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PREFACE.

THE theoretical part of this little book is an elementary

exposition of the nature of the number concept, of the posi

tive integer, and of the four artificial forms of number

which, with the positive integer, constitute the &quot; number-

system
&quot; of algebra, viz. the negative, the fraction, the irra

tional, and the imaginary. The discussion of the artificial

numbers follows, in general, the same lines as my pam

phlet : On the Forms of Number arising in Common

Algebra, but it is much more exhaustive and thorough

going. The point of view is the one first suggested by

Peacock and Gregory, and accepted by mathematicians gen

erally since the discovery of quaternions and the Ausdeh-

nungslehre of Grassmann, that algebra is completely defined

formally by the laws of combination to which its funda

mental operations are subject; that, speaking &amp;gt; generally,

these laws alone define the operations, and the operations

the various artificial numbers, as their formal or symbolic

results, This doctrine was fully developed for the negative,

the fraction, and the imaginary by Hankel, in his Complexe

Zahlensystemen, in 1867, and made complete by Cantor s

beautiful theory of the irrational in 1871, but it has not

as yet received adequate treatment in English.

Any large degree of originality in work of this kind is

naturally out of the question. I have borrowed from a

iii



iv PREFACE.

great many sources, especially from Peacock, Grassmann,

Hankel-, Weierstrass, Cantor, and Thomae (Theorie der

analytisclien Functionen einer complexen Verdnderlichen) . I

may mention, however, as more or less distinctive features

of my discussion, the treatment of number and counting

( 1-5) and the equation (4, 12), the prominence given

the laws of the determinateness of subtraction and division,

and the demonstration of the one-to-one correspondence be

tween numbers defined by regular sequences and the points

offline (40).
Much care and labor have been expended on the his

torical chapters of the book. These were meant at the out

set to contain only a brief account of the origin and history

of the artificial numbers. But I could not bring myself to

ignore primitive counting and the development of numeral

notation, and I soon found that a clear and connected

account of the origin of the negative and imaginary is

possible only when embodied in a sketch of the early his

tory of the equation. I have thus been led to write a

resume of the history of the most important parts of ele

mentary arithmetic and algebra.

Moritz Cantor s Vorlesungen uber die Geschichte der Mathe-

matik, Vol. I, has been my principal authority for the

entire period which it covers, i.e. to 1200 A.D. For the

little I have to say on the period 1200 to 1600, I have

depended chiefly, though by no means absolutely, on

Hankel: Zur Geschichte der Mathematik in Altertum und

Mittelalter. The remainder of my sketch is for the most

part based on the original sources.

HENRY B. FINE.

PRINCETON, April, 1891.
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THEORETICAL.





I. THE POSITIVE INTEGEK,

AND THE LAWS WHICH REGULATE THE ADDITION AND
MULTIPLICATION OF POSITIVE INTEGERS.

1. Number. Separateness or distinctness is a primary

cognition, being necessary even to the cognition of things

as individuals, as distinct from other things.

The notion of number is based immediately on this pri

mary cognition.

Number is that property of a group of distinct things

which remains unchanged during any change to which the

group may be subjected which does not destroy the distinct

ness of the individual things.

Such changes are changes of the characteristics of the

individual things or of their arrangement ;
for these do not

cause one thing to split up into more than one, nor more

than one to merge in one.

This characteristic of number may be stated in a theorem

which is the fundamental postulate of arithmetic :

The number of things in any group of distinct things is

independent of the characters of these things, of the order in

which they may be arranged in the group, and of the manner
in which they may be associated with one another in smaller

groups.

2. Numerical Equality. The number of things in any
two groups of distinct things is the same, when for each

thing in the first group there is one in the second, and

reciprocally, for each thing in the second group, one in the

first.

Thus, the number of letters in the two groups, A, B, C;
D, E, Fj is the same. In the second group there is a letter
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which may be assigned to each of the letters in the first :

as D to A, E to B, F to (7; and reciprocally, a letter in the
first which may be assigned to each in the second : as A to

D, B to E, C to F.

Two groups thus related are said to be in one-to-one (1-1)
correspondence.

Underlying the statement just made is the assumption
that if the two groups correspond in the manner described
for one order of the things in each, they will correspond if

the things be taken in any other order also; thus, in the

example given, that if E instead of D be assigned to A,
there will again be a letter in the group D, E, F, viz. D or

F
9
for each of the remaining letters B and (7, and recipro

cally. This is an immediate consequence of 1.

The number of things in the first group is greater than
that in the second, or the number of things in the second
less than that in the first, when there is one thing in the
first group for each thing in the second, but not reciprocally
one in the second for each in the first.

3. Numeral Symbols. As regards the number of things
which it contains, therefore, a group may be represented

by any other group, e.g. of the fingers or of simple marks,

Ps, which stands to it in the relation of correspondence
described in 2. This is the primitive method of repre

senting the number of things in a group and, like the

modern method, makes it possible to compare numerically

groups which are separated in time or space.

The modern method of representing the number of things
in a group differs from the primitive only in the substitu

tion of symbols, as 1, 2, 3, etc., or numeral words, as one,

ttco, three, etc., for the various groups of marks I, II, III,

etc. These symbols are the positive integers of arith

metic.

A positive integer is a symbol for the number of things in a

group of distinct things.
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For convenience we shall call the positive integer which

represents the number of things in any group its numeral

symbol, or when not likely to cause confusion, its number

simply, this being, in fact, the primary use of the word

&quot; number &quot; in arithmetic.

In the following discussion, for the sake of giving our

statements a general form, we shall represent these numeral

symbols by letters, a, 6, c, etc.

4. The Equation. The numeral symbols of two groups

being a and b
;
when the number of things in the groups is

the same, this relation is expressed by the equation

when the first group is greater than the second, by the

inequality

a&amp;gt;6;

when the first group is less than the second, by the ine

quality
a&amp;lt;b.

A numerical equation is thus a declaration in terms of the

numeral symbols of two groups and the symbol = that these

groups are in one-to-one correspondence (2).

5. Counting. The fundamental operation of arithmetic

is counting.

To count a group is to set up a one-to-one correspondence
between the individuals of this group and the individuals

of some representative group.

Counting leads to an expression for the number of things
in any group in terms of the representative group : if the

representative group be the fingers, to a group of fingers ;

if marks, to a group of marks
;

if the numeral words or

symbols in common use, to one of these words or symbols.
There is a difference between counting with numeral

words and the earlier methods of counting, due to the fact
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that the numeral words have a certain recognized order.

As in finger-counting one finger is attached to each thing

counted, so here one word
;
but that word represents numer

ically not the thing to which it is attached, but the entire

group of which this is the last. The same sort of counting

may be done on the fingers when there is an agreement as

to the order in which the fingers are to be used; thus if

it were understood that the fingers were always to be taken

in normal order from thumb to little finger, the little finger

would be as good a symbol for 5 as the entire hand.

6. Addition. If two or more groups of things be brought

together so as to form a single group, the numeral symbol
of this group is called the sum of the numbers of the sepa

rate groups.
If the sum be s, and the numbers of the separate groups

a, &, c, etc., respectively, the relation between them is sym

bolically expressed by the equation

s = a + 6-fc-f etc.,

where the sum-group is supposed to be formed by joining

the second group to which b belongs to the first, the

third group to which c belongs to the resulting group,

and so on.

The operation of finding s when a, 6, c, etc., are known, is

addition.

Addition is abbreviated counting.

Addition is subject to the two following laws, called the

commutative and associative laws respectively, viz. :

II.

Or,

I. To add b to a is the same as to add a to b.

II. To add the sum of b and c to a is the same as to add

c to the sum of a and b.
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Both, these laws are immediate consequences of the fact

that the sum-group will consist of the same individual

things, and the number of things in it therefore be the

same, whatever the order or the combinations in which the

separate groups are brought together (1).

7. Multiplication. The sum of b numbers each of which

is a is called the product of a by b, and is written a x 5, or

a by or simply ab.

The operation by which the product of a by b is found,

when a and b are known, is called multiplication.

Multiplication is an abbreviated addition.

Multiplication is subject to the three following laws,

called respectively the commutative, associative, and distrib

utive laws for multiplication, viz. :

III. ab = ba.

IV. a(bc) = abc.

V. a(6 + c)= ab + ac.

Or,

III. The product of a by b is the same as the product of

b by a.

IV. The product of a by be is the same as the product of

ab by c.

V. The product of a by the sum of b and c is the same

as the sum of the product of a by b and of a by c.

These laws are consequences of the commutative and

associative laws for addition. Thus,

III. The Commutative Law. The units of the group which

corresponds to the sum of b numbers each equal to a may
be arranged in b rows containing a units each. But in such

an arrangement there are a columns containing b units each
;

so that if this same set of units be grouped by columns

instead of rows, the sum becomes that of a numbers each
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equal to b, or ba. Therefore ab = 6a, by the commutative

and associative laws for addition.

IV. The Associative Law.

abc = c sums such as (a -f -J
---- to b terms)

= a-f-a-f-aH---- to be terms (by the associative

law for addition)

V. The Distributive Law.

a(6-f-c)= a-f-a-j-cH to (6 -f- c) terms

=
.(a + &amp;lt;H

---- to b terms) + (a -f cH---- toe terms)

(by the associative law for addition),
= ab H- ac.

The commutative, associative, and distributive laws for

sums of any number of terms and products of any number

of factors follow immediately from I-V. Thus the product
of the factors a, 6, c, d, taken in any two orders, is the same,

since the one order can be transformed into the other by
successive interchanges of consecutive letters.

II, SUBTBAOTION AND THE NEGATIVE INTEGEE.

8. Numerical Subtraction. Corresponding to every math
ematical operation there is another, commonly called its in

verse, which exactly undoes what the operation itself does.

Subtraction stands in this relation to addition, and division

to multiplication.

To subtract b from a is to find a number to which if b be

added, the sum will be a. The result is written a b
; by

definition, it identically satisfies the equation.

VI. (a b) + b = a
;
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that is to say, a b is the number belonging to the group
which with the &-group makes up the a-group.

Obviously subtraction is always possible when b is less

than a, but then only. Unlike addition, in each application

of this operation regard must be had to the relative size of

the two numbers concerned.

9. Determinateness of Numerical Subtraction. Subtrac

tion, when possible, is a determinate operation. There is

but one number which will satisfy the equation x -j- b = a,

but one number the sum of which and b is a. In other

words, a b is one-valued.

For if c and d both satisfy the equation x -f- 6 = a, since

then c -f- b = a and d -f- b = a, c + b = d -f b
;
that is, a one-to-

one correspondence may be set up between the individuals

of the (c-j-6) and (d -|- b) groups ( 4). The same sort of

correspondence, however, exists between any b individuals

of the first group and any b individuals of the second
;

it

must, therefore, exist between the remaining c of the first

and the remaining d of the second, or c = d.

This characteristic of subtraction is of the same order of

importance as the commutative and associative laws, and

we shall add to the group of laws I-V and definition VI
as being, like them, a fundamental principle in the follow

ing discussion the theorem

VII.

which may also be stated in the form : If one term of a sum

changes while the other remains constant, the sum changes.

The same reasoning proves, also, that

|
As a 4- c

&amp;gt;
or

&amp;lt;
b -f c,

1 a &amp;gt;
or

&amp;lt;
b.

10. Formal Rules of Subtraction. All the rules of sub

traction are purely formal consequences of the fundamental
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laws I-V, VII, and definition VI. They must follow, what
ever the meaning of the symbols a, 6, c, +, ,

=
;
a fact

which has an important bearing on the following discussion.

It will be sufficient to consider the equations which fol

low. For, properly combined, they determine the result of

any series of subtractions or of any complex operation made

up of additions, subtractions, and multiplications.

1. a (& + c)
= a b c = a c b.

2. a (b c)
= a b + c.

3. a + b b = a.

4. a-j-(6 c) = a + 5 c = a c + b.

5. a (b c)
= ab ac.

For 1. a b c is the form to which if first c and then b

be added; or, what is the same thing (by I),

first b and then c
; or, what is again the same

thing (by II), b+c at once, the sum pro
duced is a (by VI). a b c is therefore the

same as a c &, which is as it stands the

form to which if 6, then c, be added the sum is

a; also the same as a (6+c), which is the

form to which if b + c be added the sum is a.

2. a (6 c)
= a (6 c) c + c, Def . VI.

= a - (b c + c) + c, Eq. 1.

= a _ 5 + c. Def. VI.

3. a + b-t) + t) = a + b. Def. VI.

But a + & =^ + 6.

.-. a + 6 b = a. Law VII.

4. a + b-c = a + (b-c + c)-c)
Def. VI.

= a + (6
-

c). Law II, Eq. 3.

5. a& ac = a (6 c + c) ac, Def. VI.

= a (5
_ c) + ac ac, Law V.

= a(6-c). Eq. 3.
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Equation 3 is particularly interesting in that it defines

addition as the inverse of subtraction. Equation 1 declares

that two consecutive subtractions may change places, are

commutative. Equations 1, 2, 4 together supplement law

II, constituting with it a complete associative law of addi

tion and subtraction
;
and equation 5 in like manner supple

ments law V.

11. Limitations of Numerical Subtraction. Judged by
the equations 1-5, subtraction is the exact counterpart of

addition. It conforms to the same general laws as that

operation, and the two could with fairness be made to

interchange their r6les of direct and inverse operation.

But this apparent equality vanishes when the attempt is

made to interpret these equations. The requirement that

subtrahend be less than minuend then asserts itself as a

fatal limitation. It makes the range of subtraction much

narrower than that of addition. It renders the equations

1-5 available for special classes of values of a, 6, c only.

If it must be insisted on, even so simple an inference as

that a (a-h 6)-f2& is equal to b cannot be drawn, and

the use of subtraction in any reckoning with symbols whose

relative values are not at all times known must be pro

nounced unwarranted.

One is thus led perforce to ask whether interpretability

is after all necessary to the validity of reckonings and, if

not, to seek to free subtraction and the rules of reckoning
with the results of subtraction from this crippling limi

tation.

12. Symbolic Equations. Principle of Permanence. Sym
bolic Subtraction. In pursuance of this inquiry one turns

first to the equation (a b) -j- b = a, which serves as a

definition of subtraction when b is less than a.

This is an equation in the primary sense (4) only when
a b is a number. But in the broader sense, that
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An equation is any declaration of the equivalence of definite

combinations of symbols equivalence in the sense that one

may be substituted for the other,

(a b) + 5 = a may be an equation, whatever the values

of a and 6.

And if no different meaning has been attached to a b,

and it is declared that a b is the symbol which associated

with b in the combination (a b) + b is equivalent to a,

this declaration, or the equation

(a-b) + b = a,

is a definition
* of this symbol.

By the assumption of the permanence of form of the

numerical equation in which the definition of subtraction

resulted, one is thus put immediately in possession of a

symbolic definition of subtraction which is general.

The numerical definition is subordinate to the symbolic

definition, being the interpretation of which it admits when
b is less than a.

But from the standpoint of the symbolic definition, inter-

pretability the question whether a b is a number or

not is irrelevant; only such properties may be attached

to a b, by itself considered, as flow immediately from the

generalized equation

In like manner each of the fundamental laws I-V, VII,

on the assumption of the permanence of its form after it

has ceased to be interpretable numerically, becomes a

declaration of the equivalence* of certain definite combi

nations of symbols, and the formal consequences of these

laws the equations 1-5 of 10 become definitions

of addition, subtraction, multiplication, and their mutual

* A definition in terms of symbolic, not numerical addition. The

sign + can, of course, indicate numerical addition only when both

the symbols which it connects are numbers.
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relations definitions which are purely symbolic, it may
be, but unrestricted in their application.

Now with reference to the legitimacy of such definitions

as these there can be no question. They are consistent with

each other, and of course consistent with the numerical defi

nitions, which are indeed but special interpretations of them.

If used consistently, there is no more possibility of their lead

ing to false results than there is of the more tangible numeri

cal definitions leading to false results. The laws of correct

thinking are as applicable to mere symbols as to numbers.

What the value of these symbolic definitions is, to what

extent they add to the power to draw inferences concerning

numbers, the elementary algebra abundantly illustrates.

One of their immediate consequences is the introduction

into algebra of two new symbols, zero and the negative,

which contribute greatly to increase the simplicity, compre

hensiveness, and power of its operations.

13. Zero. When b is set equal to a in the general

equation
(a 6) -h b = a,

it takes one of the forms

(a a) -f a = a,

(b
_

&) + b = b.

It may be proved that

a a = b b.

For (a a) -h (a -f- b) = (a a) -f a + &, Law II.

= a + 6,

since (a a) -h a = a.

And (6 6) 4. (a + 6) = (6 b) +6+a, Laws I, II.

= 6 + a,

since (b 6) -f b = b.

Therefore a a = b b. Law VII.
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a a is therefore altogether independent of a and may
properly be represented by a symbol unrelated to a. The

symbol which has been chosen for it is 0, called zero.

Addition is defined for this symbol by the equations

1. + a = a, definition of 0.

a + = a. Law I.

Subtraction (partially), by the equation

2. a - = a.

For (a
-

0) + = a. Def . VI.

Multiplication (partially), by the equations

3. axO = Oxa = 0.

For axO = a(6 6), definition of 0.

= ab - a&, 10, 5.

= 0. definition of 0.

14. The Negative. When b is greater than a, equal say
to a + d, so that b a = d, then

a b = a (a + d),

= a-a d, 10, 1.

= d. definition of 0.

For d the briefer symbol d has been substituted
;

with propriety, certainly, in view of the lack of significance

of in relation to addition and subtraction. The equation
d = d, moreover, supplies the missing rule of sub

traction for 0. (Compare 13, 2.)

The symbol d is called the negative, and in opposition
to it, the number d is called positive.

Though in its origin a sign of operation (subtraction

from 0), the sign is here to be regarded merely as part
of the symbol d.

d is as serviceable a substitute for a b when a
&amp;lt; b,

as is a single numeral symbol when a&amp;gt;b.
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The rules for reckoning with the new symbol definitions

of its addition, subtraction, multiplication are readily

deduced from the laws I-V, VII, definition VI, and the

equations 1-5 of 10, as follows :

For 6 -f 6 = (0 b) + b, definition of negative.

= 0. Def. VI.

b may therefore be defined as the symbol the sum of

which and b is 0.

2. a + (-6) = -& + a = a-&.

For a +( 6)= a+ (0 6), definition of negative.

= a -t-
-

b, 10, 4.

= a - b. 13, 1.

3. - a + (-b) = -(a + b).

For a -f ( 6) = a 6, by the reasoning in 14, 2.

= 0-(a-h6), 10,1.

= (a -f- 6). definition of negative.

4. a (6) = a + 6.

For a ( 6) = a (0 6), definition of negative.

= a - + 6, 10, 2.

= a + b. 13, 2.

5. (- a)-(-b) = b-a,

For a ( b) = a + 6, by the reasoning in 14, 4.

= b - a. 14, 2.

COR. (-a)-(-a) = 0.

6. a( &) = ( 6)a= a&.

For = a(6-6), 13,3.

= a& + a(-&). LawV.

.-. (- 6) = - a&. 14, 1
;
Law VII.
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7. (-a)xO = Ox(-a) = 0.

For (- a) x =( - a)(b
-

6), definition of 0.

= (-a)&-(-a)&, 10,5.

= 0-
14, 6, and 5, Cor.

8. (-a)(-&) = a&.

For = (-a)(6-&), 14,7.

= (-a)& + (-a)(-&), Law V.

= - a& + (- a) (- 6). 14, 6.

... (_ a) (- 6) = a&. 14, 1
;
Law VII.

By this method one is led, also, to definitions of equality

and greater or lesser inequality of negatives. Thus

9. a
&amp;gt;,

= or
&amp;lt; 5,

according as b
&amp;gt;,

= or
&amp;lt;
a*

For as b.
&amp;gt;, =, &amp;lt; a,

- a + a + b &amp;gt;,=,&amp;lt;-& + & + a, 14, 1
; 13, 1.

or - a &amp;gt;,=,&amp;lt;-&, Law VII or VII .

In like manner a
&amp;lt; &amp;lt;

b.

15. Recapitulation. The nature of the argument which

has been developed in the present chapter should be care

fully observed.

From the definitions of the positive integer, addition,

and subtraction, the associative and commutative laws and

the determinateness of subtraction followed. The assump
tion of the permanence of the result a b, as defined by

(a &) + b = a, for all values of a and 5, led to definitions

* On the other hand, a is said to be numerically greater than, equal

to, or less than 6, according as a is itself greater than, equal to, or

less than 6.
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of the two symbols 0, d, zero and the negative ;
and from

the assumption of the permanence of the laws I-V, VII

were derived definitions of the addition, subtraction, and

multiplication of these symbols, the assumptions being

just sufficient to determine the meanings of these operations

unambiguously.
In the case of numbers, the laws I-V, VII, and definition

VI were deduced from the characteristics of numbers and

the definitions of their operations ;
in the case of the sym

bols 0, d, on the other hand, the characteristics of these

symbols and the definitions of their operations were deduced

from the laws.

With the acceptance of the negative the character of

arithmetic undergoes a radical change.* It was already in

a sense symbolic, expressed itself in equations and inequali

ties, and investigated the results of certain operations. But

its symbols, equations, and operations were all interpretable

in terms of the reality which gave rise to it, the number of

things in actually existing groups of things. Its connec

tion with this reality was as immediate as that of the ele

mentary geometry with actually existing space relations.

But the negative severs this connection. The negative

is a symbol for the result of an operation which cannot be

effected with actually existing groups of things, which is,

therefore, purely symbolic. And not only do the fundamen

tal operations and the symbols on which they are performed
lose reality ;

the equation, the fundamental judgment in all

mathematical reasoning, suffers the same loss. From being
a declaration that two groups of things are in one-to-one

correspondence, it becomes a mere declaration regarding
two combinations of symbols, that in any reckoning one

may be substituted for the other.

* In this connection see 25.
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HI, DIVISION AND THE PEAOTION,

16. Numerical Division. The inverse operation to multi

plication is division.

To divide a by b is to find a number which multiplied by
b produces a. The result is called the quotient of a by b,

and is written - By definition

VIII.

Like subtraction, division cannot be always effected.

Only in exceptional cases can the a-group be subdivided

into groups each containing b individuals.

17. Determinateness of Numerical Division. When divis

ion can be effected at all, it can lead to but a single result
;

it is determinate.

For there can be but one number the product of which

by b is a
;
in other words,

If cb = db,

c = d*

For b groups each containing c individuals cannot be

equal to b groups each containing d individuals unless

c = d (4).
This is a theorem of fundamental importance. It may be

called the law of determinateness of division. It declares

that if a product and one of its factors be determined, the

remaining factor is definitely determined also; or that if

one of the factors of a product changes while the other

remains unchanged, the product changes. It alone makes
division in the arithmetical sense possible. The fact that

* The case b is excluded, not being a number in the sense in

which that word is here used.
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it does not hold for the symbol 0, but that rather a product

remains unchanged (being always 0) when one of its factors

is 0, however the other factor be changed, makes division

by impossible, rendering unjustifiable the conclusions

which can be drawn in the case of other divisors.

The reasoning which proved law IX proves also that

f
As cb

&amp;gt;
or

&amp;lt; db,

\ c
&amp;gt;

or &amp;lt;
d.

18. Formal Rules of Division. The fundamental laws of

the multiplication of numbers are

III. ab = ba,

IV. a (be)
= abc,

V. a (b -f c) = ab -|- ac.

Of these, the definition

VIII. (^]b = a,

\bj
the theorem

( If ac = be,
IX s

( a = b, unless c = 0,

and the corresponding laws of addition and subtraction,

the rules of division are purely formal consequences, dedu-

cible precisely as the rules of subtraction 1-5 of 10 in the

preceding chapter. They follow without regard to the

meaning of the symbols a, b, c, =, +, , ab,
- Thus :

a c _ac
b&quot;d~bd

For - - bd = -b -d, Laws IV, III.

= ac, Def . VIII.

^.&a&quot; = ac. Def. VIII.
bd



20 NUMBER-SYSTEM OF ALGEBRA.

The theorem follows by law IX.

M
\b) _ ad

For ^-=, Def. VIII.

and 2*.2_* 18,1; Law IV.
6c d 6 cd

_a
~6

r7/&amp;gt;

since cd = dc = 1 x cd. Def. VIII, Law IX.
cd

The theorem follows by law IX.

3 - 5.
ac^ ^r be

1) d~~ bd

For f--Vd=--d-^LawsIII-V; 10,5.
\b dj b d

= ad be, Def. VIII.

and (
ad 5c

V^ = ac 6c. Def. VIII.
V ^ ;

The theorem follows by law IX.

By the same method it may be inferred that

as ad
&amp;gt;, =, &amp;lt;

be. Def. VIII, Laws III, IV, IX, IX
r

.

19. Limitations of Numerical Division. Symbolic Division.

The Fraction. General as is the form of the preceding

equations, they are capable of numerical interpretation only

when
^,

- are numbers, a case of comparatively rare occur

rence. The narrow limits set the quotient in the numer

ical definition render division an unimportant operation as
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compared with addition, multiplication, or the generalized

subtraction discussed in the preceding chapter.

But the way which led to an unrestricted subtraction lies

open also to the removal of this restriction
;
and the reasons

for following it there are even more cogent here.

We accept as the quotient of a divided by any number 6,

which is not 0, the symbol - defined by the equation

regarding this equation merely as a declaration of the

equivalence of the symbols [

-
}b and a, of the right to sub-

\bj
stitute one for the other in any reckoning.

Whether - be a number or not is to this definition irrele-
b

a
vant. When a mere symbol, T is called a fraction, and in

opposition to this a number is called an integer.

We then put ourselves in immediate possession of defi

nitions of the addition, subtraction, multiplication, and

division of this symbol, as well as of the relations of equal

ity and greater and lesser inequality definitions which

are consistent with the corresponding numerical definitions

and with one another by assuming the permanence of

form of the equations 1, 2, 3 and of the test 4 of 18 as

symbolic statements, when they cease to be interpretable as

numerical statements.

The purely symbolic character of - and its operations

detracts nothing from their legitimacy, and they establish

division on a footing of at least formal equality with the

other three fundamental operations of arithmetic.*

* The doctrine of symbolic division admits of being presented in the

very same form as that of symbolic subtraction.

The equations of Chapter II immediately pass over into theorems
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20. Negative Fractions. Inasmuch as negatives conform
to the laws and definitions I-IX, the equations 1, 2, 3 and
the test 4 of 18 are valid when any of the numbers a, 6, c, d
are replaced by negatives. In particular, it follows from the

definition of quotient and its determinateness, that

It ought, perhaps, to be said that the determinateness

of division of negatives has not been formally demonstrated.

The theorem, however, that if
( a) ( c) = ( &) ( c),

a = &, follows for every selection of the signs from

the one selection +, +, +, + by 14, 6, 8.

21. General Test of the Equality or Inequality of Fractions.

Given any two fractions -,
-

b d

according as ad
&amp;gt;,

= or
&amp;lt;

be.

Laws IX, IX . Compare 4, 14, 9.

respecting division when the signs of multiplication and division are

substituted for those of addition and subtraction
; so, for instance,

fbe c b

In particular, to (a a) + a = a corresponds - a = a. Thus a purely

symbolic definition may be given 1. It plays the same role in multipli

cation as in addition. Again, it has the same exceptional character

in involution an operation related to multiplication quite as multipli

cation to addition as in multiplication; for lm = ln
,
whatever the

values of m and n.

Similarly, to the equation ( a) + a = 0, or (0 a) + a = 0, corre

sponds f-\ a = 1, which answers as a definition of the unit fraction

-
;
and in terms of these unit fractions and integers all other fractions

a

may be expressed.
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22. Indeterminateness of Division by Zero. Division by
does not conform to the law of determinateness

;
the equa

tions 1, 2, 3 and the test 4 of 18 are, therefore, not valid

when is one of the divisors.

The symbols -, -, of which some use is made in mathe-

matics, are indeterminate.*

1. - is indeterminate. For - is completely defined by
/0\

the equation I -
j

=
;
but since x x = 0, whatever the

value of X, any number whatsoever will satisfy this equation.

2. - is indeterminate. For, by definition, j-JO
= a.

Were- determinate, therefore. since then f-]0 would,
axO W

by 18, 1, be equal to - -, or to -, the number a

O
would be equal to -, or indeterminate.

Division by is not an admissible operation.

23. Determinateness of Symbolic Division. This excep
tion to the determinateness of division may seem to raise

an objection to the legitimacy of assuming as is done

when the demonstrations 1-4 of 18 are made to apply to

symbolic quotients that symbolic division is determinate.

It must be observed, however, that -,
- are indetermi

nate in the numerical sense, whereas by the determinateness

of symbolic division is, of course, not meant actual numerical

determinateness, but &quot;symbolic determinateness,&quot; conform

ity to law IX, taken merely as a symbolic statement. For,
as has been already frequently said, from the present stand

point the fraction - is a mere symbol, altogether without
b , ,

numerical meaning apart from the equation [

-
}b = a, with

\bj

* In this connection see 32.
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which, therefore, the property of numerical determinateness

has no possible connection. The same is true of the prod

uct, sum or difference of two fractions, and of the quotient

of one fraction by another.

As for symbolic determinateness, it needs no justification

when assumed, as in the case of the fraction and the

demonstrations 1-4, of symbols whose definitions do not

preclude it. The inference, for instance, that because

a c _ ac

b d~~bd

which depends on this principle of symbolic determinate-

ness, is of precisely the same character as the inference

that

fa cV -, a, c
-j

I
- - }bd = -b -a,

(b d) b d

which depends on the associative and commutative laws.

Both are pure assumptions made of the undefined symbol

- - for the sake of securing it a definition identical in form
b d
with that of the product of two numerical quotients.*

24. The Vanishing of a Product. It has already been

shown ( 13, 3, 14, 7, 18, 1) that the sufficient condition

for the vanishing of a product is the vanishing of one of its

factors. From the determinateness of division it follows

that this is also the necessary condition, that is to say :

If a product vanish, one of its factors must vanish.

Let xy = 0, where x, y may represent numbers or any of

the symbols we have been considering.

* These remarks, mutatis mutandis, apply with equal force to sub

traction.
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Since xy 0,

xy -f- xz = xz, 13, 1.

or x (y -f z) = xz, Law V.

whence, if x be not 0, y -f z = z, Law IX.

or y = 0. Law VII.

25. The System of Rational Numbers. Three symbols,

0, d, -, have thus been found which can be reckoned
b

with by the same rules as numbers, and in terms of which

it is possible to express the result of every addition, sub

traction, multiplication or division, whether performed on

numbers or on these symbols themselves
; therefore, also,

the result of any complex operation which can be resolved

into a finite combination of these four operations.

Inasmuch as these symbols play the same r61e as numbers

in relation to the fundamental operations of arithmetic, it

is natural to class them with numbers. The word &quot;

number,&quot;

originally applicable to the positive integer only, has come
to apply to zero, the negative integer, the positive and nega
tive fraction also, this entire group of symbols being called

the system of rational numbers.* This involves, of course,

a radical change of the number concept, in consequence of

which numbers become merely part of the symbolic equip
ment of certain operations, admitting, for the most part, of

only such definitions as these operations lend them.

* It hardly need be said that the fraction, zero, and the negative

actually made their way into the number-system for quite a different

reason from this
;

because they admitted of certain &quot; real &quot;

interpre

tations, the fraction in measurements of lines, the negative in debit

where the corresponding positive meant credit or in a length measured
to the left where the corresponding positive meant a length measured
to the right. Such interpretations, or correspondences to existing

things which lie entirely outside of pure arithmetic, are ignored in the

present discussion as being irrelevant to a pure arithmetical doctrine

of the artificial forms of number.
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In accepting these symbols as its numbers, arithmetic

ceases to be occupied exclusively or even principally with

the properties of numbers in the strict sense. It becomes

an algebra whose immediate concern is. with certain opera
tions defined, as addition by the equations a -f- b = b -f- a,

a -f (& + c) = a + b -\- c, formally only, without reference to

the meaning of the symbols operated on.*

IV, THE lEKATIOffAL.

26. The System of Rational Numbers Inadequate. The

system of rational numbers, while it suffices for the four fun

damental operations of arithmetic and finite combinations of

these operations, does not fully meet the needs of algebra.

The great central problem of algebra is the equation, and

that only is an adequate number-system for algebra which

supplies the means of expressing the roots of all possible

equations. The system of rational numbers, however, is

equal to the requirements of equations of the first degree

only ;
it contains symbols not even for the roots of such

elementary equations of higher degrees as x2= 2, x2 = 1.

But how is the system of rational numbers to be enlarged
into an algebraic system which shall be adequate and at the

same time sufficiently simple ?

The roots of the equation

n_& +pn =

* The word &quot;

algebra
&quot;

is here used in the general sense, the sense

in which quaternions and the Ausdehungslehre (see 127, 128) are alge

bras. Inasmuch as elementary arithmetic, as actually constituted,

accepts the fraction, there is no essential difference between it and

elementary algebra with respect to the kinds of number with which

it deals
; algebra merely goes further in the use of artificial numbers.

The elementary algebra differs from arithmetic in employing literal

symbols for numbers, but chiefly in making the equation an object of

investigation.
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are not the results of single elementary operations, as are

the negative of subtraction and the fraction of division; for

though the roots of the quadratic are results of &quot;

evolution/
7

and the same operation often enough repeated yields the

roots of the cubic and biquadratic also, it fails to yield

the roots of higher equations. A system built up as the

rational system was built, by accepting indiscriminately

every new symbol which could show cause for recognition,

would, therefore, fall in pieces of its own weight.

The most general characteristics of the roots must be

discovered and defined and embodied in symbols by a

method which does not depend on processes for solving

equations. These symbols, of course, however character

ized otherwise, must stand in consistent relations with the

system of rational numbers and their operations.

An investigation shows that the forms of number neces

sary to complete the algebraic system may be reduced to

two : the symbol V 1, called the imaginary (an indicated

root of the equation #2
-f- 1 = 0), and the class of symbols

called irrationalj to which the roots of the equation 0^2=0
belong.

27. Numbers Denned by Regular Sequences. The Irrar

tional. On applying to 2 the ordinary method for extracting

the square root of a number, there is obtained the follow

ing sequence of numbers, the results of carrying the reck

oning out to 0, 1, 2, 3, 4, ... places of decimals, viz. :

1, 1.4, 1.41, 1.414, 1.4142, .*.

These numbers are rational
;
the first of them differs from

each that follows it by less than 1, the second by less than

,
the third by less than

,
- the nth by less than

10 100 10&quot;-
1

And
lnn-1

is a fraction which may be made less than any

assignable number whatsoever by taking n great enough.
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This sequence may be regarded as a definition of the

square root of 2. It is such in the sense that a term may
be found in it the square of which, as well as of each fol

lowing term, differs from 2 by less than any assignable

number.

Any sequence of rational numbers

a1? a2, a3, a^, a^+i, aM+,,,

in which, as in the above sequence, the term a^ may, by tak

ing n great enough, be made to differ numerically from each

term that follows it by less than any assignable number, so

that, for oil values of v, the difference, a^y a^, is numerically

less than 8, however small 8 be taken, is called a regular

sequence.

The entire class of operations which lead to regular

sequences may be called regular sequence-building. Evolution

is only one of many operations belonging to this class.

Any regular sequence is said to
&quot;define

a number,
77 this

&quot; number &quot;

being merely the symbolic, ideal, result of the

operation which led to the sequence. It will sometimes be

convenient to represent numbers thus defined by the single

letters a, b, c, etc., which have heretofore represented posi

tive integers only.

After some particular term all terms of the sequence a^

a2, may be the same, say a. The number defined by the

sequence is then a itself. A place is thus provided for

rational numbers in the general scheme of numbers which

the definition contemplates.

When not a rational, the number defined by a regular

sequence is called irrational.

The regular sequence .3, .33, ,
has a limiting value, viz.,

-
;
which is to say that a term can be found in this sequence

j

which itself, as well as each term which follows it, differs

from - by less than any assignable number. In other words,
3
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the difference between - and the /xth term of the sequence
3

may be made less than any assignable number whatsoever

by taking /* great enough. It will be shown presently

that the number defined by any regular sequence, u]?
a2,

stands in this same relation to its term a^.

28. Zero, Positive, Negative. In any regular sequence
a

l9
a2, a term aM may always be found which itself, as

well as each term which follows it, is either

(1) numerically less than any assignable number,
or (2) greater than some definite positive rational number,
or (3) less than some definite negative rational number.

In the first case the number a, which the sequence de

fines, is said to be zero, in the second positive, in the third

negative.

29. The Four Fundamental Operations. Of the numbers

defined by the two sequences :

a
l?
a

2? a3?
&quot; a

/x? &amp;lt;V + 1, a^+v, ,

Pi) ft? ft? ft? ft + 1? ft + VJ ...

(1) The sum is the number defined by the sequence :

(2) The difference is the number defined by the sequence :

0-1 Ply a2 ft? &amp;lt;V ft? a^ + 1
~~

ft + 1? aM + v ft + vj

(3) The %)roduct is the number defined by the sequence :

(4) The quotient is the number defined by the sequence :

i A
&quot;

A &
&quot;

A&quot;

Tor these definitions are consistent with the correspond

ing definitions for rational numbers
; they reduce to these

elementary definitions, in fact, whenever the sequences
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u 02?
&amp;gt; P\y ft? either reduce to the forms a, a, ...;

ft ft ... or have rational limiting values.

They conform to the fundamental laws I-IX. This is

immediately obvious with respect to the commutative, asso

ciative, and distributive laws, the corresponding terms of

the two sequences c^ft, a2ft, ...
; ftc^, fta2, ..., for instance,

being identically equal, by the .commutative law for ra-

tionals.

But again division as just denned is determinate. For

division can be indeterminate only when a product may
vanish without either factor vanishing (cf. 24) ;

whereas

aift? a2&? can define 0, or its terms after the nth fall

below any assignable number whatsoever, only when the

same is true of one of the sequences a
l7
a2,

...
; ft, ft,

*

It only remains to prove, therefore, that the sequences

(1), (2), (3), (4) are qualified to define numbers ( 27).

(1) and (2) Since the sequences a^ a2, ...
; ft, ft, ... are,

by hypothesis, such as define numbers, corresponding terms

in the two, a^, ft, may be found, such that

a^ + a^ is numerically &amp;lt; 8,

and ft* + v ftx is numerically &amp;lt; 8,

and, therefore, (a^ + v ftx+v) (&amp;lt;v ft) &amp;lt; 28,

for all values of v, and that however small 8 may be.

Therefore each of the sequences c^ + ft, a2 -f- ft, . . .
;

&amp;lt;*i ft&amp;gt;
&amp;lt;*2 -ft&amp;gt;

is regular.

(3) Let a^ and ft* be chosen as before.

Then a^ + v ft + v &amp;lt;vftij

since it is i&entically equal to

* It is worth noticing that the determinateness of division is here

not an independent assumption, but a consequence of the definition of

multiplication and the determinateness of the division of rationals.

The same thing is true of the other fundamental laws I-V, VII.
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is numerically less than c^ + v 8 -f^ 8, and may, therefore, be

made less than any assignable number by taking 8 small

enough ;
and that for all values of v.

Therefore the sequence a
} pi, a2/32,

... is regular.

which is identically equal to

By choosing a^ and A* as before the numerator of this

fraction, and therefore the fraction itself, may be made less

than any assignable number
;
and that for all values of v.

Therefore the sequence
L

, ^-
2

,
is regular.

Pl P2

30. Equality. Greater and Lesser Inequality. Of two

numbers, a and 6, defined by regular sequences a
1?
a2, ...

; /21? /22,

..., the first is greater than, equal to or less than the second,

according as the number defined by aj f$l9 a2 fi2, ... is

greater than, equal to or less than 0.

This definition is to be justified exactly as the definitions

of the fundamental operations on numbers defined by regu

lar sequences were justified in 29.

From this definition, and the definition, of in 28, it

immediately follows that

COR. Two numbers which differ by less than any assignable

number are equal.

31. The Number Defined by a Regular Sequence is its

Limiting Value. The difference between a number a and

the term a^ of the sequence by which it is defined may be

made less than any assignable number by taking /* great

enough.
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For it is only a restatement of the definition of a regular

sequence al7
a2, ... to say that the sequence

which defines the difference a aM ( 29, 2), is one whose

terms after the juth can be made less than any assignable

number by choosing p. great enough, and which, therefore,

becomes, as /x is indefinitely increased, a sequence which

defines ( 28).

In other words, the limit of a a^ as /x
is indefinitely

increased is 0, or a= limit (o^). Hence

The number defined by a regular sequence is the limit to

which the pill term of this sequence approaches as
//.

is indefi

nitely increased*

The definitions (1), (2), (3), (4) of 29 may, therefore,

be stated in the form :

limit (a^) limit (/?M)
= limit (a^ ^),

limit (aM ) limit (/^) = limit (a^/2^),

limit (cv) = limit
limit (flj

* What the above demonstration proves is that a stands in the same

relation to a^ when irrational as when rational. The principle of perma
nence (cf. 12), therefore, justifies one in regarding a as the ideal limit in

the former case since it is the actual limit in the latter ( 27). a, when

irrational, is limit (aM) in precisely the same sense that - is the quotient
d

of c by d, when c is a positive integer not containing d. It follows from

the demonstration that if there be a reality corresponding to a, as in

geometry there always is (see 40), that reality will be the actual

limit of the reality of the same kind corresponding to a/*.

The notion of irrational limiting values was not immediately avail

able because, prior to 28, 29, 30, the meaning of difference and greater

and lesser inequality had not been determined for numbers defined by

sequences.
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For limit (a^) the more complete symbol (a^) is also

used, read &quot; the limit which a^ approaches as p. approaches

infinity
&quot;

;
the phrase

&quot;

approaches infinity
&quot;

meaning only,
&quot; becomes greater than any assignable number.&quot;

32. Division by Zero. (1) The sequence , ,
cannot

Pi P*

define a number when the number defined by ft, ft, is 0,

unless the number defined by a
ly

a2,
... be also 0. In this

case it may ;

-^ may approach a definite limit as
//, increases,

Pt&amp;gt;-

however small a^ and /J^ become. But this number is not to

be regarded as the mere quotient
- Its value is not at all

determined by the fact that the numbers defined by 04, a2 . . .
;

ft, ft, are
5

for there is an indefinite number of dif

ferent sequences which define 0, and by properly choosing

C4, 03 ...; ft, ft, ... from among them, the terms of the

sequence ,

2
, may be made to take any value what

soever. &quot;* P2

(2) The sequence QQ ... is not regular when ft, ft, ...

ft ft

defines and a1? a2, ... defines a number different from 0.

No term -^ can be found which differs from the terms
&

following it by less than any assignable number; but

rather, by taking /x great enough, -^ can be made greater
P/A

than any assignable number whatsoever.

Though not regular and though they do not define

numbers, such sequences are found useful in the higher
mathematics. They may be said to define infinity. Their

usefulness is due to their determinate form, which makes it

possible to bring them into combination with other sequences
of like character or even with regular sequences.

Thus the quotient of any regular sequence yly y2 ...
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by , ,
... is a regular sequence and defines 0; and

ft ft

the quotient of
*, ,

... by a similar sequence ^, ^, ...

ft Pl l &J

may also be regular and serve if a
{, ft, yt.,

8
f (i

=
1, 2, ...)

be properly chosen to define any number whatsoever.

The term &quot;approaches infinity&quot; (i.e. increases with-
P/x

out limit) as p,
is indefinitely increased, in a definite or

determinate manner
;

so that the infinity which
, 2*, ...

Pi ft

defines is not indeterminate like the mere symbol - of 22.

But here again it is to be said that this determinateness

is not due to the mere fact that ft, ft ... defines 0, which

is all that the unqualified symbol -
expresses. For there

is an indefinite number of different sequences which like

ft, ft, ... define 0, and - is a symbol for the quotient of a

by any one of them.

33. The Number System defined by Regular Sequences of

nationals, a Closed System. A regular sequence of irrationals

(in which the differences am+n am may be made numerically

less than any assignable number by taking m great enough)

defines a number, but never a number which may not also be

defined by a sequence of rational numbers.

For ft, ft, ... being any sequence of rationals which

defines 0, construct a sequence of rationals aly a2, ... such

that al aj is numerically less than fa ( 30), and in the same

sense a2 a2 &amp;lt;ft,
as a3 &amp;lt; ft, etc. Then limit (am am )

=
( 28, 31), or limit (am) = limit (am).

This theorem justifies the use of regular sequences of

irrationals for defining numbers, and so makes possible a

simple expression of the results of some very complex
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operations. Thus am
,
where m is irrational, is a number

;

the number, namely, which the sequence aa
i, a^, ... defines,

when al5
a2,

... is any sequence of rationals defining m.

But the importance of the theorem in the present discus

sion lies in its declaration that the number-system defined

by regular sequences of rationals contains all numbers which

result from the operations of regular sequence-building in

general. It is a closed system with respect to the four

fundamental operations and this new operation, exactly as

the rational numbers constitute a closed system with respect

to the four fundamental operations only (cf. 25).

The number-system defined by regular sequences of

rationals contains every number which lies between the

extreme limits of the rational number-system ( oc
, + GO )

and with respect to whose relation to each and every num
ber of that system it can be said that it is either greater

than, equal to or less than that number: greater, equal or

less in the sense in which one rational is greater than, equal

to, or less than another (compare 28, 30 and 21).

V, THE IMAGINAEY, COMPLEX MTMBEKS.

34. The Pure Imaginary. The other symbol which is

needed to complete the number-system of algebra, unlike

the irrational but like the negative and the fraction, admits

of definition by a single equation of a very simple form, viz.,

a2 + 1 = 0.

It is the symbol whose square is 1, the symbol V 1,

now commonly written i* It is called the unit of imag-

inaries.

In contradistinction to i all the forms of number hitherto

considered are called real These names, &quot;real&quot; and &quot;imagi-

* Gauss introduced the use of i to represent V 1.
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nary/ are unfortunate, for they suggest an opposition which
does not exist. Judged by the only standards which are

admissible in a pure doctrine of numbers i is imaginary in

the same sense as the negative, the fraction, and the irra

tional, but in no other sense
;

all are alike mere symbols
devised for the sake of representing the results of opera
tions even when these results are not numbers (positive

integers), i got the name imaginary from the difficulty

once found in discovering some extra-arithmetical reality
to correspond to it.

As the only property attached to i by definition is that

its square is 1, nothing stands in the way of its being

&quot;multiplied&quot; by any real number a; the product, Ia, is

called a pure imaginary.
An entire new system of numbers is thus created, coex

tensive w^ith the system of real numbers, but distinct from

it. Except 0, there is no number in the one which is at

the same time contained in the other.* Numbers in either

system may be compared with each other by the definitions

of equality and greater and lesser inequality ( 30), ia being

called =
ib, as a = b

;
but a number in one system cannot

be said to be either greater than, equal to or less than a

number in the other system.

35. Complex Numbers. The sum a + ib is called a com

plex number. Its terms belong to two distinct systems, of

which the fundamental units are 1 and i.

The general complex number a + ib is defined by a com

plex sequence

&amp;lt;*i -I- ifa, 02 -h ifa, ..., &amp;lt;v
-h {ftp, ...,

where a
1?
a2, ...; fa, fa, ... are regular sequences.

*
Throughout this discussion oo is not regarded as belonging to the

number-system, but as a limit of the system, lying without it, a sym
bol for something greater than any number of the system.
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Since a = a + iO(36, 3, Cor.) and 16 = + t&, all real

numbers, a, and pure imaginaries, ib, are contained in the

system of complex numbers a 4- ib.

a _j_ ib can vanish only when both a = and 6 = 0.

36. The Four Fundamental Operations on Complex Num
bers. The assumption of the permanence of the fundamen

tal laws leads immediately to the following definitions of

the addition, subtraction, multiplication, and division of

complex numbers.

1. (a + ft) + (
a +. ft )

= a + a + i(b + V).

For (a + ib) + (a + i6
f

)
= a -f ib + a + i&

,
Law II.

= a -f a -j- ib -h ib
,

Law I.

Laws II, V.

2. (a + ib)
-

(a
1 + & )

= a - a + i(b
- b ).

By definition of subtraction (VI) and 36, 1.

COR. The necessary as well as the sufficient condition for

the equality of two complex numbers a + ib, a + ib
f

is that

a = a and b = b .

For if (a -f ib)
-

(a
1 + ib

1

)
= a - a -f- i(b

- & )
= 0,

a - a = 0, b - b 1 =
( 35), or a = a

,
b = b

1

.

3. (a -f ib) (a -f ib
1

)
= aa - bb 1 + i(ab + ba ).

For (a -f- ib) (a + ib
1

)
= (a -f *6) a + (a + 16) ib

,
Law V.

= oa r

+t& a f+a - 16 + * ib
,
Law V.

- Laws I-V.

COR. If either factor of a product vanish, the product

vanishes.

For ixO = i(b
-

b) = ib - ib ( 10, 5), = ( 14, 1).

Hence (a -f ib) = a x -f 16 x = a x 4- i(b x 0) = 0.

Laws V, IV, 28, 29, 3.
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4
a + ib = aa + bb r .ba 1 ab

~~ 21_
,

a 2 +& 2 a 2 + 6 2

For let the quotient of a + ib by a + ib be a + iy.

By the definition of division (VIII),

(a + iy) (a -f ib )
= a + i&.

.-. aa - 2/6 + i(xb + ya )
= a + to. 36, 3

.-. xa yb = a, xb + ya = b. 36, 2, Cor.

Hence, solving for x and y between these two equations,

_ aa -f- bb __ fro/ ab

a 12

-j- 6
2 a 2 + 6 2

Therefore, as in the case of real numbers, division is a

determinate operation, except when the divisor is
;

it is

then indeterminate. For x and y are determinate (by IX)
unless a 2 + b 2 = 0, that is, unless a 1 = b = 0, or a -f- ib = 0;

for a and b being real, a 2 and b 2 are both positive, and one

cannot destroy the other.* Hence, by the reasoning in 24,

COR. If a product of two complex numbers vanish, one of
the factors must vanish.

37. Numerical Comparison of Complex Numbers. Two

complex numbers, a -f- ib, a -f- ib
,
do not, generally speak

ing, admit of direct comparison with each other, as do two

real numbers or two pure imaginaries ;
for a may be greater

than a
,
while b is less than b .

They are compared numerically, however, by means of

their moduli Vet2 + b2

, ~\/a
2

-f- b
2

;
a -f- ib being said to be

* What is here proven is that in the system of complex numbers

formed from the fundamental units 1 and i there is one, and but one,

number which is the quotient of a + ib by a 1 + ib
;
this being a conse

quence of the determinateness of the division of real numbers and

the peculiar relation (i
2 = 1) holding between the fundamental

units. For the sake of the permanence of IX we make the assumption,

otherwise irrelevant, that this is the only value of the quotient whether

within or without the system formed from the units 1 and f.
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numerically greater than, equal to or less than a + ib

according as Va2 + 62
is greater than, equal to or less than

+ b 12
. Compare 47.

38. The Complex System Adequate. The system a + ib

is an adequate number-system for algebra. For, as will be

shown (Chapter VII), all roots of algebraic equations are

contained in this system.
But more than this, the system a + ib is a closed system

with respect to all existing mathematical operations, as are

the rational system with respect to all finite combinations

of the four fundamental operations and the real system with

respect to these operations and regular sequence-building.

For the results of the four fundamental operations on

complex numbers are complex numbers ( 36, 1, 2, 3, 4).

Any other operation may be resolved into either a finite

combination of additions, subtractions, multiplications, divis

ions or such combinations indefinitely repeated. In either

case the result, if determinate, is a complex number, as fol

lows from the definitions 1, 2, 3, 4 of 36, and the nature

of the real number-system as developed in the preceding

chapter (see Chapter VIII).
The most important class of these higher operations, and

the class to which the rest may be reduced, consists of

those operations which result in infinite series (Chapter

VIII); among which are involution, evolution, and the

taking of logarithms (Chapter IX), sometimes included

among the fundamental operations of algebra.

39. Fundamental Characteristics of the Algebra of Num
ber. The algebra of number is completely characterized,

formally considered, by the laws and definitions I-IX
and the fact that its numbers are expressible linearly in

terms of two fundamental units.* It is a linear, asso

ciative, distributive, commutative algebra. Moreover, the

* That is, in terms of the first powers of these units.
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most general linear, associative, distributive, commutative

algebra, whose numbers are complex numbers of the form

xfa + x2e2 -h - + xne n&amp;gt;

built from n fundamental units e
lf

e2,

,
en,

is reducible to the algebra of the complex number

a 4- ib. For Weierstrass * has shown that any two complex
numbers a and b of the form X& -f x2e2 +-

----\-%nen,
whose

sum, difference, product, and quotient are numbers of this

same form, and for which the laws and definitions I IX hold

good, may by suitable transformations be resolved into com

ponents a
l}
a2,

- ar ; b^ b2, br)
such that

a = a!-f-aH-----\- ar,

ab = a
1

b l + a&amp;lt;,b2 -l
-----\-ar br9

ab = a
l
b

l + a262 H-----h A,

a ^ _i-^2_i_ _i_^r

b &i b2 br

The components a
{, &&amp;lt;

are constructed either from one fun

damental unit gi
or from two fundamental units gi9 Jc^

For components of the first kind the multiplication for

mula is

* Zur Theorie der aus n Haupteinheiten gebildeten complexen

Grossen. Gottinger Nachrichten Nr. 10, 1884.

Weierstrass finds that these general complex numbers differ in only

one important respect from the complex number a + ib. If the num
ber of fundamental units be greater than 2, there always exist num

bers, different from 0, the product of which by certain other numbers

is 0. Weierstrass calls them divisors of 0. The number of exceptions

to the determinateness of division is infinite instead of one.

t These units are, generally speaking, not e
lt

ev ..., en ,
but linear

combinations of them, as 7^ + y2
e2 + + ynen , *& + *& + + fnen .

Any set of n independent linear combinations of the units ev e
2 , ... en

may be regarded as constituting a set of fundamental units, since all

numbers of the form o^ + a
2
e
2 + - + anen may be expressed linearly

in terms of them.
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For components of the second kind the multiplication

formula is

(a g{ + /,) = (oa
-

ft8 )fc+ (aj

And these formulas are evidently identical with the mul

tiplication formulas

(1) (/SI)
= ()!,

(al + jW) (a l + p i)
= (aa

- 0?)! + (a/3 + j8a )&amp;lt;

of common algebra.

VI, GEAPHIOAL EEPEESENTATION OF UUMBEES,

THE VAEIABLE,

40. Correspondence between the Real Number-System
and the Points of a Line. Let a right line be chosen, and

on it a fixed point, to be called the null-point ;
also a fixed

unit for the measurement of lengths.

Lengths may be measured on this line either from left to

right or from right to left, and equal lengths measured in

opposite directions, when added, annul each other
; opposite

algebraic signs may, therefore, be properly attached to them.

Let the sign -J- be attached to lengths measured to the

right, the sign to lengths measured to the left.

The entire system of real numbers may be represented by

the points of the line, by taking to correspond to each number
that point whose distance from the null-point is represented

by the number. For, as we proceed to demonstrate, the

distance of every point of the line from the null-point,

measured in terms of the fixed unit, is a real number;
and there is no real number which may not represent such

a distance.

1. The distance of any point on the line from the 1full-point

is a real number.

Let any point on the line be taken, and suppose the seg
ment of the line lying between this point and the null-point
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to contain the unit line a times, with, a remainder d^ this

remainder to contain the tenth part of the unit line /3 times,

with a remainder d2,
d2 to contain the hundredth part of the

unit line y times, with a remainder ds, etc.

The sequence of rational numbers thus constructed, viz.,

a, a .
ft, a . /2y, . . . (adopting the decimal notation) is regular ;

for the difference between its //.th term and each succeeding

term is less than -
,
a fraction which may be made less

than any assignable number by taking p. great enough ; and,

by construction, this number represents the distance of the

point under consideration from the null-point.

By the convention made respecting the algebraic signs of

lengths this number will be positive when the point lies to

the right of the null-point, negative when it lies to the left.

2. Corresponding to every real number is a point on the

line, the distance of which from the null-point is represented

by the number.

This is immediately evident for rational
, numbers ; a

rational length may be actually measured off, and so the

point be actually constructed.

If the number be irrational, let a1? a^ ... be a sequence of

rationals defining it. There is a point on the line which

the point corresponding to the term aM of this sequence

approaches as limit as p. is indefinitely increased, and whose

distance from the null-point the number a, defined by a1?

02, ..., represents.

For among the numbers to which points do correspond

(by 1), one can be found which is equal to a. For, let b

(defined by fa, fa ) be that one of these numbers which

differs least from a. If this difference is not 0, in the

sequence aifa, o^fa, ... can be found a term a^ /^
which itself, as well as each term a^^vfB^+v following

it, is either greater than some positive rational number
S or less than some negative rational number 8 . The
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number b 8 (or b + 8 ) differs from a less than 6 differs

from a; and a point corresponds to it, namely, the point

got by measuring off from B (which by hypothesis cor

responds to b) the rational length 8 (or 8 ). Therefore,

unless b is equal to a, among the numbers to which points

correspond is one which differs less from a than b does,

which is contrary to hypothesis.

41. The Real Number-System Continuous. The Variable.

The theorem just demonstrated is of the highest impor

tance, for it establishes the right to represent geometric

magnitudes by numbers and to discuss geometric relations

algebraically.

This right is evidently due to the presence of the irra

tional in the system of numbers. The geometric magnitudes
are continuous; that is to say, the boundary separating two

contiguous parts of a geometric magnitude is common to

both these parts. For instance, the point (7, at which a

given line AB is divided into the segments AC, CB, belongs

to both of these segments. It is altogether different with

the series of the rational numbers. This series belongs to

the class of discrete magnitudes, or magnitudes consecutive

parts of which have distinct boundaries
; for, between any

two rational numbers, however nearly equal, may always be

inserted an irrational.

The entire system of real numbers, however, inasmuch as

it contains an individual number to correspond to every

individual point in the continuous series of points forming
a right line, is continuous.

If a point be made to move continuously along a line, its

distance from any fixed point on the line will run through
a portion of this continuous number series.

Any quantity which is supposed to be changing is called

a variable; and if, like the distance under consideration, its

successive values form a continuous series, it is called a

continuous variable.
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8

X

42. Correspondence between the Complex Number-System
and the Points of a Plane. The entire system of complex
numbers may be represented by the points of a plane, as

follows :

In the plane let two right lines X OX and Y OY be

drawn intersecting at right angles at the point O.

Make X OX the &quot;axis&quot; of real numbers, using its points
to represent real numbers, after the manner described in

40, and make F OFthe axis

of pure imaginaries, represent

ing ib by the point of OF
whose distance from O is b

when b is positive, and by the

corresponding point of OF
when b is negative.

X The point taken to represent
the complex number a -f- ib is P,

constructedbydrawing through
A and JB, the points which rep
resent a and ib, parallels to

F OFand X OX, respectively.

The correspondence between the complex numbers and

the points of the plane is a one-to-one correspondence. To

every point of the plane there is a complex number corre

sponding, and but one, while to each number there corre

sponds a single point of the plane.*

* A reality has thus been found to correspond to the hitherto unin-

terpreted symbol a + ib. But this reality has no connection with the

reality which gave rise to arithmetic, the number of things in a group
of distinct things, and does not at all lessen the purely symbolic char

acter of a + ib when regarded from the standpoint of that reality, the

standpoint which must be taken in a purely arithmetical study of

the origin and nature of the number concept.

The connection between the numbers a + ib and the points of a

plane is purely artificial. The tangible geometrical pictures of the

relations among complex numbers to which it leads are nevertheless

a valuable aid in the study of these relations.

FIG. l.
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It follows, by the reasoning of 41, that the system of
the complex numbers is a continuous system.

If the point P be made to move about in its plane, the

corresponding number runs through a continuous series of

complex values, and is called a complex variable.

43. Modulus. The length of the line OP (Fig. 1), i.e.

Va~ + b
2

,
is called the modulus of a + ib. Let it be repre

sented by p.

44. Argument. The angle XOP made by OP with the

positive half of the axis of real numbers is called the angle

of a -f- ib, or its argument. Let its numerical measure be

represented by 0.

The angle is always to be measured &quot; counter-clockwise
&quot;

from the positive half of the axis of real numbers to the

modulus line.

45. Sine. The ratio of PA, the perpendicular from P
to the axis of real numbers, to OP, i.e. -, is called the

sine of 0, written sin 0.
?

Sin is by this definition positive when P lies above the

axis of real numbers, negative when P lies below this line.

46. Cosine. The ratio of PB, the perpendicular from P
to the axis of imaginaries, to OP, i.e. -, is called the cosine

of 0, written cos 6.
P

Cos is positive or negative according as P lies to the

right or the left of the axis of imaginaries.

47. Theorem. The expression of a-\- ib in terms of its

modulus and angle is p(cos 4- i sinO).

For by 46 - = cos 0, .-. a = p cos
;

P

and by 45,
- = sin 0, .-. b = p sin 0.

P

Therefore a -f ib = p (cos + i sin B).
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.
The factor cos -f i sin 9 has the same sort of geometrical

meaning as the algebraic signs -f and
, which are indeed

but particular cases of it : it indicates the direction of the

point which represents the number from the null-point.

It is the other factor, the modulus p, the distance from
the null-point of the point which corresponds to the number,
which indicates the &quot; absolute value &quot; of the number, and

may represent it when compared numerically with other

numbers
( 37), that one of two numbers being numeri

cally the greater whose corresponding point is the more
distant from the null-point.

48. Problem I. Given the points P and P
, representing

a-j-ib and a + ib respectively; required the point represent

ing a -f- a -}- i (b + b ) .

The point required is
P&quot;,

the intersection of the parallel

to OP through P with the parallel to OP through P.

For completing the construction indicated by the figure,

we have OD = PE = DD&quot;, and therefore OD&quot;= OD + OD ;

and similarly P&quot;D&quot; = PD + PD .

COR. I. To get the point corresponding to a a -f-i(& & ),

produce OP1 to
P&quot;, making

OP&quot;= OP
,
and complete the

parallelogram OP, OP 1

&quot;.

COR. II. The modulus of the

sum or difference of two complex
numbers is less than (at greatest

equal to) the sum of their moduli.

For OP&quot; is less than OP-f-

PP&quot; and, therefore, than OP
+ OP, unless 0, P, P1 are in

the same straight line, when

0P&quot; = OP+ OP . Similarly, PP ,
which is equal to the

modulus of the difference of the numbers represented by
P and P

y
is less than, at greatest equal to, OP+ OP.

D&quot;

FIG. 2.
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49. Problem II. Given P and P
, representing a -f- ib

and a + ib respectively; required the point representing

Let a +ib = p(cosO + ismO), 47

and a +to = P (cos + i sin ) ;

then (a + to) (a + to )

= pp (cos + i sin 0) (cos + 1 sin )

= pp [ (cos cos 6 sin sin )

4- t(sin cos + cos sin )].

But cos cos - sin sin = cos (0 -f (9 ),*

and sin cos + cos sin
f = sin (0 -f )

.*

Therefore (a-fi5)(a
f

-h?V)= /3/
&amp;gt;

f

[cos(04-0
f

)4-*sin(0-f0 )];

or, T/ie modulus of the product of two complex numbers is

the product of their moduli, its argument the sum of their

arguments.

The required construction is, therefore, made by drawing

through a line making an angle -f with OX, and lay

ing off on this line the length pp .

COR. I. Similarly the product of n numbers having moduli

p, p
r

, p&quot;, p
(n)

respectively, and arguments 0, , 0&quot;,
... (tt)

,

is the number

pp p&quot;

...
p&amp;lt;&quot;&amp;gt;[cos(0

+ + 0&quot; + ...
0&amp;lt;&amp;gt;)

In particular, therefore, by supposing the n numbers equal,

we may infer the theorem

[p(cos -f i sin 0)]
n = p

n
(cos nO + i sinn0),

which is known as Demoivre s Theorem.

* For the demonstration of these, the so-called addition theorems of

trigonometry, see Wells Trigonometry, 65, or any other text-book

of trigonometry.
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COR. II. From the definition of division and the preceding
demonstration it follows that

the construction for the point representing -^-i ^- is, there

fore, obvious.

50. Circular Measure of Angle. Let a circle of unit radius

be constructed with the vertex of any angle for centre.

The length of the arc of this circle which is intercepted

between the legs of the angle is called the circular measure

of the angle.

51. Theorem. Any complex number may be expressed in

the form pe
ie

; where p is its modulus and the circular meas

ure of its angle.

It has already been proven that a complex number may be

written in the form p(cos + sin0), where p and have

the meanings just given them. The theorem will be demon

strated, therefore, when it shall have been shown that

eie = cos -f- i sin 0.

If n be any positive integer, we have, by 36 and the

binomial theorem,

n(n-l)(n-2) (tf)
3

,~~ ~

=!+&amp;lt; +

i-iVi-*

Let n be indefinitely increased
;
the limit of the right side

of this equation will be the same as that of the left.
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But the limit of the right side is

/1^I
2

+ W_
3

4.... ;
i.e . e*

Therefore eie is the limit of
(
1 H )

as n approaches oo.

To construct the point representing

On the axis of real numbers

lay off OA = 1.

Draw ^4P equal to and par

allel to OB, and divide it into n

equal parts. Let AAl be one

of these parts. Then A1 is the

point 1 -h
n

Through Al draw AiA3 at

right angles to OA l and con

struct the triangle OA1A^ simi

lar to

A2 is then the point ( 1 -f
j.

FIG. 3.

For

and since OA2 : OA : : OAl : OA, and OJ. = 1,

the length 0^42
= the square of length OA^ (see 49)

&quot;i/9\
3

1 H ,
-44 for

Let n be indefinitely increased. The broken line

... An will approach as limit an arc of length of the circle

of radius OA and, therefore, its extremity, An,
will approach

as limit the point representing cos + i sin ( 47).

This use of the symbol eid will be fully justified in 73.
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Therefore the limit of ( 1-f- j
as n is indefinitely in-

V &quot;J

creased is cos + i sin 0.

But this same limit has already been proved to be eie.

Hence eie = cos -+- i sin 0.*

VII. THE PUNDAMEtfTAL THEOEEM OF ALGEBEA.

52. The General Theorem. If

w = aoZ
n

-f- c^z&quot;-

1 + a^
n~2

H-----f- a^z -f- an,

where n is a positive integer, and a
,
a

1? ..., an any numbers,
real or complex, independent of z, to each value of z corre

sponds a single value of w.

We proceed to demonstrate that conversely to each value

of w corresponds a set of n values of z, i.e. that there are

n numbers which, substituted for z in the polynomial

c&oZ&quot; -f aft&quot;

1
-\
---- + an,

will give this polynomial any value,

iv
,
which may be assigned.

It will be sufficient to prove that there are n values of z

which render
a&amp;lt;p

n
-f a^- 1++ equal to 0, inasmuch as

from this it would immediately follow that the polynomial
takes any other value, WQ,

for n values of z
; viz., for the

values which render the polynomial of the same degree,
l
H---- + (an WQ), equal to 0.

53. Root of an Equation. A value of z for which

a&amp;lt;p

n + a^z
n~l

-f-
- -

-f- an is is called a root of this poly

nomial, or more commonly a root of the algebraic equation

=

* This demonstration is due to Dr. F. Franklin. See American

Journal of Mathematics, Vol. VII, p. 376.
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54. Theorem. Every algebraic equation has a root.

Given the equation described in 52,

w = a^
n
-f -\

We are to demonstrate that in the system of complex
numbers there is a value which, if assigned z, will render

w =
;
or for which the point

representing w in the plane

of complex numbers (the

w-point we may call it) will

coincide with the null-point.

If not, let P be a point

nearer to 0. than any other

with which the w-point can

be made to coincide (or at

least as near as any other).

Through P draw a circle

having its centre in the null-

point 0. Then, by the hy

pothesis made, no value can be given z which will bring
the corresponding w-point within this circle.

But the w-point can be brought within this circle.

For, z and w being the values of z and w which corre

spond to P, change z by adding to z a small increment 8,

and let A represent the consequent change in w. A is

defined by the equation

+ a2 (z + S)
n-2+ - -f an-i(z + 8) + an.

On applying the binomial theorem and arranging the

terms with reference to powers of 8, the right member of

this equation becomes

n~ l
H-----h n-i^o -f an

- 1
-f (n

-
1) a^- 2 + ... + an^] 8

-f terms involving 8
2
,
83

,
etc.
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But w = aoZ
n
4- a^o&quot;-

1
H h an_^ + an .

. . A == [na^-
1
-f (n

-
1) a^&quot;-

2 + 4- an_J 8

+ terms involving 8
2
,
83

,
etc.

Let p (cos 6 + 1 sin
) be the complex number

naoZo&quot;-
1 + (n

-
1) a^- 2 + + a_i,

expressed in terms of its modulus and angle, and

p (cos 0-f isin#),

the corresponding expression for 8. Then

A = p (cos + i sin
) x p (cos -f i sin 0)

-f terms involving p
2
, p*, etc.

=
P/* Ccos (0 + ) + * sin

((9 -f- )]

+ terms involving p
2
, p

3
,
etc. 49.

The point which represents pp [cos(0 + 6&amp;gt;

f

) + isin(0 + ^ )]
for any particular value of p can be made to describe a

circle of radius pp
1 about the null-point by causing 6 to

increase continuously from to 4 right angles.
In the same circumstances the point representing

w + pp [cos (0 + ) + isin(0 + )]

will describe an equal circle about the point P and, there

fore, come within the circle OP.
But by taking p small enough, A may be made to differ as

little as we please from p/o [cos(0 -f 6 } -f sin(0 + )],* and,

therefore, the curve traced out byP 1

(which represents w + A,

as runs through its cycle of values), to differ as little as

we please from the circle of centre P and radius pp .

Therefore by assigning proper values to p and 0, the w-

point (P ) may be brought within the circle OP.

* In the series Ap -f Bp2 + Cp
s + etc.

,
the ratio of all the terms fol

io-wing the first to the first, i.e.

Bp* + Op3 + etc. ^B+Cp + etc.
.

P A ,

Ap A
which by taking p small enough may evidently be made as small as

we please.
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The w-point nearest the null-point must therefore be the

null-point itself.*

55. Theorem. If a be a root of a&amp;lt;p

n
-h a^&quot;

1
-J
-----

\- an ,

this polynomial is divisible by z a.

For divide a$
n

-f- a^
71 &quot; 1

-f -f- an by z a, continuing the

division until z disappears from the remainder, and call this

remainder R, the quotient Q, and, for convenience, the poly

nomial /(z) .

Then we have immediately

holding for all values of z.

Let z take the value a
;
then f(z) vanishes, as also the

product (z a) Q.

Therefore when z = a, It = 0, and being independent of z

it is hence always 0.

56. The Fundamental Theorem: The number of the roots

of the polynomial atf,
n
-f a^&quot;&quot;

1
-\
----

-f- an is n.

For, by 54, it has at least one root
;
call this a

; then,

by 55, it is divisible by z a, the degree of the quotient

being n 1.

Therefore we have

Again, by 54, the polynomial a^&quot;&quot;

1
-f b^ 2

4- +
has a root

;
call this

f}, and dividing as before, we have

* In the above demonstration it is assumed that the coefficient of 5,

i.e. na^Q
n~ l + (n l)^^*

1- 2 + + an _i, is not 0. If it be 0, it is only

necessary to take instead of P some other point on the circle OP
;

na(Po
n~ l + etc., will evidently not vanish for all points of this circle,

since the number of its roots would then be infinite (see 56).
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Since the degree of the quotient is lowered by 1 by each

repetition of this process, n 1 repetitions reduce it to the

first degree, or we have

o 2
n+a12

n-M |-an = a a) (z-/3) (z-y)---(z-v),

a product of n factors, each of the first degree.

Now a product vanishes when one of its factors vanishes

( 36, 3, Cor.), and the factor z a vanishes when z = a,

z ft when z =/3, ,
z v when z = v. Therefore a^z

n +alz
n~ 1

H + an vanishes for the n values, a, /?, y, v, of z.

Furthermore, a product cannot vanish unless one of its

factors vanishes
( 36, 4, Cor.), and not one of the factors

z a, z /?, ,
z v, vanishes unless z equals one of the

numbers a, ft, v.

The polynomial has therefore n and but ?i roots.

The theorem that the number of roots of an algebraic

equation is the same as its degree is called the fundamental

theorem of algebra.

vm. nrram; SEEIES,

57. Definition. Any operation which is the limit of ad

ditions indefinitely repeated produces an infinite series. We
are to determine the conditions which, an infinite series

must fulfil to represent a number.

If the terms of a series are real numbers, it is called a

real series; if complex, a complex series.

I. REAL SERIES.

58. Sum. Convergence. Divergence. An infinite series

% + 2 + 3 H h n H

represents a number or not, according as the sequence

SD 2&amp;gt;

S
3)

&quot; SmJ Sm+l)
&quot; Sm+n) &quot;*?

where Sj= aly
s2 = a^ 4- a^ -, s

t
= a

} + a, +. a*

is regular or not.
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If s^ s2 ~-, be a regular sequence, the number which it

defines, or ^^ (sn), is called the sum of the infinite series

fli + 02+03+ hH ,

and the series is said to be convergent.

If $!, s2, be not a regular sequence, sn either transcends

any finite value whatsoever, as n is indefinitely increased,

or while remaining finite becomes altogether indeterminate.

The infinite series then has no sum, and is said to be diver

gent.

The series 1 + 1 + 1 + and 1 1 + 1 ! + are examples of

these two classes of divergent series.

A divergent series cannot represent a number.

59. General Test of Convergence. From these definitions

and 27 it immediately follows that :

The infinite series a1 + a2 -\ + TO H is convergent when

m may be so taken that the differences sm+n sm are numeri

cally less than any assignable number 8 for all values of n,

where sm and sm+n are the sum of the first m and of the first

m + n terms of the series respectively.

If these conditions be not fulfilled, the series is divergent.

The limit of the last term of a convergent series is
;
for

the condition of convergence requires that by taking m
great enough, s,n+1 sm,

i.e. am+1, may be found less than

any assignable number. But it is not to be assumed con

versely that a series is convergent, if the limit of its last

term is
;
other conditions have also to be fulfilled, sm+n sm

must be less than 8 for all values of n.

Thus the limit of the last term of the series l + i + -+---isO; but,
2 3

as will presently be shown, this is a divergent series.

60. Absolute Convergence. It is important to distin

guish between convergent series which remain convergent
when all the terms are given the salne algebraic signs and
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convergent series which become divergent on this change of

signs. Series of the first class are said to be absolutely con

vergent; those of the second class, only conditionally con

vergent.

Absolutely convergent series have the character of ordinary

sums; i.e. the order of the terms may be changed without

altering the sum of the series.

For consider the series a^ -f a.
2 + a

3 +

supposed to be absolutely convergent and to have the sum S, when
the terms are in the normal order of the indices.

It is immediately obvious that no change can be made in the sum
of the series by interchanging terms with finite indices

;
for n may be

taken greater than the index of any of the interchanged terms. Then

Sn has not been affected by the change, since it is a finite sum and

it is immaterial in what order the terms of a finite sum are added
;

and as for the rest of the series, no change has been made in the

order of its terms.

But a
1 + 2 + 3 H may be separated into a number of infinite series,

as, for instance, into the series
ctj + #3 + a

$ + and a
2 + a

4 + 6 4-
&amp;gt;

and these series summed separately. Let it be separated into / such

series, the sums of which they must all be absolutely convergent, as

being parts of an absolutely convergent series are &M, $&amp;lt;

2
&amp;gt;, W,

respectively ;
it is to be proven that

S=

Let S, S^\ be the sums of the first m terms of the series &l

\

SW, ..., respectively.

Then, by the hypothesis that the series a
l + a

2 + is absolutely

convergent, m may be taken so large that the sum

shall differ from S by less than any assignable number 5 for all values

of n
;
therefore the limit of this sum is S.

But again, n may be so taken that S
+̂n

shall differ from SM by

less than ?, S^_n from #(2)
by less than -,; and therefore the sum

i.e. by less than 5. Hence the limit of this sum is &W + S& + +
Therefore S and SW + #&amp;lt;

2) + ----
\- S& are limits of the same finite

sum and hence equal.
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61. Conditional Convergence. On the other hand, the

terms of a conditionally convergent series can be so arranged
that the sum of the series may take any real value whatsoever.

In a conditionally convergent series the positive and the negative

terms each constitute a divergent series having for the limit of its

last term.

If, therefore, C be any positive number, and Sn be constructed by
first adding positive terms (beginning with the first) until their sum is

greater than C, to these negative terms until their sum is again less than

&amp;lt;7,
then positive terms till the sum is again greater than (7, and so on

indefinitely ;
the limit of $, as n is indefinitely increased, is C.

62. Special Tests of Convergence. 1. If each of the terms

oj a series a1 -f- a2 -f- be numerically less than (at greatest

equal to) the corresponding term of an absolutely convergent

series, or if the ratio of each term of al + a2 -f- to the corre

sponding term of an absolutely convergent series never exceed

some finite number C, the series al -f- a2 + is absolutely

convergent.

If, on the other hand, each term of al -f- a2 + oe numeri

cally greater than (at the lowest equal to) the corresponding
term of a divergent series, or if the ratio of each term of

&amp;lt;h ~h a2 H~ * t the corresponding term of a divergent series be

never numerically less than some finite number C
, different

from 0, the series al -f- a2 -\ is divergent.

2. The series al a2 -f a3 a4 H ,
the terms of which are

alternately positive and negative, is convergent, if after some

term a
t
each term be numerically less or, at least, not greater

than the term which immediately precedes it, and the limit of
an,

as n is indefinitely increased, be 0.

For here

sm+n-=(- l)
w
[aro+i

- am+2 + - (- l^-Wfn].

The expression within brackets may be written in either of the forms

(Om+l aro+2) + (m-f3 m+4) + (1)

or am+i (aro+2 rtm+s) . (2)
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It is therefore positive, (1), and less than am+i, (2); and hence by
taking m large enough, may be made numerically less than any assign

able number whatsoever.

The series 1 ---
j

----
-{- is, by this theorem, con

vergent.

3.. The series 1-f^H
---h T H---- is divergent.
o 4

For the first 2* terms after the first may be written

-4- /

r

-i-4--JL.
&amp;gt;

\ + /
1

22 + 3 22 + 2

.

-l + 1 2A-1 + 2

where, obviously, each of the expressions within parentheses is greater

than 1.

The sum of the first 2* terms after the first is therefore greater than

-, and may be made to exceed any finite quantity whatsoever by tak

ing A great enough.
This series is commonly called the harmonic series.

By a similar method of proof it may be shown that the

series 1 H---1

---
1

---- is convergent if p &amp;gt; 1.

and the sum of the series is, therefore, less than that of the decreasing
2 / 2 \ 2

geometric series 1 H---\-
( )

+ .

The series 1 H---1- =

|

---- is divergent if p &amp;lt; 1, the terms

being then greater than the corresponding terms of

4. The series ax -f a2 + &3 + *5 absolutely convergent if

after some term of finite index, a,, the ratio of each term to

that which immediately precedes it be numerically less than 1

and, as the index of the term is indefinitely increased, approach
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a limit which is less than 1
;
but divergent, if this ratio and

its limit be greater than 1.

For to consider the first hypothesis first let a be the greatest

value which this ratio has after the term a*. By the hypothesis a is a

fraction.

Then, ^1 &amp;lt;

a, /. af+i &amp;lt; a{a ;~

The given series is therefore &amp;lt;

And this is an absolutely convergent series.

For o + a2 + a*+-.. = n
ll

i

m
^ (a + a2 +-- + an)

limit /a-c

* = -
,
since o is a fraction.

1 a

The given series is therefore absolutely convergent, 62, -1.

The same course of reasoning would prove that the series is diver

gent when after some term a* the ratio of each term to that which

precedes it is never less than some quantity, o, which is itself greater

than 1.

When the limit of the ratio of each term of the series to

the term immediately preceding it is 1, the series is some

times convergent, sometimes divergent. The series con

sidered in 62, 3 are illustrations of this statement.

63. Limits of Convergence. An important application

of the theorem just demonstrated is in determining what

are called the limits of convergence of infinite series of the

form
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where x is supposed variable, but the coefficients a
,
a

ly etc.,

constants as in the preceding discussion. Such a series will

be convergent for very small values of x, if the coefficients

be all finite, as will be supposed, and generally divergent

for very great values of x; and by the limits of conver

gence of the series are meant the values of x for which it

ceases to be convergent and becomes divergent.

By the preceding theorem the series will be convergent if

the limit of the ratio of any term to that which precedes it

be numerically less than 1
;

i.e. if

limit x
&amp;lt;

1 .

that is, if x be numerically &amp;lt;

limit

(-^-);
and divergent, if

^-

x be numerically
&amp;gt;

limit
f=

1. Thus the infinite series

r&amp;gt;

|

which is the expansion, by the binomial theorem, of

(a -f- x)
m for other than positive integral values of m, is

convergent for values of x numerically less than a, diver

gent for values of x numerically greater than a.

For in this case

m(m ]

limit / an \ _ limitimit / an \ _ lim
n - V^i/ n = *

00!

m(m l)- -(m n)

(+!)!

= limit faX !L+}
&quot;
= co

\ m-nj

limit
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2. Again, the expansion of e*, i.e. 1 + x + H---- ,
is con

vergent for all finite values of x.

1

jtf(^J--

The same is true for the series which is the expansion

of a*.

64. Operations on Infinite Series. 1. The sum of two

convergent series, ax -f- a2 ~H an^ i ~h ^2 + ?
ls ^ie series

6j) + (a2 -f- 62) H
----

;
and tf/ieir difference is the series

The sum of the series a
t + a

2 + is the number defined by s
lt

s
2 , ...,

and the sum of the series ^4- b
2 + is the number defined by tv tv ...,

where *
= aj -f a2 + + a t and f&amp;lt;= ^ + 6

2 + + 6t-. The sum of the two

series is therefore the number defined by s
l -f tv s

2 + Z
2 , .-, 29, (1).

But if St
=K + 6

X ) + ( 2 + 6
2) + + (at + fc), we have Si = 8

t + tt

for all values of i. This is immediately obvious for finite values of t,

and tnere can be no difference between Si and
s&amp;lt; + ti as i approaches GO,

since it would be a difference having for its limit.

Therefore the number defined by s
x + tv s

2 + t.
2 , ,

is the sum of the

series (^ + 6J + (a 2 + 6
2) + .

2. T/ie product of two absolutely convergent series

i + -2 H---- a7lc? i + ^2 H----

is ^/ie series a^ + (a^ + ^i) + (ai^s -h a2^2 + as^i) +

+ (
aibn + 2^n-i H---- H- a*-A + A) H-

Each set of terms within parentheses is to be regarded as constitut

ing a single term of the product ;
and it will be noticed that the first of

them consists of the one partial product in which the sum of the indices

is 2, the second of all in which the sum of the indices is 3, etc.

By 29, (3), the product of a, + a
2 + by ^ + &

2 + ... te *3~ (sntn),

where sn and tn represent the sums of the first n terms of a
x + a

a + ,

l\ -f 6
2 + , respectively.

Suppose first that the terms of a
1 + a

2 +. and 6
X +. 6

2 -|
---- are

all positive. Then if Sn l?e the sum of the first n terms of
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aA + (aA + a2^i) + &amp;gt;

an(l wi represent - when n is even and
n &quot;~

when n is odd,

evidently sntn &amp;gt;
Sn &amp;gt;

smtm.

Therefore

If the terms of a
x -f a

2 + , 6j + fe
2 + ... be not all of the same sign,

call the sums of the first n terms of the series got by making all the

signs plus, sn and tn
f

respectively ;
also Sn

f

, the sum of the first n terms

of the series which is their product.

Then by the demonstration just given

limit (S, ._ limit
( , , y

n = oo ^ n ~
n = oo ^ n n)j

but Sn always differs from sntn by less than (at greatest by as much as)

^n from s nt n ; therefore, as before,

limit (S ._ limit
(

.

n = oo ^ n) ~ n = oo W&quot;)

3. The quotient of c^ + a2 + by &: + b2 H---- does not

admit of simple expression in terms of the a/s and &/s. It

is an absolutely convergent series when T -f- a2 4- and

&i-f&2H---- are absolutely convergent and the sum of

---- is not 0.

II. COMPLEX SERIES.

The terms sum, convergent, divergent, have the same mean

ings in connection with complex as in connection with real

series.

65. General Test of Convergence. A complex series,

i + a2 H---- ?
is convergent when the modulus of sm+n sm may

be made less than any assignable number 8 by taking m great

enough, and that for all values of n; divergent, when this

condition is not satisfied. See 48, Cor. II
;

59.

66. Of Absolute Convergence. Let

&i + a2 ~f~ be a complex series,

and A1 + A2 -\
----

,
the series of the moduli of its terms.
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If the series AY -f A2 -\ be convergent) the series a: -f- a^-\

will be convergent also.

For the modulus of the sum of a set of complex numbers is less than

(at greatest equal to) the sum of their moduli ( 48, Cor. II). By
hypothesis, Sm+n Sm is less than any assignable number 5, when
Sm = Al + A^+ - + Am , etc.; much more must the modulus of

Sm+n sm be less than 5.

The converse of this theorem is not necessarily true;

and a convergent series, al -f a2 H ,
is said to be absolutely

or only conditionally convergent, according as the series

AI -f- A2 -\ is convergent or divergent.

67. The Region of Convergence of a complex series

a -f a& -f a^
2
H ,

that is, the region of the plane of complex numbers within

which the point representing z must lie if the series is to be

convergent, is a circle whose centre is the null-point and radius

the modulus of the (numerically) greatest value of z for which

the series converges.

1. For every point within this circle the series converges absolutely.

Let Z represent the numerically greatest value of z for which the

series converges.

Then since a
Q + a

}
Z+ a

2
Z2+ - is convergent, a nZn

approaches as

n is indefinitely increased
;
hence a number M can be found which is

numerically greater than any term of the series.

Let z take any value which is numerically less than Z, whose cor

responding point, therefore, lies within the circle through Z.

The terms of the series a -f a^z -f a 2
z2 -\ ,

are then numerically
less than the corresponding terms of

(for, numerically, M&amp;gt;diZ*, .-. A/-^jo^). But this is an abso

lutely convergent series (62,4).
Hence the series a -f a^z -\ is absolutely convergent for all values

of z within the circle through Z ( 62, 1).
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2. For a point on the circumference of this circle the series may be

convergent or it may be divergent. Thus the circle of convergence of

the series 1 + 1+ ^-
+ ... is of radius unity, and the series is convergent

for the point 1, divergent for + 1.

68 Theorem. The following is a theorem on which many
of the properties ot functions defined by series depend.

If the series aQ -f up + a2z
2
H-----\- anz

n
-\
----

have a circle of convergence greater than the null^point itself,

and z run through a regular sequence of values z
1?

z2, ... de

fining 0, the sum of all terms following the first, viz.,

will run through a sequence of values likewise regular and

defining ; or, the entire series may be made to differ as little

as one chooses from its first term a .

The numbers z
lt

zv are, of course, all supposed to lie within the

circle of convergence, and for convenience, to be real. It will be con

venient also to suppose 5r
1 &amp;gt; 2 &amp;gt; 3 , etc.; i.e. that each is greater than

the one following it.

Since a + Q]z + a^ + ... + anz + ...

converges absolutely for z = zv so also does

and, therefore, a^ + a^ + ... + anzn + .

Hence A
1 + A& + + Anz + ...

(where Ai = modulus
a&amp;lt;)

is convergent, and a number M can be found

greater than its sum.

And since for z = z
2 ,

2
3 ,

... the individual terms of

are less than the corresponding terms of A
l + Afa + + Anz^ + ,

this series and, therefore, modulus (a x -f- a#-\- .) remain always less

than M as z runs through the sequence of values zv z
3 , ....

Hence the values of modulus (042 + aj?&amp;gt; + ) which correspond to

z = z
11

z
2

... constitute a regular sequence defining 0, each term being

numerically less than the corresponding term of the regular sequence
2
13f, z

2M, which defines 0.
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COR. The same argument proves that if

or z
m

be the sum of all terms of the series from the (m -}- l)th on,

the series am + am+l z H---- can be made to differ as little as

one may please from its first term am .

69. Operations on Complex Series. The definitions of

sum, difference, and product of two convergent complex series

are the same as those already given for real series, viz. :

1. The sum of two convergent series, a
t -{-a2 -\

---- and

&i + &2 4- ?
is the series (ax -4-

&amp;gt;i)
+ (az 4- ^2) H

----
J

their

difference, the series (a x 6A ) -f- (a2 &2)+
For if s = Ol + 2 + + a&amp;lt;

and *, = 6, + 6, + - + 6*,

modulus [(sm+n tm+n)
-

(sm tm)]

^ modulus (sm+n sm) + modulus (fm+n *m),

and may, therefore, be made less than any assignable number by tak

ing m great enough. The theorem therefore follows by the reasoning
of 64, 1.

2. The product of two absolutely convergent series,

is the series a^ -h (&& \- a2bi) -f- (a^ + a2b2

For, letting ^ = A
l + J1

2 + . + ^ and Ti
= B

l + -B
2 + -. + jB,

where ^.-, 5,-, are the moduli of a f , &,-, respectively, and representuig

by ffn the sum of the first n terms of the series

and by 2n the sum of the first n terms of the series

we have modulus (sntn o-n) &amp;lt;
&amp;gt;Snrn 2n .

But the limit of the right member of this inequality (or equation)
is ( 64, 2) ;

therefore

limit f ^ limit , . ^
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IX, THE EXPONENTIAL AIO) LOGABITHMIO FUNCTIONS,

UNDETERMINED COEFFICIENTS. INVOLUTION AND
EVOLUTION. THE BINOMIAL THEOREM.

70. Function. A variable w is said to be a function of a

second variable z for the area A of the z-plane ( 42), when
to the z belonging to every point of A there corresponds a

determinate value or set of values of w.

Thus if w = 2 z, w is a function of z. For when z = 1, w = 2
;
when

z = 2, w = 4
;
and there is in like manner a determinate value of w for

every value of z. In this case A is coextensive with the entire z-plane.

Similarly w is a function of z, if

so long as this infinite series is convergent, i.e. for the gyortion of the

z-plane bounded by a circle having the null-point for centre, and for

radius the modulus of the greatest value of z for which the series con

verges.

It is customary to use for w when a function of z the

symbol /(z), read &quot;function z.&quot;

71. Functional Equation of the Exponential Function.

For positive integral values of z and
t, az

-a* = az+*. The

question naturally suggests itself, is there a function of z

which will satisfy the condition expressed by this equation.

or the &quot;functional equation&quot; f(z)f(t)=f(z + t), for all

values of z and t ?

We proceed to the investigation of this question and

another which it suggests, not only because they lead to defi

nitions of the important functions a* and loga z for complex
values of a and z, and so give the operations of involution,

evolution, and the taking of logarithms the perfectly gen
eral character already secured to the four fundamental

operations, but because they afford simple examples of a

large class of mathematical investigations.*

* An application of the principle of permanence ( 12) is involved

in the use of functional equations to define functions. The equation



UNDETERMINED COEFFICIENTS. 67

72. Undetermined Coefficients. In investigations of this

sort, the method commonly used in one form or another is

that of undetermined coefficients. This method consists in

assuming for the function sought an expression involving a

series of unknown but constant quantities coefficients,

in substituting this expression in the equation or equations

which embody the conditions which the function must

satisfy, and in so determining these unknown constants

that these equations shall be identically satisfied, that is to

say, satisfied for all values of the variable or variables.

The method is based on the following theorem, called

&quot; the theorem of undetermined coefficients,&quot; viz. :

If the series A+ Bz+ Cz2
-\ be equal to the series A 1

-f- B z

-f- C z
2

-f- for all values of z which make both convergent,

and the coefficients be independent of z, the coefficients of like

powers ofz in the two are equal.

For, since

A + Bz + Cz* + ... = A 1 + B z + C z2 + ,

throughout the circle of convergence common to the two

given series (67, 69, 1).

And being convergent within this circle, the series

A - A + (B - B )z + (C- C )z* + -

aza f = a*+*, for instance, only becomes a functional equation when its

permanence is assumed for other values of z and t than those for which it

has been actually demonstrated.

In this respect the methods of definition of the negative and the

fraction on the one hand, and the functions a*, loga z, on the other, are

identical
; but, while the equation (a 6) -f 6 = a itself served as defi

nition of a 6, there being no simpler symbols in terms of which

a b could be expressed, from the equation aza ( = a*+ a series

( 73, (4)) may be deduced which defines o* in terms of numbers of

the system a + ib.
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can be made to differ as little as we please from its first

term, A-A ( 68).

.-. A-A =
( 30, Cor.), or A = A .

Therefore

(B - B )
z + (C - C&quot;)

z
2 + -. =

throughout the common circle of convergence, and hence

(at least, for values of z different from 0)

Therefore by the reasoning which proved that

A-A =0, B-B = 0,oi-B = B .

In like manner it may be proved that C = C1

,
D = D\ etc.

COB. If A + Bz+Ct+Dz2 + Ezt + Ft2 +
= A +B z + C t +D z

2 + E zt + F t
2 + -

for all values of z and t which make, both series convergent, and

z be independent of t, and the coefficients independent of both z

and tj the coefficients of like powers of z and t in the two series

are equal.

For, arrange both series with reference to the powers of

either variable. The coefficients of like powers of this

variable are then equal, by the preceding theorem. These

coefficients are series in the other variable, and by applying
the theorem to each equation between them the corollary is

demonstrated.

73. The Exponential Function. To apply this method to

the case in hand, assume

f(z) =A -f A& + A&* -f - + Anz
n + .-.,

and determine whether values of the coefficients Ai can be

found capable of satisfying the &quot; functional equation,&quot;

for all values of z and t.
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On substituting in this equation, we have, for all values

of z and t for which the series converge,

or, expanding and arranging the terms with reference to the

powers of z and t,

AiA&amp;lt;p -f A^Af + A2A^2 + A^zt + A^Af H----

+ Azn + Aw*&quot;
1
* + 4- Ann^

n~ k
t
k + + Ant

n + - -
.,

w (?i l)--(n A: + l)where ?IA
= ^--^ \ -1 y

K

Equating the coefficients of like powers of z and t in the

two members of this equation, we get

An_ kA k equal always to Annk .

In particular A A = A
,
therefore Ao = l. Also

A^ = 2 A2 ,
A2Ai = 3As,

A3Ai = 4 AI, -,
^lw_i^i = w^ln ;

or, multiplying these equations together member by member,

A1

n = Annl )
or A =

^-
A part of the equations among the coefficients are, there

fore, sufficient to determine the values of all of them in

terms of the one coefficient A^ But these values will satisfy

the remaining equations ;
for substituting them in the gen

eral equation

we get

~

X = x
nn-...n

(n-k)l kl nl kl

which is obviously an identical equation.
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The coefficient Al or, more simply written, A, remains
undetermined.

It has been demonstrated, therefore, that to satisfy equa
tion (1), it is only necessary that/ (2) be the sum of an
infinite series of the form

^ (2)

where A is undetermined
;
a series which has a sum, i.e. is

convergent, for all finite values of z and A. ( 63, 2, 66.)
By properly determining A, f(z) may be identified with

a*, for any particular value of a.

If a* is to be identically equal to the series (2), A must
have such a value that

Let
e*=l+z+j +fi

+ ..., (3)

where e = 1 +1 + 1 +1 + ...;*

Then e* = -L+A + +
i

+ ....

Therefore a = eA
;

or, calling any number which satisfies the equation

the logarithm of a to the base e and writing it logc a,

A = log, a.

* This number e, the base of the Naperian system of logarithms, is

a &quot;transcendental&quot; irrational, transcendental in the sense that there

is no algebraic equation with integral coefficients of which it can be a

root (see Hermite, Comptes Rendus, LXXVII). TT has the same char

acter, as Lindemann proved in 1882, deducing at the same time the

first actual demonstration of the impossibility of the famous old prob
lem of squaring the circle by aid of the straight edge and compasses

only (see Mathematische Annalen, XX).
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Whence finally,

(4)
L \ O I

a definition of a*, valid for all finite complex values of

a and z, if it may be assumed that loge a is a number, what

ever the value of a.

The series (3) is commonly called the exponential series,

and its sum e
z the exponential function. It is much more use

ful than the more general series (2), or (4), because of its

greater simplicity ;
its coefficients do not involve the loga

rithm, a function not yet fully justified and, as will be

shown, to a certain extent indeterminate. Inasmuch, how

ever, as e
z
is a particular function of the class az

,
a* is some

times called the general exponential function, and series (4)

the general exponential series.

74. The Functions Sine and Cosine. It was shown in

51 that when is a real number,

eie = cos -f i sin 9.

But

+ H Tf

Therefore (by 36, 2, Cor.), for real values of

and sin0 = 0- + -..., (6)

series which both converge for all finite values of 0.

Though cos and sin only admit of geometrical interpre
tation when is real, it is convenient to continue to use

these names for the sums of the series (5) and (6) when
is complex.
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75. Periodicity. When is real, evidently neither its

sine nor its cosine will be changed if it be increased or

diminished by any multiple of four right angles, or 2?r; or,

if n be any positive integer,

cos (0 2 mr) = cos 0, sin (0 2 mi) = sin 0,

and hence eW 2 n*) = eio.

The functions ei9
,
cos 0, sin 0, are on this account called

periodic functions, with the modulus ofperiodicity 2-ir.

76. The Logarithmic Function. If z = e
z and t = e

T
,

zt = e
z
e
T =ez+ T

, 73

or logc zZ = loge z-f-loge . (7)

The question again is whether a function exists capable
of satisfying this equation, or, more generally, the &quot; func

tional equation,&quot;

f(zt)=f(z)+f(t), (8)

for complex values of z and t.

When z = 0, (7) becomes

Ioge
= loge + log.*,

an equation which cannot hold for any value of t for which

loge is not zero unless loge O is numerically greater than

any finite number whatever. Therefore loge O is infinite.

On the other hand, when 2 = 1, (7) becomes

so that log e 1 is zero.

Instead, therefore, of assuming a series with undetermined

coefficients for/(z) itself, we assume one for /(I +2), setting

/(!+ z)
= Atf+ A2 z

2 + ... 4- Azn + -,

and inquire whether the coefficients A, admit of values

which satisfy the functional equation (8) for complex
values of 2 and t.
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Now 1 + z + = (l+z)flH \ identically.

or ^(z + *) + u42 (z + )
2

-f-
... + ^4n (z + t)

Equating the coefficients of the first power of t ( 72)
in the two members of this equation,

+ ... + (71 + 1) An+l z
n + ...

whence, equating the coefficients of like powers of z
y

nr

As in the case of the exponential function, a part of the

equations among the coefficients are sufficient to determine

them all in terms of the one coefficient A^ But as in that

case (by assuming the truth of the binomial theorem for

negative integral values of the exponent) it can be readily

shown that these values will satisfy the remaining equa
tions also.

The series z --+- ---- + (- I)&quot;

1- +
L o 11

converges for all values of z whose moduli are less than 1

( 62, 3).

For such values, therefore, the function

(9)

satisfies the functional equation
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And since z = 1 (1 z) and t = 1 (1 t),

/ n sA 2 n _z^ n \
the function A{l-z+--^{ h^ ^-+ ]

V 2 n J

satisfies this equation when written in the simpler form

/(*0 =/(z) +/(*),

for values of 1 z and 1 ^ whose moduli are both less

than 1.

1. Loge b. To identify the general function /(I -j- z) with

the particular function loge (l + z) it is only necessary to

give the undetermined coefficient A the value 1.

For since log e (l-f z) belongs to the class of functions

which satisfy the equation (8),

Therefore

But e

Hence

or, equating the coefficients of the first power of z, A = 1.

The coefficients of the higher powers of z in the right
number are then identically 0.

It has thus been demonstrated that loge & is a number

(real or complex), if when b is written in the form 1 -f z,

the absolute value of z is less than 1. To prove that it is a

number for other than such values of b, let b = pe
ie

( 51),
where

/o,
as being the modulus of 6, is positive.

Then logc b = loge p + i0,

and it only remains to prove that loge p is a number.

Let p be written in the form e
n

(e
n

/o), where e
n
is the

first integral power of e greater than p.
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Then since e
n -

(e
n -

P )
= e

n/l - =

loge p = loge e
n
-f log1 -1 - ^ )

\ e J

and log/ 1 -. J?
]
is a number since is less than 1.

V e*
1

y e
w

2. Loga b. It having now been fully demonstrated that

az is a number satisfying the equation aza T=az+T for all

finite values of a, Z, T; let az = z, aT=
,
and call Z the

logarithm of z to the base a, or Iog 2, and in like manner

Then, since zt = aV = az+T
,

or loga z belongs, like log; z, to the class of functions which

satisfy the functional equation (8).

Pursuing the method followed in the case of loge &, it will

/ z
2 \

be found that loga (l -fz) is equal to the series Atz ---f-
&amp;lt;

j

1 \ * /
when A . This number is called the modulus of

loge a

the system of logarithms of which a is base.

77. Indeterminateness of log a. Since any complex num
ber a may be thrown into the form pe

ie
,

logea = loge p + iO. (10)

This, however, is only one of an infinite series of possible

values of loge a.* For, since eie = e*(2mr) ( 75^

loge a = logcPe^ 2 0= loge p + i(0 2mr),

where n may be any positive integer. Loge a is, therefore,

to a certain extent indeterminate
;
a fact which must be care

fully regarded in using and studying this function.* The

* For instance loge 00 is not equal to loge z 4- loge t for arbitrarily

chosen values of these logarithms, but to loge z + loge t i2mr, where n

is some positive integer.
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value given it in (10), for which w=0, is called its principal
value.

When a is a positive real number, = 0, so that the prin

cipal value of log, a is realj on the other hand, when a is a

negative real number, =
7r, or the principal value of loge a

is the logarithm of the positive number corresponding to a,

plus iv.

78. Permanence of the Remaining Laws of Exponents.
Besides the law aV = az+t which led to its definition, the

function a* is subject to the laws :

2.

1.

For a- -
(&quot;*-)

= 1 + (logea&amp;gt; + S + ...
73, (4)

= e* log-. 73, (3)

.-. (e
lo**a

)*
= ezlog

a
,
and logea* = z logea.

From these results it follows that

2.

For

* 6
76, (7)

not*
73; (i)

= az
&*.

* = a*-*, which is sometimes included among the fundamental
a*

laws to which a* is subject, follows immediately from aza f az+* by
the definition of division.
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79. Permanence of the Remaining Law of Logarithms.
In like manner, the function logaz is subject not only to the

law
log.(*) = lo

but also to the law

For z = alo
**,

and hence z
t = (a

log
*)

= a 10***
78, 1

80. Evolution. Consider three complex numbers
, z, Z,

connected by the equation
z = z.

This equation gives rise to three problems, each of which

is the inverse of the other two. For Z and may be given
and z sought ;

or and z may be given and Z sought ; or,

finally, z and Z may be given and sought.

The exponential function is the general solution of the

first problem (involution), and the logarithmic function of

the second.

For the third (evolution) the symbol -\fz has been devised.

This symbol does not represent a new function
;
for it is

defined by the equation (Vz) Z:=z, an equation which is
i

satisfied by the exponential function zz.

Like the logarithmic function, V* is indeterminate, though
not always to the same extent. When Z is a positive

integer,
z = z is an algebraic equation, and by 56 has Z

roots for any one of which V* is, by definition, a symbol.
From the mere fact that z =

, therefore, it cannot be in

ferred that Vz = Vtf, but only that one of the values of

Vi is equal to one of the values of V The same remark,
l i

of course, applies to the equivalent symbols z*, tz.

81. Permanence of the Binomial Theorem. By aid of the

results just obtained, it may readily be demonstrated that

the binomial theorem is valid for general complex as well

as for rational values of the exponent.
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For b being any complex number whatsoever, and the

absolute value of z being supposed less than 1,

= l+ &2;+terms involving higher powers of z.

Therefore let

(1 + z)
6 = 1 + 1&amp;gt;* +^ + + Ajr+ -.,. (11)

Since, then, (a + z)
6 = a*/1 + -Y, 78, 2

V &amp;lt;V

if - be substituted for z in (11), and the equation be multi-
a

plied throughout by a5

,

(a + z)
5 = 6 + bab~ l

z + A2a
b~2

z
2 + +^a^V + . (12)

Starting with the identity

developing (1+ 2 4- )
6

by (11) and (1 + z + *)* by (12),

equating the coefficients of the first power of t in these

developments, multiplying the resultant equation by 1 + z,

and equating the coefficients of like powers of z in this

product, equations are obtained from which values may be

derived for the coefficients A
t
identical in form with those

occurring in the development for (1 +z)
b when & is a posi

tive integer.

It may also be shown that these values of the coefficients

satisfy the equations which result from equating the coeffi

cients of higher powers of t.
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I. PEIMITIVE NUMERALS,

82. Gesture Symbols. There is little doubt that primitive

counting was done on the fingers, that the earliest numeral

symbols were groups of the fingers formed by associating

a single finger with each individual thing in the group of

things whose number it was desired to represent.

Of course the most immediate method of representing

the number of things in a group arid doubtless the method

first used is by the presentation of the things themselves

or the recital of their names. But to present the things

themselves or to recite their names is not in a proper
sense to count them

;
for either the things or their names

represent all the properties of the group and not simply the

number of things in it. Counting was first done when a

group was used to represent the number of things in some

other group ;
of that group it would represent the number

only and, therefore, be a true numeral symbol, which it is

the sole object of counting to reach.

Counting ignores all the properties of a group except the

distinctness or separateness of the things in it and pre

supposes whatever intelligence is required consciously or

unconsciously to abstract this from its remaining properties.

On this account, that group serves best to represent num
bers, in which the individual differences of the members
are least obtrusive. The naturalness of finger-counting,

therefore, lies not only in the accessibility of the fingers,

in their being always present to the counter, but in this :

that the fingers are so similar in form and function that it

is almost easier to ignore than to take account of their

differences.

But there is other evidence than its intrinsic probability
81
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for the priority of finger-counting over any other. Nearly
every system of numeral notation of which we have any
knowledge is either quinary, decimal, vigesimal, or a mix.

ture of these
;

* that is to say, expresses numbers which are

greater than 5 in terms of 5 and lesser numbers, or makes
a similar use of 10 or 20. These systems point to primi
tive methods of reckoning with the fingers of one hand, the

fingers of both hands, all the fingers and toes, respectively.

Finger-counting, furthermore, is universal among uncivil

ized tribes of the present day, even those not far enough
developed to have numeral words beyond 2 or 3 represent

ing higher numbers by holding up the appropriate number
of fingers.f

83. Spoken Symbols. Numeral words spoken symbols
would naturally arise much later than gesture symbols.

Wherever the origin of such a word can be traced, it is

found to be either descriptive of the corresponding finger

symbol or when there is nothing characteristic enough
about the finger symbol to suggest a word, as- is particularly

the case with the smaller numbers the name of some

familiar group of things. Thus in the languages of numer
ous tribes the numeral 5 is simply the word for hand, 10

* Pure quinary and vigesimal systems are rare, if indeed they occur

at all. As an example of the former, Tylor (Primitive Culture, I,

p. 261) instances a Polynesian number series which runs 1, 2, 3, 4,

5, 5-1, 5-2, ...; and as an example of the latter, Cantor (Geschichte

der Mathematik, p. 8), following Pott, cites the notation of the Mayas
of Yucatan who have special words for 20, 400, 8000, 160,000. The

Hebrew notation, like the Indo-Arabic, affords an example of a pure

decimal notation. Mixed systems are common. Thus the Koman is

mixed decimal and quinary, the Aztec mixed vigesimal and quinary.

Speaking generally, the quinary and vigesimal systems are more fre

quent among the lower races, the decimal among the higher. (Primi

tive Culture, I, p. 262.)

t So, for instance, the aborigines of Victoria and the Bororos of

Brazil (Primitive Culture, I, p. 244).
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for both hands, 20 for &quot; an entire man &quot;

(hands and feet) ;

while 2 is the word for the eyes, the ears, or wings.*

As its original meaning is a distinct encumbrance to such

a word in its use as a numeral, it is not surprising that the

numeral words of the highly developed languages have been

so modified that it is for the most part impossible to trace,

their origin.

The practice of counting with numeral words probably

arose much later than the words themselves. There is an

artificial element in this sort of counting which does not

appertain to primitive counting! (see 5).

One fact is worth reiterating with reference to both the

primitive gesture symbols and word symbols for numbers.

There is nothing in either symbol to represent the indi

vidual characteristics of the things counted or their arrange

ment. The use of such symbols, therefore, presupposes a

conviction that the number of things in a group does not

* In the language of the Tamanacs on the Orinoco the word for 5

means &quot;a whole hand,&quot; the word for 6,
u one of the other hand,&quot;

and so on up to 9
;
the word for 10 means &quot;both hands,&quot; 11,

u one

to the foot,&quot; and so on up to 14
;
15 is &quot; a whole foot,&quot; 16,

&quot; one to

the other foot,
&quot; and so on up to 19; 20 is &quot;one Indian,&quot; 40, &quot;two

Indians,&quot; etc. Other languages rich in digit numerals are the Cayriri,

Tupi, Abipone, and Carib of South America
;
the Eskimo, Aztec, and

Zulu (Primitive Culture, I, p. 247).
&quot; Two &quot; in Chinese is a word meaning

&quot;

ears,&quot; in Thibet
&quot;wing,&quot;

in

Hottentot &quot;hand.&quot; (Gow, Short History of Greek Mathematics, p. 7.)

See also Primitive Culture, I, pp. 252-259.

t Were there any reason for supposing that primitive counting was
done with numeral words, it would be probable that the ordinals, not

the cardinals, were the earliest numerals. For the normal order of

the cardinals must have been fully recognized before they could be

used in counting.

In this connection, see Kronecker, Ueber den Zahlbegriff ;
Jour

nal fur die reine und angewandte Mathematik, Vol. 101, p. 337.

Kronecker goes so far as to declare that he finds in the ordinal num
bers the natural point of departure for the development of the number

concept.
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depend on the character of the things themselves or on
their collocation, but solely on their maintaining their sepa-
rateness and integrity.

84. Written Symbols. The earliest written symbols for

number would naturally be mere groups of strokes
I, II,

111, etc. Such symbols have a double advantage over

gesture symbols : they can be made permanent, and are

capable of indefinite extension there being, of course, no

limit to the numbers of strokes which may be drawn.

H. HISTOEIO SYSTEMS OF NOTATION.

85. Egyptian and Phoenician. This written symbolism
did not take on the systemless character it must have

had, had counting with written strokes and not with the

fingers been the primitive method. Perhaps the written

strokes were employed in connection with counting num
bers higher than 10 on the fingers to indicate how often all

the fingers had been used
;
or if each stroke corresponded to

an individual in the group counted, they were arranged as

they were drawn in groups of 10, so that the number was

represented by the number of these complete groups and

the strokes in a remaining group of less than 10.

At all events, the decimal idea very early found expres
sion in special symbols for 10, 100, and if need be, of higher

powers of 10. Such signs are already at hand in the earliest

known writings of the Egyptians and Phoenicians in which

numbers are represented by unit strokes and the signs for

10, 100, 1000, 10,000, and even 100,000, each repeated up to

9 times.

86. Greek. In two of the best known notations of

antiquity, the old Greek notation called sometimes the
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Herodianic, sometimes the Attic and the Boman, a primi
tive system of counting on the fingers of a single hand has

left its impress in special symbols for 5.

In the Herodianic notation the only symbols apart
from certain abbreviations for products of 5 by the powers
of 10 are

I,
P (iwre, 5), A (8co, 10), H (fcarw, 100),

X (XiAH, 1000), M (/wpfo, 10,000) ;
all of them, except I,

it

will be noticed, initial letters of numeral words. This is

the only notation, it may be added, found in any Attic

inscription of a date before Christ. The later and, for the

purposes of arithmetic, much inferior notation, in which
the 24 letters of the Greek alphabet with three inserted

strange letters represent in order the numbers 1, 2, 10,

20, 100, 200, 900, was apparently first employed in

Alexandria early in the 3d century B.C., and probably

originated in that city.

87. Roman. The Roman notation is probably of Etrus

can origin. It has one very distinctive peculiarity : the

subtractive meaning of a symbol of lesser value when it pre
cedes one of greater value, as in IV = 4 and in early in

scriptions I IX = 8. In nearly every other known system of

notation the principle is recognized that the symbol of ]esser

value shall follow that of greater value and be added to it.

In this connection it is worth noticing that two of the

four fundamental operations of arithmetic addition and

multiplication are involved in the very use of special

symbols for 10 and 100, for the one is but a symbol for the

sum of 10 units, the other a symbol for 10 sums of 10 units

each, or for the product 10 x 10. Indeed, addition is prima

rily only abbreviated counting ; multiplication, abbreviated

addition. The representation of a number in terms of tens

and units, moreover, involves the expression of the result

of a division (by 10) in the number of its tens and the

result of a subtraction in the number of its units. It does

not follow, of course, that the inventors of the notation had
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any such notion of its meaning or that these inverse opera
tions are, like addition and multiplication, as old as the

symbolism itself. Yet the Etrusco-Roman notation testifies

to the very respectable antiquity of one of them, subtraction.

88. Indo-Arabic. Associated thus intimately with the

four fundamental operations of arithmetic, the character

of the numeral notation determines the simplicity or com

plexity of all reckonings with numbers. An unusual in

terest, therefore, attaches to the origin of the beautifully

clear and simple notation which we are fortunate enough
to possess. What a boon that notation is will be appreci

ated by one who attempts an exercise in division with the

Roman or, worst of all, with the later Greek numerals.

The system of notation in current use to-day may be

characterized as the positional decimal system. A number

is resolved into the sum :

where 10n
is the highest power of 10 which it contains, and

an,
aw_!, a are all numbers less than 10

;
and then repre

sented by the mere sequence of numbers ana n_ l -&quot;a
()

it

being left to the position of any number a
t
in this sequence

to indicate the power of 10 with which it is to be associ

ated. For a system of this sort to be complete to be

capable of representing all numbers unambiguously a sym
bol (0), which will indicate the absence of any particular

power of 10 from the sum an!0
n + a^lO 1- 1

H-----hMO + a
,

is indispensable. Thus without 0, 101 and 11 must both be

written 11. But this symbol at hand, any number may be

expressed unambiguously in terms of it and symbols for

1, 2,
... 9.

The positional idea is very old. The ancient Babylonians

commonly employed a decimal notation similar to that of

the Egyptians ;
but their astronomers had besides this a

very remarkable notation, a sexagesimal positional system.
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In 1854 a brick tablet was found near Senkereh on the

Euphrates, certainly older than 1600 B.C., on one face of

which is impressed a table of the squares, on the other, a

table of the cubes of the numbers from 1 to 60. The squares

of 1, 2, 7 are written in the ordinary decimal notation,

but 82

,
or 64, the first number in the table greater than 60,

is written 1, 4 (1 x 60 + 4) ; similarly 92
,
and so on to 59s,

which is written 58, 1 (58 x 60 + 1) ;
while 602

is written 1.

The same notation is followed in the table of cubes, and on

other tablets which have since been found. This is a posi

tional system, and it only lacks a symbol for of being a

perfect positional system.

The inventors of the 0-symbol and the modern complete
decimal positional system of notation were the Indians, a

race of the finest arithmetical gifts.

The earlier Indian notation is decimal but not positional.

It has characters for 10, 100, etc., as well as for 1, 2, 9,

and, on the other hand, no 0.

Most of the Indian characters have been traced back to

an old alphabet
* in use in Northern India 200 B.C. The

original of each numeral symbol 4, 5, 6, 7, 8 (?), 9, is the

initial letter in this alphabet of the corresponding numeral

word (see table on page 89,f column 1). The characters

first occur as numeral signs in certain inscriptions which are

assigned to the 1st and 2d centuries A.D. (column 2 of table).

Later they took the forms given in column 3 of the table.

When was invented and the positional notation replaced
the old notation cannot be exactly determined. It was

* Dr. Isaac Taylor, in his book &quot;The Alphabet,&quot; names this alpha
bet the Indo-Bactrian. Its earliest and most important monument is

the version of the edicts of King Asoka at Kapur-di-giri. In this

inscription, it may be added, numerals are denoted by strokes, as I, II,

III, INI, Hill.

t Columns 1-5, 7, 8 of the table on page 89 are taken from Tay
lor s Alphabet, II, p. 266 ; column 6, from Cantor s Geschichte der

Mathematik.
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certainly later than 400 A.D., and there is no evidence that

it was earlier than 500 A.D. The earliest known instance

of a date written in the new notation is 738 A.D. By the

time that came in, the other characters had developed
into the so-called Devanagari numerals (table, column 4),
the classical numerals of the Indians.

The perfected Indian system probably passed over to the

Arabians in 773 A.D., along with certain astronomical writings.
However that may be, it was expounded in the early part of

the 9th century by Alkhwarizmt, and from that time on spread

gradually throughout the Arabian world, the numerals tak

ing different forms in the East and in the West.

Europe in turn derived the system from the Arabians in

the 12th century, the &quot; Gobar &quot; numerals (table, column 5)
of the Arabians of Spain being the pattern forms of the Euro

pean numerals (table, column 7). The arithmetic founded
on the new system was at first called algorithm (after

Alkhwarizmi), to distinguish it from the arithmetic of the

abacus which it came to replace.

A word must be said with reference to this arithmetic on

the abacus. In the primitive abacus, or reckoning table,

unit counters were used, and a number represented by the

appropriate number of these counters in the appropriate
columns of the instrument; e.g. 321 by 3 counters in the

column of 100 s, 2 in the column of 10 s, and 1 in the

column of units. The Romans employed such an abacus

in all but the most elementary reckonings, it was in use

in Greece, and is in use to-day in China.

Before the introduction of algorithm, however, reckon

ing on the abacus had been improved by the use in its

columns of separate characters (called apices) for each of

the numbers 1, 2, 9, instead of the primitive unit counters.

This improved abacus reckoning was probably invented by
Gerbert (Pope Sylvester II.), and certainly used by him

at Rheims about 970-980, and became generally known in

the following century.
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Now these apices are not Roman numerals, but symbols
which do not differ greatly from the Gobar numerals aud
are clearly, like them, of Indian origin. In the absence of

positive evidence a great controversy has sprung up among
historians of mathematics over the immediate origin of the

apices. The only earlier mention of them occurs in a pas

sage of the geometry of Boetius, which, if genuine, was
written about 500 A.D. Basing his argument on this pas

sage, the historian Cantor urges that the earlier Indian

numerals found their way to Alexandria before her inter

course with the East was broken off, that is, before the end

of the 4th century, and were transformed by Boetius into

the apices. On the other hand, the passage in Boetius is

quite generally believed to be spurious, and it is maintained

that Gerbert got his apices directly or indirectly from the

Arabians of Spain, not taking the 0, either because he did

not learn of it, or because, being an abacist, he did not

appreciate its value.

At all events, it is certain that the Indo-Arabic numerals,

1, 2,
... 9 (not 0), appeared in Christian Europe more than a

century before the complete positional system and algorithm.

The Indians are the inventors not only of the positional

decimal system itself, but of most of the processes involved

in elementary reckoning with the system. Addition and

subtraction they performed quite as they are performed

nowadays ; multiplication they effected in many ways, ours

among them, but division cumbrously.

m, THE PBAOTION.

89. Primitive Fractions. Of the artificial forms of num
ber as we may call the fraction, the irrational, the nega

tive, and the imaginary in contradistinction to the positive
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integer all but the fraction are creations of the mathe

maticians. They were devised to meet purely mathematical

rather than practical needs. The fraction, on the other

hand, is already present in the oldest numerical records

those of Egypt and Babylonia was reckoned with by the

Eomans, who were no mathematicians, and by Greek mer

chants long before Greek mathematicians would tolerate it

in arithmetic.

The primitive fraction was a concrete thing, merely an

aliquot part of some larger thing. When a unit of measure

was found too large for certain uses, it was subdivided, and

one of these subdivisions, generally with a name of its own,
made a new unit. Thus there arose fractional units of

measure, and in like manner fractional coins-

In time the relation of the sub-unit to the corresponding

principal unit came to be abstracted with greater or less

completeness from the particular kind of things to which

the units belonged, and was recognized when existing be

tween things of other kinds. The relation was generalized,

and a pure numerical expression found for it.

90. Roman Fractions. Sometimes, however, the relation

was never completely enough separated from the sub-units

in which it was first recognized to be generalized. The

Romans, for instance, never got beyond expressing all their

fractions in terms of the uncia, sicilicus, etc., names origin

ally of subdivisions of the old unit coin, the as.

91. Egyptian Fractions, Eaces of better mathematical

endowments than the Eomans, however, had sufficient

appreciation of the fractional relation to generalize it and

give it an arithmetical symbolism.
The ancient Egyptians had a very complete symbolism

of this sort. They represented any fraction whose numer

ator is 1 by the denominator simply, written as an integer

with a dot over it, and resolved all other fractions into
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sums of such unit fractions. The oldest mathematical
treatise known, a papyrus

* roll entitled &quot; Directions for

Attaining to the Knowledge of All Dark Things,&quot; written

by a scribe named Ahmes in the reign of Ba-a-us (therefore
before 1700 B.C.), after the model, as he says, of a more
ancient work, opens with a table which expresses in this

manner the quotient of 2 by each odd number from 5 to 99.

Thus the quotient of 2 by 5 is written 3 15, by which is

meant --f ;
and the quotient of 2 by 13, 8 52 104.

3 15

2
Only -, among the fractions having numerators which

3

differ from 1, gets recognition as a distinct fraction and
receives a symbol of its own.

92. Babylonian or Sexagesimal Fractions. The fractional

notation of the Babylonian astronomers is of great interest

intrinsically and historically. Like their notation of in

tegers it is a sexagesimal positional notation. The denomi

nator is always 60 or some power of 60 indicated by the

position of the numerator, which alone is written. The
3 22 SO

fraction -, for instance, which is equal to
j -, would in

this notation be written 22 30. Thus the ability to represent
fractions by a single integer or a sequence of integers, which

the Egyptians secured by the use of fractions having a com
mon numerator, 1, the Babylonians found in fractions having
common denominators and the principle of position. The

Egyptian system is superior in that it gives an exact expres
sion of every quotient, which the Babylonian can in general

do only approximately. As regards practical usefulness,

however, the Babylonian is beyond comparison the better

system. Supply the 0-symbol and substitute 10 for 60, and

* The Rhind papyrus of the British Museum
;
translated by A.

Eisenlohr, Leipzig, 1877.
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this notation becomes that of the modern decimal fraction,

in whose distinctive merits it thus shares.

As in their origin, so also in their subsequent history,

the sexagesimal fractions are intimately associated with

astronomy. The astronomers of Greece, India, and Arabia

all employ them in reckonings of any complexity, in those

involving the lengths of lines as well as in those involving

the measures of angles. So the Greek astronomer, Ptolemy

(150 A.D.), in the Almagest (/zeyaA.?/ o-wra^t?) measures chords

as well as arcs in degrees, minutes, and seconds the de

gree of chord being the 60th part of the radius as the degree
of arc is the 60th part of the arc subtended by a chord equal
to the radius.

The sexagesimal fraction held its own as the fraction par
excellence for scientific computation until the 16th century,

when it was displaced by the decimal fraction in all uses

except the measurement of angles.

93. Greek Fractions. Fractions occur in Greek writings

both mathematical and non-mathematical much earlier than

Ptolemy, but not in arithmetic.* The Greeks drew as sharp
a distinction between pure arithmetic, apiO^riK^ and tlie art

of reckoning, Xoyto-rt/cT/, as between pure and metrical geom

etry. The fraction was relegated to XoyurriKr). There is no

place in a pure science for artificial concepts, no place, there

fore, for the fraction in
d/nfyiT/Ti/c?; ;

such was the Greek posi

tion. Thus, while the metrical geometers as Archimedes

(250 B.C.), in his &quot;Measure of the Circle&quot; (KVK\OV /^T/OT/O-IS),

and Hero (120 B.C.) employ fractions, neither of the trea

tises on Greek arithmetic before Diophantus (300 A.D.) which

* The usual method of expressing fractions was to write the numer
ator with an accent, and after it the denominator twice with a double

accent : e.g. ^ KO.&quot; Kan = . Before sexagesimal fractions came into

vogue actual reckonings with fractions were effected by unit fractions,

of which only the denominators (doubly accented) were written.
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have come down to us the 7th, 8th, 9th books of Euclid s

&quot;Elements&quot; (300 B.C.), and the &quot;Introduction to Arithmetic&quot;

(elo-aywyyj apiOfjirjTiKrj) of Nieomachus (100 A.D.) recognizes
the fraction. They do, it is true, recognize the fractional

relation. Euclid, for instance, expressly declares that any
number is either a multiple, a part, or parts (/xe/o^), i.e.

multiple of a part, of every other number (Euc. VII, 4),
and he demonstrates such theorems as these :

If Abe the same 2^arts of B that C is of D, then the sum or

difference ofA and C is the same parts of the sum or difference

ofB and D that A is ofB (VII, 6 and 8).

IfA be the same parts ofB that C is of D, then, alternately,

A is the same parts of C that B is ofD (VII, 10).

But the relation is expressed by two integers, that which
indicates the part and that which indicates the multiple.
It is a ratio, and Euclid has no more thought of expressing
it except by two numbers than he has of expressing the

ratio of two geometric magnitudes except by two magni
tudes. There is no conception of a single number, the

fraction proper, the quotient of one of these integers by
the other.

In the apiOiJirjTiKOL of Diophantus, on the other hand, the

last and transcendently the greatest achievement of the

Greeks in the science of number, the fraction is granted
the position in elementary arithmetic which it has held

ever since.

IV. OKIGIN OP THE IKKATIOffAL.

94. The Discovery of Irrational Lines. The Greeks attrib

uted the discovery of the Irrational to the mathematician

and philosopher Pythagoras* (525 B.C.).

* This is the explicit declaration of the most reliable document extant

on the history of geometry before Euclid, a chronicle of the ancient
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If, as is altogether probable,* the most famous theorem

of Pythagoras that the square on the hypothenuse of a

right triangle is equal to the sum of the squares on the

geometers which Proclus (A.D. 450) gives in his commentary on Euclid,

deriving it from a history written by Eudemus about 330 B.C. This

chronicle credits the Egyptians with the discovery of geometry and

Thales (GOO B.C.) with having first introduced this study into Greece.

Thales and Pythagoras are the founders of the Greek mathematics.

But while Thales should doubtless be credited with the first conception

of an abstract deductive geometry in contradistinction to the practical

empirical geometry of Egypt, the glory of realizing this conception

belongs chiefly to Pythagoras and his disciples in the Greek cities of

Italy (Magna Grsecia) ;
for they established the principal theorems

respecting rectilineal figures. To the Pythagoreans the discovery of

many of the elementary properties of numbers is due, as Avell as the

geometric form which characterized the Greek theory of numbers

throughout its history.

In the middle of the fifth century before Christ Athens became the

principal centre of mathematical activity. There Hippocrates of Chios

(430 B.C.) made his contributions to the geometry of the circle, Plato

(380 B.C.) to geometric method, Theretetus (380 B.C.) to the doctrine

of incommensurable magnitudes, and Eudoxus (3GO B.C.) to the theory

of proportion. There also was begun the study of the conies.

About 300 B.C. the mathematical centre of the Greeks shifted to

Alexandria, where it remained.

The third century before Christ is the most brilliant period in Greek

mathematics. At its beginning in Alexandria Euclid lived and

taught and wrote his Elements, collecting, systematizing, and per

fecting the work of his predecessors. Later (about 250) Archimedes

of Syracuse flourished, the greatest mathematician of antiquity and

founder of the science of mechanics
;
and later still (about 230) Apol-

lonius of Perga, &quot;the great geometer,&quot; whose Conies marks the cul

mination of Greek geometry.
Of the later Greek mathematicians, besides Hero and Diophantus,

of whom an account is given in the text, and the great summarizer of

the ancient mathematics, Pappus (300 A.D.), only the famous astrono

mers Hipparchus (130 B.C.) and Ptolemy (150 A.D.) call for mention

here. To them belongs the invention of trigonometry and the first

trigonometric tables, tables of chords.

The dates in this summary are from Gow s Hist, of Greek Math.
* Compare Cantor, Geschichte der Mathematik, p. 153.
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oilier two sides was suggested to him by the fact that

32
-J- 4

2 = 52

,
in connection with the fact that the triangle

whose sides are 3, 4, 5, is right-angled, for both almost

certainly fell within the knowledge of the Egyptians, he

would naturally have sought, after he had succeeded in

demonstrating the geometric theorem generally, for number

triplets corresponding to the sides of any right triangle as

do 3, 4, 5 to the sides of the particular triangle.

The search of course proved fruitless, fruitless even in

the case which is geometrically the simplest, that of the

isosceles right triangle. To discover that it was necessarily

fruitless
;
in the face of preconceived ideas and the appar

ent testimony of the senses, to conceive that lines may exist

which have no common unit of measure, however small that

unit be taken
;
to demonstrate that the hypothenuse and

side of the isosceles right triangle actually are such a pair

of lines, was the great achievement of Pythagoras.*

95. Consequences of this Discovery in Greek Mathematics.

One must know the antecedents and follow the consequences
of this discovery to realize its great significance. It Avas

* His demonstration may easily have been the following, which was

old enough in Aristotle s time (340 B.C.) to be made the subject of a

popular reference, and which is to be found at the end of the 10th book

in all old editions of Euclid s Elements :

If there be any line which the side and diagonal of a square both

contain an exact number of times, let their lengths in terms of this

line be a and b respectively ;
then 6- = 2 a 2

.

The numbers a and b may have a common factor, y ;
so that a ay

and 6^/37, where a and B are prime to each other. The equation
62 = 2 a2 then reduces, on the removal of the factor 7- common to both

its members, to fi
2 = 2 a2.

From this equation it follows that #2
,
and therefore $, is an even

number, and hence that a which is prime to & is odd.

But set = 2 # ,
where & is integral, in the equation #2 = 2 a2

;
it

becomes 4 # 2 2 a2
,
or 2 # 2 = a2

,
whence a2

,
and therefore a, is even.

a has thus been proven to be both odd and even, and is therefore

not a number.
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tJie first recognition of the fundamental difference between

the geometric magnitudes and number, which Aristotle for

mulated brilliantly 200 years later in his famous distinc

tion between the continuous and the discrete, and as such

was potent in bringing about that complete banishment of

numerical reckoning from geometry which is so character

istic of this department of Greek mathematics in its best,

its creative period.

No one before Pythagoras had questioned the possibility

of expressing all size relations among lines and surfaces in

terms of number, rational number of course. Indeed,

except that it recorded a few facts regarding congruence of

figures gathered by observation, the Egyptian geometry was

nothing else than a meagre collection of formulas for com

puting areas. The earliest geometry was metrical.

But to the severely logical Greek no alternative seemed

possible, when once it was known that lines exist whose

lengths whatever unit be chosen for measuring them

cannot both be integers, than to have done with number

and measurement in geometry altogether. Congruence be

came not only the final but the sole test of equality. For

the study of size relations among unequal magnitudes a

pure geometric theory of proportion was created, in which

proportion, not ratio, was the primary idea, the method of

exhaustions making the theory available for figures bounded

by curved lines and surfaces.

The outcome was the system of geometry which Euclid

expounds in his Elements and of which Apollonius makes

splendid use in his Conies, a system absolutely free from

extraneous concepts or methods, yet, within its limits, of

great power.
It need hardly be added that it never occurred to the

Greeks to meet the difficulty which Pythagoras discovery
had brought to light by inventing an irrational number,
itself incommensurable with rational numbers. For arti

ficial concepts such as that they had neither talent nor liking.
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On the other hand, they did develop the theory of irra

tional magnitudes as a department of their geometry, the

irrational line, surface, or solid being one incommensurable
with some chosen (rational) line, surface, solid. Such a

theory forms the content of the most elaborate book of

Euclid s Elements, the 10th.

96. Approximate Values of Irrationals. In the practical
or metrical geometry which grew up after the pure geometry
had reached its culmination, and which attained in the works
of Hero the Surveyor almost the proportions of our modern

elementary mensuration,* approximate values of irrational

numbers played a very important r61e. Nor do such approx
imations appear for the first time in Hero. In Archimedes
&quot; Measure of the Circle &quot; a number of excellent approxima-

2?
tions occur, among them the famous approximation for

TT, the ratio of the circumference of a circle to its diam-
17 _

eter. The approximation - for V2 is reputed to be as old

as Plato.

It is not certain how these approximations were effected.f

They involve the use of some method for extracting square
roots. The earliest explicit statement of the method in

common use to-day for extracting square roots of numbers

(whether exactly or approximately) occurs in the com

mentary of Theon of Alexandria (380 A.D.) on Ptolemy s

* The formula Vs (s a) (s 6) (s c) for the area of a triangle in

terms of its sides is due to Hero.

t Many attempts have been made to discover the methods of

approximation used by Archimedes and Hero from an examination

of their results, but with little success. The formula Va2 + b = a
2a

will account for some of the simpler approximations, but no single

method or set of methods have been found which will account for the

more difficult. See Giinther: Die quadratischen Irrationalitaten der

Alten und deren Entwicklungsmethoden. Leipzig, 1882. Also in

Handbuch der klassischen Altertums-Wissenschaft, liter. Halbband.



GREEK ALGEBRA. 99

Almagest. Theon, who like Ptolemy employs sexagesimal

fractions, thus finds the length of the side of a square con

taining 4500 to be 67 1 55&quot;.

97. The Later History of the Irrational is deferred to the

chapters which follow ( 106, 108, 112, 121, 129).

It will be found that the Indians permitted the simplest

forms of irrational numbers, surds, in their algebra, and that

they were followed in this by the Arabians and the mathema

ticians of the Renaissance, but that the general irrational

did not make its way into algebra until after Descartes.

V. OBIGIN OF THE NEGATIVE AND THE IMAGINARY.

THE EQUATION.

98. The Equation in Egyptian Mathematics. While the

irrational originated in geometry, the negative and the

imaginary are of purely algebraic origin. They sprang

directly from the algebraic equation.

The authentic history of the equation, like that of geome

try and arithmetic, begins in the book of the old Egyptian
scribe Ahmes. For Ahmes, quite after the present method,
solves numerical problems which admit of statement in an

equation of the first degree involving one unknown quantity.*

99. In the Earlier Greek Mathematics. The equation was
slow in arousing the interest of Greek mathematicians. They
were absorbed in geometry, in a geometry whose methods

were essentially non-algebraic.

To be sure, there are occasional signs of a concealed

algebra under the closely drawn geometric cloak. Euclid

* His symbol for the unknown quantity is the word hau, meaning
heap.
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solves three geometric problems which, stated algebraically,
are but .the three forms of the quadratic; x2 + ax = b2

,

x2 = ax + b2

,
x2 + b2 = ax* And the Conies of Apollonius,

so astonishing if regarded as a product of the pure geo
metric method used in its demonstrations, when stated in

the language of algebra, as recently it has been stated by
Zeuthen,| almost convicts its author of the use of algebra
as his instrument of investigation.

100. Hero. But in the writings of Hero of Alexandria

(120 B.C.) the equation first comes clearly into the light

again. Hero was a man of practical genius whose aim was
to make the rich pure geometry of his predecessors available

for the surveyor. With him the rigor of the old geometric
method is relaxed

; proportions, even equations, among the

measures of magnitudes are permitted where the earlier

geometers allow only proportions among the magnitudes
themselves

;
the theorems of geometry are stated metrically,

in formulas
;
and more than all this, the equation becomes

a recognized geometric instrument.

Hero gives for the diameter of a circle in terms of s, the

sum of diameter, circumference, and area, the formula : t

,Vl54s +-841-29
~TT~

He could have reached this formula only by solving a

quadratic equation, and that not geometrically, the nature

of the oddly constituted quantity s precludes that suppo

sition, but by a purely algebraic reckoning like the

following :

The area of a circle in terms of its diameter being ^
,

* Elements, VI, 29, 28
; Data, 84, 85.

t Die Lehre von -den Kegelschnitten im Altertum. Copenhagen,
1886.

J See Cantor
;
Geschichte der Mathematik, p. 341.
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the length of its circumference ird, and TT according to

22
Archimedes approximation ,

we have the equation :

8 = d + + *&, or d2+~d = s.

4 14 7

Clearing of fractions, multiplying by 11, and completing
the square,

121 d2 + 638 d + 841 = 154 s 4- 841,

whence 11 d + 29 = Vl54 s + 841,

d = * 841-29.

Except that he lacked an algebraic symbolism, therefore,

Hero was an algebraist, an algebraist of power enough to

solve an affected quadratic equation.

101. Diophantus (300 A.D. ?). The last of the Greek

mathematicians, Diophantus of Alexandria, was a great

algebraist.

The period between him and Hero was not rich in cre

ative mathematicians, but it must have witnessed a grad
ual development of algebraic ideas and of an algebraic

symbolism.
At all events, in the apiO^riKa of Diophantus the alge

braic equation has been supplied with a symbol for the

unknown quantity, its powers and the powers of its recip

rocal to the 6th, and a symbol for equality. Addition is

represented by mere juxtaposition, but there is a special

symbol, //, for subtraction. On the other hand, there are

no general symbols for known quantities, symbols to

serve the purpose which the first letters of the alphabet
are made to serve in elementary algebra nowadays, there

fore no literal coefficients and no general formulas.

With the symbolism had grown up many of the formal

rules of algebraic reckoning also. Diophantus prefaces the
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Kd with rules for the addition, subtraction, and mul

tiplication of polynomials. He states expressly that the

product of two subtractive terms is additive.

The aoiOiJLYjTLKd itself is a collection of problems concern

ing numbers, some of which are solved by determinate

algebraic equations, some by indeterminate.

Determinate equations are solved which have given posi
tive integers as coefficients, and are of any of the forms

axm =bxn
j
ax2 + bx = c, ax2 + c = bx, a#2 = &#4-c; also a

single cubic equation, x3 + x = 4a^ + 4. In reducing equa
tions to these forms, equal quantities in opposite members
are cancelled and subtractive terms in either member are

rendered additive by transposition to the other member.

The indeterminate equations are of the form y
2 = ax2

-f- bx -f- c, Diophantus regarding any pair, of positive rational

numbers (integers or fractions) as a solution which, substi

tuted for y and x, satisfy the equation.
1* These equations are

handled with marvellous dexterity in the dpifl/^TtKa. No
effort is made to develop general comprehensive methods,
but each exercise is solved by some clever device suggested

by its individual peculiarities. Moreover, the discussion is

never exhaustive, one solution sufficing when the possible

number is infinite. Yet until some trace of indeterminate

equations earlier than the d/ud/j^nKa is discovered, Diophan
tus must rank as the originator of this department of

mathematics.

The determinate quadratic is solved by the method which

we have already seen used by Hero. The equation is first

multiplied throughout by a number which renders the co

efficient of x2 a perfect square, the &quot;

square is completed/&quot;

the square root of both members of the equation taken, and

* The designation &quot;Diophantine equations,&quot; commonly applied to

indeterminate equations of the first degree when investigated for inte

gral solutions, is a striking misnomer. Diophantus nowhere considers

such equations, and, on the other hand, allows fractional solutions of

indeterminate equations of the second degree.
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the value of x reckoned out from the result. Thus from

ax2
-f c = bx is derived first the equation

aV -f- ac = abx,

then a2x2 - abx +
(|Y

=
(|Y

-
ac,

then a#

and finally,

The solution is regarded as possible only when the num
ber under the radical is a perfect square (it must, of course,

be positive), and only one root that belonging to the

positive value of the radical is ever recognized.

Thus the number system of Diophantus contained only
the positive integer and fraction

;
the irrational is excluded

;

and as for the negative, there is no evidence that a Greek

mathematician ever conceived of such a thing, certainly

not Diophantus with his three classes and one root of

affected quadratics. The position of Diophantus is the

more interesting in that in the dptfyt^TiKa the Greek science

of number culminates.

102. The Indian Mathematics. The pre-eminence in math

ematics passed from the Greeks to the Indians. Three

mathematicians of India stand out above the rest: Arya-
bhatta (born 476 A.D.), Brahmagupta (born 598 A.D.), Bhds-

kara (born 1114 A.D.). While all are in the first instance

astronomers, their treatises also contain full expositions of

the mathematics auxiliary to astronomy, their reckoning,

algebra, geometry, and trigonometry.*

* The mathematical chapters of Brahmagupta and Bhaskara have

been translated into English by Colebrooke: &quot;

Algebra, Arithmetic,

and Mensuration, from the Sanscrit of Brahmagupta and Bhaskara,&quot;

1817
;
those of Aryabhatta into French by L. Kodet (Journal Asiatique,

1879).
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An examination of the writings of these mathematicians

and of the remaining mathematical literature of India leaves

little room for doubt that the Indian - geometry was taken

bodily from Hero, and the algebra whatever there may
have been of it before Aryabhatta at least powerfully
affected by Diophantus. Nor is there occasion for surprise
in this. Aryabhatta lived two centuries after Diophantus
and six after Hero, and during those centuries the East had

frequent communication with the West through various

channels. In particular, from Trajan s reign till later than

300 A.D. an active commerce was kept up between India

and the east coast of Egypt by way of the Indian Ocean.

Greek geometry and Greek algebra met very different

fates in India. The Indians lacked the endowments of the

geometer. So far from enriching the science with new

discoveries, they seem with difficulty to have kept alive

even a proper understanding of Hero s metrical formulas.

But algebra flourished among them wonderfully. Here the

fine talent for reckoning which had created a perfect nu

meral notation, supported by a talent equally fine for sym
bolical reasoning, found a great opportunity and made

great achievements. With Diophantus algebra is no more

than an art by which disconnected numerical problems are

solved
;
in India it rises to the dignity of a science, with

general methods and concepts of its own.

103. Its Algebraic Symbolism. First of all, the Indians

devised a complete, and in most respects adequate, sym
bolism. Addition was represented, as by Diophantus, by
mere juxtaposition ; subtraction, exactly as addition, except

that a dot was written over the coefficient of the subtra

hend. The syllable bha written after the factors indicated

a product ;
the divisor written under the dividend, a quo

tient
;
a syllable, to, written before a number, its (irrational)

square root; one member of an equation placed over the

other, their equality. The equation was also provided with
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symbols for any number of unknown quantities and their

powers.

104. Its Invention of the Negative. The most note

worthy feature of this symbolism is its representation of

subtraction. To remove the subtractive symbol from be

tween minuend and subtrahend (where Diophantus had

placed his symbol &amp;gt;p),
to attach it wholly to the subtrahend

and thus connect this modified subtrahend with the minuend

additively, is, formally considered, to transform the sub

traction of a positive quantity into the addition of the

corresponding negative. It suggests what other evidence

makes certain, that algebra owes to India the immensely

useful concept of the absolute negative.

Thus one of these dotted numbers is allowed to stand

by itself as a member of an equation. Bhaskara recognizes

the double sign of the square root, as well as the impossi

bility of the square root of a negative number (which is

very interesting, as being the first dictum regarding the imag

inary), and no longer ignores either root of the quadratic.

More than this, recourse is had to the same expedients

for interpreting the negative, for attaching a concrete phys
ical idea to it, which persist to this day. The primary

meaning of the very name given the negative was debt, as

that given the positive was means. The opposition between

the two was also pictured by lines described in opposite

directions.

105. Its Use of Zero. But the contributions of the Ind

ians to the fund of algebraic concepts did not stop with the

absolute negative.

They made a number of 0, and though some of their

reckonings with it are childish, Bhdskara, at least, had

sufficient understanding of the nature of the &quot;

quotient
&quot;

(infinity) to say &quot;it suffers no change, however much it

is increased or diminished. He associates it with Deity.
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106. Its Use of Irrational Numbers. Again, the Indians
were the first to reckon with irrational square roots as with

numbers; Bhaskara extracting square roots of binomial

surds and rationalizing irrational denominators of fractions

even when these are polynomial. Of course they were as

little able rigorously to justify such a procedure as the

Greeks
;
less able, in fact, since they had no equivalent of

the method of exhaustions. But it probably never occurred

to them that justification was necessary; they seem to have

been unconscious of the gulf fixed between the discrete and
continuous. And here, as in the case of and the negative,
with the confidence of apt and successful reckoners, they
were ready to pass immediately from numerical to purely

symbolical reasoning, ready to trust their processes even

where formal demonstration of the right to apply them
ceased to be attainable. Their skill was too great, their

instinct too true, to allow them to go far wrong.

107. Determinate and Indeterminate Equations in Indian

Algebra. As regards equations the only changes which
the Indian algebraists made in the treatment of determinate

equations were such as grew out of the use of the negative.

This brought the triple classification of the quadratic to an

end and secured recognition for both roots of the quadratic.

Brahmagupta solves the quadratic by the rule of Hero
and Diophantus, of which he gives an explicit and gen
eral statement. Qrldhara, a mathematician of some dis

tinction belonging to the period between Brahmagupta and

Bhaskara, made the improvement of this method which

consists in first multiplying the equation throughout by
four times the coefficient of the square of the unknown

quantity and so preventing the occurrence of fractions

under the radical sign.*

Bhaskara also solves a few cubic and biquadratic equa
tions by special devices.

* This method still goes under the name &quot; Hindoo method.&quot;
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The theory of indeterminate equations, on the other hand,

made great progress in India. The achievements of the

Indian mathematicians in this beautiful but difficult depart
ment of the science are as brilliant as those of the Greeks

in geometry. They created the doctrine of the indetermi

nate equation of the first degree, ax + by = c, which they
treated for integral solutions by the method of continued

fractions in use to-day. They worked also with equations of

the second degree of the forms ax*-}- b= cy
2
, xy= ax -f by -f- c,

originating general and comprehensive methods where Dio-

phantus had been content with clever jugglery.

108. The Arabian Mathematics. The Arabians were the

instructors of modern Europe in the ancient mathematics.

The service which they rendered in the case of the numeral

notation and reckoning of India they rendered also in the

case of the geometry, algebra, and astronomy of the Greeks

and Indians. Their own contributions to mathematics are

unimportant. Their receptiveness for mathematical ideas

was extraordinary, but they had little originality.

The history of Arabian mathematics begins with the reign

of Almansur (754-775),* the second of the Abbasid caliphs.

It is related (by Ibn-al-Adami, about 900) that in this

reign, in the year 773, an Indian brought to Bagdad certain

astronomical writings of his country, which contained a

method called &quot;Sindhind,&quot; for computing the motions of

the stars, probably portions of the Siddh&nta of Brahma-

gupta, and that Alfazari was commissioned by the caliph

to translate them into Arabic,f Inasmuch as the Indian

* It was Almansur who transferred the throne of the caliphs from

Damascus to Bagdad which immediately became not only the capital

city of Islam, but its commercial and intellectual centre.

t This translation remained the guide of the Arabian astronomers

until the reign of Almamun (813-833), for whom Alkhwarizmi pre

pared his famous astronomical tables (820). Even these were based

chiefly on the &quot;Sindhind,&quot; though some of the determinations were

made by methods of the Persians and Ptolemy.
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astronomers put full expositions of their reckoning, algebra,

and geometry into their treatises, Alfazari s translation laid

open to his countrymen a rich treasure of mathematical ideas

and methods.

It is impossible to set a date to the entrance of Greek
ideas. They must have made themselves felt at Damascus,
the residence of the later Omayyad caliphs, for that city had

numerous inhabitants of Greek origin and culture. But the

first translations of Greek mathematical writings were made
in the reign of Harun Arraschid (786-809), when Euclid s

Elements and Ptolemy s Almagest were put into Arabic.

Later on, translations were made of Archimedes, Apollo-

nius, Hero, and last of all, of Diophantus (by Abu l Wafa,

940-998).
The earliest mathematical author of the Arabians is

Alkhwarizmi, who flourished in the first quarter of the 9th

century. Besides astronomical tables, he wrote a treatise

on algebra and one on reckoning (elementary arithmetic).

The latter has already been mentioned. It is an exposition
of the positional reckoning of India, the reckoning which

mediaeval Europe named after him Algorithm.
The treatise on algebra bears a title in which the word

Algebra appears for the first time : viz., Aldjebr walmu-

kdbala. Aldjebr (i.e. reduction) signifies the making of all

terms of an equation positive by transferring negative terms

to the opposite member of the equation ;
almuJcabala (i.e.

opposition), the cancelling of equal terms in opposite mem
bers of an equation.

Alkhwarizmfs classification of equations of the 1st and

2d degrees is that to which these processes would naturally

lead, viz. :

ax2 = bx, bx2
=c, bx = c,

These equations he solves separately, following up the

solution in each case with a geometric demonstration of its
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correctness. He recognizes both roots of the quadratic
when they are positive. In this respect he is Indian

;
in

all others the avoidance of negatives, the use of geometric
demonstration he is Greek.

Besides AlkhwarizmS, the most famous algebraists of the

Arabians were Alkarchi and Alcliayyaml, both of whom
lived in the llth century.

Alkarchi gave the solution of equations of the forms :

ax?p + bxp = c, ax2p + c = bxp
,
bxp -f c =

He also reckoned with irrationals, the equations

being pretty just illustrations of his success in this field.

Alchayyami was the first mathematician to make a system
atic investigation of the cubic equation. He classified the

various forms which this equation takes when all its terms

are positive, and solved each form geometrically by the

intersections of conies.* A pure algebraic solution of the

cubic he believed impossible.

Like Alkhwarizmi, Alkarchi and Alchayy&mi were Eastern

Arabians. But early in the 8th century the Arabians con

quered a great part of Spain. An Arabian realm was

established there which became independent of the Bagdad

caliphate in 747, and endured for 300 years. The inter

course of these Western Arabians with the East was not

* Thus suppose the equation Xs + bx = a, given.

For 6 substitute the quantity p
2

,
and for a^ p

2
r. Then :r

3=
/&amp;gt;

2
(r x).

Now this equation is the result of eliminating y from between the

two equations, x2 =
/&amp;gt;//, ?/

2 x (r x} ;
the first of which is the equa

tion of a parabola, the second, of a circle.

Let these two curves be constructed
; they will intersect in one real

point distinct from the origin, and the abscissa of this point is a root

of XB
-f- bx = a. See Hankel, Geschichte der Mathematik, p. 279.

This method is of greater interest in the history of geometry than

in that of algebra. It involves an anticipation of some of the most

important ideas of Descartes Geometric (see p. 118).
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frequent enough to exercise a controlling influence on their

aesthetic or scientific development. Their mathematical

productions are of a later date than those of the East

and almost exclusively arithmetico-algebraic. They con

structed a formal algebraic notation which went over into

the Latin translations of their writings and rendered the

path of the Europeans to a knowledge of the doctrine of

equations easier than it would have been, had the Arabians

of the East been their only instructors. The best known of

their mathematicians are Ibn Aflah (end of llth century),
Ibn Albannd (end of 13th century), Alkasadl (15th century).

109. Arabian Algebra Greek rather than Indian. Thus,
of the three greater departments of the Arabian mathematics,
the Indian influence gained the mastery in reckoning only.

The Arabian geometry is Greek through and through.

While the algebra contains both elements, the Greek pre

dominates. Indeed, except that both roots of the quadratic

are recognized, the doctrine of the determinate equation is

altogether Greek. It avoids the negative almost as care

fully as Diophantus does
;
and in its use of the geometric

method of demonstration it is actuated by a spirit less

modern still the spirit in which Euclid may have con

ceived of algebra when he solved his geometric quadratics.

The theory of indeterminate equations seldom goes beyond

Diophantus ;
where it does, it is Indian.

The Arabian trigonometry is based on Ptolemy s, but is

its superior in two important particulars. It employs the

sine where Ptolemy employs the chord (being in this re

spect Indian), and has an algebraic instead of a geometric

form. Some of the methods of approximation used in

reckoning out trigonometric tables show great cleverness.

Indeed, the Arabians make some amends for their ill-advised

return to geometric algebra by this excellent achievement

in algebraic geometry.
The preference of the Arabians for Greek algebra was
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especially unfortunate in respect to the negative, which was

in consequence forced to repeat in Europe the fight for

recognition which it had already won in India.

110. Mathematics in Europe before the Twelfth Century.

The Arabian mathematics found entrance to Christian Eu

rope in the 12th century. During this century and the first

half of the next a good part of its literature was translated

into Latin.

Till then the plight of mathematics in Europe had been

miserable enough. She had no better representatives than

the Romans, the most deficient in the sense for mathematics

of all cultured peoples, ancient or modern
;
no better lit

erature than the collection of writings on surveying known
as the Codex Arcerianus, and the childish arithmetic and

geometry of Boetius.

Prior to the 10th century, however, Northern Europe had

not sufficiently emerged from barbarism to call even this

paltry mathematics into requisition. What learning there

was was confined to the cloisters. Reckoning (computus)
was needed for the Church calendar and was taught in the

cloister schools established by Alcuin (735-804) under the

patronage of Charlemagne. Beckoning was commonly done

on the fingers. Not even was the multiplication table gen

erally learned. Reference would be made to a written copy
of it, as nowadays reference is made to a table of loga

rithms. The Church did not need geometry, and geometry
in any proper sense did not exist.

111. Gerbert. But in the 10th century there lived a man
of true scientific interests and gifts, Gerbert,* Bishop of

Rheims, Archbishop of Ravenna, and finally Pope Sylvester
II. In him are the first signs of a new life for mathematics.

His achievements, it is true, do not extend beyond the

revival of Roman mathematics, the authorship of a geom-

* See 88.
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etry based on the Codex Arcerianus, and a method for effect

ing division on the abacus with apices. Yet these achieve

ments are enough to place him far above his contemporaries.
His influence gave a strong impulse to mathematical studies

where interest in them had long been dead. He is the fore

runner of the intellectual activity ushered in by the trans

lations from the Arabic, for he brought to life the feeling
of the need for mathematics which these translations were

made to satisfy.

112. Entrance of the Arabian Mathematics. Leonardo.

It was the elementary branch of the Arabian mathematics

which took root quickest in Christendom reckoning with

9 digits and 0.

Leonardo of Pisa Fibonacci, as he was also called

did great service in the diffusion of the new learning

through his Liber Abaci (1202 and 1228), a remarkable

presentation of the arithmetic and algebra of the Arabians,

which remained for centuries the fund from which reckoners

and algebraists drew and is indeed the foundation of the

modern science.

The four fundamental operations on integers and frac

tions are taught after the Arabian method
;
the extraction of

the square root and the doctrine of irrationals are presented
in their pure algebraic form

; quadratic equations are solved

and applied to quite complicated problems ; negatives are

accepted when they admit of interpretation as debt.

The last fact illustrates excellently the character of the

Liber Abaci. It is not a mere translation, but an inde

pendent and masterly treatise in one department of the

new mathematics.

Besides the Liber Abaci, Leonardo wrote the Practica

Geometriae, which contains much that is best of Euclid,

Archimedes, Hero, and the elements of trigonometry ;
also

the Liber Quadratorum, a collection of original algebraic

problems most skilfully handled.
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113. Mathematics during the Age of Scholasticism. Leo

nardo was a great mathematician,* but fine as his work was,

it bore no fruit until the end of the 15th century. In him

there had been a brilliant response to the Arabian impulse.

But the awakening was only momentary ;
it quickly yielded

to the heavy lethargy of the &quot; dark &quot;

ages.

The age of scholasticism, the age of devotion to the forms

of thought, logic and dialectics, is the age of greatest dul-

ness and confusion in mathematical thinking.t Algebra
owes the entire period but a single contribution; the

concept of the fractional power. Its author was Nicole

Oresme (died 1382), who also gave a symbol for it and the

rules by which reckoning with it are governed.

* Besides Leonardo there flourished in the first quarter of the 13th

century an able German mathematician, Jordanus Nemorarius. He
was the author of a treatise entitled De numeris datis, in which known

quantities are for the first time represented by letters, and of one De

tranyulis which is a rich though rather systemless collection of theorems

and problems principally of Greek and Arabian origin. See Gunther :

Geschichte des mathemathischen Unterrichts im deutschen Mittelalter,

p. 156.

t Compare Hankel, Geschichte der Mathematik, pp. 349-352. To
the unfruitfulness of these centuries the Summa of Luca Pacioli bears

witness. This book, which has the distinction of being the earliest

book on algebra printed, appeared in 1494, and embodies the arith

metic, algebra, and geometry of the time just preceding the Renais

sance. It contains not an idea or method not already presented by
Leonardo. Even in respect to algebraic symbolism it surpasses the

Liber Abaci only to the extent of using abbreviations for a few fre

quently recurring words, as p. for
&quot;plus,&quot;

and R. for &quot;res&quot; (the

unknown quantity). And this is not to be regarded as original with

Pacioli for the Arabians of Leonardo s time made a similar use of

abbreviations. In a translation made by Gerhard of Cremona (12th

century) from an unknown Arabic original the letters r (radix),

c (census) ,
d (dragma) are used to represent the unknown quantity,

its square, and the absolute term respectively.

Pacioli s demonstration that &quot;minus times minus is plus&quot; is per

haps worth inserting here, not, unfortunately, because it has gone

altogether out of vogue, but for the sake of the scholastic principle on
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114. The Renaissance. Solution of the Cubic and Bi

quadratic Equations. The first achievement- in algebra by
the mathematicians of the Renaissance was the algebraic
solution of the cubic equation : a fine beginning of a new
era in the history of the science.

The cubic a?
3
-f mx = n was solved by Ferro of Bologna

in 1505, and a second time and independently, in 1535, by
Ferro s countryman, Tartaglia, who by help of a transfor

mation made his method apply to or
3 my? = n also.

But Cardan of Milan was the first to publish the solution,

in his Ars Magna,* 1545.

The Ars Magna records another brilliant discovery : the

solution after a general method of the biquadratic
a4 + 6 x2

-f 36 = 60 x by Ferrari, a pupil of Cardan.

Thus in Italy, within fifty years of the new birth of

algebra, after a pause of sixteen centuries at the quad
ratic, the limits of possible attainment in the algebraic
solution of equations were reached; for the algebraic

solution of the general equation of a degree higher than

4 is impossible, as was first demonstrated by Abel.f

The general solution of higher equations proving an

obstinate problem, nothing was left the searchers for the

which he bases it. He reasons thus : Since 8 8 = (10 2) (10 2) = 64,

and 10 - 10 == 100, and 2 10 = 20
; therefore, -2 -2 = + 4 and

adds that this method of reasoning is well-known to philosophers,

being
&quot; a disjunctiva plurium partium a destractione multarum supra

unam semper tenet consequential
It should be added that the 15th century produced a mathemati

cian who deserves a distinguished place in the general history of

mathematics on account of his contributions to trigonometry, the

astronomer Regiomontanus (1436-1476). Like Jordanus, he was a

German.
* The proper title of this work is :

&quot; Artis magnae sive de regulis

Algebraicis liber unus.&quot; It has stolen the title of Cardan s &quot;Ars

magna Arithmeticae,
&quot;

published at Basel, 1570.

t Me&quot;moire sur les Equations AlgSbriques : Christiania, 1826. Also

in Crelle s Journal, I, p. 65.
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roots of equations but to devise a method of working them

out approximately. In this the French mathematician.

Vieta (1540-1603) was successful, his method being essen

tially the same as that now known as Newton s.

115. The Negative in the Algebra of this Period. First

Appearance of the Imaginary. But the general equation

presented other problems than the discovery of rules for

obtaining its roots
;

the nature of these roots and the

relations between them and the coefficients of the equation
invited inquiry.

We witness another phase of the struggle of the negative

for recognition. The imaginary is now ready to make com

mon cause with it.

Already in the Ars Magna Cardan distinguishes between

numeri veri the positive integer, fraction, and irrational,

and numeri ficti, or falsi the negative and the square root

of the negative. Like Leonardo, he tolerates negative roots

of equations when they admit of interpretation as &quot;

debitum,&quot;

not otherwise. While he has no thought of accepting im

aginary roots, he shows that if 5-f- V 15 be substituted

for x in x (10 x) = 40, that equation is satisfied
; which,

of course, is all that is meant nowadays when 5 4- V 15

is called a root. His declaration that 5 V 15 are
&quot; vere sophistica

&quot; does not detract from the significance of

this, the earliest recorded instance of reckoning with the

imaginary. It ought perhaps to be added that Cardan is

not always so successful in these reckonings ;
for in another

place he sets

Following Cardan, Bombelli* reckoned with imaginaries
to good purpose, explaining by their aid the irreducible

case in Cardan s solution of the cubic.

*L Algebra, 1579. He also formally states rules for reckoning
with V 1 and a + 6 V 1.
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On the other hand, neither Vieta nor his distinguished

follower, the Englishman Harriot (1560-1621), accept even

negative roots; though Harriot does not hesitate to perform

algebraic reckonings on negatives, and even allows a nega
tive to constitute one member of an equation.

116. Algebraic Symbolism. Vieta and Harriot. Vieta

and Harriot, however, did distinguished service in perfect

ing the symbolism of algebra ; Yieta, by the systematic use

of letters to represent known quantities, algebra first

became &quot;literal&quot; or &quot;universal arithmetic&quot; in his hands,*

Harriot, by ridding algebraic statements of every non-

symbolic element, of everything but the letters which rep
resent quantities known as well as unknown, symbols of

operation, and symbols of relation. Harriot s Artis Analy-
ticae Praxis (1631) has quite the appearance of a modern

algebra, t

* There are isolated instances of this use of letters much earlier than

Vieta in the De numeris datis of Jordanus Nemorarius, and in the

Afgorithmus demonstratus of Regiomontanus. But the credit of making
it the general practice of algebraists belongs to Vieta.

t One has only to reflect how much of the power of algebra is due

to its admirable symbolism to appreciate the importance of the Artis

Analyticae Praxis, in which this symbolism is finally established. But

one addition of consequence has since been made to it, integral and

fractional exponents introduced by Descartes (1637) and Wallis (1659).

Harriot substituted small letters for the capitals used by Vieta, but

followed Vieta in representing known quantities by consonants and

unknown by vowels. The present convention of representing known

quantities by the earlier letters of the alphabet, unknown by the later,

is due to Descartes.

Vieta s notation is unwieldy and ill adapted to purposes of alge

braic reckoning. Instead of restricting itself, as Harriot s does, to

the use of brief and easily apprehended conventional symbols, it also

employs words subject to the rules of syntax. Thus for A3 3 B-A= Z
(or aaa 3bba = z, as Harriot would have written it), Vieta writes

A cubits B quad 3 in A aequatur Z solido. In this respect Vieta is

inferior not only to Harriot, but to several of his predecessors and



EARLY EUROPEAN ALGEBRA. 117

117. Fundamental Theorem of Algebra. Harriot and

Girard. Harriot has been credited with the discovery of

the &quot; fundamental theorem &quot; of algebra the theorem that

the number of roots of an algebraic equation is the same as

its degree. The Artis Analyticae Praxis contains no mention

of this theorem indeed, by ignoring negative and imagi

nary roots, leaves no place for it; yet Harriot develops-

systematically a method which, if carried far enough, leads

to the discovery of this theorem as well as to the relations

holding between the roots of an equation and its coefficients.

By multiplying together binomial factors which involve

the unknown quantity, and setting their product equal to

0, he builds &quot;canonical&quot; equations, arid shows that the

roots of these equations the only roots, he says are the

positive values of the unknown quantity which render these

binomial factors 0. Thus he builds aa ba ca = be,

in which a is the unknown quantity, out of the factors

a b, a -f c, and proves that b is a root of this equation and

the only root, the negative root c being totally ignored.

While no attempt is made to show that if the terms of

a &quot;common&quot; equation be collected in one member, this can

notably to his contemporary, the Dutch mathematician Stevinus

(1548-1620), who would, for instance, have written x^ + Sx 8 as

l + 3 8. The geometric affiliations of Vieta s notation are

obvious. It suggests the Greek arithmetic.

It is surprising that algebraic symbolism should owe so little to the

great Italian algebraists of the 16th century. Like Pacioli (see note,

p. 113) they were content with a few abbreviations for words, a

&quot;syncopated&quot; notation, as it has been called, and an incomplete one
at that.

The current symbols of operation and relation are chiefly of English
and German origin, having been invented or adopted as follows : viz.

=, by Recorde in 1540
; ^/, by Rudolf in 1526

;
the vinculum, by Vieta

in 1591
; brackets, by Girard in 1629

; H-, by Pell in 1630
; X, &amp;gt;, &amp;lt;, by

Harriot in 1631. The signs + and occur in a 15th century manu

script discovered by Gerhardt at Vienna. The notations a b and -

for the fraction were adopted from the Arabians.



118 NUMBER-SYSTEM OF ALGEBRA.

be separated into binomial factors, the case of canonical

equations raised a strong presumption for the soundness of

this view of the structure of an equation.

The first statement of the fundamental theorem and

of the relations between coefficients and roots occurs in

a remarkably clever and modern little book, the Inven

tion Nouvelle en I Alyebre, of Albert Girard, published in

Amsterdam in 1629, two years earlier, therefore, than the

Artis Analyticae Praxis. Girard stands in no fear of imag

inary roots, but rather insists on the wisdom of recognizing
them. They never occur, he says, except when real roots

are lacking, and then in number just sufficient to fill out

the entire number of roots to equality with the degree of

the equation.

Girard also anticipated Descartes in the geometrical in

terpretation of negatives. But the Invention Nouvelle does

not seem to have attracted much notice, and the genius and

authority of Descartes were needed to give the interpreta

tion general currency.

VI. ACCEPTANCE OP THE NEGATIVE, THE GENEKAL

IKBATIONAL, AND THE IMAGINAEY AS NUMBEKS.

118. Descartes Geometric and the Negative. The Geome-

trie of Descartes appeared in 1637. This famous little trea

tise enriched geometry with a general and at the same time

simple and natural method of investigation : the method of

representing a geometric curve by an equation, which, as

Descartes puts it, expresses generally the relation of its

points to those of some chosen line of reference.* To form

such equations Descartes represents line segments by letters,

the known by a, 5, c, etc., the unknown by x and y. He

* See Geometric, Livre II. In Cousin s edition of Descartes works,

Vol. V, p. 337.
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supposes a perpendicular, y, to be dropped from any point

of the curve to the line of reference, and then the equation

to be found from the known properties of the curve which

connects y with x, the distance of y from a fixed point of the

line of reference. This is the equation of the curve in that

it is satisfied by the x and y of each and every curve-point.*

To meet the difficulty that the mere length of the perpen

dicular (?/)
from a curve-point will not indicate to which

side of the line of reference the point lies, Descartes makes

the convention that perpendiculars on opposite sides of this

line (and similarly intercepts (x) on opposite sides of the

point of reference) shall have opposite algebraic signs.

This convention gave the negative a new position in

mathematics. Not only was a &quot;real&quot; interpretation here

found for it, the lack of which had made its position so dif

ficult hitherto, but it was made indispensable, placed on a

footing of equality with the positive. The acceptance of

the negative in algebra kept pace with the spread of Descar

tes analytical method in geometry.

119. Descartes Geometric Algebra. But the Geometric

has another and perhaps more important claim on the atten

tion of the historian of algebra. The entire method of the

book rests on the assumption made only tacitly, to be

sure, and without knowledge of its significance that two

algebras are formally identical whose fundamental opera

tions are formally the same
;

i.e. subject to the same laws

of combination.

For the algebra of the Geometric is not, as is commonly
said, mere numerical algebra, but what may for want of a

better name be called the algebra of line segments. Its

symbolism is the same as that of numerical algebra; but

* Descartes fails to recognize a number of the conventions of our

modern Cartesian geometry. He makes no formal choice of two axes

of reference, calls abscissas ?/
and ordinates x, and as frequently regards

as positive ordinates below the axis of abscissas as ordinates above it.
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symbols which there represent numbers here represent line

segments. Not only is this the case with the letters a, b, x,

y, etc., which are mere names (noms) of line segments, not
their numerical measures, but with the algebraic combina
tions of these letters, a -f b and a b are respectively
the sum and difference of the line segments a and b

, ab, the

fourth proportional to an assumed unit line, a, and b
; -, the

b
fourth proportional to 6, a, and the unit line

;
and Va, \/a,

etc., the first, second, etc., mean proportionals to the unit
line and a.*

Descartes justification of this use of the symbols of

numerical algebra is that the geometric constructions of

which he makes a + b, a b, etc., represent the results are

&quot;the same 7

as numerical addition, subtraction, multiplica

tion, division, and evolution, respectively. Moreover, since

all geometric constructions which determine line segments

may be resolved into combinations of these constructions

as the operations of numerical algebra into the fundamental

operations, the correspondence which holds between these

fundamental constructions and operations holds equally
between the more complex constructions and operations.
The entire system of the geometric constructions under

consideration may therefore be regarded as formally iden

tical with the system of algebraic operations, and be

represented by the same symbolism.
In what sense his fundamental constructions are &quot;the

same &quot;

as the fundamental operations of arithmetic, Des
cartes does not explain. The true reason of their formal

identity is that both are controlled by the commutative,

associative, and distributive laws. Thus in the case of the

former as of the latter, ab = ba, and a (be) =abc-, for the

fourth proportional to the unit line, a, and b is the same as

the fourth proportional to the unit line, &, and a
;
and the

fourth proportional to the unit line, a, and be is the same as

* G6om6trie, Livre I. Ibid. pp. 313-314.
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the fourth proportional to the unit line, ab, and c. But this

reason was not within the reach of Descartes, in whose day

the fundamental laws of numerical algebra had not yet

been discovered.

120. The Continuous Variable. Newton. Euler. It is

customary to credit the Geometrie with having introduced

the continuous variable into mathematics, but without suffi

cient reason. Descartes prepared the way for this con

cept, but he makes no use of it in the Geometrie. The x

and y which enter in the equation of a curve he regards not

as variables but as indeterminate constants, a pair of whose

values correspond to each curve-point.* The real author of

this concept is Newton (1642-1727), of whose great inven

tion, the method of fluxions, continuous variation, &quot;flow,&quot;

is the fundamental idea.

But Newton s calculus, like Descartes algebra, is geo
metric rather than purely numerical, and his followers in

England, as also, to a less extent, the followers of his great

rival, Leibnitz, on the continent, in employing the calculus,

for the most part conceive of variables as lines, not num
bers. The geometric form again threatened to become para
mount in mathematics, and geometry to enchain the new
&quot;

analysis
&quot; as it had formerly enchained the Greek arith

metic. It is the great service of Euler (1707-1783) to have

broken these fetters once for all, to have accepted the con

tinuously variable number in its purity, and therewith to

have created the pure analysis. For the relations of con

tinuously variable numbers constitute the field of the pure

analysis ;
its central concept, the function, being but a device

for representing their interdependence.

121. The General Irrational While its concern with

variables puts analysis in a certain opposition to elementary

algebra, concerned as this is with constants, its establish-

* G6omtrie, Livre II. Ibid. pp. 337-338:
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ment of the continuously variable number in mathematics

brought about a rich addition to the number-system of alge
bra the general irrational. Hitherto the only irrational

numbers had been &quot;surds/
7

impossible roots of rational

numbers
;
henceforth their domain is as wide as that of all

possible lines incommensurable with any assumed unit line.

122. The Imaginary, a Recognized Analytical Instrument.

Out of the excellent results of the use of the negative grew
a spirit of toleration for the imaginary. Increased atten

tion was paid to its properties. Leibnitz noticed the real

sum of conjugate imaginaries (1676-7) ;
Demoivre dis

covered (1730) the famous theorem

(cos -f i sin 0)
n = cos nO -f i sin nO

;

and Euler (1748) the equation

cos + i sin = eiB
y

which plays so great a r61e in the modern theory of

functions.

Euler also, practising the method of expressing complex
numbers in terms of modulus and angle, formed their prod

ucts, quotients, powers, roots, and logarithms, and by many
brilliant discoveries multiplied proofs of the power of the

imaginary as an analytical instrument.

123. Argand s Geometric Representation of the Imaginary.
But the imaginary was never regarded as anything better

than an algebraic fiction to be avoided, where possible,

by the mathematician who prized purity of method until

the discovery of a geometric picture for it such as that with

which Descartes had supplied the negative. The first to

render it this service was a French mathematician, Argand,
in 18.06 *

* Essai sur une maniere de repr&enter les quantites imaginaires dans les

constructions geom&riques.
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As -f 1 and 1 may be represented by unit lines drawn

in opposite directions from any point, 0, and as i (i.e.V 1)

is a mean proportional to + 1 and 1, it occurred to Argand
to represent. this symbol by the line whose direction with

respect to the line -f- 1 is the same as the direction of the

line 1 with respect to it
; viz., the unit perpendicular

through to the 1 line. Let only the direction of the

1 line be fixed, the position of the point O in the plane
is altogether indifferent.

Between the segments of a given line, whether taken in

the same or opposite directions, the equation holds :

AB+BC=AC.
It means nothing more, however, when the directions of

AB and.BC are opposite, than that the result of carrying
a moving point from A first to B, and thence back to (7, is

the same as carrying it from A direct to C. But in this

sense the equation holds equally when A, B, C are not in

the same right line.

Given, therefore, a complex number, a -f- ib ;
choose any

point A in the plane ;
from it draw a line AB, of length a,

in the direction of the 1 line, and from B a line BC, of

length b, in the direction of the i line. The line AC, thus

fixed in length and direction, but situated anywhere in the

plane, is Argand s picture of a + ib.

Argand s skill in the use of his new device was equal to

the discovery of the demonstration given in 54, that every

algebraic equation has a root.

124. Gauss. The Complex Number. The method of rep

resenting complex numbers in common use to-day, that

described in 42, is due to Gauss. He was already in pos
session of it in 1811, though he published no account of it

until 1831.

To Gauss belongs the conception of i as an independent
unit co-ordinate with 1, and of a 4- ib as a complex number,
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a sum of multiples of the units 1 and i; his also is the

name &quot;

complex number &quot; and the concept of complex num
bers in general, whereby a + ib secures a footing in the

theory of numbers as well as in algebra.

He too, and not Argand, must be credited with really

breaking down the opposition of mathematicians to the

imaginary. Argand s Essai was little noticed when it ap

peared, and soon forgotten; but there was no withstanding
the great authority of Gauss, and his precise and masterly

presentation of this doctrine.*

VII. EEOOGNITION OP TEE PUKELY SYMBOLIC

OHAEAOTEE OF ALGEBEA.

QUATERNIONS. AUSDEHNUNGSLEHRE.

125. The Principle of Permanence. Thus, one after

another, the fraction, irrational, negative, and imaginary,

gained entrance to the number-system of algebra. Not

one of them was accepted until its correspondence to some

actually existing thing had been shown, the fraction and

irrational, which originated in relations among actually ex

isting things, naturally making good their position earlier

than the negative and imaginary, which grew immediately
out of the equation, and for which a &quot; real &quot;

interpretation

had to be sought.

Inasmuch as this correspondence of the artificial numbers

to things extra-arithmetical, though most interesting and

the reason of the practical usefulness of these numbers, has

not the least bearing on the nature of their position in pure
arithmetic or algebra ;

after all of them had been accepted
as numbers, the necessity remained of justifying this

* See Gauss, Complete Works, II, p. 174.
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acceptance by purely algebraic considerations. This was

first accomplished, though, incompletely, by the English

mathematician, Peacock.*

Peacock begins with a valuable distinction between arith

metical and symbolical algebra. Letters are employed in

the former, but only to represent positive integers and frac

tions, subtraction being limited, as in ordinary arithmetic,

to the case where subtrahend is less than minuend. In the

latter, on the other hand, the symbols are left altogether

general, untrammelled at the outset with any particular

meanings whatsoever.

It is then assumed that the rules of operation applying to

the symbols of arithmetical algebra apply without altera

tion in symbolical algebra ;
the meanings of the operations

themselves and their results being derived from these rules of

operation.

This assumption Peacock names the Principle of Perma

nence ofEquivalent Forms, and illustrates its use as follows : f

In arithmetical algebra, when a
&amp;gt; 6, c

&amp;gt; d, it may readily

be demonstrated that

(a b)(c d) = ac ad bc-\- bd.

By the principle of permanence, it follows that

(0
_

b) (0
-

d) = x - x d - b x + bd,

or (-6)(-d) = 6d.

Or again. In arithmetical algebra am an = am+n
,
when m

and n are positive integers. Applying the principle of

permanence, p -p p

(w)
q = av afl to q factors

whence a* = \/ap.

* Arithmetical and Symbolical Algebra, 1830 and 1845
; especially

the later edition. Also British Association Reports, 1833.

t Algebra, edition pf 1845, 631, 569, 639.
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Here the meanings of the product ( b) ( d) and of the
p

symbol a are both derived from certain rules of operation
in arithmetical algebra.

Peacock notices that the symbol = also has a wider mean
ing in symbolical than in arithmetical algebra ;

for in the
former = means that &quot; the expression which exists on one
side of it is the result of an operation which is indicated

on the other side of it and not performed.&quot;
*

He also points out that the terms &quot;real&quot; and
&quot;imagi

nary&quot;
or -

impossible&quot; are relative, depending solely on
the meanings attaching to the symbols in any particular

application of algebra. For a quantity is real when it can
be shown to correspond to any real or possible existence

;

otherwise it is imaginary.! The solution of the problem : to

divide a group of 5 men into 3 equal groups, is imaginary
though a positive fraction, while in Argand s geometry the

so-called imaginary is real.

The principle of permanence is a fine statement of the

assumption on which the reckoning with artificial numbers

depends, and the statement of the nature of this dependence
is excellent. Eegarded as an attempt at a complete presen
tation of the doctrine of artificial numbers, however, Pea

cock s Algebra is at fault in classing the positive fraction

with the positive integer and not with the negative and

imaginary, where it belongs, in ignoring the most difficult

of all artificial numbers, the irrational, in not defining arti

ficial numbers as symbolic results of operations, but princi

pally in not subjecting the operations themselves to a final

analysis.

126. The Fundamental Laws of Algebra. &quot;Symbolical

Algebras.&quot; Of the fundamental laws to which this analysis

leads, two, the commutative and distributive, had been

noticed years before Peacock by the inventors of symbolic

* Algebra, Appendix, 631. t Ibid. 667.
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methods in the differential and integral calculus as being

common to number and the operation of differentiation. In

fact, one of these mathematicians, Servois,* introduced the

names commutative and distributive.

Moreover, Peacock s contemporary, Gregory, in a paper

&quot;On the Real Nature of Symbolical Algebra,&quot; which ap

peared in the interim between the two editions of Peacock s

Algebra,f had restated these two laws, and had made their

significance very clear.

To Gregory the formal identity of complex operations

with the differential operator and the operations of numer

ical algebra suggested the comprehensive notion of algebra

embodied in his fine definition :
&quot;

symbolical algebra is the

science which treats of the combination of operations de

fined not by their nature, that is, by what they are or what

they do, but by the laws of combination to which they are

subject.&quot;

This definition recognizes the possibility of an entire class

of algebras, each characterized primarily not by its subject-

matter, but by its operations and the formal laws to which they

are subject; and in which the algebra of the complex num
ber a -f ib and the system of operations with the differential

operator are included, the two (so far as their laws are

identical) as one and the same particular case.

So long, however, as no &quot;

algebras
&quot; existed whose laws

differed from those of the algebra of number, this definition

had only a speculative value, and the general acceptance of

* Gergonne s Annales, 1813. One must go back to Euclid for the

earliest known recognition of any of these laws. Euclid demonstrated,
of integers (Elements, VII, 16), that ab=ba.

t In 1838. See The Mathematical Writings of D. F. Gregory, p. 2.

Among other writings of this period, which promoted a correct under

standing of the artificial numbers, should be mentioned Gregory s

interesting paper, &quot;On a Difficulty in the Theory of Algebra,&quot; Writ

ings, p. 235, and De Morgan s papers &quot;On the Foundation of Algebra
&quot;

(1839, 1841
; Cambridge Philosophical Transactions, VII).
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the dictum that the laws regulating its operations consti

tuted the essential character of algebra might have been

long delayed had not Gregory s paper been quickly followed

by the discovery of two &quot;

algebras/ the quaternions of

Hamilton and the Ausdehnungslehre of Grassmann, in which

one of the laws of the algebra of number, the commutative

law for multiplication, had lost its validity.

127. Quaternions. According to his own account of the

discovery,* Hamilton came upon quaternions in a search

for a second imaginary unit to correspond to the perpendicu
lar which may be drawn in space to the lines 1 and i.

In pursuance of this idea he formed the expressions,

a-hi6-fjc, x -f iy +jz, in which a, b, c, x, y, z were sup

posed to be real numbers, and j the new imaginary unit

sought, and set their product

(a + ib +jc) (x + iy +jz) = ax by cz + i (ay + bx)

+j (az + ex) + ij (bz + cy) .

The question then was, what interpretation to give ij.

It would not do to set it equal to a 1+ ib
f+ jc ,

for then the

theorem that the modulus of a product is equal to the

product of the moduli of its factors, which it seemed indis

pensable to maintain, would lose its validity; unless, in

deed, a = b = c = 0, and therefore ij
= 0, a very unnatural

supposition, inasmuch as 1 i is different from 0.

No course was left for destroying the ij term, therefore,

but to make its coefficient, bz -f- cy, vanish, which was tanta

mount to supposing, since &, c, y, z are perfectly general,

that ji = ij.

Accepting this hypothesis, denial of the commutative law

as it was, Hamilton was driven to the conclusion that the

system upon which he had fallen contained at least three

imaginary units, the third being the product ij.
He called

*
Philosophical Magazine, II, Vol. 25, 1844.
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this &, took as general complex numbers of the system,
a + ib +jc + kd, x + iy -fjz -f kw, quaternions, built their

products, and assuming

ki = ik=j,

found that the modulus law was fulfilled.

A geometrical interpretation was found for the
&quot;imag

inary triplet&quot; ib +jc + kd, by making its coefficients, &, c, d,

the rectangular co-ordinates of a point in space ;
the line

drawn to this point from the origin picturing the triplet by
its length and direction. Such directed lines Hamilton

named vectors.

To interpret geometrically the multiplication of i into j9

it was then only necessary to conceive of the j axis as

rigidly connected with the i axis, and turned by it through
a right angle in the jk plane, into coincidence with the k

axis. The geometrical meanings of other operations &quot;fol

lowed readily.

In a second paper, published in the same volume of the

Philosophical Magazine, Hamilton compares in detail the

laws of operation in quaternions and the algebra of number,
for the first time explicitly stating and naming the asso

ciative law.

128. Grassmann s Ausdehnungslehre. In the Ausdeh-

nungslehre, as Grassmann first presented it, the elementary

magnitudes are vectors.

The fact that the equation AB + EC= AC always holds

among the segments of a line, when account is taken of

their directions as well as their lengths, suggested the

probable usefulness of directed lengths in general,, and led

Grassmann, like Argand, to make trial of this definition of
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addition for the general case of three points, A, J5, C, not
in the same right line.

But the outcome was not great until he added to this his

definition of the product of two vectors. He took as the

product ab, of two vectors, a and 6, the parallelogram gen
erated by a when its initial point is carried along b from
initial to final extremity.

This definition makes a product vanish not only when
one of the vector factors vanishes, but also when the two
are parallel. It clearly conforms to the distributive law.

On the other hand, since

(a + b)(a + b) = aa + ab + ba + 66,

and (a + 6) (a + 6) = aa = bb = 0,

a6-f-6a = 0, or 6a = ab,

the commutative law for multiplication has lost its validity,

and, as in quaternions, an interchange of factors brings
about a change in the sign of the product.
The opening chapter of Grassmann s first treatise on the

Ausdehnungslehre (1844) presents with admirable clear

ness and from the general standpoint of what he calls
&quot; &quot;Formenlehre

&quot;

(the doctrine of forms), the fundamental

laws to which operations are subject as well in the Aus

dehnungslehre as in common algebra.

129. The Doctrine of the Artificial Numbers fully Devel

oped. The discovery of quaternions and the Ausdehnungs
lehre made the algebra of number in reality what Gregory s

definition had made it in theory, no longer the sole algebra,

but merely one of a class of algebras. A higher standpoint
was created, from which the laws of this algebra could be

seen in proper perspective. Which of these laws were

distinctive, and what was the significance of each, came

out clearly enough when numerical algebra could be com

pared with other algebras whose characteristic laws were

not the same as its characteristic laws.
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The doctrine of the artificial numbers regarded from

this point of view as symbolic results of the operations

which the fundamental laws of algebra define was fully

presented for the negative, fraction, and imaginary, by
Hankely in his Complexe Zahlensystemen (1867). Hankel

re-announced Peacock s principle of permanence. The
doctrine of the irrational now accepted by mathematicians

is due to Weierstrass and G. Cantor*

A number of interesting contributions to the literature of

the subject have been made recently ; among them a paper f

by Kronecker in which methods are proposed for avoiding
the artificial numbers by the use of congruences and &quot; inde-

terniinates,&quot; and papers $ by Weierstrass, Dedekind, Holder,

Study, Scheffer, and Schur, all relating to the theory of

general complex numbers built from n fundamental units

(see page 40),

* See Cantor in Mathematische Annalen, V, p. 123, XXI, p. 567.

The first paper was written in 1871. In the second, Cantor compares
his theory with that of Weierstrass, and also with the theory proposed

by Dedekind in his Steticjkeit und irrationale Zahlen (1872).
The theory of the irrational, set forth in Chapter IV of the first

part of this book, is Cantor s.

t Journal fur die reine und angewandte Mathematik, Vol. 101,

p. 337.

t Gottinger Nachrichten for 1884, p. 395
; 1885, p. 141

; 1889, p. 34,

p. 237. Leipziger Berichte for 1889, p. 177, p. 290, p. 400. Mathe-
mathische Annalen, XXXIII, p. 49.
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