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PRINTER’S NOTE

Throughout this book the a which takes the following form
in the formula (a) assumes the following form (a) whenever it
is used in the smallest type size, as a subscript or a super-
script. Both forms are meant to be the same.

vi



PREFACE

A series of Russian mathematicians~=Chebyshev, Korkin,
Zolotaryov, Markov, Voronoi and others~~have worked on the
theory of numbers. One can become acquainted with the con-
tent of the classical work of these notable mathematicians in
B. N. Delone’s book ‘““The Petersburg School of the Theory of
Numbers’’ (‘‘Peterburgskaya shkola teorii chisel,”’ in Russian,
1947).

Soviet mathematicians, working in the field of number theory,
have continued the great tradition of their predecessors and
have created powerful new methods which have been used to
obtain a series of first-class results; in the number theory sec-
tion of the book ‘‘Mathematics in the USSR after 30 years’’
(“Matematika v SSSR za 30 let,”’ in Russian, 1948) one can
find a report on the attainments of Soviet mathematicians in the
field of number theory, and the corresponding bibliographical
references.

In my book I present a systematic exposition of the funda-
mentals of number theory within the scope of a university
course. A large collection of problems introduces the reader
to some of the new ideas in number theory.

This fifth edition of my book differs considerably from the
fourth. A series of changes, allowing a simpler exposition,
have been made in all the chapters of the book. The most
important changes are the merging of the old chapters IV and
V into one chapter IV (reducing the number of chapters to six)
and the new, simpler proof of the existence of primitive roots.

The problems at the end of each chapter have been essentially
revised. The order of the problems is now in complete cor-
respondence with the order of the presentation of the theoreti-

vii



cal material. Some new problems have been added; but the
number of numbered problems has been substantially reduced.
This was accomplished by the unification, under the letters

a, b, c,..., of previously separate problems which were re-
lated by the method of solution or by content. All the solutions
of the problems have been reviewed; in many cases these solu-
tions have been simplified or replaced by better ones. Particu-
larly essential changes have been made in the solutions of the
problems relating to the distribution of n-th power residues and
non-residues, and primitive roots, as well as in the estimations
of the corresponding trigonometric sums.

I. M. Vinogradov
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CHAPTER I
DIVISIBILITY THEORY

$1. Basic Concepts and Theorems

a. The theory of numbers is concerned with the study of the
properties of integers. By integers we mean not only the num-
bers of the natural number sequence 1, 2, 3, ... (the positive
integers) but also zero and the negative integers: -1, -2,

-3, s

As a rule, in presenting the theoretical material, we will
use letters only to denote integers. In the cases in which
letters may denote non-integers, if this is not clear in itself,
we will mention it specifically.

The sum, difference and product of two integers a and b are
also integers, but the quotient resulting from the division of a
by b (if b is different from zero) may be an integer or a non-
integer.

b. In the case in which the quotient resulting from the di-
vision of a by b is an integer, denoting it by g, we have a = bq,
i.e. a is equal to the product of b by an integer. We will then
say that a is divisible by b or that b divides a. Here a is said
to be a multiple of b and b is said to be a divisor of the number
a. The fact that b divides a is written as: b\ a.

We have the following two theorems.

1. If a is a multiple of m, and m is a multiple of b, then a is
a multiple of b.

Indeed, it follows from a = a,m, m = m,b that a = a,m,b,
where a,m, is an integer. But this proves the theorem.



2. If we know that in an equation of the formk+1+ ... +n
=p+q+...+s,all terms except one are multiples of b, then
this one term is also a multiple of b.

Indeed, let the exceptional term be k. We have

=ULb,...,n=nb,p=pb,g=gq,b, ..., s=5,b,
k=p+q+...+s=-1l-...—n
=i+ @+ e tS=l—...-n)b,

proving our theorem.

c. In the general case, which includes the particular case in
which a is divisible by b, we have the theorem:

Every integer a is uniquely representable in terms of the
positive integer b in the form

a=bq+r, 0<r<b

Indeed, we obtain one such representation of a by taking bg
to be equal to the largest multiple of b which does not exceed
a. Assuming that we also have a = bg, + r,, 0 <r, < b, we find
that 0 = b(g — q,) + r — r,, from which it follows (2, b) that r —r,
is a multiple of b. But since |r - r.| < b, the latter is only
possible if r — r, = 0, i.e. if r = r,, from which it also follows
that ¢ = ¢,.

The number g is called the partial quotient and the number

r is called the remainder resulting from the division of a by b.
Examples. Let b = 14. We have

177=14 12 + 9, 0<9< 14
—64=14(-5)+6, 0<6<14;
154=14 11 + O, 0=0< 14.

$2. The Greatest Common Divisor

a. In what follows we shall consider only the positive di-
visors of numbers. Every integer which divides all the integers
a, b, ..., lis said to be a common divisor of them. The
largest of these common divisors is said to be their greatest
common divisor and is denoted by the symbol (a, b, ..., ).
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In view of the finiteness of the number of common divisors the
existence of the greatest common divisor is evident. If (a,

b, ..., ) =1, thena, b, ..., [ are said to be relatively prime.
If each of the numbers g, b, ..., [ is relatively prime to any
other of them, then a, b, ..., [ are said to be pairwise prime.
It is evident that pairwise prime numbers are also relatively
prime; in the case of two numbers the concepts of ‘“pairwise
prime’’ and “‘relatively prime’’ coincide.

Examples. The numbers 6, 10, 15 are relatively prime since
(6, 10, 15) = 1. The numbers 8, 13, 21 are pairwise prime
since (8, 13) = (8, 21) = (13, 21) = 1.

b. We first consider the common divisors of two numbers.

1. If a is a multiple of b, then the set of common divisors of
the numbers a and b coincides with the set of divisors of b; in
particular, (a, b) = b.

Indeed, every common divisor of the numbers a and b is a
divisor of b. Conversely, if a is a multiple of b, then (1, b, 1)
every divisor of the number b is also a divisor of the number
a, i.e. it is a common divisor of the numbers ¢ and b. Thus
the set of common divisors of the numbers a and b coincides
with the set of divisors of b, but since the greatest divisor of
the number b is b itself, we have (a, b) = b.

2. If
a=bqg+ec,

then the set of common divisors of the numbers a and b coin-
cides with the set of common divisors of the numbers b and c;
in particular, (a, b) = (b, c).

Indeed, the above equation shows that every common divisor
of the numbers a and b divides ¢ (2, b, $1) and therefore is a
common divisor of the numbers b and c. Conversely, the same
equation shows that every common divisor of the numbers &
and c divides a and consequently is a common divisor of the
numbers a and b. Therefore the common divisors of the num-
bers a and b are just those numbers which are also common
divisors of the numbers b and c; in particular, the greatest of
these divisors must also coincide, i.e. (a, b) = (b, c).

3



c. In order to obtain the least common divisor as well as to
deduce its most important properties, Euclid’s algorithm is ap-
plied. The latter consists of the following process. Let a
and b be positive integers. By ¢, §1, we find the sequence
of equations:

a=bq,+ry, 0<r,<b,

b=rigs+rs, 0<rs<r,y,

(l) 3 =T34+ Tay 0<ry<ry,
Tp—s = Tne1qn + Tns 0<ro<rap.

Tne1 = Tnqn+rs

which terminates when we obtain some r,,,, = 0. The latter
must occur since the sequence b, r3, 15, ... as a decreasing
sequence of integers cannot contain more than b positive
integers.

d. Considering the equations of (1), proceeding from the top
down, (b) shows that the common divisors of the numbers a
and b are identical with the common divisors of the numbers b
and r,, are moreover identical with the common divisors of the
numbers r, and ry, of the numbers r; and r4, ..., of the numbers
-y @nd r,,, and finally with the divisors of the number r,.
Along with this, we have

T

(a’ b) = (by rz) = (Tz, T;) = eee = (rn_x, rn) = Tpne

We arrive at the following resulis.

1. The set of common divisors of the numbers a and b co-
incides with the set of divisors of their greatest common
divisor.

2. This greatest common divisor is equal to Tq, i.e. the last
non-zero remainder in Euclid’s algorithm.

Example. We apply Euclid’s algorithm to the evaluation of
(525, 231). We find (the auxiliary calculations are given on
the left)



525 = 2312 + 63,
231= 63-3 +42,
63= 42-1+ 21,
42= 21-2.

Here the last positive remainder is r,= 21. This means that
(525, 231) = 21.
e.l. If m denotes any positive integer, we have (am, bm)

= (a, b)m.

2.If 8 is any common divisor of the numbers a and b, then

C g (a, b) - (a b )1.
5’5/ 5 in particular, @b (@b = 1, L.e.

the quotients resulting from the division of two numbers by
their greatest common divisor are relatively prime numbers.
Indeed, multiply each of the terms of the equations (1) by
m. We obtain new equations, where @, b, ry, ..., r, are re-
placed by am, bm, rym, ..., rom. Therefore (am, bm) = rom,
showing that proposition 1 is true.
Applying proposition 1, we find that

a_ b a b
@“‘@&39-@’9&
and this proves proposition 2.

f.1. If (a, b) = 1, then (ac, b) = (c, b).

Indeed, (ac, b) divides ac and bc, which implies (1, d) that
it also divides (ac, bc) which is equal to ¢ by 1, e; but (ac, b)
also divides b and therefore also divides (c, b). Conversely,
(¢, b) divides ac and b, and therefore also divides (ac, b).
Thus (ac, b) and (e, b) divide each other and are therefore
equal to one another.

2. If (@, b) = 1 and ac is divisible by b, then c is divisible
by b.



Indeed, since (g, b) = 1, we have (ac, b) = (¢, b). Butifac
is a multiple of b, then (1, b) we have (ac, b) = b, which means
that (c, b) = b, i.e. ¢ is a multiple of b.

3. If each a., Gy « .., m is relatively prime to each b, b,,
v.vs bp, then the product a:0,. . .6y, is relatively prime to the
product byby ... b,

Indeed (theorem 1), we have

(a,a,a, e eeQpmy bk) = (0303 oo s Qmy bk)
= (ag...am, bk)= co 0 = (am, bk)= 1,

and moreover, setting a.a; . . - @y, = 4, in the same way we find

(bxbzb; . o.bn, A) = (bzb;- . .bn, A)
=(bs.ooby, A)=...=(b,, 4)=1.

g. The problem of finding the greatest common divisor of
more than two numbers reduces to the same problem for two
numbers. Indeed, in order to find the greatest common divisor
of the numbers a,, a,, ..., a, we form the sequence of numbers:

(al, az) = d;, (dg, (13) = d;, (d;, (14) = d4, coey (dn-1’ a,.,) = dn-

The number d,, is also the greatest common divisor of all the
given numbers.

Indeed (1, d), the common divisors of the numbers a, and a,
coincide with the divisors of d;; therefore the common divisors
of the numbers a,, a, and a; coincide with the common divisors
of the numbers d, and as, i.e. coincide with the divisors of d;.
Moreover, we can verify that the common divisors of the num-
bers a,, a,, as, a4 coincide with the divisors of d4, and so forth,
and finally, that the common divisors of the numbers a,, a,,

.., a, coincide with the divisors of d,. But since the largest
divisor of d,, is d,, itself, it is the greatest common divisor of
the numbers a,, az, «+.5 Gpe

Considering the above proof, we can see that theorem 1, d
is true for more than two numbers also. Theorems 1, e and
2, e are also true, because multiplication by m or division by



0 of all the numbers a,, a,, ..., a, causes all the numbers
dy, day ..., d, to be multiplied by m or to be divided by &.

§3. The Least Common Multiple

a. Any integer which is a multiple of each of a set of given
numbers, is said to be their common multiple. The smallest
positive common multiple is called the least common multiple.

b, We first consider the least common multiple of two num-

bers. Let M be any common multiple of the integers a and 5.
Since it is a multiple of a, M = ak, where k is an integer. But
M is also a multiple of b, and hence

ak

b
must also be an integer which, setting (a, b) = d, a = a,d,
b = b,d, can be represented in the form gﬁ, where (a,, b,) = 1
(2, e, $2). Therefore (2, f, $2) k must be divisible by b,,

b
k=bt= ;t, where ¢ is an integer. Hence

M ab t
=t
Conversely, it is evident that every ¥ of this form is a mul-
tiple of a as well as b, and therefore, this form gives all the
common multiples of the numbers ¢ and b.
The smallest positive one of these multiples, i.e. the least
common multiple, is obtained for = 1. It is

ab
m= —.

d

Introducing m, we can rewrite the formula we have obtained
for M as:

M = mt.



The last and the next to the last equations lead to the
theorems:

1. The common multiples of two numbers are identical with
the multiples of their least common multiple.

2. The least common multiple of two numbers is equal to
their product divided by their greatest common divisor.

c. Assume that we are now required to find the least common
multiple of more than two numbers ai, as, ..., a,. Letting the
symbol m(a, b) denote the least common multiple of the num-
bers a and b, we form the sequence of numbers:

mlas, a;) = ma, m(ma, @3) = may ooy Mgy, ap) = Mg,

The m,, obtained in this way will be the least common multiple
of all the given numbers.

Indeed (1, b), the common multiples of the numbers a, and
a, coincide with the multiples of m,, and hence the common
multiples of the numbers a,, a, and a, coincide with the common
multiples of m, and as, i.e. they coincide with the multiples of
ms. It is then clear that the common multiples of the numbers
a1, G, Gs, a4 coincide with the multiples of my, and so forth,
and finally, that the common multiples of the numbers a,, a,,
..., a, coincide with the multiples of m,, and since the small-
est positive multiple of m, is m, itself, it is also the least
common multiple of the numbers ai, a3, + .., tn-

Considering the proof given above, we see that theorem
1, b is also true for more than two numbers. Moreover, we
have shown the validity of the following theorem:

The least common multiple of pairwise prime numbers is
equal to their product.

84, The Relation of Euclid’s Algorithm to Continued Fractions

a. Let o be an arbitrary real number. Let q be the largest
integer which does not exceed o.
For a non-integer o, we have



Similarly, for non-integers o, ..., o,., we have

1

°‘z=‘h+7€‘; oy > 1;

D A R R R I I N N A A R S A A A

Qgry = gy + —OT;-', og > 1,

from which we obtain the following development of o in a con-
tinued fraction:

@ o =g, +

1

qs—l +

If o is irrational, then it is evident that there can be no

integers in the sequence «, o,, ..., and the above process
can be continued indefinitely.

If « is rational, then, as we shall see later (b), there will
eventually be an integer in the sequence o, a,, ..., and the
above process will be terminated.

b. If « is an irreducible rational fraction, then the develop-
ment of o in a continued fraction is closely connected with
Euclid’s algorithm. Indeed, we have

a T,

a = bqg +ry; — =q, +—,
b b
b r
. 3

b=rzq§-+ LEY — =4 + —
T2 T
r, T,

Ty = T3q3 + Ty — =4q3; + —>
T3 T3

R R I R R I I I T I P R S A A Y



Tnr2 Tn

Tp—z2 = Tn_19n—1 + I'nj = qn_.x + ’
Tney Thet
Tn-1
Thn—i = Tnqn5 = qn,
Th
from which we find
a 1
— =g+ —
b 1
q; +
qg; + .
1
+—.
qn

c. The numbers q,, q,, ..., which occur in the expansion of
the number « in a continued fraction, are called the partial
quotients (for the case of rational o these are, by b, the par-
tial quotients of the successive divisions of the Euclidean
algorithm), and the fractions

1 1
8 =¢y O, =q, +—> G=¢ +—, ...
q. 1
9, + —
qs

are called the convergents.
d. The very simple rule for the formation of the convergents
is easily obtained by noting that 5,(s > 1) is obtained from
1
B8e_1 by replacing g,_, in the expression for 8, by go—. +
8
Indeed, setting P, = 1, Q, = 0, for the sake of uniformity,
we can represent the convergents recursively in the following

10




s

way (when the equation 7" is written here, it means

that 4 is denoted by the symbol P,, and B by the symbol Q,):

1
q, P Ei 7]1— 9,9, + 1 _ q,P,+P, P,

5:—:—1 82= = =
109, 1 '1+0 40 +0 0,

1
+ — |P,+P
(93 ‘13)1 0_93P2+P1_P3

(‘h + %)Qx + 0, 7,9, + 0, Qs

63=

etc., and in general

_ que-—l +Ps—z _ Ps
qus-—-l + Qs-—-z Qs

Be

Thus the numerators and the denominators of the convergents
can be recursively calculated by means of the formulae

P,
2
Qe

These calculations can easily be carried out by means of the

following schema:

qaps—l + Ps-—za

(ISQs-—-l + Qs—z =

qs q! qz caee qs qn

Pol1|q| Pl |Pacy | Paca| P | [Puca | @

Qs 10| 1 [ Q) | Qoz | Qoca| Qs | |Qua | b

11



105

Example. Develop the number in a continuous fraction.

Here
105 1
— =2+
38 1
1+
3 1
* 1
27| 3 4"‘?
9| 2
8| 4
2|1
22

Therefore the aforementioned schema gives:

qs 2 1 3 4 2
P, 1 2 3 1 47 105
Qs 0 1 1 4 17 38

e. We now consider the difference 8, — 8., of successive
convergents. Fors > 1, we find

where by = P;Qs_; — QsPs_y; replacing P, and Q, by their ex-
pressions in (2) and making the evident simplifications, we
find that by = —h,_,. The latter, in conjunction with
hy=¢q,.0-1°1=-1, giveshy = (-1)°. Thus
() Pst-—l - Qsp-l = (1)* (s > 0),

12



~1*

(s > 1.
QsQa-—l °

(4) 6s - 68—1 =

Example. In the table of the example given in d, we have
10517 ~ 3847 = (-1)° = -1.

£. It follows from (3) that (P, Q,) divides (-1)® = *1

P,
(2, b, $1). Hence (P,, Qs) = 1, i.e. the convergents — are
S
irreducible.

g. We now investigate the sign of the difference 5, — o for
8s which are not equal to o (i.e. we exclude the case in which
8, is the last convergent for rational «). It is evident that 5,
is obtained by replacing o, by ¢, in the expression (1) for .
But, as is evident from a, as a result of this replacement

O is decreased,
Qg  is increased,
&s_, is decreased,

is decreased for odd s,
is increased for even s.

Therefore 5, — o < 0 for odd s and 8, — o > O for even s,
and consequently, the sign of 8, — « coincides with the sign
of (-1)=.

h. We have
1

Qsos—l

I(X - 63—1' $

Indeed, for 8, = « this assertion follows (with the equality
sign) from (4). For 8, unequal to o, it follows (with the in-
equality sign) from (4) and from the fact that, 8, — o and
81 — o have different signs, because of g.

13



§5. Prime Numbers

a. The number 1 has only one positive divisor, namely 1.

In this respect the number 1 stands alone in the sequence of
natural numbers.

Every integer, greater than 1, has no fewer than two divisors,
namely 1 and itself; if these divisors exhaust all the positive
divisors of an integer, then it is said to be prime. An integer
> 1 which has positive divisors other than 1 and itself, is said
to be composite.

b. The smallest divisor, different from one, of an integer
greater than one, is a prime number.

Indeed, let g be the smallest divisor, different from one, of
the integer a > 1. If g were composite, then it would have
some divisor g, such that 1 < g, < g; but the number a, being
divisible by g, would also be divisible by ¢, (1, b, 81), and
this contradicts our hypothesis concerning the number g.

c. The smallest divisor, different from 1, of a composite
number a (by b, it will be prime) does not exceed Va .

Indeed, let g be this divisor; then a = ga,, a, > ¢ from
which, multiplying by g, we obtain @ > ¢*, ¢ < Va .

d. The number of primes is infinite.

The validity of this theorem follows from the fact that no
matter what different primes p,, p,, - .-, Py are considered, we
can obtain a new prime which is not among them. Such a
prime is any prime divisor of the sum p,p, ...px + 1 which,
dividing the whole sum, cannot be equal to any of the primes
P1s Pas «++» Pk (2, b, 81).

e. There is a simple method, called the sieve of Eratos-
thenes, for the formation of a table of the primes not exceed-
ing a given N. It consists of the following.

We write down the numbers

oy 1,2,...,N.

The first number of this sequence greater than one is 2; it
is only divisible by 1 and itself, and hence it is a prime.
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We delete from the sequence (1) (since they are composite
numbers) all the numbers which are multiples of 2, except 2 it-
self. The first number following 2 which is not deleted is 3;
it is not divisible by 2 (otherwise it would have been deleted),
and hence 3 is divisible only by 1 and itself, and hence it is
also prime.

Delete from the sequence (1) all the numbers which are
multiples of 3, except 3 itself. The first number following 3
which is not deleted is 5; it is not divisible by either 2 or 3
(otherwise it would have been deleted). Therefore 5 is divis-
ible only by 1 and itself, and therefore it is also prime.

And so forth,

When this process has deleted all the numbers which are
multiples of primes less than the prime p, then all the numbers
remaining which are less than p* are primes. Indeed, every
composite number a which is less than p* has already been
deleted since it is a multiple of its smallest prime divisor
which is ¢ Va < p. This implies:

1. In the process of deleting the multiples of the prime p,
this set of deleted numbers must start with p*.

2. The formation of the table of primes < N is completed
once we have deleted all the composite multiples of primes

not exceeding VN .
§6. The Unicity of Prime Decomposition

a. Every integer a is either relatively prime to a given prime
p, or is divisible by p.

Indeed, (a, p), being a divisor of p, is either 1 or p. In the
first case, a is relatively prime to p, and in the second, a is
divisible by p.

b. If the product of several factors is divisible by p, then
at least one of the factors is divisible by p.

Indeed (a), every factor is either divisible by p or is rela-
tively prime to p. If all the factors were relatively prime to p,
then their product (3, f, $2) would be relatively prime to p;
therefore at least one factor is divisible by p.

15



c. Every integer greater than one can be decomposed into

the product of prime factors and uniquely, if we disregard the
order of the factors.

Indeed, let a be an integer greater than unity; if p, is its
smallest prime divisor, then @ = p,a,. If a, > 1, then if p, is
its smallest prime divisor, we have a, = p,a,. Ifa, > 1, then,
in exactly the same way, we find a, = psa,, etc. until we come
to some a, equal to one. Then a,_, = p,. Multiplying all
these equations together, and simplifying, we obtain the fol-
lowing decomposition of a into prime factors:

@ = PiP2+++Pn-

Assume that there exists a second decomposition of the
same a into prime factors @ = ¢,q,...9s. Then

PiP2+++Pn = 4192 :+-9s*

The right side of this equation is divisible by g,. There-
fore (b), at least one of the factors of the left side must be
divisible by g,. For example, let p, be divisible by g, (in
the order of enumeration in our arrangement) then p, = ¢, (p,
is divisible only by p, except for 1). Dividing both sides of
the equation by p, = ¢,, we have p,p;...pn = ¢293---9s-
Repeating the preceding argumentation applied to this equa-
tion, we find py...pa = g3+ s> €tCss until we finally find
that all the factors on one side, say the left side, are divided
out. But all the factors on the right side must be cancelled
simultaneously since the equation 1 = gn4,...qs for gny1»
..., qs greater than 1, is impossible.

Therefore the second decomposition into prime factors is
identical with the first.

d. In the décomposition of the number a into prime factors,
several of them may be repeated. Letting p,, p;; « 5 Pk be
the different primes and o,, &, ..., 0k be the multiplicity of
their occurrence in a, we obtain the so-called canonical de-
composition of a into factors:

16



a = pyipg? ... pik.

Example. The canonical decomposition of the number
588 000 is: 588 000 = 2°-3 -5 72,

e. Leta = p1p2. .. p2k be the canonical decomposition of
the number a. Then all the divisors of a are just all the num-
bers of the form

d = p,Pipfs ... pli;

(»
0<B, <oy, 0 B, € %y vvvy 0< Br < ot

Indeed, let d divide a. Then (b, $1) a = dq, and therefore
all the prime divisors of d enter into the canonical decomposi-
tion of a with indices no smaller than those with which they
enter into the canonical decomposition of d. Therefore d is of
the form (1).

Conversely, every d of the form (1) evidently divides a.

Example. All the divisors of the number 720 = 24-3% -5
can be obtained if we let 8,, B,, B, in 26138255 rup inde-
pendently through the values 8, = 0,1, 2, 3,4; 8, = 0, 1, 2;
Bs = 0, 1. Therefore these divisors are: 1, 2, 4, 8, 16, 3, 6,
12, 24, 48, 9, 18, 36, 72, 144, 5, 10, 20, 40, 80, 15, 30, 60,
120, 240, 45, 90, 180, 360, 720.

Problems for Chapter I

1. Let a and b be integers which are not both zero, and let
d = ax, + by, be the smallest positive number of the form
ax + by (x and y integers). Prove that d = (a, ). From this
deduce theorem 1, d, $2 and the theorems of e, $2. Generalize
these results by considering numbers of the form ax + by +

+oeot fu.
2. Prove that, of all the rational numbers with denominators
P
< Q,, the convergent 5, = —— represents the number o most
9
exactly.
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3. Let the real number o be developed in a continued frac-
tion; let N be a positive integer, let k be the number of decimal
digits in it, and let n be the largest integer such that §, < N.
Prove that n < 5k + 1. In order to prove this, compare the
expressions for Q,, @5, Qys -+ Cn with those which would
occur if all the g were equal to 1, and compare the latter with
the numbers 1, £, £%, ..., E""2 where £ is the positive root of
the equation £ = £ + 1.

4. Let r > 1. The sequence of irreducible rational fractions
with positive denominators not exceeding 7, arranged in in-
creasing order, is called the Farey series corresponding to 7.

a. Prove that the part of the Farey series corresponding to
7, containing fractions o such that 0 < a < 1, can be ob-
tained in the following way: we write down the fractions

0 1 . 0+1 1
T’ —i- . If 2 < 7, then we insert the fraction = E

1+1

0
between these fractions, and then in the resulting sequence T’

a c
Z. — between every two neighboring fractions - and —
2’ 1 b, .

a, + Cy

with b, + d, < r we insert the fraction , and so

b, + d,
forth as long as this is possible. First prove that for any two

a c
pairs of neighboring fractions 7 and 1 of the sequence, ob-

tained in the above manner, we have ad — bec = -1
b. Considering the Farey series, prove the theorem: let
r > 1, then every real number o can be represented in the
form
P 0
o = 6+-——; 0<Q0g n P,Q=1, |6 <L

Qr
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c. Prove the theorem of problem b using h, &.
5, a. Prove that there are an infinite number of primes of

the form 4m + 3.

b. Prove there are an infinite number of primes of the form
6m + 5.

6. Prove that there exist an infinite number of primes by
counting the number of integers, not exceeding N, whose
canonical decomposition does not contain prime numbers dif-
ferent from p,, p,, ..., Pk-

7. Let K be a positive integer. Prove that the sequence of
natural numbers contains an infinite set of sequences M, ¥ +
+1,...,M + K - 1, not containing primes.

8. Prove that there are an infinite number of composite
numbers among the numbers represented by the polynomial
ax™ + ax™™ + ... + a,, wheren > 0, a,, Qg5 00, Qn are
integers and a, > 0.

9, a. Prove that the indeterminate equation (1) »* + y: = 2%,
x>0,y>0,z>0,(x,y, z) = 1is satisfied by those, and
only those, systems x, y, z for which one of the numbers x
and y is of the form 2uv, the other of the form u? — +*, and
finally z is of the form 4* + v*; here u > v > 0, (u, v) = 1,
uv is even.

b. Using the theorem of problem a, prove that the equation
x* + y* = z* cannot be solved in positive integers x, Y, Z.

10. Prove the theorem: if the equation x* + 2™ + ... +
+ a, = 0, wheren > 0 and a,, a,, ..., a, are integers, has a
rational root then this root is an integer.

1

1 1
11, a. Let S = 0 + 3 + ..+ —3;n > 1. Prove that S

n

is not an integer.

1 1
+ «eo.+ ————; n > 0. Prove that S

1
b, LetS = — + —
3 5 2n +1

is not an integer,

19



12. Let n be an integer, n > 0. Prove that all the coef-
ficients of the expansion of the Newtonian binomial (a + "
are odd if and only if n is of the form 2% — 1.

Numerical Exercises for Chapter 1

1, a. Applying the Euclidean algorithm, find (6188, 4709).
b. Find (81 719, 52 003, 33 649, 30 107).
125

2, a. Expanding a = 92 in a continuous fraction and form-

ing the table of convergents (d, $4), find: «) 8,; P) the repre-
sentation of o in the form considered in problem 4, b, with

T = 20.
5391

in a continuous fraction and form-

b. Expanding o =

ing the table of convergents, find: a) 8¢ B) the representation
of o in the form considered in problem 4, b, with 7 = 1000.

3. Form the Farey series (problem 4) from 0 to 1, excluding
1, with denominators not exceeding 8.

4. Form the table of primes less than 100.

5, a. Find the canonical decomposition of the number
82 798 848.

b. Find the canonical decomposition of the number
81 057 226 635 000.
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CHAPTER II

IMPORTANT NUMBER-
THEORETICAL FUNCTIONS

S1. The Functions [x], {x}

a. The function [x] plays an important role in number theory;
it is defined for all real numbers x and is the largest integer
not exceeding x. This function is called the integral part of x.

Examples.

(71 = 7; [2.6] = 2; [4.75] = -5.

The function {x} = x — [x] is also considered sometimes. This
function is called the fractional part of x.
Examples,

{7} = 0;§2.6} = 0.6; {—4.75} = 0.25.

b. In order to show the usefulness of the functions we have
introduced, we prove the theorem:
The power with which a given prime p enters into the product

nlis equal to
n n° n
- + -1 + T + e
[P] [P] [ P’]

Indeed, the number of factors of the product n! which are
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multiples of p is [-'1-} ; of these the number of multiples of p
p

n
is [iz-] ; of the latter the number of multiples of p* is [——] s
p

3

etc. The sum of the latter numbers gives the required power
since each factor of the product n! which is a multiple of the
maximal p™ is counted m times by the above process, as a
multiple of p, p?, p°, ..., and finally, p™.

Example. The power to which the number 3 enters into the
product 40! is

40 40 40
il s | = c13+44+1= 18
3 9 27

82, Sums Extended over the Divisors of a Number

a. Multiplicative functions play an important role in number
theory. A function 6(a) is said to be multiplicative if the
following conditions are satisfied:

1. The function 6(a) is defined for all positive integers a
and is not equal to zero except possibly for at most one such a.
2. For any two relatively prime positive integers a, and a,,

we have

0(a,a,) = 6(a,) 6(a,).

Example. It is not difficult to see that the function 6(a) =
= a®, where s is any real or complex number, is multiplicative.
b. From the aforementioned properties of the function 6 (a)

it follows in particular that (1) = 1. Indeed, let 6 (a,) be
different from zero, then 8 (a,) = 6(1 *a,) = 6(1)8(a,), i.e.
0(1) = 1. Moreover we have the following important property:
if 6,(a) and 6,(a) are multiplicative functions, then 6o(a) =

= 6,(a)b,(a) is also a multiplicative function. Indeed, we find

that
6,(1) = 0,(1)6,(1) = 1.
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Moreover, for (a,, a,) = 1, we find

0ola,a,) = 6,(a,a,)0,(a,a,) = 0,(a,)8,(a,)0,(a,)0,(a,) =

6,(a,)6,(,)6,(a,)0,(a;) = 0,(a,)0y(a,).

c. Let 0(a) be a multiplicative function and let a =
= pyp;2...pik be the canonical decomposition of the number
a. Then, denoting by the symbol ). the sum extended over
d\a
all the divisors d of the integer a, we have

20 =Q0Q+0p)+0@)+...+0(pM)...
d\a
voe (14 0(pi) + 000%) + ... + 9 (pEx))

(f a = 1 the right side is considered to be equal to 1).
In order to prove this identity, we multiply-out the right
side. Then we obtain a sum of terms of the form

G(p,ﬁ‘)e(pf’)...ﬁ(pfk) = 6(p! ‘pf’...pf");

0<Bx<°‘n0<ﬁzS%,o~-,0SBk<0‘m

where no terms are lacking and there are no repeated terms,
and this is exactly the situation on the left (e, $6, ch. I).
d. For 6(a) = a® the identity of c takes on the form

@ 22d° = (1 +pf+ p2® + ...+ p2o)...
d\a
ol + pg + PR+ oL+ pRxo),

In particular, for s = 1, the left side of (1) represents the
sum of the divisors S(a) of the number a. Simplifying the right
side we find

g+t a,+1 gzt

pitt -1 pttt -1 px 1
S(a)= : * ? cen

pr~1 p. — 1 Pr— 1
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Example.

$(720) = S(2* +3* *5) =

24+1 -1 32+l -1 514‘1 -1
= . ¢« ———— = 2418.
2 -1 3-1 5-1

For s = 0, the left side of (1) represents the number of
divisors 7 (@) of the number a and we find

r@ = (o, + Doy + Donolog + 1).

Example.

7(720) = 4 + D2 + DA + 1) = 30.
§3. The Mobius Function

a. The Mabius function p(a) is defined for all positive
integers a. It is given by the equations: pla) = 0,ifais
divisible by a square different from unity; p @) = D¥ifa
is not divisible by a square different from unity, where k de-
notes the number of prime divisors of the number a; in particu-
lar, for @ = 1, we let & = 0, and hence we take u (1) = 1.

Examples.

p(l) =1, p(5) = -1, n(9) =0,
p(2) = -1, p6) =1, p(10) = 1,
p@) = -1, w(@) = -1, p@D) = -1,
) =0, 1(8) = 0, p(12) = 0.

b. Let 6 (a) be a multiplicative function and let
a = p{pst. . pi*
be the canonical decomposition of the number a. Then

T< p(@6) = A - 8p)) A = 6(py) ... (1 = Ops)).
d\a
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(If a = 1 the right side is taken to be equal to 1.)

Indeed it is evident that the function p(a) is multiplicative.
Therefore the function 6,(a) = u(a) 6 (a) is also multiplicative.
Applying the identity of ¢, $2 to the latter, and noting that
0,(p) = -0(p); 6,(p°) = 0 for s > 1, we have proved the va-
lidity of our theorem.

c. In particular, setting 6(a) = 1, we obtain from b,

=0,ifa> 1,
2 uld)
d\a
=1,ifa = 1.
1
Setting 6(d) = —, we find
d
1 1 1
= -l =—].. {1 =-—),ifa>1,
Z p(d) P P2 Pk
dANa d
=1’ ifa=1.

d. Let the real or complex f = f,, fos «+ ., fn correspond to
the positive integers 8 = 8,, 83y <+ v, 8n. Then, letting S’ be
the sum of the values of f corresponding to the values of &
equal to 1, and letting S4 be the sum of the values of f cor-
responding to the values of § which are multiples of d, we
have

S = T (@Sa

where d runs through all the positive integers dividing at least
one value of 8.
Indeed, in view of ¢ we have

S =y D+, o u @+ i+ fa ) pd).
d\ 8, d\5, d\3,
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Gathering those terms with the same value of d and bracketing
the coefficient of this y(d), the bracket contains those and
only those f whose corresponding 8 are multiples of d, and
this is just S4.

$4. The Euler Function

a. Euler’s function ¢(a) is defined for all positive integers
a and represents the number of numbers of the sequence

(1) 0,1, ...,a-1
which are relatively prime to a.
Examples.
¢@3) = 2, @(6) = 2.
b. Let
@ a = piips? ... pi*

be the canonical decomposition of the number a. Then

1 1 1
®) p@=a(l~—](1=— ... [1=—
P1 P2 Pk

or also

@ @ = (pf* - p ™) (2 — p; ) oL ik ~ Pk
in particular,
() o(p® = p* - p**, 9(p) = p - L

Indeed we apply the theorem of d, $3. Here the numbers
8 and the numbers f are defined as follows: let x run through
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the numbers of the sequence (1); to each value of x let the
number & = (x, a) and the number f = 1 correspond.

Then S’ becomes the number of values 8 = (x, a) equal to
1, i.e. becomes ¢(a). Moreover Sy becomes the number of
values § = (x, a) which are multiples of d. But (x, @) can be
a multiple of d only if 4 is a divisor of the number a. On the
strength of these conditions S, reduces to the number of values

a
of x which are multiples of d, i.e. to —. Thus we find

ola) = 2. u(a’){;—

d\a

from which formula (3) follows in view of ¢, $3, and formula
(4) follows from (3) in view of (2).
Examples.

22

¢(81) = 81 — 27 = 54;
@5) =5~1=4.

c. The function (a) is multiplicative function.
Indeed, for (a,, a,) = 1, it follows evidently from b that

pla,a,) = 9la,) 9la,).

Example. (405) = (81) (5) = 54 « 4 = 216.

d 2 ¢ = a.
d\a
In order to prove the validity of this formula we apply the
identity of ¢, $2, which for 0(a) = o(a) gives

o(d) = 0 + @lp,) + (@2 + ... + lpf))...
oo+ @lpr) + lpk) + oov + lpgo),
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In view of (5), the right side can be rewritten as

(1 + (p1 - ].) + (p: - Px) + o0 + (p:’" - p:’"'—‘))-oo
i 4 (r = D+ (h = p) + +ov + (PRE = pRET)),
which turns out to be equal to p{*p;2...pxk = a after gather-
ing similar terms in each large parenthesis.
Example. Settinga = 12, we find
o) + @(2) + 9(3) + 9@4) + ¢(6) + ¢(12) =
=1+1+2+2+24+4=12.

Problems for Chapter II

1, a. Let the function f(x) be continuous and non-negative
in the interval Q < x < R. Prove that the sum

> e

0<x<R

is equal to the number of lattice points (points with integer
coordinates) in the plane region: § < x ¢ R, 0 <y ¢ flx).

b. Let P and Q be positive odd relatively prime integers,
Prove that

LI L

o< x<— o<ly<—
2 2

c. Letr > 0 and let T be the number of lattice points in
the region x* + y* < . Prove that

T-14+4]+8 Z [\/'2“"2]—4[—\7’—;]2
0<xg—-—*___
V2
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d. Let n > 0 and let T be the number of lattice points of
the region x > 0,y > 0, xy < n. Prove that

rea Y H WAl
o<xgym L
2. Liet n > 0, m an integer, m > 1, and let x run through

the positive integers which are not divisible by the m-th power
of an integer exceeding 1. Prove that

zﬁ'/——-] - [,

3. Let the positive numbers o and 8 be such that
lox], x =1, 2, ...; By, y =1, 2, ...

form, taken together, all the natural numbers without repeti-
tions. Prove that this occurs if and only if « is irrational and

Q|+

1
+ — = 1.
B

4,a Letr > 1, ¢t = [7], and let x,, x,, ..., x; be the num-
bers 1, 2, ..., t in some order so that the numbers

0, fcxx,f, {ocx,f, ey focx,}, 1

are non-decreasing. Prove the theorem of problem 4, b, ch. I,
by considering the differences of neighboring numbers of the
latter sequence.

b. Let X, Y, ..., Z be real numbers, each of which is not
less than 1; let «, B, ..., y be real numbers. Prove that there
exist integers x, y, ..., z, not all zero, and an integer u,
satisfying the conditions:
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=] <X, |yl <V, ..., || <2,

(x,y,...,z)=1,’o¢x+ + oo+ z—u|<—-
By Y XY...Z

5. Let « be a real number, ¢ an integer, ¢ > 0. Prove that

[[a] o
c] Le
6, a. Let o, B, ..., A be real numbers. Prove that

o+ B+ .o+ A1 20l +[8]+ ... + ]

b. Leta, b, ..., [ be positive integers, andleta + b + ...
«o. + 1 = n. Applying b, $1, prove that

n!

albl. .. 0I!

is an integer,
7. Let h be a positive integer, p a prime and

Representing % in the form A = poup, + Pmoylimey + +o+

ees + pyliy + po, where u,, is the largest u, not exceeding 4,
Pmim is the largest multiple of u,, which does not exceed 4,
Pmei1¥m—, is the largest multiple of u,,_, which does not ex~
ceed b — pou,, Pm_slim_, is the largest multiple of u,,_,
which does not exceed & ~ pplym — Pm_ilm_1 €tC., prove that
numbers a such that the number p enters into the canonical
representation of a! with the power &, exist if and only if all
the poy Pm_ss - -5 P1s Po are less than p, while, if this occurs,
the numbers a are just all the numbers of the form
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1

@ =pup™™ + PuaP™ + oo+ Pt + pop + P

where p” has the values 0,1, ...,p — L.
8, a. Let the function f(x) have a continuous second deriva-
tive in the interval Q < x < R. Setting

1
px) = ; - {xz, olx) = fp(z)dz,

prove (Sonin’s formula)

R
D ) - J fodx + p RfR) — p (QFQ) —

O<xLR

~ o(R)f’'(R) + o(Q)f"(Q) + f o(x)f” (x)dx.

Q

b. Let the conditions of problem a be satisfied for arbi-

@©

trarily large R, while f

R

f**(x)| dx converges. Prove that

Q<xgR

R
2 fm)=C+ f fedx + p(RIR) —
Q

— o(R}f'(R) - f o(x)f"’(x)dx,
R

where C does not depend on R.

c. If B takes on only positive values and the ratio

is bounded above, then we write 4 = O(B).
Let n be an integer, n > 1. Prove that

In@) = nlnn — n + O(nn)
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9,a. Letn > 2,0(z, z,) = Z Inp, where p runs through
zo<pgz
the primes. Moreover, let B(z) = O(z, 0) and for x > 0,

Y = Bx) + BKVx) + B(x) + ...

Prove that

n n
o) In([a]]) = ¢(@) + l/l(‘é‘) + ¢(§) o

B) ¢(n) < 2n

y) © (n, 1>+ ®<—rf—, —7—>+ ®<—ri, 1) Foaea =
2 3 4 5 6
=nln2 + OWn).

b. Forn > 2, prove that

1
2. 2P Inn + OQQ),
p<n P

where p runs through the primes.

c. Let ¢ be an arbitrary positive constant. Prove that the
sequence of natural numbers contains an infinite number of
pairs p,, pn,, of prime numbers such that

Pns < Pn(l + €.

d. Letn > 2. Prove that

1 1
Z—=C+lnlnn+0( >
Inn

p<n P

where p runs through the primes and C does not depend on n.
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e. Letn > 2. Prove that

7 -3) b o)

where p runs through the primes and C, does not depend on n,
10, a. Let 9(a) be a multiplicative function. Prove that

6,(a) = ). 6(d) is also a multiplicative function.
d\a
b. Let the function 0(a) be defined for all positive integers

a and let the function Y(a) = Z 0 (a) be multiplicative.
d\a
Prove that the function 9 (a) is also multiplicative.

11, Form > 0, let r,(a) denote the number of solutions of
the indeterminate equation x,x;...xy = a(x,, %3, +., %y TUN
through the positive integers independently of one-another);
in particular, it is evident that 7,(a) = 1, 7,(a) = r(a). Prove
that

a. 7,(a) is a multiplicative function.

b. If the canonical decomposition of the number a is of the
form @ = p,p,p, . . . pxs then 7,(a) = m*.

c. If ¢ is an arbitrary positive constant, then

. Tm(@)
lim e =
a-»mo a

d. Z 7m(a) is equal to the number of solutions of the in-
0<agn
equality x,x, ...x, < o in positive integers x;, x;, «+ ., Tpm.

12. Let R(s) be the real part of the complex number s, For
w

R(s) > 1, we set {(s) = Z —. Let m be a positive integer.
Nnml

Prove that
[+ m(
Cenm = 3 =
n=l n
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13, a. For R(s) > 1, prove that

1
L) =TT ———
1 - =
p
where p runs through all the primes.
b. Prove that there exist an infinite number of primes, start-
ing from the fact that the harmonic series diverges.

c. Prove that there exist an infinite number of primes, start-
2

7
ing from the fact that £(2) = —-6— is an irrational number.

14. Let A(a) = Inp fora = p', where p is a prime and [
is a positive integer; and let A (a) = O for all other positive
integers a. For R(s) > 1, prove that

¢’(s) © An)

¢(s) as1 n°

15. Let R(s) > 1. Prove that

gl - g

s
P p n=1 I

where p runs through all the primes.
16, a. Let n > 1. Applying d, $3, prove that

1= 2 u@d [1] .
0<d<n d

b. Let #(z, z,) = ). pula); U(x) = M(x, 0). Prove that

z<agz

n n
o) M@n) + M(—) + M(——)+ eeo=1,n>1.
2 3
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B M (n, l)+ M(-,L, —'L—\)+M(—n—,i) +oe==l,n3> 2,
2 3 4 5 6

c. Letn > 1, let ] be an integer, [ > 1, and let T, ,, be the
number of integers x, such that 0 < x < n, which are not di-
visible by the [-th power of an integer exceeding 1. Applying
d, §3, prove that

Tyn = 33 4ld) BT] .
-d=1

17, a. Let a be a positive integer and let the function f(x)
be uniquely defined for the integers x,, x,, ..., x,. Prove

§’= ) udSa,

d\a

where S’ is the sum of the values of f(x) extended over those
values of x which are relatively prime to a, and Sy is the sum
of the values of f{x) extended over those values of x which
are multiples of d.

b. Let £ > 1 and consider the systems
Ky Xy voey e Xy s Xy 'y seny Xi 3 oess x,("), ML, 2,
each of which consists of integers, not all zero. Moreover,
let the function flx,, %,, ..., %x) be uniquely defined for these
systems. Prove that

$* = ZudSa,

where S’ is the sum of the values of f(x,, x,, ...} x;) extended
over systems of relative prime numbers, and Sy is the sum of
the values of flx,, x,, ..., x,) extended over systems of num-
bers which are all multiples of d. Here d runs through positive
integers,

35



c. Let a be a positive integer, and let F(8) be uniquely de-
fined for the divisors § of the number a. Setting

G(5) = 2 F(d),
d\3

prove (the inversion law for number-theoretic functions)

a
F(a) = HG(— ).
a) = 2 u (d)

d. Associate with the positive integers
1y 825 +eey On
arbitrary real or complex numbers

fl’ fzs ety fn

different from zero. Prove that

where P’ is the product of the values f associated with values
of & equal to one, and P is the product of the values f as-
sociated with values of 5 which are multiples of d, where d
runs through all the positive integers which divide at least
one 8.

18. Let a be an integer, a > 1, 0,(n) = 1™ + 2™ + ... +
+ n™; let ¢,,(a) be the sum of the m-th powers of the numbers
of the sequence 1, 2, ..., a which are relatively prime to a;
let py, psy + - - » pxc be all the prime divisors of the number a.

a. Applying the theorem of problem 17, a, prove that

Ym(a) = 2, pd)d™on (1)

d\a d
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b. Prove that

¥ (a) = %cp(a).

c. Prove that

a

2 (_l)k
lﬁz(a) = (';' + —6—p,p, e pk> cp(a).

19. Let z > 1, let a be a positive integer; let T, be the
number of numbers x such that 0 < x € z, (x, @) = 1; let ¢

be an arbitrary positive constant.
a. Prove that

T, = 2 pld [—:-] .

d\a

b. Prove that
z
T, = — ¢la) + 0(a®).
a

c. Let z > 1; let #(z) be the number of prime numbers not
exceeding z; let @ be the product of the primes not exceeding

Vz . Prove that

2(2) = V7)) =1+ L uld) [-Z-]

d\a

20. Let R(s) > 1 and let a be a positive integer. Prove that

1 1
) - =17<1— P_)c(s),
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where, on the left side, n runs through the positive integers
relatively prime to a, while, on the right side, p runs through
all the prime divisors of the number a.

21, a. The probability P that k positive integers x,, %3, ...,
x; are relatively prime is defined as the limit, as N — o, of
the probability Py that the £ numbers x,, x,, ..., %; aré rela-
tively prime, when these k numbers take on the values 1, 2,
..., N independently and with equal probability. Applying the
theorem of problem 17, b, prove that P = ({(%))™.

b. Defining the probability of the irreducibility of the frac-

%
tion — as in problem a for &k = 2, prove that P = =
Y
22, a. Let r > 2 and let T be the number of lattice points

(%, y) with relatively prime coordinates in the region 2+ y <
< r. Prove that
6
T = —r? + O(rlnr).
7
b. Letr > 2 and let T be the number of lattice points (x, y,
z) with relatively prime coordinates lying in the region x* +

+y? + z* < r’. Prove that

A

326) r* + 0@?)

23, a. Prove the first theorem of ¢, $3, by considering the
divisors of the number @ which are not divisible by the square
of an integer exceeding 1, and having 1, 2, ... prime divisors.

b. Let a be an integer, a > 1, and let d run through the di-
visors of the number @ having no more than m prime divisors;

Prove thath,(d) > 0 for m even, andz u(d) < O for m odd.
¢. Under the conditions of the theorem of d, $3, assuming
all the f to be non-negative and letting d run only through the
numbers having no more than m prime divisors, prove that
§7-< Z#(‘l)sds 5722 ud)Sq
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according as m is even or odd.

d. Prove the validity of the same inequalities as in problem
¢, under the conditions of problem 17, a, assuming all the
values of f(x) are non-negative, as well as under the conditions
of 17, b, assuming all the values of fley, x,, o .., xg) are non-
negative,

1
24. Let ¢ be an arbitrary constant such that 0 < € < Z; let

N be an integer, r = InN,0 < ¢ S N5, 0 1< q,(q, ) = 1;
let #(N, q, 1) be the number of primes such thatp < N, p =
= qt + [, where ¢ is an integer. Prove that
N(gr)¢
qr

”(Nr q, D) = O(A); A=

In order to prove this, setting & = r*~¢, the primes satisfy-
ing the above condition can be considered to be among all
numbers satisfying these conditions relatively prime to a,
where a is the product of all primes which do not exceed e”
and do not divide g. We can then apply the theorem of problem
23, d (under the conditions of problem 17, a) with the above a
andm = 2[2Inr + 1].

25. Let k be a positive even number, let the canonical de-
composition of the number @ be of the forma = p,p,...p, and
let d run through the divisors of the number & such that 0 <

< d < Va. Prove that
Jould) = 0.
d

26. Let £ be a positive integer, let d run through the posi-
tive integers such that ¢(d) = £. Prove that

2o uld = 0.

27. Using the expression for ¢(a), prove that there exist an
infinite number of primes.
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28, a. Prove the theorem of d, $4 by showing that the num-
ber of integers of the sequence 1, 2, ..., a which have the

a
same greatest common divisor 8 with a, is equal to ¢ (g) .

b. Deduce expressions for ¢(a):

«) using the theorem of problem 10, b;
B) using the theorem of problem 17, c.

29, Let R(s) > 2. Prove that

o ¢(n) _ {s - 1)
n®  Ls)

n=1
30. Let n be an integer, n > 2. Prove that

n 3
)2 o(m) = ;z—n‘ + O(n In n).

mm1

Numerical Exercises for Chapter 1I

1, a. Find the exact power with which 5 enters into the
canonical decomposition of 5258! (problem 5).

b. Find the canonical decomposition of the number 125!

2, a. Find 7(2 800) and S(2 800).

b. Find #( 232 848) and S(232 848).

3. Form the table of values of the function p(a) for all
a=1,2,...,100

4. Find o) ¢(5040); B) ¢( 1 294 700).

5. Form the table of values of the function ¢(a) for all
a=1,2, ...,50, using only formula (5), $4, and theorem
c, $4.
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CHAPTER I11

CONGRUENCES

S1. Basic Concepts

a. We will consider integers in relation to the remainders
resulting from their division by a given positive integer m
which we call the modulus.

To each integer corresponds a unique remainder resulting
from its division by m (c, $1, ch. I); if the same remainder r
corresponds to two integers a and b, then they are said to be
congruent modulo m.

b. The congruence of the numbers a and b modulo m is
written as

a = b(mod m),

which is read: a is congruent to b modulo m.

c. The congruence of the numbers a and b modulo m is
equivalent to:

1. The possibility of representing a in the form a = b + mt,
where t is an integer.

2. The divisibility of a — b by m.

Indeed, it follows from a = b(mod m) that

a=mqg+r,b=mg +r; 0r<m,
and hence

a-b=mlg-q)a=b+mt,t=(g~q)
. 41



Conversely, from a = b + mt, representing b in the form

o~
I

=mq, +1, 0 <17 < m,
we deduce

a=mq+r;q=q1+t,

b(mod m)

®
i

proving assertion 1.
Assertion 2 follows immediately from assertion 1.

§2. Properties of Congruences similar to those of Equations
a. Two numbers which are congruent to a third are congruent
to each other.

This follows from a, $1.
b. Congruences can be added termwise.

Indeed, let

(1) a, = b,(mod m), a, = by(mod m), ..., ax by (mod m)

Then (1, c, $1)

(2) a, = b, + mty, a, = b, + mty, o0y Qg = by + miy,

and hence
a,+a,+...+ak=b,+b,+...+bk+m(t,+t,+...+tk),

or(1,c, $1)

@, + Gy + ooo + ag = by + by + ... + bylmod m)
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A summand on either side of a congruence can be put on the
other side by changing its sign.

Indeed, adding the congruence a + b = c(mod m) to the evi-
dent congruence ~b = -b(mod m), we find a = ¢ ~ b(mod m).

Any number which is a multiple of the modulus can be added
to (or subtracted from) any side of a congruence.

Indeed, adding the congruence a = b(mod m) to the evident
congruence mk = 0(mod m), we obtain a + mk = b(mod m).

c. Congruences can be multiplied termwise.

Indeed, we again consider the congruences (1) and deduce
from them the equations (2). Multiplying equations (2) together
termwise we find

a,a,...ax = bb,...bx + mN,
where N is an integer. Consequently (1, ¢, $1),
a,8,...a5 = bb,...b(mod m).

Both sides of a congruence can be raised to the same power.

This follows from the preceding theorem.

Both sides of a congruence can be multiplied by the same
integer.

Indeed, mutliplying the congruence a = b(mod m) by the
evident congruence k = k(mod m), we find ak = bk(mod m).

d. Properties b and ¢ (addition and multiplication of con~
gruences) can be generalized to the following theorem,

If we replace A, x,, %,y ..., %, in the expression of an

integral rational function S = } Ax;x;?...xx* with integral

coefficients, by the numbers B, y,, y,, .., yix which are con-
gruent to the preceding ones modulo m, then the new expres~
sion S will be congruent to the old one modulo m.

Indeed, from

A = B(mod m), x, = y,(mod m),

%, = y,{mod m), ..., xx = yr(mod m)
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we find (c)

A = B(mod m), x = y*(mod m)

x4 = y8(mod m), ..., xgk = yrkmod m),

AxPxl, . xfk = ByMy ... yik(mod m)

from which, summing, we find
I Axdx(a. . xpk = ) Byl y2¥(mod m).
If

a = blmod m), a, = b,(mod m), ..., ay = by(mod m),

x

x,(mod m),

then

ax™ + a @™ + .+ @ = bal + bl 4+ ..+ bp(mod m).

This result is a special case of the preceding one.
e. Both sides of a congruence can be divided by one of their
common divisors if it is relatively prime to the modulus.
Indeed, it follows from a = b(mod m), @ = a,d, b = b.d,
(d, m) = 1 that the difference a — b, which is equal to (a, -
— b,)d, is divisible by m. Therefore (2, I, $2, ch. Da, - b,
is divisible by m, i.e. a, = b,(mod m).

83, Further Properties of Congruences

a. Both sides of a congruence and the modulus can be
multiplied by the same integer.
Indeed, it follows from a = b(mod m) that

a=0>b+mt, ak = bk + mkt

and hence, ak = bk(mod mk).
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b. Both sides of a congruence and the modulus can be
divided by any one of their common divisors.

Indeed, let
a=bmodm), a=ad b=bd, m=md.

We have
a=b+mt ad=>0d+ mdt, a, =b, + mt

and hence a, = b,(mod m,).

c. If the congruence a = b holds for several moduli, then it
also holds for the modulus equal to the least common multiple
of these moduli.

Indeed, it follows from @ = b(mod m,), a = b(mod m,), ...,
@ = b(mod m,;) that the difference a — b is divisible by all the
moduli m,, m,, ..., my. Therefore (c, $3, ch. I) it must be
divisible by the least common multiple m of these moduli,

i.e. a = b(mod m).

d. If a congruence holds modulo m, then it also holds
modulo d, which is equal to any divisor of the number m.

Indeed, it follows from ¢ = b(mod m) that the difference
a — b must be divisible by m; therefore (1, b, $1, ch. I) it
must be divisible by any divisor d of the number m, i.e.

a = b(mod d).

e. If one side of a congruence and the modulus are divisible
by some number then the other side of the congruence must
also be divisible by the same number.

Indeed, it follows from a = b(mod m) that @ = b + mt, and
if @ and m are multiples of d, then (2, b, $1, ch. I) b must also
be a multiple of d, as was to be proven.

f. If a = b(mod m), then (a, m) = (b, m).

Indeed, in view of 2, b, $2, ch. I this equation follows im-
mediately from a = b + mt.

$4. Complete Systems of Residues

a. Numbers which are congruent modulo m form an
equivalence class modulo m.
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It follows from this definition that all the numbers of an
equivalence class have the same remainder r, and we obtain
all the numbers of an equivalence class if we let g in the form
mq + rrun through all the integers.

Corresponding to the m different values of r we have m
equivalence classes of numbers modulo m.

b. Any number of an equivalence class is said to be a resi-
due modulo m with respect to all the numbers of the equiva-
lence class. The residue obtained for g = 0 is equal to the
remainder r itself, and is called the least non-negative residue.

The residue p of smallest absolute value is called the
absolutely least residue.

m m
It is evident that we have p = rforr < 25 forr > 5 ve

m
have p = r — m; finally, if m is even and r = > then we can

m
take for p either of the two numbers Y and — - m = ——.

2 2
Taking one residue from each equivalence class, we obtain
a complete system of residues modulo m. Frequently, as a
complete system of residues we use the least non-negative
residues 0, 1, ..., m — 1 or the absolutely least residues; the
latter, as follows from our above discussion, is represented in
the case of odd m by the sequence

m -1 m-1
9 vy -1, 0,1, ....,. —,

2 2

and in the case of even m by either of the two sequences

m
—-2— + 1, veey -1, 0, 1, ...,

m
T -1,0,1, ...,
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¢. Any m numbers which are pairwise incongruent modulo m
form a complete system of residues modulo m.

Indeed, being incongruent, these numbers must belong to
different equivalence classes, and since there are m of them,
i.e. as many as there are classes, it follows that one number
falls into each class.

d. If (a, m) = 1 and x runs over a complete system of resi-
dues modulo m, then ax + b, where b is any integer also runs
over a complete system of residues modulo m.

Indeed, there are as many numbers ax + b as there are
numbers x, i.e, m. Accordingly, it only remains to prove that
any two numbers ax, + b and ax, + b corresponding to incon-
gruent x, and x, will also be incongruent modulo m.

But, assuming that ax, + b = ax, + b(mod m), we arrive at
the congruence ax, = ax, (mod m), from which we obtain
%, = x, (mod m) as a consequence of (a, m) = 1, and this
contradicts the assumption of the incongruence of the num-
bers %, and x,.

85. Reduced Systems of Residues

a, By £, $3, the numbers of an equivalence class modulo m
all have the same greatest common divisor relative to the
modulus, Particularly important are the equivalence classes
for which this divisor is equal to unity, i.e. the classes con-
taining numbers relatively prime to the modulus,

Taking one residue from each such class we obtain a re-
duced system of residues modulo m. A reduced system of
residues therefore consists of the numbers of a complete sys-
tem which are relatively prime to the modulus. A reduced
system of residues is usually chosen from among the numbers
of the system of least non-negative residues 0,1, ..., m — 1.
Since the number of these numbers which are relatively prime
to m is ¢(m), the number of numbers of a reduced system,
which is equal to the number of equivalence classes contain-
ing numbers relatively prime to the modulus, is ¢(m).
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Example. A reduced system of residues modulo 42 is
1,5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

b. Any ¢(m) numbers which are pairwise incongruent modulo
m and relatively prime to the modulus form a reduced system
of residues modulo m.

Indeed, being incongruent and relatively prime to the
modulus, these numbers belong to different equivalence clas-
ses which contain numbers relatively prime to the modulus,
and since there are ¢(m) of them, i.e. as many as there are
classes of the above kind, it follows that there is one number
in each class.

c. If (a, m) = 1 and x runs through a reduced system of
residues modulo m, then ax also runs through a reduced sys-
tem of residues modulo m.

Indeed, there are as many numbers ax as there are numbers
x, i.e. @(m). By b, it only remains to prove that the numbers
ax are incongruent modulo m and are relatively prime to the
modulus. But the first was proved in d, $4 for the numbers of
the more general form ax + b, and the second follows from
a,m) =1, &, m=1

86. The Theorems of Euler and Fermat
a. Form > 1and (a, m) = 1, we have (Euler’s theorem):
a®™ = 1 (mod m).
Indeed, if x runs through a reduced system of residues
X = Ty Tay eevy Tes € = @lm),
which consists of the least non-negative residues, then the
least non-negative residues p,, p,, ..., pc of the numbers

ax will run through the same system, but, generally speaking,
in a different order (c, $5).
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Multiplying the congruences
ar, = p, (mod m), ar, = p, (modm), ..., ar, = p, (mod m)
together termwise, we find
a’ryr v ufe = pypy ... pe (mod m),

from which we find

a® = 1 (mod m)

by dividing both sides by the product r,r,...rc = p,p,...pc.
b. If p is a prime and a is not divisible by p, then we have
(Fermat’s theorem):

(1) a?™ =1 (mod p).

This theorem is a consequence of theorem a form = p. The
latter theorem can be put in better form. Indeed, multiplying
both sides of the congruence (1) by a, we obtain the congruence

a® = a (mod p),

which is valid for all integers a, since it is valid for integers
a which are multiples of p.

Prohlems for Chapter Il

1, a. Representing an integer in the ordinary decimal sys-
tem, deduce criteria for divisibility by 3, 9, 11.

b. Representing an integer in the calculational system to
the base 100, deduce a criterion for divisibility by 101.

c. Representing an integer in the calculational system to
the base 1000, deduce criteria for divisibility by 37, 7, 11, 13,
2,a. Letm > 0, (a, m) > 1, let b be an integer, let x run
through a complete, while ¢ runs through a reduced, system of
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residues modulo m. Prove that

2 Zx{axm+ b} _ —;—(m _,
1
5 Zf{ff} -~ glm).

b. Letm > 0, (g, m) = 1; let b, N, ¢ be integers, ¢t > 0; let

b
flx) = bl , f(N) > 0, f(N + mt) > 0. Prove, for the
m

trapezoid bounded by the lines x = N, x = N + mt, y = 0,
y = f(x), that

(0 S= 2.8

where S is the area of the trapezoid, while the sum on the
right is extended over all the lattice points of the trapezoid

1
where 8 = 1 for the interior points, § = 1— for the vertices,
0 = 3 for the remaining points of the contour.

c. Letting, in contradistinction to problem b, 6 = —

for the vertices, prove formula (1) for a triangle with lattice
point vertices.
3,a. Letm > 0,(a,m) =1,k > 0,letcbea real number,

let
m—t [ax + ()
3= g;o { m }

where (x) takes on values such that ¢ < ¢(x) < ¢ + h for
the values of x considered in the sum. Prove that
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1
<h+ —.

1
2 2

b. Let M be an integer, m > 0, (a, m) = 1, let 4 and B be
- real numbers, let

a A M+m=1
A=;+-;lz—,s= ;M iAx+B§.
Prove that
1 1
|s~;m < b+

c. Let M be an integer, m > 0, (a, m) = 1,

M+mai

S = Z {f(x)i,

x=M

where the function f(x) has continuous derivatives f’(x) and
f"(x) in the interval ¥ < x < M + m — 1, while

a V] 1 k
ffM)=—+—;(a,m=1410] <1;,—< |f@| <—,
m m? A A
where
lSmgr,r=4,432,k>1.
Prove that
1 E+3
IS—- —m| < *
2 2

4. Let all the partial quotients in the continued fraction
development of the irrational number 4 be bounded, let ¥ be
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an integer, let m be a positive integer, and let B be a real
number. Prove that

M+m=1 1
b2 {dx + B} = Sm O(ln m).

x=M

5,a. Let4 > 2, k > 1 and let the function fx) have a
continuous second derivative satisfying the condition

1 k

— <& <
) | £ ) | 1
on the interval Q < x < R. Prove that

1
Y i) = —R - Q) +6A; 6] <1,
0<x<R 2

A= QRR - Q)In A + 8kA)A™5.

b. Let Q and R be integers, and let 0 < ¢ < 1. Under the
assumptions of problem a, prove that the number yi(0) of frac-
tions {flx)}; x = Q + 1, ..., R such that 0 < {fo)} < o is
given by the formula

Ylo) = a(R — Q) + 07 - 2A; 7] < 1.

6, a. Let T be the number of lattice points (x, y) of the re-
gion #* + y2 < # (r > 2). Prove that

T =a? + O(rz/3 In 7).

b. Let n be an integer, n > 2, and let E be Euler’s constant.
Prove that

A1) + H2) 4 or 4 rm) = nnn + 26 = 1) + O (In n).
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7. A system of n positive integers, each of which is repre-
sented to the base 2, is said to be proper if for every non~
negative integer s, the number of integers in whose representa-
tion 2% occurs, is even, and is said to be improper if this
number is odd for at least one s.

Prove that an improper system can be made proper by de-
creasing or completely deleting some one of its members,
while a proper system can be made improper by decreasing or
completely deleting any one of its members.

8. a. Prove that the form

3%, + 3™ %0y + ...+ 3%, + x,,

where x,, x,.,, ..., x,, %, run through the values ~1, 0, 1
independently of one another, represents the numbers

g+t - 1

-H, ...,-1,0,1, ..., H; H =
3-1

and represents each of them uniquely.

b, Let my, m,, ..., my be positive integers which are rela-
tively prime in pairs. Using ¢, $4, prove that we obtain a
complete residue system modulo m,m, ...m,, by inserting in
the form

Xy + MXy + Mm%y + oue + MMy oo eMpey Xge

the numbers x,, x,, ..., xx which run through complete residue
systems modulo m,, m,, ..., my.

9. Let m,, m,, ..., m; be integers which are relatively
prime in pairs, and let

mm,...me = mM, = m,M, = ... = muM.

a. Applying ¢, $4, prove that we obtain a complete system
modulo mm, ...m, by inserting in the form

Mx, + Myx, + ... + Mpxg
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the numbers x,, %,, ..., %; which run through a complete sys-
tem of residues modulo m,, m,, ..., mg.

b. Applying c, &4, ch. Il and b, $3, prove that we obtain
a reduced system of residues modulo m,m, ... my by inserting
in the form

Mx, + Myx, + oo + Myxg

the numbers x,, x,, ..., %; which run through a reduced residue
system modulo m,, m,, + .., M.

c. Prove the theorem of problem b independently of theorem
c, $4, ch. I, and then deduce the latter theorem from the
former one,

d. Find an expression for ¢(p®) by an elementary method,
and using the equation in ¢, $4, ch. II, deduce an expression
for ¢(a).

10. Let m,, m,, ..., my be integers greater than 1, which
are relatively prime in pairs, and let m = mym, ... my,
mMg = m.

a. Let x,, x,, ..., Xx, % run through complete residue sys-
tems, while &,, &, ..., &, & run through reduced residue sys-
tems modulo m,, m,, ..., mx, m. Prove that the fractions

X % X
— +t Tt e+ —
mm M

x
coincide with the fractions {-—} , while the fractions
m

{—é—— + —6—2 + e + ——‘7{1} coincide with the fractions {i} .

m, m, My m
b. Consider k entire rational functions with integral coef-
ficients of the r variables x, ..., w(r > 1):

felx, «ouy w) = Z c;').”’ xa...ws;s=1,‘..,k,
Qyoseeyd ?

54



and let

a 8,
fle, oovy w) = Cayeuey8% 0o W5 Coii.,s
Qy oo yd

k
=) M@":(z:)...,s;

Xgy +4+y W run through complete residue systems, while
£ey o+ @, run through reduced residue systems modulo m,;
%, 4+, wrun through complete residue systems, while

&, ..., o run through reduced residue systems modulo m.

Prove that the fractions
{fx(xu seny wx) fk(xk’ very wk)}
—_— +

o

my My

s veey W)
u} , while the fractions

m

{fx(fu ey “-’1) fk(é‘k, ey ("k)}
—_——

coincide with the fractions {

.+
m, My

fé, ..., )

} (a generalization
m

coincide with the fractions {

of the theorem of problem a).
11, a, Let m be a positive integer, let a be an integer, and
let x run through a complete residue system modulo m. Prove

that

i
e m =

ax m, if a is a multiple of m
{O, otherwise.

b. Let o be a real number, and let i and P be integers with
P > 0. Letting () denote the numerical value of the differ
ence between o and the integer closest to o (the distance
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from o to the nearest integer), prove that

2 always

1
3, f £ —.
or (o) 5

c. Let m be an integer, m > 1, and let the functions M(a)
and P(a) take on integral values such that P(a) > O for the
valuesa = 1,2, ..., m — 1. Prove that

mlnm— — ln(2 [—m—]+1)form >6
3 6

~1|M(aytP (a)y1 m
i @rger << mlnm - ;, form > 12,

a
2Mim X
a=1 x=M(a)

mlnm - m, form > 60.

12, a. Let m be a positive integer, and let £ run through a
reduced residue system modulo m. Prove that

£
pim) = Y 27w
¢

b. Using the theorem of problem a, prove the first of the
theorems of ¢, $3, ch. I (cf. solution of problem 28, a, ch, II).
c. Deduce the theorem of problem a, using the theorem of
problem 17, a, ch. L

d. Let

s
f, ooy w)y= Y Copurnys X verw
Qyeooy

be an entire rational function with integral coefficients of the
r variables x, ..., w(r » 1) and let a, m be integers with

m > 0; x, ..., w run through complete residue systems, while
¢, ..., » run through reduced residue systems modulo m. We
introduce the symbols
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Sam = Z...Zezm N ’
Siym =2 ... ) explaflé, ..., w)/m)
3 2

Moreover, let m = m;m, ...my, where m,, ..., my are integers
exceeding 1 which are relatively prime in pairs, and let
mgMy = m. Prove that

Sal,m,' . 'sak,mk = SM‘aﬁ ceot Mpag, m>
’ ’ ’,
sal,m, . --Sak,mk = SM'1e1+ «e.+Mpap,m:*

e. Using the notation of problem d we set

A(m) = m-tZSa,mi A’(m) = m'_tZS;,m’

where a runs through a reduced residue system modulo m.
Prove that

Am)...A(my) = A(m), 4°(m,)... A" (m;) = A’ (m).

13, a. Prove that

ola) = 'Z-l U(l - l"ﬁezm% )

n=0 p P x=o

where p runs through the prime divisors of the number a.
b. Deduce the well-known expression for ¢(a) from the
identity of problem a.
14, Prove that

ra) = lim2¢ Y- f: k%% ©exp(2miak/x) + &
0<x<V/a k=1
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where 8 = 1 or 8 = 0, according as a is or is not the square
of an integer.

15, a. Let p be a prime and let k,, h,, ..., h, be integers.
Prove that

(hy + hy + ov + ho)P = BE + B2 + ... + b} (mod p).

b. Deduce Fermat’s theorem from the theorem of problem a.
c. Deduce Euler’s theorem from Fermat’s theorem.

Numerical Exercises for Chapter III.

1, a. Find the remainder resulting from the division of
(12 371% + 34)* by 111.

b. Is the number 2!°** — 2 divisible by 1 093*?

2, a. Applying the divisibility criteria of problem 1, find
the canonical decomposition of the number 244 943 325.

b. Find the canonical decomposition of the number

282 321 246 671 737.
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CHAPTER IV

CONGRUENCES IN ONE
UNKNOWN

S1. Basic Concepts

Our immediate problem is the study of congruences of the
general form:

(1)  flx) = O(mod m); flx) = ax™ + a,x™* + ... + an.

If @ is not divisible by m, then n is said to be the degree
of the congruence.

Solving a congruence means finding all the values of x
which satisfy it. Two congruences which are satisfied by the
same values of x are said to be equivalent.

If the congruence (1) is satisfied by some x = «x,, then
(d, $2, ch. ) this congruence will also be satisfied by all
numbers which are congruent to x, modulo m: x = x, (mod m).
This whole class of numbers is considered to be one solution.
In accordance with this convention, congruence (1) has as
many solutions as residues of a complete system satisfying it.

Example. The congruence

2 +x+ 1= 0(mod 7)

is satisfied by two numbers x = 2 and x = 4 among the num-
bers 0, 1, 2, 3, 4, 5, 6 of a complete residue system modulo 7.
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Therefore the above congruence has the two solutions:
x = 2(mod 7), x = 4(mod 7).
$2. Congruences of the First Degree

a. A congruence of the first degree whose constant term has
been placed on the right side (with opposite sign) can be put
in the form

(4)) ax = b(mod m).

b. Turning to the investigation of the number of solutions,
we first restrict the congruence by the condition (a, m) = 1.
According to $1, our congruence has as many solutions as
residues of a complete system satisfy it. But when x runs
through a complete system of residues modulo m, ax also runs
through a complete residue system (d, 4, ch. mI). Therefore,
in particular, ax will be congruent to b for one and only one
value of x taken from the complete residue system. Therefore
congruence (1) has one solution for (2, m) = 1.

c. Now let (@, m) = d > 1. Then, in order that the con-
gruence (1) have a solution it is necessary (e, §3, ch. 114]
that b be divisible by d, for otherwise the congruence (1) is
impossible for all integers x. Assuming then that b is a
multiple of d, we set a = a,d, b = b,d, m = m,d. Then the
congruence (1) is equivalent to the following one (obtained
by dividing through by d): a,x = b,(mod m,), in which (a,,

m,) = 1, and therefore it will have one solution modulo m,.
Let x, be the least non-negative residue of this solution
modulo m,, then all the numbers x which are solutions of this
equation are found to be of the form

(2) x = x,(mod m,).

But modulo m the numbers of (2) do not form one solution,
but many solutions, and indeed as many solutions as there are
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numbers of (2) in the sequence 0, 1, 2, ..., m - 1 of least
non-negative residues modulo m. But these consist of the
following numbers of (2):

Xyy Xy + My, %y + 2my, wiuy %, + (d - Dmy,

i.e. d numbers of the form (2), and hence the congruence (1)
has d solutions.

d. Gathering together our results, we obtain the following
theorem:

Let (a, m) = d. The congruence ax = b(mod m) is impossi--
ble if b is not divisible by d. For b a multiple of d, the con-
gruence has d solutions.

e. Turning to the finding of solutions of the congruence (1),
we shall only consider a method which is based on the theory
of continued fractions, where it is sufficient to restrict our-
selves to the case in which (a, m) = 1.

Developing the fraction m/a in a continued fraction,

1

m
—=4q t
a

9. +

a9

+ —
qn

and considering the last two convergents:

Po, P,
Qns  Cn

m
a

by the properties of continued fractions (e, $4, ch. I) we have
mQpy — aPoy = 1),
aP,_, = (-1)** (mod m),

a*(1)"'P, b = b(mod m).
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Hence, our congruence has the solution
x = (<1)""'P,_,b(mod m),
for whose calculation it is sufficient to calculate P,_, by

the method described in d, $4, ch. I,
Example. We solve the congruence

®3) 111x = 75(meod 321).
Here (111, 321) = 3, while 75 is a multiple of 3. Therefore
the congruence has three solutions.

Dividing both sides of the congruence and the modulus by
3, we obtain the congruence

4) 37x = 25(mod 107),

which we must first solve. We have

107 37
74| 2
37|33
33| 1
33| 4
32| 8
41
41 4
q 2 1 8 4
P, 1 2 3 26 107

Hence n = 4, P,_, = 26, b = 25, and we have the solation
of congruence (4) in the form

x = -26°25

99(mod 107).
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From this the solutions of congruence (3) can be represented
in the form:

x =99, 99 + 107, 99 + 2 107(mod 321),
ie,
x = 99, 206, 313(mod 321).
$3. Systems of Congruences of the First Degree
a. We shall only consider the simplest system of congruences
(1) x = b,(mod m,), x = b,(mod m,), ..., x = by (mod my)
in one unknown, but with different and pairwise prime moduli.
b. It is possible to solve the system (1), i.e. find all values
of x satisfying it, by applying the following theorem:
Let the numbers M, and M; be defined by the conditions
mmy...mg = Mgmg, MJM{ = 1(mod m,)
and let

g = MM7b, + MyMby + ... + MiMiby.

Then the set of values of x satisfying the system (1) are de-
fined by the congruence

(2) x = xg(mod mym, . .. my)

Indeed, in view of the fact that all the ¥; which are different
from M, are divisible by m,, forany s = 1, 2, ..., k, we have

%o = MMlb, = by (mod my),

and therefore system (1) is satisfied by x = x,. It follows
immediately from this, that the system (1) is equivalent to
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the system

(3) x = x,(mod m,), x = x,(mod m,), ..., x = x,(mod m,)
(i.e. the systems (1) and (3) are satisfied by the same values
of x). But the system (3), in view of the theorems of ¢, $3,
ch. Il and d, $3, ch. I, is satisfied by those and only those
values of x which satisfy the congruence (2).

c. If b, b,, ..., by independently run through complete
residue systems modulo my, my, ..., my, then x, runs through
a complete residue system modulo mym, .. .my.

Indeed, x, runs through m,m, ... m, values which are incon-
gruent modulo m,m, ... my, in view of d, $3, ch, HL

d. Example. We solve the system

x = b,(mod 4), x = b,(mod 5), x = b,(mod 7).
Here 4°5:7 = 4+35 = 5+28 = 7+ 20, while
353 = 1(mod 4), 28+ 2 = 1(mod 5), 20:6 = 1(mod 7).
Therefore
x = 35-3b, + 28+ 2b, + 20 +6b, = 105b, + 56b, + 120,

and hence the set of values of x satisfying the system, can be
represented in the form

x = 1055, + 56b, + 120b, (mod 140).
Thus, for example, the set of values satisfying the system

x = 1(mod 4), x = 3(mod 5), x = 2(mod 7),

is

x=105°1+ 563 + 120+2 = 93 (mod 140)
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while the set of values of x satisfying the system

x

3(mod 4), x = 2(mod 5), x = 6(mod 7),
is

x=1053 + 562 + 1206 = 27(mod 140).

m

S4. Congruences of Arbitrary Degree with Prime Modulus

a. Letp be a prime. We shall prove general theorems re-
lating to congruences of the form

(1) flx) = 0(mod p); flx) = ax™ + a,x™™ + ... + a,.

b. A congruence of the form (1) is equivalent to a con-
gruence of degree not higher than p ~ 1.
Indeed, dividing f{x) by x® — x, we have

flx) = (x* - %)Q(x) + R(x),

where the degree of R(x) is not higher than p — 1. But
2P — x = 0(mod p) implies that flx) = R(x) (mod p), from
which our theorem follows.

c. If the congruence (1) has more than n solutions, then all
the coefficients of fx) are multiples of p.

Indeed, let the congruence (1) have at least n + 1 solutions.
Letting x,, x,, ..., %, %,4, be the residues of these solutions,
we can represent f(x) in the form

(2) fix) = alx — %) (x - x,) 0. (X = %) (X = %) (% — x,) +
+bx - x)(x — %) 0l — %p)) (X = x,,) +

+clx — x) (@ - %) (x = xpp) +

+ kx - x)(x - x,) +
+ lx - x,) +

+ m.
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To this end, develop the summands on the right side into
polynomials, and then choose b so that the sum of the coef-
ficients of x™* in the first two polynomials coincide with ay;
knowing b, we choose ¢ so that the sum of the coefficients of
%" in the first three polynomials coincides with a,, etc.

Putting x = %,, %35 ««+5 %ns ¥n41 successively in (2), we
find that all the numbers m, I, &, ..., ¢, b, a are multiples of
p. This means that all the coefficients a, a, ..., a, are
multiples of p (since they are sums of numbers which are
multiples of p).

d. For prime p, we have the congruence (Wilson’s theorem)

@3) 1:2...(p = 1) + 1 = O(mod p).

Indeed, if p = 2, then the theorem is evident. If p > 2,
then we consider the congruence

x-D=-2...6c -~ -1) - x™* ~1) = 0(mod p)

its degree is not higher than p — 2 and it has p — 1 solu-
tions, indeed solutions with residues 1, 2, ..., p ~ 1. There-
fore, by theorem c, all its coefficients are multiples of p; in
particular the constant term is also divisible by p and the
constant term is just equal to the left side of the congruence

3).
Example. We have 1+2+3+4°5°6 + 1 = 721 = 0(mod 7).

§5. Congruences of Arbitrary Degree with Composite Modulus

a. If my, m,, ..., my are pairwise prime, then the congruence
1 flx) = 0(mod mym, . ..my)

is equivalent to the system

flx) = 0(mod m,),

flx) = 0(mod m,), ..., flx) = 0(mod m,).
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Letting T,, T,, ..., Ty be the numbers of solutions of the
individual congruences of this system with respect to the
corresponding moduli, and letting T be the number of solutions
of the congruence (1), we have

T =T1T,...Tk.

Indeed, the first part of the theorem follows from ¢ and
d, $3, ch, I, The second part of the theorem follows from
the fact that each congruence

(2 flx) = 0(mod m,)

is satisfied if and only if one of the T, congruences of the
form

x = b, (mod m,),

where b, runs through the residues of the solutions of the
congruence (2), is satisfied, while all 7,T, ... T, different
combinations of the form

x = b, (mod m,), x = b,(mod m,), ..., x = by (mod m,),
are possible, which leads (c, $3) to different classes modulo

MMy as o My
Example. The congruence

3) flx) = 0(mod 35), flx) = 2* + 2¢* + 8x + 9
is equivalent to the system
flx) = 0(mod 5), f(x) = 0(mod 7).
It is easy ($1) to verify that the first congruence of this sys-

tem has two solutions: x = 1; 4 (mod 5), the second con-
gruence has three solutions: x = 3; 5; 6 (mod 7). Hence the
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congruence (3) has 2 +3 = 6 solutions. In order to find these
six solutions, we must solve six systems of the form

4) x = b, (mod 5), x = b,(mod 7),

which we obtain by letting b, run through the values b, = 1; 4,
while b, runs through the values b, = 3; 5; 6. But since

35 -5:7=7+5 73 = 1(mod5), 53 = 1(mod 7),

the set of values of x satisfying the system (4) can be repre-
sented in the form (b, $3)

x

215, + 15b, (mod 35).

Therefore the solutions of congruence (3) are
x = 31; 26; 6; 24; 19; 34 (mod 35).

b. In view of theorem a the investigation and solution of
congruences of the form

fix) = 0(mod p{tpy2...pxk)

reduces to the investigation and solution of congruences of
the form

(5) fx) = 0(mod p%);

this last congruence reduces in general, as we shall soon see,
to the congruence

6) flx) = 0(mod p)

Indeed, every x satisfying the congruence (5) must neces-
sarily satisfy the congruence (6). Let

x = x, (mod p)
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be any solution of the congruence (6). Then x = x, + pt,,
where ¢, is an integer. Inserting this value of x in the
congruence

fix) = 0(mod p?)
and developing the left side by means of the Taylor formula,
1
we find (noting that 7“—)‘(")(371) is an integer, and deleting

the terms which are multiples of p?)

flx,)

flxy) + pt,f’(x,) = O(mod p?), + t,f’(x,) = 0(mod p).

Restricting ourselves to the case in which f*(x,) is not di-
visible by p, we have one solution:

t, = t; (mod p); ¢, = t; + pt,.
The expression for x takes on the form
% = %, + pt{ + p*ty = x, + p’ly;
inserting it in the congruence
flx)} = 0(mod p*),
we find .
flx,) + pitof (x,)
flx,)

2

0 (mod p?)

+ t,f"(x;) = 0(mod p).

Here f"(x,) is not divisible by p since

%, (mod p),
f’(x,) (mod p),

X,

f(x,)
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and hence the latter equation has one solution:
t, = t; (mod p),
t, =t + pts.
The expression for x takes on the form
x = x, + pt] + Pty = %y + Pl

and so forth. In this way, given a solution of the congruence
(6) we can find a solution of the congruence (5) which is con-
gruent to it. Hence, if f’(x,) is not divisible by p, each so-
lution x = x, (mod p) of the congruence (6) gives a solution
of the congruence (5):

X = Xq + pata;
% = x4(mod p%.
Example. We solve the congruence

{f(x) = 0(mod 27);

flx) = 2* + Tx + 4.

)

The congruence f(x) = 0 (mod 3) has one solution x = 1(mod
3); here f*(1) = 2(mod 3), and hence, is not divisible by 3.
We find

x =1+ 3t,,
fQ) + 3¢,f°(1) = 0(mod 9), 3 + 3¢, 2 = 0(mod 9),
2, + 1 = 0(mod 3), ¢, = 1(mod 3), ¢, = 1 + 3¢,
x =4+ 9,
fi4) + 9,f(4) = O(mod 27), 18 + 9, *2 = 0(mod 27),
%, + 2 = 0(mod 3), ¢, = 2(mod 3), ¢t = 2 + 3¢,

x = 22 + 2Tt,.
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Therefore, the congruence (7) has one solution:
x = 22(mod 27).
Problems for Chapter IV
1, a. Let m be a positive integer and let f(x, ..., w) be an
entire rational function with integral coefficients of the r

variables x, ..., w(r > 1). If the systemx = x,, ..., w = w,
satisfies the congruence

(1) flx, ..., w) = 0(mod m),

then (generalizing the definition of $1) the system of classes
of integers modulo m:

x = %y(mod m), ..., w = wy(mod m)
will be considered to be one solution of the congruence (1).

Let T be the number of solutions of the congruence (1).
Prove that

m-r1 me—1 m=1 Lo af(x, ..., W)
Tn=FHLLF
anl x=0 wW=0

b. Using the notation of problem a and problem 12, e, ch.
I, prove that

Tm =m* Z A(mo)~

mg\m

c. Apply the equation of problem a to the proof of the
theorem on the number of solutions of a congruence of the
first degree.

d. Let m be a positive integer; let a, ..., f, g be
r+ 1 ( > 0)integers; d = (a, ..., f, m); let T be the
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number of solutions of the congruence
ax + ... + fw + g = 0(mod m).

Using the equation of problem a, prove that
m™d, if g is a multiple of d,
T =
0, otherwise,

e. Prove the theorem of problem d, starting from the theorem
on the number of solutions of the congruence ax = b(mod m).

2,a. Letm > 1, (a, m) = 1. Prove that the congruence
ax = b(mod m) has the solution x = ba? ™! (mod m).

b. Let p be a prime, 0 < a < p. Prove that the congruence
ax = b(mod p) has the solution

p— D -2...p-a+1

= b(-1)*
* = 51 1-2...a

(mod p).

¢, «) Find the simplest possible method of solving a con-
gruence of the form

92ky = b(mod m); (2, m) = 1.

B) Find the simplest possible method of solving a con~
gruence of the form

3%x = b(mod m); (3, m) = 1.

y) Let @, m) = 1,1 < @ < m. Applying the methods used
in problems «) and B), prove that finding the solutions of the
congruence ax = b (mod m) can be reduced to finding the solu-
tions of a congruence of the form b + mt = 0(mod p) where p
is a prime divisor of the number a.

3. Let m be an integer, m > 1,1 <7< m, (@, m) = 1.
Using the theory of congruences prove the existence of
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integers x and y such that

m
ax = y(modm), 0 < x <1, 0< |y| < —.

4, a. For (a, m) = 1, we will consider the symbolic frac-
tion — modulo m, which denotes any residue of a solution of
a

the congruence ax = b(mod m). Prove that (the congruences
are taken modulo m)

a) Fora =

a,, b = b, we have —

a a,

b
B) The numerator b of the symbolic fraction — can be re-

e
placed by a congruent b, which is a multiple of a. Then the

symbolic fraction — is congruent to the ordinary fraction
a

b

° . . . .
—, where the congruence is taken with ordinary integers,
a

b d bc + ad

¥)—+— =
a c ac
b d bd

8 — — = —
a [+ ac

b, o) Let p be a prime, p >
0 < a<p- 1. Prove that

(")

B) Let p be a prime, p > 2.

2, and let a be an integer,

fl

(<1)° (mod p).

Prove that

2P — 2 1
1

1
- dp).
P 2 73 p (medp



5, a. Let d be a divisor of the number a which is not di-
visible by primes smaller than n, and let x be the number of
different divisors of the number d. Prove that the number of
multiples of d in the sequence

M1-2...7,2°3...6+1),...,ala+1)...a+n - 1)

nXa

is .

b. Let py, p;y - .., i be the different prime divisors of the
number a which are not smaller than n. Prove that the number
of integers of the sequence (1) relatively prime to a is

n n n
a 1 -— ( - _—') X 1 —_——
P1 P2 Pk
6. Let m,, ... i be the least common multiple of the num-
bers m,, my, ..., M.
a. Let d = (m,, m,). Prove that the system
x = b, (mod m,), x = b, (mod m,)
is solvable if and only if b, — b, is a multiple of d, and if the
system is solvable, the set of values of x satisfying this sys-
tem is determined by a congruence of the form
x = x, ; (mod m, ;).
b. Prove that, if the system

x = b,(mod m,), x = b,(mod m,), ..., x = b, (mod my)

is solvable, the set of values of x satisfying it is determined
by a congruence of the form

X = X9,...,k (mod ml.z,...,k)'
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7. Let m be an integer, m > 1, let a and b be integers, and

let
a, b ax + bx’
= o ——
( - ) § exp( i - )

where x runs through a reduced residue system modulo m,

1
while x” = — (mod m) (in the sense of problem 4, a). Prove
x

, b
the following properties of the symbol (f_) :

o) (a,b) is real,
a,b b,a
& (7) - ().

, bh h, b
y)For(h,m):l,wehave(a )=(a )

m m
8) For m, m,, ..., m, relatively prime in pairs, setting
mm,...mg =m, m = mgMg, we have

al,1> (az,l) ak,l) i
m, m, h ( my B
_ (.44101 + ﬂl:az + see + 1%, 1)

m

8. Let the congruence

'+ ...+ a, = 0(mod p)

ax” + ax"
have the n solutions

X = Xy, Xy, o0, X, (mod p).



Prove that

a, = —aS, (mod p),
a, = a,5, (mod p),
a, = —a,S,(mod p),
a, = (<1)"a,S, (mod p),

where S, is the sum of all the x,, S, is the sum of the products
of pairs of the x,, S, is the sum of the products of triples of
the x,, etc.

9, a. Prove Wilson’s theorem by considering pairs x, x” of
numbers of the sequence 2, 3, ..., p — 2, satisfying the con-
dition xx” = 1 (mod p).

b. Let P be an integer, P > 1,1:2...(P-1) + 1=
= 0(mod P). Prove that P is a prime.

10, a. Let (a,, m) = 1. Find a congruence of degree
n(n > 0) with leading coefficient 1, equivalent to the
congruence

ax” + a,x"™ + ... + ap = 0(mod m).

b. Prove that a necessary and sufficient condition in order
that the congruence f(x) = 0(mod p); flx) = z7 + ax"™ +
+... + ay;n < p; has n solutions, is the divisibility by p of
all the coefficients of the remainder after the division of
xP - x by flx).

c. Let n be a divisorof p — 132 > 1; (4, p) = 1. Prove
that a necessary and sufficient condition for the solvability

p—-1
of the congruence 2" = 4 (mod p) is 4™ = 1(mod p), while
if the congruence is solvable, it has n solutions.

11. Let n be a positive integer, (4, m) = 1, we assume that
we know a solution x = x,(mod m) of the congruence
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x" = A(mod m). Prove that all the solutions of this con-
gruence can be represented as the product of x, and a residue
of a solution of the congruence y" = 1(mod m).

Numerical Exercises for Chapter IV

1, a. Solve the congruence 256x = 179 (mod 337).

b. Solve the congruence 1215x = 560 (mod 2755).

2, a. Solve the congruences of exercises 1, aand 1, b by
the method of problem 2, c.

b. Solve the congruence 1296x = 1105 (mod 2413) by the
method of problem 2, c.

3. Find all pairs x, y satisfying the indeterminate equation
1245x ~ 1603y = 999,

4, a. Find a general solution of the system

x = b,(mod 13), x = b, (mod 17).

Using this general solution, find three numbers whose divi-
sion by 13 and 17 gives the respective remainders 1 and 12,
6 and 8, 11 and 4.

b. Find a general solution for the system

x = b,(mod 25), x = b, (mod 27), x = b,(mod 59).

5, a. Solve the system of congruences
x = 3(mod 8), x = 11(mod 20), x = 1(mod 15).
b. Solve the system of congruences
x = 1(mod 3), x = 4(mod 5), x = 2(mod 7),
x = 9(mod 11), x = 3 (mod 13).
6. Solve the system of congruences

x + 4y — 29 = 0(mod 143), 2x — 9 + 84 = 0(mod 143).
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7, a. What congruence of degree smaller than 5 is equivalent
to the congruence

3™ 4+ 4x'* + 321 4+ 2t 4+ 2 + 2% + 4xT 4+ 2f 4
+ 32 + 2 + 42% + 2¢ = 0(mod 5)?

b. What congruence of degree smaller than 7 is equivalent
to the congruence

29617 4+ 6% + 2 + 5a'? + 3t 4+ 2410 + o 4+ 5% +

+ 27 + 3x° + 4x* + 62 + 4% + x + 4 = 0(mod 7)?

8. What congruence with leading coefficient 1 is equivalent
to the congruence (problem 10, a)

70x° + 78" + 25x* + 68x° + 522 + 4x + 3 = O(mod 101)?

9, a. Solve the congruence
fix) = 0(mod 27), flx) = 7x* + 19x + 25,
by first finding all the solutions of the congruence
fix) = 0(mod 3)

by trial.

b. Solve the congruence 9x* + 29x + 62 = 0(mod 64).
10, a. Solve the congruence #* + 2x + 2 = 0(mod 125).
b. Solve the congruence x* + 42* + 22" + 2x¢ + 12 =
0(mod 625).

11, a. Solve the congruence 62 + 27x* + 17x + 20 =
0 (mod 30).

b. Solve the congruence 31x* + 57’ + 96x + 191 =

0 (mod 225).
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CHAPTER V

CONGRUENCES OF THE
SECOND DEGREE

S1. General Theorems

a. We shall only consider the simplest of the congruences
of degree n > 1, i.e. the two-term congruences:

4} x" = a(mod m); (a, m) = 1

If the congruence (1) has solutions, then ¢ is said to be an
n-th power residue, otherwise a is said to be an n-th power
non-residue. In particular, forn = 2 the residues or non-
residues are said to be quadratic, forn = 3 cubic, forn = 4
biquadratic.

In this chapter we shall consider the case n = 2 in detail
and we first consider the two-term congruences of the second
degree for odd prime modulus p:

(2) %* = a(mod p); (a, p) = 1.

c. If a is a quadratic residue modulo p, then the congruence
(2) kas two solutions.

Indeed, if a is a quadratic residue, then the congruence
(2) has at least one solution x = x, (mod p). But since
(~x,F = x}, the same congruence also has the second solution
% = —x, (mod p). This second solution is different from the
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first since %, = —«, (mod p) would imply 2x, = 0(mod p),
which is impossible since (2, p) = (x,, p) = 1.

These two solutions exhaust all the solutions of the con-
gruence (2) since the latter, being a congruence of the second
degree, cannot have more than two solutions (c, $4, ch, IV).

p-1

d. A reduced residue system modulo p consists of

quadratic residues which are congruent to the numbers

2
@) 12, 2*,...,("“1)
2

p-1

and quadratic non-residues.

Indeed, among the residues of a reduced system modulo p,
the quadratic residues are those and only those which are
squares of the numbers (a reduced system of residues)

p-1 p-1
5 ey =2,-1,1,2, ..., T 5

(4) - 2

i.e. with the numbers of (3). Here the numbers of (3) are in-

congruent modulo p, since # = P(modp), 0 < k < 1< P ; ! ,

it would follow that the congruence x* = P (mod p) is satisfied
by four numbers: x = —I, -k, k, [ among the numbers of (4),
contradicting c.

e. If a is a quadratic residue modulo p, then

p~1

5) a? = 1(mod p);
if a is a quadratic non-residue modulo p, then

p-1

(6) a 2 = -1(mod p)
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Indeed, by Fermat’s theorem,

p—1 il
aP™ = 1(mod p); (a 2 - 1) (a T+ 1)5 0 (mod p).

One and only one of the factors of the left side of the latter

congruence is divisible by p (both factors cannot be divisible

by p, for if they were, then 2 would be divisible by p). There-

fore one and only one of the congruences (5) and (6) can hold.
But every quadratic residue a satisfies the congruence

@) | a = # (mod p)

for some x, and therefore also satisfies the congruence (5),
which can be obtained by raising each side of (7) to the power
p—-1

. Here the quadratic residues exhaust all the solutious

.. p-1
of the congruence (5), since it cannot have more than

-1

.

. - p
solutions because it is a congruence of degree

Therefore the quadratic non-residues satisfy the congruence

(6).

S2. The Legendre Symbol

a
a. We now consider Legendre’s symbol | — | (read as:

P
the symbol of a with respect to p). This symbol is defined
for all a which are not divisible by p; it is equal to 1 if a is
a quadratic residue, and equal to -1 if ¢ is a quadratic non-
residue. The number a is said to be the numerator, the num-
ber p the denominator, of the symbol.
b. In view of e, §1, it is evident that we have

(—a—) = a_p;;— (mod p).
p
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c. Here we deduce the most important properties of the
Legendre symbol and in the next paragraph, the properties of
the generalization of this symbol——Jacobi’s symbol, which is
useful for the rapid calculation of this symbol, and hence
solves the problem of the possibility of the congruence

# = a(mod p).

a a,
d. If a = a, (mod p), then (—-—) = (—) .
P P

This property follows from the fact that the numbers of an

equivalence class are all either quadratic residues or
non-residues.

( ; )

e. |{—] =1.

P

Indeed, 1 = 12 and hence 1 is a quadratic residue.

-1 =t
C () -
P

This property follows from b fora = -1.
-1

i

Since

is even for p of the form 4m + 1 and odd for

p of the form 4m + 3, it follows that -1 is a quadratic residue

of primes of the form 4m + 1 and a quadratic non-residue of
primes of the form 4m + 3.

() ()

Indeed, we have

b...l Pt pmlopmt et
(“ )E(ab...l)* G T b7 .7

RENCCRE

1l

]
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from which it follows that our assertion is true. A consequence

Of our result 18

i.e. we can delete any square factor from the numerator of a
symbol,

h. In order to deduce further properties of Legendre’s
symbol, we first give it another interpretation. Setting

-1
P = pT, we consider the congruences
a*l = ¢r,(mod p)
a°2 = ¢r, (mod p)

(1)

a‘p, = €plp, (mod p); p, =

where ¢,r, is the absolutely least residue of ax and r, is its
modulus so that ¢, = +1.

The numbersa+1, <a*1,a°2, a2, ...,a"p,, —a*p,
form a reduced residue system modulo p (¢, $5, ch. II); their
absolutely least residues are just ¢,7,, —¢,7y, 6,75, =675, «. .,
€pyTpys —€pp,e Lhose which are positive i.e.ry, 1y, o0uy 1y,
must coincide with the numbers 1, 2, ..., p, (b, $4, ch. ).

Multiplying together the congruences (1) and dividing
through by

1-2...p, = T3 eeelp s

=t
we finda 7 = ¢¢.. “€p, (mod p), from which (b) we have

a
(2) ( -—-) = €€ €p
p
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i. The expression for Legendre’s symbol which we have
found can be put in a more concise form. We have

=] - 1) =] =50 - RS

which is even or odd according as the least positive residue
. 1 . .
of the number ax is less or greater than —p, i.e. according as

e, = lore, = -1, It is evident from this that
2a8x
N

and therefore we find from (2) that

P

( %) _ 5]

j. Assuming a to be odd, we transform the latter equation.
We have (a + p is even)

4- a+p a+p
( 2a) ( 2a + 2p) 2 2
p p p - p )
PR I )
= D)™ = n* x=
and hence
P 2

2 2 [F] + 5
(3) (____) (i) = (_l)x-x P] 8

p p

The formula (3) allows us to deduce two very important
properties of the Legendre symbol.
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2 Pl
k. (—) = (1) ® .
p

This follows from formula (3) fora = 1.

Moreover, since
8m + 1) ~ 1
—(—E—é)———- = 8m* + 2m, even

while

(8n t 3y -1

3 = 8m® + 6m + 1, odd,

it follows that 2 is a quadratic residue of primes of the form
8n + 1(8n + 1, 8m + 7) and a quadratic non-residue of

primes of the form 8n + 3 8m + 3, 8m + 5).
L. If p and q are odd primes, then (the quadratic reciprocity

law)
p—=r g1
()%
p q

-1 q-1

is odd only in the case in which

Since

both numbers p and g are of the form 4m + 3 and even if one
of these numbers is of the form 4m + 1, the above property
can be formulated as follows:

If both the numbers p and g are of the form 4m + 3, then

(4)--6)

if one of them is of the form 4m + 1, then

(3)- ()
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In order to prove our results, we note that, in view of k,
formula (3) takes on the form

P1 _ax
Y | —
(4) <i) = (__1)x-1 [ p ]

p

-1

Setting 1 = g,, we consider p,q, pairs of numbers

which are obtained when the numbers @ and y in the expres-
sions gx, py run through the systems of values

x=1,2, s, Py ¥ = 1, 2, ..oy quy

independently.

We can never have gx = py, because it would follow from
this equation that py is a multiple of ¢ which is impossible
because (p, q) = (y, @) = 1 (since 0 < y < q). Therefore we
can set p,g, = S, + S,, where S, is the number of pairs with
gx < py and S, is the number of pairs with py < g¢x.

It is evident that S, is also the number of pairs with

x < ﬂy. For given y we can takex = 1, 2, ..., l:_p_y] .
7 q
(Since L)’ < qu < B wehave [B— y] < pu)
q q 2 q

Consequently,
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But then equation (4) gives

( i) - DS, (1) - (D*

q p

(ﬂ.) (i) = (_,1)51+Sa . (_1)91‘71
q p

from which the required property follows.

and hence

S8. The Jacobi Symbol

a. In order to evaluate Legendre’s symbol most quickly, we
consider the more general Jacobi symbol. Let P be an odd
number greater than unity, and let P = p,p,...p, be its de-
composition into prime factors (some of which may be equal).
Moreover, let (g, P) = 1. Then Jacobi’s symbol is defined
by the equation

7)- ()6~

p P1 P2 o Pr

The well-known properties of the Legendre symbol allow us
to establish analogous properties for the Jacobi symbol.

b. If a = a, (mod P), then (— =
. Ifa = a,(mod P), then )=\ %)
Indeed,

(- () (2)
() 6)



so that a, being congruent to a, modulo 7, is also congruent to
a, modulo p,, pyy .+, pr» Which are the divisors of P,

c. { —/=1L
P

Indeed,
#)- GG ()
—)=(—])l—)...{—)=L
P Py P2 Pr
-1 P
d [—]) =1 2.
()
In order to establish this, we note that
#)-(G)G) )
P/ ) B
1) P1 P2 Pr

pi-1 Pyt Pt
_ (_1)——z—+——’;—+...+ 7

?

2 2
- -1
<1+2p‘ ><1+2p’ ) (1+2p )-1
2 2
N 2
-1 -1 =1
=p1 +pz +..o+p +2N
2 2 2

and hence from formula (1) we deduce

-1 P;-l
<';—> = (-1) .
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(55)- (#4) - (%)
)6 )G 6 ()

and multiplying the symbols with the same numerators, we ob-
tain the required property. From this we obtain the corollary:

(%) - (5):
. (%) I

Indeed,
#)-GE)-()
P = - — ) '_’ =
© P P2 P
pi-t  pi— ; pi
=(_1)T+—3—+...+ 3
But
PP-1  pipj...pi-1
8 8 -
2__1 2 1
(1 g )(1+8P‘ > (1 8t )-1
8 -
8
. 2.1 21
_Ph-1 p . + aN
8 8 8
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and hence we deduce from formula (2)

2 P:—-l
(_P—) = (-1) .

g. If P and Q are positive relatively prime odd numbers, then

Q __P_z-i.Qz-l i)—
(?>=(—1) <Q)

Indeed, let Q = q,q, ... g5 be the decomposition of Q into
prime factors (some of them may be equal). We have

(2)- ()6 -6 -z () -

r 8 pg-t . qle-l

2 2 r

%z
= (1)a= A

(r pa—l)( s q 1)
L —3 z 5
= (=1)'oe= B=1

But, as in d, we find

-

i

P-1 S p,-1 -1 ° -1
Zﬂ‘-"———+ 2N, Q Zﬂé___+ 2N,,
2 per) 2 2 = 2

and hence
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Example. As an example of the calculation of the Legendre
symbol (we will consider it to be a particular case of the
Jacobi symbol) we investigate the solutions of the congruence

x* = 219(mod 383).

We have (applying in sequence the properties g, b, the corol-
lary of e, g, b, e, 1, g, b, d):

(2)--(5) ) (3):
) )
)--{2) ) -

and hence the congruence under consideration has two
solutions,

$4. The Case of Composite Moduli

a. Congruences of the second degree with composite moduli
are investigated and solved in accordance with the general
methods of §5, ch. IV,

b. We start with a congruence of the form
1 #* = a(mod p%; a > 0, (@, p) =1,

where p is an odd prime.
Setting flx) = 2* — a, we have f’(x) = 2%, and if x = x,
(mod p) is a solution of the congruence
2 2 = a(mod p)
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then since (a, p) = 1 we also have (x,, p) = 1, and since p is
odd, (2x,, p) = 1, i.e. f’(x,) is not divisible by p. Therefore
to find the solutions of the congruence (1) we can apply the
argument of b, $5, ch. IV, while each solution of the con-
gruence (2) gives one solution of the congruence (1). It
follows from this that

The congruence (1) has two solutions or none according as
a is a quadratic residue or a quadratic non-residue modulo p.

c. We now consider the congruence
(3) 2 = a(mod 2%; o > 0, (a, 2) = 1.

Here f"(x,) = 2x, is divisible by 2, and hence the argument
of b, §5, ch. IV is inapplicable; it can be changed in the
following way:

d. If the congruence (3) is solvable, then, since (g, 2) =1,
we have (x, 2) = 1,i.e. x = 1 + 2¢, where ¢ is an integer.
The congruence (2) takes on the form

1 + 4t + 1) = a(mod 2%).

But one of the numbers ¢, ¢ + 1is even and hence 4i(¢ + 1) is
a multiple of 8. Therefore, for the solvability of the latter
congruence, and along with it also the congruence (3), it is
necessary that

@) a=1(mod4) for o = 2; a = 1(mod 8) for o > 3.

e. In the cases in which condition (4) is satisfied, we con-
sider the question of finding solutions and the number of
solutions.

For o« < 3, all the odd numbers satisfy the congruence in
view of d. Therefore the congruence »* = a(mod 2) has one
solution: x = 1(mod 2), the congruence »* = a(mod 4) has two
solutions: x = 1; 3 (mod 4), the congruence »* = a(mod 8) has
four solutions: x = 1, 3, 5, 7 (mod 8).

92



In order to consider the cases o = 4, 5, ... all the odd
numbers are put in the two arithmetic progressions:

(5) x = +(1 + 4¢,)
(1 + 4ty = 1(mod 4); -1 - 4¢, = ~1 = 3(mod 4))

We now decide which of the latter numbers satisfy the con-
gruence x* = a(mod 16). We find

-1
(1 + 4¢,) = a(mod 16), ¢, = ‘ 2 (mod 2),

t,=¢t] + 2, x = +(1 + 4¢] + 8) = +(x, + 8¢,).

We now decide which of the latter numbers satisfy the con-
gruence x? = a(mod 32). We find

(x, + 8t,) = a(mod 32), ¢, = ¢ + 2,, x = +(x; + 1624),

etc. In this way we find that the values of x satisfying the
congruence (3) for o > 3, are representable in the form

%=ty + 297,).

These values of x form four different solutions of the con~
gruence (3)

x= x5 %, + 2% x5 ~x, — 29 (mod 2%)

a’

(modulo 4 the first two are congruent to 1 while the second
two are congruent to —~1).
Example. The congruence

6) x* = 57 (mod 64)

has four solutions since 57 = 1(mod 8). Representing x in
the form x = +(1 + 4¢,), we find
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(1 + 4¢P = 57(mod 16), 8¢,

= 56 (mod 16),
ty=1(mod 2), t, = 1 + 2¢,, x = +(5 + 8¢,),
5 + 8, = 57 (mod 32), 5 16¢,

= 32(mod 32),
t, = 0(mod 2), t, = 2t, x = +(5 + 16zy),
(5 + 16t = 57(mod 64), 532t = 32(mod 64),
ty =

1(mod 2), ts = 1 + 2t,, x = +(21 + 32t).
Therefore the solutions of the congruence (6) are:

X =

4+21; +53 (mod 64).
f. It follows from c, d, and e that:

The necessary conditions for the solvability of the
congruence

2 = almod 2%); (@, 2) =1

are: a = 1(mod 4) for o = 2, a = 1(mod 8) for o > 3. If
these conditions are satisfied, then the number of solutions
is:1for oo = 1; 2 for o = 2; 4 for o > 3.

g. It follows from b, f and a, $5, ch, IV that:

Necessary conditions for the solvability of congruences of
the form

x2=

a(mod m); m = 2%Mp ... pik; (a, m) = 1

a = 1(mod 4) for o« = 2, a = 1(mod 8) for o > 3,

) o [ - (2)

Pk

If all of these conditions are satisfied, the number of solutions
is: 2% for o = O and o = 15 25* for o = 2; 2% for o > 3,
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Problems for Chapter V

Here p will always denote an odd prime,
1. Prove that finding the solutions of a congruence of the
form

a* + bx + ¢ = 0(mod m), (2a, m) = 1
reduces to finding the solutions of a congruence of the form
%* = q(mod m).

2, a. Using e, $1, find the solutions of the congruence
(when they exist)

x* = a(mod p); p = 4m + 3.

b. Using b and k, $2, obtain a method of finding the solu-
tions of the congruence

2 = a(modp); p = 8n + 5.

¢. Find the simplest possible method of finding the solu-
tions of a congruence of the form

2 =a(modp); p=8m+1

when we know some quadratic non-residue N modulo p.
d. Using Wilson’s theorem, prove that the solutions of the
congruence

@+ 1=0(modp); p=4m +1

x

+1+2 ... 2m(mod p).
3, a. Prove that the congruence

0))] 2 + 1 = 0(mod p)
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is solvable if and only if p is of the form 4m + 1; the
congruence

2 2 + 2 = 0(mod p)

is solvable if and only if p is of the form 8m + 1 or 8m + 3;
the congruence

% + 3 = 0(mod p)

is solvable if and only if p is of the form 6m + 1.

b. Prove that there are an infinite number of primes of the
form 4m + 1.

c. Prove that there are an infinite number of primes of the
form 6m + 1.

4. Dividing the numbers 1, 2, ..., p — 1 into two sets, the
second of which contains at least one number, we assume that
the product of two numbers of the same set are congruent to a
number of the first set modulo p, while the product of two
elements of different sets is congruent to a number of the
second set modulo p. Prove that this occurs if and only if
the first set consists of quadratic residues, while the second
set consists of quadratic non-residues modulo p.

5, a. Deduce the theory of congruences of the form

%* = a(mod p%); (a, p) = 1,

by representing a and x in the calculational system to the
base p.
b. Deduce the theory of congruences of the form

2 = a(mod 2%); (a, 2) = 1,

by representing a and x in the calculational system to the
base 2,
6. Prove that the solutions of the congruence

2 = a(mod p%); (a, p) = 1
96



are x = +PQ’(mod p®), where

2 2Va
22 = a(mod p), QQ’

p (z +Va)* + (z - Va)* 0 (z + Va)* - (z - Va)*

1(mod p®).

n

7. Find a method of solving the congruence x* = 1(mod m)
based on the fact that this congruence is equivalent to the
congruence (x — 1)(x + 1) = 0(mod m).

a

8. Let( ) = 0 for (a, p) = p.

P
a. For (%, p) = 1, prove that

PZ—-:l (x(x + k)) Y
X=0 P

b. Let each of the numbers ¢ and 7 have one of the values
$1, let T be the number of pairs x, x + 1, where x = 1, 2,

x x+ 1
vees p — 2, such that (—) = ¢, ( ) = 7.
p p

s ) oo

c. Let (£, p) = 1, and let

s ;2; (xy+k)

p

Prove that

where x and y run through increasing sequences consisting,
respectively, of X and Y residues of a complete system modulo
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p. Prove that
|s| < V2XYp

In the proof use the inequality

Zy: <xy;—k)

d. Let Q be an integer, 1 < Q < p,

2
S| <Xr

p=1 Q-1 /x 4+ z
sxzs;;sx=z< )

Xx=0 z=0 p

o) Prove that S = (p - Q)Q.

B) Let A be a constant, 0 < A < 1. Prove that the number
T of integers x = 0,1, ..., p ~ 1 for which the condition
S, < Q*%*95} is not satisfied, satisfies the condition

T < po~>.

y) Letp > 25, and let M be an integer. Prove that the
sequence

M,M+1,...,M+3Vpl -1

contains a quadratic non-residue modulo p.

9, a. Prove that the number of representations of an integer
m > 1 in the form

1) m=x4+9y, xy)=1,x>0y>0
is equal to the number of solutions of the congruence

2) 22 + 1 = 0(mod m),
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In proving this, set 7 = Vm and use the representation of

z
o = — given in the theorem of problem 4, b, ch. I, and then
m

consider the congruence obtained by multiplying (2) termwise

by .
b. Let a be one of the numbers 2, 3, Prove that the number
of representations of a prime p > a in the form

®) p=#+ap, x>0, y>0
is equal to half the number of solutions of the congruence
@) 2% + a = O(mod p).

c. Let p be of the form 4m + 1, (k, p) = 1,

X=0 p

Prove that (D. S. Gorshkov)

o) S(k) is an even number.

B) Stkt) = <-;—) S(R).

y) For (r_) =1, (—n—) = -1, we have (cf. problem a.)
p P

= lS()z lS()2
p—(z r) +(2 n).

10. Let D be a positive integer which is not the square of
an integer. Prove that:

a. If two pairs x = x,, y =y, and x = x,, y = y, of
integers satisfy the equation

# - Dyt =k
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for a given integer k, then the equation
X2 -DY*=F

is satisfied by integers X, Y defined by the equation (the +
sign can be taken arbitrarily)

X+ YVD = (% +y,VD)x, + y,VD).
b. The equation (Pell’s equation)
) #-Dy =1

is solvable in positive integers x, y.

c. If x,, y, is a pair of positive x, y with minimal x (or,
equivalently, with minimal x + yVD ) satisfying equation (1),
then all pairs of positive x, y satisfying this equation are
defined by the equations

2 x+yVD = (xg + yoVD )57 =1,2, ...
11, a. Let a be an integer. Let

ax

Ua,p = pZ—l (i) e"”_-ﬁ-.

x=1 \P

o) For (a, p) = 1, prove that IUa,pl = Vp .

In proving this, multiply U, , by its conjugate, which is
obtained by replacing i by —i. Letting the letters x, and x
be the summation variables of the original and conjugate sums,
we then gather together the terms of the product such that

%, = xt(mod p),
or

%, = x + t(mod p)
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for fixed :.

B) Prove that

b. Letm > 2, (a, m) = 1,

m—=1l a7j
Saym = e
Xm0

o) Prove that Sa,p = Ua,p (problem a),
B) It follows from the theorems of problems o) and a, «)

that S, , = p'. Prove the following more general result:

|S,,ml = Vm, ifm = 1(mod 2),
|Saym| = 0, ifm = 2(moda4),
|Sa,m| = V2m, if m = 0(mod 4).

M

y) Letm > 1, (24, m) = 1, and let a be an arbitrary
integer. Prove that

m;:::exp /Zm' = Vm.

m

Ax’+ax)

12, a. Let m be an integer exceeding 1, let M and Q be

integers such that 0 ¢ M < M + Q < m, and let 2. denote
2

. . . . /
a sum extended over the z in a given set of integers, while )
z

denotes a sum extended over the z in this set which are con-
gruent modulo m to the numbers
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MM+, ...,M+ Q-1
Moreover, let the function ® (z) be such that, for some A and

anya=1,2, ..., m~ 1, we have

< A.

_az
l; ® (z) exp <2m m)

Prove that

3|

2 0() = —). @) + 6A(nm - ),

1
where |6] <1, 8 > 0 always, & > 0 form > 12,

8> 1 for m > 60.
b. Let M and Q be integeré such that 0 < M < M + Q < p.

o) Prove that
M+Q-1 / x
xZ-:M (P)

B) Let R be the number of quadratic residues and let N be
the number of quadratic non-residues in the sequence M,
M+1, ...,M+ Q~ 1. Prove that

< Vp Inp.

1 6 1 6
R==0+—Volnp, N=—Q - —Vp lnp; < 1.
2Q+2\/p_np 50~ 5 VP lnp lo]

y) Deduce the formulae of problem ), using the theorem of
problem 11, b, B) and the theorem of problem a.

8) Letm > 2, (24, m) = 1, and let M, and @, be integers
such that 0 < M, < M, + Q, < m. Prove that
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Mo+ Qo~1

Y exp <27ri A:)

x=Mg

< Vm In m.

€) Let p > 2, (4, p) = 1, let ¥, and Q, be integers such
that 0 < My < M, + Q, < p and let T be the number of integers
of the sequence Ax*; x = Mg, My + 1, ..., Mg + Qp = 1,
which are congruent modulo p to the numbers of the sequence

MM+1, ..., M+ Q ~ 1. Prove that

. 00

+ 6Vp (np).

c. Deduce the formulae of problem b, B) by considering the
sum

p-1 p—t M+Q—~1 M+0=1 / o a(x — ay)
>r 2. (—) exp |\ 2gi————
a=0 Qmi x=M y=M P p

Numerical Exercises for Chapter V

1, a. Find the quadratic residues in areduced residue sys-
tem modulo 23.

b. Find the quadratic non-residues in a reduced residue sys-
tem modulo 37,

2, a. Applying e, §1, find the number of solutions of the
congruences:

a) »* = 3(mod 31); B) »* = 2(mod 31).
vb. Find the number of solutions of the congruences:
o) »* = 5(mod 73); B) 2* = 3 (mod 73).

3, a. Using the Jacobi symbol, find the number of solutions
of the congruences:
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«) 2 = 226 (mod 563); B) #* = 429(mod 563).
b. Find the number of solutions of the congruences:
«) 2 = 3766 (mod 5987); B) x* = 3149 (mod 5987).

4, a. Applying the methods of problems 2, a; 2, b; 2, c,
solve the congruences:

@) #* = 5(mod 19); B) #* = 5(mod 29); y) »* = 2(mod 97).
b. Solve the congruences:

«) 22 = 2(mod 311); B) #* = 3(mod 277);
y)« =11 (mod 353).

5, a. Solve the congruence #* = 59 (mod 125) by the methods
of:

«) b, $4; B) problem 5, a; y) problem 6.

b. Solve the congruence * = 91 (mod 243).
6, a. Solve the congruence #* = 41 (mod 64) by the methods
of:

o) e, $4; ) problem 5, b

b. Solve the congruence 2* = 145 (mod 256).
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CHAPTER VI

PRIMITIVE ROOTS AND
INDICES

S1. General Theorems

a. For (s, m) = 1 there exist positive y such that a” = 1
(mod m), for example (by Euler’s theorem) y = ¢(m). The
smallest of these is called: the exponent to which a belongs
modulo m.

b. If a belongs to the exponent 8 modulo m, then the num-
bers 1 = &, a*, ..., a®* are incongruent modulo m.

Indeed, it would follow from a' = a*(mod m), 0 K k< [ < &
that a™* = 1(mod m), 0 < I — k < §, which contradicts the
definition of §. ,

c. If a belongs to the exponent & modulo m, then a” = a”

(mod m) if and only if y = y’ (mod 8); in particular (for y* = 0),
a” = 1(mod m) if and only if y is divisible by 8.

Indeed, let r and r, be the least non-negative residues of
the numbers y and y” modulo §; then for some q and g, we
havey = 8¢ + r,y’ = 8q, + r. From this and from a® = 1
(mod m) it follows that

a? = (as)qa' = a' (mod m),
a?’ = (a®%g" = g™t (mod m).

Therefore a” = a”* (mod m) if and only if a® = a™ (mod m),
i.e. (b), when r = r,.



d. It follows from a?™ = 1 (mod m) and from c =0
that ¢(m) is divisible by 5. Thus the exponents to which
numbers belong modulo m are just the divisors of @(m). The
largest of these divisors is ¢(m). The numbers belonging to
the exponent ¢(m) (if such exist) are called the primitive
roots modulo m.

82. Primitive Roots Modulo p® and 2p®

a. Let p be an odd prime and let o > 1. We shall prove
the existence of primitive roots modulo p* and 2p°.

b. If x belongs to the exponent ab modulo m, then x* be-
longs to the exponent b.

Indeed, let x* belong to the exponent 8. Then x%% =1
(mod m), and hence (c, $1) ad is divisible by ab, i.e. § is
divisible by b, On the other hand, (x*)* = 1 (mod m) implies
(c, $1) that b is divisible by 6. Hence § = b.

c. If x belongs to the exponent a, and y belongs to the ex-
ponent b modulo m, where (a, b) = 1, then xy belongs to the
exponent ab.

Indeed, let xy belong to the exponent 5. Then (xy)8 =1

(mod m). Hence x?%y*% = 1 (mod m) and (c, $1) %=1
(mod m). Hence (c, $1) b5 is divisible by a, and since

(b, a) = 1, § is divisible by a. In the same way we find
that & is divisible by b. Since (a, b) = 1, being divisible by
a and b, § is also divisible by ab. On the other hand,

(xy)?® = 1 (mod m) implies (c, $1) that ab is divisible by 8.
Hence 8 = ab.

d. There exist primitive roots modulo p.

Indeed, let 7 be the least common multiple of all those
exponents

) Bus By vy Bry

to each of which belongs at least one number of the sequence
1,2, ...,p — 1 modulo p, and let r = g7, ... qi* be the
canonical decomposition of the number 7. Then for each s,
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among the numbers (1) there exists some § which is divisible
by gg* and is therefore representable in the form & = agJs.
If x is a number belonging to the exponent §, then, by b,

xs = x° belongs to the exponent gJs. This holds for

s =1,2,..., k by ¢, the number g = x,x, ... x; belongs
to the expomegt gJ1gJ2 ... gk = 7,

But since the exponents (1) are just the divisors of the
number 7, all the numbers 1, 2, ..., p ~ 1 satisfy (c, $1)
the congruence x” = 1 (mod p). This means (c, $4, ch, IV)
that p — 1 < 7. But ris a divisor of p — 1. Hence
7=p - 1,i.e. gis a primitive root.

e. Let g be a primitive root modulo p. We can find a ¢
such that u, which is defined by the equation (g + pt)?™* =
= 1 + pu, is not divisible by p. The corresponding g + pt
is a primitive root modulo p®for any o > 1.

Indeed, we have

et _ 14 pT,
@) & tr

(g + pt)P* =1+ p(Ty ~ g°%t +.pT) = 1 + pu,

where, along with ¢, u runs through a complete residue system
modulo p. Therefore, we can find a ¢ such that u is not di-
visible by p. For this ¢, we deduce from (2) the equations

(g + pt)P®PM = (1 + pu)® =1+ pu,
(3) @+ pt)P" eV = (14 P’u,)? = 1 + plu,,

where u,, u,, ... are not divisible by p.
Let g + pt belong to the exponent § modulo p*. Then

@) (g + pt)® = 1(mod p2).

Hence (g + pt)® = 1 (mod p); and consequently § is a
multiple of p — 1, and since &8 divides ¢(p®) = p**(p - 1),
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it follows that 8 = p™*(p — 1), where r is one of the numbers
1,2, ..., a Replacing the left side of the congruence (4)
by its expression in the appropriate equation of (2) or (3), we
find (u = u,)

1+ pu, = 1(mod p®), p* = O(modp?), r = &, & = olp®),

i.e. g + pt is a primitive root modulo p*.

f. Let o » 1and let g be a primitive root modulo p*.
Whichever of the numbers g and g + p® is odd, is a primitive
root modulo 2p*.

Indeed, every odd x which satisfies one of the congruences
x” = 1 (mod p*) and x” = 1 (mod 2p®) obviously satisfies
the other also. Hence, since ¢(p®) = @(2p*) for all odd =,
a primitive root for one of the moduli p* and 2p”, is also a
primitive root for the other. But, of the two primitive roots
g and g + p*modulo p% at least one is odd; and conse-
quently, it will be a primitive root modulo 2p*.

S3. Evaluation of the Primitive Roots
for the Moduli p® and 2p®

The primitive roots for the moduli p® and 2p® where p is
an odd prime and o« > 1, can be found by using the following
general theorem:

Let ¢ = ¢(m) and let q,, q,, . .., 9x be the different prime
divisors of the number c. In order that a rumber g, which is
relatively prime to m, be a primitive root modulo m, it is
necessary and sufficient that this g satisfy none of the
congruences

c c
g_q_; = 1(mod m), g—'E = 1(mod m),

@ c

vers 89 = 1(mod m).
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Indeed, if g is a primitive root, then a fortiori it belongs to
the exponent ¢ and hence none of the congruences of (1) can
be satisfied.

Conversely, we now assume that g satisfies none of the
congruences of (1). If the exponent & to which g belongs,

turns out to be less than ¢, then, letting g be one of the prime
c c =
divisors of e we would have % =qu, — =0u, g9 =1

(mod p), which contradicts our assumption. Hence § = ¢
and g is a primitive root.
Example 1, Letm = 41. We have ¢(41) = 40 = 2 -5,

40 40
5 = 8, - = 20. Therefore, in order that the number g,

not divisible by 41, be a primitive root modulo 41, it is
necessary and sufficient that this g satisfy neither of the
congruences

(2) g = 1(mod 41), g*° = 1(mod 41).
But going through the numbers 2, 3, 4, ... we find (modulo 41)

2* =10, 3 =1, 4

18, 5* = 18, 6

10,
2 =1, =1, 52=1 6°

40.

From this we see that the numbers 2, 3, 4, 5 are not primitive
roots since each of them satisfies at least one of the con-
gruences (2). The number 6 is a primitive root since it satis-
fies neither of the congruences of (2).

Example 2. Let m = 1681 = 41*. A primitive root can also
be obtained here by using the general theorem. But we can
find it more simply by applying theorem e, $2. Knowing
(example 1) that 6 is a primitive root modulo 41, we find

6*° =1 + 413 + 41)

(6 + 412)*° = 1 + 413 + 41 ~ 6*¢ + 417) = 1 + 4lu.
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In order that u be non-divisible by 41, it is sufficient to take
t = 0. We can therefore take the number 6 + 410 = 6 as a
primitive root modulo 1681.

Example 3. Letm = 3362 = 2 1681. The primitive root
can also be obtained here by using the general theorem. But
we can find it more simply by applying theorem f, $2. Know-
ing (example 2) that 6 is a primitive root modulo 1681, we can
take as a primitive root modulo 3362 the odd number in the
pair 6, 6 + 1681, i.e. the number 1687.

84. Indices for the Moduli p® and 2p®

a. Let p be an odd prime, o > 1; let m be one of the num-
bers p® and 2p®; ¢ = ¢(m), and let g be a primitive root
modulo m.

b. If y runs through the least non-negative residues
y=0,1, ..., ¢ = 1 modulo c, then g” runs through a
reduced residue system modulo m.

Indeed, g” runs through ¢ numbers which are relatively
prime to m, and by b, $1, incongruent modulo m.

c. For numbers a, which are relatively prime to m, we
introduce the concept of index, which is analogous to the
concept of logarithm; here, a primitive root plays a role
analogous to the role of the base of a logarithm:

If
a= gy (mod m)

(we assume that y > 0), then y is said to be the index of the
number a modulo m to the base g and is denoted by the symbol
y = ind a (more precisely: y = ind, a).

In view of b, every a, relatively prime to m, has some
unique index y” among the numbers of the sequence

y=0,1...,¢c~-1

Knowing y*, we can find all the indices of the number a;
by c, §1, these are all the non-negative numbers of the class
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Yy = y'(mod C).

It follows immediately from the definition of the index which
we have given here that the numbers with a given index y form
an equivalence class of numbers modulo m.

d. We have
indagb...l=ind a +ind b + ... + ind [ (mod ¢)
and in particular,

ind a" = n ind a (mod ¢).
Indeed,

a= g‘“d @ (mod m), b = g'** ® (mod m),

vey I = g™ U (mod m),
and multiplying the latter together, we find
ab ...l = glnd a+ind b+ ... +ind (mod m).

Therefore, ind @ + ind b + ... + ind [ is one of the
indices of the product ab ... [.

e. In view of the practical use of indices, for each prime
modulus p (which is not too large) tables of indices have
been constructed. There are two tables: one for finding the
index from the number, and the other for finding the number
from the index. The tables contain the least non-negative
residues of the numbers (a reduced residue system) and their
smallest indices (a complete system) corresponding to a
modulus p and ¢ = ¢(p) = p — 1.

Example. We construct the preceding table for the modulus
p = 41. It was shown above (example 1, §3) that g = 6is a
primitive root modulo 41; we take it as the basis of the
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indices. We find (congruences are taken modulo 41):

6 =1 6 =10 6°=18 6* =16 6 =37
6 =6 6 =19 67=260 6°5=14 6=17
6 =3 62°=32 6°=33 6°=2 6 = 20
6 =11 6'=28 6°=34 67=12 6°=38
6* =25 6'2=4 6° =40 6* =31 6%=23
66=27 6=2 6'=35 6°=22 67 =15
6 =39 6*=21 62=5 6 =9 6t =8

6 =29 6%=3 62 =30 6*=13 6°=7

and hence our tables are:

N 0 1 2 3 4 5 6 7 8 9
0 0|26 |15 | 12 | 22 1 |39 |38 ] 30
1 8 3 27 | 31 25 37 24 33 16 9
2 34 14 29 |36 | 13 4 17 5111 7
3 23 | 28 10 18 19 | 21 2 |32 35 6
4 20

0 1 2 3 4 5 6 7 8 9

I

0 1 6 |36 (11|25 27 [39 [20 ] 10|19
1 321 28 4 |24 | 21 3 |18 | 26 | 33 | 34
2 5
3

40} 35 30 | 16 | 14 2 {12 | 31| 22
9| 1313717 2|3 |23 |15 8 7

Here the row number is the first digit and the column number
is the second digit of the number (index). At the place common
to the given row and given column we place the corresponding
index (number).

For example, we find the ind 25 at the place in the first
table common to the 2-nd row and the 5-th column, i.e.
ind 25 = 4. The number whose index is 33 is found in the
place in the second table common to the 3-rd row and the
3-rd column, i.e. 33 = ind 17.
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$5. Consequences of the Preceding Theory

a. Let p be an odd prime; o > 1, let m be one of the
numbers p®, 2p®, and finally, let ¢ = ¢(m).
b. Let (n, ¢) = d; then:

1. The congruence
1) x" = a (mod m)

is solvable ( and hence a is an n-th power residue modulo m)
if and only if ind a is a multiple of d.
In the case of solvability the congruence has d solutions.

2. The number of n-th power residues in a reduced residue
system modulo m is 7
Indeed, the congruence (1) is equivalent to the congruence

#))] n ind x = ind a (mod ¢)

which is solvable if and only if ind a is a multiple of d
(d, $2, ch. IV).

If the congruence (2) is solvable, we find d values of
ind x which are incongruent modulo c; corresponding to them
we find d values of x which are incongruent modulo m, proving
assertion 1.

Among the numbers 0, 1, ..., ¢ — 1, which are the smallest
indices of a reduced residue system modulo m, there are

c
7 which are multiples of d, proving assertion 2.

Example 1. For the congruence
(3) %* = 23 (mod 41)

we have (8, 40) = 8, while ind 23 = 36 is not divisible by 8.
Therefore the congruence (3) is unsolvable.
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Example 2. For the congruence
@) x*? = 37 (mod 41)

we have (12, 40) = 4, while ind 37 = 32 is divisible by 4.
Therefore the congruence (4) is solvable and has 4 solutions.
These solutions are obtained in the following way:

The congruence (4) is equivalent to the following ones:

12 ind x = 32 (mod 40), ind x = 6 (mod 10).

Hence we find 4 values of ind x which are incongruent
modulo 40:

ind x = 6, 16, 26, 36,
from which we obtain the 4 solutions of the congruence (4)
x = 39, 18, 2, 23 (mod 41).
Example 3. The numbers
(5) 1, 4, 10, 16, 18, 23, 25, 31, 37, 40

whose indices are multiples of 4, are just all the biquadratic
residues (or the residues of any power n = 12, 28, 36, ...,
where (r, 40) = 4), among the least positive residues modulo

41. The number of integers in the sequence (5) is 10 = i

c. Along with assertion b, 1, we shall also find the follow-
ing one useful:
The number a is an n-th power residue modulo m if and

only if

c

(6) a9 = 1 (mod m).
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Indeed, the condition ind @ = 0 (mod d) is equivalent to’the
condition: —:’— ind @ = 0 (mod ¢). The latter is equivalent to

condition (6).

Example. By the theorem of 3, the impossibility of the

c
congruence g9 = 1 (mod m) is equivalent to the statement
that g is a g-th power non-residue modulo m. In particular,
c

the impossibility of the congruence g? = 1 (mod m) is
equivalent to the statement that g is a quadratic non-residue
modulo m (cf. e, 81, ch. V).

d, 1. The exponent & to which a belongs modulo m is de-

c
fined by the equation (ind a, c) = 3 ; in particular, the fact

that a belongs to a number of primitive roots modulo m is
equivalent to the equation (ind a, c) = 1.

2. In a reduced residue system modulo m, the number of
numbers belonging to the exponent 8 is ¢(8); in particular,
the number of primitive roots is ¢(c).

Indeed, § is the smallest divisor of ¢ such that a’=1
(mod m). This condition is equivalent to

8 ind a = 0 (mod ¢),

inda=0 (mod i).
5

This means that § is the smallest divisor of ¢ for which

or

%— divides ind a, from which it follows that -;— is the largest

c
divisor of ¢ which divides ind aq, i.e. 3 = (ind a, ¢), proving

assertion 1.
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Among the numbers 0, 1, ..., ¢ — 1, which are the smallest
indices of a reduced residue system modulo m, the multiples

of % are the numbers of the form %y, where y = 0, 1,

«eey 8 — 1. The condition (%—y)c = —g— is equivalent to

the condition (y, §) = 1; and the latter is satisfied by ¢(5)
values of y, proving assertion 2.

Example 1. In a reduced residue system modulo 41, the
numbers belonging to the exponent 10 are the numbers a such

40
that (ind a, 40) = 0" 4, i.e. the numbers

4, 23, 25, 31.

The number of these numbers is 4 = ¢(10).

Example 2. In a reduced residue system modulo 41, the
primitive roots are the numbers a such that (ind g, 40) = 1,
i.e. the numbers

6, 7, 11, 12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34, 35.
The number of these primitive roots is 16 = ¢(40).

§6. Indices Modulo 2*

a. The preceding theory is replaced, for the modulus 2%, by
a somewhat more complicated one.

b. Let o = 1. Then 2* = 2. We have ¢(2) = 1. A primi-
tive root modulo 2 is, for example, 1 = -1 (mod 2). The
number 1° = (~1)° = 1 forms a reduced residue system modulo
2.

c. Let o = 2. Then 2 = 4. We have ¢(4) = 2. The
number 3 = —1 (mod 4) is a primitive root modulo 4. The
numbers (~1)° = 1, (-1)* = 3 (mod 4) form a reduced residue
system modulo 4.
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d. Let o > 3. Then 2% > 8. We have ¢(2%) = 29, Itis
easy to see that there are no primitive roots in this case; more
precisely: the exponent to which the odd number x belongs

1
modulo 2% does not exceed 22 = — ¢(2%), Indeed, we have
2 ¢

2 =1+ 8,

2 =1 + 16t,,

LR A A A N A )

2 214+ 2%, = 1 (mod 2%).

Therefore, there exist numbers belonging to the exponent
2%%, For example, 5 would be such a number. Indeed,

5

1+ 4,

5 =1+ 8+ 16,

5 =1+ 16 + 32,,

ssetscss s st o

570 =1 4 297 4 2%,

from which we see that none of the powers 5', 5%, 5%, ..., 5° 2
is congruent to 1 modulo 2%,

It is not difficult to see that the numbers of the following
two rows:

5, 5, ..., 577,

2 a2 g

5%, 5%, ..., -5

form a reduced residue system modulo 2%. Indeed, the number
of these numbers is 2+ 2% = ¢(2%); the numbers of each
individual row are incongruent among themselves modulo 2%
(b, $1); finally, the numbers of the upper row are incongruent
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to the numbers of the lower row since the former are congruent
to 1, while the latter are congruent to ~1 modulo 4.

e. For convenience in later investigations, we express the
results of b, c, d in more unified form, which is also applicable
in the case o = 0.

Let

c

it

1, ¢0=1,if a =0, 0r 0 =1;

c=2 ¢cg =2 if x 22

(therefore cco = 9(2%)) and let y and y, run independently
through the least non-negative residues

y=0,...,¢ =1 y,=0, cc0y ¢ 1
modulo ¢ and co. Then (~1)Y57° runs through a reduced

residue system modulo 2*.

f. The congruence
M 1)?57¢ = (-1)” '57¢ (mod 2°)
holds if and only if

y =y’ (mod ¢), y, = yq (mod c,).

Indeed, the theorem is evident for o = 0. We therefore
assume that o > 0. Let the least non-negative residues of
the numbers y and y, be r and r,, and of the numbers y” and
ys be r’ andry modulo ¢ and c,. In view ofc, §1 (-1 belongs
to the exponent ¢, while 5 belongs to the exponent c,), the
congruence (1) holds if and only if (1)'5" = 17’5 (mod
2%), i.e. if and only if r = 7”1y = rg (in view of e).

g If

a = 1)757° (mod 2%),
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then the system y, y, is called an index system of the number
a modulo 2%,

In view of e, every a relatively prime to 2% (i.e. every odd
a) has a unique index system y’, y, in the cc, = @(2%) pairs
of values y, y, considered in e,

Knowing a system y’, y;, we can also find all index sys-
tems of the number a; according to f, these will be all pairs
¥, Yo consisting of the non-negative numbers of the equiva-
lence classes

y =y’ (mod ¢), y, = yq (mod c,).

It follows immediately from the definition we have given of
index systems that the numbers with a given index system
¥»> Yo forms an equivalence class of numbers modulo 27,

h. The indices of a product are congruent modulo ¢ and c,
with the sums of the indices of the factors.

Indeed, let y(a), yo(a); ...; y(0), yo(l) be index systems for
the numbers a, ..., l. We have

@il = (1)@ Y DBV 0@ e+ VoD

Therefore y(a) + ... + y(1), yola) + ... + y,(l) are the
indices of the product a ... [.

$7. Indices for Arbitrary Composite Modulus

a. Letm = 2% ™pfs ... pik be the canonical decomposi-
tion of the number m. Moreover let ¢ and ¢, have the values
considered in e, $6; ¢, = @(pJ*); and let g, be the smallest
primitive root modulo pJ=.

b. If

a = <1)Y57° (mod 2¢),
(1)

a =g/t (mod p), ..., a = gI* (mod pgk),
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then y, yo, ¥1s « - - » Y i8 called an index system of the number
a modulo m.

It follows from this definition that y, y, is an index system
of the number @ modulo 2%, while y,, ..., y are indices of the
pumber a for the moduli p2, ..., pak. Hence (g, $6; c, $4)
every a which is relatively prime to m (and hence also rela-
tively prime to all the numbers 2%, p{%, ..., pik), has a unique
index system y”’, y¢, Y1y +++s Vi in the cCoCy e Ce = (m)
systems which are obtained by letting y, yo, y15 « ++5 Y& TUR
independently through the least non-negative residues for the
moduli ¢, ¢cgy Cyy - -, Cxs While all the index systems of the
number a are just all the systems y, yo, Y15 «¢ s Y& consisting
of the non-negative numbers of the equivalence classes

y =y’ (mod ¢), y, = yg (mod ¢g),
y: = y{ (mod ¢,), ..y vk = vi (mod ci).

The numbers a with a given index system y, yo, Y15 2 v» Y&
can be found by solving the system (1), and hence they form
an equivalence class of numbers modulo m (b, $3, ch. IV),

c. Since the indices y, Yo, Y15 « + +» Y Of the number a
modulo m are the indices for the respective moduli 2%, p;*,
«++, PRk, we have the theorem:

The indices of a product are congruent modulo ¢, Coy <+ vy Ci
to the sums of the indices of the factors.

1
d. Let 7 = ¢(2%) for o < 2andr = —2-<p(2a') for o > 2

and let & be the least common multiple of the numbers 7, c,,
<e., cx» For every a which is relatively prime to m the con-
gruence a" = 1 holds for all the moduli 2%, pi1, ..., Pk,
which means that this congruence also holds for the modulus
m. Hence a cannot be a primitive root modulo m in those
cases in which & < ¢(m). But the latter holds for o > 2,
fork > 1, and for o = 2, k = 1. Hence for m > 1, primitive
roots can only existif m = 2, 4, pi1, 2pit. But the existence
of primitive roots in these cases was proven above (§6, $2).
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Hence
All the cases in which primitive roots modulo m, exceeding
1, exist are just the cases in which

m=2, 4, p%, 2p%.
Problems for Chapter VI

The letter p always denotes an odd prime, except in problem
11, b where we also allow the value 2.

1, a. Let a be an integer, a > 1. Prove the odd prime
divisors of the number a® — 1 divide a — 1 or are of the
form 2px + 1.

b. Let a be an integer, a > 1. Prove that the odd prime
divisors of the number a® + 1 divide a + 1 or are of the form
2px + 1.

c. Prove that there are an infinite number of primes of the
form 2px + 1.

d. Letnbea 'Positive integer. Prove that the prime divisors
of the number 22" + 1 are of the form 2"*'x + 1.

2. Let a be an integer, a > 1, and let n be a positive
integer, Prove that ¢(a” — 1) is a multiple of n.

3, a. Let n be an integer, n > 1. Starting from the sequence
1, 2,...,n we form, for odd n, the permutations

L35 ....,.n=-2,n,n=-1,n-3,...,4, 2
,59,...,7,3
etc., while for even n we form the permutations
1, 3,5 ...,n=-1n,n-2 ..., 4, 2
1,509, ..,73,

etc. Prove that the 4-th operation gives the original sequence
if and only if 2¥ = 11 (mod 2n - 1).

b, Let n be an integer, n > 1, and let m be an integer,
m > 1, We consider the numbers 1, 2, .... n in direct order
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from 1 to n, then in reverse order from n to 2, then in direct
order from 1 to n, then in reverse order from n to 2, etc. From
this sequence we take the 1-st, (m + 1)-st, (2m + 1)-st, etc.,
until we obtain n numbers. We repeat the same operation with
this new sequence of n numbers, etc. Prove that the k-th
operation gives the original sequence if and only if

mk = 41 (mod 2n — 1)

4. Prove that there exist ¢(5) numbers belonging to the
index 8, by considering the congruence x° = 1 (mod p)
(problem 10, ¢, ch. IV) and applying d, $3, ch. IL.

5, a. Prove that 3 is a primitive root of any prime of the
form 2" + 1, n > 1,

b. Prove that 2 is a primitive root of any prime of the form
2p + 1lif p is of the form 4n + 1, while —2 is a primitive root
of any prime of the form 2p + 1if p is of the form 4n + 3.

c. Prove that 2 is a primitive root of any prime of the form
4p + 1.

d. Prove that 3 is a primitive root of any prime of the form

2n=1
2°p + 1forn > landp > rak

6, a, o) Let n be a positive integer and let § = 1" + 27 +
+ +o. + (p =~ 1)". Prove that

S = -1 (mod p), if n is a multiple of p — 1,

S = 0 (mod p), otherwise.

B) Using the notation of problem 9, c, ch. V, prove that

SQ1) =
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b. Prove Wilson’s theorem by applying b, $4.

7. Let g and g, be primitive roots modulo p, and let
aindg g. = 1 (modp - 1).

a. Let (g, p) = 1. Prove that

indg, @ = o indy a (modp ~ 1).

b. Let n be a divisorof p — 1, 1 < n < p ~ 1. The num-
bers relatively prime to p can be divided into n sets by putting
those numbers such that ind a = s (mod n) in the s-th set
(s=0,1, ..., n = 1). Prove that that the s-th set for the
base g is identical with the s,~th set for the base g,, where
s, = as (modn).

8. Find the simplest possible method of solving the con-
gruence x" = a (mod p) (convenient for (n, p — 1) not too
large) when we know some primitive root g modulo p.

9. Let m,a, ¢, Cop Cyyeevs Cks ¥y Yos Y15 o009 Vi have the
values considered in 7. Considering any roots R, R,, R,,

e ey Ry of the equations

R°=1,Rso=1, RS1 =1, ..., R§x = 1,
we set
x(a) = RYRYoRY1 ... R)k.

If (@, m) > 1, then we set y(a) = 0.

A function defined in this way for all integers a is said to
be a character. If R = Ry = R, = ... = Ry = 1, then we say
that the character is principal; it has the value 1 for (a, m) =
= 1, and the value O for (a, m) > 1.

a. Prove that we obtain (m) different characters in this
way (two characters are said to be different if they are not
equal for at least one value of a).

b. Deduce the following properties of characters:

«) (D) =1,
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B) x(a.a,) = x(a,)x(a,),
v) x(a,) = x(a,), if a, = a, (mod m).

c. Prove that

3 xt@) =

(m), for the principal character,
0, for other characters.

d. Prove that, for given a, summing all ¢(m) characters,

we find
¢(m), if a = 1 (mod m)
Y xla) =
X

0, otherwise.

e. By considering the sum

where a runs through a reduced residue system modulo m,
prove that a function y/(a) defined for all integers a and
satisfying the conditions

ola) = 0, if (@, m) = 1,

¥(a) is not identically equal to 0,
Y(a,a,) = yla,)¥la,),

¥la,) = ¢la,), if a, = a, (mod m),

is a character.

f. Prove the following theorems.

o) If y,(a) and y,(a) are characters, then x1(a) x,(a) is
also a character.
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B) If y,(a) is a character and y(a) runs through all the
characters, then y,(a) x(a) also runs through all the characters.
y) For (I, m) = 1, we have

x(a) ¢(m), if a = I (mod m)
= x® {

0, otherwise,

10, a. Let n be a divisorof p'—~ 1,1 <n < p ~ 1, and
let ! be an integer which is not divisible by n. The number
1
R, = "' is a root of the equation R} = 1, and hence the
1 ind x
power ™", which is assumed to be equal to O for x
a multiple of p, is a character modulo p.

o) For (k, p) = 1, prove that

Pt /_lind(x+k)——lindx) .

Z exp \2m

x=1 n

B) Let Q be an integer, 1 < Q < p, and let

p—1 2 Q-1 .lind(x+ Z)>
S = Z |Sl,n,x| H S!,n,x = Z exp (27"'——”—_—

X=0 Zw0

Prove that § = (p — Q)Q.

y) Let M be an integer, p > 4n®, n > 2. Prove that the
sequence M, M + 1, ..., M + 2[nVp ] ~ 1 contains a number
of the s-th set of problem 7, b.

-1 2
b. Let p > 4 (—L———) 2*k  let k be the number of
¢p-- 1)

different prime divisors of p ~ 1, and let ¥ be an integer.
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Prove that the sequence M, ¥ + 1, ..., M +

-1
) P Sl 25Vp | - 1 contains a primitive root modulo p.
olp - 1)

11, a. Let a be an integer, let n be a divisor of p — 1,
1<ngp-~1,andletk be aii integer which is not divisible

by n,
p—t kind x ax
Ua,p = ). exp |2ai exp 2:71'—-—)
n 4

Xx=]

o) For (a, p) = 1, prove that IU,,pl = Vp .
B) Prove that :

ayp

.

( —k ind a) U
exp |2mi =

1, p

y) Let p be of the form 4m + 1, and let

p—2 ind (** + x))
S = e 2mf —~——me——|,
,;l xp (m n

Prove that (cf. problems 9, a and 9, ¢, ch. V) p = 4* + B?,

where 4 and B are integers defined by the equation
b. Let n be an integer, n > 2, m > 1, (a, m) = 1,

_ax" , . _aé"
Saym = gexp (2m - ),Sa,m ; exp (2m m) ,
where x runs through a complete residue system, while &
runs through a reduced residue system modulo m (cf. problem
12, d, ch. Il and problem 11, b, ch. V).
o) Let & = (n, p — 1). Prove that

[Sa,pl <@ =DVp.
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B) Let (n, p) = 1 and let s be an integer, 1 < s < n. Prove
that

S L, =p*,S8 ,=0.

a,p® a,p®

y) Let s be an integer, s > n. Prove that

S ns §, . =0.

a,pe = P a,p8=m Ya,pa

&) Prove that

1
Isa,ml < Cm—;,

where C only depends on n.
12, Let M and Q be integers such that 0 < M < ¥ + Q < p.
a. Letn be a divisorofp — 1, 1 < n < p — 1, and let k£ be
an integer which is not divisible by n. Prove that

M+Q=~-1

2 e o

x=M

k ind
n ") < Vp lp.

b. Let T be the number of integers of the s-th set of
problem 7, b, contained in the set of numbers ¥, ¥ + 1, ...,
eees M + Q — 1. Prove that

T=g+6\/;lnp; o] <1.
n

c. Let & be the number of prime divisors of p — 1, and let
H be the number of primitive roots modulo p in the set of

numbers M, M + 1, ..., M + Q — 1. Prove that

-1)
H= q’—(p——l—()+e2*\/p Inp; |6] <1
p—.
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d. Let M, and Q,be integers, 0 < M, < M, + @, < p -~ 1,
and let / be the number of integers of the sequence ind ¥,
ind( + 1), ..., ind M + Q — 1) in the sequence M,, ¥, + 1,
«eoy M, + Q — 1. Prove that

Q0

p— + 6Vp (np); |6] <1

J =

13. Prove that there exists a constant p, such that: if
P > Po,nisadivisorofp — 1,1 < n <p - 1, then the
smallest of the positive non-residues of degree n modulo p is

L 1
<h; b =p® (In p)z; c = 2exp (1 - —) .

n

14,a. Let m > 1, (a, m) = 1,

S = mZ-f mz-f v(x) ply) exp (2171'&) ;

Xm0 ym=0 m

¥ vl =X, T el = ¥,
X =0 y=0

Prove that | S| < VXYm .

b, «) Let m > 1, (a, m) = 1, let n be a positive integer,
let K be the number of solutions of the congruence x" = 1
(mod m), and let

met ax”
S= 3 x(x)e’m i

Xml

Prove that |S| < KVm .

B) Let ¢ be an arbitrary positive constant. For constant n
prove that K = O(m®) where K is the number considered in
problem «).
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15, a. Let (a, p) = (b, p) = 1 and let n be an integer,
lnl =ny, 0<n <p,

oy n b
S = pZ exp (Zni—af——i—i) .
p

Xml

Prove that

3
*
.

3 %
S| < —n{
I I 2 nyp
b. Let (4, p) = 1, let n be an integer, |n| = n,, 0 < n, <p,
and let M, and Q, be integers such that 0 < M, < M, + @, < p.
a) Let

Mo+ Qo—1

Ax"
S= ) exp <2m$ ) .
P

x=My

3
4

3 1
Prove that | S| < E—nip In p.

B) Let M and Q be integers such that 0 < ¥ < M + Q < p,
and let T be the number of integers of the sequence 4x";
x =My, My + 1, ..., My + Qp — 1, congruent to numbers of
the sequence M, ¥ + 1, ..., M + Q, — 1 modulo p.

Prove that

1 3
T = 2‘—Q~+ G%npr(ln ps 16l < 1.
P

c. Let b and ¢ be integers, (a, p) = 1, (* - 4ac, p) = 1.
«) Let y be an integer,

Pt /ax® + bx + ¢ yx
S= (———-) exp | 2mi— | .
x=0 P P
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3 2
Prove that |S| < EP‘ .

B) Let M and Q be integers such that 0 < ¥ < M + Q < p,
and let

S=M~£—1 <ax’+bx+c>.

P

x=M

3 2
Prove that | S| < —2—p‘ In p.

Numerical Exercises for Chapter VI

1, a. Find (in the simplest possible way) the exponent to
which 7 belongs modulo 43.

b. Find the exponent to which 5 belongs modulo 108.

2, a. Find the primitive roots modulo 17, 289, 578.

b. Find the primitive roots modulo 41, 1681, 3362.

c. Find the smallest primitive roots modulo:

«) 1682; B) 3362.

3, a. Form the table of indices modulo 17.

b. Form the table of indices modulo 41.

4, a. Find a primitive root modulo 71, using the method of
the example of c, $5.

b. Find a primitive root modulo 191.

5, a. Using the table of indices find the number of solutions
of the congruences:

&) #° = 79 (mod 97); B) x* = 17 (mod 97);
y) 2% = 46 (mod 97).

b. Find the number of solutions of the congruences:
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o) 32** = 31 (mod 41); B) 7x7 = 11 (mod 41);
y) 52*° = 37 (mod 41).

6, a. Using the table of indices, solve the congruences:
) 2* = 59 (mod 67); B) #** = 17 (mod 67);
y) *° = 14 (mod 67).
b. Solve the congruences:
o) 232* = 15 (mod 73); B) 37x° = 69 (mod 73);
y) 442" = 53 (mod 73).

7, a. Using the theorem of ¢, $3, determine the number of
solutions of the congruences:

a) 2* = 2(mod 37); B) #** = 10 (mod 37).
b. Determine the number of solutions of the congruences:
o) x* = 3 (mod 71); B) 2*' = 5 (mod 71).

8, a. Applying the methods of problem 8, solve the con-
gruences (in the solution of the second congruence use the
table of primitive roots at the end of the book):

a) 2 = 37 (mod 101); B) %* = 44 (mod 101).
b. Solve the congruence
x* = 23 (mod 109).
9, a. Using the table of indices, in a reduced residue sys-

tem modulo 19 find: «) the quadratic residues; 3) the cubic
residues,
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b. In areduced residue system modulo 37, find: «) the
residues of degree 15; B) the residues of degree 8.

10, a. In a reduced residue system modulo 43, find: o) the
numbers belonging to the exponent 6; 3) the primitive roots.

b. In a reduced residue system modulo 61, find: o) the
numbers belonging to the exponent 10; B) the primitive roots.
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SOLUTIONS OF THE
PROBLEMS

Solutions of the Problems for Chapter I.

1. The remainder resulting from the division of ax + by
by d, being of the form ax” + by’ and less than d, must be
equal to zero. Therefore d is a divisor of all numbers of the
form ax + by, and in particular is a common divisor of the
numbers a*1 + 50 =a and a0 + b1 = b. On the
other hand, the expression for d shows that every common
divisor of the numbers a and b divides d. Therefore
d = (a, b), and hence theorem 1, d, $2 is valid. The
theorems of e, $2 are deduced as follows: the smallest
positive number of the form amx + bmy is amx, + bmy,;

b

a
the smallest positive number of the form —a—x + Ey is

a b
Exo + Ey“.

The generalization of these results is trivial.
2. We first note that the difference of two unequal rational

k
fractions —l— and - (I > 0, n > 0) is numerically > —.

n In

a
We restrict ourselves by the assumption 8, < 8441. Let —

b

be an irreducible fraction, which is not equal to §,, such that
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a
0< b < Q,. We cannot have §, < n < 8441 ; otherwise

we would have

as«n - 8- >

CaQais

Therefore < 84 Or Bgyy < -g— . In both cases §, is closer

to o than

>~ o|e

3. For n < 6 the theorem is evident; we therefore assume

n > 6. We have

1+ V5

¢ = = 1.618...; log,eé = 0.2...;

Qz>1‘°‘gx=1
Qa>Qz+1>gz=22>f,
Q4>Q,+Qz>gs=gz+81>f+1=<f’,

Qn’>Qn_1+Qn_z>gn.t=gn-z+gn-s>é""'+§""‘=é""~

Hence

lo
N>§""’;n<—5-'3,!-+2<5k+2;n<5k+1.
logxo
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1
4, a, For the fractions 1 and T we have 0+1 - 1°1 =
A
= —1, Between the fractions 7 and o with AD - BC = -1,

we insert the fraction

+C
Tk and hence A(B + D) -
-~ BA +C) =4 + C)D -~ (B + D)C = -1, Therefore the

assertion at the end of the problem is true. The existence of

k k
a fraction n such that — < — < , I < r is impossible,

b 1 d
Otherwise we would have
k 1 ¢ k 1 ¢
1 n

b+d 1
— ? 5 —
ld d

>
Ibd bd

a a
-— = — -— 3>
b 7w’ d b
b. It is evident that it is sufficient to consider the case in

. a c a c
which 0 ¢ o < 1. Let — ¢ oc<—;-,where—— and — are

neighboring fractions of the Farey series corresponding to 7.
There are two possible cases:

a+c a+c c
5 £ o< —
b+d b+d d

a
?$a<

We therefore have one of the two inequalities

< 1 H
b + d)

. 1
S dp + d)

a c
Ot-—'; —'d

from which the required theorem follows because b + d > r.
c. For « irrational, the theorem follows from h, $4, if we

P,.
take for i the convergent t , where Qyoy <7< Qs

81
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a

In the case of rational o = 7 the above argument is only

valid for b > 7. But the theorem is true for b < 7, since we
a P

can then take the fraction 7 itself for 6 , setting 0 = 0,

5, a. The remainder resulting from the division of an odd
prime by 4 is either 1 or 3. The product of numbers of the
form 4m + 1 is of the form 4m + 1. Therefore the number
4p, ... px — 1, where the p,, ..., p are primes of the form
4m + 3, has a prime divisor g of the form 4m + 3. Moreover
q is different from the primes py, ..., pg-

b. The primes greater than 3 are of the form 6m + 1 or
6m + 5. The number 6p, ... px — 1, where the p,, ..., px
are primes of the form 6m + 5, has a prime divisor g of the
form 6m + 5. Moreover, g is different from the numbers
Pir ¢ ¢ ¢s Pre

6. Let p,, ..., px be any k primes, and let N be an integer
such that 2 < N, (3 In N)* < N. The number of integers a of
the sequence 1, 2, ..., N, whose canonical decomposition is
of the form a = p{t ... pgk, is

In N k
g(“ +1> <BlaM*<N
In 2

In N

n 2

since o, < . Therefore there are numbers in the

sequence 1, 2, ..., N whose canonical decomposition con-
tains primes different from p,, ..., px .
7. For example, we obtain such sequences for

M=23-K+Dt+2;t=12,...

8. Taking an integer x, such that f(x) > 1 and f’(x) > 0
for x > x,, we set flx,) = X. All the numbers f(x + Xt);
t=1,2,... are composite (multiples of X).
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9, a. If (1) holds, one of the numbers x, y, say x, is even;
it follows from
2\ z+y z-y
2/ 2 2

z + z -
Y ’ y) = 1, that there exist
2 2

where, clearly, (
positive integers u and v such that

x z + z -
— = uv, 4 2 Y 2
2 2

This implies the necessity of the condition considered in the
problem.

The sufficiency of these conditions is evident.

b. In the solution of this problem all letters denote positive
integers. Assume the existence of systems x, y, z such that
2+ yt=2x>0,9y>0,z>0, 1y, z) =1, and choose
the system with smallest z. Assuming x to be even we find
2 = 2uv, ¥ = u - *,u> v 1, v) =1, where v is
even (for even u we would have y? = 4N + 1, u? = 4N,,

v = 4N, + 1, 4N + 1 = 4N, ~ 4N, — 1, which is impossible).
Hence u = 23, v = 2u?, y* + 4u# = z}, 2u* = 2uv,, u, = x3,
v, = 3, 2} + yi = 2z}, which is impossible since z, < z.

It follows from the non-solvability of the equation
x* + y* = z* that the equation x* + y* = ¢* is not solvable
in positive integers x, v, ¢.

s (k, ) = 1, we find

NIR‘

10. Setting x =

"+ a k™'l + o0+ anl™ =0,

Therefore %" is a multiple of [ and hence [ = 1.
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11, a. Let & be the largest integer such that 2* < n and
let P be the product of all the odd numbers which do not
exceed n. The number 2¥-'PS is a sum, all of whose terms,

1
except 2""‘P2—k , are integers.

b. Let k be the largest integer such that 3% < 2n + 1eand
let P be the product of all the integers relatively prime t~ 6
which do not exceed 2n + 1. The number 3*~*PS is a sum,

1
all of whose terms, except 3""‘P3—k , are integers,

12. Forn < 8, the theorem is immediately verifiable, It is
therefore sufficient to assume that the theorem is true for the
binomials @ + b, (@ + b)Y, ..., (@ + b)™* forn > 8, and
prove that the theorem holds for (@ + 5)". But the coefficients
of this binomial, except for the extreme ones, which are equal
to 1, are just the numbers

n nn-1) nln - 1) ... 2

17 1-2 7777712, (-1

A necessary and sufficient condition in order that all these
numbers be odd is that the extreme numbers, both equal to n,
be odd, and the numbers obtained by deleting the odd factors
from the numerators and denominators of the remaining numbers
be odd.

But, settingn = 2, + 1, these numbers can be represented
by the terms of the sequence

ny onyny = 1) nny = 1) ... 2
’ ’...’1'2...('11_1).

1 1-2

Since n, < n, the latter are all odd if and only if n, is of the
form 2% — 1, i.e. if and only if n is of the form 2(2% — 1) +
+1 =2,
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Solutions of the Problems for Chapter II

1, a. On the ordinate of the point of the curve y = flx)
with abscissa x there are [f(x)] lattice points of our region.
b. The required equation follows from T, + T, = T,

where T,, T,, T denote the number of lattice points of the
regions

c. The required equation follows from
T=1+4T,+T,+T,-T,,

where T, T,, T,, T, denote the number of lattice points of
the regions
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d. The required equation follows from 7' = T, + T, ~ Ty,
where T,, T,, T, denote the number of lattice points of the
regions

0<xg Vn ,0<yg

g8 |?

D<ygVn,0<x¢g

.
?

< |2

0<x<Vn ,0<yg Vn.

2. The number of positive integers which do not exceed n
is equal to [n]. Each of them is uniquely representable in the
form xk™, where k is a positive integer; moreover, to a given

x there correspond [\; %:l numbers of this form.

3. We prove the necessity of our conditions. Let N be an
integer, N > 1. The number of values x such that [ax] ¢ N

N

can be represented in the form — + A; 0 < A < C, while the
o

number of values y such that [8y] < N can be represented in

N
the form —B— + Ay 0 < A, < C,, where C and C, do not de-

N N
pend on N, Dividing — + A + —B-— + Ay = N by N, and
o

1 1
letting N — ®, we find — + —E- = 1. The latter equation
o

for rational o = %(a > b > 0) would give [ab] = [B(a - b)].

Let our conditions be satisfied. Let c be a positive integer,

and let x, = a + & and y, = é + 7 be the smallest
o
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c
integers such that x, > —, y,
o

\%

?f . Evidently, [ax] 2 ¢

\%

for x 2 % and [Byl 2 c for y 2 4, 0< €< 1, 0< <1,
of and Bn are irrational. Since x, + y, = ¢ + 7 + & we

o Bn

have £ + n = 1, — + —— = 1; therefore one and only one
o

of the numbers o and By is less than 1. Therefore, one
and only one of the numbers [ox,] and [By,] is equal to c.
4, a. Our differences are equal to

go‘-ngy ia(xz - xg)}’ seey io“(xt - xt—x)}’ {"O‘-xt}’

they are non-negative, their sum is equal to 1, there are ¢ + 1
of them; therefore at least one of these differences does not

1 < —, and hence there exists a number smaller
t + T

exceed

1
than — of the form {+aQ}, where 0 < Q < 7. From

T
+aQ = [+aQ] + {+aQ}, setting +[+aQ] = P, we find that

IaQ—PI<l, o - il < —1—
T Q Qr
b, Setting X, = [X], Y, = [Y], ..., Z, = [Z], we consider
the sequence formed by the numbers fox + By + ... + yz}
and the number 1 arranged in non-decreasing order, assuming
that x, y, ..., z run through the values:

x=0,1 ..., X5y=0,1, ...,Y352=0,1, ..., Z,.

We obtain (X, + 1)(¥, + 1) ... (Z, + 1) + 1 numbers, from
which we obtain (X, + 1)(¥, + 1) ... (Z, + 1) differences.
At least one of these differences does not exceed

1 1

KXo+ DEo+ 1) ... (Z,+ 1) < XY...zZ "~
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It is easy to obtain the required theorem from this.
5. We have oo = cqg + r + fa}; 0¢r<yg,

[[a]] |: r] [a] |: r+ icxi]
— | =g+ —| =9 |—|=|9+—]| =17
[+ c c c

6,a Wehave [ + B +... + Al =la]l + [Bl +... +
+ I = [{od + B+ ...+ DARL

b. The prime p divides nl, al, ..., !! to the exact powers
[n:l n a a
~l+ =] +.eey = + =] +.-°
P P’ p:l P
l l:l
veey 1= + |—| + ...
p p’

B

7. Assuming that there exists a number a with the required
properties, we represent it in the form

Moreover

a=qp**" + quaP* + oo+ qp* + g + 75
0< g <Py 0K Gpmg <Py vvey
0<q, <p,0<g<p 0<qg”<p.
By b, $1,

h = quuig + Qreali—y + ooo + qyliy + Gollo
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Moreover, for any s = 1, 2, ..., m, we have

ql—lul’-l + Ge2zlg-a +oees + g Uy + Qouo < Ug»

Therefore our expression for  must coincide completely with
the one considered in the problem.

8, a. Letting x, be an integer, Q < o < B < R,
x, < a < 8 < x, + 1, and integrating by parts, we find

B B
- f fw)dx = f p"Wf@)dx = pB)(B) - plofla) -
B
- (B (B) + ola)f’ () + fa(x)f”(x)dx.

a

In particular, for Q < x,, x, + 1 < R, passing to the limit,
we have

X3+l X341
1 1
_f fe)dx = —;f(x, +1) - Ef(x‘) + f o(x)f”(x)dx.

We can then obtain the required formula easily.
b. Rewriting the formula of problem a in the form

R Q
Z flx) = fﬂx)dx - ff(x)dx + p(R)f(R) - p(Q)(Q) -

O<xgR
©

- oR)f’(R) + o(Q)f’(Q) + f o(x)f*(x)dx ~ f a(x)f*’(x)dx,
Q

R

we obtain the required formula.
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c. Applying the result of problem b, we find

ml+n2+...+nn=C+nlhn-n+
1 ¢ olx)
+ —lnn + f hihad dcx =nlnn-n + 0(nn).
2 x?

9, a. ) We have (b, $1 and problem 5)

1) In(21) = 7, <[1] + I:lzjl>+ voo Inp.
p<n p p

The right side represents the sum of the values of the function
In p, extended over the lattice points (p, s, u) with prime p of

n
the regionp > 0,5 > 0,0 < u ¢ —. The part of this sum
P

L
-] /[
corresponding to given s and u is equal to ©® ( —) ; the
u

n
part corresponding to given u is equal to ¢ (—) .
u

B) Applying the result of problem o) forn > 2, we have

In ((l!) — 2In ([-"—] !> -
2
n n n n
=¢(n)-—¢(-2—> +lﬁ(-§‘) —l/l(z) +...>¢(n)—u/:(-§—) .

Setting [—%—] = m, we then find ([n] = 2m, [r] = 2m + 1)
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n @2m + 1)!
¢(n>-¢(—2—> <o
. (2m3-5...(2m+1)> @3 <
1-2...m

$in) = Yla) ~ ¢(§) + ¢(%) - ¢(%) +

n (n) < n n 9
+l/l(4)-—l/f P + e n+2~+4+...= n.

y) We have (by the solution of problem 8) and the result of
problem 8, ¢)

¢(n)-¢(§) +¢(—'3’—) —v//(%) +...=1n(_[[%"]]’_!)_z,

= [nlln[n] - [n] - 2 [%] In [%] + 2 [%] + O(nn) =

=nln2 + O(nn).

Moreover, for s > 2 we find (problem 3))

< 2 Vn always

8
-I/n
+@( E‘ — eee lnn
=0 fors>r; 7 = .

In 2
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Therefore

ocom-sf) o) o)
+...-—(9(n)—-®(%> +®(%) ~@(-Z—) +‘) <

<2Vn +2Vn +2Vn +
+ ..+ 200 <20/m + rVn )= 0Wn ).

b. The result follows from equation (1), the inequality of
problem a, B) and the equation of problem 8, c.
c. The equation of problem b for sufficiently large m gives

In Inm 4
Y 2P o ham+ 0@ , L =>1
m<p<m? p 2 m<p<m? P

If pnsy > pall + ¢€) for all pairs p,, pasy such that
m < pp < Payr < m? then we would have

® 4
> ——>1
“om(l o+ of

which is impossible for sufficiently large m.
d. It is evidently sufficient to consider the case in which
n is an integer.

Setting y(r) = for r prime and y(r) = O for r = 1, and

for r composite, we have (problem b)

y() +y@) + ..o+ y() = Inr + alr); |atn]| < C,,
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where C, is a constant. Hence, for r > 1 (we consider

a(l) = 1)

yO =Inr-In¢-1) + al) - alr - 1),

1 Inr-1laG -1
L it +ryr,. X Rrollb-D
o<pgn P 1<rgn In r

’

T, on(r)-la(r-l) -
1<rgn nn

We have (8, b)

T= 2 1+Z(1 - +...)=

egn TN cn \2PInr 32 Inr

1
=C,+lnlnn+0( ),
Inn

where C, is a constant. Moreover we find

T=(1(2)(1 - 1)+
In 2 In 3

+...+oc(n--1)< 1 1 )+a(n).

In(n—l)_lnn Inn

But, for an integer m > 1, we have

1 1
c _
: (1.; m In(m+ 1))+

c 1 1 \ c,
'\ hmsD w2 T a
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Therefore the series

1 1 1 1
o('(2)<ln2 " In 3) +a(3)(ln3 - ln4) T

converges; therefore, if C, is its sum, then

1
Tz=cs+0( )
Inn

e. We have
1 1 1 1
wigh-Y--zi-z¢ (___) ]
p<n ( p ) p<n P p<n 2p* 3p°

1
=C'-—-lnlnn+0( )
Inn

where C* is a constant. Setting C’ = In C, in the latter
equation, we obtain the required equation.

10, a. This result follows from c, $2.

b. Since 6(1) = ¥(1) = 1, the function O a) satisfies condi-
tion 1, a, §2. Let a = a,a, be one of the decompositions of
a into two relatively prime factors. We have

Y 0dd,) = yla) = Ylale;) =
di\ay dy\a;
@
= 2 L 0d)edy).

dy\a; dy\a;

If condition 2, a, $2 is satisfied for all products smaller than
a, then, for d,d, < a we have 0(d,d,) = 6(d,)0(d,), and equaticn
(1) gives 6(a,a,) = 6(a,)0(a,), i.e. condition 2, a, §2 is also
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satisfied for all products a,a, equal to a. But condition
2, a, $2 is satisfied for the product 1 * 1 which is equal to 1.
Therefore, it is satisfied for all products.

11, a. Let m > 1; for each given x,, dividing a, the in-

a
determinate equation x, ... %, 1%, = a has r,_, (-x—)
m

solutions, Therefore

a
fm(a) = x§a Tme (x—m‘) 5

but when x,, runs through all the divisors of the number a, the

a
numbers d = —— run through all these same divisors in re-
xm

verse order. Therefore

rmia) = Z Tmey (d).

d\a

Hence (problem 10, a), if the theorem is true for the function
Tm-1 (@), then it is also true for the function 7,(a). But the
theorem is true for the function r,(a) = 1, and hence it is
always true,

b. If m > 1 and the theorem is true for the function r,,_,(a),
then

tm(@) = 71,(p,) ... 70(py) =
= (rpeg (D) + 70ea(py)) oo (70ea (1) + 700y (pi)) =

=1 +m=D*=mk.

But the theorem is true for the function r,(a), and hence it is
always true.

c. Let € = me,, ¢, = 27, and let @ = p{ ... pgk be the
canonical decomposition of the number a, where p,, ..., px
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are arranged in increasing order. For the function
7,(a) = r(a) we have

7(a) oy + 1 oy +1 o + 1
a” < 207 3% 7 (k o+ 1)%7 '

Each of the factors of the product on the right is smaller than

1 Gpy + 1 :
— ; the factors —a such that r > 27 is smaller than
T’ r -1 .
kD
Opg + 1 1\:2
—'_2—‘(,.——— < 1. Therefore, setting C = (——> , we find
Pl 1’
r(a) r(a) C
< C, lim £ lim — = 0.
a” a—-m g€ a=o o7

It is evident that 7, (a) < (r(a))™ for m > 2. Therefore

lim rm(ea) < lim (r(a)) i = 0.

avw g awo \ g%

d. We divide the systems of values x,, ..., %, satisfying
our inequality into [n] sets with subscripts 1, 2, ..., [r]. The
systems such that x, ... %, = a are put in the set with
subscript a; the number of these systems is r,(a).

12. The series defining { (s) converges absolutely for
R(s) > 1. Therefore

= 5 e T

nyml ng, =t (nl L n'rl‘l)s

while, for given positive n, the number of systems n,, ..., nn
such that n, ... ny = n is equal to 7,(n).
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1

13, a. The product P = JT —T converges absolutely
P —
p
1 1 1
for R(s) > 1, Since ———— = Pl Birvalll P for
P p

1-

N > 2, we have

1 1 T 1
T .y 1.5
pgNl__l o<ngN n

where the second sum on the right is extended over those
numbers n which are not divisible by primes larger than N.
As N — o, the left side tends to P, the first sum of the
right side tends to {(s), while the second sum on the right
tends to zero.

b. Let N > 2. Assuming that there are no primes other
than p,, ..., px, we find that (cf. the solution of problem a)

Kk 1 1

f——3 % .

!'11__}_ o<nSNn
Pj

This inequality is impossible for sufficiently large N because
1

the harmonic series 1 + 0 + 3 + ... diverges,

c. Assuming that there are no primes other than p,, ..., px
we find (problem a)
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This equation is impossible in view of the irrationality of
2

7
@) = -

14. The infinite product for {(s) of problem 13, a converges
absolutely for R(s) > 1. Therefore

1 1 1
l = i K}
n{(s) =) (p" + 2" + 3 + )

14

where p runs through all the primes. Differentiating, we find

s 28 3s

26 p* P p

n=1 n'

¢’ (s) Inp Inp Inp ©  An)
y )

15. Let N > 2. Applying theorem b, 3, we have

3] BT

PN p o<ngN T

where the second sum on the right is extended over those
numbers n larger than N which are not divisible by primes
exceeding N. Taking the limit as N — ©, we obtain the
required identity.

16, a. We apply d, $3 to the case in which

§=1,2 ..., f=1,1, ..., L

It is then evident that S* = 1. Moreover S, is the number of

values & which are multiples of d, i.e. [%] .

b, o) The right side of the equation of problem a is the sum
of the values of the function u(d), extended over the lattice
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points (d, u) of the region d > 0, 0 < u < —;— The part of

this sum corresponding to a given value of u, is equal to

‘()

B) The required equation is obtained by termwise subtrac-
tion of the equations

M(n)+M(l) +M(i) +M<i) Fa=1,
2 3 4
2M(1> + 2M(1) b=
2 4

c. Let n, = [n]; let §,, 8,, ..., 8, be defined by the con-
dition: §, is the largest integer whose I-th power divides
Sy fo = 1. Then S* = Ty ,, S, is equal to the number of

multiples of d' not exceeding n, i.e. Sy = [5,—] . From this

we obtain the required expression for T, ,.
2
In particular, since #(2) = % , we have

6
Tz,n = —7n+ 0(\/n_)
w

for the number T, , of integers not exceeding n and not
divisible by the square of an integer exceeding 1.
17, a. We obtain the required equation from d, $3, if we set

8- = (x,, a)! fa = f(xa)'
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b. We obtain the required equation from d, $3, if we set

3 = (x?)’ ceey xﬁ.))v fo = f(xf‘)r seey xi'))o
c. Applying d, ¢3 to the case

5 =8y 8y oer Ors

f=F (=), F[= F[—
-r(5)r(5) )

where we have written down all the divisors of a in the first
row, we have

$* = F(a), S Fl—\ -¢[2

- R S = T F(75) - (7)
D\;

d. The required equation follows from

T ou@ I op I p(d)
PI - fd\sl fd\sz e fd\sn

1 2 n

18, a. We apply the theorem of problem 17, a, letting x run
through the numbers 1, 2, ..., a and taking f(x) = x™. Then

a

S = Ymla), Sq = d™ + 2"d™ + ...+ (’d’) " =
a
= dmam (—) .
d
b. We have

a a a
Y,a) = dza pld) (E_d— + ?) = -é-cp(a).

154



We can obtain the same result more simply. We first write
down the numbers of the sequence 1, ..., a relatively prime
to a in increasing order, and then in decreasing order, The
sum of the terms of the two sequences equally distant from the
initial terms, is equal to a; the number of terms in each se-
quence is equal to ¢(a).

c. We have

a a? a
b = (— L —6—d>

- =9l + %(1 =P . W=p,).

19, a. We apply the theorem of problem 17, a, letting x run
through the numbers 1, 2, ..., [z] and taking f(x) = 1. Then
S” =T,, S4is equal to the number of multiples of d which

do not exceed z, i.e. S, = [%] .
b, We have
z z ¢
T, =), u(d)g + Olr(@)) = — ¢la) + 0(@®).
a

d\a

c. This follows from the equation of problem 19, a.
20. We apply the theorem of problem 17, a, letting x run
through the numbers 1, 2, ..., N, where N > a, and taking

1
flx) = —. We then find
x

u(d) 1
d° ZN x°
e

1
Lo Lud L= X
SN e o<x< d\e o<x

Taking the limit as N — ®, we obtain the required identity.
155



21, a. We apply the theorem of problem 17, b, considering
the systems of values x,, %, ..., Xk considered in the defini-
tion of the probabilities P, and taking f%, %gy o0ey %) = 1.

S’ N*
Then P, = Rk Sq = [7] , and we obtain

P - —-—1
N~ Nk = é dx 42-1 Nd*=t *

"(d)mk
LHD g N u(d) (
+0

Therefore

1
P, =B + 0Q4); A = m for k > 2,

In N

A= for £ = 2,

b. We have {(2) = %

22, a. Elementary arguments show that the number of lattice
points (u, v) of the region u* + v* < p* p > 0, not counting
the point (0, 0), is equal to mp* + Olp). We apply the theorem
of problem 17, b, considering the coordinates x, y of the lat-
tice points of the region #* + y* < 7, different from (0, 0),
and setting f(x, y) = 1. Then T = §” + 1, Sy is equal to the

2
r
number of lattice points of the region u* + v* < (7) , not

considering the point (0, 0). Therefore

r r
Sd=ﬂ?+0(}—) ’
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dut dmi

{r] ] 6
T = Z#(d)ﬂ——+0(z-; =;r’+0(rlnr).

b. Arguing in analogy to the above, we find

P (] A 4n?
T = z_j u(d)—n—; + o(z 32—) = 32(3) + O0(P).

d=i

23, a. The number of divisors d of the numbers
a = p;*...pyk which are not divisible by the square of an

integer exceeding 1, and having x prime divisors, is equal to

n

k
( ) ; moreover p(d) = (~1)*. Therefore

k
2 wld) = Zk: (x\)(-l)" =(1-1*=0

d\a H=o

b. Let a be of the same form as in problem a. It is sufficient
to consider the case m < k. For the sum under consideration
we have two expressions

2o - (o) - (1) eorla)
car () (R )

, the first expression <0, and

0| =

If m is even, then for m <

for m > 0 the second expression is > 0. If m is odd, then
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for m < 2 the first expression <0, and for m > 7 the

second expression 0.

c. The proof is almost the same as in d, $3, except that
the result of problem b must be taken into account.

d. The proof is almost the same as in problems 17, a and
17, b,

24, Let d run through the divisors of the number a, let
(Ud) be the number of prime divisors of the number d, and
let Q(a) = s. Following the process given in the problem,
we have

N
W, g, D 2 pd (—7 + Gd) =
Q(d)Xm q

=T+ Ty-Ty |64 <1,

N (d) N
—Z%—v |T1I= Z "
d

Q(dYm g

Moreover

n=o qr

m N
|T| < )3 (:;) = s™ g ™ < exp(577€In r)%;-— = 0(A),

Finally, letting C,, C,, C, denote constants, we find
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<Xy »

1
9 nam+1 Q(d)=n d

N

Ps
< <
h 9 nem# n! =
Ci,+Inr
N s 4Inr-1
< — <
‘I Numel l

N = 3\” N —amm>
£ C,— ~—] < Cy—r 3 = 0(A).
iy (4) ‘q

25. To every divisor d, of the number a such that d, < Va

there corresponds a divisor d, such that d, > Va , dd, = a.
Here p(d,) = pu(d,). Therefore

2y pd) = Y pld) + ) pld) = 2 pld) = 0.
dy dy dy d\a

26. We consider pairs of numbers d which are not divisible
by the square of an integer exceeding 1, and satisfying the
condition ¢(d) = k, such that each pair consists of some odd
number d, and the even number 24,. We have p(d,) + u(2d,) = 0.

27. Let p,, ..., px are distinct prime numbers. Setting
G = p, ... px, We have

@la) = (p, = 1) ... (px — D).

If there were no primes other than p,, ..., px, we would have
¢la) = 1.
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28, a. Our numbers are among the numbers s8; s = 1, 2,
ooy -‘;—. But (s8, @) = & if and only if (s, -g— \) =1

(e, $2, ch. I). Therefore the assertion in the problem is true
and we have

o= Z:\: ¢ (%) - .,Z\ @(d).

b, o) Let a = p{* ... pi» be the canonical decomposition
of the number a. By a, the function ¢(a) is multiplicative,
while

pee = 2o old),pee = 7 old), pee ~ peet = lpg?).
d\p* d\p*-!
B) For a positive integer m, we have
m= 2. .
d\m
Therefore
a
(P(a) = Z #(d)— .
d\a d

29, We have (p runs through all the primes)

f: ) = H(l + ———CP(E’) + (P(f.) + \) =

n=y 0% P P p
1- L
p° s =-1)
-7 1 8)
pl—l
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30. We have

P + @2 + ... + o) =

=dz\l"_§”_+z£";‘” +...+n£#(d) -
=§;‘,‘u(d) (1+2+...+ [%])=
- 1 o 2’:, + Onlnn) =
n? @ u(d)

3
= ?Z T + O@lnn) = 7n’+0(nlnn).
P

Solutions of the Problems for Chapter 1l
1, a. It follows from
P=a,10" +a,,10"™* + ... + a,,
that
P=a,+apy+...+a, (mod9)
since 10 = 1 (mod 9). Therefore P is a multiple of 3 if and
only if the sum of its digits is a multiple of 3; it is a multiple
of 9 if and only if this sum is a multiple of 9.

Noting that 10 = -1 (mod 11), we have

P=( +a,+...)-(a +a +..)(mod11),
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Therefore P is a multiple of 3 if and only if the sum of its
digits in the odd places minus the sum of its digits in the
even places is a multiple of 11.

b. It follows from

P = b,100™" + b,_, 100"* + ... + b,
that

P=G®,+by+...)— (b, + by + ...) (mod 101)

since 100 = -1 (mod 101). Therefore P is a multiple of 101
if and only if (b, + by + ...) — (b, + b, + ...) is a multiple
of 101.

c. It follows from

P = ¢,1000™" + ¢,_,1000"* + ... + ¢,

that

P=cp+cny+ ...+ c,(mod37)

since 1000 = 1 (mod 37). Therefore P is a multiple of 37 if
and only if ¢, + cpy + ... + c, is a multiple of 37,
Since 1000 = -1 (mod 7 * 11 * 13), we have

P=f(,+cy+..)=(c;+cyg+ ...)(mod7°11-13).

Therefore P is a multiple of one of the numbers 7, 11, 13 if
and only if (¢, + ¢, + ...) ~ (c; + ¢, + ...) is a multiple of
that number.

2, a. «) When x runs through a complete system of residues
modulo m, then ax + b also runs through a complete residue
system; the smallest non-negative residue r of the numbers
ax + b also runs through the numbers 0,1, ..., m ~ 1.
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Therefore

ax + b m-l r 1
;{ m }=§—”;-=;(m-—1).

B) Applying the result of problem 18, b, ch. I, we find

m 1
Z {i{i} - ¥,(m) 5 —2—cp(m).
5 m m

b. For ¢t = 1, we have [f(N + m)] - [f(N)] = a,

5= 3 [ - [V + ml + [N - = + =
Zxx-§+1ﬂx-2ﬂ+m+5ﬂ -—-2+2m=
N+m Né+m 1 1
= ) f@- ) {fe)-=a+—m-1=S5;
xuN 41 x=N+1 2 2

and the case in which ¢ > 1 also reduces to this case trivially.
c. Let N, M, P,, P, be integers, ¥ > 0, P, > 0, P, > 0.

The trapezoid with vertices (N, 0), (N, P,), (N + M, 0),

(N + M, P,) is a special case of the one considered in problem

b, Therefore equation (1) is also valid for it. Equation (1)

can also be obtained easily for such a trapezoid by consider-

ing the rectangle with vertices (N, 0), (N, P + P), (N + M, 0),

(N + M, P + P), which is equal to two such trapezoids. For

this rectangle, the equation

Z 8 =295
analogous to equation (1), is evident. Since ), § = 2.8

this implies S* = 285, so that we obtain equation (1).
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The analogous formula for the triangle considered in the
problem follows trivially from this result. But it is of some
interest to consider the following derivation: our triangle can
be obtained from a certain parallelogram with integral vertices
by dividing it into two equal triangles. Let S be the area of

the parallelogram and let T' = )8 where the sum is extended
over all the lattice points of the parallelogram and & is de-
fined as in problem b. We will have proven the property of the
triangle that interests us, if we prove that S = T. We con-
sider a square whose side 4 increases to infinity. The whole
plane can be divided into an infinite number of parallelograms
of the above type. Let k be the number of parallelograms com-
pletely within the interior of the square, and let R be the
number of lattice points in the square. As 4 — ®, we find

Multiplying these expressions termwise, we find

S
lim— =1,S=T.
T

3, a. Let r be the smallest positive residue of the number
ax + [c] modulo m. We have

m-t [r 4+ ®)
-5

where ¢ { O¢) < e+ h; € = fc}. The theorem is evident for
m < 2k + 1. We therefore only consider the case m > 2k + 1.

Setting
r+ ®@) s
m m ’

164



+ €

wehave—1+i<8(r)< forr=m~[h + €,

m m
€ h + ¢
«eeym — 1; in the other cases — < 8(r)
m m
Therefore
m-1
b+ d+egS - 5 Sh+e,|S——m|<h +—

b, We have

m A
s=% {giﬂ};¢(z)=m(AM+B)+ =

We apply the theorem of problem a, setting & = |A|. Then
we obtain the required result,
c. We find

m—t ) M+ z,)
S=7 {f(M)+fs-+-’;i—+f———°z’},
0<zo<m-=~1,

k
We apply the theorem of problem a, settingh = 1 + 2 We

then obtain the required result.

4. We develop 4 in a continued fraction. Let Q, = Q’
be the largest of the denominators of the convergents which
does not exceed m, and note (h, $4, ch.I)

P’ 0’
A=— 4+ —,P50)=1, |0 <L
om0
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It follows from m < Qpy; < (gny + 1)@n < CQn, where C is
a constant which is not larger than all the ¢, + 1, that, for
the largest integer H” such that H°Q* < m, we have H’ < C.
Applying the theorem of problem 3, b, we find

M+H Q"1 |
3 {4x + B} - —2—H Q

< 3C
x=M h 2 '

Let m, = m — H’Q". If my > 0, then, choosing Q”* and H**
depending on m as we chose @ and H’ depending on m, we

find

M‘-’-H"Q"—d.

1 3
A B} — —H”0” S—C-
tdx + BY - S H"Q | 2

x=M,
Let m, = m, — H”Q*’. If m, > 0, then, as above, we find

M:+Hl)lolf’_d

1
fo + B} _ _2_HIIIQIfI < C,

po| o

x=M,y

etc., until we find some m;, = 0. We then have (H°Q" +
+ H7Q” + ... + H®Q®E) = p)

M+m-—1

. iAx+B}——;-m

x=M

3
< —Ck.
2

The numbers Q*, @, ..,, Q*) satisfy the conditions
m>Q >m Q7 >m 3 > me, 3 QW21

Therefore (problem 3, ch. I) £ = O(In m), and hence the re-
quired formula is true.
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1
5, a. Let the sum on the left be denoted by S, Let r = 4% .
The theorem is evident for 7 < 40. We therefore assume that
r > 40, Taking M, = [Q + 1], we can find numbers a,, m,, 0
such that

a 0
ffm,) = m_! + m_lr; 0<mgr, (a, m) =1, |6,] < 1.
1 1

Taking M, = M, + m,, we find the numbers qa,, m,, 0,
analogously; taking M, = M, + m,, we find the numbers

@y, My, 0, etc., until we come to Mg,, = M, + m, such that
0 < [R] - M,,, < [r]. Applying the theorem of problem 3, c,
we find

1
|S-— ;(m,+ my+ oo+ mg + [R] - Mgy, | <

k+3 1
<s 2 + E([R] -— Ml'l’l),
1 kE+3 r+1
S - —(R - < + .
2 D <s—5 2
a 1
The length of the interval for which — — — < f’(x) <
m mr
a 24
€ — + — does not exceed — . Therefore there are
m mr mr

<—— + 1 numbers my, m,, ..., m, associated with the
m*r

a

fraction — . Let a, and a, be the smallest and largest values
m

of a associated with a given m,
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We have

a,-a +1<

Therefore, there are

(< 24, 1\ (—-———-—k(R = Om 1.05) -
mr A

= ————k(R - Q (3 + z )+ (_Zi + 1)1.05
T m s mir

numbers m,, m,, ..., my associated with a given m. Summing
the latter expression overall m = 1, 2, ..., [7], we find
ER - 2 104
S<—L——Q—) 21nr+2+r+f + 1.05 <
T 272 3r
ER - 7 A
KR 12,
T 2 7
1 PR - A
lS-— —R-0Q) i< 2-—L———Q- In4d + 8k—.
2 T T
b. We have
' 1
Y o +l-0l- -R=-0Q |<A,
o<x<R 2
1
T ol - -R-0Q) | <A,
0<x{R 2
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from which, setting 8(x) = {f(x) + 1 — o} - {flx)}, we find

2 &)

0<zgR

< 2A.

But, for {f(x)} < o we have 5(x) = 1 — o, while for

#fx)} > o we have 8(x) = ~ o, and hence |(1 - o)ylo) —
~ o(R - Q ~ y(0))| < 2A, from which we obtain the required
formula,

6, a. We apply the formula of problem 1, ¢, ch. I. Setting

flx) = Vr? — x? | we have

_’.2

x
@) = - —, ) = ————,
fr a1 ¢? - x9)%
1 v
r

r

<@ <

in the interval 0 < x . Therefore (problem 8, a, ch. 11,

<
S v_
problem 5, a)

/a
T=4r+8f Vr? — «? dx+8p(#)\/_—ré; - 8p0)r -

r r? r r 2
~4— —4— 48— {—} + 0 Inr) =
V2 2 V2 {\/5'}
2
=7r* + 0 In 7).
b, We have (problems 11, d and 1, d, ch, II)

n

W)+ @) 4 et rl) =2 2 [—] - Wa 1.

o<x<Vn | %
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It is sufficient to consider the case n > 64. We divide the
interval X < x < Vn , where X = 2n% , into O(In n) intervals

of the form M < x < M’, where M” < 2M. Setting f(x) =

n
= — , we have
%

f’(x) - — ___, f”(x) - ‘ ; M3 \ f”() 8n

AM?

in the interval M < x < M’. Therefore (problem 5, a)

) {%} = %(M' -M + O(n% In n),

M<x{Mm’

Z {—E—} = —;—\/n— + O(n% (In n)*).

o<xn

Moreover (problem 8, b, ch. II)

1
2. 2 wEn+ =nlnn+p(Va)Ve + O
o<xVn % 2

Therefore

D +rD+ ... +7m) =

=2En+nln+20(Ve)Vo — Va -n+

+2Vn (Vo }+ O(n% (in n)?) =

=n(ln n+2E -1) + O(n% (In n)).
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7. Let the system be improper and let s be the largest
integer such that 2° enters into an odd number of numbers of
the system. We replace one of the latter numbers by the
smallest number containing only those powers 2° which enter
into an odd number of integers of the rest of the system.

Let the system be proper. A number smaller than one of
the numbers T of this system, differs from T in at least one
digit in its representation to the base 2.

8, a. Adding the number H = 3" + 3" 4+, . + 3 + lto
each of the numbers of the system represented in the afore-
mentioned manner, we obtain numbers which we can obtain by
letting x,,, Zpy, .+ .y %,, %, in the same form, run through the
values 0, 1, 2, i.e. we obtain all the values 0, 1, ..., 2H.

b. In this way we obtain mm, ... m, numbers which are
incongruent to one-another modulo m,m, ... m,, since

Xy F MXy, + MyMaXy + oae + MMy o o0 My Xy =
rd rd 4 rd
SE X +mMX, + MMXy -+ oo + MMy oos Mp_1Xp
(mod mym, ... my)
implies in sequence:
rd ’ rd
%, = x; (modm,), x, = x; mx, = mx; (mod mym,), x, = x/;
m,m,x, = mym,x, (mod m,m,m,), %, = %
1Ny = 1i%vy 1770210037y 3 3

etc.
9, a. In this way we obtain m,m, ... my numbers which are
incongruent modulo m,m, ... my, since

d Id ’
Mz, + Myx, + oo + Myxye = Myx{ + Mpx] + oo + M x;

(mod mym, ... my)
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would imply (every M,, different from M,, is a multiple of m,)
M,x, = M x. (mod m), x, = x5 (mod Mg)y Xg = Xg-

b. In this way we obtain ¢(m,)p(m,) ... plmy) =
= ¢(m,m, ... m;) numbers which are incongruent modulo
mym, ... my by the theorem of problem a, and are relatively
prime to mym, ... m; since (Mx, + Myx, + ... +
+ Muxy, m)) = Myxg, mg) = 1.

c. By the theorem of problem a, the number M,x, + M,x, +
+ vv. + Myx, runs through a complete residue system modulo
mym, ... m; when x,, X, ++ .y X TUR through complete residue
systems modulo m,, m,, ..., mx This number is relatively
prime to mym, ... m, if and only if (x,, m,) = (x,, m,) =
= ... = (%, my) = 1. Therefore ¢(mm, ... my) =
= p(m)(m,) ... @lmyg).

d. To obtain the numbers of the sequence 1, 2, ..., p*
relatively prime to p® we delete the numbers of this sequence
which are multiples of p, i.e. the numbers p, 2p, ..., p*p.
Therefore ¢(p*) = p* — p**. The expression for ¢la)
follows from the latter and theorem ¢, $4, ch. IL

10, a. The first assertion follows from

{x, xk} {M,x‘+...+ka,,}
—— + ek — = 3
m, my m

the second assertion follows from

{‘fx fk} {Mx‘fx + oo t Mkfk}
'm—+...+—”: = - .

b. The fractions

{fi(xn "'vw:) fk(xk’°-"wk)}
. T

my Mg
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coincide with the fractions

{f,(M,aq Fooeet Mixpy eoey Mw, + ooo + M) N

my

feMxy + oo + Mixpy ooy Mo, + oo + M,avk)}
+

My

i.e. with the fractions

{fl(x’ coey w) fk(x, cesy w)}
—_— 4+ (s ———
my my

The first assertion follows trivially from this. The second
assertion is proved analogously.
11, a. If g is a multiple of m, we have

2. exp (%igf)-s Ll=m.
m x

x

If a is not a multiple of m, we have

am
exp (217:—-—-) -1
m
Zexp (2m —) = = 0,
exp (21:;'—2-) -1
m

b. For non-integral o, the left side is equal to

exp(2rio(M + P)) — exp(2nioM)
exp(2mic) — 1

< 1 < 1
S sinm(a)  A(o)
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c. By the theorem of problem b, the left side does not ex-
ceed T, where

For odd m,
2a + 1
T,,,<mzmlnza._ =mlnm,
<a<l5-

and for even m,

m 2a + 1 m 20 +1
Tm<-; Zmana-l +? Zmana-l <mlnm.

a7 o<ag 7

1 1

Form>6,since5--?--g-,theboundmlnmcanbe

decreased to
2m 12a+l ml 2m 1
6 2m "2a-1_ 3 \“l6] T
o<ag—

m
The latter expression is > Py for m > 12 and > m for

m 2 60,

12, a. Let m = p ... pg* be the canonical decomposition
of the number m. Setting p/* = my, ..., pek = my, and using
the notation of problem 10, a, we have

2 exp (2m—§i) cee ) exp (2mfci) = §exp (2m—6-) .

5‘ my §k Mg m
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For a, = 1, we find

3 exp (2m' 5) = T exp (2m' "') ~1=-L

&, . x4 my

For o, > 1, setting m, = p,m;, we find

2. exp (2ni & ) =
I Ma

-y exp.(eri x) - m;E exp (2171, - ) - 0.

xg Me u=g Mg

me=1 x
b. Let m be an integer, m > 1. We have )" exp 2ri— =
m

Xm0
= 0. By the theorem of problem a, the sum of the terms on the
left side of this equation such that (x, m) = d, is equal to

/(3

c. We find

T exp (mi) - T S,

3 m d\m

where, setting m = myd, we have

mo—-t . u
Sa= ) exp (2171;—) .

The latter is equal to 0 for d < m and equal to 1 for d = m.
From this we obtain the theorem of problem a.
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d. This equation follows from problem 10, b,
e. We have

A(m,) vee A(mk) = m—tZ LI Zsﬂumx e S‘k’mk,

ay ay

where a,, ..., a; run through reduced residue systems modulo
My «+ ., me. Hence (problem d) the first equation of the prob-
lem follows immediately.

We also prove the second result analogously.

13, a. We have

x=0

E; nx p, if n is a multiple of p,
exp [2mi—| =

0, otherwise,

b. Expanding the product corresponding to a given n, we

find

Z f-(——d-‘ exp (?mlx—) .

d\a d x=0 d
Hence, summing over all the n = 0, 1, ..., a — 1, we obtain
the expression for ¢(a).

14. The part of the expression on the right corresponding
to x dividing a, is equal to

Fod
= lim <2€<f sl 0(1))) - 2.
€—o x
b §
K

k
Setting ®(K) = )~ exp (2m' a_) , the part corresponding to
x

. e 1
!1.'22“;‘ Lr+e =

k=1
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%, not divisible by @, can be represented in the form

lim 2¢
€0

(@(1) 0(2) - 01) (@A) - B(2) )
1 + + ce =

2l+€ + 3l+€

_ 1 1 1
= 2_1‘:22€<®(1) (l - -21+—e') + @(2)(217 - F—;)+ ) .

The factor to the right of 2¢, is < x in absolute value since
| ®(K)| < x; here lim 2ex = 0, Therefore the right side of
—0

the equation considered in the problem is equal to twice the

number of divisors of the number a which are smaller than Va,
multiplied by 8, i.e. equal to r(a).

15, a. We have
(hy + h,))P =

=hY + (ll))h{""h2 +ooue + (p P 1) R + hP =

= h? + AP (mod p);

(hy + hy + B = (hy + h)P + k2 = hP + AP + AP (mod p),

etc,

b. Setting h, = h, = ... = h, = 1, the theorem of problem
a gives Fermat’s theorem.

c. Let (a, p) = 1. For certain integers N;, N,, ..., N we
have

@ =1+ Np, a®®4) = (1 + Nyp)® = 1 + Ny,
1
ap:(p,_t) =1+ Napa’ cees aPa" (p-1) 1+ Napa,

a®?®®) = 1 (mod p%).
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Let m = p{ ... plk be the canonical decomposition of the
number m. We have

a
an(pf") = 1 (mod p), ..., a®®x*) = 1 (mod p:k),

2P

1 (mod p{1), ..., a® = 1 (mod p*),
a®?@) = 1 (mod m).

Solutions of the Problems for Chapter IV

1, a. The theorem follows immediately from the theorem of
problem 11, a, ch, 1L

b. Let d be a divisor of the number m, m = mqd, and let Hy4
denote the sum of the terms such that (s, m) = d in the expres-
sion for Tm in problem a. We find

m—t mt aoflxy o uey W)
Hy= )" 2" «o ) exp (21”'-0———";‘—'_,‘_),
ag X=0 we=0 (]

where a, runs through a reduced residue system modulo m,.
From this we deduce

mo~1 mo~1 s eens )
Hy= er f s i exp (%iw) = m*A(m,).
ag Xo=0 wWo=0 My

c. Let m > 0, (@, m) = d, a = a,d, m = myd, and let T be
the number of solutions of the congruence ax = b (mod m).
We have

m~1 m=1t ) a(ax — b)
Tm = ) 2. exp (2m - )

a%"0 x=0

m—1 m=t oa, bo
= Z: Z exp (2m' x - 2ni—)

am0 x=0 my m

det bo md, if b is a multiple of d,
=m exp |-2mi—| =
2 exp 7

ag=0 0, otherwise
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d. Setting (a, m) = d,, (b, d,) = d,, ..., (f, ;) = d,,

m=dm,d, =dmy...,do, = dm, we findd = d,

m-=1i m-~i m-1

Tm=3 2 h .“'"Z"‘exp(zm_ oc(ax+by+...+ﬁu+g))

Qm0 xm0 ym=0 wmo m

di~1 m- =1 b vee
=mi Zl...mz: exp(2m'a‘(y+ d+fw+g))
1

Qqm0 y=0 w=0

dey=1 m=t (z” oc,...,(ﬁv +g)) )

a.,__‘ =0 wWwwed d!‘—l

. 9 218
= ex
m Z p i 7

Qp=0 r

e. We apply the method of induction. Using the notation of
problem d, assume that the theorem is true for r variables, We
consider the congruence

2) lv+tax+ ...+ fw+ g =0 (mod m).

Let (I, m) = d,. Congruence (2) holds if and only if ax +

+ «oo+ fw + g = 0 (mod dy). The latter congruence holds

if and only if g is a multiple of d*, where d” = (a, ..., f, d;) =
=(l,a, ..., f, m), and it has d5-*d” solutions. Therefore the
congruence (2) holds only if g is a multiple of d’; and it then

r
has d5td”’ il dy = m*d’ solutions. Therefore the theorem
0

is also true for r + 1 variables. But the theorem is true for
one variable, and hence is always true.
2, a. We have a?™) = 1 (mod m), a * ba®™>* = b (mod m).
179



b. We have

p-1...p-a+1 _

1-2...(@-1 ab ()7 12 ... @a=-1)

=b+1+2...(a - 1) (mod p),

and dividing by 1+2 ... (a — 1), we obtain the required
theorem.

c. It is evidently sufficient to consider the case 2,5 = 1.
For an appropriate choice of sign, b £+ m = 0 (mod 4). Let
2% be the largest power of 2 dividing b + m. For & » k, we
have

btm
zk

(mod m).

x =
If 5 < k, then
ok=3y = —E_g-—— (mod m).

We repeat the analogous operation with this congruence, etc.

B) We consider (3, b) = 1. For an appropriate choice of
sign, we have b £ m = 0 (mod 3). Let 3% be the largest
power of 3 dividing b * m. For 8 > k, we have

btm
2k

(mod m).

x =

15 < k, then

bt
3k=%x = —gs—m- (mod m).

We repeat the analogous operation with this congruence, etc.
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y) Let p be a prime divisor of the number a. Determine ¢ by
the condition b + mt = 0 (mod p). Let p8 be the largest power
of p dividing (a, b + mt), and let @ = a,p°. We have

b+ mt
a,x = —5— (mod m).
P

If |a,| > 1, then we repeat this operation with the new con-
gruence, eic.

This method is convenient for the case in which @ has small
prime factors,

3. Setting t = [r], we write the congruences

a+0=0 (modm),
a*l =y, (modm),
a*t =y, (mod m),
a0 = m (mod m).

Arranging these congruences so that their right sides are in
order of increase (cf. problem 4, a, ch. II) and multiplying
termwise each congruence (except the last one) by its suc-
cessor, we obtain ¢ + 1 congruences of the form az = u

m
(mod m); 0 < [z| < r. Here 0 < u < — in at least one con-
7

gruence, Indeed, u has t + 1 > r values, these values are
positive, and their sum is equal to m.

4, a, o) This follows from the definition of symbolic
fractions.

B) Here we can set b, = b + mt, where ¢ is defined by the
condition b + mt = 0 (mod a); then the congruence ax = b
has as solution an integer which represents the ordinary

. [/}
fraction —.
a
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y) We have (b, is a multiple of a, d, is a multiple of ¢)

b d be d, boc + ad, be + ad
— — = — 4+ — = = .
PR a c ac ac
8) We have
b d by do bdy  bd
a [+ - a (4 ac B ac

b, «) We have (the congruences are taken modulo p)

(p—-l) e-Dp-2...(p-0a) _
a - 12 ...a -
-D°1:2...a
- 1.2 ...a = D
Now problem 2, b is solved more simply as follows:
b b1 p -1 ... p-a-1)
- = (mod p).
a 1-2 ... (e~ D
B) We have
2° ~ 2 p-1 p-10p-2)
=14+ +
p 1-2 1-2-3
- -2 .. p-(p-2

1-2...p=-1)

5, a. The numbers s,s + 1,..., s + n ~ 1 have no di-
visors in common with d. The products s(s + 1) ... (s +
+ n — 1) can be put in n* sets in a number of ways equal to
the number of ways that d can be decomposed into n relatively
prime factors, where order of the factors is taken into account
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(problem 11, b, ch, ), Letd = uu, ... u, be one of these
decompositions. The number of products such that s =
=0 (modu,),s +1=0 (modu,),...,s +n—1=0 (mod

u,) is equal to —::—. Therefore the required number is equal to

a
" —.

d
b. This number is equal to

nka

2 wdSyg; Sa =

d\a d ’

where /& is the number of different prime divisors of the number
d. But we have

k
Z;L(d)-"—i=a(1-i) ( -"—) (1--"-).
d\a d P, P2 P

6, a. All the values of x satisfying the first congruence are
given by the equation x = b, + m,t, where ¢ is an integer. In
order to choose from them those values which also satisfy the
second congruence, it is only necessary to choose those
values of ¢ which satisfy the congruence

mg = b, — b, (mod m,).

But this congruence is solvable if and only if b, — b, is a
multiple of d. Moreover, when the congruence is solvable,
the set of values of ¢ satisfying it is defined by an equation

m
of the form ¢t = £, + 7’t', where ¢” is an integer; and hence

the set of values of x satisfying the system considered in the
problem is defined by the equation

m,
x=b, + m, (to + Tt') = X, + Moty %y, = by + myt,.
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b, If the system
x = b, (mod m,), x = b, (mod m,)

is solvable, the set of values of x satisfying it is represent-
able in the form x = x,, (mod m, ;). If the system

x = %, (modmy,), x = b (mod m,)

is solvable, the set of values of x satisfying it is represent-
able in the form x = x,, , (mod my,z,s). 1f the system

%= %, (modm,,,), x = b, (mod my)

is solvable, the set of values of x satisfying it is represent-
able in the form x = x,,,, (mod m,, 5 ,), etc.
1, o) If x is replaced by —x (and hence x is replaced by

a, b
—x ) the sum ( ) is not changed.

m

B) When x runs through a reduced residue system modulo m,
x’ also runs through a reduced residue system modulo m.
y) Setting x = hz (mod m), we find

a, bh ahz + bz’ ah, b
= Z: exp |2mi ——— | = ( .
m = m m

8) We have

a,, 1 Qyy
my m,

"z

l)
Lamx + aymyy + mx’ + my’
2. exp |2mi .
y mym,
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Setting m,x” + my” = z*; we have

(aymx + a;my)(mx” + my’) = ami + a,;m3 (mod mym,),

a,, 1 ay, 1 mia, + mia,, 1
my m, mym,

which proves our property for the case of two factors. The
generalization to the case of more than two factors is trivial.
8. The congruence

el

ax™ + ax™™ 4+ Lo+ a, — apx ~ x)(x - x) .. (x ~- x,) =

= 0 (mod p)

has n solutions, Its degree is less than n. Therefore all its
coefficients are multiples of p, and this is also expressed in
the congruences considered in the problem.

9, a. Corresponding to x in the sequence 2,3, ...,p — 2
we find a number x *; different from it, in the same sequence
such that xx* = 1 (mod p); indeed, it would follow from
x = x° that (x — 1)(x + 1) = 0 (mod p), and hence x = 1 or
x = p — 1. Therefore

2:3...(p=2=1(modp);1:2 ... (p~1) = -1 (mod p).

b. Let P > 2. Assuming that P has a divisor u such that
1<u<P,wewouldhave 12 ,.. (P — 1) + 1 = 1 (mod u).

10, a. We find % such that gk = 1 (mod m). The given
congruence is equivalent to the following one:

2" + a,hx™ + ...+ aph = 0 (mod m).

b. Let Q(x) be the quotient and let R(x) be the remainder
resulting from the division of x? — x by f(x). All the coef-
ficients of Q(x) and R(x) are integers, the degree of Q(x) is
p — n, the degree of R(x) is less than n,

xP — x = f(x)Q(x) + R(x).
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Let the congruence f(x) = 0 (mod p) have n solutions. These
solutions will also be solutions of the congruence R(x) =

= 0 (mod p); therefore all the coefficients of R(x) are multi-
ples of p.

Conversely, let all the coefficients of R(x) be multiples of
p. Then f(x)Q(x) is a multiple of p for those values of x for
which xP — x is also a multiple of p; therefore the sum of the
numbers of solutions of the congruences

fix) = 0 (mod p), Q(x) = 0 (mod p)

is no smaller than p. Let the first have o, and let the second
have 8 solutions. From

a<n,Bp=-np-npsa+P

we deduce . = n, 8 = p — n.
-1

n

c. Raising the given congruence to the power term=

wise, we find that the given condition is necessary. Let this

condition be satisfied; it follows from x? — x =

p—i p—1

= x(xP"t — A4 " + A ™ = 1) that the remainder resulting
gt

from the division of x» ~ x by " — A is (4 ® - 1)x, where

ot

A ™ - 1is amultiple of p.

11. It follows from x? = A (mod m), y" = 1 (mod m) that
(x%y)" = A (mod m); here the products x,y, corresponding to
incongruent (modulo m)y, are incongruent. It follows from
x" = A (mod m), x™ = A (mod m) that x™ = xg (mod m), while,
defining y by the condition x = yx, (mod m), we have

y™ = 1 (mod m).

186



Solutions of the Problems for Chapter V

1. This congruence is equivalent to the following one:
(2ax + b)* = b? ~ 4ac (mod m). Corresponding to each solu-
tion z = z, (mod m) of the congruence z? = b2 ~ 4ac (mod m),
from 2ax + b = z, (mod m) we find a solution of the con=
gruence under consideration.

2, a. For (f_) = 1 we have a*™* = 1 (mod p),
P

(am+l)2 = a(mod p), x = tqm+t (mod P).

a
b. For (—) = 1 we have a*™* = 1 (mod p), a®™** = +1
p

2
(mod p), @*™** = ta (mod p). Since (-—) = -] we also
P

have 2*™** = _] (mod p). Therefore, for a certain s, having
one of the values 0, 1, we find

a?miaglm+2) - o (mod p)s x

iam+22(zm+2)a (mod P)°

c. Let p = 2%k + 1, where k£ > 3 and 4 is odd, (_a_) = 1,
p
We have

A 1(mod p), AR J) (mod p), N ~1(mod p).
Therefore, for some non-negative integer s, we find

@ 7 ayes* ™ 2 1 (mod p), @ ENIR 2 41 (mod p);
and hence for some non-negative integer s, we find

@ Nes ™ 2 1 (mod p), @ NS 2 41 (mod p),
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etc.; finally we find

h+1
a®N*sk = 1 (mod p), x = ta * N°k (mod p).

d. We have

1°2 ... 2m(p = 2m) «.. (p=D(p—~1) + 1 = 0 (mod p),
12 ...2m)P + 1 =0 (mod p).

3, a. The conditions for the solvability of congruence (1)
and (2) are deduced trivially (f, $2 and k, $2). The con-

-3
gruence (3) is solvable if and only if (——-) = 1, But
P

- (=

(p) 1, if p is of the form 6m + 1,

3 -1, if p is of the form 6m + 5.

b. For any distinct primes p,, p,, ..., p, of the form
4m + 1, the smallest prime divisor p of the number
(2p,ps...p,)* + 1 is different from p,, ps, ---, Py and since
(2pyp;...p,)* + 1 = 0 (mod p), it is of the form 4m + 1.

c. For any distinct primes py, p,, ..., p, of the form

6m + 1, the smallest prime divisor p of the number
(2pyp, -+ .p)* + 3 is different from py, pyy <oy Py and since

@p.p,...p, ) + 3 = 0 (mod p), it is of the form 6m + 1.
4. There are numbers in the first set which are congruent
p-1 p-1
2

residues of a complete system; a number in the second set is
a quadratic non-residue, by definition. But the second set
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contains with this non-residue, all the products of the non-
residue with residues, i.e. it contains all the quadratic
non-residues,

5, a. In the number system to the base p, let

1

a=a,,p*" + ...+ a,p + a

and let the required solution (the smallest non-negative resi-
due) be

X = X qPFt 4 o + XD + Xoo

We form the table:

Gy a, a, a, a, a,
2
2%0% s 2x0%, 2%0% 4 2x4%, 2x4%, %o
2%,% g2 2%,%4 2x,x, %
2
2%,% s x5

where the column under a, consists of numbers whose sum is
the coefficient of p° in the decomposition of the square of the
right side of (1) in powers of p. We determine x, by the
condition

x5 = a (mod p).

2 — a,

Setting ———— = ps, we determine x, by the condition

py + 2x4x, = a, (mod p).

+ 2x%, — @ .
Setting P1 ra - = p,, we determine x, by the

P
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condition
p. + 2x0%, + x’1 = aq, (mod p),
etc. For given x,, the numbers x,, %,, ..., %o are uniquely
determined since (x,, p) = 1.
b. Here
a=0ay,2%" + ..o+ a2 + a2 + a,2 + a,,

x o= %6, 2%0 4+ o+ 2,2+ 2,20 + %2 + %,

and we have the following table:

oy a, a, a, a, a,
2

XX g2 XoX3 XoXz XoXy Xo

XX 03 X% x;

X% gs x

We only consider the case o » 3. Since (g, 2) = 1, it follows
that a, = 1. Therefore x, = 1. Moreover a, = 0, and since
%Xy + 22 = x, + 22 = 0 (mod 2), we must have a, = 0. For
x, there are two possible values: 0 and 1, The numbers

Xay X3y o 44y X, are uniquely determined, while for x4.,, there

are two possible values: 0 and 1. Therefore, for o > 3, we
must have a = 1 (mod 8), and then the congruence under con-
sideration has 4 solutions.

6. It is evident that P and Q are integers, where @ is con-
gruent modulo p to a number which we obtain by replacing a
by z?, for which it is sufficient to replace Va by z. There-
fore Q = 222%™ (mod p); therefore (Q, p) = 1 and Q” is
determined by the congruence QQ’ = 1 (mod p). We have

P~ a@? = (z + Va )*z - Va )* = (& = @)® = 0 (mod p%),
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from which it follows that

(PQ') = alQQ) =

= a (mod p?%).
7. Let m = 2%

p2* be the canonical decomposition
of the number m. Then m can be represented in the form

m = 2%b, where (a, b) = 1, in 2% ways.
Let oo = 0, It follows from (x — 1){(x + 1) = 0 (mod m),
that for certain a and b

x = 1 (mod a); x

= -1 (mod b).
Solving this system, we obtain x =

%, (mod m). Therefore
the congruence under consideration has 2% solutions.
Let « = 1. For certain a and b
x = 1 (mod 2a); x = —1 (mod 2b).

Solving this system, we obtain x =
congruence has 2 solutions.

x, (mod m). Hence this
Let o = 2. For certain a and b

x = 1 (mod 2a); x = -1 (mod 2b).

Solving this system, we obtain x

m
%o mod — } . Therefore
2
our congrunece has 2%*! solutions.

Let o > 3. For certain a and b, one of the systems

x

1 (mod 2a); x = -1 (mod 2%75)
x = 1 (mod 2%%a); x

—1 (mod 2b)

is satisfied. Solving one of these systems, we obtain
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x = %, (mod’—;-) . Therefore our congruence has 2%+

solutions.

8, a. Defining x* by the congruence xx* = 1 (mod p), we
have

pt [ x(x + k) =t [xx(xx’ + kx’)
x=1 p Xm1 p

PZ":‘ 1+ kx’

xm1 p )
It is evident that 1 + kx” runs through all the residues of a
complete system, except 1. The required theorem follows

from this.
b. The required equation follows from

T=i—§ (1“(%)); <1+7](x:;1>> -
3E (o) o))

c. We have

N p=t (xy, + 5)(xy + 5)
searfrp (riEeR)
X=0 y; y

The part of the expression of the right corresponding to the
case y, = ¥, does not exceed XpY. We consider the part cor-
responding to a pair of unequal values y, and y, where we as-
sume that y > O for the sake of definiteness. Setting
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xy + k = z (mod p), we reduce this part to the form

XE<Z%“%P~%))

p

z=0

from which (problem a) we find that it is <X in absolute
value, Therefore S* < XpY + XY?* g 2pXY,
d, o) We have

p=1 0-1 Q-1 ((x + z,)(x + z)
gy (eemen)

X=0 zy=0 z=0 p

For z, = z, summation with respect to x gives p — 1. For
z, # z, summation with respect to x (problem a) gives -1.
Therefore

S=(p-10-0Q -1 =(p-0Q0Q.
B) By the theorem of problem «.) we have

T(Qo.sd-o.s)\.)z <p0Q; T < pQ-X.

y) Setting [Vp 1 = Q, we apply the theorem of problem «).

Assuming there are no quadratic non-residues in the sequence

under consideration, we find that |S, | » Q — 1 for
x=M,M+1,...,M + 20 — 1 and hence

20Q-1D< (p-00, 2Q -1 < (Q + 1P -~ Q,
Qz - SQ < O!

which is impossible for Q > 5.
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9, a. If m is representable in the form (1), then the solution
(5) z = z, (mod m)

of the congruence x = zy (mod m) is also a solution of the
congruence (2). We will say that our representation is as-
sociated with the solution (5) of the congruence (2).

With each solution (5) of the congruence (2) is associated
not less than one representation (1), Indeed, taking 7 = Vm ,
we have

Zq P 0

—_— = — %

m Q oVm

Therefore z,Q = mP + r, where |7] < Vm . Moreover, it
follows from (2) that |r|* + Q2 = 0 (mod m). From this and
from 0 < |r|* + Q* < 2m, we find

s @, 0=1,0<0g Vm, |6] <1

6) m=|r|*+ Q2
Here (Irl, Q) = 1, since

r? + Q* ~ (z,Q — mP)zgQ ~ rmP + Q?

m m

=

= rP (mod Q).

If |r| = r, then the representation (6) is associated with the
solution (5) because r = z,Q (mod m). If |r] = —r, then the
representation m = Q? + |r|* is associated with the solution
(5) because z2Q = zor (mod m), Q = zo| 7| (mod m).

No more than one representation (1) is associated with each
solution (5). Indeed, if there were two representations
m=x?+y?and m = x3 + y3 of the number m in the form (1)
associated with a single solution (5), then x = z,y (mod m),
X, = Zoy, (mod m) would imply that xy, = x,y (mod m). There-
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fore xy, = x,y, from which it follows that x = x,, y — ¥,
because (x, y) = (x,, y,) = 1.
b. If m is representable in the form (3), then the solution

(7) z = z, (mod p)

of the congruence x = zy (mod p) is also a solution of the

congruence (4)., We will say that this representation is as-

sociated with the solution (7) of the congruence (4).
Knowing a solution (7) of the congruence (4), there is no

more than one representation (3). Indeed, taking r = Vp ,
we have

Z, P

—_— = — 4

0
p Q0 oV
Therefore z,Q = r (mod p), where |r| < p. Moreover, it fol-
lows from (4) that |r|* + aQ? = 0 (mod p). From this and
from 0 < |r|* + aQ? < (1 + a)p it follows that we must have
[r[* + 20% =p or |r|* + 202 = 2p for a = 2. In the latter
case, |r| is even, |r| = 2r,p=Q* + 2ri. For a = 3 we
must have |r|* + 30% =p,or |r]* + 3Q0% = 2p, or
lr* + 3Q?* = 3p. The second case is impossible: modulo 4

s P, Q=1,0<Q< Vp, |6] <1.

the left side is congruent to 0 while the right side is congruent
to 2. In the third case, |r| is a multiple of 3, |r| = 3r,,
p=0Q%+3r’.

Assuming that two representations p = x? + ay? and
p = x1 + ay} of the number p in the form (3) are associated
with a single solution of the congruence (4), we find x = x,,
¥y = ¥,. Assuming that these representations are associated
with different solutions of the congruence (4), we find x = zy
(mod p), x, = ~zy (mod p) and hence xy, + x,y = 0 (mod p),
which is impossible because

0 < (xy, + ) < (& + y)(ad + y?) < p.
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c, o) The terms of the sum S(k) with x = x, and x = —=,

are equal.
B) We have
-] 2,2 k 2
S(kt’) = pZ: (M._t_)_) = (_i) S(k).
X=0 P p

y) Setting p — 1 = 2p,, we have

B SOF + @ = 3 SEDF + 31 Shen) =

t=y t=1

p=t p=t p=1 (;\f,y(acz + B (y® + k))

Y ewr-TET :

k=t xmi ymi k=i

For y different from x and p —:x, the result of summation with
x
respect to k is —2 (-—}—,—) sfory = xandy = p — xitis
p
x
(- 2) (-—y—) . Therefore
p

2

1 1
PSP + p,(S())* = 4ppy, p = (;S(r)\) + (—2~S(n))

10, a. We have
X* - DY? =

= (x5, + yVD ) (x, £ y,VD ) (x, — yVD ) (x, F yND) = k2.
b. Taking any r, such that r, > 1, we find integers =, ¥,
1
such that iy,\[ﬁ - x,l < —, 0 <y < 74, and multiplying
7

1
this termwise by y,VD + %, < 2yVD + 1, we find
|2 - Dyi' < 2VD + 1. Takingr, > 7, so that
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1
Iy,vD - x| > —, we find new integers x,, y, such that
7.

2
|x2 - Dy2| < 2VD + 1, etc.

It is evident that there exists an integer k, not equal to
zero, in the interval ~2VD - 1 < k < 2VD + 1 such that
there is an infinite set of pairs x, y with x? — Dy? =  among
the pairs x,, ¥,; %,, ¥,5 . ..; among these pairs there are two
pairs &,, n, and &, 5, such that &, = &, (mod | %]),

7, = 7, (mod L&]). Defining the integers &, 5, by means of
the equation & + ﬂo\/ﬁ = (& + 7]1\/—1)_) & + nz\/ﬁ)’ we

have (problem a)
€3 Do = [k]'5 & = €3 = Dyi = 0 (mod k)3
Mo = =&y + €y = 0 (mod I'ICI)

Therefore &, = .{'I k], Mo =7 l kl, where ¢ and 7 are integers
and £* - Dp* = 1.

c. The numbers x, y defined by the equation (2) satisfy
(problem a) the equation (1),

Assuming that there exist pairs of integers x, y satisfying
equation (1), but different from the pairs determined by the
equation (2), we have

(o + YoVD ) < % + yVD < (x, + yoVD )™

for certain r = 1, 2, .... Dividing this termwise by

(xo + yVD ), we find
3) 1<X+Y\/5<xo+yo\/5,

where (problem a) X and Y are integers determined by the
equation

x4+ yVD

X+¥VVD = —————
(xo + }’o\/_D_)r

= (x+yVD)x — yVD )"
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and satisfying the equation

4) X* - DY?* = 1.

But from (4) we obtain the inequality 0 < | x| - | Y\/ﬁ‘ <1,
which along with the first inequality of (3) shows that X and
Y are positive. Therefore the second inequality of (3)
contradicts the definition of x, and y,.

11, a, o) We have

- -trp=t ¢ t~1
lU",P ]2 = UE’PUaﬂ’ = pZ Ii: (~> exp (2”"&;—)) ¢

t=t x=t \P
For ¢ = 1, summation with respect to x gives p — 1; for

t
t > 1it gives ~ (—) . Therefore
P

an,plz=P—1"pZ—f <'_t—> =P an,pl = \/_’

tu2z \P

or

- ~1i p—1 x + x at
v, |* = U, U, =0 ( ) (— exp 2m‘—) .

For ¢ = 0 summation with respect to x gives p — 1; for

at
t > 0it gives —exp (2771:—-\) . Therefore
p

-1
IUa,pIz =p-1 -—pZ: exp (Zﬂiit-) = p, IUa,p! = Vp .
P

tmy
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B) The theorem is evident for (a, p) = p. For (a, p) = 1 it
follows from

U a PZ-1 (ax) (2 ) ax) a U
ayp = — —| exp (2ni—)| = [— .
Toop& e P p) F

b, o) Let r run through the quadratic residues and let n run
through the quadratic non-residues, in a complete system of
residues. We have

ar
Sap = 1+ 2 3 exp (217;'——) .

p

Subtracting

ar

a
0=1+)" exp (211;'—) + ) exp (2m'—i)
r p n p

from the latter termwise, we obtain the required equation.

B) We have

. met met cat? + 2x)
lSa,m' =) )0 exp (21n—~——';-n-——“—> .

t=0 x=0

at?
For given ¢, summation with respect to x gives m exp (2171' )
m

or 0 according as 2t is divisible by m or not. For odd m we
have

2 .a-0
ISa’mI = mexp |(2ni - = m.
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For even m = 2m, we have

a-0? a-*mi
m exp |27i + exp |2mi
m m

Here the right side is equal to zero for odd m, and equal to
2m for even m,.
y) For any integer b we have

m—1 ( CAx? 4+ 2Abx)
2. exp |2mi————
m

x=0

1Sy I

[Sa,m| =

and choosing b such that 245 = a (mod m), we again obtain
the result considered in problem 3).
12, a. We have

m Y e = Y T ) exp (2771,' ol - Z)) ,

z s=M a=o mn

The part of the sum on the right corresponding to a = 0 is

equal to ® (2); the part corresponding to the remainin
qu P p g g

z

values of a is numerically (problem 11, c, ch, IiI)

m—1 | M+Q—1 _—as
<A Zl ZM exp |2mi - ) l < Am(lnm — §).

b, o) This follows from the theorem of problem 11, a, o)
and the theorem of problem a.

B) The inequality of problem o) gives R — N = 6Vp In p.
Moreover it is evident that R + N = Q.

y) It follows from the theorem of problem 11, b, ) that the
conditions of the theorem of problem a are satisfied if we take
m = p, ®(z) = 1, while z runs through the values z = x?%
x=0,1,...,p — 1. But, among the values of z there is
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one which is congruent modulo p to 0 and two congruent
modulo p with each quadratic residue of a complete residue
system, and hence

e =2R, ¥ o) =

pe
and we obtain

2R = —Q—p+0\/; In p.
p

8) This follows from the theorem of problem 11, b, y) and
the theorem of problem a.

€) It follows from the theorem of problem d) that the condi-
tions of the theorem of problem a are satisfied if we set
m = p, ®(z) = 1, while z runs through the values z = 4x?%;

x =My My + 1, ..., My + Qy — 1. Therefore

Y@ =T, 3 = Q,

z z

from which the required formula follows.
o
c. The part of the sum containing the terms with (—) =1
p

is equal to p(R? + N?), the remaining part is equal to —2pRN.
Therefore the whole sum is equal to p(R - N)*.

The part of the sum containing the terms with ¢ = 0 is
equal to 0. The remaining part is numerically smaller than

(problem 11, ¢, ch. 1)
M+ Q-1 ax M+ Q-1 —aoy
D, exp|2mi— ). exp [2mi <
P y=M P

x=M

p—t

2

a=i

p=1

Qi

< p* (In p).
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Therefore p(R — N} < p? (lnp)*, R = N < Vp Inp.

Solutions of the Problems for Chapter VI

1, a. If ¢ is an odd prime and a® = 1 (mod ¢), then a be-
longs to one of the exponents & = 1, p modulo g. Ford =1
we have a = 1 (mod ¢), for § = p we have ¢ — 1 = 2px
where x is an integer.

b. If g is an odd prime and a® + 1 = 0 (mod g¢), then
a?? = 1 (mod q). Therefore a belongs to one of the exponents
5 =1, 2, p, 2 modulo g. The cases & = 1, p are impossible.
For & = 2 we have a* = 1 (mod ¢), a + 1 = 0 (mod g). For
8 = 2p we have ¢ — 1 = 2px where x is an integer.

c. The prime divisors of 27 ~ 1 are primes of the form
2x + 1. Let py, p,y +.., p, be any k primes of the form
2px + 1; the number (p,p, ... p,)* < 1 has a prime divisor
of the form 2px + 1 which is different from p,, p, «+ .y p,e

d. If ¢ is a prime and 22" 4+ 1 = 0 (mod q), then 2:™ o
= 1 (mod q). Therefore 2 belongs to the exponent 2"*' modulo
g, and hence ¢ — 1 = 27*'x where x is an integer.

2. It is evident that a belongs to the exponent n modulo
a" — 1. Therefore n is a divisor of ¢(a” - 1).

3, a. Assume that we arrive at the original sequence after
k operations. It is evident that the /-th operation is equiva-
lent to the following one: consider the numbers in the sequence

1,2,...,n—1,a,n,n~1,...,2,1,2, ...
vee,n=1l,n,n,n~-1,...,2,1,2,...

in places 1, 1 + 25,1 + 2-2%, ..., Therefore the number 2
is in the 1 + 2¥ place. Therefore the condition considered in
the problem is necessary. But it is also sufficient, since it
implies that we have the following congruences modulo 2n — 1:

1=1,1+2¢=0,1+2:2%= -1, ...
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or
1=1,1+2=2,1+2-2¢=3, ...

b. The solution is analogous to the solution of problem a.
4. The solution of the congruence x° =-1 (mod p) belongs

5
to an exponent of the form Y where §” is a divisor of 5.
3
Here 5 is a multiple of 4 if and only if x? = 1 (mod p). Con-
sidering the & values of §° and taking f = 1, we find that

b
S’ = Z p(d)S 4, where S’ is the required number and S, = -z
d\3

5, a. Here (3; example ¢, $5) we must have (2" g 1) =
+

= —1. This condition is satisfied for g = 3.

=1, g2 = 1 (mod
2p+1) & o

b. Here we cannot have (

2p + 1), This condition is satisfied for our values of g.

c. Here we cannot have
4p + 1

) =1, g* = 1 (mod
4p + 1). This condition is satisfied for g = 2.

8 =1 " 1 (mod
27 + 1 8=
2°p + 1). This condition is satisfied for g = 3.

6, a, o) The theorem is evident if n is a multiple of p — 1.
Assume that n is not divisible by p — 1. If we disregard the
order, the numbers 1, 2, ..., p — 1 are congruent modulo p to
the numbers g, 2g, ..., (p — 1)g, where g is a primitive root
modulo p. Hence

d. Here we cannot have (

S, = g"S, (mod p), S, = 0 (mod p).
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B) We have

- 2 -1 B:". B-:—l-
z ("__("_il_)) S &7 G+ D7 (modp)
p

Xml Xmi

from which (problem o)) we obtain the required result.
b. Forp > 2, we have

p~1

1.2.“(’) -1 = g1+z+...+p~1 = gz

-1 (mod p).

7, a. We have gmdg‘a = a (mod p), indg, a indy g, =
= indy a (mod p — 1), indy, @ = & indg a (mod p - 1).

b. It follows from ind; a = s (mod n), indg, a = o indg a
(mod p — 1) that ind,, @ = as = s, (mod n).

8. Let (n, p — 1) = 1. Determining u by the condition
nu = 1 (mod p — 1) we find the solution x = a* (mod p).

Let n be a prime, p ~ 1 = n%, where a is a positive

integer and (¢, n) = 1. If the congruence is possible, then

na—lt : :
a = 1 (mod p); if a > 1, then, noting that x = g

(mod p), r = 0,1, ..., n ~ 1 are just all the solutions of
the congruence x" = 1 (mod p); for some r, = 0, ,...,n -1
we have

nar-l.tr

a—2 a~1

a® 'g" *=1(modp);

if o« > 2, then for certain r, = 0, 1, ..., n — 1 we have

— —2 -
n% 3tgna' tq+na‘ 1tr2

1 (mod p),

a

etc.; finally, for certain ro, = 0, 1, ..., n — 1 we have

~1
t ntr1+n’tr,+ ceo4nTts -1
ag ! = 1 (mod p).
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Determining u and v by the condition tu — nv = —1, we obtain
n solutions:

a—2 a1
v uf(ri+nra+ ...+n r Hn tr
x=a g ame o-1 = (mod p);

r=0,1, ..., n -~ 1.

Let the prime n, divide (n, p - 1), n = nyn,, n, > 1. Cor-
responding to each solution of the congruence y™* = a (mod p)
we obtain a solution of the congruence x" = y (mod p).

9, a. In this way we obtain ccoc,...c = @(m) characters.

b, o) We have y(1) = R°...R% = 1.

B) Lety ;...,yksy”, ..., y, be the index systems of
the numbers a, and a,; then y* + y**, ..., Ye + V. isan
index system for the number a,a, (c, $7).

y) For a, = a, (mod m), the indices of the numbers a, and
a, are congruent to one-another modulo ¢, ..., ¢, respectively.

c. This property follows from

m-—1 c—1 Cx—1
2 xle) = 32 RY ... pN RYk,
a=o Ymo yk_o

d. This property follows from

x@ = X R” .7 RY.
R

Ry

e. Let ¢(a,) 2 0. Then yy(a,) = (a,)(1). Therefore
U(1) = 1. Determining a’ by the condition aa’ = 1 (mod m),
we have y(a)y(a’) = 1. Therefore ¢i(a) 2 O for (a, m) = 1.

For (a,, m) = 1, we have

» x(a) x(a,a) xla) - xla)
2. V@ L e T ey & Y@
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therefore, either Z:' x(a; = 0, or Y(a,) = xla,) forall a,.

o Yla

But the first cannot hold for all y ; if it did, then we would
have H = 0, while /I = ¢(m) since, summing over all char-
acters for given a, we have

y(a) ¢(m), if a = 1 (mod m),

= Y@

0, otherwise.

f, o) IfR’, ..., Rf andR”’, ..., R are values of
R, ..., R, corresponding to the characters y,(a) and va(a),
then y,(a)x,(a) is a character corresponding to the values
R°R”, ..., RER .

B) When R, ..., R, run through all the roots of the cor-
responding equations, then R“R, ..., RiR, run through the
same roots in some order.

y) Determining I by the condition II” = 1 (mod m), we have

y(al”)

X9 s ¥ x(al”)

X X(l) - X x(ll’) - X

which is equal to ¢(m) or 0, according as a = ! (mod m) or
not.

10, a, «) Defining x” by the congruence xx” = 1 (mod p),
we have

pZ-x (2”.lind(x+k)—-lindx)
exp () =

X1 n

p-t lind (1 + kx”
=) exp (217;'&——(—*'—"—1-) = —1.

x=1 n
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B) We have

S=Z:Z D, exp

xX=0 z3m=0 2z=J

p=1 Q=1 Q-1 ( lind (x + z,) - lind (x + z))
2t .

n

For z, = z, summing over x gives p — 1, and for z, unequal
to z, summation over x (problem o)) gives —1. Therefore

S=(@-10-00Q-1=(p-0)0.

y) Let Q_be the number of integers of the sequence x + z;
z=0,1,...,0Q - 1 which are not divisible by p, while T, ,
is the number of integers of this sequence which are in the
s-th set. Finally, let

U Cx s-5
n,x & T n * n,x7 = XZ-O nyx *
We have
1 n=1 Q=1 l (ind (x + z) — s)
Upe= =T 5 exp -
T=t z=t n
1 nm ls
= — ) exp 27rt— Stynyx,
N fmg
n-1 2 n-—1\?%
U}, —“(ﬂ - 1) Z Sl,n,x ’ S (P - Q)Q‘
Imy

Setting Q = [nVp 1, and assuming that there are no numbers

0-1

n
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for x =M, M + 1,...,M + Q + 1, and hence

Q(Q;1>= . (n;1)=(p~@0,

(n\/; et 2)2 < (n\/— = \/;)_)zv

which is impossible.

b. Let p, be the product of the different prime divisors of
the number p — 1, let Q, be the number of integers of the
sequence x + z3z = 0,1, ..., 0 =1 which are not divisible
by p, and let G, be the number of integers of the same
sequence which are primitive roots modulo p. Finally, let

P=<Z #—((‘1')')—= p—l-)_’wx="_]:_+cx9

d\Po d Cp(p -1 p

p=1

Q:Zw’x.

X=0

Taking f(¢) = 1 and letting £ run through the values
E=ind(x +2)32=0,1,...,0 -1, we obtain

S’ = Z u(d)Sy. Here S” is the number of values of & such
d\po

that (£, p — 1) = 1 and hence 5 = G. Moreover, Sy is the
number of values of ¢ which are multiples of d and hence
S¢ = Ta,x (problem a, y) for s = 0). Therefore

1
Wy = —— + Z F"(d)Td,x = Z F(J)Ud,x’
p d\po d\po

wzxg 2k Z U;,x’ Q S 2k(P - Q)Q'
d\po
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Setting Q = [P 2¥Vp ] and assuming that there are no primi-

. -1
tive roots in our sequence, we find that lwxl > 4

P

for

x=M,M+1,...,M + Q -~ 1 and hence

-1\’
o(& ) <2 - 00

— sz())’
P2kVp — 2 < [P2kVp - ,
(P2+Vp )<(2\/;7 e

which is impossible.
11, a, o). We have

tmy xwi n n

=1 p-1 k ind -1
| U, |* = pZ pZ: exp (2m' - t) exp <2m'f(t——){> =

tmz n

p=t Ckindt
=p~1- 3" exp (2m = p.

B) For (a, p) = p the theorem is evident. For (g, p) = 1,
it follows from

Y

a,p =

~%kind a\ P  kind ax . ax
= exp 2m——n—— Z exp 2ﬂz——n— exp Rmi—|] =
X=i

p

~k%kind a
= exp | 20i—— | U, ..

n

y) It is evident that 4 and B are integers with lSlz =A% + B2,
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For certain ¢, ¢’; ¢”” such that lel = le'l = ‘e"' =1we

have (problem 3))

1

§= ———

VoV

p—-t p~i p—1 ind z; + ind 2 zx + 2(x + 1)
it T " ) exp | omi———————— |

XZZZexp )

2!-1 Zm]l X=Q

If z, + z is not equal to p, then summing over x gives zero.

Therefore

S =¢ ‘i‘ (_z_) exp (2m-§-) =e”Vp, lSIz_s p-

z=1 \ P

b, «) For given z, the congruence x” = z (mod p) is solv-
able only if ind z is divisible by 5, and it then has 5 solutions.
Therefore, for & = 1 we have S, , = 0. If § > 1, then we have

8=1 p~1 k ind az
Sap =1+ Z 2. exp (2ni 5 z) exp (Zm‘——)
p

k=0 z=1

For k = 0, summation with respect to z gives —1; for k > 0

it gives a quantity whose modulus is equal to \/;)— . The re-
quired result follows from this.

B) Setting
x=u+pto;u=0,...,p T =-1v=0,...,p-1,
we have

ax”

exp (Zm' " ) = expQmiau™p™® + nu""'p~tv).
P

For (u, p) = 1, summation with respect to v gives zero.
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Therefore

8=l
Sappe = 2. expQmiap™®xy) = p*™*, §) Le = O.

Xo=0

y) Let p” be the largest power of p dividing n. We have
s 2 r + 3. Setting

§=1=T, T+ _ 1,

X=u-+p vsu=0,...,p" "~ 1,v=0,...,p
we have

, ax” . n -8 17—
exp |2mi o = exp(27ia(u”p™® + nu™'p~""'v)).

For (4, p) = 1, summation with respect to v gives zero.
Therefore

Xo=0

ps—'!..l ) ax,',’ - ,
Sa,ps = ). exp|2ni o = p"S,,pemny Sps = 0,

a . o e
8) Let m = ps* ... P.* be the canonical decomposition of
the number m. Setting

. - — a — a,
Tym =m a,ms V = »m=p My = ... = pkM

and defining a,, ..., a, by the condition a = oM, + ...
«oo + a; M, (mod m), we have (problem 12, d, ch. IH)

Tom = T";’Pf‘ R P
For s = 1 we have
1
ITB,psl <p™nVp <mp
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Forl < s < n, (n, p) = 1 we have

| Tope| = porp* ™ < L.
Forl < s < n, (n, p) = p we have

| Tapel < pte%® <p < m

The case s > n reduces to the case s € n since

~

T,,ps = p=stsvpniS, pe=n = T, ps-n. Therefore
6
n"+n
ITa,ml C=n ,

from which we obtain the required inequality.
12, a. This follows from the theorem of problem 11, a, o)
and the theorem of problem 12, a, ch. V.

b. We have
M+Q=1 n—i k(ind x —
Tn = "5 T exp [am Az =)
x=M k=0 n

For k = 0, summing with respect to x we obtain Q; for

k > 0, we obtain a number whose modulus is <Vp Inp. And
this implies the required formula.

c. Taking f(x) = 1 and letting x run through the numbers
x=indM,ind (M + 1), ..., ind (M + Q = 1), we find (prob-

lem 17, a,ch. M) S’ = b3 p(d)S4. Here S” is the number of
d\p-1

x such that (x, p — 1) = 1; therefore §” = T. Moreover, S4 is

the number of values of x which are multiples of ¢, i.e. the

number of residues of power d in the sequence M, ¥ + 1, ..

M+ Q - 1. Then

H= 2 ud (g + 0,Vp lnp>; lo,] <1, 6, = 0.
d\p—1 d
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d. It follows from the theorem of problem a that the condi-
tions of problem 12, a, ch. V are satisfied, if we setm = p—1,
®(z) = 1, while we let z run through the values z = ind x;
x=MM+1,...,M+ Q~ 1. We then find (with Q, in
place of Q)

¢,

p_lo+o\/,7(1np)z.

Yo =1, o) =¢, 7 =

13. Assume that there are no non-residues not exceeding 4.
The number of n-th power non-residues among the numbers
1,2,..., Q where

Q= Vp (npy

can be estimated by two methods: starting from the formula of
problem 12, b and starting from the fact that the non-residues
can only be numbers divisible by primes exceeding k. We find

1
—Inp+2lnhp

1 2 1
l1—- —<In +0 ,
n Inp
—Inp+2lnlnp

c
In In
1+4 P
Inp 1
0<In + O
Inlnp Inp
1+ 2¢
Inp

The impossibility of the latter inequality for all sufficiently
large p proves the theorem.
14, a. We have

1S <X R s 00 e (%L_z) .

x=0 y =0 ym=0 m
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For given y, and y summation with respect to x gives
Xm|ply)| or zero according as y, = y or not. Therefore

|S|* < X¥m, |S| < VX¥m .

b, o) We have

au”v"
= — Z x () x () exp (2ni )
) ” m
where z and v run through reduced residue systems modulo m.
Hence
T v ply)
S = vi(x) p(y)exp (2mi ;
CP(’”') xZ-o yZ-o ( >
vix) = 3 x@), ply) =} ().

ull=x(mod m) vl=y(mod m)

But we have (problem 11, ch, IV)

x=0

T vl < Ko, T e[ < Kelm.
y=0

Therefore (problem a)

|s] <

K op(m) K p(m)m =

B) Letm = 2% ... pok be the canonical decomposition

of the number m. The congruence x" = 1 (mod m) is equiva-
lent to the system

x" = 1 (mod 2%, x" = 1 (mod pf1), ..., ™ = 1 (mod p k).
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Let y(x) and y,(x) be the indices of the number x modulo 2*
(g, $6). The congruence x” = 1 (mod 2%) is equivalent to the
system ny(x) = 0 (mod ¢), ny,(x) = 0 (mod ¢,). The first
congruence of this system has at most 2 solutions, while the
second has at most n solutions. Therefore the congruence

= 1 (mod 2%) has at most 2z solutions. By b, §5, each of
the congruences x” = 1 (mod p), ..., 2" = 1 (mod p:k) have
no more than n solutions. Therefore

ln" Inn

K < 20 = 2(2*) K 20(m))P7; K = 0 (m).
15, a. We have

tml xmi

~1 p—1 ( a(t™ - 1)x™ + b(t - l)x)
2mi .

S| = Z,‘Z,‘eXP "

If £" = 1 (mod p), then summation with respect to x gives

p — lfor ¢t = 1 (mod p) and —1 in the remaining cases.
Otherwise, taking z(¢ —~ 1)™* in place of x, we can represent
the part of the double sum corresponding to given ¢ in the form

— b n — — -, n
2‘:‘ exp (2ni—z) exp (2ni ale D~ 1z )
p

zey p
and hence
-1 p=1
ISI <p-1+ pZ: pZ: v(u) p(v) exp <2m ) I,
um] yw=i p

where v(u) is equal to the number of solutions of the con-
gruence (¢ — 1)(¢ — 1)™™ = u (mod p), while Ip(v)l does
not exceed the number of solutions of the congruence

z" = v (mod p). Therefore 1(u) < 2n,, |p)| < n.,

p=-1 2 p-t 2
> vl < - D2y, 3 o] < (p = Dn,

U=y V=1
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Applying the theorem of problem 14, a, we find

IsI' < p -1+ Vo = D2r,(p — Dnp < 20,97

b, o) This follows from problem a and the theorem of prob~
lem 12, a, ch. V.

B) It follows from the theorem of problem «) that the con-
ditions of the theorem of problem 12, a, ch. V are satisfied, if
we set m = p, ®(z) = 1, where we let z run through the values

z=Ax" x = Mo, My + 1, ..., My + Qo — 1. Then

7 o) = T, 3 0G) = Qo

from which we obtain the required formula.
¢, «) Lety = 4ay,(mod p). We have (problem 11, a, ch, V)

LA pi’f (4azxz + 4abx + 4ac ) exp (217i dayx _
p X0 p . p

1 p=t [2z\ P2t _z(4a?x? + 4abx + dac + dayxz”"
-—) ). exp |2mi : =
p

p

U

14p Z=1 Xm0

p—1 —{b? — 4dac)z — 2by, — y, 22!
= ) exp (2m )
p

z=1
3
The latter sum (problem a) is numerically < B p*.

B) This follows from the theorem of problem o) and the
theorem of problem 12, a, ch. V.
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ANSWERS FOR THE NUMERICAL
EXERCISES

Answers for chapter I.

1,a. 17.
b. 23.
15 19 9
2,8, q) 0, = —; - .
Vo= i B a= 1o+ s
80 1002 9
b, o) 5 = —v; B) o = . .
50 739 © 7391000

3. We obtain 22 fractions.
5, a. 2°-3%5-11°,
b, 22357 +112-17-23 - 37.

Answers for chapter II.

1, a. 1312,
b, 217+ 3% .53 . 719 . 1112 . 13° - 177 « 19° - 235 - 20* x
x 31* +37° -41° -43% <472 - 532 - 59 - 61* - 67 *+ 71 x
x 73+79+83+89-97 101 -103 - 107 - 109 - 113.
2, a. r(2800) = 30; S(2800) = 7688.
b. 7(232 848) = 120; S(232 848) = 848 160.
3 The sum of all the values is equal to 1.
4. o) 1152; B) 466 400.
5. The sum of all the values is equal to 774.
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Answers for chapter III.

1, a.

70.

b. It is divisible.
2, a. 3% -5%-11% » 2999.
b. 7+13°37°-73-101-137+17 19 - 257.

Answers for chapter IV.

—
-

HwN
F PrFgEP

=
® FP

6.
1

?

[~

94

momomwou

x
x
x
x
x
x
x
x

(]

81 (mod 337).
200; 751; 1302; 1853; 2404 (mod 2755).

1630 (mod 2413).

+ 11123 y = 39 + 47t, where ¢t is any integer.
1706, + 52b, (mod 221); x = 131 (mod 221);
110 (mod 221); x = 89 (mod 221).

11 1515, + 11 800b, + 16 875b, (mod 39 825).

91 (mod 120).

8479 (mod 15 015).

00 (mod 143); y = 111 (mod 143).

32t + 22 + 32 + 2¢ = 0 (mod 5).

x4

S5x* + 3% + 3x + 2 = 0 (mod 7).

8. x° + 4x° + 22x* + 76%° + 702 + 52x + 39 = 0 (mod

101).

9,a. x

10, a. x
b. x

(mod 625).

11, a. x
b. x

mom

16 (mod 27).
22; 53 (mod 64).
113 (mod 125).
43, 123, 168, 248, 293, 373, 418, 498, 543, 623

2, 5, 11, 17, 20, 26 (mod 30).
76, 22, 176, 122 (mod 225).

Answers for chapter V.

1,a. 1,23,4,6,8,9,12, 13, 16, 18.
b. 2,5, 6, 8, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 29,

31, 32,

35.

2, a. o) 0; B) 2.
b. «) 0; B) 2.
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3, a. o) 0; B) 22.
b. o) 0; B) 2.
4, a. o) x = 9 (mod 19); B) x = 11 (mod 29); y) x = 14
(mod 97).
b, ) x

66 (mod 311); B) x = 130 (mod 277);

y) x = 94 (mod 353).
5, a, x = 72 (mod 125).
b, x = 127 (mod 243).
6, a. x = 13, 19, 45, 51 (mod 64).
b. x = 41, 87, 169, 215 (mod 256).

Answers for chapter V1.

1, a. 6.
b. 18.
2, a, 3,3, 3.
b. 6, 6, 1687.
c. «)3;B)7.
5,a. a)0; B) 1;y) 3.
b. &) 0; B) 15 y) 10.
6, a. o) x = 40; 27 (mod 67), B) x = 33 (mod 67),
y) % = 8, 36, 28, 59, 31, 39 (mod 67).

b. o) x = 17 (mod 73); B) x = 50, 12, 35, 23, 61, 38
(mod 73), y) x = 3, 24, 46 (mod 73).
7, a. o) 0; B) 4.
b. «) 0; B) 7.
8, a. o) x = 54 (mod 101). B) x = 53, 86, 90, 66, 8
(mod 101).
b. x = 59, 11, 39 (mod 109).
9,a «)1,4,56,7,9, 11, 16, 17; B) 1, 7, 8, 11, 12, 18.
b. «) 1,6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36; B) 1, 7,
9, 10, 12, 16, 26, 33, 34.
10, a. «) 7, 37; B) 3, 5, 12, 18, 19, 20, 26, 28, 29, 30,
33, 34.
b. «) 3, 27, 41, 52; B) 2, 6, 7, 10, 17, 18, 23, 26, 30,
31, 35, 43, 44, 51, 54, 55, 59.
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TABLES OF INDICES

The Prime 3
Nllo 3l14(5(6|7|819 Ilfol1|2|1314 (5|67
0 0 o} 1]2

The Prime 5
N|10 3/4|5]|6(71819 Il0]11]2]3(41|5]|6}7
0 0 3(2 ofi1|(214]3

The Prime 7
Wo 3141516171819 ntoji1j213jai|siel7
0 0 1141543 0|l 1132|6145

The Prime 11
N|l 0 3l4i5| 6|7l 819 (/|]j0f[11213 |4 |5]6]7
0 0 g8l2]4]9{7| 3|6 p|[1|2]4]|8(5 (1097
1] 5 1

The Prime 13
N 0 3(4]5|6]| 7|8]9 Il 0]1]|2|3[4i5]|16} 7
0 41219 11{3}8 0 1/2]4|8|3|6 |12 {11
1|10 1{]10|7
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The Prime 17

-

0j1f 213} 4|5| 6] 71| 8|9 If| o1

[
w
e
o
=)}
-
o

-0

10|13|5]|15|11}16
121 26

~No

141111215 |15(11 [10{2 off 1
13{4]| 9i6| 8 1

3 W
> \O

The Prime 19

0 1] 2) 314 5] 6] 7|8]9]| 1]} 0] 1} 2|3| 4| 5|6| 7|8

—0

8110 1| 2| 4(8|16]13{7[14{9
17|15(11|3 | 612|510

[4, B
o
-3
O W
—

17]12|1 11} 4{10

The Prime 23

S
Pt
N
w
=N
vt
=)
N
L]

[N -

10| 4{20{817|16
9]22]18121]13}19(3 {15} 6
12|14

319(20114(2117| 8] 7[12]15
5]13111

(=]
N
[
[=,)
-~
—
—
(=]
d
-
[,
p—
[=]

N O |~
—
w
[\

3| 4/ 5| 6| 7| 819

o~ | Z

22| 6121 3|10
27} 421411} 9
1619|1514

2

4] 8[16| 3| 6}12|24
9118(7|14(28]27(25}21]13

5/10j20(11}22{15

23125
24117

g'\li-‘ N
—

=

—

QW N

N = O
—
[

The Prime 31

O 112/3{4]5/6{78

(=]
Id
[V
w
'
4]
=)
-

WO | Z

0% 1]18|20(25(28[12
14|123]19|11(22]21] 6| 7|26
8]29117|27]13|10} 5| 3|16
15

25(13| 8|24(10(30}28|22| 4

1
Ofl 1| 3| 9)127119{26|16{17|20
1
2|| 5{15{14|11} 2| 6{18{23| 7

O &N | O
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The Prime 37

NIl ol 11 2l 3] 4| 5| 6] 7] 8] 9 {7|| O] 1| 2] 31 4] 5] 6| 7| 8] 9
0 o| 1{26| 2{23127132] 3|16 | [0|| 1| 2| 4] 8{16]32|27|17|34]|31
1{124]30i28}11}33{13| 4| 7117{35 | |1]} 25|13]26|15]|30]23} 9}18|36|35
2l 25122131(15[29|10]12] 6/34]|21 | |21| 33{29|21] 5[10]|20| 3| 6]12]|24
31| 14{ 9] 5(20{ 8|19{18 31| 11{22]| 7|14]28119

The Prime 41
NIl ol 11 2| 3| 4| 5] 6 7| 8 9| {I{} 0] 1| 2| 3| 4| 5] 6| 7| 8 9
0 ol26l15]12{22] 1/39{38(301 0] 1| 6{36[11}25|27(39{29]|10|19
1{] 8| 3|27131]25|37]24{33|16| 9| |1]{32]28] 4|24|21| 3|18{26]|33|34
21(34|14|29|36{13| 4|17} 5|11| 7| |2||40{35| 5|30|16|14] 2]12|31}22
31|23l28|10]18119|21| 2i32|35| 6 | [3|] 9|13|37}17|20|38{23 15| 8| 7
4120

The Prime 43
Nl ol 1f 2| 3| 4l 5| 6| 7| 8] 9| ||| O] 1| 2f 3| 4| 5| 6] 7| 8 9
0 olz7| 1l12]|25}28|35139| 21| |} 1] 3} 9127|38|28]41]|37(25(32
1|| 10l30(13{32(|20(26|24|38(29(19 | [1]| 10|30] 4[12|36{22|23{26]|35(19
2|1 37136l15(16140| 8[17] 3| 541 | [2i| 14|42]40|34|16{ 5[15] 2| 6{18
3]/ 11134 9/31|23|18|14| 7| 4|33 | [3]| 11|33 133931 7{21|20|17| 8
411 22] 621 41| 24|29

The Prime 47
V]| ol 1] 2| 3| 4f 5| 6| 7| 8] 9| [Zi] O| 1] 2| 3| 4| 5| 6] 7| 8] 9
0 ol18{20|36| 1|38[32| 8(40| [0]| 1| 5{25|31|14(|23|21|11| 8]40
1il19l 7l10l11} 4l21|26l16l12{a5 | |11} 12{13(18143|27}41{17}38| 2]10
21137| 6l25| 5]/28| 2|29(14]22(35| 2| 3{15|28]46|42]22{16|33 [24|26)
3|i39! 3|44l27(34(33|30|42117|31 ] [3|| 36|39 7{35}34|29| 4[20| 6|30
4| 9|15(24[13}43]|41|23 4| 9]45[37]44|32(19
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The Prime 53

Nil O] 1| 2| 3| 4| 5|1 6| 7| 8 9| ||| O] 1] 2| 3] 4| 5| 6| 7| 8 9
0 0] 1117| 2|47|18114| 3{34 | 10]| 1| 2} 4| 8{16|32|11|22 44|35
11{48] 6{19(24]15|12| 4{10135{37 | [1 || 17{34{15]30| 7|14|28| 3| 6|12
21149131} 7(39(20{42|25|51|16]46 | |2|| 24|48[43]|33|13|26{52|51 49145
31113133} 5|23{11| 9{36[30|38{41 | |31137|21/|42|31| 9|18|36|1938]23
41150]45(32{22]| 8{29]|40{4421|28 | |4 |{46(39]25]50{47 (41|29} 5|10{20
51143127126 51| 40|27

The Prime 59
V)] of 1 2] 3| 4] 5| 6| 71 8 9| [I]} O] 1| 2| 3| 4| 5{ 6| 7] 8] 9
0 0| 1{50| 2| e6{s51{18] 3{42]| 0| 1} 2| 4| 8|16|32] 5]10{20(40
1]] 7|25]52|45]19|56| 4]40(43]38 | |1 ||21]42]|25]|50]|41{23]|46]33} 7|14
2|l 8|10(26|15|53|12}46|34]20(28 | |2 {{28|56|53 |47|35]{11(22(44|29(58
311 57[49] 5]17141]24 [44|55|39137 | 13 ||57[55}51]43[27|54 493919138
411 9j14{11|33]|27|48{16|23|54(36 | |4 1{17[34| 9]|18|36{13|26152 [45{31
5}l 13132|47122|35|31|21{30]29 51| 3| 6]12]24148137]15(30

The Prime 61
N ol 1] 2| 3| 4] 5t 6] 7| 8| 9|1/|| O] 1| 2| 3| 4] 5} 6} 7| 8] 9
0 0| 1} 6{ 222 7(49{ 3|12 | j0]| 1] 2| 4] 8[16]|32| 3| 6|12i24
1 §23]15| 8]40(50]{28| 4|47|13126 | 11]/48(|35| 9(18|36]11(22]|44{27|54
2 §24|55|16|57| 9|44/41|18|51|35 | |12]]47|33| 5/10]20|40{19/|38|15[30
3 §29159| 5|21148|11|14|39{27]46 | |3|| 60]59(57{53|45|29]58|55|49|37
4 125]|54(56143]17|34(58/20({10(38 | [4]| 13|26{52{43|25|50{39{17|34| 7
5 [145/53(42133]19{37{52|32|36|31 | |5]| 14/28|56|51|41|21|42|23(46|31
6§30

The Prime 67
N{l 0] 1} 2| 3| 4| 5} 6] 7| 8/ 9} ]7l|] o 1} 2] 3] 4| 5/ 6| 7| 8] 9
0 0 1{39| 2|15]|40{23| 3{12 | o{| 1] 2| 4| 8|16|32|64|61|55(43
1]116|59]|41|19]24(54| 4|64]13|10 | 11{]19(38| 9|18|36| 5/10/20{40]|13
211 17]62|60]28(42|30]|20|51]25|44 | 2]} 26/52]37| 7]|14|28|56|45|23]|46
3|155/47| 5/|32]|65/38[14]22{11{58 | [3]{ 25/50{33(66165{63|59|51|35| 3
4 11 18(53{63( 9161{27(29|50]43|46 | |41 6]12]|24]48{29(58(49/31]|62|57
53137|21|57|52| 8|26{49]|45(36 | |5]||47]27|54|41]|15|30|60|53]|39|11
61l 56| 7(48135| 6|34(33 6| 22|144121{42117]34
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The Prime 71

ol 1| 2| 3| 4] 51 6| 7| 8] 9|{I|] O 1] 2| 3| 4| 5] 6] 7| 8 9
0 o| el26112|28(32] 1{18)52 | |0 1| 7]|49|59|58|51| 2{14|27]47
1]134131]38139| 7|54|24 149(58]16 | {1]| 45|31} 4}28]54{23|19]62| 8|56
21l 40]27137115144 56|45 8[13]68 | |2]]37|46(|38|53|16/41] 3]|21]| 5|35
3|l60111130|57|55|29164 [20|22(65 | |3]|32{11| 6[42{10|70|64|22]12|13
4|l46|25/33]48143{10(21| 9|50 2| |4]]20]|69|57|44|24|26{40|67 {4317
slie2] sls1|23/14159/19143] 4| 3 | |5}48|52]| 9|63]15|34]|25(33|18}55
6]166]69|17|53|36|67|63|47|61]41 | |6 30/68150|66|36|39|60]65[29}61
71135

The Prime 73
N ool 1l 21 3] 4] 5| 6 7| 8 9i/| O] 1| 2| 3] 4] 5| 6] 7| 8 9
0 ol 8t 6l16| 1/14133|24|12 | [0]| 1} 5]|25[52]|41|59]| 3|15 2(10
1l| olsslo2lsala1l 7|32121120i62 | {1} 50{31| 9{45] 6{30 4120127|62
2]l 17/39]63 4630 2l67[18]49{35 | |2|| 18|17i12]|60| 8|40 54|51|36{34
3{| 15/ 11140|61|20 [34|28]64 (70|65 | |3]| 24[47|16| 7|35]|29(72|68]|48|21
4|l 25| 4]47/51|71|13[54(31)38|66 | |4 32(14|70l58{71|63 [23142{64|28
511 10]27] 3153|26|56157168{43] 5115 67|43169|53146|11|55|56|61|13
6ll 23l58|19|45/48(60]69]50|37|52 | |6{] 65|33]19{22 37139(49|26|57|66
711 42(44|36 7|1 38|44
The Prime 79

N‘Ol2345678910123456789
0 ol 4] 1] 8l62! 5|53[12] 2| |o}| 1 3| 9|27 2| 6{18|54 4112
1||66l68| 9{34|57|63|16]21| 6{32| |1{| 36]29 8|24 172|58|16{48|65|37
2ll70l54 I72126113|46|38] 3l61|11] |2|l 32{17|51|74 |64{34|23|69|49|68
3ll67156120l69/|25(37(10]1913635 | [3]]46|59]19[57[13{39]|38]|35|26|78
4|]74l75|58149|76|64|30]|59]17{28 | |4 || 76{70{52{77(73|61]|25|75]67]|43
sllsol22l42|77| 7|52165(33(15131 | |5}{50(71{55 7121163|31|1442{47
6!l 71/45|60155|24| 18|73 |48/|29|27 | |6}| 62}28 5115(45156{10}30/11}33
71141{51|14|44(23|47|40{43{39 71| 20/60}22|66{40|41{44|53
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The Prime 83

NIt O 1| 2| 3| 4] 5/ 6] 7| 8 9{|I]] o] 1f 2] 3] 4| 5| 6} 7| 8| 9
0 0 14721 2|27|73] 8] 3{62 ||0|| 1] 2| 4| 8|16|32|64|45] 7|1
1](28]24|74|77| 9|17| 4|56|63|47 {|1]]| 28(56/29(58|3366/49|15|30|60
2(129]80)25|60|75|54|78(52{10{12 ||2|| 37|74|65|47|11|22|44] 5{10/20]
3(]18138| 5|14157|35|64}20|48|67 ||3|] 40|80|77|71|59(35|70{57|31|6
41130(40(81|71|26| 7(61|23|76[16 ||4|| 41|82|81{79|75|67{51|19/38|7
5(|55]46179|59|53|51{11{37]13{34 |i{5|] 69{55(27|54|25}50]17|34|68|53
6|} 1916639|70| 6|22|15(45[58(50 ||6}| 23[46| 9[18|36|72/61|39]78|7
71136|33]165{69|21{44(49]32|68]43 ||7||63{43| 3| 6]|12]|24|48{13|26]|5
8131|42/41 8| 2142
The Prime 89
NI| 0] 1] 2| 3| 4| 5/ 6] 71 8| 9 [|7] of 1| 2| 3] 4| 5| 6| 7| 8] 9
0 0[l6] 1|32|70[17(81|48] 2 [{0] 1| 3| 9|27|81165|17(51 64|14
1{/ 86 (84|33]|23( 9|71|64| 6|18{35 |[1| 42|37|22|66/20|60] 2| 6|18]54
2]l 14182112]57(49{52(39| 3[25(59 ||2| 73|41(34{13|39(28|84|74 [44)|43
311 87/3180(85]22/63|34 (11]|51]24 [|3| 40[31| 4|12{36|19|57(82168|26
4(1 30[21]|10|29|28| 72|73 |54165|74 ||4| 78|56/|79|59|88|86|80|62| 8|24
5] 68] 7|55{78{19|66|41)36|75[43 ||5| 72|38/|25(|75|47]|52]|67]|23]|69]29
6| 15]69|47(83] 8] 5|13|56|38|58 ||6| 87183|71[35|16|48]|55|76{50/61
7| 79162{50)20/27|53|67|77]|40[42 [|7| 5|15|45|46{49]|58|85|77]|53|70
8] 46] 4|37|61|26|76{45]60|44 8| 32| 7{21{63|11433|10|30
The Prime 97

0] 1f 21 3} 4| 5/ 6] 7] 8/ 9 ||| of 1| 2| 3] 4| 5| 6] 7| 8| 9
0 0{34170]68| 1| 8|31| 6[44 [|0|| 1] 5|25|28]/43|21] 8|40} 6'30
11135| 6[42{25|65(71(40{89{78|81 |I1 53|71164)29148|46|36|83|27|38
21169| 5|24|77|76| 2|59|18| 3{13 || 2{| 93]{77|94(82(22(13(65/34({73 |74
3{| 9]46{74|60|27(32|16|91{19{95 ||3]] 79| 7{35|78] 2|10{50{56|86(42
4|l 7/85|39( 4|58|45|15{84|14]62 [|4|| 16/80]|12}{60| 9]45]31|58]96|92
5(36|63{93|10{52(87|37|55]47(67 1|5|| 72|69|54|76|89|57]|91|67|44{26
6] 43164(80|75[12|26/94|57|61|51 ||6|] 33|68[49(51|61|14|70|59| 4|20
7(] 66|11|50|28(29|72|53]21{33[30 ||71| 3|15(75(84{32|63|24|23|18|90
8]/ 41/(88(23{17|73/90]38|83]92(54 8|l 62(19/95{87|47|41{11|55]|81(17
9{| 79156 49J20 22182(48 19(( 85{37{88(52| 66|39
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Table of primes < 4000 and their smallest primitive roots.

b lglf ? g b -4 b -4 4 g 4 g b 4
2| 1f| 179 | 2|| 419 | 2| 661 | 2 947 | 2f| 1229 | 2| 1523 | 2

3 (2|l 181 | 2|f 421 | 2]| 673 | 5 953 | 3|} 1231 | 3{} 1531 2

51 2ff 191 |19{] 431 | 7| 677 | 2 967 | 5(] 1237 | 2||1543 | 5
7131] 193 | 5/| 433 | 5} 683 | 5 971 | 6f 1249 | 7]] 1549 | 2
111 2] 197 | 2| 439 |15} 691 | 3 977 | 3|l 1259 | 2§} 1553 | 3
13 | 2]| 199 | 3| 443 | 2|} 701 | 2 983 | 5| 1277 | 2|| 1559 |19
17 | 3)| 211 | 2f| 449 | 3]} 709 | 2 991 | 6|] 1279 | 3}/ 1567 | 3
19 | 2|f 223 | 3| 457 |13} 719 |11 997 | 7|| 1283 | 2| 1571 ] 2
23§ 5j 227 | 2|l 461 | 2|l 727 | 5} 1009 |11) 1289 | 6| 1579} 3
20| 2|l 229 | 6{| 463 | 3| 733 | 6{ 1013} 3| 1291 | 2[ 1583 | 5
31| 3|l 233 | 3]| 467 | 2} 739 3|| 1019 | 2f 1297 |10]] 1597 |11
37{ 2|l 239 | 7| 479 | 13|} 743 | 5{| 1021 {10ff 1301 | 2{{ 1601 | 3
41| 6]| 241 | 7|} 487 | 2§ 751 3|| 1031 |14)] 1303 | 6| 1607 | 5
43| 3|l 251 | 6f] 491 | 2|} 757 | 2|} 1033 | 5] 1307 | 2| 1609 | 7
a7{s|l 257 | 3|| 499 | 7|| 761 | 6| 1039 [ 3)f 1319 |13|[ 1613} 3
53| 2§l 263 | 5|} 503 | 5[ 769 |11}] 1049 | 3| 1321 |13|] 1619 | 2
59 2l 269 | 2|| 509 | 2|} 773 | 2| 1051 | 7| 1327 | 3} 1621 | 2
61| 2ff 271 | 6f| 521 | 2| 787 | 2| 1061 | 2j| 1361 | 3| 1627 | 3
67| 2| 277 | 5 23 | 2ll 797 | 2{| 1063 | 3| 1367 | 5|] 1637 | 2
71| 7l| 281 | 3]| 541 | 2| 809 | 3] 1069 | 6| 1373 | 2f| 1657 |11
73| s|f 283 | 3|| 547 | 2| 811 | 3| 1087 | 3]l 1381 | 2|| 1663 | 3
79| 3|l 293 | 2| 557 | 2| 821 | 2| 1091 | 2| 1399 13]] 1667 | 2
83| 2|l 307 | 5| 563 | 2|l 823 | 3] 1093 | 5| 1409 | 3] 1669 | 2
89| 3|l 311 j17| 569 | 3| 827 | 2| 1097 | 3|f 1423 | 3] 1693 }| 2
97| sl 313 {i0|| 571 | 3] 829 | 2| 1103 | 5| 1427 | 2| 1697 | 3
101 2|| 317 | 2|| 577 | 5| 839 |11}l 1109 | 2[ 1429 | 6] 1699 | 3
103] 5]l 331 | 3| 587 | 2| 853 | 2|| 1117 | 2ff 1433 | 3] 1709 } 3
107} 2|l 337 |10]| 593 | 2| 857 | 3| 1123 | 2} 1439 | 7]| 1721 | 3
109 6f 347 | 2|l 599 | 7] 859§ 2f 1129 | 11| 1447 | 3| 1723 | 3
113] 3] 349 | 2|] 601 | 7| 863 | s|| 1151 {17)| 1451 | 2| 1733 | 2
127 3} 353 | 3| 607 | 3i| 877 | 2| 1153 | 5] 1453 | 2|| 1741} 2
131} 2|f 359 | 7{| 6131 2| 881 | 3| 1163 5if 1459 | s|| 1747 | 2
137} 3|f 367 | 6| 617 | 3|f 883} 2)| L 171 2f 1471 ] 6f 1753} 7
1390 2|| 373 | 2|l 619 2| 887 | 5/ 1181} 7|f 1481 | 3} 1759 | 6
1491 2|l 379 | 2f] 631 3] 907 | 2|l 1187 | 2f 1483 | 2| 1777} 5
151| 6| 383 | 5)| 641 3|} 911 |17 1193 | 3| 1487 | 5|f 1783 |10
1571 5| 389 | 2|| 643 | 11)f 919 | 7{| 1201 | 11| 1489 |14} 1787 | 2
163 | 2|t 397 | 5[] 647 | 5|} 929 | 3{] 1213 2| 1493 | 2 1789 | 6
167| 5il 401 | 3)} 653 | 2| 937 | 5|] 1217 | 3|f 1499 | 2} 1801 |11
173 | 2|| 409 |21)| 659 2] 941 | 2|| 1223 5| 1511 [11] 1811} 6
12+
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(continued)

4 4 b 14 4 4 b g 14 g 14 -4 14 g
1823 | 5{] 2129 3| 2417 | 3{}]2729| 3{{3 049 |11]13 373 | 5|3 691 | 2
1831 3| 2131 2[] 2423] 5/|2731| 3|[3061]| 6//3389 | 3|/3697| 5
1847 | 5|| 2137 |10} 2437 | 2|] 2741 | 2|{3 067 2|[3391] 3[|3701| 2
1861 2|} 2141 | 2| 2441} 6[{ 2749 6{I 3079 | 6]/ 3 407 | 5||3 709 | 2
1867 2|f 2143 | 3|| 2447 5{12753| 3]|3 083 2||3413| 2|/|3719] 7
1871 |14|| 2153 | 3[| 2459| 2[[2 767 | 3|{3 089 3(/3 433 | 5{/|3727| 3
1873 |10|| 2 161 {23 2467} 2{{ 2777 | 3||3109| 6(|3 449 | 3||3733] 2
1877 2| 2179 7|| 2473 5{{2789 | 2||3 119 7{{3457 | 7||3739| 7
1879 6|| 2203} 5|| 2477 2J2791| 6|3 121 | 7|[3 461 | 2{|3 761 | 3
1889 3|l 2207 s5(| 2503| 3|{2797 | 2||3 137 | 3[|3463 | 3{|3 767 5
1901} 2f| 2213 2f| 2521|17||2801| 3|3 163 | 3|{3 467 | 2(|3 769 7
1907 | 2j| 2221 2] 2531 2| 2803 | 2||3 167 | 5{|3 469 | 2|/ 3 779| 2
1913 | 3f[ 2237 2|/ 2539 2{{2819| 2|{3 169 7{[3491| 2({/3793{ 5
1931 2|| 2239 3{| 2543 | 5||2833 | 5/13181| 7||3499| 2|{3797| 2
1933 | 5{l 2243 | 2| 2549| 2[]2837 | 2|{3187 | 2{{3511| 7|/|3803| 2
1949 | 2| 2251 7|[ 2551 | 6|/ 2843 | 2|{3 191 |11][3 517 | 2|/ 3821 3
1951 | 3)| 2267 | 2|[ 2557 2/{2851| 2{[3 203 | 2|3 527 | 5{/|3823] 3
19731 2|[ 2269 2|l 2579 2||2 857 |11||3 209 | 3|3 529 |17]| 3833 | 3
1979 | 2f| 2273 | 3|} 2591 7|[2861] 2|[3 217 5|[3533| 2||3847| 5
1987 | 2| 2281 7| 2593 7{|2879 7|{3 221 |10({3 539 2/(3851( 2
1993 | 5|| 2287 |19|| 2609 | 3|/ 2887 | 5|/|3229| 6//3541| 7|} 3853 2
1997 | 2| 2293 2f| 2617 5[]2897| 3||3 251 | 6/[3 547 | 2{{3863| 5
1999 | 3|| 2297 | 5| 2621 2{}2903| 5} 3253 | 2/{3557] 2| 3877| 2
2003 | 5(| 2309 2| 2633 | 3|{2909| 2|[3 257 | 3|/ 3559 3| 388113
2011 | 3(| 2311 3| 2647 | 3|{2917| 5]/ 3 259 | 3|/ 3 571 | 2{| 3 889 |11
2017 | 5({ 2333] 2{| 2657 | 3[]2927) 5{13271 ) 3}|3581| 2f3907] 2
2027 | 2[} 2339 2] 2659 | 2|2939| 2|[3 299 2|[/3583] 3] 391113
2029 | 2]} 2341} 7|] 2663 | 5//2953(13)3 301 | 6]/ 3593 3f3917] 2
2039 | 7{1 2347 3]l 2671 | 7|[2957| 2|/ 3307 | 2||3607] 5}|3919]| 3
20538 | 2{| 2351(13]| 2677 | 2|]2 963 2|/ 3 313 [10[|3613[ 2{3923| 2
2063 | 51 2357 2|| 2683 | 2/[2969| 3} 3319 6|/ 3617} 3| 3929 3
2069 | 2§l 2371} 2|l 2687 | 5[{2971|10{[ 3 323 | 2|3 623]| 5//3931| 2
2081 | 31 2377 5] 2689 |19[12 999 {17])3 329 | 3|/ 3 631|21f) 3943} 3
2083 | 2f| 2381 3}| 2693 | 2{[3 001 |14(| 3331 | 3{/|3637| 2/13947| 2
2087 | 5|/ 2383 5| 2699 | 2|3 011 | 2{|3343| 5[[3643| 2{[3967] 6
2089 | 7(1 2389 2]l 2707 | 2|3 019 2[[3347| 2|3 659| 2|3 989 2
2099 ) 2{ 2393} 3])| 2711 | 7|| 3 023 | 5|l 3359 11||3 67113
2111 7|] 2399 |11)| 2713 |} 5/|3037 | 2||3 361 |22]|3673| 5
2113 | 5/ 2411 6|l 2719 3|13 041 | 3|/3371| 2|[3677| 2
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MATHEMATICS, ELEMENTARY TO INTERMEDIATE

HOW TO CALCULATE QUICKLY, Henry Sticker. This handy volume offers a tried and true
method for helping you in the basic mathematics of daily life—addition, subtraction, multipli-
cation, division, fractions, etc. It is designed to awaken your “number sense’’ or the ability
to see relationships between numbers as whole quantities. It is not a collection of tricks
working only on special numbers, but a serious course of over 9,000 problems and their
solutions, teaching special techniques not taught in schools: left-to-right multiplication, new
fast ways of division, etc. 5 or 10 minutes daily use will double or triple your calculation
speed. Excellent for the scientific worker who is at home in higher math, but is not satisfied
with his speed and accuracy in lower mathematics. 256pp. 5 x 7. T295 Paperbound $1.00

TEACH YOURSELF books. For adult self-study, for refresher and
supplementary study.

The most effective series of home study mathematics books on the market! With absolutely
no outside help, they will teach you as much as any similar college or high-school course,
or will helpfully supplement any such course. Each step leads directly to the next, each
question is anticipated. Numerous lucid examples and carefully-wrought practice problems
illustrate meanings. Not skimpy outlines, not surveys, not usual classroom texts, these 204-
tolfssto-gage books are packed with the finest instruction you'll find anywhere for adult
self-study.

TEACH YOURSELF ALGEBRA, P. Abbott. Formulas, coordinates, factors, graphs of quadratic

functions, quadratic equations, logarithms, ratio, irrational numbers, arithmetical, geomet-

rical series, much more. 1241 problems, solutions. Tables. 52 illus. 307pp. 6% x 4Ya.
Clothbound $2.00

TEACH YOURSELF GEOMETRY, P. Abbott. Solids, lines, points, surfaces, angle measurement,
triangles, theorem of Pythagoras, polygons, loci, the circle, tangents, symmetry, solid geometry,
prisms, pyramids, solids of revolution, etc. 343 problems, solutions. 268 illus. 334pp.
67 X 4Ya. Clothbound $2.00

TEACH YOURSELF TRIGONOMETRY, P. Abbott. Geometrical foundations, indices, logarithms,
trigonometrical ratios, relations between sides, angles of triangle, circular measure, trig.
ratios of angles of any magnitude, much more. Requires elementary algebra, geometry.
465 problems, solutions. Tables. 102 illus. 204pp. 678 x 4Va. Clothbound $2.00

TEACH YOURSELF THE CALCULUS, P. Abbott. Variations in functions, differentiation, solids
of revolution, series, elementary differential equations, areas by integral calculus, much more.
Requires algebra, trigonometry. 970 problems, solutions. Tables. 89 illus. 380pp. 678 X 4Ya.

Clothbound $2.00

TEACH YOURSELF THE SLIDE RULE, B. Snodgrass. Fractions, decimals, A-D scales, log-log
scales, trigonometrical scales, indices, logarithms. Commercial, precision, electrical, dual-
istic, Brighton rules. 80 problems, solutions. 10 illus. 207pp. 678 X 4Ya. Clothbound $2.00

ARITHMETICAL EXCURSIONS: AN ENRICHMENT OF ELEMENTARY MATHEMATICS, H. Bowers and
J. Bowers. For students who want unusual methods of arithmetic never taught in school; for
adults who want to increase their number sense. Little known facts about the most simple
numbers, arithmetical entertainments and puzzles, figurate numbers, number chains, mysteries
and folklore of numbers, the ‘‘Hin-dog-abic’’ number system, etc. First publication. Index.
529 numbered problems and diversions, all with answers. Bibliography. 50 figures. xiv +
320pp. 538 x 8. T770 Paperbound $1.65

HOW DO YOU USE A SLIDE RULE? by A. A. Merrill. Not a manual for mathematicians and engin-
eers, but a lucid step-by-step explanation that presents the fundamental rules clearly engugh
to be understood by anyone who could benefit by the use of a siide rule in his work or
business. This work concentrates on the 2 most important operations: multiplication and
division. 10 easy lessons, each with a clear drawing, will save you countless hours in your
banking, business, statistical, and other work. First publication. Index. 2 Appendixes. 10
illustrations. 78 problems, all with answers. vi + 36pp. 618 X 9. 162 Paperbound 60¢

THE THEORY AND OPERATION OF THE SLIDE RULE, J. P. Ellis. Not a skimpy “‘instruction man-
ual”, but an exhaustive treatment that will save you hours throughout your career. Sup-
piies tull understanding ot every scale on the Log Log Duplex Decitrig type of slide rule.
Shows the most time-saving n.ethods, and provides practice useful in the widest variety of
actual engineering situations. Each operation introduced in terms ot underlying logarithmic
theory. Summary of prerequisite math. First publication. index. 198 figures. Over 450 prob-
lems with answers. Bibliography, 12 Appendices. ix + 289pp. 5% x 8.

§727 Paperbound $1.50



Catalogue of Dover Books

COLLEGE ALGEBRA, H. B. Fine. Standard college text that gives a systematic and deductive
structure to algebra; comprehensive, connected, with emphasis on theory. Discusses the
commutative, associative, and distributive laws of number in unusual detail, and goes on
with undetermined coefficients, quadratic equations, progressions, logarithms, permutations,
probability, power series, and much more. Still most valuable elementary-intermediate text
on the science and structure of algebra. Index. 1560 problems, all with answers. x + 631pp.
5% x 8. T211 Paperbound $2.50

COORDINATE GEOMETRY, L. P. Eisenhart. Thorough, unified introduction. Unusual for ad-
vancing in dimension within each topic (treats together circle, sphere; polar coordinates,
3-dimensional coordinate systems; conic sections, quadric surfaces), affording exceptional
insight into subject. Extensive use made of determinants, though no previous knowledge
of them is assumed. Algebraic equations of 1st degree, 2 and 3 unknowns, carried further
than usual in algebra courses. Over 500 exercises. Introduction. Appendix. Index. Bibliog-
raphy. 43 illustrations. 310pp. 534 x 8. S600 Paperbound $1.65

A TREATISE ON PLANE AND ADVANCED TRIGONOMETRY, E. W. Hobson. Extraordinarily wide
coverage, going beyond usual college level trig, one of the few works covering advanced
trig in full detail.” By a great expositor with unerring anticipation and lucid clarification
of potentially difficult points. Includes circular functions; expansion of functions of multiple
angle; trig tables; relations between sides and angles of triangle; complex numbers; etc.
Many problems solved completely. “The best work on the subject.”” Nature. Formerly entitled
“A Treatise on Plane Trigonometry.” 689 examples. 6 figures. xvi + 383pp. 53 x 8.

$353 Paperbound $2.25

FAMOUS PROBLEMS OF ELEMENTARY GEOMETRY, Felix Klein. Expanded version of the 1894
Easter lectures at Gottingen. 3 problems of classical geometry, in an excellent mathematical
treatment by a famous mathematician: squaring the circle, trisecting angle, doubling cube.
Considered with full modern implications: transcendental numbers, pi, etc. Notes by R. Archi-
bald. 16 figures. xi + 92pp. 538 x 8. T298 Paperbound $1.00

MONOGRAPHS ON TOPICS OF MODERN MATHEMATICS, edited by J. W. A. Young. Advanced
mathematics for persons who haven't gone beyond or have forgotten high school algebra.
9 monographs on foundation of geometry, modern pure geometry, non-Euclidean geometry,
fundamental propositions of algebra, algebraic equations, functions, calculus, theory of num-
bers, etc. Each monograph gives proofs of important results, and descriptions of leading
methods, to provide wide coverage. New introduction by Prof. M. Kiline, N. Y. University.
100 diagrams. xvi + 416pp. 6Ys x 914, §289 Paperbound $2.00

HIGHER MATHEMATICS FOR STUDENTS OF CHEMISTRY AND PHYSICS, J. W. Mellor. Not abstract,
but practical, building its problems out of familiar laboratory material, this covers differentiat
calculus, coordinate, analytical geometry, functions, integral calculus, infinite series,
numerical equations, differential equations, Fourier’s theorem, probability, theory of errors,
calculus of variations, determinants. “If the reader is not familiar with this book, it will
repay him to examine it,”” CHEM. & ENGINEERING NEWS. 800 problems. 189 figures. Bibliog-
raphy. xxi + 641pp. 53 x 8. $193 Paperbound $2.50

TRIGONOMETRY REFRESHER FOR TECHNICAL MEN, A. Albert Kiaf. 913 detailed questions and
answers cover the most important aspects of plane and spherical trigonometry. They will help
you to brush up or to clear up difficulties in special areas. The tirst portion of this book
covers plane trigonometry, inciuding angles, quadrants, trigonometrical functions, graphical
representation, interpolation, equations, logarithms, solution of triangle, use of the slide
rule and similar‘togics. 188 pages then discuss application of plane trigonometry to special
problems in navigation, surveying, elasticity, architecture, and various fields of engineering.
Small angles, periodic functions, vectors, polar coordinates, de Moivre’s theorem are fully
examined. The third section of the book then discusses spherical trigonometry and the
solution of spherical triangles, with their applications to terrestrial and astronomical prob-
lems. . Methods of saving time with numerical calculations, simplification of principal func-
tions of angle, much practical information make this a most useful book. 913 questions an-
swered. 1738 problems, answers to odd numbers. 494 figures. 24 pages of useful formulae,
functions. Index. x + 629pp. 53 x 8. T371 Paperbound $2.00

TEXTBOOK OF ALGEBRA, G. Chrystal. One of the great mathematical textbooks, still about the
best source for complete treatments of the topics of elementary algebra; a chief reference
work for teachers and students of algebra in advanced high school and university courses, or
for the mathematician working on problems of elementary algebra or looking for a background
to more advanced topics. Ranges trom basic faws and processes to extensive examination of
such topics as limits, infinite series, general properties of integral numbers, and probability
theory. Emphasis is on algebraic form, the foundation of analytical geometry and the key to
modern developments in algebra. Prior course in algebra is desirable, but not absolutely
necessary. Includes theory of quotients, distribution of products, arithmetical theory of surds,
theory of interest, permutations and combinations, general expansion theorems, recurring
fractions, and much, much more. Two volume set. Index in each volure. Over 1500 exercises,
approximately haif with answers. Total of xiviii + 1187pp. 538 x 8.
S750 Vol | Paperbound $2.35
§751 Vol |l Paperbound $2.35
The set $4.70
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MATHEMATICS—INTERMEDIATE TO ADVANCED

General

INTRODUCTION TO APPLIED MATHEMATICS, Francis D. Murnaghan. A practical and thoroughly
sound introduction to a number of advanced branches of higher mathematics. Among the
selected topics covered in detail are: vector and matrix analysis, partial and differential
equations, integral equations, calculus of variations, Laplace fransform theory, the vector
triple product, linear vector functions, quadratic and bilinear forms, Fourier series, spherical
harmonics, Bessel functions, the Heaviside expansion formula, and many others. Extremely
useful book for graduate students in physics, engineering, chemistry, and mathematics.
Index. 111 study exercises with answers. 41 illustrations. ix + 389pp. 53 x 8%.

$1042 Paperbound $2.25

OPERATIONAL METHODS IN APPLIED MATHEMATICS, H. S. Carslaw and J. C. Jaeger. Explana-
tion of the application of the Laplace Transformation to differential equations, a simple and
effective substitute for more difficult and obscure operational methods. Of great practical
value to engineers and to all workers in applied mathematics. Chapters on: Ordinary Linear
Differential Equations with Constant Coefficients;; Electric Circuit Theory; Dynamical Appli-
cations; The Inversion Theorem for the Laplace Transformation; Conduction of Heat; Vibra-
tions of Continuous Mechanical Systems; Hydrodynamics; |mpulsive Functions; Chains of
Differential Equations; and other related matters.” 3 appendices. 153 problems, many with
answers. 22 figures. xvi -+ 359pp. 53 x 8%a. S1011 Paperbound $2.25

APPLIED MATHEMATICS FOR RADIO AND COMMUNICATIONS ENGINEERS, C. E. Smith, No
extraneous material herel—only the theories, equations, and operations essential and im-
mediately useful for radio work. Can be used as refresher, as handbook of applications and
tables, or as full home-study course. Ranges from simplest arithmetic through calculus, series,
and wave forms, hyperbolic trigonometry, simultaneous equations in mesh circuits, etc.
Supplies applications right along with each math topic discussed. 22 useful tables of func-
tions, formulas, fogs, etc. Index. 166 exercises, 140 examples, all with answers. 95 diagrams.
Bibliography. x + 336pp. 538 x 8. S141 Paperbound $1.75

Aigebra, group theory, determinants, sets, matrix theory

ALGEBRAS AND THEIR ARITHMETICS, L. E. Dickson. Provides the foundation and background
necessary to any advanced undergraduate or graduate student studying abstract algebra.
Begins with elementary introduction to linear transformations, matrices, field of complex
numbers; proceeds to order, basal units, modulus, quaternions, etc.; develops calculus of
linears sets, describes various examples of algebras including invariant, difference, nilpotent,
semi-simple. ‘‘Makes the reader marvel at his genius for clear and prot'ound analysis,”’ Amer.
Mathematical Monthly. Index. xii + 241pp. 53 x 8. S616 Paperbound $1.50

THE THEORY OF EQUATIONS WITH AN INTRODUCTION TO THE THEORY OF BINARY ALGEBRAIC
FORMS, W. S. Burnside and A. W. Panton. Extremely thorough and concrete discussion of the
theory of equations, with extensive detailed treatment of many topics curtailed jn later texts.
Covers theory of algebraic equations, properties of polynomials, symmetric functions, derived
functions, Horner’s process, complex numbers and the complex variable, determinants and
methods of elimination, invariant theory (nearly 100 pages), transformations, introduction to
Galois theory, Abelian equations, and much more. Invaluable supplementary work for modern
students and teachers. 759 examples and exercises. Index in each volume. Two volume set.
Total of xxiv + 604pp. 538 x 8. S714 Vol | Paperbound $1.85
$§715 Vol Il Paperbound $1.85

The set $3.70

COMPUTATIONAL METHODS OF LINEAR ALGEBRA, V. N. Faddeeva, translated by C. D. Benster.
First English translation of a unigue and valuable work, the only work in English present-
ing a systematic exposition of the most important methods of linear algebra—classical
and contemporary. Shows in detail how to derive numerical solutions of problems in mathe-
matical physics which are frequently connected with those of linear algebra. Theory as well
as individual practice. Part | surveys the mathematical background that is indispensable
to what follows. Parts Il and Ill, the conclusion, set forth the most important methods
of solution, for both exact and iterative groups. One of the most outstanding and valuable
features of this work is the 23 tables, double and triple checked for accuracy. These tables
will not be found elsewhere. Author’s preface. Translator’s note. New bibliography and
index. x + 252pp. 538 x 8. S424 Paperbound $2.00

ALGEBRAIC EQUATIONS, E. Dehn. Careful and complete presentation of Galois’ theory of alge-
braic equations; theories of Lagrange and Galois developed in logical rather than historical
form, with a more thorough exposition than in most modern books. Many concrete applica-
tions and fully-worked-out examples. Discusses basic theory (very clear exposition of the
symmetric group); isomorphic, transitive, and Abelian groups; applications of Lagrange's and
Galois’ theories; and much more. Newly revised by the author. Index. List of Theorems.
xi + 208pp. 538 x 8. S697 Paperbound $1.45
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ALGEBRAIC THEORIES, L. E. Dickson. Best thorough introduction to classical topics in higher
algebra develops theories centering around matrices, invariants, groups. Higher algebra,
Galois theory, finite linear groups, Klein's icosahedron, algebraic invariants, linear trans-
formations, elementary divisors, invariant factors; quadratic, bi-linear, Hermitian forms,
singly and in pairs. Proofs rigorous, detailed; topics developed lucidly, in close connection
with their most frequent mathematical applications. Formerly ‘“Modern Algebraic Theories.”
155 problems. Bibliography. 2 indexes. 285pp. 53 x 8. $547 Paperbound $1.50

LECTURES ON THE ICOSAHEDRON AND THE SOLUTION OF EQUATIONS OF THE FIFTH DEGREE,
Felix Klein. The solution of quintics in terms of rotation of a regular icosahedron around its
axes of symmetry. A classic & indispensable source for those interested in higher algebra,
geometry, crystallography. Considerable explanatory material included. 230 footnotes, mostly
bibliographic. 2nd edition, xvi + 289pp. 538 x 8. S$314 Paperbound $2.25

LINEAR GROUPS, WITH AN EXPOSITION OF THE GALOIS FIELD THEORY, L. E. Dickson. The
classic exposition of the theory of groups, well within the range of the graduate student.
Part | contains the most extensive and thorough presentation of the theory of Galois Fields
available, with a wealth of examples and theorems. Part Il is a full discussion of linear
groups of finite order. Much material in this work is based on Dickson’s own contributions.
Also includes expositions of Jordan, Lie, Abel, Betti-Mathieu, Hermite, etc. ‘“A milestone
in the development of modern algebra,” W. Magnus, in his historical introduction to this
edition. Index. xv + 312pp. 53 x 8. $482 Paperbound $1.95

INTRODUCTION TO THE THEORY OF GROUPS OF FINITE ORDER, R. Carmichael. Examines funda-
mental theorems and their application. Beginning with sets, systems, permutations, etc., it
progresses in easy stages through important types of groups: Abelian, prime power, per-
mutation, etc. Except 1 chapter where matrices are desirable, no higher math needed. 783
exercises, problems. Index. xvi <4 447pp. 53 x 8. S$300 Paperbound $2.25

THEORY OF GROUPS OF FINITE ORDER, W. Burnside. First published some 40 years ago,
this is still one of the clearest introductory texts, Partial contents: permutations, groups
independent of representation, composition series of a group, isomorphism of a group with
itself, Abelian groups, prime power groups, permutation groups, invariants of groups of linear
substitution, graphical representation, etc. 45pp. of notes. Indexes. xxiv + 512pp. 53 X 8.

$38 Paperbound $2.75

CONTINUGUS GROUPS OF TRANSFORMATIONS, L. P. Eisenhart. Intensive study of the theory and
geometrical applications of continuous groups of transformations; a standard work on the
subject, called forth by the revolution in physics in the 1920's. Covers tensor analysis,
Riemannian geometry, canonical parameters, transitivity, imprimitivity, differential invariants,
the algebra of constants of structure, differential geometry, contact transformations, etc.
“Likely to remain one of the standard works on the subject for many years . . . principal
theorems are proved clearly and concisely, and the arrangement of the whole is coherent,”
MATHEMATICAL GAZETTE. Index. 72-item bibliography. 185 exercises. ix + 301pp. 53 x 8.
$781 Paperbound $2.00

THE THEORY OF GROUPS AND QUANTUM MECHANICS, H. Weyl. Discussions of Schroedinger’s
wave equation, de Broglie’s waves of a particle, Jordan-Hoelder theorem, Lie's continuous
groups of transformations, Pauli exclusion principle, quantization of Maxwell-Dirac field
equations, etc. Unitary geometry, quantum theory, groups, application of groups to quantum
mechanics, symmetry” permutation group, algebra of symmetric transformation, etc. 2nd
revised edition. Bibliography. Index. xxii + 422pp. 53% x 8. S269 Paperbound $2.35

APPLIED GROUP-THEORETIC AND MATRIX METHODS, Bryan Higman. The first systematic
treatment of group and matrix theory for the physical scientist. Contains a comprehensive,
easily-followed exposition of the basic ideas of group theory (realized through matrices) and
its applications in the various areas of physics and chem.stry: tensor analysis, relativity,
quantum theory, molecular structure and spectra, and Eddington’s quantum relativity.
Includes rigorous proofs available only in works of a far more advanced character. 34
figures, numerous tables. Bibliography. Index. xiii + 454pp. 5% x 8%.

$1147 Paperbound $3.00

THE THEORY OF GROUP REPRESENTATIONS, Francis D. Murnaghan. A comprehensive intro-
duction to the theory of group representations. Particular aftention is devoted to those
groups—mainly the symmetric and rotation groups—which have proved to be of funda-
mental significance for quantum mechanics (esp. nuclear physics). Also a valuable contribu-
tion to the literature on matrices, since the usual representations of groups are groups of
matrices. Covers the theory of group integration (as developed by Schur and Weyl), the
theory of 2-valued or spin representations, the representations of the symmetric group, the
crystallographic groups, the Lorentz group, reducibility (Schur’s lemma, Burnside’s Theorem,
etc.), the alternating group, linear groups, the orthogonal group, etc. Index. List of refer-
ences. Xi + 369pp. 538 x 8V%. S$1112 Paperbound $2.35

THEORY OF SETS, E. Kamke. Clearest, amplest introduction in English, well suited for inde-
pendent study. Subdivision of main theory, such as theory of sets of points, are discussed,
but emphasis is on general theory. Partial contents: rudiments of set theory, arbitrary sets
and their cardinal numbers, ordered sets and their order types, well-ordered sets and their
cardinal numbers. Bibliography. Key to symbols. Index. vii + 144pp. 53 x 8.

$141 Paperbound $1.35
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THEQRY AND APPLICATIONS OF FINITE GROUPS, G. A. Miller, H. F. Blichfeldt, L. E. Dickson.
Unusually accurate and authoritative work, each section prepared by a leading specialist:
Miller on substitution and abstract groups, Blichfeldt on finite groups of linear homogeneous
transformations, Dickson on applications of finite groups. Unlike more modern works, this gives
the concrete basis from which abstract group theory arose. Includes Abelian groups, prime-
ower groups, isomorphisms, matrix forms of linear transformations, Sylow groups, Galois'
heory of algebraic equations, duplication of a cube, trisection of an angle, etc. 2 Indexes.
267 problems. xvii + 390pp. 5% x 8. $216 Paperbound $2.00

THE THEORY OF DETERMINANTS, MATRICES, AND INVARIANTS, H. W. Turnbuil. Important
study includes all salient features and major theories. 7 chapters on determinants and
matrices cover fundamental properties, Laplace identities, multiplication, linear equations,
rank and differentiation, etc. Sections on invariants gives general properties, symbolic and
direct methods of reduction, binary and polar forms, general linear transtormation, first
fundamental theorem, muitilinear forms. Following chapters study development and proof
of Hilbert’s Basis Theorem, Gordan-Hilbert Finiteness Theorem, Clebsch’s Theorem, and
include discussions of apolarity, canonical forms, geometrical interpretations of algebraic
forms, complete system of the general quadric, etc. New preface and appendix. Bibliography.
xviit + 374pp. 53 x 8. S$699 Paperbound $2.25

AN INTRODUCTION TO THE THEORY OF CANONICAL MATRICES, H. W. Turnbull and A. C. Aitken.
All principal aspects of the theory of canonical matrices, from definitions and fundamental
properties of matrices to the practical applications of their reduction to canonical form.
Beginning with matrix multiplications, reciprocals, and partitioned matrices, the authors go
on to elementary transformations and bilinear and quadratic forms. Also covers such topics
as a rational canonical form for the collineatory group, congruent and conjunctive transfor-
mation for quadratic and hermitian forms, unitary and orthogonal transformations, canonical
reduction of pencils of matrices, etc. Index. Appendix. Historical notes at chapter ends.
Bibliographies. 275 problems. xiv + 200pp. 5% x 8. S177 Paperbound $1.55

A TREATISE ON THE THEORY OF DETERMINANTS, T. Muir. Unequalled as an exhaustive compila-
tion of nearly all the known facts about determinants up to the early 1930's. Covers notation
and general properties, row and column transformation, symmetry, compound determinants,
adjugates, rectangular arrays and matrices, linear dependence, gradients, Jacobians, Hessians,
Wronskians, and much more. Invaluable for libraries of industrial and research organizations
as well as for student, teacher, and mathematician; very useful in the field of computing
machines. Revised and enlarged by W. H. Metzler. Index. 485 problems and scores of numeri-
cal examples. iv 4+ 766pp. 53 x 8. S670 Paperbound $3.00

THEORY OF DETERMINANTS IN THE HISTORICAL ORDER OF DEVELOPMENT, Sir Thomas Muir.
Unabridged reprinting of this complete study of 1,859 papers on determinant theory written
between 1693 and 1900. Most important and original sections reproduced, valuable com-
mentary on each. No other work is necessary for determinant research: all types are covered—
each subdivision of the theory treated separately; all papers dealing with each type are
covered; you are told exactly what each paper is about and how important its contribution is.
Each result, theory, extension, or modification is assigned its own identifying numeral so that
the full history may be more easily followed. Includes papers on determinants in general,
determinants and linear equations, symmetric determinants, alternants, recurrents, determi-
nants having invariant factors, and all other major types. ‘A model of what such histories
ought to be,” NATURE. “Mathematicians must ever be grateful to Sir Thomas for his monu-
mental work,” AMERICAN MATH MONTHLY. Four volumes bound as two. Indices. Bibliog-
raphies. Total of Ixxxiv + 1977pp. 538 x 8. S672-3 The set, Clothbound $12.50

Calculus and function theory, Fourier theory, infinite series, calculus of
variations, real and complex functions

FIVE VOLUME “THEORY OF FUNCTIONS’ SET BY KONRAD KNOPP

This five-volume set, prepared by Konrad Knopp, provides a complete and readily followed
account of theory of functions. Proofs are given concisely, yet without sacrifice of complete-
ness or rigor. These volumes are used as texts by such uniwversities as M.L.T., University of
Chicago, N. Y. City College, and many others. ‘‘Excellent introduction . . . remarkably
readable, concise, clear, rigorous,” JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION.

ELEMENTS OF THE THEORY OF FUNCTIONS, Konrad Knopp. This book provides the student
with background for further volumes in this set, or texts on a similar ievel. Partial contents:
foundations, system of complex numbers and the Gaussian plane of numbers, Riemann
sphere of numbers, mapping by linear functions, normat forms, the logarithm, the cyclometric
functions and binomial series. “Not only for the young student, but also for the student
who knows all about what is in it,” MATHEMATICAL JOURNAL. Bibliography. Index. 140pp.
5% x 8. S$154 Paperbound $1.50

THEORY OF FUNCTIONS, PART |, Konrad Knopp. With volume (I, this book provides coverage
of basic concepts and theorems. Partial contents: numbers and points, functions of a com-
plex variable, integral of a continuous function, Cauchy’s integral theorem, Cauchy’s integral
formulae, series with variable terms, expansion of anaiytic functions in power series, analytic
continuation and complete definition of analytic functions, entire transcendental functions,
Laurent expansion, types of singularities. Bibliography. Index. vii + 146pp. 53 X 8.

S156 Paperbound $1.35
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THEORY OF FUNCTIONS, PART I, Konrad Knopp. Application and further development of
general theory, special topics. Single valued functions, entire, Weierstrass, Meromorphic
functions. Riemann surfaces. Afgebraic functions. Analytical configuration, Riemann surface.
Bibliography. Index. x + 150pp. 53 x 8. S157 Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 1, Konrad Knopp. Problems in ele-
mentary theory, for use with Knopp’s THEORY OF FUNCTI NS, or any other text, arranged
according to increasing difficulty. Fundamental concepts, sequences of numbers and infinite
series, complex variable, integral theorems, development in series, conformal mapping. 182
problems. Answers. viii | 126pp. 53 x 8. 8158 Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 2, Konrad Knopp. Advanced theory
of functions, to be used either with Knopp’s THEORY OF FUNCTIONS, or any other com-
parable text. Singularities, entire & meromorphic functions, periodic, analytic, continuation,
multiple-valued functions, Riemann surfaces, conformal mapping. Includes a section of addi-
tional elementary problems. “The difficult task of selecting from the immense material of the
modern theory of functions the problems just within the reach of the beginner is here
masterfully accomplished,” AM. MATH. SOC. Answers. 138pp. 53 x 8. S159 Paperbound $1.35

A COURSE IN MATHEMATICAL ANALYSIS, Edouard Goursat. Trans. by E. R. Hedrick, 0. Dunkel,

Classic study of fundamental material thoroughly treated. Exceptionally lucid exposition of

wide range of subject matter for student with 1 year of calculus. Vol. 1: Derivatives and

Differentials, Definite Integrals, Expansion in Series, Applications to Geometry. Problems.

Index, 52 illus. 556pp. Vol. 2, Part I: Functions of a Complex Variable, Conformal Repre-

sentations, Doubly Periodic Functions, Natural Boundaries, etc. Problems. Index. 38 illus.

269pp. Vol. 2, Part 2: Differential Equations, Cauchy-Lipschitz Method, Non-linear Differential
Equations, Simultaneous Equations, etc. Problems. Index. 308pp. 538 x 8.

Vol. 1 $554 Paperbound $2.50

Vol. 2 part 1 S555 Paperbound $1.85

Vol. 2 part 2 $556 Paperbound $1.85

3 vol. set $6.20

MODERN THEORIES OF INTEGRATION, H. Kestelman. Connected and concrete coverage, with
fully-worked-out proofs for every step. Ranges from elementary definitions through _theary
of aggregates, sets of points, Riemann and Lebesgue integration, and much more. This new
revised and enlarged edition contains a new chapter on Riemann-Stieltjes integration, as well
as a supplementary section of 186 exercises. Ideal for the mathematician, student, teacher,
or self-studier. Index of Definitions and Symbols. General Index. Bibliography. x -+ 310pp.
5 X 8%, §572 Paperbound $2.25

THEORY OF MAXIMA AND MINIMA, H. Hancock. Fullest treatment ever written; only work in
English with extended discussion of maxima and minima for functions of 1, 2, or n variables,
problems with subsidiary constraints, anu relevant quadratic forms. Detailed proof of each
important theorem. Covers the Scheeffer and von Dantscher theories, homogeneous quadratic
forms, reversion of series, fallacious establishment of maxima and minima, etc. Unsurpassed
treatise for advanced students of calculus, mathematicians, economists, statisticians. Index.
24 diagrams. 39 problems, many examples. 193pp. 53 x 8. $665 Paperbound $1.50

AN ELEMENTARY TREATISE ON ELLIPTIC FUNCTIONS, A. Cayley. Still the fullest and clearest
text on the theories of Jacobi and Legendre for the advanced student (and an excellent
supplement for the beginner). A masterpiece of exposition by the great 19th century British
mathematician (creator of the theory of matrices and abstract geometry), it covers the
addition-theory, Landen’s theorem, the 3 kinds of elliptic integrals, transformations, the
g-functions, reduction of a differential expression, and much more. Index. xii + 386pp. 53 x 8.

$728 Paperbound $2.00

THE APPLICATIONS OF ELLIPTIC FUNCTIONS, A. G. Greenhill. Modern books forego detail for
sake of brevity—this book offers complete exposition necessary for proper understanding,
use of elliptic integrals. Formulas developed from definite physical, geometric problems;
examples representative enough to offer basic information in widely useable form. Elliptic
integrals, addition theorem, algebraical form of addition theorem, elliptic integrais of 2nd,
3rd kind, double periodicity, resolution into factors, series, transformation, etc. Introduction.
Index. 25 illus: xi + 357pp. 53& x 8. $603 Paperbound $1.75

THE THEORY OF FUNCTIONS OF REAL VARIABLES, James Pierpont. A 2-volume authoritative
exposition, by one of the foremost mathematicians of his time. Each theorem stated with
all conditions, then followed by proof. No need to go through complicated reasoning to dis-
cover conditions added without specific mention. Includes a particularly complete, rigorous
presentation of theory of measure; and Pierpont’s own work on a theory of Lebesgue
integrals, and treatment of area of a curved surface. Partial contents, Vol. 1: rational
numbers, exponentials, logarithms, point aggregates, maxima, minima, proper integrals,
improper integrals, multiple proper integrals, continuity, discontinuity, indeterminate forms.,
Vol. 2: point sets, proper integrals, series, power series, aggregates, ordinal numbers,
discontinuous functions, sub-, infra-uniform convergence, much more. Index. 95 illustrations.
1229pp. 5345 x 8. $558-9, 2 volume set, paperbound $5.20
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FUNCTIONS OF A COMPLEX VARIABLE, James Pierpont. Long one of best in the field. A
thorough treatment of fundamental elements, concepts, theorems. A complete study, rigor-
ous, detailed, with carefully selected problems worked out to illustrate each topic. Partial
contents: arithmetical operations, real term series, positive term series, exponential functions,
integration, analytic functions, asymptotic expansions, functions of Weierstrass, Legendre,
etc. Index. List of symbols. 122 illus. 597pp. 535 x 8. $560 Paperbound $2.45

MODERN OPERATIONAL CALCULUS: WITH APPLICATIONS IN TECHNICAL MATHEMATICS, N. W.
MclLachlan, An introduction to modern operational calculus based upon the Laplace trans-
form, applying it to the solution of ordinary and partial differential equations. For physi-
cists, engineers, and applied mathematicians. Partial contents: Laplace transform, theorems
or rules of the operational calculus, solution of ordinary ana partial linear differential
equations with constant coefficients, evaluation of integrals and establishment of mathe-
matical relationships, derivation of Laplace transforms of various functions, etc. Six appen-
dices deal with Heaviside's unit function, etc. Revised edition. Index. Bibliography. xiv +
218pp. 53 x 8. S$192 Paperbound $1.75

ADVANCED CALCULUS, E. B. Wilson. An unabridged reprinting of the work which continues
to be recognized as one of the most comprehensive and useful texts in the field. It contains
an immense amount of well-presented, fundamental material, including chapters on vector
functions, ordinary differential equations, special functions, calculus of variations, etc,,
which are excellent introductions to these areas. For students with only one year of cal-
culus, more than 1300 exercises cover both pure math and applications to engineering
and physical problems. For engineers, physicists, etc., this work, with its 54 page intro-
ductory review, is the ideal reference and refresher. Index. ix + 566pp. 538 x 8.

§504 Paperbound $2.45

ASYMPTOTIC EXPANSIONS, A. Erdélyi. The only modern work available in English, this is an
unabridged reproduction of a monograph prepared for the Office of Naval Research. It dis-
cusses various procedures for asymptotic evaluation of integrals containing a large parameter
and solutions of ordinary linear differential equations. Bibliography of 71 items. vi + 108pp.
3% X 8. $318 Paperbound $1.35

INTRODUCTION TO ELLIPTIC FUNCTIONS: with applications, F. Bowman. Concise, practical
introduction to elliptic integrals and functions. Beginning with the familiar trigonometric
functions, it requires nothing more from the reader than a knowledge of basic principles
of differentiation and_integration. Discussion confined to the Jacobian functions. Eniarged
bibliography. Index. 173 problems and examples. 56 figures, 4 tables. 115pp. 53 x 8.

§$922 Paperbound $1.50

ON RIEMANN'S THEORY OF ALGEBRAIC FUNCTIONS AND THEIR INTEGRALS: A SUPPLEMENT
TO THE USUAL TREATISES, Felix Klein. Kiein demonstrates how the mathematical ideas in
Riemann’s work on Abelian integrals can be arrived at by thinking in terms of the flow
of electric current on surfaces. Intuitive explanations, not detailed proofs given in an
extremely clear exposition, concentrating on the kinds of functions which can be defined
on Riemann surfaces. Also useful as an introduction to the origins of topological problems.
Complete and unabridged. Approved translation by Frances Hardcastle. New introduction.
43 figures. Glossary. xii + 76pp. 53 x 82, S$1072 Paperbound $1.25

COLLECTED WORKS OF BERNHARD RIEMANN. This important source book is the first to con-
tain the complete text of both 1892 Werke and the 1902 supplement, unabridged. It contains
31 monographs, 3 complete lecture courses, 15 miscellaneous papers, which have been of
enormous importance in relativity, topology, theory of complex variables, and other areas
of mathematics. Edited by R. Dedekind, H. Weber, M. Noether, W. Wirtinger. German text.
English introduction by Hans Lewy. 690pp. 53 x 8. §226 Paperbound $3.75

THE TAYLOR SERIES, AN INTRODUCTION TO THE THEORY OF FUNCTIONS OF A COMPLEX
VARIABLE, P. Dienes. This book investigates the entire reaim of analytic functions. Only
ordinary calculus is needed, except in the last two chapters. Starting with an introduction
to real variables and complex algebra, the properties of infinite series, elementary func-
tions, complex differentiation and integration are carefully derived. Also biuniform mapping,
a thorough two part discussion of representation and_singularities of analytic functions,
overconvergence and gap theorems, divergent series, Taylor series on its circle of con-
vergence, divergence and singularities, etc. Unabridged, corrected reissue of first_edition.
Preface and index. 186 examples, many fully worked out. 67 figures. Xii_+ 555pp. 53 x 8.

$391 Paperbound $2.75

INTRODUCTION TO BESSEL FUNCTIONS, Frank Bowman. A rigorous self-contained exposition
providing all necessary material during the development, which requires only some knowi-
edge of calculus and acquaintance with differential equations. A balanced presentation
including applications and practical use. Discusses Bessel Functions of Zero Order, of Any
Real Order; Modified Bessel Functions of Zero Order; Definite Integrals; Asymptotic Expan-
sions; Bessel’s Solution to Kepler’s Problem; Circular Membranes; much more. ‘‘Clear and
straightforward . . . useful not only to students of physics and engineering, but to mathe-
matical students in general,”” Nature. 226 problems. Short tables of Bessel functions. 27
figures. Index. x + 135pp. 538 x 8. S462 Paperbound $1.50
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ELEMENTS OF THE THEORY OF REAL FUNCTIONS, J. E. Littlewood. Based on lectures given at
Trinity College, Cambridge, this book has fproved to be extremely successful in introducing
graduate students to the modern theory of functions. It offers a full and concise coverage
of classes and cardinal numbers, well-ordered series, other_types of series, and elemen
of the theory of sets of points. 3rd revised edition. vii + 71pp. 536 x 8.

S171 Ciothbound $2.85
8172 Paperbound $1.25

TRANSCENDENTAL AND ALGEBRAIC NUMBERS, A. 0. Gelfond. First English transiation of work
by leading Soviet mathematician. Thue-Siegel theorem, its p-adic analogue, on approximation
of algebraic numbers by numbers in fixed algebraic field; Hermite-Lindemann theorem on
transcendency of Bessel functions, solutions of other differential equations; Gelfond-Schneider
theorem on transcendency of alpha to power beta; Schneider's work on elliptic functions,
with method developed by Gelfond. Translated by L. F. Boron. Index. Bibliography. 200pp.
535 x 8. S$615 Paperbound $1.75

ELLIPTIC INTEGRALS, H. Hancock. Invaluable in work involving differential equations contain-
ing cubics or quartics under the root sign, where elementary calculus methods are inade-
quate. Practical solutions to problems that occur in mathematics, engineering, physics:
differential equations requiring integration of Lamé’s, Briot's, or Bouquet's equations; deter-
mination of arc of ellipse, hyperbola, lemniscate; solutions of problems in elastica; motion
of a projectile under resistance varying as the cube of the velocity; pendulums; many
others. Exposition is in accordance with Legendre-Jacobi theory and includes rigorous dis-
cussion of Legendre transformations. 20 figures. 5 place table.” Index. 104pp. 5% x 8.
$484 Paperbound $1.25

LECTURES ON THE THEORY OF ELLIPTIC FUNCTIONS, H. Hancock. Reissue of the only book
in English with so extensive a coverage, especially of Abel, Jacobi, Legendre, Weierstrasse,
Hermite, Liouville, and Riemann. Unusual fuliness of treatment, plus applications as well as
theory, in discussing elliptic function (the universe of elliptic integrals originating in works
of Abel and Jacobi), their existence, and ultimate meaning. Use is made of Riemann to
provide the most general theory. 40 page table of formulas. 76 figures. xxiii + 498pp.

S483 Paperbound $2.55

THE THEGRY AND FUNCTIONS OF A REAL VARIABLE AND THE THEORY OF FOURIER'S SERIES,
E. W. Hobson. One of the best introductions to set theory and various aspects of functions
and Fourier’s series. Requires only a good background in calculus. Provides an exhaustive
coverage of: metric and descriptive properties of sets of points; transfinite numbers and
order types; functions of a real variable; the Riemann and Lebesgue integrals; sequences
and series of numbers; power-series; functions representable by series sequences of continuous
functions; trigonometrical series; representation of functions by Fourier's series; complete
exposition (200pp.) on set theory; and much more. ‘‘The best possible guide,” Nature. Vol, I:
88 detailed examples, 10 figures. Index. xv + 736pp. Vol, II: 117 detailed examples, 13
figures. Index. x + 780pp. 618 X 9Va. Vol. |: S387 Paperbound $3.50

Vol. Il: S388 Paperbound $3.00

ALMOST PERIODIC FUNCTIONS, A. S. Besicovitch. This unique and important summary by a
well-known mathematician covers in detail the two stages of development in Bohr's theory of
almost periodic functions: (1) as aéeneralization of pure periodicity, with results “and
proofs; (2) the work done by Stepanoff, Wiener, Weyl, and Bohr in generalizing the theory.
Bibliography. xi + 180pp. 538 x 8. S18 Paperbound $1.75

THE ANALYTICAL THEORY OF HEAT, Joseph Fourier. This book, which revolutionized mathe-
matical physics, is listed in the Great Books program, and many other [istings of great-
books. It has been used with profit by generations of mathematicians and physicists who are-
interested in either heat or in the “application of the Fourier integral. Covers cause and
reflection of rays of heat, radiant heating, heating of closed spaces, use of trigonometric
series in the theory of heat, Fourier integral, etc. Translated by Alexander Freeman. 20
figures. xxii + 466pp. 535 x 8. §93 Paperbound $2.50

AN INTRODUCTION TO FOURIER METHODS AND THE LAPLACE TRANSFORMATION, Philip Franklin.
Concentrates upon essentials, enabling the reader with only a working knowledge of calculus
to gain an understanding of Fourier methods in a broad sense, suitable for most applica-
tions. This work covers complex qualities with methods of computing elementary functions
for complex values of the argument and finding approximations by the use of charts;
Fourier series and integrals with half-range and complex Fourier series; harmonic analysis;
Fourier and Laplace transformations, etc.; partial differential equations with applications to
transmission of electricity; etc. The methods developed are related to physical probiems of
heat flow, vibrations, electrical transmission, electromagnetic radiation, etc. 828 problems
with answers. Formerly entitled “Fourier Methods.”” Bibliography. Index. x + 289pp. 53 x 8.

§452 Paperbound $2.00

THE FOURIER INTEGRAL AND CERTAIN OF ITS APPLICATIONS, Norbert Wiener. The only book-
length study of the Fourier integral as link between pure and applied math. An expansion
of lectures given at Cambridge. Partial contents: Plancherel’s theorem, general Tauberian
theorem, special Tauberian theorems, generalized harmonic analysis. Bibliography. viii +
201pp. 5% X 8. 5272 Paperbound $1.50
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INTRODUCTION TO THE DIFFERENTIAL EQUATIONS OF PHYSICS, L. Hopf. Especially valuable
to the engineer with no math beyond elementary calculus. Emphasizing intuitive rather than
format aspects of concepts, the author covers an extensive territory. Partial contents: Law
of causality, energy theorem, damped oscillations, coupling by friction, cylindrical and
spherical coordinates, heat source, etc. Index. 48 figures. 160pp. 53 x 8.

§120 Paperbound $1.35

INTRODUCTION TO THE THEORY OF LINEAR DIFFERENTIAL EQUATIONS, E. G. Poole. Authorita-
tive discussions of important topics, with methods of solution more detailed than usual, for
students with background of elementary course in differential equations. Studies existence
theorems, linearly independent solutions; equations with constant coefficients; with uniform
analytic coefficients; regular singularities; the hypergeometric equation; conformal repre-
sentation; etc. Exercises. Index. 210pp. 538 x 8. $629 Paperbound $1.65

DIFFERENTIAL EQUATIONS FOR ENGINEERS, P. Franklin. Outgrowth of a course given 10
years at M. I. T. Makes most useful branch of pure math accessible for practical work.
Theoretical basis of D.E.’s; solution of ordinary D.E.'s and partial derivatives arising from
heat flow, steady-state temperature of a plate, wave equations; analytic functions; con-
vergence of Fourier Series. 400 problems on electricity, vibratory systems, other topics.
Formerly ‘Differential Equations for Electrical Engineers.” Index 41 iilus. 307pp. 53 x 8.

S$601 Paperbound $1.65

DIFFERENTIAL EQUATIONS, F. R. Moulton. A detailed, rigorous exposition of all the non-
elementary processes of solving ordinary differential equations. Several chapters devoted to
the treatment of practical prohlems, especially those of a physical nature, which are far
more advanced than problems usually given as illustrations. Includes analytic differential
equations; variations of a paramster; integrals of differential equations; analytic implicit
functions; problems of elliptic motion; sine-amplitude functions; deviation of formal bodies;
Cauchy-Lipschitz process; linear differential equations with periodic coefficients; differential
equations in infinitely many variations; much more. Historical notes. 10 figures. 222 prob-
lems. Index. xv + 395pp. 538 x 8. S$451 Paperbound $2.00

DIFFERENTIAL AND INTEGRAL EQUATIONS OF MECHANICS AND PHYSICS (DIE DIFFERENTIAL-
UND INTEGRALGLEICHUNGEN DER MECHANIK UND PHYSIK), edited by P. Frank and R. von
Mises. Most comprehensive and authoritative work on the mathematics of mathematical
physics available today in the United States: the standard, definitive reference for teachers,
hysicists, engineers, and mathematicians—now published (in the original German) at a rela-
‘Fively inexpensive price for the first time! Every chapter in this 2,000-page set is by an
expert in his field: Carathéodory, Courant, Frank, Mises, and .a dozen others. Vol {, on
mathematics, gives concise but complete coverages of advanced calculus, differential equa-
tions, integral equations, and potential, and partial differential equations. Index. xxiii +
916pp. Vol. Il (physics): classical mechanics, optics, continuous mechanics, heat conduction
and diffusion, the stationary and quasi-stationary electromagnetic field, electromagnetic
oscillations, and wave mechanics. Index. xxiv + 1106pp. Two volume set. Each volume avail-
able separately. 536 x 83s. $787 Vol | Clothbound $7.50
S788 Vol Il Clothbound $7.50

The set $15.00

LECTURES ON CAUCHY’S PROBLEM, J. Hadamard. Based on lectures given at Columbia, Rome,
this discusses work of Riemann, Kirchhoff, Volterra, and the author’s own research on the
hyperbolic case in linear partial differential equations. It extends spherical and cylindrical
waves to apply to all (normal) hyperbolic equations. Partial contents: Cauchy’s probiem,
fundamental formula, equations with odd number, with even number of independent var-
iables; method of descent. 32 figures. Index. iii + 316pp. 53 x 8. $105 Paperbound $1.75

THEORY OF DIFFERENTIAL EQUATIONS, A. R. Forsyth. Out of print for over a decade, the
complete 6 volumes (now bound as 3) of this monumental work represent the most com-
prehensive treatment of differential equations ever written. Historical presentation includes
in 2500 pages every substantial development. Vol. 1, 2: EXACT EQUATIONS, PFAFF’S
PROBLEM; ORDINARY "EQUATIONS, NOT LINEAR: methods of Grassmann, Clebsch, Lie, Dar-
boux; Cauchy’s theorem; branch points; etc. Vol. 3, 4: ORDINARY EQUATIONS, NOT LINEAR;
ORDINARY LINEAR EQUATIONS: Zeta Fuchsian functions, general theorems on algebraic
integrals, Brun’s theorem, equations with uniform periodic coffiecients, etc. Vol. 4, 5:
PARTIAL DIFFERENTIAL EQUATIONS: 2 existence-theorems, equations of theoretical dynamics,
Laplace transformations, general transformation of equations of the 2nd order, much more.
Indexes. Total of 2766pp. 538 x 8. §576-7-8 Clothbound: the set $15.00

PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS, A. G. Wehster. A keystone
work in the library of every mature physicist, engineer, researcher. Valuable sections on
elasticity, compression theory, potential theory, theory of sound, heat conduction, wave
propagation, vibration theory. Contents include: deduction of differential equations, vibra-
tions, normal functions, Fourier’s series, Cauchy’s method, boundary problems, method of
Riemann-Volterra. Spherical, cylindrical, ellipsoidal harmonics, applications, etc. 97 figures.
vii 4+ 440pp. 538 x 8. S263 Paperbound $2.25
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ORDINARY DIFFERENTIAL EQUATIONS, E. L. Ince. A most compendious analysis in real and
complex domains. Existence and nature of solutions, continuous transformation groups, solu-
tions in an infinite form, definite integrals, algebraic theory, Sturmian theory, boundary prob-
lems, existence theorems, 1st order, higher order, etc. “‘Deserves the highest praise, a notable
addition to mathematical literature,” BULLETIN, AM. MATH. SOC. Historical appendix. Bib-
liography. 18 figures. viii + 558pp. 538 x 8. $349 Paperbound $2.75

INTRODUCTION TO NONLINEAR DIFFERENTIAL AND INTEGRAL EQUATIONS, Harold T. Davis.
A thorough introduction to this important area, of increasing interest to mathematicians and
scientists. First published by the United States Atomic Energy Commission, it includes chap-
ters on the differential equation of the first order, the Riccati equation (as a bridge between
linear and nor_1|mear equations), existence theorems, second order equations, elliptic integrals,
elliptic functions, and theta functions, second order differential equations of polynomial
class, continuous analytic continuation, the phase plane and its phenomena, nonﬁnear me-
chanics, the calculus of variations, etc. Appendices on Painlevé transcendents and Van der
Pol and Volterra equations. Bibliography of 350 items. 137 problems. Index. xv + 566pp.
5% x 815, $971 Paperbound $2.00

THEORY OF FUNCTIONALS ANB OF INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS, Vito
Volterra. Unabridged republication of the only English translation. An exposition of the
general theory of the functions depending on a continuous set of values of another function,
based on the author’s fundamental notion of the transition from a finite number of variables
to a continually infinite number. Though dealing primarily with integral equations, much
material on calculus of variations is included. The work makes no assumption of previous
knowledge on the part of the reader. It begins with fundamental material and proceeds to
Generalization of Analytic Functions, Integro-Differential Equations, Functional Derivative
Equations, Applications, Other Directions of Theory of Functionals, etc. New introduction by
G. C. Evans. Bibliography and criticism of Volterra’s work by E. Whittaker. Bibliography.
Index of authors cited. Index of subjects. xxxx + 226pp. 538 x 8. 8502 Paperbound $1.75

LINEAR INTEGRAL EQUATIONS, W. V. Lovitt. Systematic survey of general theory, with some
application to differential equations, calculus of variations, problems of math, physics.
Partial contents: integral equation of 2nd kind by successive substitutions; Fredhofm’s equa-
tion as ratio of 2 integral series in lambda, applications of the Fredholm theory, Hilbert-
Schmidt theory of symmetric kernels, application, etc. Neumann, Dirichiet, vibratory prob-
lems. Index. ix + 253pp. 53 x 8. $176 Paperbound $2.00

Foundations of mathematics

THE CONTINUUM AND OTHER TYPES OF SERIAL ORDER, E. V. Huntington. This famous book
gives a systematic elementary account of the modern theory of the continuum as a type of
serial order. Based on the Cantor-Dedekind ordinal theory, which requires no technical
knowledge of higher mathematics, it offers an easily followed analysis of ordered classes,
discrete and dense series, continuous series, Cantor’s transfinite numbers, 2nd edition. Index.
viii + 82pp. 53 x 8. $130 Paperbound $1.00

CONTRIBUTIONS TO THE FOUNDING OF THE THEORY OF TRANSFINITE NUMBERS, Georg Cantor.
These papers founded a new branch of mathematics. The famous articles of 1895-7 are
translated, with an 82-page introduction by P. E. B. Jourdain dealing with Cantor, the back-
ground of his discoveries, their results, future possibilities. Bibliography. Index. Notes.
ix + 211 pp. 538 x 8. $45 Paperbound $1.35

ELEMENTARY MATHEMATICS FROM AN ADVANCED STANDPOINT, Felix Kiein.

This classic text is an outgrowth of Klein's famous integration and survey course at Gottingen.
Using one field of mathematics to interpret, adjust, illuminate another, it covers basic
topics in each area, illustrating its discussion with extensive analysis. It is especially
valuable in considering areas of modern mathematics. ‘‘Makes the reader feel the inspiration
of . . . a great mathematician, inspiring teacher . . . with deep insight into the founda-
tions and interrelations,” BULLETIN, AMERICAN MATHEMATICAL SOCIETY. :

Vol. 1. ARITHMETIC, ALGEBRA, ANALYSIS. Introducing the concept of function immediately
it enlivens abstract discussion with graphical and geometrically perceptual methods. Partial
contents: natural numbers, extension of the notion of number, special properties, complex
numbers. Real equations with real unknowns, complex guantities. Logarithmic, exponential
functions, goniometric functions, infinitesimal calculus. Transcendence of e and pi, theory
of assemblages. Index. 125 figures. ix -+ 274pp . 53 x 8. 8150 Paperbound $1.85

Vol. 2. GEOMETRY. A comprehensive view which accompanies the space perception inherent
in geometry with analytic formulas which facilitate precise formulation. Partial contents:
Simplest geometric manifolds: line segment, Grassmann determinant principles, classification
of configurations of space, derivative manifolds. Geometric transformations: affine transforma-
tions, projective, higher point transformations, theory of the imaginary. Systematic discussion
of geometry and its foundations. Indexes. 141 illustrations. ix + 214pp. 53 x 8.

$151 Paperbound $1.75
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ESSAYS ON THE THEORY OF NUMBERS: 1. CONTINUITY AND IRRATIONAL NUMBERS; 2. THE
NATURE AND MEANING OF NUMBERS, Richard Dedekind. The two most important essays on
the logical foundations of the number system by the famous German mathematician. The
first provides a purely arithmetic and perfectly rigorous foundation for irrational numbers and
thereby a rigorous meaning to_continuity in analysis. The second essay is an attempt to
give a logical basis for transfinite numbers and properties of the natural numbers. Discusses
the logical validity of mathematical induction. Authorized English translations by W. W.
Deman of “Stetigkeit und irrationale Zahlen” and ‘‘Was sind und was sollen die Zahlen?”
vii + 115pp. 5% x 8. T1010 Paperbound $1.00

Geometry

THE FOUNDATIONS OF EUCLIDEAN GEOMETRY, H. G. Forder. The first rigorous account of
Euclidean geometry, establishing propositions without recourse to empiricism, and without
multipiying  hypotheses. Corrects many traditional weaknesses of Euclidean proofs, and
investigates the problems imposed on the axiom system by the discoveries of Bolyai and
Lobachevsky. Some topics discussed are Classes and Relations; Axioms for Magnitudes;
Congruence and Similarity; Algebra of Points; Hessenberg’'s Theorem; Continuity; Existence
of Parallels; Reflections; Rotations; Isometries; etc. Invaluable for the light it throws on
foundations of math. Lists: Axioms employed, Symbols, Constructions. 295pp. 53 X 8.
S481 Paperbound $2.00

ADVANCED EUCLIDEAN GEOMETRY, R. A. Johnson. For years the standard textbook on advanced
Euclidean geometry, requires only high school geometry and trigonometry. Explores in unusual
detail and gives proofs of hundreds of relatively recent theorems and corollaries, many
formerly available only in widely scattered journals. Covers tangent circles, the theorem of
Miquel, symmedian point, pedal triangles and circles, the Brocard configuration, and much
more. Formerly “Modern Geometry.” Index. 107 diagrams. xiii + 319pp. 53 x 8.

S669 Paperbound $1.65

HIGHER GEOMETRY: AN INTRODUCTION TO ADVANCED METHODS IN ANALYTIC GEOMETRY, F. S.
Woods. Exceptionally thorough study of concepts and methods of advanced algebraic geometry
(as distinguished from differential geometry). Exhaustive treatment of 1-, 2-, 3-, and 4-
dimensional coordinate systems, leading to n-dimensional geometry in an abstract sense.
Covers projectivity, tetracyclical coordinates, contact transformation, pentaspherical coordi-
nates, much more. Based on M.I.T. lectures, requires sound preparation in analytic geometry
and some knowledge of determinants. Index. Over 350 exercises. Reierences. 60 figures.
X + 423pp. 538 X 8. $737 Paperbound $2.00

CONTEMPORARY GEOMETRY, André Delachet. Translated hy Howard G. Bergmann. The recent
developments in geometry covered in uncomplicated fashion. Clear discussions of modern
thinking about the theory of groups, the concept of abstract geometry, projective geometry,
algebraic geometry, vector spaces, new kinds of metric spaces, developments in differen-
tial geometry, etc. A large part of the book is devoted to problems, developments, and
applications "of topology. For advanced undergraduates and graduate students as well as
mathematicians in other fields who want a brief introduction to current work in geometry.
39 figures. Index. xix + 94pp. 538 x 8%a. S988 Paperbound $1.00

ELEMENTS OF PROJECTIVE GEOMETRY, L. Cremona. Outstanding complete treatment of projec-
tive geometry by one of the foremost 19th century geometers. Detailed proofs of all funda-
mental principles, stress placed on the constructive aspects. Covers homology, law of duality,
anharmonic ratios, theorems of Pascal and Brianchon, foci, polar reciprocal figures, etc. Only
ordinary geometry necessary to understand this honored classic. index. Over 150 fully worked
out examples and problems. 252 diagrams. xx + 302pp. 5% X 8. $668 Paperbound $1.75

AN INTRODUCTION TO PROJECTIVE GEOMETRY, R. M. Winger. One of the best introductory
texts to an important area in modern mathematics. Contains full development of elementary
concepts often omitted in other books. Employing the analytic method to capitalize on the
student’s collegiate training in algebra, analytic geometry and calculus, the author deals
with such topics as Essential Constants, Duality, The Line at Infinity, Projective Properties
and Double Ratio, Projective Coordinates, The Conic, Collineations and Involutions in One
Dimension, Binary Forms, Algebraic Invariants, Analytic Treatment of the Conic, Collinea-
tions in the Plane, Cubic !nvolutions and the Rational Cubic Curve, and a clear discussion
of Non-Euclidean Geometry. For senior-college students and graduates. ‘“An excellent text-
book . . . very clearly written . . . propositions stated concisely,” A. Emch, Am, Math
Monthly. Corrected reprinting. 928 problems. Index. 116 figures. xii + 443pg. 53 x 8.

$949 Paperbound $2.00

ALGEBRAIC CURVES, Robert J. Walker, Professor of Mathematics, Cornell University, Fine
introduction to algebraic geometry. Presents some of the recently developed algebraic meth-
ods of handling problems in algebraic geometry, shows how these methods are related to
the older analytic and geometric problems, and applies them to those same geometric prob-
lems. Limited to the theory of curves, concentrating on birational transformations. Contents:
Algebraic Preliminaries, Projective Spaces, Plane Algebraic Curves, Formal Power Series,
Transformations of a Curve, Linear Series. 25 illustrations, Numerous exercises at ends of
sections. Index. x + 201pp. 53 x 8Ya. $336 Paperbound $2.00
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ELEMENTARY CONCEPTS OF TOPOLOGY, P. Alexandroff. First English translation of the famous
brief introduction to topology for the beginner or for the mathematician not undertaking
extensive study. This unusually useful intuitive approach deals primarily with the concepts of
complex, cycle, and homology, and is wholly consistent with current investigations. Ranges
from basic concepts of set-theoretic topology to the concept of Betti groups. ‘‘Glowing
example of harmony between intuition and thought,” David Hilbert. Translated by A. E. Farley.
Introduction by D. Hilbert. Index. 25 figures. 73pp. 53 X 8. $747 Paperbound $1.00

Number theory

INTRODUCTION TO THE THEORY OF NUMBERS, L. E. Dickson. Thorough, comprehensive ap-
proach with adequate coverage of classical literature, an introductory volume beginners
can follow. Chapters on divisibility, congruences, quadratic residues & reciprocity, Diophantine
equations, etc, Full treatment of binary quadratic forms without usual restriction to integral
coefficients. Covers infinitude of primes, least residues, Fermat's theorem, Euler's phi
function, Legendre’s symbol, Gauss’s lemma, automorphs, reduced forms, recent theorems
of Thue & Siegel, many more. Much material not readily available elsewhere. 239 prob-
lems. Index. | figure. viii + 183pp. 53 x 8. $342 Paperbound $1.75

ELEMENTS OF NUMBER THEORY, |. M. Vinogradov. Detailed 1st course for persons without
advanced mathematics; 95% of this book can be understood by readers who have gone no
farther than high school algebra. Partial contents: divisibility theory, important number
theoretical functions, congruences, primitive roots and indices, etc. Solutions to both
problems and exercises. Tables of primes, indices, etc. Covers almost every essential formula
in elementary number theory! Transiated from Russian. 233 problems, 104 exercises. viii +
227pp. 5% x 8, $259 Paperbound $1.75

THEORY OF NUMBERS and DIOPHANTINE ANALYSIS, R. D. Carmichael. These two complete
works in one volume form one of the most lucid intraductions to number theory, requiring only
a firm foundation in high school mathematics. “Theory of Numbers,” partial contents:
Eratosthenes’ sieve, Euclid's fundamental theorem, G.C.F. and L.C.M. of two or more integers,
linear congruences, etc “Diophantine Analysis’’: rational triangles, Pythagorean triangles,
equations-of third, fourth, higher degrees, method of functional equations, much more. “Theory
of Numbers’: 76 problems. Index. 94pp. ‘‘Diophantine Analysis’’: 222 problems. Index. 118pp.
53 x 8. $529 Paperbound $1.35

Numerical analysis, tables

MATHEMATICAL TABLES AND FORMULAS, Compiled by Robert D. Carmichael and Edwin R.
Smith. Valuable collection for students, etc. Contains all tables necessary in college algebra
and trigonometry, such as five-place common logarithms, logarithmic sines and tangents of
small angles, logarithmic trigonometric functions, natural trigonometric tunctions, four-place
antilogarithms, tables for changing from sexagesimal to circular and from circular to sexa-
gesimal measure of angles, etc. Also many tables and formulas not ordinarily accessible,
including powers, roots, and reciprocals, exponential and hyperbolic functions, ten-place
logarithms of prime numbers, and formulas and theorems from analytical and elementary
geometry and from calculus. Explanatory introduction. viii + 269pp. 53 x 814,

S111 Paperbound $1.25

MATHEMATICAL TABLES, H. B. Dwight. Unique for its coverage in one volume of almost every
function of importance in applied mathematics, engineering, and the physical sciences.
Three extremely fine tables of the three trig functions and their inverse functions to
thousandths of radians; natural and common logarithms; squares, cubes; hyperbolic functions
and the inverse hyperbolic functions; (a2 + b2) exp. Ysa; complete eiliptic integrals of the
1st and 2nd kind; sine and cosine integrals; exponential integrals Ei(x) and Ei( —x); binomial
coefficients; factorials to 250; surface zonal harmonics and first derivatives; Bernoulli and
Euler numbers and their logs to base of 10; Gamma function; normal probability integral;
over 60 pages of Bessel functions; the Riemann Zeta function. Each table with formulae
generally used, sources of more extensive tables, interpolation data, etc. Over half have
columns of differences, to facilitate interpolation. Introduction, Index. viii -+ 231pp. 534 x 8.

$445 Paperbound ,2.00

TABLES OF FUNCTIONS WITH FORMULAE AND CURVES, E. Jahnke & F. Emde. The world’s most
comprehensive 1-volume English-text collection of tables, formulae, curves of transcendent
functions. 4th corrected edition, new 76-page section giving, tables, formulae for etementary
functions—not in other English editions. Partial contents: sine, cosine, logarithmic integrali;
factorial function; error integral; theta functions; elliptic integrals, functions; Legendre,
Bessel, Riemann, Mathieu, nypergeometric functions, etc. Supplementary books. Bibliography.
Indexed. ‘‘Out of the way functions tor which we know no other source,” SCIENTIFIC COM-
PUTING SERVICE, Ltd. 212 figures. 400pp. 5% x 8. $133 Paperbound $2.00
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MATHEMATICS, HISTORIES AND CLASSICS

HISTORY OF MATHEMATICS, D. E. Smith. Most comprehensive non-technical history of math
in English. Discusses lives and works of over a thousand major and minor figures, with
footnotes supplying technical information outside the book’s scheme, and indicating dis-
puted matters. Vol I: A chronological examination, from primitive concepts through Egypt,
Babylonia, Greece, the Orient, Rome, the Middle Ages, the Renaissance, and up to 1900.
Vol 2: The development of ideas in specific fields and problems, up through elementary
calculus. Two volumes, total of 510 illustrations, 1355pp. 53s x 8. Set boxed in attractive
container. T429, 430 Paperbound, the set $6.00

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. R. Ball. Most readable non-
technical history of mathematics treats lives, discoveries of every important figure from
Egyptian, Phoenician mathematicians to late 19th century. Discusses schools of lonia,
Pythagoras, Athens, Cyzicus, Alexandria, Byzantium, systems of numeration; primitive arith-
metic; Middle Ages, Renaissance, including Arabs, Bacon, Regiomontanus, Tartaglia, Cardan,
Stevinus, Galileo, Kepler; modern mathematics of Descartes, Pascal, Wallis, Huygens, Newton,
Leibnitz, d’Alembert, Euler, Lambert, Laplace, Legendre, Gauss, Hermite, Weierstrass
scores more. Index. 25 figures. 546pp. 538 x 8. $630 Paperbound $2.2§

A HISTORY OF GEOMETRICAL METHODS, J. L. Coolidge. Full, authoritative history of the tech-
niques which men have employed in dealing with geometric questions . . . from ancient
times to the modern development of projective geometry. Critical analyses of the original
works. Contents: Synthetic Geometry—the early beginnings, Greek mathematics, non-Euclidean
geometries, projective and descriptive geometry; Aigebraic Geometry—extension of the system
of linear coordinates, other systems of point coordinates, enumerative and birational geometry,
etc.; and Differential Geometry—intrinsic geometry and moving axes, Gauss and the classical
theory of surfaces, and projective and absolute differential geometry. The work of scores of
geometers analyzed: Pythagoras, Archimedes, Newton, Descartes, Leibniz, Lobachevski, Riemann,
Hilbert, Bernoulli, Schubert, Grassman, Klein, Cauchy, and many, many others. Extensive (24-
page) bibliography. Index. 13 figures. xviii + 451pp. 538 x 8%2. 51006 Paperbound $2.25

THE MATHEMATICS OF GREAT AMATEURS, Julian Lowell Coolidge. Enlightening, often surprising,
accounts of what can result from a non-professional preoccupation with mathematics. Chapters
on Plato, Omar Khayyam and his work with cubic equations, Piero della Francesca, Albrecht
Diirer, as the true discoverer of descriptive geometry, Leonardo da Vinci and his varied mathe-
matical interests, John Napier, Baron of Merchiston, inventor of logarithms, Pascal, Diderot,
'Hospital, and seven others known primarily for contributions in other fields. Bibliography.
56 figures. viii + 211pp. 5% x 8%2. S1009 Paperbound $1.50

ART AND GEOMETRY, Wm. M. lvins, Jr. A controversial study which propounds the view that
the ideas of Greek philosophy and cuiture served not to stimulate, but to stifle the develop-
ment of Western thought. Through an examination of Greek art and geometrical® inquiries
and Renaissance experiments, this book offers a concise history of the evolution of mathe-
matical perspective and projective geometry. Discusses the work of Alberti, Direr, Pelerin,
Nicholas of Cusa, Kepler, Desargues, etc. in a wholly readable text of interest to the art
historian, philosopher, mathematician, historian of science, and others. X + 113pp. 53 X
8. T941 Paperbound $1.25

A SOURCE BOOK IN MATHEMATICS, D. E. Smith. Great discoveries in math, from Renaissance
to end of 19th century, in English translation. Read announcements by Dedekind, Gauss,
Delamain, Pascal, Fermat, Newton, Abel, Lobachevsky, Bolyai, Riemann, De Moivre, Legendre,
Laplace, others of discoveries about imaginary numbers, number congruence, siide rule,
equations, symbolism, cubic algebraic equations, non-Euclidean forms of geometry, calculus,
function theory, quaternions, etc. Succinct selections from 125 different treatises, articles,
most unavailable elsewhere in English. Each article preceded by biographical, historical
introduction. Vol. 1: Fields of Number, Algebra. Index. 32 illus. 338pp. 538 x 8. Vol. Il
Fields of Geometry, Probability, Calculus, Functions, Quaternions. 83 illus. 432pp. 5% X 8,
Vol. 1: $552 Paperbound $2.00

Vol. 2: S553 Paperbound $2.00

2 vol. set, $4.00

A COLLECTION OF MODERN MATHEMATICAL CLASSICS, edited by R. Bellman. 13 classic papers,
complete in their original languages, by Hermite, Hardy and Littlewood, Tchebychef, Fejér,
Fredholm, Fuchs, Hurwitz, Weyl, van der Poi, Birkhoff, "Kellogg, von Neumann, and Hilbert.
Each of these papers, collected here for the first time, triggered a burst of mathematical
activity, providing useful new generalizations or stimulating fresh investigations. Topics dis-
cussed include classical analysis, periodic and almost periodic functions, analysis and number
theory, integral equations, theory of approximation, non-linear differential egquations, and
functional analysis. Brief introductions and bibliographies to each paper. xii + 292pp. 6 x 9.

$730 Paperbound $2.00

THE WORKS OF ARCHMIMEDES, edited by T. L. Heath. All the known works of the great Greek
mathematician are contained in this one volume, including the recently discovered Methed
of Archimedes. Contains: On Sphere & Cylinder, Measurement of a Circle, Spirals, Conoids,
Spheroids, etc. This is the definitive edition of the greatest mathematical intellect of the
ancient world, 186-page study by Heath discusses Archimedes and the history of Greek
mathematics. Bibliography. 563pp. 5% x 8. S9 Paperbound $2.45
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THE THIRTEEN BOOKS OF EUCLID’S ELEMENTS, edited by Sir Thomas Heath. Definitive edition
of one of the very greatest classics of Western world, Complete English translation of
Heiberg text, together with spurious Book XIV. Detailed 150-page introduction discussing
aspects of Greek and Medieval mathematics. Euclid, texts, commentators, etc. Paralleling
the text is an elaborate critical apparatus analyzing each definition, proposition, postulate,
covering textual matters, mathematical analysis, commentators of all times, refutations, sup-
ports, extrapolations, etc. This is the full Euclid. Unabridged reproduction of Cambridge U.
2nd edition. 3 volumes. Total of 995 figures, 1426pp. 53 x 8.

$88,89,90, 3 volume set, paperbound $7.50

A CONCISE HISTORY OF MATHEMATICS, D. Struik. Lucid study of development of mathematical
ideas, techniques from Ancient Near East, Greece, Islamic science, Middle Ages, Renaissance,
modern times. Important mathematicians are described in detail. Treatment is not anecdotal,
but analytical development of ideas. “Rich in content, thoughtful in interpretation,” U.S.
QUARTERLY BOOKLIST. Non-technical; no mathematical training needed. Index. 60 illustra-
tions, including Egyptian papyri, Greek mss., portraits of 31 eminent mathematicians. Bib-
liography. 2nd edition. xix + 299pp. 53 x 8. T255 Paperbound $1.75

A HISTORY OF THE CALCULUS, AND ITS CONCEPTUAL DEVELOPMENT, Carl B. Boyer. Pro-
vides faymen and mathematicians a detailed history of the development_of the calculus,
from early beginning in antiquity to final elaboration as mathematical abstractions. Gives
a sense of mathematics not as a technique, but as a habit of mind, in the progression of
ideas of Zeno, Plato, Pythagoras, Eudoxus, Arabic and Scholastic mathematicians, Newton,
Leibnitz, Taylor, Descartes, Euler, Lagrange, Cantor, Weijerstrass, and others. This first com-
prehensive critical history of the calculus was originally titled “The Concepts of the
Calculus.” Foreword by R. Courant. Preface. 22 figures. 25-page bibliography. Index. v 4
364pp. 538 x 8. $509 Paperbound $2.00

A MANUAL OF GREEK MATHEMATICS, Sir Thomas L. Heath. A non-technical survey of Greek
mathematics addressed to high school and college students and the layman who desires a sense
of historical perspective in mathematics. Thorough exposition of early numerical notation and
practical calculation, Pythagorean arithmetic and geometry, Thales and the earliest Greek
geometrical measurements and theorems, the mathematicai theories of Plato, Euclid's ‘““Ele-
ments” and his other works (extensive discussion), Aristarchus, Archimedes, Eratosthenes and
the measurement of the earth, trigonometry (Hipparchus, Menelaus, Ptolemy), Pappus and
Heron of Alexandria, and detailed coverage of minor figures normally omitted from historles
of this type. Presented in a refreshingly interesting and readable style. Appendix. 2 Indexes.
xvi + 552pp. 53 x 8. $279 Paperbound $2.25

THE GEOMETRY OF RENE DESCARTES. With this book Descartes founded analytical geometry.
Excellent Smith-Latham translation, plus original French text with Descartes’ own diagrams.
Contains Problems the Construction of Which Requires Only Straight Lines and Circles; On
the Nature of Curved Lines; On the Construction of Solid or Supersolid Problems. Notes.
Diagrams. 258pp. 538 x 8. $68 Paperbound $2.00

A PHILOSOPHICAL ESSAY ON PROBABILITIES, Marquis de Laplace. This famous essay explains
without recourse to mathematics the principle of probability, and the application of prob-
ability to games of chance, natural philosophy, astronomy, many other fields. Translated
from the 6th French edition by F. W. Truscott, F. L. Emory, with new introduction for this
edition by E. T. Bell. 204pp. 53 x 8. $166 Paperbound $1.35

Prices subject to change without notice.

Dover publishes books on art, music, philosophy, literature, languages,
history, social sciences, psychology, handcrafts, orientalia, puzzles and
entertainments, chess, pets and gardens, books explaining science, inter-
mediate and higher mathematics, mathematical physics, engineering,
biological sciences, earth sciences, classics of science, etc. Write to:

Dept. catrr.
Dover Publications, Inc.
180 Varick Street, N.Y. 14, N.Y.
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An Elementary Treatise on Fourier's Series and Spherical, Cylin-
drical and Ellipsoidal Harmonics; with Applications to Prob-
lems in Mathematical Physics, William E. Byerly. $1.85

An Introduction to the Use of Generalized Coordinates in Mechan-
ics and Physics, William E. Byerly. $1.35

Contributions to the Founding of the Theory of Transfinite Num-
bers, Georg Cantor. $1.35

Introduction to the Theory of Groups of Finite Order, Robert D.
Carmichael. $2.25

The Theory of Numbers and Diophantine Analysis, Robert D.
Carmichael. $1.75

Mathematical Tables and Formulas, Robert D. Carmichael and
Edwin R. Smith. $1.25

Introduction to Symbolic Logic and Its Applications, Rudolf Car-
nap. $1.85

Introduction to the Theory of Fourier's Series and Integrals,
Horace S. Carslaw. $2.25

Operational Methods in Applied Mathematics, Horace S, Carslaw
and John C. Jaeger. $2.50

An Elementary Treatise on Elliptic Functions, Arthur Cayley. $2.00

Textbook of Algebra, G. Chrystal. Two-volume set $4.70

Infinite Matrices and Sequence Spaces, Richard G. Cooke. $2.50

A History of Geometrical Methods, Julian L. Coolidge. $2.25

AI:;; Introduction to Mathematical Probdbility, Julian L. Coolidge.

1.50

A Treatise on Algebraic Plane Curves, Julian L. Coolidge. $2.75

Elements of Projective Geometry, Luigi Cremona. $1.75

Statistics Manual, with Examples Taken from Ordnance Develop-
ment, Edwin L. Crow, Frances A. Davis, and Margaret W. Max-
field. $1.85

Introduction to Nonlinear Differential and Integral Equations,
Harold T. Davis. $2.00

Essays on the Theory of Numbers, Richard Dedekind. $1.00

Algebraic Equations: An Introduction to the Theories of Lagrange
and Galois, Edgar Dehn. $1.45

Paperbound unless otherwise indicated. Prices subject to change
without notice. Available at your book dealer or write for froe
catalogues to Dept. TF 2, Dover Publications, Inc., 180 Varick St.,
N. Y., N. Y. 10014. Please indicate field of interest, Each year Dover
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ELEMENTS OF NUVIBER THEORY
BY I. M. VINOGRADOV

This is the first English translation of the revised edition of this
important modern book on number theory. Clear and detailed in
its exposition, most of it can be understood by readers who have no
background in advanced mathematics; only a small part requires a
working knowledge of calculus. One of the most valuable charac-
teristics of this book is its stress on learning number theory by
means of demonstrations and problems. More than 200 problems,
with full solutions, are presented in the text, while more than 100
numerical exercises afford further practice. Some of these ex-
ercises deal with estimation of trigonometric sums, and are especially
valuable as introductions to more advanced studies.

Partial contents: Divisibility Theory; greatest common divisor,
Euclid’s algorithm, fundamental properties of fractions, unique fac-
torization theorem, etc. Important Number-Theoretic Functions;
the factorization of n!, with various functions, and general proper-
ties of multiplicative functions. Congruences; basic properties, re-
duced residue systems, theorems of Fermat, Euler. Congruences in
One Unknown: continued fraction solution of linear congruence,
congruences with composite and prime power moduli, Wilson’s
theorem. Congruences of the Second Degree; Legendre, Jacobi sym-
bols, solution of the congruence x2 = a (mod m). Primitive Roots
and Indices: determination of all moduli having primitive roots
and corresponding theory of indices.

“A very welcome addition to books on number theory. . . ." Bulle-
tin, American Mathematical Society.

Ist English translation of the 5th (1949) Russian edition. Translated
by S. Kravetz. Prefaces. Tables of Indices. viii + 227pp. 5% x 8.
$259 Paperbound $2.00

A DOVER EDITION DESIGNED FOR YEARS OF USE!
We have made every effort to make this the best book possible. Our
paper is opaque, with minimal show-through; it will not discolor
or become brittle with age. Pages are sewn in signatures, in the
method traditionally used for the best hooks, and will not drop out,
as often happens with paperbacks held together with glue. Books
open flat for easy reference. The binding will not crack or split.

This is a permanent book.
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