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Preface

This booklet is intended for high-school students interested
in mathematics. It is concerned with approximating real num-
bers by rational ones, which is one of the most captivating
topics in arithmetic.

In the last decade, some young mathematicians, and not
only young mathematicians, have shown a negligent attitude
towards “classical” and “pure” mathematics in contrast with
“modern” and “applied” mathematics. This stance is fully
unjustified.

First, mathematics rests on a foundation of numerous clas-
sical theories, facts and findings which must be known to every
mathematician. For instance, the theory of continued fractions,
a part of classical pure mathematics, is widely used nowadays
to calculate numerical values of functions by means of com-
puters.

Second, while science develops, many of its theories become
obsolete and “dry up”, like some branches of a tree. Quite a
few do, yes, but not all of them. There are theories which
survived centuries (or even millenia) and still retained their
significance.

Continued fractions represent one of the most perfect crea-
tions of 17-18th century mathematicians: Huygens, Euler,
Lagrange, and Legendre. The properties of these fractions
are really striking.

The following should be borne in mind when reading this
booklet.

Topics easily understandable are presented in normal print,
while those more difficult are given in small print. Proofs of
some theorems given in small print may be omitted safely.
These theorems will necessarily be taken for granted.

However, mathematics is not just reading for entertain-
ment. A future mathematician as well as a physicist or an

7



engineer has to acquire skill in dealing with mathematical
constructions and proofs. So take a pencil and a sheet of pa-
per and study carefully the topics given in small print. You
may succeed in simplifying some proofs or finding better
ones.

The theory of continued fractions is vast. This booklet
covers only its fundamentals, but it contains everything that
may be useful for a layman interested in mathematics. Pro-
fessional mathematicians need to know much more.

Nikolai Beskin



Chapter 1

Two Historical Puzzles

1.1. Archimedes’ Puzzle

1.1.1. Archimedes’ Number. Many people believe that only
a distant journey, preferably to outer space or the ocean
bottom, could enable them to meet anything extraordinary,
for the everyday life is so familiar that can show up no un-
usual facets.

What a delusion it is! Our surroundings are full of puzzles
which go unnoticed because they seem to be habitual.

This chapter tells us a story of two enigmatic, yet familiar,
episodes from the history of mathematics.

High-school students the world over know from the course
in geometry a symbol n which denotes the ratio of the cir-
cumference of a circle to its diameter.

The letter t is the first letter of the Greek word
nepupepeta which means “circle”. An English mathematician
Jones was the first to introduce the symbol m in 1706. In
1736 Euler adopted this notation instead of the symbol p he
previously used. Since then the symbol nt has come into gen-
eral use.

From the most ancient times mathematicians sought a
value for the number 5. Archimedes determined its approxi-
mate value as 22/7*. This fact is so well known that hardly
anybody suspects that it conceals a mystery. Who ever asks

* Actually Archimedes gave a different formulation to this result
in his book On the Measurements of the Circle. He determined for n
its bounds: 3 ;—? <n <3-;— . To quote Archimedes, “The circumference
of any circle equals three times the diameter plus an excess which

is less than one seventh of the diameter but greater than 7 of it.”
1
Although the value of n is closest to 3;—(1) as compared to 3—7 ,

the simpler value 3% is the one in general use.



why Archimedes chose a fraction with 7 for denominator?
What would happen if it were approximated by a fraction
with denominator 8?

This question proves to be of extreme interest.

1.1.2. Approximation. Mathematicians often encounter a
problem of replacing an object (a number, a function, a fig-
ure, etc.) by some other object of the same nature, which is in
some sense sufficiently near to, but simpler than, the original
one. This replacing is called the approximation. In the general

o J+a
t O—- i } O——
0 ! 2 J 4
Fig. 1

case it requires that a set of objects be singled out and the
sense of the phrase “sufficiently close to” be defined. We shall
not discuss this general problem and restrict ourselves to the
approximation of real numbers.

Let us consider the set of all real numbers. The conven-
tional notation for this set is R. Real numbers may be of com-
plicated nature, e.g. irrational numbers, or be cumbersome,
e.g. fractions with large denominators.

It is worth explaining why cumbersomeness of a fraction is
evaluated by its denominator. (We remind that a fraction is

a number %where p and g are integers, and q==0; therefore,

V3 and - are not fractions.) If we are mainly interested not

m the magnltude of a real number o but in its arithmetic
nature, we need to know the position of o between two con-
secutive integers » and n + 1. The addition of an integer to
the number o will not change the arithmetic nature of o
(this statement does not hold for that branch of arithmetic
which deals with integers). Figure 1 shows two numbers «
and 3 + a identically located within segments [0, 1] and
{3, 4] (the term “segment” is defined on p. 41). For instance,

the numbers — 39 _97 and — 3 ——are identically located within

the correspondmg segments [97 98] and [0, 1], and thus there
are no reasons to regard the former as being more complicated
than the latter. This implies that an analysis of the nature of
the numbers within the segment [0, 1] would be quite suf-
ficient since the same pattern is reproduced within each seg-
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ment [r, n + 1]. This is why we are concerned only with the
denominator when evaluating the cumbersomeness of a frac-
tion.

Let us single out a subset of fractions with a given denomi-
nator ¢ from the set R of all real numbers. The distance be-

tween a number o and a fraction % is ’ a—%l . Now we can

give an interpretation of the

problem of the approximation g
—Q-—o_"_
of real numbers as follows: to p-1 p-1 P
. _— AL __— -
approzimate a real number o by q =77 q

a fraction with q denominator
which is the closest to o among
all fractions with q denominator. «

If we mark all fractions with VX I
¢ denominator on the number 7 ~q 7
line, the number o will fall .
within an interval between Fig. 2
two fractions or coincide with one of them. The latter case is
trivial, and we can write that

p—1
q

r
<o <

Of these two fractions the one nearest to o is chosen as its
approximation (Fig. 2).

It could happen that o is the middle point of the segment
[ﬂ s L |, This and only this case implies that there exist

two solutions of the problem. For the sake of definiteness, we
choose to adopt the left-end point of the segment as the ap-
proximation of a.

It is clear, therefore, that a fraction with any denominator
can approximate the number «, that is, the choice of ¢ deno-
minator is a matter of preference.

Approximation is employed when it is necessary to use a
rational number instead of an irrational number. It is also
applicable to replacement of rational numbers by less cumber-

some ones, i.e. by numbers with smaller denominators. For
instance, the approximation of the number 33—22 by the frac-

tion with denominator 12 is

2036 5
=Tz

7043
11



since

5 203 6
2 <7043 <12’

2936 . 5 6
where 7043 is nearer to =0 than to -

The approximation of real numbers by decimal fractions has
long been in general use. However, decimals were yet unknown
in Archimedes’ time*, and he could choose fractions with
arbitrary denominators to approximate the number n. Why
did he prefer fractions with denominator 77 Could it be
purely accidental?

1.1.3. Error of Approximation. A real number o is approxi-

mated by a fraction% with an error

A

A=a—%,

A

where £ stands for the end point of the segment [% , %]

which is the closest to a.
The error is thus the exact value of o minus its approximation.

Therefore, the error is positive if%:% , and negative if

p—1

l"@)

q g
The absolute value | A | of the error is called the absolute
error.

It is clear that the absolute error does not exceed 2iq (see
Fig. 2):

1
A< 4

The number ;—q is the upper bound of absolute error. The

upper bound depends on the choice of approximation. For

* Decimal fractions became known in Europe at the end of the
16th century, although in the Orient they had been used since the
end of the 15th century. They were invented by the Flemish scientist
Simon Stevin. Here is what the English writer Jerome K. Jerome had
to say on the matter: “From Gent we went to Bruges (where I had
the satisfaction of throwing a stone at the statue of Simon Stevin,
who added to the miseries of my school-days by inventing decimals),
and from Bruges we came on here.” (Diary of a Pilgrimage, the entry
for Monday, June 9.)

12



instance, if we agreed to approximate the number o by the

left-end point of the segment [pT_i s %] , then the upper

bound would be .
1.1.4. Quality of Approximation. The absolute error approach-
es the upper bound if « is the middle point of the segment

—1 ..
[pq_’ %] . This is the most unfavourable case. If, however,

aisveryclose to one of the end

points, the actual absolute error £

may be considerably smaller 7

than the upper bound. T
This observation suggests

that the evaluation of the

quality of approximation is re-

quired. It is clear that the ap- Low quality

proximation of a number a. by a

fraction with a small denomi- Fig. 3

nator is appropriate if the error

is small; or, to be more precise, if the absolute error is sub-

stantially less than the upper bound of the error (Fig. 3).
In order to evaluate the quality of approximation, we have

to estimate the ratio of the actual absolute error to the upper

bound on the absolute error

absolute error _ le—p/q|
upper bound on absolute error ~ = 1/2g

1-<:|*=

o

High quality
p-1
q a

O

tafs

=2|ga—p|.

It is convenient to consider one half of this ratio denoted
by k and called the normalized error,

h=|gqa—p|. (1)
The normalized error h is thus one half of the ratio of the

actual absolute error to the maximum possible error. 1t is obvi-
ous that

0<h<4.

The quality of approximation is the higher, the less % is.
We call the quantity

1 1
M=o = T (2)

the quality factor. It has a simple and lucid meaning: The
quality factor of approximation is the factor by which the actual
absolute error is less than the mazximum possible error. 1t is ob-

13



vious that
1< < oo,

and the greater A, the better the approximation.

It would be wrong to expect fractions with greater deno-
minators to be more useful. It could happen that the approxi-
mation of the number o by a fraction with the denominator 8
is less accurate than that by a fraction with denominator 7.
Let us have a look at the number 7, approximated by fractions
with denominators from 1 through 10 (see Table 1). We omit
the calculations, leaving them to the reader.

Table 1
o |t (it | | | s
1 2 5-=0.5000 | 0.1416 | 0.1416 | 3.5
2 - %:o.zsoo 0.1416 | 0.2832 | 1.8
3 + L0667 | 0416 | 0.4248 | 1.2
4 —143 %:0.1250 0.1084 | 0.4336 | 1.2
5 2 S5=0-1000 | 0.058 | 0.2020 | 1.7
6 1—: 25 =0.0833 | 0.0251 | 0.4504 | 3.3
7 2z 2-=0.0714 | 0.0013 | 0.0089 | 56.5 ()
8 -283 25=0.0625 | 0.0166 | 0.4327 | 3.8
9 % S5 =0.055 | 0.0305 | 0.2743 | 1.8
10 % J5=0.0500 | 0.046 | 0.4159 | 1.2

This table demonstrates that the approximation of m by
fractions with denominator 7 is more accurate than that by
the other fractions. The actual error is less than its upper
bound by a factor of 56.5.

Figure 4 shows the location of m on the number line. Acci-
dentally (but is it indeed accidental?) m happens to be quite

14



close to 3;. If it were prescribed to approximate m with the

absolute error less than or equal to 0.0013, how would we
proceed? We would write down the condition

2 <o0.0013,
29

whence ¢ > 385. Archimedes had achieved the same accuracy
using a much smaller denominator. It is worth mentioning
here that fractions with denominator 385 make it possible to
approximate any real number with an error less than 0.0013,
while fractions with denomina-
tor 7 are more preferable for ,
approximating the m number. 3
Archimedes’ choice could not
therefore be accidental. But
how did he make that choice? .
Many centuries later (in 1585)
a Dutch scientist from Metz,
Adriaen Antoniszoon (also
known as Adriaen Antonisz)

found an approximate value
355 Fig. 4

Ve for .

This result has been published after Antoniszoon’s death,
by his son Adriaen Metius, so that the value 355/113 is tra-
ditionally called Metius’ number. Metius’ number has the
same striking property as Archimedes’ number: the actual
error is less than it could be expected for the denominator 113.
We invite the reader to examine Metius’ number in the same
way as Archimedes’ number has been analysed.

There is no doubt that Metius’ number was not an acciden-
tal discovery. In fact, it was known long before Adriaen Anto-
niszoon happened to find it (see, e.g. Struik’s book in the
Bibliography).

-
Rl

3

o)<

w
|

»—————J-———— -
f

3

W+
S|
]
|

1.2. The Puzzle of Pope Gregory XIII

1.2.1. The Mathematical Problem of the Calendar. Pope
Gregory XIII was not a mathematician but his name is asso-
ciated with an important mathematical problem, that of the
calendar.

Nature has supplied us with two obvious time units: the
year and the day (solar day). We even read in one old text-

15



(2
Farth's o7

Fig. 5

book on cosmography: “Unfotunately, the year does not com-
prise an integral number of days.” We could not but agree
with this complaint because the fact does bring a lot of in-
convenience. However, it also generates an interesting mathe-
matical problem.

1 year = 365 days 5 hours 48 minutes 46 seconds
= 365.242199 days*.

It would be impossible to enact and implement this dura-
tion of the year in civil life. But what if the civil year is
declared exactly 365 days long? Figure 5 shows the orbit of
the Earth. On January 1, 1985, at midnight, the Earth was
at point A. On January 1, 1986, at midnight, it will be at
point B, and next January 1 it will be at point C; and so
forth. As a result, if we mark on the orbit the position of the
Earth corresponding to a fixed date, this position will not
be the same each year but will retard by nearly six hours.

* Neither the astronomical aspects of the calendar (such as vari-
ation in the length of the year) not its history are analysed here in
detail; we concentrate only on one mathematical problem connected
with the calendar. We recommend that the reader interested in these
details look them up elsewhere.

16



The lag will build up to almost one day in four years, so that
the fixed date will gradually slip among the seasons, that is,
January 1 will move from winter first to autumn, then to sum-
mer. This would be inconvenient because periodic events such
as crop sowing or the beginning of school year could not be
tied to fixed calendar dates.

We know how to remedy the situation. Some years must be
decreed to have 365 days, and some 366, in order to have the
average duration of the year as close to the true duration as
possible. This approach can approximate the true duration
with any prescribed precision, but the required rule of alter-
nation of shorter (ordinary) and longer (leap) years may be
undesirably complicated. We need a compromise: a relatively
simple pattern of alternation of the ordinary and leap years
which brings the average length of the year sufficiently close
to the true value.

1.2.2, Julian and Gregorian Calendars. This problem was
first solved by Julius Caesar. Or rather, by the Alexandrian
astronomer Sosigenes who was called for this purpose to Rome
and given the job. The system introduced by Julius Caesar
was asfollows: threesuccessiveshorter (ordinary) yearsfollowed
by one longer (leap) year. Much later, when the Chris-
tian chronology has been introduced, it was decided to have
leap years when the number of the year was an integral mul-

tiple of 4.
This calendar is called the Julian calendar. The average

length of the year in the Julian calendar is 365% days =

365 days 6 hours or 11 minutes 14 seconds longer than the
true length.

The Julian calendar was improved by Pope Gregory XIII.
In fact, calendar reforms had been proposed and elaborated
long before but were never implemented. In 1582 he enacted
the calendar reform. The alternation of ordinary and leap
years was retained, with an additional rule: If the number
of the year ends with two zeros but the number of hundreds is not
an integer multiple of 4, the year is treated as ordinary. For
example, this rule classifies the year 1700 as an ordinary and
the year 1600 as a leap year. Furthermore, assuming that the
error accumulated “since year 1 A.D.” was 10 days, Pope
Gregory XIII ordered to add 10 days to the current date,
namely, to consider the day following the Thursday, October 4
of 1582, as Friday, October 15. There more days have been
accumulated since then (in 1700, 1800, and 1900). Conse-

2-0293 17



quently, at this moment the discrepancy between the Julian
and Gregorian calendars is 13 days).

What is the average length of the Gregorian year? Of 400
years of the Julian calendar, 100 are leap years, while four
Gregorian centuries contain only 97. Hence, the average Gre-
gorian year has 365[% days = 365.242500 days = 365 days
5 hours 49 minutes 12 seconds, or 26 seconds longer than the
true length of the year.

We see that very high precision has been achieved by quite
simple means. How could this result be achieved?

This question will be answered in Chapter VI.



Chapter 2

Formation of Continued Fractions

2.1. Expansion of a Real Number
into a Continued Fraction

2.1.1. Algorithm of Expansion into a Continued Fraction.
Let us forget for a time the decimal number system. The
brilliant Soviet mathematician Nikolai Luzin (1883-1950)
used to say in his lectures that “the advantages of the decimal
system are zoological, not mathematical. If we had eight
fingers on our two hands instead of ten, mankind would operate
in the octal system.” Decimal system is indeed very conve-
nient in practice but it is inappropriate when theoretical
aspects of arithmetic are discussed.

We thus forego the decimal and any positional number sys-
tem, that is, we take Archimedes’ place and ask ourselves:
What would be the most natural approach to estimating a
real number?

This question is answered without hesitation: the first step
is to indicate the integers between which our number lies.
For example,

g—; lies between 2 and 3,

V 2 lies between 1 and 2,
n lies between 3 and 4.

Of course, it is sufficient to indicate only the lower of these
bounds:

61
T=2—|-x O<z<),

Ve=1+y O<y<?),
n=3+z 0<z<).

Note that this estimation is not bound to any specific no-
tation of integers, that is, to a specific number system.

Let us continue with the number % . Our estimate “two plus
something” is too rough and constitutes only a first approxi-
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mation. If we want to make the second step, we have to esti-
mate the “makeweight” z. Since z is less than 1, it is logical
to represent it by a fraction with numerator 1 (we again appeal
to “acting natural”, but we do it for the last time):

61 1
=2+

Now z, is greater than unity, and we repeat the familiar
steps: we single out the integral part of the number, and so
forth. The reader is invited to follow attentively this alterna-

tion of steps:

61 7 1 1
Wity =2t =2+—5
T T
=2t —op 1
3+—= 3+
7 1
T i+s
The expression
1
a+ 1 ’
al+a.+
al—l‘l"a—‘

where a,, a,, . .., a, are natural numbers* and a, is a natu-
ral number or nought, is called the continued fraction.

The numbers a,, a,, a,, . . ., a, are called the terms of the
continued fraction. We can say that we have expanded the

fraction g—: into a continued fraction.

In what follows we shall often use this algorithm. It con-

sists of two alternating steps.
Step 1. Single out the integral component of the number,
that is, write it as the sum of an integer and a remainder less

than unity.
Step 2. Represent the remainder as unity divided by a

number greater than unity. Apply Step 1 to this denominator,

and so on.
But before we go deeper into the theory of continued frac-

tions, let us answer three questions.

* Recall that the natural numbers are 1, 2, 3, ... . Nought is
not included into the set of natural numbers.

20



2.1.2. Notation for Continued Fractions. Question One.
Is not the notation for continued fractions too cumbersome?
Our first example resulted in a three-storey fraction; for a
twenty-storey fraction, the page space will not be enough.

This is why various notations have been devised for con-
tinued fractions. We shall use the following system

1
ay+ 1 = [ag; ay, A3y ..., G4

al+a+

1

ay
The semicolon emphasizes the special role of the integral
part a,, distinct from that of the other terms. Its role is
special but not more important; in this particular case it is

rather less important.
2.1.3. Expansion of Negative Numbers into Continued Frac-

tions. Question Two. How to expand a negative number

into a continued fraction?
Two approaches can be used to expand a negative number

into a continued fraction.
1. Place the minus sign in front of the fraction as a whole,

for example,

61 1
3+ 1
1+T

2. Allow negative values of q,, keeping a,, a,, ..., a,
positive at all times. For example,

61 1
—g=—38+g=—3+ 1

=[—3; 1, 2, 1, 6].

In this book we shall use only the second approach. Hence,
from now on a, is an arbitrary integer while a,, a,, . . ., are
natural numbers.

Having made this remark, we shall not pay much attention
to negative numbers when outlining the theory. A negative
number can be obtained by adding a certain negative integer

21



to a positive number. In order to examine the arithmetical
nature of the number —(2% , we can study the number 20 and

2—7 a
then add three unities to it.
2.1.4. Examples of Nonterminating Expansion. Question

Three. Will the process of expanding a number a into a con-
tinued fraction inevitably terminate?

No, it may prove to be infinite. Let us have a look at some
examples.

Example 1. Expand }/2 into a continued fraction.
Vo=1+_;
1
1 5 1
x.=m=lf2+1=2+z—2 ;
1

B=YE T
We find that x, = z,. Consequently, everything will repeat
itself from this point on: z; = z,, 1, = z3, . . . . We succes-
sively obtain
Vot =t L1 —
2 2+_
3

As long as we give a finite expression for J/'2 (involving an
irrational z,), we can use the equality sign. If this process is
continued indefinitely, we obtain

Vo~it: 2,22 ...1

that is, the number }/'2 corresponds to a nonterminating con-
tinued fraction. We cannot put the equality sign between
V-Z- and the nonterminating continued fraction [1; 2, 2,2, . . .]
because we are as yet unable to transform from one of thesc
notations to another in both directions. So far the symbol of
nonterminating continued fraction is devoid of meaning. We
shall discuss and solve this problem in Chapter VI.

Example 2. In geometrical problems we can expand a geo-
metrical quantity in a continued fraction without knowing
the numerical value of the quantity. For example, let us find
the ratio of the base to a leg of an isosceles triangle with the
108° vertex angle.

22



The angles of triangle ABC (Fig. 6) are 108°, 36°, 36°. We
mark off BB, = b (obviously, b can be marked off only once
because a << 2b). We find

a _BC _ BB +BC _, , BC _ 1
b~ BB, BB, =1+ BB, =1 +Tlv
__ BB, __ AC

"= c~BC -

However, triangle B,AC is similar to the initial triangle
ABC. The first line above determined the ratio g of the base
to the leg. The second line represents the same problem be-

A

Fig. 6

cause z, is the ratio of the base to the leg in a triangle of the
same shape. The process cannot terminate because the first
step resulted in the reproduction of the initial situation. We
can write

a

—b—~[1; 1, 1,1, ...].
Likewise, it can be shown that

b .

7~[0, 1, 1,1, ...].

We shall return to this result at the end of Sec. 4.2.2.
Example 3. Expand the ratio of the diagonal of a square
to its side into a continued fraction.
This example is more complicated than the second one.
There we returned to the initial state after the first step, and
here two steps are required.

If we assume that g::]/i, this example coincides with

Example 1. But the expansion of the ratio ‘-j into a continued

fraction can be obtained by geometrical means, without the
numerical information.
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Initial situation: we mark off the side along the diagonal,
which can be done only once. We find (Fig. 7):

d __CA__ CB;+BA __ 1
e~ CB — CB =1 +z_1 ’
CB AB

N"="g4 ~— 4B, -

Now we erect B,B, 1 AC. Then BB, = B,B, (please, prove
it yourself). Now we supplement triangle AB;B, to a square
(merely for the sake of illustrative clarity; this is not neces-

sary for the proof), and mark off
£ AB, along BA. Having marked
it off once, we obtain BB,, the
remainder being B,A. Now we
a d must mark off AB, along B,4,
T but this is a repetition of the

5, initial situation: the side of a
square is marked off along the
B " A diagonal. Hence, the process
B, N // is infinite, that is
v Ty =2 -l‘i ;
£31

Fig. 7 d
TNH; 2, 2,2, ...].

[t can be easily shown that
a
7"’[0, 1, 2, 2, ]
(see Subsec. 4.2.2).

2.2, Euclid’s Algorithm

2.2.1. Euclid’s Algorithm. The preceding Section dealt
with the algorithm of the expansion of real numbers into
continued fractions. This algorithm consisted of two alter-
nating steps: (1) separation of the integral part of the number,
and (2) presentation of the remainder (which is less than uni-
ty) as a reciprocal of a number greater than unity. This algo-
rithm is a particular case of Euclid’s algorithm which is
widely used in mathematics.

Let us first illustrate how Euclid's algorithm operates in
finding the greatest common divisor (abbreviated to GCD)
of two natural numbers.
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Let p and ¢ be natural numbers. Euclid’s algorithm con-
sists of the following steps*:

Divide Quotient Remainder
pbygqg ay To

g by rg a r
rg by ry ay T3

The following formulas describe the process:

p=aeq+r, O<ro<g)
g=ayo+r, O<r <ry);
To=asl'y + Ty O<ra<ry);
ry=agr+r; O<ry<ry); (3)

Te3=0g-yToztTey (0<<Te <<Tsos);
Tg2=Qglg—y-

Clarification. 1f the dividend and the divisor are integers,
the remainder may be zero. Why then do we exclude the
equality sign on the left, that is, why do we write, e.g.
0 <r, <r, instead of 0 < r; <<r,? Because if it so happens
that r; = 0, this equality terminates the sequence. The
algorithm cannot but stop because the remaindersry, ry, r,, . .
are non-negative integers, and each next r is less than the
preceding one. Hence, the remainder will necessarily become

zero at some step.
Equalities (3) can be rewritten as follows:

P __ To .
__ao 3
q q
q L,
—r =ai _l' ;
0 0
To To
r —a2+ ry ’

...........

rs- rs—
TS g, L
Ts—2 Tg—2

Ts-1

where r;_; is what we seek: the GCD of p and gq.
* If p << g, then a, = 0. This ip no way disrupts the process.
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Each of these equalities with the exception of the last one
is an improper fraction presented as a sum of an integer and a
proper fraction. Note that the left-hand side of each equality
(beginning with the second one) is the reciprocal of the proper
fraction of the preceding equality. We can, therefore, eliminate
all r; successively. By replacing the fraction 2 in the first
equality by its expression from the second equality, we find
P+
q =a+ P U

To

The fraction ? in the equality obtained above is now re-
0
placed with its expression from the third equality

1
Ly ———.
a

q
ALY
az‘l‘r_l

By continuing this process, we shall finally expand %into

a continued fraction. However, there is no need to repeat
each time these substitutions. Indeed, a,, a,, a,, . . ., a; are
the terms of the sought continued fraction. It only remains
for us to remember the following rule:

In order to expand 1; into a continued fraction, apply Euclid’s

algorithm to the numbers p and q. The quotients obtained in
the successive divisions are the terms of the sought continued
fraction.

Example. Expand the fraction g—; into a continued fraction.

61 ’ 27 27, 7716 6 ‘ 1
712 63 TIT 06
=12, 3,1, 6l.
2.2,2. Examples of Application of Euclid’s Algorithm.
Euclid’s algorithm can be used not only to find the GCD of
two natural numbers. Let p and ¢ be elements of an arbitrary

set in which division with remainder* has been defined.
Euclid’s algorithm can then be employed.

Hence

* This means that each ordered pair of elements p and g (p is the
dividend and g the divisor) is put in correspondence with an ordered
pair a and r (a is the quotient and r the remainder) which satisfies
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For example, if p and ¢ are segments of the number line,
Euclid’s algorithm can be applied to find their common meas-
ure. If p and ¢ are commensurate, Euclid’s algorithm termi-
nates and the segment r;_, [see formulas (3)] is their common
measure. Indeed, it follows from the last equality in (3) that
re1 is contained in ry_, an integral number of times. By
substituting r,_, into the last-but-one equality, we obtain

Teg3=05_40sT 54+ T 4= (as-ias + 1) Tg_y.

Hence, r,_g is also an integral multiple of r,_,. If we thus
climb the ladder of formulas (3) one step at a time, we reach
the first two lines, that is, we prove that both p and ¢ are
integral multiples of r;_;, and therefore r._, is the common
measure of p and gq.

In addition, Euclid’s algorithm yields the terms of the

continued fraction which corresponds to the ratio £. If the

segments p and ¢ are incommensurate, Euclid’s algorithm
does not stop, and the numbers ay; a,, a,, . . . are the terms
of the nonterminating continued fraction which represents

the ratio £ .

Euclid’s algorithm is also applicable to polynomials of
one variable z. The phrase “is less than” then means “is of
lower power”. By using the algorithm, we can find the GCD
of two polynomials; however, this result has no bearing on
our topic.

2.2.3. Summary. This chapter has outlined an algorithm
(in its two versions) that permits to expand any real number
o into a continued fraction, that is, to find a continued frac-
tion corresponding to the number o.

If o is a rational number, it corresponds to a terminating
continued fraction. In this case the calculations can be car-
ried out in reverse order, that is, we can find the value of the
continued fraction. For example,

1 1 7 61
24— =24 ———=2 4=
3+ — 3+ 21 21

the conditions p = aq + r, r << gq. Obviously, the operation of mul-
tiplication and the relation “is less than” must also be defined on this
set.
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Therefore, instead of the sentence “the continued fraction

[2; 3, 1, 6] corresponds to the number 61, we can say that
)4 57 y

“the number % equals the continued fraction [2; 3, 1, 6],” or

to be even more precise we can say that % and [2; 3, 1, 6]

are two different notations for the same number.

If, however, a is an irrational number, the situation is
completely different. In this case the correspondence between
o and the continued fraction is defined in one direction only:
the number o corresponds to a nonterminating continued frac-
tion, but not vice versa. We cannot determine a nonterminat-
ing continued fraction by the same procedure as used to cal-
culate [2; 3, 1, 6]. So far we do not know the meaning of non-
terminating continued fractions.

We are yet to solve this problem. It will be shown in Chap-
ter 5 how to give the meaning to a nonterminating continued
fraction. The reader will keep in mind, when reading Chap-
ters 3 and 4, that so far we are unaware of that.



Chapter 3

Convergents

3.1. The Concept of Convergents

3.1.1. Preliminary Definition of Convergents. A continued
fraction can be terminated by retaining the termsa,; a,,a,,
..., ap and dropping all subsequent terms a,+;, an+g, - - -
The number obtained by this operation is called the nth con-

vergent and denoted by 5—":
n

Pn 1
—=\qy, A4, Q ceey Apl=a
dn [ 0 19 G2y ’ n] 0+ al+.

Y|
an
B0

Thus, for n = 0 we obtain the Oth convergent % =la,) = -
0

Note 1. This is not the ultimate definition of a convergent.
It will be defined in Subsec. 3.1.3.

Note 2. The concept of convergents is applicable both to
terminating and nonterminating continued fractions. In the
case of a terminating continued fraction we come to the last
convergent coinciding with the continued fraction itself. For

example, for the number g; we find

P _
9

P9, a1,
o =12 3l=7;

?

2.
1

9 3
T’

Ps __ 0. 6
q_:—lzt 31 11 GI—W-

Ps_(o. =
B33, 1)

If a continued fraction is nonterminating, the sequence of
convergents is infinite. We do not know yet the meaning car-
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ried by nonterminating continued fractions, but this fact
does not present obstacles to understanding convergents. For

example, for the fraction [1; 2, 2, 2, ...] the sequence is
P 1.
9 1’
P1 __ 4. _i.
T—[1v 2]— 2 1

P __y. 7.
s —[1’ 2? 2]"‘" 5

Hint. 1t is this fact (the possibility of forming the conver-
gents) that enables us to breathe meaning into nontermi-
nating continued fractions and assume that convergents are
successive approximations which determine the value of the
nonterminating continued fraction.

This hint is a seed from which the theory will grow. We
develop this hint where we (in Chapter IV) prove that the
convergents of terminating continued fractions are successive
approximations, and for the time being we check it for the

number % . In order to evaluate the approximations, note that

61
5 ~ 2.259.

Approximation
Error
number value
1 2 0.259
2 % ~ 2.333 —0.074
3 % —2.250 0.009

We note that the errors form a sequence with terms which
have alternating signs and decreasing magnitude. Further on
this pattern will be shown to constitute the general rule.

3.1.2. How to Generate Convergents. There is no need in
writing out the whole multistorey continued fraction and
carrying out the cumbersome process of successive evaluations
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if we want, to find the nth convergent. Quite simple recursion
formulas* exist for evaluating p, and ¢,. Obviously,

Po__ % .

do 17

P _|_i_—"1"0'|'1
. °'aT e

In order to go from % toq‘”—2 we have to replace a, by a,+
1 2

-:— . Elementary algebraic manipulations give
2

P2 _ % (2189+-1)+-ao
92 asa+1 ’

A careful look at this formula reveals the following struc-
ture:
P2 __ P12+ po
9~ @18:+90

This formula reveals the general rule. Let us write it by
giving separately the numerator and the denominator of the
nth convergent:

Pn=DPn-1Qn + Pn-2,
In= qn-10n + qn-2 (4)
n=2,3, ..., s.

Before proving formulas (4), let us first clarify their mean-
ing. We shall not assign individual meanings to p, and ¢,
(although this restriction will be dropped in the next Sub-
section). Formulas (4) are to be interpreted as follows: we
may take p, and q,, as well as values proportional to them,
as the numerator and denominator of the nth convergent.
» **Let us prove formulas (4) by mathematical induction. As-
sume that they hold for a certain fixed n that we denote by &

Pr= Pr_10x + Pr-3, l 5)
qr = Qp-10p + Gn-2-
and then prove that (4) hold for n = k + 1.

* A formula expressing an arbitrary element of sequence in terms
of one or several preceding elements is said to be a recursion formula.
Thus, the nth term of a geometric progression is given by a recursion
formula un = u,_;9 or by a non-recursion formula u, = uyq"-1.
The recursion formula does not allow to evaluate u, immediately;
we have to find successively uy, uy, . . ., u,.

** The symbol p» marks the beginning of a proof.
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An analysis of expressions

Pr _ 1
4k 1 ’
014—02‘F
T
+ar
Ph+1 = 1
h+1 o+ 1
a,+
) 1
+ 1
ak+

L7 ¥81
gives that in order to go from p k g P z“ it is necessary to replace
+1

ay by ah-i—— Let us carry out this substitution in formu-

Oh41
las (5). Note thatph 2y Qn-2, Pr-1, and g, remain unchanged
because they do not contain a;. We have

a: - ) + Pra

Ar+1= DPr— (a
_2) Gp+1+ Preals

a: - ) + Qn-2

Pr+1=qp—y (

1
= o [(@r1an + Qr-2) Gp+s+ Qual-

Since pj4+, and g4+, are defined to within a proportion-
ality factor, we shall drop the factor 1/a;+, and replace the
expressions in parentheses via formulas (5):

DPr+1= Prlr+1+ Pr-1; }
Qr+1= QrOr+1+ Gr-y-
We have therefore arrived at formulas (5) with & + 1 sub-

stituted for k.
Furthermore, we have already seen that formulas (4) hold

for n = 2. We have thus proved that they also hold for n =
2,3 ..., s HE*

* The symbol @ marks the end of a proof.
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3.1.3. The Final Definition of Convergents. We are now
ready to change the meaning of the term “convergent”. We
fassume that the convergents of orders zero and one are the

fractions 22 and 2L | respectively, with p,= a,, go=1,p =

apa; + 1, q1 = a1 Also, we assume that the convergents
of orders 2, 3, . . ., s are_the fractions whose numerators and
denominators are given by formulas (4) for n = 2, 3, . S.
The reader may not have noticed the change. Did we really
use a different interpretation of convergents?
The point is that the same number can be written in diffe-

rent ways. For example, notations 0. 5, 5 and stand for the

same number. Until now the term “nth convergent has been

interpreted as a certain number regardless of notation.
Thus, different answers could be given in the Example of

Subsection 2.1.2 to the question “What is the second conver-

gentof o1 ?”: 27, 2.25, 5, %2 and so forth. All of them repre-

sent the same number in different notations. However, from
now on the term “convergent” will mean for us not only a definite
number but also a prescribed notation of this number. Thus, we

decide that the convergent z 2 for & —7 isy ? while §8would be an
2

incorrect answer*. Now both the numerator and denominator
of each convergent are strictly defined, not to within a propor-
tionality factor (in the example above, p, = 9, g, = 4).

This convention is very important for the further elabora-
tion of the theory of continued fractions.

If we note that all letters in formulas (4) stand for natural
numbers, it will be easy to understand that the denominators
(as well as numerators) of successive convergents strictly increase,
that is, gn > @n-1, Pn = Pn— (n = 2, 3, . . .). A comparison
of py, qo with p,, g, leads to

pr=pr +1, ¢6=1, ¢ =a,
whence p, > p,, while ¢, may prove to equal ¢,. Finally,

%<m<%<%~4} (6)
Po<p1<<pe<<PpP3--
. . 9 18 . . .
* Note, in passing, thatz and g are indeed different fractions,
even though they represent the same rational number.
33
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Sequences (6) can be finite or infinite, depending on whether
the continued fraction generating them is terminating or
nonterminating.

3.1.4. Evaluation of Convergents. We give now a con-
venient way of arranging the results when evaluating conver-
gents. The values of a; will be written in the first, p; in the
second, and ¢; in the third rows.

G | ay | az | ag Qsy | G4
Po| Py | P2 | ps . Pa-1 | Pa
9o | 91| 92 | e Gs-1 ' s

We begin with filling in the first row and the first two co-
lumns. The new entries are evaluated in the following order:

Qn-2 an-l, an
Pn-2 , Pn-y
n-2  In-1 |

(1) the column lpn-l is multiplied by a,; (2) the obtained

n-i
column is added to the preceding one.
The same scheme is recommended if we want to calculate
the value of a terminating continued fraction: the answer is

given by the last column This is much simpler than

4s
the step-by-step procedure.
The reader can practice filling in the table for a continued

fraction [0; 3, 14, 1, 2, 5].

03|14 1| 2| 5
0 |1[ 14 | 15 | 44 | 235
| 135 | 721

13| 43| 46

3.1.5. Complete Quotients. It is often necessary to terminate the
process of expanding a number into a continued fraction before the
end is reached. For example,

61 1
27 =2t
7



or
61
o7 =2t

1 L]
3+

6

The numbers 277 and% in the expressions above are called the com-

plete quotients (the definition will be given below). The following
notation is in use:
61 27 7 .
w=[2|7]=[2 3|5 ]=1z3 1 6,
that is, the complete quotient is separated from the preceding terms
by a vertical bar.
The complete quotient o, can be defined in the following manner

1
a=a0+ 1 ] (7)

al+ a’+

1
an-1+?n‘,
where
1
Op=ap-+ PRUPE— 8

.
.

The complete quotient is thus a continued fraction which begins
not with a, but with an arbitrary element a,, that is, the continued
fraction whose » terms, from a, to a,_;, have been cut off. The sym-
bolic notation of (7) is

a=[a0; @y, B3y «e. 4 Apy I anl' (9)

Complete quotients possess the following property: if some two
complete quotients coincide, that is, o, = ap4p (kK > 0), then, first, this
coincidence repeats itself after every k steps:

On=0n4sh=0CAn4oeh=+¢ =Cnsmh=-..

and, second, the continued fraction itself is nonterminating and periodic
(repeating).

The proof is obvious, and need not be given here. We shall only
outline the first step. When we apply the algorithm of expanding
a number a into a continued fraction and come to some complete
quotient a,,, our subsequent steps are independent of the preceding steps,
that is, of the terms aq, ay, ag, . . ., ap-;. Therefore, the terms that
follow a4, in the continued fraction’are the same that follow an-1-

If o, is a natural number, then &, = a,, and the vertical bar in
equality (9) can be replaced with a comma. It is logical to set a, = a.
. The continued fraction (8) can be a terminating or a nonterminat-
ing one. The meaning of nonterminating continued fractions will be
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clarified in Chapter 4, so that for the time being we deal with (8)
formally.

We arc able now to derive a formula that relates complete quo-
tients to convergents. A careful look at formula (7) reveals: if we drop

al— in the right-hand side, the remaining part of o is a convergent
n
qﬂu that can be rewritten, by using formulas (4), as follows:
n-1
Pn-1 __ Pn-2%n-1+ Pn-3

dn-1 dn-29n-11+9n-s

If we replace in this formula a,_; bya,_; + al_ , we convert the
n
left-hand side into a:

1
Pn-s (an_1+ Gn )+Pn—3 _ (Pn-28n-1+Pn-3) %n+Pn-2

)+9n-3 " (¢n-29n-1+4n-3) Gn+an-;

A=

1
dn-2 (an—l+ Z

Finally,
_ Pn-19n+ Pn-2
On-1%n+4qn-g

3.2. The Properties of Convergents

3.2.1. The, Difference Between Two Neighbouring Conver-
gents. The step from the nth convergent to the (n-1)th is
the increment of the nth convergent, denoted by A,:

A, — Pns+1 Pn — Pn+19n — Pnn+1 — D, , (10)
dn+1 dn dndn+1 Indn+1

where D, denotes the numerator,

Dn=pn+iQn_PnQn+l' (11)

Let us reduce by 1 the subscripts of p,+, and ¢,4,, using
formulas (4):

Dnz(pnanﬂ +pn—l) Qn— Pn (Qnanﬂ + Qn-i)
= — (Pndn-1— Pn-1qn)-

The expression in parentheses is of the same type as (11)
but all subscripts are less by 1. Hence, it equals D, _;:

Dy, = —Dy,.

This recursion relation enables us to reduce the subscript to
Zero:
Dn= _Dn-i=Dn-2= —Dn-:l: cee =(_1)nDO’
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The only step which separates us from total success is the
direct evaluation of D:

Dy = p19o — poti = (@180 + 1)-1 — aea, = 1.

Hence,
DnzanQn_I’nQnH:(—Un (12)
and by virtue of (10),
Y T R (13)
dn+1 an 9n9n+1

3.2.2. Comparison of Neighbouring Convergents. Let us
mention some important properties of convergents.

Property 1. Each odd-numbered convergent is greater than the
neighbouring convergents. Each even-numbered convergent is
less than its neighbours.

When this regularity is tested, one must bear in mind that
the zeroth convergent and the last one (provided it exists)
have only one neighbour each.

Formula (13) immediately proves that Property 1 holds.

Property 1 indicates that successive convergents are alter-
nately greater or less than their immediate predecessors.

Property 2. The difference between neighbouring convergents
decreases in absolute value as the number of the convergent
increases.

p Let us compare

1
A |=
I nl dndns1 ’
1
Apay| = — .
l n+i| In+19n+2

This gives ¢,+, > ¢gn. Hence, the denominator of the second
fraction is grealer, and the fraction itself is smaller:

IAnHI < lAnl.

Property 3. The exact value of a terminating continued frac-
tion a is between any two neighbouring convergents. All even-
numbered convergents lie to the left of o, that is, they give an
approximation of a. by defect. All odd-numbered convergents lie
to the right of a, that is, they give an approximation of o by

excess.
It is obvious that we have to exclude the last convergent

which is exactly equal to o.
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Instead of a formal proof, we shall only illustrate its main
idea in Fig. 8.

Figure 8 shows how the convergenis are arranged on the
number line. The numeral marks not the magnitude but the
number of each convergent. The leftmost point is the No. 0

A
_/0 Az
S ——

N3 —35 J 1
\A/ 3

Fig. 8

convergent (i.e. the integral part of the continued fraction).
A stop rightward is necessary to move from No. 0 to No. 1.
P This step (i.e. A,) is shown by
— the upper arc. In order to move
ATn from convergent No. 1 to con-
vergent No. 2 we need to step
leftward, but this step (i.e. A,)
is shorter than A,; then we
make another step, and so on.
We make steps alternately to
the right and to the left, and
each next step is shorter than
the preceding one. Figure 8
convinces us that Property 3
lLiolds.
Figure 9 is another illustra-
tion of therelative arrangement
0 1 2 3 4 5 g 5 of the successive convergents.
The abscissa axis gives the
Fig. 9 number of a convergent, and
the ordinate axis presents its
magnitude. The dashed line is drawn at the level of the
value of a.
Property 4. The absolute error of approzimating the number o

by a convergent Lo is less than iz , that is,
In In
1

— Pn_ = 4
’a an 9 " (14)
» Indeed, by virtue of Property 3 and formula (13), we find
Ioc — LPn 1 .
qn dndn+1




This estimate is inconvenient because when approximating
o~ Z—" we may not know the next convergent. For this rea-

son we replace ¢,4, in the last inequality by a smaller num-
ber g, thereby only strengthening the inequality. This proves
inequality (14). W

Property 4 shows that convergents are very good for approx-

imating real numbers. If the fraction £2 were not a conver-
n
gent, the absolute error would be ‘a—%’l < 2;
n

3.2.3. Irreducibility of Convergents. Let us consider one
more property of convergents.

Property 5. All convergents are irreducible to lower terms.

The numerators and denominators of convergents are given

by formulas (4). Let us assume that the fraction 2% can be

n
reduced to lower terms, that is, its numerator and denomi-
nator have a common multiplier A distinct from unity:

Pn=Apy,
dn= 7"4;17
where p, and g, are natural numbers. Then formula (12)
yields
A (Pn+1n—Pngn+) = (— 1"

This equality is absurd since the left-hand side is divisible
by A, while the right-hand side is not. Consequently, ﬂ is
not reducible to lower terms.

A set of mutually equal fractions contains only one irre-
ducible fraction. The convergent may thus be defined as fol-
lows: the convergent is the fraction, irreducible to lower terms,
which gives the value of a truncated continued fraction.



Chapter 4

Nonterminating
Continued Fractions

4.1. Real Numbers

4.1.1. The Gulf Between the Finite and the Infinite. We can
evaluate terminating continued fractions and hope that the
reader does want to learn how to deal with nonterminating
ones. It is precisely such desires that energize the scientific
progress.

Any rational number can be converted to a terminating
continued fraction. Conversely, any terminating continued
fraction represénts a rational number. Could it be that non-
terminating continued fractions provide the means of repre-
senting irrational numbers?

Quite a few mathematical concepts that are familiar to us
in finite form have captivating infinite analogues. Here are
several examples.

The meaning carried by decimal fractions is quite clear.

For example, 0.33 denotes %30 . And what is meant by 0.333...*?
The sum of a finite number of addends is also readily un-
derstandable. For example, 1+%+%=§ . But what about

1 +g+g+g+ -2

There are finite polynomials, such as 1 + 2z + 3z%. But is
it permissible to operate with “polynomials having an inﬁnite
number of terms”, such as1 + =z + 22 + . + 2"+ .

In spite of the apparent similarity, the ﬁnite and mﬁmte
are separated by a deep and wide gulf. Mathematicians man-
aged to overlook this gulf until the 19th century. Ignoring the
danger, they treated infinite objects as they treated finite
objects, and sometimes obtained absurd results. In the 19th

* The ellipsis is a mathematical symbol with two meanings. An
ellipsis within a formula (e.g. 1 + z 4+ 22+ ... 4 z™) denotes
a certain number of omitted terms; an ellipsis at the end (e.g.1 4+ 2 +
z2 4+ ...) stands for “and so on to infinity”. Ellipses can also
re place the whole rows,
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century the way to deal with the infinite was gradually found,
and reliable bridges were erected across the separating gulf.
We shall walk across by one of these bridges.

Note that a terminating decimal fraction is in no way dis-
tinct from an ordinary fraction; the only distinction is the
notation. The fraction 0.33 has the numerator 33 and the
denominator 100. But what is the numerator of the nonter-
minating fraction 0.333...? We do not know the answer to
this question, which is a clear indication that a nontermina-
ting decimal fraction does not have the meaning carried by a
terminating one. Academician N.N. Luzin used to say that
drawing a symbol 0.333... does not impart a meaning to this
symbol. It remains but a pattern. However, we can give
this symbol a meaning.

The sum 1 +% +% has a meaning because we can calculate

it by successive additions: 1 4+ %:%, ;-{-%:Z. But we

could not determine the infinite sum 1 + %4—%-!—% -+

by this method because the process of consecutive additions
will never terminate. And this is not a technicality but a
principal obstacle. It would be frivolous to hide behind the

argument that successive additions of terms in 1 + %—%— ;‘—}-

% +... give us approximate values of the infinite sum.

What does not exist, cannot be looked for. The meaning of
infinite sums must first be defined, and only after it we can
speak about the approximate values of the sum.

This is what we shall begin with now. Recall that we were
going to cross the gulf between the finite and the infinite by
one bridge (out of many). The name of this bridge is the
Principle of Nested Segments or Cantor’s Continuity Axiom.*

4.1.2. Principle of Nested Segments. We often say that
the number line is continuous. Mathematicians always have
to seek logically impeccable statements that replace intuitive
notions. The principle of nested segments is the axiom that
expresses precisely the property of the number line that we
call its continuity.

Recall that a segment is defined as a set of points of a num-
ber line, consisting of two distinct points @ and b (called the

* Georg Cantor (1845-1918), the great German mathematician,
created the set theory. The set theory became the foundation of the
whole of mathematics.
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ends of the segment) and all points between a and b. A segment
is denoted by la, b). A set including all points between @ and
b but not the points a and b themselves is called the interval
and is denoted by (a, b). The interval (az, b) contains two
points less than the segment [a, b], but in some cases this
difference is extremely important. If one of the end points is
added to the set of points between a and b, the result is a
half-closed interval. The same letter can be used to denote a
point of the number line and the number corresponding to it.
Then

segment [a, b] : a << z << b;

interval (a, b) :a <z << b;

half-closed interval [a, b) :a <<z < b;

half-closed interval (a, bl :a <<z << b.

Let us consider on the number line a sequence of segments
[al, bl]y [az, b2]1 s ey [an’ bn]7 c ot

having two properties: (1) each segment (beginning with the
second one) is nested in the preceding segment, and (2) the
length of the segments tends to zero (as n — o).

The first property signifies that all points of the nth seg-
ment belong to the (n — 1)th segment (Fig. 10).

T T T
Y\L/
a, A 5 O by b

Fig. 10

The second property means that for an arbitrary fixed length
¢ there exists a number n such that the length of the segment
[a,, b,] is smaller than & (and the segments with greater
numbers are obviously even shorter).

In this case there exists a unique point that belongs to all
segments.

Let us give a compact reformulation of the axiom.

Cantor’s continuity axiom. If an infinite sequence of seg-
ments is given on a straight line, such that (1) each next seg-
ment is nested within the preceding one, and (2) the length of
the segments tends to zero, then there exists a unique point be-
longing to all these segments.

Now we shall give a more detailed explanation of this
axiom. Figure 10 shows the first several segments of our se-
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quence. We define the nth step as the transition from the nth
to the (n 4+ 1)th segment. Each step eliminates some of the
points. For example, point 4 in Fig. 10 belongs to the first
segment but not to the second one. Hence, this point will be
eliminated at the first step of the process. Point B will sur-
vive the first step but gets eliminated at the second step.
Point C survives the first two steps, but goes out on the third
step, and so on. Each point of the segment [a,, b,] has its
own fate. Some fall inside the 1000th segment but stay out-
side of the 1001st. These points survive 1000 steps of the
process but get eliminated at the 1001st step.

The principle of nested segments implies that there exists
the point X which will never be eliminated, that is, it sur-
vives each step; in other words, it belongs to any segment,
regardless of its number.

The axiom states that such point exists. As for the unique-
ness of this point, it was introduced into the same formulation
for the sake of convenience and can be readily proved. Indeed,
let us assume that two such points exist, X and Y. We denote
by d the distance between them. We have stipulated that the
length of segments of the sequence tends to zero. Let us find
a number n such that the length of segment [a,, b,] is less
than d,

|@n, b,| < d.
Then the segment [a,, b,] cannot cover the segment XY = d,
that is, points X and Y cannot belong to segment [a,, b,]
(and those following it). We have therefore proved that there
cannot exist two points belonging to all segments.
Example 1. Let us consider the following segments on the
number line

1 3 3 5 7 9
[O’ 1]1 [T, T]’ [Ta ?]a [Tgaﬁ]’ MR}
1 1 1 1
[z-7 zt=]
Obviously, point % and only it belongs to all these seg-

ments.
Example 2. Let a sequence of segments be given

o, [0 4] [0 4] s [t

Point 0 and only it belongs to all these segments.
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In each of these examples we deal with a sequence of nested
segments. We have easily singled out the unique point com-
mon to the segments. The principle of nested segments states
that such a point always exists, no matter how the sequence
was generated, provided that the two conditions are met.

Note. 1f we considered in Example 2 a sequence of intervals

© 1, (0.5), (05)s -y (0.2), -+

this sequence would not contain a point common to all inter-
vals even though they are nested and their length tends to
zero. Indeed, point O does not belong to any of them, while
any other point of the interval (0, 1) will be left out at some
step.
It is thus essential that Cantor’s axiom be applied to seg-
ments. A similar statement would not hold for intervals.
The principle of nested segments expresses the continuity
of a number line: segments converge to a point of the line,
not to a “hole”. Let us break the continuity of the line by

piercing it at point % . To be precise, let us remove point %

from the number line. The remaining set of points, M, cannot
be called a line. This is an assemblage of two so-called open

rays, i.e. rays without vertices, (— 00, %) and (% , oo) . Let

us follow Example 1 and consider a sequence of segments.
Now these are not segments of a line because they lack one
point, but segments on a set M. Each of them contains two
ends and all the points of set M between them. Although these
are nested segments and their length tends to zero, no point
of set M can be found that belongs to all of them. The prin-
ciple of nested segments does not hold in M.

4.1.3. The Set of Rational Numbers. Let us follow the
process of gradual filling in of the number line with numbers.
First we mark the integers. The set of all integers is tradi-
tionally denoted by Z. No subtle arguments are needed to
show that the points of set Z do not fill up the number line
completely. Each two integers are separated with aY}‘solid”
mass of points (an interval) that so far remain nameless.

Our next step is to mark rational numbers. It will be suf-
ficient to mark all rational numbers within the interval be-
tween O and 1. All rational points on the number line will
then be obtained by displacing the segment [0, 1] leftward
and rightward an integral number of times.
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We shall mark rational numbers on segment (0, 1] as fol-

lows:
Step 1. Mark off fractions with denominator 2. There is

only one such a fraciion: %

Step 2. Mark oft fractions with denominator 3, arranging
them in the order of increasing numerators: 3, 3

Step 3. Mark off fractions with denominator 4, arranging
them in ascending order: 71, ( % ) s % The fraction %is written
in parentheses because this number has appeared earlier.

................................

Step (n — 1). Mark off fractions with denominator n, ar-
. . . 1 2 3 n—i
ranging them in ascending order: -, —, —, .. . If frac-
tions reducible to lower terms are encountered among those
in this sequence, they can be crossed out.

. o o o

Thls process is infinite. Although we cannot complete it,
we can be sure that it will mark all rational numbers in the
interval between O and 1. Indeed, can there exist a fraction
whose turn will never come'r’ Let us select an arbitrary fraction

from this interval, say, . Obviously, atsomestep of mark-

ing fractions with denomlnators 2, 3, 4, ... (namely, at

the 88th step) we shall reach denominator 89. Then arranging

. . . 1 2 3
the fractions in ascending order, 350 852 89 and so forth, we

inevitably reach % . Therefore, whatever fraction between 0

and 1 is selected, it will certainly be reached and marked off
on the segment [0, 1]. Let us suppose that the process has
been completed. This means that all rational points, i.e. those
representing rational numbers, have been marked on the
segment [0, 1]. By displacing these points by 1, 2, 3,
units leftward and rightward we shall have all rational num-
bers of the number line marked. In what follows we always
denote the set of all rational numbers by Q.

4.1.4. The Existence of Nonrational Points on the Number
Line. Is the number line completely filled up by the points
of the set Q? No, it is not. Some points of the line do not be-
long to Q; they are not rational. However, this is not as obvi-
ous as for the set Z, and subtle arguments are needed to clarify
this case. Pythagoras is reputed to have made the following
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great discovery: there exists no number* whose square equals
2. An equivalent formulation is as follows: the diagonal
of a square is incommensurate with its side. If all rational
points are marked on the number line (Fig. 11), the arc of a
circle whose radius is the diagonal of square OA passes freely
through the numerical axis without intersecting the set Q.

Nevertheless, the set Q is everywhere dense on the number
line. This means that any segment of the number line, however
short, contains rational points. Consequently, even though

A

- 0 1

Fig. 11

rational points do not exhaust the number line, this line

does not contain segments that would be absolutely free of

rational points. This can be proved easily if the reader recalls

how we went about marking the rational points on the seg-
ment [0, 1).

We shall consider sequences of nested segments

lay, &), lay, by, .. ., lan, bal, ...

on the set Q (i.e. the ends of the segments are rational points).
The principle of nested segments does not hold on the set Q.
Even if the conditions of Cantor’s continuity axiom are met,
there may not exist a point in Q that belongs to all these seg-
ments. We shall immediately see that this fact can be used to
invent numbers of a new type: irrational numbers.

4.1.5. Nonterminating Decimal Fractions. Let us attribute
the following meaning to the symbol of a nonterminating dec-
imal: a nonterminating decimal is a sequence of nested seg-
ments on the set Q. By terminating this fraction after each
decimal place, we obtain the left ends of the segments. Adding
unity to the last decimal place we find the right ends of the
segments. For example, the fraction 0.313131... denotes the
following sequence of nested segments on the set Q:

[0.3; 0.4], [0.31; 0.32], [0.313; 0.314], . .. .

3

o4

* No rational number, in fact. The qualification is not made
because so far we do not know any other numbers.
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Each step diminishes the length of these segments by a
factor of 10, and hence, the length tends to zero, regardless of
the fraction chosen.

Now we shall consider two examples that are superficially
alike but in fact are profoundly different.

Example 1. A nonterminating periodical decimal 0.333...
stands for the following sequence of nested segments:

[0.3; 0.4, [0.33; 0.34], [0.333; 0.334], . ..

Is there a point belonging to all these segments? Here and be-
low we mean a point in the set Q. No doubt, there is such a
point on the number line.

This point is z = %
The following inequalities hold:

0.3 <+ <04
1 .
0.33 < + < 0.34; (15)
0.333 < 5 < 0.334;

............

For this reason the number% is said to be the value of the

nonterminating decimal 0.333... The formal definition of this
concept will be given below, but first we shall discuss an-
other example.

Example 2. Let us form two sequences: (a) the greatest
decimal with 0, 1, 2, ... =n, ... decimal places whose
square is less than 2; and (b) the least decimal with 0,1, 2, ...
... n, ... decimal places whose square is greater than 2.

We successively find

12 <2 but 22 >2
1.42 < 2 but 1.52 > 2;
1.412 << 2 but 1.422>2;

................

This process can be continued indefinitely. Is there a point
in Q that belongs to ali segments

[1; 2], [1.4; 1.5], [1.41; 1.42], ... ?
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In other words, does there exist a rational number z that
satisfies each of the following inequalities:

1 << 2,
1.4 <z < 1.5

(16)
1.4 < z < 1.42,

[Note that we use the sign <C (not <<) because we are look-
ing for a point belonging to the segment, that is, a point that
may coincide with one of the ends. Accidentally, the num-
ber in Example 1 is always within a segment. If we began with

a fraction 0.2000... corresponding to the number %, we would

have to use the sign <C.]

It is well known that there is no {rational number that
satisfied all the inequalities (16). This means that any ratio-
nal number would violate inequalities (16), beginning with
some line. It also means that the corresponding nontermi-
nating decimal fraction 1.4142136... determined by the process
described above is meaningless.

Now is the right moment to give it the meaning it lacked.

4.1.6. Irrational Numbers. The notation % can be inter-

preted in two ways: (a) as a fraction %, that is, as a ratio of

two natural numbers 1 and 3, or (b) as a nonterminating de-
cimal 0.333..., that is, as the common point of nested seg-
ments

[0.3; 0.4], [0.33; 0.34], [0.333; 0.334l, . .. .

The first interpretation is inapplicable to the number z
that we seek with inequalities (16). However, this number
corresponds to a nonterminating decimal, that is, a system
of nested segments

1; 21, 11.4; 1.5], [1.41; 1.42], ... .

We can agree on a convention that this nonterminating deci-
mal, or, what is the same, this system of nested segments,
defines a number. This is a number of a new type: it cannot be
presented as a ratio of natural numbers. Such numbers are
called irrational.

Let us additionally clarify the idea of introducing irratio-
nal numbers.
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The infinite sequence of nested segments (15) defines a num-
ber. It happens to be a rational number: % We can operate

with it ignoring the sequence (15).

The infinite sequence of nested segments (16) also defines
a number but the type of this number is not familiar (we as-
sume that only rational numbers were known) and the number
appeared only as the sequence (15).

4.1.7. Real Numbers. The name for rational and irrational
numbers is real numbers. In other words, the set of real num-
bers, R, is the union of the sets of rational and irrational
numbers.

When the concept of number is extended and generalized, the
old numbers should be treated as particular cases of a broader
concept instead of being opposed to the new numbers. In
other words, there must be a universal principle of formation
and a universal notation for all real numbers.

The universal notation, also constituting the universal meth-
od of formation is that adopted for nonterminating decimals.

Some rational numbers can be presented as terminating dec-
imals. However, we shall agree, in order to have a universal
notation for all real numbers, to convert any decimal to a
nonterminating decimal. This can be done in two ways, for

example,
0.5 = 0.5000...,
0.5 = 0.4999....

In order to represent each real number by a nonterminating
decimal in a unique manner, we agree on the following:

Convention. It is forbidden to use nonterminating decimals
with the numeral 9 for the period.

Now the number 0.5 can be written as a nonterminating dec-
imal in a unique way: 0.5000... .

By virtue of this convention, each real number is written as
a nonterminating decimal fraction in a unique manner, that
is, no two distinct nonterminating decimals can represent the
same real number.

Let us emphasize that our definition actually identifies a re-
al number as a nonterminating decimal fraction. Some real
numbers can be written in other ways. For example, rational
numbers are representable by common fractions. Roots from
natural numbers are denoted by V2, V3, ..., /2, .

And finally, some numbers have been labelled by 1nd1v1dual
(“personal”) symbols: m, e, and some others. However, non-
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terminating decimals give a universal method of forming and
presenting any real number.

This method of introduction of real numbers does not create
the set R “from thin air”. It assumes that a certain subset of
R, namely, the set of all terminating decimals, already exists.
The method allows us to supplement this set to R by using
nested segments whose ends are given by terminating deci-
mals. Real numbers can be defined differently, if we start not
with the set of terminating decimals but with some other set
which is everywhere dense on the number line.

The reader would be mistaken to think that we have already
constructed the theory of real numbers. The definition of real
numbers given above is only a first step. Many more steps
would be needed to construct the theory, namely, ordering
real numbers (i.e. finding a method of comparing the magni-
tudes), defining operations with real numbers (addition, mul-
tiplication, etc.), to name a few. However, we are not going to
further elaborate this aspect. The purpose of this subsection
is to clarify the principle of nested segments which we shall
use to interpret nonterminating continued fractions.

4.1.8. Representing Real Numbers on the Number Line.
Let a positive real number

T = O, O0lgllg . . . (17)
be given.

This is the decimal notation. Here «, is an arbitrary non-
negative integer, and the remaining «; are numerals from 0
to 9. A terminating decimal fraction

Ty =g, OOz ... Cp,

which is obtained if numerals beginning with a,+, in (17)
are dropped, is called the approzimate value of x with n deci-
mal places by defect. 1f we add one unity in the last decimal

place,

Tp= 0O, OyOly ... Op+1-107",
we obtain the approximate value of x with n decimal places by
excess. If a, = 9 this unity can change the numerals preced-

ing a,. For example, for z = ;—% = 0.99111..., we have
z, = 0.99, z5 = 1.00.

Leaving aside the logical foundation, we can write the
following apparent inequalities:

T, < T <<,
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Question to the reader. Why the sign in the left-hand inequai-
ity is << while that on the right is <<? Can they be reversed
after a certain modification of the preceding definitions?

The following fact is of high importance: it all real num-
bers are marked on the number line, the line is completely filled
up. We shall give now a better formulation of this statement
and prove it.

Theorem 1. Each real number corresponds to a unique point
of the number line.

p Let us take a positive real number x = a,, o005 . . .
This number must belong to an infinite sequence of nested
segments

[fo’ zolv [fi’ zi]v [‘1’2, zzlv

The lengths of these segments form a geometric progression

with common ratio %) By virtue of Cantor’s continuity axi-

om, the number line contains a unique point belonging to all
these segments. This is the point that corresponds to the num-
ber 2. B

Theorem 2. Each point of the number line corresponds to a
unique real number.
» Let a point z be given on the number line (z lying some-
where on the right half-axis). If z is an integer, no more proof
is needed. Otherwise, z lies between two neighbouring inte-
gers o, and a, + 1. Let us begin the decimal notation of
the number z with its integral part:

T=0a ...
We divide the segment [a,; oy + 1] into ten equal parts.
If  does not coincide with any one of the ten division points,

it will be found between a,, o, and a,, o, + 0.1. We extend
the decimal presentation of z:

$=ao,a1...

and divide the segment [&g, ;; oy, &, + 0.1] into ten equal

parts.
If at some step of this process point z coincides with one of

the division points, then
=0y, 4 ... a,000 ...
If coincidence never occurs, then
T =0y, ylly - .. Qp - ..



and z lies strictly inside all segments [z,, z,] (n =0, 1,
=012 ...). 01
Corollary. The set R obeys the principle of nested segments.
4.1.9. The Condition of Rationality of Nonterminating
Decimals. We know from the course of high school mathe-
matics that each rational number can be expressed by a periodi-
cal decimal (pure or mixed). For example,

1 13 1
7_0.333 el W_O.M/A el ?_0.2000 ..
Conversely, each periodical decimal expresses a rational number.

It then follows that each irrational number is expressed by
a nonperiodical nonterminating decimal. For example, by
using the algorithm of extracting square roots we can find
any desired number of numerals in the decimal representing
Ve,

V2=1.4142135 ...

We can always find one more numeral of the sequence. And
though we do not know the formal law for the generation of
this sequence of numerals (i.e. cannot find a function ¢ (n)
giving the nth decimal place), we are sure that this fraction
is not periodical.

Conversely, each nonperiodical decimal expresses an irra-
tional. For example, let us take a fraction

0.1010010001...,

where the number of noughts between two consecutive unities
each time increases by one. This fraction is nonperiodical
and, therefore, it stands for an irrational number. In this
example the formal law for the sequence of numerals is quite
simple; if u, is the nth decimal numeral, then

u _{1 if n is a number of the typew;
=

0 otherwise

4.2. Nonterminating Continued Fractions

4.2.1. Numerical Value of a Nonterminating Continued
Fraction. By terminating the _nonterminating continued
fraction [a,; a,, a,, aj, ...l after each successive term, we
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generate the consecutive convergents:

ﬂ=[a(b]’ £=[a0; al]’ ey Pn

L) q dn
=[a0; ab a21 sy an]v
And although a nonterminating continued fraction is only
a symbol to which no numerical value is assigned, convergents
are rational numbers. They define an infinite sequence of
nested segments

[ﬂ &] P ﬁ] [& .P_s]

9’ ¢ 1’ @’ ¢l Le’ ¢gl’ ’
Pn-1 Pn:l 18
[qn—l, a, 1’ ( )

We have already mentioned that the denominators of con-
vergents strictly increase (see formulas (6)):

S <QL<g<<---

All g, being natural numbers, these inequalities mean that
gn grow indefinitely:

lim g, = oo.
n-—+ oo

But formula (13) then yields

lim An= lim (£z2_ fn)—o,
n - oo noo \ dn+1 dn

The difference between neighbouring convergents tends to zero-

It is always assumed in such statements that n — oo.

Each segment (18) is nested within the preceding one (see
Fig. 8). By virtue of Cantor’s continuity axiom, there exists
a unique point of the number line or, in other words, a unique
real nuinber, that belongs to all these segments. It is this
number that we define as the value of the nonterminating conti-
nued fraction.

This definition implies the following corollaries:

1. The value of a nonterminating continued fraction is be-
tween any two neighbouring convergents.

2. All even-numbered convergents are approximate values by
defect, and all odd-numbered convergents are approximate va-
lues by excess, of the nonterminating continued fraction.

Let us have a look at Fig. 9 once again. If the continued
fraction is nonterminating, the broken line does not have the
last segment whose end lies on the dashed horizontal line.
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This broken line has an infinite number of vertices that alter-
nately fall above and below the dashed line; « is the value
of the nonterminating continued fraction.

3. The sequence of even-numbered convergents

Po P2 Pa ., Pan

%’ ¢’ g’ ’ qon ’

is monotone increasing and tending to o on the left. The se-
quence of odd-numbered convergents

U T ¢ S Ponen
a’ L ’ dan+1 ’

is monotone decreasing and tending to a on the right.

Let us look carefully at the sequence of segments (18). The
ends of the segments are rational numbers. In our notation
the first entry is alternately the left and the right end. This
is obviously of no principal importance.

4.2.2. Representation of Irrationals by Nonterminating
Continued Fractions. We have already learned the algorithm
of expanding a real number into a continued fraction. Assume
now that this algorithm is applied to an irrational a; what we
obtain is a nonterminating continued fraction [a,; a;, a.,
az, . ..l. Barlier this continued fraction was said to cor-
respond to the number o:

a ~ lag; a1, ay, ag, ...
Now we know how to determine the value of nontermina-

ting continued fractions. A natural question then arises: is
it o or another number that gives the numerical value of

lay; ai, a,, az, . ..]? In other words, is the correspondence
between o and lay; a,, ay, az, . ..] symmetrical?
Yes, it is.

Indeed, the convergents obtained in the process of expand-
ing o into a continued fraction are alternately greater and
smaller than a. For example, consider the first two steps of
the process:

1
a=day+ !
whence
ao < .
Further,
N S
=g, = U + z3 '
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whence
1
a—a,
As a result,

1 1
>a,, a—a0<a—l, a <ao+?.

1
ay <<a << ayg+ A
or, in a different form,
Po P1
— a _
0 <e< a1

This chain of arguments can be prolonged further, that is,
a is between any two neighbouring convergents.

If we wish to reverse the arguments and find the value of
the obtained nonterminating continued fraction, we need to
recall that by definition this value is the common point of
all segments (18), that is, of all segments between neighbour-
ing convergents.

However, there exists only one point that belongs to all
segments (18). Therefore, the number o and the value of the
continued fraction [ay; a,, a,, ag, . . .] coincide. We are thus
entitled to replace the symbol ~ with the equality sign = :

o = [ay; ay, as, ag, ...].

4.2.3. The Single-Valuedness of the Representation of a
Real Number by a Continued Fraction. Do continued fractions
offer a universal mean of representing real numbers? In other
words, is it true that any real number* can be represented by
a continued fraction, and in a unique manner?

The first part of the question has already been answered.
Each real number can indeed be expanded into a continued
fraction. A rational number expands into a terminating, and
an irrational number to a nonterminating continued fraction.
But the aspect of single-valuedness has not yet been analysed.

Let us think over the following example:

1 1 1
1 = 1 - 1
Str Sty T
1

or, in contracted notation,
[0; 6, 41 = [0; 6, 3, 1.

* For the sake of simplicity, the arguments assume the numbers
to be positive. It is clear, nevertheless, that the answer to the for-
mulated question cannot change when considering negative numbers.
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This transformation (the splitting-off of unity from the
last term) can be effected in any fraction whose last term is
distinct from unity. And if the last term is unity, it can be
added to the last-but-one term (i.e. we can read the last
example from right to left).

It can be readily proved that this is the only reason for the
non-single-valuedness of the representation of a (positive)
rational number by a continued fraction. We shall eliminate
this cause by introducing the following convention: The last
term of a continued fraction must not be a unity. From now
it is mandatory for us to choose the first of two notations
[0; 6, 4] and [0; 6, 3, 1] for the same number.

Now we are ready to prove that two continued fractions
lag; a1, ag, . . .1 and [by; by, by, ...l (terminating or nonter-
minating) are equal if and only if, first, they have identical
numbers of terms and, second, their respective terms coincide,
that is, ay = bo, a = bl7 etc.

The condition “they have identical numbers of terms” must
be understood as follows: either both fractions are terminat-
ing and have identical numbers of terms, or they are both
nonterminating.

p Let us denote by o the value of two equal continued
fractions (we do not know whether each of them is terminating
or nonterminating):

o = lag; ay, ag, - . .1 =1[bg; by, by, ...l

The term a, (as well as b,) equals E (2)* and thus splits
off o in a single-valued manner. Consequently,
ao = b00
Subtract a, from o
a—ay=10; a;, ay, ...1 =10; by, by, ...
and consider its reciprocal value
1

a—a,

=lag; az ...1=[bg; by ... ]

* The definition of the functionsE (o) is: “The greatest integer
not greater than o..” For instance, E (—2-) =2,E(1)=1, E(—E) =

—3. The symbol E(ec) reads “the integral part of a”; the letter E
comes from the French word “entier” (integral).
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1

a—ay

The term a, (and b,) is E ( )and hence, is determined

. Therefore,

in a single-valued manner by the value of P
— %0

a4 = b11

and so forth. By repeating these arguments we shall prove
that a, = b,, a; = by, etc.

Can two equal continued fractions have unequal number of
terms? Let us assume that the first continued fraction is a
terminating one with s terms, while the second fraction is
either a terminating one with ¢ terms, ¢ > s, or it is nonter-
minating. This means

1 1
2+ e+ =0+ a+
1 ' 1
+a +a+ 1
87 byt
or
_ 1
g =0, + bsi1+
whence
1 o

bt

which is impossible. Hence, t = s.

We conclude that each real number is expressed by a con-
tinued fraction, in a unique manner. M

In this proof we have employed a rule that is often useful.
When the expansion of o into a (terminating or nonterminat-
ing) continued fraction is kuown, the following should -be

done in order to find the expansion of % :

(1) move the whole “comb” one step to the right, if ay = 0,
and write in a nought instead of the integer, or
(2) if a, = 0, move the whole “comb” one step to the left.

Examples.
a=[3 1, 2, 5], 5=I[0; 3, 1, 2, 5];

B=10; 2, 2, 2, ...], %=[2; 2,2, ...1
57



The proof follows from a careful examination of the fol-
lowing continued fractions:

1
“=ao+_1=[ao; ay, as ...l
“tatr
1 1
= i =1[0; a,, a4, ay ...].
GF
e+ 2,

4.3. The Nature of Numbers Given by
Continued Fractions

4.3.1. Classification of Irrationals. We already know the
following important fact: each rational number is given by a
terminating continued fraction, and irrational number by a
nonterminating continued fraction.

We shall not add anything here on rational numbers. But
irrationals may be of very different types. Let us get
acquainted with their classification.

The equation

apt" + a4 ... ta,x+a,=0, (19)

where a, 5= 0, is called the algebraic equation of degree n.
We shall consider only the case when all coefficients in equa-
tion (19) are rational or even integral. These two cases are
identical. If the coefficients are fractional, we can multiply
both sides of the equation by the common denominator of
these fractional coefficients, thus obtaining an equation with
integral coefficients equivalent to the initial equation.

In our discussion of equation (19) we assume hereafter that
its coefficients are integers (positive, negative, or zeros). An
additional constraint is imposed on the coefficient of the
leading term: a, = 0.

A real number is called an algebraic number of degree n if
this number is a root of an algebraic equation of degree n with
integral coefficients but is not a root of any other algebraic
equation of lower degree with integral coefficients.

58



Example 1. Each rational number £ is an algebraic nu mber
of the first degree because it is the root of equation
gr — p=0.

Example 2. The number }/'2 is an algebraic number of the
second degree because it is a root of the equation

22 —2=0.

We know that /2 cannot be a root of any equation of the
first degree with integral coefficients because such an equa-

tion (apx +a, =0) has arational number z = — -1 for the

root.
Algebraic numbers of the second degree are called quadratic

irrationalities.

It was discovered that there exist nonalgebraic numbers.
These numbers are called transcendental numbers.

Here is their definition: A real number o is said to be trans-
cedent if it is not a root of any algebraic equation with integral
coefficients.

To discover a transcendental number is not an easy task.
If we want to prove that a number a is algebraic, it is suf-
ficient to find an algebraic equation with integral coefficients
for which a is a root. But if we cannot find this equation, we
cannot conclude that a is transcendental, for we have to prove
that no such equation exists. This problem was solved for
the first time by the French mathematician Joseph Liouville
in 1844. He proved the transcendency of some specific real
numbers. In 1882 the German mathematician Ferdinand Lin-
demann proved that m is a transcendental number. At present
very many examples of transcendental numbers are known.
For example, decimal logarithms of all rational numbers,
with the exception of numbers of the type 10", are transcen-
dental.

The reader must be warned against a misunderstanding. The
fact that examples of transcendental numbers are difficult to
find does not mean at all that they are rare. Quite the opposite!
Georg Cantor showed that in a certain sense (it would not be
possible to explain what this means in this booklet) almost
all real numbers are transcendental, that is, algebraic num-
bers are rare exceptions. However, the nature of algebraic
numbers is simpler, and therefore we can give numerous
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examples of them. As for transcendental numbers, it is always
very hard to prove the transcendence in each specific case*.

4.3.2. Quadratic Irrationals. We know from the preceding
subsection that a quadratic irrational is an irrational number
which is a root of a quadratic equation with integral coefficients.

The word “irrational” replaces the phrase found in the pre-
ceding definition: “and it is not a root of any algebraic equa-
tion of lower degree with integral coefficients”. In the case in
question this means “is not the root of any equation of first
degree with integral coefficients”, that is, is not a rational
number.

Let us consider a quadratic equation

apx® + ayx + a, = 0,
where a,, a;, a, are integers and a, 5= 0. Its roots are given
by the formula

—a; + Va% —4aqa,
2a,

= .

These roots are quadratic irrationals if the following neces-
sary and sufficient conditions are satisfied:

(1) the discriminant D = a} — 4a,a, must be non-negative.
If D <0, the roots would not be real;

(2) the discriminant D must not be an exact square. If
D = N2, the roots would be rational.

These conditions enable us to give a different definition of
the quadratic irrational: a quadratic irrational is a number of

a type p + qV D where p and q are rational numbers and D
is a natural number which is not an exact square.

Before analysing some examples of quadratic irrationals, let
us prove in advance four useful lemmas. But first we shall
introduce some notations and define some terms that will
help us to avoid repetitions.

Lower-case Roman letters p, ¢, . . . will always denote ra-
tionals (positive, negative, or zero). In particular cases they
may happen to be integers.

Capital Roman letters D, M, N, ... will denote nratural
numbers not equal to exact squares: 2, 3, 5, 6, 7, 8, 10, . ..

* Actually, a simple method is known for constructing continued
fractions whose values are transcendental numbers. However, if one
faces the problem offproving the transcendence of a number that has
been defined by different means (m, log 2, sin 1, etc.), this always con-
stitutes a very difficult problem.
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Two square-root radicals* VM and VN are said to be
similar if V' N = pV/ M. Otherwise, that is, if the ratio :;A_A;
is not rational, the radicil}s VM and VN are not similar.
For example, }/'2 and V8 are similar but }/2 and J/10 are
not.

If V' M and )N are nonsimilar radicals, then )/ MN is also
a square-root radical (i.e. it is not an exact square) nonsimilar
to either of the initial two. This is clear from the identities

VMN=N 11; (not a rational number),

VMN __ VMN _ /3
e N, v =VM.

Lemma 1. If Y M and | N are nonsimilar radicals, then
the equality

k+IVM mYN=0 (20)

holds only if k=1=m = 0.
In a more concise notation,

E+l1YVM+4+mYN=0<k=Ii=m=0.

» Two cases must be considered in the proof: (1) I <0
and m 5= 0 (for any k), and (2) one of the coefficients I, m is
nonzero while the other vanishes.

In the first case we transpose k& to the right-hand side and
raise both sides of the equality to the second power. After
some manipulations we obtain

2imY MN = k>—12M — m?N,

that is, )/ MN is a rational, which is incorrect. Hence, the
first case can not take place.

In the second case we see from equality (20) that /' M or
V N is a rational, in contradiction to the imposed condition.
Hence, the second case is also rejected.

We thus have to recognize that | = m = 0. Equality (20)
then shows that £ = 0 as well. B

* This is an example of familiar casual usage: “square-root radical”
means not only the symbol " that stands for the operation of extract-
ing the square root, but also refers to any number of the type V2,
V 3 etc.
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Lemma 2. If V' M and V'V are nonsimilar radicals, then the
equality
k+1VM+mV N+nV MN=0 (21)
is possible only if k=1=m =n = 0.
In a shorter form
E+1VM+mVY N+nY MN=0<=k=Il=m=n=0.

» Assume that [0, m 5= 0, and n = 0. We transform
equality (21) to the following form:

IVM4+mY N=—k—nV MN.
Let us square both sides of this equality. Simple transfor-
mations then give
2(Im—kn)Y MN =k24 n2MN — I2M — m?N,
that is, )/ MN is a rational number, which is incorrect. We
thus have to reject the assumption I = 0, m 5= 0, n 5= 0, that
is, we have to assume that at least one of the coefficients, [, m, n

vanishes. But in this case equality (21) reduces to (20) so that
by virtue of Lemma 1 all the remaining coefficients vanish. @

Lemma 3. If p + q V M is a root of the equation
agz" +a "+ ... +a,xz+a,=0

with integral coefficients, then p—qV M is also a root of this

equation.
» Given:

a6 (p+qV M) +a (p+qV M)+ ...
+apey (p + 9V M) +a,=0. (22)
To be proved:
a,(p—pV M)y +ay (p—qV M)+ ...
+any(p—qV M)+a,=0. (23)

Let us remove the parentheses in (22). The terms (g} M)*

obtained thereby are subsumed under two types:
(1) aiseven (including o = 0). All these terms are rational.

We denote their sum by k. -
(2) @ is odd. All these terms are of the form s}/ M. We de-

note their sum by IJ/ M.
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Equality (22) thus transforms to
k4+1V M=0. (24)

Let us make similar transformations over equality (23)
which is obtained from (22) by substituting —g)/ M for g}/ M.
This substitution does not affect the terms containing g}/ M

to even powers, while the terms containing g/ M to odd
powers only have their sign reversed. Equality (23) will thus
become

k—1Y M=0. (25)

Equality (24) can only hold if k =1 = 0.

Indeed, if I 5= 0, equality (24) indicates that Y M is a
rational. And if I = 0, then k& = 0 as well.

But if £ = 1 = 0, then (25) also holds. B

Let us outline once again the idea of the proof. Equalities
(24) and (25) are the equalities (22) and (23) appropriately
transformed. Equality (24) yields k =1 =0,and k =1=0
implies that (25) holds.

Lemma 4. If p + gV M+rV N, where VM and V' N are
nonsimilar radicals, is a root of an equation with integral coef-

ficients, then the numbers p + qf/ M =+ rV' N, regardless of the
combination of signs, are also the roots of this equation.
To contract the notations we denote

P (z)=apx"+aa™+ ...+ a,_z+a,.
Given:
P(p+qVM~+rVN)=a,(p+qVM
+rV N +a (p+gV MArV N4
+any (p+ 9V M+rV N)+a,=0. (26)
To be proved:
P(ptqV M+rVN)=0.

» Now we remove the parentheses in (26). All the terms
obtained thereby will be of the form

Ap* eV M)° (r V' W),
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where A are coefficients and «, p, y are non-negative integral
exponents. We subsume these terms under four types:

Type B kY Kind ot the term
1 Even Even Rational
2 Even odd tV N
3 0dd Even uVY'M
4 0dd 0dd vV MN

When parentheses in (26) are removed, we obtain

P(p+qVM+rVN)=k 1YV M4+mV N+nV MN=0.

If we substitute —q)/ M for g}/ M, it will not change the
type-1 and type-2 terms, while type-3 and type-4 terms will
only have their signs reversed. Therefore, if

P(p+qVM+rVN)=k+1VM+mV N+nV MN,
then
P(p—qV M+rVN)=k—IVM+mVY N—n)y MN.

By going through similar steps with the other combinations
of signs, we find: if

P(p+qVM+rVN)=k+1VM+mVN+nVMN,

then
P(p+qVM—rVN)=k+1V M—mY N—nV MN;
P(p—gVM+rVN)=k—1V M+mV N—nV MN;
P(p—gVM—rVN)=k—1V M—mVN +nV MN;

if P (p + g/ M + r)/ N) = 0, then, by virtue of Lemma 2,
k=1l=m=n=0. But it 1mp11es that all the other values

of P (p &= gV M = r}/'N) vanish. @
Let us have a look at examples.

Example 1. The number 1 + /2 is a quadratic irrational.
How can an equation be found that generates this irrational.
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Lemma 3 states that the number 1 — /2 is also a root of
this equation. Hence, the equation is

(z2—1=V2) (z—1+V2)=0
2 —2—1=0.

Example 2. The number V2 4+ /3 is not a quadratic

irrational. The equation with integral coefficients that gen-
erates it has, by virtue of Lemma 4, the following roots:

Ty = V2+V3;
Ly= VQ - Vﬁ;
z3=—V2+V3;
n=—-V2-V3.
This equation is, therefore,
(z—=V2-V3)(a=V2+V3)(z+V2-V3)
x (z+V2+V3)=0,

z* — 102> +1=0.

Note 1. If the roots are known, the equation can obviously
be found also by Vieta's formulas. For the normalized equa-
tion of fourth degree

zt + pi2® + pya® + pst + py =0,
Vieta's formulas are
1= —(Zy+ Zo+ T3+ 74);
D2 = T3 Ty + T3+ T4Ty + ToZ3 + ToZy + T34}
DPs= — (T3%3%( + Z,%5T + T1ToT4 + T, T5T3);
Py= 1 %o 5y

Note 2. The reader may be somewhat surprised if he tries to
check whether the equation indeed corresponds to the pre-
scribed roots. In fact, the equation gives:

z==x)5+2V8.
At the first glance, this differs from the given roots +V2+
V3. But in fact V34V 2 =V5=+ 2/6. This can be
65
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checked either by squaring both sides of the equality or by
employing the so-called formula for transforming complex
radicals:

VAEVE= | AEVEZE 4 A=V ESE )

Formula (27) helps only when 4% — B is an exact square.
This is not the case in our example.

4.3.3. Euler’s Theorem. A nonterminating continued fraction
is said to be periodical if its terms form a periodical sequence.
For example, such are the fractions

0; 1,1, 1, ...5
(2;1,5 1,5 1,5, ...1
0;1,235,353,5, ...L

The first two fractions are purely periodical, and the third
is a mized periodical continued fraction. In this classification
we ignore the integral component a,. What follows is a more
straightforward definition.

A nonterminating continued fraction is said to be periodical
if there exist natural numbers N and k such that

Ap+r = Ap

for any n > N.

The following theorem, proved by Leonard Euler in 1737,
holds for continued fractions.

Theorem. The value of each periodical continued fraction
is a quadratic irrational.

» Let us consider two examples,
Example 1. [0; 1, 1, 1, ...]. We have

S S
- 1

-+

Let us apply to this equality an operation of “rewinding”,
consisting of (1) taking the reciprocal of each side, and (2)
subtracting the integral part (entier) from each side. In this
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particular case these steps are only made once:

1 1
=1+ —
1+1+

.

1

1 9= .
¢ 2

e

What we have now on the right is the initial fraction,
that is, a:
1
7—1=a,

which gives us a quadratic equation for o:
at4+a—1=0,

whence o = ——;-I-%Vg (of course, the negative root must

be rejected).

This analysis shows that any fraction of the type [0; a, a,
a, ...] represents a quadratic irrational.

And what if the period consists not of one numerical but of
k numerals? Then % pairs of steps will be made in “rewinding”.

Example 2. [0; 1, 2, 1, 2, ...l

a= 1
2+ —
145
1 1
L= ,
o 24 11
45
1 1_1 "2—1 11
@ +2+.
1
—2=a
T
a
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or
a?420—2=0
whence

=—1+V3.

Note that the root cannot happen to be rational whatever
the period because the initial continued fraction is nonter-
minating.

But what happens if a, is nonzero? In this case we trans-
pose a, to the left-hand side, and begin “rewinding”. W

However, this method is cumbersome if the period is long. For
this reason we shall give another proof, not as lucid as the one above
but a short one.

p Let a nonterminating continued fraction a = [0; a,, a4, . . .]
be a purely periodical one, with the period length equal to k. Then
a = ay4; (recall that opy, is the (k 4 1)th complete quotient):

a=[0; a,, a, ..., ap, 6,, a, ...].
[y

@p
Formula (9) yields ﬂ

— PrOR41+ Pry
%re1+qr-1

Hence,
= PROT PRy
aro+qp-y '
that is, o satisfies a quadratic equation
arz?+ (9h-1— Pr) T— Pr-1=0. (28)

The roots of this equation have opposite signs, and a is the positive
root.
If the fraction is a mixed periodical one,

a=[ay; @y, @3, +-+, BNy GN41) +++r ON+hy oels
N — ——
period

we must first “rewind” from right to left the first part of the fraction
up to the term e, inclusive, and then apply the proof as given above.®

Note. The number « is irrational because it is represented by a non-
terminating continued fraction. Consequently, the discriminant of
equation (28) must not be an exact square. This statement can be
tested by a direct evaluation:

D =(pr—9r-1)*+4Pr-19r = P} — 2PRGhe1+ 04, +4PRaOR= ...
By adding and subtracting the term 4ppgp-, we find:
ooo =P} +2PRar-1+a;_, —4PRIR-1+4PR-10R

= )2 —4qn_ (_"L_M)=.“
(Pr+21-1)*—49p-19r o na



At this juncture we apply formula (13):
eoe =(Pr+qr-1)?+4-(—1)".

D=(ph+qh-1)*+4-(—

D—(pr+ar-1)?==%4.

We see that D isnot an exact square. The difference between squares
of natural numbers cannot equal 4. If the set of natural numbers
is supplemented with zero, there will be found a unique pair of squares
spaced by 4: 0 and 4.

4.3.4. Lagrange Theorem. As you could see in the preceding
subsection, Euler's theorem is proved quite easily. The in-
verse theorem is considerably more difficult to prove. It has
been proved by Lagrange in 1770.

Lagrange Theorem. Each quadratic irrational is represented
by a periodic continued fraction.

Finally, we have

or

Lagrange succeeded in proving the theorem in a very complicated
manner. Quite a few mathematicians attempted to simplify the proof
but to return the original Lagrange's idea. A hundred-odd years later
the French mathematician Charves suggested a simpler proof based
on a different idea. First we shall outline Charves’ idea, and then
give the detailed proof.

Let o be a quadratic irrational. Let us expand it into a continued
fraction interrupting the process at each step, beginning with the
second step:

a=[ao; a; | ag]=[ao; a1, a3 | a4
=...=|ag; a3, a3, «.., ap | ay]=...
Here a,, a3, ..., &y, ... are complete quotients. We were able
to see in Subsection 3.1.5 that if some complete quotient happens to
repeat, that is, if we find that a, = o, 4, the continued fraction will
be periodical.

We shall prove, first, that each term satisfies a quadratic equation

with integral coefficients:

Apay+Bho,+-C,=0. (29)

Of course, equation (29) can vary for different values of o, and
for this reason the coefficients 4, B, C are equipped with subscripts.
Rather, we should say: each a«, satisfies its own quadratic equation
with integral coefficients.

Second, we shall prove that the magnitudes of the coefficients in
(29) are bounded:*

| 4n | <L 1

| Bp | <M
|Cn | <N.

(30)

* We assume that a quadratic equation with integral coefficients
is written in the form irreducible to lower terms. Otherwise this state-
ment would be meaningless.
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Attention, pleasel Here is Charves’ clever idea. The bounds L, M, N
are independent of n (they depend exclusively on o). Since 4,, B,, Cp
are integers, only a finite number of admissible values exist for them.
Consequently, for each given o the number of possible equations (29)
and hence, the number of possible roots of these equations is finite.
Obviously, the sequence of complete quotients cty, 0tg, . . ., %y « v o
will inevitably start to repeat itself; this has to be proved.

p Now let us implement this plan. First we prove (29), and then (30).

The quadratic irrational a satisfies a certain quadratic equation
with integral coefficients.

Aa? + Ba + C = 0. (31)
By virtue of (9),
Pn-1%n + Pn-g
=—"L-"T_-"7== 32
* In-1%n+4qn-2 ° (32)

We substitute (32) into (31) and eliminate the denominator:

A (Pn-1%n~+ Pn-2)2+ B (Pn-1%n + Pn-2) (9n-1%n +qn-2)
+C (qn-1%n+3n-2)2=0

or
Apay+Bpa,+C,=0,
where
An=A4pj-1+BPn-19n-1+Caih—y; l
By, =24p;_1Pn-2+tB (Pn-19n-a+ Pn-2dn-1)+ 2Cqn_195-s; (33)

Cn=Ap} 2+ Bpn-sqn-2+ Cagy-

It remains for us to prove that coefficients (33) have bounded mag-
nitudes. From (14),

Pn1 o, ’ <.

dn-1 dn-1
This can be rewritten in the form

Pn-1 6

—_—— =

dn-1 93’

where —1 << 6 << 1, whence
()
Pr-1=0qn+— (—1<86<1).
dn-1

; Let us substitute this expression for p,_; into the first formula
of (33):

Ap=4 (GQn-l + 8

qn-1

) 45 ( aqn-1+q—f:) Gnos+Cadoy
480 _
i _

=4f- (Aa®+Bo+C)+ 246+ BS+ 7
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Obviously, the expression in parentheses vanishes owing to (31):

...=(2Aa—|—B+ )6.
But | 8| < 1, so that

Ab
9%y

Ad
9y

We shall also take into account that ¢%_, > 1 (g, = 1, and the
sequence g¢,, is strictly increasing). The inequality is oniy strengthened
if we drop g3_; (i.e. replace it by unity):

| An | <|2404-B+4A48 | < | 248 |+ | B|+ 14|18 ]|
<|24a|+|B|+]4].

Our goal is attained: we have indicated for [A4,| a bound inde-
pendent of n.

Instead of conducting similar manipulations for | C, |, we note
that C, is obtained from A4, by replacing n by n — 1, that is, C, =
Apn_;. The bound established above is independent of n, and thus
is valid for C,. As for B,, a detour will be more effective. Let us cal-
culate the discriminant of equation (29) by using formula (33).We
omii here a long but dull series of manipulations* and give the final
result:

| 4, | <‘2Aa+B+

B} —44,Cn=(pn-19n-2— Pn-2qn-1)? )(B2—4AC).
But formula (12) states that
Pn-19n-3— Pn-2dn-1=(—1)""2.
Hence,
By — 4A,C, = B* — 4AC. (34)

This formula expresses a natural fact: when a quadratic irrational o
is expanded into a continued fraction, the complete quotients are
quadratic irrationals of the same nature as « is. This nature is deter-
mined by the discriminant. They are all of the type

An=sp+1tn VT)
for the same D.
Now we conclude from (34) that
B% = B? — 4AC + 44,C,.

All terms in the right-hand side being bounded, B} and with it
| B, | are bounded as well. W

Euler’s and Lagrange theorems can be merged in the fol-
lowing formulation: Quadratic irrationals, and only they, are
represented by periodical continued fractions.

* We leave these manipulations to the reader. A mathematician
should be patient and unafraid of long chains of transformations.



Chapter 5

Approximation of Real Numbers

5.1. Approximation by Convergents

5.1.1. High-Quality Approximation. The tiring march has
finally brought us to the goal of our journey. This chapter
will disclose what purpose is served by continued fractions.

In Section 1.1.1 we have interpreted the problem of approx-
imation in a very broad sense. Now we switch to a more
specific problem. Take the set R of real numbers*, and single
out in R the subset M, of all fractions with denominators not
greater than ¢q. The problem is to find for each number a € R
the closest to it number r € M.

Assume now that we were able to find such a number, that
is, we found an approximation o = r. The utility of this
approximation consists in that the accuracy cannot be improved
without increasing the denominator: indeed, r is the closest to
o number in M,.

Note that if we chose to take the set of fractions with deno-
minators ezxactly equal to q, this approximation would not, in
general, have high quality in the sense outlined above. For
example, we see from Table 1 of Subsection 1.1.4 that the
approximation of ; in units of 1/10 has low quality in com-
parison with larger fractional units, namely, 1/9, 1/8, 1/7,
and 1/6.

The concept of “quality” does not have a single sharply
defined meaning in approximation theory, so that we have to
specify each time in what sense this term is being used.

5.1.2. The Main Property of Convergents. We can define
the best rational approximation of a number o as a fraction

2 which provides a lower absolute error than any other

* It is sufficient to consider only the set of positive real numbers
because nothing principally ;ew arises from adding negative numbers:
2

1fnz7, then —nx =
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fraction with a denominator <Cg (obviously, in this sense, the
best approximation is not unique). With this definition,
convergents provide the best approximations for a continued
fraction. Sometimes this property is said to constitute the
main property of convergents. Let us give it the following for-
mulation:

Theorem. I f% (n = 1) is a convergent for a number a., an
n

L is any other fraction with q << gn, then

q

|22
an

<fo-t].

This means that the convergent gives an approximation that
cannot be improved without increasing the denominator.

,/Aﬂ SN ,A/' ,An\

——¥3 X
A Pn_ pll+l B
9n ner
Fig. 12

» Consider two cases: (1) ¢ << ¢, and (2) ¢ = g, (we shall see
that the second case is trivial).
(1) The number a belongs to a segment between two con-

vergents ;’ n and -2 "": (Fig. 12). The length of this segment
n

n
is |8 = —

ndn+1

. The point o may either be an internal

point of this segment or coincide with ZL“ (if o is aratio-
n+1

nal and ’q”'—" is the last convergent). Therefore,
n+1

Lot Zbe an arbitrary fraction whose denominator is less
than g,, and hence, certainly less than g, 4,:

<< an < In+y.
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Let us evaluate the distance from to the ends of the seg-

ment [p—", —p’“‘] :
dn dn+1

‘l_ﬁ —1Ptn—pngl 1 .

an 95 = q4n ’

|l__ Pn+1 | Pqn+1— Pn+19 | > 1
q dn+1 99n+1 99n41 °

These inequalities are only strengthened if ¢ in the
right-hand sides are replaced by g, and ¢,+:

)4 Pn 1 __ .
7 q - ' n '»
n+19n (35)
‘l _Pns1 1 _ [A, |
nle
q dn+1 ‘1n9n+1

Inequalities (35) signify that each end of segment

[ : n 5 "”] and point L are separated by a distance
n n+1
greater than the length of this segment, |A,|. Marking

off the segment | A, | to the left and to the right of points
and £zt (Flg 12) we obtain the forbidden zone [AB] =
n

Qn
ﬂ— . p’“’ + A, | in which the fraction 2 cannot
7 gne q
fall (since pomtsA and B are also forbidden). Now it is
clear that £ is a poorer approximation for o than £2 .
n
Indeed,
| o«— n |;
Ia——|> | A, |-
Hence

,a_ﬂ
n

<]a—7‘°| (9 < gn)-

(2) Now we shall analyse the case of ¢ = g,. Is it possible
for another fraction with the same denominator to provide a
better or an equally good approximation than the conver-
gent? In other words, can it happen that

(p# Pn)-

p
o ———
' an |
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For the sake of definiteness we assume that Z—" lies to the
n
left of o (Fig. 13), that is, niseven (arguments are qulte sim-

ilar if nis odd). Can a be closer to q+ than to =2 q , or at
n n
Pn Pn+1
qn o dn

| 1
T i

Fig. 13

least lie in the middle, that is, is it possible that

Patl g Pn (36)
dn an
This is equivalent to
a—Ln > 2qn (37)
On the other hand, we know that
a—2Lr < L

in STt
As follows from inequalities (36) and (37),
L
2qn " qndnar’
that is, g,4+, << 2.
It means that inequality (36) is only possible if g,4+;, = 1 or
@n+1 = 2. This situation occurs only for n = 0 and rn = 1.
The following example shows that inequality (36) can in-
deed hold under these conditions:

[zm=2+%.

In this example £~ q . The fraction i although it is not a

convergent prov1des an approx1mat10n that is just as good. No
such example can be given for n = 1 because the last term
of a continued fraction cannot be a unity. W

Note that the converse theorem does not hold, that is, the
property proved above is not exclusive to convergents. There
exist fractions that are not convergents but nevertheless give
a better approximation of a number a than any fraction with
a smaller denominator. For example, in Subsection 3.1.1 we
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have listed the convergents of % = [2; 3, 1, 6]. The reader

can verify* that the approximations

P Rl B T
are the best. The absolute errors for them,
61 34 61 43
ﬁ_ﬁy,v 0.007, |51~ W],v 0.004,
are less than those for any fraction with a smaller denominator,
although these two fractions are not convergents. The theorem
as proved does not mean, therefore, that convergents provide
the best approximation of real numbers.
5.1.3. Convergents Have the Highest Quality. If the quality
of approximation is evaluated in a different sense, as described
in Subsection 1.1.4 then convergents have no competitors.

The point is that it would be unfair to evaluate the quality

of an approximation by the quantity la— % independently

of the magnitude of the fractional unit. Higher accuracy can
be demanded from smaller fractional units (i.e. from larger g).
Consequently, it is desirable to estimate the absolute error

a—%l on a g-dependent scale, for example, multiplying

a— L | by g. The result is the normalized absolute error
[see formula (1)]

h=|ga—p|
or the quality factor [see formula (2)]
1 1

A =TT

Judging by these characteristics it is the convergents, and
nothing but them, that have the highest quality: the norma-
lized absolute error of a convergent is smaller (and hence, the
quality factor is greater) than in all other fractions with smal-
ler (or identical) denominators.

But this is not yet the end. Convergents are found to have a
quality higher than not only that of fractions with smaller or
equal denominators but even of fractions with the nearest
greater denominators: quality will not be increased by in-

* See footnote on p. 71.
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creasing the denominator until we come to the denominator of
the next convergent.

These arguments hide two trivial exceptions that will sur-
face in the course of analysis.

Now we shall summarize the above reasoning into two the-
orems converse to each other.

Theorem 1. If 22 is a convergent for a number o and % is
n
an arbitrary fraction with q << qn+,, then

| dn®*— Pn '<| qe—p |

The equality sign occurs only if: (1) a=% , that is, % is
n n
the last-but-one convergent, and (2) n = 0, a = la,; 2.

» Note that%is a different fraction, that is, we eliminate the case

of no interest, P _Pn_ Hereafter we assume that the fraction;p

is irreducible to lower terms.

We shall consider separately two cases: (1) 0 << ¢ < gp+4, 4 5 qn»
and (2) ¢ = q,.

(1) Let us 'r‘epresent p and g by identical linear combinations (with
identical coefficients) of the corresponding terms of the convergents

Pn and Bntr | that s,
dn dn+1
InZ+ ¥ =q; } 38
PnT~+ Pnay=p. (38)

This system yields the coefficients z and y.
The determinant of (38), p,+19n — Pndn+1, is recognizable from
formula (12):

Dp= pnudn—Padna=(—1"

System (38) determines the pair of numbers z and y in a single-
valued manner because D, s 0. Besides, | D, | = 1, and we conclude
that z and y are integers.

Both z and y are nonzero. Indeed, if z = 0, then system (38) gives
y = 1 (because both fractions £ and 22+L are irreducible to lower

dn+1
terms) and ¢ = gp44, iD contradiction with the imposed condition.
And if y = 0, we likewise obtain ¢ = g¢,,, which is the case to be ana-
lysed later.
The coefficients  and y cannot be of like signs. If z > 0and y > 0,
then the first equation in (38) would give ¢ > g,4+1. If z << 0 and
y < 0, then p and ¢ would be negative. Hence, z and y are of unlike

signs.
In order to find the normalized absolute error for the fraction 2 ,
we begin with multiplying the first equation by a and subtracting
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from it the second equation:
(2n%— Pn) £+ (9n+1%— Pn+1) Y=g — p. (39)

The differences in the parentheses in the left-hand side of equation

Pn and Pn+1

(39) are of unlike signs (because the convergents aproxi-

n n+1
mate o on the opposite sides). The numbers z and y are also of unlike
signs. Both terms in the left-hand side are therefore positive (more
precisely, the first is strictly positive and the second is nonnegative).
Hence,

| gnt—pn l-lz|+ 12— pPpu l-lyl=|gqex—p|.
Therefore,

lgna—pr < | ga—pl, (40)

which as to be proved.

Now we shall determine the conditions corresponding to the equal-
ity sign in (40). As follows from the analysis above, it is possible
only if

Ine1%—Ppe1=0; }
|z |=1. (41)

Let us analyse the case (41) in more detail. If z = 1, we shall
have y << 0. But then the first equation in (38) would yield ¢ << 0.
Hence, z = 1 and therefore, z = —1. This entails y = 1. Indeed,
if we assume y > 1, then the first equation in (38) can be rewritten
as follows:

—@nt It y—1)=g

which implies ¢ > gp44.

The mandatory situation in the case (41) is thus z = —1, y = 1,
that is,
9=4qn+1—9n; } (42)
P="Pn+1— Pn-

This entails the equality sign in (40).
Note that the first condition in (42) can be transformed to

9=anp419n 1 Ins1—In=(ns1—1) gn+4qn-1-

In the case under consideration a,4; is the last term of the con-
tinued fraction, and hence, a,; > 2. The last equality therefore
implies

7> 4.

Consequently, the equality in (40) cannot occur when ¢ < g,.
(2) Now we shall consider the case of ¢ = g,. We already know
from Subsection 5.1.1 that in this case, for p # p,,

a_Pn <| a—P
dn an

By multiplying both sides of this inequality by g, we obtain
lgna—pp | <l gna—p |,
which completes the prove (of course, the exceptional case, possible
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when n = 0, is retained here as well). The theorem has thus been
proved for all g < qp+1-

Theorem 2 (converse) If the normalized absolute error for a number o

and a fraction — Z is less than that for any other fraction %— and ¢’ < q,

then% is a convergent for a.

P We assume, as always, that the fraction %is irreducible to lower

terms. Besides, if a is a rational, a = fIJ i+l " then g cannot be greater
n+1

than g, 4, because the normalized absolute error for the fraction ~2*! Pns1

is zero, while according to the initial condition it should be greater
than |ga — p]|.

Assume that%is not a convergent. Then its denominator lies
somewhere between the denominators of two neighbouring conver-
gents, that is,

I <q<<4qp41-

The direct theorem then gives

lgne—pn |l <lga—p|.
This contradicts the condition stated in the theorem: since qn < g,
then%must give a smaller normalized absolute error than q— The
n
assumption that %is not a convergent is therefore false. W

Note 1. We have proved that convergents, and only conver-
gents, provide a smaller normalized absolute error and hence, a
greater quality factor, than all other fractions with smaller de-
nominators.

Why “with smaller denominators” only? Could it be true for
fractions with slightly greater denominators?

No, it could not. Only the direct theorem holds for deno-

minators ¢ in the interval ¢, << ¢ << gn+;, and it cannot be
converted.

Note 2. Let us consider in more detail the case (41):
a= M’ P=Pn+t1—Pny 9=qn+1—qn

In+1

We shall directly demonstrate that although the fraction
P _ Prny1—Pr

q dn+1—4qn
is not a convergent, and although g, << q¢ << gn+,, this frac-

tion nevertheless has the same quality as the convergentgl‘ .
“ n
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The manipulations that follow need not be explained:

| 90— p | =|(@n+1—n) 2222 — Pnts+ Pu
n+1
— | Pn9n+1—=qnPne1 | __ 1
dn+1 dns1’ .
Pn+1 9nPn+1— Pnin+1
oL — = —— — =
| 4n®—pn | =0 " —Pn P PR

that is, | g¢ — p | = | ga — pp |- Recall that this would be
impossible in the case ¢ <<g,: it implies |ga — p | <

| gn — pn |-
For example, the consecutive convergents for the fraction

a = 9—; are (see Subsection 3.1.1)

2
Po 2 T p_ 9 p, 61
=T ¢ —3° q2 =7 =37-
The fraction £—= p 2 — 23 2 has the same quality as Z

q ‘I
despite the fact that % < 23 << 27.
Note 3. Let us compare the approximations of the fraction

o =g—; by fractions with denominators 1, 2, 3, 4 (Table 2).

Table 2
o] AR | | quiy facor s
q 2 e 21_ 13
1 27 14 14
: | L N
3 % % i=2%
4 4 > S=tay

By looking at this table we can determine, without expand-
ing the number 81 mto a contznued fraction, that9 is its con-

vergent: the quahty factor of i is greater than all preceding
factors. The same is true for the fraction ; . However, ; is not

a convergent because its quality factor is less than that of ?
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Chapter 6

Solutions

6.1. The Mystery of Archimedes’ Number

6.1.1. The Key to All Puzzles. The readers who have worked
their way through Chapters 1, 2, 3, 4 and 5 will now be re-
warded. We are ready to explain the puzzles of Chapter 1.

In fact, this booklet has been written for the sake of one
short conclusion: If you want to approzimate a real number
with high accuracy by a fraction with sufficiently simple de-
nominator, replace it with convergents.

Thus we solve both Archimedes’ problem and the problem
of the calendar.

Note that Christian Huygens came to continued fractions
when trying to approximate real numbers by sufficiently sim-
ple fractions. He needed to construct a model of the Solar
system in which planets were modelled by gear-wheels. To
reproduce revolution periods with sufficiently high accuracy
wheels had to have staggeringly high numbers of teeth. Huy-
gens looked for, and found, a general method of solving such
problems: the substitution of much smaller numbers for the
large ones, reproducing their ratios as accurately as possible.
In this way he invented continued fractions as an auxiliary
tool, and discovered many of their properties although Raffael
Bombelli in Italy had operated with these fractions (in a more
superficial way) a hundred years earlier.

N. N. Luzin used to say in such cases that “even chips and
shavings are valuable in the laboratory of a great scien-
tist.”

6.1.2. The Secret of Archimedes’ Number. To find approxi-
mations of the number n we expand it into a continued frac-
tion. We can take its decimal approximation with high accu-
racy, for example, 3.14159265 = % , and apply
Euclid’s algorithm:

n=(3; 7, 15, 1, 288, 1, ...}
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Now we calculate convergents by the method of Subsection
3.1.4:

n 0 1 2 3 4

a, 3 7 15 1 288
Pn 3 | 22| 333 355 | 102 595
an 1 7 | 108 113 32 657

And this is all, as simple as that. This table exposes Archi-
medes’ secret, as well as that of Metius. The table demon-
strates:

Ap;;liglrt\ima- Convergent Z—:
Oth 3 (by defect)
22
1st - (by excess)
ond 332 (by defect)
355
3rd 113 (by excess)

Can it really be said that Archimedes and Metius are at
last “exposed”: they had employed continued fractions, with

Archimedes using the convergent %, and Metius the conver-
1

gent ~2 p’ ?

No, 1t cannot, at least not about Archimedes.

It should be clear to the reader that the problem we have
solved is one of mathematics, not of history. We have demon-
strated how one could have come to the approximation of n

by a fraction 2 , but this does not mean that Archimedes did

use this approach. In fact, it cannot be ruled out that he had
used the continued fractions algorithm. This conjecture is
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supported by two arguments: (1) this is the most natural
approach when decimals have not yet been invented and (2)
the ancients preferred fractions with unity for the numerator.
Only such fractions were in use in Egypt and Babylon, and
other fractions were gaining recognition only very slowly.
Nevertheless, these are merely speculative arguments, and
would be rejected at any court of law. No direct evidence has
been found. In order to evaluate m Archimedes calculated
the perimeters of inscribed and circumscribed regular poly-
gons, using the “duplication formula”. We do not know how
Archimedes had extracted roots, for he only gave the final
result. Historians were unable to come to a universally accep-
table conclusion on this subject.

The advantages of fractions with denominator 7 can be dis-
covered empirically, while they are compared to fractions
with different denominators. But Metius (or rather, Antonis-
zoon) could not act this way. It would hardly be possible to

find the complicated fraction % without a theory. There is

virtually no doubt that Antoniszoon resorted to continued
fractions. It is perfectly clear why he stopped with the conver-
gent ‘:% In fact, this is the last acceptable fraction. The

next one, 1;‘;—2513 , 1s so cumbersome that it cannot have any

practical significance.

6.2. The Solution to the Calendar Problem

6.2.1. The Use of Continued Fractions. Let us think first
how we ourselves would solve the problem of alternation of
ordinary and leap years. We would represent the duration of
the year by a continued fraction

1 year = 365 days 5 hours 48 minutes 46 seconds
= [365; 4, 7, 1, 3, 5, 64) days.

Note 1. The number n is an irrational and is represented
by a nonterminating continued fraction. The length of the
year is an empirical quantity. All empirical quantities are
measured with errors, so it would be meaningless to consider
them as rational or irrational. The length of the year as given
above is the adopted value and we have to treat it as exact.
It is given by a terminating continued fraction.
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Note 2. We need not express the length of the year by a de-
cimal in fractions of one day (by analogy with what we did
in the case of n) if we wish to represent this duration by a
continued fraction. The calculations are carried out as follows
(we have dropped the integral component):

5hé48m 46 s_ 20926 s__ 10 463
1 day 86 400 s~ 43 200°

43 200 =4-10 463 4 1348;
10 463 =7-1348 + 1027;
1348 =1.1027 4 321;
1027 = 3-321 4 64;
321=5-64+1;
64=064-1.
Let us find several convergents of the continued fraction
representing the length of the year. The integral part can be

omitted because we need to remind that each year contains
365 full days:

4| 7 1[ 3| s
1] 7 8] 31| 163
4|29 33[ 128 | 673

Each column gives a solution to the calendar problem. For
example, the first column gives to the year an approximate

length of 365 :; days. This duration is achieved by setting one

year in four as a leap year. In general, the third row gives
the length of the cycle (or period), and the second row gives
the number of leap years per cycle. For example, the second
column prescribes the following solution: seven leap years in
a 29-years cycle. This corresponds to the average duration

of the year of 365219 days. This is a more accurate pattern

than 36571‘— but a more complicated one.

6.2.2. How to Choose a Calendar. Now it is clear that we

are offered only four options.
In order to avoid misunderstandings, we have to remark
that a very large number of calendars exist in the world.
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There exist solar and lunar calendars. Different peoples use
different starting points for counting off the years, different
numbers of months per year (12 or 13), different (and tremend-
ously diverse) starting dates for the year, and different cele-
bration dates. In the present booklet we do not encompass the
whole variety of these distinct features, and pick up a single
aspect, namely, the average length of the year. There are only
four acceptably simple and exact options. They are given by
the first four columns of the table above. Combinations stem-
ming from the fifth, etc. columns are far too complicated. The
possible—and acceptable—options are thus listed in Table 3.

Table 3
Alternation of leap
years
Oll)vtcl)?n number Av(e)rf'agey;:r:gth Error

of leap period

years
1 1 4 365d6h00mO00s [ —11 m 14 s
2 7 29 365d5h 47 m 35 s +1m 11 s
3 8 33 365 h 5h 49 m 05 s —19 s
4 31 128 365d5 h 48 m 45 s +1 s

The minus sign in the Error column indicates that the
average duration of the year is greater than the true value.

The first option is the Julian calendar.

The second option is not expedient. It is as complicated as
the third option being much less accurate.

The third option (8 leap years in a 33-years cycle) has been
proposed by the great Persian and Tajik scholar and poet Omar
Khayyam in 1079.

The fourth option is exceptionally accurate. The error of 1 s
is of no practical significance. This calendar has therefore
been proposed; for example, the Russian astronomer Medler
suggested in 1864 to introduce it in Russia from the beginning
of the 20th century. It called for only one correction to the
Gregorian calendar: to jump one leap year every 128 years
(i.e. treat this year as an ordinary one). Indeed, the Julian
calendar contains 32 leap years per a 128-years cycle.

However, this calendar has been enacted neither in Rus-
sia nor anywhere else. The likely reasons are that the 128-years
period is not “rounded-off’, and that people are strongly
accustomed to the existing calendar.
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6.2.3. The Secret of Pope Gregory XIII. The preceding
Subsection did not solve the mystery of Pope Gregory XIII,
the Gregorian calendar is not found among the four options
in the table. For this reason, having solved the mathematical
problem, we shall spend some time with the historical prob-
lem. What were the arguments behind the decision of Pope
Gregory XIII (or rather, of the commission he had designated)?

Look at a very appealing hypothesis: Pope Gregory XIII
leaned to the ratio 31:128 but wanted to replace the period
of 128 years with something more convenient, and chose for
this 400 years. If 128 years contain 31 leap years, how many
are contained in 400 years? The proportion

M =z
128 — 400

yields z = 96.875 =~ 97. This is precisely the Gregorian
calendar: 97 leap years per 400-year cycle.

Quite conclusive, isn’t it? Unfortunately, it is wrong.

When arguing out a historical case, including an event in
the history of science, we must avoid ascribing our modern way
of reasoning to the scolars of yore. Quite the opposite; we ought
to try and penetrate their world of ideas and knowledge. Fur-
thermore, speculative arguments of the it-could-quite-likely-
have-been-like-this type are not popular with historians. We
need to turn up documents and ascertain that “it has been
thus and not differently”. A very good deal is known about the
Gregorian calendar reform, including the scolars who sat on
the commission given the job of compiling the project of the
reform.

The flaw in our speculative reasoning was this: the duration
of the year was not known in the time of Pope Gregory XIII
as accurately as we know it nowadays. Gregory XIII's Com-
mission used the astronomical tables compiled by the Acade-
my of Toledo on the order of King Alphonse X (the Wise) of
Castile (1221-1284). The length of the year in these tables was

1 year = 365 days 5 hours 49 minutes 16 seconds.
Converted to continued fraction, it gives
1 year = [365; 4, 8, 7, 2, 2, 17].
Its convergents (with the integral part omitted) are

t 8 57
%' 33' 235

86



Pope Gregory XIII's Commission thus could not be aware
of the ratio % , whatever method it chose.

It has been already mentioned that the average duration of
the year in the Gregorian calendar is 365 days 5 hours 49 min-
utes 12 seconds, and thus is 27 seconds longer than the true
duration. But this is our attitude, while Pope Gregory XIII
was of the opinion that his year was 4 seconds shorter than the
true duration. We thus find that Pope Gregory XIII's Com-
mission could be very much satisfied with the accuracy it has
achieved.

We should add that nothing points to the use of continued
fractions by the papal commission; continued fractions re-
mained unknown in Europe at the time. Rather, the commis-
sion came to its decision by the trial-and-error method. Here
is how this could have been done quite easily. According to
the Tables of Alphonse X, the Julian year was longer than
the true year by 10m44s. Tlow many years would il take to
accumulate an error of one full day? Divide 24 hours by
10m44s:

240 86 400
Tonaes = oig ~ 134.

It is thus necessary to overlook a leap year once in every
134 years. But this would not be suitable because the coming
134th year may not be a leap year. But 134 ~ %~400. Ergo:

overlook three leap years during 400 years. This gives the
Gregorian calendar.
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