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’REFACE

Le juge: Accusé, vous ticherez d’étre bref.
L’sccusé: Je ticherai d’étre clair.

—G. COoURTELINE

This book is the child of an unborn parent. Some years ago the senior
author began the preparation of a Colloquium volume on algebraic geom-
etry, and he was then faced with the difficult task of mcorporatmg in that
volume the vast amount of purely, algebraic material which is needed in
abstract algebraic geometry. The original plan was to insert, from time
'to time, algebraic digressions in which concepts and results from commu-
tative algebra were to be developed in full as and when they were needed.
However, it soon. became apparent that such a parenthetical treatment of
the purely algebraic topics, covering a wide range of commutative algebra,
would, impose artificial bounds on the manner, depth, and degree of gener-
ality with which these topics could be treated. As is well known, abstract
algebraic geometry has been recently not only the main field of applications
of commutative algebra but also the principal incentive of new research in
commutative algebra. To approach the underlying algebra only in a
strictly utilitarian, auxiliary, and parenthetical manner, to stop short of
going further afield where the applications of algebra to algebraic geometry
stop and the general algebraic theories inspired by geometry begin, im-
pressed us increasingly as being a program scientifically too narrow and
psychologically frustrating, not to mention the distracting effect that re-
#eated algebraic digressions would inevitably have had on the reader,

* vis-a-vis the central algebro-geometric theme. Thus the idea of a separate
book on commutative algebra was born, and the present book—of which
this is the first of two volumes—is a realization of this idea, come to
fruition at a time when its parent—a treatise on abstract algebraic geom-
etry—has still to see the light of the day.

In the last twenty years commutative algebra has undergone an inten-
sive development. However, to the best of our knowledge, no systematic
account of this subject has been published in book form since the appear-
ance in 1935 of the valuable Ergebmisse monograph “Idealtheorie” of
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W. Krull. As to that monograph, it has exercised a great influence on
research in the intervening years, but the condensed and sketchy character
of the exposition (which was due to limitation of space in the Ergebnisse
monographs) made it more valuable to the expert than to the student
wishing to-study the subject. In the present book we endeavor to give
a systematic and—we may even say—leisurely account of commutative
algebra, including some of the more recent developments in this field,
without pretending, however, to give an encyclopedic account of the subject
matter. We have preferred to write a self-contained book which could
be used in a basic graduate course of modern algebra. It is also with an
eye to the student that we have tried to give full and detailed explanations
in the proofs, and we feel that we owe no apology to the mature mathema-
tician, who can skip the details that are not necessary for him. We have
even found that the policy of trading empty space for clarity and explicit-
ness of the proofs has saved us, the authors, from a number of erroneous
conclusions at the more advanced stages of the book. We have also tried,
this time with an eye to both the student and the mature mathematician,
to give a many-sided treatment of our topics, not hesitating to offer several
proofs of one and the same result when we thought that something might
be learned, as to methods, from each of the proofs.

The algebro-geometric origin and motivation of the book will become
more evident in the second volume (which will deal with valuation theory,
polynomial and power series rings, and local algebra; more will be said of
that volume in its preface) than they are in this first volume. Here we
develop the elements of commutative algebra which we deem to be of
general and basic character. In chapter I we develop the introductory
notions concerning groups, rings, fields, polynomial rings, and vector spaces.
All this, except perhaps a somewhat detailed discussion of quotient rings
with respect to multiplicative systems, is material which is usually given in
an intermediate algebra course and is often briefly reviewed in the begin-
ning of an advanced graduate course. The exposition of field theory
given in chapter II is fairly complete and follows essentially the lines of
standard modern accounts of the subject. However, as could be expected
from algebraic geometers, we also stress treatment of transcendental ex-
tensions, especially of the notions of separability and linear disjointness (the
latter being due to A. Weil). The study of maximally algebraic subfields
and regular extensions has been postponed, however, to Volume II (chap-
ter VII), since that study is so closely related to the question of ground
field extension in polynomial rings.



PREFACE vii

Chapter III contains classical material about ideals and modules in
arbitrary commutative rings. Direct sum decompositions are studied in
detail. The last two sections® deal respectively with tensor products of
rings and free joins of integral domains. Here we introduce the notion
of quasi-linear disjointness, and prove some results about free joins of inte-
gral domains which we could not readily locate in the literature.

With chapter IV, devoted to noetherian rings, we enter commutative
algebra proper. After a preliminary section on the Hilbert basis theorem
and a side trip to the rings satisfying the descending chain condition, the
first part of the chapter is devoted mostly to the notion of a primary repre-
sentation of an ideal and to applications of that notion. We then give a
detailed study of quotient rings (as generalized by Chevalley and Uzkov).
The end of the chapter contains miscellaneous complements, the most im-
portant of which is Krull’s theory of prime ideal chains in noetherian rings.
An appendix generalizes some properties of the primary representation to
the case of noetherian modules.

Chapter V begins with a study of integral dependence (a subject which
is nowadays an essential prerequisite for almost everything in commutative
algebra) and includes the so-called “going-up” and “going-down” the-
orems of Cohen-Seidenberg and the normalization theorem. (Other varia-
tions of that theorem will be found in Volume II, in the chapter on poly-
nomial and power series rings.) With Matusita we then define a Dedekind
domain as an integral domain in which every ideal is a product of prime
ideals and derive from that definition the usual characterization of Dede-
kind domains and their properties. An important place is given to the
study of finite algebraic field extensions of the quotient field of a Dedekind
domain, and the degree formula Zeifs = # is derived under the usual (and
necessary) finiteness assumptions concerning the integral closure of the
given Dedekind domain in the extension field. This study finds its natural
refinement in the Hilbert ramification theory (sections 9 and 10) and in
the properties of the different and discriminant (section 11). The chap-
ter closes with some classical number-theoretic applications and a generali-
zation of the theorem of Kummer. The properties of Dedekind domains
give us a natural opportunity of introducing the notion of a valuation (at
least in the discrete case) but the reader will observe that this notion is
introduced by us quite casually and parenthetically, and that the language
of valuations is not used in this chapter. We have done that deliberately,
for we wished to emphasize the by now well-known fact that while ideals
and valuations cover substantially the same ground in the classical case
(which, from a geometric point of view, is the case of dimension 1), the
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domain in which valuations become really significant belongs to the theory
of function fields of dimension greater than 1.

The preparation of the first volume of this book began as a collaboration
between the senior author and our former pupil and friend, the late Irving
S. Cohen. We extend a grateful thought to the memory of this gifted
young mathematician.

We wish to acknowledge many improvements in this book which are
due to John Tate and Jean-Pierre Serre. We also wish to thank heartily
Mr. T. Knapp who has carefully read the manuscript and the galley proofs
and whose constructive criticisms have been most helpful.

Thanks are also due to the Harvard Foundation for Advanced Research
whose grant to the senior author was used for typing part of the manu-
script.  Last but not least, we wish to extend our thanks to the D. Van
Nostrand Company for having generously cooperated with our wishes in
the course of the print.ng of the book.*

OscarR ZARBKI

PIERRE SAMUEL

Cambridge, Massachusetts
Chamaliéres, France

* The work on this volume was supported in part by a research project at Harvard
University, sponsored by the Office of Ordnance Research, United States Army, under
Contract DA-19-020«ORD-3100.
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I. INTRODUCTORY CONCEPTS

§ 1. Binary operations. Let G be an arbitrary set of elements
a,b,c,- - -. By abjnary operation in G is meant a rule which associates
with each ordered pair (a, b) of elements of G a unique element ¢ of the
same set G. A binary operation can therefore be thought of as a single-
valued function whose domain is the set of all ordered pairs (a, b) of
elements of G and whose range is either G itself or some subset of G.
We point out explicitly that if a and b are distinct elements of G, then
the elements of G which are associated with the ordered pairs (g, b) and
(b, @) may very well be distinct.

In group theory, and in algebra generally, it is customary to “denote
by a-b or ab the element which is associated with (a, b) under a given
binary operation. The element ¢ = ab is then called the product of a
and b, and the binary operation itself is called multiplication. When the
term ‘“‘multiplication” is used for a binary operation, it carries with it
the implication that “if a € G (read: a is an element of G) and be G,
then also abe G.” We shall often express this property by saying that
G is closed under the given multiplication.

Let G be a set on which there is given a binary operation, which we
write as multiplication. The operation is said to be associative if
(ab)c = a(bc) for any three elements @, b, c of G. Two elements a and b
of G are said to commute if ab = ba, and the operation is said to be
commutative if any two elements of G commute.

We assume henceforth that the operation in question is associative.
It is then a simple matter to defiae inductively the powers of an element
of G and to prove the usual rules of exponents. Namely, if a € G and
if n is a positive integer, we define a' = a; if n> 1, 4" = a""'a. We
then have for any positive integers m and n:

(1) ama" = g™+

@ (@) = am.

For fixed m, one can proceed by induction on #, observing that these
1
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rules hold by definition for n = 1. Moreover, if @ and b are two
elements of G which commute, then so do any powers of a and &, and
3) (ab)* = a"b~.

An identity element in G is an element ¢ in G such that ea = a¢ = a
forallain G. If G has an identity e, then it has no other. For if ¢’ is
also an identity, then e = e¢’ = ¢’. Moreover, we can now define a° to
be ¢, and the foregoing three rules trivially hold for arbitrary non-
negative exponents. ’

We now assume that G has an identity e. If a € G, an inverse of a is
an element @’ in G such that a’a = aa’ = e. If 4" is also an inverse of
a, then @” = a’¢ = a"(aa’) = (a"a)a’ = ea’ = a’. Thus the inverse of
a (if it exists at all) is umique. If a possesses an inverse a’, then negative
powers of a can also beé defined. Namely, we observe that

am = gmtla’

for all non-negative m, and we take this as an inductive definition for
negativem. Thusa™a = a™+'forallm. The rule(1)above is then true
for any fixed m (positive or negative), provided n = 1; it can be proved
for arbitrary positive # by induction fromn — 1 to n and for negative
n by induction fromz» + 1ton. Since, therefore, a™a~™ = ¢ = a—™a™,
we observe that a™ has a—™ as inverse, sothat (a™)" is defined for every .
Rule (2) can now be proved by the-two inductions used for (1). From
the definition we have that a—! = a’, and we shall always use a— for the
inverse of a (if it exists). If @ and b both have inverses, then so does ab,
and (ab)~! = b—'a~1. If, moreover, a and b commute, then so do any
powers of a and b, and (3) holds for arbitrary n.

The product of n elements a,,- - -, a, of G is inductively defined as
follows:

’Ij;a,-==a, ifn=1; f[a,--:(ﬁai)a,, ifn> 1.

This product will be denoted also by 2,a, - - - a,. From the associativity
of multiplication in G, we can prove the following general associative
law, which states that the value of a product is independent of the
grouping of the factors:

Let ng, ny, - - -, m, be integers such that 0 = ng < n, < - - - < n, = n.

Then ' ' '
1]-'1 (h-.:!-_tl.,_,a‘) = g a;.

This is clear for # = 1; hence we assume it proved for # — 1 and



§2 GROUPS

prove it for n factors. The formula being trivial for r = 1, we may
assume r > 1. Then

= [’
-

=

I(» ,f[m” )] [( ’H “A)a.] (by definition)

1 h=ny_y+1

[E (L, [T, o o s

hmn,_ 141

-

[
1

I
—
P
=l

}a,, (by definition and induction hypothesis)

H a; (by definition).

This computation is valid unlesss,_, = n — 1; the modification neces-
sary in this case is left to the reader.

If all a; = a, then H a; = a", and (1) and (2) are consequences (for
positive exponents) of the general associative law.

§2. Groups )
DErFINITION. A set G which is closed under a given multiplication
is called a GROUP if the following conditions (GROUP AXIOMS) are satisfied:

G,. The set G is not empty.
G, Ifa, b, c € G, then (ab)c = a(bc) (ASSOCIATIVE LAW).
Gg. There exists in G an element e such that

(1) For any element a in G, ea = a.
(2) For any element a in G there exists an element a’ in G such
that a'a = e.

In view of axiom G, and the general associativity law proved above,
we can write the product of any (finite) member of elements of G without
inserting parentheses.

We proceed to show that ¢ is an identity in G, and that for every element a
has an inverse. If a is given, then by G, (2), there exists an a’ such that
a'a = ¢, and there exists an a” such that a’a’ = ¢. Then aa’ = ¢(aa’)
= (a"a’Y(aad’) = a’(a’a)a’ = a"ea’ = ¢; this, together with ad'a=ce,
shows that @’ is an inverse of 4, provided that ¢ is an identity. But this
is immediate, for ea = a by G, (1), and ae = a(a’a) = (aa’)a = ea = a.
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Since ¢ is an identity in G and a’ an inverse of a, it follows that both are
uniquely determined. As mentioned in the preceding section, the
inverse of a will be denoted by a—1.

If a and b are elements of a group G, then each of the equations ax = b,
xa = b, has one and only onme solution. Consider, for instance, the
equation ax = b. Multiplication on the left by a—! yields x = a1 as
the only possible solution, and direct substitution shows that a—1b is
indeed a solution. Similarly it can be seen that x = ba—! is the only
solution of the equation xa = b.

An immediate consequence of the uniqueness of the solution of each
of the above equations is the (right or left) cancellation law: if ax = ax’
or if xa = x'a, then x = x'.

The solvability of bath equations ax = b, xa = b is equivalent, in the
presence of G, and G, to axiom G,  For if we assume the solvability of
the foregoing equations and if we assume furthermore G, and Gy, then
we can prove G, as follows:

We fix an element ¢ in G and we denote by e a solution of the equation
xc = c¢. If now ais any element of G, let b be a solution of the equation
cx=a. We will have then ea = e(ch) = (ec)b = cb = a, which
establishes G4 (1). Asto G;(2), it is an immediate consequence of the
solvability of the equatxon xa = e.

In practice, when testing a given set G against the group axioms, it is
sometimes the case that the solvability of the equations ax = b, xa = b
follows more or less directly from the nature of the given binary opera-
tionin G. The task of proving that G is a group can therefore sometimes
be simplified by using the solvability condition just stated, rather than
axiom G,

A group which contains only a finite number of elements is called a
finite group. By the order of a finite group is meant the number of
elements in the group.

It may happen that a group G consists entirely of elements of the
form a*, where a is a fixed element of G, and # is an arbitrary integer,
= 0. If this is the case, G is called a cyclic group, and the element a is
said to generate G.

§3. Subgroups. Given two groups G and H, denote by - and o the
group operations in G and in H respectively. We say that H is a sub-
group ofof(l)Hm a subset of G and (2) -5 = a0 b for any pair of
elements a, b in H.

Let H be a subgroup of G and let ¢ and ¢’ be the identity elements of
G and H respectively. We have ¢'-¢’ = ¢'ce’ =¢' and e'-e = ¢'.
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Hence ¢’-¢' = £'-¢, and therefore, by the cancellation law which holds
in G, ¢’ = e. We thus see that the identity element of a group G belongs
to any subgroup H of G (and is necessarily also the identity of H).

If H is a subgroup of G we shall not use different symbols (such as

and o) to denote the group operations in G and H respectively. Both
operations will be denoted by the same symbol, say, - or o

Given a group G and a non-empty subset H, of G, there is a very
simple criterion for H, to be the set of elements of a subgroup of G.
Namely, we have the following necessary and sufficient condition: if
a,be Hy, then ab-* € H,. This condition is obviously necessary. On
the other hand, if this condition is satisfied, then we have in the first
place that H, contains the identity e of G (if a is any element of the non-
empty set H,, then e = a-a~'e H,). It follows that if a € H,, then
also a-leHya'=¢-a! EH,,), and if a,beH, then a-b=
a-(b-')-'eH, Thus H, is mdeed a group H with respect to the
group operation in G, and this group H is a subgroup of G.

Let G be an atbitrary group and let H be a subgroup of G. If ais
any element of G, we denote by Ha the set of elements of G which
are of the form Aa, h € H, and we call this set a right coset of H. Ina
similar fashion, we can define left cosets aH of H. If multiplication in
G is commutative (§ 1), then any right coset is also a left coset: Ha and
aH are identical sets.

Let Ha and Hb be two right cosets of H in G, and suppose that these
two cosets have an element ¢ in common: ¢ = h,a = hyb; h,, hy€ H.
Then b = hy~'h,a, and for any element 2 of H we have hb =
(hhy'h,)a € Ha (since H is a subgroup of G and hence hh,~'h, € H).
Thus Hb C Ha; and s\mxlarly we can show that Ha C Hb. Therefore
Ha = Hb.

It follows that two right cosets Ha and Hb are either disjoint (that is,
have no elements in common) or coincide. A similar result holds for
left cosets. Note that a € Ha, for H contains the identity of G. Hence
every element of G belongs to some right (or left) coset.

H is said to be a normal (or invariant) subgroup of G if Ha = aH for
everyain G. An equivalent property is the following: for every a in G
and every k in H, the element a—'ha belongs to H.

Suppose now that G is a finite group of order n, and let m be the order
of H. Every right coset Ha of H contains then precisely m elements (if
hy, hye H and h, 5 hy, then h,a 3 hya). Since every element of G
belongs to one and only one right coset, it follows that m must be 2
divisor of # and that n/m is the number of right cosets of H. We have
therefore proved that if G is a finite group, then the order m of any
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subgroup H of G dsvides the order n of G. 'The quotient n/m is called zhe
index of H in G.

If a is an arbitrary element of a group G, the elements ¢, n any
integer & 0, clearly form a subgroup H of G. We call H the cyclic
subgroup generated by the element a. If this subgroup H is finite, say of
order m, then m is called the order of the element a; otherwise, a is said
to be of infinite order. )

Let a be an element of G, of finite order m. There exist then pairs
of distinct integers #, n’ such that a* = a (otherwise the cyclic group
generated by @ would be infinite). From a* = a" follows a** = 1,
whence there exist positive integers v such that a* = 1. Let u be the
smallest of these integers:' Then 1, q, 43, - -, a#~! are distinct ele-
ments, while if 7 is any integer and if, say, n =qu + n', 0 S n' <,
then
(1) a" = g+ = (g¥)0.q" = a~,

It follows that the cyclic group generated by a consists precisely of the
p elements 1, a, a8, - - -, a*—1, and hence p = m. Thus the order of a
is also the smallest positive integer m such that a™ = 1.

From (1) it follows that a* = 1 if and only if n’ = 0, that is, if and
only if # is a multiple of m(= p).

It is clear that if G is a finite group, then every element a of G has
finite order, and that the order of a divides the order of G.

§4. Abelian groups. Let G be a set with an associative multiplica-
tion. As defined in § 1, the multiplication is said to be commutative if
ab = ba for any elements ¢, b in G. In such a case it is permissible to
change freely the order of the factors in a product a,a, - - - a,. That
is to say, we have the general commutative law, which can be formally
stated as follows:

Let @ be a permutation of the integers {1,2,- - - ,n}. Then

fia= e

The proof is by induction and may be left to the reader.

A group G in which the group operation is commutative is said to be
commutative or abelian. The group operation is then often written
additively; that is, we write a 4 b instead of ab and Jg; instead of []a,.
The element g + b is called the sum of a and b. The identity element
is denoted by 0 (zero) and the inverse of a by — a. Correspondingly
one writes na instead of a*, and the rules for exponents take the form

(1) ma + na = (m 4 n)a,
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2 m(na) = (mn)a,
3) a(a + b) = na + nb,
) — (na) = (— ma.

The last equation is a paraphrase of the statement (in the multiplicative
notation) that the inverse of a” is @=*. The equation xa = b, which in
the abelian case is equivalent to the equation ax = b, assumes then the
form x + a = b. Its unique solution b 4 (— a) is denoted by b — a
and is called the difference-of b and a. The binary operation which
associates with the ordered pair (q, ) the difference b — a is called
subtraction.

§ 5. Rings

DEFINITION. A set R in which two binary operations, + (addition)
and - (multiplication), are given is called a RING if the following conditions
(RING AXIOMS) are satisfied:

R,. R is an abelian group with respect to addition.

R,. If a, b, c€ R, then a(bc) = (ab)c.

Ry, Ifa,b,ceR, thenab+ c)=ab+ acand (b + c)a = ba + ca

(distributive laws). .

In conformity with the additive notation for abelian groups (§ 4) the
identity element of R (regarded as an additive group) is denoted by 0,
and the (additive) inverse of an element a is denoted by — @. Therefore
the following relations hold in any ring R:

O+a=a+0=a,
a+(—a)=(—a)+a=0,
—(—a)=a,
a4+ b+c)=(a+bd+e¢
a+b=b+a
The abelian group which, according to the rihg axiom R,, any ring R
forms with respect to addition is called the additive group of the ring.
A ring R is called commutative if multiplication is commutative in
R: ab = ba for any elements a, b in R.
The distributive laws hold also for subtraction:
(1) ab—c)=ab—ac; (b—cla=ba—ca.
To prove, for instance, the first of these two relations, we have to show
that a(b — ¢) 4 ac = ab. This, however, follows directly from the
first distributive law R,, since (b —¢) +c=b.
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For b = , relations (1) yield the following important property of the
element 0:
(2 a0 = 0a = 0,
for all ain R. If we putin (1) b= 0 we find
a(—¢) = —ac; (— c)a= — ca,

and if in the first of these relations we replace a by — a we obtain
(= a)(— ¢) = — (— a)c = — (— ac), whence
©) (= a)(~¢) =ac.

An element a of R is called a left (or right) zero divisor if there exists
in R an element b different from zero such that ab = 0 (or ba = 0). By
(2) the element 0 is always both a left and right zero divisor whenever R
contains elements different from zero. However, it is convenient to
regard 0 as a zero divisor also in the trivial case of a ring R which consists
only of the element zero (nullring). By a proper zero divisor is meant a
zero divisor which is different from 0. Hence a ring R has proper zero
divisors if and only if it is possible to have in R a relation ab = 0 with
both a and b different from zero. In the sequel we shall call R a ring
without zero divisors if R has no proper zero divisors. An element of R
which is not a zero divisor will be called a regular element. In particu-
lar, the element 0 is not a regular element.

§ 6. Rings with identity. If there exists in the ring R an element
which is an identity with respect to multiplication, then, by a remark
made in § 1, this element is uniquely determined. If R is not a nullring,
we shall refer to this element as the identity of the ring and we shall
denote it by the symbol 1. In such a ring, multiplicative inverses are
referred to simply as inverses. Hence an inverse of a is an element a’
such that a’a = 1 and aa’ = 1; it is unique according to § 1 and will be
denoted by a~1.

The element 1 is its own inverse. Similarly it follows from (3) that
— 1 is its own inverse.

The elements 0 and 1 are distinct elements of R. For we have agreed
that R is not a nullring, and if a 3 0, then 20 = 0 and al =a # 0,
whence 0 7 1. From this it follows that the element 0 has no inverse,
since for any element @ in R we have a0 = 0z = 0 3 1. Consequently
a ring (which is not a nullring) is definitely not a group with respect to
multiplication.

An element of R is called a unit if it has an inverse. The elements 1
and — 1 are units, The ring of integers is the simplest example of a
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commutative ring in which 1 and — 1 are the only units. If aand b are
units, we have a~la =aa~' =1 and (b—1a~1)ab = ab(b—'a~1) = 1,
and this shows that also a—! and ab are units. It follows that in a ring
R with identity the units form a group with respect to multiplication.

If an element @ has an inverse a—!, then from ab = 0 follows
a-'ab = 0,1b = 0, thatis, b = 0. Therefore a is not a left zero divisor.
Similarly it can be shown that a is not a right zero divisor. Thus no
unit in R is a zero divisor.

A commutative ring with identity and having no proper zero divisors is
called an integral domain.

§ 7. Powers and multiples. If R is an arbitrary ring and a € R,
then a" is defined for all positive integers », in accordance with § 1, and,
moreover, relations (1) and (2) of that section are valid. If R is com-
mutative, (3) also holds. If R has an element 1, then the definition in
§ 1 gives a® = 1, and if in addition a—? exists, then a" is defined for all
integers n, and (1) and (2) are Aalid for arbitrary powers. In the
commutative case, if @ and & have inverses, then (3) holds for any
integer n.

Since R is a group with respect to addition, the multiples na are defined
for any integer 7 and any a in R. In addition to the rules for multiples
given in § 4 we have the rules

) n(ab) = (na)b = a(nb).

These follow from the general distributive laws

ba=5ba (Sa)o=3an
im] im] = =1
which in turn are easily proved by induction.

We point out that the associative law of multiplication has nothing to
do with (1) above or with (2) of § 4, nor have the distributive laws
anything to do with (1) and (3) of § 4. More generally, we note that
the symbol na should not be regarded as the product of n and a. Not only
would such an interpretation of the symbol na be ill-founded (na was
defined as the sum of n elements, all equal to &), but it would also be
meaningless, since the integer n is in general not even an element of R.
However, if R has an identity, then using the distributive law R;—or
simply (1) above—we can write:

ma=1la+4la+---+la(ntimes)= (1414 -4 1)a= (nl)q,

and this time na is therefore indeed a product, namely, the product of
nl and a. But also in this case the factor 1 (which is an element of R)
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should not be confused offhand with the integer n, just as the element 1
of R is not to be identified with the integer 1. We shall see in a later
chapter (11, §4) under what conditions and in what sense is the identifica-
tion “n-1 = n” permissible.

In this book we shall study exclusively the theory of COMMUTATIVE rings.
Since no other rings will be considered, a “ ring” will mean from now
on a “commutative ring.”

§8. Fields

DEFINITION. A ring F is called a FIELD if the following conditions
(FIELD AXIOMS) are. satisfied :

F,. F has at least two elements.
F,. F has an identity.-
F3. Every element of F different from zero has an inverse.

The three field axioms can be replaced by a single axiom: the elements of
F which are different from zero form a group with respect to multiplication.
This group shall be referred to as the multiplicative group of F.

In a field, every element different from 0 is a unit. Therefore a field
has no proper zero divisors (§ 6) and is an integral domain (in view of
Fa)l

If we apply the general group-theoretic considerations of § 2 to the
multiplicative group of F, especially the considerations concerning the
equation ax = b, we see that given any two elements a and b of F, both
different from zero, it is possible to divide b by a, that is, form the
quotient bla. This quotient is the unique solution of the equation
ax = b. We observe, however, that also if b = 0, but @ 3 0, then the
resulting equation ax = 0 still has a unique solution x = 0, since a is
not a zero divisor. For this reason we define: 0fa = 0(a 3 0). Hence
division by any element a different from zero is always permissible in a
field. On the other hand, if @ =0, then there results an equation
0-x = b which either has no solution (if b 3 0; whence 5/0 does not
exist) or is satisfied by every element of F (if = 0; whence 0/0 is
indeterminate.)

The ring of natural integers is an example of an integral domain that
is not a field. Examples of fields: (a) the set of all rational numbers;
(b) the set of all real numbers; (c) the set of all complex numbers.

§9. Subrings and subfields. A ring R’ is called a subring of R if
(a) R’ is a subset of R and (b) the ring operations + and - in R’ are
the same as those induced in the set R’ by the corresponding ring
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operations + and - in R. It follows that a subring R’ of R, regarded
as an additive group, must be in the first place a subgroup of the additive
group of R. Hence R’ must be a non-empty set and it must satisfy the
following condition (§ 3):

(a) Ifa,beR',thena— beR'.
Furthermore, R’ must be closed under the given multiplication in R:
(b) If a,be R, thenab e R'.
Conditions (a) and (b) (together with the trivial condition that R’ be a
non-empty set) are also sufficient to make R’ a subring of R (the associa-
tive, commutative, and distributive laws automatically hold in R’
because they hold in R).

If R has an identity 1 and if this element 1 also belongs to R’, then
1 is, of course, the identity of R’. In this case, we shall call R’ a
unitary subring of R (or R a umitary overring of R'.) However, it may
well happen that while R has arf identity, R’ does not (for example:
R = ring of integers, R’ = ring of even integers). Less trivial possi-
bilities are the following: (a) both R and R’ have an identity, but the
identity of R does not belong to R’; (b) R’ has an identity but R does not
(see Example 2 below). In both cases (a) and (b) the identity of R’ is
necessarily a zero divisor of R. For let 1’ denote the identity of R’ and
let us assume that 1’ is not an identity of R. There exists then in R an
element asuch that 'a = b3 2. Wehave I'db = (1'"-1)a = 1'a =,
hat is, 1'a = 1'b, or 1'(a — b) = 0. Since a 7 b, it follows that 1’ is
a zero divisor in R.

By a subfield of a field F we mean any subset F' of F which is a field
with respect to the given field operations (4 and -) in F. From the
remarks just made concerning rings with identity it follows that the
element 1 of F is necessarily the identity of F'. This also follows from
the fact that the multiplicative group of F' must be a subgroup of the
multiplicative group of F. This last condition, together with the
condition that F’ be a subgroup of the additive group of F, characterizes
the concept of a subfield. Hence (§ 3) F' is a subfield of F if and only
if the following two conditions are satisfied: (a) if a4, b€ F', then
a—beF;(b)ifa,beF and b 0, then ab-1 e F".

Exampres. (1) If a and b are distinct elements of a field F, we may
define a new addition @ and a new multiplication © in F as follows:
x@y=x+y—a xOy=a+ (x—afy — a)/(b — a). (Ingeo-
metric terms: we change the origin and the scale.) It is easily seen that
the elements of F form a field also with respect to these new operations.
We denote this new field by F'. It is clear that a subset of F which is a
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subring of F’ will not in general be a subring of F. Note that a and &
are respectively the zero and the identity of F".

(2) Let 4 and B be two rings and let R be the set of all ordered pairs
(a, b), where a € 4 and be B. If we define addition and multiplication
in R by setting (a,d) + (a',b')=(a + a’, b+ ¥'), (a,d)-(b,d) =
(aa’ bb'), then R is a ring, and the subset R’ of R consisting of the
elements (a, 0) is a subring of R. If A4 has an identity, say, e,, then
(€4, 0) is the identity of R’. The ring R has an identity if and only if
both 4 and B have identities ¢, and eg, and in that case (e,, ¢g) is the
identity of R. In the present example the identities of R and R’ are
therefore necessarily distinet:

§ 10. Transformations and mappings. We shall use the symbol
C for set inclusion. Thus, if S and S’ are sets, then S’ C S shall mean
that S’ is a subset of S. If $"C S, and S’ 7 S, we shall say that S’ is
a proper subset of S and we shall write S’ < S.

Let S and § be arbitrary sets of elements. By a transformation of S
into § we mean a rule which associates with every element a of S some
subset of §. This subset, which may be empty, will be denoted by a7
If d is an element of aT, we say that g corresponds to a (under the given
transformation T'), or that 4 is a transform of a, or that @ is a T-image
of a. It may be that to certain (or even all) elements of S there corre-
spond no elements of S.

If A is an arbitrary non-empty subset of S, the union of all T-images
of all elements of A4 shall be referred to as the transform of A (under T)
and shall be denoted by A7. We have AT = U aT, a € 4, where the
symbol U indicates set-thcoretic addition (union of sets) and where a
varies in A. We make the convention that if 4 is empty, then the
symbol AT stands for the empty set. We say that T is a transformation
of Sonto Sif ST=S.

Let T be a transformation of S into S, and let S’ be a subset of S.
Then T induces in a natural way a transformation T” of S’ into §: if
ac S, we define aT’ = a7. T is called the restriction of T to S'.

If T is a transformation of S into § and 7" is a transformation of S
into some other set S’, then the product of T and T is the transformation
of S into 8’ which assoc:ates with every element a of S the subset
(@T)T' of S’. 'This transiormation shall be denoted by T'7". Thus,
by definition, «(T7T") = (a7")T", and it follows that we have for any
subset 4 of S: A(TT") = (ATT'. If S,, Sy Sy S¢ are sets and
T(i = 1, 2, 3) is a transformation of S; into S, ,, then clearly (T, T,)T,
= Ty(T,Ty).
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For a transformation T of S into S, the inverse transformation T of
Sinto S is defined as follows: If d € S, then @7 is the set of all elements
of S having d as T-image; that is, € 47! if and only if deaT.
Clearly T is the inverse of T-1.

A transformation T of S into S will be called a mapping of S into S if it
is everywhere defined on S and is single-valued, that is, if for every
element a of S, the set aT contains one and only one element. This
element will also be denoted by aT.  As with transformations in general,
a mapping T of S into § is said to be a mapping onto Sif ST=S. A
mapping of S into S is univalent if aT = bT implies a = b for any a and
bin S. A mapping of S into S will be called one to one—in symbols,
(1, 1)—if it is both onto and umivalent. It is clear that, T being a
mapping of S into S, T-! is a mapping of S into S if and only if T is
one to one; and in that case, also 7'-! is one to one.

The identity mapping I of a set S is defined by al = a for all a in S.
If S and § are two sets, I and [ their respective identity mappings, then
a transformation T of S into S is « one to one mapping of S if and only
if there exists a transformation T of Sinto Ssuchthat TT =1, TT = I;
and in that case T'= T-1.

If T is a mapping of S into S, and 7" a mapping of S into a set S,
then the product transformation T'T" of S into S’ is itself a mapping.

A mapping of S into S is, in fact, a single-valued function fon Sto §,
since it associates with each element of S a unique element of §. We
shall frequently use the functional notation f{(a) to denote the element of
S which corresponds to an element a of S. If f is a mapping from S
into §, and g a mapping from S into ', we shall write, in the usual way,
£(f(a)) for the element of S’ corresponding to a under the product of the
mappings f and g.

A mapping T of a set S into a set S’ is sometimes denoted by a notation
of the type @ — E(a), where E(a) is a formula giving the value of the
image aT of any element a of S.

§ 11. Group homomorphisms. From the foregoing general set-
theoretic definitions we now pass to the case in which the given sets are
groups. In this case one is interested in mappings of a particular type.
Let G and G be two arbitrary groups. We use the multiplicative
notation for the group operation in each group. By a homomorphism, or
homomorphic mapping, of G into (or onto) G we mean a mapping T of G
into (or onto) G which satisfies the following condition: if a and b are
any two elements of G, then

(ab)T = (aT)(T).
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Thus a homomorphism of a group G into another group G is a mapping
characherizedbytheoonditionthattheimagcofaproducticthcproduct
of the images: if to a there corresponds d and to & there corresponds
b (a,b€ G; 4,b€B), then to the product ab there corresponds the
product 45, that is, we have ab = ab.

If both groups G, G are abelian and if the group operation in both
groups is written additively, then the foregoing homomorphism condition
(@5)T = (aT)bT) becomes

(@ + 8T = aT 4 bT.

A univalent homomorphic mappmg of G into (or onto) G is called an
isomorphism, or an isomorphic mappmg, of G into (or onto) G. It is
clear that an isomorphism pf Gonto Gisa homomorphlsm of Ginto G
which is at the same time a one-to-one mapping.

Given two groups G, G, we say that G is a homomorphic or isomorphic
image (or map) of G according as there exists a homomorphism or an
isomorphism of G onto G. If T is an isomorphism of G onto G, then
it is clear that T-! is an isomorphism of G onto G. Hence if G is
an isomorphic image of G, then also G is an isomorphic image of G.
We say then that G and G are isomorphic groups. In particular, a
homomorphism of a group G into itself is called an endomorphism
of G; and an isomorphism of G onto itself is called an automorphism
of G.

If T is a homomorphism of G into G and if T” is a homomorphism of
G into a group G', then T'T" is a homomorphism of G into G’. If both
T and 7' are homomorphisms onto, then also T'7” is a homomorphism
onto (of G onto G'). It follows that a homomorphic image of a homo-
morphic image of a group G is itself a homomorphic image of G.

If T is a homomorphism of a group G into a group G, we mean by
the kernel of T the set of all elements of G which are mapped into the
identity element of G.

THeoREM 1. If T is a homomorphism of a group G into a group G and
if e and  derote respectively the identity elements of G and of G, then
eT'=¢. IfaeG andif aT = G, then a='T = G~. Theset GT is a
subgroup of G, and the kernel H of T is a normal subgroup of G.

PROOF. From ee = ¢ follows (¢T)(eT) = eT, and on the other hand
we have &eT) = eT. Hence (eT)eT) = &eT), and since the cancel-
lation law holds in any group, it follows that eT = &.

From aa—?! = ¢ follows (aT)(a~1T) = T = ¢, whence a~!T = -1,
where 4 = aT.

If d=aT and b = bT are any two elements of GT (a, beG),
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then a@(b)-! = (aT)(dT) ! = (aT)b~'T) = (ab~1)T, and therefore
4(b)-* e GT. This shows that GT is a subgroup of G (§ 4).

The kernel of T is a non-empty subset of G, since eT = ¢, hence
ecH. Ifa beH, thatis, aT = bT = ¢, then (ab~2)T = (aT)bT)?
== ¢, hence ab—1 € H, and this shows that H is a subgroup of G. If a
is any element of the kernel H and if x is any element of G, we have
(x~1ax)T = (xT)~Y(aT)(xT) = ¢, and therefore x—'ax € H. This shows
that H is a normal subgroup of G.

The following theorem is used very frequently in testing whether a
given group homomorphism is an isomorphism:

THEOREM 2. A homomorphism T of a group G into a group G is an
isomorphism if and only if the kernel H of T contains only the identity e
of G.

PROOF. In the first place it is obvious that if T is an isomorphism—
hence a univalent mapping—then e is the only element of G which is
mapped into the identity element é of G. Conversely, let us assume
that the kernel H of T contains only the identity e of G and let a and b be
clements of G having the same T-image: aT = bT. Then (ab-)T =
aT-(bT)-! = ¢, ab-1 € H, ab-! = ¢, a = b, and hence T is a univalent
mapping, that is, T is an isomorphism.

As was stated in Theorem 1, the kernel of any homomorphism of a
group G is a normal subgroup of G. Now, conversely, let H be a given
invariant subgroup of G. The right cosets of H and G coincide then
with the left cosets of H, and we can define multiplication of cosets as
follows: Ha-Hb = Hab(a, b€ G). The product Ha-Hb depends only
on the cosets Ha, Hb and not on the choice of representatives a and b of
these cosets. For if Ha' = Ha and Hb' = Hb, we have a' = h,a and
b’ = hgb, where h, and h, are elements of H, and hence Ha'-Hb' =
Hh,-ahy-b = Hhihy-ab = Hab, where hy = ahja~€ H. One sees
immediately that with respect to this definition of multiplication of
cosets, the cosets of H form a group, the coset H being the identity of
that group, and that the mapping a — Ha is a homomorphism of G onto
the group of H-cosets, with kernel H. The group of cosets of the
normal subgroup H is called the factor group, or the quotient group, of G
with respect to H, and is denoted by G/H. The mapping a — Ha is
called the canonical or natural homomorphism of G onto G/H.

The following situation occurs frequently in applications: we are
given a group G, a set G in which a binary operation (multiplication) is
defined, and a mapping T of G onto G which has the usual homo-
morphism property (ab)T = (aT)bT). We may express these
conditions by saying that the set G is a homomorphic image of the group G.
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Lemma 1. The homomorphic image G of a group G is a group. If G

is commutative, so is G.

ProOF. We first prove the associative law in G. Let 4, b, ¢ be
arbitrary elements of G; they are images of certain elements q, b, ¢ of G,
since T'maps G onto G. We have (ab)c = a(bc). We have [(ab)]T =
[(ab)T)eT = [(aTXbT))cT = (ab)e. 1In a similar fashion we find that
[a(bc)]T = d(bé), and hence (ab)¢ = a(b¢). One shows then, as in the
proof of Theorem 1, that G has an identity, namely, eT, where e is the
identity of G, and that every element d of G has an inverse, namely, if
@ = aT, then d-! = (a~1)T. Thus G is a group. The second asser-
tion of the lemma is obvious..

Another situation which occurs frequently in connection with group
homomorphisms is the following:

We are given two groups G and G and a transformation T of G into G.
It is also given that

(A) for any element a in G the set aT is non-empty;
(B) if de aT and b € bT, then ab € (ad)T.

Itis not given a priori that T is a mapping (that is, single-valued). Were
this given too, then it would follow at once that T is a homomorphism of
Ginto G. The following lemma reduces the test of single-valuedness
of T to the test of single-valuedness of T at the identity element e of G.

LemMa 2.  Let T be a transformation of a group G into a group G such
that conditions (A) and (B) are satisfied. If the set eT contains only one
element (e denoting the identity of G), then T is a mapping, hence a homo-
morphism, of G into G.

PROOF. We have, by condition (B), eT-eT € (e-€)T = eT'; hence eT
is the identity £ of G. Let a be any element of G and let us fix an
element b in (a-1)T. If 4 is any element in a7, we have, by (B),
@b € (aa=1)T = T = ¢, thatis, @b = &. This shows that aT consists of
the single element 5-1. Q.E.D.

§12. Ring homomorphisms. A mapping T of a ring R into a
ring R is called a ring homomorphism, or simply a homomorphism, or a
homomorphic mapping, if T satisfies the following conditions:

(1) (a + b)T = aT + ¥T,

@ (ab)T = (aT)bT),

for any pair of elements g and b in R. Condition (1) signifies that T is
a homomorphism of the additive group of R into the additive group of
R. Condition (2) is the analogue of (1) for multiplication.
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A ring homomorphism which is a univalent mapping is called an
s, . -
If T is a homomorphism or isomorphism of R onto R, then we say that
R is respectively a homomorphic or isomorphic image of R. If R is an
isomorphic image of R, then also R is an isomorphic image of R (in
virtue of the mapping T-1), and the two rings R, R are said to be
isomorphic rings, or R is said to be isomorphic with R.
We use the standard notation

R~R

to indicate that R is a homomorphic image of R (that is, that there exists
a homomorphism of R onto R) and we write

T:R~R

to indicate that a given mapping T or R onto R is a homomorphism.
The corresponding notation for #omorphic rings is

R=R,
T:R=R

The same notation is used also in group theory for group homo-
morphism and group isomorphisms respectively.

An isomorphic mapping of a ring R (or of a group) onto itself is called
an automorphism. In an automcrphism T': R =< R the two rings (or
groups) R, R coincide (not merely as sets but also as rings, or groups).

By the kernel of a homomorphism T of a ring R into a ring R we mean
the set of elements a in R such that aT = 0, where 0 denotes the zero
element of R.

TueoreM 3. If T is a homomorphism of a ring R into a ring R, then

(a) OT = 0 and (— a)T = — (aT), for any element a in R;

(b) RT is a subring of R;

(c) the kernel N of T is a subring of R;

(d) if R has an identity element 1 and if RT is not a nullring, then
1T is the identity element of RT, and if a™* exists, then a™'T is
the inverse of aT in the ring RT.

PROOF

(a) This follows from Theorem 1 of § 11 as applied to the additive
group of R.

(b) If 4,b€RT, then d = aT, b = bT, where a,b€e R, and ab =
(ab)T € RT. Hence RT is closed under multiplication. Since, by
Theorem 1, RT is a subgroup of the additive group of R, it follows (§ 9)
that RT is a subring of R. 2
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The proof of (c) and (d) is equally straightforward and is left to the
reader.

CoroLLary. If T is @ homomorphism of R onto R and if R has an
identity element 1, then also R has an identity element (provided R is not
a nullring) and this element is 1T.

It has already been pointed out that the kernel N of the homo-
morphism T contains at least the element 0 of R. From Theorem 2 of
§ 11, as applied to the additive group of R, it follows that a' homo-
morphism T of a ring R into a ring R is an isomorphism if and only if the
kernel N of T contains unly the element O of R.

We have shown in the proof.of Theorem 3 that the kernel N is closed
under multiplication. Actually N has the following much stronger
property: If one of the factors a, b of a product ab belongs to N, then the
product itself belongs to N. For if, say, a € N, then (ab)T = (aT)(bT)
= 0(bT) = 0, hence abe N, as asserted. This property of the kernel
N is fundamental in the formulation of the concept of an ideal, and we
shall return to it in chapter III.

From a formal algebraic standpoint, isomorphic rings are not essenti-
ally distinct rings, because it is clear that an isomorphic mapping of
a ring R preserves the algebraic properties of R (that is, those pro-
perties of R which can be formally expressed in terms of the ring
operations + and -). Thus, for instance, an isomorphic image of an
integral domain or of a field is again respectively an integral domain or
a field.

On the other hand, a homomorphism which is not an isomorphism
may affect some algebraic properties of a ring. For instance, a homo-
morphic image of an integral domain need not be an integral domain,
and a ring which is not an integral domain may have an integral domain
as a homomorphic image, (see III, § 9).

The situation for groups, which is covered by Lemma 1 of the
preceding section, arises also for rings and leads to a similar lemma.
Assume that we have a ring R, a set R in which two binary operations
+ and - are defined, and a mapping T of R onto R having the usual
homomorphism properties: (a 4 b)T = aT + bT, (ab)T = aT-bT.
We express these conditions by saying that the set R is a homomorphic
image of the ring R.

LEMMA. A homomorphic image of a ring is again a ring.

The proof is similar to that of Lemma 1 of the preceding section and
may be left to the reader.

As to Lemma 2 of the preceding section, it is automatiralty annlicahle
to rings when we regard rings as additive groups.
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COROLLARY. An isomorphic image of an integral domain or of a field
is again respectively an integral domain or a field.

If T is a homomorphism of a ring R into a ring R and if R, is a subring
of R, then the restriction T, of T to R, is a homomorphism of R, into
R. If T is an isomorphism, then also the induced homomorphism T,
of R, is an isomorphism (but not conversely).

An important special case is the following: R, is a common subring of
R and R, and the induced homomorphism of R, is the identity (that is,
the automorphism T, of R, defined by aT, = a, forallain R;). Inthis
case we say that T'is a relative homomorphism of R over Ry, or briefly: T
is an Ry-homomorphism (or an R-isomorphism, if T is an isomorphism).
For instance, the automorphism of a 4 b —a — b of the field of
complex numbers (g, b real) is a relative automorphism over the field of
real numbers.

If R, is a common subring of two rings R and R, we say that R is an
Ry-homomorphic image of R if there exists an R,-homomorphism of R
onto R; and that R is an R-isomorpkic image of R (or that R and R are
Ry-isomorphic) if there exists an Ry-isomorphism of R onto R.

If T is a homomorphism of a ring R into a ring R and T is a homo-
morphism of a subring R, or R into the same ring R, we shall say that T
is an extension of T, if T, is the restriction of T'to R,. Ifonly R, R,'R,
and T, are given, then we say that T, can be extended to a homomor-
phism of R (into R) if there exists a homomorphism T of R into R such
that T is an extension of T',.

§13. Identification of rings. As an application of the concept of
isomorphism extension, we shall now discuss a certain standard pro-
cedure of ring identification which is frequently used in algebra.

Given two rings R and S’ we say that R can be imbedded in S’ if there
exists a ring S which contains the ring R as a subring (§ 9) and which is
isomorphic with S’. It is clear that if R can be imbedded in S’, then S’
must contain a subring which is an isomorphic image of R. We shall
prove now that this condition is also sufficient. We give the sufficiency
condition in the following sharp formulation:

LemMMA. If R and S’ are rings and if T is a given isomorphism of R
onto a subring R’ of S, then there exists a ring S which contains R as a
subring and which is such that Ty can be extended to an isomorphism T of
Sonto S'.

PROOF. We shall first assume that R and S’ have no elements in
common. We replace in S’ every element 7’ of R’ by the corresponding
element 7Ty~ of R. The result is a set S which is the union of the two
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disjoint sets S’ — R’ and R, where S' — R’ denotes the set of elements of
S’ which are not in R’ (the complement of R’ in S'), We extend the one
to one mapping T, of R onto R’ to a one to one mapping T of S onto S’
in the following obvious fashion: aT = aT,, if aeR; aT = a if
a€S — R. The mapping T is indeed one to one since ' — R’ and R
are disjoint. We now define addition @ and multiplication © in S as
follows: ifa, b€ S, thena @ b = (aT + bT)T-%,a O b= (aT-bT)T-1
With this definition of the ring operations in S it follows directly from
Lemma 1 of § 12 that S is a ring and that T is anisomorphism of S onto S'.
Since T, is an isomorphism of R onto R’ and T coincides with T, on R,
it follows from the very definition of the ring operations in S that if
a,beR,thena@® b=a+ banda O b = a-b, where 4+ and - refer to
the ring operations in R. Heénce the ring R is a subring of S. Moreover,
T is, by definition, an extension of T,.

This completes the proof if R and S’ are disjoint. In case R and S’
have elements in common, we first replace S’ by an isomorphic ring S',,
which is disjoint from R. For this purpose, we make use of the follow-
ing elementary fact from set theory: If S’ and R are arbitrary sets, there
exists a set S’, and a mapping H of S’ onto S, such that §, is disjoint
from R and H is one to one. By means of H the ring operations can be
carried over from S’ to §’; (as they were in the preceding paragraph
from S’ to S by means of T), S’; becomes a ring, and H becomes an
isomorphism of S’ on §’;. If R, = R'H, then R’ is a subring of S',
and T H defines an isomorphism of R onto R’;. Since S, and R are
disjoint we may apply the present lemma and obtain a ring S containing
R and an isomorphism T, of S onto .S’, which coincides with ToH on R.
Then T,H-! is an isomorphism of S onto S’ which coincides with T,
on R. The lemma is thereby proved.

A typical situation which will occur frequently in this book and in
which we shall tacitly make use of the foregoing lemma is the following:
R will be a ring (as a rule, a field) which is fixed throughout the discus-
sion, while S’ may be any ring of a certain class of rings, but in each ring
S’ there will be a subring R’ isomorphic with R. Since we shall not be
concerned with the particular nature of the elements of S’ but only
with S’ regarded as an abstract ring, we are free to replace S’ by an
isomorphic ring S containing the fixed ring R as a subring, according
to the scheme indicated in the above lemma. Actually we shall seldom
carry out explicitly this cumbersome substitution of S for §'. We
shall, as a rule, simply say that we identify R’ with our fixed ring R,
and we shall, therefore, without further ado regard R as a subring
of S’ :
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§ 14. Unique factorization domains. We first give some defini-
tions concerning divisibility concepts in an arbitrary (commutative) ring
R with identity. The zero element of R is excluded from the considerations
which follow below.

If a and b are elements of R, we say that b divides a (or b is a divisor of
a) and that a is divisible by b (or a is a multiple of b) if there exists in R
an element ¢ such that @ = bc. Notation: b|a, or a = 0 (mod 4). Itis
clear that the units of R are those and only those elements of R which
are divisors of 1.

If @ = be and ¢ is a unit, then a and b are called associate elements, or
simply associates. We have then that b = ae~!, and hence not only
does b divide a but also @ divides . Conversely, if @ and b are elements
of R such that b|a and a|b, and if R is an integral domain, then a and b are
associates. For we have a = bc and b = ac’, whence a = ac’c, c'c =1,
that is, ¢ is a unit.

A unit ¢ divides any element a of R: @ = ¢-e~'a. The associates of
an element a and the units in R are referred to as improper divisors of a.

An element a is called irreducible if it is not a unit and if every divisor
of a is improper.

DEFINtTION. An integral domain R is a UNIQUE FACTORIZATION
DOMAIN (or briefly, a UFD) if it satisfies the following conditions:

UF1. Every non-unit of R is a finite product of irreducible factors.
UF2. The foregoing factorization is unique to within order and unit
Jactors.

More explicitly, UF2 means the following: If a = p,p," " pp, =
919: " * * 4, Where p; and ¢; are irreducible, then m = n, and on
renumbering the ¢;, we have that p; and g; are associates,i = 1,2, - -, m.

Examples of unique factorization domains: (a) the ring of integers;
(b) euclidean domains (see § 15, Theorem 5); (c) the ring of polynomials
in any number of indeterminates, with coefficients in a field (see § 17,
Theorem 10).

THEOREM 4. For integral domains R satisfying UF1, condition UF2
is equivalent to the following condition:

UF3. If p is an irreducible element in R and if p divides a product ab
then p divides at least one of the factors a, b.

PROOF. Let ab = pc and let

a=1;[p’,-, b=];[p",-, C=Ihlﬁ

be factorizations of 4, b, and ¢ into irreducible factors (UF1). We have
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I I =p I;I s and hence if we assume that UF2 holds, then p
1 J

differs from one of the factors p’;, p”; by a unit factor, and this proves
UF3.

Conversely, assume that R satisfies conditions UF1 and UF3. Since
UF2 is obvious for factorizations of irreducible elements, we shall
assume that UF2 holds for any element of R which can be factored into
s irreducible factors and we shall prove then that UF2 holds for any
element a which can be factored into s 4 1 irreducible factors. Let

s+1

O a=1ln=17r,

be two factorizations of a into irreducible factors, one of which involves
exactly s + 1 factors. We have that p, divides the product of the p’,,
and hence, by UF3, p, must divide one of the elements p’y, p’y, - * -, p’,.
Let, say, p, divide p’;. Since p’, is irreducible, it follows that p, and p’;
are associates. Thenp’;, = ¢p,, where ¢ is a unit, and after cancellation
of the common factor p,, (1) yields

s+1 [

2 ;,[_j[zi’i = ‘,I_Izl"j-

On the left there is a product of s irreducible factors. Hence by our
assumption, the two factorizations in (2) differ only in the order of the
factors and by unit factors. Since we have already shown that p’,
differs from p, by a unit factor, everything is proved.

In a unique factorization domain any pair of elements a, b has a
greatest common divisor (GCD), that is, an element d, denoted by (a, 3),
which is defined as follows: (1) d is a common divisor of a and b; (2) if ¢
ts @ common divisor of a and b, then c¢ divides d. The GCD of a and b
is uniquely determined to within an arbitrary unit factor. The proofs
of existence and uniqueness of (e, b) are straightforward and can be left to
the reader.

If (a, b) = 1, the elements @ and b are said to be relatively prime. The
following are important but straightforward properties of relatively
prime elements:

(1) If (a, b) = 1 and b divides a product ac, then b divides c.
(2) If (a, b) = 1 and if a|c and b|c, then ab]c.

§ 15. Euclidean domains. An important class of unique factoriza-
tion domains is given by the so-called euclidean domains or rings admit-
ting a division algorithm. These rings are defined as follows:
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DEFINITION. A euclidean domain E is an integral domain in which
with every element a there is associated a definite integer ¢(a), provided the
Sunction @ satisfies the following conditions:

El. If b divides a, then ¢(b) < ¢(a).*
E2. For each pair of elements a, b in E, b £ 0, there exist elements g
and r in E such that a = bq + r and ¢(r) < @(b).

The ring of integers is a euclidean ring if we set for every integer n:
@(n) = |n| = absolute value of n. Then for any two integers a and &
the ordinary division algorithm yields integers ¢ (quotient) and r
(remainder) satisfying E2. Similarly the ring F[X] of polynomials in
one indeterminate X, with coefficients in a field F (see § 17, Theorem 9,
Corollary 3) is a euclidean ring if for any polynomial f(X) in F[X] we
set: @(f) = degree of fif f 3 0; ¢(0) = — 1.

We proceed to derive a number of consequences from the conditions
El and E2.

a. If b5 0, then p(0) < ¢(b). For if in E2 the element a is the
element zero, then r = — bg. If r were different from zero, then we
would have b|r and hence, by E1, ¢(b) < (), in contradiction with E2.
Hence r = 0 and ¢(0) < ¢(b), as asserted. We note that the function
@, = ¢ — ¢(0) also satisfies conditions E1 and E2. This new *“nor-
malized " function is such that ¢,(0) = 0 and ¢,(a) > 0if a % 0. This
normalization of the function ¢ can therefore always be assumed ab
imitio, if desired, but it plays no particular role in the proofs given below.
As a matter of fact, we could have phrased the definition of euclidean
rings in such a way as to leave out the element 0 aitogether. Namely,
it would have been sufficient to assume that ¢ is defined only for elements
a different from zero, provided the requirement ¢(r) < @(b) in E2 had
been replaced by the alternative: either r = 0 or ¢(r) < ¢(3).

b. If a and b are associates, then p(a) = @(b). This follows directly
from E1.

c. If a divides b and p(b) = ¢(a), then a and b are associates. Under
the assumption ¢(b) = ¢(a), condition E2 yields: ¢(r) < ¢(a). On the
other hand, if 7 were different from zero then fromr = a — bgand a|bit
would follow that a divides r, whence ¢(a) < ¢(r), a contradiction.
Hence r = 0, that is, also b divides a, and therefore a and b are associ-
ates.

* In this condition the elements a and b are automatically different from zero,
since the divisibility concepts introduced in the preceding section have been
restricted to elements different from zero.
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d. If € is a unit, then @(e) = @(1), and conversely. The direct
statement follows from b. and the converse from c.

THEOREM 5. A euclidean domain is a unique factorization domain.

Proor. We shall show that a euclidean domain E satisfies UF1 and
UF3 (see § 14, Theorem 4).

VERIFICATION OF UF1. Let a be an arbitrary non-unit. Then UF1
is vacuously true for a if p(a) = ¢(1) (since this equality is in fact im-
possible if  is a non-unit). Hence we can use induction with respect to
the value of p(a). We shall therefore assume that UF1 is satisfied for
all elements a’ such that ¢(a’) < @(a) and we proceed to show that UF1
is then satisfied also for the given element a. If a is irreducible, there is
nothing to prove. In the’ contrary case we have a = bc, where neither
b nor ¢ is an associate of a. It follows then from E1 and c that ¢(b) <
@(a) and ¢(c) < ¢(a). Therefore, by our induction hypothesis, both
b and c are finite products of irreducible factors, and consequently also
a is such a product.

VERIFICATION OF UF3. We shall first prove the following lemma:

LEMMA. Any two elements a, b of E(a, b £ 0) have a GCD d,
and d is a linear combination of a and b, that is, d = aa + b, a € E,
BeE.

Let I denote the set of all elements of E which are linear combinations,
Aa + Bb of a and b (4, Be E). Among the elements of I other than
zero we select an element d for which ¢(d) is minimum. We have
d = ca + Bb(e, B€ E), and on the other hand, by E2, we can find
elements s and ¢ in E such that @ = ds + ¢, ¢(t) < ¢(d). We have then
t=a—ds=a(l — as) + b(— Ps) € Iand ¢(t) < ¢(d). Consequently,

= 0, that is, d divides a. Similarly it can be shown that d divides b,
and hence d is a common divisor of a and b. Moreover, since d is of the
form aa + Bb, every common divisor of @ and & is also a divisor of d.
Hence d is a GCD of a and . Q.E.D.

The verification of UF3 is now immediate. For let an irreducible
element p of E divide a product ab, and let us assume that p does
not divide a. Then the GCD of p and a is 1, and hence, by the
lemma, we can write 1 = aa + Bp. Hence b = b 1 = aab + Bbp,
and since p|ab it follows that p|b. This completes the proof of the
theorem.

§ 16. Polynomials in one indeterminate. Given a ring R, we
shall consider sequences

f={apa a5}, a;€R,
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such that all but a finite number of the a; are zero. Let S denote the set
of all such sequences. Iff,ge S,

g ="{bo by, by, -},
then we define:
1 f+g="{ao+ bpa,+by,as+ by},
(2)  fo={abo ahy + asby, aghs + arby + ashe, - - } = {eu)s
where
3) G= ab, k=012,---.
ity=k
It is immediately seen that with these definitions of addition and multi-
plication the set S becomes a ring. The elements of this ring S will be

called polynomials over R or polynomials with coefficients in R.
The zero element of S is the sequence {0, 0, 0, - - -}, and we have

- —f={—ap—a, —ay .

If R has an identity 1, then also S has an identity 1', namely, 1’ =
{1,0,0,---}. The converse is also true, as can be seen by writing
{a,0,0,---}1" = {a,0,0, -}, ae R (complete the proof).

If f = {a,} is a non-zero polynomial (that is, if not all a; are zero)
and if #n is the greatest integer such that a,  O(n = 0), then 7 is called
the degree of . 'The degree of f will be denoted by ¢f.  We do not assign
any degree to the zero polynomial. If ¢f = n, then agy, a,, - * -, a, will
be called the coefficients of f, and a, will be called the leading coefficient
of f. If R has an identity and a, = 1, then the poiynomial f will be
called monic.

It is clear that if &f < dg, then o(f + g) < dg, with equality if
of < dg. If &f = n and ¢g = m, then it follows directly from (3) that
Cmyn=06b, and ¢, =0 if k> m+ n. Hence either ap, # 0, in
which case fg # 0, o(fg) = m + n, and the leading coefficient of fg is
ab,; or ab, =0, and then either fg = 0 or o(fg) < m + n. 'The
first alternative (that is, a,b,, 7 0) certainly holds if one of a, and b, is
not a zero divisor, in particular if either (1) R has an identity and one of
f and g is monic or (2) if R is an integral domain.

The natural mapping a— {4,0,0,---} is an isomorphism of R
onto a subring R’ of S. Hence R can be imbedded in S. However,
rather than replace S by some unspecified isomorphic ring S’ which
contains R as a subring (see § 13), we prefer in the present case to deal
with the ring S itself, since our concrete definition of a polynomial as a
sequence is most convenient. It must then be emphasized that we
cannot regard in all cases our original ring R as a subring of S, since, in
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the absence of any information about the nature of the elements of R,
it cannot be excluded that R and S — R’ have common elements, that
is, that some elements of R are in fact finite sequences of other elements
of R. 'To avoid all unnecessary notational complications, we agree from
now on to replace R by some isomorphic ring for which the above set-
theoretic difficulty does not arise and to regard therefore R as a subring
of S.

Summarizing, we have the following

THEOREM 6. The polynomials with coefficients in R form a ring S in
which R can be imbedded as a subring. S has an identity if and only if R
has an identity; and if that is so, then (1,0, 0, - - -) is the identity of S,
where 1 is the identity of R. If f and g are two non-zero polynomials in
S, then either fg = 0 or d(fg) < of + ég, and we have o(fg) = of + ¢
if and only if the product a,b,, of the leading coefficients of f and g is not
zero; and if that is so, then a.b,, is the leading coefficient of fg. If R is an
integral domain, so is S, and the units of S arise from the units of R under
the mapping a — (a, 0,0, - - -).

If—as will be the case from now on—R is regarded as a subring of S,
then the element 1 of R is also the identity of S, and if R is an integral
domain, then the units of R are the only units of S.

We shall now assume that R has an identity 1 and denote by X the
polynomial (0, 1,0,---). We find at once that if ac R and m is a
non-negative integer, then aX™ = {c;}, where ¢; = 0 if i 3£ m, ¢,, = a.
It follows that if f = {a,} is a polynomial of degree #, then

4 f=a,+aX+a,X>+ - +aX", a€cR, a,#0,

which yields the familiar expression of a *‘ polynomial in X””. We shall
call X an indeterminate and we shall refer to the polynomials in S as
polynomials in one indeterminate (over R). The ring S itself will be
denoted by R[X] and will be referred to as a polynomial ring in one
tndeterminate over R.

The polynomials in one indeterminate, which we have defined so far
in a purely formal fashion, have an important functional connotation
which we proceed to elucidate. Let 4 be any unitary overring of R
and let f =ay + a,X + - - - + a,X" be any polynomial in R[X]. If
yed,wesetf(y) =ay+ a,y+---+ a,y". Then f(y)e 4. Wesay
that f(y) is the result of substituting y for X in the expression f(X) of f.
In particular, we have, then, f(X) = f (taking for 4 the ring R[X]
itself).

If 4 is a unitary overring-of R and if y is a fixed element of 4, the
mapping f — f(y) is a R-homomorphism of R[X] into 4. This state-
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ment follows from a comparison of (1), (2), (3) with the easily proved
formulas
) Za.-y" + zbiyi = z(“i + b,)y%,
(6) (24:5)2b;5) = Say*, where ¢, = 42 *aibj’
4=

Thus if f(X) and g(X) are two polynomials in X and if we set
KX) = f(X) £ g(X), KX) = f(X)g(X),

h(y) = f(y) £ 8(»), k(9) = f()e()-

For f fixed, the transformation y — f(y), y € 4, is a mapping of 4
into itself, that is, a function of 4 to 4. We denote this function by f,.
Thus with every polynomial f in R[X] and with every ring 4, unitary
over R, we have associated a function f, on 4 to 4. If 4 is a subring
of another ring 4,, which is unitary over 4, then f, =f,on 4. It
is therefore apparent that any polynomlal in R[X] can ‘be thought of as
the symbol of a well-defined operatlon which can be applied to any
element y of any given ring 4 unitary over R and which, if so applied,
yields a well-defined function on 4 to 4. This operation is performed
by substituting y for X in the given polynomial f, or f(X). From
this point of view the symbol X appears indeed as an indeterminate,
or “variable,” which can take values in any ring containing R.

We point out that for a given ring 4 containing R it may very well
happen that distinct polynomials in R[X] give rise to the same function
on 4. This is equivalent to saying that there may exist a non-zero
polynomial f such that f(y) = 0 for all y in 4. This will certainly
happen if 4 = R and R contains only a finite number of elements, say,
€y, €3 "+, ¢, Forthenwemaysetf = (X —¢,)(X —¢;)-- (X —¢,),
and obviously f(y) = 0 for all y in R. On the other hand, there
exist rings 4 containing R such that f, 3 g, whenever f 3 g. The
simplest example of such a ring is the ring R[X] itself, for we have
f(X)=f#g=gX) Any ring S’ containing R which is R-iso-
morphic with R[X] (see § 12), and a fortiori, any ring 4 which contains
such a ring S’ as a subring, will share with R[X] the above-mentioned
property.

If f=a€eR, then the function f, is constant: f,(y) = a, for all
ye€d. For this reason the elements of R regarded as polynomials will
be called constants. In view of what was said in the preceding para-
graph, it may well happen that f, is constant even though f¢ R.
Nevertheless only those polynomials which are in R will be called
constants.

then
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§ 17. Polynomial rings. We consider again a ring 4 unitary over
R, and we fix an element x in 4. We then have a mapping f — f(x) of
R[X] into 4 and we have seen that this mapping is a homomorphism.
If f is a constant, f = a € R, then f(x) = a, whence we are dealing with
an R-homomorphism of R[X] (§12). The image of R[X] under this
homomorphism is a subring of 4 (Theorem 3, b, § 12). We denote
this subring by R[x]. This subring of 4 is uniquely determined by R
and x: it consists of all elements of 4 which are of the form a4 + a;x 4
-+ 4+ a,x", a, € R. It can also be characterized as the least subring of
4 containing x and all the elements of R.

DErFINITION.  We shall say that x is algebraic over R if the mapping
f->f(x) is a proper homomorphism (that is, not an isomorphism). In
other words (§ 11, Theorem 2), x is algebraic over R if and only if
there exists a non-zero polynomial g(X) such that g(x)=0. An
element x of A is said to be transcendental over R if it is not algebraic
over R.

It follows that if x is transcendental over R, then R[x] and R[X] are
R-isomorphic rings, the mapping f(X) — f(x) being an R-isomorphism
of R[X] onto R[x].

Since all rings R[x], where x is transcendental over R, are
R-isomorphic with R[.X], it is natural to call all such rings polynomial
rings. We give therefore the following

DEfFINITION.  Let R be a ring with identity and let S’ be a ring unitary
over R. Then S’ is called a polynomial ring over R if there exists at least
one R-isomorphism of R[X] onto S'. In other words, S’ is a polynomial
ring over R if S’ contains at least one element x which is transcendental
over R and which is such that S' = R[x]. Any such element x is called a
generator of S’ over R.

If S’ is a polynomial ring over R, and x is a generator of S’ over R,
we shall also say that S’ is a polynomial ring over R in the element x.
As an example, let R be the field of rational numbers, 4 the field of real
numbers, = the ratio of circumference to diameter (or any other
transcendental real number). Then the subring R[] of 4 is a poly-
nomial ring over R in the element 7.

From the very definition of polynomial rings it follows that all
polynomial rings over a given ring R are R-isomorphic. We further
elaborate this fact in the following

THEOREM 7. Let S’ be a polynomial ring over a ring R in an element
x; let R be a ring with identity, 4 a unitary overring of R, and y an element
of 4. If T, is a homomorphism of R onto R, then T, can be extended in
one and only one way to a homomorphism T of S’ onto R[y) suchthat xT = y.
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Moreover, T will be an isomorphism if and only if T is an isomorphism
and y is transcendental over R.
PROOF. We observe that if T exists at all, then we have

(Qax)T = 3(a,T)xT) = 3(a;Toly", a;€ R,

so that T is uniquely determined. We make use of this formula to
define T. Since x is transcendental over R, every element of S’ can
be uniquely expressed in the form >a,x‘(a; € R); thus T is single-
valued. It is surely a mapping of S’ onto R[y), since T is a mapping
onto R. Obviously aT = aT, for ac R, and xT'=y. That T is a
homomorphism follows from (5) and (6) of § 16, applied to elements of
R[x] and R[y].

Suppose T, is an isomorphism and y is transcendental over R. If
(Sax)T = 0, then >(a;To)y* = 0. Since y is transcendental over R,
each q;T is 0; since T is an isomorphism, a, = 0. Thus T is an
isomorphism. The converse is simiilarly proved.

COROLLARY. Let S’ and S be polynomial rings over a ring R in the
elements x and y respectively. Then there is a unique R-isomorphism of S’
onto S which maps x into y.

We now turn to the study of a fixed polynomial ring S in an element
x over a ring R with identity. The notion of degree and leading
coefficient of a polynomial is carried over in an obvious fashion from the
ring R[X] to the given ring S. Thus, if y is any element of S, y # 0,
then y = f(x), where f = f(X) is a uniquely determined non-zero
polynomial in R[X]. Then the degree and leading coefficient of f will
be, by definition, the degree and leading coefficient. of the element y
regarded as a polynomial in x. 1t must be emphasized that the degree
and leading coefficient of any given element y of S are not intrinsically
related to y but depend also on the choice of the generator x. We can,
however, state the following

THEOREM 8. Let R be an integral domain and let S be a polynomial
ring over R in an element x. Let x’ be a non-zero element of S, of degree
n > 0 in x (that is, n = degree of x' regarded as a polynomial in x) and
let f(X) be any. polynomial in an indeterminate X, of degree m. Then
J(x') is of degree mn in x. A necessary and sufficient condition that x' be a
generator of S over R is that x' be linear in x (that is, n = 1) and with lead-
ing coefficient a unit tn R.  In this case the degree of an element of S relative
to x’ will be equal its degree relative to x.

PROOF. Let x' = g(x) and let @ and b denote the leading coefficients
of g and f respectively. Then the leading term of f(x’) is ba™x™", whence
the first statement of the conclusion. If x’ is a generator of S over R,
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then x = f(x’) for an appropriate f, hence mn = 1, ba = 1, so that x’
has the indicated form. Conversely, if x’ has this form, then x ¢ R[x"),
hence S = R[x’]. Furthermore, if f(X) is of degree m, f 3 0, then
f(x") is also of degree m in x (since # = 1), and hence f(x’) £ 0. Hence
x' is a transcendental over R. This completes the proof.

CoroLLARY. If T is an R-automorphism of a polynomial ring R[x)
(R an integral domain), then xT = a, + a,x, where a, is a unit in R.
Conversely, if x' = ay + a,x and a, is a unit in R, then there exists a
unique R-automorphism T of R[x] such that xT = x’.

The first part of the corollary follows from the fact that under the
assumptions made we muyst have R[x] = R[xT]. The second part
follows directly from the .present theorem and from the corollary to
Theorem 7.

If R has zero divisors, then it is still true that elements x’ of the indi-
cated form are generators, but the other statements of this theorem need
not be true. Indeed it is possible that S is a polynomial ring in an
element x’ whose degree in x is greater than 1. For example, let R be
a ring with identity, and suppose that R contains an element a 5 0 such
that a2 = 0. Then, if x' = x + ax?, we have ¥’ — ax'? = x, whence
R[x'] = R[x].

Of particular importance are the polynomial rings over a field. These
will be seen to be euclidean domains as a result of

THEOREM 9. Let R be a ring with identity and R[x] a polynomial
ring over Rin x. Let f(x) and g(x) be two polynomials in R[x] of respective
degrees m and n, let k = max(m — n + 1,0) and let a be the leading
coefficient of g(x). Then there exist polynomials ¢(x) and r(x) such that

af(x) = g(*)g(x) + (),
and r(x) is either of degree less than n or is the zern polynomial. Moreover,
if a is regular in R, then q(x) and r(x) are uniquely determined.

PROOF. Ifm < n,then k = 0, and we may take ¢(x) = 0, (x) = f(x).
Form2>2n— 1, k=m—n+ 1, and we prove the first part of the
theorem by induction on m, observing it to be true if m =n — 1.
Hence let m = n. Then af(x) — ba™-"g(x) has degree at most m — 1,
where b is the leading coefficient of f. By induction hypothesis there
exist polynomials ¢,(x) and r,(x) such that

atm=D-m+1(gf(x) — bxm-g(x)) = g;(*)g(*) + ry(x), or, < m
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or
f]. = 0.

We need now only take g(x) = ba™—"a"—" 4 ¢,(x), r(x) = ry(x).
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Now suppose a is regular and that we have also o = ¢'g + 7',
o' <n. Then(g—q)g=1r —r. Ifqg— g # 0, then the left side
has degree at least , since the leading coefficient of g{x) is regular. But
this is impossible since ' —r) < n. Henceqg—¢' = 0,7 —r=0.

CoroLLARY 1. Using the notation of the theorem let f(x) be in R[x]
and a in R. Then f(a) = 0 if and only if x — a is a divisor of f(x) in
R[x].

Since x — a is of degree 1, there exist g(x) € R[x] and b € R such that
f(x) = g(x)(x — a) + b; then f(a) = b, whence the corollary.

If X is an indeterminate, an element a of R such that f(a) = 0 will
be called, as usual, a root of f(X).

CoroLLARY 2. Let f(X) be in the polynomial ring R[X] in one
indeterminate, over an integral domain R. If a\, - - -, a,, are distinct roots
of f(X) in R, then (X — a,)- - - (X — a,,) divides f(X) in R[X]. If
J(X) # O, the number of roots of f(X) in R is at most equal to the degree of
fX).

The first statement is true for m = 1 ; hence assume it for m — 1 roots,
so that f(X)=(X—4a,) " (X—a,_)9(X). Then f(a,) =
(ay — ay)° " (a, — a,_;)9(a,). Since there are no zero divisors,
¢(a,) = 0, so that X — a,, divides ¢(X'), whence the first statement of
the theorem. The second statement follows from considerations of
degree.

If R has zero divisors, Corollary 2 need not be true. Indeed a non-
zero polynomial may have infinitely many roots. For example, suppose
that an element a of R, different from zero, is an absolute zero-divisor,
that is, that ab = 0 for all 5in R. 'Then every element of R is a root of
the polynomial aX, which therefore has infinitely many roots (if R has
infinitely many elements).

Another exampie (in which R will have an element 1) is the following:

Let 4 and B be two rings with identities e, and egz and let R be the
ring of ordered pairs (a, b) defined in Example 2 of §9. If we set
a = (e4, 0), every element of the form (0, ), b€ B is a root of the
polynomial aX, which therefore has infinitely many roots if we take for
B an infinite ring.

CoRroLLARY 3. A polynomial ring F[x] over a field F is a euclidean
domain. Every polynomial of positive degree can be factored in the form

a fI_, fix), where ac F and f(x) is a monic irreducible polynomial;

this factorization is unique except for order.
If f(x) € Flx], let ¢(f) = &f, if f 7 0; let ¢(0) = — 1. Condition
El of the definition of euclidean domain (§ 15) is clearly satisfied;
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condition E2 follows from the theorem. Hence F[x] is a unique
factorization domain. Since every polynomial in F[x] has a monic
associate and since associates can differ only by a non-zero factor in
F, the remainder of the corollary follows.

Since a field is trivially a unique factorization domain, the following
theorem, which is of the greatest importance, may be regarded as a
partial generalization of the preceding corollary.

TueoreM 10. If R is a unique factorization domain, then so is any
polynomial ring over R in one transcendental.

PROOF. Throughout this proof one should bear in mind the various
assertions of Theorem 6 of § 16.

We call a polynomial primitive if its coefficients have no common
divisors (other than units). - We then observe that it is possible to write
any (non-zero) polynomial f(x) of R[X]in the form f(x) = ¢f1(x), where
c e R, and f,(x) is primitive: namely, let ¢ equal a GCD of the coeffi-
cientsof f(x). Any element ¢ satisfying the stated condition is necessarily
a GCD of the coefficients of f(x) and hence is determined to within a
unit factor. The factor ¢ is called the content of f(x) and is denoted by
¢(f). We observe that f(x) is primitive if and only if ¢(f) is a unit in R.

We can now prove that every element of R[x] factors into irreducible
ones. It is clear that an element of R is irreducible (or a unit) in R[x]
if and only if it is irreducible (or a unit) in R. From this it follows
(since R is a UFD) that every polynomial of R[x] of degree zero factors
into irreducibles. Suppose f(x) has positive degree » and that factoriza-
tion has been proved for polynomials of lower degree. We write
f(x) = ¢fy(x), where ¢ = ¢(f) € R and fy(x) is primitive, and we need
only prove that f,(x) is a product of irreducibles. If f,(x) is irreducible,
there is nothing to prove. Otherwise, f,(x) = g(x)h(x), where g(x),
h(x) € R[x], and neither is a constant since f,(x) is primitive. Hence
both have degree less than n, therefore they factor into irreducible
polynomials, by induction assumption, and hence so does f,(x).

We complete the proof by verifying UF3: If p(x), f(x), g(x) € R[x], p(x)
irreducible, and p(x) divides f{x)g(x), then p(x) divides either f(x) or g(x).
The proof must be separated into two cases, depending on whether the
degree of p(x) is zero or positive, and each case is covered by one of the
following two lemmas.

Lemma 1. (LEMMA oF Gauss) If f(x), g(x) € R[X], then c(fg) =
o(f)c(g). In particular, the product of two primitive polymomials is
primitive.

PROOF. I{ ¢ = ¢(f), d = c(g), then f(x) = ¢fy(x), g(x) = dg,(x), and
Jf1 and g, are primitive. Since fg = (¢d)f,g,, we need only prove that
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/12, is primitive—that is, it is enough to prove the second assertion of
the lemma. If f,g, is not primitive, let p be an irreducible element of
R which divides all the coefficients of f,g,. If fi(x) = Saxi, g,(x) =
2bxi, a;, b; € R, let a,, b, be the first coefficients of f; and g, respectively
which are not divisible by p (these exist since f; and g, are primitive).

The coefficient of x*+¢ in f,(x)g,(x) is

ot a by tab +ab o+

Since R is a unique factorization domain, p does not divide apb,.
Since it divides all terms of the above sum which precede and follow
ab,, it does not divide the sum itself, a contradiction. Hence f,(x)g,(x)
is primitive, as asserted.

Lemma 2. If g(x) divides bf(x), where b € R and g(x) is primitive, then
g(x) divides f(x).

PROOF. We have bf(x) = g(x)h(x), where h(x) € R[x]. By Lemmal,
b-c(f) = ¢(g)-c(h) = ¢(h). Thus b divides (k) and hence also A(x), so
that g(x) divides f(x). A

We can now prove UF3 for R[x]. Suppose, then, that p(x) divides
J(x)g(x), where p(x) is irreducible. If the degree of p(x) is zero, so that
p(x) = p R, then p divides c(fg) = o(f)c(g), hence (say) ple(f) (by
UF3 in R), so that p/f(x). ’

If, on the other hand, the degree of p(x) is positive, we proceed as
foilows. Suppose p(x) does not divide f(x); then we show that it divides
g(x). Consider* the set M of all polynomials A(x)p(x) + B(x)f(x),
where A(x), B(x) € R[x]. Among all the non-zero polynomials of M,
let ¢(x) be one of least degree, and let a be its leading coefficient.
According to Theorem 9, there exists a non-negative integer k& and
polynomials A(x) and r(x), such that a*f = ¢h + r, where either r = 0
or Ir< dp. Since peM, ¢ = Ap + Bf, hence r = a*f — ph =
(— Ah)p + (a* — Bh)f, so that re M. Hence dr < dg is impossible,
and so r = 0, a*f = gh. We write ¢(x) = cp,(x), where ¢ = ¢(¢) and
@, is primitive. By Lemma 2, ¢, divides f. Similarly ¢, divides p.
Since p is irreducible and does not divide f(x), it follows that ¢, is a
unit in R[x], hence is in R. Hence ¢ € R; that is, the set M contains a
constant ¢ % 0. From ¢ = Ap + Bf we obtain gg = Apg + Bfg, so
that p divides pg. Since p is irreducible and of positive degree, it is
primitive, and so Lemma 2 implies that p(x) divides g(x).

This completes the proof of Theorem 10. We shall use the two above
lemmas on various other occasions.

* It will be noticed that this proof is very much like that of the Lemma of
§ 15 (p. 27), the modifications being due to the fact that our ring R[x] is not
euclidean but is “nearly so” (in virtue of Theorem 9).
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§ 18. Polynomials in several indeterminates. In § 16 we have
defined polynomials in one indeterminate over a given ring R and have
seen that each such polynomial can be expressed in the usual form
Sa,Xi. By a polynomialin n indeterminates we have in mind a finite sum

Sa; ... XKoo X,

where the 7; are non-negative integers and g; ...; € R, and we seek to
formalize this concept. We observe that a polynomial is determined
when its coefficients a; ..., are known, that is, when to each ordered
n-tuple (i), - - -,%,) of non-negative integers is assigned an element
a; ...; of R. This, in effect, will be our definition.

Let I be the set of non-negative integers, I, the set of ordered n-tuples
(f) = (iy, - - -, 1,) of elements of I, that is, each element of I, is a
sequence of # non-negative integers. If (j) = (j;, - -, J,) is in I,, we
define () + (j) = ({v + Jo» -+ s tn + Jo)-

DEFINITION. Let R be a ring with identity, n a positive integer. A
polynomial over R in n indeterminates is a mapping f of I, into R such that
(£)f = O for all but a finite number of n-tuples (1). If f and g are two such
polynomials, define h = f + g and k = f-g by

@k =) + (e
k= 2> GG
D+P=)
If n = 1, we have mappings of I into R—that is, in effect, sequences

of elements of R. Thus the present definition is consistent with that of
16.
: If S denotes the set of all polynomials over R in n indeterminates it
is easily seen that S is a ring. For each element a in R we define a
polynomial f, by
@Ofe=a if(@#)=(0,---,0),
(©)f, = 0 otherwise.

It is immediate that f, is the zero of S and that, moreover, S has an
identity, which is given by f; (1 being the identity of R). It is readily

verified that
fo +fb =fa+b’ fa'fb =faln

so that the mapping a — f, is an isomorphism of R onto the subring of
S consisting of all f,, We shall replace each f, by the corresponding
a, so that henceforth we consider S to contain R as a subring.

If v is a fixed integer between 1 and n, let () denote the n-tuple
which has the integer 1 in the v-th place and the integer 0 elsewhere.
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We define X, to be the element of S which assigns the identity element
of R to the n-tuple () and the zero of R to every other n-tuple. If
a€ R, and i,, iy, - - - , i, are non-negative integers, then it is easily seen
that a X,/ X, - - - X,/» is the element of S which associates a with the
n-tuple (f) = (1}, 4, ' - -, ¢,) and O with every other one. Thus every
element f of S is a sum of a finite number of special polynomials of the
form

(1 a Xy X' e o X,
called monomials, and f is the zero element of S if and only if all the
coefficients a;, are zero. Here i,,1, - -,1, are any non-negative

integers and a;, is any element of R. The ring S will be denoted by
R(X,, -, X))

By the degree of the monomial (1) we mean the sum of the exponents
i, 4+ i+ - -+ 1, By the degree of of any non-zero polynomial f we
mean the maximum of the degrees of the monomials of which f is the
sum. If all the monomials in this sum have the same degree, then f is
said to be homogeneous or to be a form. If f and g are forms, then fg is
clearly either zero or a form of degree éf + dg.

A polynomial f of degree m can be expressed uniquely in the form

f=fotfo 4+ fm

where each f; is either zero or a form of degree 7, and f,, ¢ 0. From this
it is clear that if f, g € S and fg 3 0, then d(fg) < of + ég.

We may now state

THeoREM 11. Let R be a ring with identity. The polynomials in n
indeterminates with coefficients in R form a ring S which is unitary over R.
If f and g are non-zero polynomials in S, then either fg = 0 or ¢(fg) < of
+ 9. If R is an integral domain, then so is S and then o(fg) = of + og.

PROOF. All has been proved but the last statement. Suppose, then,
that f and g are non-zero polynomials in S of respective degrees p and g.
We write

f=hth+ - +fp 2=80ta+ - +g
fr#0, g#0,
where f; and g; are either zero or forms of degrees 7 and j respectively.
Now
ity=

Since A, is either zero or a form of degree %, the last statement of the

theorem is proved if we show that h, = f,g, is not zero. In other
words it is sufficient to show that S is an integral domain.

e
fe=2h h= 3 fg,
k=0 k
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For this purpose we order the monomials of a given degree » lexico-
graphically: XXz - X,5n < Xy Xo/o - - - XJa if 4, <j,, where
s is the least integer (1 < s < n) such that i, ¢ 5. With respect to
this ordering, and for v = p, let aX ;% X% - - - X,% be the first of the
monomials which actually occur in f,(a$ 0). Similarly, let
bX,8.Xh - - - X,P» be the first monomial of degree ¢ which actually
occurs in g, (b 7 0). Then it is immediately seen that

alea‘+ﬂlX’¢.+B' PN X,,“n+ﬁn
is the first monomial in the product f,g,, and since ab 5 0 it follows
that f,g, # 0.

Often theorems on polynomials in 7 indeterminates are proved by
induction with respect to n. We shall now put in evidence this induc-
tive aspect of polynomial rings.

Consider the set S’ of those polynomials f in R[X,, X,, - -+, X,] in
which the indeterminate X, does not occur at all, or—as we shall say—
which are independent of X,. By these polynomials we mean those
mappings f of I, into R which satisfy the following condition:
(fydg -+, 5,)f = 0 if i, 3£ 0. It is clear that these mappings f in S’
are in (1, 1) correspondence with the mappings of /,_, into R, for any
such mapping f is uniquely determined by its effect on the n-tuples of
the form (i,,4y, - ,7,_;,0). We can therefore identify the poly-
nomials f in R[X,, X,, - - -, X,], which are independent of X,, with
corresponding polynomials in R[X,, X, ---,X,_;,]. It is im-
mediately seen that the ring operations in S = R[X,, X,, -+, X,]
and S, = R[X,, X,, - - -, X,_,] are consistent with this identification.
Hence we can (and shall) regard R[X,, X,, - - -, X,,_,] as a subring of
R[X,, X,, - -+, X,). Wenow assert that this latter ring S is a polynomial
ring in X, over the ring S, in the sense of the definition of § 17. For in
the first place, every subring of .S which contains S, and X, contains all
the monomials aX,".X,"s - - - X,’n and hence contains S. In the second
place, it is obvious that X, is a transcendental over S,. Hence
S = §,[X,].

From this last fact, and from Theorem 6 of § 16, we can conclude by
induction that S is an integral domain if R is.

Much of the discussion of § 16 and § 17 can be extended to the case of
polynomials in n indeterminates.

Polynomials in R[X,, - - -, X,] can be construed as ‘“functions of n
variables.” Let 4 be any ring unitary over R and let x,, - - -, x, be
elements of 4. If

f = Sap Xy Xyin
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is any polynomial in S, we define

) Sy 000y x,) = Sagyxys - - xi,

Then f(x,, - - -, x,) is in 4 and is called the result of substituting x, for
vy % for X, in f. In particular, according to this definition,
f(Xy, -+, X)) is f itself.

For xy, - - -, x, fixed, f— f(x,, - - -, x,) is an R-homomorphism of
R[X,,---,X,] into 4. The image in 4 of R[X,,---, X,] will be
denoted by R[x,,---,x,]. Itis a subring of 4 and consists of all
elements of the form (2); it may also be described as the smallest
subring of 4 containing x,, - - -, x, and R.

DEFINITION 1. The elements x,, - - -, x, will be called ALGEBRAICALLY
DEPENDENT OVER R if the mapping f — f(x,, - - -, x,) is a proper homo-
morphism. Otherwise they will be called ALGEBRAICALLY INDEPENDENT
OVER R.

Thus, x,, - - -, x, are algebraically dependent over R if and only if
there exists a non-zero polynomial g(X) such that g(x) = 0.

DEFINITION 2. Let Rbe a ring with identity and S’ a ring unitary over
R. Then S' is called a polynomial ring over R if there exist elements
Xy, * * . X, in S’ which are algebraically independent over R and such that
S’ = R[x,,- -, x,]. Anysuch set {x,,- -, x,} will be called a generat-
ing set. More specifically we say that S’ is a pulynomial ring over R in

xl’ . o 0 , x .
Thus S'" ' is a polynomial ring over R if and only if there is an R-
isomorphism of R[X,,---,X,] onto S’ for some n. In particular

R[X,, - - -, X,] is itself a polynomial ring under this definition. Before
proving the analogue of Theorem 7 of § 17, we first state the following
lemma.

LemMMA. Let R be a ring with identity, S' a unitary overring,
Xy, ,x, elements of S', with n>1. Let R, = R[x,, -, x,_,].
Then S’ is a polynomial ring over R in x,, - - -, x, if and only if R, is a
polynomial ring over R in x,, - -+, x,_, and S is a polynomial ring over
R, in x,.

‘This lemma is essentially a restatement of the inductive property of
polynomial rings in n indeterminates, given earlier in this section. The
proof may be left to the reader.

THeoreM 12.  Let S’ be a polynomial ring over a ring R in the elements
%y, -+ X%, let R be a ring with an identity and 4 a unitary overring of
R;let , ---,y,be elements of 4. If T, is a homomorphism of R onto
R, then Ty can be extended in one and only one way to @ homomorphism T
of S omto Ry, - -+, yn) such that ;T = y;,i = 1, -+, n. Moreover, T
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will be an isomorphism if and only if T, is an isomorphism and y,, - - - , y,
are algebraically independent over R.

In view of the lemma, this theorem follows from Theorem 7 of § 17.

COROLLARY 1. Let S’ and S be polynomial rings over Rin x,, - - - , x,,
and in yy, - - -, y, respectively. Then there is a unique R-isomorphism T
of S’ onto § such that x,T =y, i=1,--- n.

COROLLARY 2. Let S be a polynomial ring over Rin x,, - - - , x,,, and let
{hy, hy, - - -, h,} be a permutation of the integers {1,2,---,n}. Then
there is a unique R-automorphism T of S such that x,T = xpi=1--,n

Tueorem 13. If R is a UFD and S is a polynomial ring over R in
n elements, then § is also a unique factorization domain.

This follows by induttion from the lemma and Theorem 10 of § 17.

THEOREM 14. Let R be an integral domain, and f(X,, -+, X,) a
non-zero polynomial over R in n indeterminates. Let Q be a subset of R
containing infinitely many elements. Then there exist elements a,, - - - , a,
in Q such that f(a,, - - -, a,) % 0.

PROOF. This is true for n = 1, by Corollary 2 to Theorem 9 of § 17.
Assuming it true for n — 1 indeterminates, let us write f(X,, - - -, X,)

= S X, e X, where fi(X, -+, Xy_) € RX,y - Ko 1],

im0
and fy(X,, -+, X,_;) # 0. By induction hypothesis, there exist
ay, -, a, ;€ Qsuchthatfi(a,, - -a,_ ;) # 0. Sincef(a, - -,a,_,
X,) # 0, the quoted corollary guarantees the existence of an a, € Q such
that f(a,, - - -, a,_,, @,) # 0.

From this theorem it follows that if R has infinitely many elements and
if fla,---,a)=0 for alla,,---,a,eR, then f(X,, --,X,)=0.
On the other hand, this is obviously not true if R has but a finite number
of elements, as was pointed out toward the end of §16inthecasen = 1.

We now turn to the study of a fixed polynomial ring S over R in n
elements x,, - - -, x,. The notion of the degree of a polynomial in S is
carried over in an obvious fashion from the ring R[X,, - - -, X,]. Asin
the case n = 1, we point out that the degree of a polynomial f in S
depends on the particular generating elements x,,-- -, x, and not
merely on the ring S. Indeed, if # > 1, the degree of f may actually be
different if a different set of indeterminates is used, even if R is an
integral domain (or even a field; see § 17, Theorem 8). For example,
let n =2, and let y, = x,, y, = x, + x,2. Then § is clearly also a
polynomial ring in y,, y,, but the degree of y, is two as a polynomial in
Xy, ¥;.  We shall not attempt to determine all setsof elements y, - - -, y,,
with respect to which § is a polynomial ring over R. However, we do
show that the number of indeterminates is invariant:
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THEOREM 15. Let S be a polynomial ring in elements x,, - - - , x,, over
aring R,andlety,, - - - , y,, be elements of S such that S = R[y,, - - - , Y]
Then m = n, and equality holds in case S is a polynomial ring in
Yu s Im*

PROOF: Since y, € R[x,, - - -, x,], we may write y; = b, + '}, where
y'; is a polynomial in x,, - - -, x, without constant term, and b, € R.
Now S = R[y'y,--*,¥'w), and ¥y, - - -, ¥',, are algebraically indepen-
dentover Rifand onlyif y,, - - -, y,,are. Hence it is sufficient to prove
the theorem with the y’; replacing the y;; in other words, we may assume
b; = 0. Then we have

3) yi=byxi+ - +bx, +B, j=12--,m,

where b;,, - - -, b;, € Ry and B, is a sum of monomials in x,, - - -, x, of

degree two or greater. Since x; € R[y,, " - -, ¥l

“4) xu'=aio+ailyl+"'+an‘mym+Av i=12---,n,
where a,, a;,, * * -+, @;, € R, and 4, is a sum of monomialsin y,, - - -, y,,
of degree two or greater. Substituting in (4) the expressions for the y;
from (3) we have

X; = a;o +kz ( > aijbjk)xk +
=1 \ jm=1
terms in x,, - - -, X, of degree 2 2, i=1,2,---,n.
Since x,, - - -, x, are algebraically independent over R, a;, = 0, and
(5) ia,-jb]k = 1or0accordingasi=rkorisk;i,k=12---,n
=1

If, now, we assume m < n, then each of the determinants
ay, @, 0--+0 by, - - by,
- 00| | Buy e b
’ 0 ---0

0 ---0
has value zero. On the other hand, in view of (5), the multiplication

rule for determinants implies that the product of these two determinants
is 1. ‘This contradiction shows that m = n. The second statement is

now obvious.

* See I, §12, Theorem 25, for another proof of this theorem using the concept
of the degree of transcendence.
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It is possible to define also polynomials in infinitely many indeter-
minates. If the number of indeterminates is to be countable, we may
simply construct a sequence

R[Xl] CR[XhXR] C-- CR[XDXb te ,X"]C )
where each ring of this sequence is considered a subring of its successor
in the manner described earlier. The set-theoretic union of these rings,
which can be made into a ring in an obvious way, may be called a poly-
nomial ring in the sequence of indeterminates X,, X,,---, X, - -
We could use transfinite induction to obtain an uncountable number of
indeterminates.

It is better, however, to proceed by analogy with the procedure for n
variables. To construct a polynomial ring whose indeterminates shall
bein (1, 1) correspondence with the elements of a given set E, we let I,
be the collection of all systems (i) = (i,), where a € E, i, is a non-
negative integer which is zero for almost all « in E, that is, I is the
collection of all mappings

() a—>1,
of E into I such that #, = 0 for all but a finite number of « in E. (Thus
in case E consists of the integers 1,2, - - -, n, (i) becomes essentially
an ordered n-tuple and I = I,). If (j) = (j,) we define (i) + (j) =
(ia + ju)'

If R is a given ring with identity, let S be the set of all mappings f of I,
into R such that (¢)f = 0 for all but a finite number of (i) in Iz. If
feSandge S, leth =f + g and k = fg be defined by

(= () + ()
@r=_2  [)FGel
(1) +()=(i)
It is easily seen that S is a ring and that R can be identified with a
subring of S in an obvious way.

If B is a fixed element of E, let (j®) denote that mapping of E into I
such that under j®, 8 — 1, and ¢« — 0 for « ¢ 8. We may say that
() = (j,®) has the integer 0 in every place but the B-th, where it has
the integer 1. We then define X to be that element of S which assigns
the identity of R to (j®) and the zero of R to every other member of I.
If B,, - - -, B, are distinct members of E, consider the subset I’ of I
consisting of those (¢) such that {, = 0 unless ¢ is one of B, - - -, B,; I’
isin (1, 1) correspondence with J, in an obvious fashion. Now consider
the set S’ of those f in S such that ({)f = 0 for (/) not in I'. Such f
are completely determined by what they assign to the members (i) of I’
and are thus seen to be in (1, 1) correspondence with the members of



§19 QUOTIENT FIELDS AND TOTAL QUOTIENT RINGS 41

the ring of polynomials over R in n indeterminates. This correspond-
ence is easily seen to be an isomorphism. This can be shown by direct
verification. Another method starts with the observation that the
elements of S’ are finite sums of terms of the form

aXgh - - Xp b,
where ae R and k,, - - -, h, are non-negative integers, so that
(6) S'=R[X,, - s Xg,)-

Now it can readily be checked that X, -, X, are algebraically

independent over R, so that S’ is indeed isomorphic to the ring of
polynomials over R in 7 variables.

If f is any fixed polynomial in S, then (i/)f = 0 for all but a finite
number of (¢) in Iz. For each such (¢), all but a finite number of i, are
0. Taking all () such that (¢)f ¢ 0, and for each such (¢) all « in E
such that ¢, £ 0, we get a ﬁmte number of elements 8y, --, B, of E.
Then it is seen that f is in the ring (6) Thus it may be said that every
single f in S is really a polynomial in only a finite number of variables,
and that S is the union of all its subrings of the type of (6).

In view of the observation just made, many properties of ordmary
polynomial rings can be extended to the case of polynomial rings in
infinitely many variables. For example, concepts like degree and
homogeneity can be defined, and theorems analogous to Theorem 11, 12
and 13 can be proved.

§19. Quotient fields and total quotient rings. Let K be a field
and let R be a ring contained in K. We assume that R is not the null-
ring. The intersection of all the subfields of K which contain R is again
a subfield of K containing R. This field, which we shall denote by F,
is therefore the smallest subfield of K which contains R (it is not to be
excluded that F coincides with R). Ifa,be Rand b 3 0, thena,be F
since R c F, and also a/b € F, since F is a field. Hence F contains all
the quotients of elements of R. On the other hand, the following
relations

a ¢ _ad+be

M 3¥a= "3
a ¢__a

@ 3 aT
b\ _d

® ) =%

) a = abb,
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hold for any elements a, b, ¢, d of K, provided b £ 0 andd » 0. If we
take these elements to be in R and we use the assumption that R is a
ring, not the nullring, we conclude at once that the set of all quotients a/b,
such that a,be R, b 3 0, is already a subfield of K containing R, and
therefore coincides with F. We shall refer to F as the quotient field of R
in K.

Now suppose that a ring R has been given in advance. One may,
then, inquire whether R can be at all imbedded in some field K. If R
is not the nullring, an obvious necessary condition is that R have no
proper zero divisors. We shall see in a moment that this condition is also
sufficient. If, then, we assume that R has no proper zero divisors, there
will exist fields K containing R as a subring. In each such field K,
the given ring will have a quotient field F. We shall see that the
various fields F thus obtained are all R-isomorphic. Any one of these
R-isomorphic fields may then be referred to as a quotient field of R.
(See the definition given below.)

Actually, we shall not confine the discussion to rings which are free
from proper zero divisors, but shall prove analogous results for a much
wider class of rings. Let, first, R be an arbitrary ring, not the nullring.
We have agreed in § 5 (p. 8) to refer to an element of R which is not a
zero divisor as a regular element of R. Let K be a ring with identity
containing R as a subring. Naturally, no zero divisor of R can have an
inverse in K. If bis a regular element of R, b may have an inverse in K.
If b does have an inverse in K, then K contains also the quotients a/b,
where a is any element of R. We shall assume that R contains at least
one regular element which has an inverse in K. Under this assumption,
the ring K will contain all the quotients a/b such that a, b€ Rand b is
invertible in K. Let F denote the set of all these quotients. From
the fact that R contains at least one invertible element of K, it follows
that F contains R [see (4)]. Furthermore, since the pruduct of invertible
elements of K is invertible, and since relations (1) to (3) hold for any
elements g, b, ¢, d of K, provided b and d are units in K, we conclude at
once that Fis a ring (since R is a ring). We call this ring F the quotient
ring of Rin K.

We note the following properties of F:

(a) F has an identity.

For if 4 is an element of R which is invertible in K and 1 is the
identity of K, then 1 = b/be F.

(b) R is a subring of F.

(c) If an element of R has an inverse in K, that inverse is in F.

Forif be R and b-1e K, then b-! = bfh*c F.
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(d) Every element of F is of the form a[b, where a,be R, and b is
regular in R. :

We are thus led to make the following

DEFINITION. If R is a ring which contains at least one regular element,
then a total quotient ring of R is any ring F satisfying the above conditions
(a), (b), (d), and the following condition (c'), which is stronger than (c):

(c') Every regular element of R has an inverse in F.

Before proceeding to the theorems on the uniqueness (to within R-
isomorphism) and the existence of a total quotient ring of R, we list
below, as corollaries, a number of consequences of the above definition.
It is always assumed that R has at least one regular element. In the
following corollaries F denotes a total quotient ring of R. The letters
a, b, c, - - - stand for elements of R, and any element of R which occurs
in a denominator is assumed to be a regular element of R.

COROLLARY 1. An element a}b of F is regular in F if and only if a is
regular in R. Every regular element of F has an inverse in F. IN PAR-
TICULAR, IF R HAS NO PROPER ZERO DIVISORS, THEN F IS A FIELD.

For if afb is regular in F, then it is obvious that a is regular in R, and
therefore bja e F. The rest of the proof is obvious.

For rings R without proper zero divisors we shall therefore use the
term * quotient field”’ instead of *‘ total quotient ring.”

COROLLARY 2. If R has an identity and if every regular element of R
has an inverse in R, then F = R. In particular, a total quotient ring of
any ring R is always its own total quotient ring.

The first part of this corollary is an immediate consequence of the
definition of total quotient rings. The second part follows from
Corollary 1.

CoroLLARY 3. If K is any ring which satisfies conditions (a), (b) and
(¢") (with F replaced by K), then the quotient ring F, of R in K is a total
quotient ring of R, and F, is the smallest subring of K which satisfies con-
ditions (a), (b) and (') (with F replaced by F,). Furthermore, F, is the only
subring of K which is a total quotient ring of R (in view of condition (d)).

We now proceed to the two basic theorems on the uniqueness and the
existence of the total quotient ring of R.

THEOREM 16. Let R and R’ be two isomorphic rings, each containing
at least one regular element, let T, be an isomorphism of R onto R’, and let
F and F’ be respective total quotient rings. Then T can be extended in a
unique manner to an isomorphism T of F onto F'.

PROOF. Suppose afb € F, where a and b are in R, and b is regular in
R; thus T, is regular in R, since T is an isomorphism. If T exists at
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all, then from a = ¥afb) we conclude aTy= aT = bT-(a/b)T =
bT,-(a/b)T, so that

-

Thus T is uniquely determined by T, if it exists at all. We prove its
existence by defining it according to this formula.

By this formula, T is not defined, a priori, as a mapping (that is, as a
single-valued transformation) because an element of F may have several
representations of the form a/b. Howevcr, (5) does define T as a
transformation of Finto F’, and it is easily verified that the conditions (A)
and (B) referred to in Lemma 2 of § 11, are satisfied. Moreover, if
alb =0, then a =0,aT,=0, and hence (a/b)T = 0. It follows,
therefore, by LLemma 2, that T is a homomorphism of Finto F'. Since
T, is a mapping onto R’ and since F' is a total quotient ring of R’, we
conclude that T maps F onto F'. If b is regular in R and a is any
element of R, then a = ab/b, so that aT = (ab)T,/bT, = aT,-bT[bT,
= aT\, so that T is an extension of T,. Finally, if (a/b)T = 0, then
aTy/bTy =0, aTy = 0, hence a = 0 (for T, is an isomorphism), and
alb = 0; since only the zero of F maps into the zero of F’, T is an
isomorphism (§ 11, Theorem 2). This completes the proof of the
theorem.

THEOREM 17. If R is a ring containing at least one regular element,
then R possesses a total quotient ring, which is unique to within isomorphisms
over R.

PROOF. The uniqueness follows from the preceding theorem; for if
F and F’ are two total quotient rings of R, apply the theorem with T
equal to the identity automorphism of R.

We now proceed to the existence proof by constructing a total quotient
ring of R. For this purpose we consider ordered pairs (a, b) of
clements a, b of R, in which the element b is regular; such pairs will
be called permissible. In the sequel, only permissible pairs will be
considered.

We shall say that two (permissible) pairs (a, b) and (¢, d) are equiva-
lent—and we shall write (@, b) = (¢, d)—if ad = ¢b. In particular,
(a, b) = (ac, bc) for any permissible pair (a, b) and any regular element
cin R. It is obvious that the relation = is reflexive and symmetric;
that is, (a, b) = (a, b), and if (a, b) = (c, d), then (¢, d) = (a, b). This
relation is also transitive; that is, if (a, b) = (c, d), and if (¢, d) = (e, f),
then (@, b) = (e, f). Namely, we have by assumption that ad = cb and
¢f = ed. Multiplying the first relation by f and the second by b, we find
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adf = cbf, cfb = edb, whence afd = ebd. Since d is not a zero divisor,
af = eb, that is, (a, b) = (e, f).

It follows that the permissible pairs fall into mutually exclusive
equivalence classes, each class consisting of equivalent pairs, with non-
equivalent pairs belonging to different classes. We denote by {a, b} the
equivalence class which contains a given permissible pair (a, b) and we
then have:

{a, b} = {c, d} if and only if ad = cb.
Let F’ denote the set of all equivalence clases {a, b}. Addition and
multiplication in F’ are defined as follows:

{a, b} + {c, d} = {ad + cb, bd}

{a, b}-{c, d} = {ac, bd}.
Since b and d are regular, so is bd, so that the right sides of these two
formulas are meaningful. We xgust show that the equivalence classes
{ad + cb, bd} and {ac, bd} depend only on the classes {a, b}, {c, d}, and
not on the particular pairs used to represent them. Let, then, (q, b) =
(ay, b;) and (c,d)= (¢, d,). From ab, —ap =cd;, —c,d =0 it
follows that

and hence (ad + ¢b, bd) = (a,d, + c,b,, b,d,), as asserted. Similarly,
(ac, bd) = (a,cy, bydy).

With these definitions of addition and multiplication in F' it is a
straightforward matter to verify the commutative laws, the associative
laws, and the distributive law.

Let b, be a fixed regular element of R. We then see that 0’ = {0, b,}
is the zero element of F’, moreover {c,d} = 0’ if and only ifc = 0. If
{a, b} € F', then {4, b} + {—a, b} = 0'. It is thus proved that F' is a
ring. Clearly 1’ = {b,, b,} is the identity of F’; moreover {c,d} =1’
if and only if ¢ = d.

It is easily verified that the set R’ of elements of the form {ab,, b},
where a is arbitrary in R, is a subring of F’ and that the mapping

T,: a— {ab,, by}
is an isomorphism of R on R'. We assert that F' is a total quotient ring
of R'. We must, then, verify conditions (c) and (d) of the definition.
For (c), let {abg, by} be regular in R’; then clearly a is regular in R, so
that the ordered pair (b, bya) is permissible, and {b, b,a} is the inverse
of {ab,, b,}. For (d), let {a, b} be arbitrary in F'; then

{a, b} = {aby, bo}-{bo, bbo} = {aby, bo}/{bby, b}.
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We thus have: F' is.a total quotient ring of R’, and T, is an isomor-
phism of R onto R'. By the Lemma of § 13 (p. 19), there exists a ring
F containing R such that T can be extended to an isomorphism of F
onto F'. This obviously implies that F is a total quotient ring of R,
and the proof is thus complete.

§20. Quotient rings with respect to multiplicative systems.
Let R be a ring. A multiplicative system (abbreviation: m.s.) in R is a
non-empty subset M of R which does not contain the zero of R and
which is closed under multiplication—that is, if m, € M, my € M, then
m,m, € M. Let us make the additional requirement that all the elements
of M are regular in R. 'Thus R contains regular elements and hence has
a total quotient ring F. Since M is closed under multiplication, the set
of all quotients a/m, where a € R, m € M, is a subring of F containing R.
It will be denoted by R,, and will be called the quotient ring of R with
respect to the system M. Note the following extreme cases.

(1) R has an identity, and M is the set of all units of R. In this
case Ry, = R.

(2) M is the set of all regular elements of R. Then Ry, = F.

Let S be an arbitrary set of regular elements of R. The set of all
finite products of elements of .S is a m.s. M. We shall say that this
system M is generated by S; it is the least m.s. containing S. 'The proof
of the following statement is straightforward and may be left to the
reader: if M, and M, are two m.s. in R (both consisting only of regular
elements) and if M is the m.s. in R generated by the union M, U My, then
Ry is the least subring of F which contains the rings Ry and Ry .

We note that M consists of the elements of M, the elements of M,
and the products mmy(m, € M;, i = 1,2). We also note that, quite
generally, the least subring of a ring F which contains two given subrings
R, and R, of F consists of the elements of R,, R, and ail finite sums
2ab; of products of elements of R, with elements of Ry(a; € R, b; € R,).

For a given m.s. M in R, let M’ be the set of all elements of R which
are units in R,,. It is clear that M’ is a m.s., that every element of M’
is regular in R, and that M is a subsetof M’'. Hence Ry, C R;;.. On
the other hand, if ' € M’ and a € R, then afb’ = a-1/b’ € Ry, since b’
is a unit in Ry,. Hence R, C R,,, whence Ry, = Ry,. If M,isany
m.s. in R such that R, = Ry, then the elements of M, are units in Ry,
and therefore M, C M’'. We have therefore shown that M’ is the
greatest m.s. in R such that Ry, = R,,.. '

Them.s. M’ can also be characterized as follows : M’ is the set of elements
of R which divide some element of M. For if b’ is auy element of M’,
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then 1/b’ € Ry, that is, 1/b' = a/b, where a€ R, b€ M, and this shows
that b’ is a divisor of 5. Conversely, if an element b’ of R divides some
element b of M, say b = ab’, a € R, then b’ is regular (otherwise b would
be a zero divisor) and 1/b’ = a/b € R,,; thus 4’ is a unit in R,,, and
hence " e M'.

The following special case is noteworthy: R is an integral domain and
every element of R which is not a unit is a finite product of irreducible
elements of R (that is, R satisfies UF,, § 14, p. 21). Let S denote the
set of all irreducible elements of R which divide elements of M. For
the purposes of the considerations that follow, associate elements will
not be regarded as distinct elements of S. Let M, be the m.s. generated
by S. Itis clear that M is a subset of M'. It may be a proper subset
of M’, but since every element of M is the associate of some element of
M, it follows that R, = R,,. We note that S is uniquely determined
by M’, since S is also the set of all irreducible elements of R which
divide elements of M’. Hence 5 is also uniquely determined by the
given quotient ring R,,. On the other hand, given an arbitrary set S
of irreducible elements of R, S generates a m.s. M, and thus determines
a quotient ring R,,. We conclude that there is a (1, 1) correspondence
between the quotient rings of R (in F), with respect to multiplicative
systems in R, and the sets of irreducible elements of R.

We point out the following consequence: If R is a unique factorization
domain with quotient field F, then a necessary and sufficient condition that
R and F be the only quotient rings of R with respect to m.s. in R is that any
two irreducible elements of R be associates. For if we exclude the trivial
case R = F, then the assumption that the set of all quotient rings R,
of R contains only two elements (which are then necessarily R and F) is
equivalent to the assumption that the set of all irreducible elements of
R contain only two distinct subsets (one of which is the empty set; this
corresponds to the case R,, = R). Hence there is only one irreducible
element p in R (apart from associates of ).

THeoOREM 18. If M is a m.s. in a ring R and M is a m.s. in the ring
R = Ry, then Ry is the quotient ring of R with respect to a suitable m.s. in
R (all the m.s. under consideration are assumed to contain only regular
elements).

PROOF. We may assume that M is the maximal m.s. in R with
respect to which R has the given quotient ring Rg. Then M contains
all the units of R, and therefore M D M. Let M, = MNR. Then
M,isams. in R, M, D M, and we have Ry, C Rg. On the other hand,

let @ == _a/% be any element of Ry, where a, a,€R, b, b, € M and
a,/0,
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a,/b,e M. We have'a, = a,/b,-b, € M, since b, € M C M and since M
is a m.s. Hence 4, € M,. Since also be M C M,, it follows that
@ = ab,/a;b€ R,,. This shows that R,, = Rg.

EXAMPLE 1. Let ] be the ring of integers, and let M be the set of all
integers which are not divisible by a given prime number p. Then the
corresponding quotient ring, which we may denote by J,, consists of
all rational numbers of the form a/b, when a and b are integers and
b # 0(p). The ring J, has only one irreducible element (to within
associates), namely, p itself, and hence its only quotient ring, other than
Jp is the entire field of rationals.

According to general considerations given above, every quotient ring
of J can be obtained by choosing arbitrarily a (finite or infinite) set S of
prime numbers and by considering all rational numbers a/b such that all
prime factors of the denominator b are in S. The ring R’ thus obtained
is the quotient ring of J with respect to the m.s. generated in J by S.
It is easily seen that the prime numbers which do not belong to S are the
only irreducible elements of R’ (apart from their associates in R’). It
is a straightforward matter to verify that also R’ is a UF-domain.

An interesting remark' is the following: every ring between the ring of
integers | and the field of rationals F is a quotient ring of J. For let R’
be a ring between J and F and let M denote the set of all integers b such
that R’ contains an element of the form a/b, (a,b) = 1. Since
(a, ) = 1, there exist integers A and p such that Aa 4+ ub = 1. Hence
if a/be R’, then also 1/be R’, since 1/b = Aafb + p. From this it
follows at once that M is a m.s. in J and that R’ = J,,, as asserted.

It is clear that the foregoing proof is valid for any euclidean domain
R. We have then the following result: any ring between a euclidean
domain R and the quotient field of R is a quotient ring of R with respect to
some suitable m.s. in R.

EXAMPLE 2. Let R = k[X] be a polynomial ring in one indeterminate
over a field k. If a is any element in %, then the polynomials f(X) such
that f(a) 3¢ 0 form a m.s. M, and the corresponding quotient ring R,,
consists of all rational functions g(X)/f(X) which have a finite value at
x=a.

As in the preceding case of the ring of integers, so also in the present
case, every ring between the ring k[X] and its quotient field is a quotient
ring of k[X], since k[X] is a euclidean domain.

EXAMPLE 3. R is a polynomial ring k[X,, X,,---,X,] in # in-
determinates X;, over a field. If G is an arbitrary set of points
(ay, ay, - - -, a,) in the n-dimensional space over k(a; € k), then the set of
polynomials f(X,, X,, -+, X,) such that f(a;, ag, - - - , a,) # O for all
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points (@) in G is a m.s. M. The corresponding quotient ring R,
consists of all rational functions f(X) which are finite at each point of G.

§ 21. Vector spaces

DEFINITION. Let F be a field. A set V is called a vector space over
Fif

(a) V is a commutative group (the group operation will be written
additively) and if

(b) with every ordered pair (a, x) (a € F, x € V) there is associated a
unique element of V, to be denoted by ax, such that the following relations
hold for any elements a, b of F and any elements x, y of V:

1) a(x + y) = ax + ay;
(2) (a + b)x = ax + bx;
@3) (ab)x = a(bx);

0 1.2 = x.

The elements of a vector space V' are sometimes called vectors, the
best-known example of a vector space being the three-dimensional
vector space of ordinary geometry. The element ax is sometimes called
the product of 2 and x. Asin § 35, it is easily proved that a0 = 0x = 0
(we denote by the same symbol 0 the element zeio of F and the element
zero of V') and that (— 1)x = — x. Notice also that the relation ax = 0
implies a = 0 or x = 0: in fact, if @ # 0, a admits an inverse a~!,
whence x = 1x = (e~ 'a)x = a~(ax) = 0.

Given a vector space ¥ over a field F, a non-empty subset W of V is
called a subspace, or a vector subspace, of V if the relations x,y € # imply
x — y € W (whence W is a subgroup of the group V'), and if the relations
acF, xe Wimply axe W. A subspace W of V is also a vector space
over F, if we define the product of @ € F and x € W to be ax.

It is clear that any intersection of subspaces of a vector space V is
itself a subspace. Thus, given any subset X of V, there exists a least
subspace containing V, namely, the intersection of all subspaces con-
taining X. This subspace is called the subspace generated, or spanned,
by X, or the span of X. We shall denote it by s(X). Note that our defi-
nition of s(X) implies that if X is the empty set then s(X) consists of the
zero vector only. It is clear that s(X) consists of all the linear combina-

tions Z a;x;, where {x;} is any finite family of elements of X and {a;}

any ﬁmte family of elements of F. (We adopt the convention that if {x;}
is an empty set then zero is a linear combination of the ;.)



50 INTRODUCTORY CONCEPTS Ch.1I

We shall now put into evidence five properties of the operation s of
“span,” from which all the other elementary properties of vector space
may be dcduced. This axiomatic treatment has the advantage that it
also applies to the study of algebraic dependence in field theory (cf. II,
§ 12).

THEOREM 19. The operation s is a mapping of the set of all subsets of
V into itself which has the following properties:

(S)) If XC Y, then s(X) Cs(Y).

(Sg) If xis an element of V and X a subset of V such that x € s(X), then
there exists a finite subset X' of X such that x € s(X').

(S3) For every subset X of V we have X C s(X).

(S) For every subset X of V we have s(s(X)) = s(X).

(Ss) The relations y € s(X, x) and y ¢ s(X) imply xes(X,y) (“ex-
change property”). (Here s(X, x) stands for s(XU {x}).)

PROOF. Properties (S,) and (S;) are evident. Property (S;) follows
from the fact that every element of s(X) is a linear combination of a
finite number of elements of X. Since the span of a subspace Wis W
itself, (S,) holds. Finally the relation y € s(X, x) means that there exist

elements aq, b; of F and x; of X such that y = ax + Z bx;. We have
a 7 0 since y ¢ s(X). Whence x = a1y — > a1, x,, and therefore

=]
x € S(X, y).

From now on we consider a set V' with a mapping s of the set of all
subsets of V into itself which satisfies conditions (S,), (S,), (Ss), (S.),
(Ss). A subset X of V is called a system of generators of V if s(X) =
A subset X of V is said to be free if for every xin X, we have x ¢ s(X — x),
where X — x denotes the complement of {x} in X. A basis of V is a
subset X which is at the same time free and a system of generators.
Note that if X is a free set, every subset of X is free.

CASE OF VECTOR SPACES. A system X of generators of a vector space
V is a subset of I such that every element of V is a linear combination
of elements of X. For X to be a free subset of V it is necessary and
sufficient that the following condition holds:

(I) Every relation ia,-x,- = 0 (a; € F, x; € X) implies that a; = 0 for
faul
every i.
In fact, if X is free, a relation  ax; =0, with, say, a, » 0,
fm]

implies x, = — zzal 1g,x;, whence x;es(X — »,), in contradic-
=
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tion with the hypothesis. Conversely, if (I) holds, a relation
xes(X — x)(x€ X) gives a non-trivial linear relation between the
elements of X, in contradiction with (I).

The elements of a free subset of a vector space V are said to be
linearly independent ; notice that they must then be all distinct and all
# 0. As a partial converse we notice that, if a vector x is 3¢ 0, then the
subset {x} is free according to (I), since ax = 0(a € F) implies a = 0.

A basis X of V is then a subset of V such that every element X of V
can be expressed in one and only one way, as a linear combination of
elements of X (the assertion of uniqueness is an immediate consequence
of the assumption that X is free).

We now return to the axiomatic situation.

THEOREM 20. Let X be a subset of V. The three following assertions
are equivalent

(a) X is a minimal system of generators of V.
(b) X is a maximal free subset of V.
(c) X is a basis of V.

PROOF. We give a cyclic proof. Let us first prove that (a) implies
(c). We have to prove that X is free. Assume the contrary to be true.
There exists then an element x in X such that x € s(X — x). Since we
have X — x C s(X — x) (by (S;)), it follows that X C s(X — x), and
therefore V = s(X) C s(s(X — x)) (by (S,) = s(X — x) (by (Sy))
Thus X — x is a system of generators, in contradiction with the hypo-
thesis that no proper subset of X is a system of generators.

We now prove that (c) implies (b). We know that X is free. For
every x in V, x ¢ X, we have x € s(X) since X is a system of generators,
whence X U {x} cannot be free. Thus no subset of ¥ properly containing
X can be free, and this proves (b).

Finally we show that (b) implies (a). Let us first show that X is a
system of generators. In fact, for every x in V such that x ¢ X,
XU {x} is not free, whence we have, either x € s(X), or y e s(X — y, x)
for some y in S. In the second case the hypothesis that X is free
implies that y ¢ s(X — y), whence xes(X — y,y) = s(X) by (Ss)
Hence jn either case we have x € s(X) for every x ¢ X, and also for every
x€ X by (S3). Therefore s(.X) = V, and X is a system of generators.
If X were not a minimal system of generators, there would exist x in X
such that V' = (X — x), whence x € (X — x), in contradiction with the
fact that X is free. Q.E.D.

REMARK. In the last part of the proof we have shown that, if X is
free and if x ¢ s(X), then XU {x} is free.
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THEOREM 21. Let-L be a free subset of V, and S a finite system of
generators of V.  There exists a subset S’ of S with the following properties:
LU S'is a basisof V and LN S’ is empty.

PROOF. There exist subsets S” of S such that LUS” is free and
LNS” is empty (for example, the empty set). Thus, among the
subsets S” of S such that LU S” is free and LN S"” is empty, we may
choose a maximal one, S’ (for example, one with the greatest possible
number of elements). We need only to show now that V' = s(LU S’).
By (S,) this is equivalent to showing that S Cs(LUS’), or that,
for every element x of S such that x¢ S’, we have xes(LUS").
This, however, follows from the fact that the relation x ¢ s(LU S’)
would imply that LU S'U {x} is free, according to the remark made
above, and this contradicts the maximality of S’. Q.E.D.

CoROLLARY. If V admits a finite system S of generators, it admits a
basis BC S.

In fact, we take for L the empty set.

Theorem 21 and its corollary remain valid if S is not a finite set.
Namely, if S is any system of generators of V, one uses Zorn’s lemma for
proving the existence of a maximal subset S’ of S such that LU S’ is
free and L NS’ is empty. We shall discuss the general case in II, § 12,
in connection with infinite transcendental extensions of fields.

THEeOREM 22. If V admits a finite basis B of n elements then every
basis B' of V is finite and has exactly n elements.

PROOF. Let m be the number of common elements of B and B’. If
m = n, that is, if B C B’, then B = B’ by Theorem 20 (b) and the
theorem is proved. We shall now assume that m < n and we shall
proceed by induction from m 4+ 1 to m. Let B = {x,, x5, - - -, x,}.
We may assume that x,, x,, - - -, x, are the common elements of B and
B’. The set B — x,,,, cannot be a set of generators of V, by Theorem
20 (a). Thens(B — x,,,,) # V, while s(B’) = V, and this implies that
B' @ s(B — x,,4,), since s(s(B — x,,,,)) = S(B — x,,,,). Let then y
be an element of B’ which does not belong to s(B — x,,,,). By the
remark made above, the set B, = (B — x,,,,)U{y} is free. From
Y¢5(B = £,41) and y € (B = Zny1)s Fnss) (= 5(B) = V) follows by
the *Exchange property” (S;) that x,,,,€s(B;). Hence B C s(B,),
V' = s(B) C s(B,), showing that B, is a system of generators of V.
Thus B, is a base of V. Also B, has n elements, but B, and B’ have the
m + 1elements x,, xp, - * *, %,,, ¥y in common. Hence, by our induction
hypothesis, B" has exactly n elements.

Case OF VECTOR SPACES. Let V be a vector space over a field F.
If 1" admits a finite system of generators, then V admits a finite basis,



§21 VECTOR SPACES 53

and any two bases of V' have the same number of elements. This
number is called the dimension of V over F, and is denoted by [V : F] or
by dim (V). A vector space which admits a finite basis is said to be
finite-dimensional. If a vector space V' does not admit any finite basis,
we say that V is infinite-dimensional, and we set [V: F] = o0 in this
case.

We conclude this section by giving some useful results about finite-
dimensional vector spaces. Given two vector spaces V, W over the
same field F, we say that a mapping T of V into W is a homomorphism (or
a linear transformation) if (x + y)T = xT + yT for every x andyinV,
and if (ax)T = a(xT) for every x in V and every ain F. Then T is,
in particular, a homomorphxsm of the additive group of V into that of
W (§ 11). It is easily seen, as in Theorem 1 of § 11, that the kernel of
T is a vector subspace of V, and that the image VT of V is a vector
subspace of W. A homomorphxsm of V into W which is univalent
(that is, whose kernel is (0)) is called an isomorphism of V into W. A
homomorphism of ¥ into itself is called an endomorphism; an endo-
morphism of ¥V which is univalent and onto is called an automorphism
of V.

THEOREM 23. Let V be a finite-dimensional vector space over a.field
F, and T a homomorphism of V into another vector space W. Then the
kernel K of T and the image V'T of V are finite-dimensional vector spaces,
and we have

[V:F]=[K:F]+ [VT:F].

PROOF. The fact that K is finite-dimensional is included in the
following lemma:

LeEMMA. Let V be a finite-dimensional vector space and V' a subspace
of V. Then V' is finite-dimensional. For every basis (x,,---,x,) = B
of V' there exists a basis (xy, * * + , Xy, X4y, * * + %) Of V which extends B.
(1t follows that if V' is a proper subspace of V, then dim V' < dim V)

If V' were not finite-dimensional, then no finite free subset of V'’
could be maximal (Theorem 20 (b)); we could then construct by induc-
tion a strictly increasing infinite sequence X, < X; < X3 < - of
finite free subsets of ¥'. Their union X is obviously free, both in V'’
and in V. Then Theorem 21 guarantees the existence of a basis of
V containing the infinite set X, in contradiction with Theorem 22.
Thus V' is finite-dimensional. Then a basis B of V' is a free subset of
V, and Theorem 21 proves that it can be included in a basis of ¥. This
proves the lemma.

This being so, let {xy, - - -, x,} be a basis of X, and let us extend it to
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abasis {x;, - -, %, X,41, " "+, X} of V. Weassertthat{x,,,T,---, x,T}
is a basis of V'T. In fact, every element of VT may be written in the

form ( i a;x,-)T = i a(x;T) = i a,(x,T), since x;T=0 for
=1 i=1 j=pt1

i=1---,p. Thus {x,,,7,---,x,T} is a system of generators of
VT. On the other hand, this system is free in VT, since a relation

z (xT)—Oxmphes z a;x; € K, that is, Z ax; —Zax for

J=p41 Jmp+1
suitable elements a, of F The lmear mdependence of the vectors X, X;

implies that a; = 0 for § j=p+1,---,q This proves that [V'T: F]
=q—p. Sincc [V:F]=gand [K : F] = p, Theorem 23 is proved.

COROLLARY. Let V be a finite-dimensional vector space. For an
endomorphism T of V to be univalent, it is necessary and sufficient that it
be onto.

In fact the assertion that T is univalent means that its kernel K is
(0), that is, that [K': F] = 0. The assertion that T is onto means that
VT = V, that is, that [VT: F] = [V : F] according to the lemma.



II. ELEMENTS OF FIELD THEORY

§ 1. Field extensions. Let k and K be two fields such that kis a
subfield of K. We say then that K is an extension of k. If x,, x5, - - -
xy are fixed elements of K, then K contains the ring k[x;, x2, - , x4]
(the least subring of K which contains k and the elements x,, - - -, x,;
see I, § 18, p. 37). This ring is an integral domain (since K is a field).

If f(X,, X, - - -, X,) and g(X,, X,, - - -, X,) are two polynomials in
k[ Xy, X, -+, X,] and if g(xyp2g, - -+, x,) 9% 0 [whence, a fortiori,
gXy,y Xy ---,X,)5 0], then the quotient f(xy, x5 ---,x,)/
&(%y, X4, - - -, x,) belongs to K (since K is a field), and the set of all such
quotients is a field; in fact, it is the least subfield of K which contains &
and the elements x,, x,, - - -, x,. This field, which is merely the
quotient field in K of the integral domain k[x,, x,, - - -, x,] (I, § 19),
shall be denoted by k(x,, x4, -+ +, x,). Tt shall be referred to as the
field generated over k by x,, x,, - - -, x,, or the field obtained by adjoining
to k the elements x,, x,, - - * , x,,. .

An extension K of % is said to be finitely generated over k, if K =
k(xy, xg,  * -, x,), where the x; are suitable elements of K. We say that
K is a simple extension of k if K can be obtained from & by the adjunction
of a single element x.

If K and K’ are two extensions of k, we say in accordance with the
terminology introduced in I, § 12, that the two fields X and K’ are
k-isomorphic, or isomorphic over k, or isomorphic extensions of k, if there
exists a k-isomorphism o of K onto K.

§ 2. Algebraic quantities. Let the field K be an extension of k
and let x be an element of K which is algebraic over & (I, § 17, p. 28).
Let f(X) be a polynomial in k[X] of least degree such that f(x) = 0.

THEOREM 1. The polynomial f(X) is irreducible over k (that is, f(X)
is an irreducible element of R[X]; see I, § 14). If g(X) is any other
polynomial such that g(x) = 0, then f(X) divides g(X ) (in k[ X]).

PROOF. Suppose that f(X) = fi(X)fo(X), f(X)€k[X]). Then
Ji(x)fs(x) = 0, and since K is a field (and hence has no proper zero

55
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divisors), either f,(x) = 0 or fy(x) = 0. Let, say, fi(x) = 0. Since
% < 9, and since f(X) is a polynomial of least degree such that
J(x) = 0, we must have 9f, = f, and hence f, is of degree zero, that is,
fsis a unit in A[X]. This shows that f(X) is irreducible.

Let g(X) be a polynomial in 2[X] such that g(x) = 0. Since k[X] is
a euclidean domain (I, § 17, Theorem 9), division by f(X) yields:
&X) = ¢g(X)f(X) + r(X), where either 7(X) = 0 or &r < §f. Substi-
tuting x for X we have g(x) = r(x), whence r(x) = 0. Therefore we
cannot have dr < 9f, and hence 7(X) =0, and f(X) divides g(X).
This completes the proof.

An immediate consequence is the following

COROLLARY. There is one and—apart from an arbitrary unit factor
c 9 0,cek—only one irreducible polynomial f(X) in k[X] such that
Sf(x) = 0. There is exactly one such polynomsal which is monic.

The monic irreducible polynomial in 2[X] of which x is a root will be
called the minimal polynomial of x in k[X), or over k.

THEOREM 2. If x is algebraic over k, then the field k(x) coincides with
the ring k[x].. Moreover, if the minimal polynomial of x over k is of degree
n, then any element of k(x) has a unique expression of the form cpx*—1 4
x4,y CER

PROOF. Let f(X) be the minimal polynomial of x over &, and let
:—((;% be any element of k(x). Since g(x) # 0, f(X') does not divide g(X)
and hence f(X) and g(X) are relatively prime (since f(X) is irreducible,
by Theorem 1). Hence 1 is a highest common divisor of f(X) and
2(X), and we have an identity of the form 1 = A(X)f(X) + B(X)g(X),
where 4(X) and B(X) belong to X[X]. Substituting x for X, we have
1 = B(x)g(x), that is, g(x) is a unit in k[x]. This implies that
h(x)/g(x) € k[x], which proves the first part of the theorem.

Now let y = g(x) be any element of k(x), where g(.X) € k[ X]. By
the division algorithm in 2[.X'] we find as in the proof of Theorem 1 that
y=r(x) =cpx" 1 4 c;x"2 + - - - 4 ¢,_;, where n is the degree of f,
and the ¢; are in k. If ,(X) is any other polynomial in 2[X], of degree
< n— 1, such that y = r\(x), then x is a root of the polynomial
r(X) — r1(X), and since this polynomial is either zero or of degree < n
it must be the zero polynomial. This completes the proof.

CoROLLARY. If x is algebraic over k, then the field k(x), regarded as a
vector space over R, is of dimension n (see 1, § 21), where n is the degree of
the minimal polynomial of x over k. The elements 1, x, 22, - - -, x*~ form
a basis of k(x) over k.

THEOREM 3. Let K and K' be two extensivns of k and let x and x’ be
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elements of K and K' respectively which are algebraic cver k. If x and x’
have the same minimal polynomial f(X) in K[X), then there exists a
k-isomorphism of k(x) onto k(x') which carries x into x', and conversely.

PROOF. Assume that x and x’ are roots of one and the same irreducible
polynomial (X)) in #{X]. By Theorem 2, we obtain a (1, 1) mapping of
k(x) onto k(x"), if we let correspond to each element cox"—! + c,;a"~% +
-+« 4 ¢,_; of k(x) the element cgx'*~! + ¢c,x™1 4 - - - + ¢,_, of k(x").
Let this mapping be denoted by o. It is clear that o transforms each
element of % into itself and that xo = x’. So it remains to show that ¢
is an isomorphism. It is obvious that (¢ + n)o = £o + 7o for any ¢
and 7 in k(x). We now prove that ({7)o = £0-70. This will complete
the proof of the direct part of the theorem. Let § = r(x), n = s(x) and
&n = t(x), where r(X), s(X) and #(X) are polynomials in k[X], of
degrees <n—1. We have then: {o=r(x'), no=s(x) and
(én)o = t(x’). Since x is a root of 7(X)s(X) — #(X), we must have
r(X)s(X) — ¢(X) = A(X)f(X), where A(X)ek[X] (Theorem 1).
Since also f(x') = 0, it follows that r(x")s(x") = #(x’), that is, {0 7o =
(é7)o, as asserted.

Conversely, if there exists a k-isomorphism ¢ of k(x) onto k(x") such
that xo = ' and if f(X) is the minimal polynomial of x over k, then we
have f(x)o = 0, and since f(x)o = f(x') it follows that f(x') = 0. The
consideration of ! shows at once that not only f(x’) = 0 but that f(X)
is also the minimal polynomial of x" over k.

Another proof of the direct part of the theorem is the following:

For any F(X) in k[X] we set F(x)o = F(x’). Then o is a trans-
formation (a priori not necessarily single-valued) of %[x] onto k[x'] which
satisfies the homomorphism conditions for sums and products. If
F(x) = 0, then f(X) divides F(X) in k[X], and since also f(x') =0
it follows that F(x') = 0, that is, F(x)o = 0. By Lemma 2 of I, § 11,
it follows that o is a homomorphism. By the same token also o—!
is single-valued. Hence o is an isomorphism.

DEFINITION.  Two elements x and y of one and the same extension field
K of k are conjugate over k if they are algebraic over k and have the same
minimal polynomial over k.

COROLLARY. If the minimal polynomial of x over k is of degree n, then
the number of conjugates of x over k in K is at most n. Moreover, if x and
y are conjugates, then the fields k(x) and k(y) are isomorphic extensions of k.

The first part of the corollary follows from the fact that a polynomial
f(X) in K[X), of degree n, can have at most n roots in K (see, for
instance, 1, § 17, Theorem 9, Corollary 2). The second part of the
corollary follows from Theorem 3.
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Theorem 3 shows that if & is a field and f(X) is an irreducible
polynomial in A[X], then there exists—up to k-isomorphisms—at most
one simple extension k(x) of k such that x is a root of f(X). We prove
now the following

Tueorem 3'. If f(X) is a nom-conmstant irreducible polynomial in
R[X ], there exists a simple extension k(x) of k such that x is a root of f(X).

PROOF. It will be sufficient to prove the theorem for monic poly-
nomials f(X). Let n be the degree of f(X), n = 1. By Theorem 2, if
there exists an extension k(x) such that x is a root of f(X), then the
elements of k(x) are all expressible in the form c@x*~! + ¢,x"~2 4 -
4+ ¢,_,c;ek. This suggests the following procedure for a proof of
our theorem

Consider the subset 4 of k[X] consisting of the zero of 4[X] and of
all polynomials in k[X] which are of degree < #n — 1. This subset 4
is a subgroup of the additive group of k[.X]. It is, however, not closed
under multiplication in X[ X]. We shall make the additive group 4 into
a field by introducing in 4 a new multiplication, which we shall denote
by o, and we shall show that the field thus obtained is the field whose
existence is asserted in the theorem.

Let g(X), W(X)e 4. To define the new product g(X)o h(X) we
multiply g(X) and #(X) in A[X] and we divide the resulting polynomial
by f(X), getting as remainder a polynomial 7(X') which is either zero or
is of degree < n — 1:

M EXMX) = ¢(X)f(X) + r(X).
The polynomial r(X) belongs to 4 and is uniquely determined by g(X)
and A(X) (f(X) being fixed).

We set
) 8(X) o H(X) = r(X).
It is immediately seen that this multiplication in 4 is associative, com-
mutative and satisfies the distributive law. For instance, to prove the
associative law,

[2(X) 0 A(X)] 0 (X) = g(X) o [A(X) 0 (X)],
we show that either product is equal to the remainder (X’ obtained by
dividing g(X)A(X)(X) by f(X). Let us show, for instance, that
[g(X) o A(X)] o X) = r'(X).
By (1), g(X Yi(X) — r(X) is divisible by f(X). Hence g(.X)A(X)I(X)—
r(X)I(X) is also divisible by f(X). Since also g(X)A(X)(X) — r'(X)
is divisible by f(X), it follows that 7(X)(X) — »'(X) is divisible by f(X).
Since r'(X) € 4[X]), r'(X) is the remainder of the division of r(X){X) by
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J(X), and hence, according to our definition of the multiplication o, we
have 7(X) o [ X) = 7'(X), that is,
[8(X) o h(X)] o I X) = r'(X).

Thus we have now 4 defined as a commutative ring. The identity 1
of k[X] is also the identity of 4. We now prove that 4 is a field. l.et
g(X) be any element of 4, different from zero. Since g(.X)is of degree
less than 7 and f(X) is irreducible, the two polynomials g(X), f(X) are
relatively prime. Hence there exist polynomials /#(.X) and A(X) such
that A(X)g(X) + A(X)f(X) = 1~ In this identity we may assume
that A(X) is of degree <n — 1, since we may write A(X)=
B(X)f(X) + ky(X), with 0h; < n — 1, and then we find A,(X)g(X) +
A(X)f(X) =1, where 4,(X)= A(X)+ B(X)g(X). Hence h(X)
belongs to 4. In the case of the two polynomials g(X') and #(X) under
consideration, we find that (1) holds with ¢(X) = — A(X)and r(X) =1,
and hence 4 is a field.

If g(X) and A(X) are elements of 4 such that the (old) product
&(X)h(X) is a polynomial F(X) of degree < n, then from our definition
of multiplication in 4 it follows that g(X)o A(X) = F(X). Hence if
¢ € k and m is any integer < n, then the element cX™ of 4 is actually the
circle product co XoXo -+ -0 X of ¢ and m factors X. Since addition
in 4 is the same as addition in R[X'], we conclude that X is a generator of
4 over k.

At this stage, it will be convenient to denote the element X of k[X],
when this element is regarded as an element of the field 4, by some
letter other than X, say, by x. When that is done, then, we can dispense
with the symbol o, used for multiplication in 4, without introducing any
ambiguity in our notation. We therefore write g(x)h(x) for g(X) o A(X).
Our last conclusion, to the effect that X is a generator of 4 over &, can
now be expressed, without ambiguity, by writing: 4 = k(x).

Let now f(X) = X" + f,(X), where f,(X) has degree < n — 1. We
have X*-1.X = f(X) — f,(X), hence x"= x"-!.x = — f,(x), by
definition (2). Therefore x" + fy(x) = 0, that is, f(x) =0. This
completes the proof of the theorem.

COROLLARY. "If kis afieldand f(X) = apX" + a, X" + - - - + a,,
a, 7% 0, is an arbitrary non-constant polynomial in k[X], there exists an
extension field K of k such that f(X) factors completely in linear factors
in K[X]:

3 JX)=afX —x (X — %) (X —x,), xek

For n = 1, there is nothing to prove. We use induction with respect
ton. We fix an irreducible factor ¢(X) of f(X) and we consider some
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simple extension k, = &(x,) of k such that ¢(x;) = 0. Then f(x,) = 0,
and therefore f(X) is divisible by X — x; in &[X]: f(X)=
(X = x)fi(X), f1(X) € ky[X]. Since f,(X) is of degree n — 1, there
exists, by our induction hypothesis, an extension K of k; such that
SilX) = ao(X — x,)(X — x,) ‘(X — x,), x;,€ K, and from this (3)
follows.

§ 3. Algebraic extensions

DEFINITION 1. If K D k, then K is an algebraic extension of k if every
element of K is algebraic over k. Extensions which are not algebraic are
called transcendental extensions.

The simplest example of an algebraic extension is the field k(x), x
algebraic over k. That not only x but every element of this field is
algebraic over % will follow from the theorem below and from the fact
that k(x) is a finite dimensional vector space over k (§ 2, Theorem 2,
Corollary).

THEOREM 4. If K D k and if the dimension of K (regarded as a vector
space over k) is finite, say n, then K is an algebraic extension of k, and every
element x of K satisfies an equation of degree < n over k (whence the
minimal polynomial of x in k[X ] is of degree < n; see § 2, Theorem 1).

PROOF. 1, x, x%, .-, x" are linearly dependent over k.

DEFINITION 2. The dimension n of K oveér k is called the degree of K
over k and is denoted by [K : k). We set [K: k] = oo if K, regarded as a
vector space over k, has infinite dimension. If [K: k] is finite, then K is
said to be a finite extension of k, or also that K|k is a finite extension.

CoRroLLARY. If K is an extension of k and x € K, then x is algebraic
over k if and only if k(x) is a finite extension of k. In that case, if n =
[k(x) : k], the minimal polynomial of x in kR[X] is uf degree n.

This follows at once from the preceding theorem and from Theorem
20of §2.

Let k, K and L be fields such that A C K C L and let [K: k] = n,
[L:K]=m.

THEOREM A. If wy, wy, -+, w, s a basis of Klkand £, &,,- - -, €n
is a basis of L|K, then the mn products
(l) wl'fji i==l,2,~--,n;j==l,2,---,m,

Jorm a basis of L[k.
PROOF. If{isany elementof L, then{ = z A fj, A;e K. Further-

more, we have 4; = 2 a;w,;, a;; €k Hence ( = 2 2 a;jw;€;. This
im1 s} ju}

shows that L, regarded as a vector space over &, is spanned by the mn
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vectors w;£;. It remains to show that these mn vectors are linearly

mdependent over k. Let z Zc,,w £, =0, c;ek. We set C, =
=] je=i

z ¢c;jw;. Then Z C;¢; =0, C; € K, and since the £’s form a basis of

LoveeremusthaveC—OJ—IZ e, m. Fl’O!'nZCw-—O

g |
and from the fact that the w’s form a basis of K over k, we conclude that
all the ¢;; are zero. This completes the proof.
An immediate consequence of ihe-foregoing theorem is the following
relation:

2 [L:k]=[L: K] [K:k].
THEOREM B. If x,, x,, - - -, x, are in an extension field K of k and
are algebraic over k, then k(x,, x,, - - -, x,) is an algebraic extension of

k, of finite degree.

PROOF. Each x;, being algebraic over %, is a fortiori algebraic over
k(xy, x5, -+ -, x;_,). Hence k(x,, x5 -+-,%) is a simple algebraic
extension of k(x,, x,, - -+, x;_;), and therefore [k(x,, x4, -, x,):
k(x,, x5, - -, x;_,)] = m, = a finite integer = 1 (by the corollary of
Theorem 4). It follows then from (2) that [k(x,, x4, - - -, x,): k] =
m,m, - - - m,, and Theorem 4 is applicable.

CoroLLARY. If K is an extension field of k, the elements of K which are
algebraic over k form a field.

Tueorem C. If K is an algebraic extension of k and L is an algebraic
extension of K, then L is an algebraic extension of k.

PROOF. Assume first that the degree [K : &] is finite, and let x be any
element of L. Since x is algebraic over K, the field K(x) has finite
degree over K. Hence by (2), K(x) has also finite degree over k, and
a fortiori k(x) has finite degree over k. This implies that x is algebraic
over k. In the general case, let X* 4 4,X*~! + --- 4+ A, be some
polynomial in K[X] which has x as a root (for instance, the minimal
polynomial of x over K), and let K’ = k(A,, Ay, - -+, A4,). Thenxis
already algebraic over K, and since K" is finitely generated over %, the
relative degree [K' : k] is finite, by Theorem B. The assertion that x is
algebraic over & now follows from the preceding case.

COROLLARY. Let K be an extension field of k and let k, be the subfield
of K consisting of the elements of K which are algebraic over k (see Corollary
of Theorem B). Then every element of K which is algebraic over ky belongs
to kg,

We express this property of the field &, by saying &, is algebraically
closed in K. We refer to k, as the algebraic closure of k in K.
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§ 4. The characteristic of a field. Let & be a field and let ¢ be the
identity of k. The integral multiples ne of e(n = 0) form a subring E
of k [in view of the relations (n + m)e = ne & me, (nm)e = ne-me
(I, § 4)), in fact the least subring of k containing e.

Let 4 be the quotient field of E in & (I, §19). Any subfield of &
contains the ring E and hence must also contain the field 4. Hence 4
is the smallest subfield of k, and is in fact the intersection of all the
subfields of .

DeriNiTION 1. A field which does not contain any proper subfields is
called a prime field.

It follows from this definition that the above subfield 4 of & is a
prime field. Since every-subfield of k& contains 4, 4 is the only prime
subfield of k. Thus every field k contains a unique prime field.

We consider the mapping

1)

of the ring J of integers onto E. 'This mapping is a homomorphism (in
view of the relations given above). Two cases are possible: (a) either
(1) is an isomorphism, or (b) it is a proper homomorphism.

If (1) is an isomorphism, we say that & has characteristic zero. In
this case, we have ne 7 0 if # ¢ 0, and the ring E is an infinite ring,
isomorphic to the ring J of integers. The quotient field 4 of E in &
is then isomorphic to the field of rational numbers, the isomorphism

between the former and the latter being given by im(—-»%, mz 0

(see I, § 19, Theorem 16). It is clear that if a field % is of characteristic
zero, then every subfield of % is of characteristic zero, and that if one
subfield of % is of characteristic zero, then & itself is of characteristic zero.

Wealso note that—as has just been shown—any prime field of character-
istic zero is isomorphic to the field of rational numbers.

We now consider the case in which the homomorphic mapping (1) is
not an isomorphism. In this case, the kernel IV of (1), that is, the set of
all u such that ne = 0, contains at least one integer n which is different
from 0 (I, § 11, Theorem 2). Since ne = 0 implies — ne = 0, the
kernel contains also positive integers. Let p be the least positive
integer in N. We have then

2 pe=0
and
3) re# 0,if 0 < r < p.

Since N is a subring of J (I, § 12, Theorem 3, c), N contains also all the
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multiples mp of p. On the other hand, if # is an arbitrary integer, we
can write n = gp + 7, where 0 < 7 < p, and then we find that ne =
gpe + re = re, since gpe = 0. We have therefore,

4) ne=vre, 0=Zr<p,

and hence, by (3), ne # 0 if n is not divisible by p, for in that case 0 < 7.
The kernel N of the h momorphsim (1) consists therefore of all the
multiples of p.

Since 1-e = e 0, p is greater than 1. We assert that p is a prime
number. For if p = nn,, then 0= (n,n,)e = (n,e)(n,e), and hence
either #,e = 0 or ny,e = 0 (since % is a field and has no proper zero
divisors), that is, either n, or ny is equal to p. 'The prime number p is
called the characteristic of the field k. Every field k has therefore a
well-defined characteristic p which is either zero or a prime number
(6> 1).

We continue with the case p 3 0. Relation (4) shows that the ring .2
is finite and consists of the elements:

0,e 2, - - ’(P_ 1)8
These p elements are distinct, in view of (3).

The ring E is a field. For let ne be any non-zero element of E.
Since # is not divisible by p, n and p are relatively prime and hence
there exist integers m and ¢ such that mn — gp = 1. We have then
(me)(ne) = (mn)e = (gp)e + e = e, and so ne has the inverse me, which
proves that E is a field. (Note the similarity of this reasoning to that
employed in the proof of Theorem 2 in § 2.)

Let &' be any other field of the same characteristic p 3 0 as k, and let
E'’ be the set of integral multiples ne’ of the identity e’ of k’. It is then
immediately seen that the transformation ne — ne’ is an isomorphic
mapping of E onto E’. We thus see that if there exist at all fields of a
given characteristic p 3¢ 0, then there also exist prime fields of character-
istic p, and any two prime fields of the same characteristic p are iso-
morphic. Using the ring J of integers, we can now construct fields of
any characteristic p 7 0. The construction is quite similar to that of
simple algebraic extensions of a field %, used in the proof of Theorem
3'in §2. The role of the irreducible polynomial f(.X) is now played by
the prime number p. We denote, namely, by ¥, the set of integers
0,1,2,---,p—1. If m and n are any elements of ¥,, we define
addition + and multiplication o in ¥, as follows: m + n is the remainder
of the division of m 4 n by p and m o n is the remainder of the division
of mn by p. Using arguments similar to those used in the proof of
Theorem 3’ in § 2, one proves that ¥, is a field. Since every element of
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J, is clearly an integral multiple of 1 (that is, we have m =1 4 1 +
+++ 4 1, m times, for all m such that 1 <m < p — 1), ¥, is a prime
field. Since J, contains p elements, p is the characteristic of §,.

The following identities hold in any field % of characteristic p:

(5) pa=0,

(6) (b4 c)p=b? 4 c?,

where a, b and c are elements of k. The first of these relations follows
from pa = p(ea) = (pe)a. The second relation is obtained by observing
that since p is a prime number, all the binomial coefficients of (a & b)?,
except the first and the last, are divisible by p. Hence applying (5), we
have (b & c)? = b + (£ 1)?c?. If p 5 2, p is odd and (6) follows. 1If
p =2, we have (b — c)? = b% + ¢?, but this time we have ¢2 = — ¢?
since 2¢2 = 0.

The identity (6) leads to an important consequence. Let & be a field
of characteristic p different from zero and let us denote by k? the set of
all elements of & which are of the form a?, ae k. By (6), the set k? is
closed under addition and subtraction. Since we also have for any b
and ¢ in k: b?c? = (bc)? and—if ¢ 7 0—b?[c? = (b/c)?, k? is also closed
under multiplication and division. Hence k? is a subfield of k. We
consider the mapping
@) x—>x?, xck.

Clearly, we have xy — x?.y?. 'This, in conjunction with (6), implies
that the mapping (7) is a homomorphism. Since x? = 0 implies x = 0,
it follows that (7) is an isomorphism of k onto k*.

DEFINITION 2. A field k is called perfect if it is either of characteristic
zero or is of characteristic p # 0 and coincides with its subfield k*.

It follows that if k is of characteristic p 7 0, it is perfect if and only
if for every element x in k there exists another element y in k such
that x = y?. This element y is uniquely determined by x, since (7) is
one to one. This element y is denoted by ¥x.

If & is of characteristic p # 0 and is not perfect, there exist elements
in k which are not p-th powers of elements of k. If x is such an element,
there we agree to indicate this property of x by the notation: ¥x ¢ k.

An example of a perfect field of characteristic p is the prime field ¥,.
To see this, we shall prove a more general result.

DerINITION 3. A Galois field is a field containing only a finite number
of elements.

It is clear that the characteristic of a Galois field must be different
from zero, for any field of characteristic zero contains the (infinite) field
of rational numbers.
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Now suppose that & is a Galois field and let p be the characteristic
of k. Since (7) is an isomorphism of k onto k?, the two fields have the
same (finite) number of elements. Since k? C &, it follows that k = k».
We have thus proved

THEeOREM 5. Every Galois field is perfect.

§5. Separable and inseparable algebraic extension. Let k be
a field and let 4[.X] be the polynomial ring in the indeterminate X over
k. If

f(X) = a X" + a, X! -lj c+ 4 a,a;€k,a,7#0,

is any polynomial in 2[X], of degree n, we define the derivative f'(X) of
Jf(X) in the usual fashion:

&) = naoXm 4 (1= DaX™2 4 - a4y,

The derivative f'(X) is again a polynomial in k[ X]. If the characteristic
of k is zero, then a coefficient (n — 1)a; of f'(X)(:=0,1,---,n—1)
can be zero if and only if a; is zero. Hence f'{X) # 0if n > 0.

Suppose, however, that k& has characteristic p ¢ 0. In that case,
(n — i)a, is zero if either a, = 0 or n — iis divisible by p. In particular,
since a4 7# 0, we have na, = 0 only if n is divisible by p. It follows
that y'(X) = 0 if and only if n is divisible by p and all those coefficients
a; of f(X) are zero for which n — i is not divisible by . When that is so,
the terms a, X" which actually occur in f(X) are such that the exponent
n — i is divisible by p. That signifies that f(X) is a polynomial in X%,
that is, f(X) € k[X?]. This, then, is a necessary and sufficient condition
for the vanishing of f'(X).

DEFINITION 1. An irreducible polynomial f(X ) in k[X ] is separable or
inseparable according as f'(X) # 0 or f'(X) = 0. An arbitrary poly-
nomial f(X) in k[X] is separable if all its irreducible factors are separable;
otherwise f(X) is inseparable.

If & is of characteristic zero, every polynomial in k[X], of positive
degree, is separable. For fields of characteristic p % 0 we have the
following

THEOREM 6. A field k of characteristic p # 0 is perfect if and only if
every polynomial in k[X ] of positive degree is separable.

PROOF. Assume k perfect. It will be sufficient to show that every
irreducible polynomial in k[X] of positive degree is separable. Now if
f(X) is an arbitrary polynomial in A[X] such that f'(X) =0, then
f(X)€ek[X?], that is, we have f(X)=ZbXp = (ZB;X)?, where
Bi=7 b, € k (since k is perfect), and hence f(X) is not irreducible.
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Conversely, assume that % is not perfect. There exists then at least
one element a in k such that q is not the p-th power of an element of k.
Set f(X) = X? — a. We have f'(X) = 0, and hence the proof will be
complete if we show that X? — a is irreducible in k[X]. We shall prove
the following more general result:

THEOREM 7. Ifa€k, Va¢k and e is an integer = 0, then X** — a
is trreducible in R[X].

PROOF. The theorem is trivial if e = 0 for in that case we have
X** — a = X — a (the condition V/a ¢ kis in this case irrelevant). We
now proceed by induction with respect to e. Let ¢(X) be a monic
irreducible factor of X?* — a in k[.X] and let [p(X)])* be the highest
power of ¢(X) which divides X?* — a:

(1 X?* — a = [p(X)PY(X), (p(X), $(X)) = L.
Taking derivatives of both sides* and dividing by [p(X)}*~?, we have

the identity
hy' (X WW(X) + (X )'(X) = 0,

and hence Y(X) divides the product ¢(X)'(X). Since $(X) and
@(X) are relatively prime, we must have ¢'(X) = 0, for in the contrary
case y'(X) would be a non-zero polynomial of smaller degree than
¥(X), and (X) could not divide ¢'(X). We must therefore have
simultaneously: k¢'(X) = 0, 4'(X) = 0. The second of these relations
implies that (X) e k[X?], say, $(X) = ,(X?), where ;(X) € k[ X].
The first implies that the derivative of [¢(X)]* is zero, whence also
[P(X)]" € R[X?], say [p(X)]* = ¢,(X?), ,(X) € K[X]. Hence, by (1),
we have X?* — a = ¢,(X?),(X?), or—replacing X? by X : X***' — q
= @,(X)y(X). Since X¥* ' — aisirreducible in k[X] (by our induc-
tion hypothesis) and since ¢,(X) is of positive degree, it follows that
¥1(X) is of degree zero, and hence ,(X) = 1 since both polynomials
X' — aand ¢,(X) are monic. We have therefore X' — a = ¢,(X),
X?* — a = [p(X)]". Were k a multiple of p, X** — a would be a power
of [@(X)]?, and since the coefficients of [(X)]? belong to k? it would
then follow that also the coefficients X?* — q all belong to k2. This,
however, is in contradiction with our assumption that ¥a ¢ k. Hence
his not divisible by p. Since & ¢'(X) = 0, it follows now that ¢'(X) = 0,
@(X) € k[X?), and this implies at once that 2 = 1 for otherwise the
relation X»* — a = [p(X)]* would imply that X*~' — g is reducible in
k[X]. Hence X** — a = ¢(X), QE.D.

* We use here the familiar rule for the derivative of a product. Thig rule is

a straightforward consequence of our purely formal definition of the derivative
of a polynomial.
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A shorter proof of the above theorem can be given by making use
of the existence of an algebraic extension &' of k such that ¢(X) has a
root « in k' (see Theorem 3, §2). We have a = «** and hence
X?* — a = (X — «)?*. Itis now easy to see that X** — a is necessarily
a power of ¢(X). For assume this is not the case, and let (X) be an
irreducible factor of X?* — a such that (¢(X), (X)) == 1. Then we
have an identity of the form A(X)p(X) + B(X (X) = 1, where A(X),
B(X) e R[X]. Since §(X) divides (X — «)** in k'[X], « is a root of
¥(X), and hence the substitution X — a in the above identity leads
to a contradiction (0 = 1). Since therefore ¢(X) is necessarily a
power of X — «, it follows that X?* — a = [p(X)}*, p = 0, and the
fact that V/a ¢ & yields 4t once p = 0.

Let f(X) be a polynomial in k[X]. If f(X) e k[X?], then f(X) =
J1(X?), and the degree of f(X) is divisible by p. If also f,(X) € k[X?],
then f,(X) = fy(X?) and f(X) = f,(X?'), and the degree of f(X) is
divisible by p2.  Since the degree of f(X) is finite, there exists an integer
e = 0 such that f(X) e k[X?"], f(X) ¢ k[X?*"’]. We set then f(X) =
Jo(X?°), n = degree of f(X), n, = degreeof fo(X). Here fo(X) ¢ k[X?]
and

n= nop'.

DEerFINITION 2. The integer n is called the reduced degree of f(X), or
the degree of separability of f(X). while e and p¢ are called respectively the
exponent of inseparability and the degree of inseparability of f(X).

It is clear that an irreducible polynomial f(X) is separable if and only
if n = n,.

Let K be an extension field of a field & and let x be an element of K
which is algebraic over k.

DerINITION 3. The element x is separable or inseparable over k
according as the minimal polynomial f(X) of x in kK[X] is separable or
inseparable.

It follows that if & is of characteristic zero or is a perfect field of
characteristic p # 0, then every algebraic quantity over & is necessarily
separable.

COROLLARY 1. If x is algebraic over k and f(X) is the minimal poly-
nomial of x over k, then x is inseparable over k if and only if f'(x) = 0. If
x is inseparable over k and g(X) is any polynomial in k[X] such that
g(x) = 0, then g'(x) = 0.

For if f(x) = f'(x) = 0, f(X) irreducible, then necessarily f'(X) = 0
since f'(X) is of smaller degree than f(X); and hence x is inseparable
over k. Conversely, if x is inseparable over &, then f'(X)=0
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and hence f'(x) = 0. ' If g(x) = 0, then f(X) divides g(X), g(X) =
AX)f(X), g'(x) = A(x)f'(x), and hence g'(x) = 0 if x is inseparable
over k.

Let g(X) be any polynomial in R[X] such that g(x) = 0. Since
x € K and g(X) is also a polynomial in K[X], X — x must divide g(X)
in K[X]. Let (X — x) be the highest power of X — x which divides
g(X) in K[X]:

@ &(X) = (X — #yg\(X),

where g,(X) € K[X] and gy(x) ¢ 0. Since x belongs also to the sub-
field k(x) of K, a similar argument is applicable to the field k(x) (instead
of to K), and hence if (X — x)* is the highest power of X — x which
divides g(X) in A(x)[X], then g(X)= (X — x)gy(X), where
g+(X) € k(x)[X] € K[X] and gy(x) # 0. The identity (X — x)'g,(X)
= (X — x)rgy(X), together with the inequalities g,(x) 7 0, go(x) 7 0,
implies that p = s, g,(X) = g4(X). Hence the integer s depends only
on x and g(X), and not on the choice of the extension field K of %
containing x. This integer s is called the multiplicity of the root x of
2(X). We say that x is a simple root or a multiple root of g(X) according
ass=lors>1.

Taking derivatives of both sides of (2) we find that if s = 1 then
g'(x) =gy(x)# 0, and if s > 1 then g'(x) =0. We can therefore
re-state Corollary 1 in the following form:

CoroLLARY 2. If x is. algebraic over k and f(X) is the minimal
polynomial of x in k[ X, then x is inseparable over k if and only if x is a
multiple root of f(X). If g(X) is any polynomial in R[X] such that
g(x) = 0 and if x is inseparable over k, then x is a multiple root of g(X).

DErFINITION 4.  An algebraic extension K of k is a separable extension
of k if every element of K is separable over k. In the contrary case, K is
called an inseparable extension of k.

From now on we shall assume in this section that the characteristic
pofkis 0. ]

DEFINITION 5. An element x € K is purely inseparable over k if some
p*-th power of x belongs to k, e = 0. (In particular, if ¢ = 0, that is, if
x €k, then x is purely inseparable over k.) K is a purely inseparable
extension of k if every element of K is purely inseparable over k.

CoroLLARY 3. If K is a finite purely inseparable extension of k, then
the degree [K : k] is a power of p.

By formula (2) of § 3 it is sufficient to prove the corollary under the
assumption that K is a simple extension of k, say, K =- k(x). Let
¢ 2 0 be the smallest integer such thatx** € k, and let x** = « Thena
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is not a p-th power of an element of k, and hence the polynomial X** — a
is irreducible in X[.X] (Theorem 7). Since x is a root of this polynomial,
X?* — a is the minimal polynomial of x over & and hence (Theorem 2,
Corollary, § 2) [k(x): k] = p*.

Lemma 1. If x is both separable and purely inseparable over k, then
x€k.

PROOF. If e is the least non-negative exponent such that x** € k and
if x** = a, then the proof of the Corollary 3 shows that X?* — g is the
minimal polynomial of x in R[X]. Since x is separable over &, it
follows that f’(X) £ 0, and this is possible only if ¢ = 0. Hence
x € k, as asserted.

Lemma 2. If K is a separable algebraic extension of k and L is any
field between k and K (kC L C K), then K is a separable algebraic
extension of L.

PROOF. Let x be any element of K and let f(X) be the minimal
polynomial of x in 2[X]. Since x is separable over %, x is a simple root
of f(X), by the first part of Corollary 2. Since f(X) is also a poly-
nomial in L[X], it follows then from the second part of Corollary 2 that
x is also separable over L.

If L is any subset of K, we denote by k(L) the subfield of K obtained
by adjoining to k all the elements of L, that is, k(L) is the set of all
elements of K which are of the form f(x,, xq, - - -, x,)/g(%}, Xg, - -+, %,),
where f(X,, Xg, - -+, X,), 8(X1, Xy, -+, X)) € R[ X, Xy, - -+, X, ), x, € L
=12 ---,n), g(xy, x5 -+, x,) 7 0 and n is an arbitrary integer.
We denote by k[L] the ring consisting of all polynomials f(x,, x,, - - -, x,)
such as above. Then k(L) is the smallest subfield of K which contains
k and L, k[L] is the smallest subring of K containing k and L, and k(L)
is the quotient field of k[L] in K.

We shall denote by &L the set of all finite sums of products of elements
of k by elements of L. This set is, in general, not a ring, unless L is a
ring, and in the latter case we have kL = k[L].

If L is a field and if every element of L is algebraic over k,
thenk(L) = RL. For in that case we have for any elements x,, xg,***, %,
of L:k(xy, x5+ ,%,) = k%), %4 -, ,] (Theorem 2, §2), hence
k(xl’ 7 xn) = k[L] = kL.

We now proceed to prove the following criterion for separable
algebraic extensions:

TueoreM 8. If K is a separable algebraic extension of k, then RK? = K.
Conversely, if K is an extension of k such that kK? = K and if the extension

K/k is finite, then K is a separable extension of k.
PROOF. From a preceding observation it follows that RK? is a field.
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Moreover, every element of K is purely inseparable over kK?, for
K* CkK?. If K is a separable extension of k, it follows then from
k C kK? C K and from Lemmas 1 and 2 that 2K? = K, which proves
the first part of the theorem.

Assume now that kK? = K and that K is a finite (hence algebraic)

extension of k. Let [K:k] =n. Letw,, w,, -, w, be any elements

of K which are linearly independent over k. We assert that w,?,

wg?, « - -, wy? are also linearly independent over k. For the proof of this

assertion, extend the set w,, wy, * * *, w, to a basis w,, wy, -+, w, of
n n n

Kjk. We have K= kw;, K? =3 kw?, K=FkKt=7 ko?.
=] fm] T

This shows that w,?, wg?,' -, w,? also form a basis of K over k, which

proves our assertion. Now let x be any element of K, let f(X) be the
minimal polynomial of x over &, and let m be the degree of f(X).
Assume for a moment that x is inseparable over &, and let m, be the
reduced degree of f(X) (see Definition 2), so that my < m. Then
1, x, x%, - - -, a™ are linearly independent over k&, but 1, x#*, x%*, .. .,
xm# are linearly dependent over k, a contradiction. Hence x is
separable over k. Q.E.D.

COROLLARY. If x is separable over k, then k(x) = k(x*), and therefore
k(x) is a separable extension of k. Conversely, if k(x) = k(x?), then x is
separable over k.

For if we set K = k(x), then K? = k#(x?) and kK? = k(x?), and
since k(x) is a finite extension of k, it follows, by the theorem just proved,
that x is separable over & if k(x) = k(x?). On the other hand, if x is
separable over &, x is both separable (Lemma 2) and purely inseparable
over k(x?), and hence x € k(x?), k(x) C k(x?) C k(x), i.e., k(x) = k(x?).
Thus K = kK?, and K is a separable extension of k.

TueoreM 9. If L is a separable extension of k and K is a separable
extension of L, then K is a separable extension of k.

PROOF. Since every element x of K is separable algebraic over k(L,),
where L, is a suitable finite subset of L (depending on x), it is sufficient to
prove the theorem for finite extensions L[k, K/L. We have, by
Theorem 8, L = kL*?, K = LK? = kL*K? C kK?, hence K = kK?.
Since K|k is a finite extension, K is separable over k (second half of
Theorem 8).

THEOREM 10. If x,, x,, - - -, x, are elements of K which are separable
over k, then k(xy, x,, - - - , x,) is a separable extension of k.

PROOF. Set K; = k(x,, x5, ' -, ¥;). Weknow that K| is a separable
extension of 2 (Theorem 8, Corollary). Assume that X is a separable
extension of k. Since x,, , is separable over K; (Lemma 2), it follows
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that K, , is a separable extension of K, whence K, , is also a separable
extension of & (Theorem 9). This completes the proof.

Let K be an arbitrary extension of k and let k be the algebraic
closure of % in K (see end of §3, p. 61). Let ky be the set of all
elements of K which are separable algebraic over &. Then k C k, Ck,
and &, is a field (Theorem 10). We shail refer to k, as the maximal
separable extension of k in K. We say that k is quasi-algebraically closed
in K if k = k,.

Let x be any element of k and let f(X) be the minimal polynomial of
x over k. Let p* be the degree of inseparability of f(X) (e = 0, if and
only if x € k). Then x#° is separable over %, and therefore x** € k,,.
Consequently x is purely inseparable over k,. This holds for any element
x of k; consequently k is a purely inseparable extension of k,. It follows
that any algebraic extension & of k can be obtained in two steps: a
separa}:le extension k — k, followed by a purely inseparable extension
ko— k.

Let K be a finite algebraic extension of k. In this case k = K. Let
ny = [ko: k]. The degree [K: k] is a power of p, since K is a purely
inseparable extension of k, (see Definition 5, Corollary). Let [K: ko)
= p°. Then [K:k] = n = nyp. The integers n, and p* are called
respectively the separable and the inscparable factor of the degree [K : k],
or also the degree of separability and the degree of inseparability of K|k.
In symbols

3) n,=[K:k), p'=I[K:k],
whence
“4) [K:k] = [K:k], - [K:R],.

We consider now the special case in which K = k(x) = a simple
algebraic extension of k. Let f(X) be the minimal polynomial of x over
k. Let n, be the reduced degree of f(X) and let p° be the degree of
inseparability of f(X), so that n = nyp*, where 2 is the degree of f(X).
It is not difficult to see that n, and p* are equal respectively to [k(x) : k], and
[k(x): k};. Forlety = x**. Then y is separable over %, and k(y) is a
separable extension of k. Moreover [k(y): k] = n,, since the minimal
polynomial of y over k has degree n,. The element x is purely in-
separable over k(y), and hence any element of k(x) is purely inseparable
over k(y) (from x** € k(y) follows 2 € k() for all 2 in k(x)). It follows
that every element of k(x) which is separable over & [and-hence also
over k(y)] belongs to k(y) (Lemma 1). Hence k(y)= ko and
mo = [k(x): K], Wehavemo-p? = n = [(x): K] = [k(x) K], [k(x) : K],
= 0, [k(x) : k];, and therefore p* = [k(x) : k];, as asserted.
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§ 6. Splitting fields and normal extensions. We have shown in
§ 2 that if f(X) is any polynomial in 2[X], then there exists an extension
K of k such that f(X) factors completely in K[X] into linear factors:

() fX)=aX =z )X —2) - (X —5), 5eK.

Here a,, is the leading coefficient of f(X). If f(X) is irreducible in
k[X], then the n quantities x; are distinct [and hence each x; is a simple
root of f(X)], if and only if f(X) is a separable polynomnal (see § 5,
Definition 3, Corollary 2). If f(X ) is reducible in k[X], then the x;
are distinct if and only if f(X) is a separable polynom®l and has no
multiple factors in X[X]. This follows from the fact that two distinct
irreducible monic polynemials in 2[X] cannot have a common root in
any extension field of k-(a quantity x which is algebraic over & has a
unique minimal polynomial in A[X]).

THEeOREM 11. If f(X) is an irreducible inseparable polynomial in k[X ],
of reduced degree n, and exponent of inseparability e, then each linear
factor in (1) appears exactly p* times.

PROOF. We have f(X) = ¢(X?°), where ¢(X) is an irreducible
separable polynomial in X[X]. Each element x/#* is a root of ¢(X),
necessarily a simple root, and hence ¢(X) = (X — x)p,(X), where
9{(X) € K[X] and ¢;(x?*) £ 0. We have, then, f(X) = (X — x;)#*f(X)
where f{(x;) = p/x?°) # 0. This shows that X — x; is exactly a
p*-fold factor of f(X ), as asserted.

Let K be an extension field of k in which f(X) factors completely into
linear factors and let (1) be the factorization of f(X) in K[X]. The
field k(xy, x4, - - -, ,) is clearly the smallest subfield of K which contains
k and in which f(X) factors completely into linear factors.

DEFINITION 1. The field k(xy, xq, - * * , %,) is called a splitting field
over k of the polynomial f(X).

A splitting field of f(X), over k, is therefore any extension field L of &
in which f(X') factors completely into linear factors and which is generated
over k by the roots of f(X) in L.

We have proved in § 2 (see Theorem 3) that if f(X) is an irreducible
polynomial in 2[X] and x, x’ are roots of f(X) in some extension fields
K and K’ of k respectively, then the fields k(x) and k(x") are k-isomorphic
extensions of k. Our next object is to prove the following analogous
result for splitting fields: if f(X) is an arbitrary polynomial in k{X] (not
necessarily irreducible), any two splitting fields of f(X) over k are k-iso-
morphic extensions of k. Before we do that, we restate Theorem 3 of

§ 2 in a slightly more general form:
LEMMA 1. Let 7 be an isomorphism between two fields k and k and let
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HX) =a X"+ a, X"+ - - - 4 a, be an irreducible polynomial in
k[X]). Let ®(X) = [p(X)}r be the corresponding polynomial in k{X],
that is, let o(X) = ao X" + a, X"~ 1+ - - + a,, where G, = a,r. Let,
moreover, x be a root of p(X) in some extension field of k and let % be a root
of @(X) in some extension field of k. Then the isomorphism = can be
extended to an isomorphism p of k(x) onto k(%) such that xp = %, and the
extension is unique.

If k = kand ~ is the identity, then the lemma coincides with Theorem
3 of § 2. In the general case, the proof of the lemma is similar to the
proof of Theorem 3 and may be leff to the reader.

The uniqueness theorem on splitting fields, which we propose to
prove, is the following:

THEOREM 12. Let k, k and = have the same meaning as in the preceding
lemmay, and let f(X) be an arbitrary monic polynomial in R[X ], of degree n.
Let f(X) = [f(X))r be the corresponding polynomial in k[X] and let
k', &’ be splitting fields over k and k of f(X) and f(X) respectively. Then
the isomorphism © can be extended to an isomorphism p of k' onto k', and
any such extension p sends each root of f(X) in k" into a root of f(X) in k'
(and similarly p—! sends each root of f(X) into a root of f(X).

PROOF. The theorem is trivial for n = 1. We shall therefore
proceed by induction from n — 1 to n. Let ¢(X) be an irreducible
factor of f(X) in k[X] and let §(X) = [¢(.X)]r be the corresponding
irreducible factor of f(X) in k[X]. Then both ¢(X) and #X) have
roots in k' and %’ respectively. We fix a root x, of ¢(X) in k' and a root
%, of 3(X)in k. By Lemma 1, there exists an isomorphism 7, between
k(x,) and k(%,) which is an extension of 7 and which sends x, into #,.
Let f(X) = (X — %,)£,(X) and f(X) = (X — #)f,(X). The poly-
nomials f,(X) and f,(X) have coefficients in k(x,) and k(%,) respectively,
and are of degree n — 1. It is clear that they are corresponding
polynomials under the isomorphism 7, between k(x;) and k(%,).
Furthermore, the fields &’ and &’ are respectively splitting fields of
f1(X) over k(x,) and of f,(X) over k(%,). It follows from our induction
hypothesis that the isomorphism , can be extended to an isomorphism
pof k' onto k. Then p is an extension of 7, and since the last statement
in the theorem is self-evident, the proof is complete.

CoroLLARY. Let k' be a splitting field over k of a polynomial f(X)
whose coefficients belong to a certain subfield k, of k. Then any k,-
isomorphism of k into k' can be extended to an automorphism of k'.

For, in the present case, the isomorphic field k is contained in k', and,
on the other hand, the polynomial f(X) coincides with f(X). Hence
we can take for k' the field &’ itself.
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The preceding theorem has several important consequences. We
recall (§ 2, p. 57) that two algebraic elements x and y of an extension
field K of & are said to be conjugate over k if they are the roots of one
and the same irreducible polynomial in 2[X]. It was shown earlier in
this section that if an element x of K is a root of an irreducible poly-
nomial f(X) in K[X], of reduced degree n, and exponent of inseparability
e, then x is a pe-fold root of f(X). Hence x has at most n, conjugate
elements in K (including x itself). If the number of conjugate elements
of x contained in K is exactly n,, or—what is the same thing—if f(X)
factors completely in K[X] into linear factors, then we shall say that
“ K contains all the conjugates of x over k.”

DErFINITION 2. An extension K of k is said to be normal over k, or a
normal extension of k, if .K is an algebrqic extension of k and if every
trreducible polynomial f(X) in k[X] which has a root in K factors com-
pletely in K[X] into linear factors, or—what is the same thing—if K
contains then a splitting field of f(X) over k.

It is clear that this definition is equivalent to the following: K is a
normal extension of k if K is an algebraic extension of k and contains with
every element x also all the conjugates of x over k.

CoroLLARY 1. If K is a finite normal extension of k, then K is a
splitting field of some polynomial f(X) in k[X].

For let K = k(a,, a,, - -, @,,) be a finite normal extension of k, and
let f,(X) be the minimal polynomial of e; in X[X]. Since K is normal
over k, K contains a splitting field of f(X) over .. Then K also
contains a splitting field, over k, of the product f(X) of the m poly-
nomials f(X). Since K is generated over k by roots of f(X) (namely
by «;, @, * - -, @), it follows that K itself is a splitting field of f(X)
over k. ’

CoroLLARY 2. If K is a finite normal extension of k and «, B are any
two elements of K which are conjugate over k, then there exists a k-auto-
morphism of K which sends o into B.

For, by Corollary 1, K is a splitting field of some polynomial f(X) in
k[X]. Then K is also a spiitting field of f(X) over k(a) and also over
k(B). Since there exists a k-isomorphism of k(a) onto k(8) which sends
« into B, our corollary follows at once from Theorem 12.

CoROLLARY 3. Let K be a finite normal extension of k. If an element
a of K is left invariant under all k-automorphisms of K, then o is purely
tnseparable over k.

For « must then coincide with all its conjugates over k, by Corollary
2, and hence the minimal polynomnal of « in k[X] has reduced
degree 1.



§6 SPLITTING FIELDS AND NORMAL EXTENSIONS 75

CoroLLARY 4. If K is a finite normal extension of k and if L is a field
between k and K, then any k-isomorphism of L into K can be extended to
an automorphism of K.

Apply the corollary of Theorem 12, taking for k', k, and k&, the fields
K, L, and k respectively.

We shall have occasion to use the following lemma:

LeMMA 2. Let k € L C A C K be successive finite algebraic extensions
of k, where K is a normal extension of k. If A possesses n L-isomorphisms
into K, then every k-isomorphism cf L into K has exactly n extensions which
are isomorphisms of 4 into K.

PROOF. Let G be the group of all k-automorphisms of K and let G(L)
(respectively, G(4)) be the subgroup of G consisting of those auto-
morphisms of K which leave fixed every element of L (respectively,
of 4). Itis clear that G(4) is a subgroup of G(L). Let

M Gw) = U 6.
(2) G =£J1 G(LY,,

be the decomposition of G(L) into right G(4)-cosets and that of G into
right G(L)-cosets. Then the mn G(d4)-cosets are distinct and

@ G =U G,

is the decomposition of G into right G(4)-cosets.

It is clear that the m automorphisms y; have distinct restrictions to L
and that the restriction of any element ¢ of G to L coincides with the
restriction of one of the ;. Since by Corollary 4 to Definition 2 every
k-isomorphism of L into K is the restriction of some automorphism of
K, it follows that L has exactly m k-isomorphisms into K and that these
are given by the restrictions of ¢, ¢g, - - * , ¥, to L.

In a similar fashion it follows from (3) that 4 has exactly mn k-iso-
morphisms into K and that these are given by the restrictions of the mn
products pab; to 4. Now, since each ¢, reduces to the identity on L and
since y; and ¢;. have distinct restrictions to L if j 7 j', it follows that
each k-isomorphism of L into K, say the isomc: phism represented by the
restriction of ¥, has exactly n extensions to 4 which are k-isomorphisms
of 4 into K, namely the restrictions of @, patb;, - - -, @, to 4. In
particular, the identical isomorphism of L into K has also n such exten-
sions to 4, that is, 4 possesses exactly n L-isomorphisms into K. This
completes the proof of the lemma.
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We now prove the converse of Corollary 1 to Definition 2.

THEOREM 13. Any splitting field over k of a polynomial f(X) in k[ X]
is a finite normal extension of k.

PROOF. Let K be a splitting field, over &, of a polynomial f(X) in
k[X] and let ¢(X) be any irreducible polynomial in k[X] which has a
root  in K. We fix a splitting field K’ of ¢(X) over K. Let 8 be any
root of ¢(X) in K'. Since ¢(X) is irreducible over k, we have a
k-isomorphism 7 between k(a) and k(8) which sends « into B. This
isomorphism leaves f(X) invariant (since the coefficients of f are in &),
and on the other hand the fields K and K(R) are splitting fields of f(X)
respectively over k(a) and k(8) [since k(c) C K, k(8) C K(B) and
K = k(xy, xq, - -+, x,)]. ‘Hence, by Theorem 12, the isomorphism =
of k(a) onto k(B) can be extended to an isomorphism p of K onto K{(B).
We are dealing here with an isomorphism p of K into a field containing
K, namely into K’. Since p is also a k-isomorphism and since the
polynomial f(X), whose coefficients are in k, factors completely in
K[X] into linear factors, it follows that p must transform onto itself the
set of roots of f(X) in K. Since the roots of f(X) in K generate K
over k, it follows that p is an automorphism of K. Since a€ K and
ap = B, we have Be K. We have thus proved that K contains all the
roots of @(X) in K’ (whence K actually coincides with K'). This
shows that K is a normal extension of k and completes the proof of the
theorem.

Let K = k(a;, a4, * - *, ,,) be a finite extension of k and let f(X) be
the minimal polynomial of ; in kX[X]. We set f(X) = fi(X)fo(X) - - -
fw(X) and we consider a splitting field K’ of f(X) over K. Since K is
generated over k by roots of f(X) (namely by «,, ay, - - -, ,,) it follows
that K’ is generated over & (and not only over K) by the roots of f(X),
whence K’ is also a splitting field of f(X) over k. By Theorem 13, K’ is
then a normal extension of 2. We have theretore constructed an over-
field K’ of K which is normal (and finite) over k. If K| is any field
between K and K’ which is normal over k, then each of the m poly-
nomials f;(X) must factor completely in K;[X] into linear factors (since
f{X) is irreducible in k[X] and has a root in K,[X], namely o;). This
shows that K' coincides with K,. Hence K’ is a least normal extension
of & which contains K as a subfield. 'We note furthermore that if K" is
any normal extension of £ which contains K as a subfield, then K" must
contain a splitting field of f(X) over k (since this must be so for each
irreducible factor f(X) of f(X)) and the latter field will of course
contain K. In particular, then, if K" is a least normal extension of &
containing K as a subfield, then K” must be itself a splitting field of
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f(X) over K, and hence K’ and K" are K-isomorphic (Theorem 12).
We have therefore proved the following theorem:

THEOREM 14. If K is a finite extension of k then there exists a least
normal extension of k containing K, and any two such extensions are
K-isomorphic.

An almost immediate consequence of this theorem and of Corollary 2
of Definition 2 is the following theorem which gives a characteristic
property of finite normal extensions:

THEOREM 15. A finite extension K of k is normal over k if and only if
it satisfies the following condition: if K' is any extension of K then any
k-isomorphism of K into K' is necessarily a k-automorphism of K.

PROOF. That any (finite or infinite) normal extension K of % satisfies
the condition of the theorem is obvious, since a k-isomorphism of K
into K’ sends any element of K into a conjugate element over k.
Conversely, assume that a finite extension K of k satisfies that condition.
We fix a finite extension K’ of K which is normal over &, for instance a
least normal extension of k containing K (Theorem 14). If y is any
element of K, then K’ contains all the conjugates of y over k. If
y’ is one of these conjugate elements, then there exists a k-auto-
morphism p of K’ which sends y into y’ (Definition 2, Corollary 2).
Then p induces a k-isomorphism of K into K’, and by our assumption
this induced k-isomorphism is necessarily a k-automorphism of K.
Hence y' = ype K (since y€ K). We have thus shown that K
contains all the conjugates of ¥ over k. Since y is an arbitrary element
of K it follows that K is normal over .. Q.E.D.*

As a final application of the preceding results, we shall now investigate
the following question: if K is a finite normal extension of k, how many
k-automorphisms does K admit? We incorporate the answer to this
question in the following more general result:

THEOREM 16. Let L be a finite algebraic extension of k and let K be an
extension field of L which is normal over k. If ny is the separable factor of
the degree [L : k), then there exist precisely n distinct k-isomorphisms of L
into K.

PROOF.” In the proof we may assume that K is a finite extension of k,
in fact we may even assume that K is a least normal extension of % con-
taining L, for every k-isomorphism of L into K necessarily maps L into
the least normal extension of k which contains L and is contained in K.

* It is clear (and follows also directly from the proof) that Theorem 15 re-
mains true also if only finite extensions K’ of K are allowed in the statement of
the theorem ; in fact the theorem remains true if we take for K’ a fixed normal
extension of k.
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The theorem is obvious in the case n, = 1, for in that case every
element of L is purely inseparable over k and therefore is left invariant
by every k-isomorphism of L into K; that is, the identity is the only
k-isomorphism of L into K. The theorem is also obvious if L is a
simple extension of k, say L = k(). For in that case, n, is also the
reduced degree of the minimal polynomial of « in kK[X] (see end of
§5, p. 71). Hence « has exactly n, conjugate elements in K (that is,
conjugate over k). If «;, @y, -, a, are these conjugate elements
(e, = ), then there exists a unique k-isomorphism 7; of k(«) onto &(e;)
which sends « into «;. It is clear that the n, isomorphisms 7; (1, = the
identity) are the only k-isomorphisms of k(a) into K, since any k-
isomorphism of k(a) into-K must send « into a conjugate element of «
over k, that is, into one of the elements «;.

After these preliminary remarks, we proceed to prove our theorem by
induction on n,. We assume namely that the theorem is true for all
finite algebraic extensions of k for which n, is less than a given integer
m,m > 1. Letn, = m for the given field L. Since m > 1, there exist
elements in L, not in k&, which are separable over k. We fix one such
element, say, . Let s be the degree [k(z): k]. Since « is separable
over k, the maximal separable extension of & in L coincides with the
maximal separable extension of k(z) in L. It follows at if we denote
by 7 the separable factor of the degree [L: k()], then m = sr. Since
s > 1, we have r < m. By our induction hypothesis, the theorem is
therefore valid for L if we replace k by k(a). Hence there exist exactly 7
distinct k(«)-isomorphisms of L into K (note that K, being normal over

k, is a fortiori normal over k(x)). Let 7, 74 -, 7, be the k(a)-
isomorphisms of L into K. Since K is normal over &, K contains all
the conjugates of @ over k,say a,, @y, - - -, @, Foreachj=1,2,---,s,

we fix a k-automorphism o; of K which sends « into «; (Definition 2,
Corollary 2) and we set p;; =710, i=1,2,-++,s5;7=1,2,---,1.
Then each p;, is a k-isomorphism of L into K. The m(= rs) isomor-
phisms p,; are distinct. For we have ap;; = ao; (since a is left invariant
by 7,), and hence if p;; = p,.; then ao; = ao;., thatis, &; = a;. This
implies j = j', and from this it follows at once that =, = 7, (since
the o,, as automorphisms of K, are univalent mappings of K). Hence
t=1, and this proves the assertion that the m isomorphisms p;; are
distinct. Now let p be an arbitrary k-isomorphism of L into K. The
element « is transformed by p into one of its conjugate elements
ay, ag -+, a, Let, say, ap = a;. Then po;~! is a k-isomorphism
of L into K which leaves « fixed, that is, po,~! is a k(e)-isomorphism
of L into K. Hence po;~! coincides with one of the isomorphisms



§6 SPLITTING FIELDS AND NORMAL EXTENSIONS 79

Ty Tey ' * *y T, S8Y, With 7, and hence p = 7,0, = p;.. This completes
the proof.

CoROLLARY 1. Let L be a finite algebraic extens:on of k and let n,, be the
separable factor of the degree [L: k). Then L possesses at most n, k-auto-
morphisms, and the maximum n, is reached if and only if L is a normal
extension of k.

The first part of the corollary is an immediate consequence of the
Theorem 16 and of the existence of finite extensions K of L which are
normal over k. If L is a norma! extension of k, we can identify, in
Theorem 16, the field K with L and we deduce then that L possesses
ny k-automorphisms. Conversely, if L possesses n, k-automorphisms,
then it follows from the above theorem that if K’ is any extension
field of L, every k-isomorphism of L into K’ is necessarily an auto-
morphism of L. Hence, by Theorem 15, L is a normal extension of k.

CoROLLARY 2. If k C L C 4 are successive finite algebraic extensions
of k, then
4) [4: k), =[4:L]-[L:A],

(5 [4:k);=1[4:L),-[L:E],.

It is sufficient to prove (4) since the product of the right-hand sides of
(4) and (5) is equal to the product of the left-hand sides, in view
of relation (2) of §3 and relation (4) of §5. Let my= [L:k],
ny = [4:L],. Then ngis the number of L-isomorphisms of 4 into K,
where K is some extension of 4 which is normal over & (for instance, the
least normal extension of k containing 4), and m, is the number of k-
isomorphisms of L into K. By Lemma 2, the product mgn, is the
number of k-isomorphisms of 4 into K, and since this number is equal
to [4 : k], relation (4) is proved.

Another proof of (4) can be based on the following property of finite
separable extensions K[k established in the course of the proof of
Theorem 8 of § 5: if x4, x,, - - *, x, are elements of K which are linearly
independent over k, then for any integer e = 0 also the elements x,7, x,**,
-+, x? are linearly independent over k. Let L, 4, and 4’y be
respectively the maximal separable extension of 2 in L, of L in 4, and of
kind. Wehave kR CL CLCA4,C4,kCL,C4'\C4,C4, and
[4:k), =[4'g: k] =[d'y: Lo)-[Lo: k] = [4'¢: Lo]-[L: k], Henceto
prove (4) we have to show that
(6) [4'0: Lo] = [4q: L]. :
Let x,, x, - - -, x, be elements of 4’y which are linearly independent
over L,. The x; are also in 4,; we assert that they are linearly inde-
pendent over L. For let Y ux; =0, u;€ L. Since L is a purely
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inseparable extension of L,, we have u#* € L, for some integer e & 0,
and also 3 #?*x?* = 0. From this relation and from the separability of
the extension 4'/L, it follows that u#* = 0, u; = 0, and this proves our
assertion. We have therefore shown that [4'y: Ly] < [44,:L]. On
the other hand, let now x,, xy, - - -, x, be elements of 4, which are
linearly independent over L.  Since 4, is a purely inseparable extension
of 4'y, there is an integer e = 0 such that the p°-th powers of the x;
belong to 4°,. In view of the separability of the extension 4,/L, the
p*-th powers of the x; are still linearly independent over L, and hence
also over the subfield L, of L. We have thus found # linearly inde-
pendent elements of 4’y over L,. This shows that [d,: L] < [4'y: L]
and establishes (6). '

§ 7. The fundamental theorem of Galois theory. If K is any
field, then the automorphisms of K clearly form a group (of transforma-
tions). If K contains a subfield %, then also the k-automorphisms of K
form a group. If K is a finite normal extension of k, the group of
k-automorphisms of K is called the Galois group of K with respect to k.
We shall denote this group by G(K/k). By Theorem 16 of § 6, G(K[k)
is a finite group.

Let K be a finite normal extension of k. If H is any subgroup of
G(K|k), then it is easily seen that the elements of K which are left
invariant under all the automorphisms belonging to H form a subfield
of K. We denote this subfield by F(H) (the fixed field of H). On the
other hand, if L is any subfield of K such that # C L, then K is also a
normal extension of L, and the Galois group of K with respect to L is
clearly a subgroup of G(K/k); it consists precisely of those auto-
morphisms in G(K/k) which leave invariant every element of L.

The fundamental theorem of Galois theory asserts the following:

THEOREM 17. If K is a finite normal separable extension of k, then
there is a one-to-one correspondence between the subgroups H of G(K|k) and
the subfields L of K which contain k, corresponding elements H and L being
such that L = F(H) and H = G(K|L).

PROOF: The correspondence L — G(K/L) defines a mapping of the
set of all subfields L of K which contain & into the set of all subgroups of
G(K/k) If L is a given subfield of K containing k and if H = G(K|L),
then it follows from the separability and normality of K/L and from § 6,
Definition 2, Corollary 3, that L = F(H). Hence the above mapping
L — G(K|L) is univalent. To complete the proof of the theorem, it
remains to show that the mapping is onto the set of all subgroups of
G(K|k). Let H be any subgroup of G(K/k) and let L = F(H). We
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shall show that H is the Galois group of K with respect to L. The
proof of this assertion will complete the proof of the theorem.

It is clear that H C G(K/L). Let n denote the order of the group H.
Suppose that it has already been proved that

(1) [K:L] En.

Since K is a normal and separable extension of L, we have, by Theorem
16, Corollary (§ 6), that the order of G(K/[L) is equal to [K : L], hence is
= n, by (1). On the other hand, H js a subgroup of G(K/L) and has
order n. It follows at once that H = G(K/L), as asserted.

It remains to prove the inequality (1). Let aj, a4 -, a,,, be
arbitrary n 4+ 1 elements of K. We have to show that these elements
are linearly dependent over L. In the proof we may assume that no «;
is zero. Let 7y, 74, - - -, 7, be the elements of the group H. We find
a set of n 4+ 1 elements ¢; in K, not all zero, such that the following
system of n homogeneous equations is satisfied: *

n41
(2) Z cfajr) =0, i=1,2---,n

Jm1
Among all such sets {¢,, ¢g, - - -, ¢,,,} We choose one with the smallest
number of non-zeros. We assume that {c,, ¢;, - - -, ¢,,,} has already
been chosen in this fashion. Let, say, ¢, ¢q - ,¢, #0, ¢,y =
€3 ="'""=0Cyy=0. Then r =2, for if r =1, then a;r; =0,
a, = 0 [since {r,, 74, * - +, 7,,} i8 @ non-empty set of automorphisms of K
(the identity belongs to the set)]. We have then

Ju-

@) Sefam) =0 i=1,2-,n,
1
.and, in particular, taking for 7; the identity of H, we have

@ 3 2= 0.

i=1 .
We may assume thatc, = 1. Weclaim then thatc,, - - -, c, belong to L,
whence by (4) @, - - *, @, are indeed linearly dependent over L, as

was asserted.
We have to prove that ¢;7; = ¢;, i = 1,2, - - -, n (since L is the fixed

* We presuppose here the knowledge of the theory of simultaneous linear
homogeneous equations, with coefficients in a field K (see, for instance,
G. Bitkhoff and S. MacLane, 4 Survey of Modern Algebra, Chapter X). The
existence of a non-trivial solution (cy, €5, * *, €y4-1) Of (2) follows from the
theory of vector spaces which was developed in I, § 21 [the set of all n-tuples
(%4, X5, * * * » %), % € K, is an n-dimensional vector space over K, and hence
the # + 1 vectors v, = (a;7y, @7y, * *, @ 7,) are linearly dependent over K].
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field of H). Let us prove for instance that ¢c;r; = c;. If weapplyto
(3) the automorphism 7, of K we find

z (7 )ejrimy) =0, i=1,2,---,n

=1
The n products 7,7, give again all the elements of the finite group H.
Hence we have

(5) Zl(c,.rl)(a,f,.) =0, i=12-,n

Subtracting (5) from (3) and taking into account that ¢; = ¢;7, = 1, we
find

iz(cj'rl "‘":'j)(“j‘f.') =0, 1=1,2,---,n.
)-

Here we have a set of n relations similar to (2), but the number of terms
in each of these relations is less than . Hence, by our choice of the
set{cy, 9" ",6,0,0,---,0},wemust havec;r, = ¢;,j=2,3,---, 7.
In a similar fashion we can prove that ¢;7; =¢; j=2,3,---,7,
i=1,2,:--,n, and this completes the proof of the theorem.

CoroLLARY. IfkC L C K, then L is a normal extension of k if and only
if G(K/[L) is an invariant subgroup of G(K|k), and when that is so, then
the Galois group G(L/[R) is isomorphic to the factor group G(K[k)|G(K|[L).

Let H = G(K/L). 1If 7 is any fixed element of G(K/k), it is immedi-
ately seen that the elements of the form x7, x € L, form a subfield of K,
which we shall denote by L+, and that 7~'Hr = G(K[L7). If Lis a
normal extension of %, then L7 = L (Theorem 15, §6) and hence
7-1Hr = H, and H is an invariant subgroup of G(K[k). Conversely,
if H is an invariant subgroup of G(K/k), then we have H = 7—1H~+ =
G(K|L), that is, G(K/L) = G(K/Lt). Hence, by the theorem just
proved above, L = Lr. This holds for all elements 7 of the Galois
group G(K/k), and therefore L is a normal extension of & (see footnote
at the end of proof of Theorem 15). Furthermore, the mapping
T — restriction of 7 to L (7 € G) is a homomorphism of G(K|k) into
G(L/[k), with kernel H. From Corollary 4 to Definition 2 of § 6, it
follows that this homomorphism is onto G(L/k), and this establishes the
last part of the corollary.

§ 8. Galois fields. Let K be a Galois field of characteristic p (see
Definition 3, § 4) and let ¥, be the prime field contained in K (§4). In
view of the finiteness of X, it follows at once that K is a finite algebraic
extension of J, (see, for instance, Theorem 4, § 3). Let n be the degree
[K: 3] and let {x,, x,, - - -, x,} be a basis of K over J,. Then every
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element of K has a unique expression of the form a,x;, + agxy, + « - - +
a,x,, a; € ¥,. Since each coefficient a; can take independently p values
(J, being a field containing exactly p elements), it follows that the
number of elements in K is p*. Thus the nuniber of elements of a Galois
field of characteristic p is always a power of p.

We note that a similar argument can be applied to obtain the following
results: if k is a Galois field consisting of m elements and if K is a finite
extension of k, of degree n, then K consists of m" elements (and is therefore
also a Galois field).

The elements of K, other than 0 form a multiplicative group, of
order h = p» — 1. We have therefore x* = 1 for all elements x of this
group, and consequently x?" — x = 0 for all elements x of K (including
0). Since the degree of the polynomial X?" — X is the same as the
number of elements of K, we conclude that the polynomial X" — X
Jactors completely into linear factors in K[X] and that we have

(1) X = x =11 (X = a),
=1
where oy, ay, - - -, apn are all the elements of K. 1t follows also that K is

a splitting field, over §,, of the polynomial X?" — X, and is therefore a
normal extension ¥, (§ 6, Theorem 13). Hence, by Theorem 12 (§ 6),
any two Galois fields with the same number of elements (and consequently
of the same characteristic p) are isomorphic.

The Galois field having p" elements is denoted by GF(p”). That
there exist fields GF(p”) for any prime number p and any positive integer
n follows from the existence of splitting fields (§6). Namely, it is
easily shown that any splitting field of the polynomial X?" — X, over J,,
is in fact a field GF(p"). The proof is as follows:

Let K be a splitting field of X?" — X, over },, and let (1) be the
factorization of X?" — X into linear factors in K[X]. Since the deriva-
tive of X?" — X is — 1, it follows that each «; is a simple root of X?" — X
(§ 5, Definition 3, Corollaries 1 and 2). Hence the p” elements a, are
distinct. If «; and a; are any two roots of X?" — X in K, then
(@ — a))?" = ¢ — ;" = a; — @}, (¢,0))?" = 0" = a,a;, and if
furthermore «; % 0 then also (q; )P = a —’ In other words:
o; — a;, a; and—if «; % 0—also «;~! are roots of X*" — X in K and
therefore belong to the set {ay, @5 -+, @pn}.  Consequently this set is a
subfield K' of K, and K’ is a Galois field of p" elements. Clearly
¥, €K', and hence K’ = J,(2;, @3, * - -, @) = K, as asserted.

THEOREM 18. The multiplicative group of a Galois field GF(p) is

cyclic.
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PROOF. Let k= ¢,",q4"s - * - ¢,’» be the decomposition into prime
factors of the order 4 of the multiplicative group of GF(p")(h = p" — 1),
and let h; = h/g;,, The polynomial X* — 1 has at most &; roots in
GF(p"), and since h; < h it follows that there exist elements 0 in
GF(p") which are not roots of this polynomial. We fix such an element
B; foreachi=1,2,---,m and we set y, = BMu", y =995 Y.
We have y,4."t = 1, whence the order of y; is a divisor of ¢, (see I, § 3)
and is therefore a power ¢ of g; s; <7, On the other hand,
y 9" = BM 7 1. Hence y; is exactly of order ¢/1. We claim that h
is precisely the order of y. For assume the contrary. Then the order of
y is a proper divisor of 4 and is therefore a divisor of at least one of the
m integers h/q,, say of h/g,: We have then 1 = yhie, = y e, yhis, . . .
Yt Now if 2 £ 7 < m, then ¢/« divides k/q,, and hence y/¢; = 1.
Therefore y e, = 1. This implies that the order of y, must divide
h/qy, which is impossible since the order of y, is ¢,".

The cyclic subgroup of the multiplicative group of GF(p"), generated
by the element y, is therefore of order & = order of the multiplicative
group of GF(p"). Hence y is a generator of this latter group. This
completes the proof.

§9. The theorem of the primitive element. Let 4 be an alge-
braic extension of a field 2. An element « of 4 is a primitive element of
K|k if K = k(a).

THEOREM 19. Every finite separable extension 4 of k has a primitive
element (and hence every such extension 4 is a simple extension).

PROOF. We shall prove here this theorem by the ‘‘method of
indeterminates,” a method due to Kronecker. We shall give the proof
only in the case in which % has infinitely many elements. If kis a finite
field, then also 4 is a finite field (see § 8), and in that case we know from
the preceding section that every non-zero element of 4 is the power of
a single element 6. 'This element 4 is then a primitive element.

Let 4 = k(ey, @5,--,a,). We adjoin to 4 n+4 1 ‘“indeter-
minates” X, X,, X, - - -, X, that is, we consider the polynomial ring
4(X, X,,---,X,] and its quotient field 4(X, X,,---,X,). We
set k* = k(X,, Xy, , X,), 4* = 4(X,, X,, ' - -, X,). Wehave then
4* = k*(a,, ay, * - *, a,), and 4* is a finite algebraic separable extension
of k* since the «;, being separable over %, are also separable over &*
(see § 5, Lemma 2). We consider in 4* the element

(1) a* = Xa; + Xyay + - - + X0,
Let F(X) be the minimal polynomial of a* in k*[X]. The coeffi-
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cients of F(X) are rational functions of X, X, *-*,X,, with

coefficients in k. Let g(X,, X,, - - -, X,) be a common denominator of

these rational functions, where g(X,, X,, - - -, X,) is then an element in

kX, Xg - -+, X,]. Then

&Xy Xy, X)F(X) = f(X, Xy, Xy, - -+, X,) € K[X, X}, X, - -+, X)),

and we have

(2 fle* Xy, Xy, -+, X,) = 0.

Let

(€) .

G(Xy, Xy - -0 X)) = f(Xyoy + Xy + -+ - + Xy, X3, Xy, -+, X)),

Then G(X,, X,, -+, X,) is a polynomial in X,, X,, ---,X,, with

coefficients in 4, and we have, by (2): G(X,, X,, - - -, X,) = 0. There-

fore also the partial derivatives ¢G/0X,, i = 1,2, - - -, n, are all zero.

By (3), we have, then:

“) o f'(e* Xy, Xy, -+ 0, X,) + file*, X3, Xy, -+ -, X)) =0,
i=12--,n

where
(X XXy -+, X)) = f (X, X,, f(” e ’X..)’
X
f'(X’ Xlr Xs, T X,,) = af(X’ Xl’a‘fYSv Tty Xn)

The left-hand side in each of the equations (4) is, by (1), a polynomial in
4[X,, X,, - - -, X,], and hence is the zero polynomial. Consequently,
the equations (4) remain valid if we substitute for X,, X,, - - -, X,,, any
elements of k.. On the other hand, we have f'(X, X;, X,, -+, X,) =
g(X,, X, - -+, X,)F'(X), and hence f'(e*, X, X,, - - -, X,) # 0, since
o* is separable over k* and therefore F'(a*) 3¢ 0. Hence f'(a*, X,,
X, - -+, X,) is a non-zero polynomial in 4[X,, X,, ---, X,]. Since
k C 4 and k is an infinite field, we can find elements ¢, ¢y, - - -, ¢, in &
such that (¢, ¢5 - ,¢,) is not a zero of that polynomial (I, § 18,
Theorem 14). We have then, setting

a =+ 6y + -0, + Gay

that

(5) [ ey €q--7,c,)#0

and

(6) au‘f'(a! €1y Cg """y C,,) +f:(a’ (S TX 7 T t,,) =0,

i=1,2,---,n
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Equation (6) and the inequality (5) imply that «; € (), and since « € 4,
it follows that 4 = k(a). This completes the proof of the theorem.

REMARK. Theorem 16 (§ 6) is also an immediate consequence of the
above theorem of the primitive element, since—as has been pointed out
in the beginning of the proof of Theorem 16—that theorem is obvious
if L is a simple extension of &,

§ 10. Field polynomials. Norms and traces. Let K be a finite
algebraic extension of a field %, of degree n, and let x be any element of
K. If we fix a basis w,, w,, * - - , w, of K[k, we can write:

(1) xw; —Za,,w,,a eki=12---,n,

or, in matrix notations:
(1) x2 = AQ,
where A is the matrix ||a; || and 2 is the 1-column matrix

wy
Wy

w

The elements a,,, and hence the matrix A4, are uniquely determined by
the element x and by the basis 2. We shall denote by |B| the determi-
nant of a square matrix B. Then it follows from (1) that

) |xE — 4] =0,

where E is the unit n-rowed matrix.

The polynomial | XE — 4| is monic, of degree n, and its coefficients
are in k. Equation (2) signifies that x is a root of this polynomial. It
is not difficult to see that for a given element x of K this polynomial does not
depend on the choice of the basis {w,, wg,***,w,}. For let w'l, w'y,

-, ', be another basis of K/k. We have then o’; = Zb-: w;y

w; = 2 bjw'yi=1,2,+++,n wherethed,; and b';; are elements of .

IfQ denotes the one-column matrix
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and B, B’ denote the square matrices [|b;;]| and ||§’,;il, respectively, then
the above relations can be written in matrix notation as follows:
3) Q=BQ Q=B
From (3) it follows that 2 = CQ where C is the matrix B'B. Since the
elements of 2 are linearly independent over &, C is necessarily the unit
matrix E, whence B is a non-singular matrix and B' = B-1. Now,
dealing with the basis {w'y, @'y, - - -, w’,}, we have relations similar to
(1'): x2' = A'Q'. Hence, by (3): xBQ = A'BQ, or BxQ = A’'BR2, and
therefore, by (1'): BAQ = A’'BQ. Again using the fact that w,, w,,

-+, w, are linearly independent over k, we see that the relation
BAQ = A’'BQ implies that BA = A’'B, that is, A' = BAB-!. We
have therefore that the matrix XE — A’, which is the analogue of
XE — A, relative to the basis £’, is given by XE — BAB-!. Since XE
commutes with every n-rowed square matrix, we have therefore
XE — A' = B-'XEB — BAB-! = B(XE — A)B-!, and hence

|XE — A'| = |B|-|XE — A|-|B~!| = |XE — 4|,

which proves our assertion.

The polynomial | XE — A| is called the field polynomial of x, relative
to k, or over k. We emphasize that the field polynomial of x, over &,
depends not only on x but also on the field K. This dependence on
K is already obvious from the fact that the degree of the field polynomial
is always equal to the degree n of K/k. In particular, the field poly-
nomial of x is not necessarily the minimal polynomial of x over k.

We note that if K is regarded as a vector space over % then in terms
of linear algebra the field polynomial of x is the characteristic polynomial
of the linear transformation in K defined by 2 — 2x, 2z € K.

Let

X+ a X4 +a,
be the field polynomial of x over k& Expanding the determinant
|XE — A|, we find

0) %=—Z%

(3 a, = (— 1y|4|.

We set

(6) Normyx = Ny (%) = (— 1)ya, = |4|,
) Tracegpx = Typ(x) = — a; = D a,,.

1=}
The index K[k will frequently be omitted when there is no possibility
of confusion.
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Norms and traces obey the following laws:
a) N(xy) = N(x)-N(y).
b) If x € k, then N(x) =
c) T(x + y) = T(x) + T(y).
d) T(cx) = cT(x), cek.
e) If x ek, then T(x) = nx.

PROOF. If, for a given basis 2 of K[k, we have xQ = AQ and
¥ = BQ, then (x + y)2 = (4 + B)2 and xy2 = BAQ. In view of
the definition of traces and norms, relations a) and c) follow immediately.
If x € k, then A is the diagonal matrix xE,, and this implies relations b)
and e). Property d) follows directly from (4) and (7).

Also the norm and trace of an element x of K depend not only on x
and k but also on the extension field K. i

Let 4 be a finite extension of K, of degree m, and let x be any element
of K. If we regard x as an element of 4, we can consider the trace
T, x(x) and norm N ,,(x), and as was pointed out above, these are
to be distinguished from Ty ,(x) and Ng,(x). We shall now prove
the following relations:
®) N p(®) = [Ngp(*)]™
) Tu(x) = m{T (@)

For the proof, we fix a basis {w,, w,, - -+, w,} of Kfk and a basis
{£1, €2, -, €} of 4/K. Then the mn products w,{; form a basis of
d[k (see § 3, Theorem A, p 60). We order these products as follows:

w£; precedes w.€,. if j < j' orif j = j' and £ < #’, and we denote these
products, in this order, by ¢, Lo - -, {ns N = mn. We denote by 2
and Z the one-column matrices which have, respectively, w;, wg, - -+ , w,
and {;, {y, - -, {y as elements. Let xQ = AQ and 2Z = CZ, so that
A and C are square matrices, with elements in k, having respectively
n and mn rows. Now, we observe that if 4 = |la;ll, whence

xw; —Zau w;  then xw£ -—Za,wﬁ Hence if wf, =
(1= < p = ‘< N) then x{, = Zc {,. whcre ¢, = a;; if n divides both

p— tand v — j, and the abso]ute value of the difference p — vis <n
(or—equivalently—if p — { = v — j = 0 (mod n)), while all the other
elements c,, of the matrix C are zero. This signifies that C has the
following form: it is obtained from the m-rowed unit matrix E, on
replacing each diagonal element 1 by the matrix 4 and each other
element of E,, by the zero n-rowed matrix; in symbols: C = 4A™. It
follows at once that the sum of the diagonal elements of C is the m-fold



§10 FIELD POLYNOMIALS 89

of the sum of the diagonal elements of 4 and that |C| = |A|"' This
establishes (8) and (9).
Another proof of (8) and (9) will be found at the end of this section.
Let f(X) be the field polynomial of x over k, when x is regarded as
an element of K, and let F(X) be the field polynomial of x over &,
when x is regarded as an element of 4. From the preceding proof, we
have that F(X) = |(XE — A)™| (= |XE — C]), and hence

(10) F(X) = [f(X)]".
As a consequence of (10) we can now prove the following theorem:

THeoReM 20. If g(X) is the minimal polynomial of x over k, then f(X)
is a power of g(X), and f(X) = g(X) if and only if x is a primitive element
of K over k (that is, if K = k(x); see § 9).

PROOF. Let g(X) be of degree s, and let g,(X) be the field poly-
nomial of x when x is regarded as an element of k(x). Since
[k(x) : k] = s, it follows that g,(X) is also of degree s. Since x is a root
of £,(X) and g(X) is the minimal polynomial of x in k[X], it follows (see
§ 2, Theorem 1) that g(X) = g,(X) (both 2 and g, being monic poly-
nomuals). We have thus shown that if x is regarded as an element of
k(x), then the minimal polynomial of x in k[X'] coincides with the field
polynomial of x over k. This proves the first part of the theorem
[apply (10) after replacing K by k(x) and 4 by K] and also the *if "’ part
of the second half of the theorem. T'he “only if” follows from observ-
ing that, by (10); and from the fact that g(X) is the field polynomial of
x over k, when x is regarded as an element of k(x), it follows that
f(X) = [g(X)]m, where m = [K: k(x)]. Hence if f(X) = g(X), then
m = 1 and hence K = k(x).

The field polynomial f(X) of x over & (x € K') can itself be interpreted
asanorm. For that purpose, we consider the field K(X') and we observe
that the algebraic closure of A(X) in K(X) contains K (since K is an
algebraic extension of k) and X [since X € k&(X)], hence coincides with
K(X). In other words: K(X) is an algebraic extension of k(X).

Furthermore, since K = > k-w, = k(w;, wy, - * - , w,), we have K(X)

=1

= k(X)(w,, wy, * * -, w,), and therefore (see § 2, Theorem 2) K(X) =
KX)[wy, wy, -+, w,] = H(X)K = 2 k(X)-w,. 'This implies that

Wy, Wy, * -+, w, 18 also a basis of K(X ) over k(X ) provxded we show that
the w’s are lmearly independent over k(X). But this follows immedi-
ately from the linear independence of the w’s over k and from the fact
that X is a transcendental over k(w,, wy, * - -, w,). We have therefore
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proved that K(X) is a finite extension of k(X), that [K(X): k(X)] =
[K: k] = n, and that {w,, wy, - -+, w,} is a basis of K(X) over k(X).
Now, we have (X — x)Q = XQ — AQ = (XE — A)Q, where 2 is the
one-column matrix

Wy

Wy

w’l

It follows that N (x)ux)(X — x) = |XE — A| = f(X), that is, the
Sield polynomial of x over k, when x is regarded as an element of K, is the
norm of X — x over k(X), when X — x is regarded as an element of K(X).

We shall conclude this section with the derivation of an expression
for the trace and norm of x in terms of the conjugates of x (in some
normal extension of k containing K). In view of (8) and (9) it will be
sufficient to deal with the case in which K = k(x). Let f(X) = X"+
a,X"=' 4+ .- 4 a, be the minimal polynomial of x over & We
consider some normal extension A’ of k containing k(x) [for instance,
the least normal extension of % containing k(x)]. Let

£y = [T x = =)

where x, c K’ (x, = x), whence

(11 a; = — i x,,
1=1
(12 a = (=11l s

Since we know already that f(X') is also the field polynomial of x over &
(Theorem 20), we find, by (6) and (7):

(13) N(x) = ll1 X,
(14) T(x) = x,.
=1
If x is separable over %, then x,, x,, - - -, x,, are distinct and so we have

that the norm and trace of x are equal respectively to the product and sum
of the conjugates of x (in K'). If x is inseparable over &, and if n, and p*
are respectively the separable and inseparable factors of the degree n of
f(x), then (§ 6, Theorem 11)

50 = 1 x - =y,



§10 FIELD POLYNOMIALS 91

and x has only n, distinct conjugates. It follows from (13) and (14)
that

(15) Nx) = ( i x,.)"',

(16) T() =p¢.( 3 x'_) =0
1a=]

CoroLLARY. If K is a finite extension of k and x is an element of K
which is inseparable over k, then Ty (x) = 0.

This follows at once from (16) and (9).

We shall now derive another expression of Ng,(x) and Ty u(x),
where K is a finite algebraic extension of k and x is an element of K.
Letm = [K: k], my = [K: k], p/ = [K: k], and let n, ny and p° be the
corresponding degrees for k(x) instead of K. Let K* be the least normal
extension of k containing K and let {g;; i = 1,2, - - -, m,} be the set of
k-isomorphisms of K into K*. Let {x;;j = 1,2, -- -, ny} be the set of
distinct conjugates of x in K* (one of the x;, say x,, being x itself). By
Lemma 2 of §6 each of the n, k-isomorphisms of k(x) into K* has
exactly my/n, extensions among the ;. Hence each of the conjugates

x; of x occurs mg/n, times in the set {xp,, xp,, - - -, xp,, }. Therefore
e o mo/"»
(17) {1 0. = ( il x,) ,
= =
™y 71,
(18) Zf‘l’i = my/n,- lej-
1= ]=

By (8) and (9), with K and 4 replaced by k(x) and K respectively, we

have:
Ngu(x) = (Nyguyu(x))mepl I,

T (%) = mop! [nop*- Tiiuy (%),
and hence, in view of (15) and (16) we find

(19) Naa(s) = (I xq:.-)".
20) Tuus) = ' 3 w9

These are the desired expressions of the norm and trace of x; they are
generalizations of (15) and (16) from the case K = k(x) to the case of an
arbitrary finite algebraic extension of k.

Using the expressions (19) and (20) we can derive the following
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transitivity law for norms and traces: if k C L C 4 are successive finite
algebraic extensions of k and x is an element of 4, then

(21) N (%) = NN 4y(*)),
(22) Typ(x) = T (T 41(x))-
For the proof we shall use the notations of the proof of Lemma 2 of § 6.

We may assume that ¥, is the identity automorphism of K. We have
by (19) and (20):

Nawe) = ([Ts9)", e =1a:1,

m pB
NeaNo) = ( [T Naue) 22 = 1L K3

or

(23) NosNaae) = (1T TLows) ™

J=1 1=1

Now, we know from the proof of Lemma 2 of § 6, that the restrictions of
the products ¢, to 4 are distinct and give all the k-isomorphisms of 4
into K. Furthermore, by Corollary 2 to Theorem 16 of § 6, we know
that p*+8 = [4:k],. Hence (21) follows from (23) in view of the
expression of the norm obtained in (19) (and applied to the field 4
instead of to K). The proof of (22) is quite similar.

We note that relations (8) and (9) can be derived as consequences of
(21) and (22). In (8) and (9) the element x belongs to a finite algebraic
extension K of k, and 4 is a finite algebraic extension of K, of degree m.
The norm N (x) and trace T, (x) are equal to x™ and mx respectively,
since x belongs to K. Hence N, (x) = Ngu(x™) = (Ngu(*))™ and
T yi(x) = Tgp(mx) = mTxp(x).

§ 11. The discriminant. Let K be an algebraic extension of k&, of
degree n, and let {w,, w,, - - -, w,} be a basis of K/k.
DEFINITION.  The determinant

1) d = |T(w; w))|
is called the discriminant of the basis {w,, w,y, - * * , w,}.
The discriminant of a basis {w,, we, * - -, w,} of K[k will also be

denoted by d{w,, wg, - - -, w,} or by dg{wy, we, - -+, w,}
If {w'y, g, - -+, w',} is another basis of K|k, then

w';' = Ejal'iwi’ a;, € k’ IAl = ,afjl # 0’
and

T(w';-w'j) = Z, g;,8;5T (0, wg)-
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Hence if d’ denotes the discriminant d{w’,, w'y, * -+, w’,} of the new
basis, then by the rule of multiplication of determinants we have the
following relations:

) d =d- |4

CoROLLARY. If the discriminant of one basis is zero, then the dis-
criminant of every basis is zero.

The statement *“ the field discriminant of K[k is zero (is not sero)” has
therefore a meaning. We mean nere by the field discriminant of K[k,
the discriminant of any basis of K/k. By (2), the field discriminant of
K|k is only determined to within a factor which is the square of an
arbitrary non-zero element of k (arbitrary, because if a is any element of
k, a0, and if we set v'; = aw,;, o', =w,, 1 =2,3,---,n, then
w'y, @'y, - -+, w', is a basis of K[k, and in this case we have |4| = a).

THEOREM 21. The field discriminant of K[k is zero if and only if
T(€)=0forall £ in K.

PROOF. The ““if”” part is obvious. Assume now that d = 0. We

can then find n elements ¢}, ¢, ---,¢, mnot all zero, such that
ZeTww) =0, for i=1,2,---,n We set z= EJ‘J“’: Then
z 7 0, and we have T(w,2) = 0,7 =1,2,---,n  From this it follows

that T(yz) = O for all y in K. If £ € K, we take y = £/ and we find
7(¢)=0. Q.E.D.

COROLLARY. If the field discriminant of K[k is zero, then k is of
characteristic p 3 0, and n is a multiple of p.

For T(1) = n.

In order to derive further results on the discriminant, we go back to
the notion of a field polynomial, developed in § 10. Let K, be the
maximal separable extension of & contained in K (§ 5) and let n = nyp*
where n, = [K,. k]. If £ is any element of K, then we have T 4(§) =
PTk u(€) [see (9), § 10]. If K is an inseparable extension of &, that is,
if e 2 1, this implies that T ,(¢) = 0(¢é € K,). If £ is in K but not
in K, then ¢ is inseparable over k, and hence we have again T 4(§) = 0,
by the corollary on p. 91. We have thus proved that if K #s an
inseparable extension of k, then Ty () = O for all ¢ in K, and hence, by
Theorem 21 above, the field discriminant of K|k is zero.

We now consider the case in which K is a separable extension of k.
Let 4 be a least normal extension of K containing K (§6) and let
(= 1), 74, : - -, 7, be the distinct k-isomorphisms of K into 4 (§ 6,
Theorem 16). Let x be any element of K and let x, = x7,. Each
element x, is a conjugate of x over k&, and every conjugate of x in K
coincides with one of the elements x; (§6, Theorem 15). The n
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elements x; are not, however, necessarily distinct. If there are v
isomorphisms r; which leave x invariant, then x itself, and also every
conjugate element of x, occurs exactly v times in the set {x,, x, - * * , X,}.
Then x has only m distinct conjugate elements over k, where m = n/v,
and m is, then, also the degree of the minimal polynomial g(X') of x over
k. Now if f(X) = 0 is the field polynomial of x over & when x is
considered as an element of K, then we know from § 10, formula (10),
that f(X) = [g(X)]. 1t follows that

100 = T1(x = ).

From this we conclude at.once that

©) Tiplx) = 2’.:1 s
@ Nxws) = 1

These formulas are similar to (13) and (14) of § 10 which were obtained
in the special case K = &(x).

We shall now apply (3) as follows:

Let {w;, wg ' -,w,} be a bas1s of K[k and let w/® = w;T

a=12--,n Then T(w; ;) = Z w,w @, and from this, by the

rule of multiplication of determmants, we obtain the following expression
of.d(w,, wy, * - -, w,):

wl(l)’ wa(l), N wn(l) 2
(2) (2 ... (2)
w, wWo w,
©) Aoy, @y -y =| 7 T T
wl(") w“(") w, (n)

Since K is separable over &, there exists a primitive element of K[k (§ 9).
Let x be a primitive element. Then {1, x, x2,+*+, x"1} is a basis of
K[k, and (5) yields:

1, X1 xl’s Y x!n—l :

1, xg, 2%, - - -, xg""1
(6) d(l, x, x2, -+, x"") = s

.................

where x; = x7;, The Vandermonde determinant on the right-hand
side of (6) is different from zero since x,, x,, - - -, ¥, are distinct elements
(x being separable over k and n being the degree of k(x) over k). Hence
d(l, x, x%, - - -, x"1) 3£ 0.
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We have therefore proved the following

THEOREM 22. The field discriminant of K|k is zero if and only if K
is an inseparable extension of k.

CoROLLARY. K is a separable extension of k tf and only if there exists
an element x in K such that Ty ,(x) £ 0. This is an immediate conse-
quence of Theorems 21 and 22.

Note. If x is a primitive element of the separable extension K|k, of
degree n as above, and if g(X) is the minimal polynomial of x over

k, then g(X) = ]T (X — =), £/x) = [J ., (5 — x;) and N(g() =
H H'. < (»; — x;,)%. Hence, by computation of the Vandermonde
L4 ]

determinant (6):
7wt e = [T G — =) = NE'@).

§12. Transcendental extensions. An extension K of a field k
is transcendental if it is not algebraic, that is, if K contains elements
which are transcendental over k. An example of a transcendental
extension of k is the field of rational functions in n indeterminates over k,
that is, the quotient field A(X,, X,, - - -, X,) of the polynomial ring
k[X,, X, -+, X,] in n indeterminates (# = 1) over k; or also any
k-isomorphic image k(x,, x5, - -, x,) of k(X,, X, ---,X,), where
therefore x,, x,, - - -, &, are algebraically independent over %k and
k[x,, x4, - -+, x,] is a polynomial ring over k (I, § 18). It is clear that
any extension of a transcendental extension of £ is itself a transcendental
extension of k.

The definition of algebraic independence over %, given in I, § 18, can
be extended to infinite sets of elements. If K is an extension of & and
L is a subset of K, then the elements of L are said to be algebraically
independent (a.i.) over k if each finite subset of L consists of elements
which are algebraically independent over & Such a set L will be called
a transcendence set (over k).

We shall use the terminology and notation introduced in 11, § 1 and
§5. If K can be obtained from & by the adjunction of the elements of
some transcendence set L, then K is said to be a pure transcendental
extension of k. An example of a pure transcendental extension of % is
the field A(X,;, X,, - - -, X,) of rational functions in n indeterminates
over k. For a given integer n, any two fields which can be obtained
from k by the adjunction of n algebraically independent elements (and
which are therefore pure transcendental extensions of k) are k-isomorphic
(see I, § 18, Theorem 12, Carollary 1; and I, § 19, Theorem 16).
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Let L be a transcendence set in K[k and let x» be an element of K
notin L, Let L’ be the set consisting of x and the elements of L.
LemMA. L' is a transcendence set if and only if x is a transcendental
over k(L).
PROOF. Suppose that x is transcendental over k(L) and let x,, x,,
-+, x, be any elements of L’. If all the x; are already in L, they are
ai. over k. Assume that x,=x and let f(X,, X, ---,X,) be a
polynomial, with coefficients in %, such that f(x;, x5, - -, %,) = 0.
Then x is a root of the polynomial f(x,, x4, -, x,_5, X) in
k(xy, xg, -+, ¥,_1)[X]. This polynomial must be zero since x is
transcendental over k(L). Hence, if f(X;,X,°°*,X,)=
Ao Xy, Xoy -+ s X)) X oF - - Ay(X,y, Xy, - - -, X,—,), then we must
have A,(xy, x4, - -+, %,_1) =0, =0,1,---, 2. Sincex;, x4, * - - ,%,_;
are a.i. over k, the polynomials 4,(X,, X,, - - -, X,,_,) must be zero.
This implies that also f(X,, X, ---,X,) is the polynomial zero.
Conversely, assume that L’ is a transcendence set. Let F(X) be a
polynomial in k(L)[X] such that F(x) = 0. Since the number of
coefficients of F(X)is finite, there exists a finite subset L, of L such that
these coefficients belong already to k(L,). Let x;, x4, - - -, x, be the
elements of L,. If F(X) = a,X¢ + a,X¢~1 4 - - - + a,, then we can

write the a, as quotients of polynomials in k[x,, xs, - - -, x,], with the
same denominator:
_ Afxy Xy X)L e o
4= B(xnxa:"‘,x,.)’ 1_0’1’ &
If we set

f(Xy, Xy, o0 X, X) = Ao Xy, Xy, - -, X)X
+ AI(XD XE) Tt ,X”)X'—l + -+ A'(X],v sz e )Xn)v

then f is a polynomial with coefficients in &, and from F(x) = 0 follows
that f(x,, x5 ' -, %, x)=0. Since L' is a transcendence set, the
elements x,, x,, - - -, x,, x are a.i. over k,and hence f(X,, X,, - - -, X,, X)
= 0. Thisimpliesthat 4(X,, X,,---,X,)=0,i=0,1,---,g, and
hencealsoe; =0, =0, 1,-- -, g, thatis, F(X) = 0. We have there-
fore proved that x is transcendental over k(L), and this completes the
proof of the lemma.

DerFINITION 1. A transcendence set L in K is called a transcendence
basis of K|k if it is maximal, that is, if L is not a proper subset of another
transcendence set.

From the preceding considerations, it follows at once that a tran-
scendence set L is a transcendence basis of K|k if and only if K is an
algebraic extension of k(L).
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At this stage we shall incorporate our further conclusions concerning
algebraic dependence in the general axiomatic treatment of dependence
as developed in I, § 21. This is possible since we can now define the
*span ” s(X) of a subset X of K as the algebraic ciosure of £(X) in K (the
algebraic closure of k in K, if X is empty). Then it is immediately seen
that the conditions (S;)—(Ss) of Theorem 19 of 1, § 21 are satisfied. In
fact, it is obvious that

(S)- If X C Y, then s(X) C s(Y).

(Se). If x € 5(X), then there exists a finite subset Y of X such that

x € s(Y).
(S3). X C s(X) for all subsets X of K
(Sq). s(s(X)) = s(X) (this snmply expresses the transitivity of algebraic
dependence).
We shall now verify the condition (Ss):

(Ss). The relations y € s(X, x) and y ¢ s(X) imply x € s(X, ).
There exists, by (Sz), a finite set of elements x;; xg, -+ , ¥, in X such
that y is algebraic over k(x;, x5, -- -, x, x). There exists then a
polynomial f(X,, X,, - -,X,, Z, Y), with coefficients in k&, such
that f(x;, x5, - -+, x,, x, Y) 5 0 and f(x,, x5, - -, x,, x,¥) =0. We

]
write {(X,, Xp, - -, X 2, Y) = > A(Xy, Xy, - -+, X,, Y)Z', and we

1=0

observe that the g + 1 polynomials 4,(X,, X, - - -, X,, Y) are not all
zero, since f(X,, X,, - - -, X,, Z, Y) is not the zero polynomial. Since
y ¢ s(X) (that is, since y is a transcendental over (X)), it follows there-
fore that not all the elements A4 (x,, x,, - - *, x,, y) of k(xy, x5, - -+, X, ¥)
are zero. Therefore f(x;, x5 - ,%,2Z,y)# 0, and since
flxy, xg, -+, x,,2,¥) =0, it follows that x is algebraic over
k(xy, xg, * * -, X,, ¥), that is, x € 5(X, y), as was asserted.

We now generalize Theorems 21 and 22 of I, § 21, to the case of sets
V which do not necessarily admit a finite system of generators. We
recall from I, § 21, that it is assumed that we are given a mapping s of
the set of all subsets of V into itself, and that this mapping satisfies
conditions (S,) to (Ss5). We recall also that a set X is called a generating
system of V if s(X) = V, that X is a free set if for any x in X we have
x ¢ 5(X — x), and that X is called a basis of V' if it is both a generating
system of V and a free set. In our case of an extension field K of £, X
is a generating system of K if K is an algebraic extension of A(X); X is
a free set if it is a transcendence set (in view of the lemma proved above)
and X is a basis of K/k if it is a transcendence basis.

For the purpose of the generalization of Theorems 21 and 22 of 1, § 21,
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we must give some preliminary definitions concerning partially ordered
sets.

A set S is said to be partially ordered if there is given in S a binary
relation < which is defined for certain pairs (a, b) of elements of S (it
is not necessary that the relation < be defined for all pairs (a, b) of
elements of S) and which satisfies the following conditions: (1) a< a
for any element a of S; (2) if a< b and < a, then a = b; (3) if a < b
and b < ¢, thena<c. A subset S, of Sis totally ordered if, given any
two elements a, b of S,, at least one of the relations a<b or < a
holds.

Let S, be a subset of a partially ordered set S. An element ¢ of S
is called an upper bound of S, if a<c for allain S,. An element a, of
S is a maximal element of S if ay < a implies a, = a.

A partially ordered set S is said to be inductive if every totally ordered
subset of S has an upper bound in S.

ZorN’s LEMMA. If a partially ordered set S is inductive, then there
exist maximal elements in S.*

We now begin with the following generalization of Theorem 21 of I,
§ 21.

THEOREM 23. Let L be a free subset of V and S a system of generators
of V. There exists a subset S’ of S such that L U S’ is a basis of V and
L N 8 is empty.

PROOF. We partially order, by set-theoretic inclusion, the set M of
all subsets S, of S such that L N S, is empty and L U S, is a free set.
The set M is non-empty since the empty subset of S belongs to M. It
is clear that M is an inductive set (since from {S;)it follows that any
ascending chain of free sets has a limit (union) which is also a free set).
Let S’ be a maximal elementof M. ThenL N S’isemptyandL U S’
is a free set. We shall show that L U S’ is a generating system of V,
hence a basis of V, and this will complete the proul of the theorem.
Since s(S) = V, it will be sufficient to show that SCs(L US’), in
view of (S;) and (S;) Let x be any element of S. If xe LU S’, then
xes(LUS’), by (S3) Assume that x¢ LUS’ and let (S',x)=S".
Then S” is a subset of S such that LNS” is empty. Since S’ is a
proper subset of S*, it follows by the maximality of S’, that LU S”,
thatis, (LU S’, x) is not a free set. Since LU S’ is a free set, it follows
that x € s(L U S’) (see Remark at the end of the proof of Theorem 20, I,
§ 21). This completes the proof.

* For a proof of Zorn’s lemma see, for instance, John L. Kelley, General
Topology, p. 33 (University Series in Higher Mathematics, Van Nostrand Co.,
Inc., Princeton, N.J., 1955).
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CoROLLARY 1. If L is a transcendence set in K|k and S is a subset of
K such that K is an algebraic extension of k(S), then there exists a subset
S’ of S such that LNS' is empty and LU S’ is a transcendence basis of
K|k,

COROLLARY 2. Any subset S of K such that K is an algebraic extensicn
of k(S) contains a transcendence basis of K|k.

We have only to apply Corollary 1 to the case in which L is the empty
set.

COROLLARY 3. There exist transcendence bases of K| k.

We apply Corollary 2 for the case S= K.

NOTE. In the case of a vector space V over a field k, Theorem 23
guarantees the existence of a basis (or vector basis) of V over k.

The following is a generalization of Theorem 22 in I, § 21:

THEOREM 24. Any two bases of V have the same cardinal number.

PROOF. This theorem has been proved in I, § 21 under the assump-
tion that there exists at least one finite basis of /. We shall therefore
assume now that every basis of V is infinite.

Let B be a basis of V and let x be any element of V. By (S;), there
exist finite subsets E of B such that x € s(B). We assert that there exists
a smallest finite subset E, of B such that x € s(E,) (and such that any
other subset E of B with the property x € s(E) contains E,). To see
this, it is sufficient to prove the following: if E’ and E” are two subsets
of B such that x € S(E') Ns(E") and if we have x ¢ s(E',) for every proper
subset E', of E’, then E' C E". Assuming the contrary, let y be an
element of E’ not in E” and let E’; denote the set E' — y. We have
x¢s(E',) and xes(E',, y). Hence, by (Ss), we have yes(E',, x).
Since x € s(E ") it follows that y € s(E’; U E”). This is in contradiction
with the fact that y ¢ E', U E” and that £’ UE"U{y} C Bis a free set.

Now let B’ be another basis of V. We consider the mapping
x — E(x € B', E, C B), where E, is the finite subset of B defined above.
From set theory it is known that the cardinal number of B’ is not less
than the cardinal number of the set LA'E, (since each set E, is finite).

On the other hand, we have B= U E, since B’ Cs(UE)),
xeB’
V =s(B)=s(UE,), and therefore the subset |J E, of B must
A

coincide with the basis B. Hence the cardinal number of B’ is not less
than the cardinal number of B. Interchanging the roles of B and B’
we conclude that B and B’ have the same cardinal number.  Q.E.D.
As a consequence we have the following result:
THEOREM 25. Any two transcendence bases of K|k have the same
cardinal number.
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NOTE. In the case of a vector space V over a field k, Theorem 24
leads to the notion of the dimension of V over k, this being the common
cardinal number of all vector bases of V/k.

DEeFINITION 2. The common cardinal number of the various transcend-
ence bases of K|k is called the transcendence degree of K[k (abbreviation:
tr. d. K/k).

It is clear that K is an algebraic extension of % if and only if tr. d.
K[k = 0.

THEOREM 26. Let kC K C A4 be successive extensions of k. Then
tr.d. 4/k = tr. d. 4/K + tr. d. K/k.

PROOF. Let L and M be transcendence bases of K/k and 4/K

respectively. It will be sufficient to prove that L U M is a transcendence
basis of 4/k. Let {x,, x5, -+, %, ¥1, Y2, * * * » ¥} be any finite subset of
LU M, where we assume that the x; are in L and the y, are in M. Let
FEXH{YD=f(Xy, Xe, -, X Y1, Y3, -+ -, Y,) be a polynomial in
m + n indeterminates, with coefficients in &, such that f({x}, {y}) = 0.
The polynomial f({x}, Y) in the # indeterminates Y; has coefficients in
K and must be zero since the y; are a.i. over K. Since the x; are a.i.
over k, it follows that f({X}, {Y}), regarded as a polynomial in {Y} with
coefficients in k[{X}], must be zero. Hence f({X}, {Y}) = 0 and that
shows that LU M is a transcendence set.

By assumption, K is an algebraic extension of k(L). It follows that
K(M) is an algebraic extension of k(L) (M) = k(LU M). But 4 is
an algebraic extension of K(M). Hence 4 is an algebraic extension of
k(LU M). This shows that LU M is a transcendence basis of 4/k.

THEOREM 27. Let K and K' be two extensions of k, contained in some
larger field Q, and let (K, K') be the smallest subfield of 2 containing both
fields K and K'. Then tr. d. (K, K')/K Str. d. K'[k, and tr. d.
(K,K')k =tr.d. K[k + tr. d. K'[R.

PROOF. Let L’ be a transcendence basis of K'/k. We have (K,K’) =
K(K'). Since every element of K’ is algebraic over k(L’), it follows
that (K, K') is algebraic over K(L'). Therefore, by Theorem 24, L’
contains a transcendence basis of (K, K')/K. We have then: tr. d.
(K, K')/K £ tr. d. K'[k. By the preceding theorem, we have: tr. d.
(K, K')k = tr. d. (K, K')[K + tr. d. K/k; and this, combined with the
above inequality, establishes the theorem.

We shall use the term * transcendence degree’’ also when dealing with
integral domains (not necessarily fields) containing 2.  If R is an integral
domain, R D %, and if K is the quotient field of R, then we set tr. d.
R[k = tr. d. K[k. Note thatsince K = k(R), there exist transcendence
bases of K[k which are subsets of R (see Theorem 24, Corollary). Such
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transcendence bases of K/k will be referred to in the sequel as transcend-
ence bases of R/k.

Two k-isomorphic domains R and R’ (k C R, k C R’) have naturally
the same tr. d. over k.  Of particular importance in applications are two
theorems which are proved immediately below.

THEOREM 28. Let R and R’ be integral domains containing k. If
R' is a k-homomorphic image of R, then tr. d. R'[k < tr. d. R/k.

PROOF. We assume, then, that there exists a .-homomorphism = of
R onto R’ and we consider a transcendence basis L’ of R'[k. For every
element x’ of L' we fix an element x in R such that ¥’ = x7* and we
denote by L the set of all elements x obtained in this fashion. From
the fact that L' is a transcendence set, it follows at once that also L is a
transcendence set. By Theorem 23, L is contained in some trans-
cendence basis M of R/k. The cardinal numbers of L’ and L are the
same since for every x’ in L’ there is only one element x in L such that
x’ = x7 and since therefore the correspondence x’ — x is one to one.
Since L is a subset of M, the proof is complete..

THEOREM 29. If tr. d. R/k = tr. d. R'[k = n (n finite), then any
k-homomorphism T of R|k onto R'[k is an isomorphism.

PROOF. We use the notations of the proof of the preceding theorem.
Let L' = {x'y, x’y, - - -, x,} be a transcendence basis of R'[k and let
L = {x,, x5, -, x,}, where ", = x;7. This time L is not only a
transcendence set but alsc a transcendence basis of Rk, since tr. d.
R/k =n. Nowlet u ¢ R, u # 0. Since u is algebraically dependent
on k(x;, xg, - * -, xn), We have a relation of the form
(1) A+ At 4+ + 40 =0, g2 1,
where

Al(X) = Al'(Xl’ XB’ tr aXn) Ek[Xh X!v e ,X,,]

and where Ay(x) 7 0. We take g as small as possible. Then A4, (x) % 0
for otherwise we could divide (1) by u (since u 3 0) and have an
equation for u, of degree < g. Applying to (1) the homomorphism =
we find

@ Afx' W + Ay(xw'e=t + - + A x) =0,

where 4’ = ur. Since A, (x) # 0, the polynomial 4,(X) is not zero,
and hence A4,(x") # 0, since x'y, %'y, -+, &', are a.i. over k. Conse-
quently, by (2), we have ¥’ 0, and this shows that 7 is an isomorphism.

* If L’ is an infinite set, this procedure involves the axiom of choice. It can
be easily replaced by another argument which is based exclusively on Zorn's

lemma and which would show the existence of a subset L of R such that:
(1) «(L) = L’; (2) the transformation of L onto L’ induced by  is one to one.

‘This may be left to the reader.
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REMARK. If R is a field, then Theorem 29 is trivial and is true
without any condition on the transcendence degrees, since a field does
not admit proper homomorphisms (that is, homomorphisms which are
not isomorphisms).

§13. Separably generated fields of algebraic functions. Let
k be a field and let K be an extension of k.

DerFINITION 1. K is a field of algebraic functions of r independent
variables over k if K is finitely generated over k and if tr. d. K[k = r.

DEFINITION 2. A transcendence basis {z,, z,, * - + , 2,} of a field K[k
of algebraic functions of r independent variables is called a separating
transcendence basis of Kfk if K is a separable (algebraic) extension of
k(zy, 2y, "« -, 2,). ’

The field K is said to be separably gemerated over k if there exists a
separating transcendence basis of K|k.

EXAMPLE. Let r = 1, K = k(x, y), where x is a transcendental, and
let Y» — x2 = 0 be the minimal polynomial of y over k(x), where p is
the characteristic of K (p % 2). Then K is an inseparable extension of
k(x). Nevertheless K is separably generated over k since K is a separ-
able extension of k(y) (whence y by itself is a separating element of K|k,
that is, the set {y} cunsisting of the single element y is a separating
transcendence basis of K/k).

We begin with two simple lemmas which we shall have occasion to use
in this section.

LEMMA 1. Let R be a unique factorization domain and let K be the
quotient field of R. Let X be an indeterminate over K.

(1) If a polynomial f(X) in R[X), of positive degree, is irreducible in
R[X], it is also irreducible in K[X].

(2) If a primitive polynomial f(X) in R[X] (see 1, § 17) is irreducible
in K[X] it is also irreducible in R[X].

(3) If f(X) and g(X) are polynomials in R[X] such that g(X) divides
S(XY) in K[X] and if g(X) is primitive, then g(X) also divides f(X) in
R[X].

PROOF

(1) Let F,(X) be a non-unit in K[X] which divides f(X) in
K[X]: f(X) = F(X)Fy(X), F(X) € K[X], 0Fy(X) > 0. Then F(X)
= f(X)/a;, where f,(X)e R[X] and q; € R, and we have a,a,f(X)
= fi(X)f«(X). Since f(X) is irreducible in R[X] it follows that f(X)
must divide in R[X] one of the two polynomials f{X), and therefore we
have either of £ of, or f S 9f;. On the other hand, of = of, + &f,,
and by assumption, 8f, > 0 (since F;(X) is not a unit and has therefore
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positive degree). Hence 9f, = 0, and Fy(X) is a unit in K[X]. Since
J(X) has positive degree, it is not a unit in K[X]. Consequently f(X)
is an irreducible element in K[X].

(2) Assume that we have f(X) = f}(X)fy(X) where f,(X) and fy(X)
are polynomials in R[X]. Since f(X) is irreducible in K[X], one of the
polynomials f,(X) must be of degree zero. Let, say, f, = 0, whence
fi(X) =aeR. From f(X) = af(X) follows that a divides, in R, the
content of f(X), and hence a is a unit in R since f(X) is primitive. This
shows that f(X) is an irreducible element of R[.X].

(3) Wehave, by assumption: f(X) = g(X)-h(X)/a, where h(X )€ R[X]
anda e R. Thusg(X) divides af(X) in R[X]. Since g(X) is primitive,
it follows from I, § 17, I.emma 2, that g(X) divides f(X) in R[X].

This completes the proof of the lemma.

LemMma 2. Let xy, x4, - -+, X, X,,,., be elements of an extension field
K of a field k and assume that these n + 1 elements x; are algebraically
dependent over k but that the n elements x,, x,, - - - , x, are algebraically in-
dependent over k.  Then the set A of polynomials g(X,, Xq, -+, X,y Xy 1)
mk[X,, X,, - -, X,, X, 1] with the property that g(x,, X, - * * , X, X 11)
= 0 contains a polynomial f(X,, X,, -, X,, X,,,) such that every
polynomial in the set is a multiple of f in kR[X,, X,, - - -, X,, X,.,,)-

PROOF. Since the n 4 1 elements x; are algebraically dependent
over k, the set A contains polynomials different from zero. Let
f(Xy, Xy, - -+, X,,, X,41) be 2 non-zero polynomial in A4, of smallest
possible degree ¢ in X, ,, and let us write

f= Ao(Xn Xz: e )Xn)Xn'l-lq + AI(XD Xz, Ty Xn‘Xn-{-l',_l
+---+ Aq(Xh X2) tr :Xu)-

Since &y, Xg, -+ , %, are algebraically independent over k, X,4; must
actually occur in f, and we may also assume that f is a primitive poly-
nomial in X, 4, over k[Xj, X3, -+, Xa]. If g(X) is any polynomial in
the set 4, then by Theorem 9 of 1, § 17, we can write 4o°¢ = Of + R,
where s is an integer = 0, Q and R are polynomials in k[Xy, Xy, - -,
Xay Xn41] and R is either of degree less than g in X, or is the zero
polynomial. 1t is clear that we have R(x;, X2, = * - , ¥n, ¥a41) = 0, that
is, the polynomial R belongs to the set 4. Hence by our choice of f and
by Lemma 1 we have R = 0; this completes the proof of the lemma.
It is obvious that the polynomial f(X) is irreducible over % and that
it is uniquely determined to within an arbitrary non-zero factor in k;
moreover, among the polynomials in the set 4 the polynomial f(X) is
characterized by the condition that it be irreducible. When the elements
Xy, Xg, ' * 4 X,, Xy satisfy the conditions stated in the lemma, we shall
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refer to the relation f(x,, xg, ", %, %,,,) =0 as the irreducible
algebraic relation between the x;, over k.

THeoREM 30. Let {x, x,, - - -, x,} be a set of generators of K|k,
K = k(x,, x4, - -, x,). If K is separably generated over k, then already
the set {x,, x,, " - -, x,} contains a separating transcendence basis of K|k.
(MacLane.)

PROOF. We first prove the theorem in the case r = 1. By assump-
tion, there exists in K a separating transcendental element z. We have
2 ¢ k(z?), since z is a transcendental. Hence, by Theorem 7, § 5, the
polynomial X? — 2# is irreducible over k(2?). Since z is a root of
this polynomial, it follows that z is inseparable over k(z*). Since
3 € k(x,, x4, - * + , x,,), we gonclude by Theorem 10, § 5, that at least one
of the n elements x; must be inseparable over k(2?). Let, say, x, be
inseparable over k(z?). We shall now prove that x, is a separating
transcendental of K|k.

Let f(X, Z) be an irreducible polynomial in X[X, Z] such that
f(x1,2) =0. By Lemma 1 it follows that f(X, Z) is irreducible in
k(Z)[X] (since f(X, Z) must be of positive degree in X). Since z is a
transcendental over %, it follows that also the polynomial f(X, 2) is
irreducible over k(2) and differs therefore from the minimal polynomial
of x, in k(2)[X] by a factor which is an element of k[z]. Since zis a
separating elemnent, we have f, (x,, 2) # 0. The polynomial f(X, Z)
is independent of Z if and only if x, is algebraic over &, and if that were
the case then we would have f(X, Z) = ¢(X) and ¢'(x,) = f', (%}, 2)
# 0. This would imply that x, is separable over &, hence a fortiori
also over k(2?) (Lemma 2, §5), contrary to our assumption on x,.
Hence x, is a transcendental over k, and f(X, Z) is not independent
of Z.

It is therefore possible now to assert that z is algebraic over k(x,) and
that f(x,, Z) differs from the minimal polynomial of z in k(x,)[Z] only
by a factor which is an element of k[x,]. We also assert that z is
separable over k(x,). For assume the contrary. Then we must have
X, 2) e kX, 2?], say f(X,Z)=g(X, 2?). From ¢, (%, 2*)=
f's (%1, 2) # 0, it would then follow that x, is separable over k(z?),
which is contrary to our assumption on x,.

Since z is separable over k(x,) and since all x; are separable over k(2),
it follows (Theorem 9, § 5) that x, is a separating element.

To complete the proof of the theorem, we now proceed by induction
with respect to 7. We assume then that the theorem is true for fields of
algebraic functions of r — 1 independent variables.

Let {z,, 2y, * * *, 3,} be a separating transcendence basis of K[k. If
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we set k; = k(z,), then K can be regarded, over k,, as a field of algebraic
functions of r — 1 independent variables. Moreover, we have K=
ky(%y, x4, - - -, x,), and {2y, 25, - - -, 2,} is a separating transcendence
basis of K/k,. By our induction hypothesis, 7 — 1 of the elements x;
will form a separating transcendence basis of Kjk,. Let, say,
{x1, 3, - - -, x,_,} be a separating transcendence basis of K/k,. If we
set k' = k(x, x5, -, x,_,), then K = k'(x,, x,,,,--*,,) and K is a
field of algebraic functions of one variable, over k’. Moreover, z, is a
separating element of K[/k'. Hence, by the case r = 1, one of the
elements x,, x,,,, - - -, x, will also be a separating element of K/k'. If,
say, x, is such an element, then the r elements x}, x,, - - -, x,_,, x, form
a separating transcendence basis for K/k. This completes the proof of
the theorem.

The following lemma will be followed by an application to the case of
perfect ground fields 4.

Lemma 3. If the field K = k(x,, x4, - - - , X,,), of transcendence degree r
over k, is not separably generated over k, then for a suitable labeling of the
x; the field k(x,, x4,  * -, X,,,) is of transcendence degree r over k and is not
separably generated over k.

PROOF. If n =17+ 1 there is nothing to prove. Assume that
n > r + 1 and that the theorem is true for n — 1. We may assume
that x, is a.d. on x,, x3, - - -, x, (over k), and consequently that the field
k(xg, x3, - - -, x,) has transcendence degree r over k. If this field is not
separably generated over k, the assertion of the lemma follows by
the case » — 1. Assume that k(x,, x4, - - -, x,) is separably generated
over k. . Then by the preceding theorem we may assume that x,, x;,
-+, x,,, form a separating transcendence basis of k(x;, x5, - - - , %,)/.
In that case the field K is a separable extension of k(x,, xg, - - -, x,,,),
and therefore this latter field enjoys the properties stated in the
lemma. :

The following is a straightforward application to perfect fields:

THeOREM 31. If k is a perfect field, then K = k(x,, x,, - - - , x,) is
always separably generated over k (F. K. Schmidt).

PROOF. By the above lemma, it is sufficient to prove the theorem
in the case n = r + 1, where r = tr. d. K/k. In this case, we have the
irreducible relation f(x;, x4, , %, %,;,) = 0 between the r + 1
elements x; (see Lemma 2). If x,, x,, - - *, x, do not form a separating
transcendence basis, then f(X) € k[X,, X,, - - -, X,, X, ?]. 1fnorof
the elements x; form a separating transcendence basis, then
f(X)ek[X,?, X2, -+, X,1?]. But then f(X) is the p-th power of a
polynomial in £[X], since % is perfect—a contradiction.



106 ELEMENTS OF FIELD THEORY Ch.II

§ 14. Algebraically closed fields

DerFINITION 1. A field k is said to be algebraically closed if it possesses
no proper algebraic extensions (that s, if every algebraic extension of k
cotncides with k).

It is not difficult to see that the following properties of a field k are
equivalent:

(a) & is algebraically closed.

(b) Every irreducible polynomial in k[X] is of degree 1.

(c) Every polynomial in k[X], of positive degree, factors completely
in A[X] in polynomials of degree 1.

(d) Every polynomial in 2[X], of positive degree, has at least one root
in &. ‘

In fact, if f(X) is an irreducible polynomial in k[X], of degree n = 1,
then we know that there exists an algebraic extension K of %, of relative
degree n over k (Theorem 3’, § 2). If k is algebraically closed we must
have K = k, whence n = 1. Thus (a) implies (b).

It is clear that (b), (c), and (d) are equivalent. Finally, if K is any
algebraic extension of % and x is any element of K, then the minimal
polynomial of x over k is irreducible and therefore has degree 1 if (b)
holds. Therefore x € k, K = k, that is, (b) implies (a).

CorOLLARY. If k is a subfield of an algebraically closed field K, then
the algebraic closure k' of k in K is an algebraically closed field.

For if f(X) is any polynomial in £’[X], then f(X) must have a root «
in K; this root « is then also algebraic over & (by the transitivity of
algebraic dependence) and therefore belongs to k'

DEFINITION 2. If k is a subfield of a field K, then K is said to be an
algebraic closure of k if (1) K is an algebraic extension of k and (2) K is an
algebraically closed field.

CoROLLARY. If an algebraic extension K of k has the property that
every polynomial f(X) in k[X] factors completely in linear factors in
K[X), then K is an algebraic closure of k.

For if K’ is any algebraic extension of K and x is an element of K’,
then we have for the minimal polynomial f(X) of x over k a complete
factorization f(X) =I](X — x,), »;€ K. Since f(x) =0, we must
have x = x, for some 7, whence x € K| and thus K’ = K.

The following fundamental theorem guarantees the existence and the
essential unicity of an algebraic closure of a given field k:

THEOREM 32. If kis a field, then there exists an algebraic closure of k,
and any two algebraic closures of k are k-isomorphic fields.

PROOF. Let N denote the set of all ordered pairs (f(X), n), where
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Sf(X) € R[X] and n is any non-negative integer. We agree to identify
any element ¢ of k with the pair (X — ¢, 0). We consider the set S of
all fields X such that (a) the elements of Z form a subset E of N;
(b) & is a subfield of Z; (c) if 2 = (f(X), n) € Z, then f(z) = 0. The
set S is non-empty since ke S. We observe that if 4 denotes the
set of all ordered triads (z,, 24, 2;) of elements of X such that
%3 = 2, + 2,and if M denotes the set of all ordered triads (y,, ¥, ¥5) of
elements of Z such that y; = y,y,, then the field Z is uniquely deter-
mined by, and can be identified with, the ordered triad (E, 4, M).
Since E is a subset of N, while 4 and M are suitable subsets of the set
product N X N x N, our set S of fields £ is well defined from the
standpoint of the theory of sets.

We partially order the set S by setting < X’ if £ is a subfield of
Z'(Z,Z' € S). Itisclear that Sis an inductive set. By Zorn’s lemma,
let K be a maximal element of S. We shall show that X is an algebraic
closure of k.

The property (c) enjoyed by any field Z in S implies that X' is an
algebraic extension of 2. Hence K is an algebraic extension of &. We
shall show that the assumption that K has proper algebraic extengions
leads to a contradiction with the maximality of K in M. Assume then
that there exists a proper algebraic extension K’ of K. We shall now
define a (1, 1) mapping ¢ of K’ into N. If x € K we set ¢(x) = x. If
xe K', x ¢ K, we consider the minimal polynomial f(X) of x over &,
we denote by z,, 24, - - -, 3, the roots of f(X) in K (k= 0) and by
%, X, ° - -, %, the roots of f(X) which are in K’ but not in K
(g = 1;x, = x). Wefixg distinct non-negative integers n,, ny, - - - , 1,
such that z; # (f(X),n)(=1,2,---,h;j=1,2,---,g) and we set
o(x;) = (f(X),n), j=1,2,---,g [Itis then clear that'g is a (1, 1)
mapping of K’ into N and that ¢ is the identity on K. Let E, = ¢(K’).
We carry over the field structure of K’ to the set E,, by means of
the mapping ¢, thus getting a field K,. From the definition of ¢ it
follows at once that K € S. Since K is a proper subfield of X', it
is also a proper subfield of K, and this contradicts the maximality
of K.

The second half of the theorem will be included in the following
stronger result:

THeoreM 33. Let K’ be an algebraically closed field and let K be an
algebraic extension of a field k. If @ is an isomorphism of k into K' then ¢
can be extended to an isomorphism of K into K'.

PROOF. We first show that Theorem 33 implies the second half of
Theorem 32. If K and K’ are two algebraic closures of %, we apply
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Theorem 33 to the identity mapping ¢ of & into XK', and we thus find
that there exists a k-isomorphism ¢ of Kinto K’. Since K isan algebraic
closure of %, also ¢(K) is an algebraic closure of %, and therefore
¥(K) = K’ since K' is an algebraic extension of ¥(K). Thus ¢ is a
k-isomorphism of K onto K'.

We now begin the proof of Theorem 33. Let M be the set of all
ordered triads (L, L', y), where L is any field between k and K, L' is a
field between @(k) and K’, and ¢ is an isomorphism of L onto L’ such
that y = @ on k. The set M is non-empty since (k, p(k), p) e M. We
partially order M by setting (L, L', ) < (L, L'y, ¢,) if L is a subfield of
Lyandify; =ygonL. IfN = {(L,, L, ¢,)}is atotally ordered subset
of M, and if we set L= UL, L' = UL’,, then L and L’ are fields
between k and K, and between ¢(k) and K’ respectively. 'The mappings
Y, determine uniquely an isomorphism ¢ of L onto L’ such that
Yy=y¢,onL,. Thus(L,L'y)is an element of M which is an upper
bound of the set N, and M is therefore shown to be inductive. Let
(Lg, L', ) be a maximal element of M. We shall show that L, = K,
and this will complete the proof of the theorem.

Let x be any element of K and let f(X) be the minimal polynomial of
x over L,. Let f'(X) be the y,-transform of the polynomial f(X).
Then f'(X) e L' [X] € K'[X], and since K’ is algebraically closed the
polynomial f'(X) has a root ' in K’. By Lemma 1 of § 6, ¢, can be
extended to an isomorphism i, of L(x) onto L’ (x") such that J,(x) = x".
Then (Lo, L'y, o) -< (Lo(x), L' o(x'), ;) € M, and hence, by the
maximality of (Lo, L'g, tho), we have (Lo, L'o, tho) = (Lo(*), L'o(*' )» ¢1),
Ly = Lyx),xe L,, We have therefore shown that L, = K.

Let & be a field and let K be an algebraically closed field contammg k
If the characteristic p of k is 7 0, then the elements x of K such that
x?ek form a field containing k. Thie field shall be denoted by
k*~*. Since K is algebraically closed, K contains a root of every poly-
nomial of the form X? — a, ac k. Therefore k*™* consists of the p-th
roots of the elements of k, and we have k = (k?™')?. It is also obvious
that the fields k#~* obtained in relation to various algebraic closures of &
are always k-isomorphic to each other.

In a similar fashion we can define the fields k™" for n = 1,2, - - -.
These fields form an ascending chain kC k' Ckr™"C---, and
their union is a field between k& and K which we shall sometimes
denote by k#™®; it is the least perfect field containing % and is there-
fore referred to as the perfect closure of k. If k itself is perfect, then
kt™® = h,

If the characteristic p of & is zero, we set k#™" = k™" = k,
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§15. Linear disjointness and separability. Let S be a ring
containing a field % and such that the identity 1 of k is also the identity of
S. Then S is a vector space over &, and in this sense we speak below
of subspaces of S.

DEerINITION 1. Two subspaces L and L' of S are said to be linearly
disjoint over k if the following condition is satisfied : whenever x,, xo, - - - , %,
are elements of L. which are linearly independent over k and x',, x', - - -,
x',, are elements of L’ which are linearly independent over k, then the mn
products xx’; are also linearly independent over k.

Linear disjointness of L, L’ is clearly asymmetric relationship between
the two spaces and is relative to the preassigned ground field k. The
Jollowing property is equivalent to linear disjointness and will be the one
most frequently used in the sequel:

(LD). Whenever x,, x4, - - - , x, are elements of L which are linearly
independent over k then these elements x; are also linearly independent over
L.

For, assume that L and L' are linearly disjoint over k and let #',x, +
woxy + - -+ + u'x, =0, where the «’, are in L’ and x,, xp, - -+, %,
are elements of L which are linearly independent over k. Let
{x'y, &'y, -+ -, &'} be a basis of the vector space ku’, + ku', + s 4
ku', over k andletu’--—Za ', where a;, € k. ThenZa =0,

and hence, by the linear dnsjomtncss of L and L' over k& 1t follows that all
the a,; are zero, and so also all the #’, are zero, showing that condition
(LD) 1s satxsﬁed Conversely, assume property (LD) and let the two

sets {x,, Xq, - - *, %,} and {x',, x'5, - - -, } be as in the above definition.
Assume that we have a relation 2 a, = 0, a;;€ k. Since, for each
i, the sums 4 a;;x ;belong to L' 1t follows from (L.D) that Z a;x'; =0,

for all ¢, and hence all the a;, are zero since the x’; are lmearly indepen-
dent over 2. Hence L and L’ are linearly disjoint over k.

There is a close connection between the concept of linear disjointness
and the concepts of separable or inseparable extensions. In this
section we shall study this connection. To introduce the topic we
begin by provmg a theorem which is essentially a restatement of
Theorem 8 (§ 5) in terms of linear disjointness.

THEOREM 34. If a field K is an algebraic extension of a field k, then a
necessary and suﬂiaent condition that K be a separable algebraic extension
of k is that K and k*™* be linearly disjoint over k. (We take k* ' to be a
subfield of an algebraic closure of K.)

PROOF. Assume that K is a separable algebraic extension of k. We



110 ELEMENTS OF FIELD THEORY Ch.1I

have to show that if u,, u,, - - - , u, are elements of X which are linearly
independent over &, these elements are also linearly independent of
k*™', or—equivalently—that u,?, u,?, - - -, u? are linearly independent
over k. We consider the field K, = k(u,, u,, - - -, 4;) and we extend
the set {uy, u,, - * + , u,} toa basis {u,, u,, - - -, u,,} of K;/k. We have, by
Theorem 8 (§ 5), K, = kK,?, whence

K, =3 kup.
im]
Consequently also the elements u,?, u.?, - - -, u,? form a basis of K[k
and are therefore linearly independent over k.

Assume now that K and k?7' are linearly disjoint over &, and let x be
any element of K. Let f(X) be the minimal polynomial of x in A[X]
and let m be the degree of f(X). If kis any integer < m, then 1, x, x2,
- -+, x"~1are linearly independent over .. Consequently, by the linear
disjointness of K and k? ' over k, the p-th powers of these elements are
also linearly independent over k. This implies that f(X) ¢ k[X?], that
is, x is separable over .. Q.E.D.

We shall need later on the following lemma-

LEMMA. Let L and L’ be subspaces of a .ng S|k, and let {u,} and
{u's} be bases (finite or infinite) of Lk and L'[k respectively. Then a
necessary and sufficient condition that L and L' be linearly disjoint over k
is that the products u,u,’ be linearly independent over k. An equivalent
condition is that the u, be linearly independent over L'. In particular, if
the dimensions of L and L' are both finite then L and L' are linearly
disjoint over k if and only if dim LL'[k = dim L|k-dim L’[k; here LL'
denotes the space spanned by the products uu',uc L, u' € L'.

PROOF. It follows directly from the definition of linear disjointness
that if L and L’ are linearly disjoint over &, then the products u,u’, are
linearly independent over k. It is also obvious that the linear independ-
ence of the products u 4, over % is equivalent to the linear independence
of the u, over L'. Now, assume that the products u,u’; are linearly
independent over k. We first consider the case in which L and L’ have
finite dimension, say s = dim L/k, ¢t = dim L'[/k. Since the st products
u,u'g span the space LL', it follows that diim LL'[k = st. Now, if x,, x,,
+++, x, are elements of L which are linearly independent over % and
x'y, &'y, * * , X', are elements of L’ which are linearly independent over
k, then we extend the sets {x, x5, * * -, x,}, {xy, x’g, - * *, &'} to bases
{xy, %9, -+ -, %), {x'y, %'g, - - -, &',} of L[k and L’[k respectively and we
observe that the st products x,x’; must be linearly independent over %,
since they span LL’/k and since dim LL'[k = st. In particular, also the
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mn products xx'; (i=1,2,---,n; j=1,2,---,m) are linearly
independent over k and this proves the linear disjointness of L and L’
over k. 'This also establishes the second half of the lemma.

In the general case, we can always find a finite subset {u,, ug, - - - , u,}
of the set {u,} such that the elements x,, x,, - - - , x, belong to the finite-
dimensional space L, spanned by Uy Ugy * ', U, Sxmnlarly, there
exists an 1nteger t such that x’, elL’, = ku’ +ku'y 4 -+ ke,
Jj=1,2---,m Since L,and L‘ are lmearly disjoint over k, by the
preceding case, the products x,x’, are linearly independent over k. This
completes the proof of the lemma.

CoroLLARY 1. Let k, K and S be fields such that kC K C S. If
X is a (finite or infinite) set of algebraically independent elements of
S over K, then the subfields K and k(X) of S are linearly disjoint
over k.

It is obvious that K and k(X)) are linearly disjoint over % if and only
if K and k[X] are linearly disjoint over k. Now, the set of all monomials
x5 xg% -+ - 2,7, x,€ X, is a basis of the k[X] over %, and since, by
assumption, these monomials are also independent over K, the corollary
follows from the lemma.

CoRroLLARY 2. If a field K is a purely transcendental extension of a
Jfield k, then K and k? ' are linearly disjoint over k.

For, if K = k(X), where X is a suitable transcendence basis of K/,
then the elements of X, being algebraically independent over &, are also
algebraically independent over k? '. 'Therefore, by the preceding
corollary, K and k* ' are linearly disjoint over k.

For extension fields K of k which are not algebraic over k& there is no
complete equivalence between the concept of separable generation and
that of linear disjointness (over ## '). However, we have the following
theorem:

THEOREM 35. Let K be an extension of k. A necessary condition for
K to be separably generated over k is that K and k» ' be linearly disjoint
over k. If K is finitely generated over k, then the foregoing condition is
also sufficient.

PROOF. Assume that K is separably generated over k and let B be a
separating transcendence basis of K/k. By Corollary 2 to l.emma 1,
the fields k(B) and k? * are linearly disjoint over k. Now, let u,, u,,

+, u, be elements of k?~* which are linearly independent over k. They
are then also linearly independent over k(B). Since K is a separable
algebraic extension of k(B), it follows from Theorem 34 that u;, u,, - - -,
u, are also linearly independent over K, showing that K and k? ' are

lmearly disjoint over k.
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Assume now that' K is finitely generated over k, say, K =
k(x,, xq, - -+, x,), and that K and k?™" are linearly disjoint over k. Let7
be the transcendence degree of K|k, whence n = 7. If n = r, there is
nothing to prove. We next consider the case n = r + 1. In this case,
let f(X) be the irreducible polynemial in k[X,, X, - - -, X, ,] such that
f(x) =0 (§13, Lemma 2). We assert that f(X)¢k[X,?, X2, - -,
X, ;1*]. For,assumethecontrary,and let f(X) = g(X,?, X¢?,- -+, X, 1#),
where g(X,, X,, - - -, X,;,) €k[X]. If w), wy, - -+, w, are the mono-
mials in x,, x4, - -+, x,,, which actually occur in the expression
8(%y, x5, - -+, x,,,), then the w are linearly independent over % (since the
degree of these monomials is less than the degree of f(X)), while w,?,
wy?, -+ -, w,?arelinearly dépendent over ksinceg(x,?, x5?, - -, x,,,#) =0.
This contradicts the linear disjointness of K and k*™* over k. This
contradiction shows that we have indeed f(X) ¢ k[X,?, X,?,---, X, ,*].
We therefore may assume that one of the r + 1 variables X, say, X, ,,
which actually occurs in f(X), occurs in some term of f(X) with an
exponent which is not a multiple of p. The elements x,, x,, - - - , , are
then necessarily algebraically independent over k, and furthermore,
x,, 1 is separable algebraic over k(x,, x,,- -+, x,). Hence {x,, x5,- ", x,}
is a separating transcendence basis of K/k.

For n > r + 1 we shall use induction with respect to n. 'The linear
disjointness of k(x,, x5, - -, x,) and k?™' over k implies the linear
disjointness of k(x,, x4, - - -, x,_;) and k?* over k. Hence, by our
induction hypothesis, k(x,, x,, - - -, x,_,) is separably generated over k.
Let{z,, 2,, - * -, 2,,} be a separating transcendence basis of k(x,, x,, - - - ,
x,_,)over k. Thenmiseitherr — 1 orr. The field k(x,, x,, - - -, x,)
is a separable algebraic extension of K, = k(2,, 25, * * * , 2, X,), and we
have only to show now that K, is separably generated over .. The field
K, [k has the same transcendence degree r as K/k and it is generated
over k by at most 7 4 1 elements (since m < 7). Furthermore, since
K, CK, also X, and k?™"' are linearly disjoint over .. Hence, by the
case n < r 4 1, K, is indeed separably generated over 2. This com-
pletes the proof of the theorem.

The preceding theorem and the reasoning used in the proof of that
theorem enable us to give a second proof of Theorem 30 (§ 13), that is,
of the assertion that if K = &(x,, x,, - - -, x,) is a separably and finitely
generated extension of %, then already the set of generators x; contains a
separating transcendence basis of K/k. For n = r there is nothing to
prove. The case n =1r 4 1 has been settled in the course of the
preceding proof (since K and k* ' are linearly disjoint over k. by the
first part of Theorem 35). For n > r + 1 we again use induction with
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respect to # and repeat the last part of the preceding proof, observing

that this time the induction hypothesis permits us to find a separating

transcendence basis {3z, z,, - - -, 2,.} of (x,, %y, - * , x,_,)/k within the

set of generators {x,, x5, -+, x,_;}. Then the m 4 1 generators of K,/k

are in thelset {x), x5, - - -, x,}, and Theorem 30 now follows by the case
=r<41.

Also Theorem 31 (§ 13) is an immediate consequence of Theorem 35,
for if k is a perfect field, that is, if k#™* = k&, then K and k?~* are linearly
disjoint over k.

DEFINITION 2. If K is an extension field of a field k of characteristic p,
then K is said to be a separable extension of k if K and k*' are linearly
disjoint over k.

In view of Theorem 34, for algebraic extensions K of k, separability
in the sense of this definition is equivalent with separability as defined
in § 5. Similarly, for finitely generated extensions K of k it is true that
K|k is a separable extension if and only if K is separably generated over
k (Theorem 35). However, if K is not finitely generated over k, it may
very well be separable over & without being separably generated over k.
For instance, if % is a perfect field every extension K of k is separable
over k. However, if x is a transcendental over &, then it is easily seen
that the field K = k(x, x1/?, x1/p’, - .. x1p" ...) is not separably
generated over k.

We note that Corollary 2 of the lemma proved earlier in this section can
now be re-stated as follows: if K is a purely transcendental extension of k,
then K is separable over k.

The transitivity of separability proved in § 5 (Theorem 9) for algebraic
extensions extends to arbitrary field extensions. We have, namely, the
following theorem:

THEOREM 36. If K’ is separable over k, and if K" is separable over K’,
then K" is separable over k.

PROOF. Given a set F of elements of k#~* which are linearly inde-
pendent over &, the elements of F are also linearly independent over K’
since K' is separable over k. Hence the elements of F are also linearly
independent over K” since K” is separable over K’ and since
FC K'»'. Thus K" and k?* are linearly disjoint over k.

§ 16. Order of inseparability of a field of algebraic functions.
We shall deal in this section with finitely generated extensions of a field
k, that is, with fields of algebraic functions over & (see Definition 1 in
§ 13). For these fields we shall define a numerical character, called the
order of inseparability of the field (relative to k); it generalizes the concept
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of degree of inseparability of finite algebraic extensions and plays an
important role in abstract algebraic geometry. We shall also give some
results concerning the behavior of the order of inseparability under
extensions of the ground field .

In the sequel, p denotes the characteristic of our fields. If p =0,
then all powers p* of p are to be replaced by 1. If 4 and B are subfields
of some field S then we denote by (4, B) the compositum of these fields
(the least subfield of S containing 4 and B). All the fields which are
considered below are assumed to be subfields of some algebraically closed

field S.
Lemma 1. IfL, K and k' arc fields and K is a finite extension of L, then
() (K. k): (L, K)] < [K: L],
) (K, B): (L, k)], = [K: L],
) (K, k) : (L, k) = [K, L]

If the fields K and k' are linearly disjoint over some common subfield k of L
and k', then the equality sign holds in (1), (2), and (3).

PROOF. Let {uy, uy, - -+, u,} be a basis of K over L. Since the
elements of K are algebraic over the field (L, k'), we have (K, k') =

(L, ®)[K] = (L, k) iLuq = il(L, k')uq, and this proves inequality
= q=
(1)

Let K, be the maximal separable extension of L in K. From the
separability of the extension Ky/L follows the separability of the
extension (K, k')/(L, k'), while from the fact that K is purely inseparable
over K, follows that (K, %’) is a purely inseparable extension of (K, k’).
Hence (K, k') is the maximal separable extension of (L, k') in (K, k). It
follows that [(K, k') : (L, k)], = [(K¢, k) : (L, k)] and [(K, ¥'): (L, k)],
= [(K, k’): (Ko k’)]. Therefore (2) is obtained by replacing K by K,
in (1), and we obtain (3) by replacing L by K, in (1).

We now assume that K and %' are linearly disjoint over some common
subfield & of L and &'. It will be sufficient to show that the equality
sign holds in (1), for then it will follow that the equality sign also holds in
(2) and (3), in view of the inequalities (2) and (3) and of the product
formula (5) of § 6. 'To show that the equality sign holds in (1) we must
show that the u, are linearly independent over (L, £). Now, the u, are
linearly independent over L. Therefore we have to show that the fields
K and (L, k') are linearly disjoint over L. 'This we now proceed to show.

Let {a,} be a finite set of elements of (L, k') which are linearly inde-
pendent over L. We can write the a, in the form «; = f/f,, where f,
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and the f; belong to #’[L]. The numerators are linearly independent
over L and we have to show that they are also linearly independent
over K. In other words, it is sufficient to show the linear disjointness
of K and k'[L] over L. Now the ring k’[L), regarded as a vector space
over L, is spanned by the field . Hence we can find a basis B of &’[L]
over L such that BC k. The elements of B are linearly independent
over L, hence a fortiori also over k. It follows that the elements of B
are also linearly independent over K, since &’ and K are linearly disjoint
over k. We have therefore shown that the vector space k'[L]/L has an
L-basis B whose elements are linearly-independent over K, and
the linear disjointness of k’[L] and K over L now follows from the
lemma proved in § 15.

COROLLARY 1. Let k' be a finite algebraic extension of a field k and
let B be a (finite or infinite) set of elements (of the big field S) which are
algebraically independent over k'. Then

4) [K'(B): K(B)], = [K': k],,
(5) [¥(B): K(B)]; = [¥': K],

By Corollary 1 to the lemma of § 15, the fields k(B) and %k’ are
linearly disjoint over k. Hence the corollary follows from the foregoing
lemma by setting L = k, K = k' and k' = k(B).

CoROLLARY 2. Let k' be a finite algebraic extension of k and let
k'(x) = k'(xy, xq, - - *, X,) be a finitely generated extension of k'. Then
[k : k]; = [K'(x): k(x)];, or equivalently (since both sides of this inequality
are powers of p):

(6) [k : k); = pilK'(x) : R(x)];»

where s is a non-negative integer. Furthermore, if {z} = {z,, 25, - - , 2,}
is any transcendence basis of k(x)[k, then

™ [k(x) : k(2)]; = p[K'(x) : K'(2)];-

The first half of this corollary follows from the inequality (1) of Lemma 1
upon replacing L, K and &’ by k, k' and k{(x) respectively. To obtain
the second hali of the corollary we observe that we have, in view of
relations (5), § 6:

[ (x) : k()] = [K'(%) : k(=)][k(x) : K(z));,
[ (x) : k(=) = [K'(x): K'(2){F(2) : k()]

Comparing these two expressions of [£'(x) : k(2)]; we see that (7) follows
from (5) (with B = {2}) and (6).

and also
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DerFIniTION 1. If k(x) is a finitely generated extension of k, we mean
by the order of inseparability of k(x)[k (or of the extension k(x) of k) the
smallest value of the degree of inseparability [k(x): k(2)); for all possible
choices of a transcendence basis {z} = {3,, 2,, * - -, 3,} of k(x)/k.

We shall denote the order of inseparability of k(x)/k by [k(x): k];. In
the special case in which k(x) is an algebraic extension of k, {2} is the
empty set, k(z) = k, and hence the order of inseparability of k(x)/k is
the degree of inseparability of k(x) over k. Thus our notation
[k(x) : k); is consistent in this case with the one already used for algebraic
extensions.

THEOREM 37.  Thenotations being the same as in the foregoing definition,
already the set of generatgrs x,, x,, - -+ , X, contains a transcendence basis
{2} such that [k(x): k(2)); = [k(x): k);.

PROOF. Let k be the algebraic closure of k in some algebraic closure
of k(x). Since k is a perfect field, k(x) is separably generated over k
(Theorem 31, §13). By Theorem 30, §13, the set of generators
{xy, ¥3, -+ +, x,} contains a separating transcendence basis of k(x)/k.
Let {x,, x4, -, x,} be such a basis. Then the x; are separably
algebraic over k(x;, x5, - -+, ,), i =1,2,---,n. If we denote by ¥’
the field obtained by adjoining to & the coefficients of the minimal
polynomials f, . \(X), f,4o(X), - = -, f(X) of x,41) %49 - -+, %, reESPEC-
tively, over k, then &’ is a finite algebraic extension of &, and it is clear
that {x,, x5, " -, x,) is also a separating transcendence basis of k'(x)[k’
(since the f,(X) are separable polynomials). Let s be the integer
defined by (6). If we identify the set {z,, 2y, - - -, 2,} with {x}, x5, - -,
x,}, we have, in view of (7), [k(x) : k(xy, x4, - - - , x,)]; = p*, while if {2} is
any other transcendence basis of k(x)/k, then we have, again by (6), that
[k(x): k(2)], = p*. This establishes the theorem.

The foregoing theorem tells us that if {2} ranges over the set of all
transcendence bases which can be extractcd from the set of generators
Xy, Xg,* * *, X,, then [k(x): k]; = min {[k(x): k(z)],}. The theorem is
therefore a generalization of Theorem 30, § 13, for if k(x) is separably
generated over &, then [k(x): k], = 1.

We shall now consider a certain class of ground field extensions
k — K (within the big field .S) and we shall derive some properties of
the order of inseparability [k(x) : &); in relation to such extensions.

We first prove the following lemma:

LEMMA 2. Let K be an algebraic extension of k and let {z} be a
transcendence basis of k(x)|k. If we have [k'(x): k'(2)]; = [k(x): k(=2));
Sor all fields k' between k and K which are finite over k, then we have also
[K(x): K(2)]; = [K(x): k(a)]s
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PROOF. For any field &' between k and K we denote by L(k’) the
maximal separable extension of k'(z) in A'(x). Let {£,, &5 -, &nl
be a basis of k(x) over L(k) (whence m = [k(x): k(2)],). It is im-
mediately seen that k'(x) = L(k')¢, + L(k)é; + - - - + L(K')¢,. By
our assumption, the £, must be linearly independent over L(k’) if k' is
a finite extension of k. Since every finite set of elements of L(K) is
contained in some L(k’), where &’ is a finite extension of %, it follows
that the £; are also linearly independent over L(K'), and this proves the
lemma.

The extensions £ — K which we shall deal with in the remainder of
this section are the so-called free extensions of k relative to k(x). We give,
namely, the following definition:

DEFINITION 2. Given two subrings R and R’ of S which contain k,
we say that R and R’ are free over k if the following condition is satisfied :
whenever {x,, x5, - - - , x,} and {x’\, ¥y, - - -, x'.} are finite subsets of R and
R’ respectively such that the elements of each set are algebraically independ-
ent over k, then also ther + s elements x,, x5, -+ , X,, X', X'y, - - -, x', are
algebraically independent over k.

It follows at once that if either R or R’ is algebraic over k, then R and
R’ are free over k. .

We note that if each of the two integral domains R and R’ has finite
transcendence degree over & (see 11, § 12, p. 100), then Definition 2 is
equivalent to the following: R and R’ are free over k if and only if

(8) tr.d. [R, R/k = tr. d. Rk + tr. d. R'[k,

where [R, R’] denotes, as usual, the smallest subring of S which
contains both R and R’. For, clearly, if {x,, %, ---,x,} and
{x'y, &'y, - - -, '} are transcendence bases of R/k and R'[k respectively,
then every element of [R, R’] is algebraic over the field k(x;, x5, - - -,
Xy &'y, X'g, -+ -, x',) (this field is to be thought of as a subfield of the
quotient field of S) and hence, if R and R’ are free over k, then the
m + n elements x,, x’, are distinct and constitute a transcendence basis
of [R, R']/k. Conversely, if (8) holds, and if {x;, x,,---,x,} and
{x'y, x'5, - - -, &',} are finite transcendence sets in R/k and R’[k respec-
tively, then we extend these sets to transcendences bases {x,, x,, - - *,
Xy Xppqs vy Xy and {&'y, &g, -0, X', &, 00+, ¥} of R[kand R'[k
respectively (see II, § 12, p. 101). The preceding argument shows that
the set of m + n elements x;, x'; contains a transcendence basis of
[R, R}k, and, consequently, if (8) holds, then the m 4 n elements
x;, ¥'; (and therefore also the given 7 + s elements x,, x,, - - -, x,, ¥',,
x'y, + + -, x’,) must be algebraically independent over k.
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We note that an equivalent formulation of (8) is the following:
) tr.d. [R, R')/R = tr. d. R'[k,

for tr. d. [R, R'}/R + tr. d. R[k = tr. d. [R, R')/k.

The preceding proof can be extended to the general case of integral
domains R, R’ having arbitrary transcendence degree over k and leads
to the conclusion that if B is a transcendence basis of R/k and B’ is a
transcendence basis of R’[k, then R and R’ are free over & if and only if
B and B’ have no elements in common and the elements of BU B’ are
algebraically independent over k (whence BU B’ is a transcendence basis
of [R, R’)/k).

In applications one uses frequently the following equivalent (but
asymmetric) formulation of the concept of free integral domains over k:
the integral domains R and R’ are free over k if and only if any set of
algebraically independent elements of R over k is also such over R'. That
this is equivalent to our original definition follows immediately from our
preceding considerations.

THeoReM 38. If k(x) is a finitely generated extension of k and if K is
an extension field of k such that K and k(x) are free over k, then for any
transcendence basis {z} of k(x)[k we have
(10) [K(x) : K(2));/[k(x) : k(2)]; = [K(=): K];[[*(x) : k];.

In particular, if K is a finite algebraic’ extension of k, then the common
value of both sides of (10) is equal to [K : k];[[K(x) : k(x));.

PROOF. If K is a finite extension of k, then (6) and (7) show that
the value of the ratio on the left-hand side of (10) is independent of the
choice of the transcendence basis {z} and is equal to [K : k],/[K(x) : k(x)];.
If we now let {2} range over the set of all transcendence bases of k(x)/k
which can be extracted from the set {x} of generators, then we deduce at
once from Theorem 37 that the foregoing ratio is equal to the ratio
[K(x): K1/[k(x) : A].

We next consider the case in which K is an arbitrary algebraic
extension of k. We fix a transcendence basis {u} of k(x) over k. For
any two fields &, and k, between k and K such that k, C k; we have
[Ry(x) : ky(#)); = [ko(x) : ky(#)];» by (2). We can therefore find a field
k' between k and K such that &’ is a finite extension of k and such that
[k"(x) : k"(u)); = [K'(x): k'(u)); for any field k" between &’ and K which
is a finite extension of 2’. By the finite case considered in the preceding
part of the proof we have then [k"(x): &"(3)]; = [k'(x): k'(3)]; for any
transcendence basis {z} of k'(x)/k and for any field k" between % and K
such that 2" is a finite extension of . It follows then by Lemma 2 that
[K(x): K(2)], = [k'(x): k'(2)); for any transcendence basis {2z} of
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k'(x)[k'. Hence [K(x): K]}, = [k(x): k], We now have, for any
transcendence basis {2} of k(x)/k:

[k(x): K(2)]; = p'[k (x): K'(&)); = p'[K(x): K(=)],s

P = [k(x): R)[[K (x) : K] = [k(x): k),/[K(x): K],
and this establishes the theorem in the case in which K is an algebraic
extension of k.
In the general case we consider a transcendence basis B of K/k.
Since K and k(x) are free over k, the elements of B are algebraically
independent over k(x). Hence by Corollary 1 of Lemma 1 we have

where

(11) [k(B, %) : k(B, )], = [k(x): k(z));
for any transcendence basis {2} of k(x)/k. Hence
(12) [%(B, x): k(B)]; = [k(x): K};.
Since K is an algebraic extension of k(B), we have by the preceding
case:
[%(B, x) : K(B, 2)]; = p*[K(x): K(2)],,
where

?* = [K(B, x): k(B)),/[K(x): K].,
and from this the theorem follows in view of (11) and (12).

CoROLLARY 1.  If kis the algebraically closed field given by the algebraic
closure of k in S, then
(13) [k(x) : k(2)); = [k(x): k];[k(x) : k(2)];

Jor any transcendence basis {3} of k(x)/k.

For k being a perfect field, the order of inseparability of k(x) over k is
equal to 1.

COROLLARY 2.  The assumptions being as in the first part of Theorem 38,
and if we assume furthermore that either (a) K and k(x) are linearly
disjoint over k or (b) K is separably generated over k, then [K(x): K], =
[K(x) : K],

In the case (a) the corollary is an immediate consequence of (10) and
of Lemma 1 as applied to the case L = k(z), K = k(x)and ¥’ = K. If
K is a finite separable extension of k, then the corollary follows at once
from (10) and from the second half of Theorem 38. If K is a purely
transcendental extension of k then K and k(x) are linearly disjoint over
k by Corollary 1 to the lemma of § 15 (since K and k(x) are free over k)
and we are then in the case (a). The general case under (b) is now
settled immediately by following up a purely transcendental extension
of k by a separable algebraic extension and by using Lemma 2.
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§ 17. Derivations

DEerFINITION. Let S be a ring and R a subring of S. A mapping D of
R into S is said to be a derivation of R (with values in S) if, for every x, y
in R, D satisfies the following conditions:

(1) D(x + y) = D(x) + D(y).
(2) D(xy) = xD(y) + yD(x).

REMARK. The notion of a derivation of R may be generalized to the case in
which S is replaced by an R-module (see 111, § 1). In that case, the products
xD(y) and yD)(x) on the right-hand side of (2) are products of an element of R
and an element of the R-module S, and hence are elements of S; thus formula
(2) is meaningful.

Successive applications of formula (2) show that for every x in R and
for every integer n > 1 we have D(x") = nx"~'D(x). In particular, if S
has a unit element e which lies in R, we have D(e) = D(e?) = 2¢D(e) =
2D(e), whence D(e) = 0. From (2) it follows that the kernel of the
additive homomorphism D (that is, the set of all elements x in R such
that D(x) = 0) is a subring of R; the relation D(e) = 0 now shows that
this subring contains the unit element ¢, hence also all integral multiples
ne(ne J).

A derivation D of a ring R such that D(x) = 0 for every element x of
a subring R’ of R is said to be trivial on R’, or to be an R'-derivation
of R.

LeMMA. Let R be an integral domain and let D be a derivation of R
with values in a field K' containing R. Then I) can be extended, and in a
unique way, to a derivation 1)’ of the quotient field K of R. For x|y e K
(x, v, € R, y 3 ) we have

©) D'(x[y) = (yD(x) — xD())/y>.

PROOF. From D(x) = D'(y-(x/y)) = yD’'(x[y) + (x/y)D(y) it fol-
lows that relation (3) holds for every derivation D’ of K which extends
D. This proves the uniqueness of D’. As to the existence of D', we
first have to show that (3) actually defines a mapping of K, that is, that
if x|y = 'y’ then (yD(x) — xD(9)ly* = (y'D(x) — 5'D(")ly", and
it will be sufficient to show this in the case in which ¥’ = 2x, ¥’ = zy,
z € R. In this case we have y'I(x') = z2y(aD(x) + xD(3)), ¥’ D(y') =
zx(zD(y) + yDXz)), whence y'D(x') — &' D(y’) = 2¥(y(D(x) — xD(y)),
and this proves the above equality. A straightforward computation,
which may be left to the reader, shows that the mapping D’ satisfies
conditions (1) and (2) and herice is a derivation.
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EXAMPLES OF DERIVATIONS

EXAMPLE 1. Let R be a ring, D a derivation of R, and A the poly-
nomial ring R[X,, - - -, X,]. With every polynomial

f(Xll Tty X,.) = Z “q,.---q,.Xx" e X"Vn
we associate the polynomial
Z D(aq" . -"n)qu' R, M

obtained from f by coeflicientwise derivation, and we denote this
polynomial by f2(X,, - - -, X,). It is a straightforward matter to check
that the mapping f — f? is a derivation of A. Obviously, this derivation
is an extension of /).

EXAMPLE 2. liet R’ be a ring and R be the polynomial ring
R[X, --+,X,. We may formally define the partial derivative
f'x (X3 -+ -, X,) (with respect to X,) of a polynomial fin K as follows:
if f( Xy, X,)= iaq,."'.q,.qu' X% then f’.\',(‘\,l’ e, X) =
24g, . o 1 X197 X0 - - - X, "The mapping f - f'y is denoted by
D, or by 9/¢X,. A straightforward computation shows that ), is an
R’-derivation of the polynomial ring R; (it is even trivial on
R'[X,, ---,X,]). We call this derivation of R the partial derivation
with respect to X,. In the same way we define the partial derivations
D, for i=2,---,n By the above lemma, if R is a field these
derivations can be extended, and in a unique way, to derivations of the
rational function field A = R'(X,, - - -, X,); these derivations bear the
same name and are denoted in the same way as their restrictions to the
polynomial ring R. Formulae (1) and (2) show that the derivation
D, (1 £ 7 < n) is uniquely determined by the condition that it be trivial
on R’ and that it satisfy the following relations:

4) D(X)=1 D(X)=0 for izj.

EXAMPLE 3. 'The preceding example can be gencralized to the case of
polynomial rings R = R’[{X,]] in infinitely many indeterminates X,
indexed by a set A = {«}. For any a € A we denote by S, the set of
indeterminates X, B # «, and by R, the polynomial ring R’[S,]. "T'hen
R = R [X,] is a polynomial ring in one indeterminate X, over the ring
R,, and thus there is a unique derivation D, of R which is trivial on R,
and such that D (X,) = 1. We denote this derivation by ¢/¢ X,. We
have then D (X;) = 0 if a % B. If R’ is a field, the derivations ¢/¢X,
can be extended, in a unique way, to the quotient field R'({X,}).

Let now K be a field and L an extension field of K. We are going to
study the set of all derivations of K with valuesin L. If D and D’ are two
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such derivations, the mapping D + D’ defined by (D 4 D')(x) =
D(x) + D’(x) is also a derivation of K with values in L: in fact formulae
(1) and (2) are “linear in D.” In the same way we see that, if D is a
derivation of K and a is an element of L, the mapping aD defined by
(aD)(x) = aD(x) is also a derivation of K. Thus the derivations of K
with values in L form a vector space over L, which we shall denote by 2,
or 2x(L). If K'isasubfield of K, the derivations of K which are trivial
on K’ form a vector subspace of 9, which we shall denote by @ «-.
REMARK. If D and D’ are two derivations of K with values in L, the
composite mappings DD’ and D’D are not, in general, derivations. However,
the mapping D’D — DD’ [defined by (D’'D — DD’)(x) = D’(D(x)) — D(D’(x))]
is a derivation of K. In fact, formula (1) is obvious for D’D — DD’. On the
other hand, we have .

(D’'D — DD’)(xy) = D'(xD(y) + yD(x)) — D(xD’(y) + yD’(x))

= x-(D'D — DD')(y) + y-(D’'D — DD')(x),
since the terms D’(x)D(y) and D’(y)D(x) cancel; thus D’D — DD’ satisfies (2).
The derivation D’D — DD’ is sometimes denoted by [D, D’] and called the
bracket of D and D’. The formulae [D, D] = 0, [D, D’} = — [D’, D] are
obvious. Furthermore, it is a straightforward matter to check the *Jacobi

Identity”

((D, D), D] + (D', D*], D] + (D", D), D'} = O
between any three derivations D, D’, D" of K. One expresses the above proper-
ties of the bracket [D, D’] by saying that 9 is a Lie Algebraover L. Similarly
Zxx is also a Lie Algebra over L.

EXAMPLE 4. Let % be a field and K = k(X,, - - -, X,) the rational
function field in # variables over . We are going to prove that the
partial derivations D; (i = 1,-- -, n) form a basis of the vector space
D of k-derivations of K (with values in any extension field L of K).
In fact, let De 24, If we set D' = 3SD(X,)D;, D’ is a k-derivation
of K which coincides with D at the elements X, - - -, X,, and hence D’
coincides with D on the polynomial ring k[X,, - - -, X,] since the kernel
of the derivation D' — D is a ring. Consequently, D' = D on the
quotient field K, by formula (3) (Lemma), showing that the D; span
Dk Wenow prove that the D; are linearly independent (over L). In
fact,if 3a,D; = 0(a; € L), then 0 = (3a,D)X,) = a;forj=1,---,n

THEOREM 39. Let K be afield, F = K(x,, - - - , x,) a finitely generated
extension field of K, D a derivation of K with values in some extension field
L of F, and {u,, - - -, u,} a set of n elements of L. In order for there to
exist a derivation D' of F extending D and such that D'(x;) = u; for
i= 1, n, it is necessary and sufficient that, for every polynomial
f(Xy -+, X,) in K[X,, -, X,] such that f(x,," - -, x,) = 0, we have

6 Pl m)+ Sue D2 =0
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and if this condition is satisfied then the derivation D' is uniquely determined.
Furthermore, if { f;} is a set of polynomials such that fi(xy, %9, + -+ , Xy) =
0 for all j and such that every polynomial f € K| Xy, - -+ , X,) for which we
have f(x1, ++, %a) = O may be written in the form f =3 g;f; with

J
g€ K[X,, «-, Xa] (in other words, if {[f;} is “ a basis of the ideal of
algebraic relations satisfied by xy, - - - , xn over K '), then for the existence
of D' it is syfficient that

(6) FPGn %) + z ui(Dof Ny, - %) =,

Jor every j.
PROOF. We first observe that if D’ is any derivation of F extending

D then we have, for every polynomial g € K[X,, - - -, X,], the relation
(7) D'(glxyy - -~ 5 %)) = gP(xy, -+ » %) + 2, (D'(x)NDig)xy, - - -, ).

In fact, formula (2) for the derivative of a product shows that (7) is
true when g is a monomial aX 1. - - - X, % (a € K); hence (7) is true for
any polynomial g, by linearity. Since D’(0) = 0, (7) shows that relation
(4) is necessary, and (7) also shows that there is at most only one
derivation D’ of K[x,, x, - * -, ,], and hence also at most one derivation
of the quotient field F, such that D’ is an extension of D and D'(x;) = u,,
i=12---,n Conversely, if (5) holds for any polynomial f over K
such that f(x,, - - -, x,) = 0, we define D’ by setting

D'(g(xy, -, x,)) = 2%y, -+ -, x,) + Z“u"(Dn‘g)(xb Tty &)

Then D' is a mapping, for the value D'(g(x,, - - -, x,)) depends only on
the element g(x,, - - -, x,) of F and not on the polynomial g [since, if
&%y, -+, x,) = h(x,, - - *, x,), we may apply (5) to the polynomial g — A,
and we then find that D’(g(x,, x5, - - -, %,)) = D'(h(xy, %4, - - * , ,))].
It is clear that D’ is an additive homomorphism (that is, D’ satisfies (1)).
On the other hand, we have D’(x;) = u;. Finally, condition (2) is
satisfied by D’ since the mappings g — g2 and g — u,- D.g are deriva-
tions of K[X,, - - -, X,] (Examples 1 and 2, p. 121). Thus condition
(5) is sufficient, since a derivation D’ of K[x,, - * - , x,] can be extended
to the quotient field F (Lemma). It remains to be shown that condi-
tion (6) implies condition (5) for any polynomial f such that
f(xy,--,x)=0. Since f= Dg,f, we have fP(x;, --,x,)=

lz_f;"(#n Tty x-)gf(xv RN AR § l,z.,::(xb ) x,,)g,-”(x,, T, X)) =
2fP(y - 2)g (% -+, %), since fix,, - -+, x,) =0 for every j.
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In the same way we see that
(Dl'f)(xl’ Y xn) = ngj(xl' ) xn)'(Difj)(xl’ Y xu)'

Therefore we obtain (5) by multiplying each relation (6) by g(x,, - - - , %,)
and adding the resulting relations. Q.E.D.

We shall now apply Theorem 39 in various important cases of field
extensions.

CoOROLLARY 1. Let K be a field and let F = K (x) be a simple transcen-
dental extension of K. If D is a derivation of K with values in some field
L containing F, and if u is any element of L, then there exists one and only
one derivation D’ of F extending D, such that D(x) = u.

In fact, 0 is the only polynomial f in K[X] such that f(x) = 0.

CoroLLARY 1'. Let K be a field and let F = K(S) be a purely
transcendental extension of K here S denotes a set of generators of F|K
which are algebraically independent over K. Let x — u, be a mapping of
S into a field L containing F. If D is any derivation of K with values in
L, then there exists one and only one derivation D' of F extending D, such
that D(x) = u, for all x in S.

It is clear that if D’ exists it is uniquely determined on K[S], whence
also on F. To show the existence of D’ we shall use Zorn’s lemma.
Let I be the set of all subsets S, of S with the property that 1) admits an
extension I, to F, = K(S,) such that D x = u, for all x in S,. The
set / is non-empty since the empty set belongs to I. If S, C S, then
Dy is an extension of D,. It follows at once that the set I, partially
ordered by set-theoretic inclusion, is inductive. By Zorn’s lemma,
there exists a maximal element S’ in I. Let F' = K(S’) and let D" be
the derivation of F’ extending D and such that D'(x) = u, for all x in
S’. 1f S # S, then there exists an element y in S which does not
belong to S’, and by Corollary 1 there exists a derivation D" of the field
F'(y) = K(S'U{y}) which is an extension of D’ and is such that
D'y = u,. 'This contradicts the maximality of S"inI. Hence §' = S
and the corollary is proved.

COROLLARY 2. Let K be a field, and F = K(x) a simple separable
algebraic extension of K. Then every derivation D of K may be extended,
in one and only one way, to a derivation of F.

In fact, every polynomial g € K[X] such that g(x) = 0 is a multiple
of the minimal polynomial f of x over K. Thus the set of relations (6)
reduces 1o the single relation f2(x) 4+ uf’x(x) = 0. Since x is separable
over K wehave f’,(x) # 0, and hence the relation f2(x) + uf’x(x) = Ois
satisfied by one and only one value of #. If 4, is that value of « then the
extension D’ of Dto F such that D'(x) = uyistheonly extensionof Dto F.
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CoroLLARY 2'.  Corollary 2 remains valid if F is an arbitrary separable
algebraic extension of K.

The proof, which is similar to and even simpier than the proof of
Corollary 1’, is a straightforward application of Zorn’s lemma and may
be left to the reader.

CoroLLARY 3. If a field F is a separably generated extension of a field
K then every derivation D of K can be extended to a derivation of F.

This follows immediately from Corollaries 1 and 2.

CoRrOLLARY 4. Let K be a field of characteristic p # 0 and let
F = K{(x) (F # K) be a simple purely inseparable extension of K. Let e
be the smallest integer (¢ = 1) such that y = x** € K. Then a derivation
D of K has an extension D’ to F if and only if D(y) = 0, and if D is such a
derivation of K (with values in a field L containing F) then the value
of D'(x) can be assigned arbitrarily in L.

The minimal polynomial of x over K is X?»* — y (Theorem 7 of § 5).
Hence relation (6) reduces to D(y) = 0.

COROLLARY 4. Let K be a field of characteristic p 3 () and let F be a
purely inseparable extension of K such that F* C K. If S is a set of
generators of F|K and if D is a derivation of K such that D(x?) = 0 for
every element x of S, then ) can be extended to F. :

We consider the set I of all pairs (¥, D’) composed of a field F'' such
that K C F' C K(S) and a derivation 1)’ of F'’ extending D. We set
(F',D'Y<L(F",D")if F'C F" and if D" extends I)’. 'T'his relation is
an order relation, for which 7 is obvivusly inductive. By Zorn’s lemma
there exists a maximal element (F', D) of 1. If F' 3 K(S), there
exists an element x in S such that x¢ F'’'; we then have x? ¢ F' and
D'(x?) = 0, whence )’ may be extended to K(S)(x) according to
Coroliary 4.  Since this contradicts the maximality of (F’, D’), we have
F' = K(S). Q.E.D. '

COROLLARY 5. Let K be a field of characteristic p 3£ 0, and F a purely
inseparable extension of K such that F* C K. If [F: K] is finite, say
[F: K] =p" then the vector space %y of K-derivations of F has
dimension s. There exists a set {x,, - -+, x,} of s elements of F and a basis
{Dy, Dy, -+, D,} of Zp,x, with the following properties: F = K(x,,---,x,),
x, ¢ K(xy,---,x;_y) forj=1,---,5 and D(x,) =1, Dy(x)) = 0 for

i# ]
We construct by induction a sequence x}, - - -, x;, - - - of elements of
F such that x;¢ K(x,,---,x,_,). Since x?€ K(x,, -, x,_,), we

have [K(xy,---,%):K(xy,---,x;_,)] = p. Since [F: K] is finite,
this sequence must have a finite number of terms, say s, and then we
have [F: K] =p*. For everyj=1,:--.s there exists, by Corollary
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4, a K(x,, - - -, x,_,)-derivation D’; of K{(x,, - - -, x,) such that D’ (x;)
= 1. We extend D', to a derivation D, of F = K(x,,-- -, x,) by
imposing on D; the conditions D (x;,,) = --- = Djx,) = 0; this is
possible, as follows by successive applications of Corollary 4, since
xpeKfori=j+1,---,s. We thus have s derivations D,, - - -, D,
of F over K such that D(x;) =1 and Dx;) = 0 for ¢ 3¢ j. These
derivations are linearly independent: in fact, if > ¢,D; = 0, we have

a,= (z a;D;)(x,) = O for every . Finally, if D is' any K-derivation of
F, the 'mapping D'=D-— ZD(xi)D,- is a derivation of F which takes

the value 0 on K and on the set {x,, - - -, x,}. Hence D’ takes the value
0 on K[x,, - - -, x,] = F; this proves that the derivations D,, - - -, D,
span Dgx. Q.E.D.

REMARK. The formula D(x?) = px®*—! shows that in characteristic p ¢ 0,
every derivation of a field L is trivial on the subfield L?. In particular, a perfect
field of characteristic p ¢ 0 has no non-trivial derivations. Corollaries 4 and
4’ show that L? is exactly the set of all elements x of L such that D(x) = 0 for
every derivation D of L. If K is a subfield of L we see, in the same way, that
g(i’) is the set of all elements x in L such that D(x) = 0 for every K-derivation

THeOREM 40. Let K be a field and F = K(x,, - - -, x,) a finitely
generated extension of K. For F to be separably algebraic over K, it is
necessary and sufficient that O be the only K-derivation of F.

PROOF. Necessity follows from Corollary 2’ to Theorem 39. Con-
versely let j be the largest index for which F is not separably algebraic
over K(x,, -+, x;). Then the field K(x,, - - -, x;,,) is either purely
transcendental or algebraic inseparable over K(x,, - - -, x;). Atany rate
there exists a non-trivial derivation D of K(x,, - - -, x;,,) which is trivial
on K(x,,---,x;) (Corollaries 1 and 4 to Theorem 39). Since F is
separably algebraic over K(x,,-: -, x,,,), D can be extended to F
(Corollary 2 to Theorem 39). This contradicts our hypothesis and
proves the sufficiency. Q.E.D.

CoOROLLARY. Let K be a field, {x,, - - -, x,} a finite set of n elements of
some extension field F of K, and {f,, - - - , f,} a finite set of n elements of
K[X,, --,X,] such that f(x,,---,x)=0 for i=1,---,n If
det (%(x,, e x,)) % 0 then K(x,, - - - , x,) is separable algebraic over
K. Conversely, if K(xy, %y, + - -, %,) is separable algebraic over K then
there exist polynomials f,,fs, - - -, f, in K[X,, Xy, - -, X,] such that
fdxy xgy -, 2,)=0 for i=1,2,---,n and such that the above
determinant is different from 0.
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In fact, let D be a K-derivation of K(x,,---,x,). Since

D(f(xy, - - -, x,)) = 0, we have Z(af/a Xy, -0, x,)-D(x;) = 0 for

=1,---,n. We thus have a system of n homogeneous linear
equations in D(x,),---,D(x,) with non-vanishing determinant.
Hence D(x,) = - - - = D(x,) = 0, and D is the trivial derivation.

Assume now that K{(x,, x,, - - -, x,) is separable algebraic over K.
Then there exist no non-trivial K- derivations of K(x;, xg "+, %,)

Consider the system of homogeneous equations }_ u (D f)xy, X9, * + 4 X,)

= 0 obtained by letting f vary in the set of all polynomials f in
K[X,, X,, - - -, X,] such that f(x,, x5, - - -, x,) = 0. By Theorem 39
(equation (5)) it follows that this system of equations has only the trivial
solution ¥, = u, =---=u,=0. Hence the system must contain
some set of # equations with non-vanishing determinant, and this
completes the proof of the corollary.

THEOREM 41. Let K be a field and F = K{x,, - - -, x,) a finitely
generated extension field of K. The dimension s of 2y is equal to the
smallest number of elements u,, - --,u, of F such that F is separable
algebmic over K(u,,---,u,). If K has characteristic p 5 0 then

= [F: K(F?)]. The relation s = tr.d. F[K characterizes separably
gmerated extensions.

PROOF. A K-derivation D of F'= K(u,,---,u,) is uniquely
determined by D(u,), - - -, D(x,); hcnce the dimension of 2.k is at
most equal to ¢&.  If F is separable algebraic over F’, every derivation of
F’ has a unique extension to F (Corollary 2’ of Theorem 39), whence
s <t. For proving our first assertion we now have to show the
existence of s elements u,, - - -, u, of F such that F is separable algebraic
over K(u,,---,u,). This is clear if p = 0 for, in that case, s is the
transcendence degree of F/K (see Corollary 2’ to Theorem 39 and the
example preceding Theorem 39). If p 3£ 0 we observe that every
K-derivation of F is trivial on K(F?) and that F is purely inseparable
over K(F?). Therefore, if we apply Corollary 5 of Theorem 39 we find
that there exist s elements u,, - - -, %, of F and s linearly independent
K-derivations D,, - - -, D, of F such that D,(u,) =1, D,(u,) = O for
i 7 j. If a derivation D of F is trivial on K(u,, - - -, u,), we have
D = 0, since we can write D = Za D,, whence 0 = D(,;) = a, for

everyj. Hence Fis separable algebraxc over K(u,, - - -, u,) by Theorem
40, and the first part of our theorem is proved. The second assertion of
the theorem is a partial repetition of Corollary 5 of Theorem 39. The
third assertion follows from the first. Q.E.D.
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THEORFM 42 Let K be a field of characteristic p %2 0 and F an
extension field of K. For F to be separable over K (§ 15), it is necessary
and sufficient that every derivation of K be extendable to F.

PROOF. Suppose first that F is separable over K, that is, suppose
that F and K'/» are linearly disjoint over K. Then, since x — x? is an
isomorphism, the fields F? and K are linearly disjoint over K?. Let
{u,} be a basis (finite or infinite) of F* considered as a vector space over
K?; we have the “multiplication table” wuu, = c,u(c,q, € K?).

k4

Then {u,} is obviously a basis of the ring K[F?] considered as a vector
space over K. Let ) be a derivation of K. Lvery element x of K[F?]
may be written, in a unique way, in the form x = Y x4, (x,€ K, x,=0

except for a finite number of indices). Hence, if we set I'(x) =
> D(x,)u,, then 1) is a mapping of K [F?] into some extension field of F,

and this mapping obviously satisfies the condition I'(x + y) =
D’(x) + D’(y). 'T'o show that )" is a derivation we consider any two
elements x = > x,u, and y = > yu, of K[Fr]; we have

I),(xy) = I)I ( 2”-. xuyllruﬁ'yu‘)‘)
a, B,y

= Z (1 )(xu)yﬂ + xal) (y ﬂ))raﬂ‘/ilv

= xD'(y) + yD'(x),
since I)c,,) = 0 for ¢, € K». Now, the derivation D’ of K[F*]
(which extends D since one of the elements #, may be taken to be 1)
may be extended to a derivation 1)” of the quotient field K(F?) (L.emma).
Finally, since F is purely inseparable over K(F?) and since )" takes
the value 0 on F*, by construction (if Yxu, € F? then the x, are in K?
and so I)(x,) = 0), Corollary 4 of Theorem 39 shows that D" may be
extended to F. 'Thus the necessity is proved.

Conversely, suppose that every derivation of K can be extended to F.
We shall prove that if x,, - - -, x, are elements of F which are linearly
independent over K, then the p-th powers of these elements are also
linearly independent over K (a condition which is equivalent to separa-
bility; see § 15). Assuming the contrary, choose among the non-trivial
linear relations with coefficients in K satisfied by the x;?, one with the
smallest number of non-vanishing terms. By renumbering the indices
we may write this relation in the form a4+ - -+ ax? =
(a; € K, a; # 0). We may also assume that a, = 1. Now, given any
derivation D of K, we extend it to F and we continue to denote by D the
extended derivation. Since D(x) = 0 and D(a,) = D(1) = 0, the
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relation gives, by derivation, D(ag)xs? + - - - + D(a,)x,? = 0. Since
this relation has only # — 1 terms, all its coefficients vanish, whence
D(a;) = Oforalliand all D. Since g, is annihilated by every derivation
of K, a; belongs to K? (remark after Corollary 5 of Theorem 39),
whence a; = b, with b€ K, b, % 0. Thus the relation Jax? =0
gives >bPx? = (3bx,)? = 0, whence Yb,x, = 0, in contradiction with
the linear independence of x,, - - -, x, over K. Q.E.D.

We shall terminate this section with a brief discussion of p-bases of
fields of characteristic p ¢ 0. In the sequel F denotes a given field of
characteristic p 7 0. _

Given a finite set of elements x,, x,, - - -, x, of F, these elements are
said to be p-independent if the n» monomials x;.x5" - - - x,' (0 i, < p)
are linearly independent over F?. The set {x,, x, - - -, x,} is then said
to be a p-independent set. An arbitrary (finite or infinite) subset S of F
is said to be a p-independent set if every finite subset of S is p-indepen-
dent.

A subset S of F is said to be a p-basis if it is a p-independent set and if
it is at the same time a system of generators of F/F?, thatis, if F = F?(S).

Part of the discussion of p-independence and p-bases shall be given
here as a special case of the general axiomatic notion of dependence
developed in connection with vector spaces (I, § 21) and transcendental
extensions (§ 12). Namely, let us introduce the following relation ¢
between subsets of F: if 4 is any subset of F then ¢(4) = F*(A).
This relation ¢ satisfies the five axioms given in I, § 21. The validity of
the first four of these axioms is self-evident, and we have only to check
the validity of the last axiom (“ principle of exchange "’): if A is a subset
of F and x, y are elements of F such that y ¢ F?(4)and y € F#(4, x), then
x € F?(A4,y). Since F(A4, x) = F?(A4)[x] and x* € F?, we may write y
in the form y = apx*~! + ax?=2 4 - - - 4+ a,_px + a,_,, where the g,
are in F?(4). Since y ¢ F#(A), the coefficients ag, a;, - - -, a,_, are not
all zero. It follows that x is both separable and purely inseparable over
F#(A, y) and hence belongs to F?(4, y), and this proves the principle of
exchange.

We now show that a finite subset {x,, x,, - - -, x,} of F is free (with
respect to the relation ¢; see I, § 21) if and only if it is a p-independent
set. Assume that the set {x,, xy, - - -, x,} is free. To show that the
elements x; are p-independent we shall use induction with respect to n,
since the case n = 0 is trivial. Let f(X,, X;, - - -, X,) be a non-zero
polynomial with coefficients in F? and of degree less than p in each of
the variables X,. We have to show that f(x,, %y, - -, %,) # 0. We
may assume that X, actually occurs in f. By our induction hypothesis,
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the polynomial f(x,, x5, - -, %,_y, X) in F¥(x), x4, - - -, x,_;) [X] is
different from zero. Since this polynomial is of degree less than p in X,
it is separable. Since x, is purely inseparable over F? and since it does
not belong to F?(x,, x,, - - - , x,_,) (the set {x,, x,, - - -, x,} being free),
it follows that x, cannot be a root of the above polynomisl, and this
proves the p-independence of the elements x,, x, - - - , x,.

Conversely, if the elements x,, x,, - - -, x, do not form a free set then
we may assume that x, € F*(x,, x,, - - -, x,_,;). Since x € F?, we may
write x, in the form x, = g(x,, x5, - - *, x,_,), where g is a polynomial
with coefficients in F? and of degree less than p in each of the arguments.
Then the relation g(x,, x4, - - -, x,_,) — x, = 0 is a relation of linear
dependence (over F?) between the monomial x, and the (n — 1)?
monomials x".xy"s - - - X,_y'a-1 (0 = i, < p), showing that the elements
Xy, Xg, * * * , X, are not p-independent.

Using the general results established in I, § 21, we have therefore
established the following facts:

(1) A subset S of F is a p-basis of F if and only if it is a basis of F with
respect to the relation @, or—in othetwords—if and only if S is a minimal
system of generators of F over F».

(2) There exist p-bases of F, and any two p-bases of F have the same
cardinal number.

The following theorem, which is in part a generalization of Corollary
5 of Theorem 39, establishes a relationship between p-independence
and Fr-derivations of F:

THEOREM 43. A subset S of F is p-independent if and only if for every
element x of S there exists a derivation D, of F|F? such that D (x) = 1 and
D.(y) = 0 for every element y of S different from x.

PROOF. Assume that S is a p-independent set. Let # be the set of
all subsets of S having the following property: if 4 is any set in the
family # then there exists for each element x of A a derivation D, ,
of F#(A) such that D, ,(x) = 1and D, ,(y)= 0 for all elements y of
A which are different from x. We partially order # by set-theoretic
inclusion and we show that . is inductive. Let 4’ be a totally ordered
subset of #. If 4, Be S’ and if, say, A C B, then it is clear that for
each element x of 4 the derivation D, pis an extension of the derivation
D, ,. Itfollows thatif C denotes the union of all the sets 4 belonging
to S’ then for each element x of C the various derivations D, ,
(xe A€ S’) have a common extension D, o to FHC) such that
D, o(x) = 1and D, (y) = Ofor all elements y in C which are different
fromx. Hence C € f, showing that f is inductive. By Zorn’s lemma,
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let S’ be a maximal element of #. Were S’ a proper subset of S, we
could choose an element z in S which does not belong to S’ and then,
by Corollary 4 of Theorem 39, there would exist a derivation D of
Fr(S’, 3) which is trivial on F?(S’) and such that D(2) = 1 (since
z ¢ F¥(S’), in view of the p-independence of the elements of S). This
would contradict the maximality of S’. Hence S’ = S. Now, each
of the derivations D, g, x € S, can be extended to a derivation D, of F,
by Corollary 4’ of Theorem 39. These derivations D, satisfy the
conditions stated in the theorem.

Conversely, assume that for each element of .S there exists a deriva-
tion D, of F[Fr satisfying the conditions stated in the theorem. If
X, Xy, - * *, X, are arbitrary elements of S then the derivation D,
(1=Si=n) is trivial on FP(x;, xy ---,%;_y, X;4y, -, X,) while
D, (x;) = 1. Hence x; does not belong to the field F*(x,, x, - - -, x,_y,
X; .1 ', %,). This shows that the set {x,, x,, - - -, x,} is free (with
respect to the relation @) and hence is p-independent. Q.E.D.

We note that if F is a finitely generated extension of F? and S is a
p-basls of F, then the derivations D,, x € S, form a basis of Dg/p; thls,
in fact, is the meaning of Corollary 5 of Theorem 39.



III. IDEALS AND MODULES

§ 1. Ideals and modules. In Chapter I we defined the concept of
a homomorphism of a ring (I, § 12) and saw that the kernel plays an
important role. We proved in I, § 12 that the kernel is not only a
subring but actually an ideal in accordance with the following:

DerINITION 1. Let R be aring.  An ideal in R is a non-empty subset
A of R such that

(a) If ay, a, €Y, then a; — az e N.

(b) Ifac A and b € R, then ab € .

(We recall our convention, made in I, § 7, p. 10, that “ring” always
means a commutative ring.) Condition (a) of this definition simply
states that % is a subgroup of the additive group of R. Condition (b),
taken together with (a), implies that % is a subring of R. But not every
subring is an ideal; for example, in the ring of rational numbers the set
of integers is a subring but not an ideal. Or again, if F[x] is a poly-
nomial ring over a field, then F[x?] is a subring of F[x], but not an
ideal.

If R is any ring and a is any element of R, then the set of all elements
xa, x € R, 1s clearly an ideal. It is called the principal ideal determined
by a and is denoted by Ra. We note that if K has an identity, thenaisa
urit if and only if Ra= R. In a ring with identity the ideal Ra
obviously is the smallest ideal in R containing a. In the general case
the smallest ideal containing « is the set of all elements of R of the form
ra + na, where r € R and # is an integer; this set is denoted by (a). If
R has an identity, then (a) = Ra.

Another example of an ideal may be obtained by taking R to be a
polynomial ring in n indeterminates X,, X,, - - -, X, over a ring R,.
If ay, ay, - -+, a, are fixed elements of R,, the set of all polynomials
f(Xy, - -+, X,) in R such that f(a,, a,, - - -, a,) = 0 is an ideal.

Every ring R (except the nullring) has at least two ideals: the entire
ring R and the set (0) consisting of 0 alone. The latter is identical
with the principal ideal RO; if R has an identity, the former is R1. An
ideal of R distinct from (0) and R will be called a proper ideal.

132
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If R has an identity element 1 and if an ideal % in R contains a unit
u, then % = R, for A contains bu—'u for every be R. If R is a field,
then it has only the two (improper) ideals (0) and R1, for if ¥ is an ideal
in R and %  (0), then % contains an element a 3 0, hence contains
aa~! = 1, hence equals R. Conversely, if R has an identity and has
only two ideals, then R is a field; for if a € R, a 3 0, then Ra # RO,
hence Ra = R, 1 € Ra, so 1 = xa for some x € R.

EXAMPLE. If G is an arbitrary abelian (additive) group then G can
be made into a commutative ring by setfing ab = 0 for all q, b in G.
This ring has no multiplicative identity. Every subgroup of the group
G is then an ideal in the ring G. If we take for G a finite group of
prime order then we obtain an example of a ring which has no proper
ideals and yet is not a field.

The above example is the most general of its kind, for we can
easily prove the following result: if a ring R has no proper ideals and is
not a field, then the additive group of R is cyclic, of prime order, and we
have ab = 0 for all a, bin R. 'To prove this, we consider the set % of all
elements a of R such that Ra is the zero ideal. 1n other words, % is the
set of all absolute zero divisors of R. Since we have assumed that R is
not a field, there exist elements a in R, different from zero, such that
Ra # R. For any such element @ we must have then Ra = (0), for R
has no proper ideals. Hence the set % contains elements different
from zero. On the other hand, it is obvious that % is an ideal. Hence
A = R and we have therefore ab == 0} for all ¢, bin R. Every subgroup
of the additive group of R is then an ideal of R, and therefore the
additive group of R must be finite, of prime order, since (0) and R are
its only subgroups.

The concept of ideal is susceptible of an immediate generalization.

DEFINITION 2. Let S be a ring and R a subring of S.  An R-MODULE
in S is a non-empty subset U of S such that

(a) If ay, ay € U, then a; — a, € .
(b) If ae N and b€ R, then ba ¢ .

Any ideal in S is clearly an R-module. In particular, the ideals of R
are precisely those subsets of R which are R-modules. We note that
as far as the elements of .S are concerned, only the operation of addition
is involved in the module concept. Multiplication enters only between
an element of R and an element of S. This suggests a further (and
final) generalization. We thus come to the concept of an abstract
module, which will be fundamental for many of the subsequent develop-

ments n this book.
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DEFINITION 3. Let Rbe aring. A set M is called a MODULE OVER R
(or an R-MODULE) if

(a) M is a commutative group (the group operation will be written as
addition).

(b) With every ordered pair (a, x) in which a € R and x € M there is
associated a unique element of M, to be denoted by ax, such that the
Jollowing relations hold

(1) ' a(x + y) = ax + ay
) (@ + b)x = ax + bx
A3) (ab)x = a(bx),

where a, b are any elements of R and x,y are any elements of M. 'The
element ax will sometimes be called the product of a and x.

The above definition of an R-module’in an overring S of R is a
special case of the present definition, the element of M associated with
the pair (g, x) being simply the product of @ and x as elements of the ring
S. In that special case, equations (1), (2), (3) are consequences of the
ring axioms.

If R has an identity element, then the R-module M is said to be
unitary if
4) lx=x forall xeM.

If R is a ring with an identity and S is a ring containing R, then clearly
S is a unitary overring of R if and only if S is unitary when considered
as a module over R.

Perhaps the best-known examples of modules are the vector spaces.
In terms of modules the definition of vector spaces, as given in I, § 21,
signifies that a vector space is a unitary module over a field. We shall see
later on in this chapter (§ 12) that the elementary properties of vector
spaces which we have established in I, § 21 (such as those relative to
dimension, linear dependence, etc.) are also consequences of general
theorems about raodules.

It must be emphasized that if M is a commutative group (written
additively) and if R is a ring, then M may be an R-module in more than
one way. Thatis, given ain R and x in M there may be more than one
way to define the product ax so that relations (1), (2), (3) hold. (There
is always at least one way—we may define ax to be the zero of M for all
ain R and x € M ; in this case we refer to M as a trivial R-module.) If
we have two different definitions of the product ax then we really have
two distinct R-modules, although the underlying group M is the same
in both cases. If R is a subring of a ring S, then, in general, S may be
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thought of as an R-module in various ways. However, whenever in this
book we regard S as an R-module, we shall always mean it in the sense
mentioned above (that is, for a in R and x in .S we shall mean by ax the pro-
duct of a and x as elements of ), unless the contrary is explicitly stated.

As a final example, let M be any (additively written) commutative
group. Then M can always be regarded as a J-module, where J
denotes the ring of integers. Namely, if n€ J and x € M, take nx to
mean what it usually does, as defined in I, §4. Clearly M is unitary.
The possibility of thus construing M as a J-module shows that any
statement about modules implies a statement about general commutative
groups.

We return to the general case where M is an R-module. With every
element a of R we can associate a mapping T, of M into itself, defined by

xT,=ax, xe M.

Equation (1) above states that T, is an endomorphism of M, regarded as
a group. It follows that if 0 is the zero element of M, then a0 = 0 for
allae R. Similarly, if 0 denotes the zero element of R, then Ox equals
the zero of M, for Ox = (0 4+ 0)x = Ox 4 Ox, whence the assertion.
From this it follows easily that — (ax) = (— a)x = a(— x) for any
a€ Rand x€e M. We shall use the same symbol for the zeros of M and
of R; only rarely is there any possibility of ambiguity.

It has just been observed that with every element a of R may be
associated an endomorphism, or, as it is sometimes called, an operator,
T,of M (M being regarded as a group). Sometimes the elements of R
themselves are referred to as operators. The module M is often
called a group with a ring R of operators.

The notion of group with operators may be generalized in two direc-
tions. In the first place, it witl be noted that the ring property of R, in
particular equations (2) and (3), will play no essential role until §5.
Hence most of the considerations up to that point could be carried
through without change on the assumption that R is a set with each of
whose elements is associated an endomorphism of the group M. In
other words, with every a € R and x € M there is associated an element
ax of M such that (1) holds; nothing more need be required. We have
no occasion, however, to make use of this more general formulation.

A second generalization consists in dropping the assumption that M
is commutative. The proofs which follow do not apply without some
modification to the non-commutative case. A treatment of the most
general case can be found in Chapter V of Jacobson’s-Lectures in Abstract
Algebra, Vol. 1.



136 IDEALS AND MODULES Ch. III

§ 2. Operations on submodules
DEFINITION, Let R be a ring and M an R-module. An R-submodule
(or simply a submodule) of M is a non-empty subset N of M such that

(a) If x,, x3€ N, then x, — x,€ N.
(b) IfaeR and x€ N, then axe N.

The first condition (together with the non-emptiness of V) states that N
is a subgroup of M. If N is a submodule of M, then it is also an
R-module if, for a € R and x € M, we define the product of a and x to
be ax, the product which is already defined in virtue of the fact that M is
an R-module.

If M is a vector space over a field F, any F-submodule is called a
subspace; it is itself a vector space over F.

Any given ring R may be regarded as a module over itself; its sub-
modules are then simply its ideals. Any statement about submodules of
a given module therefore implies a statement about the ideals of a ring.

Every module M has as submodules the set consisting of zero alone
(it will be denoted by (0)) and M itself. Any other submodule is called
proper.

If A and B are non-empty subsets of an R-module M, then the sum
of A and B, denoted by A + B, is the set of all elements of the form
x 4+ vy, where x€ A, y € B. The negative of A, denoted by — A4, is the
set of all elements — x, where x € 4. If A consists of a single element
x, then 4 4 B will be denoted by x + B.

It is immediately verified that the operation of addition is commutative
and associative and that the set consisting of 0 alone (usually denoted by
(0)) is the zero element for this addition. But the subsets of M do not
form a group under this addition since 4 + (— A4) # (0), unless 4
consists of a single element. The set 4 4 (— B), which clearly
consists of all elements x — y, where x € 4, y € B, will be denoted by
A-—B.

For the most part, addition will be applied to submodules. It is easy
to verify the fundamental fact that the sum of two submodules is also a
submodule. In particular, the sum of two ideals in a ring R is also an
ideal. Furthermore, if L and N are submodules of M, then L 4+ N is
the smallest submodule of M containing L and N, in the sense that
L + N contains L and N, and any other submodule containing L and N
must contain L + N. IfN,,---, N, are submodules of M, then from
the associativity of addmon it follows that NV, 4+ « - - 4 N,, is defined.

It will be denoted by z N, and clearly consists of all sums 2 x;, where
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x; € N;. This suggests that if {V} is any collection (finite or infinite) of
submodules of M, where the index « ranges over some set A, we define
2N, to consist of all sums Jx,, where x, € N, and x, = 0 for all but a

finite number of indices «. Clearly YN, is the smallest submodule of
M containing all the N,.

A second operation on submodules is ordinary set-theoretic inter-
section. If L and N are submodules of M, then so is L N N (consisting of
those elements of 3 common to L and N).- This operation is, of course,
also commutative and associative, and the module M itself acts as
identity for this operation since M NN = N for any submodule N. If
M,, -, M, are submodules of M, then M, N --- N M, is also

denoted by f'] M,.
im1
The two operations of addition and intersection are related by a very
important identity due to Dedekind (the so-called modular law) between

three submodules K, L, N of a module M:
5) If KDL, then KN(L+ N)=L 4 (KNN).
It is clear that the right side is contained in the left. On the other hand,
if x is contained in the left-hand side, then since x € L 4+ N, we have
x=9v+ 2 withyeL, ze N. Then 2= x — ye K, since xe K and
yeLCK. Thusze KNN,andsoxeL + (KNN).

Let R be a ring and M an R-module; let 4 and L be respective non-
empty subsets of R and M. The product of A and L, denoted by AL,

is the set of all sums > a,x,, where a; € 4, x; c L and n is an arbitrary
1=1
positive integer.

It is easily verified that if A4 is an ideal in R or if L is a submodule of
M, then AL is a submodule of M. For AL is clearly closed under
subtraction. If be R and if Jax, € AL, then bda,x, = 3(ba,)x, =
Sa,(bx;). From the first or second of these two last sums, depending
on whether A4 is an ideal or L is a submodule, we see that b3 a,x, € AL.

The two conditions for a non-empty subset L of M to be a submodule
may now be expressed as follows: L — LC L, RLCL.

If L consists of a single element x and A is closed under addition, then
AL consists of all elements ax, where a € 4; it will be denoted by Ax.
If A consists of a single element a and L is closed under addition, then
AL consists of all elements ax, where x € L; it will be denoted by alL.

If R is a given ring we have seen how it may be considered as an
R-module. If we apply the above definition of product to this particular
case, we have a definition for the product of two non-empty subsets 4
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and B of R. Namely, AB consists of all sums > ab,, a;,€ 4, b,€ B, n
i=1
arbitrary. In particular the product of two ideals in a ring R is again
an ideal, and the notation Ra introduced in § 1 (p. 132) for the principal
ideal determined by a is consistent with our present definitions.
It is possible to define also a quotient operation between modules, but
we shall do so only for ideals (see § 7, p. 147).

§ 3. Operator homomorphisms and difference modules. In
I, §11, we have defined homomorphisms between groups. This
definition applies in particular to modules but is too general, since it
takes into account only the group character of M and not the fact that M
admits the elements of R as operators.

DEFINITION. Let R be a ring and let M and M’ be two R-modules. An
R-homomorphism of M into M’ is a mapping T of M into M’ such that

(1) (*+ )T =xT + yT, x,yeM,
(2) (ax)T = a(xT), xeM,acR.

Equation (1) states that T is a homomorphism of M into M’ when each
is considered as a group. As to (2), let T, and T, be the respective
endomorphisms of M and M’ determined by a; then (2) states that
I, T=TT',

If M and M’ are vector spaces over a field F, then an F-homo-
morphism of M into M’ is called a linear transformation of M into M’
(see I, § 21, p. 53).

When it is not desired to call attention to the specific ring R, we may
refer to an operator homomorphism instead of an R-homomorphism. The
terms R-homomorphism onto, R-isomorphism, R-endomorphism, R-auto-
morphism are now self-explanatory (cf. I, §11). If M, M’', M" are
R-modules and T and T’ are R-homomorphisms of M into M’ and of
M’ into M" respectively, then T7T' is in an R-homomorphism of M
into M".

THEOREM 1. Let M and M' be modules over a ring R, and let T be an
R-homomorphism of M into M'. Then OT is the zero of M', (—x)T =
— (xT) for any xe M. If A and L are non-empty subsets of R and M
respectively, then (AL)T € A(LT). The kernel of T is an R-submodule
of M, and T is an isomorphism if and only if the kernel is (0). If L and L’
are R-submodules of M and M' respectively, then LT and L'T-! are
R-submodules of M’ and M respectively.

PROOF. The first statement follows from Theorem 1 of I, § 11. If
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g,€6A and x;eLl, i=1,2---,n then (Sax)T = 3(ax)T =
2a{x;T) € A(LT), whence the second statement. For the third, let N
denote the kernel of T'; in accordance with the general definition given in
I, § 11 (p. 14), N consists of all x € M such that xT' = 0. By Theorem
1 of I, § 11, N is surely a subgroup of M; it is a submodule since
(RN)T C R(NT) € RO = (0), hence RN C N. The second part of
the third statement follows from Theorem 2 of I, § 11. Let us prove
that L'T-! is an R-submodule of M. If x,ye L'T-1, then xT,
yTelL',hence (x — y)T =xT — yTel”sox—yeL'T-};ifaeR,
then (ax)T = a(xT) € L', hence ax € L'T-1. Similarly for LT.

If R is a ring, a clear distinction must be made between the R-homo-
morphisms of R (considered as an R-module) and its homomorphisms
as a ring. In the former case the homomorphism T must satisfy the
condition (ax)T = a(xT) for any a and x in R, whereas in the latter case
T satisfies the condition (ax)T = (aT)(xT). For example, with every
clement ¢ of R we can associate an R-endomorphism T,, defined by
xT,=cx for xe R. Clearly (x 4+ y)T. = xT, + yT,, and (ax)T, =
c(ax) = a(cx) = a(xT,), so that T, is indeed an R-homomorphism.
But 7, is not in general a ring homomorphism, since this would require
that (ax)T, = (aT,)(xT,) = (ca)(cx). Thus we would have cax = c*ax
for all a and x in R; if, for example, R has no zero divisors, then this is
possible only if ¢ = 0 or 1.

It may be noted that if R has an identity, then every R-endomorphism
T of R is of the form T, where ¢ = 1T, for if x is any element of
R, then xT = (x1)T = x(1T) = cx = «T..

Since the kernel of an R-homomorphism of an R-module is an R-
submodule of M, it is natural to ask whether, conversely, every R-
submodule of an R-module M is the kernel of some R-homomorphism of
M. We shall now show that this question is to be answered in the
affirmative. To see this, let N be any R-submodule of M. Since M is
an abelian group, every subgroup of M is a normal subgroup and gives
rise to a factor group. Let M be the factor group of M with respect to
N. Since we use the additive notation for the group operation in M
we shall denote the factor group M also by M — N (instead of by
M|N; see 1, § 11). We denote by T the canonical homomorphism of
M onto M.

To make an R-module of M we specify that the product of an element
a€ R and an clement x + N of M shall be ax + N.* To show that

this product is unambiguous, we must show thatif x 4+ N =y 4+ N (so

* This is not in general the same as the set a(x + N) according to the meaning
this notation acquires from § 2.
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that x — ye N ) then ax + N =ay + N. But this follows from the
fact ax — ay = a(x — y) is in N, which in turn follows from the fact
that N is a submodule (and not merely a subgroup) of M. It is then
clear that 7' is an R-homomorphism. We thus have:

Tueorem 2. If N is a submodule of an R-module M, then the group of
cosets x + N can be made into an R-module M which is an R-homomorphic
image of M with kernel N.

'The R-module M which has just been constructed for any R-sub-
module )V of M and which is denoted by M — N * is called the difference
module of M with respect to N. ‘T'he difference module M — N is
alsv sometimes called the factor module of M by N and is denoted by
MIN. 'T'he mapping x -»x 4 N is called the canonical or natural
homomorphism of M onto M — N.

If N = (), then this natural homomorphism is an isomorphism.

Teorem 3. If M’ is any R-homomorphism image of M, with kernel
N, then the elements of M’ are in (1, 1) correspondence with those of M — N,
and the correspondence is an R-isomorphism.

PROOF. Let 7' be the natural R-homomorphism of M onto M — N
and let .S be the given R-homomorphism of M onto M’.  Consider the
transformation s = S='7" of M’ onto M — N. If x', y" are any two
elements of M’ and if £ € x's, § ¢ 's, then £ = xT" and y = yT, where
x and y are suitable elements in 4’S~" and y'S—! respectively. Since
E4+V=(x+T and " + 3y = (x + »)S, it follows that ¥ 4 j €
(+" 4+ ¥')s.  Furthermore, if 0" is the zero of M’, then (s consists only
of the zero of M — N since S and 7" have the same kernel. It follows
from Lemma 2 of I, § 11, that s is a homomorphism. By the same
token also s— 1 is a mapping (since in the above argument M and M — N
can be interchanged). Hence s is an isomorphism. T'o show that s is
an R-isomorphism, let x’ be any element of M’ and letae R. If x is
any element in x'S-!, then ¥’ = xS and #=«s=x'=x+4 N.
Since ax’ = (ax)S and ax = ax + N = (ax)7, it follows that a(x's) =
(ax")s, and hence s is an R-isomorphism.

We shall use the notation A/ ~ M’ to indicate that M is R-homo-
morphic to M’ and the notation M =~ M’ to indicate that M and M’
are R-isomorphic.

§4. The isomorphism theorems. The two theorems of this
section are often called the Dedekind-Noether isomorphism theorems.

* Although this notation conflicts with the notation 4 — B for the set of
differences introduced in § 2, it will always be clear from the context whether we
are referring to one or the other meaning of the notation.



§4 THE ISOMORPHISM THEOREMS 141

THeOREM 4. Let T be an R-homomorphism of a module M onto a
module M' with kernel N. Then there is a (1, 1), inclusion preserving
correspondence between submodules L' of M’ and submodules L of M
containing N, such that if L and L' correspond then LT = L', L'T-! = L.
When L and L' correspond, then T tnduces an R-homomorphism of L onto
L', the modules L — N and L' are isomorphic, and so are the modules
M—Land M — L'

PROOF. If L is a submodule of M containing N, then L' = LT is an
R-submodule of M’ by Theorem 1. 'Phat distinct L’s give rise to
distinct L"s follows from the fact that (L.7')7'-* = L. To prove this
formula we first note that L C (LT)T-! trivially; on the other hand, if
x€(LT)T-!, then xT € LT, so xT = y7T with ye L, hence x — y €
NCL, so that xe L, as required. It remains to prove that every
submodule L’ of M’ actually arises in this way; this follows from the
facts that L'T—! is a submodule of M (Theorem 1), that NC L'T-!
(obvious), and that (L'T'=!)T" = L' (since T is an onto mapping). 'Thus
the first statement of the conclusion is proved. The isomorphism
L — N o= L’ follows from Theorem 3 since T induces an R-homo-
morphism of L onto L', with kernel N. To prove M — L ~ M’ — L',
we observe that 7'is given as an R-homomorphism of M onto M’, and
that x’ —» x" 4 L’ is an R-homomorphism of M’ onto M’ — L’ (the
natural homomorphism). 'T'he product of these two is an R-homo-
morphism of M onto M’ — L’. 1If x is in the kernel of this product
homomorphism then x7' -+ L’ = L', so that 2T e L', xe L'T-' = L;
and vice versa, L is contained in this kernel. Hence the isomorphism
follows from Theorem 3.

CororLARY. Let N and L be submodules of an R-module M with
NCL. Then L — N is a submodule of M — N, and

(M=N)—(L—N)=~M-—L.

This follows from the theorem with M’ = M — N.

‘THEOREM 5. If N and L are submodules of an R-module M, then
1 (L+ N)—N=L - (LNN).

PROOF. If T is the natural homomorphism of L 4+ N onto
(L+ N)— N, then T induces an R-homomorphism of L into
(L + N) — N (even though L may not contain N). We assert that T’
maps L onto (L 4+ N) — N. Forif x 4+ N is any element of (L 4+ N)
— N, with xeL + N, then x =y + 2, where yelL, ze N, and
x4+ N=y +N=yTeLT. Hence T induces an R-homomorphism
of L onto (L + N) — N. Since the kernel is obviously L NN, the
conclusion follows from Theorem 3.
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Any element of the left side of (1) is of the form x + N, xe L 4+ N;
any element of the right side is of the form y + (LNN), ye L. The
two elements correspond in the R-isomorphism (1) if and only if
x—y€eN.

§ 5. Ring homomorphisms and residue class rings. It was
observed at the beginning of this chapter that in a homomorphism
of one ring on another the kernel is an ideal. It will now be proved
that any ideal in a ring is the kernel of some homomorphism of the ring.
Since we are now interested in R as a ring and not as a module,
our present considerations are not special cases of those of § 3, although
some of these results can be applied.

We first make clear the implications of the preceding sections for a
quite arbitrary commutative (and additively written) group M. We
may then regard M as a /-module as described in § 1. In that case every
subgroup of M is obviously a J-submodule, and every homomorphism
of M into another group (which is similarly regarded as a J-module) is
necessarily a J-homomorphism. It follows that the results of §§ 1-4
apply to arbitrary commutative groups, their subgroups, and their
homomorphisms. More precisely, Theorems 1-5 are valid if in place of
module, submodule, R-homomorphism, we write commutative group,
subgroup, homomorphism respectively.

Now let T be a homomorphism of a ring R onto a ring R’, and let N
be the kernel, so that N is an ideal. The mapping T is in particular a
homomorphism of the additive group of R onto the additive group of R'.
From § 3 it then follows that the elements of R’ are in one to one corre-
spondence with the cosets a + N, a€ R.

The notion of congruence is convenient in the present connection.
If N is an arbitrary ideal in a ring R, and a, b are elements of R, then a
and b are said to be congruent modulo N if a — b € N, and we express this
by the notation

a=b(N).
Obviously @ = b (V) is another way of stating that a and b determine
the same coset, that is, a + N = b 4+ N. The relation of congruence
is clearly reflexive, symmetric, and transitive. Moreover it is preserved
under addition and multiplication. That is,

a=b(N),c=d(N)

imply
a+c=b+d ac= bd(N).

For example, to prove the latter: ac — bd = (a — b)c + ¥c — d)eN.
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It follows that if a = b (N) and if f(X) is a polynomial over R, then
f(a) = f(b) (N).

In number theory it is customary to write a = b (mod m) if the
difference of the integers @ and b is divisible by the integer m. This is
equivalent to the statement a = b (/m) in our notation, where J is the
ring of integers.

If, then, T is'a homomorphism of R onto R’ with kernel N, we see
that aT = bT if and only if a = b (N).

The preceding discussion suggests, as in § 3, that if we are given an
ideal N in a ring R and wish to construct a homomorphic image R with
kernel N, then we should take R to be the set of cosets of N. Addition
of cosets has been defined in § 3 and we know that R is a group. We
define multiplication of cosets by the formula

(1 (@a+ N)Yb+ N)=ab+ N*
We must show that this product is independent of the particular elements
a and b of the cosets, that is, that if 2 = a, (V) and b = b, (N), then

ab = a,b, (N). This has just been proved. Thus R is a set with two
operations defined in it, and the mapping 7, defined by

aT =a+ N,a€R,

is a mapping of R onto R. It follows from (1) that (ab)T = (aT)(bT');
that (¢ 4+ 5)T = aT + bT we know from § 3. From the lemma of I,
§ 12, we conclude that R is a ring, that T"is a homomorphism of R onto
R and N is the kernel. Hence we have:

THEeOREM 6. If N is an ideal in a ring R, then the cosets a 4+ N can be
made into a ring R in such a way that the mapping a—a + N is a
homomorphism of R onto R with kernel N. If R’ is any homomorphic
image of R with kernel N, then the elements of R’ are in one to one corre-
spondence with those of R, and this correspondence is an isomorphism.

The first statement has been proved. The proof of the second state-
ment is similar to the proof of Theorem 3 (§ 3).

When N is an ideal in a ring the cosets @ 4+ N are usually called
residue classes and the ring R just constructed is called the residue class
ring of R with respect to N. It is denoted by R/N. The homomor-
phism a — a + N of R onto R/N is called the natural homomorphism of
R onto R/N.

THEOREM 7. Let T be a homomorphism of a ring R onto a ring R’, with

* It must be carefully noted that ab + N does not in general consist of sums
of products of elements of @ + N and b + N, so that this product is not the

same as the one referred to at the end of § 2. Take, for example, R = ],
amb=0, N=2]j.
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kernel N. Then there is a (1, 1) inclusion preserving correspondence
between the ideals %' of R’ and the ideals % of R which contain N, such that
if A and A’ correspond, then
AT =A, A'T-1=A.
When % and W' correspond, T induces a homomorphism of ¥ onto ¥', and
AN=%, RUA=RN.

PROOF. The proof parallels that of Theorem 4 (though it is not a
logical consequence of it) and so will not be given in detail. Let us
merely prove, as an example, that %A'T-! is an ideal in R. If
a,be W T~ then aT, bT € %', hence (a — b)T = aT — bT e A', so
that a — beA'T-1. If aeU'T-! and ce R, then aT e, cTeR’,
hence (ca)T = (cT)(aT)eWA’, so that cac A'T-!. This shows that
A'T~! is an ideal.

COROLLARY. Let N and U be ideals in a ring R with N C . Then
A/N is an ideal in R|N and

(R/N)/(%/N) = R/

By analogy with Theorem 5 (§ 4) we have the following

THEOREM 8. If L is a subring of a ring R, and N is an ideal in R, then
the residue class ring L|L N\ N is isomorphic with the subring (L + N)/N of
the residue class ring R|N.

PROOF. It is sufficient to observe that the natural homomorphism of
R onto R/N induces a homomorphism of L onto the subring L' =
(L + N)/N of R/N and that the kernel of this induced homomorphism
is LNN. Hence L' = L|LNN.

§ 6. The order of a subset of a module

DeFINITION. Let M be a module over a ring R and let N be any
subset of M. The set of all elements a of R such that aN = (0) is
called the order (or the annihilator) of N.

The order is clearly an ideal in R. The cases of interest are those in
which N is either a submodule or a single element. The order of the
zero of M is, of course, R itself.

If M is simply a commutative group, and we regard it asa J-module,
then the order of any element x of M is an ideal W in /. We know that
A (or any ideal in J) consists of all the multiples of a uniquely determined
non-negative integer n (cf. I, § 4, where it was shown that this property
belongs to the kernel of any homomorphism of J). If n > 0, then itis
clearly the smallest positive integer m such that mx = 0, and x has
order n in the sense of ordinary group theory. If » =0, so that
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the order of x is (0), elementary group theory usually speaks of x as
having infinite order.*

We return to the general case of a module M over a ring R. Let %
be any ideal contained in the order of M itself. An important procedure
in the theory of modules is the construing of M as a module over the
ring R = R/YA. 1Ifée R, then we must define éx for everyx € M. Now
¢ arises as an ima’ge of some element ¢ in R, and we define éx = cx.
This defines éx uniquely, since if ¢ arises also from ¢, in R, then
c,—ceW hence c;x — cx = (c;, — ¢)x = 0. (Since every éin Risa
residue class ¢ + ¥, our definition amounts to placing éx equal to
(c + A)x, the latter product being intended in the sense of § 3; (¢ + A)x
consists of a single element of M since %Ax = (0)). That M thus be-
comes an R-module is trivial to verify.

Any R-submodule of M will be an R-submodule, and conversely.
The study of M as an R-module is thus equivalent to its study as an
R-module. The latter study is often the easier since R will often have a
simpler structure (in some sense) than R. We may say that the ring of
operators R is “ too large,” that it is *“more natura!” to use R/¥ as the
ring of vperators, where U is the actual order of M. This special case—
where % is the order of M and not merely an ideal contained in the
order—is the one occurring most often in practice. In this case, the
order of M regarded as an R-module is clearly (0).

These considerations allow us to clarify the distinction between the
residue class ring R/% and the difference module R — %, where R is a
ring and ¥ is an ideal in R. If we regard R as an R-module, then % is a
submodule, and we are thus enabled to define a new R-module R — %,
as described in § 3. Now the elements of R — % are, just like the
elements of R/¥, the cosets of %; that is, R/% and R — ¥ are identical as
sets. Moreover, there is an addition in each and this addition is the
same for both. Hence R/% and R — ¥ are identical as (additive)
groups.

Since R/¥ is a ring, multiplication is defined between its elements.
Indeed, if ¢ and # are elements of R/Y then é% is the coset of cx 4 ¥,
where ¢ and x are elements of the cosets & and # respectively. R/¥, like
any ring, may be regarded as a module over itself.

Now the order of the R-module R — % surely contains % (it may well
be larger; for instance, if R is the ring of even integers and ¥ is the set

* Warning: If M is an ordinary finite group, say, of order n, then the order
of M in the sense just defined need not be Jn; for instance, the order of the

additive group of any Galois field of characteristic p is a power of p (see II, § 8),
but the order of this group (or its annihilator) in / is always the principal ideal

Je.
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of integers which are divisible by 4, then the order of R — % is the
whole ring R.) Hence we may regard R — % as an R/¥-module.
This means that given an element ¢ of R/ and an element % of R — %
there is defined a product—we denote it for the moment by é-%.
According to the definition given earlier in this section, é- & = c&, where
¢ is an element of the coset . According to the definition of §3
(p. 139), the product c# (which is meaningful since R — % is an R-
module) is the coset cx + %, where x is in the coset £ Thus we have
proved that é-% = ¢éx.

This means that not only are R — % and R/% identical as sets and as
additive groups, but they are also identical as R/%-modules. We may
also express this fact by saying that the identity mapping of the R/¥-
module R — % onto the R/%-module R/¥ is an R/¥A-homomorphism.

For this reason it is usually unnecessary to distinguish between the
two, although sometimes in delicate arguments one must keep in mind
that these two modules are, strictly speaking, not the same.

§7. Operations on ideals. Let R be a ring. We proceed to
define five fundamental operations on ideals in R. Since R is also an
R-module, the definitions regarding the sum of subsets of a module
(§ 2) apply also to subsets of R. Thus if 4 and B are subsets of R, then
A+ Bconsistsof alla 4 b,ac 4, be B.

The sum % + B of two ideals % and B is likewise an ideal. Thus the
set of ideals is closed under addition, an operation which is commutative
and associative.

The second operation, as with submodules, is intersection, or
common part. If % and B are ideals, so is Y NB. This operation,
too, is commutative and associative. As with submodules we have here
the modular law connecting sum and intersection:

(1) IfuD®, then AN(B + €) =B + (ANG),

where ¥, 8, € are any ideals in R.
If A and B are non-empty subsets of R, then a definition of the
product AB is implied by the definition of § 2. 4B consists, namely, of

all sums > a.b,, where n is an arbitrary positive integer, and g; € 4,
1

b,e B. This operation is commutative and associative. If 4,, 4,,
.-+, A, are subsets of R, then 4,4, - A, (sometimes denoted by

7
l_i[A,-) consists of all sums of products a,a, - - a,, where a,€ 4,
i=1,2---,7. Inparticular A consists of all sums of products I;[a,-,
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where a; € A. If either A or B is an ideal, so is AB. Hence the set of
tdeals is closed under the operation of multiplication. This operation is
related to sum by the easily proved distributive law:

(2 B + ) = AB + UGC,
where ¥, B, € are any ideals of R. Moreover, for any two ideals %, 8,
A3) ’ ABCANS.

The fourth ideal-theoretic operation is the quotient.

DEerFINITION 1. If % and B are ideals of R, then the QUOTIENT ¥ : B
consists of all elements ¢ of R such that ¢B C .

It is immediate that % : B is an ideal and that it contains %. In
particular, ¥: R O ¥; but if R has an identity then A: R=9%. If ¢
is any ideal such that €8 C ¥, then € C¥: B, and conversely. If
A DB, then A: B = R, and conversely if R has an identity. The
following relationships between quotient and the first three operations
are easily checked:

*) ()2 =fo:w,
©) o :.-.ix B, = Q :9),
(6) A:BE = (A:B): C.

For example, to prove (6), let D and € denote the left- and right-hand
sides respectively of (6). Then by definition D(BE) C ¥, (DE)B C ¥,
hence DECUA: B, DC(A:B):E=C. Likewise GECUA: B,
(EE)B C YU ECYU: BE = D.

The four operations above were all binary; the last one, which we
shall now introduce, is unary, that is, only one ideal is involved in this
operation. B

DEFINITION 2. If Uis anideal in R, the RADICAL of ¥, denoted by V¥,
consists of all elements b of R some power of which belongs to ¥.

THEOREM 9. The radical of A is an ideal containing . It satisfies
the following rules:

(7)  If 4+ C B, for some positive integer k, then /% C \/8B;
(8) VUB=+VUND=VANVS;

9 VIFB=VVi+

(10) VVu=+VA
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PROOF. That % C v/¥ is obvious. To show that v/¥ is an ideal,
let b, ce V¥, so that bme %, c"e A for some integers m, n. In the
binomial expansion of (b — c)"+"—! every term has a factor bic/, with
t+j=m+4n~ 1 Since either i = morj> =ither b or ¢/ is in
A, hence (b — cy"+"-1€¥Y, and b —ce VU. If be V¥, and de R,
then bm € U for some m; hence (db)" € ¥ and dbe VU. Thus V¥ is
indeed an ideal.

Suppose A+ C B. Ifce V¥, then ¢™ € U for some m, c™ € A C B,
hence ¢ € /8.

Since AB CANB, arid ANDB is contained in A and in B, we have
by (7) (with k= 1) that VABCVANBCVANVSB. Now if
c€ VANY'Y, then there exist integers m and n such that cme ¥,
cmeB. Then cmcm e VB, 'whence c € VAB. Thus (8) is proved.

Equation (10) is obvious. Since % + 8 C V% 4+ V8,

VU+BCVVE+ VS,
since
VI+ VICVA+ B, VVE+ vBCVVI T B =1+ 9.
This broves 9).

If % = (0), then V% consists of all nilpotent elements—that is,
elements some power of which is 0. 'This ideal is sometimes called the
radical of the ring R.

We now consider the effect of a homomorphic mapping on the five
operations defined above. Suppose, then, that R and R’ are rings,
T a homomorphism of R onto R’ with kernel V. If % and 9 are ideals
in R, then
(11) A C B implies AT C BT;

(12) N+ B)T'=AT + BT;

(13) (AB)T = (AT)(BT);

(14) (M NB)T CAT NBT, with equality if A D Nor if 8 D N;

(15)  (N:B)T CAT: BT, with equality if A D N;

(16) A% T C VUT, with equality if A D N.

If A’ and B’ are ideals in R’, then:

(17) W' C ¥ implies A'T-1C V' T-1; »

(18) (W +B)T1=NT-14 9T

(19) (W'¥)T-1D(WT-1)(V'T-1), with equality if the right side
contains N;

(200 @@NB)T-'=AT-NV'T-1,

21) (W:¥)-'=AT-1:98'T-

22) VAT = VAT,
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Most of the statements (11)—(16) are trivial. As an example we prove
(15). If ¢’ e (%:B)T, then ¢’ = ¢T, where c€%:B; then (BCY,
(cTYBT)C AT, cTeUT:BT. On the other hand, suppose ¢’ €
UT: BT, whence ¢'(8T) CAT; since T maps R onto R’, there is an
element ¢ in R such that ¢’ = ¢7. Then (¢B)T C AT, ¢B C(AT)T-1;
if ADN, then (AT)T-' =¥, hence ¢BC YA, ceA: B, ¢'=cTe
(%A:B)T. '

To prove (17)-(22), let A =A'T-1, B =BT~} so A = AT,
B’ = BT, and A and B contain N. To prove (19), for example, we
observe that 'V’ = (UB)7T, (A'V')T-! = (AB)T)T - D AVB; and
equality holds at this last point if A8 D N. Again, for (21), %': 8' =
(A: B)T by (15), sinceA D N. Thus(A': V)T~ = (A: V)T =
A: B, since A: BIOADN. The others are similarly proved.

§ 8. Prime and maximal ideals. So far we have considered ideals
in all generality. Now we consider two important special types of
ideals.

DEFINITION. Let U be an ideal in a ring R. W is said to be PRIME if
whenever a product of two elements of R is in W, then at least one of the
Jactors is in N.  An ideal ¥ is said to be MAXIMAL if U £ R and if there is
no ideal between U and R. .

Thus % is prime if “b,ce R, bc e A" implies be A or ceA. In
particular, R itself is always prime; (0) is prime if and only if R has no
zero divisors.

We illustrate this definition by sorme examples.

1) If J is the ring of integers and n € J, n > 1, then the principal
ideal (n) is prime if and only if n is a prime number. This follows from
the fact that (1) if # is a prime number then * ab divisible by n”’ always
implies that either a or b is divisible by # and (2) if » is not a prime
number then, by definition, there exist integers a, b such that ab = =,
0<a<n0<bgn

2) The foregoing reasoning can be repeated without change for any
unique factorization domain R, showing that if w € R then the principal
ideal (w) is prime if and only if w is either a unit or irreducible. (See I,
§ 14, Theorem 4.)

*3) Let R = F[x,, x4, * - -, x,] be a polynonuial ring in n variables x;
over a field F. If a,, a,, -, a, are given elements of F, then the
elements g(x,, x,, - * - , ¥,) of R such that g(a,, a5, - - -, 4,) = 0 forma
prime ideal p in R. Since R is also a polynomial ring in the elements
X, — @y, X — ag, ' * *, X, — a,, every polynomial f(x) in R can be
written in the form b 4 Z f{x)x; — a;), where b € F and the f,(x) are
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elements of R. Then f(a) = 0, that is, f(x) € p, if and only if b = 0,
showing that the n polynomials x; — a, form a basis of p. If, on the
other hand, f(x) is not in p, so that b 3 0, every ideal in R which con-
tains the ideal p and the element f(x) will contain b and hence alsc the
element 1 (= b-b-!), and the ideal is therefore the entire ring. This
shows that v is a maximal ideal. 1t is clear that in the canonical
mapping of R onto R/p the field F is mapped onto the entire ring R/fp
(since every polynomial f(x) in R is congruent, mod p, to an element
b of F) and that this homomorphism of F onto R/p is an isomorphism
(since its kernel FNyp contains only the zero). Thus R/p is a field,
isomorphic with the field F.

On the other hand, if (a,, a,, - - -, a,) and (b, by, - - -, b,) are two
distinct ordered n-tuples:‘of elements of F, then the elements
8(xy, x4, - - -, x,) of R such that g(a,, ay, - - -, a,) = 0 and g(by, by, - - -,
b,) = 0 do not form a prime ideal [consider, for instance, the product
(x, — a,)(x; — b;), assuming that a, 7 b,].

4) In the ring of integers ] every prime ideal Jp (p, a prime number)
is maximal, for if m ¢ Jp, then (m, p) = 1 and hence am 4 bp = 1 for
suitable integers a and . This shows that every ideal which contains
Jp as a proper subset also contains 1 and hence is the whole ring J.
This reasoning is applicable without any change to any Euclidean
domain, in particular to the ring R of example 3), provided n = 1. On
the other hand if #n > 1, then the principal ideal Rx, is prime (since x,
is an irreducible element and R is a unique factorization domain), but
Rx, < Rx, 4+ Rx,, and the ideal Rx, 4+ Rx, contains only polynomials
without constant terms and hence is not the wholering R. Hencealready
in the polynomial ring F[x,, x,] of two variables not every prime ideal is
maximal.

If % is prime and a product of two ideals B and € is in %, then one
of the factorsisin 9. For if neither is, then B and € contain respectively
elements b and ¢ not in A. Since A is prime, bc ¢ A, hence BC & A,
contradiction. In particular if 8" C ¥ for some 7 > 0, then B C ¥,
Finally if % is prime, then % is equal to its radical.

On the other hand if % is not prime, then there exist ideals 8, € such
that

ALY, AL E, BEC U,

For there exist elements &, ¢ such that b,c¢ A, bceNA. Then take
B=0)+%C=()+ %

THEOREM 10. Let U be an ideal different from R. Then ¥ is prime
if and only if R|% has no zero divisors. If R has an identity, ¥ is maximal
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if and only if R[¥is a field. (Hence in a ring with identity any maximal
ideal is prime.)

PROOF. Let T be the natural homomorphism of R onto R/%. Then
bc e % if and only if (3T)cT) = 0. From this the criterion for A to
be prime follows immediately. From Theorem 7, § 5 we see that % is
maximal if and only if R/ has no ideals but itself and (0). Since R has
an identity, so has R/%. It was observed in § 1 that a ring with identity
is a field if and only if it has just two ideals. This proves the second
statement of the conclusion. The third follows from the first two.

In rings without an identity, maximal ideals need not be prime (see
example in § 1, p. 133). Prime ideals need not be maximal, as the
example above shows. Later on (IV, § 2) we shall study an important
class of rings in which every prime ideal different from R is maximal.
In chapter V we shall study a theoretically important class of integral
domains in which every proper prime ideal is maximal.

THEOREM 11. Let T be a homomorphism of a ring R onto a ring R’
with kernel N. If U is an ideal in R containing N, then W is respectively
prime or maximal if and only if UT is prime or maximal. If W is an ideal
in R', then W' is respectively prime or maximal if and only if W' T -1 is prime
or maximal.

PROOF. We may assume % 7 R since % = R if and only if 917‘ R'.
Then the condition for % (or AT') to be prime is that R/% (or R’/QIT)
have no zero divisors. Since, by Theorem 7, R/% =~ R’'[UT, % is prime
if and only if AT is prime.

Since the correspondence between the ideals of R’ and the ideals of R
containing N is inclusion preserving, if there are no ideals between R
and ¥ there are none between R’ and %AT'; and conversely.

Since A'T-! contains N and (Y'T-*)T = %’, the second statement
follows from the first.

Note I.  If a ring R contains an identity 1, then the set # of all ideals
of R which contain a given ideal different from R is non-empty and is
inductive if partially ordered by set-theoretic inclusion (since 1 remains
outside every ideal in .# and since it is obvious that the set-theoretic
union of all the ideals which belong to a totally ordered set of ideals is
itself an ideal). Hence by Zorn’s lemma, .# contains maximal elements.
We have thus proved that in a ring with identity every ideal different from
R is contained in a maximal ideal.

NoOTE II. Zorn’s lemma is also needed in the proof of the following
general result: in any ring R the intersection of all the prime ideals of R is
the radical of the zero ideal (that is, the set of all nilpotent elements).
Since every ideal contains 0, it is clear that every nilpotent element is
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contained in every prime ideal. Hence the main point that has to be
proved is that if an element u of R is not nilpotent, then there exists a
prime ideal not containing u. To prove this we consider the set # of
all ideals % in R which contain no power of #. Since u is not nilpotent,
the zero ideal belongs to _#, and thus ¢ is non-empty. It is obvious
that £ is inductive. Let, by Zorn’s lemma, p be a maximal element of
F#. Thenug¢yp. Weclaim that p is a prime ideal. For, let x and y be
elements of R which do not belong top. Then p 4 (x) > » and hence
some power u™ belongs to p + (x). Similarly some power #* belongs
to » 4+ (). Then um+" belongs to p + (xy), and since um+= ¢ p it
follows that xy ¢ p, showing that p is a prime ideal.

§9. Primary ideals. "The general concept of a prime ideal corre-
sponds to the concept of a prime number of ordinary arithmetic.
Primary ideals, which we shall presently introduce, correspond in a
similar fashion to powers of prime numbers. If p is a prime number and
m is a positive integer, then n = pm has the following property: if a
product ab of two integers a, b is divisible by # and if a is not divisible
by n, then some power of b is divisible by n. Conversely, any integer n
with this property is necessarily the power of a prime number.

DEFINITION. Let R be an arbitrary ring and let 0 be an ideal in R.
Then 2 is said to be primary if the conditions a, b € R, ab € D, a ¢ Q imply
the existence of an integer m such that b™ € Q.

In the sense of this definition, an integer n is the power of a prime
number if and only if the principal ideal Ja is primary.

Clearly every prime ideal is primary, with m = 1. A prime ideal
was characterized in the preceding section by the condition that in the
residue class ring R/ the only zero divisor is zero. Similarly it is
easily seen that an ideal Q is primary if and only if every zero divisor of
R/2 is nilpotent.

THEOREM 12. Let £ be a primary ideal in a ring R. If B is the
radical of Q, then B is a prime ideal. Moreover, if abe £ and a ¢ Q,
thenbe 3. Also if % and B are ideals such that AB C O, A ¢ O, then
B CP.

PROOF. The second statement is obvious, and the third follows from
it. To prove B is prime, suppose abe B, a¢ P. Since ab is in the
radical of £, a™™ = (ab)"e O for some m. Since a¢ B, a™¢ Q.
Since Q is primary (b™)" € Q for some n, hence b € B.

If  is a primary ideal, then its radical % is called the associated prime
ideal of 0, and we say that Q is a primary ideal belonging to the prime
ideal '8, or simply that Q is primary for 8. It may be that there exists
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an integer m such that $= C Q. (This will always be the case if the
ring is noetherian; cf. IV, § 1, Example 2, p. 200). In this case Q is
said to be strongly primary and the least m for which $™ C Q is called
the exponent of ©. A primary ideal has exponent 1 if and only if it is
prime.

The following theorem is often useful for proving that a given ideal
is primary and at the same time finding its radical.

THEOREM 13. Let £ and ‘B be ideals in a ring R. Then L is primary
and *B is its radical if and only if the following conditions are satisfied :

(a) CP.

(b) If b e B, then b™ € D for some m, (m may depend on b).

(c) Ifabe D and a ¢ Q, then b e .

PROOF. Assume (a), (b), and (c). That © is primary follows from
(c)and (b). From (b) we conclude that 3 C V0. Toshow VD C%,
suppose b € VD, so that b™ € Q; let m be the least exponent such that
e Ifm=1,thisgivesbe £ C B;andif m > 1, then b™-t.be D
and b1 ¢ Q, hence be B by (c). The proof of the converse is im-
mediate.

An equivalent form of condition (c) is the following:

Ifabe D and b¢ B, then a € L.

COROLLARY 1. Let R be a ring with identity, and let Q and B be ideals
in R such that:

(@) acs.

(b") If b € B, then b™ € Q for some m.

(c") B is @ maximal ideal.

Then & is primary and R is its radical.

We need only verify (c) in the hypothesis of the above theorem.
Suppose, then, that abe ©, b¢ 8. Now 8 + Rb contains b since R
has an identity. Hence $ + Rb contains 8 properly, and since % is
maximal, 8 + Rb = R. Hence there exist elements ¢, 4 such that
(1) l=c+db ceP,deR
Now by (b’), c™ € Q for some m. Raising (1) to the m-th power by the
binomial theorem we obtain

1=c"+d'b, where d'eR.
Hence
a=ac"+d'(ab)e. QE.D.
COROLLARY 2. In a ring with identity, a maximal ideal p is prime and

its powers are primary for p.
We now consider further examples. I.et R= F[x,y] be a



154 IDEALS AND MODULES Ch. III

polynomial ring in two indeterminates over an arbitrary field F. As
was mentioned in § 8 (Example 3, p. 150) the idéal 8 = Rx 4+ Ry is
maximal. The ideal © = Rx 4+ Ry? is primary by Corollary 1, since
P2C O CP. (That P2 C Q follows from P2 = Rx® + Rxy + Ry.)
But £ is not a power of B or of any prime ideal, for that matter. For
suppose 0 = P}, where P, is prime. Since PrA=0CP,
P2 C Q C P, and since P and P, are prime we have that necessarily
P = B,, so that O = P*  Since ye P and y ¢ Q, B 7 Q, so that
k> 1. Thus © C P2; but this also cannot be since x € £, x ¢ P2,
Thus we have proved that a primary ideal need NOT be a power of a prime
ideal.

It is also true that powers of prime ideals need not be primary. (Thus
Corollary 2 is false if *“‘maximal” is replaced by ‘“prime”.) An
example showing this is the following. Let F[X, Y, Z] be a poly-
nomial ring in three indeterminates over a field F, and let R be the
residue class ring F[X, Y, Z]/(XY — Z%). We denote by x, y, and =
the residue classes of X, Y, and Z respectively. The ideal generated in
our polynomial ring by X and Z is prime and contains the kernel
(XY — Z?) of the canonical homomorphism of F[X, Y, Z] onto R.
Hence the corresponding ideal 8 = Rx 4+ Rz in R is also prime. We
have xy = 2% € B2, the element x is not in B2 (since no polynomial of
the form X + A(X, Y,Z)X2 + B(X, Y, Z)XZ + C(X, Y, Z)Z? can
be divisible by XY — Z2) and no power of y is in B2 (no power of y is
even in the prime ideal ‘8 since clearly y is not in ). Hence 2 is not
a primary ideal.

The above example shows also that an ideal % whose radical is prime
need not be primary. An example of this can also be found in a poly-
nomial ring F[X, Y] of two indeterminates. Let % be the ideal
generated by X? and XY. It is immediately seen that v/ is the prime
(principal) ideal (X). But XY €%, X ¢ % and no power of Y belongs
to %, showing that % is not primary.

Various operations on primary ideals lead to primary ideals, as
summarized in the following theorem:

THEOREM 14.  The intersection of a finite number of primary tdeals all
belonging to the same prime ideal B is again primary for B. If P is
maximal, the same is true for finite sums and products. If Q. is primary
Jor B and W is ani ideal not contained in D, then O : Nis primary for B. If
T is a homomorphism of a ring R onto a ring R' with kernel N, then an
ideal 0 containing N is primary in R if and only if QT is primary in R';
and when this is so the associated prime ideal of QT is BT, where P is the
associated prime ideal of Q.
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These statements are easily proved using Theorems 12 and 13. For
example, to show -that ©:% is primary for '8, we observe that
(D:AACO and AE D, hénce D:ACP. Since also DCD: Y,
(a) and (b) of Theorem 13 are verified. To verify (c), suppose
abe Q:%,b¢ PB; then we must show that ae £: 4. Now we have
Ha%) C D, and since b¢ P, U C D, 502D : A.

NOoTE. If Ris a UFD and = is an irreducible element of R, then R»
is a prime ideal and Rn" (n = 1) is a primary ideal, with radical Rx (if ="
divides a product ab and does not divide 4, then 7" divides some power
of ). Conversely, every primary ideal q whose radical is Rx is of the
form Rn", n 2 1. For if n is an integer such that ¢ C Ra", ¢ & Ra"+},
and x is an element of q of the form yn*, y ¢ R, then necessarily =" € g,
and hence g = Ra".

§ 10. Finiteness conditions. The elementary theory of vector
spaces concerns itself with spaces of finite dimension; in such spaces
there does not exist an infinite strictly ascending or strictly descending
chain of subspaces. Similarly, the elementary theory of groups con-
cerns itself with finite groups, or at any rate with groups which are not
“too infinite”” in some sense. The purpose of this section is the discus-
sion of various finiteness conditions which can be imposed on a module.

DEFINITION. A module M over a ring R is said to satisfy the ASCENDING
CHAIN CONDITION if every strictly ascending chain of submodules

(1) M, < My<---
is finite.
An obviously equivalent formulation is this: If
M,CM,C--.

is an infinite ascending sequence of submodules, then there exists an integer
n such that
M,=M, for i=n+1,n4+2---.

By reversing the above inclusion signs and by replacing the word
“ascending” by ‘‘descending’ we can similarly define the descending
chain condition. We use the abbreviations a.c.c. and d.c.c. respectively
for the ascending and descending chain conditions.

Clearly, if a group is finite, then the group (regarded as a J/-module)
satisfies both chain conditions. The additive group of integers is an
example of a group (a J-module) satisfying the ascending but not the
descending chain conditions. On the other hand, consider the field F
of rational numbers and the quotient ring J, formed by the fractions a/b,
where a, b € J and b is not divisible by a given prime number p. Itis
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easily proved (as in I, § 20) that every proper additive subgroup of F
which contains J, is of the form p—"],. Thus the difference group
F — ], satisfies the d.c.c. but not the a.c.c.

A module is said to satisfy the maximum condition if every non-empty
collection C of submodules has a maximal element—that is, if there
exists a submodule in C which is not contained in any other submodule
in the collection C. The minimum condition is similarly defined.

THEeoOREM 15. A module M satisfies the ascending (descending) chain
condition if and only if it satisfies the maximum (minimum) condition.

PROOF. If M does not satisfy the a.c.c., then there exists an infinite
strictly ascending sequence {M;} of submodules, and the collection of
all the M; clearly has poe maximal element. On the other hand,
suppose M does satisfy the a.c.c. and let C be any non-empty collection
of submodules. Since C is not empty there exists a submodule M, in
C. If M, is not maximal in C, there exists an M, in C which contains
M, properly. If M, is not maximal in C, there is an M, in C properly
containing M,, etc. Since M satisfies the ascending chain condition
this process must stop, and thus a maximal element of C is reached.

The equivalence of the descending chain condition with the minimum
condition is similarly proved.

In view of the equivalence of the chain conditions with the maximum
and minimum conditions the two will be used interchangeably, depend-
ing on which is more convenient in a given context.

The following theorem is basic for determining how the chain condi-
tions are affected by certain operations.

THEOREM 16. Let M be a module and N a submodule. Then the
ascending (descending) chain condition holds in M if and only if it holds in
both N and M — N.

PROOF. If the a.c.c. holds in M, then it obviously holds in N, and
because of the correspondence between the submnodules of M — N and
those of M containing N, it holds likewise in M — N.

Conversely, let us suppose both N and M — N satisfy the a.c.c. To
prove that M does also, we first note that if L and L’ are two submodules
of M such that

LcLl, L+N=L+N, LNN=L'NN,

then L=L'. Namely, L'=L'N(L'+ N)=L'N(L+ N)=L +
(L' AN) (by the modular law (5), §2, p. 137)=L 4 (LNN) = L.
Suppose now that {L,} is an ascending sequence of submodules of M.
In order to show that this sequence remains ultimately constant, it is
sufficient to show, in view of the remark just made, that each of the
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ascending sequences {L;, + N}, {L; NN} remains ultimately constant.
For the latter sequence this follows from the a.c.c. in N. For the
former, it follows from the a.c.c. in M — N in view of the correspond-
ence between submodules of M — N and those of M containing N.

Thus the theorem is proved for the a.c.c. The d.c.c. is treated
similarly.

COROLLARY. Let My, M, - - -, M, be submodules of a module M such
that M =M, 4+ My + ---+ M,. If each M; satisfies the ascending
(descending) chain condition, then so does M.

By induction it is sufficient to consider the case n = 2. In view
of the theorem it is then enough to show that M — M, satisfies the
chain condition in question. That it does, follows from

M—-M,=(M,+ M) — M, =M, — (M;NM,),

since this last module satisfies the chain condition, by the theorem.

Let R be a ring and M an R-module. A basis of M is a set {x,} of
elements of M such that no proper submodule of M contains all the x,.
The module M is said to have a finite basis, or to be a finite R-module, if
it has a basis consisting of a finite number of elements. It is said to be
cyclic if it has a basis consisting of a single element. :

If {x_} is any set of elements of M, then the smallest submodule of M
which contains all the x_ consists of those elements of M which can be
written in the form of a finite sum

alxa, + azxa, + -+ anxcﬁ + mlxal + ’"z"c, +--+ m!rxa,.’

where the a; are in R and the m; are integers. This module shall
be denoted by the symbol ({x,}), or by (x,, x5, - - -, x,) if {x,} is a finite
set {x,, xq, - - -, x,}. If {x,} is a basis of M then every element of M
is a finite sum of the above indicated form. In particular, if M is cyclic,
with basis {x}, then every element of M is of the form ax + mx, where
a € R and m is an integer.

If R has an element 1 and M is a unitary R-module, with basis {x,},
then the integral multiples m_ x, can be omitted from the expression of
the elements of M in terms of the x,, since any integral multiple mx of
an element x of M is itself of the form bx, b € R, namely, mx = (m-1)x.
Hence in this case, M is the sum of the modules Rx,. In particular, if
M is cyclic, with basis {x}, then we can write M = Rx. This shows that
an abelian group as regarded a /-module in the way described in § 1
(p- 135) is a cyclic module if and only if it is a cyclic group in the usual
sense. If a ring R with identity is regarded as a module over itself,
then its cyclic submodules are its principal ideals (§ 1, p. 132).
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THEOREM 17. Let M be a module over a ring R. Then M satisfies the
ascending chain condition if and only if every submodule of M has a finite
basis.

PROOF. Suppose every submodule of M has a finite basis. If { N;}
is an ascending sequence of submodules of M, then the union N (in
the set-theoretic sense) of all N; is clearly a submodule of M. By
hypothesis, /V has a finite basis, say N = (x,, x, - - -, ;). Since each
x;isin N, it is in some NV, hence there is an integer n such that x,€ N,,,
j=1,---,h. Thus NCN,, so that N; = N, for i >n. Thus the
a.c.c. is proved.

Conversely, let us assume the a.c.c. If N is an arbitrary (but fixed)
submodule of M, then in'the collection of all submodules of N having
finite basis (such exist, for example, (0)) let N’ be a maximal element
(Theorem 15). If x is any element of N, then N’ 4 (x) has a finite
basis, since N’ does. By the maximality of N', N’ 4 (x) = N, so
that xe N’. Thus N = N’, and N has a finite basis, as required.

So far the properties of the ring R have played no essential role. We
now prove a theorem which relates the chain conditions in an R-module
M to the chain conditions in R. Since a ring R may be regarded as an
R-module, the chain conditions in R have meaning; they say simply
that a strictly ascending (or descending) chain of ideals in R must be
finite.

THeOREM 18. Let R be a ring with identity, and let M be a unitary
module over R having a finite basis. Then if R satisfies the ascending (or
descending) chain condition, so does M.

PROOF. [f{x,, -, x,}isafinite basis for M,then M = Rx, 4--- 4
Rx,. To prove the theorem it is sufficient, by the corollary to Theorem
16, to consider the special case where M is a cyclic module Rx. In this
case, suppose {NV,} is an ascending chain of submodules of M. For each
7, let ¥, be the set of all elements @ of R such thataxe N;. Then ¥;
is easily seen to be an ideal in R, and N; = %x since every element of
M (and hence of N, in particular) is of the form ax, ae R. Moreover,
it is clear the sequence of ideals {%,} is ascending. Since the a.c.c. is
assumed in R, there is an n such that %, =%, for i > 7. Since
N, =%x,N; = N, for i > n, and the a.c.c. is proved in M. The

pr'oof for the d.c.c. is similar.

§ 11. Composition series. In the preceding paragraph we have
considered conditions which make every increasing or decreasing
sequence of modules to be finite. In the present section we consider
more precisely how many modules can occur in such sequences.
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Let M be an R-module. A normal series in M is a descending (but
not necessarily strictly descending) finite chain of submodules
) M=M,>M,DM,>--D>M, =),
beginning with M and ending with (0); the integer 7 is called the
length of the normal series.

Note again that the inclusions in (1) need not be proper—that is, we
may have M;_, = M, for some or all i. If, however, all the inclusions
are proper, that is, if we have

2 M=M,>M,>M,> -->M=(0),

then the normal series in question is said to be without repetitions.

A refinement of the normal series (1) is a normal series obtained by
inserting additional terms in the series (1). In particular, if no addi-
tional terms are inserted, we speak of an improper refinement.

DEFINITION 1. 4 COMPOSITION SERIES of M is a normal series without
repetitions for which every proper refinement has repetitions.

In order that a normal series (2) without repetitions be a composition
series it is clearly necessary and sufficient that there exist no R-sub-
modules between M;_, and M,,i=1,---,7r. In other words, in
view of Theorem 4, § 4, it is necessary and sufficient that each difference
module M;_;, — M;(i=1,2,---,7r) be simple, where an R-module is
said to be simple (or irreducible) if it has exactly two submodules. These
must necessarily be itself and (0); the module (0) is not simple according
to this definition. A simple module can be described as one having a
composition series of length one.

Not every module has a composition series—for example, the additive
group of integers.

The following theorem on composition series is fundamental:

THEOREM 19 {JORDAN). If an R-module M has one composition series
of length 1, then every composition series of M has length r, and every
normal series without repetitions can be refined to a composition series.

PROOF. The theorem is trivial for r = 1. Hence we proceed by
induction, assuming the theorem true for modules having a composition
series of length less than 7. For our module M we have a composition
series
3) M=M>M,>M;>--->M = (0).

By the induction hypothesis M can have no composition series of length
less than 7. 'The first statement of the theorem is proved, therefore, if
we can show that every normal series

C)] M=N0>N1>Nz>"‘>N:=(0)
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wtthout repetmons has length at most r. 'This will also prove the second
statement, since if (4) is not already a composition series, we may insert
an additional submodule without repeating any NV;; this process must
lead to a composition series in exactly r — s steps, if the above assertion
is correct.

To prove this assertion we must show that s < 7. We note that (3)
shows that M, has a composition series of lengthr — 1. If N, = M|,
then from (4) we get a normal series for M, without repetitions and of
length s — 1; by induction hypothesis s — 1 <r—1, s<r. If
N, < M,, then (4) yields a normal series for M, without repetitions and
of length s; again by induction hypothesis we have s £ 7 — 1, and a
Jortioris < r.

We may y thus confine ourselves to the case where N, is not contained
in M, at all. Since there are no submodules between M, and M, it
follows that M, + N, = M. Now by Theorem 5, § 4,

Al— Ml = (M1+Nl)'— MI%NI - (Mlan)‘

Since M — M, is simple, so is N, — (M; N N,), hence there are no
submodules between N, and M, N N,. Consider the diagram

M,
7
]"I=n11+N1 MlnN1>"‘>(0).
AT
N,

Since M, has a composition series of lengthr — 1,and M, NN, < M,,
every normal series without repetitions of J; N N, has length at most
r — 2,and hence M, N N, has a composition series of at most this length.
Since there are no submodules between N, and M, NN,, N, has a
composition series of length at most r — 1. By induction hypothesis,
s—~1=<r—1,s<r This completes the proof.

We thus see that if an R-module M has a composition series at all,
then all of its composition series have the same length. This common
length will be called the length of M and will be denoted by (M).
Thus a simple module is of length one, and the module (0) is of length
zero. If M has no composition series we set (M) = o0; in that case
there exist normal series without repetition of arbitrarily great length.
We can then state:

THrorem 20. If N is a submodule of the R-module M, then

(M) = {N) + M — N).
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(This is to be interpreted as meaning, in particular, that if either side is
infinite, so is the other.)

PROOF. Let . )
) V'O N=Ne>N, > >N, =(0)
be any normal series of N without repetitions. Since by Theorem 4,
§ 4 and its corollary every submodule of M — N is of the form L — N,
where L is a submodule of M containing N, it follows that any normal
series of M — N without repetitions has the form

(6) M—N=Ly—N>L,—N> :-->L,— N=(0),
Lj__1>IJj, j= l,' t, 8.
We thus obtain for M a normal series
() M=Ly,>L,> - -->L,>N,>--->N,=(0)
without repetitions and of length s 4+ ¢. Hence if either (N) or
(M — N) is infinite, then either ¢ or s can be made arbitrarily large,
hence (M) = co. On the other hand if they are both finite, then we
may assume (5) and (6) to be composition series. It then follows that

(7) is a composition series of M, whence the theorem.
CoroLLARY. If L and N are submodules of M, then

(8) L)+ §N) = (L + N) + {LNN).
We make use of the relation
9 (L+N)—N=L-—(LNN)

and of the evident fact that R-isomorphic modules have the same length.
If either /(L) or [(N) is infinite, so is (L + N), and (8) is trivial. If
both are finite, then the right side of (9) has finite length, hence so does
the left, hence so does L + N, by the theorem. Equation (8) now
follows from the theorem.

We have, so far, spoken of composition series and have observed that a
module may not have one. Certainly any finite (commutative) group,
considered as a J-module, has a composition series. More generally:

THEOREM 21. A necessary and sufficient condition that a module M
have a composition series is that it satisfy both chain conditions.

PROOF. If M has a composition series of length 7, then clearly every
strictly ascending or descending chain has, at most, r 4 1 elements.
Conversely, suppose M satisfies both chain conditions. Let M, = M.
If M, s (0), let M, be maximal in the collection of submodules
properly contained in M,; if M, s (0), let M, be similarly defined, etc.
We thus get a strictly descending chain

M=M°>M1>M'>"'
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such that no additional submodule can be inserted between two succes-
sive members of the chain. Since this chain cannot be infinite, we must
have M, = (0) for some . Thus we have a composition series.

Composition series will often play a role in what follows. For most
of the applications the three preceding theorems are sufficient, but
occasionally the stronger result contained in the Jordan-Hdélder Theorem
is needed. First we introduce the following terminology: if
(10) M=MDM,>---DOM,=(0)
is a normal series of M, then the difference modules M, | — M;
(f=1,2,---,7) are called the normal differences of the serics. If (10)
is a composition series the difference modules are called . omposition
differences. 'T'wo normal series are said to be equivalent if the differences
of one can be paired with the differences of the other so that paired
differences are R-isomorphic.

Equivalent normal series have the same length, and this relation of
equivalence is transitive.

THeoREM 22 (HOLDER). If a module has a composition series, then any
two composition series are equivalent.

PROOF. By Theorem 19 we know that any two composition series
have the same length. Hence let them be
(11) M=My>M,>:->M = (0)
(12) M=Ny>N,>--->N,=(0)
The proof will proceed by induction on the length of M. Since the
theorem is trivial for length 1, we assume it true for all modules of length
lessthanr. Ifin the above series M, = N,, then we have two composi-
tion series for M, and by the induction hypothesis they are equivalent.
Since M — M, = M — N,, so are the given series for M.

Assume, then, that M, ¢ N,, so that M = M, 4 N,. By taking a
fixed composition series for M; N N; we obtain two composition series

for M:
(13) M=M1+N1>M1>MlnN1>"'>(0)‘
(14) M=M,4+ N;>N,>MANON,>--->(0).
That these are actually composition series follows from the R-isomor-
phisms

M- MlgNl - (Mlan)' M- ng Ml - (Mlan)s
and from the fact that M — M, and M — N, are simple. From these

same isomorphisms it follows that the composition series (13) and (14)
are equivalent. Since (11) and (13) have the member M, in common it
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follows from the preceding paragraph that they are equivalent. In like
manner (12) and (14) are equivalent, whence (11) and (12) are also.

According to this theorem, then, the composition differences of an
R-module are uniquely determined up to R-isomorphism.

CoRrOLLARY. If M has finite length and N is a submodule of M, then
the composition differences of M are those of N and those of M — N taken
together.

Let us assume that (5) and (6) above are composition series for
N and M — N, whence (7) is a composition series for M. The
differences for M are N,_, — N, (j=1,---,¢) and L,_,— L,
#=1---,5). SinceL,_,— L, =(L,_,~ N)— (L, — N), and the
latter are the differences for M — N, the corollary follows.

In the theory of rings the following extension of the composition
series concept is often useful:

DeFINITION 2. Let N be a submodule of an R-module M. A NORMAL
SERIES BETWEEN M AND N is a chain

M=M,DM,D---DM,=N.

It is said to be a COMPOSITION SERIES BETWEEN M AND N if there are
no repetitions and if there is no submodule between M,_, and M,, i '= 1,
2,1

Obviously a normal (or composition) series between M and N leads to
a similar series of M — .V, and conversely. Hence if there exists a
composition series between M and N, all such composition series have
the same length and any normal series between M and N which has no
repetitions can be refined to a composition series between M and N.

§ 12. Direct sums. In this section we Consider decompositions of
a module into simpler components.

DErFINITION 1. Let R be a ring, M an R-module, and My, M,, - - - , M,
submodules of M. The submodules M,, - - - , M, are said to be INDEPEND-
ENT if g

MAMy+ -+ M, + My, + - +Mr)?(03»2
1= 1,4,""",7

It is immediate that this condition is equivalent to the statement
that if
x1+ "'+x,=0,x,-EM,-,

then x; =0,i=1,2,---,7. This criterion is often easier to apply
than the definition.
DEFINITION 2. The R-module M is said to be the DIRECT suM of the
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submodules M, - - - , M, tf it is the sum of these submodules and if these
submodules are independent. We then write

M=M1®"'®Mr'

It is easily checked that M is the direct sum of M,, - - -, M, if and
only if each x in M can be represented uniguely in the form

x=x,4+ "+x,x,€M,

It is obvious that if M,, - - -, M, are any submodules of M, then M, +
- -+ 4+ M, is the direct sum of the M, if and only if the M, are inde-
pendent. Hence we often use the expression “thesum M, + - - - + M,
is direct” to mean that the: M, are independent.

IfM=M @ - ®M, and if each M, is itself a direct sum:

Mi=Mi1®Mi2®"'v

then it is easily proved, by the criterion following the definition of
independence, that M is the direct sum of all the M;, taken together.
Conversely, if M is the direct sum of certain submodules M, ; and if we
define

Mi=Mil+Mi2+”.’ .
then this sum is itself direct, and M is the direct sum of the M;. The
modular law (see (5), § 2) holds for direct sums also:

1) If KDL, then KN(L ®@N)=L ®(KNN).
This is to be interpreted to mean that if the sum on the left side is direct,
50 is the one on the right and vice versa.

The statement that M is the direct sum of two submodules M, and M,
is clearly equivalent to the two statements

M= All + Mg, All n]W, = (O).
From this and Theorem 5, § 4 it follows that:
If M =M, ® M, then M, is R-isomorphic to M — M,.

From the corollary to Theorem 20, § 11, we get that (M) = [(M,) +
M,), and by induction we obtain:

M, @ @M)=KM)) + --- + [M,).
In particular if each M, has finite length, so does their direct sum.
Direct sums are of importance, since a module is determined to within
an R-isomorphism by its direct summands, as proved in the corollary tv

the following theorem.
THeoREM 23. Let M and N be R-modules. Fori=1,---,7, let M,
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and N; be submodules of M and N respectively, and let T, be an R-
homomorphism of M, into N,. . Finally, assume that
) 3 M=M,® - ®M
(3) N=N;4+:---+N,.
Then there exists one and only one R-homomorphism T of M into N which
coincides with T; on M;. If each T; is onto, so is T. If each T; is an
tsomorphism and if the sum (3) is direct, then T is an isomorphism.

PROOF. If x € M, then we can write

4 x=x,4+--+x, x,eM,
Hence if the required T exists at all we must have
(5) xT = xlTl + o + x'T’,

and so T is unique. To prove T exists we define it by (5); since the
representation (4) is unique, x T as defined in (5) is uniquely determined.
It is easily checked that T is an R-homomorphism. If each T is onto,
so is T, since MT D M;T = M;T; = N, and hence MT = N. Now
suppose each T is an isomorphism and (3) is direct. If, then, xT = 0,
it follows that Zx T; = 0. Since (3) is direct, x;T; = 0, hence eax.h
x;=0,s0x=0. Thus T is an womorphlsm

CoroLLARY. If M =M, @ --- @M, N=N,D---®N,, and
ff M; is R-isomorphic to N, (i= 1,---,7), then M and N are R-
isomorphic.

Despite this corollary, the structure of M cannot, in general, be con-
cluded directly from the properties of the M,. For example, the
submodules of M cannot necessarily be determined merely because we
know the submodules of the M,. Our ignorance of the submodules is
only very slightly mitigated by

THEOREM 24. Let M= M, @ --- @ M,, let N; be a submodule of
M, (i=1,---,7), and let

N=N;+---+N,.
Then this sum is direct, and M — N is a direct sum of submodules R-
isomorphic to the difference modules M; — N,.

PROOF. That this sum is direct—that is, that the N; are independent
—is obvious. Let T be the natural homomorphism of M onto M — N.
Then clearly

M—-—N=MT+---+ M,T.
To show this sum is direct, suppose 0 = x,T + - - - + x,T, where

x,€ M, Since (jx,.)r.—.o, Sx,eN=N,+---+N, hence
1 1
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x;€ N;C N, so x,T =0, as was to be proved. It remains to show that
M,T = M; — N;. This follows from the fact that T, acting on M,,
has N, as kernel, since M\;AN = N,.
The following theorem, which is useful in the theory of rings, relates
the direct sum concept to what we might term ‘‘ direct intersection.”
THEOREM 25. Suppose that the R-module M is the direct sum of
submodules M, - - - , M,, so that

(6) M=M+---+M,
(7) Min(M1+"'+Mi—1+Mu-1+"'+Mr)?(0%»

1= 1, 7.
If we place

(8) Ni=M, +-- +M._,+ o+ M, i=1 7,
then

9) (0) = NN,

(10) N‘+(N1 nN_lnN'_'_ln nN'. =M,i= 1,' L7,
(11) Mi=Nl. "’nN,_lnN.,,_ln nN,,i=1,"‘,r
Conversely, if we are given submodules N, - - - , N, of M satisfying (9) and
(10), and if we define M, by (11), then (6), (7), (8) hold.

(Note that (9), (10), (11) are dual to (6), (7), (8) in the sense of being
obtained from them by interchanging sum and intersection, M and (0),
M, and N,.)

PROOF. We make the preliminary observation that we have immedi-
ately
(12) M,+N.=M, M.nN‘-=(0)-

This is true whether we are given the M; and then define the N; in terms
of them, or vice versa.

Suppose first that we are given M = M, @ - - - @ M,, and define N;
by (8). Then (11) can be proved by repeated application of the modular
law, but it is easier to proceed by direct computation. Suppose, then,
that xen » and write x = x, + - - - + x,, x, € M,. Since xe N;

(j#:),x—O[by(S)] Hence x = x;e M;. That MCans

[ 1
obvious. Thus (11) is proved. As for (9), we have ’
Nin---NN,=N;N(NgN---NN,)=N,NM; = (0), by (7).

Equation (10) follows from (12).
Now suppose we are given the N; satisfying (9) and (10), and define
M; by (11). Since M; + N; = M, we may write, for any x in M:

x=x;+y, %€M, y,eN,i=1,:
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Then for any j between 1 and 7,
x—Zx,.-—-(x—xj)—Zx,-eNj,
fm=] )

sincex —x;,=y;€N,,andx,;e M;C N, fori ;. Thusx— Jx;€
NN; = (0),sox = Jx;,and M = M, + - - - + M,—that is, (6) holds.
That (7) holds (directness of the sum) follows from

198
So it remains only to prove (8). That N; D z M is obvious; we have

)

yhi
indeed just used this fact. From the modular law we conclude
Ni=NN(IM;+ M)=>M+(NNM)=3 M,
ik e

.
This completes the proof of the theorem.
DEerFINITION 3. If M is an R-module and N a submodule, a coMPLE-
MENT OF N is a submodule N' of M such that

N@®N' =M.

If every submodule of M has a complement, M is said to be COMPLETELY
REDUCIBLE.

The submodules M and (0) have (0) and M respectively as unique
complements. In general, however, complements (when they exist)
need not be unique. This can be seen from the situation in vector
spaces (which we shall presently study in detail), where every subspace
has a complement (see I, § 21) (so that they are completely reducible),
and where it is well known that the complements are never unique
except for M and (0). Although they are not unique, the complements
of N are all R-isomorphic, since each is R-isomorphic to M — N.
Moreover, if one complement of N contains another, they are equal.
For suppose N’ and N" are complements of N, N’ D N”; then

N'=N'N(N"+ N)=N"+(N'NN)=N"+ (0)=N".

As just observed, vector spaces are completely reducible. An
example of a module which is not completely reducible is the additive
group of integers. Here there exist proper subgroups and the inter-
section of any two is also proper, s0 no sum can be direct.

TueOREM 26. If M is completely reducible, so is every submodule. If
L and N are submodules such that L C N, then every complement of N is
contained in a complement of L, and every complement of L contains a
complement of N.
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PROOF. To show that the submodule N is completely reducible we
must find a complement of L in N. Now L has a complement L’ in M,

LOL =M.
Then
N=NnNL®L)=L@®NNL),

so that L has NN L’ as complement in N.

Let N’ be any complement of N; if L”" is a complement of L in N,
then N’ + L’ is a complement of L (in M). On the other hand, let L’
be any complement of L; if N’ is a complement of NNL'in L':

(13) (NAL) O N' =L,

then N’ is a complement of N (in M). For, by (13), N + N’ contains

L’; of course it contains L, so N 4+ N'D L 4+ L' = M. Butalso
NAN'=(NNL)NN' = (0),

by (13). SoM=N@N".

CoroLLARY. If a completely reducible module satisfies either chain
condition, then it satisfies the other, and hence has finite length.

For a strictly ascending chain of submodules would lead to a strictly
descending chain of their complements, and vice versa.

THEOREM 27. A necessary and sufficient condition that an R-module M
be completely reducible and of finite length is that it be the sum of a finite
number of simple submodules. When this is so, them M is, in fact, a
DIRECT sum of simple submodules, the direct summands are uniquely
determined up to R-isomorphism, and their number is (M ).

PROOF. We regard (0) as the direct sum of the empty collection of
submodules.

Suppose first that M is completely reducible and of finite length, so

that M satisfies both chain conditions. We say that every submodule of
M is a direct sum of simple submodules. For if not, then in the set of
those which are not, let N be one which is minimal. Now N s (0),
and also NN cannot itself be simple. So N contains a submodule N’ such
that (0) < N’ < N. Since M is completely reducible, so is N, hence
there exists a submodule N" such that
(14) N @N"=N.
Since (0) < N’, N" < N. Since N' and N" are proper submodules of
N, the minimal property of IV implies that N’ and N are both direct
sums of a finite number of simple submodules. Then (14) implies that
also N.is such a direct sum, whence a contradiction. Hence every
submodule of M is a direct sum of simple ones, as clzimed.
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Now suppose

(15) M=M,+---+ M,

where each M, is simple. We first show that M is completely reducible.
Let N be any proper submodule of M, and let M; be the first of the
modules M, - - - , M, which is not contained in N. Since M; issimple,
NNM; = (0),sothesum N + M, is direct. If N @ M; = M, then
M, isa wmplement of N; otherwise let M, be the first M, not contained
in N @ M;. Then, as above, the sum (N ®M,)+ M, is direct.
Contmmng in this way we obtain integers i}, - - - , i, ‘such that

N@Ml',@M".@"'@M,’=M.

Thus N has a complement, and hence M is completely reducible.
Furthermore, we have shown that N has a complement which is a
direct sum of certain of the M; involved in (15). In particular (0) has
such a complement, so that

M=N,®N,® - @N,

where the N; are certain of the M;. Thus M is a direct sum of simple
submodules, and /(M) = t since each IN,)is 1.

It remains to show that the N, are uniquely determined up to an
R-isomorphism. We assert that

M=N,®N, @ - @N,>N; @ - @N,>--->N,>(0)
is a composition series. For it is certainly a normal series, and the j-th
normal difference is

(N;®@N;jj; @ ON)—(Njj1 @ - ON),
which is R-isomorphic to N,. Since each N, is simple, the above
normal series is indeed a composition series. Moreover, it has been
shown that the N are isomorphic to the composition differences, which
by the Holder Theorem (Theorem 22, § 11) are uniquely determined up
to R-isomorphisms.

We now give a decomposition theorem for modules which need not be
completely reducible.

DEFINITION. An R-module is said to be INDECOMPOSABLE if it is not
the direct sum of two proper submodules.

For example, the additive group of integers is indecomposable. A
module 3 (0) which is both indecomposable and completely reducible
is clearly simple.

THEeOREM 28. An R-module M satisfying the descending chain condi-
tion is a direct sum of a finite number of indecomposable submodules.
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PROOF. We prove that every submodule is such a direct sum. For
if not, let N be minimal in the set of all submodules not sums of this
type. Then N $ (0), and N cannotbeindecomposable, N = N’ @ N”.
The proof is completed as in the first half of the proof of Theorem 27.

By means of the direct sum concept we can not only decompose
modules into simpler ones but also can build up big modules from little
ones.

THEOREM 29. Let M',, - - -, M', be modules over a ring R. Then
there exists a module M which s the direct sum of submodules M,, - - - , M,
such that M is R-isomorphic to M';. Moreover, M is uniquely determined
up to R-isomorphism.

PROOF. The uniqueness follows from Theorem 23, Corollary. To
prove existence, define M to consist of all ordered n-tuples

x=(x, % "",%),xeM,
If y= (91,5 " *,,) isanother member of M and if a € R, we define
x+y= (xl +yl’x2+y3’ * ‘.’x'+yr)

ax = (axy, axy, - - -, ax,).
Thus M clearly becomes an R-module. We define M; to consist of all
(%4, + - -, x,) such that x; = 0 for j 4. It is obvious that

M=M1(-B'--€|-)M,
and that
xi"’(ov"'notxivov"',o),x,-EM"-,

is an R isomorphism of M’; onto M,.

On the basis of the results of this section we can develop very quickly
the elementary properties of vector spaces. In § 1 we have observed
that a vector space M over a field F is a unitary F-module. The sub-
modules of M are then its subspaces. If N is subspace of M and N 3 (0),
then the order of N (as defined in § 6) is (0); an equivalent statement is
that if ax = 0 (where ae F and xe M), thena=0orx=0. If N
is a simple vector space—that is, if N has no proper subspaces—then
for any x € N, x # 0, it must be true that Fx = N, and conversely if
x 9 0 is in a vector space, then Fx is a simple subspace.

Let x,, - - -, x, be elements of M. We recall that these elements are
said to be linearly independent over F if a relation

alx1+"'+a,x,=0,a,-EF,

implies @, = - - - = @, = 0; and that they are said to form a (finite)
basis of M if they are linearly independent and if every element of M is
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of the form Y a;x,, a; € F.* Equivalent formulations of these definitions
1

in our terminology are as follows: The elements x,, - - -, x, are linearly
independent if and only if each x; is ¢ 0 and the subspaces Fx,, - - -, Fx,
are independent (in the sense of Definition 1, given in the beginning of
this section); they form a finite basis for M if and only if each x, is 5 0
and

M=Fx; @ - @ Fx,.

As we have observed above, each Fx; is simple, hence of length 1, so
that if x,, - - -, x, form a basis of M, then (M) = r. 'Thus the number
of basis elements is always the same. In the usual theory of vector
spaces, this number is called the dimension of the vector space; we have
thus proved that it is the same as the length.

It follows from what we have said and from Theorem 27 that a vector
space with a finite basis satisfies both chain conditions and is completely
reducible. Consider now the following four properties of vector spaces:

(a) Existence of finite (vector) basis.
(b) Finite length.

(c) Ascending chain condition.

(d) Descending chain condition.

We assert that they are all equivalent. For we have just proved that (a)
implies (b), and, of course, (b) implies (c) and (d). To show that (c)
implies (a) we observe that (c) implies at any rate that M has a finite
module basis over F. Since every principal module Fx is, in the present
case, a simple module, we have that M is a finite sum of simple modules.
Hence, by Theorem 27, M is a finite direct sum of simple modules,
that is, (a) is satisfied. We prove now that (d) implies (c), that is, that
the d.c.c. implies the a.c.c. If, namely, the a.c.c. is not satisfied, there
clearly exists an infinite sequence of vectors

Xy, Xg, - -
in M such that every finite subset is linearly independent. If we define
M, to consist of all finite linear combinations
Coaxit e+t axa ek, 21,
J otherwise arbitrary, then clearly
My>Mg>My> -

* It should be carefully noted that, while any basis of a vector space M is also
a module basis of M over F, the converse is not true, because of the additional
condition of linear independence which we have imposed on the elements of a
vector basis.



_172 IDEALS AND MODULES Ch. III

violates the d.c.c. Thus we have proved the equivalence of (a) to (d),
so that in a vector space either chain condition implies the other and
hence also finite-dimensionality and complete reducibility.

In § 3 we defined a linear transformation of one vector space into
another as an F-homomorphism of the one into theother. If xand yare
vectors in two vector spaces and x 7 0, then the mapping

ax—ay, (ae F)

is clearly a linear transformation of Fx onto Fy. From this remark and
from Theorem 23, it follows that if x,, - - -, &, constitute a basis for a
space M and if y,, - - -, y, are elements of a space L, then there is one
and only one linear transformation of M into L such that x,T =y,
i=1--,n

We shall see various other examples where properties of vector spaces
can be deduced from theorems on modules.

§ 12%=, Infinite direct sums. Let A4 be an arbitrary (finite or
infinite) set of elements and let ¢ be a mapping of 4 into a set whose
elements are groups. For any element a of 4 we shall denote by G, the
group @(a). We shall say then that we have a set of groups {G,} which
is indexed by the set A. We do not assume that g is univalent; it there-
fore may very well happen for two distinct indices @ and b that G, = G,.

The set product of the set of groups {G,} indexed by A4 shall be by
definition the set of all functions f on A4 such that for any element a of 4
the value f(a) of f is an element x, of G,. We shall identify any such
function f with the ““ vector” x = {x,}, where a varies in 4, and we shall
call x, the component of x in G, (the term * vector "’ is used here in a sense
which is more general than the one in which that term was used in I,
§21). The set product of the G, is therefore to be thought of as the
set of all vectors {x,}.

The group structure of the G, allows us to define multiplication in the
set product of the G, as follows: if x = {x,} and y = {y,}, then
xy = {x,y,} (x,, ¥.€G,). It is then immediately seen that the set
product of the G, becomes a group. This group will be denoted by

11 G, and will be called the complete direct product of the groups G.,.
aE.

The identity of the complete direct product is the vector {e,}, where e,
is the identity of G,, and the inverse of any element {x,} is the element
{xa1)

“The following assertions are straightforward and their proofs may be
left to the reader:
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(1) If {H,} is a set of groups indexed by the set A4, such that for each a
the group H, is a subgroup of G,, then the complete direct product of
the H, is a subgroup of the complete direct product of the G,, and it is
an invariant subgroup if each H, is an invariant subgroup of G,.

(2) If Bis a subset of 4 and if C denotes the complement of B in 4,

then the complete direct product L[ G, is isomorphic with the invariant
B

subgroup ﬁ H, of ﬁ G,, where we have set H, = G, if ae B and
acA aeA

H,=(e,)ifacC.

If each G, is a commutative group then also the complete direct
product of the G, is commutative. In that case, if the additive notation
is adopted for the group operation in each (,, the same notation will be
used for the complete direct product of the G, and the latter will be
referred to as the complete direct sum of the G, and will be denoted by

> G,
acd

If each G, is a module over one and the same ring R, then the
complete direct sum of the G, can be made into an R-module by setting
a-{x,} = {a-x}(«e R, x,€ G,). If each G, is a module over a ring R,
which depends on a (so that the set of rings {R,} is itself indexed by the
set A) then the complete direct sum of the G, can be made into a module
over the complete direct sum of the R, by setting {u,}-{x,} = {u,-x,}
(v,€ R, x,€G,). It is understood that a complete direct sum of
rings R, is viewed as a ring in virtue of the following definition of
multiplication: {¥,{v,} = {u,v,}.

We shall seldom have occasion to use complete direct products or
complete direct sums. More important for our purposes will be the
concept of a weak direct product, or simply direct product (or direct
sum, in the commutative case). We proceed to define this concept.

Let G be a group and let {G,} be a set of subgroups of G, indexed by
aset A. We say then that G is a weak direct sum of the subgroups G, if
the following conditions are satisfied: (a) for a 7 b each element of G,
commutes with each element of G,; (b) for each element x of G there
exists one and only one element {x,} of the complete direct product of the
G, such that x, = ¢, for all a in 4, except for a finite number of indices
ay, @y, -+ *, 4, and such that x = x,x, - --x,. The element x, is

then called the component of x in the group G,. We write G = 11 G,
a€.

to indicate that G is the weak direct product of the subgroups G,. We
shall, as a rule, omit the word “ weak”’ and speak simply of G as being a
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direct product of the subgroups G,. In the additive (commutative) case
we shall use the term weak direct sum (or simply direct sum).
The proofs of the following assertions are straightforward and may be
left to the reader:
1) If G is a direct product of subgroups G, then G is isomorphic with
a subgroup of the complete direct product of the G,, distinct from
n G, if A is an infinite set. The isomorphism we allude to is the one

IEA ~
in which to each element x of G corresponds the element {x,} of [] G.,
aeA

where x, is the component of x in G,.
2) If G is a direct product of subgroups G, and if G’, denotes the
subgroup of G which is génerated by the subgroups G,, b # a, then

(a) each G, is an invariant subgroup of G;
(b) G is generated by the groups G,;
(c) G,NG’, = (e), where e is the identity of G.

3) Conversely, if {G,} is a set of subgroups of G satisfying conditions
(a), (b) and (c) then G is a direct product of the groups G,.
4) Let {G,} be a set of groups indexed by a set 4 and let H be the

subgroup of ] | G, consisting of the elements {x,} such that x, = e, for

allain 4, except for a finite number of indices. Let H, be the subgroup
of H consisting of the elements {x,} such that x, = ¢, for b ¢ a. Then
H, and G, are isomorphic groups, and H is a direct product of the H,.

In the case of R-modules G,, the group H defined in 4) is easily seen
to be a submodule of the complete direct sum of the G,.

It is immediately seen that in the case of groups (or modules) indexed
by finite sets our present definitions coincide with those given in the
preceding section.

§ 13. Comaximalideals and directsums of ideals. We now apply
the results of § 12 to the theory of rings. Let R be an arbitrary ring. If
we regard R as an R-module then the definitions of § 12 apply, and it is
meaningful to speak of direct sums of submodules of R—that is, of
ideals of R. Because of its importance we give the definition explicitly
for the special case at hand:

DEFINITION 1. The ring R is said to be the direct sum of the ideals
Ry Ry, -+, R, if

() R=R,+Ry;+---+R,
) ROR, 4+ "+R L, + R+ +R)=0)i=1"- ,n
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We write, as before,
(1) R=R,®R, @ - ®R,

We note that when (1) holds, the ideals R; mutually annihilate one
another; that is,

RR; = (0) for igtj.
This follows from R;R; C R,NR; = (0) if i 3£ j. As a result, an ideal
in R; (R; being considered as a ring) is also an ideal in R.

To make essential use of the ring structure of R we must place some
restriction on it. Hence in the remainder of this section we assume that R
has an identity element, to be denoted as usual by 1.

THEOREM 30. Let R be a ring with identity. Let Ry, Ry, - -+, R, be
subrings of R such that
(2) R=R,+R,+ -+ R,RR,=(0) forisj.

Then each R; is an ideal and the sum (2) is direct. All elements of R, are
zero divisars unless R; = (0)forallj £ i. Ifa,b;eR, fori=1,2,---,
n, then
(a1+"'+a,,)+(b1+"'+bn)
(3) =(a,+b)+ -+ (a, +'b,.).
(@ay+---+a)by+ - +b)=ab, + - +ab,
There exist uniquely determined elements e, such that

(4) l=egid -+ enes€Ryy
and it follows that
(5) et=e,e;e,=0 for i%j, R =Re,

and e, is the identity of R,.
If N is an ideal in R, there exists a decomposition

(6) A=A D - DN, U, an ideal in R;
this decomposition is unique, and in fact,
(7) A =RYA

The residue class ring R[¥ is a direct sum of rings isomorphic (as rings) to
the rings R,[%,. The ideal ¥ is a maximal or prime or primary ideal if and
only if all but one of the U; coincide with the corresponding R, and the
remaining W, is respectively maximal, prime, or primary.

PROOF. From (2) and the fact that R; is a ring it follows that
RR; = R2CR,, so R; is an ideal. If c€R,, then by (2) Rc = Rc;
and if also ce Ry + -+ R,, then Re = Ryc =0, hence ¢ =0.
Thus '

Rln(Rl + - +R)= (0),
and n — 1 other relations of this sort together imply that the sum (2)
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is direct. The relation R,R; = (0) implies that each element of R; is a
zero divisor unless R; = (0) for j £ i. Relation (3) is obvious, as is the
existence of unique e; satisfying (4), and also that e,e; = 0 for 7 5 j.
Multiplying (4) by e; we find e,2 =e,. If c € R;, (4) implies ¢ = ce,,
and hence also R; = Re,.

Suppose % is an ideal in R. If a decomposition (6) exists, then
RN = R, = A, whence (7). Existence of a decomposition follows
by multiplying (2) by %:

A=RA=RAD - ®RY;
R is an ideal in R; since R(RA) = R, = RA.

If T is the natural homomorphism of R onto the ring R/¥, then it is
easily proved that R/¥ is the direct sum of the ideals R, T and that R, T
is isomorphic to R,/%; (cf. proof of Theorem 24 of § 12).

Now for the last statement: Suppose U is primary in R, % 3 R.
Then not every R;T can be (0), say, R,T 7 (0). Since no power of
e, T can be zero, it cannot be a zero-divisor in R/ (since U is primary),
hence R,T = (0) for i > 1. Thus if % is primary, RT =0 fori > 1
and in R,/%, (= R,T = RT) every zero divisor is nilpotent, so that
A, = R, for i > 1 and ¥, is primary in R,; the converse is obvious.
Similarly (and even more simply) for % prime or maximal.

An element e of a ring such that e* = e is called an idempotent ; two
idempotents e and ¢’ are said to be orthogonal if ee’ = 0. Thus with a
direct decomposition of the ring R we have associated a decomposition

l=e,+-"-+e,
of the identity of R into orthogonal idempotents. Conversely if such
orthogonal idempotents are given, it is easy to see that R is the direct
sum of the ideals Re,, - - -, Re,.

We point out that if Sisaringand S = S, ® - - @ S, withR; =~ S,
then R = §; cf. proof of Theorem 23 of §12. Also, if R';,---, R',,
are arbitrary rings, there exists one and (up to isomorphism) only one
ring R which is the direct sum of ideals R; isomorphic to the R'..
The ring R may be defined (cf. Theorem 29 of § 12) to consist of all
(ay, - -+, a,), a; € R';, addition being defined in the obvious way, and
multiplication by

(an -y a)byy -7, b,) = (ardy, -+ -, ab,)

DEFINITION 2. Let R be a ring with identity. A set of ideals

¥, - -, ¥, in Ris said to be PAIRWISE COMAXIMAL f each U; 7 R and

?I,—-I-M,"—-"R fori#j.
If n = 2, we say simply that %, and %, are comaximal.
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The definition, of course, implies %; 7 ¥, for i 9 j, also that
¥; #% (0). This concept allows us to give a sort of dual decomposition
;? the direct sum, and in a stronger form than in Theorem 25, § 12.

irst:

THeOREM 31. Let R be a ring with identity, and let ¥,, - - - , ¥, be
ideals in R. The ¥; are pairwise comaximal if and only if their radicals
are. If an ideal B is comaximal with each ¥;, then it is comaximal with
AUN---NA, and Ay ---U,. If A,, -, YU, are pairwise comaximal,
then

(8) Q(ln‘°'nﬂln=ul"'?[,,;

if, moreover, by, - - - , b, are elements of R, then there exists an element b in
R such that

(9) bEb,'(ﬂi)v i=1---,n

PROOF. If %, and 9, are comaximal, obviously V¥, and V¥, are.
Conversely suppose V%, + V¥, = R. Then by the formulas on the
radical (Theorem 9 of § 7, p. 147):

R=vVR=VVU + V¥, = V¥ + %
since only R has R as radical (since 1 € R), %, + %, = R. (Ordirectly:
from R = V¥, + V¥, we obtain 1 = ¢, + ¢y, c, e VU, c*e ¥, k
an integer; since in the binomial expansion for 1 = (¢, + ¢,)%*-! each
term has a factor ¢ icy’ with £ = &k or § 2 k and hence is in %A; or Ay,

it follows that 1 e %, + %,.)
If B is comaximal with each %,, then

B+U,=Ri=1-,n

To prove B comaximal with ﬁ‘)l,-, and hence a fortiori with ¥%;, we
i 1
observe that
R=k=][B8+%)c8+ ][0, CR
1 1

We have here used the fact that multiplication of ideals is distributive
with respect to addition (cf. § 7, relation (2)).
Suppose the ¥, pairwise comaximal. If n = 2, then
(U, NA) = (A, + WA, NA) = U (A, NA) + A(A, NAy)
(o 911”3 + ﬁgﬁ(l = ul‘ﬂ,.
Assuming (8) true for n — 1 factors, and observing that %, is comaximal
With ﬂl n ¢ n’"_l, we haVe
w,n--- nY,_,)NY, = NN _ %, = (A, -+ - A, )%,
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Suppose, in addition, the elements b, to be given. If n = 2, then
1 = a, + a, with a; € ¥%,, so that

a, = 0(%,), a; = 1(Ay), a, = 1(Ay), a, = O(Y,).
Placing b = b,a; + bga, we get

b = b.-(?[.'), i = l, 2.

Assuming the last statement in the theorem to be true for n — 1, we
have an element 4’ such that
(10) V=0b(%) i=1---,n--1
Since %, and %, N- - - NA,_, are comaximal there is an element b such
that o
(11) b=b'(UN---NYA,_,), b= b,(,).
From (10) and (11) b= b(¥,),i=1,---,n — 1.

The last statement of Theorem 31 is a generalization of the well-
known fact that if m,, - - -, m, are integers which are relatively prime
in pairs, and if b,, - - -, b, are arbitrary integers, then the simultaneous
congruences

x=b(modm), i=1---,mn,
have a solution.

THEOREM 32. Let R be a ring with identity. Let¥,, - - - , %, be ideals
such that
(12) O =24Nn---NA, A+ A =R for i3]

If we place

(13) R,'=9lln"'n9I,'_anIi+ln"’u", i-——l,"',n,

then

(14) R=R® ' @R, R, =R,

(15) U=R+ - +R_,+Ryu+ - +R,
Conversely, if R is a direct sum of ideals R,, - - - , R, and if we define ¥;
by (15), then (12) and (13) follow.

PROOF. Suppose the %, are given, satisfying (12). From the preced-
ing theorem it follows that U, + n ¥, = R, so that the second half of

Theorem 25 of (§ 12) may be apphed to give the first part of (14) and
also (15); here the ¥, play the role of the NV,. In view of (14) we have

l=¢1+ +¢,,,¢ER

The mapping a — ae, is clearly a homomorphlsm of R onto R,, and
indeed the elements of R, are fixed in this mapping. The kernel consists
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of those a such that ae, = 0, that is, a = i ae;; hence the kernel is ¥,

=3
and R, = R/¥,. Similarly, R, = R/¥;, fori = 2, ,m
If R is a direct sum of the R, and we define %; by (15), then we apply
the first half of Theorem 25, with the R, playing the role of the M,.
Then (13) and first part of (12) follow. From (15) and (14) it follows
that R = R, + ¥, hence a fortiori R = %, + ¥, for j 5 i.

§14. Tensor products of rings. All rings which are considered
in this section are assumed to contain a given field & as subring. It is
furthermore assumed that the element 1 of % is also an element 1 of
each of the rings. We shall sometimes refer to our rings as algebras
over k.

If A and B are subrings of a ring C, we shall denote by [4, B] the
smallest subring of C which contains both rings 4 and B.

Let A and B be two given algebras over k.

DerFINITION 1. By a product of A and B (over k) we mean the composite
concept (C, @, ) consisting of an algebra C over k, a k-isomorphism ¢ of
A into C and a k-isomorphism s of B into C, such that C = [Ag, By].

DeFINITION 2. Two products (C, ¢, ¢) and (C', ¢’, ') of A and'B
are said to be equivalent if there exists an isomorphism f of C onto C’ such
that o' = ¢f on A and ' = if on B.

This relation of equivalence is clearly reflexive, symmetric, and
transitive, and thus we can speak of equivalence classes of products of
A and B. 1t is also clear that if the above isomorphism f exists at all,
it is uniquely determined, for C is generated by Ap and By and we must
have f = ¢—1¢' on Ap and f = y—4' on By.

DeriNiTION 3. A product (C, ¢, ¥) of A and B is called a tensor
product of A and B (over k) if the rings Ap and By are linearly disjoint
over k (see II, § 15).

THEOREM 33. There exist tensor products of A and B.

PROOF. Let {x,} be a vector basis of 4 over k and let {y,} be a vector
basis of B over k. We consider the set of all ordered pairs (x,, y,) and
the set C of all formal finite sums Jc (x,, y;), With coefficients c,, in k.
Then C is in a natural way a vector space over k, the set of all ordered
pairs (x,, y,) (that is, the set-theoretic product of the two bases {x,} and
{94} of A over k and B over k respectively) being a vector basis of C over
k. We will find it convenient to use the following notation: if x = Jax,
and y = b,y, are elements of A and B respectively (a,, b, € k), then
x 0y shall denote the element Y >a,b,(x,, y,) of C. In particular, we
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have x,0 y, = (x,, ¥,). Itisclearthatxoy = Oif and only if x = O or
y = 0. The following relations are obvious:

(1) (x+ x)oy=x0y+x'0y;, (x,x€Ad;yeB).
(2) xo(y+y)==x0y+x0y’; (x€4;y,9 €B).
3) c(xoy) =cxoy==xocy; (xe€A,yeB;cek)

We shall now define a multiplication in C. It will be sufficient to
define the products (x, 0 y,)-(x, o ,) of any two basis elements of C, for
then the product of any two elements of C will be determined by
linearity, that is, by the requirement that the multiplication be distribu-
tive and that we have c(x, 0 y,)-d(x, 0 y,) = cd((x,0 y;)(x,0,). We
set .
*) (%, 05) (%, 038) = %%, 0 YgYs-
It is obvious that the multiplication thus defined is commutative and
distributive. To verify the associative law, it is only necessary to verify
the validity of the following relations:
(5) [(xu oyﬂ)(xy °ya)] . (xc’ °J’p’) = (xc oyﬂ)[(xy °J’a)(x¢' oyﬂ')]‘
These relations follow, however, from the associative laws in 4 and in
B, for it is immediately seen that both sides of (5) are equal to x,x,x,. ¢
¥s¥o¥e- We note that the above definition implies (in view of (1) to (3))
that we have (x o y)(x' 0 ¥') = xx’ 0 yy', for any elements x, x’ of 4 and
any elements y, y’ of B.

The mapping ¢:a-»>aol, a€ 4, is obviously a homomorphism of
A into C (note that we have aa’ o 1 = (a0 1)(a’ o 1), for any elements
a and @’ in A). Since aol 0 if a5 0, ¢ is an isomorphism.
Similarly the mapping 4: 56— 10 b, b € B, is an isomorphism of B into
C. The two mappings ¢ and ¢ coincide on k, for if c €k, then
col=¢lol)=1oc. We shall identify ¢ with co 1 for any ¢ in k.
Then (C, ¢, ) becomes a product of A and B vver k, in the sense of
Definition 1, for we have (x,0 y,) = (x,0 1)(10y,) and hence C =
[Ag, BJ). The two subrings A’ = Agp and B’ = By of C are algebras
over k and are k-isomorphic with 4 and B respectively.

We now prove that 4’ and B’ are linearly disjoint over .. The
elements x,0 1 form a basis of 4’ over k, and similarly the elements
1 0y, form a basis of B’ over k. We have (x, 0 1)(1 0 y,) = x, 0 ,, and
therefore the products (x, o 1)(1 o y,) are linearly independent over .
The linear disjointness of 4’ and B’ now follows from 11, § 15 (Lemma
1). The proof of the theorem is now complete.

TueoREM 34. (The universal mapping property of tensor products.)
A necessary and sufficient condition that a product (C, ¢, y) of A and B
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(over k) be a tensor product of A and B is that given any two k-homo-
morphisms g and h of A and B respectively into a ring R there should exist
a homomorphism f of C into R such that f = ¢p~'g on Ap and f = y='h
on By. \

PROOF. Every element ¢ of C has an expression of the form

£ = Sop(a;W(b;), where a,€ Aand b,e B. We set f(£) = 3 g(a,)h(b;).

Then f is a transformation of C into R (perhaps not single-valued) which
satisfies the following two conditions: a) for any £ in C the set f(£) is
non-empty; b) if uef(£) and vef(y), then u + vef(é + 7) and
uv € f(£n). It follows from Lemma 2 of 1, § 11, that f can be asserted
to be univalent (and hence a homomorphism), provided the set f(0)
contains only the zero of R. We shall show now that this last condition
is indeed satisfied if (C, ¢, ¢) is a tensor product of 4 and B, and this
will prove the necessity of the condition since we have f = ¢—!g on Ag
and f = ¢y~ on By.

Let 0 = an(a,)nl:(b) be an expression of the zero in C. We fix a

basis {x_} of the vector space > ka; (over k) and a basis {y,} of the vector
space kb, and we express the a; and the J; in terms of these basis
elements: g; = Zcux,, b, = Zd,,,y,3 (¢ir dig€ k). From the above

expression of 0 and by the lmear disjointness of Ap and By over k it
follows that

(6) S¢idig =0, all @ and 8.

We have g(a;) = D¢, g(x,) and k(b)) = Dd;h(y,). Hence 3 g(a)h(b;)
=> (Zc,-ad,-,)g(x:)h(y,), and this is ze:o in view of (6). This com-
aBf\i

pletes the proof of the necessity of the conditien.

Conversely, assume that the product (C, ¢, ) satisfies the condition
stated in the theorem. We fix a tensor product (C’, ¢', ') of A and B
and we proceed to show that the two products (C, ¢, ) and (C’, ¢, §)
are equivalent. 'This will complete the proof of the theorem.

By assumption, there exists a homomorphism f of C into C’ such that
f=9"'9 on Ap and f = =’ on By. Since C’ is a tensor product,
it follows from the first part of the proof that there also exists a homo-
morphism f’ of C’ into C such that f' = ¢'~'p on A¢’ and f’' = J'~¢
on By'. Then ff’ is a homomorphism of C into itself which is the
identity on both Ap and By. Since C = [4p, By] it follows that ff’ is
the identity on C. Similarly, f'f is the identity on C’. Consequently f
is an isomorphism of C onto C’, and since f = ¢~1¢’ on Ap and f = y—§'
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on By, the two products (C, ¢, ¥) and (C', ¢', §') are equivalent, as was
asserted.

COROLLARY 1. Any two tensor products of A and B are equivalent.

This has been established in the second part of the above proof.

CoroLLARY 2. If a given product (C, e Y) of A and B admits a
hormmorphum f into a tensor product (C', ¢', ') of A and B such that
S=0¢"% on Ap and f = Y=Y’ on By, then (C, ¢, ¥) is itself a tensor
product of A and B, and f is an isomorphism of C onto C".

Also this has been established in the second half of the above proof.

We shall now introduce a canonical model of a tensor product of
our two rings 4 and B whose construction is intrinsically related to these
rings (the construction in the proof of Theorem 33 uses bases of 4 and
B and is therefore not intrinsic).

We consider the set-product 4 X B, that is, the set of all ordered
pairs (a, b), ac A, be B. We denote by M the set of all formal finite
linear combinations c(a;, b,) of elements of A x B, with coefficients

¢;in k. We convert M into a vector space over k, with 4 X B as basis,
by defining addition and scalar multiplication in an obvious way:

(Z‘:(aiv b.‘)) + ('Zdi(ai! b-')) = Z(‘x’ + d,)(a;, b)),
d(z"i(ai- b-‘)) = chi(ai’ b)),

where the ¢,, d;, and d are elements of k&. We now also define multi-
plication in M by first defining the product of any two elements (a, b)
and (a’, ') of A X B as follows:
(a, b)(a', ') = (aa’, bb')

and then defining the product of any two elements of M by linearity.
It is immediately seen that with this definition of multiplication M
becomes an algebra over k (however, note that the field % is not contained
in M).

Let R denote the ideal generated in M by all the elements of the follow-
ing form:
) (a + a',b) — (a,b) — (a', b), (ca,b)— c(a,b),

a, b + &) — (a, b) — (a, b'), (a,cb) — c(a, b),
wherea,a’ € A; b, b € B;ce k. We denote by T the residue class ring
M|® and by p the canonical homomorphism of M onto T. For any
element a in 4 and b in B we denote by a ® b the R-residue of (a, b).

Finally we denote by g the mapping a — a @ 1 of 4 into 7, and by 4 the
mapping b — 1 ® b of Binto T. It is immediately seen that g and 4
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are ring homomorphisms. We have p(c(a, b)) = p{(ca, b)) = ca @ b,
and since every element of M is a sum of terms of the form ¢(a, b), with
cink, ain 4 and b in B, it follows that every element of T is a sum of
elements of the form @ ® 5. On the other hand, we have (g, b) =
(a, 1)(1, ), whence a® b = (a @ 1)1 ® b). This shows that every
element of T is a finite sum of products of elements a ® 1 of the ring
Ag and elements 1 @ b of the ring Bh. In other words, we have

® T = [4g, Bh).
Let us now fix a tensor product (C, ¢, ) of 4 and B (over k). The

mapping o: Seda b) — Seala)ib),

is a ring homomorphism of M onto C. The relation ¢(a + &'} (5)
= o(alW(5) + o(a’)W(b) shows that the elements of M of the form
(@ + d',6) — (a,8) — (', ) belong to the kernel of 0. Similarly, all
the elements of the form (7) belong to the kernel of o, that is, the kernel
of o contains the kernel of p. Hence ¢ = pr, where r is a homomor-
phism of T onto C.

For any a in A we have ¢(a) = o((a, 1)) = 7(a @ 1) = (g7)(a).
Since ¢ is an isomorphism, it follows that g is an isomorphism of A onto
Ag and that the restriction of T to Ag is an isomorphism of Ag onto Ap.
Similarly we find that y = kr on B, that k is an isomorphism of B onto
Bh, and that the restriction of 7 to Bk is an isomorphism of Bk onto By.
We note that g = A on k and that consequently we can identify any
element ¢ of k with the corresponding element g(¢c) = c ® 1 = Ah(c) =
1 ® ¢. With this identification, g and & become k-isomorphisms of 4
and B respectively into T. Hence, by (8), T is a product of A and B,
over k. In view of the existence of the homomorphism of T into C,
with the properties described above, it follows, by Corollary 2 to
Theorem 34, that (T, g, k) is a tensor product of A and B. This,
canonically constructed, tensor product of 4 and B will be denoted by
A ? B, or simply by 4 ® B.

The following relations are easily verified: 4 ® B= B ® 4,
(A®@B)®C=AQ® (BQ® C). The proofs may be left to the reader.

From now on we shall regard A and B as subrings of the tensor product
A ® B. More precisely, we identify every element a of 4 with
the corresponding element g(a) = a ® 1 and every element b of B
with the corresponding element 1 ® . With this identification, the
tensor product A ® B = (T, g, k)is now (7, 1, 1), where 1 stands both
for the identity mapping of 4 and the identity mapping of B.
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In the preceding considerations the nullring was excluded because
we have always assumed that our rings contain an element 1. However,
this assumption played no role whatsoever in the definition of the ring
A ® B, and this ring is obviously the nullring if either 4 or B is the
nullring.

EXAMPLES

1) If A is a field, then 4 @ B is a ring containing the field 4. Any
basis {y,} of B over k is also a basis of A ® B over A. In particular,
k® B=B.

2) If A=FHX] (=kX, Xy, -+,X,]) and B=Fk[Y] (= kY,
Y, ---,Y,]) are polynomial rings in #n and m indeterminates
respectively, then the polynomial ring C == k[X, Y] in n 4+ m in-
determinates is generated by 4 and B, and it is clear that 4 and B are
linearly disjoint over %, in C. Hence k[X, Y] = k[X]'® k[Y].

A similar result holds for polynomial rings in infinitely many variables.

Let % be an ideal in 4 and B an ideal in B. We shall denote by
(%, B) the least ideal in 4 ® B which contains % and 8. In other
words, (%, B) is the ideal in 4 ® B which is generated by the elements
of Wand B. We denote by «, B, and % the canonical homomorphism of
A onto A/¥%, of B onto B/B, and of 4 ® B onto 4 ® B/(¥, B),
respectively. Since the restriction of 4 to 4 has kernel which contains
¥ it follows that 4 = ap on 4, where ¢ is a k-homomorphism of 4/%.
Similarly, & = By on B, where ¢ is a k-homomorphism of B/®.
Furthermore, since 4 ® B is generated by 4 and B, the ring
A @ B[(%, B) is generated by (4/%)p and (B/B).

THEOREM 35. The rings A/ Q B|B and (A ® B)/(Y, B) are k-
isomorphic. More precisely : the homomorphisms @ and | are isomorphisms,
and (A @ B/(%, B), ¢, §) is a tensor product of A/% and B[9B.

PROOF. If either % or B is the unit ideal, then both rings coincide
with the nullring. We shall therefore assume that % 3 4 and B #B.
Under these assumptions we first show that (%, 8) N4 =% and
(%, B) N B = B, and that consequently ¢ and s are isomorphisms. By
Theorem 34, applied to the rings C =4 ® B and R = A4 ® B/S,
there exists a homomorphism g of 4 ® B into 4/ ® BB such that
g=caon Aand g =B on B. The kernel of g contains % and B and
consequently also (%, 8). Therefore 4 N(%, B)CT 4 NKerg =19,
showing that (%, ¥) N4 = ¥A. Similarly, (%, 8) NB = B.

Since the kernel of g contains (¥, B) we have g = kf, where f is a
homomorphism of 4 ® B/(¥, B) into the tensor product 4/% @ B/®.
Since g = a on A while 4 = ap on A4, it follows that ¢f is the identity
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on A[¥, or—equivalently—that f=¢-1 on (A/)p. Similarly,
f=14y"'on (B/B). By Corollary 2 of Theorem 34 this completes the
proof of the theorem.

We shall now give some results concerning zero-divisors in given
rings and in their tensor products. First of all, we have the following
lemma:

LEMMA. If an element a of A is not a zero-divisor in A, it is not a zero
divisor in A @ B.

The proof is immediate. For if we have a¢ = 0, where £€ A ® B
we can write £ in the form ¢ = 3 a.b,, where the a; are in 4, and the b;

are elements of B which are linearly independent over k (and hence also
over A). From (aa,)b, = 0 follows then aa, = 0, a; = 0, and hence

COROLLARY. The total quotient ring K of A & B contains the total
quotient rings of A and B. More precisely: the quotient ring of A in K
is a total quotient ring of A, and similarly for B. Furthermore, these total
quotient rings of A and B are linearly disjoint over k (as subrings of K).

Every regular element of 4 has an inverse in K (since every regular
element of 4 is also a regular element of K, by the lemma). Hence we
can speak of the quotient ring of 4 in K| and this quotient ring will be a
total quotient ring of A4 (I, § 19, Corollary 3, p. 43). If {,/b} is a set of
elements of the quotient ring of B (b, b; € B. b regular in B) and if these
elements are linearly independent over %, then also the b, are linearly
independent over k and hence also over 4. From this it follows at once
that also the quotients b;/b are linearly independent over the quotient
ring of 4.

The following theorem includes the above lemma as a special case:

THEOREM 36. Let A’ and B’ be subrings and subalgebras of A and B
rc:pectwely If no element of A’ which is different fram zero is a zero-
divisor in A, and zf similarly, no element of B’ which is different from zero
is°a zero-divisor in B, then every element of A’ @ B’ which is a zero-
divisor in A ® B is already a zero-divisor in A’ @ B'. (Note that
A’ ® B’ is canonically identifiable with a subring of 4 @ B.)

PROOF. Let x’ be an element of A’ @ B’ which is not a zero-divisor
in A’ ® B’ and assume that we have x'z = 0 for some element z of
A® B. We write 2 = Ya;b, with a;€ 4 and b, € B, and we extract

from the set {a,} a maximal subset {u,} of elements 4, which are linearly
independent over A’, Similarly, we extract from the set {§,} a maximal
subset {v,} of elements v, which are linearly independent over B'.
We note that from our assumptions it follows that both 4’ and B’ are
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integral domains. Hence, there exist elements «’ and 8’ in 4’ and B’,
both different from zero, such that @'a; = @', 4p B'b; = Db ;0

where the a’;, belong to 4’ and the ¥';, belongm toB'. We hav; there-
fore

(9) a'ﬁ'z = z (z_aliub'in)“mvm
and .
(10) 0=x'a'fz=> (x’Za',-,,,b',-,,)u,,,v,,.
We set '
(l l) ylmn = x'za,iab'in'
Since y',,, € [4', B'] we can write these elements in the form
(12) Ymn = ’Z Crnpe®'sb o
»q

where the c,,,, are in &, the a’, are elements of A’ which are linearly
independent over k and the b’, are elements of B’ which are linearly
independent over . The linear independence of the v, over B’ and the
linear independence of the &', over k& shows easily that the products
b v, (clements of B) are linearly independent over k. Similarly the
products a’,u,, are linearly independent over k. The linear disjointness
of 4 and B over k implies therefore that the products u,v,a’,b’, are
linearly independent over k. Now relations (10), (11), and (12) yield
the relations
2 CmmpelimUn@’ph’y = 0.

Hence the elements ¢,,,, are all zero, and therefore also the elements
Ymn are all zero. Since x’ is not a zero-divisor in 4’ ® B, it follows
from (11) that >a’;,b";, = 0, and hence by (9), we have «'f'z = 0.

Since 0 3 o' € A, it follows from the preceding lemma that «' is not a
zero-divisorin 4 ® B. Hencef'z = 0. Similarly, since 0 ¢ g'e B, it
follows that 2 = 0. This shows that x’ is not a zero-divisor in 4 ® B
and completes the proof of the theorem.

CorOLLARY. Let K and K' be fields containing k and let B be a tran-
scendence set in K (for instance, a transcendence basis). Then, in the
tensor product K ? K', the elements of B are also algebraically inde-

pendent over K', every element of the polymomial ring K'[B), different
fromxero,isregularinK?K’,andthemdquoﬁmtﬁngofK?K’

contains the tensor product K @ K'(B).
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Any finite set of distinct monomials x,%.x's - - - x,a, x; € B, is a set of
linearly independent elements over k. Hence these monomials are
also linearly independent over K’, which proves the first assertion of the
corollary. The, rings X[B] and K’ are linearly disjoint over k (in
K ? K') and they generate the ring K'[B]. Hence we have K'|B] =

k[B] ® K'. Since we are now dealing throughout with integral
domains, the preceding theorem shows that every non-zero element of
the polynomial ring K’[B] is regular in K ? K’. Consequently the

total quotient ring of K @ K’ contains the field K'(B). We assert that
k

K and K'(B) are linearly disjoint over k(B). Since K'(B) is the quotient
field of k(B)-K’ (this latter ring being the ring of quotients of K'[B]
with respect to the multiplicative system of the non-zero elements of
k[B)), it will be sufficient to show that K and k(B)- K" are linearly disjoint
over k(B). However, this follows at once from the linear disjointness of
K and K’ over k and from the fact that the vector space k(B)- K’ over
k(B) has a basis consisting of elements of K'. The elements of such a
basis are a fortiori linearly independent over k and hence also over K,
and the linear disjointness of K and K'(B) over k(B) follow now from
the lemma of II, § 15. The ring generated by K and K'(B)in the total
quotient ring of K ? K’ is therefore isomorphic with K k?; K'(B).
)

§ 15. Free joins of integral domains (or of fields). Our object
in this section is to apply the concept of tensor products toward the
determination of all possible ways in which two abstract integral
domains over k (or two flelds over k) can be freely embedded (in a sense
that will be specified below) in a bigger field. We proceed to prepare
the ground for this application.

Let R and R’ be integral domains containing a given field % as subfield.

DEerINITION 1. By a free join of two integral domains Rk and R'[k
(relative to k) we mean the composite concept (2, 7, 7') consisting of an
INTEGRAL DOMAIN 2 containing k, a k-isomorphism 7 of R into 2 and a
k-isomorphism ' of R’ into S, such that the following conditions are
satisfied: (1) 2 = [Rr, R'1"]; (2) the subrings R and R'7’ of 2 are free
over k (see 11, § 16, Definition 2).

A similar definition can be given for the case of fields, namely, as
follows:

DEFINITION 2. By a free join of two extension fields K|k and K'[k of k
we mean the composite concept (F, 1, 7') consisting of A FIELD F containing
k, a k-isomorphism 7 of K into F and a k-isomorphism 1’ of K’ into F such
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that the following conditions are satisfied : (1) F is the compositum (K+, K'z")
of the two fields K+, K'7', that is, no proper subfield of F contains both
fields K+ and K'7'; (2) KT and K'1' are free over k.

We note, in the case of fields K and K’, that if condition (1) of
Definition 2 is satisfied and if we denote by S the subring [K7, K'7] of
F, then (F, 7, 7') is a free join of the fields K and K’ if and only if
[S, 7, 7] is a free join of the integral domains K, K’, in the sense of
Definition 1. On the other hand, if (2, 7, 7') is a free join of two integral
domains R/k and R'[k, and if K, K’ and F denote quotient fields of R, R’
and £ respectively, then = and 7’ can be canonically extended to iso-
morphisms 7, and 7', of K and K’ respectively, into F, and then it is
immediately seen that (F, 7,, 7';) is a free (field-theoretic) join of the
fields K and K’, over k. Thus, Definitions 1 and 2 are essentially
interchangeable. From the standpoint of tensor products it is more
convenient to use Definition 1 of free joins even in the case of fields
K[k and K’ [k, despite the fact that the free join, in the sense of Definition
1, is itself not necessarily a field.

The existence of free joins of R/k and R’[k can be shown as follows:

We fix a transcendence basis B = {x;} of R/k and a transcendence
basis B’ = {x’]} of R'[k. We then consider a pure transcendental
extension k({y,}, {y',}) of k, where the y, and the y' ;aré ““ indeterminates "’
and where the sets {y;} and {y’;} have the same cardinal number as Band
B’ respectively. Let Z denote an algebraic closure of the field
k({y}, {»',)). There exists a k-isomorphism 7, of k({x,}) onto k({y,})
such that x,7, =y, Since the quotient field of R is an algebraic
extension of k({x;}) and Z is algebraically closed, 7, can be extended
to an isomorphism 7 of R onto some subring L of X (see II, § 14,
Theorem 33). Similarly, there exists an isomorphism 7' of R’ onto
some subring L.’ of 2 such that each element of % is mapped into itself and
each x'; is mapped into ;. Let 2 = [/, I.']. 'Then it is immediately
seen that (2, 7, 7’) is a free join of R and R'.

Let (£, 7, 7') and (2%, 7*, 7'*) be two free joins of R/k and R'[k.
Let

L=Rs L' =R7;,L*=Rt*, L'*=R''*

Then 7—1r* is a k-isomorphism of L onto L*, and similarly +'-1¢'*
is a k-isomorphism of L’ onto L'*.

DeriNITION 3. Two free joins (2, 7, 7') and (2%, 7*, v'*) of R[k and
R'[k are said to be equivalent if there exists a k-isomorphism s of Q onto
2* such that  coincides with v—r* on Rt and with 7'~17'* on R'7’.

We note that if there exists an isomorphism i satisfying the above
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conditions, this isomorphism is uniquely determined, for £ is generated
by Rr and R'7'.

To find all the equivalence classes of free joins of R/k and R’'[k we
consider the tensor product R ® R’. Since in studying the free joins
of Rfk and R’[k it is permissible to replace these rings by arbitrary
k-isomorphic rings, we identify R and R’ with suitable subrings of
R® R'. We have now therefore: R® R’ = [R, R'], and R, R’ are
linearly disjoint over k.

Let (2, 7, 7') be a free join of Rjk and R'[k. By Theorem 34 (§ 14),
there exists a homomorphism f of R ® R’ into 2 such that f = 7 on
Rand f= 7" on R'. Since 2 = [R7, R'7’), f is a mapping of R ® R’
onto 2 and is uniquely determined by the above conditions. We shall
call f the canonical homomorphism of R @ R’ onto (2, =, ).

THEOREM 37. The kernel of the canonical homomorphism f of R & R’
onto a freejoin (2, 7, v') of R and R’ over k is a prime ideal p all elements of
which are zero-divisors in R @ R'. If f, is the canonical homomorphism
of R ® R’ onto another free join (2,, T,, 7'y) of R and R’ over k, then
(R, 7, v') and (R2,, 7, 7',) are equivalent free joins of R and R’ if and only
if f and f, have the same kernel. Furthermore, if v is any prime ideal in
R @ R’ all elements of which are zero-divisors in R @ R’, and if ¢, ¢’
denote the restrictions to R and R’ respectively of the canonical homo-
morphism of R® R’ onto R ® R'[p, then (R® R'[p, ¢, ¢') is a free
join of R and R’ over k.

PROOF. Let B be a transcendence basis of R/k and let similarly B’
be a transcendence basis of R'/k. Therings R and R’ contain the poly-
nomial rings k[B), k| B'], and since R and R’ are linearly disjoint over %
it follows that B N B’ is the empty set and that the elements of BU B’
are algebraically independent over k. Thus R ® R’ contains the
polynomial ring k{ B, B'] (= k[B] ® k[B']; see Example 2, § 14, p. 184).
Since R, R’ and k[B, B’] are integral domains, it follows from Theorem
36, § 14, that no element of k[B, B’], different from zero, is a zero-
divisor in R ® R’. Thus the total quotient ring of R @ R’ contains
as subring the quotient field k(B, B’) of k[B, B’]. Since every element
of R is algebraically dependent on k(B) and every element of R’ is
algebraically depcndent on k(B'), it follows that cvery element x of
R ® R’ (= [R, R')) is algebraic over k(B, B’), that is, satisfies an equa-
tion of the form

(1 ax"+ax"14:---+a,_x+a,=0, a€ck[B, B]

The proof of this assertion is the same as the proof of the similar
assertion in field theory (see II, § 3, p. 60). The fact that the total
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quotient ring of R @ R’ may not be a field implies no changes in the
proof ; what matters is that we are still dealing with algebraic dependence
relative to a field, namely, relative to the field 2(B, B’). It all amounts
to proving that if x, y are elements of R @ R’ which are algebraic
over k(B, B'), then also every element of the ring k[x, y] is algebraic
over k. If x satisfies an algebraic equation of degree n, over k, and y
satisfies an algebraic equation of degree m, then it is seen at once that
k[x, y] is a finite dimensional vector space over &, spanned by the
monomials xy/,0 £ i< n,0 <j<m. This shows that the powers
1,2 2% .-, 2™ of any element z of k[x,y] are linearly dependent
over k. .

Let x be an element of the kernel p of the canonical homomorphism f
of R® R’ onto (£, 7, 7). We consider an equation (1) of least degree
n satisfied by x over k[B, B']. We have, then, a,cpNk[B, B'].
Now, since (2, 7, 7’) is a free join of R/k and R'[k, it follows that
BrNB'7" = P and that the elements of BrUB’'r’ are algebraically
independent over k. Hence the restriction of f to k[B, B'] is an iso-
morphism, that is, p Nk[B, B'] = (0). Thus a,=0. On the other
hand, by our choice of the relation (1), we have agx"~! + ax"~1 4 - - -
4+ a,_, # 0. Therefore x is a zero-divisor.

Assume that (2, 7, ) and (2,, 7,, 7’,) are two free joins of R/k and
R'[k, and let p and p, be the kernels of the canonical homomorphisms f
and f, of R ® R’ onto £ and £, respectively. If the two free joins
(@, 7, 7), (2,, 74, 7',) are equivalent, let ¢ be the k-isomorphism of 2
onto £, such that = r~'r, on Rrand = 7'~17'; on R'7’. Then f§
is a homomorphic mapping of R ® R’ onto (2,, 7,, 7';) such that
fYy=7,onRand fy = 7', on R'. Hence f' = fi, and since ¢ is an
isomorphism it follows that the kernels of fand f’ coincide. Conversely,
if Ker f = Ker f', then it is clear that if wc sct = f~1f' then ¢ will be
an isomorphic mapping of £ onto £, such that y = =17, on Rr and
¢ = 7'~17’, on R'7’, and hence (R, 7, 7') and (£2,, 7,, 7’,) are equivalent
free joins of R and R’ over k.

Finally, if p is any prime ideal in R ® R’ consisting entirely of zero-
divisors, then by the lemma proved in § 14 we know that pNR =
pNR' = (0), and we have pointed out above that only the zero in
k[B, B']is a zero-divisor in R @ R’, whence p Nk[B, B'] = (0). From
this it follows that the canonical homomorphism g of R ® R’ onto
(R ® R')/p induces isomorphisms of R, R’ and k[B, B'). From this it
follows at once (after identifying kg with k) that the rings Rg and R'g
are free over k (in (R ® R’)/p). This completes the proof of the
theorem.



§15 FREE JOINS OF INTEGRAL DOMAINS 191

COROLLARY 1. If two prime ideals p and p, in R ® R’ consist entirely
of zero-divisors and if p D p,, thenp = p,.

For let x be any element of R @ R’ which is not in p, and let

bpx™ + bya™-1+ .- - + b, =0(p,), b;ek[B, B,
be a congruence mod p,, with coefficients in k[B, B}, of least degree m,
satisfied by x (there exist such congruences since x even satisfies an
exact equation cf type (1)). Then b, 7 0, for in the contrary case we
could divide the congruence by x (since x ¢ ,), and therefore b, ¢ p
(since pNEK[B,B]=(0)). So =x¢p, for bex™ + ba™ 14 .-
+ b, €p, Cyp. This shows that p = p,.

COROLLARY 2. If the zero-ideal in R @ R’ is primary (or equivalently :
if every zero-divisor in R @ R’ is nilpotent), then any two free joins of
R|k and R’ |k are equivalent.

For in that case the radical of (0) is a prime ideal p containing all the
zero divisors of R @ R’, and any other prime ideal in R ® R’ must
contain p.

Theorem 37 gives us a necessary and sufficient condition for the
unicity of a free join of R/k and R’[k (up to equivalence); it is that
R ® R’ contain only one prime ideal consisting entirely of zero-divisors.

We shall derive below another important necessary and sufficient
condition for the unicity of a free join. We first introduce the notion of
quasi-linear disjointness:

DEeFINITION 4. If S'is a unitary overring of a field k, of characteristic p,
two subspaces L and L' of S are said to be quasi-linearly disjoint over k if
the following condition is satisfied: whenever elements x,, x4, - - - , x, of
L and elements x' |, x'q, - - - , %'y of L' are such that for any integer e = 0
the pe-th powers of the x; are linearly independent over k and the pe-th
powers of the x'; are linearly independent over k, then the mn products
x,x'; are also linearly independent over k.

Quasi-linear disjointness is clearly a symmetric.relationship between
subspaces L and L’ and is relative to the preassigned ground field. If the
characteristic is zero, then quasi-linear disjointness coincides with
linear disjointness, if we set p = 1 in that case.

The following property is equivalent to quasi-linear disjointness and
will be the one most frequently used in the sequel:

(QLD). Whenever x,, %y, - * - , %, are elements of L such that for any
integer e = O the p*-th powers of the x; are linearly independent over k, then
Xy, Xy, * * * 5 X, ave linearly independent over L'.

For assume that L and L' are quasi-linearly disjoint over & and let
there be a relation of the form Ju',x; = 0, Where the «'; are in L' and
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the x; satisfy the condition stated in (QLD). We denote by M, the
subspace Jku'# of S (e 2 0). It is clear that dim M, = dim M,,,.

Let s be an integer such that dim M, = dim M, foralle = s. We wish
to prove that the u’; are all zero. In the proof, we may replace the
elements x; by their p*-th powers y,, for also the y; satisfy the condition
stated in (QLD) and since the y; satisfy also the relation D u’' 'y, = 0.

We may therefore assume, without loss of generality, that s‘= 0, that is,
that the spaces M, all have the same dimension, say, dimension .
Let {xy, 8’5, - - -, x'u} be a basis of M, over k and let #'; = >a,2";

J
where the a;; are in k. Yor any integer e the p*-th powers of the x';
will span the space M, and therefore will be independent over k. There-
fore, by the quasi-linear disjointness of L and L’ over k, the products
x;x' ; are also linearly independent over k.  Since the relation D u’;x; = 0

yields the relation Za,- %% ; = 0, it follows that all the a;; are zerd and

Ly
that consequently also all the «’; are zero.

The proof of the converse, that is, that (QLD) implies quasi-linear
disjointness, is straightforward (and is similar to the proof given in II,
§ 15, in the case of linear disjointness).

THEOREM 38. Let (2, 7, ') be a free join of two integral domains R[k
and R'[k. A necessary and sufficient condition that every free join of R[k
and R’|k be equivalent to (2, T, ') is that the rings Rt and R'7’ be quasi-
linearly disjoint over k.

PROOF. Assume that R and R'7’ are quasi-linearly disjoint over k.
It will be sufficient to show that the kernel p of the canonical homo-~
morphism f of R ® R’ onto 2 consists entirely of nilpotent elements, for
then it will follow that every prime ideal of R @ R’ will contain p and
hence that p is the only prime ideal in R @ R’ which consists of zero-
divisors (Corollary 1 to Theorem 37). Let 2 then be an element of p.

We write z in the form z = ) x,x’,, with ;€ R and »";€ R’, and we

=1
choose this expression of z in such a manner that the number m of terms
x,x'; is minimum. We denote by A(z) this minimum numberm. Ina
similar way we define A(2#°) for any integer e = 0. We set A(2) = 0 if
z = 0. Since 3 = Jxx'? it follows that A(z*) < A(z), and more
generally, that A(2#°) = A(2*) if ¢ £ p. We choose one integer p such
that A(2*") < A(z*) for all e. We shall show that 2#° = 0, and this will

. A
prove our assertion. Assutning the contrary, let 3# = > wu';, where
=]
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A
h= Xz*)% 0,u,eR,u’;eR". Sincezep, wehave > (x;7)(u';7) =0.
i

Now, since 7 is an isomorphism of R and since none of the u, is zero, the
above relation implies that the u’;7" are linearly dependent over Rr.
By the quasi-linear disjointness of Rr and Rz’ over k it follows that
there exists an integer e such that the elements u’?r’ are linearly
dependent over k. Then also the elements u’ #* are linearly dependent
over k, and this obviously implies that A(2?°*‘) < A(2#"), in contradiction
with our choice of p.

For the proof of the necessity it will be more convenient to pass to the
quotient fields K and K’ of Rt and R'7’ in the quotient field F of Q.
Our assumption is now to the effect that every free join (F*, ¢, ¢') of K
and K’ over k is equivalent to (F, 7, 7’), that is, that there exists an
isomorphism ¢ of F onto F* such that y = ¢ on K and = ¢’ on K.
We have to prove that K and K" are quasi-linearly disjoint over k. The
proof will be divided into several parts. We shall denote by 2 an
algebraic closure of the field F.

1. We shall first assume that K is a finite separable extension of k.
Let [K: k] = n and let w be a primitive element of K/k. We shall
prove that in this case K and K’ are not only quasi-linearly disjoint-but
even linearly disjoint over .. To prove this it will be sufficient to show,
in view of the lemma of II, § 15, that 1, w, w? - - -, w*?! are linearly
independent over K’. In other words, we have to show that the minimal
polynomial f(X) of w in k[X] 1emains irreducible in K'[X]. Let
wy, Wy, - -+, w, be the roots of f(X)in ¥ (w, = w), and let ¢, be the
k-isomorphism of k(w,)(= K) onto k(w;) such that ¢,(w,) = w;. If
F* = K'(w,), then (F*, @,, 1) (where 1 denotes the identity map of K’)
is a free join of K[k and K'[k (since K is an algebraic extension of k).
Since, by assumption, all free joins of K/k and K'[k are equivalent, it
follows that @, can be extended to a K'-isomorphism of K'(w,) onto
K'(w;). This signifies that the n roots w; of f(X) are also conjugates
over K’ and that consequently f(X) is irreducibie over K’, as was
asserted.

2. The following assertion is obvious: if every field L between k and K
which is finitely generated over k has the property that L and K are quasi-
kinearly disjoint (resp., linearly disjoint) over k, then also K and K’ are
quasi-linearly disjoint (resp., linearly disjoint) over k. On the other hand,
we assert the following: if all the free joins of K|k and K' |k are equivalent,
and if L is any field between k and K such that K is an algebraic extension
of L, then also all the free joins of L[k and K'[k are equivalent. For let
(L*, 9, @) be a free join of L/k and K'[k, and let 4 be an algebraic
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closure of L*. Since K is an algebraic extension of L, the isomorphism
@ of L can be extended to an isomorphism ¢, of K into 4. Then
if F* denotes the compositum of K¢, and K'¢' in 4, (F*, ¢,, ¢) is
a free join of K/k and K'[/k. Hence there exists as isomorphism ¢ of
(K, K’) onto F* such that = ¢, on Kandy = ¢'on K’. The re-
striction of ¢ to (L, K’) maps isomorphically (L, K') onto L* and is
equal togon L. This shows that (L*, ¢, ¢’) is equivalent to (L, K'),
1, 1)

3. From parts 1 and 2 it follows at once that our theorem holds in
the case in which K is a (finite or infinite) separable algebraic extension
of k, and that in that case K and K are linearly disjoint over k. Now,
let K be an arbitrary algebtaic extension of % and let L be the maximal
separable extension of k in K. By part 2, all the free joins of L/k and
K’[k are equivalent, and hence L and K’ are linearly disjoint over k.
This obviously implies that K and K’ are quasi-linearly disjoint over k.
(If x'y, x'y, - - -, x',, are elements of K’ such that, for any integer e 2 0,
the p*-th powers of these elements are linearly independent over k&, then
the p*-th powers of these elements are also linearly independent over L,
for all e = 0, and therefore x',, 'y, - - -, x’,, are linearly independent
over K since if ¢y, ¢y, - - -, ¢, are elements of K, then ¢,?*, c,*", - - -, ¢,**
are in L for some ¢ = 0.) We have therefore completed the proof of the
theorem in the case in which K is an algebraic extension of k.

We now consider the general case. Let K, be a field between % and
K such that K is a pure transcendental extension of £ and K is an
algebraic extension of K, We denote by K',, the compositum (K, K')
in F and we regard K and K’ as extensions of K,. We assert that all
free joins of K|K and K' (/K are equivalent. Let (F*, o, ') be a free
join of K[K, and K'y/K,. We have to show that there exists an iso-
morphism ¢ of F onto F* such that y = o on K and ¢ = o’ on K',.
Let o', be the restriction of o' to K'. The field K’ (0" is the compositum
of Ky (= Kyo')and K'o’;, (= K'0'). Hence F* is the compositum of
Ko and K'o’, (since K, C Ko). Since K and K’ are free over k, also
K, and K’ are free over k. Therefore also K, and K'¢’, are free over &
(since o’ is a k-isomorphism of (K, K') onto (K, K'e’y)). Since K is
an algebraic extension of K, it follows at once that K¢ and K'o’, are
freeover k. Thus (F*, a, 0',) is a free join of K/k and K'[k. By our
assumption, there must exist an isomorphism ¢ of F onto F* such that
y=conKandy = o’;on K’. Then we have = ¢’ on K’y (since
both ¢ and o’ are equal to the identity on K, and ¢’ = ¢’y on K’).
This proves our assertion.

It follows now, by part 3 of the proof, that K and K', are quasi-
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linearly disjoint over K. Now let x;, x4, - - -, x,, be elements of K’
such that x,#, x,*, - - -, x,#* are linearly independent over &, for all
e = 0. Then for all e 2 0 the elements x,*. xz?*, - - -, x,#* are also
linearly independent over K, since K, and K' are linearly disjoint over k
(see Lemma, Corollary 1, II, § 15). Since the x; belong to K’y and
since K and K’', are quasi-linearly disjoint over K, it follows that
Xy, Xg, * * * , X,, are also linearly independent over K, and this establishes
the fact that K and K’ are quasi-linearly disjoint over k.

The proof of the theorem is now complete.

CoroLLARY 1. If K[k and K'[k are two abstract extension fields of k
and if K+ and K'+' are quasi-linearly disjoint over k for one particular free
join (F, 7, 7') of K[k and K'|k, then all the free joins of K|k and K'[k
are equivalent.

In view of this corollary we can now define linear or quasi-linear
disjointness of two abstract fields K/k and K'/k as follows: we say that
K and K' are linearly or quasi-linearly disjoint over k (as abstract fields) if
Jor one particular free join (F, 7, 7') of K|k and K'[k the fields K and
K'7’ are linearly or quasi-linearly disjoint over k (as subfields of F). Our
lemma insures that this definition is independent of the choice of the
free join of K/k and K'[k (note that linear disjointness implies quasi-
linear disjointness). Dealing with abstract fields K and K’ which are
quasi-linearly disjoint over a common subfield %, we shall frequently
identify them with their isomorphic images K7 and K'+', in a free join of
K[k and K’'k. We shall therefore often regard K and K', without
further ado, as subfields of a bigger field F such that F is the compositum
of K and K’ and such that K and K’ (as subfields of F) are free over .
Our lemma insures that this identification is not ambiguous, for in the
presence of quasi-linear disjointness the free join F is uniquely deter-
mined to within equivalence.

CoRrOLLARY 2. A necessary and sufficient condition that all free joins
of two integral domains R[k and R'[k be equivalent to each other is that
the.zero ideal of R @ R’ be primary.

The sufficiency has already been proved (Corollary 2 to Theorem 37).
On the other hand, if all free joins of R/k and R’ [k are equivalent to each
other, then, given a free join (2, 7, 7') of R/k and R'[k, the rings Rt
and R'7’ are quasi-linearly disjoint over k. But then, by the first part
of the proof of Theorem 38, every zero-divisor of R ® R’ is nilpotent.

THEOREM 39. Given two field extensions K and K’ of a field k such
that one of these two fields is a separable extension of k, then the tensor
product K @ K' has no nilpotent elements (other than zero).
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PROOF. Let, say, K be a separable extension of k. Since every
element of K ® K’ is contained in a tensor product K; ® K’ where K,
is a subfield of K which is finitely generated over k, we may assume that
K is finitely generated over k. Then K will be separably generated
over k (II, § 15, Theorem 35). Let B be-a separating transcendence
basis of K/k. By the Corollary to Theorem 36 (§ 14) the elements of B
are algebraically independent over K’ and the total quotient ring of
K ® K' contains the tensor product K ® K'(B). Consequently it

is sufﬁctent to show that every uro-dmsor of K ,.%) K (B) is nilpotent, .

This time the field K is a separable algebraic extension of the basic
field %(B). Hence we have achieved a reduction to the case in which K
is a separable algebraic extension of k.

It is clear that any zero-divisor in K @ K’ is already a zero-divisor
in some subring K; ® K’ of K @ K', where K, and K’, are subfields
of K and K’ which are finitely generated over k. Hence we may now
assume that K is a finite separable extension of k.

Let x be a primitive element of K[k and let f(X) be the minimal
polynomial of x over k. Since K = A[X]/(f(X)) and since
k[X] ® K’' = K'[X] it follows from Theorem 35 that K ® K' =
K'[X]/(f(X)). Since f(X) is a separable polynomial, it is a product of
distinct irreducible polynomials in K'[X]. Consequently K @ K’ is
a direct sum of fields, and thus K ® K' has no nilpotent élements.

CoroLLARY. If k is a perfect field, then K ? K’ has no nilpotent

elements (other than zero).

If k is a subfield of a field K, we say that & is quasi-maximally algebraic
(g.m.a.) in K if every element of K which is separable algebraic over k
is contained in k. We say that k is maximally algebraic (m.a.) in K if
k coincides with its algebraic closure in K.

We shall need the following lemma in which some elementary results
of V, § 1, 2, 3, are used.

LeEMMA. If kism.a. (or gm.a.)in a field K and if K' = K(B) is a
purely transcendental extension of K, the set B being at the same time a set
of generators and a transcendence basis of K'[K, then also k(B) is m.a. (or
gma.)in K'.

PROOF. It is clearly sufficient to prove the lemma in the case in
which B is a finite set. In that case, using an induction on the number
of elements of B, we can assume that B consists of a single element, say,
t.

Let a be an element of K(f) which is algebraic over k(). There
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exists a polynomial d(T) in 2{T] (7, an indeterminate) such that ad(?)
is integral over X[¢] and therefore also over K[¢]. Since K[t] is integrally
closed in K(¢), it follows that ad(?) is an element ¢(f) of K[t]. We have
a relation of integral dependence for ¢(t) over &[t]:

@) [p®F + a,(Oe®]* + - - - + ag(t) = 0, aft) € K[1].

Since ¢ is a transcendental over K, (2) must be an “identity” in . If
we substitute for ¢ any algebraic quantity ¢ over k, (2) shows that
@(£) is algebraic over k. Thus, the polynomial ¢(T) in K[T] is such
that for any value of T in the algebraic closure k the corresponding
value of @(T) also belongs to k. Since k contains infinitely many
elements, any formula which gives the coefficients of a polynomial
@(T) of degree ¢ in terms of the values of that polynomial for ¢ 4 1
distinct values of T (for instance, the Lagrange interpolation formula)
shows that the coefficients of ¢(T') are algebraic over k. Since these
coefficients are in K, the assumption that & is m.a. in K implies that the
coefficients of ¢(T) are in k, and that therefore a = ¢(t)/d(t) € k(t),
showing that k(t) is m.a. in K(f). If we assume only that & is q.m.a. in
K, then ihe coefficients of ¢( T') are purely inseparable over k.. Therefore
there exists a power p* of the characteristic p such that [p(£)]*' € M{T],
whence o«** € k(t), showing that k(t) is q.m.a. in K(f). This completes
the proof of the lemma.

Using the above lemma we now prove the following result:

THEOREM 40. If K and K' are two field extensions of a field k and if
k is g.m.a. in one of these two fields, then K and K' are quasi-linearly
disjoint over k.

PROOF. We identify K and K’ with subfields of a field F such that
F is the compositum of K and K’ and such that K and K" are free over
k (in F). We assume that k is q.m.a. in K. We have to show that K
and K’ are quasi-linearly disjoint over 4.

Let B’ be a transcendence basis of K’/k. Since the elements of B’
are algebraically independent over K, it follows easily that in order to
prove that K and K’ are quasi-linearly disjoint over k it is sufficient to
show that K(B') and K' are quasi-linearly disjoint over the field
k(B’). Now K' is an algebraic extension of k(B’), and, by the above
lemma, k(B’) is q.m.a. in K(B’). We have therefore achieved a
reduction to the case in which k is q.m.a. in K, and K’ is an algebraic
extension of k. Let now x', x'y, - - -, X, be elements of K’ such that
for any integer e 2 0 the p*-th powers of x'; are linearly independent
over k. We have to show that the x’; are linearly independent over K.
It will be sufficient to show that for some ¢ 2 0 the p*-th powers of the
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x'; are linearly independent over K. Since for some ¢ 2 0 the p*-th
powers of the x'; are separable algebraic over %, it follows that we may
assume that the »'; are separable algebraic over .. Let w be a primitive
element of k(x'y, x'y, - - -, x",) over k and let g(X) be the minimal
polynomial of w over k. Let m be the degree of g(X). To show that
the x'; are linearly independent over K, it is sufficient to show that
1, w, w?, - - -, w1 are linearly independent over K, that is, that g(X)
remains irreducible over K. Now, if g,(X) is an irreducible factor of
g(X) in K[X], then the coefficients of g, belong to a splitting field of
&(X) over &, and hence are separable algeb:aic over % (since w is separ-
able algebraic over k). Since & is q.m.a. in K it follows that the co-
efficients of g,(X) are in k, whence g,(X) = g(X). This completes the
proof of the theorem.

COROLLARY 1. If k is an algebraically closed field and K, K’ are any
field extensions of k, then K @ K' is an integral domain.

By the above theorem and by the Corollary 2 to Theorem 38, every
zero-divisor in K ® K’ is nilpotent. On the other hand, by the
corollary to Theorem 39, K ® K’ has no nilpotent elements other than
zero.

CoroLLARY 2. If kisq.m.a.in K and if K’ is a separable extension of k,
then K ? K' is an integral domain.

Obvious.



IV. NOETHERIAN RINGS

§ 1. Definitions. The Hilbert basis theorem. Il.et R be a ring
(we recall that the term “ring” always means commutative ring).
When R is regarded as a module over itself. the submodules of R are
identical with the ideals of R. Thus the following finiteness conditions
are equivalent, as follows immediately from III, § 10, Theorems 15
and 17.

a) (“Ascending chain condition,” or a.c.c.) Every strictly ascending
chain U, < N, < Ay < - - - of ideals of R is finite. Or alternatively:
Given an ascending chain %, C A, C A, C - - - of ideals of R, there exists
an integer n such that A, = A, ., =W, o= - -.

b) (*“Maximum condition.”) In every non-empty family of ideals of
R, there exists a maximal element, that is, an ideal not contained in any
other ideal of the family. (Of course such a maximal element need not
be a maximal ideal of R.) The maximum condition implies that every
ideal % ¢ R is contained in a maximal ideal, as is easily seen by con-
sidering the family of all ideals 3¢ R containing %.*

c) (“Finite basis condition.”) Every ideal % of R has a finite basis;
this means, according to III, § 10, that % contains a finite sct of elements
a,---,a,suchthat¥ = Ra,+ -+ Ra, + Ja, + Jay + - - - + Ja,
where J is the set of integers (such a set is called a basts, or a set of
generators, of ). If R has an identity then A = Ra, + - - - +Ra,,

The rings satisfying conditions a), b) and c) play the most important
role in this book. Since these rings were first studied by Emmy
Noether, we give the following definition:

DEFINITION 1. A ring is called noetherian if it has an identity and if
it satisfies the equivalent conditions a), b), and c). A noetherian domain
is a noetherian ring without proper zero-divisors.

Let us now give typical examples of reasonings about noetherian rings.

1) Every homomorphic image R’ of a noetherian ring R is noetherian.
We use here the finite basis condition: the inverse image of an ideal

* This is true in every ring with unit element (see 111, § 8, Note I, p. 151).
199
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o’ of R’ is an ideal ¥ of R, and the image in R’ of a finite set of generators
of % is a finite set of generators of ¥'.

2) In a noetherian ring R, every ideal N contains a power of its radical
V. We use again the finite basis condition. If{c,, - - -, ¢,} is a finite
basis of V9, then there exists an integer k such that ¢ € % for i = 1,

,h. Letm = h(k — 1) + 1. A basis for (V%)™ is then provided
by the power products IIc «i, where Ze =m. Since m > h(k — 1),

one at least of the exponents e, is not less than &, and this proves that ail
these products are in %, and therefore that % contains (VU™

3) Every non-unit a in a noetherian domain R is a product of irreducible
elements (cf. I, § 14, p. 21). We use here twice the a.c.c. We first
define, by induction on #n, a sequence {a,} of elements of R satisfying the
following conditions: (1) a, = a, (2) a,, is a proper divisorof @,_,. The
ideals Ra, form a strictly ascending sequence; thus the sequence {a,}
must be finite, and its last element is irreducible. We have thus proved
that every non-unit in R has an irreducible divisor. This fact provides
us with a new sequence {b,} of elements of R defined in the following
way: b, =a, b,_, = b,p, where p, is irreducible. As above, this
sequence is finite, and its last element b, is irreducible; therefore
a=p,- - p.b,is a product of irreducible elements.*

4) Every ideal W in a noetherian ring R contains a product of prime
ideals.t We use here the maximum condition. Suppose that the
family (F) of ideals in R which do not contain any product of prime
ideals is non-empty. Then (F) has a maximal element %. The ideal
A cannot be prime since %A € (F); hence there exist ideals B, €, properly
containing A and such that B€ C A (III, § 8, p. 150). Since A is a
maximal element of (F), 8 and € do not belong to (F) and therefore
contain products of prime ideals. Therefore B¢, and thus also ¥, con-
tains a product of prime ideals. This contradiction shows that (F) is
empty. We note that in particular the ideal (0) in a noetherian ring is
a product of prime ideals.

The theorem which follows below—the celebrated Hilbert basis
theorem—taken together with its corollaries shows that noetherian rings
exist and that the class of these rings is very extensive. This theorem
will not actually be used in the present chapter, except for providing
examples. It is however fundamental for the theory of polynomial
ideals (vol. 2, chapter VII).

* In general such a factorization is not unique.
+ Note that since R itself is a prime ideal, every prime ideal p is a product of
prime ideals (namely p = Rp).
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Tueorem 1. If R is u noetherian ring, then so is any polynomial ring
in a finite number of indeterminates over R.

We give twoproofs of this theorem, one making use of the maximum
condition and the other of the basis condition. The second proof is
substantially that given by Hilbert, who stated the theorem for the case
when R is a field or the ring of integers.

We note that by induction it is sufficient to consider the case of a
polynomial ring S in a single indeterminate x over R. For the first
proof we need the following lemma:

LemMMA. If Wis an ideal in S and if i is an integer > 0, let L (W) denote
the set of elements of R consisting of 0 and of the coefficients of x' of all ele-
ments of A which are of degree i. Then {L(N)} is an increasing sequence
of ideals in R. If B is any other ideal in S such that A C B and
LM)=L(B)fori=0.1,2,---, then% = B.

PROOF OF THE LEMMA. That L (%) is an ideal and is contained in
L, (%) follows from the fact that if f(x) € %, g(x) € A and a € R, then
J(x) + g(x), af(x) and xf(x) belong to A. Let now g(x) be an element
of B of degree . Since L,(%) = L,(B), there exists an element f(x) of
¥, of degree £, such that g(x) — f,(x) is of degree at most i — 1. Using
the fact that ¥ is contained in B we note that g(x) — f(x) also belongs to
B and it follows that we can define, by induction on j, a sequence
{fis; @} (G =0,1,2,---)of elements of A such that f;, {x)iseitherzero
orisof degree i —jand such that the polynomial g(x) — (fi(x) + f;,.(*)+
<+ .+ fiy Ax)) is of degree at most i — j — 1. 'This last polynomial is
necessarily 0 when j = 7, and thus g(x) e 4. This completes the proof
of the lemma.

FIRST PROOF OF THE THEOREM. Let {(%,), s = 0,1, - - -} be an increas-
ing sequence of ideals of S. Consider the double sequence {L,(¥,)} of
ideals of R. When either 7 or j is fixed, the corresponding simple
sequence {L,(¥,)} is increasing. Let L,(%,) be a maximal element of
the above double sequence. We have L, (%) = L(¥,) if 1 > p and
j =g, and thus L(%,) = L(%,) for i > p and j > ¢. On the other
hand, if we take 7 fixed, the a.c.c. shows that there exists an integer n(s)
such that L(%;) = L,(¥,,) for every j > n(i), and what we just have
seen signifies that for > p, one may take n(i) = g. Hence the integer
n(i) is bounded, and there exists an integer n, such that L,(%) = L(¥,)
for every i, and for every j > n,. Hence, by the lemma, ¥, = %, for
every j > n,, and this completes the proof.

SECOND PROOF OF THE THEOREM. Let % be an ideal in S. Denote by
€ the set of elements of R consisting of 0 and of the coefficients of the
highest degree terms of all elements of %. The set € is an ideal in R,
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as follows from the fact that £ is the union of the ideals L/(¥) defined
in the above lemma. [This can also be proved directly: if ¢, be £
there exist elements f(x), g(x) of ¥ having respectively ax”, bx* as highest
degree term; if, for example, r > s, then the polynomial f(x) — x"—g(x)
is in %, and (if a 3£ b) has (a — b)x" as highest degree term; thus
a—beg;ifceR, cf(x)eUand cae L] Since R is a noetherian ring,
the ideal £ has a finite basis {a,, - - -, q,}. Let fy(x), - - -, f(x) be ele-
ments of A having respectively a,, - - -, a, a8 highest degree term coeffi-
cients; these elements generate an ideal %’ C A. Let g be the highest
integer among the degrees of the f,(x), let g(x) be an element of % of
degree > g, and let ax* be its highest degree term. Since a € £, let us
write @ = > ¢,a;(c; € R), and let us consider the element g,(x) =
> cif {x)xt=4 of W' [d; = degree of f(x)]. The polynomial g(x) — g,()
is an element of ¥, of degree < s — 1. By successive applications of
this procedure, we get a sequence {g (x)}(j = 1, 2, - - ) of elements of
o', having strictly decreasing degrees, such that the polynomial
g(x) — [g:(x) + - - - + g,(x)] is of degree < s — 7. This polynomial is
of degree < ¢ — lassoonasr=s—g¢g+ 1.

Let us now take care of the elements of % of degree < g. They form
a submodule A4, of the R-module generated by {1, x, - - -, x¢~1}, and
since R is noetherian, A4, is finitely generated (111, § 10, Theorems 17
and 18). What we just proved shows that A = %’ 4+ %,. Therefore
the ideal % is finitely generated.

Let us, however, complete the proof without making use of the results
in chapter III. The ideal L, (%) defined in the lemma has a finite basis
{a;}j=1,---,n()). Let f;{x) be an element of A having q,x as
highest degree term. We prove that the ideal ¥ is generated by the

filx)(k=1,--- ,n)and thef; (x)[for0 </ < ¢ — land1 < j < n(s)].
In fact, given any element g(x) of degree < g — 1 of ¥, we may lower
its degree by adding to it a linear combination of the f; (x). By at most
¢ applications of this process we get an element of % of degree 0, which
is therefore a linear combination of the fy(x). This completes the
proof.

CoROLLARY 1. A4 polynomial ring in a finite number of indeterminates
over a field, or over the ring of integers, is noetherian.

COROLLARY 2. Let R be a noetherian ring, and let S be a ring unitary
over R and containing elements y,, - - - , y, such that S = R[y,, - -, y,].
Then S is also noetherian.

This is an immediate consequence of Theorem 1 and of the fact that
S is a homomorphic image of the ring of polynomials in » indeterminates
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over R (I, § 18, Theorem 12). We may note also that the proof of the
theorem itself applies to Corollary 2 if slight changes are made.

\

§ 2. Rings with descending chain condition. A large part of
ideal theory is concerned with rings satisfying the ascending chain condi-
tion. For many purposes the descending chain condition (d.c.c.) is too
restrictive. For example, the only integral domains which satisfy the
descending chain condition are the fields. For, if a is a non-zero ele-
ment of such an integral domain R, then applying the d.c.c. to the des-
cending sequence {Ra"} of ideals, we find that there exists an exponent
n such that Ra" -= Ra"+!. Hence there exists an element b in R such
that ¢" = ba"t!, or @%(1 — ba) = 0. Since a" # 0, we deduce that
ba = 1, so that a has an inverse and R is a field.

As a consequence it follows that if a ring R satisfies the d.c.c. then every
prime ideal B of R, B # R, is maximal. For, also the integral domain
R/ satisfies then the d.c.c. and is therefore a field, whence 9 is maximal
in R.

Any finite ring, in particular the ring of residue classes of the ring J
of integers modulo an integer 0, satisfies the d.c.c. For modules and
groups we have noticed that neither chain condition implies the other.
For rings, however, the d.c.c. implies the a.c.c.:

THEOREM 2. Let R be a ring with identity. For R to satisfy the d.c.c. it
is necessary and sufficient that it satisfy the a.c.c. and that every prime ideal
of R different from R be maximal.

PROOF. We first show that if the ideal (0) is a product of maximal
ideals, (0) = B, - - - B, then either chain condition implies the other. We
consider the sequence RO B, D B, B, D - --DP,B, - -+ B, = (0) of
ideals of R, and we will prove that if either chain condition is satisfied,
then that sequence can be refined to a composition series and hence R
satisfies both chain conditions (III, § 11, Theorem 21). The difference
R-module %, - B,_, — B, - - B,_,'B; is clearly annihilated by ¥,
whence it may be considered as a module over R/, (11, § 6, p. 146),
that is, as a vector space over the field R/8;. Our assertion now follows
from the fact that in a vector space either chain condition implies that
the vector space is finite dimensional and admits a composition series
(111, § 12, p. 171).

Let us now assume that R satisfies the a.c.c. and that every prime
ideal of R, different from R, is maximal. We have proved in §1
(p. 200) that every ideal of R contains a product of prime ideals. In
particular, (0) is a product of prime, and therefore maximal, ideals,
whence R satisfies the d.c.c.
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Assume conversely that R satisfies thed.c.c. We have already seen
that every prime ideal B in R, different from R, is then a maximal ideal.
It remains to be shown that (0) is a product of maximal (or prime)
ideals. Let D be a minimal element of the set of those ideals which are
products of prime ideals. We suppose that D 3 (0), and will derive a
contradiction. We set % = (0):®D. Since D 7 (0) and R contains an
identity, we have % 3¢ R, whence the family of ideals in R properly
containing % is non-empty. Let B be a minimal element of this family.
The ideal f = %:B contains U; we claim it is prime. In fact, if c¢ B
and d ¢ B, we have ¢B + %A = dB 4+ A = B since both ¢B 4 A and
dB <+ % contain U, are contained in B and are distinct from ¥; thus
dB+UA=cdB+N+A=cB+A=9B, cdBEYU, and cd¢ P,
showing that % is prime. Since $3B C %, we have DPB = (0) and
(0):DP OB >A=(0):D. This proves that DP < D, in contradic-
tion with the minimality property of ®. Q.E.D.

In the last part of the proof we have actually shown that in a ring with
d.c.c. (here R/%), the annihilator of a proper minimal ideal is prime (and
thus maximal).

§ 3. Primary rings. In this section we study a rather special class
of rings, and prove that every ring with d.c.c. is a direct sum of rings of
this type.

DEFINITION. A primary ring R is a ring with identity which contains
at most one prime ideal # R.

From the existence of at least one maximal ideal in a ring with
identity, we deduce that a primary ring R has exactly one prime ideal
M 7 R, and that this ideal is maximal.

Any field is a primary ring. More generally, if © is a primary ideal
of an arbitrary ring R, having a maximal ideal I as associated prime
ideal, then R/Q is primary. For, if B/ is a prime ideal of this ring,
different from R/RQ, then ¥ is a prime ideal of R containing £ and B
also contains the radical M of Q. This lmphes M = P since M is
maximal, showing that 9t/ is the only prime ideal in R/, different
from R/Q. In pamcular the ring of residue classes modulo a power of
a prime integer is primary.

When we limit ourselves to noetherian nngs, there is a converse to
the above property : in a noetherian primary ring R, the ideal (0) is primary
Jor the unique prime ideal B of R; for, (0) is a product of prime ideals
(§ 1, p. 200) and is thus a power of 8. In this case we notice also that
R satisfies the descending chain condition, since every prime ideal of
R is maximal (§ 2, Theorem 2).
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The following lemma will be used:

LemMmA. In a ring R havmg only one maximal ideal M, every idem-
potent e is either 0 or 1.

If e 0, e 3¢ 1, then the relation e? = ¢ (which is equivalent to
¢(1 — ¢) = 0) implies that e and 1 — ¢ are zero divisors and cannot
therefore be units in R. Thus the ideals Re and R(1 — ¢) are proper
ideals. As they are contained in maximal ideals, they are contained in
M. Thereforeee M, 1 —ecMand 1 =e 4 (1 — ¢) € M; a contra-
diction.

THEOREM 3. A ring with identity R which satisfies the descending
chain condition is the direct sum of noetherian primary rings, and this
decomposition is unique.

PROOF. As was seen in § 2, (0) is a power product B,XD . .. g 4n
of maximal ideals 8; which may be assumed to be distinct. For ¢ 3 j
the ideals R4 and P V) are comaximal (that is, their sum is R)
by Theorem 31 of III, § 13, and this theorem shows also that
0) =BV N PHBON --- N PHMY, We denote by R; the intersection

n‘B "‘” It follows from Theorem 32, of III, §13 that R is the
)i
direct sum of the ideals R; (1 < ¢ < #), and that the ring R; is isomor-

phic to R/B*»).  Since this last ring is primary (and noetherian) as ‘'was
noticed before, the existence of the direct decomposition is proved.

As for uniqueness we observe that to a direct sum decomposition
R=R,®R; @ - ® R, there corresponds a decomposition of the
identity 1 into a sum 1 =¢; 4+ - - - + ¢, of orthogonal idempotents
(that is, such that e;e; = 0 for i 7 j), and conversely. Now, if S isany
primary ring, then no two proper ideals of S are comaximal, and hence
(I11, § 13, Theorem 32) S is not a direct sum of ideals in S. In other
words, the element 1 of .S is not the sum of two idempotents f, g distinct
from 0 and 1. Applying these remarks to the rings- R, we see that if the
summands R, are primary, no ¢; is the sum of two idempotents ¢;f, e,g
distinct from 0 and e, Hence, if we have two decompositions
1= >e; = 3 f;of 1 into orthogonal idempotents, we deduce from the

relati:m e; = Ze,f ; that ¢; is equal to one of the idempotents ¢,f,, say

& = €f iy S‘"“‘“‘Y fi=/Frin Thus e = eifjy = efjiritjinn
whnch implies ¢ = i[;(i)] since the |dempotents e; are orthogonal and
7 0. Hence the idempotents ¢, and f; are in one to one correspondence,
and the relations e; = ¢,f;; and fity = Jiie: show that they differ
only by their indexing. Q.E.D.

Note that the ideals B,, - - -, B, are the only prime ideals of R: for,
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any prime ideal B in R contains (0) = N P, thus contains some P,
whence 8 = B;. This shows that R has only a finite number of prime
ideals. This last fact is also an immediate consequence of the des-
cending chain condition. For, suppose that we have an infinite
sequence {B,} of d:stmct prime ideals of R. Then the sequence of
products {¥; = B, - - - B,} is decreasing, and %, = ¥, , for a suitable
n. From B, - qs,, = B, BB, we deduce that P, , contains
the product %, - - - B, and hence also some B, for < n. This is a
contradiction, since all the prime ideals of R are maximal.

§ 3%, Alternative method for studying the rings with d.c.c.
Let R be a ring with 1dent1ty satxsfymg the d.c.c. One shows as in
§2 (p. 203) that every prime ideal in R is maximal. Denote by r the
intersection of all maximal ideals of R. As R satisfies the d.c.c. r is

already a finite intersection of maximal ideals of R, say t = q m, We

claim that m,, my, - - -, m, are the only prime ideals of R. For, assume
that there is a prime ideal p in R, distinct from the m;. As m, is maxi-
mal, we have m; & p, and there exists an element &; in m; such that
x;¢p. Sincep is prime, we have y = x, - - - x, ¢ p; on the other hand,
from y € m; for 1 < i < n, we deduce that y € t, in contradiction with
the fact that p contains r. We have thus proved:

LemMMa 1. 4 ring R with identity satisfying the d.c.c. has only a finite
number my, - - -, m, of prime ideals, all of them maximal.

We note that we have also shown above that none of the ideals m;
contains the intersection of others. This, however, has to do with the
following general property of maximal ideals which is valid in any ring
and which is precisely what we have just proved above: if m;, my, -, m,
are maximal ideals in a ring R, then they are the only prime ideals of R
which contain the intersection m, NmyN---Nm,.

The following result holds in arbitrary rings with identity (and is also
of importance in the non-commutative case):

LEMMA 2. Let R be a ring with identity. The intersection t of all the
maximal ideals in R is the set of all elements a in R such that 1 + xa is a
unit for every x in R.

PROOF. Consider first an element @ in v and the principal ideal
(1 + xa) generated by 1 4 xa. If this ideal were contained in a maxi-
mal ideal m, we would have 1 4+ xa € m, a € m (since a € t), and thus
1 € m, which is impossible, since m ¢ R. Hence (1 + x4) = R* and

* We use here the fact that, in a ring R with identity, every ideal distinct from
R is contained in a maximal ideal (cf. III, § 8, Note I, p. 151).
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1 4 xais a unit. Conversely, if 1 4 xa is a unit for every x, let us
suppose that g is not contained in some maximal ideal m. Then
m+4 (@) = R, and there exists an element x in R such that
1 4 xa e m—avontradiction. Therefore a belongs to all maximal ideals.

LEMMA 3. Let R be a ring with identity savisfying the d.cc. The
intersection t of all maximal ideals in R is the set of all nilpotent elements of
R, that is, the radical of (0).*

PROOF. Let first a be a nilpotent element of R:a* = 0. Since a*
belongs to every ideal of R, it follows that a belongs to every prime
ideal of R, hence aet. Conversely, if a € t, the d.c.c. applied to the
descending sequence of principal ideals (a*) shows that there exist an
integer k& and an element x in R such that a* = xe*+1, that is, such that
(1 — xa)a* = 0. Since aer, 1 — xa is invertible by Lemma 2, and
hence a* = 0.

We now prove that r is a nilpotent ideal, that is, that some power
of ris (0). More generally:

LemmA 4. In aring R satisfying the d.c.c. every ideal a, all the elements
of which are milpotent, is nilpotent.

PROOF. The d.c.c. applied to the descending sequence {a”} shows
that there exists an exponent % such thatb = a* = g**+1 = ..., Let
us suppose that b 3£ (0), and let us consider the family (F) of all ideals
w in R such that b 3 (0). Since b2 = b 3 (0), we have b € (F) and
(F) is non-empty. From the d.c.c. we deduce that (F) admits at least
one minimal element; let v be such an element. Since by 3= (0) there
exists an element ¢ in v such that bc 7 (0); thus v D (c) € (F), where (c)
denotes the ideal Rc 4+ Jc (the least ideal containing ¢), and b = (¢)
since v is minimal in {(F). On the other hand we have b-bc = b%c =
be 3 (0), and therefore be € (F); this implies be = (c) as (c) is minimal
in (F). In particular we have ¢ = bc, with beb, whence ¢ = bc =
b% = ---=bc=---. Since b is a nilpotent element it follows that
¢ = 0, in contradiction with bc 3¢ (0). Therefore b = (0), and a is a
nilpotent ideal.

We are now in position to prove the structure theorem for rings satis-
fying the d.c.c. (Theorem 3, § 3). In fact, since t is a finite intersection
m, N - -+ N m, of maximal ideals m,, it is also the product of the m,
(11, § 13, Theorem 31). From t* = (0) (Lemma 4) we deduce that
(0) = my'my* - - - m, and that (0) = my* N my* N --- N m,* (again
by Theorem 31 of I1I, § 13). The remainder of the proof is as in the
proof of Theorem 3 of § 3.

* A more general version of Lemma 3 has been proved in III, § 8, Note I1I,
pp. 151-152.
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REMARK 1. For the proof of uniqueness of the decomposition
R =R, ®- -+ @ R, of R into primary rings, one may observe that such
a decomposition gives at the same time a representation of (0) as an
intersection p,*¥ N -+ - N p,*™ of powers of maximal ideals (cf. III,
§ 13, Theorem 32) and a representation t=p, N --- N p, of the
radical t of (0) as an intersection of maximal ideals. By Lemma 1 this
last representation is unique, the p; being all the maximal ideals in R.
Concerning the first one we notice that p/() = psM+1 = . - .; in other
words, s(7) is the smallest exponent for which the sequence {p;*} stops
decreasing, and this determines p,¢) uniquely.

REMARK 2. 'The burden of the second part of the proof of Theorem 2
(§ 2), namely, the proof that the d.c.c. implies the a.c.c. and the maxi-
mality of every prime ideal, rested on proving that under the assumption
of the d.c.c. the zero ideal is a product of maximal ideals. In this sec-
tion we have given a second proof of this assertion and hence also a new
proof of Theorem 2.

§4. The Lasker-Noether decomposition theorem. The
theorem we are going to prove in this section states that in a noetherian
ring every ideal is a finite intersection of primary ideals. In many
respects this theorem reduces the study of arbitrary ideals to that of
primary ideals. The theorem does not extend, however, to non-
noetherian rings, even if infinite intersections are allowed. The
theorem was first proved, in the case of polynomial rings, by the chess
master Emanuel Lasker, who introduced the notion of primary ideal;
his proof was involved and computational. To Emmy Noether is due
the recognition that the theorem is a consequence of the a.c.c., and the
proof given here is substantially hers.

The theorem follows immediately from two lemmas. Let us call
trreducible an ideal which is not a finite intersection of ideals strictly
containing it. Observe that a prime ideal is irreducible; but a primary
ideal need not be. For instance, in a polynomial ring R = k[x, y] in
two independent variables x and y, over a field &, the ideal m = (x, y)
is maximal; its square (x2, xy, y?) is therefore primary, but we have that
m? is the intersection of the two ideals m? 4+ R-x and m? 4+ R-y.

LemMA 1. In a ring R with a.c.c. every ideal is a finite intersection of
trreducible ideals.

PROOF. Suppose that there exists an ideal for which the assertion of
the lemma is false. Then the family (F) of all ideals of R which are not
finite intersections of irreducible ideals is non-empty, and, by the maxi-
mum condition, admits a maximal element a. Since a cannot be
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irreducible, it is an intersection b N¢ of two ideals strictly containing a.
By the maximal character of a in (F), b and c¢ are finite intersections of
irreducible ideals, and so is a; a contradiction.

LeMMA 2. In a ring with a.c.c. every irreducible ideal is primary.

PROOF. Let q be an ideal of R, and suppose that it is not primary,
that is, that there exist elements b, ¢ of R, not in g, such that bc € q and
that no power of b lies in q. The ideals {q:(5*)} form an increasing
sequence, and, by the a.c.c., there exists an exponent n such that
q:(0") = q:(b"+1). We claim that
1) 9= (a+ Rb)N(a + (0)).
It is clear that the ideal on the right-hand side of (1) contains q. Con-
versely, if x is an element of that ideal, we have x = u 4 yb* =
v 4+ 3 +mcu,veq,y, 2R, m an integer). Since bc € q, we have
bxeq, and thus yb"t1eq. From q:(b") = q:(b"+?) we deduce that
yb" € q, x € q, and this establishes (1). Together with the hypothesis
on b and ¢, the relation (1) shows that q is not irreducible: for q 4+ (¢) > §
since c ¢ q, and q 4+ Rb" > q since b"+1 e Rb", btV ¢ q. Q.E.D.

We could now state the decomposition theorem, but we prefer to give
a somewhat sharper formulation of this theorem. For this formulation,
the following definition is needed: A representation a = [) q, of.an

1
ideal a as an intersection of primary ideals q, (or briefly: a primary
representation of a) is said to be irredundant (or reduced) if 1t satisfies the
following conditions:
(a) No q; contains the intersection of the other ones.
(b) The q; have distinct associated prime ideals.
Given a representation a = [ g, of an ideal a as a finite intersection

of primary ideals, one can find an irredundant one as follows: First we

group together all the g; which have the same associated prime ideal p,

and take their intersection q'j, which is primary for p, (111, § 9, Theorem

14); then a = [) q';, and, if some q’, contains the intersection of the
)

others, we omit it, and proceed in the same way until condition (a) is
satisfied. We have therefore proved (in view of Lemmas 1 and 2) the
following theorem:

THEOREM 4. In a ring R with a.c.c. every ideal admils an irredundant
representation as finite intersection of primary ideals.

We now characterize the ideals which are their own radicals.

THEOREM 5. Let R be a ring and let a be an ideal of R admitting an
irvedundant primary representation a = [)q;,. For a to be its own

radical, it is necessary and sufficient that all a; be prime ideals.



210 NOETHERIAN RINGS Ch. IV

PROOF. If the g, are prime, we deduce from 2" € a, that s € q;, x € g,
thus x€a and a = Va. Conversely, if a = V/a, let p; be the radical
of q; and let x be any element of (] p;. Then a large enough power x"

of x lies in each q; and thus also in a, which shows that x € a and that
a= n p,. This last representation of a is irredundant, since otherwise

we would have for some j:a = n p, 2 q; 2 a, whence a = n q;, in
3 J]
contradiction with the uredundancy of the given primary representat:on

n q;. Now, if y € p,, there exists z € n p; such that z ¢ p;; we have

yz€eaCaq, and thus y € q; and g, = p,. Thls completes the proof.
The following simple properties will be useful :
A) If a prime ideal p contains a finite intersection [)a;, it contains
1

some q; (II1, § 8, p. 150); if the g, are primary, then p contains the asso-
ciated prime ideal p; of one of them.
B) If a prime ideal p is a finite intersection [}p; of prime ideals, it

contains one of them, by A), and thus is equal to it; the other p; contain
then this p,.

§ 5. Uniqueness theorems. Having proved the existence of the
primary decomposition, one is naturally led to the question of the
uniqueness of that decomposition. It can be shown by examples that
the primary ideals q; of an irredundant representation a = [)q, need

not be uniquely determined by a. For instance, if a is the ideal
(X%, XY) in a polynomial ring k[X, Y](k, a field), then for every ele-
ment ¢ of & we have a corresponding irredundant decomposition
9, Nqg . of a, where g, = (X) and g, , = (Y — cX, X?). (See also
Theorem 22 given further on, in § 11). However, we will prove that
their associated prime ideals are unique (Theorem 6) and that the *“ most
important” among the g; themselves are also uniquely determined
(Theorem 8). We shall achieve this by giving intrinsic characteriza-
tions of these ideals in terms of a alone.

THEOREM 6. Let R be an arbitrary ring and a an ideal of R admitting
an irredundant primary representation (a,; and let p, = Vq,. For a
prime ideal p of R to be equal to some p; it is necessary and sufficient that
theree.mtanelemmtcofRnotcontamedmaaadmhthatthctdeal
a: (c) is primary for p. The prime ideals p; are therefore uniquely deter-
mined by a.
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PROOF. Given an index 7 there exists ¢ € n q;, ¢ ¢ a;, since the repre-

sentation is irredundant. For such an element ¢, the ideal a:(c)
evidently contams q; and is contained in ;.. On the other hand, if
xy ea:(c) and x ¢'p;, we have xyc € a C q;, whence yc € q;, since x ¢ p,,
and consequently yc € a since yc € (¢) C n q,; this shows that y € a:(c).

It follows then from III, § 9, Theorem’ 13 that a:(c) is primary for p,.
Suppose conversely that for some element ¢, not in a, the ideal a:(c) is
primary for a given prime ideal p. Writing a:(c) = ({q,:(c)} and

taking radicals, we get » = (}v/q,:(c). The first part of the proof,

applied to the case a = q,, shows that the radical v/g,:(c) is p, unless
¢ € q;, in which case that radical is R. Hence p is the intersection of
some of the p,, and is therefore one of them [(B) of § 4, p. 210]. Q.E.D.

The (uniquely determined) associated prime ideals of the primary
ideals occurring in an irredundant primary representation of an ideal a
are called the associated prime ideals of a, or simply the prime ideals of a.
This terminology is consistent with the one used for primary ideals. A
minimal element in the family of associated prime ideals of a (that is, an
associated prime ideal of a which contains no other prime ideal of a) is
called an fsolated prime ideal of a; a prime ideal of a which is not isolated
is said to be fmbedded. The isolated prime ideals of a admit the fol-
lowing very simple characterization:

THEOREM 7. Let R be an arbitrary ring, a an ideal of R admitting a
finite irredundant primary representation a = (\a;, and let p, = V.

For a prime ideal p of R to contain a it is necessary and sufficient that y con-
tain some p;. The isolated prime ideals of a are the minimal elements of the
Jamily of prime ideals which contain a.

PROOF. The second assertion results from the first one. It is clear
that, if » contains some p,, it contains a. Conversely, if p contains
a = [q;, it contains some p; by A) of § 4.

If a' = g, is an irredundant primary representation of g, the ideals

g, are said to be the primary components of a (relative to the given decom-
position); and 9 is called #solated or imbedded according as its associated
prime ideal p; is isolated or imbedded. We now characterize the iso-
lated primary components of a in terms of a alone:

THEOREM 8. Let R be an arbitrary ring, a an ideal of R admitting an
irredundant finite primary representation a = [)a;, and p; the associated

prime ideal of a;. The set q'; of elements x of R such that a:(x) & p, is an
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ideal of R which is contained in a;. If q; is an isolated primary component
of a then o, is equal to o';.  The isolated primary components of a are there-
fore uniquely determined by a.

PROOF. The third assertion follows from the second and from the
uniqueness of the isolated prime ideals of a (Theorem 6 or Theorem 7).
It is clear that if x € o', then yx € ¢, for all y in R. If x, and x, are in
q';, there exist elements m,, m,, not in p,, such that 7,x, € a and 7px, € a.
We have then = my(x, — x,) € a and 7wy ¢ b, (since 7, ¢ p;, 7o ¢ b, and
p, is prime), whence ¥, — x, € q',. 'This proves that ¢’; is an ideal. If
x€q’, then x7 € a for some = not in p,. We have then xmeq,, 7 ¢ p,,
whence x € q,, and this establishes the first assertion of the theorem.
Now, suppose that g, is isolated. For j 3 i, we have p,; & p, and there
exists b; € p, such that b, ¢ p,; let s(j) be an exponent such that b *U) e q;
and let b= [] 5. Since p; is prime we have b ¢ p,; and, for any

e
x in q;, we hjave bxea,thusxeq’;,and g, Cq’;. Q.E.D.

REMARK. The element b constructed above (when g; is isolated)
satisfies the conditions b ¢ p, and a:(d) = q,. Using this element b, we
see that if o is an ideal which is primary for p; and contains a, then q
must contam q,; for, we have q D bq, and q O g, since b ¢ p,.

The uniqueness of the isolated primary components of a is a special
case of a more general result. Let a = (q; be an ifredundant primary

)
decomposition of g, p, the associated prime ideal of q,, and M the family
of allp,. A subset L of M is said to be an isolated system of prime ideals
of a if, when p, is in L, all the prime ideals of a contained in p; are in L.
A system L reduced to an isolated prime ideal is an isolated system.
Given an isolated system L of prime ideals (p, ) of a, the intersection
nq,-' of the corresponding primary components is denoted by a; and is

q

called an isolated ideal component of a. 'We will prove that e, is uniquely
determined by a and by the isolated system L, and is independent of the
given irredundant primary decomposition of a. Given a maximal ele-
ment p, of L, the set L of all elements p; of L such that p, C p, is ob-
viously an isolated system, and since L is finite, it is the union of the
L,; thus a, = Na, , and we are reduced to proving the uniqueness of

a;. As in Theorem 8 one shows the existence of an element b ¢ p,
which lies in the intersection of all q; whose associated prime ideal p;
does not lie in L,; we then have baL' Ca. Letq’; denote (as in Theorem
8) the set of all x such that a:(x) & p;. Since b, Ca and b¢p,, it
follows that a; Cq’,. On the other hand, if p; is any member of L,
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then ¢, Cq’; (since p;Cyp,) and hence, by the first assertion of
Theorem 8, we have q’, Cq;. Henceq’, C ar, showing that q’, = a,.
This equality ¢ charactenzes az, in terms of a and L, alone and shows the
uniqueness of ¢ a,.

In a ring R in which every proper prime ideal is maximal, imbedded
components do not exist, since, when the ideal (0) is prime, it can only
be an associated prime ideal of itself. Thus:

THEOREM 9. Let R be a noetherian ring ir: which every proper prime
ideal is maximal. Then every ideal a of R is, in a unique way, a finite
trredundant intersection of primary ideals; a is also, in a unique way, a pro-
duct of primary ideals belonging to distinct prime ideals.

PROOF. The first assertion is obvious. Now, let a = [a, be the

irredundant primary representation of an ideal a and let », = V/q;.
If some p; is not maximal, then p; = q; = (0), whence a = (0) is prime,
and our assertion is trivial. If each p; is maximal it follows that
Q= Hq, (see I11, § 13, Theorem 31, relation (8)). Ifa = Ilq is an-

other representatlon of a as a product of primary ideals’ q’; whose
associated prime ideals are distinct maximal ideals, then, agam by
Theorem 31 of III, § 13, we have a = [q’;, and this primary repre-

7
sentation of a is irredundant, by property A) stated at the end of §4
(since the p; are distinct and maximal). Hence the q’; coincide with
the gq;, except for order. Q.E.D.

REMARK CONCERNING PASSAGE TO A RESIDUE CLASS RING. Let R be a
ring, a and b two ideals of R such that b Ca. The property that a be
prime (or primary) is a property of the factor ring R/a, viz. that R/a is a
domain (or that every zero divisor in R/a is nilpotent). Thus, ifais a
prime (or primary) ideal of R, the ideal a/b of R/b is prime (or primary).
Also the radical of afb is V/af6. Consequently, if a = (a, is an
irredundant primary representation of a and if p, = Vq,, then
af6 = ()(q,/6) is an irredundant primary representation of a6, and the

p;fo are'the associated prime ideals of a/b. Furthermore, to isolated (or
imbedded) prime ideals and components of a correspond isolated (or
imbedded) prime ideals and components of a/6.

§ 6. Application to zero-divisors and nilpotent elements
TueoreM 10. Lei R be a ring and a an ideal of R admitting a finite
irredundant primary representation o = [)a;. The radical of a is the

intersection of the isolated prime ideals of «a.
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PROOF. Since the radical of a finite intersection is the intersection of
the radicals, the radical of a is the intersection of all associated prime
ideals p; of a. From this intersection we may delete the imbedded
prime ideals.

COROLLARY. In a noetherian ring R the set of nilpotent elements is the
tntersection of the isolated prime ideals of (0) (that is, of the minimal prime
tdeals of R; cf. the last part of Theorem 7).

We observe also the following consequence of Theorem 10: V/a is
prime if and only if a has a single isolated prime ideal. Now, it will be
proved later on (see § 11, Theorem 21) that in a noctherian domain there
always exists an ideal having a preassigned (finite) set of associated prime
ideals  (0). It follows that v/a may be prime without a being primary.
The following example may serve as a simple illustration: in a poly-
nomial ring k[x, y] over a field & let p, = (x), b, = (x,¥), a = p, Ny,
Then p, and p, are prime, p,? is primary, a is not primary (for, p, Np,?
is an irredundant primary representation of a) and Va = p,.

THEOREM 11. Let R be a noetherian ring, a and b two ideals of R such
that a 3¢ R. Then a = a:b if and only if b is contained in no prime ideal
of a.

PROOF. We use the properties of quotient ideals given in III, § 7.
Let a = aq, be an irredundant primary representation of a, and let

»;, = /q,. If b is contained in no y,, then, from (a:b)p Ca Cg;, we

deduce a:b C g; and hence a:b = a since the quotient a:b obviously con-

tains a. Conversely, if a:b = a, we have a:b* = a for all s. If, con-

trary to our assertion, b is contained in some p,, say b C p,, then there

exists an exponent s such that b* Cp s Cq, (since p, has a finite

basis), and we have q;:b* = R, whence a = a:b* = n(q,-:b‘) =
1

N (a,:5%) 2 ) a, D a, whence a = [ q,, contradicting irredundance.
191 1v1 1#1

COROLLARY 1. For an ideal b of a noetherian ring R to be contained in
some associated prime tdeal of an ideal a of R, it is necessary and sufficient
that a:b 3 a.

This is a restatement of Theorem 11. Notice that this corollary
gives the uniqueness of the maximal associated prime ideals of a.

CoROLLARY 2. For an element x of a noetherian ring R to belong to
some associated prime ideal of an ideal a of R, it is necessary and sufficient
that there exist an element y ¢ a such that xy € a.

Apply Corollary 1 to the ideal b = (x).

COROLLARY 3. In a noetherian ring R the set of all zero-dsvisors is the
union of all the associated prime ideals (isolated and imbedded) of (0).
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Apply Corollary 2 to the ideal a = (0).

REMARK. An ideal of a noetherian ring R is entirely composed of zero-
divisors if and only if it is contained in some associated prime ideal of
(0). This foljows from Corollary 3 and from the following fact, which
is sometimes useful: if an ideal a is contained in a finite union |J v, of

prime ideals, it is contained in one of them. In fact, we may suppose that,
for ¢ 3 j, we have p; & p, for, otherwise, neither the hypothesis nor the
conclusion is affected if v; is deleted. Suppose now that a is contained
in no p;. For any i, it is then true that the ideala N np, is not con-

tained in p; [see property A) at the end of § 4, p. 210]. lf a, is an clement
belonging to this ideal but not to p,, then the element Za is in a without

3
being in any p,—a contradiction. This last result shows also that a
finite union {Jv, of prime ideals is never an ideal, except in the trivial

case where all p; are contained in one of them. However, a non-trivial
finite union of ideals may be an ideal if the ideals are not prime. For
example, if R is any finite, additive non-cyclic group and if we set xy = 0
for all x, y in R, then (x) 7 R for all x in R, but |J (x) is the unit ideal.

xeR
Or also, if k is a finite field and R is the residue class ring
kK[X, YI/(X% XY, Y?) = k[x,y] (where x and y are the residues of
X and Y) then the finite union {J (ax + by) is the ideal (x, ).
- a,bek

§ 7. Application to the intersection of the powers of an ideal.
For proving the main theorem of this section we need two lemmas:

LemMma 1. Let R be a noetherian ring, a and m two ideals of R. There
exists an integer s and an ideal o’ of R such that ma = aNa’ and a’ D m*.

PROOF. Let {q ,}({q ,}) be the set of primary components of ma
whose associated prime ideals contain (do not contain) m. We take
a = nq pa = nq j~ Then ma = a’Na”, and there exists an integer

s such that ms Ca. On the other hand, if we fix an element y,
in m such that y,¢ Va", then we have for any element x in
a: y;x € ma Cq";, which implies x € q",; therefore a C a”. Since
ma C a, we have ma = maNa = a’Na”"Na = a’' Naq, and the lemma is
proved.

Lemma 2. Let R be an arbitrary ring with identity, a and m two
ideals of R such that a admits a finite basis (x,, - - -, x,) and a = am.
Then there exists an element z in m such that (1 — z)a = (0).

PROOF. Denote by a; the ideal (x;, - - -, x,) (whence a; = a) and set
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a,,3 = (0). We shall prove, by induction on , the existence of an ele-
ment 2, in m such that (1 — z;)a C q;; then z,,; will be the element 2
we are looking for. For i =1 it suffices to take 2, =0. From
(1 — 2,)aCa;and froma C ma, wededuce (1 — z;)aCm(1 — 2,)aCma,;

in particular we have (1 — 2,)x;, = i_z,-,x,- with z;;em. Thus

(1—2;,—2;)x;€0;,,,and wemaytakel — 2, , = (1 — 2;)(1 — 2; — 2;)).

A neater proof of Lemma 2 can be obtained if we are willing to use
determinants, the theory of which can be developed in any com-
mutative ring as well as in a field. Since a =ma we have relations of

the form x; = Z ¥;%; where y;; € m, or 2(8 — 9,;)x; = 0, where §,;

isOorl accordmg as i and Jj are distinct or equal. If d denotes the
determinant |8,; — y,;|, the usual argument leading to Cramer’s rule
shows that dx; = 0 for all j, that is, da = (0); and the rule for developing
a determinant shows that d is of the form 1 — z with z e m.

THEOREM 12 (KRULL). Let R be a noetherian ring and m an ideal of R.

In order that ﬁ m" = (0), it is necessary and sufficient that no element
n=1

of 1 — m be a zero-divisor in R.*

PROOF. If an element 1 — 2 of 1 — m is a zero-divisor, say
(1—2)y=0withy#0,wehavey =2y =2 =---=2",and y
belongs to [} m". Conversely, assume that no element of 1 — m is a

zero-divisor in R, and let a=()m" By Lemma 1 we have

maDaNm’ = a and thus ma = a; therefore, by Lemma 2, there
exists ¥ in m such that (1 — 2)a = (0), and since 1 — 2 is not a zero-
divisor we conclude that a = (0).

We note that in the above proof we have used Lemma 1 (which will be
especially useful to usin chapter VIII on local algcbra) for the purpose
of establishing the equality ma = a. This equality can also be proved
in a somewhat simpler fashicn, as follows:

Let am = [ q; be an irredundant primary decomposition of am.

Since am C g, in order to prove that am = a we have only to show that
aCg; for alli. Now, we have am C gq,. Hence, if m ¢ p, then cer-
tainly a C q;. If m C p,, then for some integer # we have m" C q;, and
hence again a Cm" C q,.

CoRrOLLARY 1. If R is a noetherian domain and if m is an ideal of R
different from R, then [} m" = (0).

* By 1 — m we mean the set of elements of the form 1 — o, rem.
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This corollary shows that if m 3 (0) (and R being a noetherian
domain) then m? 3 me for p 3 g; for otherwise—if, say, p < ¢—we
would have m? = m#+!, thus, upon multiplication by m, m?+2 =
m?+l = m?, and m?*" = m? by induction on n. We would then get
the contradiction m? = (0).

COROLLARY 2. If R is a noetherian ring such that the non-units of R
Jorm an ideal m (that is, if R is a *local ring”; see § 11, p. 228) then
O m» = (0).

In fact, since no element of 1 — m is in m, every element of 1 — m
is a unit, and cannot be a zero divisor.

By Corollary 3 to Theorem 11 of § 6, the set of zero divisors in the
noetherian ring R is the union |J p, of the associated prime ideals of (0).

Thus, the condition of Theorem 12 may be written *“(1 — m)Nyp, = @
for every i,” or equivalently “m + p; % R for every i.”” Thus, by
passage to a residue class ring R/a (see Remark at the end of §5)
Theorem 12 yields the following result:

THEOREM 12'. Let R be a noetherian ring and let m and a be two
tdeals of R. In order that n (a + m") = aq, it is necessary and sufficient

that m + p; # R for every assoaated prime.ideal p, of a
Given an ideal m of a ring R, an ideal a of R is said to be closed
(with respect to m) if () (a + m") = a.

In fact, we can define a topology on R by taking the powers {m"} as a
neighborhood system for 0, the neighborhoods of an arbitrary x in R
being the residue classes {x + m"}. It is easy to check that R becomes
in this way a topological ring, that [} m" = (0) means that it is Haus-

dorff space, and that () (a + m") = a means that the ideal a is closed.

One can then consider the question of the completeness of R with
respect to this topology. These questions are of yreat importance in
the theory of local and semi-local rings; this theory will be developed
in chapter VIII. The following lemma is, actually, a well-known topo-
logical fact:

LemMa 3.  Given a ring R, an ideal m of R and a family {a,} of ideals
of R which are closed (with respect to m), the intersection f;] a, is closed.

This follows from the obvious inclusion ( Q o)+ m"C D (a, + m")

and from the associativity of intersections.
We now determine the ‘“ closure” of an ideal:
THEOREM 13. Given a noetherian ring R and two ideals m and a of R,
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the intersection () (a 4+ m") is the intersection of those primary components

q; of a whose ra:lical p; satisfies the relation m + p; % R.
PROOF. Let b = [} a;. Since each g; is closed (Theorem 12), b is

closed (Lemma 3), a'nd we have b = () (b + m"). Let now {q';} be

the other primary components of a and {p’,} their radicals. Since
m + p’; = R, m is comaximal with each p’;, thus with each q’;, thus
also with the intersection b’ of the q’;, and consequently m” is comaxi-
mal with b’ (III, § 13, Theorem 31); in other words, b’ + m” = R for
every n. We therefore have b = (b’ 4+ m")b = b'db + m"6 C a 4+ m"
for every n (in topological language this means that a is dense in b).
Froma C band b = [ (b 4+ m") we then deduce that b = () (a + m").

Q.E.D.
CoroLLARY. Given an ideal m of a noetherian ring R, [} m is the

intersection of those primary components qa; of (0) the radical p, of which
satisfies the relation m + p; 3£ R.
We take a = (0) in Theorem 13.

§ 8. Extended and contracted ideals. We have seen that there
is a quite simple relationship between the ideals of a ring and the ideals
of one of its residue class rings (see III, §§ 4, 5, in particular Theorem 7
in III, § 5). 'The matter is much more involved if we consider a ring S
and a subring R, and this problem is not essentially easier than the fol-
lowing more general one which we are going to study: We are given two
rings R and S having identities, and a homomorphism f of R into S such
that f(1) = 1, and we look for relations between ideals of R and ideals
of S. Ideals in R will be denoted by small German letters (a, b, - - *),
and ideals in S by German capitals (%, B, - - -). Neither S nor R need
be noetherian in this discussion, since very few additional results follow
from this assumption. The case where R is a subring of S is included
in this discussion by taking for f the identity mapping of R into S.

DEFINITION. If W is an ideal in S, the ideal U = f~Y(N) is called the
contracted ideal, or the contraction, of U. If a is an ideal in R, the ideal
ac = Sf(a) generated by f(a) in S is called the extended ideal, or the
extension, of a.

When R is a subring of S, the ideal %c is the intersection RN Y; it
contains every ideal of R which is contained in ¥, and is thus the
largest ideal in R contained in . Similarly the ideal a¢ is generated by
ain §; it is contained in every ideal of S which contains a, and is thus
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the smallest ideal in S which contains a. It consists of all elements of
S of the form s,a, + sqa; + - - - +s,4,, where n is an arbitrary positive
integer, s;€ S, q;€a,i1=1,2,- -, n.

It is clear that 8¢ = R, R* = S, (RO) = SO, and that (SO) is the
kernel of f. The following relations are easily proved:

(1) If A C B then A C Be; if a C b then a* C b,

(2) A*CA; a*Da.

(3) Yeee — mc; ace = q°.

(We have %« C % by (2), thus %< € A< by (1); on the other hand we
have % = (A)* D A by (2); similarly for the other formula).

(4) (% 4+ B DO A+ Be; (a + b) = a° + b-.

(5) (ANB) = A-NB; (aNb) CaNbe.

(6) (UB) D AB<; (ab)* = a‘be.

(7) (A:B)s C A:B¢; (a:b) C ac:be.

(The second formula follows from (a:b)*b¢ = ((a:b)b)* [by (6)] C af).

(8) (V) = vVU; (Va) C Ve

In (1) we cannot assert that %c < B¢ if A < Y, nor that ac < be if
a < b. For instance, if R is a domain and S its quotient field, we have
a* = R* = S even if a 3 R, provided a  (0). In (2),---, (8) none
of the inclusions can in general be replaced by an equality.

We notice that, in view of (3), the inclusions (2) become equalities
when ¥ is an extended ideal and a a contracted ideal. However, an
ideal in S need not, in general, be an cxtended ideal, and, a fortiori, need
not be the extension of its contraction; we may therefore have % < .
Also, an ideal in R need not be a contracted ideal nor, a fortiori, need it
be the contraction of its extension; we may therefore have a* > a.
All that can be said, in view of (3), is that if an ideal in S is an extended
tdeal, it is the extension of its contraction, and that if an ideal in R is a
contracted ideal, it is the contraction of its extension.

In other words, if we denote by (E) the set of all extended ideals in S
and by (C) the set of all contracted idezals in R, the mappings % — ¢
and a — a° are 1-1 and are inverse mappings of (£) onto (C) and of (C)
onto (E). Of course this does not preclude the possibility that mem-
bers of (E') may also be extensions of ideals not in (C), and that members
of (C) may also be contractions of ideals not in (E).

The 1-1 correspondence between the ideals in (C) and (E) is an iso-
morphism with respect to the fundamental ideal theoretic operations (sum,
product, intersection, quotient, radical) to the extent to which these
operations do not lead to ideals outside of (C) or (E). Cases where this
condition is surely fulfilled are given by the equalities in formulae (4),
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(5), (6), and (8). These formulae show that the set (E) is closed under
addition and multiplication and that the set (C) is closed under
intersection and radical formation. We now show that (C) is also closed
under quotient formation.

PROOF. Let a and b be contracted ideals in R. We set %A = a°,
B = b°, whence a = %° and b = B-. Our assertion that a:b e (C)
will be established if we prove, more generally, the following asser-
tion: (*) if ¥ is any ideal in S and B € (E) then A: B¢ = (A:B)".
By (7), it is sufficient to prove that A¢:BcC (A:B). We have:
(A:B)B = (A:Be)Bee (since B € (E)) = ((A:B°)B)* C A C A
IHence (A<: V) C A: B .and (A :Br) C (A: Be)ec T (A:B), as asserted.
This established our assestion that (C) is closed under quotient forma-
tion. :

The above proof shows that if a, b€ (C) then not only does a:b
belong to (C) but we have also, by (*), that a:b = (a*:b°).

If B is a prime ideal in S and © an ideal in S which is primary for B,
it is trivial to check that B¢ is prime and £ primary for Bc. If Aisan
ideal of S admitting a primary representation A = N Q;, then the be-
havior of intersections under inverse images shows that qc = NQ is a
primary representation of %¢; but this representation need not be
irredundant when that of % is. The behavior of prime and primary
ideals of R under extension is less simple; p may be prime in R without
p being prime in S. Indeed, the investigation of the character of p* is
one of the central problems of ideal theory. We will study particular
cases of this problem in the next section and in the next chapter.

When we are given three rings R, S, T and two homomorphisms f

from R to S and g from S to T (R -5 S -5 T) then for any ideal a of R
it is true that the extension (under g) of the extension (under f) of a is
the same ideal (in T') as the extension (under fg) of a; and a similar
property holds for contractions. In particular, if we have a com-
mutative diagram of rings and homomorphisms

R>S
A
RI_}_‘)SI

(that is, if the homomorphism f% of R into S’ is the same as gf’), then,
given an ideal a of R, the extension under 4 of the extension under f of a
is the same ideal in S’ as the extension under f’ of the extension under
£ of a; and similarly for contractions. An important particular case is
the one in which R and R’ are subrings of S and §’, f and f’ are the
identity mappings, and g is the restriction of & to R.
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§9. Quotient rings. Let R be a ring with identity (not necessarily
noetherian). We have seen (in I, § 19) that R admits a total quotient
ring F, that is, a ring F which admits R as a subring and in which every
regular element’of R (that is, any element of R which is not a zero
divisor) is a unit; furthermore every element of F may be written in the
form afb(a, b € R, bregularin R). InlI, § 20 we defined a multiplicative
system in R as a non-empty subset M of R which does not contain 0
and which is closed under multiplication. When all elements of M are
regular (in which case M is said to be regular) we have defined the
quotient ring Ry, of R with respect to M as the set of all quotients a/m
where a € R, m € M;; this is a subring of the total quotient ring F of R.

When we are given a multiplicative system M in R which contains
zero divisors, a quotient ring R,, cannot be defined without further ado.
In fact, the main feature of a quotient ring R, in the regular case is that
the elements of M become units in R,,; and a zero divisor can never be a
unit. We shall now undertake a slight generalization of the concept of
a quotient ring. We consider a homomorphism f of R into a ring S
such that f(m) is a unit for every m € M, where M is a given multiplicative
system in R. If x is an element of R such that mx = 0 for some m in M,
we have 0 = f(xm) = f(x)f(m), and since f(m) is a unit in S, this im-
plies f(x) = 0. In other words, the kernel of f must contain the set n
of all elements x in R for which there exists an element m in M such that
mx = 0. Since M is multiplicatively closed, this set n is an ideal in R,
as is readily verified; and since 0 ¢ M, we have 1 ¢ nand n ¢ R. Thus,
the image f(R) of R in S is isomorphic to a residue class ring of R/n,
and f defines a homomorphism f’ of R/n into S. Now, the canonical
image M = (M + n)/n of M in R/n is obviously closed under multi-
plication. Furthermore, M does not contain any zero divisor: for, if
%-# = 0 (% € Rn, m € M) and x, m are representatives of %, # in R and
M, then xm en, xmm’' = 0 for a suitable element m’ in M, and since
mm’ € M, we deduce that xenand # = 0. Thus M is a regular multi-
plicative system in R/n, and we can construct the ordinary quotient ring
(R/n)g. Since every element of f'(M) (= f(M)) is a unit in S, the
homomorphism f’ may be extended to a homomorphism (still denoted
by f) of (R[n)g into S by setting f'(£/) = f'(¥)/f'(#) (the fact that f’
is single valued and is a homomorphism is easily proved, as in I, § 19,
Theorem 16). The ring (R/n)g is called the quotient ring of R with
respect to the multiplicative system M and is denoted by Ry,. We notice
that if M is regular, we have n = (0), R/n = R, M = M, and the new
terminology and notation is consistent with the old one. The quotient
ring Ry, has the following property:
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There exists a homomorphism h of R into Ry, such that:

1) The kernel n of h is the set of all elements x in R for which there
exists m in M such that xm = 0.

2) The elements of h(M) are units in Ry,.

3) Every element of Ry, may be written as a quotient h(x)/h(m)
(xe R,me M).

One such homomorphism 4 is given by the product ¢}, where ¢ is the
canonical homomorphism of R onto R/n and ¢ is the canonical iso-
morphism of R/n into (R/n)zg.

The preceding considerations show easily the essential uniqueness of
aring Ry and a homomqrphxsm h satisfying conditions l), 2), and 3).
Namely, if & is as above (that is, if h = @), if S is any ring and f is a
homomorphism of R into S such that conditions 1), 2), and 3) are satisfied
when h and Ry, are replaced respectively by f and S, then there exists an
isomorphism f' of R,, onto S such that f = hf’. For, since the kernel of
f is this time the same as the kernel of 4, the homomorphism f’ of R/n
(= A(R)) into S, defined by f, is an isomorphism, and hence also the
extension of f’' to Ry, (still denoted by f*) is an isomorphism into S.
On the other hand, since we have also assumed that every element of S
is of the form f(x)/f(m) (x € R, m € M), f’ is necessarily an isomorphism
onto S, and from the definition of f’ it is obvious that f = &f".

The particular homomorphism & = ¢y of R into R,, given above is
called canonical (or natural).

In the course of the preceding considerations we have also proved the
following * universal property” of R,,:

THEOREM 14. Let M be a multiplicative system in a ring R with
identity, and h the canonical homomorphism of R into the quotient ring R,,.
For every homomorphism f of R into a ring S such that every element of
f(M) is a unit, there exists a homomorphism f' of Ry, into S such that
f=hf.

RemMARK. If M and M’ are two multiplicative systems in R such that
M C M’ and every element of M' is the product of an element of M and a unit
in R, then Ry, = R),.. This is obvious if M (and hence also M’) is
regular. In the general case we observe that our assumptions imply that
the set n of elements x of R for which there exists an element m in M
such that xm = 0 coincides with the set of elements x of R for which
there exists an element m’ in M’ such that am’ = 0. This shows that
RM = (R[n)g., where M’ = (M’ 4 n)/n. On the other hand, we have

= (R/n)g, where M = (M + n)/n. Now, we know that M is a
tegular multiplicative system, and it is clear that  C A’ and that every
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element of M’ is the product of an element of # and a unit in R/n.
Hence (R/n)g. = (R/n)g, that is, Ry,. = R),, as asserted.

§ 10. Relations between ideals in R and ideals in R,,. We now
study the relations between ideals of R (denoted by g, b, - - -) and ideals
in Ry, (denoted by a’, b’, - - ). [Extensions and contractions are with
respect to the canonical homomorphism 4 (§ 9, p. 222).

The following terminology will be useful: an element x of a ring R is
said to be prime to an ideal a of R if a:(x) = a (that is, if its residue class
mod. a is not a zero divisor in R/a). A subset E of R is said to be prime
to a if each one of its elements is prime to a. When a is a finite inter-
section of primary ideals, a subset E of R is prime to a if and only if it is
disjoint from the union of the associated prime ideals of a (cf. § 6,
Theorem 11).

THEOREM 15. Let M be a muitiplicative system in a ring R with
tdentity and let Ry, be the quotient ring of R with respect to M.

(a) If ais an ideal in R, then a* consists of all elements b in R such that
bm € a for some m in M.

(b) An ideal a in R is a contracted ideal (that is, a = a*) ¢f and only
if M is prime to a.

(c) Every ideal in Ry, is an extended ideal.

(d) The mapping a — a is a 1-1 mapping of the set (C) of contracted
ideals in R onto the set of all ideals in Ry, and this mapping is an iso-
morphism with respect to the ideal theoretic operations of forming inter-
sections, quotients and radicals.

PROOF. (a): any element b of a* is such that A(b) € a*, and by
property 3) of Ry, given in § 9 (p. 222), any element of a* may be written
in the form > (k(x,)/h(m;))h(a;) (x;€ R,m;e M, a;€a). Since M is

closed under' multiplication, reduction to a common denominator
m = []m; € M shows that any element of a* may be written in the form

h(a)/k(m) (a € a,me M). Thus “be a*” is equivalent to “ there exist
a in a and m in M such that k(b) = h(a)/h(m),” that is, to ‘‘ there exist
elements @ and m in a and M respectively such that A(bm — a) = 0.”
The characterization of the kernel n of 4 shows that this condition is
equivalent to the following one: “there exists an element ¢ in q, and
elements m and m’ in M such that (bm — a)m’ = 0,” and this implies
the existence of an element m” (= mm’) in M such that bm" € a. Con-
versely, the existence of such an element m* in M implies that
h(b)h(m") € h(a), whence k(b) € a* (since h(m") is a unit in R,,), that is,
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be a*. This proves (a); and (b) follows from (a) and from the meaning
of the expression ‘“ M is prime to a.”

We now prove (c). If a’ is an ideal in R, any element x’ of a’ may
be written in the form x' = h(x)/k(m) (x € R, me M). We thus have
h(x) € o', x € a’, and x’ € a’*; thus a’ C a’. Since the reverse inclu-
sion is trivial (cf. (2) of § 8), (c) is proved. Then (d) follows immediately
from (c) and from the discussion given in § 8, by taking into account the
trivial fact that the set of all ideals in R,, is closed underallideal theoretic
operations.

COROLLARY 1. If R is noetherian, so is Ry,.

We may use the 1-1 mapping defined in (d) and the maximum condi-
tion. Or we may use (c) and the finite basis property.

COROLLARY 2. We have a* 3 Ry, if and only if aNM = 0.

We notice that a* = R,, is equivalent to 1 € a*, and we use (a).

We now study the behavior of prime and primary ideals of R under
extension.

THEOREM 16. Let q be a primary ideal of R disjoint from M, and let p
be its (prime) radical. Then:

(a) v is disjoint from M, p and q are contracted ideals, and both contain
the kernel n of h.
(b) q¢ is primary, and y* is its associated prime.

Proor. If x is any element of p then some power of x belongs to g,
while if x is an element of JM then any power of x belongs to M. This
shows that if q is disjoint from M then also p must be disjoint from M.
The disjointness of p and M implies that M is prime to both p and g,
and thus the second assertion of (a) follows from Theorem 15, (b). The
last assertion of (a) is an obvious consequence of the second assertion.
As for (b) we first notice that p is contained in the radical of q¢ [(8), § 8].
Let now x’, ¥’ be elements of R,, such that x’ ¢ p* and x’y’ € ¢>. We
may write ¥’ = h(x)[h(m) (xé p,me M), y’ = h(y)/h(m') (y € R, m’' € M),
x'y’ = h(z)[h(m") (z € q, m" € M), and we have h(xym" — mm'z) = 0.
This means that there exists an element m, in M such that
my(xym” — mm’z) = 0; thus m;xym” is an element of q. Since M is
disjoint from p and x ¢ p we have m,xm” ¢ p, whence y € g and y' € ¢°.
In the special case q = y, this shows that p¢ is prime. In the general
case, the conditions characterizing a primary ideal and its prime radical
are fulfilled, and (b) is proved.

COROLLARY 1. The mapping p — p* is a 1-1 mapping of the set of all
contracted prime ideals in R (or equivalently: the set of all prime ideals in
R which are disjoint from M) onto the set of all prime ideals in R),.
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This follows from Theorem 16 and from the following remark:
Every (ideal and in particular every) prime ideal p’ in R,, is the exten-
sion of its contraction (Theorem 15, (c)), and the contraction of a prime
ideal is a prime ideal (§ 8, p. 220).

COROLLARY 2. Given a contracted prime ideal v of R, the mapping
q—> 9° is a 1-1 mapping of the set of all ideals in R which are primary for
p onto the set of all ideals in Ry, which are primary for v, and this mapping
is an isomorphism for the operations: and N.

The first assertion follows from Theorem 16 as in Corollary 1. As
to the second assertion, it is sufficient to observe that if q, and q, are
primary for p, so are q, N a5 and g,:q; (except in the trivial case g, C q,,
where q;:q; = R; in that case we also have q,C q,* and q,:q;°
= Ry = R).

We now study the behavior of primary representations under
extension.

THEOREM 17. Let a be an ideal of R admitting an irredundant primary

representation a= n 9;. Suppose that, for 1<i<r, we have
M=ﬂ andthat forr+ 1<j< n wehave o,NM 3 0. Then

af = n ;¢ is an irredundant primary representation of o, and we "have

:-=l
ar = q 9, that is, a* is the intersection of those primary components of
a which are disjoint from M.

ProoF. That the ideal a¢ is contained in o q q,° follows from
formula (5), § 8. Conversely, by Theorem 15, (d), any element x’ of o’
may be written in the form x' = h(x)/h(m) with x € n q;, since the q;
are contracted ideals for 1 < i < 7. On the other 'l:;nd, since M is

closed under multiplication, there exists an element m’ in M N ( ﬁ q ,-).
Jmr41

We then have m'x € a, and x’ = h(m’x)/h(m’'m) € ac. 'This shows that
a¢ = a’ and proves the assertion about ¢ since the representation [ a,
tes]

is obviously irredundant, by contraction. The assertion about a* also
follows by contraction.
We terminate this section by giving the structure of the kernel n of
the canonical homomorphism 4 of R into R,, in the noetherian case.
THEeOREM 18. Let R be a noetherian ring, M a multiplicative system in

R. The following ideals are equal:
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1) The kernel n of the canonical homomorphism of R into R,, (that is,
the set of all elements x in R for which there exists an element m in M such
that mx = 0).

2) The intersection ' of all primary ideals in R which are disjoint
from M.

3) The intersection 1" of all primary components of (0) in R which are
disjoint from M.

PROOF. The inclusion n C n’ follows from Theorem 16, (a). The
inclusion n’ Cn”" is obvious. Now, since M is closed under multi-
plication, there exists an element in M which belongs to all the primary
components of (0) which meet M. If m is such an element then we
have, for any x in n”, mx = 0. This shows that n* Cn. Q.E.D.

We now add some properties of transmmty and permutability. Let
M and M’ be two multiplicative systems in a ring R such that M C M’,
and let k, A’ denote the canonical homomorphisms of R into R,, and RM.
respectively. Since 4’ is such that all the elements of 4’(M) are units,
there exists a homomorphism % of R, into R,,. such that »' = hk (§ 9,
Theorem 14). We notice: (a) that £(M’) is a multiplicative system in
Ry, ; (b) that the kernel of % is the set of all elements of the form
h(:c)/h(m) (m € M) such that m'x = 0 for some m’ in M’, that is, the
kernel is the set of all " in Ry, such that y’x’ = 0 for some y’ in A(M’);
(c) that all elements of A(h(M’ N (= h'(M")) are units and (d) that every
element of R, may be written in the form A(x')/A(y’) (x' € Ry,
y € h(M'")). From this we conclude (cf. characterization of quotient
rings, §9) that R,,. is isomorphic to the quotient ring (Rp)ym-) and
furthermore, that if ¢ denotes the canonical homomorphism of R, into
(Rpr)a(nry then there exists an isomorphism f of (Rp)ya-) Onto Ry, such
thath = -ﬁf We have &' = hyf,and from preceding remarks concerning
the transitivity of successive extensions (§ 8, p. 220) we draw at once the
following consequence: if we denote by superscripts e and e’ extensions
of ideals in R relative to R,, and R,,. respectively and by ¢ extensions of
ideals in Ry, relative to (Ry)yar), then for any ideal a in R the ideal o’
of Ry, oorresponds to (a*y under the isomorphism f. Note that every
ideal in R,,. is an extended ideal of an ideal a of R and that consequently
the above conclusion a* = £((a*)*) describes fully the (1-1) correspond-
ence which the isomorphism f induces between the ideals in R,,. and
the ideals in (Rp)uar)-

Let M be a mulciplicative system in K and let a be an ideal of R
which has no elements in common with M. We consider now the residue
class ring R/a of R and we denote by f, f*, and A the canonical homo-
morphisms of R onto R/a, of Ry, onto Ry/a* and of R into R), respec-
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tively. Since a C a%, & defines, by passage to the residue classes, a
homomorphism % of R/a into RM/ a* which satisfies the relation 4f’ = fh.
The set f(M) (=(M + a)/a) is obviously closed under multiplication,
and since we have assumed that M Na = @ it is clear that the zero of
R/a does not belong to f(M). Hence f(M) is a multiplicative system
in R/a. We shall now show that the ring R,,/a* and the homomorphism
h of R/a into R,,/a* satxsfy the three conditions which characterize, to
within “‘essential uniqueness,” the quotient ring (R/a) s and the
canonical homomorphlsm k' of R/a into that quotient ring (these condi-
tions were stated in § 9, p. 222). In the first place, the kernel of f’ is
a¢, whence the kernel of 4f’ is the inverse image of a¢ under #; that is,
the kernel of Af' is a«. Since Af' = fk it follows that the kernel of &
is a®/a. Now, let % be any element of R/a and let x be a representative
of Xin R. Then & belongs to the kernel of the above canonical homo-
morphism £ if and only if # = 0 for some element 7 in f(M)—that is,
if and only if xm € a for some m in M, whence—finally—if and only if
x € a* (Theorem 15, (a)), that is, if and only if % ¢ a*/a. We have thus
proved that % and the canonical homomorphism £’ have the same kernel.
The image h(f(M)) of f(M) in R,ac consists of units, for we have
k(f(M)) = f'(k(M)) and h(M) consists of units. Finally, it is obvious
that every element of R,,/a® can be written in the form h(%)/h(), where
X € Rfa and m e f(M) (= (M -+ a)/a). We have therefore shown the
permutability of residue class ring and quotient ring formation:

(1 Ryfo* = (R[0)pgyarr (M Na = 0)

and also the existence of a particular isomorphism (1), say ¢, such that
hy = k', where—we repeat—F is the homomorphism of R/a into R,,[a*
defined by the canonical homomorphism 4 of R into R,,, while &’ is the
canonical homomorphism of R/a into the quotient ring (R/a)4.q)/a-

§ 11. Examples and applications of quotient rings. The most
important examples of multiplicative systems, and hence of quotient
rings, are the following:

1) M is the compiement, in R, of a prime ideal p of R. This ex-
ample will be discussed in more detail in this section.

2) M is the complement of a union U p; of prime ideals in R. Then,
in R,,, the units are the elements of the complement of Up,. When
the union U p; is finite, we may suppose that p; & p; for i 5 j, for we
may delete p, if p; C p; without altering M. We then have v, T p
for i 5 j, the ideals p,* are maximal ideals of R,,, and they are the only
maximal ideals of R,, since every element of the complement of U p;*
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is a unitin R,,. A particular case is the one where R is noetherian and
where the p; are the associated prime ideals of (0); in that case M is the
set of regular elements of R (§ 6, Theorem 11, Corollary 3), and R, is
the total quotient ring of R.

3) M is the set of all powers of a non-nilpotent element a of R.

4) M is the set of all elements of a subring S of R which are not con-
tained in some prime ideal p of R. In particular, in a polynomial ring
F[X,, - - -,X,] over a field, one may take for M the set of all non-zero
polynomials in the first 7 indeterminates (r < n).

5) M is the set of all elements x such that x = 1 (mod. a), where a is
an ideal in R, distinct from R.

We now discuss in more.detail the case where M is the complement of
a prime ideal p in R. In this case the quotient ring R,, is called the
quotient ring of R with respect to the prime ideal p and is denoted by R,
(since p is not a multiplicative system, as it contains 0, no confusion can
result from the seemingly contradictory notations Ry, R, when M is
the complement of p). Because of the importance of this case, we give
a partial summary of Theorems 15, 16, 17 and 18 (and their corollaries)
for this particular case.

THEOREM 19.  Let p be a prime ideal in a ring R. If ais an ideal in R,
its extension a* is distinct from R, if and only if a is contained in p. The
mapping a — a¢ establishes a 1-1 correspondence between the set of prime
(primary) ideals of R contained in v, and the set of all prime (primary)
ideals in R, The ideal p* is a maximal ideal in R,, and contains every
non-unit in R,, as well as every proper ideal in R,. If a is an ideal in R
which is a finite intersection of primary ideals, then a* is the intersection
of those primary components of a which are contained in v. If R is
noetherian, the kernel n of the canonical homomorphism of R into R, is the
tntersection of all primary components of (0) (or of all primary ideals
in R) which are contained in p.

The assertion that p¢ is the ““ greatest’ proper ideal of R, follows from
what has been said in example 2) above, or from the fact that p is the
greatest proper contracted ideal (first assertion of Theorem 19).

The most important property of R,, is that its non-units form an ideal.
This property is not generally true in arbitrary rings (e.g., it is not true
in the ring of integers). Rings which have the above property and are
noetherian are called local rings and will be studied in chapter VIII.
Local rings are of importance in the study of the geometry on an
algebraic variety in the nexghborhood of a point—in other words, in
the study of the local properties of a variety.

If p is a prime ideal in R, the passage to the quotient ring R, has the
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effect, we may say, of converting p into a maximal ideal p©. We may
also say that any prime ideal, or indeed any ideal a in R, which is not
contained in  is obliterated, or lost, in Ry, since then a* = R,. Since
it is sometimes\easier to prove a theorem for a maximal ideal than for
an arbitrary prime ideal—for example, every ideal which has a maximal
ideal as radical is primary (111, § 9, Theorem 13, Corollary 1), but this ™
is not generally true for ideals with prime radical (see 111, § 9, p. 154)—
the technique of passage to a quotient ring may sometimes be used for
getting simple proofs. Let us give an example:

THEOREM 20. Let R be a noetherian ring and p a prime ideal in R.
The intersection a of all ideals in R which are primary for p is equal to
the intersection b of those primary components of (0) which are contained
np.

PROOF. By Krull’s theorem (§ 7, Theorem 12, Corollary 2) we have

,ﬁl(p")‘ = (0) in R,. On the other hand, the ideals (p°)* are primary

for p¢, and every ideal in R, which is primary for p* contains some
power (p°)". 'Thus, since contraction maps the set of all primary ideals
for p¢ onto the set of all primary ideals for p (Theorem 19) and preserves
intersections (finite and infinite), the intersection of all ideals of R which
are primary for p is (0)c, that is, the kernel of the canonical homomor-
phism of Rinto R,. By Theorem 19, this kernel is the ideal b. Q.E.D.

COROLLARY. In a noetherian domain, the intersection of all primary
ideals belonging to a given prime ideal p is (0).

REMARK. In the proof of the above theorem (and hence also of its
corollary) we have made use of Theorem 12 (Krull’s theorem). It is of
interest to point out that Corollary 1 of Theorem 12 (to the effect that
) m” = (0) if R is a noetherian domain) can be derived from the above

n

corollary of Theorem 20, as follows: since every ideal m is contained in
some prime ideal, it is sufficient to prove the required relation
) m* = (0) under the assumption that m is a prime ideal, and for
. .

prime ideals m this relation follows directly from the above corollary of
Theorem 20 since every primary ideal belonging to m contains some
power of m. In the case of an arbitrary noetherian ring, this reasoning
shows that the intersection of the powers of a prime ideal p is contained
in the intersection of all primary ideals belonging to p (and is equal to it
when p is maximal). This is confirmed by a comparison between the
corollary of Theorem 13 and Theorem 20: the first intersection is the
intersection of those primary components q; of (0) the radical p; of which
satisfies the relation p; + p 3 R; the second is the intersection of those
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primary components q; of (0) the radical p; of which satisfies the relation
»,Cp; and p, Cyp implies p; 4+ p = p 3 R, showing that the first
intersection is contained in the second. In the case where p is maximal,
the relations p; C p and p; + » 5 R are equivalent, and the two inter-
sections are equal.

We may use Theorem 20 in order to shed some light on the question
of primary representation in noetherian rings. We first prove

THEOREM 21. Let R be a noetherian ring, and let v,, - - - , p, be prime
ideals of R none of which is an isolated prime ideal of (0) (in a domain they
may thus be arbitrary proper prime ideals). There exists an ideal a in R
whose associated prime ideals are exactly the given ideals p,, py, - - -, P,

PROOF. We proceed by. induction on 7, the case n = 1 being trivial
(take a = p,). We may suppose that p, is maximal among the given

ideals. We thus suppose the existence of an ideal b, with irredundant
n—1

primary representation b = ) q;, q; belonging to p,. The intersection
n

== 1
of all primary ideals in R belonging to p, cannot contain b, for otherwise
b would be contained in some isolated prime ideal p of (0) (Theorem 20),
and this would imply that p coincides with some p; (1 < i < n — 1),in
contradiction with our hypothesis on the ;. Thus there exists a
primary ideal q, belonging to , such that a = f] 9; = bNq,is distinct
i=l

from b. It remains to prove the irredundance of the primary repre-

n
sentation a = () q,. It follows from the construction that q, does not
i=1
contain the intersection of the other q;; and if, for example, g, contained
n—1

n

M 9, it would contain {7 q; (since q, is not contained in p, by the
2 1=2
maximality hypothesis on p,), and this contradicts the irredundance of

n-1
the representation b = () q;. Q.E.D.

=1
In particular, Theorem 21 shows the existence of ideals a in R admit-
ting imbedded components, provided, of course, that R contains two
distinct prime ideals, which are not isolated prime ideals of (0), and such
that one of them is contained in the other. In the case of a domain R,
this last proviso means that the proper prime ideals of R are not all
maximal. This proviso is not fulfilled, and imbedded components are
not to be expected, in the ring of integers, the rings of algebraic integers
and the polynomial rings in one indeterminate over fields; on the other
hand it is fulfilled, and imbedded components exist, in polynomial rings

in several indeterminates.
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We have proved (§ 5, Theorem 8) that the isolated components of an
ideal a are uniquely determined. This is not true of the imbedded
components of \a, which are never unique, and are even capable of
infinite variation. More precisely:

THeOREM 22. If an ideal a in a noetherian ring R has an imbedded
prime ideal p, it has infinitely many irredundant primary representations
which differ only in the primary component belonging to p.

PROOF. By hypothesis, there exists an associated prime ideal v of a
strictly contained in p. It is ther enough to prove the following state-
ment:

LeEMMA. Given primary ideals u and q in a noetherian ring R, which
belong to prime ideals v and p such that v < p 5 R, there exists an ideal
o', primary for p, and such that o' < q, ' Nu=qNu.

PROOF OF LEMMA. By passage to R/qNu, we may suppose that
qNu = (0) (see Remark at the end of § 5, p. 213). Then the inter-
section of all primary ideals belonging to p is (0) ('T'heorem 20). Since
q is not contained in v, we have q £ (U) and there exists an ideal "
primary for p such that " P q. If we now set ' = qNq”, we will have
9’ < q and since ¢’ is primary for p, the lemma is proved.

REMARK. In §10 we have formulated a uransitivity property: of
quotient ring formation (see p. 226). In the special case ot quotient
rings with respect to prime ideals the following slightly different
formulation of the transitivity property is more useful:

Let M be a multiplicative system in R and let p' be a prime ideal of R
which is disjoint from M. If e denotes extension of ideals of R to R, then
the two quotient rings R, and (Ry,), are isomorphic.

This statement is not identical with our original formulation of the
transitivity property which asserts that if we set M’ = R — p" and if 4
denotes the canonical homomorphism of R into R,, then the two rings
R, and (Ry)u) are isomorphic. However, the two multiplicative
systems A(M’') and R,, — p’;, although not identical, are related to each
other as follows: (1) A(M') € R,, — p'¢, since p’ and M are disjoint and
since therefore p'e = p’ (§ 10, Theorem 16, (a)); (2) every element of
R,, — p’c is the product of an element of 4(M") and a unit in R, (of the
form 1/k(m), m e M). It follows, by the Remark at the end of §9
(p. 222), that (Ry)uar) and (Ry),e are identical, whence also R, and
(Rpg)p-e are isomorphic, as asserted.

In particular, if M = R — p, where p is a prime ideal of R, then the
assumption that M and p’ are disjoint signifies that ' C p. In that
case, then, the two quotient rings R, and (R,),.. are isomorphic.
Furthermore, if ¢’ denotes extension of ideals of R with respect to R,.,
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then for any ideal a in R the ideal a*’ in R, corresponds to the extension
of a¢in (R),-.

§12. Symbolic powers. Given a ring R and a primary ideal q in
R, the n-th power ¢” of q need not be primary (see I11, § 9, p. 154). We
can however associate with g” a certain primary ideal:

DEFINITION.  Let R be a ring with tdentity, b a prime ideal in R (3 R),
a a primary tdeal belonging to p, and n a positive integer. The ideal
(am)e (extension and comtraction being made with respect to the quotient
ring R,) is called the n-th symbolic power of 4 and is denoted by q(™.

The properties of symbohc powers are summarized in the following
theorem:

Tueorem 23.  Let  be a primary ideal belonging to p.

1) The symbolic power o\™ 1s a primary ideal belonging to p; it is the set
of all elements x in R for which there exists d ¢ p such that dx € q". If q"
is primary (in particular, if v is maximal) then ™ = qn.

2) If q" is a finite intersection of primary ideals, then y is its only isolated
prime ideal, and o™ is the corresponding ptimary component.

3) If v has a finite basis, then every primary ideal belongmg to p com-

tains some symbolic power of p. When R is noetherian, n p™ is the inter-

section of those primary components of (0) which are contained in p. When
R is a noetherian domain, we have ﬁ p™ = (0), and the p™ form a strictly
n=]

decreasing sequence of ideals.

4) When R is noetherian, v is the only isolated prime ideal of q(™-q™),
and the corresponding primary component is q"+m),

PROOF OF 1). ‘The first assertion follows from the fact that ¢ is
primary for the maximal ideal p° in R and that consequently also
(a") (= (a°)") is primary for p¢in R,. 'The second assertion is a special
case of T'heorem 15, (a) (§ 10), and the third follows from the second.

PROOF OF 2). 'This is a special case of Theorem 17 (§ 10).

PROOF OF 3). If p has a finite basis, every primary ideal q belonging
to p contains some power p*. Hence, if x € p™ and if d ¢ p is such that
dx € p” (such an element d exists, by 1)), then dx € q, whence x € q since
q is primary for p, and thus p» C q. The second assertion follows
from the first and from Theorem 20 (§ 11), and the third assertion fol-
lows from the second (cf. the Remark following Corollary 1 to Theorem
12in § 7).

PROOF OF 4). Since p is obviously the radical of q®.q™), p is the
only isolated prime ideal of ¢™.q™ (Theorem 10, § 6). Using the
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characterization of an irredundant decomposition of a* in terms of that
of a, given in Theorem 19 in § 11 we see that in order to compiete the
proof of 4) we have only to show that (¢ q(™)ec = (qm+m)ec,  But this
is obvious, since q™¢ = (q")* (the extended ideal (9") being also the
extension of its contraction q®), q(me = (q), whence (q™-gq(™)r =
(qn+u)e.

REMARK. We may define more generally the symbolic powers a™ of
an ideal a which admits a primary representation without imbedded
components. Instead of the quotient ring R, we consider then the
quotient ring R),,, where M is the complement of the union of the asso-
ciated prime ideals of a and we set a™ = (a")*. The ideal a™ is the
set of all elements x in R for which there exists an element m in M such
that mx € a”. The ideal a™ has the same associated prime ideals as
a; all these prime ideals are isolated.

§13. Length of an ideal. In III, § 11 (whose content is an essen-
tial prerequisite for the reading of this section) we have defined the
length t of a module over a ring R; this length may be finite or infinite.
Since an ideal a of R is an R-module, its length }(a) is defined, but this
notion has no great interest since }(a) is infinite in many interesting
cases (for example, }(a) is infinite if a is a proper ideal containing a
regular element x, for a > Rx > Rx? > Rx?® > - - - is then an infinite
strictly descending chain). A more reasonable definition would be to
define the length of the ideal a as being the length (R — a) of the dif-
ference module R — a; however this length would still be infinite in
many important cases, for example whenever a is a prime ideal which
is not maximal. We therefore need a more subtle definition.

DEefFINITION. Let R be a ring with identity and let a be an ideal in R
having a primary representation without imbedded components. Denote
by M the complement of the union of the associated prime ideals of a, and
consider the quotient ring Ry,. The length Ry, — a°) of the difference
R-module R,, — a¢ is called the ideal-length of the ideal a and is denoted
by A(a).

REMARK. We will in general use the simple word ‘“length "’ instead of
the more precise term ‘“‘ideal-length.” 'There will be no danger of con-
fusion, since we intend always to point out the kind of length we are
thinking of by using the expression * length of the ideal a” (or ““length
of a”’) and the notation A(a) in one case, and the expression *length of
a considered as an R-module” (or “length of the R-module a”’) and the
notation }(a) in the other. Notice also that the length A(a) is not defined
for ideals which do not admit primary representations, nor for ideals
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having a primary representation with imbedded components; however
the definition of A(a) may be extended to this latter case.

"I'he main feature of the length A(a) is that it is finite in an important
case:

Turorem 24, Let R be a noetherian ring, and let a be an ideal in R
without imbedded components.  Then the length Xa) of the ideal a is finite.

rroOF.  Let M be the complement of the union U p; of the asso-
ciated prime ideals of a.  As was seen in § 11, example 2) (p. 227), the
ideals p,” are the only maximal ideals of R,,, and, since they are the
associated prime ideals of a¢ (‘T'heorem 17 in § 10), they are the only
prime ideals in R;, which contain a (Theorem 7 in §5). In other
words, every prime ideal i't'\‘the ring R,,/a is maximal. On the other
hand, this residue class ring is noetherian. Thus it satisfies both chain
conditions ('T"heorem 2 in § 2), and admits a composition series. ‘I'here-
fore its length I(R,,/a), that is, the length of the difference R-module
R,, — o, is finite.*

‘T'he following result reduces the study of the length of an ideal to
that of the length of a primary ideal:

T'HEORFM 25, Let R be a ring with identity and let a be an ideal in
R having an irredundant primary representation o = N\, without im-
bedded components.  Then we have Ma) = 3 X(q;).

)

PrOOF.  We denote by p, the radical of g, and by A1 the complement
of Uyp,. Lct the superscripts e and ¢ denote extension and contraction
of idcals with respect to the pair of rings R and R,,. 'T'he length A(a)
is equal to the length of the ring R,,/ac. By III, § 13, T'heorem 32,
R,,/ac is isomorphic to the direct sum of the rings R, q,, since
ac = N q,; and since the associated prime ideals p; of the o, are
maximal ideals in R, (see Example 2 in § 11, p. 227). Note that since
a has no imbedded components, we have p, € p, if 77 j). Hence
W(R,,/ar) = NI(R,,[0,5), and it remains to show that

(l) l(R.'ll/qir) = ’\(qa)'

We fix un index 7 and denote by superscripts €', ¢/, (¢”, ¢*) extension and
contraction of ideals relative to the pair of rings R, R, (Ryy, (Ry,)y ).
T'o prove (1) it will be sufficient to show that

(2) R"/q,“ -4 RD‘/ql"'

The permutability of quotient ring and residue class ring formation

* Observe that the sct of submodules of the R-module R,y — a¢ coincides with
the set of ideals of the ring Ry /af, since a° annihilates Ry — a¢.
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(§ 10, formula (1)) shows that the quotient ring (Rag/a%)p ¢ a¢ is isomor-
phic to the ring (Ry), /(a)". On the other hand, the transitivity of
quotient ring formation (see Remark at the end of § 11, p. 231) shows
that (Ry,), is isomorphic with R, and that in the isomorphism between
these two rings the two ideals (a°)*” and a,#' (= ") correspond to each
other. Hence

(3) (RM/a‘)p,'/n' = Rp,/qx"'

Now, the kernel of the canonical homomorphism of the ring R,/a
into its quotient ring (Ry,/a),, /o is 0,/a® (see § 10, Theorem 18; note
that N q,¢/a¢ is an irredundant primary representation of the zero ideal
in Ry,/a‘ and that this representation has no imbedded components), and
(Rpg/a%)/(a;/a) is a ring in which the non-units form an ideal-—namely,
the ideal (v,//ac)/(a,5/a?). Hence the quotient ring (R),/ac),, ¢/ coincides
with the canonical map (Ry,/a%)/(a, /a%) of Ry,[a into that quotient ring.

Hence
(Rag]0%)p ¢jae = (Raga)/(0,5fa¢) = Rpyfa,

and this, in conjunction with (3), establishes (2).
CoROLLARY. Let a be an ideal in a ring R, admitting an irredundant
Dprimary representation a = [ a, without imbedded components. For the

length X(q) of the ideal o to be finite, it is necessary and sufficient that each
length A(a,) be finite.

We now characterize the length of a primary ideal .

THEOREM 26. Let q be a primary ideal belonging to a prime ideal p in a
ring R. Consider astrictly descending chainp = a; > 0, > - > q,=q
of primary ideals belonging to p which join p to a. The number r of terms
tn such a chain satisfies the inequality r < X«), where X(a) is the length of
the ideal o. If the length X(a) is finite, there exists such a chain with A(q)
terms, and every other chain may be refined to a chain having exactly A(a)
terms.

PROOF. Since p¢ is a maximal ideal in R,, every proper ideal in R,
which contains g¢ is a primary ideal belonging to p*.  On the other hand
there is a 1-1 correspondence between the set of primary ideals belong-
ing to p which contain g, and the set of primary ideals belonging to p°
which contain q¢ (Theorem 16, Corollary 2, § 10). The theorem
follows now from Jordan’s theorem (111, § 11, Theorem 19) as applied
to the module R, — q-.

REMARKS. 1) Note that a composition series in R, — q° has one more
term than the corresponding chain of primary ideals, viz. R, — a°
itself. Thus 7 is. in this case, A(0) and not A(q) — 1. 2) When p is not
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a maximal ideal, an ideal between p and g is not necessarily primary for
p. Thus A(q) is not related to the lengths {(R — g) and {(p — q) of the
difference modules R — q and p — q (the latter ones being, in general,
infinite).

CoRrOLLARY. If q is a primary ideal in a ring R and if M is a multi-
plicative system disjoint from q in R, then Xa) = X(qa°) (a° © Ryy).

We apply Theorem 16 of § 10.

THEOREM 27. Let a be an ideal in a ring R such that the difference
module R — a has a finite length R — a). Then a admits a primary
decomposition without imbedded components, and the length X a) of the
tdeal a is finite and equal to R — a).

PROOF. By Theorem 2.(§ 2) the ring R/a is noetherian, and every
prime ideal of this ring is maximal. This gives us a primary repre-
sentation without imbedded components for (0) in R/a, whence for a in
R (see Remark at the end of § 5, p. 213). Since the associated prime
ideals of a are maximal, the ring R/a is its own quotient ring (R/a)y,,
where M’ is the complement of the union of the associated prime ideals
of (0) in R/a (that is, M’ is the set of all units in R/a). By the per-
mutability of quotient ring and residue class ring formations (§ 10,
formula 1), (R/a),,. is isomorphic to R,,/as, where M denotes the com-
plement of the union of the associated prime ideals of a in R. There-
fore, R/a is isomorphic to R,/a¢, and our theorem is proved.

CoROLLARY. If R is a ring of finite length Y R) and if a is an ideal in R,
the length M(a) of the ideal a is defined and finite, and it satisfies the relation
A(a) + a) = K(R).

REMARKS. 1) The permutability of quotient ring and residue class
ring formations shows in general (as has been seen in several particular
cases) that the length A(a) of an ideal a is a property of the residue class
ring R/a: more precisely A(a) is equal to the length of the ideal (0) in R/a.

2) If two ideals a and b in R, admitting primary representations with-
out imbedded components, have the same associated prime ideals and
satisfy the relations a € b and A(a) = A(D), then they are equal (notice
that they are both contracted ideals of ideals in R,,, M denoting the
complement of the union of the associated prime ideals of a (or b)).

In computing the length of an ideal, one has to know when a des-
cending chain of ideals (or of primary ideals) admits of further insertions.
The following theorem and its corollaries shed some light on this
question:

THEOREM 28. Let R be a ring with identity and let N be a unitary R-
module 3£ (0). For N to be simple it is necessary and sufficient that it be
generated by one element (that is, that N be cyclic) and that there exist a
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maximal ideal v in R such that pN = (0). Then yp is the order of N, and
N is R-isomorphic to the R-module R — p.

PROOF. If 1\{ is simple, we have Rx = N for every x ¢ 0 in N (since
Rx is a submodule of N); thus N is cyclic. Now, we notice that every
cyclic module Rx is isomorphic to an R-module of the form R — a,
where a is an ideal of R: in fact the mapping a - ax (a € R) is a homo-
morphism of the R-module R onto N, and we may take for a the kernel
of this homomorphism. We also notice that, since R is commutative,
a is the order of N. The submodules of K — a correspond to the
ideals of R which contain a; thus R — a is simple if and only if a is a
maximal ideal. This proves the theorem.

COROLLARY 1. Let a and b be ideals in R such that b < a. A necessary
and sufficient condition that there exist no ideal between a and b is that there
exists a maximal ideal p in R and an element x in a such that ya C b and
a="0 4 Rx. When this condition is satisfied, b is contained in p.

The first assertion follows from Theorem 28 as applied to the K-
module a — b. If b & p, the maximality of p implies R = p + b,
thus a = Ra = ba 4 pa C b, a contradiction.

COROLLARY 2. Let q, o' be two primary ideals belonging to a maximal
ideal p and such that ¢ < o'. A necessary and sufficient condition that
there be no ideal between q and o is that po' C q, and that there exist x in
o' such that ¢’ = q + Rx.

§ 14. Prime ideals in noetherian rings. Since every ideal in a
noetherian ring admits a finite basis, we can roughly measure how large
an ideal a is by the number of elements required for constituting a basis
of a; in this sense the principal ideals are ‘“small.” We intend to give,
in this section, a more precise meaning to this vague idea, at least for
prime ideals. A first step in this direction is the remark that if a prin-
cipal ideal m = Rx in a noetherian domain is prime and is different
from R, it contains no other proper prime ideal; for if a prime ideal
p 7 (0) is such that p < Rx, then we have p = xa, where a is a proper
ideal, whence a = p (since p is prime and x ¢ p), and this leads to the
contradiction p = xp = x2p = - - - C [} m’ = (0) (see § 7, Theorem
12, Corollary 1).

We note that the above contradiction remains if we drop the assump-
tion that R is noetherian but assume instead that R is a unique factoriza-
tion domain. For in that case the relations p = x'p, for all i, imply that
any element of p is divisible by any power of x, and this is impossible if
p ## (0) and x is not a unit.

The next theorem is a far-reaching generalization of this fact.
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DEFINITION. In an integral domain a prime ideal is said to be minimal
if it is proper and if it contains properly no prime ideal other than (0).

As just remarked, in a noetherian domain every pnme principal ideal,
different from the unit ideal, is minimal. In a unique factorization
domain all minimal prime ideals are principal and are the ones generated by
trreducible elements. For, as was shown in I1I, § 8 (p. 149), in a unique
factorization domain a proper principal ideal is prime if and only if it is
generated by an irreducible element, and we have just seen that in a
unique factorization domain every prime proper principal ideal is mini-
mal; on the other hand, it is clear that in a unique factorization domain
every prime ideal a, different from the unit ideal, contains irreducible
elements. (Take a non-uriit x in a and factor it into irreducible factors.)
It is not at all obvious that there exist minimal prime ideals in a given
domain, and in fact they may fail to exist in some non-noetherian
domains. However, the following theorem proves their existence and
elucidates their nature in the case of a noetherian domain:

THEOREM 29 (‘‘ PRINCIPAL IDEAL THEOREM'’). In a noetherian domain
R every isolated prime ideal v of a proper principal ideal Ra is a minimal
prime ideal. Conversely, every minimal prime ideal p in R is an isolated
prime ideal of some proper principal ideal Ra.

PROOF. 'T'he second assertion follows from the characterization of
the isolated prime ideals of an ideal (Theorem 7, § 5): it suffices to take
for a any non-zero element of p. We now pass to the less trivial first
assertion. By passage to the quotient ring R, (Theorem 19, § 11) we
may suppose that p is a maximal ideal, and that every element outside of
pisaunitin R. Suppose there exists a proper prime ideal v in R such
that v < ». We consider the infinite strictly decreasing sequence
q; > 0y > a4 > - - - of primary ideals belonging to v, where we have
set q, = v (cf. Theorem 23 of § 12). Then the sequence (q, + Ra)
is a decreasing sequence of ideals containing Ra. But since the unique
maximal ideal p of R is an isolated prime ideal of Ra, Ra is a primary
ideal belonging to p, and ¥ is the only prime ideal containing Ra; in
other words, R/Ra is a primary ring (§ 3), and it therefore satisfies
the descending chain condition (Theorem 2 of § 2). Therefore there
exists an index n such that q, + Ra=q,,; + Ra=---

In particular we have a, C q,,, + Ra, and every element x of g, may
be written in the form x = y + sq, withyeq,,,and ze R. We have
then 2a = x — y € q,, and on the other hand, since v/ Ra = p and since
v < p, the element a cannot belong to the radical v of g,. It follows
that z € 9,and a, C q,,, + a,a. Since the inverse inclusion is obvious,
we have:
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(l) G = qn+l + q,4.

At this point we pass to the residue class ring R’ = R/u,,,, we denote
by a’ the residue class of 4, and by ¢’ the ideal a,/5,,, (which is 3 (0)).
The equality (1} gives o’ = q’a’. Using one of the lemmas preceding
Krull’s theorem (Lemma 2 of § 7), we see that there exists an element
x' in R’ such that (1 — x’a’)q’ = (0). But by the hypothesis on R, R’
admits a unique maximal ideal, and a’ belongs to that ideal; thus
1 — x’a’ is a unit in R’, and we have ¢ = (0)--a contradiction.

REMARK. The last part of the proof (after equality (1)) avoids the
determinant calculation, which is customary at this point. The latter
method is as follows. If {x,, - - -, x,} is a finite basis of a,, equality (1)

implies the existence of elements y, in q,,, and 5,, in R such

5
that, for every i/, we have x, =y, + > as,,x,; in other words:
1

s )=
> (8;; — az;j)x; € q,,, for every i. If we denote by 4 the deter-
=1
minant |3,; — az;, |, the classical computation leading to Cramer’s rule
shows that we have dx; € q,,, for every j, that is, dq, C q,,,. But the
development of d shows that d is an element of the form 1 — ba (b€ R),
that is, a unit in R. Thus q, C q,,,, a contradiction. ]

CoROLLARY 1. In a noetherian domain every proper prime ideal p con-
tains a minimal prime ideal.

In fact, we take a non-zero element x in p and we observe that some
isolated prime ideal of Rx will be contained in p, by Theorem 7 of § 5.

COROLLARY 2. Let R be a noetherian ring (not necessarily a domain)
and let Ra be a principal ideal in R, distinct from R. If v is an isolated
prime ideal of Ra, there cannot exist two prime ideals ' and " such that
p" < p' < p. Any prime ideal strictly contained in p is an isolated prime
ideal of (0).

Suppose two such prime ideals p’ and p” exist. By passage to R/p”,
we may suppose that p” = (0) and that R is a domain. T'his contradicts
Theorem 29. The second assertion follows from the first, if one bears
in mind the fact that every prime ideal in R contains an isolated prime
ideal of (0).

In connection with Theorem 29, we observe that the imbedded prime
ideals of a principal ideal are certainly not minimal. T'hat imbedded
prime ideals can occur for a principal ideal (and even for all proper prin-
cipal ideals in a suitable domain) may be shown by examples. We will
prove in chapter V that in an important class of noetherian domains (the
so-called “integrally closed” domains) every proper principal ideal has
only isolated components.
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Having proved the existence of minimal prime ideals in noetherian
domains, we may inquire about the possibility of proving the stronger
statement that the prime ideals satisfy the descending chain condition.
We shall even prove a stronger result (see the corollary to Theorem 30
below).

DEFINITION. Let R be an arbitrary ring with identity. A prime
tdeal p # R is said to have height h (respectively, depth d) if there
exists at least one chain py < p; < -+ - < p,_y < P, = p (respectively,
p=1p,< vy < <Py < Py < R) where the p, are prime ideals, and
there exists no such chain with more than h + 1 (respectively, d + 1)
ideals. We denote the height (respectively, depth) of a prime ideal p by
h(p) (respectively d(v)). -

We point out that in the definition of the height, p, = (0) is allowed
(provided, of course, that this ideal is prime), whereas in the definition
of the depth, po = R is not allowed. The prime ideals of depth 0 are
the maximal ideals. The prime ideals of height 0 are the prime ideals
which do not contain properly any other prime ideal: in a noetherian
ring they are the isolated prime ideals of (0) (Theorem 7 of § 5), while
in a domain (0) is the only prime ideal of height 0. Another way of
stating the principal ideal theorem, or rather its second corollary
(Corollary 2 to Theorem 29), is to say that in a noetherian ring the iso-
lated prime ideals of principal ideals (other than R) have height 0 or 1,
and that in a noetherian domain the isolated prime ideals of proper
principal ideals have height 1. If p and p’ are prime ideals such that
p’ < p, we have k(p") < h(p) and d(p') > d(p). If, for a given prime
ideal p, there exist chains of prime ideals po < p; < -+ < pp_; < P
with arbitrary large A, p is said to have infinite height; and similarly for
prime ideals of infinite depth.

THeoReM 30. Let a be an ideal distinct from R in a noetherian ring R.
If a has a basis of r elements, then every isolated prime ideal p of a satisfies
the inequality h(p) < r (that is, p has height at most r).

We first prove a lemma:

LEMMA. Let py> p, > -+ > v, be a chain of prime idealc in a
noetherian ring R, and let (v,) be a finite family of prime ideals
in R, none of which contains p, Then there exists a chain
Po> V1> > P py > 0, of prime ideals in R, with the same end
terms and the same number of terms as the given ome, and such that no
v, (1 £j< m—1)is contained in any v,.

PROOF. By repeated applications, it suffices to prove the lemma in
the case m = 2; py > b, > p;. Since no v; contains p,, the union
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p3U |J v; cannot contain p, (see the remark following Corollary 3 to
L

Theorem 11 of § 6). Hence there exists an element x in p, which does
not lie in any v, nor in p,. We take for p’; an isolated prime ideal of
P3 + Rx contained in p, (such an ideal exists by Theorem 7 of §5).
Then p’, is not contained in any v,, by construction. We have p’, > v,
since x does not lie in p,, and we also have p’; < p, by the principal
ideal theorem (Theorem 29) as applied to the principal ideal
(pg + Rx)/p, in the ring R/p, (observe that p,/p, is not a minimal
prime ideal since po/p, > p,/p; > (0)). Q.E.D.

We now prove Theorem 30 by induction on r. For r = 0, (0) is the
only ideal generated by 0 elements, and its isolated prime ideals are of
height 0. Now, in the general case, let a be an ideal in R having a basis
{xy, - - -, x,} with  elements, and let p, be an isolated prime ideal of a.
Consider the ideal b generated by {x,, - - -, x,_,}. If p, is an isolated
prime ideal of b, it has height at most r — 1 (and thus at most 7) by our
induction hypothesis. Assume that p, is not among the isolated prime
ideals of b. Then p, is not contained in any isolated prime ideal v, of b,
and hence, if p, is of height m, the lemma shows the existence of a chain
Po> P> P> D> Py > P, of prime ideals in R such that
p,.—1 is not contained in any v;. Since p, is not an isolated prime ideal
of b, po/b is a prime ideal of height 1 in R/b, as it is an isolated prime
ideal of the principal ideal generated by the b-residue of x, (Corollary 2
to Theorem 29). Since p,/b contains (p,,_, + b)/b and since this last
ideal is not contained in any isolated prime ideal of (0) in R/b, (in view
of the fact that p,, _, is not contained in any v,) p,/b is an isolated prime
ideal of (p,,..; +b)/b (Theorem 7 of § 5). Thus p, is an isolated prime
idealof p,,_, + b,and p,/p,,_, anisolated prime ideal of (b + ¥,,_;)/Pp—1-
Since, in R/[p,,_,, this last ideal is generated by » — 1 elements, the
induction hypothesis shows that py/p,,_, is a prime ideal of height at
most 7 — 1. We have therefore m — 1 < r — 1, that is, m < r, and
o is a prime ideal of height at most . Q.E.D.

COROLLARY. In a noetherian ring every prime ideal 3£ R has finite
height, and the prime ideals satisfy the descending chain condition.

REMARKS. 1) A primeideal p in a noetherian ring may very well have
infinite depth. When that is the case, then the ascending chains of
prime ideals starting with p, which, by the a.c.c., are all finite, have
nevertheless lengths which are not bounded (by Theorem 30, the end-
terms of these chains of unbounded lengths must include an infinite set
of maximal ideals). In a noetherian ring with only a finite number of
maximal ideals, the depth of any prime ideal is finite.
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2) Suppose we have a prime ideal p of height A, so that we have a
chain po<p, < - < p,_; <p,=9p of prime ideals. Then no
further prime ideal can be inserted in this chain, and it is easy to see that
p, has height / (0 <7i< k). Now suppose we have a chain
Py < Py < - < P,y <y, of prime ideals in which no further prime
ideals can be inserted. Then p, has height at least 4, and one might
conjecture that its height is exactly A4, that is, that any ascending chain
of prime ideals terminating with p, has at most 4 terms. An equivalent
conjecture is the following: if p and p’ are prime ideals such that p < p’
and that there is no prime ideal between them, then their heights differ
by unity. It has been proved recently that these conjectures are false
for arbitrary noetherian domains.* They can be proved to be true in an
important class of rings, which includes the polynomial rings over fields.

Theorem 30 shows that a prime ideal of height 4 can only be an iso-
lated prime ideal of an ideal generated by not less than 4 elements.
That it is an isolated prime ideal of an ideal generated by exactly 4 ele-
ments is proved in the next theorem, which can be considered as a con-
verse of Theorem 30. As it is much more elementary than Theorem 30,
Theorem 30 will not be used in its proof.

TueoreM 31.  If v is a prime ideal of height h in a noetherian ring R,
then there exists an ideal a in R generated by h elements and admitting v
as an isolated prime ideal.

PrOOF. Using induction on ¢ we construct 4 elements a,,*--, a,,**, a,
of p such that for every i, every isolated prime iceal p, of Ra, + --- + Ra;
satisfies the condition A(p,) > i (then this height is #, by Theorem 30,
but we shall not use this fact). The case i = 0 is trivial, and we only
have to pass from i toi 4 1 fori < h. Those among the p; which are
of height 7 do not contain p, so that their union does not contain p (see
Remark following Corollary 3 to Theorem 11 of §6). We take for
a,,, any element of p lying outside of this union. Then every isolated
prime ideal v of Ra, + - - - 4+ Ra; + Ra, ., contains some p,(Theorem
7 of § 5), and when this p, 1s of height 7, we have v > p;sincea, ;¢ p;;
in any case v is of height at least 7 4 1.

Now, Ra, + - - - + Ra, being constructed, p contains some isolated
prime ideal p’ of this ideal. Since A(p') 2> & by construction, and since
h(p) = h by hypothesis, we conclude that p = p’. Q.E.D.

§ 15. Principal ideal rings. A principal ideal ring (PIR) is a ring
with identity in which every ideal is principal; a principal ideal domain

* M. Nagata, “ On the Chain Problem of Prime Ideals”, Nagoya Mathe-
matical Journal, v. 10, pp. 51-64 (1956).
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(PID) is a domain in which every ideal is principal, that is, a PlR without
proper zero-divisors. Any PIR is obviously noetherian, and the PIR’s
may be considere‘d the simplest type of noetherian rings. Very little
of the general theory is needed for studying this type of ring.

Examples of PID’s are the ring of integers and the polynomial rings
in one variable over fields. More generally, any euclidean domain R is
a PID (cf. Lemma in I, § 15, p. 27). For, a being a proper ideal in
R, we choose among the non-zero elements of a an element x for
which @(x) is minimum. Then, if y € a, we write y = xgq + r, with
¢, 7 in R and ¢(r) < ¢(x), and we see that since r(= y — xg) belongs
to a we must have r = 0, whence y € Rx.

If R is a PIR and a a proper ideal in R, then R/a is obviously a PIR;
this provides examples of PIR’s with zero divisors.

We first study the PID’s.

THEOREM 32. Let R be a principal ideal domain. Then the proper
prime ideals in R are those generated by irreducible elements, and they are
maximal. The ring R is a unique factorization domain. Any two non-
zero elements a and b of R have a greatest common divisor d, and we have
Rd = Ra + Rb. If ais a proper ideal in R, then R|a satisfies the des-
cending chain condition.

PROOF. We first prove the assertion about the GCD of a and b.
Since the ideal Ra + Rb is principal, it is of the form Rd (d € R), with
d = au + bv (u,ve R). Since a and b are in Rd, they are multiples of
d. Conversely any common divisor uf a and b divides d = au + bv.

We now come to the assertion concerning prime ideals in R. To say
that a principal ideal Rp is prime is the same as saying that if p divides
a product xy it divides one of its factors. Hence, if Rp is a proper prime
ideal, the element p is irreducible. Conversely, if p is an irreducible
element of R, and if p divides a product xy without dividing x, the GCD
ofxand pis 1; we thushave l = ux + vp (¥, ve R),and y = uxy 4 vyp
is a multiple of p, which proves that Rp is prime. It is also maximal,
since every ideal properly containing Rp is of the form Rd, where d is a
divisor of p, but p is not a divisor of 4. Hence 4 is a unit.

Let us now prove that R is a UFD (cf. I, § 14, p. 21). We have just
seen that condition UF3 of I, § 14 is fulfilled. It thus remains to prove
that condition UF1 of I, § 14 is also fulfilled, that is, that every element
x 7 0 of R is a finite product of irreducible elements. This has been
proved in § 1, but, for the sake of completeness, we give here a somewhat
different proof. Were UF1 false, there would exist, among the ideals
Rx such that x is not a product of irreducible elements, a maximal one,
say Ra. Since a cannot be irreducible, it is a product bc of elements b
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and ¢ such that Ra < Rb and Ra < Rc. By the maximal character of
Ra, b and c are both finite products of irreducible elements, whence so
is a; a contradiction,

Notice that this argument about the validity of UF1 holds in every
noetherian domain.

Finally we study R/a, where a is a proper ideal of R. The ideals in
R|/a correspond to the ideals in R which contain a. Writing a = Rx,
the fact that R is a PID shows that these ideals correspond to the classes
of associated divisors of x. By the unique factorization property, these
classes are finite in number, and hence so are the ideals in Rfa. Q.E.D.

CoROLLARY 1. Any UFD in which every proper prime ideal is maximal
(and hence also minimal) is a PID, and conversely.

The second (* converse’’) part of the corollary is contained in the
first two assertions of Theorem 32. The direct part of the corollary is
proved as follows:

It has already been pointed out in § 14 (p. 238) that in a UFD every
minimal prime ideal is principal. Hence in the present case we are
dealing with a domain R in which every prime ideal is principal. Now,
let % be any proper ideal in R. We consider the set of all proper prin-
cipal ideals which contain % (this set is not empty since % is contained in
at least one proper prime ideal). Since R is a UFD, R cannot contain
an infinite strictly descending chain of principal ideals. Hence there
exists a smallest principal ideal Ry containing . From %A C Ry it
follows that % = y¥,, where %, is an ideal 3£ (0). Were %, a proper
ideal, we would have %, C Rz, where z is a non-unit 3 0, and hence
A C Ryz < Ry, a contradiction. Hence %, = R, A = Ry, and the
corollary is established.

CoRroLLARY 2. A necessary and sufficient condition that a domain R
be a PID is that there exist a function f assigning a non-negative integer
Jf(x) to every non-zero element x of R, such that:

(a) If a divides b, then f(a) < f(b), equality holding only when a and
b are associates.

(b) If a and b are non-zero elements of R such that neither of them
divides the other, then there exist elements p, g, rin R such thatr = pa + ¢b
and f(r) < min (f(a), £(8)).

If R is a PID, we take for f(x) the number of irreducible factors
occurring in a factorization of x; then (a) is trivial, and, in (b) we may
take for r the GCD of a and b. Conversely, if f is given and if a is a
proper ideal in R, we take, among the non-zero elements of a, an element
x such that f(x) is minimum, and we show that a = Rx. Let y be an
element of a and let us assume that y is not a multiple of x. Then, in
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view of (a), x cannot be a multiple of y since f(x) < f(»); hence, applying
(b), we get the contradiction that there exists an element r of a such that
£() < min (f(2), £(9)) = £(=).

From Corohary 2 it can once more be deduced that a euclidean
domain is a PID. It is natural to ask whether, conversely, every PID
is euclidean; this question has been answered in the negative. Thus,
the ring of integers of the quadratic number field @(1/ — 19) is a princi-
pal ideal ring but has no euclidean algorithm whatsoever.

We now define a type of PIR’s which, together with the PID’s, will
enable us to construct all PIR’s (see Theorem 33 below). A PIR is
called special if it has only one prime ideal p 7 R and if p is nilpotent,
that is, if p* = (0) for some integer » > 0.

ExaMPLE. If Ris a PID, and if p is an irreducible element of R, then
R/Rp~ is a special PIR, with Rp/Rp" as its unique prime ideal.

When the “index of nilpotency” # is 1, the special PIR is a field; in
all other cases the PIR has proper zero-divisors. At any rate, p is maxi-
mal. If we place p = Rp, and if we denote by m the smallest integer
such that p™ = 0, then every non-zero element x in R may obviously be
written in the form x = ep*, where 0 < k < m — 1, and where e ¢ Rp.
For, either x is a unit, in which case x ¢ Rp and so k = 0; or x is.not a
unit, in which case x must be contained in the unique maximal ideal Rp
of R, and if % is the highest power of p which divides x, then x = ep*,
where k < m — 1 (since x 7 0) and e ¢ Rp.

We observe that the integer % in the representation x = ep* is uniquely
determined by x; from ep* = ¢'p* and 0 < k < k' < m we deduce p*'—*
= 0, in contradiction with the definition of m. One sees in a similar way
that the unit e is uniquely determined mod. Rp™-*. It follows that the
only ideals in R are the Rp* (0 < k < m), and these ideals are all
distinct. Conversely it is easily proved that a ring R containing a
nilpotent element p such that every x in R may be written in the form
x = ep* (e, a unit) is a special PIR.

We finally give a structure theorem for PIR’s:

THeoreMm 33. A direct sum of PIR’s is itself a PIR. Every PIR 1s
a direct sum of PID’s and of special PIR’s.

PROOF. Supposethat R = R, @ - - - @ R,, vhere each R; is a PIR.
If a is an ideal in R, then a=Ra=R,a+ ‘- + R,a. But Raa
is an ideal in R, and thus R,a = R;x;(x;€R,). Then clearly
a = R(x, + : - - + x,), and the first assertion is proved. For the proof
of the second assertion, we need a lemma:

LemMMA. Let R be a PIR. If p and ¥’ are prime ideals such that
p’ < P <R, then p contains no prime ideals other than p and v’, and every
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primary ideal contained in v contains p’. A non-maximal prime ideal of
R has no primary ideal but itself. Two prime ideals in R are either co-
maximal, or else one of them contasns the other.

Since R is a PIR we can write p = Rp, p' = Rp’. From p’ C p, we
deduce p’ = rp (re R). Since Rp’ is prime and since p ¢ Rp’, we have
r€ Rp’, that is, 7 = sp’ (s € R)}—and thus p’ = spp’. Let o' be any
primary ideal in R contained in p. Since (1 — sp)p’' =0€eq’, and
since 1 — sp does not belong to Rp, nor a fortiori to the radical of o,
we have p' € q'. As Rp' is itself a primary ideal contained in b, it fol-
lows that p’ is the intersection of all primary ideals contained in p. This
shows, first, that p’ is uniquely determined by p, and is contained in
every primary ideal which is contained in p, thus proving the first asser-
tion. This shows also that every primary ideal belonging to p’ contains
p’, hence is p’ itself, and the second assertion is proved. Finally, if p,
and p, are distinct prime ideals in R which are not comaximal, they are
contained in some proper prime ideal p; by what has already been
proved, it is impossible that both p; and p, be strictly contained in p.
Hence one of them is p, and the other is strictly contained in p. Q.E.D.

We now complete the proof of Theorem 33. Since R is noetherian,
the ideal (0) has an irredundant primary representation (0) = [ a,.

Let p; = V'q,. The ideals p, are pairwise comaximal: for if p; and p ;
(i # j) were not comaximal, one would have, for example, »; < p;
(lemma); but then we would have p; = q; C q; (lemma), contradicting
irredundance. It follows that the ideals q; are also pairwise comaximal;
and hence, by 111, § 13, Theorem 32, R is a direct sum of rings respec-
tively isomorphic to the rings R/q,. Now, each of the rings R/q; is a
PIR. If p, is maximal, then g, is contained in no other prime ideal than
p;, so that R/q; has only one prime ideal, namely p,/q;, and is therefore
a special PIR. If p; is not maximal, then p; = q; (lemma) and R/p; is
a PID. Q.E.D.

We shall conclude this section with two useful lemmas concerning
finite modules over PIR’s.

LemMA 1. If a module M over a principal ideal ring R has a basis of
n elements, then every submodule N of M has a basis of n elements.

PROOF. If» = 1, we have M = Rx and then clearly N = %x, where
A is an ideal in R. Since Ris a PIR, wehave % = Rt, whence N = Ry,
where y = tx, and this establishes the lemma in the case n =1. In
the general case we use induction with respect to #, assuming therefore
that the lemma is true for R-modules which are generated by n — 1
elements. Let M = Rx;, + Rxy + -+ + Rx,. Weset M, = Rx, +
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Rxg + - -+ + Rx,, N, = NN M,, and we denote by N’ the dlﬂ'erence
module N N,. By the induction hypothesis, IV, has a basis of n — 1
elements, say {y,, ¥3,* '+, ¥.}- By the second isomorphism theorem
(111, § 4, Theorem 5) we have that N' is isomorphic to the difference
module (N + Ml) — M,. This last module is a submodule of the
difference module M — M, the latter being a principal module (gener-
ated by the single element x, 4+ M,). It follows by the case » = 1 that
N’ has a basis of one element. If we denote by y, an element of N such
that the coset y'; = y, + N, generates N’ over R, then {y,, y5.* - -, ¥,}
is a basis of N. This completes the proof.

LemMA 2. If Ris a PID and M is an R-module which has a basis of
n elements which are linearly independent over R, then every submodule N of
M has a basis of n or fewer elements which are linearly independent over R.

PROOF. We use the notations of the proof of the preceding lemma
and we first consider the case n = 1. In N = (0) there is nothing to
prove. If N 3 (0), and if we have a relation ay = 0, a¢ R, then
atx = 0 and hence at = 0, since x is independent over R. Since we
have assumed that R is an integral domain and since ¢ 3 0 (for we have
y 7 0) it follows that a = 0, and this establishes the lemma in the case
n = 1. In the general case we again use induction with respect to n.
By the induction hypothesis, the module N, has a basis consisting of
n — 1 or fewer elements which are linearly independent over R. Let
{23, 23, *  *, 2,,} be such a basis (m < n). Then {y,, 25, 24, - - 2,} is
a basis of N, and we have only to show that if N 3 N, then y,, z,,
2y, -2, are linearly independent over R. Assume that we
have a relation a,y; + a,3;, + a333 + - - - 44,3, =0, a,e R. Let
yi=bwx 4+ bxy+ - +bx, b;eR. Since ay,e N, CM =
Rx, + Rxy + - - - + Rx,, it follows from the linear independence of
the x; over R that a,b, = 0. Since N % N,, y, does not belong to V,,
and hence b, # 0. Consequently a, = 0, and therefore also 2, = a; =

- =a, = 0. This completes the proof of the lemma.

§ 16. Irreducible ideals. In proving the Lasker-Noether decom-
position theorem (§ 4), we have seen that in a noetherian ring R, every
irreducible ideal is primary (Lemma 2 of § 4). On the other hand, if a
primary ideal g belonging to a prime ideal p is reducible—say q = a N,
a and b being distinct from q—then it is easily seen that we also have
for q a non-trivial representation of the form q = g’ Nq", where q’ and
q” are suitable primary ideals belonging to p and distinct from q. To
see this, let q’ denote the primary component of a which belongs to p,
if such a primary component exists (in other words: if p is a prime ideal
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of a); in the contrary case we set ¢’ = (1). In a similar fashion we
define q”, using the ideal b instead of a. From q = a Nb and from the
unicity theorems concerning irredundant decompositions of an ideal
into primary components, it follows at once that q = q’Nq”. It now
follows that neither q’ nor q” can be the unit ideal; for if, say, 4" were the
unit ideal, we would have q’ = g, q D a, and hence g = q, in contradic-
tion with our assumption. Hence both q' and ¢” are primary ideals
belonging to p, both different from q, as asserted.

It follows that when investigating the irreducibility of a primary ideal
q, we may restrict ourselves to representations q = aNb in which a
and b are primary ideals belonging to the radical of q. In other words,
and by passage to the quotient ring R, (Theorem 19 of § 11), we are
reduced to the following problem: given a local ring, characterize the
irreducible primary ideals belonging to its maximal ideal.

THEOREM 34. Let R be a local ring and let q be a primary ideal in R
belonging to the ideal m of mon-units of R. The following conditions are
equivalent:

1) q is irreducible.

2) The vector space (q:m)/q (over R/m) is one-dimensional.

3) The set of all ideals in R properly containing q admits a smallest ele-
ment (in this case that smallest ideal is q:m).

4) For every ideal a containing q, there exists another ideal a’ O q such
that a = q:a'.

PROOF. We will give a “cyclic” proof: 1) implies 2), 2) implies 3),
3) implies 4) and 4) implies 1). We first show that 1) implies 2). In
fact, since q is primary for m, we have q:m > q. From m(q:m)C q
we deduce that (a: m)/q is a vector space over R/m. [See I1I, § 6, p. 146.
In the present context we have only to observe that if (q: m)/q is regarded
as an R-module then the relation (q:m)m C q shows that the ideal m
is contained in the order of that R-module. Hence (q:m)/q can be
regarded as an R/m-module, and since R/m is a field, (q: m)/q is a vector
space over R/m.] The subspaces of this vector space correspond to the
ideals in R contained between q:m and 4. If this vector space were of
dimension > 1, its zero element would be the intersection of two non-
trivial subspaces, and q would be reducible.

We now prove that 2) implies 3). We first notice that in general any
ideal a properly containing q has with q: m an intersection distinct from
q; for, the smallest exponent s such that a-m* C q is > 1, and we have
9D a-m=1 C(q:m) Na. Now,if(q:m)/q is a one-dimensional vector
space, there are no ideals between q and g:m. It follows that every
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ideal a in R, which properly contains q, contains q:m (since the inter-
section of a with q:m is different from q). In other words, condition 3)
is satisfied.

We observe that the xmplncatlon “2) implies 3)” can also be derived
from Corollary 1 of Theorem 28 (in § 13). According to that corollary
we have that if a is a minimal proper overideal of an ideal b in a ring R,
then there must exist a maximal ideal p in R such that ap Cb. If we
apply this result to our local ring R (in which the only maximal ideal is
m) we see that if a is any minimal proper overideal of g, then am C g.
We have therefore ¢ < a € q:m. If, now, 2) holds, we deduce that
a = g:m, whence q:m is the only minimal proper overideal of q. Since
any ideal properly containing q contains some minimal proper overideal
of q (R/q being a ring satisfying the d.c.c.; see Theorem 2 of § 2), q: m
is the smallest ideal properly containing q, which proves 3).

Let us now assume that condition 3) is true. Then, since a non-
trivial vector space which admits a smallest non-zero subspace must be
one-dimensional, (q:m)/q is one-dimensional, and q:m is the smallest
proper overideal of q as was proved above. For the proof of 4) we now
need the two following lemmas:

Lemma 1. If 3) holds, and if a is a minimal overideal of an ideal b
containing q, then q:b is a minimal overideal of q:a or is equal to it. -

PROOF. From our hypothesis concerning the ideal a and from the
above-cited Corollary 1 to Theorem 28 it follows that am C b and that
consequently a/b is a one-dimensional vector space over R/m. In other
words, there exists an element ¢ in a such that a =b 4 Rt, tm Cb.
From am C b we deduce (q:b)ma C (q:b)b € q—that is, (q:5)m C q:a.
Hence also (q:b)f(a:a) is a vector space over R/fm. We now define the
following mapping f of q:b into (a:m)/q: f(x) == coset of x¢ mod. g
(x € q:6; note that tm C am C b, whence xtm C xb C q, showing that
at€ q:m and that consequently f is indeed a mapping into (q:m)/q).
Itis immediately seen that the kernel of f is the ideal q:a. Therefore f
defines a mapping f of (4:5)/(4: ) into (q:m)/q: namely, if x € q:b and
% denotes the coset of x mod. q:a, then we define f(#) = f(x). Now,
both (q:6)/(q:a) and (q:m)/q are vector spaces over R/m, and it is ob-
vious, from the definition of f, that f is a linear mapping, with zero
kernel. Hence (q:b)/(q:a) is isomorphic to a vector subspace of
(9:m)/q, and since (q:m)/q is one-dimensional, the proof of the lemma
is complete.

LemMa 2. If 3) holds, and if a is an overideal of a, the lengths of the
tdeals a, q:a, and q are related by

Xa) + A(q:a) = A(q).
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PROOF. Consider a composition series {a,} of ideals joining R to q
and containing a; let a'= a;, ¢ = a,. By Lemma 1, the normal series
{q:a,_,} admits no proper refinement (111, § 11, p. 159). Thus, by
Jordan’s theorem (111, § 11, Theorem 22), its terms are all distinct, as
their number is exactly s.  Therefore the lengths of a and g:a are j and
s — j respectively, and the lemma is proved.

The proof that 3) implies 4) is now easy. From Lemma 2 we deduce
that the two ideals a and q:(q:a) have the same length, equal to
Ma) — X(q:0). As the former is contained in the latter, the two ideals
are equal, and 4) holds.

Finally we show that 4) implies 1). Suppose that we have a repre-
sentation q = aNa’. We may write, by 4), a = q:b, a’ = q:b’, where
b and b’ are ideals containing q. We then have q = (q:5) N(q:b") =
a:(b 4 b’), and this implies b 4+ b’ = R, as we already have q:m 3 q.
As m is the unique maximal ideal of R, the relation b + b’ = R implies
that either b or b’ is equal to R, that is, that either a or a' is equal to q.
In other words, the representation ¢ = aNa’ is trivial, and q is an
irreducible ideal. Theorem 34 is therefore completely proved.

The notations being as in Theorem 34, suppose that the ideal q is
irreducible. Then the mapping a — a’ = q:a maps the set (S) of all
overideals of q onto itself. In proving that 3) implies 4) we have seen
that a = 2" = q:(9:0); in other words, the mapping a-— a’ is a so-
called ‘‘involution,” and is therefore 1-1. 'The general formulae

a:(a + b) = (a:a)N(a:b), q:(ab) = (q:a):b = (a:0):a
(111, § 7, p. 147) show that under the mapping a — a’ of (S) onto itself,

sums of ideals are transformed into intersections, and products into
quotients. More precisely we have the formulae:

M (anb) =a" 4+ b, (a4 6) =ad NP,

(2) (ab)’ = (a’:b) = (b":a), (a:b) = b-a'.

(The first of the two formulae (1) follows by replacing in the second of
these two formulae the ideals a and b by the ideals a’ and b’ and by using
the involutorial property of our mapping.)

THEOREM 35. For an ideal o in (S) to be irreducible, it is necessary and
sufficient that o' = q:a be principal mod q.

PROOF. Relations (1) show that an ideal ¢ in (S) is irreducible if and
only if ¢’ is not a non-trivial sum of ideals in (S), that is, if and only if ¢’
is not of the form a+ b with qCa g ¢’ and qC b 5 ¢". For, if
¢ =a-b witha,bin(S),thenc=¢"=(a+ b)) =0a'Nb,and il ¢
is irreducible then either a’ = ¢ or b’ = ¢, whence either a = a”" = ¢’



§16 IRREDUCIBLE IDEALS 251

or b =b" = ¢'. Conversely, if ¢ is reducible—say ¢ = anb, a > ¢
and b > c—then ¢’ = (aNb)' = a’ + b’, and in view of the (1,1)
character of theymapping a — a’ of (S) onto itself we have that both o’
and b’ are different from ¢’, since a # ¢, b 3 ¢ and since a, b € (S).
This proves our assertion. Now, let a be any irreducible ideal in (S)
and let {x,, x,, ' -, x,} be a basis of a’. We have o' = (Rx, + q)
+ (Rxy + a) + - -+ + (Rx, + q), and since each term Rx, + q belongs
to (S) it follows, by what we have just proved, that at least one of the
ideals Rx; 4+ q must coincide with a’. In other words: a’ is a principal
ideal mod q. Conversely, suppose that a is an ideal in (S) such that o'
is principal mod q. 'To prove that a is irreducible we have only to prove
that a’/q is not a non-trivial sum of ideals in R/q. It will be sufficient
to show the following: a non-trivial sum of principal ideals in R/q can-
not be principal. In other words: if the ideal R'x 4+ R’y is a principal
ideal R’z (R' = R/a), then we have either 2 = ux or 5 = uy, where u
isaunitin R". We have, by assumption, z = ax + by, x = ¢z, y = dz
(@, b, ¢, din R'), thus 2(1 — ac — bd) = 0. If both ac and bd are non-
units in R’, then 1 — ac — bd is a unit in R’ (since R’ is a local ring
with m/q as ideal of non-units), and we have z = x = y = 0, in which
casc our assertion is true. Otherwise ac (or bd) is a unit in R’,.and
then ¢ (or d) is a unit in R’, when 2 = ¢~x (or 2 = d~'y). Q.E.D.

Let us now consider a primary ideal q in a noetherian ring R, and let
p be its associated prime. The ideals {q:p"} (for n =0,---,e =1,
¢ being the smallest exponent n such that p» C q—that is, e is the ex-
ponent of q; see 111, § 9, p. 153) are all primary for p (111, § 9, Theorem
14); and they form an ascending sequence of ideals. 'T'his sequence is
called the upper Loewy series of q. Its successive factors (q: p")/(q:p"-?)
are modules over R[p. In case p is a maximal ideal, the factor
(a:9")/(q:p"1)1s a vector space over the field R/p; its dimension (which
is finite since R satisfies the a.c.c.) is called the n-th upper Loewy invariant
of . The sum of these invariants is obviously the length of q.

If p is a maximal ideal, then it is clear that q:p is the biggest overideal
a of q such that a/q is a vector space over R/p in a natural way. (The
condition for this to be so is that p be contained in the order of the
R-module a/q, that is, that ap C g, or a C q:p.) It is easily seen that
this implies that (q:p)/q is the sum of the minimal ideals of Rfa. We also
observe that it follows from Theorem 34, 2) that a necessary and suffi-
cient condition for q to be irreducible is that its first upper Loewy in-
variant be equal to 1.
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APPENDIX: PRIMARY REPRESENTATION IN NOETHERIAN MODULES

We intend to generalize to the case of modules some of the results which have
been proved previously for ideals.

Let R be a commutative ring, M an R-module, and N a submodule of M.
We define the radical of the submodule N as being the set t of all @ in R for
which there exists an exponent n such that a"- M CN. The fact that this set
is an ideal 1 is easily proved, as in Chapter 111, § 7 (p. 148). One can also
notice that the set b of all 4 in R such that bM C N is an ideal in R, as it is the
order (or the annihilator) of the difference module M — N; and t is the radical
of this ideal. The rules about radicals of sums and intersections (III, § 7,
Theorem 9) extend to radicals of submodules (straightforward checking).

A submodule N of M is said to be primary if the relationax € N(a € R, x € M)
implies either x C N or a €t(N), (t(N) denoting the radical of N). It is not
difficult to see that if N is a primary submodule of M, then the annihilator b of
M — N is a primary ideal inr R.

PROOF. If ab€Db, we have abM C N; if furthermore a ¢ t(N) (or equiva-
lently: if no power of a belongs to b), we have bJM C N, that is, b €b. Q.E.D.
[The converse is false: in the countable direct sum J + J + -+ J + - -~
= M the submodule N= J + 2/ 4+ -4+ nJ + --- is such that b = (0),
whence b is primary; however, the element (0,1,0,:--0, ) = x satisfies
2x€N,x¢ N,2¢1(N).] Thus, if a submodule N is primary, its radical is a
prime ideal. 'We know that the converse is not true already in the case of ideals;
however a submodule whose radical is a maximal ideal is primary.

PROOF. Let t(N) be maximal. Then, from ax € N and a ¢ t(N), we deduce
that R = aR + t(N), whence 1 = ba + ¢ with c €x(N). By raising to a suit-
ably high power we get 1 = b’a + ¢’, where ¢’ belongs to the annihilator of
M — N. Therefore x = b'a:x + ¢’*x € N.

The characterization of the pair {primary submodule, radical} runs exactly as
in the case of ideals (111, § 9, Theorem 13): letp be an ideal in a ring R and let E
be a submodule of an R-module M ; then E is primary and p is its radical if and
only if the following conditions are satisfied: (a) P contains the annihilator of
M — E;(b)if b € p, then b™- M C E for some m (depending on b); (c) ifa-x€E
and x ¢ E, then a €P.

PROOF. It is obvious that conditions (a), (b), and (c) are satisfied if E is
primary and p is its radical. Now suppose that (a), (b), and (c) are satisfied.
Condition (b) signifies that p is contained in the radical t(E) of E. ‘Therefore
conditions (b) and (c) imply that E is primary. Let a be an element of t(E),
and let n be the least exponent such that a" is in the annihilator of M — E
(that is, such that a"MCE). If n = 1, we have a €p by (a); otherwise there
exists x in M such that y = a"~'-x ¢ E, and, since we have a-y € E, (c) implies
a €. We have thus proved that t(E) C p, and hence p is the radical of E.

It is also easily seen that a finite intersection of primary submodules E; with
the same radical p is a primary submodule also having p as radical.

We say that a module M over a ring R with identity is noetherian if it is unitary
and if it satisfies the a.c.c. We have the following representation theorem: in a
no:;h?nan module M every submodule N is a finite intersection of primary sub-
modules.

The proof runs as in § 4. A first lemma shows that N is a finite intersection
of irreducible modules; its proof is the same as that of Lemma 1 of § 4 (that
lemma actually belongs to the theory of partially ordered sets). A second
lemma shows that every irreducible submodule E is primary. The proof is
indirect: if E were not primary, there would exist @ in R and x in M such that
ax € E, x ¢ E, a®"M ¢ E for every n; one then considers the increasing sequence
of submodules E:Ra" (E:Ra" denoting the set of all y in M such that g*-y € E),
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one observes that by the a.c.c. there exists an exponent s such that E:Rg* =
E:Ra*t! and one then proves as in Lemma 2 of §4 that E = (E + R-x) N
(E 4+ a*-M), in contradiction with the irreducibility of E.

Irredundant primary representations of M are defined as in § 4, and one sees
immediately the existence of such a primary representation.

The radicals p7of the submodules E; which appear 1n an irredundant primary
representation N = n E, of a submodule N are characterized by the following

property: they are the prime ideals Y in R for which there exists x in M, x ¢ N,
such that the ideal N:Rx (set of all  in R such that -x € N) is primary for p.
(See Theorem 6 in § 5.) This shows the uniqueness of the prime ideals p,.
PROOF. To show that each b, enjoys the above property, unc takes
x € n E;, x ¢ E;,. Then N:Rx contuins the annihilator of M — F, {which is

pnmary for p,, as seen above), and the proof that N:Rx is prlmary for p; as well
as the proof of the converse, run exactly as in Theorem 6 of § 5.

The terminology defined in § 5 may be extended without further warning to
the case of submodules. The minimal elements of the family of all prime ideals
P, associated to a submodule N of M are also the minimal elements in the
family of all prime ideals p which contain the annihilator of M — N.

PROOF. We notice that, if we denote by @, the annihilator of M — E,, q, is
primary for p;, and the annihilator a of M — N is the intersection of the o;
Thusa = [ g, is a (not necessarily irredundant) primary representation of the

ideal a, and the conclusion follows by Theorem 7 of § 5.
Let N = n E, be an irredundant primary representation of a submodule N

of M, and let p, be the associated prime ideal of E;. ‘The set E’; of all elements
x of M for which there exists a ¢ P, such that a-x € N is obviously a submodule
of M. It is contained in E;, and, when , is an isolated prime ideal of N, we
have E’; = E,. This shows the uniqucness of the isolated components of N.
(Proof as in Theorem 8 of § 5. In the second part of the proof replace the
relation 5"’ €q, by b-MC E;))

Asan appllcatnon of the ptecedmg theory, let us give a generalization of Krull's
theorem (Theorem 12 of § 7) to modules. We first state the following generaliza-
tion of Lemma 1 of § 7, which is useful in local algebra:

Let E be a noetherian module over a ring R, let m be an idcal in R and let F be a
submodule of E. Then there exists an integer s and a submodule F’ of E such that
mF = FN F’ and F' DnvE.

PROOF, As in Lemma 1 of § 7, one considers the primary components F,(F’))
of mF whose associated prime ideals contain (donot contam) m, and one proves
that F’' = n F| contains some m*E and that F* = n F’; contains F.

Then the generalization of Krull’s theorem is as follows:
Let E be a noetherian R-module and letm be an ideal in R such that the relations

mem, x€E, (1 4+ m)-x=0 imply x =0, Then we have nm"Ea (0).
(Notice that the condition about m is automatically verified when every element
of the form1 + m (m € m) is invertible in R).

PROOF, let F = n m"E. By the above lemma we have F = mF. We

then take a finite buls of F, express the relation F = mF in terms of this basis,
and conclude from an argument about determinants (as in Lemma 2 of § 7) that
F = (0).

We leave to the reader the generalization of the consequences of Krull’s
theorem.



V. DEDEKIND DOMAINS.
CLASSICAL IDEAL THEORY

All the rings in this chapter will be assumed to have an identity.
Whenever two rings occu, one of which is a subring of the other, it will
be tacitly assumed that the identity of the bigger ring belongs also to the
subring (and therefore is the identity of the subring).

§ 1. Integral elements. lLet A be a ring, let B be an overring of 4,
and let x be an element of B. The element x is said to be integral over
A (or integrally dependent on A) if it satisfies the following condition:

(c) There exists a finite set {ag, - - - , a,_,} of elements of A such that

(1) an 4 a,,_lx""l + -+ ay = 0.

In other words, x is integral over 4 if it is a root of a monic equation (1)
with coefficients in 4. 'The equation (1) is called an equation of integral
dependence satisfied by x over A. Note that an element which is integral
over A is algebraic over 4. Note also that every element @ of A is
integral over 4 (a is a root of X — a).

We now give conditions which are equivalent to (c):

(c") The ring A[x] is a finite A-module.

(c") The ring A[x] is contained in a subring R of B which is a finite
A-module.

(c") There exists in B a finite A-module M with the following two
properties:
1) xM C M.
2) zero is the only element y of A[x] such that yz = 0 for all z

in M.

PROOF. We give a cyclic proof Condition (c) 1mphcs (c"), since

equatlon (1) signifies that x"€ Z Axi, whence a"t9¢e }_ Axi+e; thus
i=0
artie 2 Ax' by induction on ¢, and {1, x, - - -, a"} is a ﬁmte basis of

=0

254
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Afx}over A. Itisclear that (c’) implies (¢”). Also (¢") implies (¢”): we
take M = R; then (1) is satisfied since R is a ring and (2) is satisfied
since 1 e R. We now prove that (c”) implies (¢). This follows from
the following more informative lemma:

LEMMA. Let A be a ring, a an ideal in A, M a finite A-module
contained in an overring R of A, and x an clement of R such that

1) *M C Ma;

2') zero is the only element y of A[x] such that vs = O for all = in M.
Then x satisfies an equation of integral dependence of the form

Xt g "+ =0,

where all the g; (0 < i < n — 1) belong to q.
PROOF OF THE LEMMA. Let us write M= >Am,. 'Then

1
*xM C S Amq = Yam; In particular there exist elements ¢, of q
7 ;
such that xm; = >g,m,. 'This is a system of # lincar homogeneous
1

equations in the m;, and we can write it as follows:
2(8;x — g,)m, =0,
1

where the §,; are the Kronecker symbols. l.ct d = det (3, v — ¢,,).
We have then dm; = 0 for every 7, whence dM = (1)) and d = O by
condition 2’). By expansion of the determinant, one sees readily
that the relation det(3,x —¢,)==0 is an cquation of integral
dependence of the required type. Q.E.D.

REMARK [. Condition (2) in (¢”) is automatically satisfied if 13 is an itegral
domain and M # (0), or if 1 € M. More generally, condition 2°) in Lemma |
is automatically satisfied if 1 € A7, in particular of M 1y an ovcrving of ..

If A is a noetherian ring, then it is clear that condition (¢”) is equivalent
to the following condition:

(¢').  The ring A[x] is contained in a finite A-module.

REMARK 2. If A is not noctherian, than it may be shown by examples that
condition (¢’,) is weaker than (¢’).  For example, we may take for o a valua
tion ring whose value group d is non-archimedcan (that s, of rank > 1 sec
VI, § 10). ‘Then if a and B are elements in J such that « > g8 > 0 for all
positive integers n, and if x and d are elements of the quotient fiekd of o1 having
values — B and « respectively, then J1[v] is contained in the finite cl-module
Ad=}, without x being integral over .

REMARK 3. If 4, B and C are rings such that JCBCC, B is a finite .-
module and C a fnite B-module, thenitis obvious that Cis a finite . I-module.

THeorReM 1. Let A be a ring, let BB be an vverring of 1. and let
Xy, -y X, be elements of B.  If each of the elements x, is integral over A,
then the ring A[x,, - - - , x,] is a finite A-module.
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PROOF. The theorem is true for » = 1 by (¢’). By induction on n,
we may assume that the ring B’ = A[x,, - - -, x,_,] is a finite 4-module.
On the other hand, by the case n = 1, the ring A[x,, - - -, x,] = B'[x,]
is a finite B’-module, since x,, being integral over 4, is a fortiori integral
over B'. Hence, by Remark 3, the ring A[x,,---,x,] is a finite
A-module. Q.E.D.

CoroLLARY. Let A be a ring and B an overring of A.  The elements of
B which are integral over A form a ring which contains A.

In fact, if x and y are elements of B which are integral over 4, then
A[x, y] is a finite A-module, by Theorem 1, whence x — y and xy are
integral over A by (¢”). .On the other hand, every element of 4 is
integral over 4. .

The ring of all the elements of the overring B which are integral over
A is called the integral closure of Ain B. When the integral closure of
A in B is A itself, then one says that A4 is integrally closed in B; this
means that every element of B which is integral over A4 lies in 4. 1f
every element of B is integral over A, then B is said to be integral over A
(or integrally dependent on A).

THEOREM 2 ('T'RANSITIVITY OF INTEGRAL DEPENDENCE). Let A be a
ring, B an overring of A integral over A, und C an overring of B integral
over B. Then C is integral over A.

PROOF. I.et x be an element of C, and let

a4+ b,_a"1 4 -+ by =0 (b; € B)

be an equation of integral dependence for x over B. Then the ring
B = Afby,---,b,_,] is a finite A-module (Theorem 1). Since x is
integral over B’, B'[x] is a finite B’-module, and therefore a finite
A-module. Therefore x is integral over 4 by (c').

The above-defined notions of integral closurc and of an integrally
closed ring are relative notions and refer to a given overring B of 4; the
use of the words *‘in B" is necessary in order to avoid confusion. We,
however, make the convention that the expressions ‘“‘integral closure of
A,” “A is integrally closed,”” mean respectively * the integral closure of
A in its total quotient ring,” ““4 is integrally closed in 1ts total quotient
ring” (1, § 19), the role of B being played by the total quotient ring of
A. The most important case is the one in which A is an integral
domain, its total quotient ring being then its quotient field. When
dealing with an integrally closed integral domain A (that is, with an integral
domain which is integrally closed in its quotient field) we shall omit, as 2
rule, the adjective “‘integral” and we shall refer to 4 as an integrally
closed domain.
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§ 2. Integrally dependent rings. Let A be a ring, A’ an overring
of A, integrally dependent on 4. We first prove that this relationship
between 4 and 4’ is preserved under residue-class ring formation and
under quotiem ring formation. More precisely:

LemMMA 1. Let A’ be integrally dependent on A, and let 3’ be an ideal
in A'. Then A'[Y is integrally dependent on A[J' N A.

PROOF. We first recall that 4/3' N4 can be canonically identified
with a subring of 4°/3’ (111, § 5, Theorem 8). Now, for any x in 4’, it
suffices to reduce modulo 3’ an equation of integral dependence for
x over A.

Lemma 2. Let A’ be integrally dependent on A and let S be a multi-
plicatively closed set of non-zero elements of A. Then A'g is integrally
dependent on Ag.

PROOF. Let n’ be the ideal formed by the elements of A’ which are
annihilated by at least one element of S. Since A’ and A are ordinary
quotient rings of A'/n’ and of Afw'NA4 (IV, §9), we are reduced, by
Lemma 1, to the case in which 4 and A’ are subrings of Ag and 4’y
respectively. Let then x/s (x € 4’, s € S) be an element of 4’s. From
an integral dependence equation

x"+a, x4+ ---+a,=0 (q,€4
of x over A, we deduce, upon division by s":
(x/s) + (@n-rfs)xfs)=* + - - - + aofs" = 0,
and this is an integral dependence equation of x/s over A;. Q.E.D.

THEOREM 3. Let A be a ring, A’ an overring of A, integral over A, and
let v be a prime ideal of A. There exists a prime ideal v’ in A’ such that
p'NA = p (that is, p’c = p).

PROOF. Let us first achieve a reduction to the case in which p is the
only maximal ideal of 4. For this purpose, denote by S the comple-
ment of p in A (which is multiplicatively closed) and consider the
quotient rings Agand 4’s. The ideal pA is the only maximal ideal of
Ag (1V, § 11, Theorem 19), and A’ is an overring of 4, integrally
dependent on Ag (Lemma 2). Suppose that there exists a prime ideal
m’ in A'g such that m’ N 4g = pAg. Then the inverse image p’ of m’
in A’ (i.e. the ideal m’c; see Definition in IV, § 8, p. 218) is a prime
ideal of A’ (IV, § 8, p. 220). It is clear that p' N 4 contains p. Con-
versely, if x € p’' N 4, then the residue class % of x modulo the kernel
n of the homomorphism 4 — A lies in m' N 4, that is in pAg; thus
xep (IV, § 11, Theorem 19).

We shall now assume that p is the only maximal ideal in 4. If we
prove that the extended ideal A'p is distinct from A’, then the theorem
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will be proved. For, if A'p 3 A’, then 4’y is contained in some maxi-
mal ideal of 4’. If p’ is such a maximal ideal, then the ideal p' N A4 is
distinct from A4 and contains p, whence p’ N 4 = p since p is maximal,

We thus have to prove that 4'p does not contain the identity 1.
Since 1 € A'p may be written as an equality Da’;p, = 1 (a’; € 4, p, €p)

:
which involves only a finite number of elements of A’, we have a
reduction to the case where A4’ is generated over A4 by a finite number of
elements. By induction on the number of these elements, we have a
further reduction to the case where 4" = A[x]. Let then

0] =a, '+ - +ax+a, (a;,€4)
be an equation of integral dependence of smallest possible degree for x
over A. If 1 € A’p then we have a relation of the form

2 l=po+px+ - +px (pi€p)

By using equation (1), we may suppose that ¢ < #n — 1. Furthermore,
since 1 — p, is not contained in the unique maximal ideal p of 4, it is a
unit, we may divide (2) by 1 — p, and we may thus assume that p, is
zero:

) l=px+ - +px (piep,g<n—1)

'This relation shows that x is a unit in 4’ and hence is not a zero-divisor
in A’.  Let us now replace a, in (1) by ag(pyx + - - - + px?). We get
(I a=a, @'+ tax+ap(p+ -+ pxt)

By canceling x we get an integral dependence equation for x over 4,
which is at most of degree # — 1. ‘'T'his is a contradiction. 'T'hus
pA[a] is a proper ideal of A[x], and this proves Theorem 3.

We give a second proof of Theorem 3. Let b be now an arbitrary
prime ideal in R. (The reduction to the case in which b is the only
maximal idcal in .4 will not be needed in this second proof.) The set
of ideals a’ in A’ such that a’ N A Cp is not empty (the zero ideal is in
that set) and is obviously inductive. Hence Zorn’s lemma provides us
with a maximal element p’ of that set. We shall prove thatp’'NA =p
and that p’ is a prime ideal.

We shall show that the assumption v’ 1.4 7 p leads to a contradic-
tion. Under this assumption we havep’ N4 < p. Letx bean element
of p which does not belong to p’. Then p’ + A'x > p’, and hence, by
our choice of p’ we will have (p' + A'x)NA Ep. That means that
there exists an element 3" in A’ and an element y in A, not in p, such that
%'x — ybelongstop’. Lets™™ 4 a3+ .-- 44, 2" +a,=0be
an equation of integral dependence for 2’ over 4 (a; € 4). Multiplying
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this relation by x* and using the fact that 2°’x = y (mod p’) we find the
following congruence: y"+ axy"™ !4 - -4 a,_ 3y +ax=0
(mod p). This is in contradiction with xe p, y ¢ p.

To show that p’ is a prime ideal we consider any two ideals a’ and b’ in
A’ such that o’ > p’ and 6" > p’ and we prove that a'd’ > p’. Let
a=a'NA, b=5"NA. By our choice of p’ and from the equality
p'NA = p wededuce thata > pand b > p. Since p is a prime ideal it
follows that ab > p. Consequently a'd'NA4 Dab > p, showing that
a’d’ > p’. This completes the proof.

An ideal ' in 4’ such that p’ N4 = p is said to ‘“‘lie over p.”" We
first give a corollary to Theorem 3:

CoROLLARY. Let A be a ring, p and o two prime ideals of A such that
p C q, A’ an overring of A integral over A, and v’ a prime ideal of A' lying
over p. Then there exists a prime ideal o' of A’ containing v’ and lying
over q.

The residue class ring A’[p’ is integral over A/p (l.emma 1), and the
corollary follows by applying Theorem 3 to the prime ideal q/p of A/p.

We now give two complements to Theorem 3:

1) Two prime ideals p', q' of A’ such that »’ < q' cannot lie over the
same prime ideal of A. By passage to A’'[p’, we may suppose that p’ = (0)
and that A’ is an integral domain. We then prove that any non-zero
ideal o’ of A’ contracts to a non-zero ideal of 4. We fix an element
x7 0 in ao'. There exists an equation of integral dependence
X"+ a,_x"1 4+ .-+ 4+ ay = 0 of xover 4, with a, ¢ 0, since, otherwise,
we could divide by x. This equation shows thatage x4’ N4 C a’ N A4.
Hence o' N 4 # (0).

2) Let v’ be a prime ideal of A’ lying over p. For p’ to be a maximal
ideal of A', it is necessary and sufficient that p be a maximal ideal of A.
For, if p' is not maximal, it is contained in a maximal ideal q’, and
a'NA > p=yp NA by complement 1), showing that also p is not
maximal. Suppose conversely that p is not maximal. Then p is con-
tained in a maximal ideal q; and by using the corollary, we find that
also p’ is not maximal.

REMARK. By passage to A’[p’, the result we just proved is equivalent to the
following special case of 2), that is, the case p’ = (0): let A’ be an integral
domain, integral over 4; for A’ to be a field, it is necessary and sufficient that 4
be a field. In other words: an integral domain which is integrally dependent
on a proper integral domain (that is, on a domain which is not a field) is itself
proper.

We note, however, that this result is much more elementary than Theorem 3
and can be proved very simply and directly as follows:

If A’ is a field and x € 4, x # 0, then 1/x € A’, whence there is a relation
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of the form (1/x)* + a,(1/x)" '+ -+ -+ ay, =0,a,€A. Therefore 1 =
— x(a, + agx + *** 4+ a,x" "), 1/x € A, showing that also 4 is a field.

Conversely, if 4 is a field and x € 4’, x 0, then A(x) = A[x], since x is
algebraic over 4. Hence 1/x € A[x] € A’, showing that A’ is a field.

§ 3. Integrally closed rings. Let 4 be an integral domain, K
its field of quotients, and L an overfield of K. If an element x of L is
integral over A, it is a fortiori algebraic over K, by condition (c) (§ 1,
p- 257). Let n be the degree of the minimal polynomial f(X) of x over
K, and let us denote by {x,, - - -, x,} a complete set of conjugates of x
over K, that is, a set of n elements of an algebraic closure of K such that
f(X) = T] (X — x,) (each conjugate of x is repeated p¢ times, p* being

the degree of inseparability of f(X) over K; see II, § 5, Definition 2,
p. 67). Since an equation of integral dependence for x over A4 is satis-
fied by all the conjugates x; of x over K, the coefficients of the minimal
polynomial f(X) = J[(X — x,) are integral over 4 (§ 1, corollary to

Theorem 1). We have thus proved the following results:

THEOREM 4. Let A be an integral domain, K its quotient field, x an
element of some extension of K. We suppose that x is integral over A.
Then x s algebraic over K, and the coefficients of the minimal polynomial
J(X) of x over K, in particular the norm and the trace of x over K, are ele-
ments of K which are integral over A. If A is integrally closed, these
coefficients are in A, and therefore already the minimal polynomial f(X)
yields an equation f(x) = 0 of integral dependence for x over A.

A slight modification of the reasoning about conjugates leads to the
following result:

THEOREM 5. Let A be an integrally closed domain, and let K be its
quotient field. If f(X) and g(X) are monic polynomials in K[ X such that
th: product h(X) = f(X)g(X) s in A[X], then f(X) and g(X) are them-
selves in A[X] (that is, have their coefficients in A).

PROOF. Let (x;), (y;) be sets of elements of an algebraic closure of K

such that f(X)=J[(X —x,), gX)= H(X y;). Since A(X)=
H(X —-x;). H(X ¥;) is in A[X], the relations A(x;) = 0 and

h(y,) =0 are equatxons of integral dependence for all the x; and y;
over A, and these elements are therefore integral over A. Thus the
coeﬂicients of f(X) and g(X), which are sums of products of the x; and
the y, respectively, are integral over A4 (§1, corollary to Theorem 1);
they are therefore elements of 4, since 4 is integrally closed.

REMARK. In chapter Il (§2, p. 56) we have defined the minimal
polynomial over a field K of an element x of some field extension L of K.
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More generally, if x is an element of some overring of a field K, where
the overring is not now necessarily a field, the set of all polynomials
AX) e K[X] such that f(x) =0 is a principal ideal of K[X]. The
monic polynomial m(X') generating this ideal is called the minimal poly-
nomial of x over K, or in K[X]. If x is not an element of some field
extension of K, the minimal polynomial m(X) of x need not be irre-
ducible. Part of Theorem 4 may be generalized to this case: Let A be an
sntegrally closed domain, K its quotient field, and x an element integral over
A of some overring of K. Then the minimal polynomial m(X) of x over K
has all its coefficients in A; in other words, the relation m(x) = 0 is an
integral dependence equation for x over A.

PROOF. If f(x) = 0 (f(X), monic polynomial in A[X]) is an integral
dependence equatnon for x over A, we may write f(X) = m(X)h(X),
where A(X) is a monic polynomial in K[X]. Then Theorem 5 shows
that m(X) € A[X]. Q.E.D.

It may be noted that, if 4 is an integral domain and if B is an over-
ring of A (not necessarily an overring of the quotient field K of 4) such
that no non-zero element of A is a zero-divisor in B, then the above con-
siderations may be applied. In fact, if we denote by M the set of all
non-zero elements in A4, the quotient ring B,, contains both B and the
quotient field K of 4.

EXAMPLES OF INTEGRALLY CLOSED RINGS.

1) Any unique factorization domain A is integrally closed. In fact, let
x[y (x € A, y € A) be integral over A; we may suppose that x and y are
relatively prime. From an equation of integral dependence

(x/yy + ap_y(x/9)"' + - - - +a,=0 (a,€ A)
we deduce
3= = Yyt a0y).

Thus x” is a multiple of y. Were y a non-unit, we would have a contra-
diction with the assumption that x is relatively prime to y, since any
irreducible factor of y would then have to divide x. Therefore y is a
unit, and x/y belongs to 4. In particular, the ring J of rational
integers, and the polynomial ring k[X}, - - -, X,] over a field %, are
integrally closed.

2) If R is an integrally closed domain, and if S is a mult:phcatwely
closed set of non-zero elements of R, then the quotient ring Ry is in-
tegrally closed. In fact, if an element x of the common quotient field of
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R and Ry is integral over Rg, we have an integral dependence equation
of the form )

x4+ (@,_qfsh""t + - - tags =0, (a;€R)

since any finite number of elements of Rg have a common denominator
s in S. Multiplying by s” we see that sx is integral over R, whence
sx € R since R is integrally closed. If we set sx = z€ R, we get x =
z[s € Ry, thus proving that Ry is integrally closed.

3) If Ris an integrally closed domain and p is a prime ideal in R, then
the residue class ring R/p is not integrally closed in general. In fact, any
finite integral domain k[x,, x, - - -, x,] over a field & is of the form R/p,
where R is the polynomial ring k[ X, X,, - - -, X,], but finite integral
domains are not in general integrally closed. In the case #n = 2 the
simplest example is the one in which p is the principal ideal (X2 — X,3).
In that case, x,/x, does not belong to the ring k[x,, x,], but x,/x, is
integral over that ring since (x,/x,)® = x,.

We now prove a result which is closely related to the corollary to
Theorem 3 (§ 2):

THEOREM 6. Let A be an integrally closed domain, and A’ an overring
of A integral over A and such that no non-zero element of A is a zero-
divisor in A'.  If p and q are prime ideals in A such that q C p, and if p’
is a prime ideal of A’ lying over p, then there exists a prime ideal o' of A',
contained tn Y’ and lying over q.

PROOF. Let S be the multiplicatively closed set consisting of the
elements of A’ which may be written in the form ab’, witha e 4, a ¢ q,
b'e A, b ¢ p’. The set S does not contain 0 since an element a ¢ q
(@ € 4) cannot be a zero-divisor in 4’. Since 4 and A4’ have an identity,
S contains the complement of p’ in 4’ and the complement of q in 4.
We are going to consider the quotient ring 4’g.

Suppose we have already proved that the ideal 94’ generated by the
image of g in A'g is a proper ideal of A’s. Then it is contained in a
prime ideal M of A’s, for example a maximal one. The contracted
ideal o' = M of M in A’ is a prime ideal which does not intersect S
(IV, § 10, Corollary 1 to Theorem 16), and which is therefore contained
in p’. Now, the ideal q' N4 is obviously prime and contains g; but
since S contains the complement of q in 4, and since g’ does not inter-
sect S, this implies 9’ N4 = q, and proves the theorem.

We now prove that the image of q generates a proper ideal in 4'g, or,
what amounts to the same thing, that the ideal 94’ does not intersect S.
By Lemma 1 (§ 1) every element x of g4’ satisfies an integral dependence
equation of the form
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Jo)=x"+g,_' + -+ qx+ g =0, withg,ea.

Let us suppose that x belongs to .S, and write x = ab’ (a€ 4, a¢ qa,
b eA, b ¢yp’). Since f(x) = 0, the polynomiai f(X) is the product
of the minimal polynomial g(X) of x over the quotient field K of 4 and
of another monic polynomial 2(.X). Theorem 5 shows that g(.X') and
h(X) have all thejr coefficients in A. Denote by £, , and % the poly-
nomials obtained from f, ¢ and 4 by reduction of their coefficients
modulo 9. Since f(X) = X" g X)=X"+ -, H(X)=X""4 .-,
and since A/q is an integral domain, we conclude that g(\') = \” and
h(X) = X»-7, by inspection of the lowest degree terms. In other words,
we have

gxy=x+d,_px-' 4 - +dx+dy,=0, withd, cq.
On the other hand, the minimal polynomial of 4’ over K has again all its

coefficients in A, by the remark following 'I'heorem 5. Let this
polynomial be

mX) =X +e,_ X" 4+ -+ e, X +e, (¢€d).
Since x = ab’, with ae 4, we have d, = e~ for i =0, ---,r — 1.
From d; < q and a ¢ q, we deduce ¢, € q since q is prime. Then the
relation m(b’) = 0 shows that b € A'q C p’, whence " € p’ since p' is
prime. 'This contradicts the hypothesis about ’.  Q.E.D.

It may be shown by examples that the three conditions ** A integrally closed,”
“A’ integral over 4, and ** no non-zero element of L is a zero-divisor in /A7 are
essential for the validity of ‘Theorem 6 (sce Cohen-Seidenberg, * Prime ldeals
and Integral Dependence,” Bull. Amer. Math. Soc., 52 252- 261, 1940).

REMARK. A simpler proof of Theorem 6 may be given in the case in
which the ring A’ is noetherian.  We first prove that if .17 is noetherian,
then every isolated prime ideal of A'q contracts to a in A.  1n fact, given
an isolated primc ideal ¢’ of A1'q and any element x of o', there exists an
exponent s and an element y in A’, y not in " such that x'y ¢ A’q: one
takes y in the intersection of the primary components of A'q whose
radical is not 9’, and s large enough for x* to lie in the primary component
of A'q relative to q' (see IV, § 5). It follows from [.emma 1 of § 1 that
x*y satisfies a relation of the form

fxy) = (=y) + gualxy) ' + - - + ¢ =0, withg, €q,
and, as in the last part of the proof of ‘Theorem 6, it may be assumed that
f(X) is the minimal polynomial of x'y over K. If we suppose, further-
more, that x is in A, then the comparison of f(.X') with the minimal poly-
nomial X" 4 a,_,X"1 4 - - - + a, (4, € A) of y over K shows that we
have g; = a9 fori =0,---,n — 1. From x ¢ a, we would deduce
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thata, e qfori =0, ---,n — 1 since q is prime, whence y"€ 4'q C q’;
since q’ is prime, this would imply y € ¢/, in contradiction with the
assumption that y ¢ q’. Therefore x€q, and since the inclusion
q C ¢’ N4 is evident, our assertion is proved.

For completing the proof of Theorem 6 in this case, it now suffices
to observe that since p’ D A'q, p’ contains some isolated prime ideal o’
of A'q (IV, § 5, Theorem 7).

§ 4. Finiteness theorems

THEOREM 7. Let A be an integrally closed domain, K its quotient field,
F a finite separable algebraic extension of K, and A’ the integral closure of
Ain F. There exists a basis {x,, - - -, x,} of F over K such that A’ is con-
tained in the A-module 3 Ax,.

PROOF. We first notice that if we denote by 4* the set of non-zero
elements of A4 then we have F = A4’ ,.; that is, given any element x
of F there exists a non-zero element s of 4 such that sx € 4’: in fact, if
X"+ ¢, X"+ .-+ ¢, is the minimal polynomial of x over
K (c; € K), and if we take a common denominator s 3£ 0 in 4 such that
s¢, = a; € A, then we have (sx)* + a,_,(sx)*~* + + - - 4 s"1q, = 0 and
sx is integral over 4. It follows from this observation that there exists
a basis {u,, - - -, u,} of F over K such that ; € A’ for everyi.* We take
any element x of 4’, and we write x = Z bu; with b,e K. Since F[K

18 separable, there exist exactly n (-— [F: K]) K-isomorphisms s;
(j=1,---,n) of Fin a least normal extension of K containing F
(I1, § 6, Theorcm 16). The discriminant d of the basis {uy, - - -, u,}
is 3% 0, and d = det (s {u;))?*(II, § 11, p. 94). We may thus set /¢4 =
det (s/(»;)). The conjugates of x over K satisfy

) 5i(x) = Z bisu), G=1,---,n)

Since x and the u; are mtegral over A, s(x) and the s(u,) are also
integral over A. Solving the system of linear equations (1) in the b, by
Cramer’s rule, we get

Vdb, = ZJ,,S,(x) and db; = 3 Vdd,;s(x),

where the d;; are polynomlals in the s(u,) w:th ordinary mtegers as
coefficients. Thus db; and /db; are integral over A. Butsince de K
* This part of the proof and hence also the eonclunon as to the existence of

the above basis {u,, uy, * * * , %}, is independent ot the assumption that F/K is
separable.
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(II, § 11, p. 92) and since A4 is integrally closed. we have db; € 4.
Therefore, if we take x; = u,/d, then A’ is contained in the A-module

2 Ax,.

REMARK. Readers acquainted with linear algebra may prefer the fol-
lowing proof. Let {u,, - - -, u,} be a basis of F over K contained in 4'.
The bilinear fuhction (x, y) = T(xy) is non-degenerate since F is
separable over K. Thus it defines an isomorphism of F, considered as
a vector space over K, onto its dual. Let {v,,-- -, 1,,,, be the elements
of F corresponding to those of the dual basis of {u,, - - -, u,}, that is, the
elements of F satlsfylng T(uw,) =4, for all 7, j. If an element
x = Z v;(x;€K) is in 4', we have xu, € A’ for every i, whence

T(xu,-) € A(§3, Theorem 4). Since T'(xu) = x,T(u,) = x;, we
J

have A'C > Av;. This type of reasoning will again be used in § 11

(see the proJof of Theorem 30 and Remark 2, p. 309, in § 11).
CoROLLARY 1. The assumptions being the same as in Theorem 7, let us
furthermore assume that the ring A is noetherian. Then A' is a ﬁm'te A-
module and is u noetherian ring.
In fact, A’ is a submodule of the finite 4-module Z Ax,, and is there-

fore a finite A-module. Thus A’ satisfies the a.c.c. as an A-module
(II1, § 10, Theorem 18), and a fortiori satisfies the a.c.c. as an A’-module
—that is, A’ is noetherian.

COROLLARY 2. The assumptions being the same as in Theorem 7, let us
furthermore assume that A is a principal ideal domain. Then there exists
-a basis {y,} of F over K such that A’ = > Ay,.

It was just shown that 4’ is contained in an 4-module > Ax; generated
by n elements x;. Hence, by IV, § 15, LLemma 1, also A’ has a basis
consisting of n elements yy, y,, - - -, ¥,. Since F = A’ 4., theset{y,} is
necessarily also a basis of F over K.

Corollary 2 is of particular importance for the case in which 4 is
either the ring J of rational integers, F being then an algebraic number
field, or a polynomial ring k[X] in one variable over a field k, F being
then a field of algebraic functions of one variable. In the first case, the
elements of F which are integral over J are called the algebraic integers
of the number field F; in the second case, the elements of F which are
integral over A[X] are called the integral functions of the function field F
(with respect to the element X). Corollary 2 shows that these algebraic
integers (or integral functions) are the linear combinations, with
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ordinary integral coefficients (or with coefficients in k[X]), of
n(= [F:K]) linearly independent algebraic integers y;. Such a basis
{y,} of F over the rational field (or over the rational function field 4(X))
is called an integral basts of F.

EXAMPLE. Let x be an indeterminate over a field & of characteristic
# 2, and y an algebraic element over K = k(x) defined by 2 = P(x),
where P is an irreducible polynomial over k. 'The function field
F = K(y) = k(x, y) admits {1, y} as an integral basis (with respect to x).
In fact, in the first place 1 and y are integral over A = k[x]. Further-
more, let = be an element of F which is integral over A. We write
= = a(x) + b(x)» (a(x), b(x) € k(x)). By Theorem 4, the trace 2a(x) and
the norm a(x)? — b(x)*P(x) of = over k(x) belong to k[x], whence both
a(x) and b(x) are polynomials, since otherwise P(x) would be divisible
by the square of the denominator of &(x). Consequently, the integral
closure A’ of k[x] in F = k(x, y) is the ring k[x, y].

REMARK. Let A4 be an integrally closed domain, K its quotient field,
and F a finite algebraic separable extension of K. We suppose that the
integral closure 4’ of 4 in F admits an integral basis {y;] (that is, a basis
of F over K such that 4’ = 3 Ay,). Then, for any basis {x,} of F

!

over K composed of elements of A’, the discriminant d(x,, - - -, x,) is an
element of A (by Theorem 4) and is a multiple (in A) of d(v, - - -.3,)
(I1,§ 11, formula (2)). In particular any two integrai bases of 4’ over 4
have discriminants which ditfer only by an invertible factor in A; in
other words, these discriminants gencrate the same principal ideal in A.
"T'his principal ideal or a canonically chosen generator of it—for ex-
ample, a positive integer in the case A4 = [, or a monic polynomial in
the case A = R[.X]- - is called the discriminant of I over K (with respect
to the integral domain A). See § 11 for a generalization,

In the example given above, the discriminant of k(x, y) over k(v) is

L(x).

We now study integrai domains which are generated by a finite num-
ber of elements over a field A in other words' integral domains of the
form k[x,. - - -, x,]i such domains are called fimite integral domains.

THEOREM 8 (NORMALIZATION LkmMa),  Let 4 = k[x,,- -, x,] be a
[finite integral domain over an infinite field k, and let d be the transcendence
degree of Mxy, -+, x,) over k. There exist d lincar combinations
Ny Ng of the x; with cocfficients in k, such that A is integral over
Ry - ovg vy o -0y 3y ave then necessarily algebraically independent
over k, and k[v,, - -+, ~) is a polynomial ring). If kxy,---,x,) is



§4 FINITENESS THEOREMS 267

separably generated over k, the y; may be chosen in such a way that
Kty ++ -, %) is a separable extension of Kys,-~+,3a) (-1 92
thus being a separating transcendence basis of k(x,, - - - , x,) over k).

PROOF. If n = d, we take y; = x; and there is nothing to prove.
We will proceed by induction on n, forn > d. Owing to the transitivity
of integral dependence (§ 1, Theorem 2) and of separability (II, § 5,
Theorem 9) we have only to prove the following result (where, for sim-
plicity of notation, n has been changed into n + 1): if A[x,, -+, x,,
%,41] is a finite integral domain, of transcendence degree d < n, then
there exist 7 linear combinations z,, - - -, 3, of the x; such that k[x] is
integral over k[2] (and such that k(x) is separable over k(2) if k(x) is
separably generated over k). After eventual renumbering of the x, we
may suppose that a transcendence basis of k(x) over & may be found
among {x,, - - -, x,} (II, § 12, Theorem 23 Corollary, 2) and that this
basis is a separating transcendence basis in the separable case (11, § 13,
Theorem 30). We then write s = x,; and denote by P(U, x,, - - -, x,)
the minimal polynomial of # over k(x,, - - -, x,). We assume that the
coefficients of P(U,x,,---,x,) are in K[x,,---,x,], so that
P(U, x,, + - -, x,) is actually the result of substituting x,, - - -, x, for
X, ++,X, in a non-zero polynomial P(U, X,,---,X,) of n+ 1
indeterminates U, X, - - -, X, with coefficients in k. :

We intend to take 2; = x; — a;u( = 1, - - - , n) with suitably chosen
a;in k. Since x; = z; + a,u, it is sufficient to prove that u is integral
(and separable in the separable case) over k[z]. Consider the equation

F(u,z) = P(u,z; + a4, - -+, 2, + au) = 0.
Its highest degree term in u is u?f(1, a,, - - -, @,), where f(U, X,,- -+, X})
denotes the highest degree form of P(U, X, - - -, X,) and g its degree.
We will thus get an equation of integral dependence for u over k[z] if
f(l’al’ ey a,) # 0.

In the separable case we have also to make sure that u is a simple root
of F(U, 2), or in other words, that F' (u, 2) = P’ (u, x) + a,P', (u, x) +
*++ =+ a,P', (u, x) is not zero. But this expression is a linear function
of the a;, which is not identically zero, since it takes fora, = - - = a,=0
the value P’ (u, x) # 0, u being separable over k(x,,---,x,). The
n-tuples {a,, a,, - - + , a,}, a; € k, form an n-dimensional vector space k*
over k, and the vectors {a,, a,, - * -, a,} such that ', + a,P’, +--- +
a,P’, = 0 constitutc a linear variety L in kr, distinct from A”. Since
k is infinite, we can find a vector {a,;} € k" which satisfies f(1, ay, - - -, a,)
# 0, and which does not liein L. Q.E.D.

THEOREM 9. Let A = k[x,, - - -, x,] be a finite integral domatn over
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a field k, and let F be a finite algebraic extension of the quotient field
k(xy, -+, x,) of A. Then the integral closure A’ of A in F is a finite
integral domain over k, and is a finite A-module.

PROOF. We first achieve a reduction to the case in which F is the
quotient field of A. For this purpose we observe that there exists a
basis {y,, - - -, y,} of F over k(x,, - - -, x,) composed of elements which
are integral over A (see footnote to proof of Theorem 7 in §4). Then
the ring A% = Aly,,---,y,] is a finite integral domain over %, is
integral over A, and admits F as its quotient field. This achieves the
desired reduction since 4’ is obviously the integral closure of A4°.

We now prove ‘T'heorem 9 under the additional hypotheses that % is
infinite and that F = k(»y;---,x,) is separably generated over k.
Under these assumptions there exist, by Theorem 8, d linear combina-
tions z,, - - -, 2, of the x; such that the subring B = k[z,,: - -, 2,] of
A is a polynomial ring, over which A is integral and separable. Owing
to the transitivity of integral dependence (§ 1, Theorem 2), 4’ is the
integral closure of B in F. Since B is integrally closed and noetherian,
Corollary 1 to Theorem 7 shows that A’ is a finite B-module. Itis, a
Jortiori, a finite A-module, and a finite integral domain over 4.

In the general case, let us consider k(x,, - - -, x,) as a subfield of its
algebraic closure, which contains the algebraic closure k of k.  Since
k is infinite and since k(x,,---,x,) is separably generated over k

(I1, § 13, Theorem 31), we can find d linear combinations z; = z a;x,

(a, ;€k) such that Rlx,,---, x,, is integral and separable over

Rz, ---,2;. LetP(x; 2, ,3,) =0 be a separable and integral
dependence equation for x, over k[z,, - - -, 2,] (for example, the equa-
tion deduced from the minimal polynomial of x; over k(z,, - - -, 2,);
cf. Theorem 4 of § 3). If we denote by &’ the finite algebraic extension
of k generated by the coefficients a;, and the coefficients of the poly-
nomials P;, the second part of the proof shows that the integral closure
of k[x,--,x,] in its quotient field is a finite integral domain
kR'lyn -, 5,) over k'

Now, by Theorem 1 (§1), £'[y,,- - -, y,] is a finite module over
k'[xy, -+ -, x,]. On the other hand, £'[x,, - - -, x,] is a finite module
over A = k[x,, -, x,], a finite basis of the former over the latter
being given, for example, by a linear basis of &’ over k. Thus
k'lyy, -,y is a finite A-module. Since the integral closure A’ of
A in F is a submodule of the A-module k'[y,,---,y,] (it is
FQk'[yy,---,3]) and since A is noetherian, 4’ is also a finite
A-module, and a fortiori a finite integral domain. Q.E.D.
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§ 5. The conductor of an integral closure. We have just seen
an important case in which the integral closure 4’ of a domain 4 in its
quotient field is a finite A-module A’ = > Au;. The elements u; have

then a common denominator d 7 0 in 4: u, = v,;/d, withv,e A. We
thus have d4’ C A.

In general let/4 be a domain, and A’ the integral closure of 4 in its
quotient field F. The set § of all elements z in A such that 24’ C 4
is called the conductor of A in A’, or the conductor of the integral closure
of 4.

It is readily verified that { is an ideal in A, and also an ideal in A'.
Furthermore, if b is an ideal in 4 which is also an ideal in 4’, we have
bA’'C b C A, whenceb Cf. Therefore f is the largest ideal in A which
is also an ideal in 4. Note that 4’ = A if and only if the conductor §
is the unit ideal.

LEMMA. Let A be an integral domain, A’ its integral closure, § the con-
ductor of A in A', and S a multiplicative system in A. Then A’ is the
integral closure of Ag, and, for Ag to be integrally closed, it is sufficient that
fNS 7 0. Furthermore, if A’ is a finite A-module, then the conductor
of Agin A'g is §- Ag and if, moreover, Ag is integrally closed, then i NS
is non-empty.

PROOF. The ring A’ is integrally closed (§ 3, example 2). There-
fore A’y is the integral closure of Ag (§ 2, Lemma 2). If, now, NS is
non-empty, there exists s in SNf, and we have 4’ C (1/s)4 C Ay,
whence Ag = A'g, and Ay is integrally closed.

From d €f, we deduce d4A' C A, whence dA'¢ C A;. This proves
that §- Ag is contained in the conductor of Agin A'g. Conversely, if
an element dfs (d € A4, s € S) of Ay is such that {d[s)4’s C A, we have
dA’' C Ag. Since we assume that 4’ is a finite 4-module, and since S
is a multiplicative system, there exists a common denominator s’ in §
such that d4’'C (1/s')A. Hence ds’'€f, and dfs =ds'[ss’€f-Ay.
Therefore {- Ay is the conductor of 4, in A’g. The last assertion of
the lemma follows since if A is integrally closed, its conductor {-Agis
the unit ideal. Q.E.D.

CoRrOLLARY. If A’ is a finite A-module, then the prime ideals p in A
such that A, is not integrally closed are those which contain the conductor §.

REMARK. It can be shown by examples that A’p need not be a prime
ideal, even if p does not contain the conductor {. However, if p D f,
A'yp is contained in the prime ideal p’ = pA4, N A’ (since A’ is contained
in the integrally closed ring A4,) and p’ is the only prime ideal in A’ lying
over p. In fact, if a’ is an ideal in 4’ such that a' N4 = p, we take d
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in f and not in p, and we have da’ C o’ N 4 = p, whence a’ C p4, and
o’ Cp’. Now, if a’ were prime and were strictly contained in p’, we
would have a'NA4 < »'NA4 = p (§2, complement 1 to Theorem 3).
In case A’ is a noetherian ring, the ideal p’ is even a primary component
of A'p: in fact, since A’y = A, we have p'=p4,NA4" =
(»A)A', N A’ (see IV, § 10, Theorem 17).

§ 6. Characterizations of Dedekind domains. We have seen
(Iv,§1p. 200) that, in a noetherian ring R, every ideal a contains a product
] ] p;") of prime ideals. 1t is natural to study the rings in which every

|deal is exactly a product of pnme ideals. A further reason for studying
these rings, which is perhaps more important both from a historical and
a conceptual point of view, is that in the first half of the nineteenth cen-
tury it was noticed that the rings of algebraic integers (cf. § 4) were not
in general unique factorization domains, but enjoyed the property of
unique factorization of ideals into prime ideals: more precisely the
notion of ideal was introduced by Kummer, Dedekind, and Kronecker
in order to restore the property of unique factorization.

In this connection one may also recall 'I'heorem 9 of IV, § 5, to the
effect that if every proper prime ideal of a noetherian ring R is maximal,
then every ideal of R is a unique product of primary ideals belonging to
distinct prime ideals. We shall see in this section that if every ideal in
a domain R is a product of prime ideals, then every proper prime ideal
in R is maximal. The maximality of every proper prime ideal of a
domain R does not, however, in itself ensure the possibility of factoring
every ideal of R into prime ideals, for while it is true that powers of
maximal ideals are primary, it is not generally true that every primary
ideal belonging to a maximal ideal p is a power of p.

DerINITION 1. A ring R is said to be a Dedekind domain (or also a
Dedekind ring) if it is an integral domam and if every ideal in R is a
product of przme ideals.

Our first aim is to prove that in a Dedekind domain the factorization
of ideals into prime ideals is unique. The steps taken toward the proof
of this result will lead us to other 1mportant characterizations of Dede-
kind domains.

EXAMPLES OF DEDEKIND DOMAINS:

1) A principal ideal domam is a Dedekind domain (IV, §15,
Theorem 32).
2) A qguotient ring Ry, of a Dedekind domain R with respect to a
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multiplicative system M is a Dedekind domain. 1n fact, every ideal
in Ry is an extended ideal o (IV, § 10, Theorem 15); as a = || »,"®

(pi-prime ideal), we have a* = T (»,)"" (IV, §8, p. 219), and the ideals

p;¢ are either prime ideals, or are equal to R, (1V, § 10, 'Theorem 15,
corollary 2 and Theorem 16).

3) We will proye in § 8 that if R is a Dedekind domain and if L is a
finite algebraic extension of its quotient field, then the mtcgral closure
of R in L (§ 1) is also a Dedekind domain. In particular, since the ring
J of rational integers and the polynomial ring A[.X'] in one variable over a
field are Dedekind domains (example 1), the ring of algebraic integers
of an algebraic number field and the ring of integral functions in a field
of algebraic functions of one variable are also Dedekind domains.

We introduce the useful notion of fractionary ideal. Given an
integral domain R and its quotient ficld K, a sub-R-module b of K is
said to be a fractionary ideal of R if the elements of b admit a common
denominator d £ 0 in R—more precisely, if there exists d % () in K
such that b C (1/d)R. 'Then we have b = (1/d)a where a is an ordinary
ideal in R. In contrast, the ordinary ideais in R, which are special
cases of fractionary ideals (d = 1), are called integral ideals. An
example of a fractionary ideal is a principal fractionary ideal: if x ="afb
(a, b, € R, b 3 0) is an element of K, the set Rux is a fractionary ideal, as
it is an R-module and admits 4 as a common denominator; 1t is called
the principal fractionary idcal generated by x.

The ideal theoretic operations +, -, N,: are defined for fractionary
ideals. The operations +, -, N have already been defined for sub-
modules or additive subgroups; and if b C (1/d)&R and b" C (1/d')R, it
is clear that b 4 v C(1/dd’)R, that 0.0 C{1/dd")R, and that
bNb’ C(1/d)R. The set (b:b’) is defined as the set of all x in A" such
that xb’ C b; this set is clearly an R-module, and (if b* 3¢ (0)) admits da
as a common denominator, where a and d are any two non-zero elements
of R such that b € (1/d)Rand a e t’. 'T'hese operations enjoy the same
properties in the present case of fractionary ideals as those which they
enjoy in the case of integral ideals.

The set # of all fractionary ideals of R is a partially ordered set (if
ordered by inclusion); a + b and aNb are the Lu.b. and the g.1.b. of
a and b; multiplication is ““ compatible "’ with this order relation; that is,
the relation a C o’ implies a-b C a’-b. The ring R itself is a fractionary
ideal, and is the identity element of # for multiplication of ideals.

It is natural to inquire about the invertible ideals in #, that is, about
the fractionary ideals a of R for which there exists an inverse—a frac-
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tionary ideal a’ such that a-a’ = R. A principal fractionary ideal
Rx (x # 0, x € K) is invertible, as it admits Rx—! as an inverse.

We begin our study of Dedekind domains by proving a number of
simple lemmas concerning invertible fractionary ideals. In these
lemmas R denotes an integral domain, K its quotient field, # the set of
all fractionary ideals of R, and small German letters (a, B, ¢, - - -) denote
elements of #. .

LemMma 1. If a is invertible, then a has a unique inverse, and this in-
verse is equal to R:a. Hence a necessary and sufficient condition for a to
be invertible is that a-(R:a) = R.

PROOF. If a:a’= R, we have a'C(R:a). On the other
hand a-(R:a) C R, whence, if a' is an inverse of a, we have
(R:a) =a’"-a-(R:a)Ca’-R=0a". QE.D.

LEMMA 2. If every integral ideal 3 (0) in R is invertible, then S is a
group under multiplication.

PROOF. Every fractionary ideal a may be written in the form (1/d)b,
where b is an integral ideal and d is a non-zero element of R. If b has
an inverse b~1, then a admits db-! as an inverse. Since multiplication
of ideals is associative, and since every element of # admits an inverse,
S is a group.

LEMMA 3. An invertible ideal o, considered as an R-module, has a
finite basis.

PROOF. Since a-a~! = R, there exist two finite families {x;}, {x;}
(f=1,--,n) of elements of a and a~! such that > xx;, = 1. For

13
every x in a, we have xx’, € R, thus x = Z xx'x; €Y Rx;, and {x;} is a
1

finite basis of a.
LemMa 4. If a finite family {a,} of integral ideals is such that the pro-
duct b = || a, is invertible, then each a, is invertible. In particular, if a

product | [ a; of integral ideals is principal, then each a, is invertible.
PROOF. From b"‘-H a; = R, we deduce a;- (b‘l 11 n,-) = R, and

i ki
b=1. ] a; is the inverse of a,.
vkt
LEMMA 5. For products of invertible prime integral ideals factorization
into prime ideals is unique.
PROOF. Let a = J] »; be a product of invertible prime ideals, and

suppose that we have also a = | [ q;, where the q; are primeideals. We
take a minimal element of the set {p;}, say p;. Since ]JI 9, is contained
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in p,, some q;, say q,, is contained in p,. Similarly, since I1 ». is con-

tained in q,, some p,, say p,, is contained in q,. Thus p, C g, C p,.

From the minimality of p, we deduce that p, = g, = p,. Multiplying

the relation [ p; = J] a, by p,~!, weget ][ »; = ][] 9, Thelemma
il T3]

: J
now follows by induction on n, the case n = 1 being trivial.
THEOREM 10. In a Dedekind domain R, every proper prime ideal is
invertible and masfimal.
PROOF. We first show that every invertible proper prime ideal p in
R is maximal. We consider an element a of R, not in p, and the ideals
p + Ra, p + Ra®. As R is a Dedekind domain, we have p + Ra =

lI p; and p + Ra? = I'I a;, where the p, and the q; are prime ideals.
Let R be the residue class rmg R/p, and a be the residue class of a
modulo p. We have R.-a = n(p,-/p), R.a® = l[(qj/p), where the
ideals p,/p and q;/p are prime'-lBy Lemma 4 thje-;le prime ideals are
invertible. Thus, since R-a% = (R-d)® = ]l (v,/9)?, Lemma 5 shows

that the ideals q,/p are the ideals p,/p, each repeated twice; more pre-
cisely, we have m = 2, and we can renumber the q; in such a way that
G9;/P = Gg; /v = p;/p. Thus qy; = ay,_; = p,, and we have p 4+ Ra?
= (p + Ra)2. This implies p C(p + Ra)®C p% + Ra. Thus any
element x of p may be written in the form x = y + za with y € p? and
ze R. We then have za € p, whence z € p, since a ¢ p; in other words,
p is contained in p2 4 pa. As the inclusion p D p2 4 pa is obvious,
we conclude that p = p2 4 pa = p(p 4+ Ra). Since p is invertible by
hypothesis, we can multiply this equality by p—', and we get R=p + Ra.
Since a is an arbitrary element of the complement of b in R, this proves
that p is maximal.

This being so, to prove the theorem we need only prove that every
proper prime ideal p in R is invertible. We take a non-zero element b
in p, and write Rb = || »;, where the p, are prime ideals. Since p

contains [ p;, it contains some ;. But, by Lemma 4, every p, is

invertible. Thus every p; is maximal, by the first part of the proof.
Since p contains one of them, say b,, we have p = p,, and p is invert-
ible. Q.E.D.

COROLLARY. In a Dedekind domain the factorization of any ideal into

prime ideals is unique.
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'T'his follows immediatcly from Theorem 10 and from L.emma 5.

We can state a resuit which is both more general and more precise
than Theorem 10.

T'HrorReM 11, Let R be a Dedekind domain. Every fractionary ideal
a 7% (0) of R is invertible and may be written, in a unique way, in the form
(1) a= 1] v,

P, prime
where the n,(a) are integers (positive, negative, or sero) such that, for given
a, the integers ny(a) which are 3 0 are finite in number. In order that
a C b, it is necessary and sufficient that ny(a) > ny(b) for every p. We
have the relations:

@ my(a + b) = min (ny(a), n,(0)),
3) n,(a Nb) = max (n,(a), n,(b)),
4) my(a-0) = m,(a) + n,(b).

The ideals a:b and a- 0~ are equal, and we have

(5) ny(a:b) = n(a-b=1) = n(a) — ny(b).

PROOF. Since a fractionary ideal a may be written in the form b-¢—?
where b and ¢ are integral ideals (for example, if a = (1/d)b with
de R and b C R, we take ¢ = Rd) and since by definition we can
express b and ¢ as products of prime ideals, 'Theorem 10 shows that
wecanwrite a = | [ »,-] | a,7", where the p, and the q, are prime ideals

‘ !

in R, 'Thus ais invertible, by 'T"heorem 10.  We may evidently assume

that p, 5 g, for all 7 and j. If we have another factorization of q, say

a= || ¥, ]] " with ', 5% o, forevery s and every ¢, then the rela-
s 1

tion || v,-]] 0, = [[¥-]] 0, holds true, and the uniqueness of
1 t s j

factorization for integral ideals (corollary to Theorem 10) shows that
wehave || b, = [[¥',,and || a’, = ]] a,. This proves the uniqueness
i 5 t i

of factorization for fractionary ideals, and also formula (1).

Since b is invertible, the relation a C b is equivalent toa-b='C b.b-?
—thatis,toa-b-! C R. This is equivalent to n (a-b=1) > Ofor all prime
ideals p of R, since the integral ideals ¢ are those characterized by
ny(c) 2 O for all p. In other words, the relation a C b is equivalent to
ny(a) — n,(b) > 0, that is, to ny(a) = n,(b), for all p. This character-
ization of inclusion shows immediately that ][ p*®, with W(p) =

min (n,(a), n,(b)) is the smallest ideal containing a and b, and that
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1 »#®, with u(p) = max (n,(a), n,(b)) is the greatest ideal contained in

» .
aand b. This proves formulae (2) and (3). Formula (4) is trivial.

Finally, since b=* = (R:b) (Lemma 1), we have a-b=1=1q-(R:b)Ca:b.
On the other hand, we have R = (R:b) b, hence a:b = (a:b)b(R:b)
Ca-(R:b). Therefore a-(R:b) = a:b. This proves the assertion
about a:b, and foymula (5) follows immediately. Q.E.D.

If, for any non-zero element x of K, we denote by v(x) the integer n,(Rx),
we have vy (xy) = v(x) + vo(») by formula (4), and v, (x 4+ 3) > min

(vp(x), vp(3)) by formula (2), since the ideal R(x + y) is contained in Rx + Ry.
We will see in the next chapter that this means that v, is a valuation of the field

The following theorem gives a characterization of Dedekind domains:

THEOREM 12. Let R be an integral domain. In order that R be a
Dedekind domain, it is necessary and sufficient that the set . of fractionary
ideals of R be a group under multiplication (that is, that every ideal in R
be invertible).

PROOF. The necessity is clear, since every fractionary ideal of a
Dedekind domain is invertible by Theorem 11. Conversely, if .# is a
group, every ideal in R has a finite basis (I.emma 3), and R is noetherian.
Using the fact that R is noetherian, we can now prove, by an indirect
argument, that every proper integral ideal in R is a product of maximal
ideals, and this will complete the proof of the theorem. Assuming the
contrary, there exists, among the ideals (different from zero) which are
not products of maximal ideals, a maximal one, say a (since R is
noetherian). The ideal a 1s not a maximal ideal of R, by hypothesis.
Thus it is strictly contained in some maximal ideal m. The ideal m='a,
which exists since . is a group, is an integral ideal which strictly contains
a: in fact, from a = m—'a, we would deduce ma = aq, in contradiction
with Lemma 2 in IV, § 7. Therefore m—'a is a product of maximal
ideals, in virtue of the maximality of a, and a = m-m~'a is also a pro-
duct of maximal ideals. This contradicts our assumption, and proves
Theorem 12.

The following characterization of Dedekind domains often yields the
simplest method of checking whether a given integral domain is or is not
a Dedekind domain:

THEOREM 13. Let R be an integral domain. In order that R be a
Dedekind domain, it is necessary and sufficient that it satisfy the following
conditions:

1) R is noetherian.

2) Every proper prime ideal of R is maximal.

3) R is integrally closed.
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PROOF. The necessity of 1) follows from Theorem 11 and Lemma 3,
and that of 2) from Theorem 10. As for 3), consider an element x of the
quotient field K of R which is integral over R. There exists a common
denominator d 3 0 in R such that dx" € R for every n > 0. 'Then, for
every prime ideal p in R, we have v (dx") = v (d) + nv,(x) 2> 0 for
everyn. Asvy(d)and v,(x)are ordinary integers, this implies v (x) > 0,
that is, v ,(Rx) > O for every prime ideal p; thatis, xe R. Thus R is
integrally closed. -

For proving the converse, we first observe that, in the proof of
Theorem 12, the assumption that every ideal in R is invertible has been
used only for the purpose of establishing that R is noetherian, while the
rest of the proof was based exclusively on the established fact that R is
noetherian and on the assumption that every proper prime ideal is
invertible; in fact, in that proof we only needed the fact that the maximal
ideal m is invertible. Since, in the present case, we are given that R is
noetherian, it follows that in order to prove that R is a Dedekind domain,
we have only to show that every proper prime ideal p of R is invertible.
We observe that if y is some non-zero element of p, then p must contain
some prime ideal of the principal ideal Ry, and hence p itself must be a
prime ideal of Ry since all proper prime ideals in R are maximal. The
proof of Theorem 13 will therefore be complete if we prove the following
lemma:

LEMMA 6. Let R be a noetherian integrally closed domain, and let
p 7 (0) be a maximal ideal in R. If p is a prime ideal of a principal ideal
Ry, then v is invertible.

PROOF. By assumption we have Ry:p 3 Ry (IV, § 6, Theorem 11).
If, then, x is some element of Ry:p not in Ry, then (x/y)p C R and
x/y¢ R. We have therefore shown that R:p 3 R. Now let us
assume that p is not invertible. Then we have p C p(R:p) < R, and
since p is maximal, it follows that p = p(R:p). Now, p 7 (0), and p
is a finite R-module since R is noetherian; furthermore R is an integral
domain. It follows therefore from p(R:p) C p, in view of condition
(c™) of § 1, p. 254 (see also Remark after the proof of Lemma 1 in § 1)
that every element of R:p is integral over R, and hence belongs to R,
since R is integrally closed. In other words we have R:p CR, in
contradiction with the inequality R:p £ R proved above. Q.E.D.

REMARK. It follows from the proof of Lemma 6 that the assumption
that p is a prime ideal of a principal ideal could be replaced by the
assumption that R:p £ R.

Lemma 6 can be used to prove a result on integrally closed noetherian
domains, which is of importance in itself:
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THeOREM 14. In an integrally closed noetherian domain R, the prime
ideals of any proper principal ideal Ra (a 7 0, a not a unit) are minimal
prime ideals of R (and consequently a principal ideal has no imbedded
components).

PROOF. Let p be a prime ideal of Ra. If R’ denotes the quotient
ring R,, then it is clear that the maximal ideal p’ = R’p of R’ is a prime
ideal of R'a (IV, § 10, Theorem 17), and that p will be minimal in R if
and only if p’ is'minimal in R’ (IV, § 11, Theorem 19). Since also R’
is noetherian and integrally closed, it follows that we may assume in the
proof that p is a maximal ideal. Under this assumption, Lemma 6
shows that p is invertible. We assert that every ideal q 3 0 contained
in p admits p as an associated prime ideal. To see this, we observe that
we have g(R:p)p C q, whence q(R:p) C g:p. On the other hand, we
have (q:p)p Cq; and since p is invertible it follows that q:p =
(q:p)pp—2 C qp—! = q(R:p). Hence q:p =q(R:p) =q-p~1. The
ideal q-p—1is distinct from g, since, otherwise, we would have q = q-b,
and such an equality is impossible in our noetherian domain since q 7 (0)
and p# R (JV, § 7, Lemma 2). The inequality g: p 7 q implies
that q admits p as an associated prime ideal (1V, § 6, Theorem 11), as
asserted. In particular, p cannot contain any proper prime ideal distinct
from p, and is therefore minimal. Q.E.D.

COROLLARY. Let R be a noetherian integrally closed domain. If p is
a minimal prime ideal in R, then the only primary ideals belonging to
are its symbolic powers p™,

For, the quotient ring R’ = R, is noetherian, is integrally closed,
and contains only one proper prime ideal, namely, the maximal ideal
p’ = R'p. Hence, by Theorem 13, R’ is a Dedekind domain, and
every proper idea! in R’ is therefore a power of p’ and is a primary ideal
belonging to p’, since p’ is maximal. Since the primary ideals of R’
which belong to p’ are in 1-1 correspondence with the primary ideals of
R which belong to p, the corollary follows from the definition of
symbolic powers (IV, § 12, p. 232).

THEOREM 15. Let R be a noetherian integrally closed domain having
only one maximal ideal m (whence R i: a local ring). If the fractionary
ideal (R:m) is distinct from R, then m is a principal ideal Rm; every non-
zero element x of R may be written, and in a unique way, as x = em* where
e is a unit; and the only proper ideals of R are the ideals Rm*.

PROOF. From the remark following Lemma 6 we deduce that m is
invertible. Then the proof of Theorem 14 shows that m is a minimal
prime ideal of R, whence m is the only proper prime ideal in R, since it
is the only maximal idealin R. Thus R is 2 Dedekind domain (Theorem
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13), and every proper ideal of R is a power of m. It remains to be
shown that m is a principal ideal. To show this, we observe that
since m.(R:m) = R there exist finite families {m,}, {m’;} of elements of
m and (R:m) such that 1 = Y mm’;; since all products m,m'; are in R;

and since they cannot all lie in m, one of them, say m,m’,, is outside of
m and is therefore a unit; in other words, there exist m in m and m’ in
(R:m) such that mm' = 1. Hence, for every x in m, we have
x = (xm')m € Rm, and this proves that m = Rm. Q.E.D.

In the next chapter we shall see that R is a discrete valuation ring. As
discrete valuation rings will often be encountered in the present chapter,
we temporarily define them as being Dedekind domains with only one
proper prime ideal (a definition equivalent to the one that will be given
in chapter VI). Theorem 15 is thus a theorem concerning discrete
valuation rings. Notice also that if 4 is a Dedekind domain and p a
proper prime ideal of 4, then the quotient ring 4, is a discrete valuation
ring.

§ 7. Further properties of Dedekind domains

THEOREM 16. A Dedekind domain R with only a finite number of
proper prime ideals (p;) (1 = 1, - - -, n) is a principal ideal domain.

PROOF. It is sufficient to show that every b, is principal, and for this
we have only to show that there exists an element p; in p; such that
p,¢v.2and p, ¢ p; for j 5 1, since in that case the factorization of Rp;
into prime ideals can only be Rp, = p,. Since R is a noetherian
domain, we have p;2 < p, (IV, § 7, p. 217), and there exists therefore an
element a, of p, which does not lie in p,2. As element p; we may then
take a solution of the system of n congruences x = a,(p,?), x=1(p;)
(j #1). Since the ideals p, 2, p; are pairwise comaximal, this system has
a solution by Theorem 31, I1I, § 13. Q.E.D.

CoROLLARY 1. A residue class ring R|a of a Dedekind domain R by a
proper ideal a is a principal ideal ring.

Let a = [] »," be the factorization of a into prime ideals, and let M

be the complement of |J p; in R. The ring R/a is the direct sum of

rings isomorphic to the rings R/p#). The set M is a multiplicative
system in R, and the quotient ring R, is a Dedekind domain (Example 2,
§6). The only prime ideals of R,, are the ideals p,s (IV, § 11), whence
R,, is a principal ideal domain (Theorem 16). Hence also R,/a* is a
principal ideal ring. By the permutability of residue class ring and
quotient ring formation (IV, § 10, formula 1), Ry/a® is isomorphic to
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(R/a)(as4+a)/0» and this last ring is R/a itself since every element of M is
invertible modulo a. (If x € M then Rx + a is not contained in any
proper prime ideal of R; hence it is the unit ideal.) This proves the
corollary.

The following alternate proof of Corollary 1 is more direct and is
independent of Theorem 16.

Since a is an intersection (product) of pairwise comaximal powers of
prime ideals, the ring R/a is a direct sum of rings of the type R/y*, where
p is a prime ideal in R. It is therefore sufficient to consider the case in
which a is a power p». In this case we fix an element 7 in p, not in p2.
Then for s=1,2,:--,n we have p* = Rrs 4+ pn. This implies that
the ideals p/p~, p2/pn, - - -, pn—1/pn are principal ideals in R/p", and since
these are the only proper ideals in R/p, the corollary is proved.

CoROLLARY 2. In a Dedekind domain R, every proper ideal a has a
basis consisting of two elements.

We take a non-zero element @ in a. As R/Ra is a principal ideal ring
(Corollary 1), the ideal a/Ra is principal. Let b be an element of a
whose residue class modulo Ra generates a/Ra. Then it is clear that
{a, b} is a basis of a.

In the proof of Theorem 16, we encountered a simple case of the
problem of solving a finite system of simultaneous congruences. The
next theorem treats the general case of this problem.

THEeOREM 17 (CHINESE REMAINDER THEOREM).* A Dedekind domain
R possesses the following property:

(CRT) Given a finite number of ideals o; and of elements x; of R
(i=1,---,n), the system of congruences x = x; (mod a,) admits a solu-
tion x tn R if and only if these congruences are pairwise compatible, that is,
if and only if we have x; = x; (mod a; + a;) for 1 # j.

PROOF. 'The property (CRT) is related to the fact that in the set of
ideals of a Dedekind domain R, each of the operations N and + is dis-
tributive with respect to the other; that is, that given three ideals a, 0, b’
in R, we have:

anN(b + b»’) = (aNb) + (aNb’)
a4 (bNDB') = (a+ b)N(a + b').

* A rule for the solution of simultancous linear congruences, essentially
equivalent with Theorem 17 in the case of the ring J of integers, was found by
Chinese calendar makers between the fourth and the seventh centuries A.D.
It was used for finding the common periods to several cycles of astronomical
phenomena.
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In the case of a Dedekind domain R, these distributivity relations are
easily verified by using Theorem 11: they are equivalent to:

max {n,(a), min (n,(b), ”v(b'))}_

= min {max (my(a), (b)), max (n,(a), ”p(b’))}v
min {n,(a), max (ny(b), n,(b")} . .

= max {min (n,(a), n,(6)), min (n(a), m(®"))}

(for every prime ideal p in R); and these relations in their turn follow
immediately from the fact that in the set of ordinary integers, each of the
operations min and max is distributive with respect to the other, a fact
whose verification is straightforward.

This being so, Theorem-17 follows immediately from:

THrOREM 18. Given an arbitrary ring R, the property (CRT) is
equivalent to the distributivity of each of the operations + and N with
respect to the other in the set of all ideals of R.

PROOF. We notice that in (CRT) the part “only if” is trivially true
in any ring; we shall therefore disregard this part of (CRT) as being
irrelevant to the proof.

We first consider the case n = 2. If x, = x, (mod (a; 4 ay)), we
have x, — x, = @, — a, with @;in a;, We may then take x = x;, — a,
= x, — a, as a solution of the congruences x = x, (mod a,), x = x,
(mod a;). Thus (CRT) holds unconditionally for n = 2.

Now we prove that the distributivity conditions imply (CRT') for any
number n of congruences. Using induction with respect to #, we need
only examine the step fromn — 1ton. We have to solve n congruences
x = x,; (mod q,;) such that x, = x; (mod (a; + a;)), and we know that
any system of » — 1 such pairwise compatible congruences is solvable.
We then know a solution x’ of the system of the first n — 1 congruences:
x’=x,(moda)(@=1,---,n~1). Then the given system of n con-
gruences is equivalent to x = x"(mod a;)(i=1,---,n—1), x=x,
(mod a,); in other words, it is equivalent to the system of two congru-

ences x = x’ (mocl".f-]I q,), x =x, (mod a,). As was proved before, this
system is solvable i'f-v:re have x' = x, (mod (a, + () 9,))- Suppose that
the distributive law '

(Dy) a4 (6Nb) = (a4 b)N(a+ b')

holds for ideals in R. ‘Then our condition of solvability may be written
as follows:

x' = x, (mod :[:]:(a,, + a,-))
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and this condition is indeed fulfilled, for we have x' = x; (mod ;) and,
by hypothesis, x; = x,(moda; + a,) for i=1,2,---,n— 1. The
solvability condition is thus fulfilled, and the given system of # congru-
ences admits a solution. Therefore the distributive law (D,) implies
the validity of (CRT).

Conversely we prove that both distributive laws follow from the
validity of (CRT) for n = 3. As to (D,), the left-hand side is obviously
contained in the right-hand side, and hence it is sufficient to prove that
any element d of (a 4+ b) N(a + b’) belongs to a 4+ (b Nb"). By hypo-
thesiswehaved=a+ b=a' 4+ b’ withaanda'ina, bin b, b’ in b’,
We now try to write 4 in the form x 4+ y with x in a and y in bNY'.
This is equivalent to looking for an element x in a such thatx — deb N b’
—that is, for a solution of the three congruences x = 0 (mod a), x = d
(mod b), x=d(mod b"). Asd—0=dea+bd—-0=dea+V,
and d — d =0€b + b, these congruences are pairwise compatible,
and the solution x exists by (CRT). Therefore (D,) is proved.

From what we have proved above, we immediately deduce that
(CRT) holds for every n.

For the proof of the other distributive law

(D,) aN( + b')=(anb) 4+ (aNp’)

we notice again that the right-hand side is contained in the left-hand
side, and so it suffices to prove that any element d of aN(b + b’) is an
element of (aNb) + (aNb’). Trying to write d in the form x + y
with x in aNb and y in aNY’, is equivalent to looking for an element x
of a N b such that x = d (mod a N b’), that is, to solving the system of four
congruences x = 0(moda), x=0 (modb), x=d (moda), x=d
(mod b’). As the six compatibility conditions 0ea 4+ b, dea + g,
dea+ b, dea+ b, deb+ b, and Oca + b’ are fulfilled, the
system has a solution x, by (CRT).

REMARKS.

1) We actually proved that the distributive law (D,) implies the distributive
law (D,), and that (CRT) for n = 3 implies (CRT) for every n.

2) Examples in which (D,) or (D,) does not hold may already be constructed
in the polynomial ring k[X, Y] in two variables over a field.

§ 8. Extensions of Dedekind domains

THEOREM 19. Let R be a Dedekind domain, and L a finite algebraic
extension of the quotient field K of R. Then the integral closure R' of R
in L (that is, the set of elements of L which are integral over R) is a Dedekind
domain.
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PROOF. We first study the case in which L is separable over K, and in
this case we use the characterization of Dedekind domains given in
Theorem 13 of § 6. In this case, R’ is noetherian by Corollary 1 to
Theorem 7 of § 4, every proper prime ideal of R’ is maximal by comple-
ment 2) to Theorem 3 of § 2, and R’ is integrally closed by construction.
Therefore R’ is a Dedekind domain.

In the general case, L is a purely inseparable extension of a separable
extension L, of K (II, § 5, p. 71). If we denote by R, the integral
closure of R in L,, then R, is a Dedekind domain, and R’ is obviously the
integral closure of R, in L. In other words, it is now permissible to
assume that L is a purely inseparable extension of K. Then the minimal
equation of any element x'of R’ over K is of the form x#* — a = 0,
where p is the characteristic of L, and where a is in K. But since R is
integrally closed, this is an integral dependence equation (Theorem 4,
§ 3)and we havea € R. Since L is a finite extension of K, the exponents
e are bounded, and there exists a power ¢ of p such that R’ is the set of
all elements x in L such that x¢ € R.

We introduce the field M consisting of all the g-th roots of all the
elements of K—that is, M = K%'—and the subring S of M consisting
of all the elements x in M such that 2 € R. As the mapping x — %7 is
an isomorphism of M onto K (II, § 4, p. 64), it is an isomorphism of S
onto R. Thus S is a Dedekind domain.

In order to show that R’ is a Dedekind ring it will be sufficient to show
that every proper ideal % in R’ is invertible (Theorem 12 of § 6). Since
S is a Dedekind ring, the ideal S¥ is invertible, and hence there exist
elements s, in S: S and elements q; in A such that 3a,;s;, = 1. Since ¢
is a power of the characteristic, we have Jq,959 = 1, with s2e KC L,
Let us write this relation in the form Ya;-a;2~1s,2 = 1. The elements
b; = a9-%59 are in L. On the other hand, we have % C %2 C S,
since As; C S. Therefore A€ SNL = R’, that is, b, e R":A; and
since 3b,a; = 1, it follows that A(R':%A) = R’, showing that A is
invertible. Q.E.D.

In the purely inseparable case which was treated in the last part of
the above proof, we have established the following result: If M is a
purely inseparable extension of a field L and if there exists a power q of the
characteristic of L such that Me C L, then every Dedekind ring S contained
in M contracts in L to a Dedekind ring. 'This result can be generalized
as follows:

LLemma. Let L be a field and M a finite normal and separable extension
of a purely inseparable extension M' of L. Suppose that there exists a
power q of the characteristic of L such that M'« C L. If S is a Dedekind
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domain contained in M and integral over R’ = SN L, then R’ is also a
Dedekind domain.

PROOF. The lemma has already been proved in the special case
M = M’'. Itis therefore sufficient to prove that S N M’ is a Dedekind
domain. In other words, we may assume that M' = L. Under this
assumption we take a proper ideal a in R’, and prove that it is invertible.
Since the ideal Sa is invertible, there exist elements g, in aand x;in M such
that Zaw =14nd x,a CS. We denote by x,”) the conjugates of x;

over L and we consider the relation H(Zaw (l)) = 1. Denotingby n

the degree [M:L], we may write this :'elation as follows:
(1) 2m(a)P(x,0) =

where the m(a) are the monomials of degree n in the a,, and where the
P,(x,9) are symmetric functions and homogeneous polynomials of
degree n in the x,0), with ordinary integers as coefficients. By Galois
theory (11, § 7), P,(x,\) is an element of L. In each monomial m(a)
let us factor out some a;; relation (1) may then be written in the form
> ab; = 1, where b, is a sum of products of monomials of degree n — 1

in the a; by symmetric functions P,(x,(), and is therefore an element
of L. On the other hand, from the relation x;a €S, we deduce
x;U)a C S since a is contained in L and since S, which is the integral
closure of R’ in M, is invariant under any L-automorphism of M.
Hence b,a C Y P, (x;")a"~1.¢ C S, and thus b,a € SNL = R'. This

proves that a is invertible, and the lemma is proved.

Theorem 19 admits a converse:

THEOREM 20. Let R be a Dedekind domain, and L a subfield of the
quotient field K of R, over which K is finite algebraic. Then if R is
integral over T = LNR, T is also a Dedekind domain.

PROOF. Theorem 20 follows immediately from the lemma if K is a
normal extension of L, since K is then a normal and separable extension
of a purely inseparable extension of finite degree of L (that is, of the
fixed field of all L-automorphisms of K). The general case may be
reduced to this one by replacing K by the least normal extension K’ of L
containing K, and R by its integral closure R’ in K': we have evidently
T = LNR, and R’ is a Dedekind domain by Theorem 19.

In the next chapter, by using valuation theory, we shall be able to prove
Theorem 19 without any reference to separability or inseparability, and without
having to give a proof in three steps (up, up, down) in the inseparable case
[see VI, § 13, 'Theorem 30, c)).
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The most important cases of application of Theorem 19 are the fol-
lowing ones: R is the ring of integers, or R is a polynomial ring in one
variable over a field. In the first case Theorem 19 shows that the
algebraic integers of an algebraic number field form a Dedekind ring
(but not always a principal ideal domain); this answers the classical
problem of unique factorization for algebraic integers. In the second
case Theorem 19 shows that the integral functions of a function field F
of one variable x form a Dedekind ring. This is of importance in the
study of affine normal curves.

All Dedekind domains which occur in number theory or in algebraic geometry
are obtainable from PID’s by application of the process described in Theorem
19, that is, as the integral closure of a suitable PID R in a finite algebraic
extension of the quotient field of R. It is not known whether all Dedekind
domains are obtainable in this way. It is not true that, given a Dedekind
domain R which is not a field, the polynomial ring R[X] is a Dedekind domain;
in fact it admits proper prime ideals which are not maximal, e.g., R[X]p where
p is a proper prime ideal in R.

§ 9. Decomposition of prime ideals in extensions of Dedekind
domains. Let R be a Dedekind domain, L a finite algebraic extension
of degree n of the quotient field K of R, and R’ the integral closure of
R in L; by Theorem 19, R’ is a Dedekind domain. We denote ideals
of R by small German letters (q, b, p, - - -), and ideals of R’ by capital
German letters (%, B, B, - - ). Let p be a proper prime ideal in R.
Since R’ is a Dedekind domain, the ideal p¢ = R’p is a product of
prime ideals; let us write

e = H %i"a

where the prime ideals B, are all distinct. We have B,NR = B = p
since p is a maximal ideal. The integer e, is called the reduced rami-
fication index* of %B; over p.

Since B, N R = p, the residue field R/p may be identified with a sub-
field of the residue field R’/8;. The field R'['; is a finite algebraic
extension of R/p, as follows from the following more general result.

LEmMA 1. Let R be a Dedekind domain, L a finite algebraic extension
of the quotient field K of R, p a proper prime ideal in R, R’ an overring of
R contained in L, and % an ideal of R’ such that ANR = p. Then the
dimension of R'[¥, considered as a vector space over R[p, is < [L:K].

PROOF. We denote by M the complement of p in R. Since the ele-
ments of M are invertible modulo p, and consequently modulo %, the
permutability of residue class ring and quotient ring formation (IV,

* The ramification index of B, over p will be defined later as being ¢, times
the inseparable factor of the degree [R'[};:R/p].
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§ 10, formula (1)) shows that R/p is isomorphic to R,,[pR,, and R'/%
to R'y/UR'y. On the other hand, AR’y N Ry, = PR,,: in fact, if z
is any element of ¥R’), N R, thien we have 2 = a/m (a € ¥, m € M) and
also 2 =7/m’ (re R, m’' € M); then am’ = rmisan elementof ANR = p,
whence a/m = am'|m'm € pR,,. Since R,, is a Dedekind domain
(§ 6, Example 2, p. 271), we may therefore replace R, R’, p and ¥ by
Ry, R'pgy PRy and UR’y,. By Theorem 16, Ry, is a PID.  Thus we
may prove Lemma 1 under the additional assumption that the ideal p
is principal, say p = Rp. This being so, consider a finite family {#,} of
elements of R’/ which are linearly independent over R/p, and denote
by x; a representative in R’ of the residue class #. If we had a non-
trivial linear relation D a,x; = 0 with g, in K, we could suppose that all

the g; are in R (since lK is the quotient field of R) and furthermore, by
dividing them by a suitable power of p, we could also suppose that they
are not all in p; thus, by reducing the relation Za,-x,- = 0 modulo %, we

would get a non-trivial linear relation Za'i.i,- = 0, with 4, in R/p; and

this is a contradiction. Therefore the elements x; are linearly inde-
pendent over K, and their number, which is also the number of the £
cannot exceed [L:K]. This proves Lemma 1.

Coming back to the situation described before Lemma 1 (that is, R’
is now the integral closure of R in L), the degree [R’/*,: R/p] is called
the relative degree of B, over p and is denoted by f;. It will be tacitly
understood from now on that *3; ranges over the set of all prime ideals
in R’ which are factors of the extended ideal pe. The notations ¢; and f;
are classical and will be used without further warning in this section.

THEOREM 21. The tnteger De.f; is equal to the dimension of the ring

R'[p¢ considered as a vector s;)ace over R[p. We have the inequality
Ze,- f; € [L:K], with equality if and only if R’',, is a finite Ry-module, M

denoting the complement of v in R.

PROOF. Theorem 21 is an easy consequence of the following more
general lemma:

LeEMMA 2. Let R be a Dedekind domain, K its quotient field, v a proper
prime ideal in R, L a finite algebraic extension of K, and R’ a noetherian
overring of R containedin L. Let p* = 0, N - - - N, be an irredundant
decomposition of p* = R'p into primary components; let B; be the radical
of Q,, e, the length of ©; (IV, § 13), and f; the degree [R'['B;:R[p]. Then
the integer > ef; is equal to the dimension of the ring R'[p*® considered asa
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vector space over R[p. -If L is the quotient field of R' we have the in-
equality Ye;f; < [L:K), with equality if and only if R’y is a finite

Ry-module, M denoting the complement of v in R.

We first show how Theorem 21 may be deduced from Lemma 2.
Under the assumptions of Theorem 21, the primary components 0, of
pe are the prime ideal powers %, and we need only to prove that ¢, is
the length of P, ; but this follows from the fact that the only primary
ideals belonging to B; are its powers since R’ is a Dedekind ring.

PROOF OF THE LEMMA. We first notice that since p is maximal, we
have B, NR = p¢NR = p; thus R/p may be identified with subfields
of R’ /‘B and of R’/pc. By Lemma 1, the dimensions of the vector
spaces R’/B; and R’[y* over R/p are ﬁmte In particular, by the remark
made at the end of § 2 (p. 259), R'[*B, is a field, since it is an integral
domain which is a finite module over R/p and therefore integrally
dependent on the field R/p. Hence ‘B, is a maximal ideal in R’. Thus
the statement of Lemma 2 is meaningful.

Let d be the dimension of the ring R’/p¢ considered as a vector space
over R[p. The inequality d < [L:K] follows immediately from
Lemma 1. We now prove that we have d = Y¢,f;. By III, §13,

Theorem 32, the vector space R’[p? over R/p is isomorphic to the direct
sum of the spaces R'/Q;, the latter being themselves regarded as vector
spaces over R[p. But R’/Q;, considered as an R’-module, admits a
composition series of length e; whose successive difference modules are
one-dimensional vector spaces over R'[B; (IV, §13, Theorem 28).
Since [R'[*®8,:R[p] = f;, it follows easily that the dimension of R'/Q;
over R/p is e;f; Therefore R’[p¢ has dimension Ze .f; over R[p.

We suppose now that the equality Ze, fi=[L: K] holds, and we wish

to prove that Ry, is then a finite RM-module. By 1V, § 10 (p. 225),
neither the hypotheses in Lemma 2 nor the integers ¢;, f; d and [L:K]
are changed if we replace R by Ry, p by pR), and R’ by R’y,. In other
words, we may suppose, as in Lemma 1, that R is a PID with p as unique
proper prime ideal; we write p = Rp. It follows from the proof of
Lemma 1 that if {x;} is a set of elements of R’ whose residue classes
modulo p constitute a basis of the vector space R’/p* over R/p, then the
elements x; are linearly independent over K. Since by hypothesis L
has the same dimension over K as R’[p* over R/p, these elements x; con-
stitute a basis of L over K. We shall now prove that we have
R’ = YRx; Infact, take an element x of R". As {x;} is a basis of L
J
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over K, we can write x = Za,«j with a;€ K. If the elements a, were

not all in R, there would exilst an integer n > 0 such that all the elements
p"a;belong to R, and not all of them to Rp = p; then, reducing modulo
p* = R'p the equality p"x = Z( p"a,)x,, we would get a non-trivial

J
linear relation >b%; = 0 with coefficients 5, in R/p; and this contradicts

J
the fact that the %; are linearly independent over R[p. Thus our
assertion is proved.

Conversely, suppose that R’y i1s a finite Ry,-module. As R,, is a
PID, and as L is the quotient field of R’,,;, R'), can be generated by
exactly n (= [L: K]) elements x; (see proof of Corollary 2 to Theorem 7
in §4, p. 265), and these elements are linearly independent over K.
Then (denoting again by p a generator of the principal ideal pR,,) we

deduce from the relation R’y = > Rjx; that we have pR') =
J
Z(pRM)x,-. As the elements x, are linearly independent over K, this

]

implies that R’,,/pR’), is isomorphic to the product of R,,/pR,, n times
with itself. Therefore the dimension of R’y,/pR’), considered as a
vector space over R,,/pR,, is equal to n. Since (see proof of Lemma 1)
R',,/pR’), is isomorphic to R’[p¢ and R,,/pR,, to R/p, the dimension of
R’[p¢ over R/p is also equal to n, and this latter dimension is De,f;, as

has been seen in the beginning of the proof. This completes the proof
of Lemma 2, and consequently of Theorem 21.

Note that the hypothesis that R’ is noetherian is automatically verified if L
is separable over K, and R’ integral over R (Corollary 1 to Theorem 7 of § 4)
or if R is a finite integral domain, and R’ is integral over R (Theorem 9 of § 4).

CoROLLARY. The hypotheses and notations being as in Theorem 21,
we suppose that L is a separable extension of K or that R is a finite in-
tegral domain. Then Je,f; = [L:K].

In fact, R'), is then a finite Ry,-module by Corollary 1 to Theorem
7in § 4, or by Theorem 9 in § 4.

EXAMPLE: Gaussian integers. We take for R the ring J of rational
integers, and for L the quadratic field obtained by adjunction of
i = 9/ — 1 to the rational number field K. Any element z of L may be
written, and in a unique way, as 3 = x <+ ¢y, withxand yin K. Forz
to be integral over R = ], it is necessary and sufficient that its trace 2x
and its norm x? 4 y? be rational integers (§ 3); we then have x = a/2
and y? = (4b — a?%)/4 with a and b in J, whence y = ¢/2 with ¢ in J;
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this means that 4 = a® 4+ ¢*, and this is possible only if @ and ¢ are
even, since the sum of the squares of two odd integers is congruent to
2 modulo 4. Thus x and y are rational integers, and the integral
closure R’ of J in L is the ring

R=]J+i],
which is called the ring of gaussian integers. It is a Dedekind domain

(Theorem 19).
Given a prime number p, the relation Ze,-f,- = 2 (Corollary to

Theorem 21) shows that the factorization of R’p into prime ideals is
either R'p = B,- B, (with R'/B, = R'/B, = Jj(p)), or R'p = B (with
[R/%:Jj(p)] = 2), or R'p=1B* (with R'/% = J/()). The prime
number p is then said to be decomposed in the first case, inertial in the
second, and ramified in the third (with respect to the quadratic field L).
Notice that this classification into three cases holds for any quadratic
field.

From R'= J 4+ i-], and from B, NJ = (p) (or BN ] = (p), or
B NJ = (p)), it follows that R’/B, is generated over J/(p) by the B,-
residue of 7, that is, by a root of X2 4 1 in some extension field of
J/(p). We must then study whether X2 4 1 does or does not have a
root in J/(p) or, equivalently, whether — 1 is or is not a square modulo
p. If p=2, —1is a square modulo 2. If p is an odd prime, the
multiplicative group of J/(p) is a cyclic group of order p — 1 (II, § 8,
Theorem 18); if we denote by x a generator of this group, we have
— 1 = x(»=1/% since (~— 1)2 =1 and since — 1 1 in J/(p). Thus
— 1 is a square modulo p if (p — 1)/2 is even (that is, if p = 4n + 1),
and is not a square modulo p when (p — 1)/2is odd (that is, if p =4n — 1).
Therefore the only odd primes which are inertial are the primes of the
form 4n — 1. Any such prime is an irreducible element of R'.

We now use the well-known fact that R’ is a euclidean domain (I, § 15),
hence a PID. In fact, with the notation of I, § 15, we take for the func-
tion ¢ the function defined by ¢(z) = ¢(x + iy) = 22 + y%. As
quotient g of the division of 2 by 2’ we may then take any one of the
gaussian integers a 4+ b7 whose distance to 2/z’ in the complex plane is
< 1 (such a gaussian integer exists, since, in the complex plane, the
gaussian integers are the vertices of a lattice of squares of side 1). From
the multiplicativity of the norm, and from the formula (@ + b)~! =
(a — b)/N(a + bi), it follows that the only units in R’ are the gaussian
integers @ 4 b7 whose norm a® + 4% is 1 or — 1; in other words, these
units are 1, — 1,4, —i. For a prime p = 4n 4 1, we consider the
decomposition R'p = P, B,, and we denote by a + b a generator of
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B,. Since x4 yi—x — vi is an automorphism of L, the ideal
R’'(a — bi) is also a prime ideal lying over (p). This latter ideal is dif-
ferent from B,, for otherwise (@ + )/(a — bi) would bea unit 1, — 1, ¢,
or — i. It cannot be 1 or — 1, since in the contrary case either a or b
would be zero, whence the ideal (¢ 4+ b)) would be generated by a
rational integer and it would then follow that 8, = R’p, a contradiction.
It cannot be ¢ or — i, since this would imply that a + ¥ is an integral
multiple of 1 + 7 or 1 — 4, whence that it is 3 (1 + ) or & (1 —4)
since a + b is irreducible; butthen,since — i (1 + )2 = #(1 —¢)* = 2,
we would have 2 € B,° = (p), and this contradicts the fact that p is odd.
We therefore have B, = (a + b), B, = (e — bt) with B, 5 B,. It
follows that all the primes p = 4n 4 1 are decomposed. Furthermore,
we have R'p = R’(a? + b?), and since 1, — 1, 7, and — ¢ are the only
units in R', it follows that p = a® + b%. In other words, a prime
4n + 1 is a sum of two squares.

We find directly that R"-2 = 32 where 8 = R’-(1 4+ ¢). Hence 2
is the only ramified prime.

REMARKS. ~

1) In the general quadratic field, generated by Vv'd, where d is a rational
integer without square factors, the question whether a prime number g is
decomposed, inertial, or ramified is, by an analogous reasoning, closely re-
lated to the question whether d is or is not a square modulo p, or, in the
standard terminology of number theory, ‘‘whether d is or is not a quadratic
residue.” (Sec § 12.) This question is a cornerstone of number theory. We
will prove that the ramificd primes are finite in number (§ 11). On the contrary,
the sets of decomposed and of inertial primes are both infinite ; and one can prove
that they have the same ‘‘ asymptotic density’’; more precisely, that the number
of decomposed or inertial primes which are < n is asymptotic to n/2 log n.
Generalizations to other algebraic number fields are also important in number
theory. For these questions, see H. Weyl, ‘‘Algebraic Theory of Numbers,”
Ann. Math. Studies, 1 (Princeton, 1940).

2) We have proved the ‘“two squares theorem” (‘‘every prime of the form
4n + 1 is a sum of two squares’’) by investigating the divisibility properties of
the ring R’ = J + i-J of gaussian integers. An analogous method holds for
the *“four squares theorem” (“‘every prime is a sum of four squares’’): one
studies then the divisibility properties of the (ron-commutative) ring of integral
quaternions @ + bi + ¢ + dk. See Hardy-Wright, Theory of Numbers (Oxford,
1938) Chap. 20.

When L is a normal extension of K, Theorem 21 admits a useful
complement:

THEOREM 22. Let R be an integrally closed domain, and R’ the integral
closure of R in a finite normal extension L of the quotient field K of R. If
p is a prime ideal in R, then the prime ideals B; of R’ which lie over p are
all conjugates of any one of them. If, furthermore, R is a Dedekind domain,
then the B, are the prime factors of R'yp, the integers e; (or f;) are all equal



290 DEDEKIND DOMAINS Ch.V

to the same integer e (or f); and denoting by g the number of prime ideals B;,
we have efg < n = [L:K]. If L is a separable extension of K, we have
¢fg = n.

PROOF. By Theorem 3 of § 2, there exists a prime ideal ¥ of R’
which lies over p. We denote by B (1 < j =< q) the conjugates of B,
that is, the ideals of the form s(B), where s is a K-automorphism of L.
Since R’ is the integral closure of a subring of K, we have s(R’) = R’ for
any K-automorphisms of L. Hence the set s(8) is also a prime ideal in
R’ which lies over p. Suppose we have a prime ideal £ of R’ lying over
p and distinct from any of the ideals 8). Then £ cannot be contained
in any B¢) by complement 1) to Theorem 3 of § 2, and there exists an
element x of 2 which is not-contained in any B(’ (see IV, § 6, Remark at
the end of section, p. 215). But then none of the conjugates of x is in
B; hence neither is any power of their product. Some such power,
however, is in K, hence also in R (since R is integrally closed), and hence,
finally, also in p = © NR. Since p is contained in P, this is a contra-
diction, and our first statement is proved.

In the case of a Dedekind domain R it is clear that the 'B; are the
prime factors of pR’. The equality of the ramification indices e; on the
one hand, and of the relative degrees f; on the other, is evident by auto-
morphism. Then the inequality efg < n follows from Theorem 21,
and the equality efg = n in the separable case follows from the corollary
of Theorem 21. Q.E.D.

§ 10. Decomposition group, inertia group, and ramification
groups. In this section R denotes a Dedekind domain, R’ the integral
closure of R in a finite, normal and separable extension L of the quotient
field K of R, and G the Galois group of L over K (I1, § 7). The nota-
tions are as in Theorem 22. Given a proper prime ideal p of R and a
prime ideal  of R’ lying over p, the automorphisms s € G such that
s(B) = B form obviously a subgroup G of G; this subgroup is called
the decomposition group of 3. By Theorem 22 the order of G is equal
to (order of G)[g—that is, to ¢f. Given another prime ideal B’ of R’
lying over p, we have, by Theorem 22, ' = ¢(8) with ¢ in G, and the
decomposition group of ¥’ is obviously £-1-G-¢, therefore a conjugate
subgroup of G.

If G is abelian (in which case one says that L is an abelian extension of K),

then the decomposition groups of the prime ideals of R’ lying over p are all
equal. One then says that G; is the decomposition group of p.

The fixed field K of G is called the decomposition field of . The
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field K is an extension of K contained in L, and by Galois theory
(I1,§7) L is a normal and separable extension of K, with G, as
Galois group. We thus have
1) [Kz:K] =g, [L:Kz]=¢f.

If G is an invariant subgroup of G (in particular, if L is an abelian extension

of K), then K; is a normal and separable extension of K, admitting G/G;
as Galois group.

THEOREM 23. \Let K, be the decomposition field of the prime ideal
in R', R, the integral closure of R in K, and R, the contracted ideal
PBNR,. Then B is the only prime ideal of R’ lying over B, its relative
degree is f, and its reduced ramification index is e: R'R, = Re. If the
decomposition group G5 of ‘B is an invariant subgroup of G, then K, is a
normal and separable extension of K, and the factorization of the ideal
Rzp in Ry consists of g distinct and conjugate prime factors, all of them
with relative degree 1.

PROOF. By definition of G, the conjugate prime ideals of ¥ over
Kz consist of B only. Thus, by Theorem 22, % is the only prime ideal
of R’ lying over B,. (Note that R, is integrally closed and that conse-
quently Theorem 22 is applicable to the pair of rings R, R’.) There-
fore R'B; is a power P« of B. Since R[p C R,[B, C R'[B, the
relative degree f(Z) of B over B is a divisor of f. On the other hand,
consider the factorization Ryp = B¢-J] 2,7 of Rzp in R;. Since

extension of ideals preserves products] (IV, §8), the factorizations

h
R'B; = B9, R, = Ii P4/ give the factorization
=1

',.
R'p = Pee(2) H H P, Hr0),
J

1=1

Since P has exponent e in the factorization of R'p, this implies
ge(Z) < e. By Theorem 22 applied to B, we have e(Z)f(Z2) = [L:K,]
= ¢f, and this together with the inequalities g¢e(Z) < e and f(Z) < f,
implies ¢(Z) = ¢, f(Z) = f, ¢ = 1; thus our first assertion is proved.
From this we deduce that 1 is the exponent of % in the factoriza-
tion of R;p, and that R/p = R;/B, that is, that the relative degree of
B, over p is 1. The assertion relative to the case where G; is an in-
variant subgroup of G follows at once from this and from Theorem
22, if one takes into account the relation [K;: K] = g.

In other words, if K; is normal over K then the passage of K to K involves
only a decomposition of p into distinct prime factors, without ramification and
without increase of residue field ; this is the reason for the names * decomposition
group’’ and “decomposition field”’. ‘The index Z is customary and is the initial
of Zerlegung, the German word for ‘‘decomposition.”
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We now show that the phenomenon “ extension of the residue field”
may also be isolated in a further step of the field extension. Given a
prime ideal B of R’ lying over p, the automorphisms s € G such that
s(x) = x (mod B) for every x in R’, form obviously a subgroup of G;
this subgroup is called the inertia group of B, and is denoted by G;. For
xin B and s in G, wehave s(x) € x 4 B, that is, s(x) € B; thisshows that
s(B) € B, whence s(B) = B [since we have, by a similar argument:
s—1('B) C B, that is, p C s(*B)]. Therefore the inertia group Gy of P
is a subgroup of the decomposition group Gz of B. Furthermore, for s in
Gr and t in Gz and for any x in R’, we have ¢~1(x) € R’, whence
st=(x) — t~Y(x)eB,and tst—1(x) — x = #(st~Y(x) — t~(x)) € ¢(B) = B;
therefore tst—'€ Gy, and the inertia group Gy is an invariant subgroup of
the decomposition group G,. The fixed field of Gy is called the inertia
field of B, and is denoted by K. We have KC K, CK,CL. By
Galois theory (II, § 7), L is a normal and separable extension of K
admitting G, as Galois group, and K; is a normal and separable
extension of K, admitting G,/G; as Galois group. (The index T
is customary and is the initial of Trdgheit (the German word for
“inertia’")).

THEOREM 24. Let K, and K, be the decomposition and the inertia
fields of the prime ideal B, R, and Ry the integral closures of R in K, and
Ky, Bz and B the contracted ideals B N Ry and BN R;. Then R'[P is
a normal extension of R|p, and its Galois group is isomorphic to G,/Gy.
Iff = fop*, where fis the degree over R[p of the maximal separable exten-
sion of R[p in R'[B (11, § 5, p. 71) and where p is the characteristic of R|p,
then Ky is a normal and separable extension, of degree fo, of K, and By is
the only prime ideal of Ry lying over By, its relative degree is f, and its
reduced ramification index is 1:B,R; = P7. We have R[p = Rz[B,,
and Ry[Ry is the maximal separable extension of R[p in R'|R. The field
L is a normal and separable extension of Ky, of degree ep*, and ‘} is the only
prime ideal of R’ lying over By, its relative degree (over Ry) is p*, and its
reduced ramification index is 2: RpR' = Pe,

PROOF. Letsbeanelement of G;. Since s(R') = R’ and s(B) = B,
the element s defines an automorphism § of R’/8 over R[p. By defini-
tion of Gy, § is the identity if and only if s belongs to G;. Thus G;/G
can be identified with a group of automorphisms of R'/8 over R[p. We
will now investigate whether the extension R’/® of R/p is normal, and
whether G/G is its full Galois group.

Consider any element % of R'['B, and a representative x € R’ of
the residue class £ The minimal polynomial of x over K, say
X? 4 a,_, Xo—! + - - - +a,, has its coefficients in R (Theorem 4, § 3).
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Since L is normal over K, this polynomial factors into linear factors in
R':
X+ a,_ X=' 4 - tag =[] (X —x,)

with » = x, (II, § 6). If we denote by bars residue classes modulo B,
the polynomial X% 4 a,_,X%=! 4 - - - 44, has its coefficients in Rfp
and factors into linear factors [[(X — &) in R'/®. Since this poly-

nomial admits % as a root, it is a multiple of the minimal polynomial of %
over R/p; thus this minimal polynomial has all its roots in R'/B. In
other words, all the conjugates of % over R/p are in R’'/B. Therefore
R’[B is a normal extension of R/p.

In order to prove that G,/Gy is the Galois group of R’/% (over R/p)
it is sufficient to prove that it is the Galois group of the maximal
separable extension S of R[p in R/, that is, that every automorphism
s’ of S over R[p comes from some element s of G,. If we take a primi-
tive element % of S over R/p (11, § 9, Theorem 19), the automorphism s’
is completely determined if one knows which one of the conjugates of
is s'(¥). But the preceding reasoning (applied to K, R, B, instead of
to K, R, p), together with the equality R,/B; = R/p established in the
proof of the preceding theorem, shows that if we denote by x an element
of R’ whose B-residue is %, and by x; its conjugates over K, then the
conjugates of % over R/p are among the 8-residues %, of the x;. Thus,
there exists an index j such that s'(¥) = #;. Since x; is a conjugate of x
over K, there exists s in G, such that x; = s(x). Since the auto-
morphism § of R’/ determined by s is such that 5(%) = s'(%), s’ and §
coincide on S, whence also s’ = § on R’/*8, since R'/$ is a purely
inseparable extension of S. Therefore G,/Gy is the Galois group of
R’[B over R[p.

From this we first deduce that the order of G,/Gy is equal to the
degree f, of S over R/p (11, § 7), and hence [K;:K;] = f,. We deduce
also, by applying this result to K. (instead of K) as ground field (in this
case G, = G; = G), that R’/ is a purely inseparable extension of
R;/Br and that S = R;/B;. Thus the relative degree of B, over B,
is fo = [S:Rz/P;], and Theorem 21 shows that its reduced ramification
index is 1.

On the other hand, from [L: K;] = ef = efp* and from [K;: K] = f,,
we deduce that [L:K;] = ep*. Since Rp/P; = S, the relative degree
of B over P, is p*. Hence its reduced ramification index is e, by
Theorem 21. This completes the proof of Theorem 24.

CoROLLARY. The assumptions and notations being as in Theorem 24,
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we suppose furthermore that R'|B is a separable extension of R[p. Then
R'[B = Ry/Br, [L:Ky] = e, and the relative degree of B over Bz is 1.
The proof of the corollary is immediate.
The conclusions of Theorem 24 may be summarized in Table I.

TasLE 1
Ei:lds . . . . K Kz f Kr L
grees . . . . F'd ep'
Prime ideals . . . p Bz * Br B
Relative degrees . 1 fo »
Reduced ramification mdncel 1 1 e

If R’ is separable over R/p, we take, in this table, f, = fand p* = 1.

It may be shown by examplea that R’/ is not necessarily separable over R/p.
But this separability condition is fulfilled in the important cases of the rings of
algebraic integers, and of the rings of integral functions of one variable over a
finite ground field : in fact, in thesc cases the residue fields are finite, and hence
perfect (11, § 4, Theorem 5).

The integers f, and ep* are respectively called the reduced relative degree
and the ramification index of B over p. A prime ideal P of R’ whose
ramification index is > 1 is said to be ramified.

We can go farther than the inertia group G,. For every integer
n 2> 1, the set of all automorphisms s in G such that s(x) = x (mod $")
for every x in R’ is obviously a subgroup of G7; this subgroup is called
the n-th ramification group of B over p, and is denoted by G,, . We have
Gy, = Gr. (The index V is customary. It stands for the initial of
Verzweigung, the German word for “‘ramification.”) Itisclear that the
subgroups G, form a decreasing sequence of subgroups of G. Since

ﬁ " = (0), their intersection is reduced to the identity. Thus, since

G is a finite group, there are only a finite number of distinct Gy, , and
Gy, is reduced to the identity for  large enough. The indices 7 (finite
in number) for which Gy, | < G, are called the ramification numbers
of P over p.

For any s in Gy, , any ¢ in Gz and any x in R’, we have t~}(x) e R/,
whence st=1(x) — t=(x) € . Since #(B) = P and #(PB") = P", this
implies that tst=(x) — x = f(st='(x) — t~(x)) € B*. Therefore we
have tst=1 € Gy, and hence the ramification group Gy, is an invariant
subgroup of G.

We now take s in G, and ¢ in Gy, , and study the commutator sts=t~1.
We first consider s(y) — y for y in %and prove that a(y) y € Peir-1,
It is sufficient to consider the case in which y = ¥;-%, - - - ¥, with x; in
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B, since every element in %’ is a finite sum of such products. Then
the element s(y) — y = s(x; - -+ x,) — %y - - x, = D s(x,) - - s(x;_y)-
=1

[s(x;) — %,]-x,,, - - - x, is an element of Pe+7--1 since s(x,) € B, x, € B,
and s(x;) — x; € Be. Similarly, we have #(2) — z € ¢+~1 for z in 7.
This being so, we take any x in R’ and set y = #(x) — x and z = s(x) — «.
Since y € B” and z € B9, we have

s(¥) — 3 = st(x) — s(x) — #(x) + x € P+,

K(3) — z = ts(x) — t(x) — s(x) + x € Petr-1;
whence, by subtraction, st(x) — ts(x) € Betr—1. Replacing x by
s~1t-)(x), we get sts—1t=Y(x) — x € Pe+’~1, We have thus proved:

LemMA 1. The commutator sts='t=1 of elements s of Gy, _and t of Gy,
belongs to Gy, _ . In particular it follows (in the case ¢ = r = n) that
the factor groups Gy, |G, are abelian, and that consequently also the
groups Gy, |Gy, for n > 2, are abelian.

More precise results about the structure of these last factor groups
can be given:

Tueorem 25. The groups G, = Gr/Gy, and G,= Gy |Gy,
(n 2> 2) contain invariant subgroups G’ and G’, whose orders are powers of
the characteristic p of R[p. The factor group G,/G', is isomorphic with a
multiplicative subgroup of R'[*B, and is therefore cyclic. The factor groups
G,/G', (n = 2) are isomorphic with additive subgroups of R'[B. The
subgroups G',, G, are reduced to the identity if R'['® is separable over
R/y.

PROOF. We can replace R and R’ by the quotient rings R,, and R’y
(M = complement of p in R) without changing anything. In other
words, we may suppose that B is a principal ideal (Theorem 16 of § 7).
Let u be a generator of this ideal.

For s in G, we have s(u) € *B; furthermore s(u) ¢ 82, for in the con-
trary case u = s—1(s(u)) would be in 2. Wemay thus write s(u) = x,u,
withx, in R, x, notin B. For zin G, we have st(u) = s(x,u) = s(x,)xu,
whence x,, = s(x,)x,. Since s is in Gy, we have s5(x,) = x, (mod ),
whence x, = x.x, (mod %), and by passage to the residue classes
mod P, we find %,, = #,%. Therefore the mapping s — %, is a homo-
morphism of Gy into the multiplicative subgroup of R’/®. Its kernel
is the group H, of all automorphisms s in G such that x, = 1 (mod ),
that is, such that s(x) — u € B2

Similarly, for s in Gy (n 2 2), we have s(u) — u € B", and we can
write s(u) — # = yu" with y, in R’. For t in G, we have y,u" =
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st(u) — u = s(y" + u) — u = s(y)o(0") + s(u) — u = oy, )1 + yY"
+ yur. Dividing by u* .we get y,, = s(y,)(1 + yu*~)" + y,, since
n > 2. Since s(y,) = y, (mod B"), and since all the terms of the ex-
pansion of (1 + y,u*—1)" are in B except the first one, it follows that
Yu =y, + 9, (mod B). By passage to the residue classes mod B, we
thus have y,, = 7, + y,, and the mapping s — 7, is a homomorphism of
Gy, into the additive group of R'/. Its kernel H, is the set of all s
in Gy, such that y, = 0 (mod ), that is, such that s(u) — u € B+,

The kernels H,, H, contain G}, and G, _ respectively, and we intend
to compare these groups. Suppose that s is an element of G, (n > 1)
such that s(u) — u € B"+1. Then we have s(z) — z € Pr+! for all z in
%: in fact, we have z = gu (a € R’), whence 5(z) — 5 = s(au) — au =
(s(a) — a)u + s(a)(s(x) — u); here we have s(a) — a € B" (since s € G),
u € B, and s(u) — u € P+, and our assertion is proved. We now take
any x in R’ (not necessarily in ), and write s?(x) — x = s?~(s(x) — &)
+ s2=¥(s(x) — x) + - - - + s(s(x) — x) + (s(x) — x). Here s(x) — xis
an element z of B” and, a fortiori, of . From what has been proved
above, we know that 2 is congruent modulo $7+! to s(z), whence z is
also congruent modulo 7+ to each of the terms s%(2), - - -, s#=(2) of
the above sum sﬂ(x) — x. Hence s?(x) — x = pz (mod P~+1). We have
p-1€®B in R', since p is the characteristic of R’/%, and we also have
z€ P Therefore s?(x) — xeP+!, whence s?€G, , . In other
words, in the factor group Gy, /Gy, (n 2 1), all the elements of the
subgroup G', = H,/G, are of order p. Thus the order of G', is a
power of p. From what has been seen above, the factor group G,/H’,
(= Gy [H'y) is isomorphic with a multiplicative subgroup of R'/%®, and
the factor group Gy, [H, (n 2 2) is isomorphic with an additive sub-
group of R’/B. This proves our assertion in the general case.

In the case where R’/ is separable over R/p, it remains to be proved
that we have H, = G,, , for every n > 1, that is, that the relation
s € H, implies s(x) — x € Bn+! for every xin R'. We already know that
this is true if x is in 8. But, in the separable case, the fields R’/ and
Ry /B are equal (Corollary to Theorem 24). Hence any element x of
R’ may be written in the form x = y 4 2, withy € Rrand 2 € 8. Then
s(x) — x = s(y) — v + s(z) — =z is in P+, since s(y) = y (s being in
Gr) and since s(2) — z € B+, This completes the proof.

CoroLLARY. If R'[8 is a field of characteristic 0, then Gy, is reduced
to the identity for n > 2.

In fact we are in the separable case, whence G', is reduced to the
identity. Since (0) is the only finite additive subgroup of R'/%8, we
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have G, = Gy, , , and from this the corollary follows, since the inter-
section of the groups G, is reduced to the identity.

REMARKS.

1) In the inseparable case, the p-groups ', are abelian for n > 2,
since they are subgraups of the abelian group G- (G, . We now
prove that G', is also abelian. Any element of G', is the (Gy )-
residue of an element s of G such that s(u) — u € B2. We have seen
in the proof of Theorem 25 that we then have s(z) — z € %2 for
every 2 in . Furthermore, since any element y of {#2 may be written
in the form y = 22’ with z and 2’ in %8, and since s(y) — y = s(2)(s(z")
— 2') 4+ 2'(s(z) — 2), we have s(y) — y € B? for any y in B2 Con-
sider now two elements s and ¢ of G such that s(u) — u and #(u) — u
lie in B2 Then, for any 2z in B, the difference st(z) — ts(2) is the dif-
ference of the two elements s(#(2) — 2z) — (#(2) — 2) and #(s(z) — 2)
— (s(2) — 2); since y = #(z) — z is in B2, the first element s(yv) — y is
in B3, and similarly the second also. Thus s#(z) — #s(z) € B3 for all
in B, whence sts~11-1(2) — 2 € P2 for all z in $. [L.et us denote by ¢
the commutator sts='#~1.  We need only to prove that ¢ is in G , that s,
that ¢(x) — x € P2 for every x in R’. This is already true for x in .
If x is not in ‘B, it is a unit in R'. (We recall that we have replaced
R’ by a quotient ring having only one prime ideal.) We may write
x = 2'[z, with z and 2’ in  but notin 2. Then ¢(x) — x is equal to
(2(c(z') — 2') — 2'(c(2) — 2))/2c(2). The numerator is in B4, and the
denominator is in ‘82 but not in ¥3. Therefore ¢(x) — x is in B2, and
our assertion is proved.*

2) The homomorphism s — %, of G into the multiplicative group of
R’[*8 defined in the proof of Theorem 25 is independent of the choice of
the generator u of . In fact, any other generator «’ of ¥ may be writ-
ten in the form #’ = au, where a is a unit in R". If we set s(u) = x,u
and s(u’) = x’,u, an easy computation shows that x', = x,-s(a)-a~2.
Since s(a) — a € B, we have s (a)a—! =1 (mod ), whence x', = x,
(mod B), and & = x',.

3) On the contrary, the homomorphism s — 7, of G}, (n 2 2) into
the additive group of R'[*8, is only determined modulo a multiplication
in R'/P if one changes the generator « of 8. In fact, taking another
generator #' = au of B (a, a unit), and setting s(u) — u = yu" and
s(¥’) — ¥’ = y',u'", an easy computation shows that

Y. = (s(a)—a)- ="V + y,-5(a)-a=".
The first term is in ‘B, as s(@) — ae B~ Thus 7, =b-5, where

* It can be shown by examples that Gr/Gy, = G, need not be abelian.
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b is the P-residue of s(@)a=", that is, of a—"~V, since s(a) =
a (mod B).

§ 11. Different and discriminant. Let R be an integrally closed
ring, K its quotient field, K’ a finite algebraic separable extension of K,
and R’ an integral extension of R admitting K’ as quotient field. We
denote by T, or T. x, the mapping of K’ into K defined by the trace
(11, § 10). The set € of all z in K’ such that T(2R") C R is obviously
an R’-module; it is called the complementary module of R’ with respect to
R. Since R is integrally closed, the trace of any element of R’ lies in
R (§ 3, Theorem 4), and the complementary module € contains R'.

THEOREM 26. The complementary module € of R’ with respect to R
is a fractionary ideal of R'.

PROOF. By definition of a fractionary ideal (§ 6, p. 271), we need
only show that ¥ is contained in a finite R’-module, and for this it will
be sufficient to see that it is contained in a finite R-module. Since
K' = R'g (see proof of Theorem 7, §4), there exists a K-basis {e,, - - - , €,}
of K’ all the elements of which are in R’. We take an element z of €,
and write 2 = Za e;(a;€ K). We have T(ze;) = Za iT'(e;e;) € R for

i=1---,n As K’ is separable over K, the determinant
d = det (T(e «,)) is different from 0 (II § 11). By the usual computa-
tion leading to Cramer’s rule, and since T{(¢,e;) € R, we get da, € R for
i=1-,n whence%’CZ(e,/d)R Q.E.D.

The different of R’ over Ri is the set of all elements x in K’ such that
3x € R’ whenever T(2R') CR. In other words, the different is the
ideal (R’:¥). Since € is a fractionary ideal containing R’, we have:

CorOLLARY. The different of R’ over R is an ideal 7= (0) contained
in R'.

The different of R’ over R is denoted by @, ur by Dy g (or by Dk,
whenever it is clear from the context which rings play the role of R
and R').

In the case where R is a Dedekind domain and if one takes for R’ its
integral closure in K', R’ is also a Dedekind domain, and the different
Dg-jr may be factored into prime ideals:

(1) Dpjr = H PMD),

The exponent m(B) is called the d:ﬁ'erenttal exponent of B over R. 1Itis
positive or zero. The prime ideals % for which m(8) 0 are finite in
number. We show that the different D, ;g is determined by “local
data’’; more precisely:
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THEOREM 27. Let R be a Dedekind domain, and R’ its integral closure
in a finite algebraic separable extension K' of the quotient field K of R.
Let p be a proper prime ideal in R, M the complement of p in R, B a prime
ideal in R' lying over v, and m(®) its differential exponent. Then the dif-
JSerential exponent of BR’y, over Ry, is m('B).

PROOF. Under an ’equivalent form, our assertion is to the effect that
the different of R’y over Ry, is the ideal || ®,"®)R’),, (Where the %,

denote the prime ideals of R’ lying over p), that is, the ideal Dy zxR’ 5.
We take any element x of Dg. gR'ys: ¥ = x’[/m with x’ in D and m in M.
If 2 is an element of the complementary module of R’), (with respect to
Ry), we have T(2R'y,) € R,,; in particular, for any ' in R’, the element
T(=r') may be written in the form 7/m’, with  in R and m’ in M,
whence T'(m’'zr') = r since T(m'2r') = m'T(2r") as m’ € K. Since R’
is a finite R-module (Corollary 1 to Theorem 7 of §4), a common
denominator m’ in M may be found for all elements T'(2r’) (r' € R’),
and if m’, is such a common denominator then we have T(m',2R') C R.
Therefore m'yz is an element of the complementary module of R,
whence x'm’ ;2 € R’ since x’ € . We thus have xz = x'm’ ,z/mm’ € R'y,,
and this proves that x belongs to the different of R, over R);. In other
words, Dg;rR'y € Dgepi-,, ’

Conversely, we show that every element x of Ty, g,, is in D gR'sy
We take an element z such that T(2R’) C R, and we study zx. Since
M is contained in K, we have T(zR'y,) € Ry, and z is in the comple-
mentary module of R’),. Thus, by definition of the different Dg., /z,,»
we have zx € R'),, and there exists an element m(z) of M such that
2m(z)x € R for every z in the complementary module € of R’. Since
% is a finite R-module, we may suppose that m(z) is an element m of
M independent of 5. Then, from z(mx)€e R’ for every z in €, we
deduce that mx € Dy g, Whence x € D gR'y. Q.E.D.

Before proving an important relation between reduced ramification
indices and differential exponents, we need a useful formula about
traces:

LeEMMA 1. Let R be a Dedekind domain, K its quotient field, K' a
finite algebraic separable extension of K, and R’ the integral closure of R in
K'. Let p be a proper prime ideal in R, and {*B,} the finite family of prime
tdeals of R' lying over p. Denote by e; the reduced ramification index of
B, over v, by k the residue field R|p, by h the canonical homomorphism of R
ontok by k; the residue field R'[B;, and by h; the canonical homomorphism
of R’ onto k;. Then we have, for x in R’,
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W Tk x(x)) = Z‘—’." T nlbi(x)),

M(Ng (@) = T] (Vo a(hi())e-

PROOF. Let f(X) be the field polynomial of x, relative to K (see 1I,

§ 10, p. 87):
X)=X"+a, X1+ ---+a, n=[K:K]

Since x is integral over R and R is integrally closed in K, the coefficients
of the minimal polynomial of x over K belong to R (§ 3), and as f(X)
is a power of this minimal polynomial (see 11, § 10, relation (10)) it fol-
lows that also the a, belong to R.  Let 4; = k{a,), f(X) = X" + d,X?
+ - +d,. We have Tk x(x) = — a,, Ng x(x) = (— 1)"a,, and

hence

WTy k(x)) = — ay,

h(Ng:ix(*) = (= 1ra,.
Let f(X) be the field polynomial of h,(x), relative to %, h,(x) being
regarded as an element of k,. To prove the lemma we shall prove the
following stronger result:

X =11 170

We recall the definition of the field polynomial f(X). The mapping M:
z—2x, s € K’, of K' into itself is a K'-linear additive transformation.
If K' is regarded as a vector space over K, then M is also a linear trans-
formation of K'/K into itself, and the field polynomial f(X) is the char-
acteristic polynomial of M.

The ring R’/R’p is a vector space over the field K = R/p (of dimension
n = Je f;; see Theorem 21, §9). The transition from R’ to R'/R’p
leads from M to a k-lineai transformation M of the vector space R'/R'p,
defined as follows: if Z is the R’p residue of an element z of R’ then
M(%) = R'p-residue of M(z) (note that since x € R’, the element
M(z) = zx belongs to R’ if z belongs to R’). If & is the R’p-residue of
x then we have for any element 5 of R'/R'p: M(5) = Z=. In the proof
one may replace R by R,; when that is done, then R’ will have an
R-basis consisting precisely on n elements (Corollary 2, p. 265). If
{21 23 * * *, 2,} is an R-basis of R’, then {z,, 25, -, 3,} is a vector
basisof K'/K, and if %, denotes the R’p-residue of 2,, then{%,,Z,,- - -, £,}
is a vector basis of R'/R'p. If M(z,) = 3¢, 3, ¢, €K, then the ¢,
belong to R (since M(R') € R’ = JRz,) and we have f(X) =
|8,,X —c,|. On the other hand, we also have M(3,) = 3¢,5,,
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where E = p-residue of ¢,, (= R’p-residue of c,), and JX)=
|8,,. é¢,|. It follows that J(X) is the characteristic polynomial of
the lmear tramformatzon M, and the lemma will be proved if we show
that the characteristic polynomial of M is equal to the power product

1‘1 LX)

of the field polynomials of the elements h(x).
The vector space R'/R’p is the direct sum S, + S, + - -+ + S, of
the subspaces S; = ( ﬂ $B,;,)/R’p, and each of these subspaces S; is an

invariant space of M (smce each prime ideal ‘B, is invariant under M).
Hence if M; denotes the restriction of M to S;, then M is the direct sum
M, + M, + -4 M, of the linear transformations M;, and the
charactenstnc polynomnal of M is the product of the characteristic poly-
nomials of the M;. Hence, in order to prove our lemma, it will be
sufficient to show that the characteristic polynomial of M, is equal to the
e;~th power (f(X ))" of the field polynomial f(X) of h(x).

If % + %3+ - - - + %, is the direct decomposition of £ (£ = R’'p-
residue of x; %; € S)), then it is clear that for any %; in S; we have

‘(i) = %, (smce M(3,) = M(3,) = 3% = 3.%). We now replace
the ring S; by the canonically 1somorph1c replica L; = R'[B,4. The
canonical isomorphism @; of S; onto L, is as follows: if # = 2+ 5
+ -+ +%, (£€S,) is the R'p-residue of an element z of R’, then
®:(%;) = B i-residue of z (see II, § 13, Theorem 32, relation (14)).
Also L; is a vector space over k = R/p, and the isomorphism g; is k-
linear. We may now replace M, by the similar linear transformation
M, of L, into itself, where M’; = ¢,~1M,gp;, since M; and M’; have the
same characteristic polynomial. It is clear that M’; is the transformation
which carries every element { of R'/®,% into the element [%, where
& denotes the B,i-residue of x.

We denote by L,, the subspace B,/[B,%1, 0 <j < e¢;of L; (L;o = L;).
The L;; are invariant spaces of M’; and they form a descendmg chain:
L= L,o> Ly>--->L;, ¢-1> L;, =0. For each j, the linear
transformation M’; determines in a natural fashion a linear transforma-
tion M’;; in the factor space L;;/L; ,.,(0 £j < e;_,); M';; sends each
coset u + L; j.1(veL;)intothe coset M'(u) + L, ;,,. If wechoose
as basis of L; asetof elementsu; , (j=0,1,"--,¢,_3;¢,=1,2, -,
dim L;/L; ;,,) such that, for each J» the cosets u; . + L; ;,, forma
basis of L, /L, ;,,, and use this basis for the purpose of finding the
characteristic polynomial of M’;, we see at once that this polynomial is
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equal to the product of the characteristic polynomials of the e; linear
transformations M';o, M';y, -+, M'; , _,. We shall now complete the
proof of the lemma by showing that the characteristic polynomial of each
M’ ,; is equal to the field polynomial of k,(x).

The factor space L,,/L; ;,, is canonically isomorphic to B//B+1,
and we may identify M’; ; with the linear transformation in §,//$+!
which carries every element u of this ring into the element u%;, where #,
denotes the B, /+1-residue of x. On the other hand, the vector space
B/[BS+! (over k) is isomorphic with R’/B; and a particular iso-
morphism ¢ between these spaces is obtained as follows:

We fix an element u, in B/, not in B+, Then B+ < P41
4+ R'u, C B/, and hence B+t + R'u, = B,/ (since there are no ideals
between B,/ and %J'“) Conscquently, if ue P/, we can write
u = u'ug(mod PB7+1), u' e R, and it is clear that the element u’ is
uniquely determined mod B; by the element u. The mapping y:
P,/ +1-residue of u — B,-residue of ', is a k-linear isomorphism of
B//B7+  onto R'[B,. The ¢-transform Y= M’,;  of M’;;is the linear
transformation in R’'[/®; given by the multiplication 3’ — 2'hy(x).
Consequently, the characteristic polynomial of y~1M’;; 4, and hence
also of M’,;, is precisely the field polynomial of the element A,(x) of
the field k; = R'[%,, relative to the ground field 2 = R[p. This com-
pletes the proof of the lemma.

THEOREM 28. The notations and hypotheses being as in Theorem 27,
and e(B) denoting the reduced ramification index of B over p, we have the
mequahty m(B) 2> e(B) — 1. In this formula the equality holds if and
only if

a) e(*B) is not a multiple of the characteristic of R[p, and
b) R’[B ts separable over R[p.

PROOF. By Theorem 27 we may assume that p is the only proper
prime ideal in R. Then p is a principal ideal p = Ru, and R’ has only
a finite number of proper prime ideals $B,, all of them lying over p; we
set P = PB,, m; = m(B;). As the complementary module € of R’ is
n B,~™, the inequality m; > e¢; — 1 will be proved if we show that

H‘B 1-¢, C €. Let then z be any element in H‘.B 1-¢, AsRu= H&B ,
we have su e H%i, whence zu € B, for every i. From this conclusxon

that au belongs to all the prime ideals lying over p it follows at once that
the same conclusion remains valid if K’ is replaced by the least normal
extension of K containing K’ and su is replaced by any of its conjugates
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over K. Therefore Tx. x(3u), which is a sum of such conjugates, is an
element of p, and we have ¥7(2) = T(3u) € Ru, whence T'(2) € R. As
this is true for every element 2 of H‘.B 1-¢, we also have T'(3R') C R for.

every element 2 of H‘B 1-¢ (since H% 1-¢;isan R-module). Hence the
inclusion H!B 1~¢ C % is proved.

If a) and b) are fulfilled, there exists (by b)) an element 7 of R’'/B
whose trace in R[p is not zero. Since the ideals B (f = 2), B, are
pairwise comaximal, there exists a representative y of # in R’ such that
yeB for i > 2. Then, by Lemma 1, the p-residue of Tk. x(y) is
&(B): Tir py/rip)(¥); it is 7 0 by a) and by the choice of . Therefore
the element y/u, which belongs to B8—<®, admits a trace T'(y)/u which
isnotin R. Thus yfu¢ €, and m(B) = ¢(B) — 1.

Conversely, suppose that either a) or b) is not true. Take then any
element 3 of the fractional ideal B’ = $-«®. J] $,!-%. The element

1]

suisin P, fori ¢ 1. Then, by Lemma 1, the p-residue of the trace of zu
is &(B)- T x-/9)/(rp)(%8). Undereither hypothesis this p-residue is zero,
trivially if a) is false, by the Corollary to Theorem 20 of II, §10,
if b) is false. Hence uT(2)(= T'(u2)) is an element of the ideal Ru
(= »), and consequently T'(z) is in R. Since this holds for every
element z of the R’-module B’ it follows that 8’ C %, and consequently
m(B) 2 ¢(B). Q.E.D.

COROLLARY. The ramified prime ideals in R’ are those which divide
the diﬁ'efm QR'IR'

In fact, if P divides the different, we have m(*®8) = 1. This implies
¢(B) > 1, and thus that P is ramified, unless either a) or b)is false. In
the first case ¢(*B) is a multiple of the characteristic of R/p, and is there-
fore > 1. In the second case R’/ is inseparable over R/p, and we
made the convention to call P ramified in that case. Conversely, if
B is ramified, we have either ¢(B) > 1, or R’/B is inseparable over
R/p; in either case this implies m(B) = 1.

The ramified primes in R’ are therefore finite in number.

THEOREM 29. Let R be a Dedekind domain, K its quotient field, K’
a finite algebraic and separable extension of K, and R’ the integral closure
of Rin K'. Lety be an element of R’ such that K' = K(y), and let F(X)
be the minimal polynomial of y over K. Then the derivative F'(y) belongs
to the different Dp.p, and we have Dy g = R'F'(y) if and only if
R’ = R[y), that is, if the set {1,y,- -+, y"1} (where n = [K':K]) isa
basis of R’ over R.
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PROOF. Let z be any element of K’. As {l,y, -, y*1} is a basis
of K’ over K, we have 2 = g(y), where g(X) is a polynomial of degree
< n—1 over K, uniquely determined by 2. We denote by y;
(=1, -- -, n) the conjugates of y over K. We have the interpolation
formula of Lagrange:

@ gX) = ;z(y.-)F(X WF' (3:)X = 32).

[The right-hand side is a polynomial of degree < n — 1 since F(X)isa
multiple of X — y;. Its coefficients are in K by Galois theory, and for
X = y,, its value reduces to one term—namely, tv the result of the sub-
stitution X = y, in g(y;)F(X)/F'(y,{X — y); but an easy computation
shows that F'(y,) = J] (y; — y,), that is, that F'(y,) is the value of
¥y

the polynomial F(X)/(X — y,) for X = y,. Hence the value of the
right-hand side for X = y, is g(y,). This proves formula (2).] If we
define the trace of a polynomial coefficientwise, (2) may be written

3 8(X) = T x(zF(X)/F'(y)(X = 3))-

Take any elerent 2’ in the complementary module €, and take for z the
element 2'F'(y). By the division algorithm all the coefficients of
F(X)/(X — y) are in R’, and hence all the coefficients of g(X) are in R
by the definition of € and by the choice of 2. Thus F'(y)s' = z =
g(y)isin R'. As this is true for every 2’ in ¥, we have F’(y) € Dgp»

by definition of the different.

Suppose now that Dy, = R'F'(y). Since every fractional ideal of
the Dedekind domain R’ is invertible, we have € = R’-F'(y)~1. Thus
for every = in R, 2/F'(y) is in €. As F(X)/(X — y) is a polynomial
with coefficients in R’, formula (3) shows that the polynomial g(X') has
its coefficients in R. In other words, 2 (= g(y)) is in the R-module
generatedbyl,y, - - -,9"1, ThereforeR" =R+ Ry + - -+ + Ry~?
= R[y]).

Conversely, suppose that {1,y,---,y" 1} is a basis of R’ over R.
Since the coefficient of X*-1 in (3) is obviously T'(z/F’(y)), we have
T(3/F’'(y)) € R for every z in R’, for in that case z = g(y), where g(X)
is a polynomial with coefficients in R. In other words, 1/F'(y) belongs
to the complementary module €. Since F’(y) is in the different D, it
is a common denominator for the elements of €. Therefore
€ = (1/F'(y))R' and D = F'(y)R'. Q.E.D.

[REMARK : DIFFERENT AND CONDUCTOR. Let R be an integrally closed
domain, K its quotient field, K’ a finite algebraic and separable exten-
sion of K, R’ an overring of R integral over R and having X' as quotient
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field, and R” the integral closure of R in K'. Every element z of R” is
contained in the oomplememary module €. g, since for any element
x in R’ we have that 2x is mtegral over R and hence T(2x)e R. We
therefore have Dy, z- R" C R’; in other words, the different of R’ over R
is contained in the conductor F of the integral closure of R'. In particular,
& is £ (0) in this case since the different of R’ over R is 3£ (0) (Theorem
26, Corollary). The first part of the proof of Theorem 29 is applicable
also to the case in which R is not a Dedekind domain (but is integrally
closed) and shows that F’(y) belongs to &.

On the other hand, since T(2R") C R implies T(zR’) C R, we have
€r-ir © €rr- Hence, by the definition of the different, we have
Dpjr © Dp-jr- It may be pointed out that in spite of the fact that the
different Dg. p is contained in the conductor § it need not be an
ideal in R".]

Again let R be a Dedekind domain, K its quotient field, K’ a finite
algebraic and separable extension of K, and R’ the integral closure of R
in K’. For every proper prime ideal 8 in R’ we denote by f(%), e(*B),
and m(P) its relative degree, its reduced ramification index, and its
differential exponent. Given an ideal % of R’, we factor it:

A= Hs,]snw)
The ideal a = H(‘B NRY"®AB), whnch is defined since there is only a

finite number of exponents #(*B) which are different from zero, is called
the norm of A (with respect to R) and is denoted by N x(%), or simply
by N(¥).
We have the following formulae:
(5) N(u-8) = N(%)-N(B); if %A C B then N(%) C N(B).
(6) A7K'IK(NK'IK'(QI')) = NK.,K(?() if K c K, (o K’o
@ Nk x(R'a) = a" (a-ideal of R, n = [K':K]).
In fact, (5) is evident. Formula (6) follows from the multiplicativity of

the relative degrees. Finally, it suffices to prove (7) for a prime ideal
p of R; in this case we have R'p = [[B*™, and (7) follows from the
B

formula S¢(8)f(B) = n (Corollary to Theorem 21 of § 9).

Lemma 2. For x in R', we have N(R'x) = R-N(x).

PROOF. We first suppose that K’ is normal over K. We write
R'x = J[B»®®). Let G denote the Galois group of K’ over K. We

have o(P; N(x)) = %v(ﬁs; s(x)) = %v(s-l(sls); x). Denoting by
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%, - - -, B, the distinct conjugates of P (that is, the prime ideals of R’
lying over B NR), each %, occurs e(B)f(*B) times among the s—1(R)
(Theorem 22, §9). Thus o(B; N(x)) = e(!B)f(‘.B)(Zv(‘.B,-; x)) If we

t

denote by p the ideal 8 N R, the exponent v(p; N(x)) in the factoriza-
tion of R-N(x) is therefore > o(®B; x)f(B); and the exponent of p in
PNR=p

N(R’x) is the same integer, by definition. This proves our assertion in
the normal case.

In the general case, we introduce the least normal extension K” of K
containing K’, and the integral closure R” of R (or R) in K*. Since K"
is normal over both K and K’, we have, for any x in R", Ng. x(R"x) =
R-Ng. k(%) and Ng. x.(R'x) = R'Ng-/.(x). If we take x in R’, we
have (R'x)? = Ng-x(R’x), where ¢=[K":K'], by (7). Then
(Ng/x(R'%))* = Ng. x(R'x9)  (by (5)) = Ng:x(Ng-ix:(R"%)) =
Ngnx(R'x)  (by (6)) = R-Ngvx(*) = R-Ng:x(Ngeix(%)) =
RNy x(%%) = (R-Ng: x(x))? (1I, §10). Comparing the extreme
terms of these equalities, we conclude that Ny. x(R'x) = R-Ng. x(x)
by the unique factorization of ideals in R.

LEMMA 3. The ideal N() is generated by the norms of the elements
of .

PROOF. By Lemma 2, and formula (5), we have, for any @ in %,
R-N(a) = N(R'a) C N(%). 1t remains to show, for every prime ideal
p in R, the existence of an element a of % such that the exponent of p
in the factorization of R- N(a) is equal to the exponent of p in N(%). If
¥ = []B~®, the exponent of p in N(A) is > f(B)n(B). By the

B PBNR=p

Chinese remainder theorem (Theorem 17, § 7), there exists an element
a of A which does not lie in any R®+1 for P lying over p: in fact, for
every B which lies over p there exists an element xg in % which does
not lie in PnM+1, and the congruences x = xq (mod P M+1) (for
PNR=1p) and x = 0 (mod A) are obviously pairwise compatible.
Thus the exponent of B in R’a is n(B) for P lying over p, whence the
exponent of p in R-N(a)is > f(¥)n(®) by Lemma 2. Q.E.D.
PNR=p

With the same hypotheses and notations, the norm of the different
Dg g is an ideal in R. It is called the discriminant of R’ over R, and is
denoted by bg. g or simply by b. The exponent of p in b is

> Jf(B)m(B). By the Corollary to Theorem 28 the prime ideals p
PAR=p

of R which *“ramify in R'*’ (that is, those for which there exists a rami-
fied prime ideal B in R’ such that 8 NR = p) are those which con-
tain the discriminant by, 5; their number is therefore finite. The dis-
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criminant bg.  is closely related to the discriminants of the bases of X’
over K (1II, § 11); more precisely:

THeoREM 30. For any basis {u,, - - - , u,} of K’ over K which is con-
tained in R', the element d(u), discriminant of the basis {u,, - - -, u,}, is
contained in the ideal by, g, discriminant of R’ over R. The ideal by p
is generated by the elements d(u). In order that bg. g = R-d(u), it is
necessary and sufficient that {u,, - - - , u,} be a basis of R’ over R.

PROOF. By definition of the discriminant, and by the analogous
property of the different, the discriminant is determined by local data.
More precisely, if we denote by M the complement of a prime ideal p
in R, then the discriminant b,, of R’y, over R, is bRy, In particular,
the exponents of p in b and of pR, in b, are both equal to

S f(Bym(®).
PBNR=

»
Since R,, is a PID, R’y, admits a basis {«,, - - -, u,} over R, (Corol-
lary 2 to Theorem 7, § 4). We consider n elements v,, - - -, v, of K’,
and the equations T'(x,v,) = §;; (5;; being the Kronecker symbols) If
we set v, = Za U, (a;, € K), this system of equations becomes

Za,,T(u u,) = 8, ;» and for fixed j we get n linear equations between

the nelements a;,. Since K’ is separable, the determinant det (T(u,u,))
of this system ls ;é 0, (II, § 11) and the above system admits one and
only one solution {a;} in K. In other words, there exists one and only
one system of elements v,, - - -, v, of K’ which satisfies the relations
T(uw,;) = 8;;. Weshow thatif {u,, - - -, u,} is a basis of R'j; over R,,,
then {v,, - - -, v,} is a basis of the complementary module €), of R'y,. In
fact, we have ZT(u,uJ)v, z T(um,)a;u, = 28,,14, =u, In

particular, {v,,-- -, v,,} is a basls of K’ over K. For an element
z= Za,-v ; (a; € K) to belong to €, it is necessary and sufficient that

T(zx)IE Ry, for every x in R'y,, that is, that T((Za v-) . (Zbu)) € Ry,

forallsystems {5,, - - ,,} of n elementsof Ry,. Butsince T'(u,v;) = §,,,
this condition may be written Za ; € Ry, for every system {b,, - - - ,b,}

of n elements of Ry. If we take b, =1 and b;. = 0 for j' 3 j, this
condition implies that a; € Ry,; and conversely, if a, € R, for every j,
then our condition is obviously verified. This proves that {¢,, - - - ,v,}
is a basis of €,,.

We now notice two simple facts, which will be useful later in the
proof:

(a) If {u'y, - - -, 'y} and {u"y, - - -, "} are two bases of K' over K
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such that every #”; is in the R-module (or R),~-module) generated by the
«’; then the relation d(1") € R-d(v’) [or d(u") € Rpd(u’)] holds between
their discriminants. This is an immediate consequence of formula (2)
in II, § 11, relating the discriminants of two bases of K’ over K.

(b) In particular if the above two bases generate the same R-module
(or Rj-module), the quotient d(x')/d(x") is a unit in R (or in Ry)—
that is, d(u’) and d(u") generate the same principal fractionary ideal.

This being so, the complementary module %, is a principal fraction-
ary ideal, since Ry, is a PID. If we set €,, = R'yy, then {yu,,

-+, yu,} is a basis of €,, over R,;. Using the expression of the dis-
criminant of a basis as the square of a determinant, given in II, § 11,
formula (5), the discriminant of this basis is (N(y))?d(¥). Thus,
by (b), (N(y))%d(#)/d(v) is a unit in R,,. But the above proved
formula u; = > T(uu;)v; shows (formula (2), II, §11) that d(u) =

J
(det (T'(u;u;)))*d(v)—that is, that d(u)d(v) = 1, since det (T'(uu;)) =
d(u). Hence (N(y)d(u))? is a unit in R,,, whence also N(y)d(u) is a
unit in R,,, By Lemma 3 and the definition of the discriminant,
N(y)~! generates b,,. Thus by, = Ryd(u).

Now let {#'y, - - -, 4} be a basis of K’ over K composed of elements
of R’. By (a), its discriminant d(«’) is an R,,-multiple of d(x), whence
d(u') € by, for every prime ideal p. Thus the exponent of p in Rd(u’)
is at least equal to the exponent of p in b. This proves that d(x’) € b.

The basis {u,, - - -, u,} of Ry, over R), may be chosen, after multi-
plication by a unit in Ry, in such a way that »; € R’ for every i. If we
take one such basis for every p, the discriminants of these bases generate
anideal bin R. Itis contained in b as we just saw. On the other hand,
the exponent of p in b is at most equal to the exponent of p in Rd(u),
that is, to the exponent of p in b. Therefore b = b, and our second
assertion is proved.

Suppose that we have a basis {ul, +++,u}of R"over R. Thenitisa
basis of R’,, over R,,, and we have R,d(u) = b,, as has been proved
above. Since this holds for every prime ideal p, we conclude that
R-d(u) = b.

Suppose conversely that we have a basis {u’,, - - -, #',} of K’ over K,
which is contained in R’, and such that R.d(¥’) =b. Then, if
{uy, - - - u,} is a basis of R’M over Ry, the elements d(u) and d(u’')
generate the same ideal b,, in Ry,. If we set u'; = Za, ;4; (a;; € Ryy),

the formula d(x') = (det (a; )*d(u) (11, § 11 (2)) shows that (det (a; ,))’
is a unit in R, Thus det (g,;) is also a unit in Ry, and Cramer’s
formulae show that every u; belongs to the Ry,-module generated by the
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’

;. In other words, {#';,---,u'} is also a basis of R’y over R,,.
Since this holds for every prime ideal p, {¥'y, - - -, #',} is a basis of R’
over R: in fact, if, for #in R’, we write x = Da.u’;, we have a; € R,, for

every p since x € R’),; thus the exponent of p in a;R is > O for every p,
and this proves that a; € R. The proof of Theorem 30 is now complete.

REMARKS

1) Suppose that {u,, - - -, u,} is a basis of R’ over R. Then it is a
basis of R'y, over R,, for every p; and hence the basis {v,, - -, v,}
of K’ over K constructed in the proof of Theorem 30 is a basis of the
complementary module €,, of R’,, for every p. As the complementary
module € is determined by local data, we see, as at the end of the proof
of Theorem 30, that {v,, - - -, v,} is a basis of € over R.

2) The assumption of separability in Theorem 30—that is, the
assumption that det (7'(x,u;)) 7 0 for every basis of K’ over K—means
that the bilinear form T'(xy) on K’ considered as a vector space over K,
is non-degenerate. It establishes therefore a duality between the vector
space K’ and itself, that is, an isomorphism beiween K’ and its dual
vector space. The basis {v,,-:-,v,} constructed in the proof of
Theorem 30 is the dual basis of the basis {,, - - - , u,}. .

3) The discriminant d of a basis {1, y, - - -, y"~1} (y: primitive ele-
ment of K’ over K)) is N(F’(y)), where F is the minimal polynomial of y
over K: this follows from formula (6) of II, § 11, which gives, by expan-
sion of the Vandermonde determinant,

d= g(y;—y;)=N((yx—ya)---(yl—y..))=

N(F'(yy)) = N(F'())-
This establishes a link between Theorems 29 and 30.

THEOREM 31 (TRANSITIVITY FORMULAE). Let R be a Dedekind
domain, K' and K" two finite algebraic and separable extensions of the
quotient field K of R, such that K' C K", and R’ and R" the integral
closures of R in K’ and K". Then we have:

C‘DR"/R = "DR-/R'(R":DR'/R)- bn'/n = NK‘IK(bR'IR')'(bR’/R)[K':K’]'

PROOF. We first prove the formula for the differents, or rather, the
formula relating their inverses—that is, the complementary modules:
€rir = €pip - (R™€g ). For z in R" the following relations are
equivalent: 3z€%pn Txx(3R")CR, Tg x(Tk-x(3R")) C R,
Ty x(Tx-;x-(3R")-R') C R (if one multiplies an element of K" by
x€R', its trace Tg.x is multiplied by x), Tx-x(3R") C €5 n,
(¥r A" Ti-ix(3R") = Dgr * Tx-ix(3R") = Txoix(3 - DgirR")
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CR, 3Dp g C€pp>-2€€pp-€pyp. Thus the formula for the
different is proved. For getting the formula for discriminants, we take
the norm N. . of both sides in the formula for the differents. We get
bprr = Niwx(Drep(R"Drr)) = Ng-ix(Dreir) - Ng-ix(R"Dpejr)
[formula (5)] = Ny x(bg-r): Nijx (N (R"®rj5)) [formula (6)]
= Ngk(®rr’) Nk k(g p)") [by formula (7)] = Ny x(bper):
(bgjr)" where n = [K":K’], by formula (5). Q.E.D.

In the case of a normal and separable extension K’ of K, the differential
exponent m(B) of a prime ideal B of R’ may be computed if one knows
the orders of the ramification groups of B. As in § 10 we denote by
Gz, Gr, Gy, the decomposition, inertia, and /-th ramification groups
(Gy, = Gy) and by K3, Ky, K, the corresponding subfields of K'; let
n; be the degree |[K':K], that is, the order of G,. We suppose that
R'|'B is separable over R[p (p=RNP). Then [K;:K]=g¢g,
[K;:Kz] = f, [K':K;] = e = n,. For any two extensions L, L’ of K
such that KC L C L' C K’, we denote by m(L’, L) the differential ex-
ponent over L of the prime ideal 8, +, which is the contraction of B in the
integral closure R;. of R in L'.

For any 7 > 1, the residue field Rg [$y, is equal to R'/, and % is
the only prime ideal in R’ lying over 8y, (Corollary to Theorem 24,
§10). By “localization”” we may suppose that Rx, has only one prime
ideal Kp which is then principal ; then  is the only prime ideal of R’;
it is a principal ideal, say $ = R’u; we have R"By, = B". For any x
in K’, we denote by v(x) the exponent of = R'u in the factorization of
R'x. We assert that {1, «, - - -, w1} constitutes a basis of R’ over RK...
This is a consequence of the following lemma:

LEMMA 4. Let R be a discrete valuation ring, and R’ the integral
closure of R in a finite algebraic and separable extension K’ of the quotient
field K of R.  We suppose that the prime ideal p of R is completely ramified
in R', that is, that there is only one prime ideal ® of R’ lying over p, and
that R'[® = R[vp. Then, if u denotes a generator of B and n the degree of
K’ over K, {1,u, - - -, u=} is a basis of R’ over R.

PROOF. By Corollary to Theorem 21 of §9, we have R'p = P~
Since % is the only prime ideal of R’,  is actually a principal ideal R'u
(Theorem 15 of § 6). For any x in K’, we denote by ¢(x) the exponent
of ¥ in R'x. Then if ais in K| v(a) is a multiple of # since, if we denote
by s the exponent of p in Ra, we have R'a = R'p* = $™. In order to
prove that the elements {1, «, - - -, ¥"~1} form a basis of R’ over R, we
first prove that they are linearly independent. In fact, if we have a non-
trivial linear relation 0 =ay+ au + --- + a,_ u"~Ya;€ K) the
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integers v(a;u’) = j + v(a;) are all distinct, since the integers v(a;) are
multiples of n. Thus, Af v(a,u?) = 7 is the smallest one, the sum of the
other terms is in P$7+1, in contradiction with the fact that it is equal to
— aut. Therefore {1, 4, - - -, u"=1} is a basis of K’ over K. For any

n—
xin R’ we write x = > b/ with b, in K. As above the integers
ju 1

7
v(bu’) are all distinct. Thus, if 7 denotes the smallest one, the sum
ijw' isin B~ but not in Pr+1. Since x is in R’, we have r > 0, whence

J

J+vb) =vbu)2>20forj=1,---,n— 1. As the integers v(b))
are multiples of n, this implies v(b;) 2> 0, whence ;€ R. This proves
the lemma.

We may thus use Theorem 29 for computing the different of R’ over
Ry, :itistheideal R'F’(u). But F'(u) = [](» — u;) where the u, are the
conjugates of u which are distinct from u. As K’ is a normal and
separable extension of K; with G, as Galois group we have
F'(uy= T[ (u— s(u)). Thus the differential exponent m(K’, K;) js

.\‘EGV'.!#I
equal to > o(u — s(u)). Therefore we have
lEGVl.t#l
m(K', K;_)) — m(K', K,) = > o(u— s(u)).

ssGV‘_ . sEGy f
But, since R’['8 is separable over R[b, we have seen in the proof of
Theorem 25, § 10, that, for an element s of G, | which is not in G, ,
we have v(u — s(v)) =i — 1. Therefore m(K', K;_,) — m(K',K,) =
(f — 1)(m;_, — n,). But the transitivity formula for the differents
(Theorem 31) shows, by repeated applications, that we have
mK', Kp)=(ny—ng) + 2(ng — ng) + - - - +j(n; —mj)) + -+,
the sum having only a finite number of non-zero terms, since n; = 1—
that is, Gy, = (1)—for j large enough. Furthermore the prime ideal
p of R does not ramify in the inertia field K, (Corollary to Theorem 24).
Hence the differential exponent m(K;, K) is equal to 0 by Theorem 28.
Therefore the transitivity formula for the differents gives the following
relation, called Hilbert’s formula:
(8) m(K', K) = m(®) = ny — ny + 2(ny — ny)
+ oy —n)+ e

We can now compute the exponent of p in the discriminant bg. g, As

seen before, this exponent ism; S(B)m(B). But the prime ideals P
-p

of R’ lying over p are the conjugates of one of them; therefore all their
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differential exponents m(%) are equal, and so are their relative degrees
J(B). Since there are g = nfef (e = n,) of them, the exponent of p
in bg. g is gf -m(B) = ne='m(B), and therefore:

9 nnN iy —n)+2ng— )+ - Hjlnj— i)+ 0)

§ 12. Application to quadratic fields and cyclotomic fields.
A quadratic field K is an extension of degree 2 of the rational number
field Q. The classroom solution of the quadratic equation shows that
it is generated over () by the square root of a rational number. Multi-
plying (or dividing) this rational number by the square of a suitable
integer, we may assume that it is a ‘ square-free” integer m, that is, an
integer m without square factors. Let K = ((e) where ¢2 = m. Any
element x of K is of the form x = a + be withaand bin Q. The map-
ping a@ + be — a — be is an automorphism of K over Q. Thus K is a
normal extension of Q (with a cyclic group of order 2 as Galois group).
For x = « + be to be an algebraic integer, it is necessary and sufficient
that its trace 2z and its norm a? — mb? be ordinary integers. This im-
plies that @ = 34’ (@’ an integer) and that (2b)%m is an integer. As m
is square-free, 2b must be an integer, whence b = }b' where b’ is an
integer. Our condition now reduces to @’ — mb’? = 0 (mod 4). 1f m
is congruent to 2 or to 3 modulo 4, a simple examination of cases shows
that our condition is satisfied if and only if a’ and 4’ are both even. If m
is congruent to 1 modulo 4, then it is easily verified that our condition is
satisfied if and only if a’ and &' are either both even or both odd. Note
that m cannot be = 0 (mod 4) as it is square-free. To summarize: the
ring R of algebraic integers has the following bases over the ring J of
rational integers:

m = 2 or 3 (mod 4): {1, e} is a basis;

m = 1 (mod 4): {1, }(1 + e)} s a basis.
By Theorems 29 and 30 the different and the discriminant of R over ]
are the ideals:

m = 2 or 3 (mod 4): different = 2¢R, discriminant = 4m]

m = 1 (mod 4): different = eR, discriminant = m].

Extending the terminology introduced for the gaussian integers

(§9, p. 288), we first see that the ramified prime numbers p are those
which divide the discriminant. In particular, the prime 2 is always

ramified if m = 2 or 3 (mod 4), and in no other case.
Among the unramified odd primes, some are decomposed and some
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are inertial.  As in the case of gaussian integers, we see that p is decom-
posed if m is a square modulo p, and inertial if m is not a square modulo

p- We introduce the Legendre symbol (3;;) for every integer s which is

not a multiple of p: by definition it is + 1 if the p-residue of s is a square
in J/(p), and — 1 if the p-residue of s is not a square in J/(p). As the
multiplicative group of J/(p) is a cyclic group of order p — 1 (IL, §9),

the relation (%) = 1 is equivalent to si®-1) = 1 (mod p), and the rela-

tion (%) = —1to ¢~V = — 1 (mod p). It follows that (;-)) (i) =

?
&)

It remains to investigate, in the case where 2 is unramified—that is,
in the case m = 1 (mod 4)—whether the prime 2 is inertial or decom-
posed. Since {1, }(1 + ¢)} is a basis of R over ], the residues modulo
2R of these elements form a basis of R/2R over J/(2). As the minimal
polynomial of §(1 + ¢) over Q is X* — X — (m — 1)/4, we have to
investigate whether this polynomial is irreducible or not over J/(2). It
is clear that it is reducible over J/(2) if and only if (m — 1)/4 is even.

We can now state our results:

THEOREM 32. In the quadratic field K = Q(V'm) (m, a square-free
integer),

a) the ramified primes are the odd prime divisors of m, and also 2 if

m = 2 or 3 (mod 4);
b) the inertial primes are the odd primes p which do not divide m and

whkharesuchthat(%)=—l,undalsoZa)‘m£5(modS);
c) the decomposed primes are the odd primes p which do not divide m
and which are such that (g) =1, and also 2 if m = 1 (mod 8).

One usually sets (%) =1lifm=1, 7 (mod 8), and ('-;—‘) = —1if

m= 3,5 (mod 8). In other words, for an odd m, we have (%) =

— 1)m=1)8,

( WZ now study, for an odd prime p, the cyclotomic field of the p-th
roots of unity, that is, the splitting field of the polynomial Z# — 1 over
the field Q of rational numbers. The roots of this polynomial form a
group under multiplication, of prime order p. Hence if 3 is any root
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of Z# — 1, other than 1, then the other roots of Z#-1 will be then
22,33 .., 2#-1 and 2#» = 1. Therefore the cyclotomic field of p-th
roots of unity is the simple extension Q(z) of Q. For computing the
degree [((2): O], we first notice that 2, 22, - - -, 22— are the roots of the
polynomial F(Z) = Z?-1 4 --- 4+ Z + 1, whence we have F(Z) =
(Z—3)(Z—2%:--(Z—21). Let R be the ring of algebraic
integers in Q(z); we have ze R’. Forr=2,3,---,p — 1, the ele-
ment (1 — 27)/(1 — 2)isin R', sinceitisequalto 1 4+ 2 4 - - - 4 27—1,
Its inverse (1 — 2)/(1 — 2) is also in R’, for if we denote by 7’ an integer
such that 7' = 1 (mod p), we have 2 = (2"}, whence (1 — 2)/(1 — 2%)
=142 42+ -4 2=V, Therefore (1 —2)/(1—2) is a
unit in R’. This being so, the formula p = F(1) = (1 — 2)(1 — 2?)
++ - (1 — 2?=1) shows that the ideal R'p is equalto R'(1 — 2)*~1. The
formula Je;f; = [Q(2): Q] (Corollary to Theorem 21 of § 9) about the
decomposition of R’p in R’ thus shows that p — 1 < [Q(2):0]. As 2z
is a root of the polynomial F(Z) of degreep — 1, the degree [Q(2): Q] is
exactly p — 1. Hence the polynomial F(Z) = Z¢~1 4 --- + Z 4 1is
trreductble. Also the formulae ¢(p)f(p)g(p) = p — 1 (§ 9, Theorem 22)
and R'p = R'(1 — z)»~! show that e(p)=p — 1, f(p)=g(p)=1
(one says then that p is *‘ completely ramified” in R’) and that R'(1 — z)
is a prime ideal.

Since Q(z) is a normal extension of degree p — 1 of Q, there are
p — 1 conjugates of = over O, and these conjugates are obviously
3, 3% ---,3*~Y The Galois group of Q(z) over Q, whose elementss;
are defined by s,(z) =3/ for j=1,---,p — 1 and obviously satisfy
the relations s,5; = s, if k = ij (mod p), is therefore isomorphic to the
multiplicative group of J/(p); hence it is a cyclic group of order p — 1.

Let us now compute the discriminant of R' over J. We have
(Z — 1)F(Z) = Z?» — 1 and hence F'(z) = p=t~1)(z — 1). Aszisin
R’, this number ps#-1/(z — 1) is contained in the different of R’ over J
(Theorem 29). As the minimal polynomial of 2z — 1 over QO is
(X+ 1)1 4.4+ (X+ 1)+ 1, the norm N(z— 1) is p; since
N(2) = 1, we have N(F'(z)) = p?=1/p = p»~2. Thus the discriminant
of R’ over J divides p#—2, and p is the only prime number which may
ramify in R’. On the other hand we have seen that p is ““ completely
ramified” in R’, and that R'(1 — 2) is the unique prime divisor of
R'p in R'. Then Lemma 4 (§11) shows that the powers (1 — 2)/
G=0,1,---,p — 2), whence also the powers 3/, form a basis of
R’ g (1—qy Over [,,. Thus, by Theorem 30, the discriminantof R'p.(;_,,
over J, is the discriminant of this basis, that is, p#~3, as has already been
computed. . Therefore, since p is the only prime number which rami-
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fies in R', p?—2 is also the discriminant of R’ over J; and {1, 3, - - - , 3*~%}
is an integral basis of R’ (Theorem 30).

Since p is odd, the Galois group of Q(z), which is a cyclic group of
order p — 1, contains one and only one subgroup of index 2. To this
subgroup corresponds a quadratic subfield K of ()(z), uniquely deter-
mined by p. By the transistivity formula for discriminants (Theorem
31), the discriminant of the ring R of algebraic integers of K over J
divides p#—2. Then the formulae for the discriminant of a quadratic
field imply that K = Q(V/p) if p =1 (mod 4) and K = Q(V — p) if
p =3 (mod 4). At any rate the discriminant of R over ] is p.

We now study the decomposition of a prime q 7 p in Q(z). Let g be
the number of its prime factors, and f their common relative degree
(Theorem 22 of § 9). We have fg = p — 1, as ¢ is unramified. If ©
is any prime ideal of R’ lying over (¢), then R’/® is obtained by adjoining
to J/(g) the p-th roots of unity. This implies that f is the smallest
positive integer for which ¢/ = 1 (mod p): in fact if a p-th root 2 of unity
belongs to the field with ¢/ elements, we have #¢/-! = 1, whence p
divides ¢f — 1; conversely, if ¢/’ = 1 (mod p) for f’ < f, any p-th root
£ of unity (over J/(q)) satisfies #¢/"~1 = 1, hence belongs to the field with
¢/" elements. 'The decomposition field L of g is of degree g = (p — 1)/f
over Q. Since Q(2) is an abelian extension of Q, all prime ideals of R’
lying over (g) have the same decomposition group and the same decom-
position field; we can thus talk of the decomposition group and the
decomposition field of (g), or of g, by a remark made in the beginning
of § 10. As the quadratic field K has only Q as proper subfield, we have
either KNL = Q,or KNL = K, thatis, KCL. If gisinertial in K,
then K cannot be contained in L, as is easily seen by examining the
residue fields; thus KN L = Qin this case. Converselyif KNL = Q,
then the compositum L(K) is a quadratic extension of L; if £ is a prime
ideal of L lying over (g), then £ is inertial in L(K) since it can be neither
decomposed nor ramified (Theorem 24, § 10); if we denote by Q' the
only prime ideal of L(K) lying over £, by £" the prime ideal ©' N K,
and by &, &, k', k" the residue fields corresponding to the prime ideals
(9), &, &, Q°, then k = k,, [k':k] = 2, and &’ is the compositum of &
and &”; therefore k" = k', and ¢ is inertial in K. If the prime ¢ is
decomposed into two prime ideals q’, q” in the quadratic field K, ¢’
and q” are conjugate over Q; thus they decompose into the same num-
ber of prime ideals in Q(2), and the number g must be even. Con-
versely, if g is even, the decomposition group of ¢ is a subgroup of
even index in the cyclic Galois group G of (X(3) over Q; therefore it
must be contained in the unique subgroup of index 2 of G; in other
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words the decomposition field L contains the quadratic field K, and
the prime ¢ is decomposed in K.

We now compare these results with those given in Theorem 32. In
the notation of this theorem, we have m = (— 1){¢-2p, If g is decom-
— 1)ie-b
(f__llq___ﬁ) = 1; on the other hand g is even,

whence ¢i?—1 = (¢/)# = 1 (mod p), and therefore (%) =1 as has

been seen just after the definition of Legendre’s symbol. If ¢ is
(- 1)&(»—1)1,)

=

odd and p — 1 even, f mustbe even, whence gt*—V = (gi/)s, but by the

above given characterization of f, we have ¢/ = — 1 (mod p), whence

¢i*-V) = — 1 (mod p) since g is odd, and (%) = —1. We have

posed in K, we have

inertial in K, then = — 1; on the other hand, since g is

now almost proved the following theorem:
THeoreM 33 (“ QuabraTic ReciprocITY LAW ™).  If p and g are dis-
tinct odd primes, we have

(%’) . (_g) = (— 1)ie-DiG-1),

If p is an odd prime, we have (125) = (— 1)e*-1i8,
PROOF. Just before stating Theorem 33, we saw that

(5)- (=)

for any prime ¢ and any odd prime p. Hence

@6 - Q= - (=775 - (=)
If ¢ is also odd, we get by permutation of p and g,
@6 - =)

Taking p = 3, and comparing these equalities, we get

(:q—l) - ((- 1?;(:-1)) _ (%!)i(c-l) v
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Therefore

(B)(2) = (F222) = (59" = - oo,

and our first formula is proved.
On the other hand, for ¢ = 2, we have

- =)

Since, by definition, (g) = (— 1)"-1/8 for any odd number m, and

since m = (— 1)}¢-1 p in the case which now interests us, we have
m? — 1 = p? — 1, whence (%) = (— I)e*-28, Q.E.D.

§13. A theorem of Kummer. In the last section, we have seen
that, both in the quadratic and in some cyclotomic fields, the rings of
algebraic integers admit integral bases of the form {1, y, - - -, "~} over
the ring J of rational integers. We have also been able to get useful
information about the decomposition of prime numbers in these fields.
We shall now prove a theorem which shows how some information about
the decomposition of prime ideals may be derived from the existence of
an integral basis of the above-mentioned type:

THeOREM 34 (KUMMER). Let R be an integrally closed domain, K
its quotient field, K' a finite algebraic extension of K, R’ the integral
closure of R in K'. We suppose that there exists an element y of R’ such
that R =R+ Ry + - - - + Ry*! (n = [K":K]) (¥ is then a primitive
element of K’ over K). Let F(Y) be the minimal polynomial of y over
K. (F(Y) has its coefficients in R, by Theorem 4 of §3.) Let p be a
maximal ideal in R; for every polynomial G(X) over R, we denote by
G(X) the polynomial over R[p whose coeﬁicients are the p-residues of the

corresponding coefficients of G. Let F(X) = II (f{X))) be the fac-

torization of F(X) into distinct trreducible factors f{X) over R[v; for
i=1,- ,gwedmotebyF(X)apolynomzaloverRmhthatF(X)
[{X). Then the ring R’ has exactly g maximal ideals B ; which lie over p,
and we have
B, = R'p + RF(y).
Furthermore we have
Rp=0,N0, N0, =0, 0, -0,

where ©; = R'p + R'-(F{3)}.
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PROOF. We denote .by & the field R[p. We consider the homo-

morphisms
R[X] — K[ X] — kX]/(f(X))

(the first homomorphism being defined by G(X) — G(X)). The kernel
of the composite homomorphism is (pR[X], F,(X)) and obviously con-
tains F(X). By passage to residue class rings, we have thus defined a
homomorphism %; of R’ = R[y]= R[X]/F(X) onto the ring
k[X]/(f{X)), this ring being a field, since f(X) is irreducible over k.
The kernel B; of A, is therefore a maximal ideal of R’. As B, contains
p, and as p is maximal, we have B, NR = p. Since the g irreducible
polynomials f(X) are distinct, the tields X[.X]/(f,(X)) are also distinct,
and so are the g maximal ideals B;, The kernel B, is clearly
equal to R'p + F(y)R'.

When the coefficients of the product of the g polynomials (F(X))«"
are reduced modulo p, the resulting polynomial is equal to F(X).
Since F(y) = 0, it follows that the product of the 4 elements (F,(y)):®
belongs to R’p. Hence the product £, -8, - - -0, is contained in
R'p,if weset ©; = R'p + R'-(F(y))*®®. On the other hand the inter-
section £, N---NO, contains R'p. In order to prove our second
assertion, it will be sufficient to show that the intersection and the pro-
duct of the O, coincide, and for this it suffices to prove that ©; and &;
are comaximal for 7 3 j. But in this case we have an identity of the
form a(X)(fAX))® + a(X)f(X))) =1, where a,(X) and a(X)
are polynomials over 2 Hence if 4,(X) and 4,(X) are polynomials
over R such that 4(X) = a(X) and 4(X) = a;(X), then

ANFL)D + A NFy)y
is congruent to 1 modulo R'p. But this is an element of D; + Q.
As R'p is contained in Q; + £, this proves that O, + 0, = R’, and
consequently our second assertion is proved.

Every maximal ideal 8 of R’ which contracts to p contains R’p. Thus
it must contain one of the ideals £, But, since P, C 0, P must
also contain ;. As the B; are maximal ideals, 8 must be one of them.
This completes the proof of Theorem 34.

EXAMPLES.

1) Case of a Dedekind ring. The degree f(i) of f(X) is obviously
the relative degree of ;. Since B C Q,, we have &(s) > ¢'(7), where
€'(¢) is the reduced ramification index of %,. But as R’ is a finite
R-module, we have >¢'(i)f({) = = (Theorem 21 of § 9); since we
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obviously have Ze(i)f(i) = n, we conclude that e() is the reduced

ramification index of B

2) Caseof a quadratzc field Q(\/t—n) (m = 2 or 3 (mod 4)). We know
that {1, e} (2 = m) is an integral basis of this field. Hence F(X) =
X2 — m, and we have to study its decomposition in J/(p) (p: prime).
The only cases in which it is a square are p = 2 (since J /(2) is perfect),
and p/m. In the other cases (p an odd prime, pim), the polynomial
X% — m factors into two distinct factors over J /(p) or is irreducible over
J[(?), according as m is or is not a square modulo p.

3) Case of a quadratic field Q(v/m) (m = 1 (mod 4)). We know that
{1, (1 4+ ¢)} (2 =m) is an integral basis for this field. Hence
FX)=X*—X—(m—1)4 For F(X) to be a square in
(J/(p)[X] it is necessary and sufficient that the only root s of its
derivative F'(X) = 2X — 1 be a root of f(X); this implies p 7 2, and,
in this case, we must have 4F(s) =2(25)—(m — 1)= —m =0,
whence p |m; in other words the ramified primes are those which divide
m. Given any other prime p, for deciding whether it is inertial or de-
composed, we have to decide whether the polynomial X% — X
—(m — 1)/4 is or is not irreducible over J/(p). Incase p =2 it is
irreducible if and only if (m — 1)/4 is even. If p is odd, the classroom
method for solving quadratic equations reduces the question about the
irreducibility of X% — X — (m — 1)/4 to the same question about
Z* — m. Thus p is inertial if and only if m is a square modulo p.

4) Case of a cyclotomic field Q(z) (3* =1, 2 % 1). To make the
method more elementary, we shall prove that {1, z, - - -, 22~} is an in-
tegral basis without using the theory of differents and discriminants.
We set F(Z)=2r1+ -+ Z+1=(Z—=23) - (Z — 2¢7Y).
We first see that p = F(1) is a multiple of (1 — 2) in the ring R’ of
integers of Q(3), and is equal to N(1 — 2). Thus (1 — 2) cannot be a
unit in R’, and R'(1 — 2) contracts to (p) in J. Now, if xeR’,
T(z —1)x) = (z — D)x + (22 — D)xp+ - - - +(2#~? — 1)x,_, (where
x; is the conjugate of x defined by s; (x) = x,, 5; being the auto-
morphism of Q(z) defined by s(z) = 2‘) belongs to R'(z — 1)NJ,
and is therefore a multiple of p. Finally, if we write any » in R’
in the form x =ay+ a,3 + - + a,_»3*~? a simple computation,
using 7'(z) = T(2%) = - - - = T(3*~!) = — land T(1)=p — 1, shows
that T((z — 1)x) = — pa,, whence g, is a rational integer. Replacing
x by x3% - .- x3#-1, which are also algebraic integers, we see that
Gy Bp—gy " ** 5 Gy ATC also rational integers. Thus {1, z,---, 2#-3}
is a basis of R’ over J.
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Now, for studying the decomposition of a prime ¢ in R’, we have to
study the factorization of X?~1 4 - . . 4+ X 4 1 over the field J/(g), or
what amounts trivially to the same thing, the factorization of X?» — 1.
The only case in which this polynomial has a multiple factor (that is, in
which it is not relatively prime to its derivative p.X?—1) is the case ¢ = p.
For ¢ 7 p the p-th roots of unity over J/(g) lie in the field with ¢ ele-
ments, where f is the smallest positive integer such that ¢/ = 1 (mod p)
(proof as in §12, p. 315). 'Then the polynomical X?-! 4 . .. 4+ X 41
factors over ] [(g), into (p — 1)/f distinct irreducible factors of degree f.
The remaining part of the study is as in § 12.
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a1:inverse of a, 1,2,4

8’ C S: inclusion, 1,10,12

S’ < S: proper inclusion, 1,10,12

G/H: factor (or quotient) group, 1,11,15

~ denotes homomorphism, 1,12,17

== denotes isomorphism, - 1,12,17

(a, b): greatest common divisor of a and b, 1,14,22

of : degree of polynomial f, 1,16,25 and I,18,35

R[X]: polynomial ring in one indeterminate over R, 1,16,26

R[x]: ring generated by x over R, 1,17,28

I: the set of non-negative integers, 1,18,34

R[X,, - - -, X,]: polynomial ring in n indeterminates over R, 1,18,35

R[x,, - - -, x,]): ring generated by x,, - - -, x, over R, 1,18,37

J: ring of integers, 1,20,48

Ry, : quotient ring of R with respect to the multiplicative system M,
1,20,46 and IV,9,221.

[V :F]: dimension of the vector space V over the field F, 1,21,53

dim V': dimension of the vector space V, 1,21,53

k(xy, - - -, x,): field generated by x,, - - -, x, over &, II,1,55

k(x): field generated by x over k (sometimes (x) denotes a finite family
of elements), II,1,55

[K:k]: degree of the field K over the subfield 2, 1I,3,60

J,: prime field of characteristic p 0, 1I,4,63

k?, 11,4,64

Vx, I1,4,64

J'(X): derivative of the polynomial f(X), II,5,65

k(L), R[L), 115,69

[K:k),: separable factor of the degree [K:k], 1I,5,71

[K :R);: inseparable factor of the degree [K:k], 1I,5,71

G(K/k): Galois group of K over &, 11,7,80

GF(p"): Galois field with p” elements, 1I,8,83

Ng/i(x): norm of x from K to k, 11,10,87

Tx/(x): trace of x from K to &, 121,10,87
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dgif{wy, - + -, w,}: discriminant of the basis {w,, - - -, w,} of K over &,
11,

tr. d. K/k: transcendence degree of K over k, 11,12,100

ke, ko~", ko, 11,14,108

(4, B): subfield generated by 4 and B, II,16,114

[k(x):k];: order of inseparability of k(x) over k, 1II,16,116

[R, R']: subring generated by R and R’, 1I,16,117

[D, D']: bracket of two derivations, 1II,17,122

Dx or Dg(L): vector space of derivations of K with valuesin L, 11,17,
122

Dg/k-: vector space of derivations of K which are trivial on K’,
I1,17,122

(a): smallest ideal containing @, III,1,132

AL: product of a subset 4 of a ring R and of a subset L of an R-module,
111,2,137

M — N: difference module, 11I,3,140

M|N': factor module, II1,3,140

a = b (N): congruence modulo N, III,5,142

R/N: residue class ring, III,5,143

A :B: quotient ideal, 111,7,147

V/U: radical of the ideal %, II1,7,147

{(M): length of the module M, 1I1,11,160

@: denotes direct sum, I11,12,164

ﬂ G,: complete direct product of the groups G,, III,12b, 172
P :

E G,: complete direct sum of the groups G,, III,12b%,173
aeA
1 G.: weak direct product of the groups G,, 1II,12i%,173
acA

A x B: set product (or cartesian product) of 4 and B, 1II,14,182
A® B -or A® B: tensor product of the algebras A, B over &,

111, 14,183
ac: extension of the ideal a, 1V,8,218
u¢: contraction of the ideal A, IV,8,218
R,: quotient ring of R with respect to the prime ideal p, 1V,11,228
A(a): length of the ideal a, IV,13,233
Dp g different of R’ over R, V,11,298
Nx,x(¥): norm of the ideal %, V,11,305
bg g discriminant of R’ over R, V,11,306

G): Legendre symbol for quadratic residues, V,12,313
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Thus the entry “Perfect field, 11, 4, 64" means that a definition of perfect fields
may be found in Chapter 11, § 4, page 64. In the text, all newly defined terms
are usually either introduced in a formal DerFiniTION or italicized.

Abelian extension (of a field), V, 10,
290

Abelian group, 1, 4, 6

Absolute zero divisor, 1, 17, 31

Adjoin (elements to a field), I, 1, 55

Algebra (over a field), 111, 14, 179

Algebraic closure (of a field), 11, 14,
106

Algebraic closure (of # in X), 11,.3,
61

Algebraic element (over a ring), I,
17, 28

Algebraic extension, 11, 3, 60

Algebraic integer, V, 4. 265

Algebraically closed field, 11, 14, 106

Algebraically closed (in X), 11, 3, 61

Algebraically dependent elements, I,
18, 37

Algebraically independent elements,
I, 18, 37

Annihilator (of a subset of a module),
111, 6, 144

Ascending chain condition (or a.c.c.),
II1, 10, 155

Associate elements (in a ring), I, 14,
21

Associated prime ideal (of a primary
ideal), 111, 9, 152

Associated prime ideal (of an ideal in
a noetherian ring), 1V, 5, 211

Associative (binary operation), I, 1,
1
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Automorphism, 1, 11, 14
Automorphism (of a vector space), 1,
21, 53

Basis (of a module), 111, 10, 157
Basis (of a vector space), I, 21, 50
Binary operation, I, 1, 1

Cancellation law, I, 2, 4

Canonical homomorphism (of a group
onto a factor group), I, 11, 15

Canonical homomorphism (for mod-
ules), 111, 3, 140

Canonical homomorphism (for rings),
111, 5, 143

Canonical homomorphism (of a ring
into a quotient ring), IV, 9, 222

Characteristic p (of a field), 11, 4, 63

Characteristic polynomial, 11, 10, 87

Characteristic zero (of a field), 11, 4,
62

Chinese remainder theorem, V, 7, 279

Closed ideal, 1V, 7, 217

Coefficient (of a polynomial), 1, 16,
25

Comaximal ideals, 1II, 13, 176

Commutative (binary operation), I, 1,
1

Commutative group, 1, 4, 6

Commutative ring, I, 5, 7

Complement (of a submodule), Iil,
12, 167
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Complementary module, V,-11, 298

Complete direct product, 1II, 12bis,
172

Complete direct sum, III, 12bis, 173

Completely ramified prime ideal, V,
11, 310

Completely ramified prime number, V,
12, 314

Completely reducible module, III, 12,
167

Component (of an element in a prod-
uct), 111, 12bis, 173

Composition differences, 111, 11, 162

Composition series, 111, 11, 159

Composition series between M ahd N,
I, 11, 163

Conductor, V, 5, 269

Congruence, congruence modulo N,
11, 5, 142

Conjugate elements, 11, 2, 57

Constants, 1, 16, 27

Content (of a polynomial), I, 17, 32

Contracted ideal, 1V, 8, 218

Contraction of an ideal, IV, 8, 218

Coset, I, 3, 5

Cyclic group, 1, 2, 4

Cyclic module, 111, 10, 157

Decomposed prime number, V, 9, 288

Decomposition field, V, 10, 290

Decomposition group, V, 10, 290

Dedekind domain, V, 6, 270

Dedekind-Noether isomorphism theo-
rems, 111, 4, 140

Dedekind ring, V, 6, 270

Degree (of a field extension), 1I, 3,
60

Degree (of a monomial), 1, 18, 35

Degree (of a polynomial in one inde-
terminate), I, 16, 25

Degree (of a polynomial in several in-
determinates), I, 18, 35

Degree of inseparability (of a field
extension), 1I, 5§, 71

Degree of inseparability (of a poly-
nomial), 11, 5, 67

Degree of separability (of a polyno-
mial), 11, §, 67

Degree of separability (of a field ex-
tension), II, 5, 71

Depth (of a praper prime ideal), IV,
14, 240

Derivation, II, 17, 120

Derivative (of a. polynomial), II, 5,
65

Descending chain condition (or
dec.c.), 111, 10, 155

Difference, 1, 4, 7

Difference module, I1I, 3, 140

Different (of R’ with respect to R),
V, 11, 298

Differential exponent, V, 11, 298

Dimension (of a vector space), 1, 21,
53

Direct product, 111, 12bis, 173

Direct sum, I1I, 12bis, 173

Direct sum of ideals, 111, 13, 174

Direct sum of modules, 111, 12, 163

Discrete valuation ring, V, 6, 278

Discriminant of a basis, 11, 11, 92

Discriminant (as an ideal), V, 4, 266
and V, 11, 306

Disusibutive law, I, §, 7

Divisible, I, 14, 21

Division, I, 8, 10

Divisor, 1, 14, 21

Domain (integral d.), I, 6, 9

Dual basis, V, 4, 265

Endomorphism (of a group), I, 11, 14

Endomorphism (of a module), II, 3,
138

Endomorphism (of a vector space), I,
21, 53



INDEX OF DEFINITIONS

325

Equation of integral, dependence, V,
1, 254

Equivalent free joins, 111, 15, 188

Equivalent normal series, III, 11, 162

Equivalent products of two algebras,
111, 14, 179 .

Euclidean domain, I, 15, 22

Exchange property, 1, 21, 50

Exponent (of a primary ideal), 111, 9,
153

Exponent of inseparability (of a poly-
nomial), II, 5, 67 .

Extended ideal, 1V, 8, 218

Extension field, 11, 1, 55

Extension of an ideal, IV, 8, 218

Factor group, 1, 11, 15

Factor module, 111, 3, 140

Field, 1, 8, 10

Field discriminant, II, 11, 93

Field extension, 1I, 1, 55

Field of characteristic zero (or p), 11,
4, 62, 63

Field of algebraic functions, 11, 13,
102

Field of rational functions in #» inde-
terminates, 11, 12, 95

Field polynomial, 11, 10, 87

Finite basis, 111, 10, 157

Finite basis condition, 1V, 1, 199

Finite extension, 11, 3, 60

Finite group, 1, 2, 4

Finite integral domain (over a field),
V, 4, 266

Finitely generated field extension, 1I,
1, 85

Fixed field (of a group of automor-
phisms), 1I, 7, 80

Form, I, 18, 35

Fractionary ideal, V, 6, 271

Free (subset of a vector space), 1, 21,
50

Free extension (of # relative to #(x)),
11, 16, 117

Free join of two fields, 111, 15, 187

Free join of two integral domains, II1,
15, 187

Free over (rings free over a field), 11,
16, 117

Galois field, 11, 4, 64

Galois group (of K over #), 11, 7, 80

Gauss (lemma of), I, 17, 32

Gaussian integers, V, 9, 287

Generating set (of a polynomial ring),
1, 18, 37

Generator (of a polynomial ring), I,
17, 28

Greatest common divisor (or GCD),
I, 14, 22

Group, 1, 2, 3

Group with a ring of operators, 1II,
1, 135

Height (of a proper prime ideal), 1V,
14, 240

Hilbert basis theorem, 1V, 1, 200

Homogeneous polynomial, 1, 18, 35

Homomorphism (for groups), I, 11,
13

Homomorphism (for modules), III, 3,
138

Homomorphism (for rings), I, 12, 16

Homomorphism (for vector spaces), I,
21, 53

Ideal, 111, 1, 132

Ideal-length of an ideal, 1V, 13, 233
Idempotent, 111, 13, 176
Identification, 1, 13, 20

Identity (of a ring), I, 6, 8

Identity element, I, 1, 2

Identity mapping, I, 10, 13

Image, 1, 10, 12
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Imbedded primary component (of an
ideal), 1V, 5, 211

Imbedded prime ideal (of an ideal),
IV, 5, 211

Improper divisor, 1, 14, 21

Improper refinement of a normal
series, III, 11, 159

Indecomposable module, 111, 12, 169

Independent (polynomial ind. of some
variable), I, 18, 36

Independent submodules, 111, 12, 163

Indeterminate, I, 16, 26 .

Index of nilpotency, 1V, 15, 245

Indexed by a set 4, 111, 12bis, 172

Inductive set, 11, 12, 98

Inertia field, V, 10, 292

Inertia group, V, 10, 292

Inertial prime number, V, 9, 288

Inseparable element (over £), 1I, §,
67

Inseparable factor of the degree, II, 5,
71

Inseparable field extension, 1I, 5, 68

Inseparable polynomial (over £), I, §,
65

Integral (over a ring), V, 1, 254

Integral basis, V, 4, 266

Integral closure (of 4 in B), V, 1, 256

Integral domain, I, 6, 9

Integral function (in a function field),
V, 4, 265

Integral ideal, V, 6, 271

Integrally closed (in an overring), V,
1, 256

Integrally closed domain, V, 1, 256

Integrally dependent element, V, 1,
254 '

Invariant subgroup, I, 3, §

Inverse, I, 1, 2

Inverse transformation, I, 190, 13

Invertible ideal, V, 6, 271

Irreducible element (of a ring), 1, 14,
21

Irreducible ideal, IV, 4, 208

Irreducible module, I1I, 11, 159

Irredundant primary representation,
1V, 4, 209

Isolated ideal component, 1V, 5, 212

lsolated primary component, IV, 5,
211

Isolated prime ideal, 1V, 5, 211

Isolated system of prime ideals, 1V, §,
212

Isomorphic extensions (over #), 11, 1,
55

Isomorphism (case of groups), I, 11,
14

Isomorphism (case of modules), 111, 3,
138

Isomorphism (case of vector spaces), I,
21, 53

Jordan theorem, III, 11, 159

Kernel (of a homomorphism), I, 11,
14

Lasker-Noether decomposition the-
orem, 1V, 4, 208

Leading coefficient (of a polynomial
in one indeterminate), I, 16, 25

Legendre symbol, V, 12, 313

Length of an ideal, 1V, 13, 233

Length of a2 module, 111, 11, 160

Length of a normal series, 111, 11, 159

Linear combination, I, 21, 49

Linear disjointness, 11, 15, 109

Linear polynomial, I, {7, 29

Linear transformation, 1, 21, 53 and
111, 3, 138

Linearly disjoint extensions, 1I, 15,
109

Linearly independent elements, I, 21,
51

Local ring, IV, 11, 228



INDEX OF DEFINITIONS

327

MacLane theorem, 11, 13, 104

Mapping, I, 10, 13

Maximal element, 11, 12, 98

Maximal ideal, 1II, 8, 149

Maximal separable extension, 11, 5, 71

Maximally algebraic in X (or m.a.),
111, 15, 196

Maximum condition, III, 10, 156

Minimal polynomial, II, 2, 56 and
V, 3, 261

Minimum condition, I1I, 10, 156

Modular law, III, 2, 137

Module, 111, 1, 134

Module basis, 111, 10, 157

Monic polynomial, I, 16, 25

Monomia), 1, 18, 35

Multiple, I, 14, 21

Multiple root, II, 5, 68

Multiplication, I, 1, 1

Multiplicative system (or ms.), I, 20,
46

Multiplicity of a root, 11, 5, 68

Natural homomorphism (of a group
onto a factor group), I, 11, 15

Natural homomorphism (for modules),
111, 3, 140

Natural homomorphism (for rings),
1, 5, 143

Natural homomorphism (of a ring into
a quotient ring), 1V, 9, 222

Negative (of a sabset of a module),
111, 2, 136

Nilpotent element, 111, 7, 148

Nilpotent ideal, 1V, 3bis, 207

Noectherian ring (or domain), IV, 1,
199

Noetherian module, 1V, App., 252

Norm of an element, 11, 10, 87

Norm of an ideal, V, 11, 305

Normal differences, II1, 11, 162

Normal extension, II, 6, 74

Normal series, 111, 11, 159

Normal series between a module and
a submodule, III, 11, 163

Normal subgroup, I, 3, §

n-th upper Loewy invariant of an
ideal, 1V, 16, 251

Nullring, I, 5, 8

Onec to one, 1, 10, 13

Onto (transformation onto), 1, 10, 12

Operator, 111, 1, 135

Operator homomorphism, III, 3, 138

Order of a finite group, 1, 2, 4

Order of an element in a group, 1, 3,
6

Order of a subset of a module, 111, 6,
144

Order of inseparability, 11, 16, 116

Orthogona! idempotents, 111, 13, 176

Overring, 1, 9, 11

p-basis, 11, 17, 129

p-independent set, 11, 17, 129

Pairwise comaximal ideals, II1I, 13,
176

Pairwise compatible congruences, V, 7,
279

Partial derivation, 11, 17, 121

Partial derivative, 11, 17, 121

Partially ordered set, 11, 12, 98

Perfect closure of a field, II, 14, 108

Perfect field, 11, 4, 64

Polynomial in one indeterminate, I,
16, 25

Polynomial in several indeterminates,
I, 18, 34

Polynomial ring, I, 17, 28 and |, 18,
37

Primary ideal, 111, 9, 152

Primary ideal belonging to a prime
ideal, 111, 9, 152

Primary representation of an ideal, 1V,
4, 209

Primary ring, 1V, 3, 204
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Primary submbodule, 1V, App., 252

Prime field, 11, 4, 62

Prime ideal, 111, 8, 149

Prime to an ideal (element or sub-

. W), 1V, 10, 223

Primitive element, 11, 9, 84

Primitive polynomial, I, 17, 32

Principal ideal, III, 1, 132

Principal ideal domain (or PID), IV,
15, 242

Principal ideal ring (or PIR), 1V, 15,
242

Product, I, 1, 1

Product (in a module), I1L, 1, 134

Product of ideals in a ring, 111, 7, 146

Product of subsets of a ring and a
module, 111, 2, 137

Product of two algebras, I1I, 14, 179

Product of two transformations, I, 10,
12

Proper ideal, 111, 1, 132

Proper submodule, III, 2, 136

Proper subset, I, 10, 12

Proper zero divisor, I, 5, 8

Pure transcendental extension, II, 12,
95

Purely inseparable element, 1I, 5, 68

Purely inseparable extension, 1I, 5, 68

Quadratic field, V, 12, 312

Quadratic reciprocity law, V, 12, 316

Quasi algebraically closed in an exten-
sion field, II, 5, 71

Quasi linearly disjoint extensions, 111,
15, 191

Quasi maximally algebraic (or q.m.a.),
I1I, 15, 196

Quotient, 1, 8, 10

Quotient field, I, 19, 43

Quotient group, I, 11, 15

Quotient of ideals in a ring, 111, 7,
147

Quotient ring with respect to a multi-
plicative system, I, 20, 46 and 1V,
9, 221

Quotient ring with respect to a prime
ideal, IV, 11, 228

Radical of an ideal, 111, 7, 147

Radical of a ring, 111, 7, 148

Radical of a submodule, IV, App., 252

Ramification groups, V, 10, 294

Ramification index, V, 9, 284 and V,
10, 294

Ramification numbers, V, 10, 294

Ramified prime ideal, V, 10, 294

Ramified prime number, V, 9, 288

Reduced degree, 11, 5, 67

Reduced primary representation, 1V,
4, 209

Reduced ramification index, V, 9, 284

Reduced relative degree, V, 10, 294

Refinement of a normal series, 111, 11,
159

Regular element of a ring, I, 5, 8

Relative degree (of a prime ideal over
another), V, 9, 285

Relative homomorphism, 1, 12, 19

Relatively prime elements, I, 14, 22

Residue class, III, 5, 143

Residue class ring, 111, 5, 143

Restriction of a transformation, I, 10,
12

Ring, I, 5, 7

Ring of operators, 111, 1, 135

Root of a polynomial, I, 17, 31

Separable element, II, 5, 67

Separable factor of the degree, II, 5,
71

Separable field extension, 11, 5, 68 and
II, 15, 113

Separable polynomial, II, 5, 65

Separably generated extension, II, 13,
102
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Separating element, 11, 13, 102

Separating transcendence,basis, II, 13,
102

Set product, 111, 12bis, 172

Set of generators of an ideal, IV, 1,
199

Simple extension, 1I, 1, 55

Simple module, III, 11, 159

Simple root, 11, 5, 68

Span, I, 21, 49

Special principal ideal ring, 1V, 15,
245

Splitting field, 11, 6, 72

Strongly primary ideal, 111, 9, 153

Subfield, I, 9, 11

Subgroup, 1, 3, 4

Submodule, I11, 2, 136

Subring, I, 9, 10

Subspace, I, 21, 49

Substitution (in a polynomial), 1, 16,
26

Subtraction, I, 4, 7

Sum, I, 4, 6

Sum of ideals in a ring, 111, 7, 146

Sum of submodules, 111, 2, 136

Symbolic powers of a primary ideal,
1V, 12, 232

System of generators of a vector space,
1, 21, 50

Tensor product of two algebras, 111,
14, 179

Total quotient ring, I, 19, 43

Totally ordered set, 11, 12, 98

Trace, 11, 10, 87

Transcendence basis, 11, 12, 96

Transcendence degree (of a field or of
an integral domain), II, 12, 100

Transcendence set, 11, 12, 95

Transcendental element (over a ring),
I, 17, 28

Transcendental extension, II, 3, 60
and 11, 12, 95

Transform (of an element, of a sub-
set), I, 10, 12

Transformation, I, 10, 12

Transitivity law for norms and traces,
11, 10, 92

Trivial derivation, II, 17, 120

Trivial module, 111, 1, 134

Unique factorization domain (or
UFD), 1, 14, 21

Unit (in a ring), I, 6, 8

Unitary module, 111, 1, 134

Unitary overring, 1, 9, 11

Unitary subring, 1, 9, 11

Univalent mapping, I, 10, 13

Universal mapping property of quo-
tient rings, 1V, 9, 222

Universal mapping property of tensor
products, III, 14, 180

Upper bound, 11, 12, 98

Upper Loewy series of an ideal, 1V,
16, 251

Valuation (of a field), V, 6, 275
Vandermonde determinant, II, 11, 94
Vector, 1, 21, 49

Vector basis, 111, 12, 171

Vector space, 1, 21, 49

Vector subspace, I, 21, 49

Weak direct product, 11, 12bis, 173
Weak direct sum, 111, 12bis, 173

Zero divisor, I, 5, 8
Zorn’s lemma, 1I, 12, 98



























