a circle be given and take
an arbitrary point & upon it. Five further points U, 4,
V, B, W are constructed successively on the circle by
means of the following operations:

(i) the line through E parallel to  cuts the circle again
inU;

(ii) the line through U parallel to » cuts the circle
again in 4;

6 MGM
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(iii) the line through A parallel to w cuts the circle
again in V;

(iv) the line through ¥V parallel to u cuts the circle
again in B;

(v) the line through B parallel to » cuts the circle
again in W.

(Since all the actual geometry is simple, we shall often
carry the argument forward by means of Examples for
the reader.)

ExaMPLE
Prove that, as a consequence of the preceding work:
(i) WE || w;
(i) WA||u, EV|v, UB|w.

In other words, the nine lines in the diagram fall into
three sets of three each, in the directions of u, v, w.

(2. NoraTiON

Denote now by u, v, w the three operations of obtaining
from any given point on the circle the second intersection
(with the circle) of the line through that point parallel to
the lines u, », w respectively. Then the notation such as
uB will be used to denote the result of operating on B
by u; thus aB =V
In the same way, Vol wp el

The symbolism of ‘products’ follows naturally. Since
uB=U, oU=A,
we write v(uE) = 4,
or vull = A,
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That is, the operation denoted by vu consists of (i) acting
on E by u, giving U; and then (ii) acting on the point so
obtained by v, giving 4.
Note that uwvl = u(vE)
=uV
=B,

so that the products uv, vu are different
These ‘products’ may be extended. For example,

wowlU = w(wlU)

= wB
= u(vB)
=uW
= 4;

and vwud = vw(ud)
= vwW
= v(wW)
= oE
= V.

It is important to note that the ‘products’ obey the
associative law (p. 14).

ExAaMPLE
Verify the equivalence of the operations

(uw)v = u(ww),

(vu)w = v(uw).
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(8. REraTiONsS BETWEEN THE OPERATIONS

(i) We define first the identity operator e which has no
effect upon the point on which it operates; thus, for

example, eB=E, eV="V.

(ii) Suppose next that P is any one of the points
E, A, B,U, V, W. Then, on operating by u, we have the

relation uP = Q,

say, where @ is that one of the six points for which
PQ||u. It follows that

uQ = P,

so that w(uP) = P,

or WP = eP

for all P. Hence the operator w satisfies the relation
ut=e,

Similarly vi=e wi=e.

We therefore have three fundamental identities
ul=e, vi=e, wl=e.

(iii) We have seen that the ‘ product’ operators uv, vu
are different. What is perhaps more surprising is that the
six operators obtained as products vw, wu, uv, we, ww, vu
can be grouped into two classes of three:

vwk = v(wE) = vW = B,

wull = w(ulk) = wU = B,

wl = u(vE) =uV = B.
Thus VW = WU = U,

and, similarly, WY = YW = VL.
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It becomes natural to define new operators @, b by the
relations

m=wu=u‘!}=b,

WY = UWw = U = Q@.
For example,

b2 = (vw) (wu) = v(w?)u = vu = a,
ba = (vw) (wv) = v(w?)v = v® =e¢,

bu = (wu)u = w(u?) = w.

(4 Tue ‘Propucts’ TABLE

With the help of the three examples at the end of ( 3,
and similar results, a table of ‘products’ may now be
constructed. A ‘product’ such as

ab=c¢e

is denoted by placing e in the row through a and the
column through b. The table is:

e b a u v w
ele D @& 6w © w
b|l|b @ e w u v
alo 8 & v wun
u|lu v we b a
v|v w u a e b
w|lw u v b a e

This table shows that the six points on the circle form
a group under these six operations.

(5 Tue Sets H, K oF CuHAPTER V IDENTIFIED
The table obtained in ([ 4 is identical (apart from an
interchange of the names a, b) with that given on p. 61.
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Further, the analysis of structure on p. 64 divided the
group into the two cosets

H = {e,a,b}, a subgroup,
and K = {u,v,w}.

This division receives pictorial emphasis here by the
division into the two triangles EAB and UV W, each of
which is, in fact, equilateral. The splitting of the set of
six elements on p. 64 into two sets of three is the same
as the division of the hexagon EUAVBW into the two
triangles EAB, UVW.

ExXAMPLE

Prove that the analogous division into sets starting
from the subgroups {e, u}, {e, v}, {e, w} respectively gives
precisely the three sets of parallel lines shown in the
diagram (Fig. 4).

II. A Grovur or Erear ELEMENTS

A closely analogous treatment may be applied to obtain
a group of eight points on a circle. The notation is chosen
so as to tempt the reader to obtain further generalisations
for himself. (See the Examples at the end.)

( 6. Wearenow given a straight line », and the resulting
straight angle is divided into equal quarters by the lines
Uy, Us, Ug.

In the plane of the lines a circle is given and an
arbitrary point £ upon it. Points U, 4,, U, 4, U,
4,, U, are defined exactly as before by means of lines
parallel to w,, uy, ug, ug, %,, %y, %y in turn. The basic
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results for further work are set as examples for the reader
to solve:

ExAMPLES
Frove that () U,E|u;
(i) U,d,|d4,0]w,,
Uy 45| EU, || uy,
U, 45| BU 5| uy,
U, 44| EU,| u,.

U 4,

ats

E= A4, A "

Fig. 5

In other words, the sizteen lines in Fig. 5 fall into four
sets of four each, in the directions of u,, uy, Ug, ,.

(7. Tae OpErATIONS AND THEIR PRODUCTS
By strict analogy with the proceeding case, we define
four operators u,, u,, ug, u, having, as before, the basic

lations
- w=ui=ud=ui=e,

where e is the identity operator.
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Note, in particular, that, in virtue of the parallelisms
just found (Example (ii) above), the four points Uy, Uy, Uy,
U, are obtained from Z by the relations

O=uhB, U=uk,
U =wE, Uy=ukE.

The derivation of 4,, 4,4, 4, from E is less immediate,
and products of operators are involved.

Consider, for example, the point 4,. It can be reached
from E by four relevant paths:

EU, A,, EU,A,, EU,A, EUA,.
Now, taking the path EU, 4,, we have
4y =w U, U=uB,
so that A, = wu, E.
Proceeding in this way, and expressing 4, in terms of £
by the notation A uls

we obtain the formulae

Ug¥y = UglUy = UgUg = Uy Uy = Ay;
and, similarly,

Uglhy = Uglp = Uy Uy = UgUy = G,

UgUy = Uy Up = UgUy = UglUy = Gy,
We therefore have a set of eight operators:

€, as; aa: a‘: u]_: “23 ‘H.s, u‘i'
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ExaMPLES
1. Prove that the eight operators can all be expressed
in terms of e, a,, %, in the form
ag = G%, ay = ag;
Uy = Gytty, Ug =GRy, Uy = Y2
2. Establish the following ‘multiplication table’:

e Gy Gy Gy Uy Uy Uy Uy
€ | e ay Gy G U Uy Uy Uy
Gy |Gy Gy @y € Uy Uy Uy Uy
Ay |Gy Qg € Gy Uy Uy Uy Uy
ay |Gy € Gy Gy Uy U Uy Uy
Uy | Uy Uy Uy Uy € Gy G Gy
Uy | Ug Uy Uy Uy Gy € Gy Gy
Us | Uy Uy Uy Uy Gy Gy € Oy
Ug | Uy Uy Uy Uy Gy Gy Gy €.

(The table establishes the eight operations as forming
a group; it is known as the dikedral group.)

If, following the pattern of chapter v, we split the
group into the two cosets from the subgroup {e, a,, a,, a,},
we obtain the pair

H = {e, a5, a5, a}
and K = {uy, ug, ug, uy}.
Now the product of an H by an H isalwaysan H, of an H
by a K is always a K, and so on. This leads to the table
H K

H|H K
KR E
and the two subdivisions correspond pictorially to the
squares FA4,A4,4, and U, U,U, U, in Fig. 5.
This group is, in fact, identical in structure with that
of eight elements given on p. 71, but the notation tends
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to cloud the issue. In order to make the correspondence
clearer, we may re-write the present table in the form:

€ Uy Uy Gy Uy Gy ay U
e | & U U G U G G, U
Uy | Uy € Gy Uy Gy Uy Uy Gy
U | B Gy O Uy Gy s U Gy
@y | Gy Uy Uy € Uy G Q3 Uy
h |th 8 G U & U U &
Gy | Gy Uy Uy Gy Uy Gy € Uy
Ay | By Uy Uy Gy Uy € Gy Uy
Ug | Ug Gy Ay Uy Gz Uy Uy €

The reconciliation with p. 71 is given by the relations
e=e a=1u, b=wu, c=a,
h=w, u=a, v=a, w=u,
Corresponding to the cosets (p. 71)
H = {e,a,b,¢}, K={huvw
we now have
{e, uy, ug, a3}, {uy, 05,0, Us},
giving the vertices
{B,U,, Up 43}, {U1, 45,4, Ug}
of the rectangles EU, 4, U, and U, 4,U, A4,.
We also obtained (p. 72) a subgroup H = {e, ¢}, starting
from which there were four cosets
H={ec}, K={u,v}, L={hw), M={ab)
which formed a proper multiplication table. The cosets
here are = fe,a, K ={anag,
L = {uy, ug), M = {ug,ug},
giving the four diameters

E-As: ASIAGS Ul Us: Usq
of the circle.
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EXAMPLES
1. Starting from five lines u,, u,, ug, u,, u; obtain
similarly a figure of ten vertices E, U,, 4y, U,, 4, U,
A,, Uy, Ag, U on a circle. Prove that, for example,
EU,| 4, T5|| 45T, || A, Ts | 45T

Taking the identity operator e as before, obtain a group
by establishing the existence of the following relations:
Uty = Uglhy = UgUg = UsUy = Uy Us = Ay,

UgUy = UgUg = Ugly = Uy Uy = U U = Gy,

UgUy = Ugly = U Uy = UgUq = Ul = d,

UglUy = Uy Uy = UpUg = UgUy = UgUs = Uy,

Give the group table, and examine cosets.

2. Attempt to generalise these results to groups of
2n elements.

3. A, A,4,A4,4, is a regular plane pentagon. Rota-
tion through an angle 7 in its plane about its centre is
an operation denoted by the symbol w. Verify that the
five operations denoted (in obvious notation) by e, w, w®*
w3, v all leave the pentagon as a whole unaltered, though
vertices are interchanged. Prove that w® = ¢, and estab-
lish that the five operations form a group.

A further operation « is defined by ‘turning the
pentagon over’ about the diameter through 4,. Prove

that, once again, the pentagon as a whole is unaltered.
Verify that the ten operations

e, 0, w?, W, wh, o, wa, wie, Wi, win

form a group essentially the same as that obtained in
Example 1.
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4. Generalise this also to obtain groups of 2 elements.

REMARKS. The interpretation implied in Example 3 is the one
usually adopted for this sequence of groups. There does, how-
ever, seem to be entertainment value in relating it also to the
configurations obtained by argument from very elementary
Euclidean geometry. The production of such instances from
work that is essentially familiar is one of the main themes of
this book.

CHAPTER VII

AN ABSTRACT STRUCTURE
FOR ANGLES

The purpose of this chapter is to familiarise the reader
with the idea that standard notation, and processes
associated with that notation, can be extended far
beyond its ordinary uses, provided that a clearly defined
meaning is provided at each stage. The actual mathe-
matical knowledge required is very elementary.

([ 1. We are concerned with lines and the angles between
them. For reference, lines will be named in italics,

' [ A T T
and so on.
c b

£ %

([ 2. A symbol such as ab

will denote the angle turned through in the counter-
clockwise semse by a line starting at position ¢ and
reaching for the first time the position .

The diagram (Fig. 6) shows in illustration the three
angles be, ca, ab.
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Each angle defined in this way (‘reaching for the first
time the position b’) is necessarily less than 180°, or, in
radian measure which we shall always adopt,

ab < m.

The angle between two parallel lines, including as a
special case ‘the angle between a line and itself’ will be
regarded as zero, since no turning is required. Thus

ulr < w=0;

and, always, uu = 0.

v
Fig. 7 Fig. 8

The symbol Lab

is used naturally for the angle from a to b in the clockwise
sense. It is then automatic that

—ab = ba.
Thus the order in which the letters are writlen is very
important.
([ 3. The sum il be

of two angles ab, bc with a common ‘arm’ b is in fact

equal to the angle -
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since it is the turning from a to b followed by the turning
from b on to ¢. Thus we have the algebraic theorem
ab+be = ac.

For lines positioned as in Fig. 9, this result is merely a
statement in algebraic form of the fact that the exterior
angle of a triangle is equal to the sum of the two interior
opposite angles—but counterclockwise sense is now vital,

c b

ab ac

/

a8

Fig. 9

By making ¢ coincide with «, as it may, we have the

result ab+ba =0,
This result, taken with the formula
—ab = ba

at the end of (| 2, shows that angles may be manipulated
for summation by following the rules of ordinary algebra.

s ab+ba = 0<>ab = —ba.
Simple extension of the preceding work yields the
formulae ab+bcted+ ... +uw = av,
ab+be+ed+...+ua =0,
governing larger numbers of angles.
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Note, in particular, that, if a, b, ¢ are the sides of a
triangle, then ab+be+ca = 0;

that is, the sum of the angles is zero when all are taken
in the counterclockwise sense of the symbols ab, be, ca.

(4. ParALLEL LINES

Suppose that , » are two given parallel lines and that
a is a transversal. Since the lines are parallel, we have

ww =0 a
=ua+av =0 /<
> ua = —aw =
= ua = va. /ui\
In Fig. 10, the two corre-
sponding angles are thus

equal—a well-known pro- Fig. 10
perty.
Suppose, conversely, that three lines %, v, @ are so
related that ua = va.
Then ua = —av

=ua+av =0
>uv=0
=»u|lv.

Hence a necessary and sufficient condition for two lines
u, v to be parallel is that, if ais any transversal cutting them,

then ua = va,
the alternative form au = av
being equally permissible.
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This suggests a convention which can often be useful:
if u, v are two parallel lines, we agree to write
u=0.
(Waverers may interpret this by saying that the
direction of u is equal to the direction of v.)
We then have the algebraic sequences:
u=9v
= ua = va, au=av
and au=av Or ua=va
> =0,

It is almost as if the symbol @ were to ‘cancel’ as in
elementary algebra.

Note that, if u, v, w are three given lines such that », v
are parallel and u, w are parallel, then

U=
and U = w,

But it is then known, as a geometrical theorem, that
and w are parallel, so that

v =w.
That is, we are entitled to use the algebraic sequence
U=9, U=w

= v =w.

(5. Tue RicHT-ANGLE COMPLICATION
An unexpected difficulty occurs in the study of right
angles. Suppose that a, b are two given lines such that

alb.

7 MGM
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Then the two angles, ab, ba, measured in the counter-
clockwise sense, are equal, so that

ab = ba.
Thus, if two lines a, b are perpendicular, then
ab = ba.

b

(i [a

Fig. 11

On the other hand, we have the general result

ab = —ba,
so that, for right angles, we have the two relations
ab+ba = 0,
ab—ba = 0,
but ab =+ 0,

At first sight this seems strange, but the phenomenon
is closely akin to the divisors of zero which we studied in
chapter 1. In fact,

ab+ba =0,
{ab—ba=0
= 2ab=0

but it is possible for 2ab to be zero when ab is not itself zero.
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In order to give a numerical analogy, suppose that
P, q are any two numbers of ordinary arithmetic, and use
the symbol pxq

to denote the remainder after dividing the ordinary
product pg by 30; thus

T7x9 =3,

8x 7 =26.

Consider, in particular, the two numbers 3 and 5. In
this arithmetic, we have

(3x5)+(5x3) =0,
and (3x5)—(5x3) =0
but, nevertheless, 3x6+0.
We may, indeed, add the two equations to give the
relation 2(3x5) = 0,

which is frue; but the result 3 x 5 = 0 does not follow. In
fact, 15 is a divisor of zero in this arithmetic, since

2x156 =0,
156 % 0.

The analogy between this arithmetic and the ‘arith-
metic of angles’ is perhaps worth a brief comment. In
the former, a number such as 283 is reduced by as many
multiples of 30 as possible, to give 13; in the latter, an
angle such as 1,27 (obtained, say, by additions) is reduced
by as many multiples of 7 as possible, to give 7. An
equation like % = 0
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in the former not only has the zero solution, but also the
solution # = §.30 = 15; an equation like

26=0
in the latter not only has the zero solution, but also the
solution z = }z.

(6. CycrLic QUADRILATERALS
Suppose that four points P, U, L, X lie on a circle
(Fig. 12). They can be joined by six lines
UL, LX, XU, PX, PU, PL

which we may call 5 , 7 Y, v, m

respectively. (The names are deliberately chosen to be
unsystematic in the exposition; in applications a more
symmetrical notation would naturally be adopted, as in
the Illustrations which follow.)

Fig. 12

Now select the four points in any order, for example,
L, P, X, U; and write down the four sides which *follow
that order of the letters’,

LP, PX, XU, UL,
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returning at the end to the first letter to complete the
cycle. These lines, in order, are

m, y, l, z.
Finally write down the product, still in order,
myla,
put a plus sign in the middle, and equate to zero:
my +lxe = 0.

Written in the alternative form

my = zl,
this is the familiar theorem, angles in the same segment are
equal, as a glance at the diagram verifies.

Follow now the identical process for the alternative
ordering of vertices P, X, L, U:

PX,XL,LU,UP,

yuxv,

yu+av = 0.
This is the theorem: the opposite angles of a cyclic quadri-
lateral are supplementary, as, once again, the diagram
verifies.

It can be verified further that all choices of order lead

to one or other of these two theorems, which are therefore
essentially equivalent.

ExAMPLES
Verify the result for each of the orders:

G U, L X,P. (i) P,U,X,L. ()P, U,LX.
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Remembering that the converses of the two ‘angles’
theorems are also true, we can reverse the final step
when necessary and deduce that if, say,

my+lx =0

or yu+tav =0,
then the corresponding quadrilateral is cyclic.

The power of this method may be illustrated by one or
two riders:

(i) Let ABC be a given triangle and P, Q, R points on
the sides BC, CA, AB respectively. To prove that, if the
circles PBR, POQ meet in U, then AQUR is also cyclic.

Fig. 13

Name the sides as follows:
BC=a,CA=b,AB=¢c; UP=p, UQ=gq, UR=r.

(Of course BP and PC are each the line a.)
From the cyclic quadrilateral PUQC, we choose the

sequence P,U,Q,C
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giving PU, UQ, QC, CP,
2:.9b a,
pgba,

pg+ba = 0.
Similarly, from PURB, we have

pr+ca =0,
so that, reversing the sense,

Hence, by addition, prige=0;
rp+pg+batac =0,

so that rg+be =0,

and so the quadrilateral RUQA is cyclic, as required.

Fig. 14

(ii) Two circles cut in A, B. A line through A cuts the
first in P and the second in U; a line through B cuts the
first in Q and the second in V. To prove that PQ is parallel
o UV.

Expressed with more normal brevity, the argument is:

With the notation of Fig. 14,

BAPQ cyclic = ax+py=0,
BAUYV cyclic = ax+uy=0.
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Hence Y = uy,
so that (p. 97) P =u,
and so PQ| UV.

(iii) Tre EXTENSION OF SI1MSON’s LINE

(A harder example.)

Let ABC be a given triangle and U a point on its circum-
circle. Points P, @, R are taken on BC, CA, AB respec-
tively so that, for angles measured in the counterclockwise

Fig. 15

sense, the angles between BC and UP; between CA and
UQ; between AB and UR are equal. To prove that the
points P, @, R are collinear.
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We use the notation
BC=a, CA=b, AB=c;
UP=p, UQ=gq, UR=rv;
UA=2 UB=y, UC=z
PQ=u, PR=wv.
Then we are given that
ap = bq = Cr.
Now ap = bq
=ap+qgb=0
= CPUQ cyclic
= QPUC cyclic
= up+2b=0;
and ap = cr
=>ap+rc=0
= BPUR cyclic
= RPUB cyclic
= yp+yc = 0.
But UCAB cyclic
=zb+ecy=0.
Hence, from these equations,

up = bz

=cy

= vp.

Hence U=,

105
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so that the lines u, » are parallel or coincident. But they
have a point P in common, and so they are coincident.
Hence P, Q, R are collinear.,

ExaMPLE

1. Points A, B, P, Q, L, M taken in that order round
a circle are such that

AQ|BP, AM|BL.

Prove that PM| QL.

(One method considers the cyclic quadrilaterals
MPQA, PBLM, LQPM, together with ‘equalities’ from
the parallel lines.)

(7. IsosceELES TRIANGLES AND ANGLE
BisEcTORS

Let UA, UB be two given lines and UX one of the
bisectors of the angles between them. Let UA, UB, UX
be the lines a, b, = respectively. Then

ax = zb,
or ax+bx = 0.
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Reversing the argument, we can prove that, if
ax = — bz,

then z is one of the bisectors of the angle between @ and b.

Thus z is a bisector = azx = —bz;

ax = —bx = x is one of the bisectors.

This algebra does not distinguish between the two
bisectors,

Suppose now that 4 BC is an isosceles triangle in which

AB = AC.

Write

BG=a, AB=b, AC =c. x
Draw the line  through 4 parallel
to BC, so that (p. 97)

r=4a. b ¢

Since the triangle is isosceles,  is
a bisector (the external one in
Fig. 17) of the angle between b
and ¢; hence

xb+xc =0,
But z = a, and so the ‘base’ angles satisfy the relation
ab+ac = 0,
ab+ac =0
= triangle ABC isosceles with AB = AC

follows by similar argument.

For example:

Given that AB, PQ are two parallel chords of a circle, to
prove that AP = BQ.

o

B a
Fig. 17

The converse, that
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Draw AL parallel to BQ meeting PQ in L. Write

AB=a, PQ=p, AP=2, BQ=y, AL=u.

Then AB|PQ = a=p,
ABQP cyclic = ay+px =0,
AL|BQ = wu=y.

Fig. 18
Hence ay+pr =0
=>py+px=0

=>put+pr =10
=> AP = AL
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CHAPTER VIII

A VERY ABSTRACT ALGEBRA
FOR ANGLES

While it is hoped that the account to be given in this
chapter will be self-contained, so that no previous know-
ledge is essential, it will probably be true that the con-
tents will give most pleasure—and bewilderment—to a
reader who has a little knowledge of determinants and
vector products; only definitions and very first principles
are used, and these are, in any case, given in the text.

(1. DETERMINANTS OF OrDER Two
The symbol

a b
¢ d |
is often used to denote the expression
ad —be,

known as a determinant. As an illustration of how it can
arise, note that, if the two equations i

ar+b =0
and cx+d =0

have a common value, then (assuming that a and ¢ are
not zero) that value is given equally by

—bja and —de,
so that —bla = —d]e,
or ad —be = 0.
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We require one minor complication not used in normal
determinant theory: we always name a product so that
the first symbol in it is taken from the upper row. Thus

U v
z ¥

= uy — vz,

with « before y and v before .

(2. VEcrors AxD VEcTOR PrODUCTS

All we require of a vector is that it shall be a set of
numbers selected in a definite order. If, for instance,
those numbers are a, b, ¢, then the vector is simply the
triplet of numbers written in the notation

(a, b, c).

The vectors (a, b, ¢), (b, a, ¢) are quite different—though
there is no reason why, in a special case, @ and b should
not be the same.

Innormal vector theory, a, b, c are usually magnitudes,
such as components of velocity. The manipulation of
vectors is subject to closely defined rules. For us, how-
ever, a, b, ¢ will not appear as magnitudes, and, fortu-
nately, the normal rules of manipulation will not be
required.

What we do require, however, is a function that
usually arises fairly late in vector theory. Suppose that
(a, b, ¢) and (p, g, r) are two given vectors. Their vector
product is defined to be the vector

(br —cq, cp—ar, ag—bp).
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The three elements are

br—eq =

<

~(ar—cp) = -

aqg—bp =

= T~ VR~ T T

0 o % O

where the three determinants arise from the array
a b ¢

A
by omitting successively the first, second and third
columns. The negative sign at the second element is
unfortunate but essential.
As an illustration of how these three determinants
come together in normal practice, consider the two

equations ax+by+cz = 0,
pr+qy+rz=0.
It is easy to verify that the ratios of the three variables
x, y, z satisfy the relations
S TR
br—cq cp—ar  aq—bp’
As in ([ 1, we always put the elements of the first

vector before those of the second in each product; thus
we write br and not rb.

(3. AprrLicATIONS IN GEOMETRY

The argument now becomes very abstract, though
essentially simple.
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Let A, B, C, D be four given coplanar points and use

the notation BC=a, CA=b, AB=c;

DA=p, DB=gq, DC=rv.
Form the ‘vector product’
(br—cq, cp—ar, agq—bp),
and consider the first element

For convenience, write it in the form
br+ge.
This is the sum of the angles at B and C, namely
LACD+ LABD

when each is measured in the counterclockwise sense.

This property immediately directs our attention to
the case when the quadrilateral ABCD is cyclic; for then
the sum of the angles is .
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Thus a necessary and a sufficient condition for the
quadrilateral ABCD to be cyclic is that the first component
18 zero. bt

But now things move quickly. For the second
component cp—ar
is the difference between the ‘same segment’ angles

L BAD, (BCD

and if is a necessary and sufficient condition for the quadri-
lateral ABCD to be cyclic that these two angles are equal:
that is, that op—ar = 0.

In the same way it is a necessary and a sufficient condi-

tion for the quadrilateral ABCD lo be cyclic that
ag—bp = 0.

Collating these three facts, we have the surprising
result that a necessary and a sufficient condition for the
quadrilateral ABCD tlo be cyclic is that any one of the
components of the ‘vector product’ shall be zero; and, con-
sequently, when any one of the components is zero, so are
all three.

Note one point that we passed over without emphasis
when establishing the notation: the ‘vector’ (a, b, c)
has as its components the three sides of the triangle
formed by three of the sides of the quadrilateral, and
then the ‘vector’ (p, g, r) has as its components the three
lines joining the respective vertices of that triangle to the
fourth vertex of the quadrilateral.

8 MGM
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(4. Tue ALTITUDES OF A TRIANGLE
Let ABC be a given triangle and draw the altitudes
AP, BQ, CR perpendicular to the opposite sides BC,
CA, AB. It is known that the lines AP, BQ, CR meet
in a point H called the orthocenire of the triangle ABC.
For notation, we write
BC=a, CA=0b, AB=c;
AP =u, BQ =9 CR=w;
QR=p, RP=gq, PQ=r.

Fig. 20

By the right-angle properties, we have
au = ua = bw = vb = cw = we.

Consider first the quadrilateral AQHR. Take HQR as
basie triangle and 4 as fourth vertex. The ‘vectors’ are

(2, w,v), (ub,0)
and the ‘vector product’ is

(w_vbs vu —pce, pb_m)‘

e N e ey, S ...
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By the right-angle relations, the first component we—vb
is zero and so all components are zero. We may therefore
write, symbolically,

(we —vb, vu—pc, pb—wu) = 0.
Identical argument from the quadrilaterals BRHP,
GIRQ gvee (uwa —we, wv—qa, g¢—uv) = 0,
(vb—ua, uw—1b, ra—vw) = 0.
In particular, we have
wv—qa=0, ra—vw=>0,

so that W =aq, VW=1a

Thus aq = ra,

so that a is one of the bisectors of the angle between
¢ and 7; it follows that u, being perpendicular to a, is the
other. Hence BC and AP are the bisectors of the angle
QPR.

NOoTE. This method does not of itself decide which is the
internal and which the external bisector. The reader should
draw an alternative version of Fig. 20, taking the angle 4BC
to be obtuse, and then compare results.

ExXAMPLES

1. Repeat the preceding argument for the case when
the angle ABC is obtuse.

2. Prove that H, in the given diagram, is the in-centre
of the triangle PQR; and determine what happens when
the angle ABC is obtuse.
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(5. Tue SiMmsoN LINE AGAIN

Let ABC be a given triangle and U a point on its
circumcircle. Draw UP, UQ, UR to be perpendicular
(this time; compare p. 104) to BC, CA, AB respectively.
Itisrequired to prove that the points P, Q, R are collinear.

Fig. 21

Name the lines
v - BC=a, CA=b, AB=c,
UP=p, UQ=q, UR=v,
UA=2 UB=y, UC=q¢,
ged pooy B O=E, PR=®
The right-angles give the relations
, ap = pa =bg = qb =¢r =re.
- Consider first the quadrilateral UABC. Take ABC as
basic triangle and U as fourth point. The vectors then are

(@, b,¢), (2,9,2)
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so that, since the quadrilateral is given to be cyclic,
(bz—cy, cx —az, ay —bx) = 0.
Take next the quadrilateral RPBU, taking RPB as
basic triangle and U as fourth point. The vectors are
(a, ¢, ), (r,2,9).
The vector product is
(cy —vp, vr—ay, ap —cr).
Now ap —cr is zero by the right-angles, and so
(cy—vp, vr—ay, ap—cr) = 0.
Similar argument from the quadrilateral QPCU gives
WhTeoioR. bl dpipol
so that (bz—up, uq—az, ap—>bg) = 0.
In particular, these zero vector products give
respectively
bz—ey=0, cy—vp=0, bz—up=0,
so that up = bz = cy = vp.
Hence (p. 97) U=,

so that the lines u, v are parallel or coincident. But they
have the point P in common, so that they coincide; that
is, P, Q, R are collinear.



CHAPTER IX
SOME METRICAL ANALOGIES

(1. The present chapter is probably the hardest in the
book. It seems likely that the reader, if he will, may be
able to modify it towards a simpler treatment; the effort
would certainly be entertaining.

A new term may now be introduced to give precision
to an idea that has been running through several parts
of the work. Two integers a and b are said to be equal,
modulo n, when they differ by an exact integral multiple
of #. The notation used is

a = b(modn),
meaning that an integer p can be found such that

a—b = pn.
This was the essential feature of digital arithmetic:
instead of, say, a sum expressed in the form

. 749 =16
it was, in effect, noted that
16 =6 (mod10),
so that 7+9=6 (mod 10),

The parenthesis was omitted, but was there ‘in the
spirit’,

In a similar way, the “‘modulus’ idea was behind the
decision to reduce angles by multiples of 7, so that, for
instance, a statement such as

ab = cd
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need not mean that the two angles ab, cd are equal (in
the clockwise sense) but, more generally, that the
difference abod

is an exact multiple of 77. It is sometimes convenient to
e ab=cd (modm)

to denote this relationship.

Much of the work that follows is simple, but it suggests
ideas that become complicated. The difficulty arises from
two features which will now be mentioned in turn.

(2. A THEorREM AND ITS CONVERSE

The reader will certainly know about the distinetion
that must be drawn between a statement and its con-
verse; but experience indicates that the distinction,
though known in theory, is often ignored in practice,
with results that are sometimes disastrous. Thus the
statement, ‘A multiple of 4 is a multiple of 2’ is clearly
true; but the converse, ‘A multiple of 2 is a multiple of 4’
is not true. In notation introduced earlier

n is a multiple of 4 = = is a multiple of 2;
but the sense of the arrow cannot be reversed.

Much of the discussion which follows in this chapter
will move in one direction only, with consequences that
sometimes seem curious.

(8. DiacraMs TO ILLUSTRATE ‘MODULAR
AriTaMETIC’
The diagram (Fig. 22) illustrates clearly the familiar

arithmetical fact that
6+8 = 14,
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There seems, however, to be some difficulty in obtaining
a diagram for the corresponding result in digital arith-

metic, 648 =4

It can, of course, be done, but the complications appear
to cancel the benefits.

6 al 8 -

1 2 3 4 5 67 8 91011 1213 14
A 10 111213}

A
Fig. 22

A similar difficulty occurs in dealing with angles. If,

say, ab and cd are two angles such that
ab = §‘ﬂ, cd= %‘-‘T,

then ab+ecd = fm  (modwr).
It will be seen that we should like to be able to illustrate
thisrelation by taking, somehow, %7, §7, %7 as segments
of a straight line in such a way that the representation is
significant. But this seems hard to achieve.

With these words of warning (which the reader will be

wise to forget for the present), we proceed to the main
theme of this chapter.

(4 TaE Basic ANALoOGY
The notation b

has been used to represent the angle from a line a to a line
b, measured in the counterclockwise sense. The analogous
notation 4 AR

represents the distance from a point 4 fo a point B

-y,
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measured in an agreed sense along the line. Just as the
symbol B

represents a reversal of sense, giving the angle from b to
a, so the symbol BA

represents a reversal, giving the distance from B to A.
The two relations
ab+ba = 0, AB4+BA =0

are expressions of these facts.

Fig. 23

In order to use these ideas, we shall suppose that some
configuration of lines a,b,c,... is given, and we shall
study analogous properties, as we shall call them, of
systems of points 4, B, C, ..., where the rules governing
the relative positions of 4, B,C,... will be defined by
analogy with corresponding rules for ¢, b, ¢, ....
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(5. Tue TRIANGLE

Suppose that a, b, ¢ are three given lines. The counter-
clockwise angles be, ca, ab are, for all positions of the lines,
subject to the relation

be+ca+ab = 0.
b c
ab ca
i g
Fig. 24

For the analogy, we require three points whose distances
apart, in an agreed sense, we wish to satisfy the relation

BC+CA+AB=0.

At this point it seems to become necessary to adopt a
convention, that, to compare the magnitudes of two sensed

4
[ ]
® e o ——————— e
B C B a A
g, 45 Fig. 26

straight lines (whether for equality or for purposes of
addition or subtraction) then those lines must be taken as
coincident or parallel. Equality on non-parallel lines will
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not be regarded as meaningful. Since, here, we wish to
add BC to CA4, we must take those lines as coincident
(Fig. 26, and not Fig. 25). It is then evident that, for all
relative positions of A, B, C on that line, there is an identity

BC+CA+AB=0

when regard is had to sense. (Briefly, this relation is
equivalent to the sequence of instructions: ‘Go from
B to C, then from C to A4, then from 4 to B’. The total
effect is zero.)

There is thus an automatic analogy between the

relation I AL
for angles in the counterclockwise sense and the relation
BC+CA+AB=0

for distances between collinear points having regard to
sense along the line. From the relation be+eca+ab = 0
for angles in a given configuration we can deduce the
relation BC'+CA+AB = 0 for lines in the analogous
configuration, together with any consequences that follow
Jrom that deduction.

In dealing with three given lines a, b, ¢ only, the natural
analogue has been three collinear points 4, B, C. Inmore
elaborate diagrams, line segments may, if desired, be
compared on lines which are parallel rather than coinci-
dent—as in ([ 7.

(6. THE QUADRILATERAL
Suppose that a given quadrilateral has sides a, b, ¢, d.
The analogue is a configuration of four points 4, B, C, D.
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(Strictly speaking, a figure defined by four points is
called a quadrangle and a figure defined by four lines
a quadrilateral; but the distinction is often blurred in
work of this kind.)

L1}

*D
Be

L]
A

Fig. 28

If we want to deal with any arbitrary selection of the
possible angles between the given lines, then we shall
have to select A, B, C, D to be collinear. But, as it
happens, the cases that are most interesting for our
purposes allow alternative selections, to which we now
proceed.

(7. Tue CycLiC QUADRILATERAL

Suppose next that the four lines a, b, ¢, d are the sides
of a cyclic quadrilateral. The relations of interest to us
were obtained previously (p. 100) and can be taken in the

form ab+cd =0, be+da=0
or, equivalently, o — de. be = ad.

We should therefore like to place the points 4, B, C, D in

such a way that
AB =DC, BC = AD,

where we may allow the lines 4B and DC to be parallel
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rather than coincident and the lines BC and 4D to be
parallel rather than coincident if that proves more con-
venient. The attempt to do this leads at once to a
parallelogram ABCD, so that the analogue of a cyclic
quadrilateral abed may be taken to be a parallelogram
ABCD.

Cc D
B A
Fig. 30

ILLUSTRATION. We return to a result used earlier (p. 102).
The lines a, b, ¢ form a triangle ABC. (To avoid confusion with
the analogous figure, the names of points are not marked in
Fig. 31.) Points P, Q, R are taken on BC, CA, AB respectively,

-

——0
-

.

b

Fig. 32
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and the circles PBR, PCQ meet in U. Then the circle AQR also
passes through U,

Denote UP, UQ, UR by the letters p, q, r.

The analogue of the cyclic quadrilateral apre is a parallelo-
gram APRC; the analogue of the eyclic quadrilateral apgb is
a parallelogram APQB. Then the analogue of the fact that
berg is a cyclic quadrilateral is that BCRQ is a parallelogram,
a result that is easily verified otherwise.

HARDER ILLUSTRATION. An example which is easy to
establish but whose significance is harder to grasp is given by
another result proved earlier (p. 103).

Two circles meet in points A, B (not named in Fig. 33) and
lines through A, B meet the first circle in P, Q and the second in
U, V. Then PQ is parallel to UV.

Name the chords through 4, B by the letters a, b; name the
common chord 4B by the letter z; and name PQ, UV by the
letters p, u.

T

y AL

Fig. 33 Fig. 34

)

(

azbpeyclic = AXBP parallelogram,
axbucyclic = AXBU parallelogram.

Hence the two points P, U coincide, the distance between them
being zero by analogy with the fact that the angle between
the lines p, « is zero.
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The awkward feature is that the two cyclic quadri-
laterals axzbp, axbu are so related that they are repre-
sented by the same parallelogram.

The point of the apparent dilemma is that, if the lines
a, b, x are given and are required to be the sides of a
cyclic quadrilateral, then the direction of the fourth
side is fixed—represented by the fourth vertex of the
parallelogram—but its position is not. The lines p, u are
two, among many, of such possible positions.

ILLUSTRATION. Let a, b, ¢ be three lines forming a given
triangle and p, g, r the lines joining the feet of the altitudes
(Fig. 35). Then (by the converse of the ‘angles in the same
segment’ theorem) the three quadrilaterals

abpe, bega, carb

are cyclic.

Fig. 36

The analogue is a triangle ABC with lines through the
vertices parallel to the opposite sides forming a triangle PQR,
Then the quadrilaterals

ABPC, BCQA, CARB

are parallelograms.
The two familiar figures of altitudes and middle points are
therefore analogous.
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ExavprPLE

Noting that the lines CB, QA4, AR are equal, verify
(by elementary geometry) the truth of a speculation that
the angles
are equal.

¢b, qa, ar

(8. TaE ComMpLETE CYcCLIC QUADRILATERAL

We have not yet given any attention to the analogue
of the diagonals of a cyclic quadrilateral. For this we

A

e

Fig. 37 Fig. 38

turn to the notation described in chapter viz, ([ 3 and now
adopted in the diagram (Fig. 37). (Note that a, p are the
diagonals and b, ¢ and ¢, 7 the pairs of opposite sides.)

T
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The six lines of the cyelic quadrilateral give us six
points 4, B, C, P, @, R. The angle theorems for the circle
give us

(i) two equalities based on the fact that the sum of the
opposite angles is 7, namely

bc=rq and br=cq;

(ii) four equalities based on the fact that angles in the
same segment are equal, namely

ca=pr, ab=gqp, cp=ar, aq="bp.
Selecting these in convenient order, we have for the
analogues: BC = RQ, BR = (0,

so that the four points B, C, Q, R are the verlices of a
parallelogram; ¢4 _ pp  CP = AR,
so that the four points C, A, R, P are the vertices of a
parallelogram; 4 p _ QP, AQ = BP,

so that the four points A, B, P, Q are the vertices of a
parallelogram.

The result of this, bearing in mind that the diagonals
of a parallelogram bisect each other, is that, for the
analogous figure derived from a eyclic quadrilateral, there
exists a point U with respect to which the triangles ABC,
PQR are mirror images, in the sense that

4U=0P, BU=0Q, CU=TUR.

(9. DiFFicULTIES

At the start of this chapter we gave warning of diffi-
culties to come; they have now arrived.
9 MGM
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In ([ 8 we obtained a point U such that

AU =UP, BU=UQ, CU=UR.
This suggests that we might find a line % such that
au = up, bu=wug, cu=ur,

where, as usual, all lines parallel to # would do equally
well for this purpose,

The theorem is, indeed, very nearly true—but not
quite.

Fig. 39

The diagram (Fig. 39) repeats Fig. 37, where, however,
the opposite sides b, ¢ and ¢, r have been produced to
meet. The relation

au = up
would require u as the direction of a bisector of the angle

ap; the relation bu = ug

SOME METRICAL ANALOGIES 131

would require  as the direction of a bisector of the angle
bq; the relation Otk =

would require u as the direction of a bisector of the
angle ¢r. The dotted lines indicate the directions of the
‘obvious’ bisectors; two of them seem parallel but the
third does not. But the fact is that, indeed, two of the
bisectors are parallel and the third is perpendicular to them.

ExAMPLE

Prove the statement just made, using the standard
theorems of elementary geometry.

Once this result is established, we see at once that all
that is necessary to produce a correct version of the
theorem is to select the alternative bisector for the third
angle. The dilemma is that the theory does not give us
any method of making the selection from the ‘analogue’
diagram of parallelograms.

We must therefore give some attention to the problem
of right angles and, as it will appear, of ‘straight’ angles
also,

(10. RiGHT ANGLES AND STRAIGHT ANGLES
The trouble about right angles lies embedded in the
relation (see Fig. 40) 45 = pg

which, in essence, defines right angles, considered along-
side the identity ab+ba = 0,

which is a standard formula for all positions of b. We
have, by addition,

2ab =0 and 2ba =0,
although neither ab nor ba is zero.
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But in the analogous diagram of points (Fig. 41), we can-
not exhibit the relation AB = BA

except by taking each as zero. Thus two perpendicular lines

b

o]l

N
-

Fig. 40 Fig. 41

become two coincident points. This is the problem of ‘one-
way’ argument to which we referred at the start:

alb = A=B;
but, as we have often seen, it is also true that
’ alp = 4=B8B.

Thus when we go from the figure of lines fo the figure
of points there is no ambiguity; we get, unexpectedly
perhaps, coincident points. But in reasoning backwards
we cannot make safe deductions without a check from
the figure of lines itself—a given point may arise from
any one of a set of parallel lines (that should not worry
us greatly) or, equally, from any one of another set of
parallel lines each member of which is perpendicular to
each member of the first set.
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To emphasise the point, consider the analogue of a
rectangle abed. Since
clla,
it follows that
= A, d b

¢

Since
b-a, dla,

a
it follows that Fig. 42

B=A, .D=A.

Thus the four points 4, B, C, D coincide.

In other words, the analogies must be handled with
care. When this is done, some of the results are very
striking, as the next two paragraphs demonstrate.

(11. Two StaxpARD RESULTS RELATED

We have already seen (p. 107) thatif , b, ¢ are the sides
of an isosceles triangle, with b, ¢ along the equal sides,
then there is a relation

ba—ac =0

i
T

B A c

a
Fig. 43 Fig. 44
which has for its analogue the equality
BA = AC,
so that A is the middle point of BC.
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Suppose now that L, M are two points on a circle of
centre O and that X is any point on the appropriate
segment subtended by LM. Write

OL=u, OM=v, XL=a XM =%, OX = p,

as indicated in the diagram (Fig. 45). Then it is well
known that PO

Fig. 45 Fig. 46

In the analogous figure, the fact that the triangle aup
is isosceles gives A as the middle point of PU; and,
similarly, B is the middle point of PV. Now UV is
parallel to AB, so that (by the convention agreed on
p- 122) the lengths of UV and 4 B are in the same propor-
tions as the corresponding angles u» and ab. Hence we
have established the effective equivalence of the two theorems:

(i) the angle subtended at the centre of a circle by an
arc is double the angle at the circumference subtended
by the same arc;

(ii) the line joining the middle points of the sides of a
triangle is parallel to the base and equal to half the length
of the base.

Y
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(12. SimsoN’s LINE AGAIN
As a final example of the oddities that can occur with

. these analogies, consider once again the Simson line

roperty. )
¥ From a point K on the circumcircle of a triangle ABC,

perpendiculars KP, KQ, KR are drawn to the sides BC,
CA, AB. Then the points P, Q, R are collinear (Fig. 47).
uv

Fig. 47 Fig. 48

Name the lines as follows:
BC=a, CA=0b, AB=c;
KP=p, KQ=q, KR=r;
KA=2 KB=y, KC=z;
PQ=u, PR=v.
Since @, x are diagonals and b,y and c, z are pairs of
opposite sides of a cyclic quadrilateral, the points 4, B,C,
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X, Y, Z in the analogous figure (Fig. 48) are so related
(p. 128) that AX, BY, CZ have a common middle
point M.

Sincep L a,q L b, r L, it follows that, in the analogous

e i P=A4, Q=B, R=C.

(The argument may now be regarded as suspect, but
seems to be correct.)

Since AQ and BP have a common middle point, say F,
they arise from lines @, and b, p which are opposite sides
or diagonals in a cyclic quadrilateral ; and inspection of
the Simson line figure itself reveals that z, % is the third
pair of lines of the quadrilateral, so that U is that point
for which F'is the middle point of UZ. In the same way,
AR and CP have a common middle point @, leading to V’
as that point for which @ is the middle point of VY. But
it is easy to show that U and V coincide in a point such
that 4 is the middle point of U M ; and this coincidence of
U and V, being the analogue of the identity of the lines
and v, is an expression of the property of the Simson line.
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ANSWERS
Pace 18. ExampPrLeE L. (i) 1, 3;
(i) 1, 4, 6, 9;
(iii) 2, 3, 7, 8;
(iv) 2, 4.

Pace 34. ExampPrEs: 1, %; 2, <; 8, 4%; 4, . |

Pace 39. ExaMPLE 2: Same as p. 37, with e=2, a =4,
b=6,c=8.

PacE 45. ExamprLE 1: b, @, c.
Examrre 2: b, a, u, », w.

Pacr 47. ExaMPLE 2; 2-1=4, 41=2, 6-1=6, 3-1=35,
61=3.
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listed, 60-1

polynomials in digital arith-
metic, 20

powers in digital arithmetic, 29

product, in a group, 41

quadratic equation with four
distinet roots, 18
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right-angle complications, 97,
131

sets, 20

Simson’s line, 104, 116, 135
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triplet, ordered, 55

unity, 23
in group, 43

vector, 110

vector product, 110
selection of notation, 113

zero, 23
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As Dr Maxwell writes in his preface to this book, his
aim has been to instruct through entertainment. ‘The
general theory is that a wrong idea may often be
exposed more convincingly by following it to its
absurd conclusion than by merely announcing the
error and starting again. Thus a number of by-ways
appear which, it is hoped, may amuse the professional,
and help to tempt back to the subject those who
thought they were losing interest.” The standard of
knowledge expected is fairly elementary.

In most cases a straightforward statement of the
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fallacious argument is followed by an exposure in

which the error is traced to the most elementary

source, and this process leads to an analysis which is’

often of unexpected depth.

Many students will discover just how mathe-
matically-minded they are when they read this book;
nor is that the only discovery they will make. Teachers
of mathematics in schools and technical schools,
colleges and universities will also be sure to find
something here to please them.
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