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PRELIMINARY REMARKS

1. Measurable sets. Let E be some set of points of an
interval S ={a, b]. Denote the complement of E with respect
to S by Cg; i.e., by definition Cg consists of points which
do not belong to E.

There are a variety of ways in which the points of set
E may be included in a finite or countable system of intervals

Oy, Oy, o ovy Oy oo

We denote by Za the sum of the lengths of the intervals

oy, Qg « .., Oy .... For any system of intervals covering E,
da>0

The lower bound of Y e, which depends solely on the
set E, is called the exterior measure and is denoted m*E.
From the definition of an exterior measure it follows that
for any & > 0 there exists a system of intervals a,, a,, ..

.., O, ... which include all points of the set E such that

mELYa<mE+e

The interior measure m,E of the set E is the difference
between the length of the interval S and the exterior measure
of the complement of the set; i.e.,

m,E=b—a—m*Cg

If the exterior and interior measures of E are equal, then
the set E is called measurable in the sense of Lebesgue
(Lebesgue measurable, or, simply, measurable), while the
common value of the measures m*E and m, E is called the
Lebesgue measure of E (or, 51mply, the measure of E) and
is denoted by mE or mes E.

The measure of the interval (a, b) is its length: mes
(a, b)=b—a. The set © of points of the interval (a, b) is
called a set of measure zero it ® can be covered by intervals
the sum of whose lengths is arbitrarily small.
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2. A function of a real variable f(x) defined on a measu-
rable set E is called measurable if for any number A the
set & (f (x) > A), which consists of those points x belonging
to the set E for which f(x) > A, is Lebesgue measurable.

Note. The requirement of measurability of the set
& (f (x) > A) may be replaced by one of the following three
conditions:

(a) the set & (f (x) = A) is measurable,
(b) the set & (f(x) < A) is measurable,
(c) the set & (f (x) << A) is measurable.

3. A function f(x), nonnegative on tl;e interval (a, 0),
is called summable on that ‘interval if Sf(x) dx is finite *.

A function f(x) of arbitrary sign will "be summable on
an interval (a, b) if and only ifb the function |f (x)]| is

summable, i.e., if the integral Slf(x) |dx has a finite
value. ’

In the sequel we shall have to do with the basic interval
I=(a, b) (or I,=(0, a)) and the basic square

Q{a<x1t<b} (Ol' Qo{ogx:tga})

4. The L, (a, b) space. We say that f(x) is a quadratically
integrable function on [a, b] if the integral

b
S f2(x)dx

exists (is finite). The class of all quadratically integrable
functions on [a, b] is denoted by L, (a, b) or, simply, L,.

Basic Properties of L, Functions

(a) The product of two quadratically integrable functions
is an integrable function.
(b) The sum of two L, functions is also an L, function.

* The integral is to be understood in the sense of Lebesgue, but
if the reader is not acquainted with the Lebesgue integral, the integrals
may everywhere be understood in the sense of Riemann.
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() If f(x) € L, and A is an arbitrary real number, then
M(x) € L,

(d) If f(x) € L, and g(x) € L,, then we have the Bunya-
kovsky-Schwarz mequahty

b b
(Sf(x)g(x)dx> (Pwa{ewd O

The scalar product of two functions f(x) € L, and g(x) € L,
is, by definition, the number

b
¢, 9= {f(x)g(x)dx @

The norm of an L, function f (x) is the nonnegative number

Ilfll=V('f_,7‘5=]/Sf2(x)dx ®

(e) For f(x) and g(x) taken in L, we have the triangle

mequahty
I7+el<Ifi+lel )

(f) Convergence in the mean. Let the functions f(x) and
fi(x), f,(%), ..., f.(x), ... be quadratically summable on
(a, b). If

b
lim { [f, ())—F (0)]* dx =0

then we say that the sequence of functions f, (x), f,(x) ...
conver ges in the mean or, more precisely, in the mean square,
lo the function f (x).

If a sequence {f,(x)} of L, functions converges umformly
to f(x), then f(x)€L, and {f (x)} converges to f(x) in the
mean.

We say that a sequence {f, (x)} of functions in L, converges
in the mean in itself if for any number &> 0 there exists
a number N > 0 such -that

b

() —fan)Pdx<e

a
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for n> N and m > N. Sometimes sequences convergent in
themselves are called fundamental sequences. For a sequence
{f.(x¥)} to converge in the mean to some function, it is
necessary and sufficient that this sequence be fundamental.
The space L, is complete; i.e., any fundamental sequence
of functions in L, converges to a function which also lies
in L,. -

Two functions f(x) and g (x) in L, (a, b) are called equivalent
on (a, b) if f(x)=g(x) only on a set of measure zero.
In this case we say that f(x)=g(x) almost everywhere on-
(a, b).

5. The space C* (a, b). The elements of this space are
all possible functions defined on 'the interval [a, 6] and
having, on this interval, continuous derivatives up to the
Ith inclusive. The operations of addition of functions and
multiplication of functions by a number are defined in the
usual manner.

We determine the norm of an element f(x) € C% (a, b) from
the formula

"f" =k=ﬁ(l an;axx<b l f " (x) |
f© (x) being equal to f(x).

Convergence in C“ (a, b) implies uniform convergence
both of a sequence of the functions themselves and of the
sequences of their derivatives of order & (k=1, 2, ..., I).

The concepts of a measurable set, a measurable function,
a summable function, etc. are extended to the case of spaces
of higher dimensionality. For example, the function F (x, ¢)
“will be called quadratically summable on Q {a<Cx, ¢<{b}
if the integral

b
SFe(x, fydx dt <+ oo

R

In this case, the norm of the function F(x, f) is defined
by the equality

bb ]
IIFII=‘/SS F2(x, t)dx dt
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6. A function f(z)of a complex variable 2z, differentiable
at every point of a domain G in the plane of the complex
variable z, is called analytic (regular) in that domain.

The function f(2) is called entire (integral) if it is analytic
throughout ‘the plane (with the exception of the point at
infinity).”

The functlon f(2) is called meromorphic (or fractional) i
it can be represented as a quotient of two entire functions:

[ =53, h@ =0

In any bounded domain, the meromorphic function f(2) can
have only a finite number of poles.

A point z=a is called an isolated singular point of
the function f (2) if there is a neighbourhood 0 <|z—a| < §
of that point in which f(2) is analytic, while analyticity
of the function breaks down at the point z=a itself. The
isolated singular point z=a is called a pole of the func-
tion f(z2) if

lim f (2) = o0

Eaad

It is assumed that f(z) is single-valued in the neighbour-
hood of the point z=a, z5=a.

For the point z=a to be a pole of the function f(2)
it is necessary and sufficient that it be a zero of the

function q>(z)=le), i.e., that @(a)=
The order of a pole z=a of the function f(z) is the
order of the zero z=a of the function
?(2)= (z)

7. The residue of the function f(2) at the isolated sin-
gular point z=a is the number

resf(z)——Sf(z)dz

where ¢ is a circle |z—a|=p of sufficiently small radius.
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If the point z=a is a pole of order n of the function
f(2), then

res (2) = =gy lim e {2 — ' 2

z2=a

For a simple pole (n=1)

res f (2) = lim {(z— a) f (2)}

z=a z-+a

If f(a)= $(z) , @(a) 40, and, at the point z=a, ¢ () has

2

a zero of order one, that is, P (a)=0, ¢’ (a)40, then

res(2)= $'(fa)')'

8. Jordan’s lemma. If f(z) is continuous in the domain
|z|=R,, Imz>a (aisa fixed real number) and lim f (z2) =0,
then for any A >0 2>

lim S e f(2)dz=0

- o CR

where cp is an arc of the circle |z|=R in that domain.
9. A function f (x) is called locally summable if it is sum-
mable on any bounded set.
Let a complex-valued function ¢ (#) of a real variable
t be locally summable, equal to zero for £ <0, and let it
satisfy the condition |g (¢)] < Me** for all ¢(M > 0,s,>0).
Such functions ¢ (¢f) will be called original functions. The
number s, is termed the order of growth of the function ¢ (¢).
The Laplace transform of the function ¢ (t) is the func-
tion @ (p) of the complex variable p=s-ic defined by
the equality
© (p) = (e q(t)at
0

For any original function ¢ (¢), the function ®(p) is
defined in the half-plane Re p>s, and is an analytic
function in that half-plane. The fact that the function
@ (p) is the Laplace transform of the function ¢ (¢) is writ-

ten as follows:
¢ (t)=D(p)
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10. Inversion theorem. If a function ¢ (t) is the origi-
nal function, and the function ® (p) serves as its image
(transform), then

Y+iw
9 ()= Qm S eP'®(p) dp, v > s, (%)

y—i®

where the integral is taken along the straight line Re p=9y
parallel to the imaginary axis and is understood in the
sense of the principal value: ]

V+io P+io

S et @ (p)dp = lim S e?' @ (p) dp
y—i® 0> Yo
Formula (%) is called the inversion formula of the Lap-

lace transformation. If

M
© (p) =32}

where M (p) and N (p) are polynomials in p, and the degree
of the polynomial M (p) is less than that of the polynomial
N (p), then for @ (p) the original function will be

W)Zm i lim e l(p — @@ (7))

where a, are the poles of ®(p), n, are their orders and
the sum is taken over all poles of (D(p)
When all poles a, (k=1, 2,..., I) of the function

D (p)= (Z; are simple,

!
M(p),_'_ M(ak) arl .
Vo) = W@y < =00

11. Product theorem (convolution theorem). Lef the func-
tions f(t) and ¢ (t) be original functions, and let

f(t)=F (p),
e ()= (p)
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Then
t
F(p)®(p={ (ot —rdi (5)
0
The integral on the right of (5) is called the convolu-
tion of the functions f(f) and ¢ (f) and is denoted by the
symbol f(¢) % @ (¢).
‘Thus, a product of transforms is also a transform,
namely, the transform of the convolution of the original
functions:

F(p)® (p)=/ ()20 (2)

12. Let the function f(x) be absolutely integrable over
the entire axis — oo < x < + oo. The function
+®
Fmy= 1§ Fensdx
is called the Fourier transform of the function f(x).
The inversion formula of the Fourier transformation is

of the form

+o
f =5z | Fe =

In order to attain greater symmetry, the formulas of direct
and inverse Fourier transformations are frequently written
in the form

+o»
1 ix
f(x)=',—,‘,_ﬂ-_§f<x)eX dx,

| e -x
f(x>=—',ﬁ_jfme A ),



CHAPTER 1|

_VOLTERRA INTEGRAL EQUATIONS

1. Basic Concepts

The equation
W) =F@+A[K(x, o at )

where f (x), K (x, f) are known functions, ¢(x) is the
unknown function and A is a numerical parameter, is called
Volterra’s linear integral equation of the second kind.
The function K (x, ) is the kernel of Volterra’s equation.
If f(x)=0, then equation (1) takes the form

X

o) =A{K (x, Ho() dt @)

a

and is called a homogeneous Volterra equation of the
second kind.
The equation

(K tyo(t)dt=F (x) 3)

where ¢ (x) is the unknown function is called Volterra’s
integral equation of the first kind. Without loss of gene-
rality, we can consider the lower limit a as equal to zero
(in the sequel we shall assume this to be the case).

A solution of the integral equation (1), (2) or (3) is a
function ¢ (x), which, when substituted into the equation,
reduces it to an identity (with respect to x).

Example. Show that the function ¢ (x) = a

e
solution of the Volterra integral equation

0 ()= — | T e 0 dt 4)
0
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Solution. Substituting the function in place of

¢ (x) into the right member of (4), we obtain

X
! t 1
—_ dt =
1 2 2 3/2
T §1+x (1+27)

t=x

1 1. 1
= 1+x”—1+&2 <—(1—|—t2)l/2 ) o
1 1 1 1
=Tr= T (14327 T+2 (144337 =o (%)

I 1 .

Thus, the substitution of tp(x)-—(l—_l_x—a)w into both
sides of equation (4) reduces the equation to an identity
with respect to x:

1 1

A+~ (a7

According to the definition, this means that ¢ (x)=
1 . . . .
_— t .
TEWTEE is a solution of the integral equation (4)
Verify that the given functions are solutions of the
corresponding integral equations.
L gx)=

_x .
(a2

B2 (Bx420—t
® () =gram— | e @ (.
0

2. @ (x) =e* (cos e*—e* sin e%);

_ @ (x)=(1—xe**)cos 1 —e**sin 1 4 S [1—(x—1t)e**]) @(t) dt.
0
3. p(x)=1xe*; @(x)=e*sinx+2 S cos (x— 1) @ (¢)dt.
0

4 g=x—%; cp(x)=x-—-Ssinh(x—t)cp(t) dt.
0
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X

5 ¢o(x)=1—x; Se""cp(t)dt:x.
0
6. (x)=3; ©={(x—1)’p()dt.

0

20 _gt—y%.

1
o=y (2L

Clyx

_ 1 (e _
8. cp(x)—nV;, on——tdt_l'

Note. Volterra-type integral equations occur in problems
of physics in which the independent variable varies in a
preferential direction (for example, time, energy, etc.).

Consider a beam of X-rays traversing a substance in the
direction of the x-axis. We will assume that the beam
maintains that direction when scattered. Consider a collec-
tion of rays of specified wavelength. When passing through
a thickness dx, some of the rays are absorbed; others un-
dergo a change in wavelength due to scattering. On the
other hand, the collection is augmented by those rays which,
though originally of greater energy (i.e., shorter wave-
length 1), lose part of their energy through scattering.
Thus, if the function f(A, x)dA gives the collection of
{ays whose wavelength lies in the interval from A to A +dA,
hen

A
of (;: x) =—pf (A, x)+SP(x, T) f (T, x)d=
0

where p is the absorption coefficient and P (A, t)dt is the
probability that in passing through a layer of unit thickness
a ray of wavelength v acquires a wavelength which lies
within the interval between A and A --dA.

What we have is an integro-differential equation, i.e.,
an equation in which the unknown function f (A, x) is under
the sign of the derivative and the integral.
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Putting
FO, 0= e p0., prdp
0

where P (A, p) is a new unknown function, we find that
P (A, p) will satisfy the Volterra integral equation of the
second kind

b (A, p)——SP(x )% (t, p)de

2. Relationship Between Linear Differential Equations
and Volterra Integral Equations

The solution of the linear differential equation

Y g, T Y a0 y=F @) (1)
with continuous coefficients a;(x) (i=1, 2, ..., n), given
the initial conditions

y(O) =Co’ _l/’ (0) = Cv ey y(n—l) (0) =.Cn—l (2)

may be reduced to a solution of some Volterra integral
equation of the second kind.

Let us demonstrate this in the case of a differential
equation of the second order

B o, () Y, () y=F (x) (19
y(0)=Cy, ¥ (0)=C, ()

Put
=) 3)

Whence, taking into account the initial conditions (2°), we
successively find

;;"=Scp(t)dt+cl. y=§(x—t)q><t)dt+clx+co @
0
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Here, we utilized the formula

§dx§dx. .. §f(x)dx=(7__lm-§(x-—z)”-’f(z)dz

n

Taking into account (3) and (4), differential equaton (1)
may be written as follows:

o+ a e dt+Ca,m+ {a, (0 x—H o) dt+
0 0

+ Clxaz (X) + Coas (X) =F (%)
or

®(x)+ S [a, () +a,(x)x—H]@ () dt =
0

=F (x) -Clal (x) —Clxae (x) _Coa‘z (x) (5)
Putting '

K (x, )= —[a; (x) +a, (0) (x—1)] (6)
F)=F()—Cia, () —Cyxa, () —Cya, (1) (7)

we reduce (b) to the form

X

o= K(x, ho)ydl+f(x) 8)

[

which. means that we arrive at a Volterra integral equation of
the second kind.

The existence of a unique solution of equation (8) follows.
from the existence and uniqueness of solution of the Cauchy
problem (1°)-(2°) for a linear differential equation with
continuous coefficients - in the neighbourhood of the point
x=0.

Conversely, solving the integral equation (8) with K and f
determined from (6) and (7), and substituting the expression
obtained for ¢(x) into the second equation of (4), we get
a unique solution to equation (1’) which satisfies the initial.
conditions (2°):
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Example. Form an integral equation corresponding to the
differential equation

Y +xy' +y=0 (H
and the initial conditions
y(0) =1, y(0)=0 2)
Solution. Put
d2
=0 (3)

Then

x

%=§(P(t)dl‘+y'.(0)=S(p(t)dt, y=S(X—Z)cp(t)dt+l (4)
0 0

Substituting (3) and (4) into the given differential equation,
we get

w(x)+0$xq>(t)dt+S(x—t)cp(t)dt+l=0
1}
or
cp(x>=—1—§<2x—t>cp<t)dt

Form integral equations corresponding to the following
differential equations with given initial conditions:

9. ¥ +y=0; y(0)=0, ¥y (0)=1.
10. ' —y=0; y(0)=1.

11. ¥+ y=-cosx; y(0)=y' (0)=0.
12. y"—5y" +6y=0; y(0)=0, ¥ (0)=1.
13. "+ y=cosx; y(0)=0, ¥y (0)=1.

14. y'—y'sinx+ey=x yO0)=1, y (0)=—1.
15. y"+(1+x*)y=cosx; y(0)=0, y (0)=2.
16. "' +xy" +(*—x)y=xe*+ 1;
y(0)=y (0)=1, y" (0)=0.
n l ’ ”
17. y" —2xy=0; YO =5, y¥O)=y"(0)=1.
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18. Show that a linear differential equation with constant
coefficients reduces, under any initial conditions, to a Vol-
terra integral equation of the second kind with kernel
dependent solely on the difference (x—¢) of arguments (integ-
ral equation of the closed cycle or equation of the Faltung
type, or convolution type).

3. Resolvent Kernel of Volterra Integral Equation.
Solution of Integral Equation by Resolvent Kernel

Suppose we have a Volterra integral equation of the
second kind:

X

() =F)+r{Kx ot @)

0

where K (x, f) is a continuous function for 0<<x<a,
0<t<x, and f(x) is continuous for 0 <CTx<a.

We shall seek the solution of integral equation (1) in the
form of an infinite power in series A:

@ (%)= @y (¥) + Ay (X) + M@, () + ... +Ap, (X)+ ... (2)
Formally substituting this series into (1), we obtain
Qo (X)+Ap, () + ... +AQ, (X)+ ... =

=F @) +A K (0 [00 O+ Aoy (D + ... + A9, (O + ... ]dt

0
(3
Comparing coefficients of like powers of A, we find

@ (x) =F (%),

x

g =K e, mdt={Kx nfwd, @

0 0

x x t
@, (x) = S K(x, t)o,(t)dt= S K (x, t)§K(f. ) f(t,)dt,dt
0 0

The relations (4) yield a method for a successive determi-
nation of the-functions ¢, (x). It may be shown that under
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the assumptions made, with respect to f(x) and K (x. ),
the series (2) thus obtained converges uniformly in x and
A for any A and x€[0, a] and its sum is a unique solution
of equation (1).

Further, it follows from (4) that

@ (1) = § K (x, t)f(t)dt ®)

9. () = [ K (x, t)[SK(t, tl)f<t1>dt,]dt=
0 0

=(randy Sk, K @2, t)dt =S K, (x, 1) (8)dty  (6)
0 ty 0
where
Ko (x 1) =K (v, DK (¢, t)) dt (7
t

Similarly, it is established that, generally,

X

o= K, v, 0f(t)dt (n=1,2,...) ®)

0

The functions K, (x, t) are called iterated kernels. It can
readily be shown that they are determined with the aid of
the recursion formulas

K,(x, )=K (x, 1),
K, (x, t)=5K(x, 2)K,(z, )dz (n=1,2,...) (9
Utilizing (8) and (9), equality (2) may be written as
(P(x)=f(x)+§l 7»"(5‘1(.. (x, ) [ (1) dt (10)
The function R (x, {; A) defined by means of the series

o

R(x, t; A)= 2 VK, ; (% ©) (11)

v=0
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is called the resolvent kernel (or reciprocal kernel) for the
integral equation (1). Series (11) converges absolutely and
uniformly in the case of a continuous kernel K (x, f).

Iterated kernels and also the resolvent kernel do not de-
pend on the lower limit in an integral equation.

The resolvent kernel R (x, f; A) satisfies the following
functional equation:

X

R(x, t; V=K (x, h+1{K(x, 9 R(s, t; Wds (12)
t

With the aid of the resolvent kernel, the solution of
integral equation (1) may be written in the form

o W=F@+r R & NI (13)
0

(see [5], [15)).

Example. Find the resolvent kernel of the Volterra
integral equation with kernel K (x, f)=1.

Solution.We have K, (x, {)=K (x t)=1. Further, by for-
mulas (9)

K, (x, )= SK(x,, 2K, (z, tydz= Sdz:x—-t,

K (, t)—Sl (e—1) de=4Z1

K4 (x’ t)_:Sl . (z;t)zdz =(x-;t)3 ’
t

.........................

x (Z—t)n -2 _(x_t)n—l
K, (x, t)=S1°Kn_1(Z, tydz= Sl oo % =y
t

Thus, by the definition of the resolvent kernel,

R(x, 1; W= 3 MK, (x, )= >, ED_ pamn
n=0

n=0
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Find the resolvent kernels for Volterra-type integral
equations with the following kernels:
19. K(x, t)=x—t.
20. K(x, t)=e*"1
21. K(x, t)=e*""t"
142
22, K(X, t)—m .

2. K% O =gicr -

24. K (x, t )=coshx

cosh t °

25. K(x, t)=a*"*(a> 0).

Suppose that the kernel K (x, t) is a polynomial of degree
n—1 in ¢ so that it may be represented in the form

K (5 )=ay(9)+a, () (x—0) + ... + 22D (e—tr ™ (14)

and the coefficients a, (x) are continuous ‘n [0, a]. If the
function g(x, ¢; A) is defined as a solution of the differen-
tial equation

T2 [0 () el ot 00 (0 et -« 0y (98] =0 (15)

satisfying the conditions

_ g . dlg)
x=t  dxn-? x=1_0’ den=1 ooy 1(16)

x=f=dx

g

then the resolvent kernel R (x, {; A) will be defined by the
equality

Rz t y=pZLETH an

and similarly when
K (5 0)=by () +b, () =0+ ... + {222 ((—xr7(18)
the resolvent kernel

Rx, t; hy=— L8 5 1) (19)
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where g(x, ¢; A) is a solution of the equation
dn dn-1
T a4 +buu(Dg] =0 (20)

which satisfies the conditions (16) (see [5]).
Example. Find the resolvent kernel for the integral
equation

o) =F0+§ x—tye )t
0

Solution. Here, K (x, t)=x—t; A=1; hence, by (14),
a,(x)=1, and all the other a,(x)=0.
In this case, equation (15) has the form

fg—(t)}’xzt;—l)—g(x, t i)=0
whence
gx, t; )=g(x, )=C,(t)e*+C,(t)e™*
Conditions (16) yield
{ C,(t)e'+C,(t)e™* =0,
C,(t)et—C,(t)et=1
Solving the system (21), we find

C,()=5e", C,(t) S

@)

and, consequently,

g(x, t)=-5 (&5t —e™*"t) =sinh (r—1)
According to (17) ‘

R (x, t; 1)=[sinh (x—¢)],=sinh (x—1)

Find the resolvent kernels of integral equations with the
following kernels (A =1):

26. K(x, t)=2—(x—1).

27. K(x, t)=—2+43(x—1).

28. K (x, t)=2x.

29. K (x, t)=—;z%f+§g¢_-f—).
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30. Suppose we have a Volterra-type integral equation,
the kernel of which is dependent solely on the difference
of the arguments:

oW =f)+{Kx—newmd 0.=1)  (22)
0
Show that for equation (22) all iterated kernels and the
resolvent kernel are also dependent solely on the difference
x—t.

Let the functions f(x) and K(x) in (22) be original
functions. Taking the Laplace transform of both sides of
(22) and employing the product theorem (transform of a
convolution), we get

® (p)=F (p)+K (p) ® (p)

where
¢ (x) = (p),
fx)=F (p),
K(x)=K (p)
Whence
®m=£%%,RM¢1 (23)

Taking advantage of the results of Problem 30, we can
write the solution.of the integral equation (22) in the form

) =F 0+ Rx—1)f (1)t (24)
0

where R (x—1¢) is the resolvent kernel for the integral
equation (22).

Taking the Laplace transform of both sides of equation (24),
we obtain

@ (p)=F (p)+ R (p) F (p)
where
R(x)=R (p)
Whence

= ® (p)—F
R(p =L@ (25)
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Substituting into (25) the expression for @ (p) from (23),
we obtain
% K (p)
R(p)=—="— 26
(r) —% ) | (26)
The original function of R(p) will be the resolvent kernel
of the integral equation (22).

Example. Find the resolvent kernel for a Volterra integral
equation with kernel K (x, )—sin (x—1), A=1.

Solution. We have K (p)=——. By (26)
1
7 p?F+1 1 .
R(p)=—LH ==
——
p*+1

Hence, the required resolvent kernel for the integral equa-
tion is

2+1

R(x, t; 1)=x—t

~ Find the resolvent kernels for Volterra-type integral equa-
tions with the kernels (A=1):

31. K (x, t)=sinh(x—1).

32. K(x, t)y=e-*-1,

33. K(x, ty=e *"Dsin(x—t).

34. K(x, t)=cosh(x—1).

35. K(x, t)=2cos (x—1).

Example. With the aid of the resolvent kernel, find the
solution of the integral equation

@ (x)=e"+ S es "o (t)dt

Solution. The resolvent kemel of the kernel K(x, {)=
=e* " for A=1 is R(x, t; 1)=e*"tex~t (see No. 21).
By formula (13), the solution of the given integral equation
is

Q(x)=¢e¥ + Se" Te¥ ~t* ol df = g #*
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Using the results of the preceding examples, find (by
means of resolvent kernels) solutions of the following inte-
gral equations:

x

36. g(x)=e*+ {exq () dt.
0

37. ¢ () =sinx+2{es 1o (t)at.
0

X

38. ¢ (x)=x3*—{ 3+~1q (1) dt.
0

X
30. cp(x)=exsinx+S§r;—g;‘cp(t)dt.
0

0. 9 () =1—2x—{ e * o (1) dt.
0
M. g)=e+= 2 (e o)t
0
_ ) x1+x2
42. px)=14x+ §——l+t,<p(t)dt.
R | 3 .
43. ¢ (%) _r"z+§3m (x—1) @ (£) dt.
4. g=xe® + (e vg)ar.
0

45. p(x)=e"*+ S e~*~Dsin (x—1) @ (f) dt.
0

Note 1. The unique solvability of Volterra-type integral
equations of the second kind

X

p()=fW+Ar K@ Do dt (1)

0
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holds under considerably more general assumptions with
respect to the function f(x) and the kernel K (x, ¢) than
their continuity.

Theorem. The Volterra integral equation of the second
kind (1), whose kernel K (x, t) and function f(x) belong,
respectively, to spaces L,(R2,) and L,(0, a), has one and
only one solution in the space L, (0, a).

This solution is given by the formula

o) =F@+1 R & MF(t)dt (@)

0

where the resolvent kernel R(x, f{; A) is determined by
means of the series

R 5 M= 3 WKy (3 0 ®)

which is made up of iterated kernels and converges almost
everywhere.

Note 2. In questions of uniqueness of solution of an
integral equation, an essential role is played by the class
of functions in which the solution is sought (the class of
summable, quadratically summable, continuous, etc., func-
tions).

Thus, if the kernel K(x, f) of a Volterra equation is
bounded when x varies in some finite interval (a, b) so that

[K(x, £)|<M, M=const, x € (a, b)

and the constant term of f(x) is summable in the interval
(a, b), then the Volterra equation has, for any value of A,
a unique summable solution ¢ (x) in the interval (a, b).

However, if we give up the requirement of summability
of the solution, then the uniqueness theorem ceases to hold
in the sense that the equation can have nonsummable so-
lutions along with summable solutions.

P. S. Uryson ([29]) constructed elegant examples of
integral equations (see Examples 1 and 2 below) which have
summable and nonsummable solutions even when the kernel
K (x, t) and the function f(x) are continuous.
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For simplicity we consider f(x)=0 and examine the
integral equation

ew={K@ Hewa (I

where K (x, t) is a continuous function.
The only summable solutian of equation (1) is @ (x)=0.
Example 1. Let '

1
1

te® 0<t<e @,

K, t)= 2)

1
\ xe' Lz,
0, t>x

=

The kernel K(x, ) is bounded in the square Q,{0<x,
<1}, since 0K (%, )<x<1. What is more, it is
continuous for 0<C¢{<Cx. In this case, equation (1) has
an obviously summable solution ¢ (x)=0, and, by virtue
of what has been said, this equation does not have any
other summable solutions.

On the other. hand, direct verification convinces us that
equation (1) has an infinity of nonsummable solutions in
(0, 1) in the form

¢m=%

where C is an arbitrary constant and xs£0.
Indeed, taking into account expression (2) for the kernel
K (x, t), we find ‘

1
1 -—

x2

(K nowa= | o Tdt
0 0

cooC =-1_C
+ S det—-:Cx-l—Cxlne =
1

=
xe
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Thus we obtain

x|

Z =0

This means that cp(x)=% is a nonsummable solution of

equation (1).
Example 2. Let 0<{¢{<Cx <a (a> 0, in particular a= + ),

2 xt?
K, )=%357n (3)

The function K (x, £) is even holomorphic everywhere,
except at the point (0, 0). However, equation (1) with ker-
nel (3) admits nonsummable solutions. Indeed, the equation

2 2 t
b == huﬂ¢MM——m$x (4)
has a summable solution since the function
f(x) _ __% arctxazn x2

is bounded and continuous everywhere except at the point
x=0.
The function
( 0, x=0,

[ vw+5. x>0 ®)

¢ (x)=

where ¢ (x) is a solution of (4) will now be a nonsummable
solution of (1) with kernel (3).
Indeed, for x > 0 we have

SK@,Owaﬂﬁ——§ﬂ+p¢UMﬁ+ j;fﬂ

By virtue of equation (4), the first term on the right of (6) is

2 arctan x2

V() + 4




32 INTEGRAL EQUATIONS

The second term yields

x

2 x dt 2 /1 £ |i=x 2 1.
ESx“+t2=R(x7arCtan ;5> |t=o=a-§arctanF (x>0)

0

Thus

SK(x, t)w(f)dt=\b(x)+%a'rc—?;£+m‘27ar°ta“§l?=
0

=9 () + =0 )

which means that the function ¢ (x) defined by (5) is a
nonsummable solution of equation (1) with kernel (3).
Example 3. The equation
e ={tt9tydt 0<x, t<1)

0

has a unique continuous solution ¢ (x)=0. By direct sub-
stitution we see that this equation also has an infinity of
discontinuous solutions of the form

@ (x) =Cx*-?
where C is an arbitrary constant.

4. The Method of Successive Approximations

Suppose we have a Volterra-type integral equation of the
second kind:

e =f()+r [ K, ot (1)

We assume that f(x) is continuous in [0, a] and the kernel
K (x, t) is continuous for 0<Cx<{a, 0Tt x. .

Take some function ¢, (x) continuous in [0, a]. Putting
the function ¢,(x) into the right side of (1) in place of
¢ (x), we get '

@ () =F 0+ (K x, e, (t)at

0
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The thus defined function ¢, (x) is also continuous in the
interval [0, a]. Continuing the process, we obtain a sequence
of functions

Qo (X), @ (x), ...y @,(x),
where

Pu () =F () +2 § K(x, )@y (B)dt

Under the assumptions with respect to f(x) and K (x, ),
the sequence {g, (x)} converges, as n— oo, to the solution

¢ (x) of the integral equation (1) (see l[13]).

In particular, if for @,(x) we take f(x), then ¢, (x) will
be the partial sums of the series (2), of Sec. 3, which
defines the solution of the integral equation (1). A suitable
choice of the “zero” approximation @, (x) can lead to a rapid
convergence of the sequence {¢,(x)} to the solution of the
integral equation.

Example. Using the method of successive approximations,
solve the integral equation

o)=1+fo@dt

taking g, (x) =0. _
Solution. Since @, (x) =0, it follows that ¢, (x)=1. Then

X

@ =1+ 1.dt=1+x,

%(x)=l+Sv(l+t)dt=1+x+’;_’,
[}

x3

wuﬂ=1+§@+4+§)m_1+x+m+1
0

Obviously

1

2 n—-
e =1+5+5+ o=y |
Thus, ¢,(x) is the nth partial sum of " the series

Z%:e". Whence it follows that ¢,(x)—e*. It is easy

n-®

21583
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to verify that the function ¢(x)=e* is a solution of the
given integral equation.

Using the method of successive approximations, solve the
following integral equations:

46. w(x):x—S(x—t)cp(t)dt, @, (x)=0.
7. g=1—{ (x—t) o) dt, @, (x)=0.
8. g)=14+{(x—1ot)dt, ¢,(x)=1.

9. () =x+1—{ p(t)dt;
(@) @o(x)=1, (b) @ (x)=x+1.
50. ¢ (=% +x— (@) ds;

@ @ @=1, 0) e =x, © oH)=4+=

X

51. () =1+x+ [ x—D @) dt, g (x)=1.

52. ¢ (x)=2x+2—{ @ () dt;
(@) @ (x)=1, (b) @4 (x)=2.

x

53. @ (x)=20+2— xp (1) dt;

(@) @o(x)=2, (b) @, (x)=2x.

54. (p(x)=x§—-2x—-S(p (t)dt, @, (x)=x%

o

0
55. Let K (x, ) satisfy the condition

{§ ko, natax <+ oo,
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Prove that the equation
e—A§K(x, Hedt=0
o

has, for any A, a unique solution ¢(x)=0 in the class
L, (0, a).

The method of successive approximations can also be
applied to the solution of nonlinear Volterra integral equa-
tions of the form

y=yo+ Flt, y())dt @
0
or the more general equations

X

e =Ffx)+§F(x t, o) dt 3)

n

under extremely broad assumptions with respect to the func-
tions F (x, {, 2) and f(x). The problem of solving the diffe-
rential equation

d
Ey=F(xv Y), y|x=o=yo

reduces to an equation of the type (2). As in the case of
linear integral equations, we shall seek the solution of equa-
tion (3) as the limit of the sequence {g,(x)} where, for
example, ¢,(x)=f(x), and the following elements g, (x) are
computed successively from the formula

P =F0)+(Fx & Qi ()dl (=1, 2, ..) (49

0

If f(x) and F(x, ¢, 2z) are quadratically summable and sa-
tisfy the conditions

|F(x, &, 2,)—F(x, ¢, 2))|<a(x, {)]|z,—z]| (5)
x
\SF(x. t,f@)dt|<n(x) (6)

0

2*
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\

where the functions a(x, ) and n(x) are such that in the
main domain (0<<Ii<x<a)

§n’(x)dx<N’, §dx§a’(x, Hndt<< A2 - (7)

it follows that the nonlinear Volterra integral equation of
the second kind (3) has a unique solution ¢ (x) €L, (0, a)
which is defined as the limit of @, (x) as n— oo:

@ (x) =,}ifl @, (%)

where the functions ¢, (x) are found from the recursion for-
mulas (4). For @,(x) we can take any function in L, (0, a)
(in particular, a continuous function), for which the condi-
tion (6) is fulfilled. Note that an apt choice of the zero
approximation can facilitate solution of the integral equation.

Example. Using the method of successive approximations,
solve the integral equation

C 1+ 2t
o 0= a
0

taking as the zero approximation: (1) @,(x)=0, (2) g, (x)=x.
Solution. (1) Let @,(x)=0. Then

X
@, (%) =S 4 _ arctan X,
0

[QE
X t 2
@, (x) = l—’% dt = arctan x - % arctan? x,
0
x 14 (arctan t-l-% arctan3 ¢ >2
@ (x) =S T dt = arctan x

2 1
arctan® x 4 IxE arctan® x + =— arctan’ x,

+ 7XO

1+ 93 ()

D dt = arctan x + —;— arctan® x 4

Qq (%) =

Sl Wl'—‘o
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2 s 17 . 38 9
+3%s arctan x—|———5x7x9arctan X+ s arctan® x 4
134

4 4
1 P S— 13
ITTxaTcas arctan'! x + gogpoaears arctan®® x +

+7,><J—2;<T5arctan‘5 Xy ees
Denoting arctan x=:u and comparing expressions for ¢, (x)
with the expansion

@®

22v(22v_1) _ n
tanu=2(_l)v-l-—(2v)—l— B,,u®»"1, |u|<‘2“

v=1

where B, are Bernoulli numbers,* we observe that
¢, (x) — tan (arctan x) = x

It can easily be verified that the function ¢ (x)=x is a so-
lution of the given integral equation.
(2) Let ¢, (x)=x. Then

xl 12
@, (%) = %dt=x
0
In similar fashion we find ¢, (x)=x (n=2, 3, ...).
Thus, the sequence {¢,(x)} is a stationary sequence {x},
the limit of which is ¢ (x)=x. The solution of this integ-
ral equation is obtained directly:

P(x)=x
56. Use the method of successive approximations to solve
the integral equation

- te@)
=) e
0

* The Bernoulli numbers By, with odd index (odd degree) are all

equal to zero, except B;= —5- The number By=1, the numbers B,,

are obtained from the recursion formulas

Byy= —

2V—-2
Lol 2v(2v—1)..:(2v—2k+2)
GI L k; Zl Br
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57. Use the method of successive approximations to find
a second approximation ¢, (x) to the solution of the integ-
ral equation

o0 =1+ ([o* () +to () + 7] dt
o

58. Use the method of successive approximations to find
a third approximation ¢, (x) to the solution of the integral
equation

9 ()= [to* () —1]dt

5. Convolution-Type Equations

Let ¢, (x) and @, (x) be two continuous functions defined
for x>=0. The convolution of these two functions is the fun-
ction @, (x) defined by the equation

9 ()= { @1 (x—1) @, (1) dt (1)
0
This function, defined for x>0, will also be a continuous

function. If ¢, (x) and ¢,(x) are original functions for the
Laplace transformation, then

g(PS’_—e(Z(Pl'e?(P? (2)

i..e., the transform of a convolution is equal to the pro-
duct of the transforms of the functions (convolution theorem).

Let us consider the Volterra-type integral equation of the
second kind

P)=Ffx)+[K@x—t)o @ d 3)

the kernel of which is dependent solely on the difference
x—t. We shall call equation (3) an integral equation of the
convolution type.

Let f(x) and K (x) be sufficiently smooth functions which,
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as x—oo, do not grow faster than the exponential function,
so that

lf(x) I < M]es,x’ I K (x) l < Mzes,x (4)

Applying the method of successive approximations, we can
show that in this case function ¢ (x) will also satisfy an
upper bound of type (4):

[@ (X)| < Myess

Consequently, the Laplace transform of the functions f(x),
K (x) and @ (x) can be found (it will be defined in the half-
plane Re p=s> max(s,, S,, Sy)).

Let

FRZ=F (), ex)=@((p), K®)=K(p)

Taking the Laplace transform of both sides of (3) and emp-
loying the convolution theorem, we find

@ (p)=F (p)+ K (p) @ (p) (5)
Whence

© ()= Kp)#D)

The original function ¢(x) for ®(p) will be a solution
of the integral equation (3) (see [25]).
Example. Solve the integral equation

@ (x)=sinx+2 S cos (x— t) ¢ (¢) dt

Solution. It is known that

sinx == cos x ==

R P
pr17 pt+1

Let ¢ (x)== ® (p). Taking the Laplace transform of both
sides of the equation and taking account of the convolution
theorem (transform of a convolution), we get

O (p) = s+ 7 O (P)
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Whence
) [1—51] =
or
D (p)= (,,Tll)z == xe*
Hence, the solution of the given integral equation is

@ (x) = xe*

Solve the following integral equations:

59. @ (x)=e*— Se"“cp(t)dt.
0

60. ¢ (x)=x— Sxe"" @ (2) dt.

X

61. @ (x)=e* S et~ g (t)dt.

62. cp(x)=x—g (x—1t)o(¢)dt.

63. @ (x)=cosx— § (x—1)cos (x—¢) @.(f) dt.

0

64. o(x)=1+x+ Se‘“"‘”(p(t)dt.

0

65. p{x)=x+ S sin (x—¢) ¢ (¢) dt.

66. ¢ (x)=sinx+ §(x—t)cp (¢)dt.

0

67. ¢ (x) =x-f§sinh(x—t)cp(t) dt.
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X
68. <p(x)=1—2x—4x2—|—S[3—6(x——'t)—
[

—4(x—1t)?] @ (t)dt.
69. @(x)=sinh x-—g cosh (x—1) @ (¢) dt.

0

70. (p(x)—1+2Sc08(x—t)<p(t)dt

. p(x)=e*+2 Scos (x— 1) (¢)dt.

72. @ (x) =cos x -+ S @ (1) dt.

The Laplace transformation may be employed in the solu-
tion of systems of Volterra integral equations of the type

f,(x>+2§1<,,(x He,ndt (i=1,2 ..,9 (6

where K;;(x), f;(x) are known continuous functions having
Laplace transforms.
Taking the Laplace transform of both sides of (6), weget

@, (p)=F; (p) + z Ky ®,(p) (=1, 2 ... s) (1)

This is a system of linear algebraic equations in D, (p)-
Solving it, we find ®,(p), the original functions of which
will be the solution of the original system of integral
equations (6).

Example. Solve the sysiem of integral equations

er g, () dt + S P, (8) dt,

I n

@ (x)=1-2

o () =4x—{ g, (t)dt+4§(x—t)cpz(t)dt

I
I
)
|
)

Cex o
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Solution. Taking transforms and using the theorem on
the transform of a convolution, we get

{ O, (p) = 5— 5 D, <p>+lcr> (),

') (p)————<D (P)+—5r 2@, (p)

Solving the system obtained for @, (p) and @, (p), we find
) = G 5T T

O(P) =G =9 5=z 3 GFIF 5

The original functions for @, (p) and @, (p) are equal,
respectively, to

@, (x)=e"*—xe™*,
8 2x ] -X 8 -X
%(x)=ge ‘I‘gxe '—-38
The functions @, (x), @, (x) are solutions of the original
system of integral equations (8).

Solve the following systems of integral equations:
o (1) =sinx+ { o, (1) dt,
73 0

x

@, (x) =1—cosx— S @, (¢)dt.
P

X

e () =e*+ o, 0 dt,

74. | .

@, () =1—{ e, (0 dr.
0

x

o=+ § o, () dt—{ e~ g, (1) dt,
0 0

@ () =—x—§ (x—) o, () dt + § @, () dt.
0
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X

@, (x) =ev— S<p1<t>dt+4S =t g, () dt,
76. |

X

0
Py () =1—{ ¢~ cp1<t)dt+5cp2(t>dt
0

*

o () =x+ o, (1) dt,
0

7.1 e)=1—{o @ dt,

0
% () =sinx+5 { (x—0) 0, () dt.
0

x

w@=1—{o. 0 dt,

78. @, (x)=cosx—1+4 S‘cp3 (¢) dt,
@y (x) = cos x + 0§ @, (¢)dt.

@ () =x+ 1+0§ 95 () dt,

1. | p=—x+{x—00 0 dt,
0

¢y (1) =cos x—1— { ¢, (1) dt.
0

6. Solution of Integro-Differential Equations
with the Aid of the Laplace Transformation

A linear integro-differential equation is an equation of
the form
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a, ()" (X)+a, ()" () + ... +a, (x) o (x)+
+ 3 (Kale, o™ (O dt =10 M
m=0 ¢
Here a, (x), ..., a,(x), f(x), K,(x, ) (m=0, 1, ..., s)
are known functions and ¢(x) is the unknown function.
Unlike the case of integral equations, when solving in-
tegro-differential equations (1), initial conditions of the form

?(0)=9,, ¢ (0)=0,, ..., ¢"71(0)=g{"" )
are imposed on the unknown function ¢ (x). In (1), let the
coefficients a, (x) =const (k=0, 1, ...,n) and let K, (x, {) =
=K,(x—t) (m=0, 1, ..., s), that is, all the K,, depend
solely on the difference x—¢ of arguments. Without loss

of generality, we can take a,=1. Then equation (1) assu-
mes the form

Q" (%) + a9V (X)+ ... +a,9(x)+

X

+m§0 (K,(x—t)yom (tydt =f (x) (ay, ..., a,—const) (3)

0

Also, let the functions f(x) and K, (x) be original func-
tions and

F)=F(p), K,(0)=R,(p) (m=0, 1, ..., )
Then the function ¢ (x) will also have the Laplace transform
P (x)=D(p)
Take the Laplace transform of both sides of (3). By virtue
of the theorem on the transform of a derivative,
PR ()= PO (P)— P e —pF P o — .. — Y (4)
(=0, 1, ..., n).

By the convolution theorem
X

§Kp(x—0) o™ (1) dt =

0 ~
=Ka () [p"® (p)—p™ 1 @p— . .. — @™ Y] )
‘ (m=0,1, ..., 5s)
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Equation (3) will therefore become

CD(p)[p"+alp"“+...+an+m2=}01?(p)p“] =A(p) (6)

where A (p) is some known function of p.

From (6) we find ®(p), which is an operator solution
of the problem (3)-(2). Finding the original function for
@ (p), we get the solution @ (x) of the integro-differential
equation (3) that satisfies the initial conditions (2).

Example. Solve the integro-difierential equation

x

¢" (1) + § 2D g (t) dt =2 (7)
0

¢0)=9¢'(0)=0 ®)
Solution. Let ¢ (x)=® (p). By virtue of (8)
¢ (x) = p® (p),
9" (x)= p*@ (p)
Therefore, after taking the Laplace transform, equation (7)
will assume the form
p*® (p) +—— QP =5= 9)

or
@ (p) 22=3r ,,éi (10)

From (10) we find
@ (p)=

Hence, the solution ¢ (x) of the integro-differential equation
(7) satisfying the initial conditions (8) is defined by the
equality

1
pp—tp el

@ (x)=xe*—e*+ 1

Solve the following integro-differential equations:

X

80, ¢" (x)+ (2w 0 g (tydt=e; 9(0)=0, ¢’ (0)=1.
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X

8. ¢’ (D—o 0+ { (x— ¢’ (1) dt— o () dt =x;
0
— L

0

¢ (0)=

82. ¢" (%) —2¢" (x)+ o (x)+2 S cos (x—1) @” (¢)dt +
0

x

+2 {sin(x—1) ¢’ (t)dt =cos x; ¢ (0)=¢’ (0) =
0

=

83. @" (x)+2¢" (x)—2 S sin (x—¢) @’ (t) dt = cos x;
0

¢ (0)=¢'(0)=0.

84. ¢" (1) + ¢ (0)+ | sinh (x—0) @ (t)dt +
0
+ { cosh (x—t) ¢ (t) dt =cosh x; ¢ (0)=¢’ (0)=0.

85. ¢ (x)+ 9 (x)+{ sinh(x—0p(di+
0

+§ cosh(x—{) @' (fydt=coshx; o@0)=—1,
' ¢ (0)=1.
7. Volterra Integral Equations with Limits (x, 4 o0)
Integral equations of the form
w(x)=f(x)+§/<(x-t)¢(t)dt (1)

which arise in a number of problems in physics can also
be solved by means of the Laplace transformation. For
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this purpose, we establish the convolution theorem for the
expressions

(Kx—tyo(tydt @)

It is known that for the Fourier transformation

-

+ o
F {S g(x—t)«p(t)dt{=lf27:c<x)lv(x) (3)
where G (A), ¥ (M) are Fourier transforms of the functions
g(x) and ¥ (x), respectively.

Put g(x)=K_(x), i.e.,

0, x>0,
g(")={ K(x), x<0
@ (x), x>0,
w(x)=q>+(x)={ 0 x<0 4)

Then (3) can be rewritten as

3{ { K(x—t)q»(t)dt} =V2rK_(MsD. (Mg ()

X

(here and henceforward the subscripts & or .¢ will mean
that the Fourier transform or the Laplace transform of the
function is taken).

To pass from the Fourier transform to the Laplace trans-
form, observe that

Fe (P)=V2n(F.(p)s (6)
Hence, from (5) and (6) we get
(= -
& i S Kx—1t) ¢ () dt} =V on[K_(ip)ls [P (P]le (7)

We now express [V 2nK _(ip)]s in terms of the Laplace
transform:

0 ®
VamK_(pls= § Kxyerde={ K(—x)ervdx
- 0
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Putting K(— x) =% (x), we get

[VenR_(ip))s =Tz (— p)={ K (— x)er+dx

0

And so
.?{SK(x—t)cp(t)dt}=9Z”$(—p)d>x<p> ®)

Let us now return to the integral equation (1). Taking
the Laplace transform of both sides of (1), we obtain

@ (p)=F (p)+ % (—p) D (p) 9)
(dropping the subscript .#) or
F (p) =
D(p)=—- — 1 10
(P=i=z— E(=p=*D (10)
where
92"(—17)=SK(—x)eP”dx (11)
0
The function
| Y+io F( )
S TP px
¢ (x)= ) T eP*dp (12)

is a particular solution of the integral equation (1). It must
be stressed that the solution (9) or (12) is meaningful only

if the domains of analyticity of % (—p) and F (p) overlap
(see [17]).
Example. Solve the integral equation

p)=x+ e =bg(t)dt (13)
Solution. In this case, f(x)=2x, K (x)=e?*. Therefore
F(p)=—, F(— )—Ee‘“"e”"dx——'- Rep <2
p...‘_.-.p2 ’ p)= ’ T 2—p Ep_ >

0
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Thus, we obtain the following operator equation:

D (p) =5 + 525 D (p)

so that
—9
®(p)=F— (14)
Whence
| Y+io 2

Y—-L®
Integral (15) may be evaluated from the Cauchy integral
formula. The integrand function has a double pole p=0
and a simple pole p=1, which appears for y > I; this is
connected with including or not including in the solution
of equation (13) the solution of the corresponding homoge-
neous equation

ow={ewvg@d

Let us find the residues of the integrand function at its
poles:

p—2 B s -
o (Fomm o) =21 ms (Fomn ) = —

Consequently, the solution of the integral equation (13) is
¢ (x)=2x-+1+Ce* (C is an arbitrary constant).
Solve. the integral equations:

86. @(r)=e~*+ S,cp () dt.

-]

87. ¢ (x)=e" s+ §eto ) dt.

X

88. p(x)=cosx+ \e "t (f)dt.

W ¥ )

89. g()=1+(ev9)a @>0).
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8. Volterra Integral Equations of the First Kind

Suppose we have a Volterra integral equation of the first
kind

(K@, hodt=f(), f©0)=0 (1)
0
where ¢ (x) is the unknown function.
Suppose that K (x, %), %b(’;'—t), f(x) and f' (x) are conti-

nuous for 0<Cx<Ca, 0<C¢<Cx. Differentiating both sides
of (1) with respect to x, we obtain

K 0o+ Zedewd=f (2)
0

Any continuous solution ¢ (x) of equation (1), for 0 <Cx <a,
obviously satisfies equation (2) as well. Conversely, any
continuous solution of equation (2), for 0<C x <Ca, satisfies
equation (1) too.

If K(x, x) does not vanish at any point of the basic
interval [0, a], then equation (2) can be rewritten as

_ @ _ (Keet)
? () =g x)——05 K @Ot 3)
which means it reduces to a Volterra-type integral equation
of the second kind which has already been considered
(see [18]).

If K(x, x)=0, then it is sometimes useful to differen-
tiate (2) once again with respect to x and so on.

Note. If K (x, x) vanishes at some point x€ [0, a], say
at x=0, then equation (3) takes on peculiar properties that
are quite different from the properties of equations of the
second kind. (Picard called them equations of the third
kind.) Complications arise here similar to those associated
with the vanishing of the coefficient of the highest deriva-
tive in a linear differential equation.

Example. Solve the integral equation

S cos(x—1t)p(t)dt=x 4)
0
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Sotution. The functions f(x)=x, K (x, t)=cos(x—/)
satisfy the above-formulated conditions of continuity and
differentiability.

Differentiating both sides of (4) with respect to x, we get

@ (x) cos 0— § sin (x—1) @ (t) dt =1
0
or
o) =1+ {sin(x—t) @) d (5)
0

Equation (5) is an integral equation of the second kind of
the convolution type.

We find its solution by applying the Laplace transfor-
mation

D(p) =+ 7 D ()

whence
IR U x?
p® p I P I 2

@ (p)=

The function cp(x)=l-|-x7z will be a solution of equation

(5) and hence of the original equation (4) as well. This is
readily seen by direct verification.

Solve the following integral equations of the first kind
by first reducing them to integral equations of the second
kind:

90. {ex~t(t)dt =sinx.
0

91. {3tg(tydt=rx.
0

92. {ax~to(tydt=F(x), [ (0)=0.
0

93. S(l—x2+t=)q>(t)dt="—2‘.
0
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x

9. (@+x0—11)q(t)dt =2

0

95. {sin(x—ty@(t)dt=ex2—1.
0

9. Euler Integrals

The gamma function, or Euler’s integral of the second
kind, is the function T (x) defined by the equality

Tw={ett==1dt (1)
0

where x is any complex number, Rex>0. For x=1 we
get

ry={etat=1 @)
0

Integrating by parts, we obtain from (1)

I‘(x)=%§e“t"dt=lx;'—'l) 3)
0

This equation expresses the basic property of a gamma
function:

[ (x+ 1) =T (x) @)
Using (2), we get
rey=ra+n=1.r1)=1,
r@=re+1n=2.1r@=21,
r4)=r@B3+1)=3.r3) =3l
and, generally, for positive integral n

T'(n)=(n-—1)! )
We know that

§e“"2 gy =Y

2
0
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1
Putting x=1¢? here, we obtain

® l_l
fett? at=V=
0

Taking into account expression (1) for the gamma function,
we can write this equation as

r(z)=V=

Whence, by means of the basic property of a gamma
function expressed by (4), we find

3 1 1 1 -
r(z)=2r(z)=7V=
5 3 3 1X3,/=
r (7> =5T (7) =—2rVﬂ and so on.
Generally, it will readily be seen that the following equa-

lity holds:
1 I X3X5...2n—1 -
O e e (6)

(n a positive integer).

Knowing the value of the gamma function for some value
of the argument, we can compute, from (3), the value of
the function for an argument diminished by unity. For

example,
r(3)-1+

For this reason

5 =V=n )

3
p(y_" (2)
(3)-"
Acting in similar fashion, we find
p(__‘.)=ll_(___l7+l_>=_21/5,

2 T
2
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r(_£)=r_<_i+l)=il/}},

2 3 3
)
F(—%):—%Vﬁ and so on.
It is easy to verify that '(0)=T(—I)=...=T(—n)=

=...=o00. Above we defined I (x) for Rex> 0. The indi-
cated method for computing T'(x) extends this function into
the left half-plane, where T (x) is defined everywhere except

at the points x=—n (n a positive integer and 0).
Note also the following relations:
T (1—x) =5, ®)
Tl (x+7) —91-2 s T (2%) )

and generally

e (e ) (). (e -

=@2n) 2 n? I‘(nx)

(Gauss-Legendre multiplication theorem).
The gamma function was represented by Weierstrass by
means of the equation

e es)et
where

= lim (14+5+5+... +or—lnm)=057721...

is Euler’s constant. From (10) it is evident that the func-
tion T'(2) is analytic everywhere except at z=0. z=—1,
z=—2, ..., where it has simple poles.

The following is Euler’s formula which is obtained
from (10):

ro=t {0 (427 o

n=1
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It holds everywhere except at z=0, z=—1, 2=—2, ....

96. Show that IV (1)= —7.
97. Show that for Rez>0

I'(z)= j (ln %)z-ldx

98. Show that
(L
o "(7) —2.1n2

e

99. Prove that

L 1X2...(a—1)
T@)=lim ey ey

We introduce Euler’s integral of the first kind B(p, q),
the so-called beta function:
1
B(p, q)={xr-1(1—xj=1dx (Rep>0, Req>0)(12)
0

The following equality holds (it establishes a relationship
between the Euler integrals of the first and second kinds):

I'(p) T
B(p, g =129 (13)

100. Show that
B(p, 99=B(q, p)
101. Show that
B(p. y=B(p+1,9+B(p,qg+1)
102. Show that
B(p+1,9)=2B(p, q+1)
103. Show that
1

§ (12t (1—x)y1-2dx=2,*9-1B (p, q)

-1
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104. Evaluate the integral

I =\ cos™1xsin"~xdx (Rem >0, Ren>0)

Ce——rola

10. Abel’s Problem.
Abel’s Integral Equation and Its Generalizations

A particle is constrained to move under the force of
gravity in a vertical plane (§, n) along a certain path. It is
required to determine this path so that the particle, having
started from rest at a point on the curve (path) with ordi-
nate x, reaches the § axis in time ¢ =/, (x), where f, (x) is
a given function (Fig. 1).

L
N,

Fig. 1

The absolute velocity of a moving particle isv=}"2g (x —n).
Denote by P the angle of inclination of the tangent to the
E-axis. Then we will have

e V2% (x—m) sinp
whence

dn
dt = ———1
V2 (x—n)sin B

Integrating from O to x and denoting—S%—B- =@ (n), we get
Abel’s equation

Comdn _ oo
g Vien V2w

0
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Denoting —V/ 2gf, (x) by f(x), we finally obtain

x

Q () _
[ Fdn=F ) 1)

0

where ¢ (x) is the required function and f(x) is the given
function. After finding ¢ (n) we can form the equation of
the curve. Indeed,

1
*M=—5g
whence
n=>o (f)
Further ~3
_dn __ @©'(B)dp
g = tanf ~  tanp

whence

e= (2O o,

and consequently, the required curve is defined by the pa-
rametric equations
E=,(p), }

2
=0 ) @

Thus, Abel’s problem reduces to a solution of the integral
equation

f={Kx o

0

with given kernel K (x, t), given function f(x) and unknown
function ¢ (x); in other words, it reduces to finding a solu-
tion of the Volterra integral equation of the first kind.

The following somewhat more general equation is also
called Abel’s equation:

X

§ 2t =1 0 G
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where a is a constant, 0 < a <1 (Abel’s generalized equa-
tion). We will consider that the function f(x) has a conti-
nuous derivative on some interval [0, a]. Note that for

a;% the kernel of equation (3) is quadratically noninte-

grable, i.e., it is not an L,-function. However, equation (3)
has a solution which may be found in the following manner.

Suppose equation (3) has a solution. Replace x by s in
the equation and multiply both sides of the resulting equa-

lity by (x__d% and integrate with respect to s from 0

to x:

I dx : P (t) f(s)
o= oot = S rEE (4)
0 0

Changing the order of integration on the left, we obtain

fowdt | g =F @ (5)
0 t
where
F(x)= j S ds (6)

In the inner integral make the substitution s=¢+4y(x—¢):

1
ds _S ay __
(x—s)l—a(s—f) g (l—y)1-e sin an

Then from equation (5) we have

Scp(t)dt:i“nﬂi-"(x)

or

’

@ (x) _ sinuom F’ (*) =sin o ( f(s) ds\ %

T . (x—s)1-a /x
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Thus, the only solution of equation (3) is given by for-
mula (7), which, via integration by parts, can also be re-
written in the form

® (x) = sin an [ il((l)(x +S(x I S()sl) _ ds] (8)

This solution has physical meaning only when its absolute

value is not less than 1<since fp(x)=?li—ﬁ—

We will show that in the case f(x)=C =const, the so-
lution of Abel’s problem is a cycloid. (The tautochrone
problem: to find the curve along which a particle moving
under gravity without friction reaches its lowest position
in the same time, irrespective of its initial position.)

In this case a=%. Hence, by formula (8)

@)=~ V_
And therefore
sinﬁ=n—éf—“
whence
c? .
n=—ysin’f
Further
_cr2 c?
B = g =y 48 =53 (1 -+ cos 29) d,
c? .
E—or (B+3sin2)+C,
Finally,

C? 1.
=3 (ﬁ + 3 sin 25) +C,,
Cc?
n=2?2-(1 —cos 2f)
(parametric equations of the cycloid).

105. Show that when f(x)=CV/ x the solution of Abel’s
problem will be straight lines.



60 INTEGRAL EQUATIONS

Solve the following integral equations:

Q) d _ O<a<l).

-
(=
Qo
L)
Py Py, Oy Oy,
8
—
~
-
a
-~
[\Y
%

110. Solve the two-dimensional Abel equation

P (x, y) dx dy

= X ,
.,D-S‘V(!/o"‘!/)z—("o—'x)2 I (¥ 90)
Here, the domain D is a right isosceles triangle with hypo-
tenuse on the x-axis and vertex at the point (x,, y,).

Consider the integral equation (see [21])

fe—tpowydt=n 9)

(=0, p>—1 is real), which in a sense is a further
generalization of the Abel equation (3).

Multiply both sides of (9) by (z—x)* (u>—1) and in-
tegrate with respect to x from 0 to 2:

| §(z—x)" (§(x—t)3¢(t)dt)dx=§x\(z—x)i*dx (10)

Putting x=pz in the integral on the right side of (10),

we obtain

z 1

Sx"(z—x)*‘dx=z"+i*+‘ Sp*(l—p)i*dp=

0 0
= _ 1TAEDT @+
= B0+ Lot D=2 e

A+p+1>120) (11)



VOLTERRA INTEGRAL EQUATIONS 61

Changing the order of integration on the left side of
(10), we get

§ (§e—vpe—tpo@ar) de—

=§ ({e—xr G—tpax) o ) (12)
o ¢

In the inner integral on the right of (12) put

x=t+p(z—1)
Then

{e—np (x— 1) dx=(z—tp+o+ (B (1 —p)rdp =
t 0

==t B+ 1, p 1) = S e g
(13)

Taking into account (11), (12), (13), we obtain from (10)

PO+ (o ppspen _ LAY
TE+uTD) §(z e d =rapmy ot (19

Choose p so that w4 f 4 1=n (a nonnegative integer). Then
from (14) we will have

PB4 ” I+ n
Ty} ) (=0 0(0) dt = G et
0

or

2

(e—tyn 3 (A +1) n-
ST edt = spryrg A=y 2t (19
0

Differentiating both sides of (15) n 41 times with res-

pect to 2, we obtain

LA 1) (A n—B) (ot n—B—1)..O—B)
v(2)= TEFDTOFa—BT D) a7 19)

or for A—p+k==0 (=0, 1, ..., n)
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F(A+1
0@ =g A=y (a7
This is the solution of integral equation (9).

Observe that if the quantity A—p—1 is equal to a
negative integer, we get ¢(2)=0. In this case, equation
(9) does not have a solution in the class of ordinary func-
tions. Its solution is a generalized function (see p. 67).

Example. Solve the integral equation

fx—to@dt=2x
0

Solution. In the given case, =1, A=2. Since A—p 4
+ k%0 (k=0, 1, 2, ..., n), it follows, from formula (17)
that

re’
‘P(x)=r(2)(r)(1)x2°l-l=2

Solve the integral equations:

1. S(x-t)?cp(t)dt:ﬁ—xa.
112. S(x—t)7cp(t)dt=ux.
113. S(x—t)Tcp(t)dt=x+x=.

114. S(x——t)%p(t)dt:x“.

1

115. 5 ((—tro@dt=cosx—14%.

Pl

11. Volterra Integral Equations of the First
Kind of the Convolution Type

An integral equation of the first kind

§Kx—te@)dt=f® M
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whose kernel K (x, t) is dependent solely on the difference
x—t of arguments will be called an infegral equation of
the first kind of the convolution type.

This class of equations includes, for instance, the gene-
ralized Abel equation.

Let us consider a problem that leads to a Volterra in-
tegral equation of the convolution type.

A shop buys and sells a variety of commodities. It is
assumed that:

(1) buying and selling are continuous processes and pur-
chased goods are put on sale at once;

(2) the shop acquires each new lot of any type of goods
~in quantities which it can sell in a time interval T, the
same for all purchases; _

(3) each new lot of goods is sold uniformly over time T.

The shop initiates the sale of a new batch of goods,
the total cost of which is unity. It is required to find the
law ¢ (f) by which it should make purchases so that the
cost of goods on hand should be constant.

Solution. Let the cost of the original goods on hand at
time ¢ be equal to K (f) where

t
0, t>T

Let us suppose that in the time interval between v and
T+ dv goods are bought amounting to the sum of ¢ (7)dr.
This reserve diminishes (due to sales) in such a manner
that the cost of the remaining goods at time £ > t is equal
to K(t—=)g(v)dr. Therefore the cost of the unsold part
of goods acquired via purchases will, at any time ¢, be
equal to

t
SK(t—T)(p(T)d‘t
1)
Thus, ¢ (¢) should satisfy the integral equation
t
1—Kt)={K({t—7) e(®)dr
0
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We have thus obtained a Volterra integral equation of
the first kind of the convolution type.
Let f(x) and K (x) be original functions and let

Fy=F(p), K(x)=K(p), 9(x)= (p)

Taking the Laplace transform of both sides of equation (1)
and utilizing the convolution theorem, we will have

K(p) @ (p)=F (p) ®)
whence
@(p)=%{’p’) (K () #0) (3)

The original function ¢(x) for the function @ (p) defined
by (3) will be a solution of the integral equation (1).
Example. Solve the integral equation

Se""(p () dt =x (4)

Solution. Taking the Laplace transform of both sides
of (4), we obtain

— D (p)=2; (5)

whence

The function ¢(x)=1—x is a solution of equation (4).
Solve the integral equations

“116. g cos (x—¢) @ (¢) dt = sin .

]

117. {ev~g(#)dt = sinh x.
0
1

118. S(x—t) o (1) dt

0

S
X2,

X
119. S e2%=1 ¢ (¢) dt = sin x.

]
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120. \ ex-'q(¢)dt = x2.

121. \cos(x—¢) @ (f)di=xsinx.

122. \sinh (x—¢) ¢ (¢)dt = x%e~*,

Sty Py Py

123. §J°(x—t)q>(t)dt=sinx.
0

124. fcosh(x—t)cp(t)dt:x.

125. fcos(x—t)cp(t)dt=x+x’.
0

126. f(xz—t2)<p(t)dt=’§-.

127. S(xﬁ-4xt+3t2)¢(t)dt=’l‘_;,
(]

1

128. = | (x*—dxt 43t} @ () dt = x*J (2 ).

QQ,;R

129. S(x—2t)<p(t)dt=—%’.

Note. If K(x, x)=K(0)s0, then equation (1) defini-
tely has a solution. In Problem 122 the kernel K (x, ¢)
becomes identically zero for {=wx, yet the equation has
a solution.

As has already been pointed out before, a necessary con-
dition for the existence of a continuous solution of an
integral equation of the form

x
(x—¢)r-1
(n— 1)

e(Hdt=Ff(x) (6

31583
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consists in the function f(x) having continuous derivatives
up to the ath order inclusive and in all its n—1 first
derivatives vanishing for x=0

This “model” equation (6) points to the necessity of
matching the orders of vanishing of the kernel for £ =x and
of the right side f(x) for x=0 (the right side must exceed
the left by at least unity).

Consider the integral equation

fx—nedt=x (7)
1)
Here, f(x)=x, n=2. Obviously, f(x) has derivatives of
all orders, but its first derivative [ (x)=135£0; that is,
the necessary condition is not fulfilled.
Taking the Laplace transform of both sides of (7) in
formal fashion, we get

1 1
7 D (p) = e
whence
D(p)=1

This is the transform of the &-function & (x).
Recall that
Sixj=1
§um (x)_='p”‘
where m is an integer > 0.
Thus, the solution of the integral equation (7) is the
8-function:
¢ (x)=208(x)
This is made clear by direct verification if we take into
account that the convolution of the 6-function and any
other smooth function g (x) is defined as
g(x)xd(x)=g(x)
R (x)xg(x)=g®(x) (k=1,2,...)
Indeed, in our case g(x)= K (x)=x and
(Kx—ndwdi=Kx)=x

0
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Thus, the solution of equation (7) exists, but now
the class of generalized functions (see [4], |22]).
Solve the integral equations:
130. ((x—nHedi=x+x—L
: .

Bl ((x—nedi=sinx

0
132. g(x--t)2 @ () dl = x* + x°.
0

X

133. (sin(x—ne)dt=x+1.

0
134. g sin(x—{ @ ({)dt =1—cos x.

Integral equations of the first kind with logarithmic
kernel

A

(o inx—ndi=fu, [0)=0 (8)

0

can also be solved by means of the Laplace transformation.
We know that

x“_'__.r(v+1) (Rev>—1) %)

DV+1

Differentiate the relation (9) with respect to v:

. 1 dr 1 I I
lenx.:p\“H (Z‘V+ )+E,—+—iln?['(v+l)

or
dl (v+41)
v v+ dv 1 (10)
winx= =55 [P(v+1) +1n p]
For v=0 we have (see p. 54)
ray
r( v

3*
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where y is Euler’s constant and formula (10) takes the form

__Inp+y (11)

1 .
Inx=—(—v—Inp)= ’

Let ¢ (x)=® (p), f (x)=F (p). Taking the Laplace trans-
form of both sides of (8) and utilizing formula (11), we get
| ‘

— @ (p) L= F (p)

whence

F
® ()=—fr 25 (12

Let us write @ (p) in the form

__PFO—I'O_ [
PP =—tmprn rlipiD (13)

Since f(0)=0, it follows that
P*F (p)—F (0)=]" (x) (14)

Let us return to formula (9) and write it in the form
XY . 1 ’
ToFD ™ oo &

Integrate both sides of (9’) with respect to v from 0 to co.
This yields

K pad . ¢ dv 1
Sr(v+1>d”'_Spv“_p1np
0 0
By the similarity theorem
0 xva~v 1 1

JETGTD Ve p @) pnpInd

If we put a=e1, then

@

xve~1 . 1
JTEFD &= pm Ty (19)
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Take advantage of equality (13). By virtue of (15)

fro . xve=y
ACYE= f<°>Sm+n

Taking into account (14) and (15), the first term on
the right of (13) may be regarded as a product of transforms.
To find its original function, take advantage of the convo-
lution theorem:

p*F (p)—1f" (0 » (x—tpe-r *d
WICYEDR S””(S T T D >‘”

Thus, the solution ¢ (x) of the integral equation (8) will
have the form

ow=—{7w <0§ oty )dt f'<0)SF"(j+‘,,

where y is Euler’s constant.
In particular, for f(x)=x we get

o0
xv e~
d

*W=—)rern®

The convolution theorem can also be used for solving
nonlinear Volterra integral equations of the type

o) =F@+1 [ ox—ndf (16)
0

Let
@x)=0(p), f(x)=F(p)

Then, by virtue of equation (16),

@ (p) =F (p) + AD* (p)
whence

L+ VISBFE R
o (p)= VT 0)
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The original function of ®(p), if it exists, will be a so-
lution of the integral equation (16).
Example. Solve the integral equation

Sfp(t)cp(x—t)dt=—’g- (17)

Solution. Let ¢ (x) =@ (p). Taking the Laplace transiorm
of both sides of (17), we get

1
Q*(p) =7
whence
1
Q(p)==%—4
The functions ¢, (x)==x, ¢,(x)=—x will be solutions of
the equation (17) [the solution of equation (17) is not uni-
que].

Solve the integral equations:

135. 2¢ (x)_g @ (f) ¢ (x—t) dt = sin x.

0
¢ L
136. ¢ (x)= 5jcp(t)cp(x—t)dt—gsmhx,
0



CHAPTER 11

FREDHOLM INTEGRAL EQUATIONS

12. Fredholm Equations of the Second Kind. Fundamentals

A linear Fredholm integral equation of the second kind is
an equation of the form

b
e()—A K (x, hodt =) ()

where @ (x) is the unknown function, K (x, {) and f(x) are
known functions, x and ¢ are real variables varying in the
interval (a, b), and A is a numerical factor.

The function K (x, ¢) is called the kernel of the integral
equation (1); it is assumed that the kernel K (x, {) is defined
in the square Q{a<<{x<<b, a<<{i<<b} in the (x, ¢) plane
and is continuous in €, or its discontinuities are such that
the double integral

b
(1K, 0 drat

Qe

has a finite value.
If f(x) 2 0, equation (1) is nonhomogeneous; but if f (x) =0,
then (1) takes the form
b
¢()—2 {K(x, o (tydt =0 2

a

and is called homogeneous.

The limits of integration, a and b in equations (1) and (2),
can be either finite o1 infinite.

A solution of the integral equations (1) and (2) is any
function ¢ (x) which, when substituted into the equations,
reduces them to identities in x € (a, b).

Example. Show that the function cp(,\:)=siny—[2i is a solu-
tion of the Fredholm-type integral equation

|
o—5 (K nowd=5
0
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where the kernel is of the form

2 ’ ~= ~ "
%, 1) {t(2—x)
2 ’

Solution. Write the left-hand side of the equation as

t<{xLl

1
o= (K ne@di=
0

x 1
= q»(x)—%”{SK(x, He @i+ K, t)cp(t)dt}=
0 X

x 1
. _ _ |
- (p(x)—%{ e ")cp(t)dt+g@(p(z)dt}=
0 x

=cp(x)—“§{2;"§tcp<t)dt+§jl(2—t>cp(t)dt}
0 X

Substituting the function sin? in place of ¢(x) into this

expression, we get

x 173 1 it
sin 5 sin ?
sin —2-—— {(2 X) g dt+xS(2—t) }:
0

X

. nx ol t w2 . mE\ [t=x
=sin5—7 {(2—x) (——n €os 5+ 5 sin >
2—t nt 2 . at
+x [——n €os 5 — 5 sin —2]

4+

t=0
t=1 x
t=x - 2

Thus, we have —%E—;, which, by definition, implies

that cp(x)=sin¥ is a solution of the given integral equa-

tion.
Check to see which of the given functions are solutions
of the indicated integral equations.

137. g =1, ¢ +§xE*—)o®)dt=er—x
0
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138. ¢ (x)=e* <2x—3),

139.

140.

141.
142.
143.

144,

145.

73
3

1
o0 +2 et 1) dt = 2xex.
0

o) =120, ge9—[costc o a1
0

1

o) =V% o®— K t)ot)d=
0

= x—i—f%(4x‘/=—7).

C0 ) o<y,
K(x,t):{ 2

”22—"’, 1< x<1.

¢ (x)=¢*, cp(x)—l—?»Ssinxtcp(t)dt:l.

0
n

@ (x)=cosx, @(x)— S (x* +¢) cos Lo (t) df = sin x.
0

@®

e =xe%, @r)—4{e g t)dt = (x—1)e %
0

@ (x)=cos2x, ¢(x)—3 S K (x, )@ (f)dt =cosx,
0
sinxcost, 0<x<{,
K(x’ t)= .
- | sinfcosx, t<Tx<m
p(x)= inc—sin x, where C is an arbitrary constant,

sin?¢

(p(x)—%gsinx L o (t)dt=0.
0

13. The Method of Fredholm Determinants

The solution of the Fredholm equation of the second kind

b
oW —A K, o @)di=f) ()
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is given by the formula
b
) =F () +r§R(x, 6 M) f (1)t @)

where the function R (x, ¢; A) is called the Fredholm resol-
vent kernel of equation (1) and is defined by the equation

R(x, t; 3)=20 3

provided that D(A)s40. Here, D(x, ¢ A) and D (A) are
power series in A:

D(x, s N=K(x H+X SLB,x A, (@)
n=1

Dy=143 EXc,am ()

n=1

whose coefficients' are given by the formulas

K@, 1) K(x, t,) ... K(x, t,)
K(t, )K(t,, t,) ... K(ty, )

K(ty Kt t) ... Kt t,)|
............. dtl" M 'dtn

............. (6)
n |K(tn DK@y ty) ... K(t, 1)

Bn (x’ t) =

Qt,je_
R

and
B,(x, t)=K (x, f)

K(t, ) K(ty &) ... K(t, 1)
K(t, 1) K(ty, 4) ... K(ty, 2,)
K(ty, t,) K(ty, 1) ... K(t5, 1)

..............

dt, .. .dt, (7)

Ry o

b
a

——

K@, t) K(t, t,) ... K(t, 1)

The function D (x, ¢; A) is called the Fredholm minor,

oooooooooooooo
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and D (A) the Fredholm determinant. When the kernel
K (x, t) is bounded or the integral

b b

SSKz(x, t)dx dt
has a finite value, the series (4) and (5) converge for all
values of A and, hence, are entire analytic functions of A.

The resolvent kernel
D(x, t; A)

R (x, t; 7~)="—D(T—

is an analytic function of A, except for those values of A
which are zeros of the function D (A). The latter are the
poles of the resolvent kernel R (x, {; A).

Example. Using Fredholm determinants, find the resolvent
kernel of the kernel K (x, f)=xe'; a=0, b=1.

Solution. We have B, (x, t)=xe' Further,

1

xe' xeh
Butx 0=§ |10 1o

xe' xeh xe's
1 t t

tel teh te

el teh fe

dt, =0,

11
~

B, (x, t)=“ dt,dt, =0
0

since the determinants under the integral sign are zero.
It is obvious that all subsequent B,(x, {)=0 Find the

coefficients C,;:
1 1

c, =K, tydt,={tend, =1,

0 n

11
Cz___j‘s“ teh Leh
0 0

Leh Leh
Obviously, all subsequent C, are also equal to zero.
In our case, by formulas (4) and (5), we have

Dx, t; M)=K(x, {)=xe'; DA)=1—\

dt, dt, =0

Thus,
D(x, t; ) xe
DR) ~ 1—A

Rx, {, A)=
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Let us apply the result obtained to solving the integral
equation

e ()—2 §xelp(tydt =F(x) (h~1)
By formula (2)

; xet
o () =F(n+1r{ 25 F()dt

In particular, for f(x)=e-* we get

N A
¢(x)=e-x+r_7x

Using Fredholm determinants, find the resolvent kernels
of the following kernels:

146. K (x, {)=2x—t; 0], 0L

147. K (x, t)=x2t—xi? 0<<x<], 0L

148. K (x, t)=sinxcost; 0 x<C2n, 0Tt < 2.

149. K (x, f)y=sinx—sint; 0<{x<<2n, 0t < 2m.

Practically speaking, only in very rare cases is it possible
to compute the coefficients B, (x, ¢) and C, of the series (4)
and (5) from formulas (6) and (7), but from these formulas
it is possible to obtain the following recursion relations:

b

B, (x, )=C,K (x, )—n { K(x, $)B,-,(s, t)ds, (8)
b
Cn=S B,y (s, S)dS 9)

Knowing that the coefficient C,=1 and B, (x, f) =K (x, ¢),
we can use formulas (9) and (8) to find, in succession, C,,
B,(x, t), C,, B,(x, t), C; and so on.

Example Usmg formulas (8) and (9), find the resolvent
kernel of the kernel K (x, #)=x—2¢{, where 0<{x <1,
0.
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Solution. We have Cy=1, By(x, t)=x—2¢. Using for-
mula (9), we find

C1=§(—s)ds=——;-

By formula (8) we get

B, (x, t)=— X Zt

—S (x—25) (s—2t) ds = —x—t +2xt + =

We further obtain

S]‘( 25+ 252 )ds:é—
0

B, (x, h= 2% 9 S’(x—2s) (—s-—t—l—?st +§) ds=0
1)

C,

I

C3=C4f...=0, B (x; t)y= B, (x, ,é)="'i0

Hence,
DM =14+24+2:Dx, ;) =x—2 + (x—l-t—?xt—%) A

The resolvent kernel of the given kernel is

- x—-2t—|—<x—|—t——2xt—%>,}»
R(x, t; A)=

A A2
1+7+§

Using the recursion relations (8) and (9), find the resol-
vent kernels of the following kernels:

150. K(x, H=x+t+1; —1<x<l, —1<t< 1.
151. K (x, t)=1+3xt; 0], 0<t<l.
152. K (x, t)=4xt—x? 0<x<lt, oL,
153. K(x, t)=e*"% L 0], O0<t< L

154. K (x, t)=sin(x+1); O<sx<2n 0<EI<<2n
155. K(x, )=x—sinh¢;, —l<x<I, —I<i<l.
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Using the resolvent kernel, solve the following integral
equations:
m

156. ¢ (x)—A § sin(x+Hg)di=1.

0

157. @ (x)—A S(?x—t)cp(t)dt =%

2

158. ¢ (x) ——S sin x cos { ¢ (f) dt = cos 2x.

0

1
159. ¢ () + §e-to (tydt =e
0

1

160. ¢ (x)—A § (4xt—x*) @ (1) dt =x.

0

14. lterated Kernels. Constructing the Resolvent Kernel
with the Aid of Iterated Kernels

Suppose we have a Fredholm integral equation
b

ep()—4§ K(x. newdt=1(x (1

a

As in the case of the Volterra equations, the integral equa-
tion (1) may be solved by the method of successive appro-
ximations To do this, put

QU= 00+ X Py (x) A" (2)

where the v, (x) are determined from the formulas
b

P, (%) =SK(x. 0 i),

a

b b
b ()= (K (x. ), (0 dt =K, (x, Of (),



FREDHOLM INTEGRAL EQUATIONS 79

b b
Yo (0) = K, )9, (01 dt = Ky (x, £ F (1) dt

and so on.
Here

K,(x, )=\ K (x, 2)K, (2, t)dz,

> Dt./';:,.

Kyx, )= K(x, 2K, (2, t)de

a
and, generally,

b
Ku(x, )= K(x, 9K,_, (2, O)dz 3)

n=2 3, ..., and K,(x, {)=K(x, ¢) The functions
K, (x, t) determined from formulas (3) are called iferated
kernels For them, the following relation holds:

b

Ko(x, )= K, (x. ) K,_nls, 0)ds 4

where m is any natural number less than n.
The resolvent kernel of the integral equation (1) is deter-
mined in terms of iterated kernels by the formula

R(x' tv ;\‘) “_‘ZlKn(x’ t) An-t (5)

where the series on the right is called the Neumann series
of the kernel K(x, t). It converges for

1M <5 (6)

where B—‘/ S K2 (x, t)dxdt

The SO]thlOl’l of the Fredholm equation of the second

kind (1) is expressed by the formiila
b

e =F)+r SR, M)t (7)
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The boundary (6) is essential for convergence of the se-
ries (5). However, a solution of equation (1) can exist for

values of |A]|> % as well.
Let us consider an example:
1

e—rfo@di=1 ®

0

Here K (x, {)=1, and hence
11

Bz=§§ Kz (x, t)dxdt=0§§ldxdt=l

Thlus the condition (6) gives that the series (5) converges for
[A] < 1 ,
Solving equation (8) as an equation with a degenerate

1
kernel, we get (1—A) C=1, where C=Sq>(t)dt.

0
For A=1, this equation is unsolvable and hence for
A=1 the integral equation (8) does not have any solu-
tion. From this it follows that in a circle of radius greater
than unity, successive approximations cannot converge for
equation (8). However, equation (8) is solvable for |A|> 1.

Indeed, if A=~ 1, then the function q>(x)=$L is a solu-

tion of the given equation. This may readily be verified by
direct substitution.

For some Fredholm equations the Neumann series (5)
converges for the resolvent kernel for any values of A. Let
us demonstrate this fact.

Suppose we have two kernels: K(x, f) and L(x, ¢). We
shall call these kernels orthogonal if the following two
conditions are fulfilled for any admissible values of x and ¢:

b b
(K 2L dz=0, (Lix, 2)K(z tydz=0 (9)

a

Example. The kernels K (x, {)=xt and L (x, ¢) = x** are
orthogonal on [—I1, 1].
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Indeed,
1 1
{ (o) @tydze=xtr § 22dz=0,
—ll _ll
S (x222) (2¢) dz = x* S 22dz=0

-1 -1

There exist kernels which are orthogonal to themselves.
For such kernels, K, (x, {)=0, where K, (x, ¢) is the second
iterated kernel. It is obvious that in this case all subsequent
iterated kernels are also equal to zero and the resolvent
kernel coincides with the kernel K (x, f).

Example. K (x, {)=sin(x—2¢); 0<{x<{2n, 0<C < 2m,

We have

2n

S sin (x—2z) sin (2 —2f)dz =
0
27

S [cos (x+ 2t —32) —cos (x— 2 —2)] dz

0

=1 [—-%sin (x+ 2 —32) + sin (x—2t—z)] \22:’;0
Thus, in this case the resolvent kernel of the kernel is equal
to the kernel itself:

R (x, t; A)=sin (x—2¢)

so that the Neumann series (8) consists of one term and,
obviously, converges for any A.

The iterated kernels K, (x, f) can be expressed directly in
terms of the given kernel K (x, ) by the formula

bb b
Kor,)={0 ... (K@ s)K (s .0
K(s,_i, 8)ds,, ds, ... ds,_; ° (10)

All iterated kernels K, (x, t), beginning with K, (x, ¢),
will be continuous functions in the square a<Cx<C),
a<<t<Cb if the initial kernel K (x, ¢) is (quadratically sum-
mable in this square.
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If the given kernel K (x, f) is symmetric, then all itera-
ted kernels K, (x, ¢) are also symmetric (see [15]).

The following are some examples in fnding iterated ker-
nels.

Example 1. Find the iterated kernels for the kerne]
Kix, t)y=x—t if a=0, b=1.

Solution. Using formulas (2), we find in succession:

K,(x, t)y=x—1,

Kz(x,t)=S( +¢ x—%,
K«("r”———S(x —Ss)(s—t)ds=
_-12’(2("-‘)—~l—'2<1%—xt %)

Kq (x, £) ——Q—S(x—s) (s—tyds=="25— =

0
1 x4t 1
124( 2 t'_'s_)'
From this it follows that iterated kernels are of the form:
(1) for n=2k—1

Kuno (5 0) =S 1)

(2) for n=2k

_ (=0 1
O e ).



FREDHOLM INTEGRAL EQUATIONS 83

where k=1, 2, 3, ... .

txample 2. Find the iterated kernels K, (x, {) and K, (x, ¢)
il K(x,t)=eminx 8 g=0, b=1.

Solution. By definition we have

x, if 0<CTx<y,

in(x. f) =
min (x. 0 {t, i r<x<I
and for this reason the given kernel may be written as

ex, it 0<x <Y,

Kx, t)={ ¢, it t<x<]

This kernel, as may easily be verified, is symmetric, i.e.,
Kx, )=K(, x)

We have K, (x, {)=K (x, t). We find the second iterated
kernel

K, (x, t)=SK(x, s) K, (s, t)ds= S K (x,s)K(s, t)ds

Here
e, if 0<<x<<s, ~
K (x, s9=[ L
\e, if s<<x<1,
e, if 0<<s<y,
Ks,n=¢ .
e, if t<Cs< 1

Since the given kernel K (x, ¢) is symmetric, it is sufficient
to find K,(x, ¢) only for x> t.
We have (see Fig 2)

! X

K, (x, t)=SK(x, s) K (s, t)ds+SK(x,s)K(s, {)ds +
(1] I3

+SK(x, s)K (s, t)ds

X
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84
0 s ¢ z 1
—t . } —
a t s x 1
/] t T } R,
Fig. 2

In the interval (0, ¢) we have s <t <x, and therefore

¢ ¢
e2t—1

§K(X, s) K (s, t)ds=Se’esds=Se2~‘ds= 5

0 0

In the interval (¢, x) we have ¢ <s < x, and therefore

X X

SK (x, s)K (s, t)ds = Se*e’ ds = e+t e?!
t t

In the interval (x, 1) we have s> x> ¢, and therefore
1 1

SK(x, s)K (s, t)ds= S eve' ds=(1—x)ex+!

Adding the integrals thus found, we obtain
Ky, )= @—x)exr L&

We will find the expression for K,(x,?) for x <{¢ if we
interchange the arguments x and ¢ in the expression K, (x, )

for x>
Ka(r, )= @2—t)ew+t — 2 <)

Thus the second iterated kernel is of the form
@—pert — it o<at,

Ky (x, )= ~

: @—xe+t = i i <a<
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Note. If the kernel K (x, f), which is specified in the
square a<x<b, a<<{ t < b by various analytic expressions,
is not symmetric, then one should consider the case x <f
separately. For x < ¢ we have (see Fig. 3)

b X t b
Kyx, )= (K (x, 9K (s, tyds=§ 4§+
a a x ¢
a 5 z ¢ 5
g z st b
« z t s b
Fig. 3

Example 3. Find the iterated kernels K, (x, ¢) and K, (x, ¢)

if a=0, b=1 and
K (x, t)={ x4, Tf 0y <,
x—t, if t<x<<
Solution. We have K, (x, )=K (x, 1),
1

Ky(x, )= K (x, K s, t)ds

0
where

K (x, s)={ x+s 0<<x<s, [s-l—t, 0<s <,

,t=<
x—s, s<x< 1, Ks 1) | s—t, t<s<l

Since the given kernel K (x, f) is not symmetric, we con-
sider two cases separately when finding K, (x, £): (1) x <t
and (2) x >¢. ,
(1) Let x <¢. Then (see Fig. 3)
K, (%, t)=11+12+13
where

L={(—s) (s +ds=% 1 55,

0



86 INTEGRAL EQUATIONS

t
:S x+s)(s+t)ds=¥— B =L,

1
=S(x+s) s—t)ds———l—2 —l—%—%—l—%

Adding these integrals we obtain
Ky, )=t —2 o —xrtf 2xti—xt + 2 o (2 <0)

(2) Let x> ¢. Then (see Fig. 2)
Ko(x, )=1,+1,+1;

where
1
S(x—s) (s+ t)ds=—xt2 513
0
A 3 2 2
/ —-S(x—s)(s—t)ds———%——%{—i—x—é-,

l

IS=S(X+S)(8—1)ds=_%x3+g_x.

Adding these integrals, we cbtain
K,(x, t)= —-%x"—t’-|—)c2l-l—2,wct2
Thus, the second iterated kernel is of the form
K,(x, t)=
J' e ar—u iy L 0<x <y,

(x>1)

l —%x“—t3+xzt+2xt2—xt+i2:’-+%-, r<x<1
The other iterated kernels K,(x, {)(n=3, 4, ...) are

found in similar fashion.
Find the iterated kernels of the following kernels for

specified a and b.
161. K(x, H)=x—t; a=—1, b=1
162. K (x, {)=sinx—1); a=0, b=5 (n=2, 3).
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163. K (x, t)=(x—1)*; a=—1, b=1 (n=2, 3).
164. K(x, t)=x+sint; a= —mn, b=n.

165. K (x, t)=uxe!; a=0, b=1.

166. K (x, t)=e*cost; a=0, b=m.

In the following problems, find K, (x, £):

167. K (x, t)=e*"t;; a=0, b=1.
168. K (x, t)=e*+t; g=—1, b=1.

We now give an instance of constructing the resolvent
kernel of an integral equation with the aid of iterated kernels.
Consider the integral equation

1

e)—r{xto@di=fr) - (I
0
Here K (x, t)=xt; a=0, b=1. In consecutive. fashion we
find
K, (x, t)y=xt,
1

K,(x, t)= S (x2) (zt)dz = %'E-

K, (x, t)=- S(xz) (et) de = 2

(=1

K, (v, t)=rr
According to formula (5)
Rx & m—)_K (x, £)An=1 ==th( ) =2
where |A| < 3.

By virtue of formula (7) the solution of the integral
equation (11) will be written as

w(x)-f(x)ﬂjf"‘mt
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In particular, for f(x)=x we get

P (x)=
where A 4 3.

Construct resolvent kernels for the following kernels:
169. K (x, {)=e**1, a=0, b=1.

170. K (x, t)=sinxcost; a=0, b=3.

171. K (x, t)= xet; a=—1, b=1.

172. K(x, )=(1+x)(1—1£); a=—1, b=0.

173. K (x, t)=x2t% a=—1, b=1,

174. K (x, t) =xt; a=—1, b=1,

If M(x, t) and N (x, {) are two orthogonal kernels, then
the resolvent kernel R (x, #; A) corresponding to the kernel
K(x, t)=M+N, is equal to the sum of the resolvent
kernels R, (x, ¢; A) and R,(x, ¢; A) which correspond to
each of these kernels.

Example. Find the resolvent kernel for the kernel

K(x, H)=xt+x22, a= —1, b=1

Solution. As was shown above, the kernels M (x, £)=x¢

and N (x, t)=x2* are orthogonal on [—1, 1] (see p. 80).

For this reason the resolvent kernel of the kernel K (x, ¢) is

equal to the sum of the resolvent kernels of the kernels

M (x, t) and N (x, ). Utilizing the results of problems 173
and 174, we obtain

3xt 5x2¢2

Ri(x, 1; M)=Rp(x, t; N+ Ry (x, t; A) = 3—on T 5—an
where |7»|<-2—-

Find the resolvent kernels for the kernels:
175. K(x, t)=sinxcos{+cos 2xsin2f; a=0, b=2m.-
176. K(x, )=1+4(2x—1)(2t—1); a=0, b=1.

This property can be extended to any finite number of

kernels.
If the kernels MW (x, £), M® (x, ), .. .,’ M (x, t) are



FREDHOLM INTEGRAL EQUATIONS 89

pairwise orthogonal, then the resolvent kernel corresponding
to their sum,

K(x, t)= 2_, M (x, t)

is equal to the sum of the resolvent kernels corresponding
to each of the terms.

Let us use the term “nth trace” of the kernel K (x, ¢) for
the quantity

”

b

= (K,(x, mdx, (n=1, 2, ...) (12)

where K, (x, ¢) is the nth iterated kernel for the kernel
K(x, t).

The following formula holds for the Fredholm determi-
nant D (A):

m ZAMI (13)

The radius of convergence of the power series (13) is equal
to the smallest of the moduli of the characteristic numbers.
177. Show that for the Volterra equation

e0)—A§ K(x, ) (t)dt =f (x)
0

the Fredholm determinant D (A)=e-4: and, consequently,
the resolvent kernel for the Volterra equation is an entire
analytic function of A.

178. Let R(x, f; A) be the resolvent kernel for some
kernel K (x, f).

Show that the resolvent kernel of the equation

b
oW —p SR, & Mo @) di=](x)

is equal to R(x, ¢, A+4p).
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179. Let

K? (x, t)dxdi = B,

S P

b
!
b
(§ &z (x, t)dxdt =Bz

where K, (x, {) is the nth iterated kernel for the kerne}
K (x, (). Prove that if B,=B?, then for any n we will
have B,= B".

15. Integral Equations with Degenerate Kernels.
Hammerstein Type Equation

The kernel K (x, ¢{) of a Fredholm integral equation of
the second kind is called degenerate if it is the sum of a
finite number of products of functions of x alone by func-
tions of ¢ alone; i.e., if it is of the form

K (x, t)=k2_3] a, (x) b, (1) (1
We shall consider the functions a,(x) and b6,(f) (=1,
2, ..., n) continuous in the basic square a <{x, ¢<Cb and
linearly independent. The integral equation with degenerate
kernel (1)

4

cp(x)—hS[Z ak(x)bk(l)]tp(t)dl-—-f(X) (2)
k=1 .

a

is solved in the following manner.
Rewrite (2) as
b

o) =F0)+1 Y, a, () § b, ()@ (1)dt 3)
k=1

a

and introduce the notation:
b

(o.youyat=c, (k=1,2 ..., n (4)

a
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Then (3) becomes
o =F(D+1 3 Cap() 5)

where C, are unknown constants, since the function ¢ (x) is
unknown.

Thus, the solution of an integral equation with degene-
rate kernel reduces to finding the constants C,(k=1,
2, ..., n). Putting the expression (5) into the integral
equation (2), we get (after simple manipulations)

n b r .
m2=l {Cm—gbm (t)| f(t)-'—}bk;] Ckak (t)] dt} a, (x) =0

Whence it ‘follows, by virtue of the linear independence of
the functions a, (x) (m=1, 2, ..., n), that

b

Ca—{ba 0 [f )+13 Ca, (t)] dt 0

a

or
n b

b
Camt X Ce§an )b, (1 dt = b (O (tYdt (m=1,2, ..., n)
For the sake of brevity, we introduce the notations

b

b
Gem = @ ()b, (O)dt,  Fo= b, (1) at

a

and find that
Cm—}\lzil @GnCr=fn (m=1, 2, ..., n)

or, in expanded form,
(1—2ay,)Ci—Aa,Co—... —ha,C =,
_7"0‘2161 +(1- 7“a22) Cz_ ... —ha,,C, =f2;

...................

—}"anlcl_}"arﬂcz— coe (l _}“ann) Cn=fn

(6)
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For finding the unknowns C,, we have a linear system of n
algebraic equations in n unknowns. The determinant of this
system is

1—Aa,, —Aa,, ... —Ahay,
Apy=| THam PR e (M
ra ¥} 1—M\a

If A(M)s£0, then the system (6) has a unique solution

c , C,, which is obtained from Cramer’s formulas

l——}»du o _}\ralk_lfl—‘}valk+i .. —7»(11,,

_ —7»(121 v _}"a2k—1f2_7"a2k+1 s —7»(12,, (8)
N0 T

1° 2y

(k=1,2 ..., n)

The solution of the integral equation (2) is the function
¢ (x) defined by the equality

¢ (x) =f(x)+7»k§ Cra (%)

where the coefficients C,(k=1, 2, ..., n) are determined
from formulas (8).

Note. The system (6) may be obtained if both sides of
(5) are consecutively multiplied by a, (x), a, (x), , @, (x)
and integrated from a to b or if we put (5) into (4) for

¢ (x), replacing x by ¢.

Example. Solve the integral equation

n
@(x)—A S (xcost+t2sinx4-cosxsinf) @ (f)dt=x (9)
-
Solution. Write the equation in the following form:
n

@ (%) = S @ (¢) costdf +Asinx S 20 () dt +

+Acosx S @ (f)sintdt+x
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We introduce the notations

g T g

C,= ocostdt; ¢,=  oydat; c,= ( o@t)sintat

(10)

where C,, C,, C, are unknown constants. Then equation (9)
assumes the form

¢ (x)=CAx+CAsinx+CyAcosx+x (11)
Substituting expression (11) into (10), we get

(C M+ C,\sint -+ C,h cos 4 ¢) cos ¢ dt,

C,=

3 :L/}:l

(C,At+C, A sint + Cgh cos £ ) £2dt,

g

C,= S(C?»t—l—Cksmt—}—C?»cost—l—t)smtdt

or

11 n
cl<1—x S tcostdt>—Czk S sin ¢ cos tdf—
-7 -7

n

1
—Cg4h S cos? tdf = S tcostdt

- -1
b ‘a
—cp § patyc,(1—a ( r sinzdt)—
-7 -J /

n T
—C § reostdt= § rat,
-5 -7

n n
—C § tsintdt—C sinerde 4
- nhn n
-|-c:,,(1--;v { costsintdt>= { tsintar
-n

-n
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By evaluating the integrals that enter into this system we
obtain a system of algebraic equations for finding the un-
knowns C,, C,, Cy:
C,— AnC,=0,
C,+ 4AnC, =0,
—hnCy— AnC,+Cy=2n

(12)

The determinant of this system is

| 0 —aA
A= 0 1 qn) | =1+ 2022 £ 0
—2nA —An 1
The system (12) has a unique ‘olution
2n2 _ 8nZh _ 2n
C = T oAene’ C=— T+ 2A%n2° Cs—l-i—?l.?n?

Substituting the values of C,, C,, C, thus found into (11),
we obtain the solution of the given integral equation

QX)) = %;\;:Tn? (Anx—4An sin x + cos x) + x
Solve the following integral equations with degenerate

kernels:

180. ¢ (x)—4 )\ sin®x (¢)df =2x—m.

°L/1mlu

181. ¢ (x)— { ewesinx g (£)dt = tanx.
-1

n
4

182. @ (x)—A S tan {o (¢) dt = cot x.
F11

3

1
183. ¢(x)—A§cos(glnt)p)dt=1.
0

—

l§4. cp(x)—)»,bg‘ arccos t (f)dt = Vi
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185. (p()()—?»S( 7' "oydt=1 (p>—1).

186. (p(x)—AS(x Int—¢1nx) g (t)dt = 3 (1—4x).

187. ¢ (x)—A \ sinxcosty ({)dl =sinx.

188. ¢ (x)—A \|n—{|sinx@(f)di=x.

N
2 oY C3n|a ©

189. @ (x)—A S sin (x—{) @ (¢)d¢ = cos x.
0
190. ¢ (x)—

2n

—A S (sin x cos { — sin 2x cos 2f + sin3xcos 3!) @ (f)d! = cos x.
(]

191. @ (x)—

1
— S |x--—(3t2— D+5t@Be—1|emd
-1

Many problems of physics reduce to nonlinear mtegraAl
equations of the Hammerstein type (see [24], [28]).
The canonical form of the Hammerstein-type equation is

b

o= Kw nie. eund (1)

where K (x, {), f(¢, u) are given functions and ¢ (x) is the
unknown function.
The following equations readily reduce to equations of

type (1):

b
o= Kw it ound +vw (1
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where y (x) is the known function, so that the difference
between homogeneous and nonhomogeneous equations, which
is important in the linear case, is almost of no importance
in the nonlinear case. We shall call the function K (x, ¢)
the kernel of equation (1).

Let K (x, ¢) be a degenerate kernel, i. e.,

K (x, )= 2} a; (x)b; (t) @

Then equation (1) takes the form

@ (x) = Zauﬂmafamet 3)
Put

b
C={btito@ndt (=12 ...m (4

where the C; are as yet unknown constants. Then, by virtue
of (3), we will have

o= 3 Cay(x) ©)

Substituting into (4) the expression (5) for @ (x), we get m
equations (generally, transcendental) containing m unknown
quantities C,, C,, ..., C,:

C;=%¥;(Cy, Cy, ..., C,) (i=1,2, ..., m) (6)
When f (¢, u) is a polynomial in &, i. e,
F(t, W)= py () +ps (D ...+ py () ur M

where p, (), ..., p,(¢) are, for instance, continuous functions
of ¢ on the interval [a, b], the system (6) is transformed
into a system of algebraic equations in C,, C,, ..

If there exists a solution of the system (6), that is, i ‘there
exist m numbers

Ci, Ci ..., Cu

such that their substitution into (6) reduces the equations
to identities, then there exists a solution of the integral
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equation (3) defined by the equality (5):

m

(P(x)=i2. Cla;(x)

It is obvious that the number of solutions (generally,
complex) of the integral equation (3) is equal to the number
of solutions -of the system (6).

Example. Solve the integral equation

1
¢ (0 =A{ xtg? (1) dt ®)
0

where A is a parameter.
Solution. Put

1
C={tg2(t)at (9)
0

Then
¢ (x) =CMlx (10)

Substituting @ (x) in the form (10) into the relation (9), we get
1
c={mcrat
0
whence

c=%c (11)

Equation (11) has two solutions .
Ci = 0, C2 = 'Tz'
Consequently, integral equation (8) also has two solutions
_for any A # 0:
4
¢, (x)=0, (Pz(x)—'fx
There exist simple nonlinear integral equations which do not
have real solutions at all.

Consider, for example, the equation
Loyt

s@=z{e* t+era (12)

[]

41583



98 INTEGRAL EQUATIONS

Put

L
2

e

C=5(eva+er@yar (13)

Sy

Then
@(x)=Ce? (14)

For a determination of the constant C we obtain the equation

(e%-l)C2—3C+3<e%—l>=0 (15)

It is easy to verify that equation (15) does not have real
roots and, hence, the integral equation (12) has no real
solutions.

On the other hand, let us consider the equation

1

¢ (x) =Sa(x)a(t)(p(t)sin (gL(‘t’—)’) dt (16)

(a(t)> 0 for all te [0, 1))
In order to determine the constant C, we arrive at the
equation :

1= § a2 (t)dt-sinC 17)

1
If Saz(t) dt >1, then equation (17) and, hence, the original

intggral equation (16) as well have an infinite number of
real solutions.
Solve the following integral equations:
1

192. ¢ (x)=2 { xt ¢* (1) dt.

0

1

193. ¢ ()= § (xt +x212) 92 (1) dit.
-1
1

194. ¢ (x) = { xitzg3 (1) at.
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xt
195. 9 (X)= Y TFoin) dt.

-

196. cp(x)=§l(1+'cp2(t))dt.

197. Show that the integral equation
o) = g§a<x>a<»u+¢za>>m
(a(x)>0 ofor all x€ {0, 1])

1
has no real solutions if Sa2 (x)dx > 1.

16. Characteristic Numbers and Eigenfunctions

The homogeneous Fredholm integral equation of the se-

cond kind
b

o) —A (K (x, ) o t)dt =0 (1)

a

always has the obvious solution ¢ (x)=0, which is called
the zero (trivial) solution.

The values of the parameter A for which this equation
has nonzero solutions ¢ (x)=£0 are called characteristic num-
bers* of the equation (1) or of the kernel K (x, ¢), and every
nonzero solution of this equation is called an eigenfunction
corresponding to the characteristic number A.

The number A=0 is not a characteristic number since
for A=0 it follows from (1) that ¢ (x)=0.

If the kernel K (x, ¢) is continuous in the square Q {a <{x,
t < b} or is quadratically summable in Q, and the numbers
a and b are finite, then to every characteristic number A

* Some authors use “eigenvalues” in place of the term <“characte-
ristic numbers”. We use eigenvalue for the quantity o=-%—, where A is
the characteristic number.

4*
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there corresponds a finite number of linearly independent
eigenfunctions; the number of such functions is called the
index of the characteristic number. Different characteristic
numbers can have different indices.

For an equation with degenerate kernel

b n
o()—§ [glqk (x) by (t)] 9(0)dt=0 (@)
the characteristic numbers are roots of the algebraic equation
1—ha,, —MAa, ... —May,
A (}") — —-}\«aﬂ 1—7\,(122 ese ——?»az,, =0 (3)

—Ma,, —Ma,, ...l—ha

the degree of which is p<Cn. Here, A (A) is the determinant
of the linear homogeneous system

(1—Aa,)C,—Aa,,C,— ... —Aa,,C, =0,
—Aa,,C,+ (1 —Aa,,)C,—. .. —Aa,,C,=0, 4

—M\a,,Ci—Ma,,C,— ... +(1—Ma,,)C,=0

where the quantities a,, and C,(k, m=1, 2, ..., n) have
the same meaning as in the preceding section.

If equation (3) has p roots (1 <Cp<Cn), then the integ-
ral equation (2) has p characteristic numbers; to each cha-
racteristic number A, (m=1, 2, ..., p) there corresponds
a nonzero solution

CP, CP, ..., CP —hy,
C®, CP, ..., CP —h,

..............

cP, CP, ..., CP—1,

of the system (4). The nonzero solutions of the integral
equation (2) corresponding to these solutions, i.e., the eigen-
functions, will be of the form

n n
91 (%) = P CP a, (%), @ () = DCPa (%), ...,
k=1 k=1
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9y (%) = ZC“” a, (x)

An integral equation with degenerate kernel has at most n
characteristic numbers and (corresponding to them) eigen-
functions.

In the case of an arbitrary (nondegenerate) kernel, the
characteristic numbers are zeros of the Fredholm determi-
nant D (M), i.e., are poles of the resolvent kernel R (x, ¢;
A). It then follows, in particular, that the Volterra integral

equation @ (x)—A S K (x, t) @ (£)dt =0 where K (x, {) € L, (Q,)

has no charactenstlc numbers (for it, D(?»)——e' * see
Problem 177).

Note. Eigenfunctions are determined to within a multi-
plicative constant; that is, if ¢ (x) is an eigenfunction cor-
responding to some characteristic number A, then Co (x),
where C is an arbitrary constant, is also an eigenfunction
which corresponds to the same characteristic number A.

Example. Find the characteristic numbers and eigenfunctions
of the integral equation

@ (x)—A S (cos? x cos 2¢ + cos 3x cos® £) ¢ (¢) dt =
Solution. We have

n Tt
(p(x)'=7»coszxgcp(t)cos?tdl—l—kcosBxScp(t)cos“tdt
0.

0

Introducing the notations

Tt 14
—(oecosatar, c,= {o@)cosotat (1
[ 0

we get
@ (x) =C, A cos?x+ C,A cos 3x 2
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Substituting (2) into (1), we obtain a linear system of ho-
mogeneous equations:
n

iy
C,(1—A g cos?t cos 2t dt)—C, A Scos 3t cos 2t dt =0,
0

- . (3)
—C,A S cos®tdt +Cy(1 —A S cos®tcos 3tdt =0
0 )
But since
19 n
Scosztcos2tdt=%, Scos3t cos2tdt =0
0 )

n n
Scos"tdt:O, Scos"tcosStdt= o
0

0

oo|

it follows that system (3) takes the form

(l_lﬁ ¢ =O’} @

(1=%)c.=o0
The equation for finding characteristic numbers will be
Az
1— = xO o
o=
0 I—

The characteristic numbers are A, =% , A, =% .
For A =%, system (4) becomes
0-C, =0,
1
{ 7 C=0
whence C,=0, C, is arbitrary. The eigenfunction will be
¢, (x)=C,Acos®x or, setting C, A =1, we get ¢, (x) =cos? x.
For A=, system (4) is of the form

{(—1)-Cl=0,
0-C,=0
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whence C, =0, C, is arbitrary and, hence, the eigenfunc-
tion will be ¢,(x)=C,Acos3x, or, assuming C,A=1, we
get @, (x) =cos 3x.

Thus, the characteristic numbers are

4 8
b=z k=3

and the corresponding eigenfunctions are
@, (x) =cos?x, @, (x) =cos 3x

A homogeneous Fredholm integral equation may, gene-
rally, have no characteristic numbers and eigenfunctions,
or it may not have any real characteristic numbers and
eigenfunctions.

Example 1. The homogeneous integral equation

1

¢ ()—2 § Bx—2) L g (t)dt =0

0

has no characteristic numbers and eigenfunctions. Indeed,
we have

¢ () =10Bx—2) { to(t)dt
Putting
c={toat (1)

we get
@ (x)=CA(3x—2) 2)

Substituting (2) into (1), we get

1
[1—%S@ﬂ—2ﬂﬂ}€=0 (3)

0

1 .
But since S(312—2t) dt =0, equation (3) yields C=0 and,

hence, ¢ (;) =0,
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And so for any A, this homogeneous equation has only
one zero solution cp(x)__O and, hence, it does not have
any characteristic numbers or elgenfunctlons.

Example 2. The equation

oW =4 § (Vxt—V1x) g (t)di =

does not have real characteristic numbers and eigenfunc-

tions.
We have
@ (x)=CAV x—Chx (1
where
1 1
c,={toyat, C,=\ Vot @)
0 0

Substituting (1) into (2), we get (after some simple mani-
pulations) the systemof algebraic equations

(1—%) C,+4C,=0,
__%01+(1+%>Cz=0 )

The determinant of this system is

2 A
s=| o 3 -1k
_ 3ol
_h g2 150

2

For real A it does not vanish, so that from (3) we get
C,=0 and C,=0 and, hence, for all real A the equation
has only one solutnon namely, the zero solution ¢ (x) = 0.
Thus, equation (1) “does not have real characteristic numbers
or elgenfunctlons

Find the characteristic numbers and eigenfunctions for
the following homogeneous integral equations with dege-

nerate kernels:
n

198. ¢ (1) —A § sin® xg (#)dt =0.
9
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199. ¢ (x)—A \ sin xcosfg (f)di =0.

Otlag’ omg

200. ¢ (x)—A \ sinxsinte (¢)dt=0.

Ei9
201. ¢(x)—A § cos(x+1) g (tydt=0.
0
1
202. ¢ (x)—A { (45x% Int —9¢* Inx) ¢ (1) dt = 0.
0

1
203. o (x)—A { (20t —4x?) g () dt = 0.
0 .

1

204. ¢ (x)—A { (5xt*4x2t) g (t)dt =0.
-1
1

205. ¢ (x)—A § (5x5 +4x2 4 3xt) @ (1) dt =0.
-1
1

206. ¢ (x)—A § (xcosh?—¢ sinh x) @ (2)dt =O0.
g
1

207. ¢ (x)—A § (xcosh¢—¢ sinhx) @ (¢)dt =0.
=1

1
208. ¢ (x)—A § (xcosh t—¢ cosh x) ¢ (#)dt =0.

If the nth iterated kernel K, (x, {) of the kernel K (x, ¢)
is symmetric, then it may be asserted that K(x, {) has at
least one characteristic number (real or complex) and that
the nth degrees of all characteristic numbers are real num-
bers. In particular, for the skew-symmetric kernel K (x, ¢) =
=— K (¢, x) all characteristic numbers are pure imaginary
A =Pi, where f is real (see Problem 220).

The kernel K (x, ) of the integral equation is called
symmetric if the condition K(x, {)=K (¢, x) (a<<x, t <)
is fulfilled.
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The following theorems hold for the Fredholm integral
equation
b
o —2 [ K(x, o (t)dt=0 (1)

a

with symmetric kernel K (x, ¢):

Theorem 1. Equation (1) has at least one real charac-
teristic number.

Theorem 2. To every characteristic number ) there corres-
ponds a finite number q of linearly independent eigenfunc-
tions of equation (1), and

sup g < A2B?
where

bb
B = ({ K*(x, tydrat

The number g is called the index or multiplicity of the
characteristic number.

Theorem 3. Every pair of eigenfunctions o, (x), ¢, (x),
corresponding to different characteristic numbers A, 5= A,, is
orthogonal; i.e.,

b
{ o, (x) 9, () dx=0

a

Theorem 4. There is a finite number of characteristic
numbers in every finite interval of the A-axis. The upper
bound for a number m of characteristic numbers lying in an
interval — 1 < A <l is defined by the inequality

m< [?B?

When the kernel K (x, f) of the integral equation (1) is
the Green’s function of some homogeneous Sturm-Liouville
problem, finding the characteristic numbers and eigenfunc-
tions reduces to the solution of the indicated Sturm-Liou-
ville problem.
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Example. Find the characteristic numbers and eigenfunc-

tions of the homogeneous equation’

o0 —2 K He@®d=0
0

where
cosxsint, 0<<x<¢,
K(x, t)= costsinx, t<x<mn

Solution. Represent the equation in the form

o) =A{K(x, Dowdt+2{K(x, oyt
0 x
or
¢ () ="Asinx § ¢ (t)costdf +rcosx§ g (t)sint dt
0 x

Differentiating both sides of (1), we get
¢’ (x)=Acosx S @ (f) costdt +Asinxcosx ¢ (x)—
0
—Asinx S ¢ (¢) sint dt —A sin x cos x ¢ (x)

X

or
X n
¢ (0 ="ncosx § ¢(t)costdi—Asinx { g t)sintat
0 x

Differentiating again, we get

X

@' (x)=—Asinx S ¢ (¢) cos ¢ dt + A cos? xg (x)—
0

T
—hcosxScp(t)sintdt—l—?»sinzxcp(x)=

X a

=Ap (x)—[}»sinxgcp(t)costdt—l—?»cosxg(p(t)sintdt

0 x

(1)

2

]
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The expression in the square brackets is equal to ¢(x)
so that

9" (%) =2p (x)—@ (x)
From (1) and (2) we find that
e(@=0, ¢'(0)=0

Thus, the given integral equation reduces to the following
boundary-value problem:

" () —(A—1) o (x)=0, 3)
e(@)=0, ¢"(0)=0 4)
The three following cases are possible:

(1) A—1=0 or A=1. Equation (3) takes the form
¢" (x)=0. Its general solution will be ¢ (x)=C,x+C,.
Utilizing the boundary conditions (4), we obtain (for find-
ing the unknowns C; and C,) the system

Cin+C,=0,
: C,=0
which has a unique solution: C,=0, C,=0, and hence the
integral equation has only the trivial solution

¢o(x)=0
(2) A—1>0 or A> 1. The general solution of equation
(3) is of the form
¢ (x)=C,coshV'A—1x+C,sinh ) A—Ix
whence
¢ (x) =V A—1(C,sinh Y A—1x+C, cosh V' A —1x)

For finding the values of C, and C,, the boundary condi-
tions yield the system

{ C,cosha )/ A—1+4C,sinha)/A—1=0,
C,=0.

The system has a unique solution: C,=0, C,=0. The in-
tegral equation has the trivial solution ¢ (x)=0. Thus,
for A>=1 the integral equation has no characteristic num-
bers and, hence, no eigenfunctions.
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(3) A—1 <0 or A < 1. The general solution of equation
(3) is ’
p(x)=C,cosVT—Ax+C,sinV/ T—hAx
Whence we find
¢ (x)=VT—A(—C,sinVT—Ax+C,cos )V T—Ax)
In this case, for finding C, and C, the boundary - conditions
(4) yield the system
C,cosnVT—A+C,sinn )/ T—A=0, }
V1—4C,=0
The determinant of this system is
cosnV T—A sinn) T—h
0 | =
Setting it equal to zero, we get an equation for finding the
characteristic numbers: - ’
cosnV/T—A  sinan )/ T—A4
0 V1—2
or VY T—Acosa )/ 1—Aa=0. By assumption VT1—A5£0 and
so cosn) T1—A=0. Whence we find that a})/T—A =
=%+nn, where n is any integer. All the roots of equa-
tion (6) are given by the formula

k,,:l—(n—l—%)z

©)

Ah=

‘:0 (6)

For valués A=A, the system (5) takes the form
{ C,-0=0,
Cc, =0

lf has an infinite number of nonzero solutions
{ C,=C,
C,=0
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where C is an arbitrary constant. Hence, the original inte-
gral equation also has an infinity of solutions of the form

¢ (x)=C cos (n+%)x

which are eigenfunctions of this equation.
Hence, the characteristic numbers and eigenfunctions of
the given integral equation will be

A, = l—(n—l—%)s, P, (x)=rcos (n—|— -;—) X

where n is any integer.

Find the characteristic numbers and eigenfunctions of the
homogeneous integral equations if their kernels are of the
following form:

_ I x(=1), 02y
209. K (x, ’)—{ fa—1), t<x<l
_[tx+), 0<x<t,
210. K (x, t)’{ 241, f<x<l
_lx+D(E=2), 0<x<Y,
21 K(x, ‘)—{ (+1)(x—2), t<x<l.

( sinxcost, 0<<x<{,

212. K(x, t)=i sin £ cos x, tgxgg.
__J sinxcost, 0<<x<{,
213. K(x, t)—{ sinfcosx, t<x< .
_ [ sinxsin({—1), —n<<xLY,
214. K{(x, t)_{ sin f sin (x—1), r<x<Lm.
sin(x—l—%)sin(t—%), 0 x<,
215. K (x, t)= - N
sin(t+7)sin(x—7>, <x< .

216, K(x, H)=e-1x-t1, 0<{ax <1, 0S8 L.
—e tsinhx, 0<{x<<,
217. K (x, t)_{ —e *sinh?, 1<<x<1.
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218. Show that if A,, A,, A,5=A, are characteristic num-
bers of the kernel K (x, f), then the eigenfunctions of the
equations

b
o= K(x, no(t)dt=0

b
Y )—n, § Kt )p(tydt=0

are orthogonal, i.e.,
b

{owwwdi=0

a

219. Show that if K(x, {) is a symmetric kernel, then
the second iterated kernel K, (x, {) has only positive cha-
racteristic numbers.

220. Show that if the kernel K (x, ¢) is skew-symmetric,
that is, K (¢, x)=— K (x, ¢), then all its.characteristic num-
bers are pure imaginaries.

221. 1f the kernel K (x, ) is symmetric, then

Z:Lm——A,,, (m=2,3, ...)
An
n=1

where A, are characteristic numbers and A, are the mth
traces of the kernel K (x, ¢).

Taking advantage of the results of Problems 209, 212,
216, find the sums of the series:

1
(@ >

n=1

~ |
® 2 @y

> 1 .

———, where p, are the roots of the equation

(C) ngl (1 +P',2,)2 “‘ q

2 cotu=p—&.
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The resolvent kernel of a symmetric kernel is a mero-
morphic function of A, for which the characteristic numbers
of the integral equation are simple poles. Its residues with
respect o the poles A; yield eigenfunctions (for any value
of ) corresponding to these values of A;. .

Find the eigenfunctions of the integral equations who.e
resolvent kernels are defined by the following formulas:
Cay_ 3—A43(1—1) (2x—1) (2t —1)
222. R(x, t; M)= I T3 .
(15— 6A) xt + (15— 101) x2¢2
ANE—16A 1 15

223. R(x, t; )=

224. R (x, t; )=
_ 4(5—2)) [3— 2\ 4 (3—6A) xt]+5 (4A2—8A+3) (3x2— 1) (312 —1)
= 4(T—2%) (3—2R) (5—2X) :

Fredholm integral equations with difference kernels.
Suppose we have the integral equation
n

oW =2 § K@—1t)p()dt (1)

-7

where the kernel K(x) (—a<{x<{m) is an even function
which is periodically extended to the entire x-axis so that

K(x—t)=K(t—x) (2)

It can be shown that the eigenfunctions of equation (1) are

oY (x)=cosnx (n=1, 2, ...), } 3)
0P (x)=sinnx (n=1, 2,...)
and the corresponding characteristic numbers are
7"n=-l— (n=1,2,...) 4)

na,

where a, are the Fourier coefficients of the function K (x):
n
a,,=—;‘—SK(x)cosnxdx n=1,2...) (5)

Thus, to every value of A, there correspond two linearly
independent eigenfunctions cosnx, sinnx so that each A,
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is a double characteristic number. The function ¢, (x)=1
is also an eigenfunction of equation (1) corresponding to
the characteristic .number

1
a,

n
Ay=—, where a,= % S K (x)dx
-n

We shall now show thaf, for example, cosnx is an eigen-
function of the integral equation

o()="— [Kx—no@d (6)
where

K (x) cosnxdx

n

a1

1
a,=—
11

Making the substitution x—¢ =2, we find

n X—-7

S K(x—t)cosntdt =— S K(z)cosn(x—z)dz =

-7 X+
X+ X+

=Cos nx S K(z)cosnzdz+sin nx S K(2)sinnzdz = na, cosnx
X-n xX—-T

since by virtue of the evenness of K (x) the second integral

is zero, and the first integral is a Fourier coefficient a,

multiplied by = in the expansion of the even function K (x).
Thus,

14
1
€oS nx = SK (x—1) cos nt dt
-7

and this means that cosnx is an eigenfunction of equa--
tion (6).

Similarly, we establish the fact that sinnx is an eigen-
function of the integral equation (6) corresponding to the

same characteristic number

n
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225. Find the eigenfunction and the corresponding cha-
racteristic numbers of the equation
R

p(x)=1 § cos® (x—1) p(t)dt.

11
226. Show that the symmetric kernel

1 1—he
2n 1—2h cos (x— 1)+ h? (—

K(x, t)= nlx, t<n)
has for || <1 the eigenfunctions 1, sinnx, cosnx, which
correspond to the characteristic numbers 1, 1/A", 1/h". '
227. Find the characteristic numbers and eigenfunctions
of the integral equation
11
px)=2 { K (x—t)p(t) dt

-

where K (x)=x*(—n<x< m) is a periodic function with
period 2.

Extremal properties of characteristic numbers and eigen-
functions.

The absolute value of the double integral (Hilbert's
integral)

bb
|(Ke, @) 1=|§§ K (x. o (0 @ (1) duat (1)

where K (x, {)=K (¢, x) is a symmetric kernel of some inte-
gral equation, on the set of normalized functions ¢ (x),
i.e., such that

b

(@, )= o* () dx=1

a

has a maximum equal to
1
max | (Ko, ¢)|= T2l (2)

where A, is the least (in absolute value) characteristic number
of the kernel K (x, {). The maximum is attained for ¢ (x) =
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=@, (x), which is the eigenfunction of the kernel correspon-

ding to A,.
Example. Find the maximum of

1Ko, o) =|{ Kx, ooty dxat

provided

a

(9, 9)= S @*(x)dx=1

if
K (x, t) =cos x cos 2¢ + cos £ cos 2x -+ 1
Solution. Solving the homogeneous integral equation

P(x)y=A»A S(cosx cos 2t 4+ cost cos2x+ 1) @ (¢) dt
0

as an equation with a degenerate kernel, we find the cha-
racteristic numbers 7»,=% and ?»2,3=;|:% and the corres-

ponding eigenfunctions ¢, (x) =C,, @, (x) =C, (cos x 4 cos 2x),
@g (x) =C, (cos x— cos 2x), where Cy, C, and C, are arbitrary
constants.

The smallest (in absolute value) characteristic number is

Ay =%, to which corresponds the eigenfunction ¢,(x)=C,.
From the normalization condition (g, ¢)=1, we find C, =
=4 Vlﬁ . Hence

41

n .
maxlgg (cos x cos 2¢ + cos £ cos 2x + l)(p(t)dt!-—-2n
00

and it is attained on the functions q>(x)=:|:—V1?.
11
228, Find the maximum of
bb

${ K no@e dea |

aa
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b
provided that (or(mdx=1, if
a
(a) K(x, )y=xt, 0<x, tKI;
(b) K (x, t)y=xt 4+ x2£2, —1<x, t<1;
x+Dt, 0<xK<y,
(c) K(x, t)={ t+1)x t<x<l.

Bifurcation points. Suppose we have a nonlinear integral
equation
b

¢()=A{ K (x, t, 9 (1)) dt. (1)

Let ¢ (x)=0 be a solution of the equation, and
K(x, ¢ 0)=0

By analogy with linear integral equations, the nonzero so-
lutions ¢ (x) == 0 of equation (1) are called eigenfunctions
and the corresponding values of the parameter A are called
characteristic numbers of the equation.

Ordinarily, the integral equations (1) do not have nonzero
small solutions for small |A|; that is, for small | A| equation
(1) has no eigenfunctions with small norm. Small eigenfunc-
‘tions can appear in the case of increasing |A|. Let us intro-
duce the following concept.

The number A, is called a bifurcation point of the non-
linear equation (1) if for any &> 0 there is a characteristic
number A of equation (1) such that |A—A,| <e, and to
this "characteristic number there corresponds at least one
eigenfunction ¢ (x) (¢ (x) = 0) with norm less than e: @Il <e.
Roughly speaking, a bifurcation point is that value of the
parameter A, in the neighbourhood of which a zero solution
of equation (1) branches; i.e., there appear small (in norm)
nonzero solutions of equation (1). For linear problems, the
bifurcation values coincide with the characteristic numbers.

In problems of technology and physics involving condi-
tions of stability, bifurcation points determine critical forces.
Thus, the problem of the bending of a rectilinear rod of
unit length and variable rigidity p (x) under the action of
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a force P leads to the solution of the following nonlinear
integral equation:

o(1)=Pp(v) | K (x He®) ‘/ 1—[SK;<x, t)cp(t)dt] dt

0 0

(1)

where ¢ (x) is the unknown function. v

For small P, equation (1’) has a unique zero solution in
the space C[0, 1] (by virtue of the contraction-mapping
principle). This means that for small P the rod does not
bend. However, a deflection occurs for forces greater than
the so-called critical force of Euler. Euler’s critical force
is the bifurcation value.

By way of an illustration of finding bifurcation points,
let us consider the nonlinear equation

1

() =1 [o@)+¢* (0]t )

0

Put’

1
C=lo®+o tNdt
Then .
@ (x)=Ch (3)
and equation (2) reduces to the algebraic equation
C=AC+A3C? 4)
From (4) we get
1—A
C,=0, Cp ==/
whence, by (3),
1—A
0=0, @ ;= ‘/T

Thus, for any 0 < A < 1, equation (2) admits real nonzero solu-
tions. For A=1 it has only the zero solution ¢==0 (three-
fold).
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Thus, for any 0 <e < 1, the number A=1—¢g is a cha-
racteristic number of equation (2) to which there correspond
two eigenfunctions:

Ve . o __ Ve

BT T T

where e=1—A. Hence, the point A,=1 is a bifurcation
point of equation (2). One can also speak of bifurcation
points of nonzero solutions of nonlinear integral equations.

Find the bifurcation points of the zero solutions of the
integral equations:

229. ¢ (x) =2 { xt (o () + 9 (1) dt.

230. ¢ (x) =2 { Bx—2)1 (@ () + 9> 1)) .

(Bifurcation points are discussed in more detail in [10],

(9], [28])

17. Solution of Homogeneous Integral Equations
with Degenerate Kernel

The homogeneous integral equation with degenerate kernel
b

<p(x)—7»S L);I a, (x) b, (t)]fp(t)dt =0 ()

a

where the parameter A is not its characteristic number (i.e.,
A (M) 0) has a unique zero solution: ¢(x)=0. But if A
is a characteristic number (A (A)=0), then, besides the zero
solution, equation (1) also has nonzero solutions— the eigen-
functions which correspond to that characteristic number.
The general solution of the homogeneous equation (1) is
obtained as a linear combination of these eigenfunctions.
Example. Solve the equation
Q(x)—A S(cos’x cos 2t 4+ cos®f cos 3x) @ (£)di =0

o
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Solutton The characteristic numbers of this equation are
Ay =—— , A= ; the corresponding eigenfunctions are of the
form

@, (x)=cos? x, @, (x) =cos 3x

The general solution of the equation is
¢ (x)=Ccos?x if 7»=%,
¢(x)=Ccos 3x if 7»=%,
@(x)=0 if Ases, A2

where C is an arbitrary constant. The last zero solution is
obtained from the general solutions for C=0.
Solve the following homogeneous integral equations:

31. ¢(x)—A \cos(x-+¢)@(t)dt=0.

232. @ (x)—A \ arc cos xq (¢)dt =0.

S‘
i

o

/e

9 () =
233. ¢ (x)— 2S1+cos2tdt 0.
234. ¢()— Slxltp(t)dt_
1—2
235. ¢(x)+6{ (w—2xt)g(t)dt=0.
0
18. Nonhomogeneous Symmetric Equations

The nonhomogeneous Fredholm integral equation of the
second kind

b
() —A [ K(x, ) t)dt=F(x) (1)
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is called symmetric if its kernel K (x, ¢) is symmetric:
K(x, )=K(t, x).

If f(x) is continuous and the parameter A does not co-
incide with the characteristic numbers A,(n=1, 2, ...) of
the corresponding homogeneous integral equatlon

b
9()—A (K (x, ) (t)dt=0 @)

a

then equation (1) has a unique continuous solution, which
is given by the formula

Q=1 (=12 725 9, (x) 3)
n=1
where ¢, (x) are eigenfunctions of equation (2),

b
a,={ [ (0) 9, (0)dx (4)

The series on the right side of formula (3) converges ab-
solutely and uniformly in the square a<Cx, ¢ <Cb.

But if the parameter A coincides with one of the cha-
racteristic numbers, say A=2»A,, -of index g (multiplicity of
the number A,), then equation (1) will not, generally
speaking, have any solutions. Solutions exist if and only
if the ¢ conditions are fulﬁlled'

(f, @m)=0 or Sf(x)cp,,(x)dx 0 (5)
(m=1,2,...,9)

that is, if the function f(x) is orthogonal to all eigenfun-
ctions belongirg to the characteristic number A,. In this
case equation (1) has an infinity of solutions which con-
tain g arbitrary constants and are given by the formula

@ (x)=F (x)—2 2. Ty (1) +

n=q+1

+C0, () +Co0: (%) + . .. +C, (%) (6)
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where C,, C,, ..., C, are arbitrary constants.
In the case of the degenerate kernel

K (x, t)=k§ ay (%) by (t)

formulas (3) and (6) will contain finite sums in place of
series in their right-hand members.

When the right-hand side of equation (1), i. e., the fun-
ction f(x), is orthogonal to all eigenfunctions ¢, (x) of
equation (2), the function itself will be a solution of equ-
ation (1): ¢ (x)=f(x).

Example 1. Solve the ‘equation

1
@) —A{K(x o) dt=x, (1)
where
x(t—1), if 0<<x<¢

K(x’ t)={ t(x——l), lf t<x<1

Solution. The characteristic numbers and their associated
eigenfunctions are of the form-
Ay=—nn?, @,(x)=sinznx, n=1, 2, ...
If As£A,, then

(p(x)=x—7»z ﬁsinnnx 2
n=1

will be a solution of equation (1). We find the Fourier
coefficients a, of the right side of the equation:

[

cos nux\ _ (—1)7+?
nm ~ amn

1
a,=\ xsin nnxdx=Sxd (

=4

Substituting into (2), we get

(—1)n+1

A .
q>(x)=x—-n—zmsmnnx

n=
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For A =— n*n? equation (1) has no solutions since

_= g

a
n nmn

Example 2. Solve the equation
1

@(\)—A [ K (x, ) ¢ () dt = cos mx

[]

where
x+ 1)t 0<<x<t,
K, t)={ ((til))x, t;x%
Solution. The characteristic numbers are
A=1, A,=—n’n®> (n=1, 2, ...)
Their associated eigenfunctions are
@, (x)=¢*, @,(x)=sinnnx+nncosnnx (n=1, 2, ...)

ff A==1 and A=£—n2n?, then the solution of the given
equation will have the form

_ _ age* a, .
@ (x) =cos ;tx —A [;‘_l + nz=17»+n2n2 (sin nawx 4 nm cos nnx)J

and since

1+e

X —_ ————
e*cosmxdx = T

Ay =

A TS

1 0, n=~1,
a,= S €Os 71X (Sin navx -+ ni cos nnx) dx = { n
v R n=1
it follows that
¢ (x)=cosmx+ A [ll::; }vei T3 (hI-:-nZ) (sin ;x4 7 cos nx)]
For A=1 and A=—mn?(n=1) the equation has no solu-

tions since its right-hand side, that is, the function cos sux,
is not orthogonal to the corresponding eigenfunctions

Do ()C) =e%,

@, (X) =sin x4 ;mcos nx
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But if A=-—n?n? where n=2, 3, ..., then the given
equation has an infinity of solutions which are given by
formula (6):

1 X .
@ (x)=cosnx+ A [1 j-_;z }Ve_]—2 Ov_r;_nz)(smnx-l- ncosnx)] +

+ C (sin nwx + nw cos nmx)

where C is an arbitrary constant.

In certain cases, a nonhomogeneous symmetric integral
equation can be reduced to a nonhomogeneous boundary-
value problem. This is possible when the kernel K (x, f) of
the integral equation is a Green’s function of some linear
differential operator. Let us illustrate how this is done.

Example 3. Solve the equation

1
e —A [ K(x, Ho()dt =e (1)
0
where

sinh 1
sinh ¢ sinh (x—1)

sinhxsinh((—1) g vy,
K(x, t)y=
_sinh 1

, t<x 1
Solution. Rewrite the equation as

A sinh (x—

@ (x)=er - 2AME— Ssinhtcp(t)dt—l—
. 0

+}%{Ssinh (t—1) ¢ (t)dt ©

x

Differentiating twice, we obtain

sinh 1

@ (x) = e* —FM"”—_—% sinh to (¢) df +
0

1

coshx (sinh (t—1) ¢ (¢) df —

sinh 1

A sinh (x—1)
1

sinh x@ (x) 4+ A

A sinh x
sinh 1

sinh (x—1) @ (x),
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@ (X)=e* +iﬁ“’.“"‘——‘)gsinh to (8) dt +
0

sinh 1

A cosh (x—1) sinh x

1
Asinhx ¢ .
+—Sf‘l‘]‘;] l" sinh(t— 1)@ (£)dt + s ¢ (x) —
Asfgzhlx sinh(x—1) @ (x)

or
9" (x)=e*+ @ (x)+ Ao (x)

Putting x=0 and x=1 in (2), we get ¢(0)=1, ¢ (1)=e.
The required function ¢ (x) is a solution of the nonhomo-
geneous boundary-value problem

o' () —R+1) o (x)=e*, 3)
(0 =1, o(l)=e (4)

Let us consider the following cases:
(I) A+1=0, or A=—1. Equation (3) is of the form
¢" (x)=e*. Its general solution is

¢(x)=Cix+C,+e*

Taking into account the boundary conditions (4), we get
the following system for finding the constants C, and C,:

C,4+1=1,
{ C,+C,+e=e
Its solution is of the form C,=0, C,=0, and, hence,
@ (x)=¢"

(2) A+1>0, or A>—1, A5<0. The general solution
of equation (3) is

@ (x)=C, coshV T Ax+C,sinh V1+4 +M_%

The boundary conditions (4) yield the following system for
finding C, and C,:

C, ———l
C,cosh )/ 1+?»—|—C sinh YV T+A— T
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whence
1 __e—coshY T4 1
Cl_l+7~'c_ sinhY T4 <1+K)

After simple manipulations, the unknown function @ (x) is
reduced to

L)sinh]/l+7»(l—,x)_£
sinh}V T4 A A

(3) A+1<0, or A<—1. Denote A+ 1=—p2. The ge-
neral solution of equation (3) is

o()=(1+

¢ (x)=C, cos px+C, sin px—[—f}ﬁ

The boundary conditions (4) yield the system

1
St : )
C,cos p+C,sin p=e——

14p?
In turn, two cases are possible here:
(a) p is not a root of the equation sin p=0.
Then
o __(e—cos p) p?
C,= I TR Cz_(l—l-pﬂ)sinp,
and, hence,

X
(P(x)—1+ D [COSP«X-I- Sno}f”smpx]-pl__l_e_?.

where p = V =r—1. _

(b) p is a root of the equation sin p=0, i e,
p=nn(n=1, 2, ...). System (5) is inconsistent and con-
sequently, the given equation (1) has no solutions.

In this case, the corresponding homogeneous integral

equation
1

@ () +(1+n) K (x, t)o(f)dt=0 (6)
0

will have an infinity of nontrivial solutions, that is, the
numbers A,=-—(1+4n3n?) are characteristic numbers and
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their associated solutions ¢, (x) = sin nnx are eigenfunctions
of equation (6).

Solve the following nonhomogeneous symmetric integral
equations:

1
236. ¢ (—F [K(x Dodi=5,
0

20, o<agt,
K(x, t)y=

=1 s x< 1
) AL

1

237. (1) + { K (x, )@ (t)dt =xev,
0

sinh x sinh (¢ —1) 0<x<t
U X 0,
K (x, t)—‘{

sinh 1
sinh ¢ sinh (x—1)

sinh 1 ISxL

238. ¢(x)—A (K (x, Ho(t)dt=x—1,
0

K (x, t)={

/2

239. ¢()—2 | K(x, #)o(t)dt=cos2x,
0

sinxcost, 0 <Cx <,
K(x, )=

sin £ cos x, tg-xg%.

x—1t, 0<<x <Y,
t—x, t<{x< 1.

n

240. o()—2 (K (x, otydi=1,
0 .
sinxcost, 0<<x<!,

sinfcosx, t<<x<m.

Kw0={

7

1
241. ¢ (x)—A K (x, o(t)dt=x,
0

(x+D(=3), 0<x<{,

) t)=
K {(t+l)(x—3), F<<x< 1.



FREDHOLM INTEGRAL EQUATIONS

127
7

242. (x)— (K (x, )o () dt =sinx,
0

Kz 0= sin <x+%> sin (t —
sin <t+ %) sin (x—
1

243. 9 (0)— { K (x, )¢ ()dt =sinhx,
0

),nggt,

),tgxgn.

SERSE

/ { —e tsinhx, 0<<x <Y,
Kx )= —e *sinht, t<x<C L
1
244. ¢ ()—A § K (x, 1) o (1) dt =coshu,

0

cosh x cosﬁ (t—1)

K (x t)_{T’ 0<xr<t,

* "77 )} coshtcosh (x—1)
—mh1 0 ISHsSL

245. ¢ (0)—A{|x—t|p()dt=1.
0

19. Fredholm Alternative

For Fredholm integral equations we have the theorems:

Theorem 1 (Fredholm alternative). Either the nonhomo-
geneous linear equation of the second kind

b

eW—r K (x Hod =f(x) )
has a unique solution for any function f(x) (in some suf-
ficiently broad class) or the corresponding homogeneous equa-
tion

b

09— [ K(x o) di=0 ()

has at least one nontrivial (that is, not identically zero)
solution.
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Theorem 2. If the first alternative holds true for equa-
tion (1), then it holds true for the associated equation
b .
b W—r K (2, %) v () dt =g (x) 3)
a
as well. The homogeneous integral equation (2) and its
associated equation

b
vw—2r{K(t, »ptydi=0 )

a

have one and the same finite number of linearly independent
solutions.

Note. 1f the functions ¢, (x), @,(x), ..., @, (x) are solu-
tions of the homogeneous equation (2), then their linear
combination

@ () =C,0; () +Co0, () + - .. +Con(x) = 2. Cop ()
k=1

where the C,(k=1, 2, ..., n) are arbitrary constants, is
also a solution of the equation.

Theorem 3. A necessary and sufficient condition for the
existence of a solution ¢ (x) of the nonhomogeneous equa-
tion (1) in the latter case of the alternative is the condition
of orthogonality of the right side of the equation, i.e.,
of the function f(x), to any solution ¥ (x) of the homoge-
neous equation (4) associated with (2):

b

(Fpxyde=0 (5)

a

Note. When condition (5) is fulfilled, equation (1) will
have an infinite number of solutions, since this equation

will be satisfied by any function of the form @ (x) + ¢ (x), where
@(x) is some solution of equation (1) and ¢(x) is any
solution of the corresponding homogeneous equation (2).

Besides, if equation (1) is satisfied by the functions ¢, (x)
and ¢, (x), then by virtue of the linearity of the equation
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their difference, ¢, (x)—@, (x), is a solution of the corres-
ponding homogeneous equation (2).

The Fredholm alternative is particularly important in
practical situations. Instead of proving that a given integral
equation (1) has a solution, it is often simpler to prove
that the appropriate homogeneous equation (2) or its asso-
ciated equation (4) has only trivial solutions. Whence it
follows, by virtue of the alternative, that equation (1)
indeed has a solution.

Remarks. (1) If the kernel K (x, f) of the integral equa-
tion (1) is symmetric, that is, K(x, {)=K ({, x), then
the associated homogeneous equation (4) coincides with
the homogeneous equation (2) which corresponds to equa-
tion (1).

(2) In the case of the nonhomogeneous integral equation
with degenerate kernel

b[ n
@ (x)—2 S [’;lak (%) by (t)] @(tydt=f(x)

the orthogonality condition (5) of the right side of this
equation yields n equalities
b

(fo, ydt=0 k=1, 2, ..., n)

a

Example 1.
1
e(—A§ (-3¢ (t)dt =
0

Solution. We have
@ (x) =CA (5x*—3) +-€* (1
where
1
c={rqa @)
0
Substituting (2) into (1), we get
1 1

c=ca{ (511 —3m)dt + § rret dt

0 0

51583
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whence
C=e—2

For any A, the given equation has a unique solution:
¢ (x)=A(e—2)(5x2—3)+¢*
and the corresponding homogeneous equation

¢ ()—2 {5 —3) g t)di=0

has a unique zero solution ¢ (x)=0.
Example 2.

1

¢ (x)—A { sin Inxg (1) dt =
0
Solution. We have
¢ (x)=CAsinlnx+2x

1

where C=S(p(t)dt. Substituting the expression ¢ (f) into
[
1

the integral, we obtain

1
C=Ch{sinlntdf+1
0

c(1+2)=1

If 7»7‘: 2, then the given equation has a unique solution
¢ (x) = 2 + 7 sin Inx-+2x; the corresponding homogeneous
equation

whence

1
¢ (x)—2 { sinlnxg(t)dt =0

has only the zero solution ¢ (x)=0.
But if A= —2, then the given equation does not have
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any solutions since the right side f (x) =2x is not orthogonal
to the function sinlnx; the homogeneous equation has an
infinity of solutions since it follows from the equation defi-
ning C, 0-C=0, that C is an arbitrary constant; all these
solutions are given by the formula

¢(x)=Csinlnx (€= —2C)
Example 3.

n
¢ () —7 § cos (x+1) ¢ () dt = cos 3x
0
Solution. Rewrite the equation in the form
n
@ (x)—A S (cos x cos ¢ —sin x sin ) ¢ (¢) dt = cos 3x
0

Whence we have
¢ (x) =C,A cos x—C,A sin x +- cos 3x (1)

where
kL3
Ci={ o (t)costdt,

. @)
C,={ o(t)sintdt

Substituting (1) into (2), we get

C,=\(C,Acost—C,\ sin t 4 cos 3f) cos ¢ dt,

5‘
o

(C,A cos t—C,A sin ¢+ cos 3t) sin t dt

5*
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whence

n n
C, <l—7»_'g cosztdt>+C,A S sinfcostdt =
n
= S cos 3/ cos t dt,
0

] . .
—CIAS cos  sin ldt+CQ<l +A S sinzldt>=

0 [

a
= { cos 3t sinzat
0

(ali-s)-o

Q(l+h%>=0‘

or
6))

The determinant of this system is

O L

A(R) =1 T

1
0 1+7~7

() If A;éi%(A (A) 5= 0), then system (3) has a unique

solution C, =0, C,=0 and, hence, the given equation has
the unique solution ¢ (x)=cos3x and the corresponding
homogeneous equation

n
¢ (x)—A § cos (x+1) g (£)dt =0 4)
0

only has the zero solution ¢ (x)=0.
2) If 7»=-42T, then system (3) takes the form

C,-0=0,
{cf2=0
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Whence it follows that C,=0 and C,=C, where C is an
arbitrary constant. The given equation will have an infinity
of solutions which are given by the formula
..qp(x)=%C-cosx+cos3x
or
@ (x) =C-cos x+ cos 3x (C’=%>;

the corresponding homogeneous equation (4) has an infinity
of solutions:

(p'(x)=C‘~cosx

3) I A= —%, then system (3) takes the form
{ 2-C, =0,
0-C,=0

whence C,=0, C,=C, where C is an arbitrary constant.
The general solution of the given equation is of the form

<P(x)=—fL-C-sinx+cos3x
or
~ . o} =~ 2C
¢ (x) =C-sin x 4 cos 3x (C—_—?>

In this example, the kernel K (x, {)=cos(x-+¢) of the
given equation is symmetric: K (x, ¢)==K (¢, x); the right
side of the equation [that is, the function f(x)=cos 3x] is
orthogonal to the functions cosx and sinx on the inter-
val [0, m].

Investigate for solvability the following integral equations
(for different values of the parameter A):

n
246. ¢ (x)—A § cos? xg (£)df = 1.

]

1
247. ¢ (x)—A § xetp(t)dt =x.
-1

271
248. ¢ (x)—A § |x—nlg(t)dt =x.
0
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1

249. ¢ (x)—2 § @xt—4x) g () dt =1—2x.
0
1

250. @ ()—1 § (v —2xt) @ () dt =x*—x.

o _
251. ¢ ()—2 | (%cosxcost—l—-:? sin 2x sin 2t) o () dt =
(]

= sin x.
1
252. o ()—A § Kx, ho(tydt=1
where

coshx-sinh?, 0<{x<H,
cosh{-sinhx, {<<x<<1

K(x’ t)={

20. Construction of Green’s Function
for Ordinary Differential Equations

Suppose we have a differential equation of order n:

L{yl=p, ) y"+p, () y"*+ ... +p,(x)y=0 (1)

where the functions p, (x), p, (x), ..., p,(x) are continuous
on [a, b], p,(x) =0 on [a, b], and the boundary conditions are

Vi) =oey (@) +aty’ (@)+ ... +af'y""Y(a) +
+ By 0)+Bhy O)+ ... +BE'y"* (b)
(k=1,2, ..., n) @)

where the linear forms V,, ...,V iny(a), ¥y (@), ..., y* (),
y(®), ..., y*-(b) are linearly independent.

We assume that the homogeneous boundary-value problem
(1)-(2) has only a trivial solution y(x)=0.

Definition. Green’s function of the boundary-value pro-
blem (1)-(2) is the function G(x, §) constructed for any
point &, a <& < b, and having the following four properties:

(1) G(x, &) is continuous and has continuous derivatives
with respect to x up to order (n—2) inclusive for a <{x<Cb.
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(2) Its (n—1)th derivative with respect to x at the point
x=¢ has a discontinuity of the first kind, the jump being

equal to 1 e
Po (%)’ ’
0"‘10 (xy E) _0n—lG (x’ E) — __l_ (3)
0x"=1 le=g+o 0xn=1 =0  po(§)
(3) In each of the intervals [a, &) and (&, b] the function
G (x, &), considered as a function of x, is a solution of
equation (1):

L[G]=0 4)
(4) G(x, &) satisfies the boundary conditions (2):
Vo(G)=0 (k=1, 2, ..., n) (5)

Theorem 1. If the boundary-value problem (1)-(2) has
only the trivial solution y(x)=0, then the operator L has
one and only one Green's function G(x, E).

Proof. Let y,(x), y, (%), ..., y,(x) be linearly independent
solutions of the equation L[y]=0. Then, by virtue of Pro-
perty (3), the unknown function G(x, §) must have the
following representation on the intervals [a, &) and (§, b):

dG(x. B =a,y; () +ay, (X)+ ... +a,y,(x) for a<x<E
an

G(x, &) =byy; (%) + by, (X) + - . . +bay, (x) for E<x <b

Here, a,, a,, ..., a, b, b,, ..., b, are some functions of §.
The continuity of the function G(x, &) and of its first n —2
derivatives with respect to x at the point x=E& yields the
relations

[(6:39: &)+ ... +b,4, B —[awy, B)+ ... +0a,4, ()] =0,
bwr @)+ ... by @)l —[awyi B)+ ... +a.y. ()] =0,

(6952 B) + ... + b,y (8)] —[ayi*~® (B) +
ce . a g (8)] =0

and condition (3) takes the form
[bly(ln-l) (g)‘l' . +b}1y2"‘l) (E)] —-[alyﬁ”‘” (E».)+
n-n ()] = L
s E A (g)]—Po(ﬁ)
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Let us put ¢, (§)=0b,(8)—a,(§) (k=1, 2, ..., n); then we
get a system of linear equations in c, (§):

¢y B+ 6y )+ ...+, () =0,

Y (&)-I-Czy; @+ ... +cya(6)=0, l

(D ()4 ey (B) .+t E) =0,
Cy Y B) ey B+ ey (§>=Kl<€5 )

The determinant of system (6) is equal to the value of the
Wronskian W (y,, ¥,, - - ., y,) at the point x=§ and is there-
fore different from zero. For this reason, system (6) uniquely
defines the functions c,(§)(k=1. 2, ..., n). To determine
the functions a,(E) and b,(E) let us take advantage of the
boundary conditions (2). We write V,(y) in the form

Ve(y)=A, () + B, (v) (7)
where

A (P =0y (@) + 0"y (@) + ... o'y~ V (a),
Bk () =PBey (b) + By’ (b) +- - . L+ B~y =1 (b).
Then, by conditions (5), we get
V(@) =04, () + @A, (4) + . . - + 0,4 (4,) +
+0,B; (42) + 0,8, (9) + - . . + 6,8, (y,) =0(k=1, 2, ..., n)
Taking into consideration that a,=b,—c,, we will have

(bl_cl) Ak (yl) + (b‘z—cz) Ak (yz) + LU + (bn —cn) Ak (yn) +
+ 0.8, (41) + 0,8, (9,)+ ... +6,B, (y,) =0
k=1, 2, ..., n)
Whence, by virtue of (7),

bV, (4) + 6.V, (92) + - .. + 8,V (y,) =
=0 A, (4) + A () + -+ A (Y) (k=1, 2, ..., n) (8)
Note that system (8) is linear in the quantities b,, ..., b,.
The determinant of the system is different from zero:
Vi) Vi) -.. Vi(yn)
Vo) Vee) --. Va(yn)

...........

Vh(yl) Vn(yz) ce Vn(yn)

#0 ©)
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by virtue of our assumption concerning the linear indepen-
dence of the forms V,, V,, ..., V,.

Consequently, the system of equations (8) has a unique
solution in b, (€), b, (E), ..., b, (E), and since a, (&) =b, (§) —
—c, (E), it fol]ows that the quantities a,(§)(k=1, 2, ..., n)
are defined uniquely. Thus the existence and uniqueness of
Green’s function G(x, &) have been proved and a method
has been given for constructing the function.

Note 1. If the boundary-value problem (1)-(2) is self-
adjoint, then Green’s function is symmetric, i.e.,

G(x, E)=G(E »)

The converse is true as well.

For the conditions of self-adjointness of the boundary-
value problem for differential operators of the second and
fourth orders see [20], Vol. I

Note 2. If at one of the extremities of an interval [a, 0]
the coefficient of the highest derivative vanishes, for example
po (@)=0, then the natural boundary condition for bounded-.
ness of the solution at x=a is imposed, and at the other
extremity the ordinary boundary condition is specified (see
Example 2 below).

An Important Special Case

Let us consider the construction of Green’s function for
a second-order differential equation of the form

(P YY) +9(x)y=0,

p(x)=0 on [a, b], p(x)€C [a, b] (10)
with boundary conditions
y(@)=y(®) =0 (1

Suppose that y,(x) is a solution of equation (10) defined.
by the initial conditions-

4%:1@)=0, yi(@=a=0 (12)
Generally speaking, this solution need not necessarily satisfy-

the second boundary condition; we will therefore assume
that y, (b)) = 0. But functions of the form C,y, (x), where
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C, is an arbitrary constant, are obviously solutions of equa-
tion (10) and satisfy the boundary condition

y(a)=0

Similarly, we find the nonzero solution y,(x) of equation
(10), such that it should satisfy the second boundary con-

dition, i.e.,
Y, (b)=0 (13)

This same condition will be satisfied by all solutions of the
family C,y,(x), where C, is an arbitrary constant.
We now seek Green’s function for the problem (10)-(11)
in the form
G { Ciyp(x) for a<x<E,
9= Cut for s<e<t
and we shall choose the constants C, and C, so that the
Properties (1) and (2) are fulfilled, i.e., so that the function
G (x, &) is continuous in x for fixed &, in particular, conti-
nuous at the point x=§:

Cl.’/l (g) = Czyz (E)
and so that G;(x, &) has a jump, at the point x=§, equal
1

top—(g-)-:

(14)

’ 4 l
Czyz (E) _Clyl (E,) = ’Tg)'
Rewrite the last two equalities as
—Clyl (E) + Czyz (g) =0, !
, , 1
—Clyl (g) + Czyz (E) = m J

The determinant of system (15) is the Wronskian W [y, (x),
Y, (x)] =W (x) computed at the point x=E for linearly
independent solutions y, (x) and y, (x) of equation (10), and,
hence, it is different from zero:

W(E)+0
so that the quantities C; and C, of system (15) are deter-
mined at once:

1) . n®
C=rove: C=rpve (16)

(15)
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Substituting the expressions for C, and C, into (14), we

finally get
Y1 (%) ys () a<x<Et

Y1 (§) ys ()
pOW(@E " SN

Note 1. The solutions y;(x) and y,(x) of equation (10)
that we have chosen are linearly independent by virtue of
the assumption that y, (b) = 0.

Indeed, all solutions linearly dependent on y, (x) have
the form C,y,(x) and, consequently, for C;==0, do not
vanish at the point x=¥5 at which, according to our choice,
the solution y,(x) vanishes,

Note 2. The boundary-value problem for a second-order
equation of the form

Y (X)) +p ()Y (%)+p, (%) y(x)=0 (18)
and boundary conditions
y@=A, y@b)=B (19)

reduces to the above-considered problem (10)-(11) as follows:
(1) The linear equation (18) is reduced to (10) by multi-

plying (18) by p(x)=efp‘mdx [we have to take p(x)p, (¥)
for g (x)).

(2) The boundary conditions (19) reduce to zero conditions
(11) by a linear change of variables

2(0)=y(x)—2=2 (x—a)— A

The linearity of equation (18) is preserved in this change,
but unlike equation (10), we now obtain the nonhomogeneous
equation L [2)=f(x), where

f=—[A+5=2x—a)| a0—3=2p (0

Hewever, we construct Green’s function for the homogeneous
boundary-value problem L [z]=0, z(a)=2(b)=0, which
fully coincides with the Problem (10)-(11).
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Example 1. Construct Green’s function for the homo-
geneous boundary-value problem

YV (x) =0, (1
y(0) =y (0)=0, | 0
y()=y (1)=0 | @
Solution 1. We shall first show that the boundary-value

problem (1)-(2) has only a ftrivial solution. Indeed, the
fundamental system of solutions for equation (1) is

' h)=1, g, (x)=x, y(x)=x* vy, (x)=x° (3)
so that its general solution is of the form
y(x)=A+ Bx+Cx*+ Dx?

where A, B, C, D "are arbitrary constants. The boundary
condltlons (2) give us four relations for determining A, B,

y’ (0)=B=0,

y(1)=A+B+C+D=0,

y (1)=B+2C+3D=0
‘Whence we have A=B=C=D=0.

Thus, the problem (1)-(2) has only a =zero solution
Y(x)=0, and, hence, for it we can construct a (umque)
Green's function G (x, E,)

2. We now construct Green’s function. Utxllzmg the fun-
‘damental system of solutions (3), represent the unknown
Green’s function G (x, &) in the form

Gx,8)=a, 1+4a,-x+as:x2+a,-x* for 0<<x<<E, (4)

G(x,E)=0b,-14+b,-x+by-x*+b,-x* for E<<x<l ()
where a,, a,, a;, a, b, b, b, b, are as yet unknown
Functions of E. Put ¢, (E)—b (!;)—a,e (§) (k=1, 2, 3, 4) and
write out the system of lmear equations for ﬁnd‘ing the
functions c, (§) -[see system (6) on.p. 136]:

‘ 6 + C2§ "‘ 6‘3§2 +‘C4~§3 = O»

€y +¢y-25+¢,- 382 =0,

6240650, - ©®

- C46=l v ')
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Solving the system, we get
a@——ga ¢ (E) =

] (7).
Cs (E) - '5 S Cy (g)

We further take advantage of Property (4) of Green's fun-
ct|on namely, that it must satisfy the boundary conditions

@),

G(1,8=0, G,(1,8)=0

In our case these relations take the form

a, =0,
a,=0,
by +b, + by + b, =0, (8

b, + 2b, + 3b, =0

Taking advantage of the fact that ¢, =0b, —a,(k=1, 2, 3, 4),
we find from (7) and (8) that

a, =0; b,=—%§3; a,=0; b,=%§”;
1 1
by=5 =t b=5 B —7 L
1 1 ‘
%=7&—e+7&;@=—%+§e—gﬁl

|
)

Putting the values of the coefficients a,, a,, :.. , b, f}om 9)
into (4) and.(5), we obtain the desired Green’s function:

l»(%&-—&wréaﬂ) (o +3E)
G(x, =1

_ 0<x<E
—g Pt (g p—p) e+ (3 o—g0)n
E<x<1 :

This expression is readily transformed to

o (e b (e )
yeo iorb_ggrxg_t )
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so that G(x, ¥)=G(E, x), i. e., Green’s function is sym-
metric. This was evident from the start since the boundary-
value problem (1)-(2) was self-adjoint.

The reader is advised to establish this by himself. Also
we suggest checking to see that the Green’s function which
we have found satisfies all the requirements (1 to 4) given
in the definition.

Example 2. Construct Green’s function for the differential

equation
xy' 4y =0 )
for the following conditions:
Y (x) bounded as x — O,
y()=ay'(1), a=*0 (2)
Solution. First find the general solution of equation (1)
and convince yourself that the conditions (2) are fulfilled
only when
y(x)=0
Indeed, denoting ¢’ (x)=2z(x) we get x2’4+2=0, whence
Inz=ln¢,—Inx, z=-%‘- and, hence,

yx)y=c,Inx+c, 3)

It is clear that y(x) defined by formula (3) satisfies the con-
ditions (2) only for ¢, =c, =0, and, hence, Green’s function
can be constructed for the problem (1)-(2).

Let us write down G (x, &) formally as

a,+a,Inx for 0 <x<§,
G(x, §)={b,lib:]nx for g;ng (4)
From the continuity of G(x, &) for x=E we obtain
b,+b,Int—a,—a,IntE=0
and the jump G, (x, &) at the point x=¢ is equal to-;—so that

b 1 1 1
YR T
Putting
G=b—a, ¢=>b—a, (5)
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we will have i
Cy + Cy In E = Ov
{ C = 1
whence
¢g=—1In§, ¢,=1 (6)

Now let us use conditions (2). The boundedness of G (x, )
as x— 0 gives us a,=0, and from the condition G (x, §) =
= aG,(x, &) we get b,=ab, Taking into account (5) and
(6), we get the values of all coefficients in (4):

a,=o+Ing, a,=0, b =a, b,=1I
Thus '

a+Ing, 0<x<E,

G (x, §)={ a+lInx, E<{x<1

Example 3. Find Green’s function for the boundary-value
problem
y' (0)+ky=0,
y(0)=y(1)=0

Solution. It is easy to see that the solution y, (x) = sin kx
satisfies the boundary condition y, (0)=0, and the solution
Y, (x)=sin k (x—1) satisfies the condition y, (1)=0; they are
linearly independent. Let us find the value of the Wronskian
for sinkx and sink(x—1) at the point x=E§:

__|sinkg sink(§—1) |
W =|tcoskt kcoskE—1)|~
=k[sinkEcosk(E—1)—sink(E—1)coskE]|=Fksink

Noting, in addition, that in our example p(x)=1, we get,
by (17),

ksink

sin kE sink (x—1) E<x< 1
’ ~= =~

sink (§—1) sinkx 0<x<E

’ S W

G (x, §)={
ksink

In the following examples, establish whether a Green's
function exists for the given boundary-value problem and
if it does, construct it.
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266.

267.

268.

269.
270.

271.
272.

273

INTEGRAL EQUATIONS

y'=0, yO)=y' (1), y©O)=y().

"=0; y(0)=y(), yO)=y(0)

Y +y=0; y0)=y@=0.

yV=0; y(0)=y O)=y" (1)=y"(1)=0.

y"=0; y0)=y (1)=0; y (0)=y(1)

y'=0; y(0)=y(1)=0; y (0)=y (1)

y'=0; y(0)=0, yI)=y (1)

y'+y =0 yO)=y(1), yO)=y (1)

y'—ky=0(k=+0); y(O)=y(1)=0.

Y +y=0, yO)=y), y0)=y'(1)

y"=0; y0)=y(1)=0, y(0)+y (1)=0.

y'=0; y(0)=hy0), vy (1)=—Hy(l).

xy” +2xy"'=0; y(x) is bounded for x— 0,

y(l)=ay (1).

xBy!'V +6x2y"" +6xy" =0; y(x)is bounded as x — 0,
y(H=y(1)=0.

Xy +xy'—y=0; y(x) is bounded as x—0,

y(1)=0.

xy”—[—y'—%y=0;’ y(0) is finite, y(1)=0.

xy" +xy'—n*y=0; y(0) is finite, y(1)=0.

x(Inx—1)y"—=xy'+y=0; y(0) is finite,
y(1)=0.

d%[(l—ﬁ)%]:O; g(0)=0, (1) is finite.

xy"+y'=0; y(0) is bounded, y(I)=0.

Y —y=0; y(0)=y(0), yU)+Ary ()=0.

(Consider the cases: A=1, A=—1, |A]5~1))

Let

21. Using Green’s Function in the Solution
of Boundary-Value Problems

there be given a nonhomogeneous differential equation

L{y)=po (%) 4™ (X)+p1 () ¥~ ()t ... 4o (¥) y ()= () (1)
and the boundary conditions

Vig)=0, V,(»)=0,...,V,(y)=0" (2)
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As in Sec. 20, we consider that the linear forms V,, V,, ...,
V, iny),y@),...,y"@),y®),y®), ... y"""(b)are
linearly independent.

Theorem. If G(x, E) is Green’s function of the homoge-
neous boundary-value problem

L{y)=0,
Vk(y)——_oa (k=]) 2, ey n).

then the solution of the boundary-value problem (1)-(2) is
given by the formula
b

y={G, ¥fE) d 3)

(see [20]).
Example 1. Using Green’s function, solve the boundary-
value problem

Y (x)—y(x)=x, (1)
y(0)=y(1)=0 (2)

(a) Let us first find out whether Green’s function exists
for the corresponding homogeneous boundary-value problem

Y (X)—y(x)=0, (1)
y(0)y=y(1)=0 (29
It is obvious that y, (x) =e*, y, (x) =e~* is the fundamental

system of solutions of the equation (1’). Hence, the general
solution of this equation is

y(x)= Ae* + Be~*
The boundary conditions (2) are satisfied if and only if

A=B=0,i. e, y(x)=0. Thus, Green’s function exists.
(b) It can readily be verified that

sinh x sinh (£ —1)
G (x, §)={Smh§;‘i‘:h‘(x_l)’ osrs<t (3)
—smn1» sSx<

is Green's function for the boundary-value problem (1')-(2").
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(c) We write the solution of the boundary-value problem
(1)-(2) in the form

gy =G BEde (4)

where G (x, &) is defined by formula (3).

Splitting up the interval of integration into two parts
and substituting from (3) into (4) the expression for Green’s
function, we obtain

x : . 1 . .
y(x)=S§sxnh§snnh (x—l)dg_i_'s‘ﬁsmhx‘smh (E_l)dE:-

sinh 1 sinh 1

sinh 1 sinh 1

1
_sinh (x—1) SEsmh&dE+smhx {esinn@—1ds  (8)

But

X

S E sinh § d§ = x cosh x—sinh x,

L]

1
{ £sinh (8 —1)dE = 1 —xcosh (x—1) +sinh (x—1)

and therefore
y(x)= §iFlh_l {sinh (x — 1) [x cosh x — sinh x] 4

sinh x_

+sinhx [1 —xcosh(x—1) +sinh (x— D]} =5 —

Here we take advantage of the formula
sinh (o = B) = sinh a- cosh B + cosh a sinh B

and also the oddness of the function sinh x.
Direct verification convinces us that the function
sinh x

YO =T —

satisfies equation (1) and the boundary conditions (2).
Example 2. Reduce to an integral equation the follow-
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ing boundary-value problem for the nonlinear differential

equation:
y' = yx), (1)
y(0)=y(1)=0 )
Constructing Green’s function for the problem
y' =0, 3)
y(0)=y(1)=0 (2)

we find
E—1x, 0<<x<E,
G""g’:{-(x—l)s, r<r<|

Regarding the right side of equation (1) as the known func-
tion, we get
1

y)=(60vFE y@) 4)

0

Thus the solution of the boundary-value problem (1)-(2)
reduces to the solution of a nonlinear integral equation of
the Hammerstein type (see Sec. 15), the kernel of which is
Green's function for the problem (3)-(2). The significance
of the Hammerstein-type integral equations lies precisely in
the fact that the solution of many boundary-value problems
for nonlinear differential equations reduces to the solution
of integral equations of this type.

Solve the following boundary-value problems using Green’s
function:

274.  +y=x; y(0)=y(-’2i)=o.

275. yV=1; y(0)=y (0)=y"(1)=y"" (1)=0.
276. xy"+y =x;, y(1)=y(e)=0.

277. ¥’ +nty=cosnx; y(0)=y(l), y' (0)=y’ (1).
278. y"—y=2sinh1; y(0)=y(1)=0.

279, y'—y=—2¢% y(O)=y'(0), y()+y ()=0.

14

280. y"+y=2x* y(0)=y (7) =0.
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22. Boundary-Value Problems Containing a Parameter;
Reducing Them to Integral Equations

Many situations require the consideration of a boundary-
value problem of the following type:
Lyl =My +h(x), (1)
Vi)=0 (k=1,2, ...,n) (2)
where
Liyl=py () y™ () +py () g™V (x)+ ... + P, (X) y (%)
Vi) =oy(@)+af y (a)+ ... +af P y" Va4
+BeyO)+BL Y (B) + ... +BP Ny (D) (k=1,2,...,n)

(the linear forms V,,V,, ..., V, are linearly independent);
h(x) is a given continuous function of x; A is some nume-

rical parameter.
For h(x)=0 we have the homogeneous boundary-value

problem
V=0 =12 .. m | @)

Those values of A for which the boundary-value problem (3)
has nontrivial solutions y(x) are .called eigenvalues of the
boundary-value problem (3); the nontrivial solutions are
called the associated eigenfunctions.

Theorem. [f the boundary-value problem

L{y]=0,
Ve(y)=0 (k=1,2,...,'n)} 4)

has the Green’s function G(x, E), then the boundary-value
problem (1)-(2) is equivalent to the  Fredholm integral
equation

b
y(0) =G, By @ di+f(x) (5)

where

b -
f={G6xBnEd ®)
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In particular, the homogeneous boundary-value problem
(3) is equivalent to the homogeneous integral equation
b

vy =260 Hy@Ee Y

Note. Since G (x, &) is a continuous kernel, the Fredholm
theory is applicable to the-integral equation. Therefore the
homogeneous integral equation (7) can have at most a coun-
table number of characteristic numbers A, A,, ..., A,, ...
which do not have a finite limit point. For all values of A
different from .the characteristic values, the nonhomogeneous
equation (5) has a solution for any continuous right side
f(x). This solution is given by the formula

gy =n §ROx, & A FE) dE+F(x) ®)

where R (x, §; A) is the resolvent kernel of the kernel G (x, ).
Here, for any fixed values of x and § in [a, b] the function
R (x, & A) is a meromorphic function of A; only characte-
ristic numbers of the homegeneous integral equatlon (7) may
be the poles of this function.

Example. Reduce the boundary-value problem

Yy +hy=x, 0]
I
y(©=y(F)=0 @
to an integral equation.

Solution. First find the Green’s function G (x, &) for the
corresponding homogeneous problem:

y" (=0,
y(0)=y(§)=o} (3)

Since the functions y, (x)=x and y2 (x)=x——12l are, fespec—
tively, linearly independent solutions of the equation y" (x) =
that satisfy the conditions y(0)=0 and y (%) =0, we seek
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Green’s function in the form
y1 (%) 2 §)

t!ﬂ‘

0<<x<
G, §)={ y (Wﬁ)(yg)(x) n
1 2
where
11
W(§)=|El' E‘lz —2
Thus,
(;E—l)x, 0<x<E
G(x, B)= n “4)
(2x—1)8 E<r<}F

Further, taking advantage of Green’s function (4) as the
kernel of an integral equation, we get the following inte-
gral equation for y(x):

T

vy =F@)—r G By@E

where

NE

=1 G HEde=

2

(2§ )x§d§=%x°—gx

e T E R

5(—— 1) g de+

Thus, the boundary-valuye problem (1)-(2) has been redu-
ced to the integral equation

J'l

=—x -2 x

y(x>+x§ Gx By @) - 31
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Reduce the following boundary-value problems to integral
equations:

281. ¢’ = Ay x%; y(0)=y(%>=0.
282, y'=Ay+e*; y(0)=y(1)=0.
283. 4+ 2 y=hy+ cosZ; y(—1)=y(1),
y (—=)=y ().
284. y'+Ay=2x+1; y(0)=y (1), ¥y 0)=y(1).
285. yV=hy+1; y(0)=y (0)=0, ¥ (1)=y"" (1)=0.
286. y"'+Ay=2x; y(0)=y(1)=0, ¥ (0)=y"(1).
287. y'-+hy=e* y(0)=y (0), y(1)=y (1).

23. Singular Integral Equations

We shall call the following integral equation

b
o) =F()+A K (x, Do ()

singular if the interval of integration (a, b) is infinite or
the kernel K (x, f) is nonintegrable [for example, in the
sense of L, (RQ)].

In the case of singular integral equations, things may
occur which do not have any analogy in the case of a finite
interval (a, b) and a well-behaved kernel K (x, ¢) (continu-
ous or lying in L, ().

Thus, if the kernel K (x, ¢) is continuous in Q {a < x, ¢ < b}
and a and b are finite, then the spectrum of the integral
equation, that is, the set of characteristic numbers, is disc-
rete and to every characteristic number there corresponds
at most a finite number of linearly independent eigenfunc-
tions (the characteristic numbers have a finite multiplicity).

In the case of singular integral equations the spectrum
may be continuous, that is, the characteristic numbers may
fill whole intervals, and there may be characteristic num-
bers of infinite multiplicity.

Some examples will illustrate the situation.
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We consider the Lalesco-Picard equation
+ @
Q)=A | emi*tlg(t)at 2)

The kernel of this equation, K(x, {)=e-1*-%!, possesses
an infinite norm. Indeed,

+® 4o +® +© +
S S K*(x, t)dxdt = S S e-2lx=tldydt = S dx

If the function ¢ (x) is twice differentiable, then the integ-
ral equation (2), which can be written in the form

(p(x)=7»[e‘” { eto(tydi+e Se"(p(t)dt]

- ® X

is equivalent to the differential equation

¢ () +(2r—1 e (x)=0 Q)
The general solution of equation (3) is of the form
@ (x)=Cre*+Cpe"* 4)

(C,, C, are arbitrary constants), where
r=)1—21 (5)

Here, for the integral in the right-hand member of (2) to
exist, it is necessary that |Rer| <1, that is, that A .be
greater than zero for real A. Hence, in the domain of real
numbers the spectrum of equation (2) fills the infinite inter-
val 0 <A <+ oo. Every point of this interval is a cha-
racteristic number of equation (2) of multiplicity 2. Howe-
ver, the associated eigenfunctions do not belong to the
class L,(—oo, + o).

For A > %, sin})/2h—1x, cos )/ 2L — 1x are, by (4), eigen-
functions; for 7»=-%— we get q>(x)=Cl+C2x. Thus, for
A= % there exist eigenfunctions bounded in (—oo, 4 o).
However, if the real part )/1—2A is positive and less
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than unity, then formula (4), for any choice of the con-
stants C,, C, (C*-+C%=~0), yields a solution of the integral
equation (2) unbounded on (—oo, 4 o).

This example illustrates the essential role of the class of
functions in which the solution of the integral equation is
sought.

Thus, if we seek the solution of equation (2) in the
class of bounded functions, then, as we shall see, all the

values of 7»>% are characteristic.

But if the solution of equation (2) is sought in the class
of L,-functions (—oo0, + o0), then for any value of A equa-
tion (2) has only the trivial solution ¢ (x)=0, i.e., not
one of the values of A is characteristic for solutions in
L, (—o0, + o).

Let F(x) be a continuous function absolutely integrable
on [0, +oo] and having a finite number of maxima and
minima on any finite interval of the x-axis. -

Let us construct the Fourier cosine transform of this
function:

—_—t®
F,(\)= l/% S F (x) cos Axdx
Then ’
__+®
F(x)= V/ 2 S F, (M) coshxdA
0

Adding these two formulas, we get

F,(x)+F (x)= 1/% S [F, (£) -+ F (£)] cos xt dt

0

that is, for any choice of the function F(x) satisfying the
above-indicated conditions, the function ¢ (x) =F, (x) 4 F (x)
is an eigenfunction of the integral equation

ep(0)=> § o(t)cosxtdt (6)

corresponding to the characteristic number A= ‘/ .;3— .
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Since F(x) is an arbitrary function, it thus follows that
for the indicated value of A equation (6) has an infinite
number of linearly independent eigenfunctions.
This peculiarity of equation (6) is due to the fact that (6)
is singular [the interval of integration in (6) is infinite].
Example. Consider the integral equation

o) =1 § ¢ () cos xt dt ()

and take
Fx)=e (a>0)
Then
R /7
Fi(x)= ]/? Se"“ cos xt dt = V -Ea—z:l_‘z—xé
Further, ’
a

7
P=FW+FW=c=tr) I @)
Substituting ¢ (x) into equation (7), we have

N 7T a
e l/?'m=

=x[ et cos xtdt+ )/ "2 (acos xt dt] 9)
S‘ n :5 2+t2

0

As has already been pointed out
Se-“‘ cos xtdt =
0

The second integral on the right of (9) may be found by

using Cauchy’s theorem on residues:

@

cos xt _ —ax.
Sa,+t,dt —e

a
a?4-x2

From (9) we thus obtain

e+ l/ T a2+xa [a’—‘ll—xz-*— ‘/ge—“] (10)
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It is clear from this that if A= ]/%, then the function

2
eW=eot ) Zolox0
will be a solution of the integral equation (7). Hence,

A= ]/-—i— is a characteristic number of (7), and the function
2
owm=et ) Lt ®)

is the corresponding eigenfunction; now, since a is any

panes
number greater than 0, the characteristic number A = V %

is associated with an infinity of linearly independent eigen-
functions (8).
In similar fashion, we can show that equation (7) has

P
a characteristic number A= — ]/ % associated with the
eigenfunctions

- )

e~V sarm (@>0)

288. Show that the integral equation
Q(x)=»A S @ (t)sinxtdt
0

has characteristic numbers A = + ]/% of infinite multip-

licity, and find the associated eigenfunctions.
289. Show that the integral equation with a Hanke! kernel

o

o) =A{J, @V e(t)at

0

[where J,(2) is a Bessel function of the first kind of order v]
has characteristic numbers A=4-1 of infinite multiplicity,
and find the associated eigenfunctions.
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290. Show that for the integral equation

o)=L g0y al

any number A for which one of the values "*}/"A has a
positive real part is a characteristic number.
291. Show that the Volterra integral equation

00 =1{ (=L o
0

has an infinity of characteristic numbers A=E+in, where
the point (E, m) lies outside the parabola &+ n2=
The solution of certain singular integral equatlons with
the aid of Efros’ theorem (generalized product theorem).
Let
9 (x)=D(p),
u(x, )=U (p)e-"7®

where U (p) and ¢ (p) are analytic functions. Then

@

D, P UE={e@ux v (1)

0

This is the generalized product theorem (theorem of Efros).
If u(x, ty=u(x—r), then g(p)=p and we obtain the
ordinary product theorem:

@

() U (p)={ o (v)u(x—1)dv
0

If U(p)=7'7, g(p)=Vp, then

T2

u(x, t)= T @)

1
Ve ©
Therefore if it is known that @ (p)==¢ (x), then by the

@ (Vp).
Vo

Efros theorem we find the original function for 2V P)
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- ® T
oWp) . 1 jcp(r)e ' 3)
Vo x

Example. Solve the integral equation

12

e 7 g)ydi=1 )

1

V nx

Oy 8

Solution. Let ¢ (x)==® (p). Taking the Laplace transform
of both sides of (4), we get, by formula (3),

o(Vp)_ 1t
Vo P
whence
' 1
d’—f,p)=%, o D(p)=-=1

Hence, @ (x)=1 is a solution of (4).
Solve the following integral equations:

® 2
1 Tax
292 = j‘e Pp(t)ydt =e™*.
V nx J
=
203 3= je ¥ ¢ () dt = 2x—sinh x.
0
LT
4 e
294. Var j‘e xq>(t)dt=x‘ + %%,
0

It is known that

eV

1

e 0 (n=0,1,2 ..))

where J,(2) is a Bessel function of the first kind of order n.
In particular,
1

LY=L
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By virtue of the similarity theorem
Jo@Vi)=1e ”

whence it is seen that for the Efros theorem we should then
take

q9(p)=+

Example. Solve the integral equation
e =xe*+A{ L, @V e@®)dt (A=) ()
0

Solution. Let ¢ (x)=® (p). Taking the Laplace transform
of both sides of (5) and taking into account the Efros
theorem, we find

1 | 1
() =Grmtt 50 (5) ©)
Replacing p by %, we get
1 p?
®<;)=m+hl’®(ﬂ) @)

From (6) and (7) we find

— L AP
O() =G +5 [+ 0 0]
or

() =25 [+ ]

- A
o (x)=e ”('&xﬁtﬁ)
Solve the following integral equations (A 44 1):

Whence

295. (p(x)=e"+7»S 1/-;1, 2V xt) @ (¢) dt.
0

206. ¢ (x)=cosx+A { J, (2 V¥l) g (t)dt.
1]
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297. <p(x)=cosx+xS§J2 (2 Vx) ¢ () dt.
0

298. ¢ (x)=sinx+A{ ‘/;I, (2 V) o (t)dt.
§

Solving certain singular integral equations with the aid
of the Mellin transformation.
Let a function f(f) be defined for positive ¢ and let it
satisfy the conditions
1 ®
flfyterdt <40, (IOt 1dt <400 (1)
1

0

for a proper choice of the numbers o, and o,. The function

@

Fy={fwyt-1dt (s=o+i1, 0,<0<0) (2
0
is the Mellin transform of the function f(#). The inversion
formula of the Mellin transformation is
o+iw

f)=gm § Fo)tsds (>0, 6,<0<0) (3

0-i ®

where the integral is taken along the straight line I: Re
s=o0 parallel to the imaginary axis of the s plane and is
understood to be the principal value. When the behaviour
of the function f(f) as {— 0 and ¢{— oo is known, say
from physical reasoning, then the boundaries of the strip
(0,, 0,) may be established from the conditions of the
absolute convergence of the integral (2). But if the beha-
viour of f(¢) is only known at one end of the interval
(0, 4 o0), say as £— 0, then only o, i$ defined, the straight
line of integration / in (3) must be chosen to the right of
the straight line o=o0, and to the left of the closest singu-
larity of the function F (s).

The Mellin transformation is closely associated with the
transformations of Fourier and Laplace and many theorems
which refer to the Mellin transformation can be obtained
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from the corresponding theorems for the Fourier and Laplace
transformations by means of a change of variables.
The convolution theorem for the Mellin transformation is

of the form
m{§iae(£) 4 =Fo-00 (4
0

From this we can conclude that the Mellin transformation
is convenient in the solution of integral equations of the
form

s =F+ K (£) oL )
0

Indeed, let the functions ¢(x), f(x) and K (x) admit the
Mellin transformation, and let @ (x)— ®@(s), f(x)— F(s),

K (x) — K (s); the domains of analyticity F(s) and K (s)
have a common strip o, < Res=0 < g,. Taking the Mellin
transform of both sides of equation (5) and utilizing the
convolution theorem (4), we get

@ (s)=F (s) + K (5)- @ (s) (6)
whence

F (s)
1—

@ (s)= (K (s) == 1) (7)

This is the operator solution of the integral equation (5).
Using the inverse formula (3), we find the solution ¢ (x) of
this equation:

o+i ®

1 F(s) __,
(P(x)=m S l—_k—(g?‘ ds 8)

Consider "the integral equation

s =e=+g (e o)L (@>0) ©
0
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Taking the Mellin transform of both sides of (9), we get
M {e™=¥} nSe‘“ x"ldxza"Se"z’”ldzarag—)s F(s),
0 0

Mgf§=§r@sk@ (Res > 0)

so that the domains of analyticity of F(s) and K(s) coin-
cide. The operator equation corresponding to equation (9)
will have the form

r (S)

+3T O (10)
whence
T (s)

(:D(S)=as ll——-;;—l‘(s)]

By the inverse formula (8) we obtain
G+im
I (s) ds .
@ (x)= — T ©>0) (1D
%%gwl—%rw (e
We find the integral (11) with the aid of Cauchy’s integral
formula.

For ax > 1, we include in the contour of integration the
semicircle lymg in the right half-plane. In this case, the
sole singularity of the integrand lies at the point s==3 at
which

1
1—5T(s)=0

Then

@ (x) = (ax)" m (3) ’ ax> 1

where ¥ (3) is the logarithmic derivative of the I'-function
at the point s=3:

(v is Euler’s constant).
For ax <1, the singularities of the integrand are the

6 —1583
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negative roots of the function l—%—l‘(s) so that

@®

(P(x)=—22—]—— ax < 1

= () P ()’

where v (s,) are values of the logarithmic derivative T (s)
at the points s=s,(k=1, 2, ...). Thus,

4 1
. ey P>
¢ (x)= o
—2y L ax < 1

()P (sp)’

Let us consider an integral equation of the form

o =F )+ § K (xt) o (1) dt (1)

(the Fox equation). Multiplying both sides of (1) by x°7!
and integrating with respect to x between the limits O
and oo, we get

a§(p(x)x’"ldx=OS"f()c)x"’dx—i—c§(p(t)dt c§K(Jct)x"1dx

Denoting the Mellin transform of the functions ¢ (x), f(x),
K(x), by ®(s), F(s), K(s), respectively, we get, after
simple manipulations,

o

D) =F )+ K@) oy t—at @)

It is easy to see that { ¢ (f)t—*dt=®(1—s) so that (2)
will be written in the Oform
O (s)=F () + D (1—5) K (s) ®3)
Replacing s by 1—s in (3), we get -
O(l—s)=F(1—s)+D)K(1—s) (4)
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From (3) and (4) we find
D(s)=F (&) +F(1—s) K (5)+ D (s) K (s)- K (1—s)

whence

CD( )_ F(s)"“F(l"s)K(s) (5)
—K (s)-K (1—s)

This is the operator solution of equation (1).
Using the inverse Mellin formula, we find

c+im
1 F()4+F(1—s)K(s) e
*0 =z S —RORa—s ~ ©)

c—imw

which is a solution of the integral equation (1).
Example. Solve the integral equation

0 =1+1) = [ cosxtds 7
Solution. We have
K(s)=A ]/%Sx"lcosxdx (8)

To compute the integral (8) we take advantage of the
fact that

Se"‘_xz'ldx=l‘(z) 9

If in formula (9) we turn the ray of integration up to
the imaginary axis, which by virtue of the Jordan lemma
is possible for 0 <z <1, we arrive at the formula

inz

Se""xz ldx=e ° T (2)

Separating the real and imaginary parts, we get

Sx"lcosxdx=cos£2§-l‘(z), (10)

0
6*
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Sx’“ sinxdxzsin%zl‘(z) (11)
0

Thus, by virtue of (8) and (10),

kK©=1) LreosZ (12)

Also,

K(s)- K(l—s)—~7~ ]/ ——I‘(s)cos— A]/—- (1-—s)sm—=
=X 2c0sFsinFr ()T (1—s) =M

since I‘(s)-I‘(l—s)-—smns Hence, if M {f(x)} =F (s), then

by formula (5) (for |A|=1)

@ (s)= F (s)+1;_(_l_;s) K (s).

and therefore
G+im
(P(x)=§3,-—(ll——_m S [F(SH—
O—~i®
+F(1—s)A ]/%r(s)cos$] x-sds =
O+l
S F(s)x~*ds+

O—i®
O+im

A -s
+2uY 2o [ TecosBra—sxras  (13)

- 0=l

L
T 1—A% 2

In the second integral on the right of (13) replace F(1—s)

S F(s)x~Sds=f(x).

o-i®

1

by {F(tyt=*dt and note that o
0

Then formula (13) can be rewritten as
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@ (x) = f(x)
A 5 O+im ®
t=m )V wam ) T@cos S (y=ds|f@ydr  (14)
o—-iw 0

By Mellin’s inverse formula,

O+im

S I‘(s)cosf;—s-(xt)'sds=cosxt
o—im

so that, finally, we have

1

00 =L+ V/ Z fycosxtd, (1] 1)

Solve the integral equations:

o

o

299. ¢ (x)= 1+xz+ an (t) cos xt dt.

300. @ (x)= f(x)-l—}»‘/ )cp(t ) sin x{ dt.

(=]

301. @(x)=—e" "—i— Va S(p(t)cosxtdt.
0



CHAPTER 111

APPROXIMATE METHODS

24. Approximate Methods of Solving Integral Equations

1. Replacing the kernel by a degenerate kernel. Suppose
we have an integral equation

b

o) =F(0+A{K(x, t)ot)dt (1)

with arbitrary kernel K(x, f). The simplicity of finding a
solution to an equation with a degenerate kernel (see Sec. 15)
naturally leads one to think of replacing the given arbitrary
kernel K (x, t) approximately by a degenerate kernel L (x, f)

and taking the solution ¢ (x) oi the new equation

¢ (x)= angunoémw )

a

as an approximation to the solution of the original equa-
tion (1). For the degenerate kernel L (x, #) close to the given
kernel K (x, ), we can take a partial sum of Tailor’s series
for the function K (x, ¢), a partial sum of the Fourier series
for K (x, ¢) with respect to any complete system of functions
{u, (x)} orthonormal in L, (a, b), etc. We shall indicate some
error estimates in the solution (1) that occur when replacing
a given kernel by a degenerate kernel.

- Let there be given two kernels L(x, £) and K (x, {) and
let it be known that

, :
(1K, y—L(x, t)|dt <h

and that the resolvent kernel R;(x, t; A) of the equation
with kernel L (x, ¢) satisfies- the inequality

b
M&mnmw<R
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and also that |f(x)—f; (x)| <m. Then, if the condition
I—|[A(1+[A]R)>0
is fulfilled, it follows that the equation

4
P(x) =1 S K (x, 1)@ (t)dt+f(x)

has a unique solution ¢ (x) and the difference between thls
solution and the solution cp(x) of the equation

¢ (1) = f, (%) + 2 S L(xt)p(t)dt

does not exceed

A A h
90— (0] < PLHFr e 3)

where N is the upper bound of |f(x)| (see [8]).
For the degenerate kernel L (x, ¢), the resolvent kernel
Ry (x, t; A) is found simply (to within the evaluation of the

integrals); namely, if L (x, t)=kn2 X, (%) Ty (), then, put-
=1
ting

N oob

(X, (0T, () dx=a,

we get
D(x, t; A
Rp(x, t; W)=%2 (4)
where
0 X, () ... X, (x)
D(x, t; )= T;() 1—Aay, ... —Aa,, ’ (5)
T, Ay, ... 1—ha,, .
1—Xa,, -—Aay, —Aay,
D)= —Aa,; 1—MAa,, —Aa,, (6)

-------------
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The roots D (A) are the characteristic numbers of the kernel
L(x, ?).
One more estimate (A= 1). Let

K(x, t)y=L(x, t)+A(x, 1) (7)

where L(x, t) is a degenerate kernel and A(x, {) has a
small norm in some metric. Also let Ry (x, f), R, (x, t) be
resolvent kernels of the kernels K (x, ), and L (x, t), res-
pectively, and let ||A]|, || Rx|, || R.|| be the norms of the
operators with corresponding kernels. Then

lo—@ I <IAI-(L+HIReI)- (AR (®)

The norm in formula (8) can be taken in any function space.
"The following estimate holds true for the norm of the
resolvent kernel R of any kernel K (x, ?):

“R”<l_—|”7»—ﬂ||—K|T (9

And in the space C (0, 1) of continuous functions, on the
interval [0, 1],

1

1K)l = max S|1<(x ty| dt
|If|l= max If(x)l (10)
0<x<g 1

In the space of quadratically summable functions over
Qlax, b},

b b
IK||<<SSK’(x. t)dxdt> :

Ilfll=<Sf’(x)dx>2 i

Example. Solve the equation
1

¢(x)=sinx+ § (1—xcosxt) g (t)dt (1)
V]
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by replacing its kernel with a degenerate kernel.
Solution. Expanding the kernel K(x, {)=1—xcosx/ in

a series, we get
342 544
(% )=l—x+S——Z+... @

Let us take the first three terms of the expansion (2) for
the degenerate kernel L (x, t),

x3¢2

L (x, t)~l—x+ (3)
and solve the new equation
(B(x)=sinx—}—S(l—x—f—-x—gi)cB(t)dt (4)
0
From (4) we have
@ (x)=sinx+C, (1—x)+C,x® (5)
where
. Il 1
¢,=(owa, c,—5{rama (6)
0 0

Substituting (5) into (6), we get a system for determining
C, and C,.
We have

1
C,={Isint+C, (1—0) + ') dt = 5C, +4 C,+1 —cos 1,
0

1
o= 3 [[esine 4 €= +Cp)at =
0
=2L4CI+-11—2C2+ sinl—l—l——,.l,-cosl

or

2

-I—C ——IC =l—cosl,
Q)

11 . 1
24C +13 C, —sml—}—?cosl—l

6* 1583
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Solving this system, we get
C,=1.0031, C,=0.1674
and then
@ (x) = 1.0031 (1 —x) + 0.1674x® -+ sin x.

The exact solution of the equation ¢ (x)=1.
Now let us estimate ||¢—@|| using the formula

le—al <IA- L+ RelD X+ IR D-NFI )

In the metric of the L,-space we get
1
1 B |

1 ]
C 1
1048 —_
IAII< {éng tdxdt> =y < g3

(1 1 }2
ITKI<3\ \ (1 —xcosxt)?dxdt} =
it

{2 cos l——— cos 2+ sin 2—%}—2— < %

1
”L||<{§§(l——x+ﬁ;—ﬂ>zdxdt}‘ = l//1§4<% ’
00
1

1 . L
. D
Hfll= {35 smzxdx} =_V__2‘°’L <_15}_

We estimate the norms of the resolvent kernels R, and
R, using the formulas

[ES] L
“RK“< 1__]““[(” ’ ” RL” |7"| ||L||
where |A|=1. Hence, || RKII<§. Il RL“<7 but then
~ 1 3 3 3 .
||(P—(P||<m(1+-2->(1+7>-§<0.016

Find the solution of the integral equation in the following
cases by means of substituting a degenerate kernel for the
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kernel, and estimate the error:
1
302. ¢ (x)=e*—x— S x(e**—1) o () dt.

0
1

303. ¢(x)=x+cosx+ S x(sinxt—1) @ (£)dt.

0

1
304. ¢ (x) = (€% +3x—1)+ S(e-xf’-— 1) x (£) dt.
0

1
305. @ (x) =%+—;-sin x-l—S(l —cos xt2) xq () dt.
0

2. The method of successive approximations. The method
of successive approximations (iteration method) consists in
the following.

We have an integral equation

b
e()=F)+r§ K Howdt (1)

We construct a sequence of functions {g,(x)} with the aid

of the recursion formula
b

() =F )+ [ K (x, Do,y (Dl (@)

The functions g, (x) (n=1, 2, ...) are considered as appro-
ximations to the desired solution of the equation; the zero
approximation ¢,(x) may be chosen arbitrarily.

Under certain conditions

bb
M < 5 B=]/SSK’(x, t)dx dt (3)

the sequence (2) converges to the solution of equation (1).
The magnitude of the error of the (m - 1)th approximation
is given by the inequality

. \ B |m+1
(09— @i (0] < FCB- P2 aC,B- (A8 (1)

6*'
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F=]/§f2 (x) dx, (D=l/§(P§ (x)dx.'

—
Cl=]/ max SK2 (x, t)dt
a<x<ba

Solve the following equations using the method of succes-
sive approximations:

where

1
306. ¢ (0)=1+ {xr2q(t)dt.
0
1
307. @ ()= X+~ Sxtcp(t)dt
0

308. Find the third approximation ¢, (x) to the solution

of the integral equation
1

Q) =1+ K(x, yo(t)dt
0

where
[ t, x>t
K (x, t)—]x <t

and estimate the error.

Observe that the basic difficulty in applying the method
of successive approximations consists in computing the inte-
grals in formulas (2). As a rule, it is performed with the
aid of the formulas of approximate integration. Therefore,
here too it is advisable to replace the given kernel by a
degenerate kernel with the aid of a Taylor expansion and
only then to introduce the iteration method.

3. The Bubnov-Galerkin method. An approximate solution

of the integral equation
b

) =Ffw+r K@ o a (1)
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by means of the Bubnov-Galerkin method is sought in the
following manner. We choose a system of functions {u, (x)}
complete in L, (a, b) and such that for any n the functions
u, (x), uy(x), ..., u,(x) are linearly independent and we
seek the approximate solution ¢, (x) in the form

@, (%) = gl Qi (X) (2)

The coefficients a,(k=1, 2, ..., n) are found from the
following linear system:

b
(¢, (%), uk(x))=(f(x)uk(x))+7~<SK(x, H e, (8)dt, uk(x)>
k=12, ..., n 3)

b
where (f, g) stands for Sf(x)g(x) dx and in place of g, (x)

n
we have to substitute ) a,u,(x). If the value of A in (1)
k=1

is not characteristic, then the system (3) is uniquely solvable
for sufficiently large n and as n — oo the approximate so-
lution @, (x) (2) tends, in the metric L, (a, b), to an exact
solution ¢ (x) of equation (1).
Example. Use the Bubnov-Galerkin method to solve the
equation
1

oW =x+ § xto (t)dt (4)
=1

Solution. For the complete system of functions on [—1, 1]
we choose the system of Legendre polynomials P, (x)
(n=0, 1, 2, ...). We shall seek the approximate solution
¢, (x) of equation (4) in the form

3x2—1

Ps(x)=a,-1+a,x4a, 9
Substituting ¢, (x) in place of ¢ (x) into equation (4), we get

3x2 —

2 l=)c—|-‘§‘xt (al+a2t+a33t22_l)dt,
4!

a,+a,x+a,
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or

a,-l—azx—l-a,,gzg—l:x—]—x%% (5)
Multiplying both sides of (5) successively by 1, x, 3)‘—22_—1
and integrating with respect to x between the limits —1
and 1, we obtain

2a, =0,
2 2 4
TH=F Ty
—:-a,,:O

Whence a;=0, a,=3, a;=0, and so ¢, (x)=3x. It is easy
to verify that this is the exact solution of equation (4).

Use the Bubnov-Galerkin method to solve the following
integral equations:

1
309. 9 ()=1+ { (e +x9)0()dt.
=1

1
310. @(x) =145 x+ S(xtz—x)cp(t)dt.
g

1
311, p(x)=1—x(e*—e %) - szex’(p(t)dt.

-1

Note. The Bubnov-Galerkin method yields an exact solu-
tion for degenerate kernels; for the general case it is equi-
valent to replacing the kernel K (x, {) by the degenerate
kernel L (x, ¢).

25. Approximate Methods for Finding Characteristic Numbers
1. Ritz method. Suppose we have an integral equation
b
o =21 { K@ o at
a
with symmetric kernel K (x, {)=K (¢, x).

Choose a sequence of functions {¥,(x)}, ¥, (x)€L,(a, b)
such that the system {y, (x)} is complete in L, (a, b) and for
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any n the functions ¢, (x), ¥, (x), ..., P, (¥) are linearly
independent on [a, b]. We assume
n

(P,,(x) = kz ak‘pk (x) (l)

=1

and we subject the coefficients a, to the condition ||, | =1;
under this condition we seek the stationary values of the
quadratic form

(K®, @n)

We arrive at a homogeneous linear system in the coefficients
a,(o is a Lagrange multiplier):

k§l {(K¥), Vp)—0 (P, Pp)}a,=0 2
(i=1,2 ..., n)

For a nonzero solution (2) to exist the determinant of the
system (2) must be equal to zero:

(K‘pv ‘Pl)_a(\pv lI’l)(Kq’v ‘pz)—o(‘pu "-I’z)
B -(K‘lplr ‘pn)—o(‘pv ‘q)n)

(Klllp ‘pl)—o(‘pz' ‘pl) (K‘Pz. "~|’2)_0 (‘pzv ‘I’z)
.- '(K"pz’ ‘pn)_a(\pz» ‘pn) =0 (3)

.....................

(Kq’m llJl)—O ("pm "pl) (K‘pm "Pz)—'o(‘pm ‘pz) .
.- -(Klpn' \IJ,,)—G('tIJ,,, \pn)

The roots of equation (3) yield approximate values of the
eigenvalues of the kernel K (x, £). The largest of the roots
of equation (1) yields an underestimate of the largest eigen-
value. Finding o from (3) and substituting into (2), we seek
the nonzero solution a,(k=1, 2, ..., n) of the system (2).
Substituting the values of a, thus found into (1) we get an
approximate expression for the eigenfunction corresponding
to the eigenvalue that was found.

Example. Using the Ritz method, find the approximate
value of the smallest characteristic number of the kernel

K(x, t)y=xt; a=0, b=1.
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Solution. For the coordinate system of the functions vy, (x),
choose the system of Legendre polynomials v, (x)=
= P, (2x—1). We confine ourselves to two terms in for-
mula (1) so that

Py (x)=a1Po (2)6— l)+a2P1 (2X—1).

Noting that
P, =P,(2x—1)=1, ¢,=P,(2x—1)=2x—1

we find
1

1
By, )= dx=1; (9, ¥) = (b, v)={ @x—1ydx =0,
0

| n
(W ¥0) = [ @x—Dprdr=7
0

Further
1 1

1 1
(K, ¢1)=S<§K(x, 0¥, (t)dt)wl () dx—={ {xtdrdt = ¢
00

0 No

11
(K, 1P2)=SSxt(2x——l)dxdt=%
0

11
K, %)=th (2t —1) (2x— ) drdt =
00

The system (3) then becomes

1
—0

170
3

ol |-
8- sl

or
; 1 1
0?—o (E +T) =0
Whence o0,=0, 0,= % . The largest eigenvalue 02=% , hence,

the smallest characteristic number 7»=51;= .
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Use the Ritz method to find the smallest characteristic
numbers of the kernels (a=0, b=1):

312. K (x, t)=x%t2.

t, x>t
313. K (x, t)={ x-izt

b ~ v

TEE—D, x<t,
314. K(x, )={ 3

S H@—x), x>t

2. The method of traces. Let us use the term mth trace
of the kernel K (x, ¢) for the number

b

A,=S K, tadt

a

where K, (x, ¢) stands for the mth iterated kernel.
The following approximate formula holds true for the
smallest characteristic number A,, given sufficiently large m:

ES 1/14‘::22 (1)

Formula (1) yields the value |A,| in excess.
Traces of even order for the symmetric kernel are com-
puted from the formula

b b b x
A=K (6, tydxdt=2( (K2 (x, tydtdx (@)

aa

Example. Using the method of traces, find the first cha-
racteristic number of the kernel

K(x, t)={t’ x>t’ a—'_-'O, b=l

x, x<t

Solution. Since the kernel K(x, ) is symmetric, it is
sufficient to find K, (x, f) only for ¢ <x.
We have
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1 t
K, (x, t)=gK(x, 2)K (2, t)dz=S22dz+
0 0

x2t 3

X
+§ztdz—l—Sxtdz—xt—T—F

Then, from formula (2), we find for m=1 and m=2,
respectively,

A2=2§dx§K§(x, t)dt=25dx5t2 5%

0

c’I

=2 S x§K 2 (x, 1) dt =

0
0

13x2 13x {7 X313 xt5 X218 t=x
(T +rtrE— 1 3—0)

x5 x8 x5 X7 17
<3+ BtrE— 3"#%)‘”‘*@

Then by formula (1)

=2

i
[\
Oy Oy O(/j_. o

l

Y~ 17 =248
630
Use the method of traces to find the first characteristic
number of the following kernels (a=0, b=1):
315. K (x, t)=uxt.
316. K (x, ) =x22

%x(2—t), x<t,

B17. K(x, f)={ |
Ft@—x), >t
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—V'xtint, x<t,
—Vxtinx, x>t.

3. Kellogg’s method. Let K (x, {) be a symmetric kernel
which for definiteness we will consider to be positive defi-
nite, and let ®(x) be an arbitrary function in L,(q, b).
We construct a sequence of functions

b

o, =K, o,

a

318. K (x, t)={

b
0, (9) = | K(x, o, (1)1,
a (1)
R
0, ()= K (x, 1) 0,-, (1) dt
and consider the numerical sequence
[ 05—y i
{Irest) ®
Let ¢, (x), @,(x), ... be orthonormal eigenfunctions of the

kernel K(x,?) and let A, <CA,<C... be the associated
characteristic numbers. Further, let the function ® (x) be
orthogonal to the functions ¢, (x), ¢,(x), ..., @p—, (x) but
not orthogonal to the eigenfunction ¢, (x). Then the sequence
(2) has as its limit the kth characteristic number A,.

The sequence of functions {“g—”gg—”—} converges in this
case to some function, which is a linear combination of
eigenfunctions that is associated with the characteristic
number A,. The sequence

1
{{Vl_mnu } - O

converges to the same limit as does the sequence (2). If
(0, ¢,) 5= 0, we get two approximate formulas for the smallest
characteristic number: | |

[log-1]]

M~ T ()
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1
A —e—— 5
AT ©)

Formula (4) yields the value of A; in excess. If the kernel
K (x, t) is not positive definite, then formulas (4) and (5)
yield an.approximate value of the smallest absolute magni-
tude of the characteristic number of the given kernel. For
an apt choice of  (x) the Kellogg method is comparatively
simple for computation.

The drawback of the method is that we do not know
beforehand which of the characteristic numbers has been
determined.

Example. Use the Kellogg method to compute the smallest
characteristic number of the kernel K (x, ¢)=x%2 0<x,
t<< 1.

Solution. We take o (x)=x. Then

2
o, (x) =\ werrtdl =%,

................

Further,

1
1 1 1
“ o, (X) “T T Hu-1 VS xtdx = 4.5n-1 "/'3
0
Thus, by (4),

—_—

Using the Kellogg method, find the smallest characteristic
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numbers of the following kernels:

319. K(x,)=xt; 0<x, t<1,
320. K(x, t)=sinxsint; —n<yx, (<.

321. K (x, t)={t’ x2L v i<l

x, x < {;
7x@—0), x<1,

322. K(x, )={ |
-2-t(2—x), x=t;

0<x t<1.

181
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25.

ANSWERS

cp(x)=1+oS<p(t)dt

. cp(x)=—x+§<t—x><p(t)dt

¢ =cosx—{ (x—t) @ (t)at
0

¢ () =5—6x+{ [5—6(x—1)] () dt
0

X

¢ (1) =cosx—x— { (x—1) o () dt

¢(x)=x—sinx+e*(x—1)+ S [sinx—e*(x— t)]@(t)dt
¢

(x) = cos x—2x (1 +-x3)— § (1 %) (x— 1) o ()t
0

0

Q(x)=xe*+1—x(x2—1)—

_Sf [x-l— %(xz—x)(x—f)z] @ (¢)dt
0

x

@) =x(x+ 124§ x(x—t) @) dt

1
Vi
oM =) px? 12

24 COS X ) (x-ty
2-4-cost
a*-ter x-0

0

22,
24,

—— sinh V—?:(x—t)(h>0) 20, 1tV x=1)

T+ -t
T+ 2

cosh x o) (x=1)
cosh ¢
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26.
28.

9

et (x—t+2) 27 Lot gmoiet
2_j2 4341 [ 8 s,
2xe** - 29. 5oy [4t2+1_4e 2x t)]’

one of the solutions of the corresponding differential equa-
tion y, (x)-e-“

31.

34.

33.
37.
38.
39.

40.
42,

43.

44,

46.
48.
51.
54,

b7.
58.
60.

62,
64.
66.

T/-—_ sinh V' 2 (x—%) 32. 1 33. (x—1)e--v
;T [coshV5 (x— t)—I—V_ sinh T(x—t)]
2e*-t (1 4-x—t) 36. @ (x)=e2*
(p(x)=-é-e3"—-é—cosx+%sif1x

o (1) =3%(1—e™%)
(p(x)=e"sinx+(2+cosx)e"lnﬁz’0?

@ (x)=e*"-%—2x 41. @ (x)=e*"*2x (1 4 2x)
o () =e* (1)
cp(x)=ﬁ+xarctanx—%ln(l+x2)
()= (x+ )—1 45.(p(x)=e-x(’;i+1)
¢ (x)=sinx 47. ¢ (x)=cosx
@(x)=coshx 49. p(x)=1 50. @(x)=x

p(x)=e* 52. p(x)=2 B53. ¢(x)=2
@ (x)=x*—2x '56. ¢x)=0

sz(X)=1+x+%xz+%x3+$—ix‘+%x"—l-1]—8x"+6—13x7—
cps(x)=—x+-fl—4—f—;+% 59. p(x)=1

¢ =x—%5 61 ¢(x)=-(@Ee>—1)

g(x)=sinx 63. ¢(x)=5(2cosV3x41)
PE=2et1 65 oW =r+%

<P(x)— sinx+ 5 L sinhx 67.q>(x)=x_£6?
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68.

70.
72.

73.
74.

75.

76.

71.
78.

79.

80.
82.
84.

86.

88.

90.
92,

94.

P}
r(®\r(2
172 ( 2 D(n+1).xn+a-1
104. [=- 21+ ) 106. ¢ (x) = At

INTEGRAL EQUATIONS

@(x)=e* 69. q>(x)—-V._sm
¢ (x)=1+42xe* T71. q>(x)—e"(1+x)2

X in
(P(x)_:e —|—cos;+smx
¢, (x)=sinx, ¢,(x)=0

@, (X)=3e"—2, @,(x)=3e*—2e?*

1 —e“

(Pl(x)—exv (Pz(x)—'
f(Pl(x)—-(x-l-?)Smx-I—(?x—i—l)cosx,
lcpz(x)——cosx—%;l'l

@, (x)=2sinx, @,(x)=2cosx—1, @ (x)=x
¢, (x)=cosx, @, (x)=sinx, @,(x)=sinx+cosx

P, (x) = (1 —l—%) cosx—i——;—sinx,
{ cpz(x)=l—x—|—% sinx—(l —I—%) cos X,
l cps(x)=cosx—l—<l+%) sin x

sin x

¢ (x)=e"—1 8l. p(x)=—¢*
¢ (x)=gxsinx 83. ¢(x)=1—e-%—xe~*
@(x)=1—cosx 85. p(x)=1—x+
+ 2 (sin x—cos x)
e(¥)=(l—x)e* 87. (x)=c+2e-x
. e@=1)x
@ (¥)=cos x—sinx 89. ¢ () =75 ———

¢ (x)=cosx—sinx 91. ¢ (x)=1—x1In3
9=/ ()—[(x)Ina 9. g(x)=re”

x2

@ (x)=xe 95. @(x)=e? (x2+2)—1

" TI(l—a)T'(n+o

r(*3)
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Vx
109. ¢ (x)=
| (g &
110. ¢ (, y)=ﬁ<a-£--—ax—§>, where

and D, is a right isosceles triangle with vertex at the point
(x, y) and hypotenuse on the Ou-axis of the UOV-plane.

: 4 2x'/s 2
r(3)r(3) Vs
3
1 1 2t
113. q)()c)=r—5 ———1+;_”_7_
OINGERIC
114. ¢ (x)=3
115. @ (x)=sinx 116. p(x)=1 117. p(x)=e"*
118. cp(x)=1§x 119. ¢ (x)=cosx—2sinx
1 9

120. ¢ (x)=2x—x? 121. ¢ (x)=2sinx
122. @ (x)=3!(xe™*—x2™*) 123. ¢ (x)=J,(x)

124. (1) =1—% 125. () =1+2v+5 +5
126. We have x? —{2=x2—2xf {24 2xt —2/2 =
= (x—1)2+2¢ (x—1). Therefore
xa X X
F={—trewateftx—noewd
0 0
Taking transforms and applying the product theorem and

7-1583
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the theorem of differentiation of a transform, by virtue of
which ¢ ({)=—@’ (p), we get
2 2 2 .,
#= 3 P(P)—50(p)
or
@’ (p)= —CD(p)——
Solving this differential equation, we find
1
O (p)=C-p+35;

Since ®(p) is an image function, @ (p) should approach
zero as p — oo, so that C =0 and, hence, @ (p)=2—15 , whence

¢ ()=5.
127. ¢ (x)=C—x 128. p(x)=C+J,(2Vx)
129. ¢ (x)=C+x 130. @ (x) =268 (x)—8’ ()

131. ¢ (x)=06(x)—sinx
132. 9 (x)=08(x)+3 133. p(x)=14x+8(x)+ 6" (x)
134. ¢ (x)=1 135. ¢ (x)=J,(x)

136. ¢ (x)=—1;(x), I;(x) is a modified Bessel function
of the ﬁrst kind. In Problems 141 and 142 the indicated
functions are not solutions of the corresponding integral
equations, but in Problems 137 to 140 and 143 to 145, the
indicated functions are solutions.

2x—t4 <x+t——2xt——§-) A

146. R (x, t; A) = -
I
X2 —xt2 4 t(x+t —%—%) A

147. R(x, t; A) =
l-l—m-
148. R (x, t; A)=sinxcos?

sin x—sin {—mn (1 42 sin x sin ) A

149. R(x, t; A)= 11 2n2A2
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x+f4142 (\xt-{-—é—) A

150. R (x,t; A)= .
1—2A -3 A2

1+3xt+<3’-‘i2'—t—3xt—1)x
151. R(x, ¢t A)=

l—'27~+%;~2
4xt—x2—-<2x2t—%x2+x—%xt>l
152. R(x,t; A)= m
l—A+ 15
< -t
153. R(x,t; ) ="—
. ay_ sin (x4¢)+nh cos (x—1¢)
154. R(x,t;A)= i
—sinh{—2 (e~ +xsinh#) A
155. R(x, t; ) ="—— 1+4(1€e-1x2x51n )

156. ¢ (x)=1
1 6x—2) A—A2

157. ¢ ()= [x+%-§]

158. ¢ (x)=cos2x

159. ¢ (x) = e

3x (2A—3Ax}6
160. ‘P(")=%:wm’f—?;)

161. K,,_, (x, t)=(——§)""(x—t),
Ko (x, ty=2(—1y (%-Y—l(xt—{—%) (n=1,2 3, ...)
162. K, (x, )=00H0 T eosv—p), K, (x, t)=

4—nm2

16

163. K, (x, {) = (x4 + 20262 4o 2t +2
56 8 32 8
Ky, )=o)+ snep—2uail

164. K,,-; (x, {)=(2n)**~2(x4-sin{)
K, (x, H)=(2n)?»-1(14xsinf)(n=1, 2, ...)

sin (x— 1)

7*
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165. K, (x, £)=xet
166. K, (x, )=(—1y=* (T3 )" excost
x+1 -x-t
e (t—x—1)e5,0<x <1
167. Ky (t, =1 pert ) go-sct
e (x—t— 1) I<x |
O 'ﬁzile’-x, —1<<x<0
68. X, =
? e“f'eﬁx, 0<x<l
169. R(x, ¢; )= —-—ﬂ, IM < 5
170. R(x; £; N)=22025000 5 <9
+
171 R(x, & =T |M <5
. 3(14x)(1—t) .
172. R(x, t; ) =="—7"gr—; M <5 3
5x2¢2
173. R(x, ; M)=z=%; lx|<7
3xt
174. R(x, & =50 M <o
175. R (x, ¢; )»)_smxcost—l—cos 2x sin 2t
176. R(x, t; )= ;&+ 2"—')(2t—l) S
180. ¢ (x)= n_n_zl 31n2x+2x—
181. ¢ (x)=tanx
182. @(x)=- - A+cotx
1 2
183. ¢ (9= rorey
1
185. ¢ () =1=5157D
2)»2x+(}"—2—]-}w> Inx 6
186. ¢ (x)= 5 + = (1—4x)
14+2A2

48
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187. ¢ (x) =5— sinx; A=£2
188. ¢ (x)= kna sinx4x
189. @(x)=2 2 cos x+ A sin x

4+ %2
190. ¢ (x)= Ansmx—i—cosx

191. ¢ (x) =g (x+ 1)+

5
192.- ¢, (X)=0; ¢, (%)== l/?x
. 7 . _ 15 5
193. @, (X)=0; @, (X)=-5 %% @4, (x)—i‘”/—_fﬁc—l-fxﬂ
194. @, (x)=0; @, ,(x)=£3x* 195. ¢(x)=0
196. Has no solutions.
198. A, =—2; ¢, (1) =sin’x

n—

199. No. 200. A,=—; g, (x)=sinx

201. A, =2 , A, =—2-, ¢, (x) =sinx,

@, (x)=cos x
202. There are no real characteristic numbers and eigen-

functions.
203. A=A, =—3; @ (x)=x—2x?

1 5 10
204 }»1=?; cpl()c)=—2--x—|-—3—)c2
205. 7»1=%; (pl(x)=%x+-x2
206. x1=—21; ¢, (x)=sinh x 207. None

208. There are no real characteristic numbers and eigen-
functions.

209. A,=—n®n? @, (x)=sinnnx (n=1, 2, ...)

210. M =1; @y (x)=e*; A,=—n2n?

¢, (x)=sinnnx4nncosnnx (n=1, 2, ...)
211. A,,=—”;"; ¢,(x)=sinp,x+p, cosp,x, where

B, is a root of the equation p——li=2cot .
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212. A,=4n*—1; ¢,(x)=sin2nx (n=1, 2, ...)
213. )»,,=(n-|—%>2—1; ¢, (x)=sin (n+%>x
1—p2 .
214. h,=—=E2, ¢, () =sinp,(n+x (n=1,2 ...,
where p, are roots of the equation tan 2mpu=-—ptanl.
215. A,=1—p2; ¢,(x)=sinp,x+p,cosp,x, where p,

are roots of the equation 2cotnp= p—% .

2 .
216. A,,=H2'“”; ¢, (x)=sinp, x+p, cos pu,x, where p,

are roots of the equation 2cotp=p—-%.

217. A,=—1—p2;, ¢, (x)=sinp,x, where p, are roots
of the equation tanp=p (p > 0).

221. (a) &; (b) g (o) 1EEZ

222. ¢, (x)=1; @, (x)=2x—1;

223. @, (x)=2x; @, (x) =x?

224. ¢, (x)=1; @,(x)=1x; @,(x)=3x2—1

1 2
225. ho=—1, @ (¥)=1; ll=?
¢ (x) =sin 2x
3 2
227. hy=575, Qo (¥)=1; A,=(—1y" 74
oY (x)=cosnx, ¢ (x)=sinnx (n=1, 2,...)

228. (a)':lg_’ (P(x)=:!:V§x; (b)%, Q(x):il/%—x'

© L) p(x)== )/?—2_—1 ex 229. =3

230. There are no bifurcation points.

, @fP (x) =cos 2x,

C-sin x, 7»=_%

2

231, ¢ (x)=1 C-cosx, A==
| o sl
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239, ép(x)={ g.arccos X, ;;} 233, ¢ (1) =C
234. ¢ (x)=C| x| 235. ¢ (x) =C (x—x?)

bl
2

sinpx4-sinp (x—1)—pcosp x A>0
2u cos & ( cos i-I-E- sin £ ’ '
2 2 2 p

236. @ (x)=sin 237. @ (x)=x—2+ 2¢*

2
238. ¢ (X)=Y sinhpx+sinhp (x4 1)—p cosh px A <0
l 2 cosh % (cosh %—%sinh—g-) ’
where p = Voa

nsin 2nx

239. @ (x)=cos2x+ 43, (4n?—T) (4n*=3)
n=1

AcosVA+T (n—x)Fcos VAF1 n

(
| (A 1)cosn VA1 » h>—1
) Acosh V' =A—T (n—x)+cosh Y —A—1n .
240. cp(x)—{ AF1-coshn ¥V —rA—1 A<l
{%—nx—l—l, A= —1

241. ( 3 (sinh p 4 p cosh px)+sinh p (x—1)—2p cosh p (x—1)

(14-2u2)-sinh w4 3p coshp _

(x)_! A>0 (p=2V"%)
¢x)= 3 (sin p4+p cos px)+sin p (x—1)—2pu cos p (x—1)

(1 —2p2)sin p+3p cos p _

A<LO (p=2V —=1)

e-sinh V2 x
sinh V2 +V 2 coshV 2

—sinh 1.cos px T
1 sin —, A>1 (H—V?& 1)
244, ¢p(x)= sinh 1. cosh px . —
®(x) m”—,%<l (P'—Vl A)
no solutions if A=1.

242. p(x)=—1  243. 9(x)=
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coshp x——-—> .
if p=V'2%, A>0,

cosh——— i h&;
245. ¢ (x)= {
cosu x—— %
, if u=V —2A, A <0
l cos —+”—I-Isin—
o(x)=1if A=0; p is not a root of the equations
cosh ————smh =0,
cos—-+—sm ”2—n—- .

246. cp(x)=l+2_nxcoszx, K#%. No solutions for
r=2.
11

e

247. @(x)=7:ﬁx, ?v;é%. No solutions for A= —= .

P
248. ¢ (x) =x+-W, k#niz. No solutions for A = ;li

3x (2A2x— 202 — 5L —6) + (A + 3)2

9. p(x)= AT , A%=—3. No
solutions for A = —3.
s__ 3 F5)x }‘,;&.3_ }»#_i
5(4A+3 2" 4
250. ¢ (x)= A .
xs—ﬁx—l—sz if A=?

For A = —% there are no solutions.

_ [ sinx if As=1
51. (p(x)—{ C,cosx+C,sin2x+sinx if A=1.

x: 3 .
252. ¢ (x)= —-5 +5—tanh l1if A=—1;

. (u2—1) cosh px 1
P (X) - {cosh p,—p,sir]h ptanhl + 1 pe

if A=p2>—1, where n is not a root of the equation

(Wt lcospr
cospu-+psinptanhl

coshp=psinhp - tanh1; ¢(x)= 1 [
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if A=—(u®+1) where p is not a root of the equation
cosp+psinp-tanh 1 =0. In the remaining cases there are
no solutions.

_[E—=14+(E—=2)x, 0<<x<E
253 06 B={ 1), tene

254, It is obvious that the equation y"(x)=0 has an
infinity of solutions y (x) = C under the conditions y(0) = y(1),
y (0)=y' (1). Therefore, Green’s function does not exist for
this boundary-value problem.

255. Green’s function does not exist.

{ X (35—, 0<x<t
256. G(x, &)=

= (3r—F), E<x<I

fE—D a9y, 0<x<E
G(X, §)=

2

257. :
5 [£(2—x)(E—2) +E], E<x<]

x(x—=8HE=1
S o<kt

258. G (x, g)={ e

259. Green’s function does not exist. 260. Green’s func-
tion does not exist.

sinh k (§—1) sinh kx
k sinh k
261. G(x) g):{ sinhkgsinhk(x_l)

ksinh k

» 0 CE

, E<<x <]

cos (x—§—|-%)
— % o<x<t
QSin?

262. G(x, £) = cos(g_x+L)
- "2)

, E<<x <

S |
2sm7
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263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

INTEGRAL EQUATIONS -

Green’s function does not exist.

(e ) [HE—D—1]
G, 8= hF+H-+hH 0t
' BEADIH G—D=1) ¢ |
A+ HAH P SRS

- a+l—%,0<x<§
x, =
a+l—— ECxl
E—nt—1—26=D" o<t
G(x, &)= %
’ x—Inx—1—86=D e )
X 1
. ;(1—5—2), 0<x<E
_;'(x_“l_)r §<x<l
1
- g(a—g).0<x<a
" s (x—5). e
1 n__ (X n
aler— (8] s
xIng
—gEme—nr 0S¥t
GO D=V e
—gang—l)ﬂ’ SES
1
—ln , 0 x <§
2 |+
PR = +
_ 1n§, 0<x<t
G(x, &)= " '
nl_» ggxgl
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[1—x g1, s]

2(142) 2
273. G(x, ) =9 0<CTx<E (M=~ 1)
1—A -
5 —{-7») eﬁ—zl+x 5 eE x §<x<l
For A=1, G(x, §)=—%e-1‘-§| does not depend on /.
For A=—1 Green’s function does not exist.

274. y——'-x—% sin x 275. y=§(x2—4x+6)
276. y=- [(1—¢’) Inx+x2—1]

277. y=o= (2x—1)sinnx.

278. y=2[sinh x—sinh (x— 1)—sinh 1].

279. y=sinhx+4-(I—x)e*

280. y=2cosx+<2—¥> sinx 4+ x* —

I

281. y () =4 [ G(r. Dy dE+5—gx
0

{(25 )x, 0 x<E
where G (x, &)=

282. y(x)=A{G(x, By dE+e —ex+x—1
0

E—Dx 0<r<t
where G (x, §)={ x—1E E<x<
1 :
283. y(x)=A SG(x, £)y(8)dE+ S sin T+ 2 cos ¥
g
ism—(E, x), —1<x<§

here G(x, §)=1{ |
where 9 ® {%m;u—&§<x<l
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284.

285.

286.

287.

292.

. 294.
295.
296.
297.
298.

300.

INTEGRAL EQUATIONS

uy—-xgou y(E)dE 4 & (200 + 3x2—17x—5)

E—2)x4-5—1, 0<x<E
where G (x, §)={ E—1)x—1, E< <
1

Y= G(x, §y @ dE + 5 (2 —4x+6)
0

X (BE—x), 0<x<E

where G (x, §)={ Eﬁ(3x—§) < x<1
6 TS

1
y=—2[G(x §y@®dE+prx—D (@ +x—1)
0

X (=B E—1), 0<x<E
where G (x, §) = ;

—zEE—x)(x—1), E<x <1
1

y(=e-—2 (G ByE)d
0

(14+xE 0<<x<t
where G (x, §)={ (14+8x E<x<1

@ (x)=cosx  293. @(x)=x* —% (cosh x—cos x)
5

(=
¢ (x)= ( ) X3+ cosh 2x
cp(x)=,—_72[e*—x<e~—l)1

q>(x)=l—_lW(cosx+}» sin x)

@ (x)=1 IM [cos x+ A (x—sin x)]
oM=1Z% 29 ¢ =1tV me

0=+ 2V 2 (fwsinndt (a11)
0
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2
V(43
302. ¢ (x)=e*—x—0.5010x2—0.1671x* —0.0422x*;
|@—@|< 0.18; the exact solution ¢ (x)=1
303. (IJ(x)=cosx+%[78——78-sinl—24-cosl+x(84sinl—|—
+ 108cos 1—84)]; | g— ¢ | < 0.040; the exact solution ¢ (x) = 1.
304. § (x) =5 (e*43x—1)—0.252x24-0.084x%; [o—G | <
< 0.016; the exact solution ¢ (x) = x.
305~. @(x) :%—l—-;- sinx 4 (%ﬁ—% sin l—‘?—?) cos 1) X
| p—¢| < 0.0057; the exact solution ¢ (x)=x.

306. g ()=1+5% Gr)=1

307. ¢, (x)= (l—%) X, @, (x)=0; the exact solution
@ (x)=x.

308. @, (x)= l—|—%—§ x—%xz—%xa—l-%x‘—mx“—%ﬁ x5

@, (x)=1; the exact solution ¢ (x)=rcosx—+tanl-sinx.

309. @4 (x)=6x241 is the exact solution.
310. ¢, (x)=1 is the exact solution.

301. p(x)=e"*+

1

311, gy (x)=1 is the exact solution.

312. Al=5% (exact value A, =5).

313. A, =2.486; A, =32.181. 314. A, =4.59
315. A, =3 316. A, =5 317. A, =4.19
318. A, =5.78 319. A, =3 320. A, =4

321. A, =2.475 822, A, =4.998



APPENDIX

SURVEY OF BASIC METHODS FOR SOLVING
INTEGRAL EQUATIONS

I. Volterra Integral Equafions

Volterra integral equations of the second kind:

e0)=F(0)+A (K(x, Do)at (1)

1. Method of resolvent kernels. The solution of equation
(1) is given by the formula

x

e)=FW+nr R, t; W) dt 2)

a

The function R (x, ¢; A) is the resolvent kernel of the integral
equation (1) and is defined as the sum of the series

R, t; x)=n20 MK, (% 1) 3)

where the iterated kernels K,,,(x, {) are found from the
recursion formula

Ky, .y (%, t)=tSK(x, 2)K, (2, t)dz } )

Ko, )=K(x, ) (n=1, 2,...)

2. Method of successive approximations. The solution of
equation (1) is defined as the limit of a sequence {g, (x)},

n=0, 1, 2,..., the general term of which is found from
the recursion formula
G () =F )+ §K(x, ) @pey (t)dlt (5)

0

It is often convenient to take the function f(x) as the zero
approximation @, (x).
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3. Volterra integral equations of the second kind of the

convolution type

<un=ﬂn+§xu—n¢GWt (6)

are- solved with the aid of the Laplace transformation.
Let f(x), K(x) and ¢(x) be original functions and let

fFR)=F (@), Kx=K(@), ox)=(p)
Taking the Laplace transforms of both sides of equation (6)
and utilizing the product theorem, we find

F(p) g
D(p)=—t—, K 1 7
(p) X (p) # ()
The original function ¢ (x) for @ (p) will be the solution of
equation (6).
4. Volterra integral equations of the first kind

x

(K, howydt=Fw ®)

0
where
K(x, x)#0

are reduced, by differentiation, to Volterra integral equations
of the second kind of the form

' (K (x, ¢
o=l — (| REgomd ©
0

5. Volterra integral equations of the first kind of the
convolution type

{ K (x—t)p(t)dt=Ff (x) (10)
0

are solved with the aid of the Laplace transformation. If
f(x), K(x) and @ (x) are original functions and

fx)=F(p), KN)=K(p), ox=D(p),
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then, by taking Laplace transforms of both sides of (10)
and applying the convolution theorem, we obtain

F (p)
D (p)==—= 11
(p) K (p) an

The original function ¢ (x) for the function (D(})) will be
the solution of equation (10).

11. Fredholm Integral Equations

Fredholm integral equations of the second kind:
b
o()—2 [ K(x, Do) di=( (12)

1. Method of Fredholm determinants. The solution of
equation (12) is given by the formula
b

e =Fx)+r TR, & 2 f ()t (13)

a

where the function N
D(x, t;
R(x, t; x)=—(%)’; DM==0  (14)

is called the Fredholm resolvent kernel of equation (12).
Here,

Dx, i V=K, )+, LB, (v, hir (1)
n=1

D=1+ EX¢ (16)
n=1

n!

The coefficients B, (x, f), C, are defined by the relations
B, (x, {)=

Kx, t)y K(x, t)) ... K(x, t,)

L K0 Kt 1) K, 1)

=S L S K(t'z’ t) K(lw tl)"‘ K(ta’ t") dfl dt,,

..............
a

\q oooooooooooooo 17
" K(tm t) K(t", tl) e K(tn’ tn) ( )
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B, (x, 1) =K (x, 1),

b b
C,,=S...g X
a a

n

K(ty 1) K(b ) ... K (t 1)
Kl 1) Kl 1) o Kby 1)
Kty 6) Klfo 1) oo Ko ) |y (1)

...............

...............

K(t, t,) K(t, t,) ... K, 1)

The recursion relations are

b

B,(x, ) =C,K (x, t)—n { K(x, $)B,-1(s, O)ds, (19)

b
Co={ Buoi(s, 9ds (n=1, 2,...),
C,=1, By(x, {)=K(x, ?) (20)
2. The method of successive approximations. The integral

equation (12) may be solved by the method of successive
approximations. To do this, assume

9=+ T bu (91 (1)

where 1, (x) are .determined from the formulas:

b

4,0 =K@ 0f@a,

a

b b
b, ()= K(x, o dt= (K, (v, OF (),

b b
Do () = (K (%, ), (0)dt = K, (x, )f(t)dt and so forth.
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Here,

Kz (x’ t)': K(x’ Z)K(Z, t)dZ,

Ky(x, )= K(x, 2)K, (2, t)de

nmv R o

and, generally,
b

K,(x, )= K(x, 2K, (2, )dz, n=2, 3,... (22)

where K, (x, {)=K (x, ¢).
The functions K, (x, ¢) defined by formulas (12) are called
iterated kernels.

3. Integral equations with degenerale kernel:
b

o] | S aw nolea=rw @

a

The solution of equation (23) is

o) =10 +1 3 Cuar(9) 249
where the constants C, are found from the linear system
(1—2ay,)Ci—ha; ,Co— ... —2a,Co=f,

_'}”azlcl + (1 _xaaz) C2 —7»(12,, fz’

(25)

—Aanlcl—xanzcz_ et (l _Mnn) Cn = fn
Here,
b b

tm=$ 0, (00, ) dt; =S b0 F )t (26)

a

(k, m=1,2,...,n).

If the determinant of the system (25) is not zero, then
equation (23) has a unique solution (24).

4. Characteristic numbers and eigenfunctions. The value
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of the parameter A 5=0 for which the homogeneous I'redholm
integral equation of the second kind
b

e—Ar{Kix, eydt=0 27)

a

has a nonzero solution ¢ (x) == 0 is called the characteristic
number of equation (21) or of the kernel K (x, {), while the
nonzero solution of this equation is called the eigenfunction
associated with the characteristic number A,

If the kernel K (x, ¢) is continuous or quadratically sum-
mable in the square Q{a<Cx, ¢<Cb}, then to every chara-
cteristic number A there correspond a finite number of line-
arly independent eigenfunctions.

In the case of an equation with a degenerate kernel

b

o(—2§ LZ @ (0 b, (t)] o(dt=0 (28)

a

the characteristic numbers are roots of the algebraic equation

l—Aa,, —Aa, ... —Aa,,
—Aa,, l—ha,, ... —Aa,,

AA)=[- « « « ¢« « « o« o . -[=0 (29)
—AMa,,; —M\a,, 1—Aa,,

where A (M) is the determinant of the system (25); the degree
of this equation is p<Cn.

If equation (29) has p distinct roots (1 < p<Cn), then the
integral equation (27) has p characteristic numbers A, A,, .. ., A,
to which correspond the eigenfunctions

n

P (x)=k2 CiMay(x) (m=1, 2,..., p) (30)

=1

Here, C{™ (k=1, 2,...,n) is the solution of the system
(25) that corresponds to the characteristic number
Az(m=1, 2, ..., p). For an arbitrary (nondegenerate) ker-
nel, the characteristic numbers are zeros of the Fredholm
determinant D(A), i.e., they are poles of the resolvent
kernel R (x, ¢; A). .
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If the kernel K (x, f) is Green's function of some homo-
geneous Sturm-Liouville problem, then finding the characte-
ristic numbers and eigenfunctions reduces to solving the
indicated Sturm-Liouville problem.

5. Nonhomogeneous symmetric Fredholm integral equa-
tions of the second kind:

b

@)=\ K (x, yg(t)dt = (x), 31)
K(x,t)=K(t, X).
Let A,(n=1,2, ...) be the characteristic numbers and

¢,(x) (n=1, 2, ...) the associated eigenfunctions of the
kernel K (x, f).

(a) If the parameter A=A, (n=1, 2, ...), then the inte-
gral equation (31) has a unique solution continuous on [a, b]:

90 =) =4 255 0u () (32)
where ,
a,= (0 o,(xde (33)

a

The series on the right of (32) converges absolutely and
uniformly on [a, b].

(b) If the parameter A coincides with one of the characte-
ristic numbers, say A=2X,, of index ¢ (the multiplicity of
the characteristic number A,), then equation (31) has an
infinite number of solutions when and only when f(x) is
orthogonal to all eigenfunctions of the characteristic number
Ay, i.e., when the g conditions are fulfilled:

b
(fonndx=0  (m=1,2 ....,9)  (39)

a

All these solutions are given by the formula

P =fW—A X 72,0+

n=q+1

+ Cl(pl (x) + Czq)z (x) + e + Cq(Pq (X) (35)
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where C,, ..., C, are arbitrary constants, ¢, (v), ..., ¢, (1)
are elgenfunctlons of the kernel associated with the cliara-
cteristic number A,.

If even one of the g conditions (34) is not fulfilled, then
equation (31) has no solutions.

If the function f(x) is orthogonal to all eigenfunctions
¢, (x) of the kernel K (x, ¢), then this function will itself
be a solution of equation (31): ¢ (x)=Ff(x).

6. Fredholm integral equations of the second kind whose
eigenfunctions are classical orthogonal functions:

1l
@ ¢x)—2r §K(x, Ho)dt=0 (33)
0
where
’M x<t
l ’ S ’
K(x, §)=1 .

(x, 7) t(l;—x)’ f<x

The characteristic numbers are
ain \2
h=(7)
The eigenfunctions are @, (x)=sin“—';x (n=1,2,...)

1 1
® ¢@—4 [ K e di+5 | oydi=0
-1

-1

where

ln:if, x<t,
K(x, t)=

14-¢
—2—ln|_x t<x

The characteristic numbers are A,=n{(n-+1). The elgenfﬁn-
ctions are ¢, (x)=P,(x), where P »(x) are Legendre poly-
nomials defined by the iormula

P, (x)= S (e—1)p

2"nldx"
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Since P,(x)=1 and P,(x)=x, it follows, using the recur-
sion formula

(n+ 1)Pn+1 (x)=x(2n+l)Pn (x)+npn—i(x)’

that it is possible to find Legendre polynomials of any
degree n=2, 3, ...

@

©) cp(x)—x§1<(x, o (t)di=0

1 x \»
[ w(F) =
K""”‘{;(;)n (<

The characteristic numbers are A,=a2, where «, are roots
of the transcendental equation J, (o) =0. The eigenfunctions
are @, (x)=J, (a,x), where J,(x) are Bessel functions of the
first kind of order v. Bessel functions of the first kind are
defined by the formula

1= (5) S rrite (5)°

+ ®

d) e—r § Kx, Hot)dt=0

0

where

where

The characteristic numbers are
A,=n-+1
The eigenfunctions are

P.(x)=e %Ln ()
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where L, (x) are Chebyshev-Laguerre polynomials defined hy
the formula

L (1) =" g5 (x7e™)
Using the recursion formula
Lyyy(9)=@2n+1—x)L,(x)—n’L,_,(x) (n=1),
it is possible to obtain Chebyshev-Laguerre polynomials of
any degree n, knowing that L,(x)=1 and L, (x)=—x+1.

+ ®

© o)—r § K(x, o@ydt=0

where
x2+ 2 x + >

-2 -
Se‘dt;ge dv, x<{t,
+

1
K(x’ t)= ):’+tz t )

Vln 5 e~v dt S eTdr, t<<

The characteristic numbers are
ho=2(n+1) (1=0, 1,2, ...)
The eigenfunctions are
@ (%) =e,—%’ H,(x)

where H,(x) are Chebyshev-Hermite polynomials defined
by the formula

H (x)——(—-l)"exz —-e-x =
=(2x)n_”(”l_ll) (2x)*-2 + n(n-—l)(nm—2) (n—3) Qx4+ ..

Knowing H,(x)=1 and H,(x)=2x, it is possible to obtain
Chebyshev-Hermite polynomials of any degree by using the
recursion formula

Hn+1 (x)=2xH, (X)-—2IIH,‘-1 (%)
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