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Preface

With Euclid I-VI and De Morgan's Elements, we have the core of mathematics. This
unit measure of knowledge begins our understanding of Geometry, Arithmetic,
Algebra, Trigonometry, and Calculus. A harmonious beginning. An inner circle. In
this text, we expand algebra into its second circle. This text assumes only the
knowledge of this core, which is freely available in Everymind's Euclid (Euclid) and
Everymind's De Morgan's Flements (DME).

Picking up where De Morgan left us, we investigate the expansion of his basic
algebraic ideas to see how they develop and what realms of mathematics they begin to
coalesce into. This is basic or fundamental algebra. In the 20th century, it collapsed
into a brief study in high school and is even now hardly mentioned after that. The
sources of this text are 19th century works. And in those days fundamental algebra
filled large, even two-volume, texts. Bit and pieces of these large algebras turn up in
the first chapters of modern university texts. But these fragmentary glimpses ignore
the coherent study of these ideas as an organic whole.

Here I am trying to bring fundamental algebra and the development of its ideas back
together so that continuities of thought across the various usages can again be seen.
And this is an algebra that you can do and not simply prove. If we learn mathematics
by doing mathematics, here are some mathematics to be done.
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Introduction

Once again I am being selfish. I am expanding my understanding of fundamental
algebra for my own benefit. And once again, I am sharing it with anyone who is
interested. I've been over this algebraic ground three times already, filling notebooks
with careful notes. This is my final pass over the fundaments of algebra and I'm using
Chrystal's text mentioned in the dedication. Its twelve hundred pages should supply
sufficient weight to fix an indelible impression upon my thick and math-resistant mind.
The Murphy text comes recommended by Isaac Todhunter and is a fourth pass on
what used to be called Theory of Equations. The Hargreave comes recommended by
Todhunter and by George Salmon, who initially objected to Hargreave's work and was
later won over to the extent of publishing it when Hargreave died.

Selfishly, I will only be expanding those ideas of algebra I actually care about. For
example, there will be no Interest, Annuities, or Probability here. There will be
Combinatorics, which is more or less Probability with word problems having nothing
to do with chaos, because, as much as I dislike Combinatorics, many of my interests
are built in part upon it. I will also forego Chrystal's development of complex numbers
in trigonometric series as these will go into Everymind’s Second Circle of
Trigonometry. But most of fundamental algebra is here. If anything, I care about too
much.

And selfishly, I will be really drilling down on my interests: Partial Fractions,
Continued Fractions, Euclid's Algorithm, anything having to do with division. As
Halsted said, From fractions we get division. You may have noticed in DME that
Addition, Subtraction, and Multiplication took up only eleven pages between them
while Division and Fractions took up twenty-five. That wasn't planned. Division is the
decisive operator. Only in writing this paragraph did I realize my interests were
universally divisive. That explains some other things about me, I'm sure.

You will find very little original in this text. I'm a harmonizer, not a creator. Any
originality will be in the harmonization and organization of the content. As I do this,
disparate things will come together. And these contrasts suggest other connections
which you may not have made before either. And my continually going over the same
ground finally exposes relations and techniques which were not obvious to me at first,
even simple ones. Possibly, I am the last one to notice the obvious. But justin case I'm
not the only slow&thick one present, [ will share even these simple things with you.

I am finding that the best way to study mathematics is to write a book. Using only
personal notebooks, I can tell myself that I understand many things I do not actually
understand. But if, after making the notebooks, I pull it all together for general
consumption, I am much more thorough in examining my understanding. So most of
what is contained in this text will actually be correct. Well, everything should be
correct. But if I mess up anywhere, I'm happy to take the blame. BTW, quotations
from other works will be in italics. And I don't do footnotes.
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1. Fundaments

The Form of Number

The first thing I want to do is to give you something of an understanding of my
approach to mathematics. In Chrystal's preface, he writes:

Thus it becomes necessary, if Algebra is to be anything more than a mere bundle of
unconnected rules, to lay down generally the three findamental laws of the subject,

and to proceed deductively -- in short to introduce the idea of Algebraic Form, which

Is the foundation of all the modern developments of Algebra and the secret of
analytical geometry, the most beautifill of all its applications.

De Morgan, in /4is Algebra, emphasizes algebra as a language and develops its
meaningful expression. Todhunter, in /4is Algebra, emphasizes both the proof and the
use of this form of number. Chrystal emphasizes form, the fundamental forms, of
algebraic expression. And this is why I am working through his text and sharing it
with you.

I am instinctively, intuitively, drawn to form. Fundamental forms. The multiplicity of
a form. Expressions of the same form through different mathematics. It seems almost
the most important facet of mathematics to grasp, this idea of form and the power it
gives to our expression.

Formalism

Chrystal was writing in 1886 and in his writing you can see the approach of ideas,
which by the 1920s would consume mathematics in its investigations of its own
foundations. There would be three approaches -- Logicism, Formalism, and
Intuitionism -- of which Formalism would come to dominate. Let me show you a
glimpse of Formalism from Chrystal's early chapters. The three fundamental laws he
mentions above are the Associative, Commutative, and Distributive Laws and he
develops them in a kind of proto-formalism. As he does so, he develops the Laws of
Signs. Here is a bit of that:

+(+a) =+a -(+a)=-a x(xa) = (xa) x(+a) = +a
+(-a)=-a -(-a) =+a +(xa) =+a +(+a) =xa
+a x +C = +ac +ax-c=-ac +a + +c = +(a+c) +a+-c=-(a+c)
-ax+c=-ac -ax-c=+ac -a++c=-(a%c) -a+-c=+(a+c)
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From these and similar, he shows that addition and subtraction are formally identical
to multiplication and division. There is, he says, no distinction except the symbols, a
conclusion at first sight a little startling, which does not extend to the Distributive
Law. Nor, we might add, does it extend to the use of these two categories of operators,
nor to all the forms they produce. They are at some, obviously abstract, level
equivalent. But our practice, the mathematics we actually do, is untouched by this
equivalency.

I don't really want to get bogged down discussing formalism or in what, in spite of its
actual failure, it produced. We continue to live with what it produced -- and with what
is still produces. But that's not where I live. Hermites, a profound algebraist, was only
interested in general theorems when they could be used to solve particular problems.
I think he sensed that an abstract mathematic had a tendency to go off on its own,
saying true, yet often inapplicable or insignificant, things. Hermites's research was
grounded on mathematics he could do. So he anchored his abstractions in the
concrete. That s precisely my approach.

By "concrete” I absolutely do not mean "applied” as in "applied mathematics." There
is no such thing as applied mathematics. There is only one mathematics. And it can be
applied to the world of experience or to the world of mathematics or tautologically to
itself. That last is what [ believe Hermites wanted to avoid. I avoid that as well.

My problem with abstract mathematics is this: they give us almost no mathematics to
do. I'm not criticizing abstract mathematics here. I'm just disappointed in them so far.
I have worked through three books on Galois Theory and they basically amount to
signage, posted on the border of fifth degree equations, saying, "Here there be no
solutions by radicals.” Most people seem to take them as saying, "I'd turn back if I
were you," and they obediently go back to where they came from.

My response is more: "Okay, not by radicals. What else ya got?" And the books only
shrug. Well, Hargreave did more than shrug. But I didn't know that as [ was writing
this. His work is the Easter egg in this book. At any rate, polynomials and their roots
are expressions of laws governing the form of number. There is always a multiplicity
of form. And the roads leading to the laws are infinite like the consciousness -- ours --
they spring from. When we arrive at our understanding, the polynomials must give up
their roots.

So with this search for understanding, I am investigating the form of algebra, of
number, in the world of mathematics.

Meaning

In both De Morgan and Chrystal, we find, explicit, the assumption that there is always
an answer to our question. Isn't that extraordinary? If we have a mathematical
question, we are told to assume that there is always an answer.

Now the answer may be nonsense. But in that case, we assume the nonsense to be our
own fault. We either set up the problem incorrectly or we are prematurely asking the
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question. And if we discover that the nonsense is not our fault, then mathematics is
always gradually expanded as the nonsense is given meaning. So the answer actually
was there all along. There is no nonsense in mathematics.

As for the fundamental laws, we've seen them proved for addition with methods like:

3+4
=(1+1+1)+(1+1+1+1)
=1+1+1+1+1+1+1
=(1+1+1+1)+(1+1+1)
=4+3

And for multiplication, we've seen it done with rectangles of dots. Reading Chrystal, it
occurred to me that by using Euclid 2.1 and its "corollaries” of immediately succeeding
propositions, you can prove the three laws in multiplication with rectangles. The
Commutative Law is "a rectangle is indifferent to its orientation.” The Associative Law
becomes "a rectangle is indifferent to the method of its rectangular division." And
Euclid 2.1 does it for the Distributive Law.

As Chrystal works through the basic three laws, we see that negative numbers still
retain for him a cachet and are not yet formalized into blandness. Here, "-a" is
explained as @ fo be subtracted, in other words, algebra, as general theory, always
implies practical use. He points out that "1/2 x 2/3 =1/3" is an operation while "1/3
is 1/2 of 2/3" is an interpretation.

Chrystal defines "equal to" as "transformable by the fundamental laws of algebra
into." Note that nothing is equal to itself; everything is identical to itself, which is not

the same thing.

He defines zero as the /imit of the difference of two quantities that have been made to
differ as little as we please. Or:

(a+x)-a=a-a+x=x
which has the limit 0 as (a + x)—a. I find it charming that, even after Weierstrass has
fixed the definition of the limit of increasing and decreasing quantities, Chrystal
continues to take his pleasure with the large and small. He defines unity as a ratio of
similarly diminishing difference, where

(a+x)+a=zata+x+a=1+x+a

has the limit of unity as x—0.
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There is for Chrystal a symmetry between one and zero:

+a-a=-a+a=0 xa+a=+axa=1
a+0=a-0 axl=a=+1
~+0=-0 A1x1=1+1

And indeed, part of recognizing the form of number is seeing precisely what is under
your nose, even in the cases of ones and zeroes, before you start taking it apart with
your tools of operation. If you have

9x® + 4x = 3x* + 10x?

you should first see that 0 and 1 are roots. Then you can go looking for the other two.
I had not seen this expression before either:

b x (a x bth root of unity) =a

Everyone else has simply said: b x (a x 1/b) = a, which is far less interesting. Chrystal
also points out, in this first chapter of his, the Principle of Substitution which is
painfully obvious to read about. I'll use a painfully obvious example.

If you have a true statement in algebra
a(bc) = (ab)c

then you can choose any expression for a, b, and ¢

2

a=x/y b=x* c=y*
and the truth remains
x/y(x*y*x) =x'y = (x/yx*)y?*x

And, yes, we knew all this. But we do not all take all the of advantage of it. Later, here
and there, I will point out where you may not be taking advantage of the Principle of
Substitution. And if you are slow&thick like I am, you will wonder, as I did, how you
overlooked it.

Euclid's Algorithm

In DME I called Euclid's Algorithm the determining of the Greatest Common Factor or
GCF. I did that out of politeness towards other widely-used text books. But I don't like
calling it that. I like tradition and traditionally Euclid's Algorithm determines the
Greatest Common Measure or GCM, as Euclid did not have factors (or divisors as in
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GCD). So we're going with GCM, denoted gcm(a,b) = c, a,b,c€N. There, I feel better.

In mathematics, everything interesting begins with division. When you determine the
GCM, you can take the multiple of the divisor either above or below the dividend and
the remainder with the smallest absolute value will shorten the process.

1595)4323(2 1595)4323(3
1133)1595(1 462)1595(3
462)1133(2 209)462(2
209)462(2 44)209(5
44)209(4 11)44(4
33)44(1 0
11)33(3
0

RHS shorter by two steps. The standpoint you need to take here is not "I am learning
algebra" but "I am becoming an algebraist." You are developing your own mind. And
so with each new idea, you must ask yourself, "How can I bring this idea to bear on my
practice of algebra?" And my approach, as [ work through Chrystal, is to grab every
idea which seems to relate to my practice and interests. And this serves as a filter to
bring more useful ideas into my understanding.

Recall our notation for "a and b are prime to each other": p(a,b) and our use of "a
divby b" for "a is divisible by b without remainder." Back to the GCM. All that follows
will eventually apply to integral functions.

Thm. 1.1. p(a,b), VheN = any common factor of a-h and b divides h exactly.
Cor 1. p(ab), a-h divby b= hdivby b

Cor2. p(a [b,cd, ..])=p(ab-cd)

Cor3. A={ay, ay ..} B={by, by, ..} if p(A,B) = p([Tai[]bi)

Cor 4. p(ab), vm,neN = p(a”,b")

Also recall that I only do proofs when they are the best explanation. But as you
actually have the core of mathematics through De Morgan and Euclid, you have done
far too many proofs to need me to do any easy ones for you. If you have any doubts as
to my assertions or feel the need, as you sometimes should, for a proof I haven't
supplied, then go do one and, whether you succeed or not, go find one that satisfies
you in order to check your work. And it is important that you do find a proof actually
satisfying. Look for ones that do this. Cherish your own mind.
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Thm. 1.2. Represent a€N as a = gb + r: r<b = as r is pos/neg 3! representation.

[ Represent natural number a as q-b + r such that r is less than b then as r is positive or
negative there exists a unique q,b, and r. |

Proof

1)r>0

gmaxofgb<a=a-gb=r:r<b.a=qgb+runique

Else xb + p = a where x#q

~gb+r=xb+p-(r-p)=(q-x)b-(r-p)divbyb~ (rp<bbyhyp.)

2)r<0 Sym.proof. m

Cor. 1. a divby/!divby b as least remainder r does/doesn't vanish.

Above, the r's are minimum (min) pos, neg remainders. Min positive is usually
assumed. If the restriction of r < b is removed then r is called the residue.

Thm. 1.3. remainder r for a,a’ equal with respect to (wrt) b & (a-a") divby b
Proof

a=rb+ta'=sb+t~(a-a)=(r-s)b+(t-t) m

Example

a=29 a'=13 b=4

a=74+1b=34+1(a-a)=4-4=16divbyb

We saw in DME that polynomials with integer coefficients (coeffs) are subject to
Euclid's Algorithm. Therefore they are "as integers" and what applies to integers in
arithmetic and number theory must apply to these integral functions (ifn). The
following theorems can all be proven from the form of the GCM.

Thm. 1.4. In gcm(a,b), Vremainder has form: *(Aa - Bb) positive (pos) on odd steps,
negative (neg) on even, where A,B € N take on successive values.

Cor. 1. gcm(ab) =g= +g=(Aa-Bb)

Cor. 2. gcm(a,b) =1= +1=(Aa-Bb)

Note: In each case if p(A,B) = a/gb/g€ N=1m ~ 1 = +(Aa - Bb)

Else if Ip(A,B) then common factor C - 1 divby C<

All of this pertains to continued fractions and Cor. 2 will be seen again in partial
fractions of fractions of ifns.

Cor. 3. Vcommon factor of a,b is a factor of gcm(a,b).

Cor. 4. To find gcm(a)b,c,...): gcm(a,b) =a', gcm(a',c) = b, ...

To see that A,B take on successive values, let's see where they come from.
Here, in the GCM algorithm, c,d,e are successive remainders:
Ifa=pb+cthenc=+(a-pb)
Nextstep,d=b+qc=b-q(a-pb)=-(qa-(1+pq)b)
e=c-rd=(a-pb)+r(ga-(1+pq)b)=+((1+gr)a-(p+r+pqr)b)
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Examples
1) Express gcm(565,60) as A-565 - B-60
565=9:60 + 25
60=2-25+10
25=210+5
10=2-5
~25=565-9-60
10 =60-2(2:565-9-60) =-(2:565 - 19:60)
5=25-2:10=565-9-60 + 2(2:565 - 19-60) = 5-565 - 47-60

2)Solve 5A-7B=1

7=15+2

5=22+1
%2=7-51=5-2(7-5)=3-5-27
~A=3B=2

Thm. 1.5. Given fraction p/ab: p < ab and p(a,b) = 3! representationa'/a +b'/b - k:

a'b'>0,a'b'<ab,k=0v1(v="or")as kis/isn't integral part ofa'/a + b'/b.

Example

6/35: 35=5-7

35-27=1 ( by above example #2)

~6/35=6/35-(3-5-2:7)=18/7-12/5
=(2:7+4)/7-(35-3)/5 = 2*/7-3%/5s = 3/5+4/7 -1

Proof

Aa-Bb=1+1

+p/b-A+p/a-B=p/ab (x+p/ab) (1]

upper sign:

pA=lb+b" pB=ma-a' where0<a'b'<ab

~p/ab=1-m+a'/a+b'/b (by[1])

p/ab proper fraction - integral part RHS = 0

integral partofa'/a+b'/b<1

~l-m=0v-1

lower sign:

Sym. withpA=1b-b" pB=ma+a’

I'm not sure why Chrystal includes this next theorem where he does. Maybe he wants
to reassure us that we won't run out. Iinclude it for a study of simplicity in proofs.

Thm. 1.6. The number of prime integers is infinite.
Proof

Else last prime = p

Let P =[[(primes < p) - P divby Vprimes < p

~ P+1 !divby Vprime <p 3

~ primes infinite
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Form of Division

If something is true of n€N, then it is true of Z and with due care it is true of integral
functions (ifns). Let's divide 719 by 2,3,4... until we run out of dividend.

2) 719 (
3)359 (r1
4)119(r2
5) 29(r3
5 r4
~719=1+22+3-2:3+4-2:3:4+5:2:3:4:5

Take a minute to figure out what we are doing here. It's a bit weird. Now divide 719
by 2,4,6,...

2)719 (
4)359(r1
6) 89(r3
8) 14(r5
1r6
~719=1+32+542+6642+1-2:4-68

If we call 2,3,4,...or 2,4,6,... 1i[1-n] and call 1,2,3,4,5 or 1,3,5,6,1 pi [0-n] and call 719 N,
then in general:

Thm. 1.7. Let i denote any series of n€EN in no way restricted, then any NEN has form:
N = po + p1r1 + pzrlrz + e 4 pnr1r2~-~rn [1]

where pi < ri+1 and given the 1, the result is unique.
Proof

If we designate the successive dividends Ni [1-n]

N =po +Nyry Po<T1
N =p; + Nor; p1<r2

Nn-1 = pn-1 + No'n
And by subbing

N =po + r1(ps + Narz)
=Po + pary + rirzN;

and so on until we have N in form [1] and form unique.

Else 3p'i # pi then set our variant results equal and divide by p;
Po/T1+ (P1+Parz+ ) =p'o+ (p'1+Pparz+ )

Terms in parens are in N and fractions are proper.

~ Ppo/r1=p'o/rl « po=p'oand sums in parens are equal.

Sym. true of all divisions by ri B
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Let's look at fractions this way, beginning with a general theorem.
Thm. 1.8. Any proper fraction A/B has form
A/B=p1/ry + pa/rirz + p3/Talars + -+ + po/rilptn + F

where pi < riand F is either zero or has a limit of zero as n—oo. Given rj, form is unique.
Proof

Youdoit. A/B =Ar1/Bri=(Ary/B)/r1=(p1+q1/B)/r1=p1/r1+1/r1-q1/Betc.

If A/B in lowest terms, F = 0 when []ri = mB for some meN

Examples

1) A/B = 444/576
576=2532 ri=246,. = 444/576 =37/48 - [[ri= 48
#444/576=1/2 + 2/2-4 + 1/2-4-6

2)A/B=11/13 3[[ri=13 r1i=2,34,..
11/13=1/2+2/2:3+0/2:3-4+1/2-3:4-5+3/2-3:4-5:-6 + 3/2---6-13

Here series cannot terminate. So we terminate F with the factor 13 in the
denominator (denom).

Here is an algorithm for expanding a proper fraction with a series of proper fractions
with numerators of unity. Again we take 11/13 and each multiplier is minimal.

11 ~11/13=1/2+1/2-2+1/3-2.2+1/7-3-2:2+1/13-7-3-2:2
_2x
13)22(1 By using a minimal multiple, remainders go to zero while the
13 multipliers increase.
9
_2x 2/3 = 2x2=1/2+1/3
13)18(1 3)4(1
13 3
5x3 1 x3
13)15(1 3)3(1
13 0
2x7
13)14 (1 But use multipliers 2,4,4,... then
13
1x13 2/3=1/2+1/2-4+1/2:4%+ - +1/2:4" + 1/2-4".3
13)13(1
0 where you have to terminate F.

Recall from DME that by using the same divisor N there are N-1 different remainders
and all results that hold for repeating decimals holds here.
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Thm. 1.9. YNeEN has unique form
N = par™ + paar™ + - + pir + po
where Vpi<r.
Proof follows from Thm. 1.8. And this is nothing but positional notation. If we divide

N by r the remainder is p,, divide N; by r the remainder is p;, and so on. Process
terminates with 0 < pn <r. And we have seen this next bit before:

Base 10 Base 6

10) 719 ( 6)719 (

10) 71(r9 6)119(r5
7(r1 6) 19(r5

719=7-102+1-10 + 9 3(r1

7196 =363 +1-62+5-6 +5
~71910=3155¢

Thm. 1.10 Any proper fraction A/B has the form
A/B=p1/r+ D2/t + 3/t + -+ po/t" + F

where Vpi < r and either F = 0 or F->0 and n—oo. Proof follows from Thm. 1.9. And
this is only decimal fractional notation. Ifr is the base and F = 0 then

A/B = 0.p1p2ps3...pn

From DME we know that F = 0 & denom in form 2™-5" for base 10. So if you wanted
2/3 to 5 decimal places:

2/3 = (2-10%)/(3-105) = (66666+2/3)/10° = 0.66666 + (2/3)/10° = 0.66666
And 5/64 must terminate as 64 = 2°:

(5-10%)/(64-10°) = 78125/10° = 0.078125
or (5-5°)/(64-5%) = 78125/10°

Now this next bit is not exactly our division algorithm but it's close. And it shows that
what we did with bases can be done with positional fractions.
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Base 10 Base 7
0.168 0.168
10 A
1.)68 1.)176
10 A
6.) 80 1.)232
10 A
8.) 00 1.) 624
~=1/10+6/10% + 8/10° 7
4.) 368

7

2.)576

+0.16810= 0.111427

We are looking for the form of number through the form of division in such a way that
the base is arbitrary. All of this is true of all bases and all positional notation. Two
more theorems. Consider that VneN has a different form in each base.

Thm. 1.11. VN in base r, divide N and }(digits of N) by r-1 = same remainder in each
case.

Proof

N = par™ + paar™ + - + pir + po

N-(po+pa+ - +pn) =par-1) +po(r®- 1) + -+ + pu(r’- 1)

meN, r" - 1 divby r -1

& N-(po+p1+-+pn)=p(r-1) for some peN [1]

Letremainder of N+(r-1) bes: N=A(r-1) +s

~by[1] (po+p1+--+pn) =(A-W(r-1)+s W

Cor. 1. Base 10, N+9 (or 3) has same remainder as ;(digits of N)+9 (or 3)
Cor. 2. neN, m = 3n or 9n, ¥, (digits of m) = 3 or 9.

Thm. 1.12. Lambert's Theorem

Let qi,ri [1 - n] be quotients and remainders when B divided by A, ry, r, ... then
A/B=1/01-1/0102 + 1/0202qs -+ + (1) /[Tai + F

where F = ((-1)"ra)/([1qi'B) ~ F<1/[lq

Proof

Youdoit. B=Aq, +r; ~A/B=1/q4-1r1/q4B
B=riqz +12 ~ A/B=1/q2-12/q.B

Then combine and unpack A/B in the form of the theorem.
Example
113/244=1/2-1/2-13+1/2-13-24-1/2-13-24-61
wherer,=4 ~ 4/244=1/61

~ sum of 1st three terms within 3d term (1/624) of 113/244

These are a/most continued fractions, aren't they?
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Ratio and Proportion

A few simple things as corollaries to what we already know. Leta>b, x> 0.

atx - a X
b+x b b(b+x) b b+x

b-a<0~RHT <0~ (a+x)/(b+x) <a/b (RHT is Right Hand Term)
Sym. a>b,a>0

» (@a-x)/(b-x)>a/b

If a:b::b:c then a:c::a%:b?:b?%:c? and b = Vac.

If a:b::b:ci:c:d then a:d::a®:b3:b3:c%:c%:d® and b = 3Va?d ¢ = 3Vad?.

These mean that inserting n mean proportions between any two values requires
taking nth roots: 1:x:x:2 ~ x2=2 ~x=+/2.

We can interestingly extend Euclid 5.2 as follows:

Thm. 1.13. If a;:b;::a5:by:: -+ i:an:bn then VI this extends to
= V(lha, + La + -+ nan"):V(Igby + by + - + Iaby")

Proof

ai/bi = some § - ai' = (8bi)" = 8'bi for Vi

~V(Zlah) = V(8'Xlb") = 5VIlbi

~V(Zla")/V(Zlbf) =8 =a;/b; =ay/b, = M

More simply, if a:b::c:d then Vl,m,p,q,r:
la+mb:pa+qgb::lc+md:pc+qd and la"+mb":pa“+qb":lc'+md":pc’+qd"

which I leave for you to work out. The key ideas from Euclid 5.11 is that if a:b::c:d
then a/b = c¢/d and this must equal something OR a/b = ¢/d = A which can remain
abstract if it wants to. And if a/b = ¢/d then we have a/b + 1 = c/d + 1 and one is A/A
where A is any algebraic term. It is easier to work things out with the form a/b than
a:b in most cases.

We can extend Euclid 5.12 even further:
Thm. 1.14. V homogeneous (homog) ifn @(x4,Xz,....Xn) of r°

and a;:bg::az:byii---izantbn and ai/bi = p
= ¢(aag,...an):@(by,bz,....bn) =p
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Examples

1) a:b::c:d, A:B::C:D = aVA-bVB:cVC-dVD::avA + bVB: cVC + dVD
Leta/b=c/d=A A/B=C/D=p~a=Ab c=Ad A=puB C=uD
< aVA -bVB =AbVuB-bvB = (AWu-1)byVB = bVB

cVC-dvD AdVuD-dvD (Wu-1)dvD  dvD
Sym. (aVA + bvB)/(cVC + dvD) = bvB/dVD

2) x/(b+c-a) =y/(c+a-b) =z/(a+b-c) = (b-c)x + (c-a)y + (a-b)z=0
Let[1] = p then x = (b+c-a)p y=(c+a-b)p z=(a+b-c)p
~ (b-c)x + (c-a)y + (a-b)z = (b-c)(b+c-a)p + (c-a)(c+a-b)p + (a-b)(a+b-c)p
and algebrate.

3) Note that I use -|-(x,y) to indicate "between x and y".

If b is mean proportion -|-(a,c) then (at+b+c)(a-b+c) = a®+ b? + ¢? [1]
a:b::bic - b?=ac (hyp.)
(a+c)? - b% = a%+ b2+ ¢? (nn

o (a+c)?-b% = (a+c)? - ac = a®+ c*+ ac = a’+ b2+ 2
By setting a/b =b/c = p you can show (a+b+c)?+ a%+ b?+ ¢? = 2(a+b+c)(a+c)

We should note that by choosing the unit, any two rational quantities in a ratio can be
expressed as integers: 3 1/4:4 3/8 Let the unit be 1/8. Ratio becomes 26:35. In his
demonstration that proportions hold for all numbers as well as magnitudes, Chrystal

writes:

Any theory may be expressed in algebraical symbols, provided the fundamental
principles of its logic are in agreement with the fundamental laws of algebraical

operation.

That Euclid V applies to number is long established. If you are interested in that
establishment, see De Morgan's 7he Connexion of Number and Magnitude for the

prettiest development of these ideas.

Variance
We can relate proportions to functions as follows.

Lety = f(x) then x—y, x'>y" ~y:y ux:x'

If we take actual values for x' = Xo, ' = yo then y : yo :: X : Xo Or ¥/yo = X/Xo and we

arrive aty = yo/Xo - X or y = ax where a = y/xo.

~y'=ax' ~yly =ax/ax'=x/x' ~ y:yux:x

We say here that "y varies directly as x" or "y is proportional to x." For notation, we

will use yRx. This can be expanded by replacing x as follows:
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y = ax? = yiy uxtix?

y=a/x = y:y' u1l/x:1/%' [1]
y=a/x* = yiy' n1/x%1/x? 0 [2]
y = a(x+b) = y:y' ux+b:x'+b

In [1], y varies "inversely as x" and in [2], "inversely as the square of x." Further:

u = axy = u:u' nxy:xy'
u=a(x+y) = u:u' nx+y x4y
u=ax/y = u:u' nx/y:x'/y'

You can prove for yourself the following:

if zZRy and yRx then zRx

if y1Rx; and y,Rx, then y;y,Rx;x,

if yRx then zyRzx whether z is variable or constant

if zZRxy then xRz/y and yRz/x

if z depends only on x and y and zRx when y constant and zRy when x

constant then zRxy when x,y both vary

6. if z depends only on X4,X5,...xn and varies as any one of them when the rest
are constant, then when all vary zR[[xi

7.  ifzRx (y constant) and zR1/y (x constant) then zRx/y (x,y vary)

Gk W

Examples

1) VAABC, let A = area, b = base BC, t = altitude = ARD (t constant) and ARt (b constant)
~ ARtba when t,b vary. And constant a = %;. But we knew that.

2) sRt? (f constant) sRf (t constant) 2s = fwhen t=1 Required relation of s,f;t
By #5 above, sRft? -~ s = aft? where a is some constant. We need a.
t=1s=f/2 » Wf=afl? = WBf=afna=%. s=1ft*

Logarithms

Consider the exponential fn a* where a€R and a > 1. Let xéR. If x € R-Q, we can
approximate a* to any degree of accuracy with some m/n € Q. So we can consider

m/n

only such a™". And if x<0, we define a" as 1/a™. Defined in this way, a* has the range

[0,00). Ify€R,y > 1, neN, thenasa > 1, a'/"
/

>1 and as n—oo, a/">1. Given n, we can
1/n e/

n

choose meN: a™" m—o, a™"—co. Then Vy In: a¥"<y . a™<y < a e

difference of these outside terms is a™"(a/"- 1) . n—co this difference—~0. So no
matter what y is, we can find an x: a*=y. Now lety € (0,1) then 1/y>1 ~ 3x:a*=1/y -
a™=y. So for any y € (0,1) there is always an x: a*= y and, as no y is excluded, x is
continuous. A quick table:

X -00 negx -1 0 1 pos X +00
a 0 <1 1/a 1 a >1 +00
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In this figure, the solid curve is 10" v
and the dotted one is 100". Note i
that both intersect the Y-axis at Fig 1. /
* 4
(0,1) and that for any x, the value P
/
of 100* = 2-10" /
N A/
rd
’
’
Iny =a", yis a continuous fn of x. ___’___/.—B'
But we can use the same fn to ===="" 5 v %
determine a continuous fn x of y.

In a* a is the base. When y is a fn of x to base a then y = a*. The inverse fn x(y) is the
logarithm of y to base a: x = logay. All properties of the log fn must be derivable from
its inverse exponential fn, which is to say from the laws of indices. If we take "log" to
mean "loga", it follows from the above that y = a° Y, In all that follows, we will take
"log" without a base to mean "logi0" and we will use "In" to mean "loge".

Thm. 1.15. If 10 is the logarithm base, then the characteristic of the log depends on
the position of the decimal point and the mantissa is independent of the decimal point,
depending only on the succession of digits.

Proof

N is any number formed by a row of digits, ¢ is N's characteristic,c m N's mantissa.
Then any number with the digits of N but with a different decimal point placement has
the form 10"N i€Z. Then log 10"N = log 10'+ log N = i + log N = (i+c).m. But by hyp,
meQ, ¢,i € N . mantissa of log 10N = m and its characteristic is i+c. - characteristic
alone is altered by decimal point. B

Thm. 1.16. If a series of numbers are in G.P., their logs are in A.P.
Proof

Take y4, V2, ..., ynin G.P. These equal a® a***, a**?f, ..., a®*®f
~logs are a, a+f, a+2B, .., a+(n-1)B. W

Historically speaking, it was this relation that led to logarithms.

Thm. 1.17. Given a system of logs to base a, we can convert them to another base b by
multiplying them by 1/logab.

Proof

x =logyy =y =b"

= logay = logab™ = xlogab

=~ logvy = x =logay/log.b B [1]

Def. 1= 1/logab is the modulus of system base b to system base a.

Cor. 1. Ifin [1], y = b then logba = 1/logab - logab - logea = 1

Cor. 2. Let "log" be "log." then y = b* can be written y = a*'°° or if "log" is "logy"
x/loga

theny=a = the graph of b is deducible from the graph of a* by:

abscissa b*: abscissaa® :: 1 : logab
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In other words, given any two exponential graphs A,B, either A is the orthogonal
projection of B or B of A onto a plane passing through the Y-axis.

Historically speaking, logarithms in tables were used for numerical calculation. So
algebraic and other texts devoted considerable space to the optimized methods of
calculation by logs and of log table usage. Now, the logs are built into the calculating
device and we never see them. But here is an interesting idea. Recall from DME that if
x increases incrementally {x, x+h, x+2h, ..} then, to a limited extent, f(x) will increase
incrementally.

Let h be the difference between values in a log table.
Let D = f(a+h) - f(a) = tabular distance of the logs.
Let a+h' be a value not in the table between a, a+h. such that h'<h.

f(a+h') - f(a) = (a+h')-a = h'
D (a+h)-a h

In usage, f(a), D, and h are known. We now have a relation between h' and f(a+h'). So
if we know h' or f(a+h') we have

f(a+h)=f(a) +h'/h-D
a+h'=a+((f(a+h) - f(a))/D) - h

From the first, we find a value of f given an increment of a. From the second, we get an

intermediate value of a from an increment of f. This was called the Rule of

Proportional Parts.

Combinatorics

Let us deepen our language of permutations and combinations. Recall from DME that
is we have m things and choose n, notation is Cmpn for combinations (combs) and Pmjn
for permutations (perms). We will use Chrystal's language in what follows instead of
De Morgan's but keep our notation.

Permutations

Thm. 1.18. The number of r-perms of n things (Pnr) is

n(n-1)(n-2)-+(n-(r+1))

[proof follows]
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Proof
Enumerate the r-perms of ai [1-n] into classes as follows:
1st. All those where ay is first.
2d. All those where a, is first. And so on.
There are as many perms where a, is first as there are (r-1)perms of the remaining
n-1 letters OR there are Pn-1-1 perms of the first class above.
This is true of all n classes.
Pn|r = npn-1|r-1
If n=r, this is true of Vn,r € N
Pujr = nPn-1jr1
Pn-1jr-1 = (n-1)Pn-2jr-2

Pnrizz = (M-1+2)Pnrsapn
Multiply these and all the P's cancel except Pnjr and Pn-r+1j1
and the value of the latter is n-r+1
& Por=n(n-1)(n-2)---(n-r+1) M [1]
Cor. 1. Pajn=n(n-1)---3-2-1 = [ni [1-n]
Cor. 2. Pnjr=n!/(n-r)!
Cor. 3. The ways of arranging n letters in circular order is (n-1)! or (n-1)!/2 as clock-
wise (cw) and counter-clock-wise (ccw) are or are not distinguished.

Thm. 1.19. When each of n letters can be repeated, Poir = n".

Thm. 1.20. Given n letters where groups a, B, v, ... are the same letter Pnjn = n!/a!Bly!...
Cor. 1. The ways of putting n things into r holes: « in first hole, f8 in second hole, ... is
n!/alfl.. (Note: Here the order of holes is fixed but the order of their contents is
ignored.)

Circular Example

In how many ways can n distinct beads be made into a bracelet?
Since turning the bracelet over turns a cw arrangement into a ccw arrangement,
~ the number is (n-1)!/2.

Combinations

Thm. 1.21. Given s sets of ni things: ni € N [1-s], s things can be selected, one from each
set in nyn,---ns ways.

Thm. 1.22, The number of r-combs of n things (Cnr) is
n(n-1)---(n-r+1)/1-2-3---r [1]

Proof

The proof is Sym. to the proof of Pnir but we have rCnjr = nCnjr-1 + Cnjr =n/r - C-1jr-1
Then enumerate the descending cases and multiply. But we already did that.

Here is a shorter proof: Every r-comb of n letters, if permuted in every way gives r!
r-perms. And each r-perm occurs only once in this way.

& 1lCojr = Pojr = Cojr = Pope/r! B
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Cor. 1. Multiply numerator (num) and denom of Cnjr by (n-r)(n-r-1)---3-2-1

& Cor=n!/r(n-r)!
Cor. 2. Cnjr = Copnr and this follows from Cor. 1.
Cor. 3. Cur = Cn1r + Cn1jr1 and this is true of all f(n) neN of form [1] where n is
unrestricted.
Cor. 4. Cn-1js + Cn-2js + -+ + Csjs = Cnjs+1
Cor. 5. Cpls + Cpjs-1Cqj1 + Cpjs-2Cqj2 + -+ + Cp|1Cqjs-1 + Cqjs = Cpeqys

Cor. 4 and 5 are propositions of series summation. More than that, we are establishing
an arithmetic of combs. If you worked with small sets as concrete examples, you
would realize the form of this arithmetic. Cor. 5. also takes the form:

(p(p-1)---(p-s+1))/s! + (p(p-1)--(p-s+2))/(s-1)! - q/1 + -~
+(p(p-1)--(p-s+3))/(s-2)! - (a(q-1))/2! +
p/1-(a(q-1)---(q-s+2))/(s-1)! + (q(q-1)--(q-s+1))/s! =
((p+aq)(p+q-1)-(p+q-s+1))/s! [2]

Cor. 6. Multiply both sides of [2] by s!, denote p(p-1)--:(p-s+1) by ps and we have
Vandermonde's Theorem:

(p+q)s = ps + Csj1ps-1q1 + Csp2ps-2qz + -+ + Qs
Thm. 1.23. The r-combs of p+q letters, p alike, are

Cqr+ Cqr1+ - +Cqnn + 1
=q!(1/((g-n)) + 1/((r-D!(q-r+1)) + -+ 1/(1!(g-1)) + 1/qY

Cor. 1. The r-perms of same are:

qir!(1/(r!(g-r)) + 1/(r-1)!(q-r+1)1) + 1/(2!(r-2)!(q-r+2)!) + -
+1/((r-D'1(g-)N + 1/(r!q) ) =
Cqprr! + Cqr-1-1! /1! + Cqpr2er! /2! + -+ + Cqprer! /(r-1)! + 1

Thm. 1.24. The r-combs of n letters, each letter repeated up to r times (Hnr) is

(m+r-1)! = n(n+1)---(n+r-1)
(n-1)!'r! r!

Cor. 1. Hnr = Cosr-1r

Cor. 2. Hnir = Hn-1r + Hnjr1

Cor. 3. Hnir = Ho-1r + Ho-tgre-1 + Hoegpr2z + -« + Hogp + 1

Cor. 4. The number of different r-ary products using n different letters is
(n(n+1)---(n+r-1))/r!

and the number of terms in a complete ifn r° of n vars is

((n+1)(n+2)---(n+1))/ r! = Hns1)r
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And once you go down this road, the H will haunt you, just like the C and P do. I have
no idea what H stands for. We can restate the Binomial Theorem in terms of Cn|r:

(a+b)"=a"+ Copa™'b + Cojza™?b? + -+ + Coprd™"b" + -+ + b"
and this takes form:
(a+b)" =¥ (n!/(a!(n-ai)) x a“b™™

where a is always followed by a subscript and ai takes all positive integers values such
that Yo = n and those last i's are both actually subscripts [1-n] and this is also

=Y (n(n-1)-(n-ai+1 ) /il x a“b™™
The Multinomial Theorem generalizes this
(ag +az + - +am)" = Y (n!/([Toi!) x ar™aza™™  [1]

Just think about it until you see the Binomial Theorem in this way. We can use this to

n

find the coeff of X" in the expansion of (b;+ byx + bsx? + bn™")".
using a as above and letting y = az+ 2a3+ -+ + (m-1)otm, is:

The general term,

n!/T]o fem) x X' fm) x x”

which looks ugly but is useable in practice. We want terms where y = r and this coeff
takes its form from [1] above. But let's use some examples to see what the heck we're
talking about. Note that 0! = 1.

Examples

1) Req. coeff of a®b?in (a + b + ¢ +d)®is 5!/3!2!0!0! = 10
which is way easier than you expected.

2) Req. coeff of x®in (1 + 2x + x?)*
We need o+ 0+ a3 = 4
o+ 203=5
so=0az-1 a,=5-2a;

& 41/(013111) - 1°231% + 41/(111121) - 112112 = 56
Note that (1 + 2x + x?)* = (1 + x)® and coeff x° = Cgjs = (8-7-6:5-4)/(1-2-3-4-5) = 56

Both Chrystal and Todhunter go into this pretty deeply, in case you are hungry for
more. ['m full now, thank you.
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Thm. 1.25. If we have r sets of ni [1-r] different letters, the number of ways of making
combs by taking 1 to r letters at a time but never more than one from any set is

(n1+ D(nz+ 1)-(nr+ 1) - 1

Proof

Consider the product (1 +az+ by+ - of n, letters)
% (1 + az+ by + -+ of n, letters)
X ee

x (1 +ar+ br + --- of nr letters)
Here every comb of letters taken 1,2,3,... at a time occurs with the term 1 in addition.
If we replace each letter by unity, each term in the product becomes unity and the sum
will exceed the combs by 1. So sum above can be expressed:

Yni+ Yning + -+ nyny-ne W

Let's find the number of ways n different letters can be put into r holes, every hole
getting one or more letters, where we care about the order of holes but not the order
of letters in them. Let Dr be the number. If we leave s holes empty, we have Drsinr-s

holes. So the number of distributions (D) is CrjsDrs. The total distributions when any
or no holes are empty is r'.

Dr+ Crj1Dr-1+ Crj2Dr2+ -+ + Crjr-1D1 = 1"

If we put r=2, r=3, ... here, we could calculate D,, D3,... and D;= 1. So we could get our
answer. But we can do better. Sym. to above:

Dr-1+ Cr-1j1Dr-1+ Cr-1)2Dr-2+ ++ + Cr-1r-2D1 = (r-1)"
Subtracting: Crfs - Cr-11s-1 = Cr-1s

Dr+ Cr1j1Dr1#+ CrizDr2+ +++ + Cr1jraD1 = 1= (r-1)"
If we continue this pattern of subtraction and derivation we get:

Dr=r" Cepa(r-1)"+ Crj2(r-2)" - -+ + (-1)Crjr11"
Cor. 1. If the order of holes is ignored, the number of distributions is Dr/r! OR the
number of partitions of n things into r lots, no empty lots, is Dr/r! and just to let you
know it's out there, the number of ways n things can be deranged so that none are in
their original place is

n!(1-1/11+1/21+ -+ (-1)"/n!)

which is known as Whitworth's Subfactorial n.
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Combinatorics can be used to answer topological questions such as: There are n
points in a plane, no 3 collinear with the exception of p which are all in the same line.
Find the number of lines that can be made of these points and the number of triangles
with these points as vertices.

Method
Take any pair of n-p points and we get (n-p)(n-p-1)/2! lines. Take any of the n-p
points and one of the p = (n-p)p straight lines. And p in one line.

(n-p)(n-p-1))/2! + p(n-p) + 1 lines

Or if none collinear (n(n-1))/2. With p collinear, we have one line instead of

(p(p-1))/2
(n(n-1))/2 - (p(p-1)/2 + 1 lines.
Next take any 3 of the n-p - ((n-p)(n-p-1)(n-p-2))/3!
Then take 2 of the n-p points and 1 p -~ (p(n-p)(n-p-1))/2!
Then take 1 of n-p and 2 of p - (p(p-1) (n-p))/2! and sum for total.
OR if none are collinear (n(n-1)(n-2))/3!

But with p in one line we lose (p(p-1)(p-2))/3!
And the difference of these equals the above sum.

Substitutions
Combinatorics, beyond the basics, has little to interest me. But if you want to study
Galois Theory, and I do, you will need to understand permutation groups and cyclic
groups of, as it used to be called, Substitution Theory. Consider the letters abcde and
their perms becda, bcade. Given becda, we can make bcade by changing a to e and c to
a and e to c and represent this as:

(abcde:ebadc)becda = becade
or more briefly as

(ace:eac)becda = bcade

where (ace:eac) is an operator and its effect is substitution (sub).
We can denote (ace:eac) as S, then

S(becda) = bcade
The substitution S° is the identity operator which leaves a perm unchanged or

S%(becda) = becda
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And we can do compound subs such as (abc:cab)=S, (ae:ea)=T then
ST(aebcd) = ecabd

which is SeT(aebcd) = S(eabcd) = ecabd. We denote SS as S*:
S?(aebcd) = S(ceabd) = becad

Note that S and T are not commutative: ST(perm) # TS(perm) But if the subs are
disjoint (no letters in common), the commute. And this condition is sufficient but not
necessary as one sub can simply reverse another.

The perms of n letters are finite. So for VS, 3u: S* = S° In other words, u is the
smallest number or order of S that returns the variable to its original state. Therefore,
VpeN, S* = S = 1 which is another way to write S°.

Negative indices work this way: S = S™% pu>q.
Then S = §95" 9= = 1 . (5% = S and we get inverse subs.

So if S=(abcd:dabc) then S’lz(dabc:abcd) = (abcd:bcda) by simple rearrangement.

A set of subs such that the product of any of them is still in the set is a group. The
number of these subs is the group's order and the number of letters or other objects
operated on is the group's degree. Clearly, VA, S" neN is a group and its order is p as
above.

A cyclic sub replaces each letter with its consequent: (abcde:bcdea). This can be
simply denoted (abcde). A single letter cycle (a) is the identity cycle and a two letter
cycle (ab) = (ba) is a transposition (trans). Clearly the order of a cycle is the degree of
its group.

Thm. 1.26. Every sub is either cyclic of the product of a number of independent cycles.
Proof

A general approach: Consider VS = (abcdefgh:bfdcgaeh)

Here we have (abf), (cd), (eg), and (h)

= § = (abf)(cd)(eg) (h)

The cycles are independent and so commute and so their order of operation is
indifferent. @ Think about why this is an adequate proof.

Thm. 1.27. Vcycle of n letters is a product of n-1 transpositions.
Proof
The cycle (abcd) = (ab)(bc)(cd) and this can be applied generally too. B
Cor. 1. Vsub = n-r transpositions where n is the number of letters displaced and r is
the number of its proper cycles.
Proof
Using S = (abf)(cd)(eg)(h) above
= (ab)(bf) (cd)(eg)

wheren=7andcycles=3 &
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Prop. 1.1. The product of two trans which have two letters in common is the identity
sub. You can prove this for yourself.

Prop. 1.2. In the product of two trans TT' with a common letter, T' can be placed first
T'T if we replace the common letter with the other letter of T".

(ab)(bc) = (abc:bca) = (bc)(ac)

Cor. 1. (ef)(af) = (ae)(ef)
Cor. 2. (ae)(af) = (af)(ef)

Prop. 1.3. If T, T' have no common factor, they commute.

Thm. 1.28. Decomposition of a sub into trans is not unique.

Proof

We can introduce a pair of factors (ab)(ab) and commutate them with the others by
the above props. Doing this increases the trans by an even number.

Thm. 1.29. The number of trans equivalent to a given sub is always odd or always
even. And you will see this theorem again.

Proof

This proof is also a method for reducing a product of trans to a standard form. Take
the first letter "a" in its rightmost position. Move it left altering any trans with a by
Prop. 1.2. If a duplicate trans occurs, remove both. Either all trans with "a" disappear
or an even number (0,2,..) are removed and one remains on far left. Wash, rinse,
repeat with remaining letters. Even or odd. ® (Clearly, we can divide all subs into
even or odd.)

Cor. 1. VS, if n = number of letters altered, r = number of cycles, 2s = arbitrary even
integer, the number of factors in an equivalent productis n - r + 2s.

Cor. 2. Of all subs for n letters, odd subs = even subs.

Cor. 3. A cycle is even or odd as its letters are odd or even. (abc) = (ab)(bc)

Cor. 4. The product of any number of subs is even or odd as the number of odd factors
is even or odd. Any power of an even sub or any even power of an odd sub is even.
Cor. 5. All the even subs of a set of n letters form a group of order n!/2

Symmetric fns of a set of n vars are unaltered in value by any sub (perm) of its vars.
Alternating fns admit only even subs of their vars. This is as far as Chrystal takes
substitution. And that was the best introduction to permutation groups and cyclic
groups | have ever seen.
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2. Integral Functions

The form of a polynomial function of one variable in general is:
£(x) = cox” + X" + C2X" # -+ + Ca1X + Cn [f]

When ci [1-n] € Z, we call this an integral function (ifn) and if co = 1, we have a regular
integral function (rifn). And if all coeffs € Q, we call it a rational function (gfn). Be
warned that "rational fn" is an overloaded term and can mean different things in
different, especially older, texts. But we will always use rational function or gfn in this
present sense. We will begin by looking at things even more generally than this
dominant form.

Multinomial Factors

Consider (a + b)(c + d)(e + f) = what? You don't actually have to multiply this out to
get the product. You can take one term from each factor, produce all partial products,
and apply the law of signs:

=ace + acf + ade + adf + bce + bcf + bde + bdf

Let the factors have |, m, n, ... terms and the resulting product has I'm-n---- terms. And
above we had three factors with two terms - 2:2-2 = 8 terms in the product. Before
we do more examples here, there is something that we are rarely if ever told in
algebra. And that is that the above polynomial can be considered a fn of any of its
terms OR:

f(a) = (a+ b)(c + d)(e + f) = ace + acf + ade + adf + bce + bcf + bde + bdf
= (ce + cf + de + df)a + bce + bcf + bde + bdf

Or it could be f(a,b) or f(a,c,e). You will see that this is a useful thing to know. Anyway,
if we have (a + b)(a + b), we must have 2-2 terms. But the only possible terms are a-a,
a‘b, and b-b so one of them is repeated in a+ 2ab + b% Sym. in (a + b)® we must have
eight terms with only four possible combinations. There are three ways to get a’b (or
ab?) or C3j2 = (3:2/2-1) = 3: aab, aba, baa. And only one way to get a® or b®. So we must
have

a® +3a%b + 3ab% + b

With (a + b + ¢)® we must have 3-3 = 9 terms. Only one way to get any a? and only two
ways to get any of:

(a+ b +c)*=a%+b?+c? + 2ab + 2ac + 2bc

which gives us nine terms, three terms combined of two. What about (a + b + ¢)®? The
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point here is that by examining the form, we don't have to multiply anything. There is
one way to get any «; three to get any a?p; and six to get abc. If you will work until
you can see this, you can see these three numbers --1,3,6 -- and write:

a%+ b3+ c® + 3a%b + 3ab?+ 3b%c + 3bc?+ 3a%c + 3ac® + 6abc

There is an old use of the capital sigma "Y," where it means "sum of combinations of
this form". There are fields in algebra where it is still used and, of course, you can use
it too if you find it helpful. Using it, we have:

(a+b)*=Ya%+3Ya’b
(a+b+c)®=Ya*®+3Ya%b + 6abc
(b+c)(c+a)(a+b)=Ya’b+2abc

Using what you have just learned, check that last one to make sure it's correct. (I don't
actually catch all my typos.) And then calculate (b - ¢)(c - a)(a - b) which does not lend
itself to sigma notation. From all this, we can see that the form here dictates the
following:

(@a+b+c+d+-)?=Ya%+2Yab
(@a+b+c+d+--)*=Ya®+3¥a’b + 63 abc

There is also a capital pi "[]" notation for products of combinations. For a function in
a,b,c, [Ja%b = a®b x ab? x a’c x ac? x b%c x bc?. So we could say that (b + c¢)(c + a)(a + b)
is [[(b + ¢) = Ya®b + 2abc. Another way to look at expanding a known identity, like
the ones above, is to use our Principle of Substitution. I should add that an identity is
simply a tautological eqn. The LHS equals the RHS no matter what you feed it. We
know that

(a+b)®>=a’+3a%b + 3ab® + b3
So we can let b = b+c and then
(a+b+c)®=a®+3a%(b+c) + 3a(b+c)? + (b+c)?
and algebrate. And in these expansions, don't forget to look for your old friend:
(a+b+c-d)(a-b+c+d)
=(@+g+(b-d)((a+c)-(b-d)
=(a+c)?®-(b-d)?

Thm. 2.1. If all terms in all factors are a single letter without coeff and are all positive
then sum of coeff in product equals product of numbers of factors.

Example

(a+b)®*=>1+3+3+1=2x2x2
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Integral Functions of One Variable

A quick review from DME on these integral functions (ifn). The sum, difference, and
product of ifns are ifns. If ifn A divides ifn B without remainder, the quotient is an ifn.
The highest/lowest terms in an ifn are the products of the highest/lowest terms in its
factors. And the degree of the product of ifn is the sum of the degrees of its factors. In
standard form [f], a fn of degree n has n+1 terms, any of which may have coeff of zero.

A few remarks to move things a bit further: If all the factors are in the form (x - i) for
roots ai [1 - n], the terms of the product begin positive and alternate sign:

(x-a)(x-2a)(x-3a)(x-4a)
=x*+(1+2+3+4)ax®- (1-2+1-3+1-4+2:3 + 2-4 + 3-4)a’x?
+(1-2:3+ 13-4+ 1-2:4 + 1-3-4)a% - (1-2-3-4)a*
=x*-10x3a + 35x%a® - 50xa> + 24a*

This is both an example of the alternation of sign and of the relation of coeffs to roots.
If all the roots are in form (x - a), then the first coeff is unity. Using our other notation
of Nr for choosing r things from n things, the things are the roots, the degree of the fn
is N, and the coeffs of the terms following the first are constructed by choosing Ni
where i is the term (2d, 3d, 4th, ..), take the product of each combination, and sum
them up. And the example shows that this form remains the same whether the roots
are 1,2,3,4 or 1a,2a,3a,4a:

49=1 v co=1

4,=4 ~ ci=a+2a+3a+4a

4,=6 -~ cy=a2a+a-3a+ada+2a3a+2a4da+3a4a
43=4 . cz3=a-2a-3a+a-3a-4a+a-2a-4a+2a-3a4a

4,=1 ~ cy=a2a3a4a

I'm sure that if you tried, you could prove this generally for n roots by induction. We
had these ideas in DME and I guarantee you that they will not go away.

neN x"-y" divby x-y remainder: all terms +
n odd x" +y" divby x+y remainder: terms alternate + - ends +
neven x"-y" divby x+y remainder: terms alternate + - ends -

I bring these up to show you how with ones, all things are easier. Let's multiply x - y
by the all pos-term remainder to prove the first one:

1+1+1+--+1+1 =remainder
1-1 . =X-y
11 1 - 1 1
-1 -1 - -1 -1 -1
1 -1 =x"-y"

If that doesn't seem right, use a small n for a test. Another way ones make things easy
is this: consider x* + x* + x + 1. We can square it with detached coeffs:
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1111
1111
11 1
1 1 1 1
12 3 4 3 21 and then cube it:
12 3 43 21
12 34 3 21
1 2 3 4321
1 3 6 101212106 3 1 which is:

X%+ 3x5%+ 6x7+ 10x°® + 12x5+ 12x*+ 10x3+ 6x? + 3x + 1

Homogeneity

An integral function of any number of variables is homogeneous (homog) if the degree
of every term in the same. Think of the binomial expansion of (x + y)*. The degree of
every term is four: x*, 4xy, etc. Only variables have degree. Ifin 3ax, a is a constant,
degree is one. If ais a var, degree is 3. If the number of terms is N and the degree is n
then:

N=1/2 - (n+1)(n+2)

which is the sum of the first n+1 natural numbers.

Thm. 2.2. If in an homog fn, n°, each var is multiplied by p, the result is the same as fn
multiplied by p™.

This could be used as a definition of an homogeneous function. Expand (pa + pb)? to
see what this means.

Thm. 2.3. Vhomog fn, 1°, for x,y,z,... sub AX;+[iXz, Ay1+Ly2, AZ;+1Z,,... then the result is
the same as subbing X4,y1,Z1,... and X,,y2,Z2,... respectively for x,y,z,... after multiplying
sums by A and p respectively.

Example

Ax + By + Cz > A(Ax;+pxz) + B(Ay1+uy.) + C(Az1+uz;)

=A(Axq + Bys + Cz4) + u(Ax; + By + Cz;)

This shows up again in analytical geometry and linear algebra.

Law of Homogeneity

The product of two homog ifns, degrees m°, n°, is an homog ifn (m+n)°
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Symmetry

1) A fn is symmetric wrt V2 vars if the two vars can be exchanged without changing
the value of the fn.

(a+b)(a+Db +c)is symmetric wrt a,b but not a,c or b,c.
This is easier to see in the factors than in the product.

2) A fn is symmetric wrt all vars when the interchange of any two vars does not affect
the value of the fn.

x%y + y?z + z%x is not symmetric at all.
Exchanging any two vars changes the value.

3) A fn is collaterally symmetric in two sets of vars {xi [1-n]} and {ai [1-n]} when the
simultaneous exchange of two from each set leaves the value unchanged.

a’x +b%y + c?z {ab,c}{xyz}
Exchanging x&y and asb: b%y + ax + ¢?z . collaterally symmetric.

We will often use "sym" to denote "symmetric" or "symmetrical” in the above sense
and keep "Sym." to denote "by symmetric proof.”

Rule of Symmetry

The sum, product, and quotient of two symmetric fns is a symmetric fn. To make a fn
symmetric:

Ax + By A=B Ax + Ay
Ax? + Bxy + Cy? A=C Ax? + Bxy + Ay®
Ax® + Bx?y + Cxy* + Dy*> AB=D,C Ax® + Bx%y + Bxy? + Ay?

Symmetry gives us even more leverage to produce products of multinomial factors
based on the form of number rather than by calculation:

(a+b+c)(a®+ b%+ c?-bc-ca-ab)

two symmetric terms .- product symmetric:
a® coeff1 -~ b3,c? sym.
no b?c - no c?a, a®c, bc?, ab?, ba?
clearly, -3abc

product: a® +b® + c® - 3abc

With ifns, there is a "Principle of Indeterminate Coefficients", which is one of the worst
name choices in mathematics. It says that because the coeffs of an ifn are independent
(ind.) of X, once they are in any way determined, they are fixed. Which is to say that
the coefficients of a fn are determined by the form of the factors and not by the
variables and that this determination is absolute.
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Examples

1) (x +y)® = (x +y)(x +y) = Ax® + Bxy + Ay? [1]
This must be true of any x and any y.

Take (1+0)2=A-12+B-1.0+A-0% =~ A=1

o AX? + Bxy + Ay? = x* + Bxy + y*

Take (1+-1)°=1+B-1-1+1 =~ B=2 ~ x*+ 2xy +y*
This is also solvable as a system of 1° eqns.

Using [1] with points (2,3) and (1,4):

25=13A+6B
25=17A+4B
~A=1B=2
2) (x+y+zZ)(x*+y*+ 2* -yz-2x - Xy) [2]
By form this must equal AYx® + BYx?y + Cxyz [3]

Letx=1,yz=0~A=1

Letxy=1,z=0,A=1 ~ [2]=[3] ~ 2:1=2+B:2 ~» 2B=0 =~ B=0
(If you can't see why we have B-2, expand BYx?y.)
Thenletxyz=1,A=1,B=0 ~ 3-:0=3+C ~C=-3

~ product is x3+ y*+ 73 - 3xyz

Algebraic Forms

I'm about to give you Chrystal's huge list of identities which I prefer to think of as
common algebraic forms of number. Let me tell you a story first. If you wanted to be
a cab driver in London, you would go to the School of Knowledge. And there, for ten
years, you would study the map of London until you knew every one of its twenty-five
thousand streets and a great deal about what is on those streets. I am not making this
up. The tests have questions like: "Your customer wants to go from his home on
[obscure street] to his mother's house on [obscure street opposite side of London].
What is the shortest route?" I learned this on a radio program and hearing someone
reel off the route across London was amazing. When asked if he had always had a
good memory, he said, no.

You can do more with your mind than you think you can. All of the following forms
are common enough to bear memorizing. Think about doing just that. It will not take
you ten years. It might not even take you a weekend. And once they are in your head,
they are there to consider whenever you like.

What follows is the table of identities from Chrystal's Algebra - An Elementary Text
Book.
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L
(x+a)(x+b)=x?+(a+b)x+ab
(x+a)(x+b)(x+c)=x3+(a+b+c)x?+ (bc+ca+ab)x +abc
and generally
(x+a1)(x +az) - (X + an) = X"+ P1x""+ Pox" %4+ -+ 4 Ppax + Py

[ where Pi = sum of "n choose i of the a's" ]
(xzy)*=x*22xy +y?
(x2y)®=x>23x%y +3xy? ty° &c;
and so on, the numerical coefficients being taken from the following
table of binomial coefficients:

L.

_Power Coefficients

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 3 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

11 1 11 55 165 330 462 462 330 165 55 11 1
12 1 12 66 220 495 792 924 792 495 220 66 12 1
111

(x+y) Faxy=(xFy)?

v.

x+y)(x-y)=x*-y*

FEYE* Fxy+y?)=x ty’

and generally

(x- y](Xn—l+ X“'Zy - Xy"'z+ yn—l) =x"-y"
(X + y) (Xn-l_ Xn-Zy +o F Xyn-Zi yn-l) — Xn +y
upper or lower sign accordingly as n is odd or even.

n

V.
G +y)(x?+y?) = (xx' Fyy')? + (xy' £ X'y)?
& -y (x?-y?) = (xx" £ yy')? - (xy' £ X'y)?
G2 +y?+2?) (X2 +y? +2%) = (xx' +yy' +22) + (yz' - y2')? + (2X - 2'%)% + (xy" - X'y)?
Z+y?+ 22 +ud)(x2+y?+2% +u'?) = (xx' +yy' +2zz' +uu)?
+(xy'-yx' +zu' - uz')?
+(xz'-yu' - zx' + uy')?
+(xu' +yz' - zy' - ux')?

VI
(x* +xy +y?)(x* - xy +y?) = x* + xPy% + y*
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VIL
(a+b+c+d)?=a%+b?%+ c?+d?+ 2ab + 2ac + 2ad + 2bc + 2bd + 2cd
and generally
(a1 + az + -+ + an)? = sum of the squares of aj, a, .., an

+ twice sum of all partial products two and two.

VIIL
(a+b+c)®=a%+ b3+ c3+ 3b%c + 3bc® + 3c?a + 3ca? + 3a%b + 3ab? + 6abc
=a®+ b3+ c® + 3bc(b + ¢) + 3ca(c + a) + 3ab(a + b) + 6abc

IX.
(a+b+c)(a®+ b%+ c? - bc - ca-ab) =a*+ b*+ ¢® - 3abc

X.

(b-c)(c-a)(a-b)=-a%(b-c)-b*(c-a)-c*(a-b)
=-bc(b-c)-ca(c-a)-ab(a-b)
=bc? - b%c + ca® - c?a + ab? - a’b

XL

(b+c)(c+a)(a+b)=a?(b+c)+b?(c+a)+c?*(a+b)+2abc
=bc(b + ¢) + ca(c +a) =ab(a + b) + 2abc
=bc? + b%c + ca® + c%a + ab? + a’b + 2abc

XIIL
(a+b +c)(a®+ b%+ c?) =bc(b + c) + ca(c + a) + ab(a + b) + a®*+ b3+ 3

XIIIL.
(a+b+c)(bc+ca+ab)=a%(b+c)+b?(c+a)+c*@+b) + 3abc

XIV.
(b+c-a)(c+a-b)(a+b-c)=
a’(b +c) +b?(c+a) +c*(a+b)-a%-b*-c?-2abc

XV.
(a+b+c)(-a+b+c)(a-b+c)(a+b-c)=2b%c?+ 2ac*+ 2a?b?- a*- b* - c*

XVI.

(b-c)+(c-a)+(a-b)=0
a(b-c)+b(c-a)+c(a-b)=0
(b+c)(b-c)+(c+a)(c-a)+(a+b)(a-b)=0

Polynomial Division
If we have any ifns A,D in one var and ifn Q: D-Q = A then Q=quotient, A=dividend,

and D=divisor. If AD coeffeZ then Q coeffeQ. When Q can be transformed into
coeff€Z, then A divby D else Q is fractional OR:
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Qifn=>Q°=A°-D°
A° < D° = Q fractional

Thm. 2.4. AD,QRifn: A= QD + R = A and R divby D
Proof
A=QD+R .~ A/D=Q+R/D . R/D=A/D-Q m

Because ifns are "as integers” in Euclid's Algorithm, these theorems follow from the
proofs in DME for arithmetic division.

Thm. 2.5. Am,Dn ifns m®n° then we can transform Am/Dn: Am/Dn = Pm-n + R/Dn
where Pm ifn (m-n)°. IfR # 0, R ifn max (n-1)° Which is to say, Dividing Am by Dn, we
get a quotient Pm-n plus a remainder in exactly the same form as in integral arithmetic.

Thm. 2.6. The quotient A/D of two ifn takes the unique form: P + R/D
where P,R ifns and R° < D°

We know that A divby D & R = 0. So if the divisor is n° then R is (n-1)° with n coeffs
~ n conditions of divisibility.

We covered polynomial division in DME and mentioned that polynomials of more than
one variable could also be divided and that "prime" factors could be found. But this
would require special ordering of the polynomials involved. Consider:

a*- 3a® + 6a%b? - 3ab? + b* + a®-ab + b?

Here we must choose a or b as var and then order appropriately. If we take a as var
the order here is correct

1-36-31|1-11

etc. 1 -2 3 = a%-2ab+3b?
2 -2=2ab%-2b*

If we choose b as var and order both appropriately then Q = b? - 2ba + 3a% and

R = 2ba® - 2a* which shows that these fns are symmetric. In DME, we proved the
Remainder Theorem and used Synthetic Division to demonstrate its use. This gives us
one way to factor ifns.

Thm. 2.7. If ai [1-r] are roots of ifn f(x), n> r<n=

f(x) = (x- a1)(x - a2)(x - a3)---(X - ar)-x where ¢ is ifn (n-r)°

Cor. 1. ifn f(x) divby (x - ai) [1-r]: (x - ai) 1° and a; distinct & f(x) divby [](x - ai)

Cor. 2. ai [1-n] roots of f(x), n° = f(x) decomposable into n factors (x - ai)

Cor. 3. ifn f(x) vanishes for more than n factors = each of its coeffs must vanish
Example (x+1)(x-1) - x* + 1 has roots 1,2,3 but it resolves to 0x* + 0

Cor. 4. If two ifn m°>n°® be equal for more than m different values of x, a fortiori if
they be equal for ¥x (identically equal) = coeffs of like powers must be equal.
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Cor. 4 is not trivial in the way our DME theorem about equating coeffs in infinite series
was not trivial. In fact, Cor. 4 is the Principle of Indeterminate Coefficients redux. And
it implies that there is a unique transformation of any f(x) into an ifn. Let's show some
uses of the Remainder Theorem:

Examples

1) Determine k: x>+ 6x + 4x + k is divby (x + 2)
Using Synthetic Division from DME:
16 4 k|-2
-2 -88
14 -4
Here we have remainder 8 + k
For divby, need 8 +k=0 .. k=-8

2) Is 3x3 - 2x% -7x - 2 divby (x + 1)(x - 2)?
f(-1)=-3-2+7-2=0 divby (x + 1)
f(2) =24-8-14-2=0 divby (x - 2)
So by Remainder Theorem f is divby both factors.
~3dfactor1°=ax+b~a=3
Constant term =-2 .. -1-2-b=-2 . b =1 ~ remaining factor is (3x + 1)

3)neN when dividedby remainder meaning

x"-at X-a a"-a" 0 always

x"-at X+a (-a)"-a" 0 (n even), -2a" (n odd)
x"+a"  x-a a"+a" 2a" always

x"+a"  x+a (-a)"+a" 0 (nodd), 2a" (n even)

4) Show a®(b-c) +b3(c-a) +c*(a-b)=-(a+b+c)(b-c)(c-a)(a-b)
Consider LHS as fn of a . vanishes whena=b V¢
~ divby (a-b)and (a-c)
LHS as f(b) vanishes if b = ¢ . divby (b - ¢)
~LHS=Q(a-b)(@a-c)(b-c)
LHS as f(a,b,c) is 4° . Q(a,b,c) must be 1° as factors wrt Vvar are 3°
~Q=(la+mb+nc)
~ RHS = (la+mb +nc)(a-b)(a-c)(b-c)=-(la+mb+nc)(a-b)(c-a)(b-c)
Both fns are symmetric.. for | determine coeff a®b both sides
~1=1 and by sym.mn=1 .. LHS = RHS

Factoring Polynomials
Consider
x3+3x%+3x+2
3x3+8x2+5x+2
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If we let x = 10, this becomes

- gem(1332,3852) = 36

If we express this in terms of x = 10, 36 becomes 3x + 6.
Dividing our two ifn by (3x + 6), we have
5X2 + YaX + V4
X2+ X+ Vs

But (3x + 6) is actually 3(x + 2) and if we use (x + 2) as our factor we have:

X+x+1
3x%+2x + 1

What we have done is realized that the factors of a polynomial like this are the factors
no matter what x is. So they are the factors when x=10 and therefore are the factors of
f(10). Do we need to prove this? If you think about it, we don't. Recalling how
ridiculous some of the greatest minds of the 20th century looked when they tried to
prove arithmetic, [ think we can skip that. This method is only arithmetic. And at first,
the method strikes you as simple and powerful. Well, it is and itisn't. Or itisn't and it
is, depending on how you look at it.

I call this Niemand's Method after Lewis Carroll's friend Herr Doktor Niemand in his
Euclid and His Modern Rivals. 1t's a kind of joke. But Niemand's Method is not a joke.
It is more of a heuristic than a rigorous method. But it delivers. Let me show you. We
call the value of f(10) the nval. Here are some basic examples.

x*+15x + 36 x*+9x- 36

nval(286) = 2-11-13 nval(154) = 2-7-11

(x +3)(x+12) ~ 13-22 (x-3)(x+12) . 7-22

x*-15x + 36 x*-9x - 36

nval(-14) =-1-2.7 nval(-26) =-1-2-13

(x-3)(x-12) + 7 --2 (x+3)(x-12) ~ 13--2

2x%+8x + 6 2x°+8x+5

nval(286) = 2-11-13 nval(285) = 3-5-19

(2x+6)(x+1)~26-11 (2x + a)(x + b) integral ab must be 1-5
~ no integer soln for factors 3-5-19
('soln = solution )
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2x%+ 8x + 6 = 2(x*+ 4x + 3) x*+x+3
nval(143) =11-13 nval(113)=prime
x+3)(x+1) 1311 « irreducible (complex factors)

S2x+3)(x+1)

How useful is Niemand's Method? For ifns with positive coefficients, it is the supreme
method of factorization. You can see that the nval of a quadratic can have more than
two factors and this excess is even more true for fns of higher degrees. But for
positive coeffs, this is still the quickest method.

Let just one coeff be negative and it's a whole 'nother story. We know the relation of
coeffs to roots. If a cubic has roots a,b,c, the first coeff is 1, the second a+b+c, the third
is ab+bc+ca, and the fourth is abc. If a is negative we have b+c-a, bc-ab-ca, and -abc.
But that doesn't make any but the last coeff negative necessarily. And if the last coeff
is negative, we can only know that an odd number of roots are negative. Consider:

3x3-4x%-17x+ 6

The nval is 2436 = 22-3-7-29. We can see there are negative roots and that there must
be two of them due to the last coeff. And our factors must be (3x+a)(x+b)(x+c). If we
combine the 7 with the 2, 3 or 4, the factor is (x+4), (3x-9), or (3x-2) with only the last
being possible. The 7 alone gives (x - 3). We can use synthetic division to discard
(3x - 2) and accept (x - 3) ~ (3x+a)(x+b)(x-3). The 29 is clearly (3x-1), root %, and is
easily validated. Which leaves 22-3 = 12 = (x+2) and we're done.

The nval is consistent in polynomial division. Let's look at fns with nvals of 144:
x* + 4x + 4 factors into (x+ 2)2 or12-12 = 144.
2x° - 6x + 4 factors into (x + 2)(2x - 10) r 24 and 12-10 + 24 = 144.
But 2x* - 6x + 4 also factors evenly into (x - 2)(2x - 2) or 8-18 = 144.
3x” - 16x + 4 factors into (x-2)(3x-10)r-16 and 8:20 - 16 = 144.
One thing this points to is that this method is more useful with regular ifn where co = 1.

We can use the nval backwards to investigate the possibility of factors. With 3x% - 16x
+ 4 we would need (3x - a)(x - b) just from the form of things and -a - -b = 4. The nval
is 144. So from the form of the factors, we can ask ourselves, using "?" as a digit's
placeholder, can there be a 2? - ? = 144 = 2*. 3% The only possibility for a twenty-
something is 3-8 = 24 = (3x - 6) and the -6 scotches our required 4.

x> + 12x% - 32x - 256 has an nval of 1624 = 2% - 7 - 29. The 12, 32, and 256 encourage
us to believe f(x) is divby (x + 4) and synthetic division shows us this is so and with a
quotient of x* + 8x - 64. Our (x + 4) has aroot of -4 and an nval of 14. 1624+14 =116
and this is the nval of our quotient with factors of 22.29. The 64 and the 29 tell us

there are no more integral factors and that the product of the surd roots is -64. The
roots are (-4 + 4v/5) /4.
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If you examine algebra texts, the methods of factoring polynomials are ad Aoc
attempts using the Remainder Theorem and the final coeff and the canonical
extraction of roots for quadratics, cubics, and quartics. And for quintics and beyond,
they throw up their hands in despair. Niemand's Method of factoring is clearly
superior to the ad Aoc method. It doesn't pretend to replace the canonical methods as
it doesn't deliver on real or imaginary surds. What about functions of higher degrees?

Eisenstein's Criterion says that for an ifn with coeff€Z, if 3prime p: p divides any ci
but the last one and does not divide the last one (cn), then f(x) is irreducible in Q[x]
(polynomials with rational coeff). So X'+ 6x°- 15x*+ 3x> 9x + 12 is irreducible using
p=5. The nval here is 10450222 = 2-53-311-317. We need seven roots and +1 do not
work. So we have three pair of real or imaginary surds, together with an 8 from (x - 8)
for the 2 and then 8-a;-ay'b1-by-ci-cy = 12, right? No, f(8)#0. As soon as surds enter,
Niemand is no help. In x? + x + 3, the nval is 113 and prime. Yet there is no direct
relation apparent between the 113 and the easily derived roots. But we can see even
more clearly than Sergei here (I assume this Eisenstein guy is the film director) what
we are dealing with. If we can ever relate the prime factors of the nval to the roots in
any way, we would have even more to work with, if not the roots themselves. And if
we are only talking about ifn of higher degrees with positive coeffs, Niemand rocks.

As we continue, I will point out where Niemand's Method is useful in our work.
Perhaps someday it will amount to more than an often useful heuristic. But, hey, these
are Niemand's ideas. I'm just his amanuensis in this world, he being already dead
when he appeared as a ghost to Lewis Carroll.

Let's look at more tools for factoring ifns. Form can reveal factors:

x? - y? = factors of (x + y) and (x - y)
x" + y" = factors of (x + y) and/or (x - y)
x3 +y? + 7% - 3xyz = factor of (x +y + 2)

But form is only a help if you have the forms in your head or written out next to you
where you can refer to them.

Examples

1) x*-12x + 32 Assume 3(x - a)(x - b)
o x%-12x+32=x% (a+b)x +ab
~a+b=12Aab=32
~a=4Ab=8

2) x3-2x?-23x+60 = (x-a)(x-b)(x-c) A-abc =60
1-2-2360|3 (factor (x-3))

3 3-60
11-20 0

W (x-3)(x2+x-20)=(x-3)(x-4)(x+5)
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3) 6x*-19x+ 15 = (ax + b)(cx + d)
~ac=6Abd=15
«(2x-3)(3x-5)

You can see that these tools complement the ad Aocmethod of factoring. At every step
you are judging possibilities and validating them. Here's a higher level tool:

If ifn P can be arranged as a sum of terms where Q is a factor of each, Q is a factor of P.
If P can be arranged into such a form and also an additional group where Q is not a
factor then Q is not a factor of P.

Examples

1) x*- 2x* - 23x + 60
=x%(x-2)-23(x-2) + 14 ~ (x - 2) 'factor
=x%(x-3) +x*-23x+ 60
=x%(x-3) +x(x-3)-20x + 60
=x%(x-3) +x(x-3) - 20(x - 3) -~ (x - 3) factor

And as a side note, we know from other ideas that this shows that x® - 2x% - 23x + 60 is
the fn x* + x - 20 in terms of (x - 3). And further, that this is an analog of changing
bases with integers.

2) px® + (1 +pg)xy + qy”
= px® + Xy + pgxy + qy’
=x(px+y) +qy(px +y) - (px +y) factor
=(x+qy)(px +y)

Let's go more deeply into the idea of quadratic factors and roots.
To make x?+ px + q a perfect square (perfect?):

X2+ px+q+a=(x+B)2=x*+2Bx+ B2
~p=2B Aa=p*q=(p/2)*-q
~x2+px+q+(p/2)*-q=(x+B)?

For the general form of ax?+ bx + c this becomes:

ax?+ bx + c + (b?- 4ac)/4a = a(x + b/2a)?
s~ax®+bx+c=a( (x+b/2a)?- ((b?-4ac)/4a%))

Let this take the form of a( (x + 1)? - m?)
where1=b/2aand m = V( (b?- 4ac)/4a?))

s factorsarea( (x+D)+m)((x+1)-m)

and now we have the form (a + b)(a - b) = a?- b?
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Examples

1) x*+2x-1=x%+2x+1-2
= (x+1)%- (V2)?
=(x+1+V2)(x+1-V2)

2) x>+ 2x+5=x2+2x+1+4
=(x+1)*- (20)?
=(x+1+2))(x+1-2i)

3) x>+ 2x+3=x%+2x+1+2
= (x+ 1) - (ivV2)?
= (x+1+iV2)(x+1-iV2)

4) X4+ y4 - (X2 + y2)2 - 2X2y2

= (* +y))* - (V2-xy)?

= (%% + % +V2xy) (x% + y? - V2xy)
And then

V2xy +y2 = (x+V2/2:y) - 172y
and so on.

It follows that in ax?+ bx + ¢ [1]
that we can have a,b,c€Q - 1=b/2a€Q and
1. ifb?- 4acis a positive square of a rational number then m is rational and [1]
is (x + 1+ m)(x +1- m) as the product has two linear factors with coeff € Q
2. if b?- 4ac is positive but not a square of some q€Q then m € R-Q and then
the coeffs must be in R-Q
3.  ifb®- 4acis negative then meC-R (that would be imaginary) and coeff € C
4. if b%- 4ac vanishes then m = 0 and [1] is a(x + )% two factors real and
identical

You can see how, in all of these quadratic ideas, Chrystal has taken a different
approach than De Morgan did. Todhunter takes a third approach. And every real
mathematician has his own understanding to share of even basic ideas like these. If
you find yourself studying a book where the author does not have a distinct and
interesting viewpoint, chuck it and go find a better book. Lots of people have
compiled mathematics texts but have nothing of themselves to offer. You want an
individual thinker to share his or her ideas with you. Mathematics is the product of

individual thought.

More generally, for f(x), n° with coeff € N there are an even number of roots € C which
we will see are in conjugate pairs. The function will then have n factors: p rootseR,
2q€C:p+2q=n.

When the number of vars is greater than one, factorization is not generally
algebraically solvable. An exception is homogeneous functions of two vars. In DME,
we looked at the general second degree equation of two variables and showed how is
was factorable. Let's look at this a little more deeply from Chrystal's point of view.
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General form:

ax?+ 2hxy + by? + 2qx + 2fy + ¢

=a(x*+2 ((hy +g)/a)x+ (by*+ 2fy + 0)/a)
=a(x*+2Px+Q)

=a((x+P)*- (P*-Q))

=a(x+ P+ V(P*- Q) (x+P-V(P*- Q)

These are rational factors if V(P2- Q) is a rational function in y.
= P2- Q must be a perfect? wrty

P2 Q= ((hy + g)* - a(by” + 2fy + ¢)) /a®
= ((h*- ab)y®) + 2(gh - af)y + (g*- ac))/a*

And this is a perfect? of

4(gh - af)? - 4(h*- ab)(g?-ac)=0 or
-a(abc + 2fgh - af? - bg? - ch?) = 0

1) abc + 2fgh - af? - bg? - ch? is the discriminant.
2) If a=0 and b#0, we do the above beginning with powers of y instead of x.
3) Ifa,b =0, the method of factoring fails. But now we have
2hxy + 2qx + 2fy + ¢
and if this is resolvable to linear factors it must be of form
2h(x+p)ly+a)
~2g=2hq 2f=2hp c=2hpq
The first two give fg = h?pq or 2hpq = 2fg/h . ch = 2fg
h#0 = 2fgh - ch? =0 and when this is satisfied, resolution is

2hxy + 2gx + 2fy + ¢ = 2h(x + f/h)(y + g/h)

4) If a,b,h = 0 we are left with 2gx + 2fy + ¢
This is a linear factor and the discriminant vanishes.

Euclid's Algorithm

Let's review a little and then extend our idea of the GCM of polynomials. An ifn f(x)
which exactly divides two or more given ifn of x is a common measure or factor or
divisor of these ifns. The ifn of highest degree which exactly divides each of two or

more such ifn is their greatest common measure.

If A=BQ + R: A,B,QR ifn of x, gcm(A,B) = gcm(B,R). And the proof of this takes exactly
the form of the proof in DME where anything which divides the divisor and dividend,

divides the divisor and remainder. I love that little proof.
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In determining the GCM, we can add or remove to the remainder or divisor any ifn
which has no common factor in them. We can remove a factor common to them both
if we reintroduce it back into the GCM. We can add or remove a numerical factor to
either. None of these affect the GCM.

With polynomials, we are using the degree of f(x) as a measure of magnitude. The
larger polynomial has the larger degree. The proof of the ifn GCM is symmetric to the
arithmetic proof except for its terminating in any constant and not just unity if the two
fns are prime to each other (e.o.).

Thm. 2.7 |,m,p,qeN: lg-mp # 0 A,B,P,Qifns:
P=1A+mB
Q=pA+gB
then gem(P,Q) = gem(A,B)
Proof
By inspection, any divisor of AAB divides PAQ (A="and")
qP - mQ = q(l1A + mB) - m(pA + gB) = (Iq - mp)A
-pP +1Q = -p(1A + mB) + I(pA + gB) = (Iq -mp)B
~ Vdivisor of PAQ divides AAB w/out remainder B

This is sometimes called the Alternative GCD algorithm. As a purist, I consider it as a
construction based upon Euclid 7.1. When using it, L, m,p,q are chosen so that the
highest term in 1A + mB and the lowest term in pA + qB disappear, just as one chooses
numerical multipliers when solving simultaneous eqns using matrix arithmetic.
Examples

1) gcm(A,B)

A = 4x*+ 26x3+ 41x% - 2x - 24
B = 3x*+ 20x%+ 32x% - 8x - 32

-3A + 4B = 2x%+ 5x%- 26x - 56
4A - 3B = 7x* + 44x3+ 68x? + 16x

Don't be confused by this example. The I,m of -3,4 was used to make the x* cancel as
12x*'s. And it just happens that the same numbers can be used to cancel the -24 and -

32. We can toss out the factor of x in the 2d one and continue:

A'= 7x3 + 44x%+ 68x + 16
B' = 2x3+ 5x%- 26x - 56

Here comes another unfortunate coincidence for I,m,etc:

2A'-7B' =53x% + 318x + 424
7A'+ 2B' = 53x° + 318x? + 424x

Again, toss the x factor and divide by 53:
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gcm(A,B) = x*+ 6x+ 8
2) gem(A,B)

A=2x*3x%-3x*+4
B =2x*x3-9x% + 4x + 4

Any divisor of A,B divides A-B or -2x3+ 6x*- 4x
Or -x(x*- 3x + 2) or x(x-1)(x-2)

By Remainder Thm, A,B divby both factors
~gcm(A,B) = x%- 3x + 2

3) Sometimes there is no GCM
A=x*-3x+1
B=x*-4x+6

Using division with detached coeffs:
1-31|1-46

2 1 -15
11

This is Chrystal: /t will be well at this stage to caution the student against being misled
by the analogy between the algebraical and the arithmetical GCM. He should notice
that no mention is made of arithmetical magnitude in the definition of the algebraical
GCM. The word "greatest” in that definition refers merely to degree. [t is not even
true that the arithmetical GCM of two arithmetical values of two given functions of x,
obtained by giving x any particular value, is the arithmetical value of the GCM when
that particular value of x Is substituted therein; nor is it possible to frame any
definition of the algebraical GCM so that this shall be true.

Herr Niemand begs to differ. In example #1 above, the nvals are 70056 and 53088.
And my calculator tells me that gcm(70056,53088) = 168 or, as x=10, x*+ 6x + 8. So
long as Niemand's Method remains a heuristic, I make no claims for it. But as it stands
upon the form of number and the truth-grounds of arithmetic, no progress in its use
will surprise me. In Chrystal's defense, being a Texan, I have an expensive Texas
Instruments calculator which can factor 70056 in an instant and give me GCM's of any
two integers that won't overrun the registers just as quickly. Done by hand,
Niemand's Method would be mind-numbingly time-consuming.

Integral Functions as Integers

Because ifns are subject to Euclid's Algorithm, we have said they are "as integers."
Let's see how far this analogy goes. The proofs of what follows are symmetric to the
proofs in DME on number theory for integers.

Def. Two ifn are prime to each other (notation: p(A,B)) when they have no common
divisor.
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Thm. 2.8. ifns A,B = Jifns L,M prime to A,B:
gem(AB)=G=LA-MB=Gand
p(AB)=LA-MB=1

You will see that last line again in partial fractions. The proof of this theorem is
symmetric to the similar number theory proof. The same is true of the following
theorem.

Thm. 2.9. ifns A,B,H p(A,B) = Vcommon divisor of AHAB divides H

Cor. 1. If AH divby B and p(A,B) = H divby B

Cor. 2. If A' prime to A,B,C,... = A’ prime to their products

Cor. 3. If each of AB,C,... prime to each of A",B',C',... then their products are prime to
each other.

Cor. 4. m,neN If p(A,B) = p(A™,B")

Cor. 5. If a set of ifns can be resolved into factors and powers of ifns A,B,C,... then the
GCM of the set is the product of all factors common to all fns of the set, each factor
raised to the lowest occurring power.

The take away here is that functions of form [f] with coeffs € Z are as integers and
therefore, with due care, you can leverage the truths of number theory when dealing
with them. What is true of one must be true of the other.

The Least Common Multiple also applies to ifns. Given a set of ifns, the LCM is the ifn
of lowest degree divisible by each of them without remainder.

Let gem(A,B) = G = A =aG A B = bG where a,b ifns and p(a,b)
Let M be a common multiple of A.B = M = PA = PaG

M divby B = bG = M/bG = PaG/bG = Pa/b and is an ifn

~ P =Qbwhere Qis an ifn ~ M = QabG

~lem(A,B) = abG = AB/G

+ Ycommon multiple of A,B is a multiple of Icm(A,B)

Integral Function Fractions
Def. If A,B ifns then A/B is an integral function fraction, denoted ifrac.

Note that in various textbooks, these can be called rational fractions or even rational
functions. As always in mathematics, pay more attention to what it is than what it's
called.

If A,B ifns, we say A < B if A° < B® and we can denote the degree of fractions where if
A,B of degree m,n our notation is Am/Bn. We can then distinguish between proper
ifracs (pifrac) and improper ifracs (mifrac) with an exact analogy to numerical
fractions. And again, as ifns are "as integers" many truths of ifracs follow from
arithmetical or number theory proofs.
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Thm. 3.1. Vifrac A/B: A > B is expressible as an ifn Q and an ifrac R/B
Proof follows from division algorithm using

An =Qua+ R
Bn Bn

Cor. 1. If two mifracs A/B,A"/B' are equal then the integral and fractional parts are

equal.
Proof
Amn =Qmn+ R and A'w =Quw+ R
Bn Bn B'w B'w
from this

Qmn - Q'mn' = (R'Ba- RB'x)/BnB'y = C/D
degreesRR'<nn'=C°<n+n'
~ if LHS#0 = integral fn LHS = pifrac RHS = ( no integer can equal proper fraction )
4 Qmn=Qma ~ R/Bn=R"/B'x B
Example using Niemand's Method

Show x3+ 2x%+3x+4 = x5+ 4x*+ 8x> + 12x* + 11x + 4
x®+x+1 x*+ 353+ 4x%+ 3x + 1

LHS=x+1+_x+3 .
xXP+x+1

RHS=x+1+_x3+5x?+7x+3 . nval=_1573.=_11%213.=13.-11%
x*+ 33+ 4x%+ 3x + 1 13431 3-112.37 111 112

= _x+3 . - (x+1)?> = LHS Note that using Niemand's Method always requires
x*+x+1 (x+1)? verification. Numerical factors can mislead.

Niemand works here because all coeffs are positive.

Thm. 3.2. ifns P,Q,P',Q' If P/Q = P'/Q' and P/Q in lowest terms then P' = AP Q' = AQ
where A ifn which reduces to a constant if P'/Q" is reduced to lowest terms.

Proof

P'/Q'=P/Q ~P'=Q'P/Q = LHSifn ~ Q'Pdivby Q

p(P.Q) ~ Q' =2Q ~P'=2QP/Q=AP

~ p(P',Q") = A constant (could be unity)

Our ifracs can be operated on in the same fashion as numerical fractions. And,

additionally, we can bring to bear all the tools of algebra. Make every use you can of
general ideas, such as homogeneity and symmetry to shorten work; to foretell results
without labor, and to control results and avoid errors of the grosser kind.
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Examples

1) Using Niemand's Method

Solve 2x3+ 4x%+ 3x + 4 - 2x°+ 4x%-3x- 2
X2+ 1 x%-1

Using nvals: 2434 - 2368 = 1798

101 99 9999

Clearly 9999 is x*- 1. But the numerator must be determined. The negative coeffs in
the RHT suggest that the first term in the num. is 2x®. By doing a quick and partial
multiplication of detached coeffs for x*>, LHT is3 +-2=1, RHTis-3+2=-11-(-1) =
2 = 2x® verified. So we have 2x® + Ax? + Bx + C. Using the same quick verification, we
find A =-2 ~ B=0 and C=2. So the num. is 2x*- 2x* - 2 and 2000 - 202 = 1798.

2) Using Form

Simplify F = a® .+ b3 .+ [
(a-b)(ac)  (b-c)(b-a) (c-a)(c-b)

= -a%(b-c) - b3(c-a) - 3(a-b)
(b-c)(c-a)(a-b)

Consider only the num. as fn. If b = c then fn =0 - divby (b - c)

By symm. divby (c - a) and (a - b)

Num. is 4° . remaining factor is Pa + Pb + Pc = compare coeff of a*b in num. and in
Pl@a+b+c)(b-c)(c-a)(a-b)~P=1

~F=a+b+c

Partial Fractions

If we have ifracs A,B,C, we know we can add them "as integer" fractions where A+B+C
=D and D will be an ifrac. So how do we go the other way, turning any D into a sum of
AB,C,..? We are going to drive this idea down as far as possible because it reveals a
great deal about the form of number.

Thm. 3.3 pifrac A/PQ and p(P,Q) = A/PQ equals sum of pifracs P'/P + Q'/Q
Proof

p(P,Q) = 3ifn LM: LP+MQ=1 (Thm. 1.4,2.8)
~A/PQ=AL/Q+AM/P [1] (xA/PQ)

If RHS [1] mifracs, reduce:

AL/Q,AM/P = S+Q'/Q, T+P'/P: S,Tifns, Q'/Q,P'/Q pifracs
~A/PQ=S+T+Q'/Q+P'/P

LHS [1] pifrac - S,T=0

~A/PQ=Q'/Q+P'/P B
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Example

F= x+1 .
(x3+3x%+ 2x + 1) (x%+ x + 1)

2A=x*+1 P=x*+3x%+2x+1 Q=x’+x+1

gem(P,Q) =7 1+1+1)1+3+2+1(1+2(=x+2)
2.1 1
(x-1=) -1 -1)111(-1+0
01
1(=1)

~Ri=-x-1 R;=1
GCM terminates in constant - p(P,Q)
~P=x+2)Q+R; Q=-xR; +R;
~Ry=P=(x+2)Q
Ry, =1=Q+xR,
=Q +xP -x(x+2)Q
o 1=(x*2x+1)Q + xP
“M=-x%2x+1 L=x
o A/PQ = ((x*+1)(x*-2x+1))/P + ((x*+1)x)/Q
= x5 2x%+x*-x3-2x+1 + x5+ x
P Q
= XC+x3- 1+ X242+ -X2+1+-1 = x%+2
p Q P

v
Q

Think of the theorem as justifying this brute-force method of attaining partial
fractions. Then relax as we look at various cases and their abbreviated methods. We

know that any ifn has real factors in the forms (x - «)" and (x*+ Bx +Y)°.
Case 1.

F=A/B=A/((x-a)Q) : (x-a) is not a multiple root and p((x-a),Q)
“F=P'/(x-a) +Q/Q

X - ais 1° « P"is 0° or constant

Let's do an example of this, noting that Q'/Q may itself be decomposable. Let us also
note what an amazing example this actually is. Chrystal engineered it so that it simply
continues into the other cases. I'm not the kind of person to go, "Oooh, that's a
beautiful theorem" or any of that stuff. But I do admire simplicity and elegance and,
especially, the expression of intelligence. And this is such an intelligently expressed
example.

Example

F = (4x*-16x3+ 17x% - 8x + 7) /( (x-1)(x-2)*(x*+1) ) = A/B
~F=p/(x-1) + Q'/( (x-2)*(x*+1) ) and we need a constantp  [I]
wA=p(x-2)%(x*+1) + Q'(x-1) [
Letx=1~4=2p-.p=2

“F=2/(x-1)+Q/((x-2)*(x*+1))
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Note that if, at this point, you need Q', in Il let p = 2
and then subtract LHT of RHS from both sides

5 2x%-8x3+ 7x2 - 1= Q'(x-1)

~ LHS divby (x-1) = Q' = 2x*- 6x*+ x + 1

Case 2.

F=A/B=A/((xa)'Q):p((x).Q)

~F=P'/(x-a)"+Q'/Q -~ P'ifndegree <r

~P'=agt a; (x-a) + - + a1 (x-a)"

~F=ap/(x-a)'+ al/(x-oc]r'1+ -+ +ar1/(x-a) + Q'/Q where ai are all constants

Example
Given same above F = A/B = ap/(x-2)? + a1 /(x-2) + Q'/(x-1)(x*+1) [n
~A=a0(x-1)(x*+1) + a1 (x-2) (x- 1) (x*+1) + Q'(x-2)? (1]

Inllletx=2 . -5=5a0~ag=-1

In Il let ap=-1, subtract LHT from both sides again, divide all by (x-2)

S Ax3-7x2 + 2% - 3 = a; (x-1) (x%*+1) + Q' (x-2) [111]
Inlllletx=2.5=5a; ~a;=1

2 F=-1/(x-2)*+1/(x-2) + Q'/( (x-1)(x*+1) )

Note that again Q' can be derived from this point using IIL

Case 3.

F=A/B=A/((x* Bx+Y¥)'Q) : p((x*+ Bx +7).Q)
“F=P/(x*+Bx+Yy)+Q/Q:P°<2s-1

So by expressing P' in powers of (x*+ Bx +y) = f

P' = (ap + box) + (@ + b1x)f + (az + bpx)f? + - + (@s-1 + bsx)f*!

“F = (a0 + box)/f + (ay + bix)/F 4 -+ + (51 + by1x)/(x*+ Bx +7) + Q'/Q

Note that if s = 1 then F = (a, + bex)/(x*+ Bx +Y) + Q'/Q
Example

Given same F = A/B = (ax+b)/(x*+1) + Q'/( (x-1)(x-2)?) [1
o (4x*- 16x3+ 17x% - 8x + 7) /(x*+1) = ((ax+b)(x-1)(x-2)?)/(x*+1) + Q' [
By division, 4x%+ 16x + 13 + (8x-6)/(x*+1)

= (ax+b) - (x + 5 + (7x+1)/(x*+1)) + Q'

= (ax+b)(x-5) + (7ax?+ (7b+a)x +b)/(x*+1) + Q'

= (ax+b)(x-5) + 7a + ((7b+a)x + (b-7a))/(x*+1) + Q' [111]
pifracs both sides of III are equal
(7b+a)x + (b-7a) =8x- 6
~7b+a=8 b-7a=6.-b=a=1
~F=(x+1)/(x*+1) +Q'/Q

OR
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x*+ 1 = (x+i)(x-1) ~ x*+ 1=0whenx =i
o 4x*-16x3+ 17x2- 8x + 7 = (ax+b)(x-1)(x-2)* + Q' (x*+1)
= (ax+b)(x3- 5x?+8x - 4) + Q'(x*+1)

Letx=1.8i-6=(ai+b)(7i + 1)

=(7b+a)i+ (b-7a)
~(7b+a-8)i=-b+7a-6
which is impossible unless both sides equal zero
~7b+a-8=0and 7a-b-6=0and algebrate

OR

Suppose we did the first cases and have:
F=2/(x-1)-1/(x-2)* + 1/(x-2) + (ax+b)/(x*+1)
o 4xt-16x3+ 17x%-8x + 7 =
2(x-2)%(x%+1) -(x-1) (x*+1) + (x-1)(x-2)?(x*+1) + (ax+b) /(x-1)(x-2)?
o x* 4x3+ 3x%+ 4x - 4 = (ax+b) (x-1) (x-2)?
~ LHS divby RHS factors ~. x+1=ax+b~ a=b=1

What an example. Every example should be that good.

I first met partial fractions in a calculus review book. It was written by an engineer
and he was sooo00 proud of his partial fractions. He did them with the derivatives and
he did them with the integrals and given half an excuse he would have done them
again. Butyou could tell that he didn't really know what he was doing. It was rougher
than Niemand's Method: half heuristic, half guessing game. It ticked me off. So I
studied partial fractions wherever I could find them. And like continued fractions or
taijiquan, the road goes on and on as far as you want to take it. Some roads never end.
Let's see how far we can go without making this a book on partial fractions. We'll just
check out some of the good stuff.

Example

1)
Another general method for this is equating coeffs.
Decompose (3x-4)/( (x-1)(x-2))
~=a/(x-1) +b/(x-2) - 3x- 4 = a(x-2) + b(x-1)
~ 3x -4 = (a+b)x - (2a+b)
~a+b=3 2a+b=4.a=1b=2
2)
Or we could use the form of number
F = (x*+ px + q)/((x-a) (x-b) (x-)) = A/(x-a) + B/(x-b) + C/(x-c) []]
& X%+ px + q = A(x-b) (x-¢) + B(x-a)(x-c) + C(x-a)(x-b) [I1]
Let x=a - a’+ pa + q = A(a-b)(a-c)
~A=(a’+pa+q)/(a-b)(a-c) Sym.for B,C
« F=(a®+ pa +q)/((a-b)(a-c)(x-a)) + (b*+ pb + )/((b-c) (b-a) (x-b))
+ (c*+ pc + q)/((c-b)(c-a) (x~c))
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The method of proper fractions is in point of fact a fiuitful source of complicated
algebraic identities.

We can tie this idea of partial fractions to series.

Required: the series expansion of (2x - 3)/(x*- 3x + 2)

By partial fractions, (2x - 3)/(x* 3x + 2) = 1/(x-1) + 1/(x-2) =-1/(1-x) - 1/(2-x)
/(%) =-(1X) " = (L + X+ 5%+ + X"+ )

“1/(2X) = -Ya(1-x/2) " = (1 + x/2 + X2/2% + - +X"/2" + )

- general term of (2x - 3)/(x*- 3x + 2) is -(1 + 1/2")x®

Let us show that the coeffs of such a series are connected by a determinable relation.
Recall our theorem from DMS that if two series are equal for any finite x then the coeff
of corresponding terms must be equal. If these are equal

0 =ap+asX + azX> +

B=Ag+Ax+Ax+
Thenap-Ap=0,a;-A; =0, ... Sothe sum a+f3 =0. Importantly, this is true only of x:
a+f3 convergent because a divergent series need not vanish.

Let (a + bx)/(1 - px - qx?) = Ug + UsX + Upx? + -

sat+bx=(1-px-qx?)(Ug + usX + ux? + -+)

If n > 1, coeff of x" on RHS is un - pun-1 - qun-2 ( by DME infinite series multiplication )
But x on LHS is first power . n > 1, Un - pun-1 - qun2 = 0 [1]

Using 1st and 2d terms both sides: up =a u; - pup=b

Then we can use [1] and these to determine uy, us, ... by making n = 2,3, ...

Recall our fn notation from DME and we have a shorter general proof of partial
fractions from some guy named Cox via Todhunter's /ntegral Calculus. 1 love short
and simple.

Let F(x) = (x-a)"yx
L EX = @x .= @x-(@a/ya)yx + (@a/ya)
Fx  (x-a)"yx (x-a)"Px (x-a)"
Numerator LHT RHS = 0 when x=a - divby (x-a)
Let this quotient = xx
LQX = XX . +@a-_1
Fx (x-a)"'yx Ya (x-a)"
This process can be repeated on LHT RHS until it terminates B
And you will see that again and again before we are done.
Note in this that if a = a+i then b = « - Bi is also a root. So if we add the pifracs
@a/Pa-1/(x-a)" + @b/Yb - 1/(x-b)" then the result is free of i.
Since we know derivatives from DME, consider

Todhunter’s Case 1:
x/Fx = Af(x-a) + xx/Px (1]
s X = APX + (x-a)xx [2]

Letx=ain[2] ~ @a=Aya - A=@a/Pa
Fx=(x-a)Px ~ Fx=yYx+ (x-a)P'x ~ Fa=ya
~ A=@a/Fa
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Todhunter's Case 2:

Let Fx = (x-a)"yix

o @X/Fx = Ar/(x-a)" + Ay /(x-a)"" + - + An/(x-a) + xx/x

Multiply both sides by (x-a)" then let f(x) = @x/Fx - (x-a)"

f(x) = Ay + Ap(x-a) + As(x-a)? + An(x-a)"" + xx/Ux - (x-a)"

Differentiate both sides and then let x=a and we have (keep in mind what f(x) is):
fla)=A;

f(a)=A;

f'(a) = 2!A;

f"(a) = 3!A,

7 (a) = (n-1)!An
and we have determined A..

Where Chrystal restricts his factors to those with real coeffs, Todhunter's cases 3 and
4 are i-roots, single and multiple.

Todhunter's Case 3:

Partial fractions for a single pair of i-roots, afi
Decompose @x/Fx. Roots a + bi = partial fractions are
@a/F'a-1/(x-a) and ¢b/F'b-1/(x-b)
Let these be (A - iB)/(x-a) and (A + iB)/(x-b) or (A-ib)/(x-a-fi) and (A+iB)/(x-o+fi)
And their sumis (2A(x-a) + 2BB)/((x-a)? + B?)

OR

Let x2- px + q have our roots a+pi then

@x/Fx = (Lx + M)/(x*- px + q) + xx/yx

= Fx = (- px + q)ix (= Fx)
“ @x = (Lx + M)Ux + (x*- px + q)xx (1]
Let x = either root - [1] becomes

@x = (Lx + M) (2]
Repeatedly sub px-q for x* in [2] until eqn 1° in x with form Px + Q= P'x + Q'

Let x = a+fi and equate i-coeffs then we have 2 simult. eqns as in 2d method of Case 3
above.

Todhunter's Case 4:

Let x*- px + q have roots again of a+pi and let this quadratic factor occur r times.
Solvable by method of Case 2.

OR
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X = Lix + Mr + LeaX+ Mr1 + -+ Lix+M; + XX
Fx  (x*-px+q) (x%-px+q)"" x%-px+q  Px

Multiply both sides by Fx = (x*-px+q) {x
& @x = (Lex +MA X + (Le-1x +Mra) (xX2-px+q)Px + -+ + (x2-px+q)'xx [1]

Let x = either root - @x = (Lx +Mr)x
Find Lr,Mr as in Case 3. Then from [1]

@x - (Lex +MPx = (Lr-1x +Mr1) (x2-px+q)Px + -+

~ quad factor both sides. Divide by quad factor. Let LHS = @1x
& @1X = (Lr1x +Mr1)(x3-px+q)Px + -+ and proceed as above to find Lr.1,Mr1 until all
L;,Mi determined.

Todhunter's cases 3,4 are not that different than Chrystal's. It is a matter of reading
the mathematics at a somewhat higher level. And then the question becomes, Can you
express the mathematics practically in a partial fraction from the higher standpoint?

Just one more idea with partial fractions and then we'll move on. You have basic
integral Calculus from DME. So you can now take the integral of anything like

(5x2+1)/x*- 3x + 2)

By division = 5x + 15 + (35x - 29) /(x?- 3x + 2)

RHT,RHS = A/(x-1) + B/(x-2) - 35x - 29 = A(x-2) + B(x-1)
Letx =1 and then 2

~35-29=-A~A=-6 70-29=B-~B=41
~F=5x+15-6/(x-1) +41/(x-2)

~JF dx = 5x2/2 + 15x - 6In(x-1) + 41In(x-2)
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3. Algebraic Functions

A few remarks on the way. Consider fractional powers K'/P:
Ifk = h® then k'/? has two real values: h.

Ifk = h?*! then k/®*V has one real value: h.

Ifk = -h®*! then k®* has one real value: -h.

p/q

Consider also that with x*'%, p/q must be an actual fraction in lowest terms, else

4/2
XM = Vx* = #x?

~x% =-x?

OR
(Xm)n - an= (Xn)m
(Xl/z)z - (XZ)‘/z
- (£Vx)? = #x

X=X

Putting p/q in lowest terms avoids this error, which is an obvious error here but not
so obvious when the expressions are more complex.

Rationalizing Factors

Def. P,Q ifns of given irrationals (constants or variables with fractional coeffs). If PQ
is rational wrt the given irrationals then Q is a rationalizing factor of P wrt the given
irrational monomials.

Example

P= A(sz)Zmﬂ(q%)Zml — (Apmqn)pl/qu/z
LetQ=p”q” - PQ=(Ap"q")pq

P=16- 23/2. 35/2. 51/2
Q=2%%3Y% 5230 . pQ=16-22-3%-5

P= Ap]/sqm/trn/u
Q — pl-l/sql-m/trl-n/u PQ - qur

In DME we talked briefly about tossing out the radicals to simplify an equation. And
that is what we are doing here but more methodically. To rationalize binomials:
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1) Vavp + bVq rationalizing factor (ratfac) is avp - bvq
which is a use of (a+b)(a-b) = a%-b? or here a’p - b?q.
These factors are conjugates.

2) ap™" £+ bq™® Letx = ap™* y = bg"®
P=ap”-bg"’=x-y
m = lcm(y,5)

2

- (Xm-l+ Xm-Zy bt Xym- + ym-l)P — Xm_ ym
mo(/y_ bm mpB/&

=a"p q™° where ma/y, mB/8 € Z . x"- y" rational
m-2

A ™™y 44 xy™ 2 4 y™ ) = ratfac

Trinomials of form P = Vp + v/q + Vr are rationalized using conjugates.
(Vp+Vq-Vr)P = (Vp+Va)* - (V1)*=p +q-r+2Vpq
Using conjugates again:

(p+q-r-2Vpq)(Vp +Vq-Vr)P = (p+q-1)*- (2Vpq)®
=p?+ q®+r?-2pq - 2pr - 2qr

Note that the ratfac here is:
(p +Va+Vr)(Vp +Vq-Vr)(Vp - Vq - V)

which is every permutation of signs in Vp * vVq * Vr which is not in P. This use of
perms is the general rule. Given 1 + V2 + V3 + V/5 the signs are ++++. So we would
need 23- 1 factors where the first term is always +.

Thm. 3.1. Vifn of square roots Vp,Vq,... can be expressed as a sum of rational terms
and rational multiples of Vp,Vq,... and their products Vpq,...
Proof
vifn @(vp): Vp only square root
Vterm of even® rational, Vterm (2m+1)° = A(Vp)*™!
which reduces to (Ap™)Vp. Rational to P, roots to Q
~(Vp)=P+QVp 1]
vifn @(vp,Vq) then by [1] @(p,Vq) =P+ QVp
Sym.P=P'+QVq and Q =P" + Q"Vq
= e(VpVaq) =P'+ QVq + (P"+ Q'Vq)Vp
=P'+ P"\/p + Q'\/q + Q"\/pq
and so on for @(Vp,Vg,Vr)... m
Cor. 1.
@(-Vp) =P-QVp - @(-Vp) is ratfac of ¢(Vp)
Cor. 2.
Vo (Vp,Vq,Vr,...) then for any root, say vVq, ¢(Vp,-Vq,Vr,...) is a ratfac.
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Example

Ex=xX3+x%+x+1

@(1+V3) =16 + 9V3

< @(1-V3) is the conjugate of @(1+V3) or 16 - 9V3
- @(1+V3)p(1-V3) = 162 - (9V3)? = 13

Theorem 3.1 can be used to prove the general rule for ratfacs. For every perm of signs,
we must have its conjugate. You need one conjugate for the first root, two for the
second, four for the third, ... or given n terms, 2"-1 conjugates.

Thm. 3.2. Vfractional fn, ifn or not, of \/p,\/q,... can be expressed as a sum of the
rational part and rational multiples of roots and their products.

Proof

R,P of\/p,\/q,..., Q ratfac of P

.. R/P = RQ/PQ where PQ rational and RQ ifn of Vp,Vq,...

~ RQ expressible in required form by Thm. 3.1. B

Example

1 .= _1+v2-43 = 1+42-V3 =v2(1+/2-3
1+vV2+V3  (1+V2)% (V3)? 2V2 4

= %2 +2-V6) = Yo+ UV2- %6

It can be shown that what is true above for square roots is true of any fractional
exponents and that a ratfac always exists.

Surds

Nowadays surds are called radicals. But like "greatest common measure", [ stick with
the old word which is the Latin word for "root." A surd is the root of any fn with coeffs
in Q when these roots contain values from Q with fractional exponents which are not
imaginary. So 2+Ve is not a surd but 1+v2 is a surd. Surds are algebraic numbers and
are constructible in Euclidean geometry. If you can construct V2 + 1, you can construct
\/(1 + \/(2 + 1)) and so on to any depth. Although in older texts, these compound
surds are not considered surds, they just are. Simply stated, surds are radicals, are
algebraic numbers, are the roots of functions with coeffs in Q.

Def. Surds are similar (~) when they can be expressed as multiples of the same surd.
Example

V18=3v2 V/8=2V2 -~ V18 ~vV8 6!~+8,/18
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Def. Surds arising from the same nth root are equiradical (eqR). There are n-1 surds
i/m, pl/“, pz/“, - p("'l]/". Let m > n, then p
one of p/™s equiradicals. All surds eqR with p"/™ are ifn of p'/" and Vfn of p*/™ is
expressible as a linear function of these n-1 eqR surds in the form:

m/n

eqR with p = p"*" = rational multiple of

AO +A1p1/n+ A2p2/n+ +An_lp(n»l]/n

where VAi are rational wrt pi/". The product and quotient of two similar quadratic
surds are rational and conversely. If surds are roots of a function of degree > 2, the
product of two similar or eqR surds is either rational or an eqR surd.

Thm. 3.3. If pgABEQ A =0, Vpq € R-Q (those reals which are not rational) we
cannot have \/p =A+ B\/q.

Proof

Else p = (A + BVq)? = A% + B%q + 2ABVq

~q=(p-A?-B2q)/2AB < (LHSER-Q RHSEQ) m

In ratfacs, we saw that any fn of \/q has the form A + Bw/q, ~ one quadratic surd cannot
be expressed as a rational fn of a dissimilar surd or

If\/p =A+ B\/q then EImEQ: \/p =m\/q

It follows that no rational solution which is not a mere eqn ( (V3)?+(v2)? = 5 ) can
exist between two dissimilar surds. This means the relation must be in C-Q.

~ A quadratic surd cannot be a rational fn of two dissimilar quadratic surds.

~ A quadratic surd cannot be the sum of two dissimilar quadratic surds.

It follows that if A + BVp + CVq + DVpq = 0 then AB,C,D =0

Thm. 3.4. x,y,zu € Q VyVu €R-Q x+Vy = z+Vu = x=7, y=u
Proof

x = a+z: az0

~atziy = z+u

~atvy =Vu

~a?+y+2avy=u

=y=(u-a*-y)/2a3 (Vy!eQbyhyp.)

S X=Z A Yy=EU [ ]

Let's look deeper into taking square roots of simple surds to see whether the results
can be expressed as surds:

V(p+Va) V(p-Va)

From DME, we know we can set V(p+Vq) = Vx + Vy or V(p - Vq) = vx - Vy. We take
the first and square both sides:

p+\/q=x+y+2\/xy

LXHY =D (1]
and 2vxy = q [2]
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Squaring p and subtracting 4xy we have

(x+y)*-4xy=p*-q
~(x-y)*=p*-q
~x-y=+V(p*q) 3]

With upper sign, using [3],[1]

(x+y)+x-y)=p+V(p*q)
x+y)-x-y)=p-V(p*-q)

Adding and subtracting
2x=p+V(p*-q) 2y=p-V(p*-q)
wx=(p+V(p*-q))/2 y=(p-V(p*-q)/2

Note that using the lower sign in [3] merely exchanges x and y

aVx=#V((p+V(p*-q))/2) Vy=+V((p-V(p*-9)/2)

Note that in [2] 2Vxy = 2Vx-Vy = +q = Vx = +...V/y = £... above. If we had begun with
V(p - Vq) these would be opposites (..., F...) to give -q.

2N (p+Vg) = (V((p+V(P*- 0))/2) +V((p - V(p*- 0))/2))
Vip-va) = (Ve + V(- 0)/2) - V((p- V- 9)/2))

Compare this to our \/(11 + 4\/7) =2 ++/7in DME. We can only get a simple surd here
when p? - q is a perfect? € N. Here 11% - 16-7 = 9. We are studying the form of surds,
looking down on it.

When can \/(p + \/q +Vr+ \/s) take the form Vx + \/y +z?
Set them equal and square:

p+\/q+\/r+\/s:x+y+z+2\/yz+2\/zx+2\/xy
Let 2\/yz,2\/zx,2\/xy = \/q.\/r,\/s Then multiplying the last two:
4xw/yz =rs
Combined with the first:
x =¥/ (rs/q)

Sym.y = %(gs/r), z = %V(qr/s)

And from the original formsx+y +z=p

~ Y (Vrs/q) = 2p where each term must be positive

~ each square root must be rational

~rs/q=a® qs/r=B* qr/s=y* where o,8,y € Qand a+B+y = 2p
~ In order to take form \/x+\/y+\/z: q=By, r=ya,s=af
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Recall from DME that when we take the square root of a number that you can double
the decimal places at any point by dropping the square root algorithm and continuing
by using division although the last digit may be wrong. Let's look at why this works.

Thm. 3.5. NeN, if the first p of n digits of VN are found d;d,...dp = P: P-10""= VN then
the next p-1 digits will be the first p-1 digits of the integral part of the quotient:

N- (P-10"7)?
2-P-10™"
Proof
Let the rest of the square root's digits make up the number Q
~v/N=P-10"" + Q where 10°* <P <10 and Q < 10™”
~N=(P-10"")2 + 2PQ10" P+ Q?
~ N-(P10™)?2 =Q + _ Q2

2P10"P 2P10™P
where __ Q% . < 10°™P.107.10"F < 10™%*!
2P10™P 2 2

~ Q?/2P10"? affects at most the (n-2p)th decimal place from the right
and Q has n-p digits.
~(n-p) - (n-2p+ 1) =p - 1 digits in quotient from left hand side are correct. B

You can take a calculator, a big neN, find vn and work out an example of this for
yourself. Think about how this proof uses disparate forms of number, including the
form of positional decimal notation, to achieve its end. Let's do that again with ifns.

1 1 y+l
+ - and VF = (qox"+qsx" "+ =+ + qoys1x™7) +

Thm. 3.6. If F = pox™ + p1x™"
(qnpX"P+ -+ + qn) = P + Q and if the first p terms of VF = P are known then the next p
terms are the first p terms of the integral part of (F - P?)/2P.

Proof

F = P2+ 2PQ + Q2

« (F-P%)/2P=Q + Q?/2P

~ Q?/2P is degree 2(n-p)-n=n- 2p

= down to term """ (F - P?)/2P = Q

or the firstn - p - (n - 2p) = p terms LHS are first p terms of Q for VF m

Example
We do this just like the integer algorithm in DME for the first three terms then we use

the above theorem for the next three in taking VF. Note that the doubling of the
"divisor" only affects the latest of its terms.
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F = x'%+ 6x%+13x%+ 4x7- 18x5- 12x5+ 14x*-12x3+ 9x% 2x + 1

1613 4 -18 -12 14 -12 9 -2 1|1

1)1
2+3)613 4 -18 -12 14 -12 9 -2 13
6 9
2+46+2)4 4 -18 -12 14 12 9 2 1|2
412 4
2+6+4+-4)-8 -22 -12 14 12 9 -2 1|-4 (-8:2)
-8 -24 -16 16
2+6+4+8)2 4 -2 -12 9 -2 1|1 (2+2)
2 6 4 -8
2 -6 49 -21[1 (-2:2)
2 -6 48
121

~ VF = x5 3x*+ 2x3- 4x%+ x - 1 and because the remainder x?- 2x + 1 is the square of
the last two terms x - 1, F is a perfect?’. And by changing all the signs in VF we get the
other square root. The nval of F here is 17320928881 so the Vnval = 131609. But the
negative coeffs confuse the issue after x* + 3x*. We could start with the Vnval and
work this out.

If we have VF = x5+ px*+ qx>+ rx®+ sx + t then

F =x'%+ 2px°+ (p?+2q)x®+ (2pq + 2r)x”+ - where
2p=6 p*+2q=13 2pq+2r=4 all fromF

#p=3 q=2 r=-4

~VF = x5+ 3x*+ 2x3- 4x? with nval 131600
~0x+9or1,-1.x-1 forlast two terms.

This combines using the nval with our nontrivial indeterminate coeff theorem from
DME. Of course, if F is not a perfect? of an ifn, VF becomes an approximation. But this
is revealed immediately when you take the square root of the nval of F.

Just as we can take a non-perfect? and use the square root algorithm to approximate a
result and just as we can divide 1 by 1-x to get 1 + x + x*+ x*+--- by long division, we
can use this algorithm for VF to produce an infinite series for V(x+1) and similar. But
a grain of compassion remains in my mathematically-hardened heart so we won't do
that here. But it will hurt so good if you do it yourself.

Complex Numbers

Thm. 3.7. The sum, difference, product, and quotient of ¥z,,z, € C are also complex
numbers in C with form a+bi: a,b € R.

We demonstrated this theorem in DME. In this text, we will only include the more
general ideas of complex numbers and leave the more developed ideas for the Second
Circle of Trigonometry.
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A couple of definition reminders:
Areal fn is a fn of form [f] with coeffs € R.
A rational fn is a fn of form [f] with coeffs € Q.

Cor. 1. Because every rational fn (ifn) involves only the four operation of arithmetic,
every such fn of one or more complex vars produces complex numbers.

Cor. 2. Vreal fn f(x+iy) can be reduced to fns P + Qi where P,Q real fns. P contains only
even powers of y, Q only odd powers. If we change the sign of y, Q changes sign and P
does not ~ f(x+iy) =P + Qi & f(x-iy) =P - Qi.

Cor. 3. If @(x1+iy4,...xn+iyn) is a real fn of n complex numbers = X +iY then

@(X1- iy1,..-.Xn- yn) = X - iY where X,Y real fns.

Cor. 4. If @(z) vanishes for z = a + bi then ¢ vanishes for z = a - bi.

Cor. 5. If Vreal fn @(x1+iy4,...Xn+iyn) vanishes for n values of xi + iyi then ¢ vanishes if
all those values are replaced by their conjugates.

Cor. 2. is extremely useful. Any real fn of complex vars always reduces to a real term
and an imaginary term. This is a basic truth like "any fn of degree n has n roots".

Example with our }; notation combs

(b+c-ai)(c+a-bi)(a+b-ci)
= ([I(b + c) - Yc(b + c)) + (abc - Ya(a + b)(a +c))i
= 2abc + (abc - Ya® - Ya?(b + c) - 3abc)i
=2abc- (Ya® + (b + c)(c +a)(a +b))i

Example of Binomial Term of Any Exponent

(x +yi)* = (x*- 6x% + y*) + (4x%y - 4xy®)i
Even powers of y turn i into alternating #1, odd into alternation #i.

We know that a+bi and a-bi are conjugates. Their sum (2a) and product (a®+ b?) are
real. Conversely, if the sum and product of two complex numbers are real then they
are either conjugates or they are purely real.

Def. The norm of x + yi is x’+y?, denoted "norm".
Def. The modulus of x + yi is V(x?+y?), denoted "mod".

Warning: These terms vary in use. Some texts equate them. In some algebras, the
norm is generalized into "inner product” and then the modulus becomes the norm.
Here's the important part: the one under the radical sign gives the magnitude of x+iy.
Mathematicians will never get their name-space sorted. So pay attention to what each
thing actually is and let each book call it whatever it wants to. We'll stick with the
above def.s in this text.

Conjugates have the same norm and the same modulus. If a complex number vanishes,
its modulus vanishes and conversely. If two complex numbers are equal, their moduli
are equal, but not conversely. Or x*+y? = x'%+y'? | = x=x' Ay=y'.
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Thm. 3.8. Vreal ¢, norm(¢(a+bi)) = norm(¢(a-bi)) = @(a+bi)@(a-bi)
Proof
lx+yi) =X +Yi ~ @(x-yi)=X-Yi
~norm(¢(x+yi)) = norm(X - Yi) = X?+Y?

= (X+Y)(X-Yi) = p(x+yi)o(x-yi) ®
Cor. 1. mod(¢(a+bi)) = mod(¢(a-bi)) = V(¢(a+bi)p(a-bi))
Cor. 2. Theorem and Corollary hold for ¢(c4,cz...,.cn): ci€C
Cor. 3. The modulus of a product of complex numbers is equal to the product of their
moduli.
Cor. 4. The modulus of a quotient of complex numbers is equal to the quotient of their
moduli.

Look at how the form of one thing leads unexpectedly to the form of another thing:

(X1+y11) (X2+y2i) = (X1X2 - Y1y2) + (Xay2 + X2y1)i
~ norm(LHS) = norm(RHS)
= (X1Xz - y1y2)® + (Xay2 + Xoy1)? (by def.)
= X1k + Y1727 + X7Y2 + X%y P
= %1% (2% +y2%) + ¥ ¥ (%% + y27)
= (%1% + y17) (%% + ¥27)
Now let xi,yi above be EN
= Vproduct of two integers, each a sum of perfect?s, is a sum of two perfect?s.
Sym. (Do the algebra) A product of three such integers is a sum of two perfect?s.
By induction, [](n such integers) is a sum of two perfect?s.
So complex numbers lead to a result in number theory.

Thm. 3.9. The modulus of a sum of complex numbers is always less than or equal to
the sum of their moduli.

Proof

Using the graphical representation of complex numbers in DME, we know that only
sums of parallel or concurrent vectors can be equal to the sum of their lengths. So in
most cases, the modulus of the sum will be less than the sum of the moduli. B

Algebraic Functions with Variables in C

Recall that rational fns only use the four operators +, -, x, +. Algebraic fns add the
extraction of roots or the ™V operator with nEN. We want to confirm that the values of
such fns with vars € C produce all their results in C. So we need to show that the nth
root of VceC is itself in C. Consider the case of the square root:

V(x +yi) =X +Yi

x +yi=X%-Y?+2XYi:X,YER
2X2-Y2=x 2XY=y

(XZ + YZ)Z = X2 + y2

2X2 4 Y2 = /(x4 ¥P)

= 2X% = +/(xP+y?) + X

X2 = (+V(x3+y%) +x)/2

X = V((+V(P+y?) +x)/2)
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Sym. Y = £V( (+V(x*+y?) -x)/2)
x*=y? > x - quantities in radicals are real
Because 2XY =y, we take unlike signs as y is pos. or neg.
y pos. = V((x+yi) = (V( (+V(*+y*) +%)/2) +i( V[ (+V(x*+y*) -%)/2)) )
y neg. = use -i above instead of i
Note that the values of XY are in Q only when x?+y* = q? for some q€Q.

Example

Express Vi and V-1 as complex numbers.
Vi=x+yi [1]

i=x?-y?+ 2xyi

axty?=0 2xy=1

o (x+y)(x-y) =0 ~ y=xV-xbut x3 (2xy=1) ~y=x
n2%%=1 o x=% 1/\/2

iz (1 +D)/V2 (from [1])

Sym. V-i = £(1-1)/V2

Thm. 3.10. Vnth rootr of VceC = reC.

1) VceC, Anroots of cin C

General case of the nth root of r(cos6 + isin8) € C
r>0 =~ 3r/">0

Consider n numbers in C:

r'/(cos(8/n) + isin(6/n)) [1]
rl/"(cos((2n+9)/n) +isin((2m+6)/n)) [2]
r'/"(cos((41+0)/n) + isin((41+6)/n)) [3]
rl/"(cos((25n+9]/n) + isin((2sm+6)/n)) [s+1]
rl/“(cos((Z(n+1)n+9)/n) +isin((2(n+1)m+6)/n)) [n]

All distinct as all args < 2m. Each to the nth power = r(cos6 + isin8)
ie. (s+1)" = (r'’™"(cos((2sm+0)/n) + isin((2sm+6)/n))"
=r(cos(n(2sm+6)/n) + isin(n(2sm+0)/n)) ( De Moivre's Thm )
=r(cos(2sm+0) + isin(2sm+6)
=r(cos0 + isinB)
2) VneN,ceC, 3n nth roots and only n nth roots
Leta=r(cosb +isinB), z= Vnthrootofa ~z"=a. z"-a=0
Vfn @z n° 3n roots - a, z-z, z-Z,, Z-Z3, ..., Z-Zn-1 are all the factors and are the only
factors. m
Cor.1. Rc C - VreR, 3n nth roots of .
Cor. 2. Imaginary nth roots of reR exist in conjugate pairs. Because if r real =
if (x+yi)" = r then (x-yi)" =r.

It follows that VreR* (or [0,+00)) r has form r(cos0O + i sin0) and VreR™ ((-o0,0]) has
form r(cost + i sinm).
~ nth roots of +1 give us the nth roots for VreR.
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And we worked out the nth roots of positive and negative unity in DME. The first of
the imaginary roots of unity:

cos(2m/n) +isin(2m/n) [1]

is primitive, which is any nth root which is not also a root of an order less than n.
OR T = cos 21/3 +isin2m/3 is the 6th root of +1 but also a cube root of +1. So it is not
primitive. Depending on n, there can be multiple primitive nth roots. Denote [1] as w.

w’ = (cos(2m/n) + i sin(2m/n))* = cos(2sm/n) + i sin(2sm/n) by De Moivre's Thm
" = (cos(2m/n) +isin(2m/n))" = cos 2m +isin 2w =1

n

~ our w is a primitive imaginary nth root of unity and roots are w, w?, w3, .., 0"
Sym. w' is a primitive nth root of -1 and the nth roots of -1 are »'%, 03, ©'5, .., "™
So the r(cos6 + i sinB) form of w' is what? It follows:

Thm. 3.11. Vbinomial ifn form (x" + A) has n factors with coeffs € C or can be factored
into at most two real factors 1° and remaining real factors of 2°:

Example

1) x*™- a*" vanishes for any w'a [1-2m]
5= (x-aw)(x - aw?)(x - aw™™)

To get real factors we first use (x + a)(x - a)

then we have roots a(cos(2sm/n) + isin(2sm/n) or

(x - a-cos(2sm/n) - a-i-sin(2sm/n))(x - a-cos(2sm/n) + a-i-sin(2sm/n))

= (x-a-cos(2sm/n))? + a%sin?(2sm/n)

= x%- 2ax-cos(2sm/n) + a®

So the factors are:

(x + a)(x - a)(x?- 2ax-cos(2m/n) + a?)(x?- 2ax-cos(4m/n) + a%)--

where the quadratics may or may not have real factors.

2) w imaginary cube root of unity.
Then1) 1+ w + w? = 0 and 2) (wx + w?y)(w?*x + wy) ER.
Di+to+w’=1-0))/(1-0)=0asw’=1
2) (0x + w2y) (w3 + wy) = w3x% + (w* + w?)xy + W3y?
w¥=1 w'+w’=w+w’=-lasl+w+w?=0
o (wx + 0%y)(w*x + wy) =x*+xy +y? €ER

Fundamental Theorem of Algebra Vifn of form [f] n°, coeffs € C has n roots.
The Fundamental Theorem of Arithmetic is that any whole number has unique prime
factors. This theorem says the same thing about polynomials. The best proof uses

Gauss's Theorem:

Gauss's Theorem Valg.eqn f of form [f] n° with coeffs € C = Ja = c+di: f(a) = 0.
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Gauss gives us one root. Remainder Theorem makes that root a factor leaving another
f of (n-1)°, which has Gauss's one root, its factor, and an f of (n - 2)°, ... or wash, rinse,
repeat. Chrystal's proof of Gauss's Theorem is the ugliest thing in his book so far and
three pages long. If you care, go find a version of Gauss's Theorem that you like. But
we uniquely factor whole numbers without having to prove anything. So we can trust
Gauss and factor away. Our ifns are "as integers". Mostly, we don't need to know
every proof. Decide whether or not you need to know this one and find a prettier one
than Chrystal's. You will see later (to my immense satisfaction) that Murphy simply
assumes Gauss's theorem when he talks about this.

Another way to look at the quadratic real factors above is that if a+bi is a root then
a-biis arootand (x-a+ bi)(x-a-bi) = (x - a)? + b2 So this factor is fully in R. So one
take away here is that any real fn (rfn) has real factors of positive integral powers of
degrees one or two.

Equations of Condition

Equations of condition are not identities. They are one or more equations solved by
one or more set of values assigned to the variables. If only one set, equations are
singly determinate. If more than one set, multiply determinate. If no solution,
indeterminate. The following propositions apply to equations of condition.

Prop. 3.1. The soln of a system of eqns is in general determined when the number of
eqns equals the number of vars.

Prop. 3.2. If the number of eqns is less than the number of vars the soln is generally
indeterminate, i.e. infinite solns exist.

Prop. 3.3. If the number of eqns is greater than the number of vars there is in general
no soln and the system is inconsistent.

Prop. 3.4. An ifn of n° in one var has n roots, real or complex, single or multiple.

Prop. 3.5. A determinate system of integral (ifn) equations of m vars whose degrees in
those vars are p,q,1,... has at most [[pqr--- solns and generally exactly that many solns.
Cor. 1. If more solns than [[pqr-- are found, the system is indeterminate with infinite
solns.

Def. Two systems of equations A,B are equivalent when every soln of one is a soln of
the other. If in deriving B from A, each step maintains equivalence, each step is
reversible. If a step destroys equivalence, that step is irreversible.

Let P,Q be two fns in (x,y,z,...) such that for any value of the vars, P,Q are finite. If P-Q =
0and Q # 0 then P =0. And if P-Q = 0 and P # 0 then Q = 0. Otherwise, the only values
that make P-Q = 0 are the roots of P or Q. It follows that if P = Q then P+R = Q+R where
Ris either constant or is any fn of the vars.
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So just as with integers
P+Q=R+S =>P+Q-S=R

and similar, where S is either a constant or a fn of the vars. Therefore, any system can
be reduced to the form R = 0:

P=Q=P-Q=Q-Q=>P-Q=R=0

For multiplication, P = Q = PR = QR if R is a non-zero constant but not if R is a fn of the
vars because the following

PR=QR = PR-QR=0 = (P-Q)R=0

is satisfied by values that make R = 0 which will not satisfy P - Q = 0. Dividing both
sides of an equation by anything other than a non-zero constant is irreversible as we
may lose solns.

Example

(x-1x*=4(x-1) [1]

x*=4 (+(x1))
Zx%-4=0 -~ (x+2)(x-2)=0 solns: 2,-2
But [1] = (x- 1)(x + 2)(x - 2) solns: 1,2,-2

Since multiplying or dividing by a constant is reversible, if we have an eqn with coeffs
€ Q we can find an equivalent eqn with coeffs € Z by using LCM and we can take any
ifn of form [f] and change ¢, to unity.

Example

((p+a)/ax+p/(p-a)y)((p-a)/px+aq/(p+q)y) = 2xy

Multiply both sides by p-q-(p+q)-(p - q) and it resolves to:

2

(p*- q*)x* + p*q’y* =0
Every ifrac is reducible to an ifn but this may introduce extraneous solns.

2x-3+ (x%-6x+8)/(x-2) = (x-2)/(x-3) [1]
(2x-3)(x-2)(x-3) + (x*- 6x + 8)(x - 3) = (x - 2)?

This is an ifn and solved by any soln of [1]. But do any solns of (x - 2)(x - 3) solve [1]?
Clearly, x = 3 does not. But x = 2 does. Now x?- 6x + 8 = (x - 2)(x - 4). Therefore [1] is
2x -3 +x-4=(x-2)/(x-3)and x = 2 is not a soln of this equation. We have
introduced it falsely and must discard it.

P=Q=P-Q=0
multiply by (P™'+P"*Q+--+Q")=P"-Q"=0
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But here we introduce solns. Sym. rationalizing factors introduce solns at every step.
It can be even worse:

Vx+ 1D +V(x-1)=1 [1]
Vx+1)=1-V(x-1)
x+1=1+x-1-2V(x-1)

1=-2V(x-1)
1=4(x-1)
4x-5=0

~x=5/4 which is neta soln of [1]
Given system A: Pi = 0 [1 - n] if we derive system B:
LiPy+LPy+ - +LoPn=0 P,=0 ... Pn=0

the two are equivalent if L; is a non-zero constant. And if LI'm,m' € R any of which
can be zero butIm' - I'm # 0 then

A:U=0 U'=0
B:lU+1'U'=0 mU+m'U' =0

are equivalent systems. And given
A:P=Q R=S
any soln of A is a soln of
B:PR=QS R=S

but the systems are not equivalent. Any soln of A is a soln of B. But B is solved by
solns of R = 0 and S = 0 which are not in A. An important method of soln is elimination.
Say you have two equations in x,y. You eliminate y in one of them. The other retains
your relation of y to x. A simple example of this would be

A x*+y?=1 x+y=1

We eliminate y from the first eqn.

x+y=1le.y=1-x

.'.x2+(1-x)2:1

x2+1-2x+x*=1

x%-x=0

~B:r x(x-1)=0 x+y=1 isanequivalentsystem to A

which seems trivial here. But elimination is very useful when the systems get larger
and more complicated.
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Examples

1) Rationalize VX + VY +VZ £/U =0
We get a general soln by taking only + as squaring reduces then all to the same thing.

VX +VY =-VZ-VU ('square)
X+Y+2VXY=Z+U+2VZU
X+Y-Z-U=2VZU-2VXY  (square)
(X+Y-Z-U)?=4XY + 4ZU - 8YXYZU
YX2-25XY = -8VXYZU

(IX? - 23XY)? = 64XYZU

But this general soln is not the simplest method:

V(2x+3) + V(3x+12) - V(2x+5) - V3x = 0

V(2x+3) + V(3x+12) = V(2x+5) - V3x

5x+5 + 2v/(6x%+ 13x + 6) = 5x + 5 + 2V/(6x? + 15%)
6x%+ 13x + 6 = 6% + 15x

6 =2x

3=x

2) Ifx+y+z=0 [1]
then ¥ (y?+ yz + z%)® = 3[[(y*+ yz + z2)®
yi+yz + 22 = y2+ z2(y + 7)
=(z-x%+2(x)  (by[1])
=72+ zx + X2
=x*+xy +y? (by sym.)
= Y (y*+ yz + 29)3 = 3(y?+ yz + z%)® and 3[[(y*+ yz + z%) = 3(y*+ yz + z%)?

3) Given x,y,z # 0, eliminate x,y,z in [1]-[3]

y*+z% = ayz [1]
7%+ x? = bzx [2]
x*+ y% = cxy [3]
x%-y? = (bx-ay)z (12]-[11) [4]
~bx-ay #0.Else x? =y? ~ By [3] x= 0%
z%(bx-ay)?+ x?(bx-ay)? = bzx(bx-ay)? ([2]-(bx-ay)*)
(x*- y*)? + x*(bx-ay)? = bx(bx-ay) (x*- y*) ([41)
~ (x%-y?)? = xy(ax-by) (bx-ay)
o (x%+ y%)? - 4x%y? = RHS [5]
(c*- 4)xy = ab(x*+ y?) - (a%+ b?)xy (from [3], [5] becomes this )
~(a%+ b2+ ¢ - 4)xy = ab(x*+ y?) [6]
~(a®+ b%+ ¢*- 4 -abc)xy = 0 (from [3])
xy#0 = (a+b%+ c®-4-abc)=0 [7]

This [7] is the eliminant or resultant of this system of equations.
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Functions

A few remarks on algebraic fns of form [f] with coeffs € R.

1) f(x) can be infinite for some finite x, usually when approaching form 1/0.

2) f(x) can instantaneously increase or decrease but only by definition as in
f(x) = 3x+ 1€ (-0,1), 3x + 2 € [1,00). Otherwise, alg. fns are continuous.

Def. A fn f(x) is continuous if f(x) has a limit b if as x—a then f(a) = b. Or

limit f(x) as x—a = f(a)

Intuitively, this means you can graph any interval of f(x) without lifting your pencil
from the paper. Or, you always get to where you are going. No surprises.

3) If ci€R, f(x) can be complex for some real values of x. Let f(x) = +V/(1 - x?) then f(x)
has real values only on [-1,1] and imaginary values elsewhere. But this cannot happen
if f(x) is a rational algebraic fn using only the four operations of arithmetic and no
radicals.

These next six propositions refine some ideas in DME and can be proved using the
ideas of limits from that text. They consider what happens on an interval where the
two fns approach extreme values. Keep in mind that there could be many intervals
where this happens if we consider the whole domain of alg. fns P,Q.

Prop. 3.5. P finite, Q=0 = PQ—0

Prop. 3.6. P finite, Q—c0 = PQ—o0

Prop. 3.7. P!'-0 when Q—0 = (Q—0 = P/Q »»)
If PAQ—0, the form becomes 0/0 which is indeterminate.

Prop. 3.8. P!—00 when Q—o0 = (Q—o = P/Q —0)

Prop. 3.9. PAQ -0 = P+Q -0

Prop. 3.10. (PVQ — o0) V (PAQ = (+o0 V -00)) = P+Q = o0
We can extend these ideas:

Prop. 3.11. If P = [[Pi [1-n] then P remains finite if all Pi remain finite.
If any Pi—0 then P—0 and if any Pi—~oo then P—oco.

Prop. 3.12. If S = }'Pi [1-n] then S remains finite if all Pi remain finite.
S—0 only if all Pi = 0. But S—oo if any Pi —»oo.

Along these same lines, consider P/Q:
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Prop. 3.13. P/Q finite if P and Q finite.
It may be finite is PAQ—0 or PAQ—oo.

Prop. 3.14. P/Q = 0 if (P=0 A Q#0) V (P#co A Q=0)
It may equal zero if PAQ—0 or PAQ—oco.

Prop. 3.15. P/Q = o if (P=00 A Q#0) V (P£0 and Q=0)
It may equal go to infinity if PAQ—0 or PAQ—oo.

The above ideas have implications regarding continuity.
Prop 3.16. The algebraic sum of a finite number of continuous fns is a continuous fn.

Prop 3.17. The product of a finite number of continuous fns is a continuous fn so long
as all the factors remain finite.

Cor. 1. If A constant, P continuous fn = AP continuous fn.

Cor. 2. If A constant, meN = Ax" continuous fn.

Cor. 3. Vifn f(x) is continuous and cannot become infinite for a finite value of x.

Prop. 3.18. If P,Q ifns of x then P/Q is finite and continuous for all finite values of x
where Q(x) # 0.

The underlying idea in these last three propositions is that in each case nothing occurs
to take f(a) away from the limit of f(x) as x—a. In addition or subtraction, the
increments of the elements are all continuous, so the sum of the increments is
continuous. Nothing breaks the path to the limit. Then in multiplication, we can't let
any factor go to infinity or it produces a discontinuity, And the same happens in
division if the denominator runs off to zero.

If P = A+B, P(x+h) = A+a + B+b = A+B + a+b. So the increment of the fn is a+b. The
limits of A,B being continuous, the limit of the sum is continuous, or rather, the sum
provides continuity. In a product (A+a)(B+b), we have AB + Ab + Ba + ab which goes
to AB as a,b—0 and continuity is preserved so long as A and B are well-behaved and
remain finite. You can work out the symmetric ideas for quotients on your own.

Thm. 3.12. If f(x) continuous on [a,b] where f(a) = p, f(b) = g, then f(x) passes at least
once through every value on [p,q].

Cor. 1. If f(a),f(b) different signs then f(x) has at least one root, and in any case an odd
number of roots, on [a,b].

Cor. 2. If f(a),f(b) same sign, if f(x) has any roots on [a,b] there must be an even
number of them. Note that if f(x) merely touches line ab, the roots are multiple roots.
Cor. 3. A continuous fn can change sign only by passing through the value zero.

Cor. 4. If P,Q continuous ifns and p(P,Q) (or "P,Q prime to e.0.") then P/Q can only
change sign by passing through 0 or co.

Arguably, these are all provable by graphing any continuous fn. Note that the
Remainder Theorem allows you to exclude the case of 0/0 and therefore Cor. 4.
follows from Cor. 3. This next theorem strikes me as a variation of De Morgan's
theorem that by choosing x, any term of a fn can contain all the following terms.
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Thm. 3.13. Vifn f(x): 1) By taking x small enough f(x) can have the same sign as its
lowest term and 2) by taking x large enough, f(x) can have the same sign as its largest
term.
Proof
Take y = px>+ qx?+ rx + s
1) If s#0 then by inspection we can make px>+ gx*+ rx <s
If s=0, we have (px*+ gx + r)x and the same reasoning holds.
2) We can alter the fn to
y=x*(p+q/x+1/x*+s/x°)
where for large x we make y = px°. B

Thm. 3.14. V ifn f(x) of form [f] can be made a rifn with co=1 -
if f odd® then f(+00) = +c0 and f(-o0) = -c0
if f even® then f(+o0) = +c0
Cor. 1. Vifn odd®, coeff € R has at least one real root and if more then an odd number.
Cor. 2. If Vifn even® has real roots, it has an even number of them
Cor. 3. Vifn, coeff € R, if it has complex roots, it has an even number of them.

Maxima and Minima

Chrystal introduces here the ideas of maxima and minima. But without the Calculus,
these require lots of hand-waving. Fortunately from DME we have enough Calculus
for this.

Def. f(x) has a maximum where f'(x) (first derivative of f(x)) changes from positive to
negative. The curve stops going up and starts coming down at this point. And f(x) has
a minimum where f'(x) changes from negative to positive. Therefore wherever f(x)
has a maximum or minimum, f'(x) = 0.

A couple of caveats. A fn f(x) could go up, decrease its tangent to zero and then go up
again, making a kind of flattened S-curve. And f'(x) would equal zero here too. So in
every case you have to test f(x) on both sides of f(x)=0. Also, f(x) could have a
maximum or minimum where, by having some kind of instantaneous change, it would
have no f'(x).

So to find maxima and minima for f(x):
1. derive f'(x);
2. solve for f'(x) = 0; and
3.  testroots for maxima, minima, and false positives.

Example

y=x3/3-2x*+3x+2
y' =x*-4x+3 roots: 1,3

So we have a max or min at both (1,3%) and (3,2) and you can determine which is
which.
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Thm. 3.15. If f(x) is continuous, its maxima and minima succeed e.o. alternately.

Thm. 3.16. If f(x) not constant and has real roots a,b: a<b then there must be at least
one max or min on [a,b].

Thm. 3.17. Let x=p be a max or min of f(x) then the fn f(x)-p has a double root.
(Use a quick sketch of some f(x) to see that this theorem is saying.)

Functions of Two Variables

Let z = f(xy) be an ifn, x,y,coeff € R. By considering only such z, the value of z will be
real. Our increment of f is now f(x+h,y+k) - f(x,y). But with these terms in form Ax"y"
you could easily prove that as x goes from a—a' and y from b—b' that z must pass
continuously from some c—c'.

Now let P = (a,b), P' = (a',b").
There are an infinity of
continuous curves from P to P'".
Let line PQ have the magnitude
of f(x,y) at P where Q is above
the XY plane if positive, below
if negative. Then the locus of
all possible Q is a graphical
surface of f(x,y). As P travels
any curve S in the XY plane, Q e (]
travels curve Y. on the surface
of f(xy) so that S is the
orthogonal projection of }.. z*

If we want to know where 1
f(x,y)=c, we cut the surface

with some plane U || plane XY

at distance c above or below

the XY plane as c is positive or

negative. Plane U intersects

the surface at some curve ),

which is the contour line of ¢

on the surface. If we let U = XY, 0 X
this contour is f(x,y) = 0. This fig 1 .

is the boundary, on either side
of which f(xyy) has opposite
signs.

So we have analogs of the above theorems, such as

Thm. 3.18. If P = f(a,b) > 0 and Q = f(a',b") < 0 then if f continuous f passes through
zero an odd number of times as it passes from P to Q.
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And in general it follows that any plane curve can be analytically represented by a fn
of two variables. This is only a preview of two var fns. A similar preview of complex
fns follows.

Complex Functions of a Single Variable

Let f(x) be an ifn of x,coeffs € C. Here x = a + bi. And f(a+bi) is continuous from a+bi to
a'+b'i if a varies continuously from a to a' and b from b to b'. We know that any fn
f(a+bi) reduces to some A + Bi where A,B ifn with coeffs € R. So f(a+bi) is continuous
if A + Bi is continuous. Graphically, we can say that the graph of the ind var is a
continuous curve S when the graph of the dependent var (f(a+bi)) is a continuous
curve S'.

We can think of A,B in A + Bi as ¢(a,b), Y(a,b). So the values that make A = 0 will make
@ = 0. Sym. for B and . Where =0 we have a curve S and where =0, a curve T.
Therefore the intersection SNT is the roots of f(a+bi). Which I find aesthetically very
pleasing.

Example

y=ix’+8
A +Bi=i(a+hi)®+8
=2(4 - ab) + (a%- b?)i
~A=2(4-ab) B=a%b?
Curves S and T are derived from making b a fn of a or b(a)
S)b=4/a
T)b=+a,-a
~ Sis an hyperbola intersected by the lineb =aatP =(2,2) and Q = (-2,-2)
= roots of ix*+ 8 are 2 + 2i and -2 - 2i.

Equations 1°
Let's look at a few things we already know but now from Chrystal's viewpoint.

ax+b=0

a(x- (b/a)) =0

~soln: x=-b/a

Thm. 3.19. Veqn 1° has unique soln.
Proof

Let there two solns: o, and a#0
aac+b=0

aB+b=0

a(a-B)=0 (-)

az0 ~ a-B=0 ~a=f W
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Def. A system (sys) of eqns is consistent if a unique soln satisfies all eqns in the sys.

Two eqns 1° are generally inconsistent. Given ax + b = 0 and cx + d = 0, consistency

requires ad - bc = 0 where, geometrically speaking, lines are parallel (]|). If b,d = 0,

eqns are consistent as soln is x = 0. And if two are consistent, then for some reR:
ax+b=r(cx+d)

Veqn 1° of two vars has infinite solns. The form is ax + by + ¢ = 0. Given anyy,

x=-(by +c)/a

so we can think of y here as an arbitrary constant and the eqn as having a one-fold
infinity of solns.

VLI'mm' € Q: Im'-1'm # 0, then these two systems (1,2 and 3,4) are equivalent.

ax+by+c=0 [1]
a'x+b'y+c'=0 [2]
lax+by +c)+1'(a'x+b'y+c) =0 [3]

m(ax+by+c)+m'(ax+by+c)=0 [4]
Clearly, the two systems have only the same solns and solns of [3],[4] give:

m'(l(ax+by +c) +I'(@x+b'y +c')) -I'(m(ax + by +c) +m'(a'’x + b'y + ¢")) =0 [5]
-m(l(ax + by +c) +I'(a'x +b'y + c')) + [(m(ax + by + ¢) + m'(a'x + b'y + c')) = 0 [6]

And [5],[6] reduce to:

(Im'-1I'm)(ax+by+c)=0 [7]
(Im"-1I'm)(a'x+b'y+c')=0

which ifIm' - 1'm #0 are equivalent to [1] and [2].

Ifweletl=+b',I'=-b,m=-a',m = +athenlm'-I'm = ab' - a'b and [3],[4] become:

(ab'-a'b)x+cb'-c'b=0 [31
(ab'-a'b)y+c'a-ca'=0 [4"]
~x=cb'-cb y=ac'-a'c

ab'-a'b ab'-a'b

which is unique if ab' - a'b # 0. Eqns [1],[2] are collaterally symmetrical wrt xy, ab, cd.
So if we know x then y is obtained by subbing b for a, afor b, a' for b'and b’ for a'.

Digital PDF copies released under Creative Commons 4.0-SA-BY-NC
Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



77
Bezout's Method

If we start with [1],[2] and any A, any soln of the sys solves

(ax+by+c)+A(@x+Dby+c)=0 [3]
or (@a+2Aa')x+(b+Ab)y+(c+Ac) =0 [4]

Selectany A, lety =0and [4]- (a+2Aa") + (c+Ac') =0
ButA=-b/b" ~ x=(c+Ac)/(a+2Aa')=(b'c-bc')/(ab'-a'b) Sym. fory.

If we begin with sys [1],[2], this is an equivalent sys:

y=(-ax+c)/b
ax+b'y+c'=0

and subbing, this is an equivalent sys:

y=(-ax+c)/b
a'x-(b'(ax+c))/b+c'=0

And algebrating, we get the same results. So our original sys [1],[2] is consistent if
ab'-a'b # 0 or, from DME, the determinant of the coeffs is non-zero. If we add the eqn,
a"x +b"y + ¢" = 0 to our sys, the sys has a soln if the determinant

abc
Det a' b' ¢ #0 OR a"(bc'-b'c) + b"(ca'-c'a) + c"(ab'-a'b) # 0 [1]
a"b"c"

For linear eqns, a non-zero nxn determinant is the condition of consistency for any sys
of n eqns. The determinant [1] shows the consistency of three eqns in either of these
forms:

ax+by+c=0
ax=by+cz+d=0

Now all of what we have said here scales up with linear equations. Any eqn 1° of three
vars ax + by + cz + d = 0 has a two-fold infinity of solutions. Assign any arbitrary
constants for y and z and x is then determined. A sys of two such eqns has a one-fold
infinity of solns:

ax+by+cz+d=0
a'x+b'y+cz+d =0

Choose any z and you have the soln of two linear eqns in two vars as above. A later
example shows how this can be done with an arbitrary constant and ratios.
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Given a sys of three such eqns:

ax+by+cz+d=0 [1]
ax+by+cz+d =0 2]
a"x+b'y+c'z+d" =0 3]
with a non-zero determinant:
a(b'c” -b"c) + b(c'a” - ¢"a’) + c(a'b” - a"b') # 0 [4]

But hold that thought while I make two remarks on determinants. First, these last two
determinants above are the same. You can use any row for the coeffs and the others
for the two-part factor. Second, if you were to take all the two-part bits in the same
direction, they would alternate pos/neg and second term above would be

-b(a'c" - c'a")

and different texts do this in different but valid ways. Returning to our sys, it is
equivalent to:

ax+by+cz+d=0 [5]
c'(ax+by+cz+d)-clax+by+cz+d)=0 [6]
c"(ax+by+cz+d)-c(@"x+b"y+c'z+d")=0 [7]
Thenlet: A=ac'-a'c B=bc'-b'c C=dc'-d'c
A'=ac"-a"c B'=bc"-b"c C'=dc"-d"c

And this becomes:

ax+by+cz+d=0 [51]

Ax+By+C=0 [6']

A'x+B'y+C'=0 [7']

And the determinant becomes: AB'-A'B # 0 [8]
x=BC'-B'C y=CA'-CA
AB'-A'B AB'-A'B

Subbing these into [5] we get
z = -a(BC'- BC) + b(CA'- C'A) + d(AB' - A'B)
c(AB'-A'B)

We can see from geometry, that if with two eqns they are in form ax + by = 0 or with
three eqns they are in form ax + by + cz = 0, then we have lines or planes which have
not been displaced from the origin and solns become: x,y = 0 or x,y,z = 0 so long as the
determinant (det) is non-zero.
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If we have ax + by =0 and a'x + b'y = 0 and det = 0, we then have

a(x/y)+b=0
2(x/y) +b'=0

and then for any x,y: x:y::-b:a or x:y::-b":a' is a soln. Note that here these eqns are
consistent. So we have a one-fold infinity of solns. And going up one dimension, if we
have det = 0 with three eqns of form ax + by + cz = 0:

a(x/z) +b(y/z) +c=0
a'(x/z)+b'(y/z) +c'=0
a"(x/z) +b"(y/z) +c"=0

then again, the det = 0 means the eqns are consistent and any two of them determine
the ratios x:z, y:z. Thereforex:y:z = bc'-b'c:ca'-c'a:ab'-a'b where bc' can be bc/,
bc", or b'c" and so on sym. altering the rest of the terms depending upon which two
eqns determine the ratios. So when a sys of eqns is homogeneous and consistent, the
values of the vars are indeterminate but their ratios are determinate. If we have:

3x+5y-7z-2=0
4x+8y-14z+3=0
3x+6y-8z-3=0

the simplest method of soln is our matrix method from DME which I will give in
running-style for you to puzzle out:

35 -7-2 0-41417 001021 00121
48-14 3 13-7-5 10 -4 -8 10004
36 -8-3 01-11 01-11 01031

~x=04 y=31 z=21 Let'sconsider the relation of eqns to solns.

Prop. 3.19. A sys of n-r eqns 1° in n vars has a soln involving r arbitrary constants and
therefore an r-fold infinity of solns.

Prop. 3.20. A sys of n eqns 1° in n vars has a unique determinate soln so long as det #
zZero.

Prop. 3.21. A system of n+r eqns 1° in n vars is generally inconsistent. To secure
consistency, r different conditions must be satisfied.

Other systems of equations can be reduced to linear systems. If all steps taken are
reversible, the linear solution will be the solution of the original system. Else,
solutions have been added in the reduction and results must be verified.
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Example

XZ_yzzx-y 2X+3y-1=0
LHEqn = (x-y)(x+y-1)=0
- system equivalent to

L x-y=0 2x+3y-1=0
II.x+y-1=0 2x+3y-1=0
Solns: I. (1/5,1/5) I (2,-1)

Solutions of linear systems can be simplified by using auxiliary variables.
Examples

1) (x-a)®/(x+b)®=(x-2a-b)/(x+a+2b)
Letx+b=z .. x=2z-b andletc=a+b
o (z-¢)%)2% = (z-20)/(z+¢)
(z-c)3(z +c)=23(z- 2¢)
z*-273c + 2z - z* = 2* - 27°¢
2c%z-c¢*=0 ~soln:c/2 ~x=c/2-b=(ab)/2

2) a(x+y) +b(x-y)+c=0 a'(x+y) +b'(x-y)+c'=0
Letx+ty=m Xx-y=n
am+bn+c=0 am+bn+c'=0
which solves as a linear system with expressions for m,n
Then x+y = expr.m x-y = expr.n (expr. = expression of )
Add and divide by 2 for x; subtract and divide by 2 fory.

3) System of three eqns:

x-2y+3z=0 [1]
2x-3y+4z=0 [2]
4x3+ 3y3+ z3- xyz = 216 [3]

Rather than solving [1],[2] by choosing any z,

we can also take any arbitrary A. Then
x=A(bc'-b'c) y=A(ca'-c'a) z=(ab'-a'b) or
x:y:z=bc'-b'c:ca'-c'a:ab'-a'b
x:y:z=1:2:1or x/1=y/2=2/1=A

“X=A y=21 z=A [4]

5 270%=216 ~A*=8

solns: A=2 A=2(-1+iV3) A=2(-1-iV3)

Sub each of these into [4] for the actual three solns.

Digital PDF copies released under Creative Commons 4.0-SA-BY-NC
Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



81
Graphical Remarks

Aline isy = ax + b, therefore
1. if b=0theny =ax or aline with slope a on the origin
2. ifa=0theny=>boraline || X-axis above or below it at distance b
3. ifa,b=0theny =0 or the X-axis

In #1, the root is (0,0). In #2, there is no root. In #3,0x + 0 =0 ~ x = 0/0 and line is
indeterminate as all of X-axis is its "root.”

A plane is z = ax + by + c and its contour lines a a series of || lines. Let k = Vconstant,
then ax + by + c=k ~y = (-a/b)x + (k-c)/b which is a line. Note, however, that lines
have no width, compose nothing and certainly cannot be used to build a plane. In this
line the x intercept is (k-c)/a and the y intercept is (k-c)/b. Take any two such lines
and the ratio of their x and y intercepts are the same as these two lines. So all are ||
which is to say that the slopes all equal -a/b. The zero contour line here is

ax+by+c=0 [1]

which divides the plane in two. Any point on one side of [1] makes [1] positive and
any point on the other makes it negative. Two such lines, whether in the same or in
different planes will have generally one point of solution. If they are parallel (see
Euclid Book XI) there is no soln to the system. If they are coincident, you can derive

x =y =0/0 and so have an indeterminate system.

Three such lines have a soln or point of intersection iff (if and only if) det = 0. In our
det, we have the cases where one or more of ab' - a'b, a"b - ab", a'b" - a"b' vanish. Of
course, if two vanish, they all vanish. So we have only two cases.

Let the lines be L, L', L".
1. Letab'-a'b=a"b-ab"=0. ThenL||L'and L||L" - all lines are either parallel

of coincident.
2.  Letab'-a'b=0. ThenL||L' and L" is neither || nor coincident with L,L". Here

the three can have no common solution unless L=L'".

Let's prove that last one:

Letab'-a'b=0
k=Vconstant:a'/a=b'/b=k
~a'=ka b'=kb

~det=a"(bc'-b'c)+b"(ca'-c'a)=0
=a"(bc' - kbc) +b"(cka-c'a)=0
=(a'b-ab")(c'-kc) =0

LHT # 0 by hyp. . RHT=0 ~ c'=kc

~ Ifk=1asoln exists. &
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Equations 2°

De Morgan covered all the basic theory on quadratics. So we'll take it from there. But
first, hereis a

Cool Example

Solve V(7 + V(7 + V(7 + )

Let the expression equal x, then x* = 7 + x

~x%-x-7=0and algebrate

This technique can be used with other infinite forms such as infinite series.

We can solve some higher degree eqns by viewing them as, or reducing them to,
quadratics.

Examples

1) Solvex*+1=0
Reduces to (x + 1)(x*-x+1) =0
So the three roots are all within the scope of quadratics.

2) Solve 7x3- 13x*+3x+3=0
Clearly divby (x - 1) as x = 1 is a soln by inspection
o (x-1)(7x%-6x-3)=0

3) p(ax?+ bx +c)? - q(dx*+ ex +f)*=0
From A%-B*= (A + B)(A-B)
= (Vp(ax*+ ) + (Vq(dx*+ ) (Vp(ax®+ ) - (Vq(dx*+ )
LHT mult. out is quadratic: (aVp + dVq)x? + --- and Sym. for RHT.

In every case, we use our understanding of the form of number to find what simple
forms lie within our work. And then we exploit them. We know that we can reduce
every algebraic eqn to an ifn. But we must track our work and exclude any extraneous
solns we introduce.

Examples

1) 1/(x+a+b) + 1/(x-a+b) + 1/(x+a-b) + 1/(x-a-b)
Using A% - B? = (A+B)(A_B) combine terms 1 and 4, 2 and 3.
2x/(x%- (a+b)?) + 2x/(x?- (a-b)?) = 0
2 2(2x% - 2(a%+b?) = 0
Equiv.tosys:x=0 x* (a®’+b%)=0
Roots: 0, +V(a?+ b?) and none introduced by process.

2) (V(@+)/(Va+ V(@) = (V(ax))/(Va- V(a-0))
Rationalize denoms and algebrate:
4x*-3a%x3 = 0 - roots: 0, +a(V3/2)
But these are all introduced by the process and do not
satisfy the original eqn.
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Quadratic soln can be achieved by change of variable. If we can put an eqn in form:
(fGO)* +p(f(x)) +q=0

we can solve it as a quadratic of f(x) and if f(x) is 1° or 2° then we can completely solve
it with what we know so far.

Examples

1) x®+3 = 2V(x3- 2x +2) + 2x
X2-2x+2-2V(x%-2x+2)+1=0
af(x)=x%-2x+2 ~ (f(x)-1)*=0
V(x%-2x+2)=1
x%-2x+2=1
(x-1)*=0 sroots:x=1

2) 2%.3.2%%432=0
(29%-12(29+32=0
(2%-4)(2*-8) =0
Equiv to sys: 2*=4 2*=8 . soln:x=2,3

Reciprocal Equations

This is a very useful form. Consider these reciprocal eqns, i.e. where the coeffs
equidistant from the ends are equal. (That was a definition, right?)

ax*+ bx3+ cx®+bx+c=0
ax*+ bx®+ cx®-bx +c=0

These reduce to:

a(x*+1/x3) +b(x+1/x)+c=0
a(x*+1/x*) +b(x-1/x)+c=0

Or:

a(x+1/x)*+b(x+1/x)+c-2a=0 [1]
a(x+1/x)*+b(x-1/x)+c+2a=0 [2]

Letroots of [1] = o, [2] =,6.

Then [1]isequivtosys:x+1/x=a x+1/x=f
Or:x*-ax+1=0 x*-Bx+1=0

Sym. [2] is equiv to sys: x*-8x-1=0 x*yx-1=0

And the roots of these pairs are the roots of the 4° original eqn.
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More generally, if we have:
ax*+bx®+ cx* +dx +e=0
it can take the form:
a(x*+e/(ax)) +b(x+d/(bx)) +c=0
and if e/a = d?/b? this takes the form:
a(x +d/(bx))* +b(x +d/(bx)) + c-2-ad/b=0
Further, if we have:
ax®+ bx*+ cx®t cx’t bx+a=0
where either the upper or lower signs are all taken together, this has form:
a(x®+ 1) +bx(x®+ 1) + cx*(x 2 1) =0

where either (x+1) or (x-1) is a factor. And removing this factor we obtain a
reciprocal 4° eqn as above.

Elimination

I do not yet fully grasp the methods of elimination. But I can see the importance of it.
Let me share as much of it as I have grasped and you can dig into it more deeply.

Let's look at systems with quadratics. If we have a sys of 2 eqns 1° (that's not a 1) and
m° in x,y, the sys has I-m solns. If we eliminate y, the sys in x will be (I'm)°. And this
eqn is the resultant eqn in x. The same idea extends to sys with more than two eqns
and more than two vars. Generally, such a sys has (n-1) 1° eqns and one quadratic. By
first solving the (n-1) 1° eqns, we substitute those values in the quadratic. This gives
two root solns which in turn gives a second value to the (n-1) solns.

The idea of elimination, simplest case, is: given two eqns in x,y, we eliminate y in one
of them, solve for x and sub that value back into the other eqn for y. And this basic
idea scales up for more eqns and more vars.

Example

Ix+my+n=0 [1]

ax? + 2bxy + by?+ 2gx + 2fy + c=0 [2]

[1] equiv to: y = -(Ix + n)/m [3]

suby - [2] = am?x?- 2hmx(Ix+n) + b(Ix+n) + 2gm?x - 2fm(Ix+n) + cm? = 0

= (am?- 2hlm + blI*)x? + 2(gm?- hmn + bnl -fim)x + (bn?- 2fmn + cm?) = 0 [4]
~ sys [1],[2]=[3],[4] and [4] gives two values of x.

Sub x's into [3] for two values of y.
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More generally consider:

ax? + 2hxy + by®+ 2gx + 2fy + c=0 [1]
a'x? + 2h'xy + b'y?+ 2g'x + 2f'y + c'= 0 [2]

As quadratics in y, these are:

by? + 2(hx+f)y + (ax®+ 2gx +c) = 0
b'y? + 2(h'x+f)y + (a'x*+ 2g'x +c') = 0

which we can abbreviate as:

by? + px+q=0 (1]
bIXZ + plX + ql - O [21]

Mult. by b,b" and subtract, mult. by q' and then q and subtract:

(pb'-p'b)y + (b'q-bq’) =0 [3]
(b'q-bg")y* + (p'q-pq’)y = 0 (4]

If b'q - bq' # 0, these are equiv to [1'],[2']. In general, values of x that make bq' - b'q =0
are not solns of [3] and [4] and neither is y = 0. Therefore, the sys:

(pb'-p'b)y + (b'q-bq) =0 [31]
(b'a-bq)y+(p'q-pq) =0 [4]

is equiv to [1'],[2']. Mult. [3'] by (b'q - bq") and [4'] by (pb' - p'b) and subtract:
(b'q-bg")*- (pb' - p'b)(p'q - pq’) = 0 (5]

If b'q - bq' # 0, then [4"],[5] equiv to [3'],[4"]. Expanding these, we get equivalents to
the original system:

(b'(ax*+2gx+c) - b(a'x*+2g'x+c"))y

- 4(b'(hx+f) - b(h'x+f)) (h'x+f) (ax*+2gx+c) - (hx+f)(a'x?+2g'x+c)) =0 [6]
(b'(ax?+2gx+c) - b(a'x?+2g'x+c"))?

+2((h'x+f") (ax?+2gx+c) - (hx+f)(a'x*+2g'x+c')) = 0 [7]

[6] is a biquadratic giving 4 values of x
[7]1is 1° in y and gives one value of y for each x

[6] is only reducible to a quadratic in the following cases and these cases are where
the intersection of two conics are constructible with a ruler and compass.

1)Ifb'/b=f/f=c"/c, [6] becomes
x*(b'(ax+2g) - ba'x+2g"))?
- 4(b'h-bh")((h'x+f") (ax+2g) - (hx+f)(a'x+2g") + (h'c-hc"))) =0
where two roots are zero and two come from the quadratic.
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2) If a'’/a = b'/b = h'/h, the two highest terms disappear from [6]. Two of its roots
become infinite and the other two come from the quadratic.

3) If fgf.,g' = 0 then only even powers occur in [6] and the resultant becomes a
quadratic in x2.

4) In some cases, the resultant will be a reciprocal eqn.

Homogeneous systems of homogeneous eqns in X,y are often solved by letting y = vx.

Example
x*+ xy =12 xy-2y®=1
Lety =vx
x}(1+v)=12 x*(v-2v¥) =1

W X1 +v)-12x%(v-2v3) =0
o X2(24vE-11v+ 1) =0

Because x=0 not soln of original sys, original sys equiv to
x?(1+v) =12 24v:-11v+1=0

From quadraticinv,v=1/3,1/8

Fromv = 1/3,x = +3, from 1/8, x = +4V(2/3)

Solns: (3,1) (-3,-1) (4V(2/3),1/V6) (-4V(2/3),-1/V6)

Symmetrical systems, like sym. eqns, are unchanged by the exchange of any two vars.
These are sym. sys:

Sys1l: x+y=a x*+y?=b
Sys2: x*+y=a y+x=a
Sys3: x-y+z=a YZ+ZX+Xy=C X2+ y*+7z°=b

The solns of such systems must also be symmetrical. If there are an even number of
solns, say 4, and two are X = a5, a; y = b4, by, then the other two must be x = b4, b, and
y = a;, ap. If the number of solns is odd, the values of x,y must be equal, else there
would be another sym. soln.

Example
System: [1]

A*+yY) +Bxy +C(x+y) +D=1
A'(x*+y?) + B'xy + C'(x+y) + D' = 1
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1st method

Lety = vx, eliminate x as above to get a resultant in v.
((D'A)+ (D'B)v + (D'A)v?)? = (D'C)(L+V)?((C'A) + (C'B)v + (C'A)v? (2]

where D'A = D'A-DA', D'B = D'B-DB’, and so on. [2] is reciprocal and solvable by
quadratics. The system comes down to (in this D'A notation):

((D'A) + (D'B)v + (D'A)vH)x + (D'c)(1 +v) =0 [3]
and is solvable from there.

2d method

sys [1] is equiv to

A(x+y)?+ (B-2A)xy + C(x+y) + D=0
A'(x+y)%+ (B'-2A")xy + C'(x+y) +D'= 0

or

Au?+ (B-2A)v+Cu+D=0 sys[4]
A'u*+ (B-2A')v+Cu+D'=0

Eliminate u? then v for equiv sys:

(A'B)v+ (A'Cu+(A'D)=0 sys[5]
(A'B)u®+ ((C'B) - 2(C'A)u + ((D'B) -2(D'A)) =0

where (A'B) etc. as above. Sys[5] has two solns, say u = a, a" v=b,b". Then original
system soln:

x = (axV(a% 4b)/2, (a'+V(a'?- 4b")/2
y = (aFV(a’ 4b)/2, (a'FV(a'% 4b")/2

where both solns can be treated as:
2(x%+y?) - 3xy + 2(x+y) -39=0
3(x%+y?) - 4xy + (x+y) -40 =0
General Theory of Integral Functions
We can view any ifn of form [f] as a product of its first coeff ¢, and its factors.
f=co(x-a)(x-az)(x-an)

where ai are its n roots. Comparing this to the form and algebrating, we find:
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-c1 = ynroots taken one at a time
¢z =Y, product of n roots taken two at a time

cn = product n roots
For if a,B roots of ax*+ bx + ¢ = 0 then a+p = -b/a and af = c/a and if a,B,y roots of
ax®+ bx*+ cx + d = 0 then a+B+y = -b/a, By+ya+aB = c/a and afy = -d/a. It follows that
considering these coeff sums as si [1-r] of the 1 to r powers of roots o, of the
quadratic

X3+ pix+p2=0 (1]

that we can express si as integral fns of p; and p,

S1=a+B=-p; [2]
sz = a?+B2 = (a+PB)?- 2aB = p12- 2p2 [3]

To get s3, we know
o’+ pia+pz =0 BZ+piB+p2=0 [4]
Mult. 1st by , 2d by B and add:

S3+P1Sz2 +P2s1=0 [5]
S3= -p1(p1? - 2p2) + P2p1 = -p1°+ 3pap2 [6]

Mult [4] by a?, B? respectively:
S4= P18z + P2S2 = P1*- 4p1°p2 + 2p2°

and so on. It follows that we can express any sym. ifn of the roots of quadratic [1] as
an ifn of p; and p,. And as a, 8 are any quantities whatever, then:

Thm. 3.20. Vsym. fn of two vars can be expressed as a rational ifn of the two
elementary sym. fns: p;= -(a+f) and p,= af.

Note: 1) If coeff of sym. fn € N then coeff of equiv fn in ps, p, € N. 2) The sum of the
suffixes (i.e. 1 for p,) of the p's are equal to the degree of the sym. fn in o,3. Asin [6]:

-p13+3pip2 = 1+1+1=3=1+2

and this sum is the weight of the sym. fn.
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Examples

1) Calculate a*+ * in terms of p4, p2
By note #2, a*+ B* = Ap,*+ Bp,?p; + C p,? as homog. fn 4°. So A,B,C tbd.
Let =0 = p;=-a pz=0 ~ a*=Aa* ~ A=1
~ o'+ B* = (a+B)* + B(a+B)?(aB) + Ca®p?
Term o®B noton LHS =~ B=-4
Leta=-B=1=>p;=0 p,=-1 ~ C=2
o+ B = pot- 4pap; + 222
OR from sS4+ p1S3+ P2S2 =0
S4 = -pa(-p1° + 3p1p2) - P2(p1*- 2p2)
= P14 - 4p.°p; + 2p,°

2) Calculate a® + B° + o*B? + a®Bs in terms of p1,pz
As above = Ap;®+ Bp®p,+ Cp1p2”
LetB=0=>A=-1
For term a*B we would have B=5,leta=p=1=C=-6
“ = -p1°+ 5p1°pa- 6p1p2”

Because any alternating ifn of o, vanishes if a = 3, it can be expressed as (a-f) times
some sym. fn of &, or as product of V/(p;2- 4p,) and an ifn in py,pz.

Example
Express o®B - ap® in terms of py,ps.
= ap(a* - B4
= (o - Bap(a + B)(a? + B?)
= V(p1?- 4p2)(p1p2(p1*- 2p2))

Further, any sym. ifrac is expressible in terms of p4,p»:

o3 +2a%B + 2aB% + B3 = (a+B)® - aB(a+B) = -p:i>+ pips = pi*-p,
B + af? ap(o+B) -P2P1 P2

Newton extended this idea to sym. fns of any number of vars.

Thm. 3.21. Newton's Fundamental Theorem of Symmetric Functions
The sums of the integral powers of the roots of any ifn of form [f] with coeffs pi can be
expressed as ifns of pi with coeff € Z.

Here the pi are our ci and using the same si as above, he derived the following two
tables for calculating si in terms of pi.

Table 1

S1+p1=0

S2+ P1S1+2p2=0

S3+ P1Sa+ P2S1+ 3p2 =0

Sn-1+ P1Sn-2+ P2Sn-3+ -+ + (N-1)pn-1=0
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Table 2

Sn+ Pi1Sn-1+ -+ +Npn=0
Sn+l + P1Sn+ -+ + S1pn=0
Sn+2 + P1Sn+1 + - + S4Pn = 0

Therefore, in expressions of sr, the sum of the suffixes of pi will be r. So to find all
possible terms in sr, we find all products of powers of pi [1-n] where the sum of
suffixes is r.

Example

Find the sum of the cubes of the roots of x>- 2x?+ 3x+ 1 =0
$1-2=0 s5-25;+2:3=0 s3-25,+3s;+3:1=0
" §1=2 S;=-2 s3=-13

We can take this one step further:

Thm. 3.22. Vsym. fn f in form [f] of n vars xi [1-n]. Using our sigma notation, let }x,,
Y X1Xz, - 2X1X2''Xn be the elementary symmetric fns of . Then f is expressible as an
ifn of these elementary fns and therefore, any rational sym. fn of these vars
expressible as a rational fn of these n elementary sym. fns.

This idea will persist throughout the text. Let's do a couple of examples to see where
this leads:

Examples

1) a,B,y roots of x*- p;x*+ pyx - p3 = 0
Express B3y + By® + y3a + yo® + o®B + aff® in terms of pi
pi=Xa p2=XaB ps=Yafy
No term higher than 3° occurs in Y o®B
~ Xa®B = Aps°pz + Bpips + Cp,? [1]
Lety=0=p;=a+B p2=ap p;=0
[1]= B + aB®=A(a+B)?af + CaB ~ A=1 B=-2
=~ Yo®B = p1%p2 + Bpaps - 2p2°
Leta,B,y=1-p1=3 p2=3 ps=1
~6=27+3B-18 ~ B=-1
~ Y0®B = p1?p2- p1ps - 2p2°
=Y’ = () YaB - afyYa-2(Tap)?

2) Eliminate x,y,z from system:
x+y+z=0 B+y3+zd=a
x*+y*+z5=b x'+y’+z’=c

Using our sums of powers: s3 = 3p; S5 =-5p,p3 S7= 7pzzp3
So we need to eliminate p,, ps from: 3ps=a -5paps=b 7ppz=c
This can be done at once. The result is 21b? - 25ac =0
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Recall our analysis of quadratic roots in DME where, in form ax?*+ bx + ¢ = 0, one or
more of the coeffs vanished. We can tabulate these results for quadratics.

afER b2-4ac> 0 Roots opp sign c/a<0
a,B € C-R b%-4ac<0 One root > 0 c=0
a=B b%-4ac=0 Two roots = 0 bc=0
a=-f b=0 One root co a=
af>0 c/a>0 b/a<0 Two roots oo ab=0
af<0 c/ab/a>0

We can generalize this for fns of form [f]. If the last r coeffs vanish then eqn has r
infinite roots. Further, if co= 0, the sum of the roots equals zero. The condition that
two roots, where roots are ai [1-n], are equal is determined by expressing [](a;-a;)*
(our sigma notation) in terms of pi ([f]'s ci) and equate this to zero.

Example

X3+ pyx?+ pox +p3=0 roots a,B,y

T1(B-v)? = (B-Y)*(v-0)?(a-B)? = -4p1°p3+pa°p2*+ 18pap2ps - 4p2” - 27ps”
So the condition for equal roots is RHS = 0.

If all roots are real, RHS > 0. But if two are imaginary, RHS < 0.

As you can imagine, getting the RHS from the LHS was a grind.

Thm. 3.23 Vquadratic ifn f(x) is completely determined when its roots are given and
also the value of f for any x not a root.
Proof
Letrootsofybe a,f ~ y=A(x-a)(x-B)
LetV=f(A) ~ V=(A-a)(A-B) which determines A
~y=V-(x-a)(x-B))/(A-)(A-B)) =
Cor. 1. Vifn uniquely determined by n+1 values V of f(A;) [1-(n+1)]
Proof
f=ax*+bx +c, Ai[1-3]
a2+ b+ c=V; ad2+bA+c=V, ads?+bAs+c=V;
This linear system uniquely determines a, b, c.
Sy = Vi(x-22)(X-A3) + V(X - A1) (X - A3) + V(X - A4)(X - An)
M- 22)0u-2s) Qo 2)0a-ds) (e A)(Ae- o)
which is all general in reasoning. B

And so, for n+1 values, we have Lagrange's Interpolation Formula
y=EVa((x-2A2)(x - As) (% - Ane1)) /(A1 - A2) (A1 - As)-+ (As - Ane))

I should point out that this older sigma notation can be distinguished from modern
summation notation by its not having indices. It is sigma of )V -etc. where the
modern would be Y Vi-etc. [1-(n+1)]. As soon as this dawns on you, the two are no
longer confusing.
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Examples

1) Required eqn of min®, coeff € Q with root v2+v/3.
We know other roots must be V2-v3, -vV2+v/3, -V2-V3
M(x-vV2-vV3)=x*-10x*+1=0

2) Required quadratic f(x): f or 2,3,4 = 4,4,6.
SAx-2)(x-3) +4(x-1)(x-3) +6(x-1)(x-2)
(1-2)(1-3) (2-1)(2-3) (B-1)(3-2)
=x*-3x+6

The condition that two quadratics have a common root is the same as their having a
common factor which is to say that their GCM is not equal to a constant. So if two ifns
have r roots in common, their GCM is r° and its coeffs are rational fns of the coeffs of
the two original ifns. And ifr is odd, at least one root is real.

Consider these forms of y = ax*+ bx + ¢ roots a, a>0 [1]

1 y=a((x-)?-m) a=1+Vm B=1-Vm
2. y=a(x-1)? a=B=1
3.y=a((x-)?+m) a=1+ivm B=1-iVm

Here, ,meR and m>0. In all cases, as x—00, (x - [)°>00 - y infinite when x infinite and y
has the sign of a. Excluding the factor a, as x—0, y=0 when x>1; y is min when x=1, and
y increases as x<l. Therefore, y has max or min when x =1 as a is neg or pos. In #1,
roots real and unequal then y same or different sign as a as x does or does not lie
between the roots. In the other two, y always has the same sign as a. If from [1] we
derive

ax’+bx + (c-y)=0 [2]

we have equal roots when b*-4a(c-y) = 0 or
y = -(b*- 4ac)/4a - x=-b/2a [3]

If y<0 in [3], y is min below X-axis. If y=0, this min is on the X-axis. And if y>0, min is
above the axis. If a<0, these mins are maxs. If we view y = 2x?- 12x + 13 in this way

y=2(x*-6x+9)-5
=2((x-3)%-5/2)
=2(x-(3 -\/(5/2))(X- 3 +\/(5/2))

Therefore it is type #1 and y is min when x = 3 .~ min aty = -5. All of this gives us a
kind of pre-Calculus algebraic approach to problems of maxima and minima. So more
generally, we can express the condition for any y = f(x) that the roots of f{(x) - y = 0 are
equal being that we have a max or min, as by increasing or decreasing y from that
point the roots are lost.
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Examples

1) y=x3-9x%+24x + 3 & x> 9x%+ 24x + (3-y) =0 roots a; [1-3]

Let D denote [](a;- az) then roots real, two equal, two imaginary as D >=< 0.
Using our D = -4p,°p; + -+ above, p;=-9, pz= 24, ps= (3-y) - D = -27(y-19)(y-23)
~y=19,23 are max or min. By testing, 19 min and 23 max.

At max or min, two roots are equal: a,o,y. So we can calculate x as a.

20+¢y=9 o?+2ay=24 a*-6a+8=0 ~ a=2,4 -~ (4,19) minand (2,23) max

2) Analyze (x*- 7x + 6)/(x* - 8x + 15)

First we derive a quadratic for x in terms of y:

(1-y)x*- (7-8y)x+(6-15y) =0 (1]

& D=(7-8y)*-4(1-y)(6-15y) =4(y - (7/2 - V6))-(y - (7/2 +V6)
< max/minofy=7/2 +V6

x=%(7-8y)/(1-y) ~ x=9+2V6

(Here, x came from your high-school quadratic equation)

Further y is discontinuous at x = 3,5, and whenx = o0,y =1

and y also equals 1 atx = 9.

You should graph this last eqn. We know from our elementary Calculus in DME that
these max/min are the roots of f '(x). But here, this method is probably quicker than
taking the derivative.
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4. Series

Progressions

We begin by extending our understanding of arithmetic and geometric progressions
and their related simple series and sums.

Def. The sum of n terms formed by some law f(n) neN is a series and takes form:
f(1) + f(2) + - +f(r) + - + f(n) [1]
The rth term here is the general term.
Example
f(n) = n?+ 2n
(12+2:1) + (2%+ 2:2) + (3%+ 2:3) + -+ + (n%+ 2n)
=3+8+15+ -+ (n?+2n)

If we consider [1] as some ¢(n) then ¢ has the property that the number of its terms
depends upon the value of its var. We've had arithmetic series where a is the first
term and b is the common difference:

a a+b a+2b - a+nb
and here the sum was ), = n/2(2a- (n-1)b) or iflis the last term, )} = n-(a+1)/2.
Examples

1)Sum5+3+1+-1+-to100 terms.
100/2(2-5 + (100 - 2)--2) = 50(10 - 198) =-9400

2) Sum first n odd natural numbers
Y=1+3+5+-+(2n-1)=n/(1+(2n-1))/2 =n?

3)Sum1-2+3-4+5+--+(2m- 1)+ 2m to n terms
neven)=2m.1-2+3-4+--+(2m-1)+2m
=1+3+5+--+2m-1
-2-4-6----2m where each line has m terms
Line 1 =m? by #2 Line 2 =-m(2 + 2m)/2 = -m(m+1)
& Y=m?-m(2+2m)/2=-m=-n/2
nodd)=2m-1-%=1-2+3--+2m-1
or lastresult + 2m = m = (n+1)/2

Let's develop a general method as the above requires each term to be of same degree.
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Let the nth term of a series be:

-1 -2
Poll’ +pyn’ +pan” 4 -+ pr

where pi is independent of n. Let's denote the sums of the first to rth powers of the
firstn € N as n*' to n™:

n'=1+2+3+4+--+n
n2=12+22+32+4% 4 ... 412

Let ), denote the sum of n terms of a series where [1] is the nth term:

-1 -2
Z - ponsr + plnsr + pznsr + -+ npn

where, for example, 1stterm = po1" + pg2" + -+ + pon" etc. So we need to calculate n®:
0 In(x+1)%-x*=2x+1weletx=n,n-1, ...

(n+1)?%-n*> =2n+1
(0 -(m-1)? =20n-1)+1

32-22 =22+1
22-12 =21+1
adding:

(n+1)%>-1=2n"+n
2n'=(n+1)%- (n+1) = (n+1)n
n*' = ((n+1)n)/2
~ Sum 1st powers of first n€EN is a 2° ifn f(n)

n* Sym. (x + 1) - x® = 3x® + 3x + 1 and again x = n, n-1, ... and we add:
(n+1)%-1 =3n”+3n" +n
3n%=(n+1)°-3/2n(n+1) - (n+ 1) = (n1+1)/2-(2n%+n)
n=1/6-n(n+1)(2n + 1)

~ Sum squares of first n€EN is a 3° ifn f(n)

n®3 Sym. using (x + 1)* - x* = 4x3+ 6x%+ 4x + 1

n* = ((n(n+1))/2)?

= Sum cubes of first n€N is 4° ifn f(n) and the square of the sum of their first powers.
= In general, n* is an ifn f(n) of (r+1)° of form:
n™ = qon™"+ qqn’ + qen" M+ o+ + qra
Further n* divby n(n+1)
0" =n(n+1)(n"/(r+1) + i+ pn" + - 4 pra)
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We can now sum any series where the nth term is an ifn f(n). Because it is an ifn f(n)
of (r+1)° it must have form:

An"' +Bn" + - +K

and by giving values to n we determine A, B, ..., K. If Si [1-(r+2)] are the sums of the
1, 2, ..., (r+2) terms of the series, then by Lagrange above, the sum is

[1-(r+2)]

Examples
1) Sum a + (a+b) + (a+2b) + - + (a + (n-1)b)

a-b+nb
a-b+(n-1)b

a-b+2b

a-b+b

n(a-b)+ n*'b = (a-b)n + b-(n(n+1)/2 =n/2:(2a + (n-1)b)
But we knew that.

2) ¥ =12+3%+5%+ - nterms. The nthterm = (2n-1)*=

4n%-4n+1
4(n-1)*-4(n-1) + 1

4224241
4124141
4n* - 40" +n

~((2n-1)n(2n+1))/3

3) Y, =234 +3:4-5+ 456 + - + (n+1)(n+2)(n+3)
~ nth term = n3+ 6n%+ 11n + 6
~Y=n®+6n%+11n" + 6n
& =%(n*+ 100> + 35n% + 50n)

We can find the general soln for a geometric series as well. The nth term is
(pon*+ pan*'+ pon?+ - + po)r”

where pi is independent of n and seN. Our DME G.P. is the simplest case of this where
the nth term is

-1 -1 .
pst” or psrer or ar’:a=psris constant
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Here the ratio of each term to its antecedent is r = constant.
Y =a+ar+ari+ - +ar’’ [1]
Mult. both sides by (1-r)

(1-1)Y = a+ar +ar’+ - +ar™’

2 n-1 n
-ar- ar-- ----ar -ar
n
=a-ar

~Y=(a-ar)/(1-1) oriflislasttermandar’=rl, Y =(a-rl)/(1-1)
Examples

1) ¥=3/2+3/4+3/8+ - for 10 terms
a=3/2 r=1/2
Y=3/2-(1-(1/2)")/(1-1/2) = 3(1-1/2")

2) ¥=1-2+4-8+--fornterms
a=1 r=-2
Y=1-(1-(-2)"/(1-(-2) = 1-(-1)"2"/3
~nevenY =1/3(1-2") noddY}=1/3(1+2"

3) Y (x +y) + (xP+xy + y?) + (x*+ x%y + xy?+ y®) + - for n terms
=2y 3y e xtyt e g™
X-y X-y X-y X-y

=1/(xy) - (P4 X4 X7 - 1/ (xy) - (Y24 yP+ 4y
=xXP/(xy) - (L+x+ -+ xX") - y?/(xy) - (L+y +-+y"™)
14+x+-+x"=(1-x"/(1-%)
T+y+-+y"™=(1-y")/(1-y)
Y=x*(1-x" - yi(1-y")

%) &Zy)(-y)

Now instead of a constant, let a be an ifn, f(n) 1°, general term:
(a +bn)r': a,b constants [1]
Note that this form would arise if each term of an A.P. series were mult. by its
corresponding term in a G.P. series. So this is an arithmeticogeometric series, if
anyone asks.
Y =(a+b-1)r'+ (a+b-2)r*+ -+ (a+bn)r’

Mult. both sides by (1 -r)

(1-0Y=(a+br*+(a+b2)r*+ -+ (a+bn)r"

1
- (@a+b-2)r*- - - (a+b-(n-1))r" - (a+ b-n)r™
2
=a+br+br?+-+br'- (a+bn)r"
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We mult. both sides by (1 - r) again. Verify that this yields:

(1-1)2% = (a+b) - (a+b)r + br?- (a + (n+1)b)r""'+ (a + bn)r""
~ Y =RHS/(1-1)?

So what's the deal with multiplying by (1 - r)?
Let fs(n) be an ifn in n of s°. Then fs(n) - fs(n-1) is (s - 1)° as you can work out by using

the series terms above. Then fs(n-1) - fs(n-2) is (s - 2)° and so on. So we have the
series:

Y = fs(1)r + £5(2)r? + - + f5(n)r" [1]

(1-D)Y = f(Dr + £5(2)r? + - + fs(n)r"
- f(Dr2 - - - fo(n-1)r" - fy(n)r™?
= f(1)r + fo1(2)r2+ -+ + f1(n-1)r"+ fo(n)r™™

If we exclude first and last terms, we have a simple series of lower degree. If we mult.
[1] by (1 - r)S+1 this simple series would vanish, leaving only a fixed number of terms
yielding a formula for }..

Example

¥ =1%r + 22r%+ 3%r%+ - + n?r"

r" is multiplied by a term of 2° . mult. both sides by (1 - r)° to get

3 = r+r2 (n+DA™ (202+ 2n + D™ p?r™?
(1-r?

If the last term had been -n?r", you would mult. both sides by (1 + r)®.

Recall from DME that if x € (0,1) then 1/(1-x) = 1 + X + X?+ X3+ -,
InGP,Y =a+ar+ar’+ - +ar”’
r=1 Y =a+a+a+--+a=na .. n-w Y-
r>1 Y=a(r’-1) = ar" - _a. . Again,noo Y-

r-1 r-1 r-1
re(0,1) ¥ =ar"/(r-1)-a/(r-1) - n—oo LHT-0 RHT—a/(1-r)
r=-1 Y=a-a+a-- ~n-onY oscillates between a and 0.

Examples

DN =1/2+1/22+1/2% + -
Y=1/2-(1-1/2")/(1-1/2) = 1-1/2" = noo0 ¥—>1

2) Evaluate 0.34343434...
¥ =34/100 + 34/100% + 34/100* + --- =34/100 - 1/(1 - 1/100) = 34/99
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For AP, given ), =n/2 - (2a + (n - 1)b), if we have three of }, a, b, n, we can solve for
the fourth. When n is unknown, the eqn is a quadratic.

Examples

1)¥%=36 a=15 b=-3
~36=n/2- (30 - (n-1)3)
~n?11n+24=0 soln: 3,8

Verify that the sum of the first 8 terms equals the sum of the first 3 terms in order to
understand the soln.

2)Y =14 a=3 b=2
~n?+2n=14 ~n=-1+V13 =2.87,-4.87

The negative root is outside the problem space. The fractional value of 2.87 shows
that the series does not sum to 14. But it will sum to its values nearest 14 by taking
the nearest values in N to 2.87: 2,3.

An A.P. is determined by its first term and its common difference which makes an A.P.
a twofold manifoldness: determined by two independent data.
So we can write 3, 4, 5, ... terms of an A.P. in a general way:

a-B a a+B
a-3B a-B a+f o+3p
2B “p B 2B

For an odd number of terms, common difference is §3, for even terms 2.
Example

Ifa,b,cin A.P. then a%(b+c) + b?(c+a) + c?*(a+b)=2/a- (a+b +c)? [1]
Leta=oa-B b=a c=a+B then [1] becomes

(a-B)?(2a+B) +a?2a + (a+B)?(2a-B) = 2/9 - (3a®) = 6a°
LHS = 2a((a-B)?+ (a+B)?) + B((a-B)? - (a+B)?) + 20

= 2a(20%+ 2B%) + B(-4af) + 23

=6a®

Ifab,cin AP, thenb-a=c-b b= (ct+a)/2. Hereb is the arithmetic mean of a,c.

Va,c VAi [1-n]: a, Ay, Ay, ..., An, c in A.P. then Aj are n arithmetic means between a,c. Ai
are calculated by A; = a+b, A, =a+2b, .., c=a+ (n+1)b ~ b=(c-a)/(n+1)
~Aij=a+(c-a)/(n-1) A;=a+2(c-a)/(n-1) andso on.

The arithmetic mean of n quantities ai [1-n] is (Yai)/n.

Digital PDF copies released under Creative Commons 4.0-SA-BY-NC
Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



100

We have the sum of n terms in G.P.: 3, = a(r" -1)/(r - 1). So if three if ¥,a,r,n are given,
the fourth is determined. If r unknown, we have an ifn of n° and soln will be
approximate for degree > 4. If n unknown, we have an exponential eqn r'= s, where r,s
known. This is solved by logarithms. G.P. is also a twofold manifoldness.

Example
Ifa,b,c,d in G.P. then
4(a%+ b%+ c?+ d?) - (a+ b + c + d)? = (a-b)?+ (c-d)?+ 2(a-d)?
Letb=ra c=r%a d=r*a -~
42%(1 + r’+ r*+ 1) - a?(1 + r + r’+ r¥) = a%(1-r)% + a’r*(1-r)? + 2a%(1-r¥)?
4(1 + 2+ r*+ 1) - (1 + 2r + 3r%+ 413+ 3r*+ 2r°+ r9)
=1-2r+r3+r*-2r° + 1%+ 2 - 413 + 2r°
When a,b,c in G.P,, b is the geometric mean of a,c. Here a:b::b:c - b2 = ac ~ b = +Vac.

Again, between a and ¢ we can insert n geometric means Gi [1-n] where r is the

n+1

common ratio - Gi=ar andc=ar"" « r= (C/a)l/(“”]. So the geometric mean of n
positive quantities is the positive value of the nth root of their product.

Ifa)b,cin A.P, then 1/a,1/b,1/c are in Harmonic Progression or H.P.
Thm. 4.1. If a,b,cin H.P. then a/c = (a-b)/(b-c)

Proof

1/a1/b,1/cinAP. ~1/b-1/a=1/c-1/b = (a-b)/ab = (b-c)/bc

~ (a-b)/(b-c)=ab/bc=a/c m

H.P. is also a twofold manifoldness and the general form can be taken from that of A.P.
above, as in

1/(a-B) 1/a 1/(a+p)
and so on. Ifa,b,cin H.P,, then b is the harmonic mean of a,c. From
1/c-1/b=1/b-1/a = 2/b=1/a+1/c =~ b=2ac/(a+c)

And again, n harmonic means Hi [1-n] can be inserted between a and c where the
common difference

d=(1/c-1/a)/(n+1) = (a-c)/((n+1)ac)

1/Hi=1/a+ (a-c)/(i- (n+1)ac)
H;= ((n+1ac)/(a+nc) H,=((n+1)ac)/(2a+(n-1)c) and so on.
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The geometric mean between two positive reals a,c is the geometric mean between
the arithmetic and harmonic means of a,c. And the arithmetic, geometric, and
harmonic means are in descending order of magnitude:

A=(a+c)/2 G=+/ac H=2ac/(a+c)
~ AH = (a+c)/2 - 2ac/(a+c) =ac=G

And you can prove this descending order by comparing A-G and G-H. You can also
prove that the sum of an harmonic series of n terms cannot be expressed by any
rational algebraic function of n. Therefore an harmonic series cannot be summed.

Euclid's Means

Given AB<AC find the three means.
Method

ACB collinear. BCx/2 @ O

(©0,0B AP,AP'tanto OO @ P,P’
PP'xAC@N

Then 1) AO is arithmetic mean, 2) AP is
geometric mean, and 3) AN is harmonic

mean. B
Proof s
1) AC-A0=0C=B0=A0-AB
~2A0=AB +AC - AO = (AB + AC)/2 = AO arithmetic mean
2) AP? = AB+AC (Euclid 3.36) - AB: AP :: AP : AC = AP geometric mean
3) Note: In pure geometry, the harmonic mean is defined by the proportion:
1stline : 2d line :: excess of 1st over harmonic mean : excess of harmonic mean over 2d
£APB = £PCB .. AAPB ~ AACP
~ AB:BP: AP:PC
~ AB? : BP? :: AP?: AP?
~ AB?: ABeAC :: BNeBC : CNeCB (Euclid 3.36, 6.8)
~AB:AC::BN:NC
~ AC:AB::NC:BN: AC-AN: AN-AB = AN harmonic mean B

If you are curious, the pure geometric definition of harmonic mean is equivalent to our
algebraic one.

Inequalities

Inequalities are important in understanding limits and infinite sums and products.
There are many expressions we cannot evaluate in these domains of thought. But if
we can trap them between two expressions we can evaluate, and the outside
expressions converge to the same value, our mystery expression must do the same.
We are dealing only with real quantities to avoid the issue of complex orderings. On
the real number line (-c0,+00), a < b means a is to the left of b. This is the geometric
sense of our ordering of the reals. In the following theorems we have LHS > RHS and
all can be symmetrically adjusted to reveal the truth of RHS < LHS. But you knew that.
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Thm. 4.2. P>Q AQ>R = P>S
Proof
P-Q+Q-R=R-S
P-QQ-R>0 ~ P-R>0-P>R M

Thm.43. P>R=P+Q>Q+*R
Cor.1.P+Q>R+S=>(P+Q-R>S) A ((R-S>-P-Q) A(-P-Q<-R-9)
Cor. 2. Vinequality reduces to formP>0VP <0

Thm. 4.4. P;>Qq, P2>Qz, ..., Pi>Qu = Y Pi> Y Qi
Note: You can prove this with Thm. 4.2. but P;>Q; A P,>Q; != P;- P, > Q1> Q.

Thm.4.5. P>Q = (PR>QR)A (P/R>Q/R)ifR>0.IfR<0= (PR<QR) A (P/R<Q/R)
Cor.1.(P>QR)A(R>S)= (P>QS)ifQ>0
Cor. 2. Any fractional inequality can be integralized.

Thm. 4.6. P,>Q,, P2>Qy, ..., Pa>Qu A VP3,Qi > 0 = [[Pi > [JQi

Cor.1. vneN, (P>Q)= (P">Q")

Cor. 2. VneN, (P,Q > 0) A (P >Q) = (P" > Q"/") if we take the real positive nth root.
Cor. 3. vreR, (P,Q>0)A(P>Q) = (P">Q™)

Cor. 4. Any inequality can be rationalized if process is governed by the above
restrictions on signs.

Examples

1) Whenis F = (3x-4)/(x - 2) >< 1?

(x (x-2)%) (3x-4)(x-2) ><(x-2)?
((B3x-4)-(x-2))(x-2)><0
2(x-1)(x-2)><0

F>1lifx<lorx>2

F<1lifl<x<2

2) When is x® + 25x >< 8x%*+ 26
x3-8x% + 25x- 26 >< 0
(x-2)(x*- 6x+13)><0
(x-2)((x-3)*+4)><0

vx, RHT > 0 . x3+ 25x >< 8x% + 26 as x >< 2

3) Show Vx,y,z € R, not all equal, then ¥'x* >< ¥'3xyz as yx >< 0
Yx* - ¥3xyz = Tx(Tx* - Yxy)
= %Ex3(x - y?)
Thm is true as Y(x - y*) > 0 B I included this last one for its art of sigma-notation.
The following theorems are all derived from the earlier ones on inequality.

Thm. 4.7. If bi [1-n] > 0 the fraction Y ai/bi [1-n] is not less than the least nor greater
than the greatest of the fractions ai/bi.

Proof

Let f, f' be least and greatest of these fractions. Then no ai/bi < f

Vi, bi>0 « ai>fbi~ Yai=Yfbi~ Yai/Ybi2f Sym.forf. m
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Note in these, that because i is in both indices, they are the same. You would use i,j to
show they differ. Proofs of the following are similar to that last one.

Thm. 4.8. aibi as before, li [1-n] > 0 then Yliai/Ylibi is not less than the least or greater
than the greatest of the ai/bi.

Thm. 4.9. abili > 0 the (Tlia™/Tlib™)/™ and ([Jai/[b:)"/" are not less than least etc.
Example

Show % < ((1-3-5-+(2n-1))/(2-4--2n) )" < 1
By Thm. 4.9. % < middle term < (2n-1)/2n
and (2n-1)/2n=1-1/2n<1

Thm. 4.10. x,p,q>0p,qeN= (x-1)/p><(x- 1)/qasp><q

Thm. 4.11. x>0, x#1 = mx™'(x- 1) >x™- 1> m(x- 1)
unless m € (0,1)  mx™'(x- 1) <x™- 1 <m(x - 1)

Cor. 1. Ifx,y > 0 x#y we can replace x with x/y, multiply by y™ and get
mx™"(x - y) >x" - y" > my™ (x - y)

in the first case and flip > to < in the second.

The proofs of 4.10-11 are longish and these theorems are important. But you need
them more as tools than you need their explanations. However, if you are interested
in inequalities, these longer proofs are the best source of technique for handling
inequalities. You get to see people like De Morgan, Abel, Gauss, Euler, and Cauchy at
work in many of the proofs using inequalities here and with limits and series. The
masters are the best teachers if your road is their road.

Having mentioned Abel, a brief word on the progressive white-washing of
mathematicians's morals. Long story short, Gauss is morally responsible for Abel's
death. And the French Academy is responsible for Galois's death. And the textbooks
all gloss this over. The gloss gets shinier over time. But the French Academy learned,
to some extent, its lesson. When Hermites came before it, they understood him no
better than they had Galois. But someone there stood up for him, I forget who, in part
by saying he wouldn't be responsible for another Galois. Being brilliant does not
expiate all sin. And Gauss never learned his lesson. He was a very poor human being.
As mathematics is an anthropological -- that is to say, human -- activity, being a good
mathematician requires expressing a good humanity. Or you're just a prick, like Gauss.

Thm. 4.12. Given n positive quantities, their arithmetic mean is greater than or equal
to their geometric mean.

Proof

Consider the geom. mean of n quantities (abcd---k)". If a-k not all equal replace the
least and greatest, say ak, with (a+k)/2. Then as ((a+k)/2)? > ak, the geom. mean is
increased but the arith. mean is unchanged. Until all are equal, wash, rinse, repeat. So
the geom. mean constantly approaches and at last equals the arith. mean. B

1/n
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Cor. 1. If a-k are n pos. quantities and p-t are n quantities € Q =
pa+gb+ - +tk > (a’b%-k)YPITTY
p+q+-+ t

Example

Show 1-3-+(2n-1) <n"
(1+3+-+2n-1)> (1-3--(2n-1)"/"
~n%/n>RHS ~ n">1-3-(2n-1)

Thm. 4.13. a-k n pos. quantities, p-t n pos. quantities =
(pa” +qb™ + - +tk")/(p+q+-+t) 2< [(pa+gb+ - +tk)/(p+q+ -+ ]"

asm€oré¢ (0,1)
Cor. 1. If p-tall equal =

@"+b"+-+k™/n2< [(a+b+--+k)/n]"

asmeoré(0,1)
OR, this is the relation of arith. mean of mth powers of n quantities and their arith.
mean to the mth power.

Maxima and Minima

Let @(x,y,2), f(x,y,z) be any fns of x,y,z. For all values such that:
1)f=A
2) o(xyz) s f(xy.z)
values a,b,c which satisfy 1 and make 2 an equality make ¢(a,b,c) a max value.
Sym. the values of x,y,z that make ¢ = A and f = ¢, the a,b,c as above make f a min value.
This extends to any number of vars and we can state this generally:

Thm. 4.14 Reciprocity Theorem

If for all values x,y,z consistent with f(x,y,z) = A, @(x,y,z) have a max value ¢(a,b,c) =B
where B depends on A and if when A increases B also increases and vice versa, then
for all values of x,y,z such that ¢(x,y,z) = B, f will have a min value f(x,y,z) = A.

From Thm. 4.12. we deduce:

Prop. 4.1. Ifx,y,z,... be n pos. quantities subject to condition }x = k then their product
[Ix has a max value (k/n)" whenx=y == K"

Prop. 4.2. Ifx,y,z,... be n pos. quantities where [[x = k then }x has a min value when

X:y:..-:kl/"
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From Thm. 4.12.C1 we get

Prop. 4.3. If x,y,z,... are n pos. quantities where Ypx = k where p,q,r,... are n pos.
constants then [[x” has a max value (k/Zp)Ep whenx=y=--=k/Yp

Prop. 4.4. x..,p... as above: [[x” = k then ¥px is min (¥p)k"/Z’ whenx =y = --- = kK%

From these last two, we deduce:

Prop. 4.5. If A,j,...1,m,...p,q,... pos. constants and x,y,z... > 0 then if YAx' = k the []x" is
max when IAx/p = mpy?/q = -

Prop. 4.6. Sym. if [[x" = k the ¥Ax' is min when IAx'/p = mpy™/q = ---
Cor.1. Ifl=m=--=1,p=q=--=1we get the cases:

1) If ¥Ax = k then []x max when Ax = py = ---

2) If []x = k then }x min when Ax = py = -+

Example

A cube is a rectangular parallelepiped of max volume for given surface and min
surface for given volume. If we denote the three edges as x,y,z then surface is 2(yz +
zx + xy) and volume is xyz. If a,b,c = yz,zx,xy then surface is 2(a+b+c) and volume is
Vabc. So we want abc max when Ya given and Ya min when abc given. This by Prop.
4.1.isdonewhena=b=coryz=zx=xy - x=y=2z

From Thm. 4.13. we deduce:

Prop. 4.7. If m¢(0,1) and p,q,r,... pos. constants then for all x,y,z,... > 0: Ypx =k =
Ypx™ (m constant) has a min when x =y = ---. If m€(0,1) this becomes max.

Prop. 4.8. If m > 1, p,q,r,... pos. constants then Vx,y,z,...: Ypx" =k =
Y px max when x =y = --- and if m < 1 this becomes min.

Generalizing Prop. 4.7.:

Prop. 4.9. if m/n ¢ (0,1) p,qr,...AL,... pos constants then ¥x,y,z,... : ¥Ax" = k (n const.)
= Ypx" (m const.) has min if px"/Ax"= qy™/uy" = - and if m/n € (0,1) this becomes
max.

Cor.1. Ifn=1andA=p=--and ¥x = k= ¥px™ min or max when px™' = qy™" = -- as
meée (0,1)

More generally:

Prop. 4.10. If p,q,r,... fns of x,y,z,... which are real and pos. for Vx,y,z,... €ER: Ypx =k
= (Ipx™)(Zp)™ ' min or max whenx =y = - asm & € (0,1)
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Example

Ifx*+ y* + z° = 3 then (x*+ y*+ z°) (x*+ y*+ z*) has min for Vpos. x,y,z, whenx=y =z =1
Follows from Prop. 4.10 ifm=2,p =x% q=y3 r=z%

Let's look at Grillot's (you know Grillot, right?) use of these propositions. We'll call
those points on a fn where f' = 0 the turning points and look at them in this fn:

u = (ax + p)'(bx + q)"(cx + )" [1]

where I,m,n > 0. This fn is equivalent to

u = (Aax + Ap)' (ubx + pq)™ (vex + vr)" / ™" [2]
We let
Aa+mub +nvc=0 [3]
then
1(Aax + Ap) + m(pbx + puq) + n(vex + vr) =1Ap + mpq + nvr =k [4]

In all this A,p,v any value and k arbitrary constant.
By Prop. 4.3 [[(Aax + Ap) max when

Aax + Ap = pbx + uq = vex + vr = k/Y1 [5]
By [3] and [5] we determine x
la/(ax + p) + mb/(bx + q) + nc/(cx+r)=0

which quadratic gives x4,%, and [5] gives two values for A, v in terms of k: A4, A5, ...
Then if Al,um,v“ >0, then u at max turning point and if they are < 0 its a min.

Example
u=(x+3)*x-3)

u=(Ax + 3)%(ux - 30) / A%
& 2(Ax + 3A) (px - 3p)

provided 2A +p=0 [1]

and 6A-3pu=k [2]
o (Ax + 32)?(px - 3p) is max if

Ax +3A=px-3pn [3]
s 2/(x+3)+1/(x-3)=0 (by[1])
wx=1

From [2],[3] A=k/12 p=-k/6 =~ A*u<0
sumn@x=1
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Note that there is a max above at x = -3 but it eludes this method. This approach can
be pursued, using Purkiss's Theorem, to determine the turning points of sym. fns of
any number of vars. But unless your interest is in sym. fns or lots and lots of vars,
these results are far more easily obtained through the Calculus.

Limits
Some basic remarks from what we know out of DME:

1) Let f(x) have the limit 1 as x—a. If a fn is continuous in the neighborhood of its limit,
we can subject the fn to any transformation which is admissible on the hypothesis that
the argument of x has any value in the neighbor of critical value a. The transformation
must take into account the behavior of f as a is approached from above or below.

2) If as x—a, f(x)—1 then f(a+h) = 1+d where d is a fn of a and h and as h—0, d—0.

3) Note that any ordinary value of a fn satisfies the definition of a limiting value, i.e. if
f(x) = 3x + 2 the limit as x—2 of fis 8. This trivial truth allows the simplification of
some proofs.

4) Consider the critical values of u”. If a>1 and we take log as loga, this is equivalent to

v log u

a . So u’ is determinate when v logau is determinate. The cases of indeterminacy

are:

1. v=0,logau=0orv=0 u=0=0"
2. v=0,logau=0orv=0u=0=0°

3. v=zom,logau=00orv=+cou=1=1"
All of these depend on a”* which is a%° which is a case of the indeterminacy of 0/0.

Recall that the limit of a sum of fns of x is the sum of their limits so long as that sum
does not take the form *co. The limit of a product of such fns is the product of their
limits so long as the product does not take the form 0-co. The limit of a quotient of
such fns is the quotient of their limits so long as that quotient is not in the form 0/0 or
oo /co0. Where values are not infinite, the above is based on the continuity of the sum,
product, or quotient.

Thm. 4.15. A fn F(u,v,w,...) of u,v,w,.., which is determinate and finite in value and

continuous when the limits of f(x), @X, xx, ... = Uo, Vo, Wy, ... then the limit of F(f(x), ¢x,
X%, ...) = F(uo, vo, Wy, ...)
Proof

You can prove this by remark #2 above and our definition of a continuous fn.
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Example

The limit as x—1 of ((x*- 1)/(x - 1))? is the square of the limit as x—>1 of (x*- 1)/(x - 1)
or 4. And the limit as x—1 of the log of this ifrac is the log of the limit of this fn as x—>1
orlog 2.

Let's look at the forms of 0/0 and c/0 with ifracs. If we put num and denom in
ascending order and factor out as much x as possible, then when x = 0 the limit as x—0
is finite and not equal to zero if num and denom same degree. The limit is zero if
denom is lowest degree and oo if num is lowest degree.

Examples

1) 2x*+3x3+x* = 2+3x+x* limitx—>0= 2
3x%+ x* +x° 3+x?+x? 3

You can see that "same degree" means "after x—0".

2) 2x3+3x*+ x° = 2x+3x*+x> limitx—»0 =0 =0
3x3+ x*+ x° 3+x2+x° 3

3) 2x*+x% = 2+x% limitx—>0 =2 = o
X%+ x® x4+ x* 0

The form oo /oo can only arise in an ifrac when x = co. By same method, but noting the
highest factor, if same degree the limit is finite, if denom highest the limit is zero, and
if num highest the limit is infinite.

Example

3C+xt = 3/x+1 . = _0+1 limitx—»0=1
2x%+ x3+ 3x* 2/x*+1/x+3 0+0+3 3

You can easily make up examples for yourself for the other two cases.

If f(x)/¢@x = 0/0 for x = a # 0 then by the Remainder Theorem (x - a) is a common
factor. Removing the common factors, we can determine the limit.

Example

0forx=2: 3x*10x®+3x*+12x-4 nval= 29416 = 23-3677
x*+ 2x3- 22x%+ 32x - 8 10116 27.79

From the nvals, both have factors of (x - 2). If we divide three times by long division,
we arrive at the remainders 15 and 14 and the limit as x=2 is 15/14. Note that the
first two divisions have remainder 0. So it turns out that both had factors of (x - 2)2.
Had all coeffs been pos., the nval would have revealed they both had factors of (x - 2)3.
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Let's evaluate the same ifrac by changing the var. Let x = a+z and evaluate the limit
when z = 0 for f(a+z)/¢p(a+z):

3(2+2)*- 10(2+2)%+ 3(2+2)%+ 12(2+2) - 4
(2+z)*+ 2(2+2)3- 22(2+2)%+ 32(2+2) - 8

Now we arrange by ascending powers of z and we only need the lowest ones. After
expansion, taking all the shortcuts possible (try it and see) we have:

1522 + P73+ .- = 15
147% + Qz3+ -+ 14

To do this, first get all your coeffs of z. Oops, they disappear. Then coeffs of z? and we
have 15/14 and we're done. Here x =2 + 2,50 z =x - 2. But you knew that. All of this
works for fractional powers of x:

12, (23, 3,3/% /3

X
x4+ 2x 24 x

Now divide by the lowest power: x"

7%+ x4+ 3% limitx—0 = 0=0
1+ 2%/ X% 1

Thm. 4.16. YmeQ, as x—1 limit (x"™- 1)/(x- 1) » m.

Proof

We use Thm. 4.10. For x>0, ¥m#0, x™- 1 is between mx™"(x - 1) and m(x - 1)

~ (X™ 1)/(x - 1) is between mx™" and m. As x—1, mx™"'— m. The same is therefore

true of (x™-1)/(x - 1). Itis trapped between mx™" and m. m
Example

Evaluate log(x3/2 -1)- log(xl/z- 1) whenx=1
Let L1 = limit x—1. Note: we will continue to use this limit notation.
Now for laziness sake, let's abbreviate L1 to L
L(1) = Llog( (x"*- 1)/(x'/*1))
=log (L (x/* 1)/(x'/*1)) (Thm. 4.16)
=log (L (x"%- 1)/(x-1) / L(x"*1)/(x-1))
=log(3/2/1/2)=log3

The following theorem is the basis of differentiation of exponential fns in general. So
I'm giving a proof by Fort. (You know Fort, right?)

Thm. 4.17 The limit of (1 + 1/x)" as x—oo is a finite number denoted by . (Note that
from text to text, this € notation may be e or anything else the writer can find that's an

won

e". I will use € and e indiscriminately. Try to keep up.)
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Fort's Proof
a>b>0,m>1=>ma"'(a-b)>a™b™>mb™'(a-b) [1]
a=(y+1)/y,b=1, m=y/xy>x>1
(DY) -151/x « (1+1/y)*>1+1/x
~ (1+1/y)'> (1 +1/x)" recally >x [2]
Sym. Ifa=1andb = (y-1)/y, mxy as above: 1/x> 1 - ((y-1)/y )’
S -1y > -1/x)"

~(1-1/y)Y <(1-1/x)" wherey >x [3]

s x—+00 = (1 + 1/x)" increases and (1 - 1/x)™ decreases ([21.31)
X>x%-1 & x/(x-1)>(x+1)/x ~ (1-1/x) >1+1/x

A (1-1/x)% > 1+ 1/x)° [4]

« limits of (1 - 1/x)™ and (1 + 1/x)* cannot pass each other
x—+00, (1 - 1/x)™ diminishes to finite limit A, (1 + 1/x)" increases to finite limit B.
~ A=Bas(1-1/x)™(1+1/x)"=(x/(x-1))" - ((x+1)/x)*and by [1]:
1/x(1/(x+1))* > x/(x-1)" - (x+1)/x)" > 1/(x(1 - 1/%%)) - ((x+1)/%)" [5]
As (x/(x-1))" and ((x+1)/x)* remain finite as x—»oo the upper and lower limits in [5]
remain finite as x—oo.
~ middle term remains finite B
And this finite limit as x—»o0 of (1 + 1/x)" is Euler's constant ¢ as follows:
Cor.1. Lo(1 +x)"*=¢ as Le(1 +1/z)*=¢c. Thenletz = 1/x.
Cor. 2. L loga(1 + 1/x)* = Lo loga(1 + x)"/* = logae which follows from logax being a
continuous fn of y for finite y.
Cor. 3. Loo(1 +y/x)* = Lo(1 + xy)"/* = ¢ from letting 1/z = y/x
Cor. 4. Lo(a*- 1)/x = logaa
Proof
y=a%“1~x=logi(l+y) ~asx—0,y—0
Lx-o(a™ 1)/x = Ly-o0 y/loga(1 +y)

=L 1/loga(1 +y)'”

= 1/loga(L(1 +3)")

=1/logag =log.a W
Cor.5. x>0=¢">1+xand In(1 +x) <x

x€(0,1) = e™>1-xand-In(1 -x) >x
Proof of this uses e > (1 + 1/n)" as n—co ~ e*-1 > (1+1/n)™- 1 > nx((1+1/n) - 1) >x
Cor. 6. Let notation of Ix, 1%%, ... = In x, In(In x), ..., x> 1, rEN =
1/(xIx12x..I'%) > I (x+1) - 1" 1x > 1/((x+DI(x+ D12 (x+1)..I(x+1)

Cor. 7. Lo(I'(x+1) - I'x) = 0 L[ (I (x+1) - I"'x)xIx1%x..I'x ] = 1

I leave the proofs of Cor. 6 and 7 to your curiosity. You are hoping you won't see them
again. But you will. I included a lot of the above for two reasons. First, most
introductions to € seem to start in the middle where this one starts at something
resembling the beginning. And secondly, you will need to understand why the
derivative of a* is In a - a* and now you do. If you are going in the direction of
inequalities the proofs of the next three theorems are worth pursuing for their
technique.
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Thm. 4.18. For any critical value of x, L(f(x))* = (Lf(x))“”” when RHS determinate.
Many of these proofs use the fact that u’ = e"™™ " as in (f(x))** = e®*""®),

Thm. 4.19. Cauchy's Theorem (as if he only had one theorem...)
Loo(f(x+1) - f(x)) = Lwo(f(x)/x) when LHS determinate.

Thm. 4.20. Also Cauchy's Theorem
Leo f(x+1)/f(x) = Lo (f(x))"/* when LHS determinate.

Cauchy states that these apply to a fn of n such as n! where n takes the place of x.
Thm. 4.21. a>1= 1) Lwa*/x =0 2) Lelogax/x=0and 3) Loxlogax=0
Examples

1) Show a>1,n>0 = Lwa"/x" = 0
Lwax/nn — L(ax/n/x)n — (L ax/n/x)n = 00" = 0o
Note: a>1,n>0 = a"/"> 1 . L(a”™)"/x= 0 = co" = 0

2) x€R constant = Lex"/n! = 0
n—oo, X finite ~ IJKEN:x<k<n
X"/l = X/ (k-1)! - x/k - x/(k+1)-x/n
x<k = La(x/K)"™ =0

Thm. 4.22. Fundamental Theorem of the Form 0°
Lox"=1
Proof

LXX - Lexlnx - eL xInx - eO -1m
Examples

1) Lo(x")*= 1
Lx) = Lx"=L(x9)"=1

2)n>0,y=x"=>Lox =1

I Lyl
Ly =Le'™=e¥™=e%=1

Thm. 4.23. u,v fns of x, u(a) = v(a) = 0, Lav/u" = 1 where n finite in N =
Lau’ = 1 provided the limit is approached such that u> 0

Proof

Lu’ = L(u"™"*"" (where u*n =u") = (Lu*™"/*""

n>0 = Lou""=1 = Lu'=1'=1m

Also if Lav/u" = oo the form is 1” and undefined.

And if Lv/u determinate and finite then Lu'=1

~ Lu" = 1 whenever u,v are alg. fns of x.
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Example of u’ = e"™"
1/In(e”x- 1)/x as x=0
Let this use L((e*-1)/x) =1 - x1/n(e™x-1) o glnx/ln(erx-1)

Inx/In(e*-1) = Inx/(In((e*- 1)/x) + Inx) = 1/( (e*-1)/x / (Inx+ 1))

By 4.17.Cor.4, LIn((e*- 1)/x) =0 LIlnx =-00

~ L(nx)/(In(e™1))=1 ~ Lx"/"E™* V=g

The fundamental case for the form 1% is Le(1 + 1/x)* = Lo(1 + x)/* = e.

Evaluate x

Thm. 4.24. uvfosofx:x=a= (u=1) A (v=00) = Lu' ="
when Lv(u-1) is determinate.

Sums of Infinite Series

Thm. 4.25. r+ 1> 0 = Leo(1"+ 2"+ -+ n")/n"™" = 1/(r + 1)
Proof

(r+ DX (x+y)><x"-x">< (r+y'(x-y)
Letx=p, y=p-1thenletx=p+1, y=p
a(p+1)TpT>< e+ )p < p™ (p- 1)
Letp=1,2,3,...and add

s+ 1) 1< (r+ 1)1+ 2 - +n) ><n"™
A ((1+1/m)™ - 1/0"Y)/(r+1) >< (17+ - +n") /0" >< 1/(r+1)

Leo(1 +1/n)"'= 1 and (r+1)>0 = Le1/n"'= 0

~ middle term trapped between equal limits

Cor. 1. seN, (r+1)>0 = Loo(1+ 27+ -+ + (n-s)")/n""! = 1/(r+1)

Cor. 2. if a constant €R (r+1) > 0 = Leo((a+1)"+ (a+2)"+ -+ + (a+n)")/n""= 1/(r+1)
Cor. 3. ifa,c constant €R (r+1) # 0 =

Leo((na+c)™+ (na+2c)"+ - + (na+nc)")/n"" = ((a+c)"'- a™)/(c(r+1))

1

1

The next two are by Dirichlet. (And this next little number ...)
Thm. 4.26. a,b,r > 0 = as n—o the ¥, of n terms of

1/a"+ 1/(a+b)™ '+ 1/(a+2b)+ - + 1/(a+nb)™"
is finite for all finite r and ile.ml/(a+nb]”1denotes this sum then

Lioo I*Y1-w1/(a+nb)"*! = 1/b

Thm. 4.27. If ki [1-n]>0 each > its antecedent and L»T/t = a where T is the number of

k's that do not exceed t then Y1-w1/ka""is finite for all finite r>0 and

LisorY1-w1/kn™ = a
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Cor.1. 1/(r(a-1)") > Loow(1/a"™+ 1/(a+1)" "+ -+ + 1/(a+n)"") > 1/(ra")

Convergence of }; and []

Some remarks on where DME left us. Infinite series converge, diverge or oscillate.
Between what values does this series oscillate?

3-1-2+43-1-2+--

Series converge more or less rapidly. A geometric series is more rapidly convergent
the smaller its common ratio. And the elements of a series are taken in a given order.
Dirichlet noted that some series might converge to any value or become divergent
according to the order of their terms.

Thm. 4.28. Let Sn denote Yui [1-n] and S denote its limit or value. Let Ram denote the
sum of the m terms after element un. The necessary and sufficient conditions of
convergence of Sn is that Sa is finite Vn and that for large enough n for vm,p, Rim < p.
in other words, no matter how small p is, p is larger than the residue.

Cor. 1. Leoun = 0 as un = Sn - Sn-1 = Rm-n1 = 0 if convergent.

Cor. 2. Let Rn = LoRom = Sn = S - Rn. Here Ry is the residue of the series and Rom is the
partial residue. Rn = Yui [(n+1)-o0] - the residue of a convergent series is convergent.
Cor. 3. Convergence or divergence is unaffected by ignoring a finite number of terms.
Which is to say, infinity is not a number. We are concerned with the implications of
the form of the terms and their relations.

Example

¥ 1/11In(22/(1-3)) + 1/21n(3%/(2-4)) + -+ + 1/nIn((n+1)?/(n(n+2))
(n+1)?/(n(n+2)) = (1+1/n)/(1 + 1/(n+1))

“Rom=1/(n+1) In( (1 + 1/(n+1))/(1 + 1/(n+2)) + - + 1/(n+m) In((1 + 1/(n+m))/(1 + 1/(n+m+1)) )
<1/(m+1)(n( (1+ 1/(n+1))/(1+1/(n+2)) + - + In( (1+1/(n+m))/((1 + 1/(n+m+1)) )

<1/(n+1) (In( (1+1/(n+m))/((1 + 1/(n+m+1))) [1]

n—00 = Vm, LoRmm = 0

Ifin [1] n = 0 m = oo noting Sn = Rno then

Sn<In((1+1/1)/(1+1/(n+1)) <In2
and series converges. In [1] set m = co and then the residue is
Rn<[In(1+1/(n+1)]/(n+1)

which shows the rapidity of convergence and number of terms needed for a numerical
approximation of any given accuracy. Now let Y;un denote Y ui [1-n] and we have the
following theorems which you can prove to yourself by reasoning on Sy, S, Rom and so
forth.

Thm. 4.29. Vi u;,vi > 0, ui < vi and Yva convergent = Y un convergent. If ui > viand Yva
divergent = Y un divergent.
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This last is the opposite of a sum trapped between to equal limits. Here it is either
forced by the other to converge or diverge. Now let S refer to ui and S' to vi and so on.

Thm. 4.30. Vi vi>0 ui/vi finite = Yun converges or diverges as Y va converges or
diverges.
Proof

Consider Rn and ui/vi [n+1 - n+m] and A,B smallest and largest of ui/vi =
A<Yun/dvn<B

Each fraction finite - A,B finite ~ Ram = CR'xm where C finite value dependent on n,m.
~ Sn = Ruo finite or infinite as S'nm finite or infinite. MW

Recall the ratio of the consecutive terms in a series in DME, this is now ratio of
convergence (roc).

Thm. 4.31. Vi u;,vi > 0, un+1/un < vn+1/vn and Y,va convergent = Y un convergent.
If Un+1/Un > Vn+1/vn and Y vn divergent = Y un divergent. (And of course Vi means any i
after some equal finite number of terms.)

Thm. 4.32. If a series with neg. terms converges when the neg. terms are made pos.
then the original series also converges.

Def. A series that converges when all its terms are taken as positive is absolutely
convergent.

Convergence Tests

These apply to series where after r terms the terms are only positive.

/

Test I: Y un converges or diverges as un'/" is ultimately <> 1. If this equals one then

the test is meaningless.
Example

21/(1+1/0)"" > Leun" = 1/(L(1 + 1/n)" = 1/e
2<e<3-~1/e<1- convergent

TestIl: Y un converges or diverges as its roc ultimately <>1. Again, no resultif roc = 1.

You can see that "ultimately” means the L« of a thing. Note that Test I = Test Il by
Cauchy's theorem above where

1
Loolln+1/lln = Looln /n

which you may only now interpret in this way. We can also note that if ¢n is alg. fn of
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n then Y@ (n)x" converges or diverges as x <> 1 and that Yx"/n! is convergent Vx. The
next theorem is one of those things that actually seem cool to me. So I will subject you
to the full proof. It also has a bunch of corollaries with proofs. Sorry.

Thm. 4.33. Cauchy's Condensation Test
Vvn f(n)>0, a = 2, and f monotonically decreases as n increases then Y f(n) converges or
diverges as Ya"f(a") converges or diverges.
Proof
Sf(n) = [f(1) + -+ f(a- 1)]
+ (f(a) + = + fa* 1))
+(f(a%) + - + f(2- 1))
+ ..
+(f(@™) + f@™ 1) + - + f@™™*- 1)) + - [1]

We can neglect any a-1 terms - Yf(n) converges or diverges (cnv/div) as [1] cnv/div.
Because [1] is mono-decreasing

(@™'- Df@@™ > [1] > ((a-1)/a)a™ 'f(a™") [2]

~ By Test I [1] converges if ), LHS[2] converges and diverges if ) RHS[2] diverges.

By Test II YLHT[2] converges if Ya"f(a™) converges and YRHS[2] diverges is
ya™f(a™") diverges.

And Ya™f(a™) = Ya™ ' f(@™") = Ya"f(a") m

Keep in mind here that f(n) is pos. and mono-decreasing after r terms. Also guess why
aneeds to be 2 2. Get used to € being everywhere. It's like a bad penny. The following
corollaries are post-Cauchy.

Cor. 1. Thm. 4.33. holds if 0 <a < 2. Or let's just say a needs to be positive.
Cor. 2. Y'f(n) cnv/div as Y ene’ne’n--e'nf(e'n) cnv/div

The proof of Cor. 2. comes from repeated application of 4.33. on a = . We are leading
up to the Logarithmic Scale of Convergence in the next two corollaries. This was
developed by De Morgan and if you want to see it in use and to see the world's most
amazing exponents of €, check out De Morgan's text on double algebra, which he also
invented. We'll be using the I' notation where 12 = In(In(something). Then we'll give a
taste of the scale's use, in no way comparable to De Morgan's, before we go on. Even if
you don't focus on this enough to load it into your head, it's worth knowing it's there.

Cor. 3. Yf(n) cnv/div as the first of these fns which do not vanish as x—co has pos. or
neg. limit:

To=Inf(x) / x

Ti=In (xf(x)) /Inx

T, = In(xI*xf(x)) / 1’x

Tr = In(xlxI?x--1"'xf(x)) / I'x
[proof follows]
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Proof
By Cor. 2., ¥:f(n) cnv/div as that } e-thing cnv/div. And that latter series cnv/div as
Leo(ene?ne®n---enf(e'n))’"
= Lologa(en--f(e'n)) <> 0
= Lo(loga(en--f(en))/n <> 0
Nowleta=e. Ifx=enthenlx=e 'n..1x =n and n—o = x—c0 -
= Lol (xIx12x- 1" '%f(x)) /I'x <> 0
Cor. 4. Each of these series converges if a > 0 and diverges if a < 0:

<> 1. And this is equivalent to

»1/n" [1]
21/(n('n)" 2]
>1/nln(1%n)** [3]
1/nlnl?n--1""n(') " [r+1]

Proof

Let Pr(n) denote nInl®n---I'n: Po(n) = n, P;(n) = nln, ... By Cauchy's Condensation Test,
[1] converges as Ya"/(a")"" = ¥(1/a%)" converges where = just means LHS converges
if RHS does. And RHS is G.P. with common ratio 1/a" and converges if a > 0. So [2]
converges by the same law as Ya"/a"(1a")"" = ¥(la)""*“n"*® = 1/n"*" = [2] converges.
Assume [r] converges.

Cnv of [r+1] ¥a"/a"la"%a"-1""a"(1"a™) "** = 311 /nlal(nla)---1"?(nla)(I"" (nla))***
a>0a>e=la>1 nla>n

~ 1/nlal(nla)-1"*(nla) (1" (nla))"** < 1/nln--1"2n (1" 'n) **

a>1= ¥1/Py(n)(I"'n)" converges [A]

& 31/Py(n)(I'n)” converges [B]

Leta<0 2 <a<e=nla<nandB more divergentthan A. B

Logarithmic Scale of Convergence
Let's bring this idea to a closure, even though it is a notational nightmare. These
series just above [1] - [r+1] form a descending scale, allowing us to compare series
whose roc goes to unity. The least convergent of the convergent series of the rth
order is more convergent that the most convergent of r+1. Consider nth terms, un, un'
of the rth, (r+1)th series:

Un'/lIn - (lr-ln)a/(lrn)l+a'
where a is small but positive and a' very large. If1"'n = x then

Leo un'/Un = Lm((xn“*a')/(lx))ha' — o

This next corollary to our ongoing idea is De Morgan's:
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Cor. 5. Let px = f(x+1)/f(x), If f(x)>0 when x is greater than a certain finite value, ¥.f(n)
is cnv/div as the first of these fns whose limit is finite as x—oo is neg/pos.

To=px-1
To = Po(x+1)px - Po(x)
Tz = P1(x+1)px - P1(X)

Tr = Pr-l(X+1) - Pr-l(X)
Let's look at the power of these ideas.

Example

Determine the convergence of g /2~ 1/m/n’r

To=1(f(n)/n=-(1+1/2+ -+ +1/n+rln))/In
1+(+1)In>1+1/2+--+1/n+rin>rln+1(n+1) ~L=0
11 =1(nf(n))/In
=-(1+1/2+--+1/n+(r-1)In)/In
=-(1+1/2+--+1/n)/In - (r-1)
=L(1+1/2+--+1/n)/In=1 ~ Lty;=-1-r+1=-r
~cnv/divasr><0
r=0=>Lty=Lt;=0
T, =1(nlnf(n)/1>’n=1-(1+1/2+--+1/n-1n)/1>n
n—oco RHT denom—e - Lt,=1>0 - divergent

You can see the power of this as well as how much you must master to use it. We now
give the 1" notation a rest and consider series with infinitely many negative terms
which may not be abs. conv. We determine convergency by associating each neg. term
with a preceding or following pos. term The the terms generally become all pos. or all
neg. If the terms of this equivalent series go to zero then any difference between the
original and the rearranged series goes to zero too. Convenient. All this produces a
false result if used on an oscillating series, of course.

Example

1/1-1/2-1/3+1/4-1/5-1/6+--+1/3n-2-1/3n-1-1/3n+ -+ [1]

Compare to

1/1-(1/2+1/3)+1/4-(1/5+1/6)+ - +1/3n-2-(1/3n-1+1/3n) [2]

The difference here is the (2n-1)th term.

If S, S'n = }(n terms) or [1],[2] = Ssn-2 = S'2n-1 S3n-1=S'2n-1-1/(3n-1) Szn=Szn

L1/3n-1 =0 = ¥n, LSy = LS'» ~ [1] cnv/div as [2] cnv/div. That [1] cnv is shown by
comparing itto };(1/(3n-2) - 1/(3n-1) - 1/3n) [3]

Using S" for this one we can show LS"y = LSn. But nth term of [3] is

(-9+12/n -2/n%)/((3-2/n)(3-1/n)(1/3n))

and has a ratio with Y 1/n which is always finite.
But }:1/n diverges -~ [3] diverges - [1] diverges.
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Thm. 4.34. Rule of Semi-Convergence

vn, (Un > 0) A (Un > Une1) = Ug- Uz + Uz- - + (-1)" un+ (-1)"unst + - converges or
oscillates as Leoun =/# 0.

Cor. 1. With u; as above, this converges: (u;- u;) + (uz- ug) + -+ + (Um-1-Um) + -

We consider series and the laws of algebra:

Associative Law
If a series is convergent, association produces no affect on an infinite sum. Associative
law holds for a convergent series.

Commutative Law
Commutation can only be applied to an absolutely convergent series. It cannot be
applied to semi-convergent series and commutation will produce false results.

Addition

If Y un, Y;vn converge to S,T then };(un+ vn) converges to S+T

Distributive Law
1. a€R Yun— S= Yaun—aS
2. Yun, Yvn— ST and at least one of them is abs. cnv. =
U1Vy + (UgVo+Uzvy) + o+ + (UgVn+UaVn-1+--+UnVq) + -+
converges to ST. But if both are semi-cnv the multiplication may fail.

Power Series

Power series (Yanx") are viewed as complex series here. Note that Y xn+iyn converges

if both }xn and Yyn converge. xn+iyn = zn and pn denotes the modulus of z.. 6n denotes

arg(zn). Then }zn converges if },pn converges and when this is the case )z is abs.cnv.

Convergence of Y pn is sufficient (=) but not necessary (<). Here zn=pn(cos6n+i-sinfn).

Now consider an = rn(cosan + isinan) where rn, an are various f(n) and x = p(cos6 + isin6)
where p,0 are independent of n.

Thm. 4.35. Yanx" converges if mod x < L(mod an/mod an+1)

Proof

The series of moduli is Yrap" which converges if L(p™ rne1/p"rn) or L(rne1/rn) < 1
which is to say p < L(rn/rn+1) B

Three cases arise as L(ra/ra+1) is 1) = 0 or 2) = some finite r < R* or 3) = oo.
1. series converges only ifx =0
2. series converges only if x is inside circle on the origin of radius r. We then
have the circle of convergence and the radius of convergence
Example: ¥'x"/n convergesandr =1
3. convergent for Vx. Example: Yan/n!

Thm. 4.36. If Yanx" is abs.cnv. when mod x = R' it will be abs.cnv. when x <R'.

Digital PDF copies released under Creative Commons 4.0-SA-BY-NC
Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



119

If the nth term of series f(n,x), a single-valued fn of x for VneN then Yf(n,x) will, if
convergent, be a single-valued, finite fn of x, say ¢x, and ¢x is not necessarily
continuous. If we have Y f(n,x+h) and }.f(n,x) both convergent, then Y f(n,x+h) - >f(n,x)
is convergent but its limit is not necessarily zero for any x. The discontinuity of this
series, say discontinuous at 0, has a residue Rn =1 - Sn = 1/(nx+1) when x # 0. Asn
increases, Rn < some finite a. But the smaller x is, the larger n must be for Rn < a.
When x is var, there is no finite limit v for n: n>v = Rn<a. This case makes a series non
-uniformly convergent. And if for some x, like our x=0 here, the limit of n for v—oo
then series converges infinitely slowly. It follows:

Def. (Du Bois-Reymond) If, for values of x within a given region of the complex plane,
for Va,n Jupper limit v ind. of x: n > v = Ra < mod x. In this case, }:f(n,x) is uniformly
convergent within this region.

Thm. 4.37. If }f(n,x) uniformly converges then its ¢x is continuous.

There are two important kinds of power series:
1. anind.ofx - Yanx" asafnof x = @x
2. anfnof, say, n,y = f(n,y) where x is considered constant.
~ Yf(ny)asfnofy=yy

Thm. 4.38. Du Bois-Reymond
in ind. X, wn(z) single-valued fn of n and z and is finite ¥n and finite and continuous for
Vz€[a,b]. Then if };un abs.cnv., ¥ itnwn(z) is a continuous fn of z on [a,b].
Proof
Let Sn(z) be the sum of n terms of piwi(z) [1-n], ¥n, pn > 0.
Let Awp = wp(z+h) - wp(z): Vp, Lhsowp=0
% Sn(z+h) - Sn(z) = p1AW; + PR AW, + -+ + pmAwm
+ Um+1Wm+1(z+h) + pme2Wm+1(z+h) + -+ + pnwn(z+h)
- Um+1Wm+1(Z) - Um+2Wm+2(Z) - -+ - HtnWn(2)
Let AWm, W'nn, Wimn be the means Awi, Wi+i(z+h), wm+i(z)
Then, with S', Rmn as usual, Sn(Z+h) - Sn(z) = AWmS'm + (W'mn' Winn)R'mjn-m
Vm,n, as n—00, Wmew, W'ne — finite values by hyp.
B Sn(Z+h) - Sn(Z) = AWnS'm + (W'moo' Wmoo)R'm
We need to show LHS—0. When h=0, Awi — 0 because wi(z) is continuous. Then as S'm
finite and Y um convergent = Ses(z+0) - Seo(z) = Lhs0(W'meo - Wineo)R'm
On RHS, LHT may not go to zero but R'm = 0 as the residue vanishes. B

Example

Y f(n,x) where f(n,x) = x/((nx+1)(nx-x+1))

The nth term can be written

(1/n*)(x/((x + 1/n)(x - x/n + 1/n))

 tn=1/n% wax = RHT and condition of thm. fulfilled when x#0.
For we(x) = 1/x which is finite for x#0.

So this series is a continuous fn of Vx#0.
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Cor. 1. If power series Yanx" is abs.cnv. when mod x = R then for Vx<R, Yanx" is a
continuous fn of x.

Cor. 2. If power series Y'f(n,y)x" is convergent when mod x < R and R<1 and Vn, f(n,y)
is a single-valued fn continuous on [a,b] then for y from a to b iy is a cont. fn of y
when modx<R.

Thm. 4.39. Abel's Theorem

If series Y an converges and Yanx" converges on [0,1) then Lx1-0anx" = Yan

Note: This asserts convergence of Yanx", for x€R is continuous inside and on its circle
of convergence. This holds for semi-convergent series if you don't alter the order of
its terms.

Cor. 1. If Yun,Yvn = u,v = if their product (see distributive law above) converges, it
converges to uv and this holds if any or all are semi-convergent.

Thm. 4.40 Principle of Indeterminate Coefficients
If for Vx, Yanxn converges when mod x < R and if for such x, ap+Yanx" = 0 = ai [1-n] = 0.
Cor. 1. If Vx, mod x <R, ap+YanX" = bo+Y.bnx" and both series converge = Vi, ai = b;

Infinite Products

The value of an infinite product, factors restricted to the form (1 + un), is determined
in the same way as in the Binomial Theorem

(1 +ug)(1 +uz) (1 +un)

and is the limit of this product as n—oo denoted mostly []» and sometimes Pn. The
former more indicates the process and the latter the value. But you will have to
determine, in context, which is actually meant. (You can do it.) If Lun>1 then LPx =
0Voo and such cases are unimportant. So we assume Lun € (0,1). And like Y, in [] we
can ignore any finite series of terms. We have four cases:

1) LPn = 0 - convergent but ignored

2) LPnx finite, denoted P - convergent

3) LP» infinite - divergent

4) LPn indeterminate, taking one or another of a set
of values - analogous to an oscillating .

In we consider In(Pn) we reduce the theory of [] to the theory of ), which is another
thing which strikes me as simply elegant, hence cool.

InPn=1In(1 +uy) +In(1 +uz) + -+ +In(1 + un) = YIn(1 + un)

Thatis cool, isn't it? Let's relate the two ideas:
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1) YIn(1 + un) diverges, limit=-c0 & [[(1 +un) =0
2) YIn(1 + un) = [[(1 + un) converges
3) ¥In(1 + un) diverges, limit = +c0 = [](1 + un) diverges
4) ¥In(1 + un) oscillates = [](1 + un) oscillates

If we restrict un to one sign:

1) Lun<0=YIn(1+un) =-0 AT](1 +un) =0
2) Lun> 0= YIn(1 + un) = +o0 A [](1 + un) diverges
« Lun= 0= [](1 + un) converges (necessary but not sufficient condition)

Here comes Euler again. If Lua= 0 = [](1 + un)*/™" = € where like u*n being u", uvn is
un. (This is a word-processor, not a typesetting shop.) It follows:

1) Lin(1 +un)/un=1
2) ¥In(1 + un) cnv/div as Y;un cnv/div

Also, if un is ultimately made up of all pos/neg terms, the infinite limits of },un and
YIn(1 + un) will be correspondingly pos/neg. So if terms of ;un ultimately have same
sign:

1) TI(1 + un) converges < Y un converges
2) [I(1 +un) =0 & Yun=-0
3) TI(1 + un) diverges—+c0 & Yun diverges—+oo

[I» is absolutely convergent when its sign is ultimately invariable.

Thm. 4.40. [](1 + un) abs.cnv. & Yun abs.cnv.
Cor. 1. If one of [J(1 + un) and [](1 - un) abs.cnv. then so is the other.

We can talk about residues of [] just as with Y.
[1(1 + un) cnv. & Vn, (Pn finite) A (LeoPnem - Pn = 0)

and the latter is equivalent to L(Pnm/(Pn - 1)) = 0 or L(Pn+m/Pn) = 1 and our residue Q
is (1 + un+1)-+(1 + un+m). So we have proven:

Thm. 4.41. [](1 + un) cnv = Vn, (Px finite) A (LoQmn = 1)

Now let un have terms in C. The two conditions on Thm. 4.41. RHS become mod Pn
finite for all n and L(Qmn - 1) = 0. For [Tin C, [J(1 + un) is convergent if [[(1 + mod un)
is convergent but not conversely.

Def. If [](1 + mod un) converges then [J(1 + un) is absolutely convergent. If [J(1 + un)
converges and [[(1 + mod un) does not, then [](1 + un) is semi-convergent.

Thm. 4.42. If }}(mod un) convergent < [](1 + un) abs.cnv.
Cor. 1. Yun convergent = [](1 + unx) is abs.cnv. where x is ind. of n or x is a fn of n:
Lmod x # oo when n—oo.
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Examples

1) TI(1 -x"/n) abs.cnv for Vx: mod x < 1 (but not when x = 1)
2) TI(1 - x/n?) here x is ind. of n - abs.cnv.
Again, the laws of algebra:

1) Associative Law requires Lun = 0 to operate on factors of [[(1 + un)
2) Commutation holds if [](1 + un) abs.cnv. but not generally otherwise.
3) If[I(1 + un) and [J(1 + u's) abs.cnv. =
1) TI((1 + un)(1 + u'n)) converges to the product of their limits
2) TI((1 + un)/(1 + u'n)) converges to the quotient of their limits so long
as no factors vanish in denom.
For 4) we have the following theorem:

Thm. 4.43. Since YIn(1 + pwn(z)) = Tpawn(z)In(1 + pawn(z))*" " . 1y and wi(z)
satisfy Du Bois-Reymond's conditions and [[(1 + pnwn(z) is a continuous fn of z on
[a,b].

Cor. 1. If Yanx" converges when mod x = R then [[(1 + anx") converges to @x, a
continuous, finite fn of x for vx: mod x < R.

Cor. 2. If f(n)y) is finite, single-valued wrt n and finite, single-valued, and continuous
for y€[a,b] and Yf(n,y)x" abs.cnv. when mod x < R, and R < 1 then [](1 + f(n,x)x")
converges to Px, a finite, single-valued, continuous fn of x for all finite x.

Cor. 3. If Yan abs.cnv. = [](1 + anx) converges to x just as above.

5) If for a continuum of values of x including 0, [](1 + anx") and ¥(1 + bax") both
abs.cnv. and [](1 + anx") = [](1 + bax") = Vi, ai = bi.

We can extend factorization to []n which holds for abs.cnv. only:

Thm. 4.44. If vx, Yx = [[(1 + anx) convergent where Lmod P # o and where as n—oo
for Vm, L(mod(Qmn - 1) = yix = 0 and if Vi, x has the value -1/ai and yx=0 = for some i,
x has the value 1/a..

Cor. 1. If x is on a continuum, denoted (x) including all values 1/ai, 1/bi [1-n] and if
[1(1 + anx)*"" and [](1 + bux)"" abs.cnv. on (x) and if f(x),g(x) become neither 0 or oo
for Vi, 1/ai1/bi and if for all x on (x)

fEOIT( + anx)*"" = g()II(1 + bnx)"""

then must each factor of each be raised to the same power and for Vx € (x), f(x) = g(x)
Cor. 2. It follows that any f(x) which vanishes for any of the 1/ai and for no others
outside of the 1/ai then this f(x) can be expressed uniquely as a convergent infinite
product f(x)[T(1 + anx)*"", if at all.
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Double Series

We get a double series Y unm when two indices n,m € N start at 1 and run off to infinity.
Conceptually, there are four ways to "take" this sum.

First Way

Conceived as an m row by n col matrix. We let m or n run to infinity and then the
other and if Sn = Sm we say Yumn converges to Sma = S in the first way. and if we don't
get equal limits we say the series is nonconvergent in the first way.

Second Way

We sum m rows to n elements using the same matrix idea. The limits of these are
Ti [1-m]. If these limits are all finite then Y umn = };Ti = S'mx in the second way as m—oo.

Third Way

Just like the second way but using columns Ui so we get a limit S"mn =), Ui
So long as m,n finite we have Smn = S'mn = $"m,n but when m,n—oo, we have

S' = Limooo(Lnw(Smn)) and S' = Lnoeo(Lm-oo(Sm,n))
and S' = S" requires the two ways to lead to the same result.
Fourth Way

Sum the terms, beginning with matrix entry ai1, on the diagonal: a1, (aiz+az1), ... and
let that go to infinity. (I'll wait while you try it...) While m,n finite, this never equals
the previous methods. And the limits of the first three ways can be equal when this
one is infinite.

Now, as before, consider all terms having ultimately the same sign so that we can
ignore finitely many consecutive entries in the matrix. Then, as L(Sm+pn+q - Smn) =S - S
=0 as m—oo for Vp,q then, as before, any "initial" terms do not affect the limit. And we
have an analogous two-diminsional shrinking residue and this is true of all four ways
of taking the double limit.

Thm. 4.45. If all the terms of Y umn are > 0 and if the series converges in the first way,
then the horizontal, vertical, and diagonal series are convergent and the series
converges in all four ways to the same limit.

We define Restriction A (RA) for commuting: If term umn becomes umn where m' =
f(m,n) n' = g(m,n) are both, for and finite m,n, single-valued finite fns, convergence is
unaffected. This conserves our vanishing residue.

Cor. 1. If Yumn, as series of pos. terms, converges in the first way, commutation of
terms under RA leaves Thm. 4.45. intact.
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Cor. 2. If all pos. terms of a convergent single series Y un can be arranged into a double
series Y um,n where m',n' are fns of n under RA then Y um'n converges in all four ways
to the limit of Y un.

Thm. 4.46. If a double series of pos. terms converges in any of the four ways to limit S,
it converges in all four ways to S and the subsidiary (horiz., vert., diag.) series are all
convergent.

Cor. 1. Any series Y un selected from Y umn under RA is convergent if };umn converges.

Def. If any Yumn converges when all its terms are taken pos. it is absolutely
convergent (abs.cnv.)

Note that all the above concerning single-sign termed series converging are true of
abs.cnv. series as the neg. terms only reduce the residue.

Thm. 4.47. Cauchy’s Absolute Convergence Test

If u'mn are the numerical or pos. values of umn (absolute values |umn|) and if all the
horizontal, vertical, and diagonal series of Y;u'mn converge and the sum of their sums
to infinity converge =

1) The horizontal series of ) umn are absolutely convergent and the sum of their sums
to infinity converges to some finite S;

2) Y umn converges in the first way;

3) All vertical series are also abs.cnv. and the sum of their infinite sums is some finite S;
4) The same is true of the diagonal sums; and

5) Any series in forms of terms of Y, umn under RA is abs.cnv.

Note: It seems to me that Cauchy could state this a little clearer. 1-4 say that Y umn
converges in the first three ways and that in all these ways the subordinate series are
abs.cnv. to some finite S.

Cor. 1. If Y un,Y;vn abs.cnv. to u,v = Y (unvi+un-1v2+---+u1vn) abs.cnv. to uv.

It is easy to construct double series where horiz. and vert. series are abs.cnv. but do
not have a limit in the first way and have different limits in the second and third ways.

Example
If the first way's limit of Smn is A+f(m,n) where A is ind. of m,n it is easy to see that

Umn = f(m,n) - f(m-1,n) - f(m,n-1) + f(m-1,n-1)
So we have only to give f(m,n) a form where
Lm=co(Ln=eof(m,n)) # Ln=oo(Lm=eof(m,n))

so that the series has different limits in 2d and 3d way and no limit 1st way.
Let f(m,n) = (m+1)/(m+n+2) then

Umn = (Mm+1)/(m+n+2) - m/(m+n+1) - (m+1)/(m+n+1) + m/(m+n)
= (m-n)/(m+n)(m+n+1)(m+n+2)
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It is at once obvious that the limits of the 2d, 3d, 4th ways are different, for in the first
place we observe that umn = -unm. Hence there is a skew arrangement of terms in the
array. Therefore each of the diagonal sums is zero and the 4th way limit is 0. Also,
due to the arrangement of signs, Tm = -Um ~ S' = -S". Chrystal goes on to show that the
second and third limits are -2 and % and that by noticing that after m=n the terms are
negative, therefore T'n = Yn=1-mUmn - Y n=m+1-wlmn SO the 1st way limit diverges. But at
this point, I think we should solidify our understanding of all this until we get to the
point were Chrystal's above remarks are in fact easy to see and obvious.

Complex Double Series

From what we know above about complex series, a complex double series involves
two real double series and if they converge, then the complex double series converges.
If these are Yamn, Y.Bmn, they are abs.cnv. if ¥V ((xm,n2+ Bm,nz) is convergent. Therefore,
if u'mn is the modulus of umn = Amn+ibmn (remember this notation for modulus) then if
Yu'mn converges then Y umn converges to the same limit in all four ways, which again
Chrystal says is obvious. And all terms are obviously pos. -

Thm. 4.48. If all the horiz. series in Yu'mn converge and their sum of sums converge =
Y.umn abs.cnv. and so are all its subsidiary series and any series constructed under RA.

Thm. 4.49. If the moduli of the series Yamnx"y" have a finite upper limit A = this ¥’ is
abs.cnv. for Vx,y: x,y € (0,1).

Binomial Series
We know that YmeN
(1+x)™ =1 + Cm1X + Cmj2x® + ++ + Crnjmx"" [1]

But if me-N or meQ, we no longer have m-combs of n things. If you simply follow the
Binomial Theorem algorithm with these un-natural numbers, the result still holds but
RHS of [1] becomes an infinite series. This will converge when:

1)x€(-1,1)
2)x=1landm>-1
3)x=-landm>0

All of this boils down to the following theorem and corollary with a long proof by
Euler as amended by Cauchy which I leave to your curiosity and will proceed
immediately here from the statement of the theorem to its use.

Thm. 4.50. Whenever the series 1 + Y.CmpnX" converges, its sum is the real positive
value of (1 +x)™.
Cor. 1. If x#y, we can therefore always expand (x + y)™ in an abs.cnv. series.
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Proof
Letx>y « y/x>1 « (x+y)" =x"(1+3/)"

=X"(1+ Cup1 (y/x) + Coi2(y/x)? + - + Coin(y /)" + ++*)
=X + CopxX™ 'y + Cnj2x™ Y2+ <+ + Copnx™"y"+ -+ [A]

Ifx<yandx/y>1= (x+y)"=y"(1 +x/y)" and Sym.

=y™+ + Cnjty™ X + Conp2y™ %2+ -+ + Conny™ X"+ - [B]

If meN [A] and [B] both terminate and are valid. Else only one is convergent. B

In the following examples, we assume convergence.

Examples

1

2)

3)

4)

5)

6)

7)

8)

9)

(A+x) =1-x+x2- o+ (-1)%" +

(1-x)"=1+x+x2++x"+

(1+x)" =1+ ¥Capux"

Ctn = (-1(-1-1)(-1-2)-(-1-n+1))/n!
= (1)™1-2--n/n! = (-1)™1

(1-x)"=1+NCam(-x)"

Cap(-x)n= (-1D"(-1)x" =x"

(1+x)2=1-2x+3x%- -+ (-1)"(n+1)x" + -
(1-x)2=1+2x+3x2+ - + (n+1)x" + -
Since Czjn = (-2(-2-1)-+(-2-n+1))/n! = (-1)"(n+1)

(1+x)%=1-3x+6x%- - + (-1)"%(n+1)(n+2)x" + -
(1-x)%=1+3x+6x%+ -+ Y%n+1)(n+2)x" + -

(1+x)/*=1+1/2x-1/8x% + - + (-1)"(1-3-5--(2n-3)) /(246 2n) X" + -+
(1-%)"2=1+1/2:x+1/8:x% + - + (1-3-5--(2n-3)) /(2-4-6--2n) X" + ---

(1+x)%=1-1/2x +3/8%% - -+ + (-1)"(1-3-(2n-1))/(2-4--2n) X" + ---
(1-x)"%=1+1/2x+3/8x% + -+ + (1:3--(2n-1)) /(2-4--2n) X" + ---

(1 +x)™%= 1+ m/1x/2 + (m(m-2))/2! (x/2)%++ (m(m-2) (m-4)- (m-2n+2)) /0l (x/2)" + -~
=1+m/2:x+ (m(m-2))/(2:4)-x* + -+ + (m(m-2)--+(m-2n+2)) /(2-4+-+2n) X" + -+

(1+x)™2=1+¥(-1)" (m(m+2)(m+4)---(m+2n-2))/(2-4--2n) X"

(1+x)"%= 1+ ¥ (p(p-q)(p-29)-(p-nq+q))/((4293q--nq) x"
(1-x)"%= 1+ X (p(p+q)(p+29)-(p+nq-q))/(4293q--nq) X"

(1-x)""=1+ Y (m(m+1)(m+2)---(m+n-1))/n! x"

1((1 + %)™+ (1-%)™) = 1 + Cmj2x?+ Cmjax®+ -+ + CinjznX’" + ---
%((1 +x)™ (1 - x)m) = Cmp1x + Cmp3x® + -+ + Cinjzn-1x™ 4 -
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And that's one of the sweetest tutorials I've ever seen. Note that in these expansions
of (1 +x)™and (1 +x)™ are ultimately alternating. In (1 - x)", terms will have the same

sign on and after term x" where n>m. And in (1 - x)™, terms are pos. after the first
term.

Consider Y ¢r(n)Cmux" where @ Vifn of n, r°. By the process of putting one polynomial
in terms of another (our change of "base” from DME) we have:

@r(n) = Ao+ Ain + A;n(n-1) + - + Am(n-1)(n-r+1)
where Ai [0-r] are ind. of n. Then the series takes form:
AoCrnpnX"+MA 1XCrn-tjn-1X" +m (m-1)Azx%Cmezpn-2X” >4+ +m(m-1) -+ (m-r+1) Ax Conerfnrx™™"
And its sum is Y0-w@r(n)Cmpnx" =

Ao(1+x)™+ mAx(1+x)" + - +m(m-1)(m-r+DAX(1+x)"" =
(1+x)™(Ap+mA;x/(1+x) + m(m-1)Azx?/(1+x)% + -+ + m(m-1)---(m-r+1)Ax’/(1+x)"

Examples
1) Summ+m(m-1)/1!+ m(m - 1)(m - 2)/2! + -+ if convergent
Un+1 = m(m - 1)(m - 2)---(m - n)/n!
=m(m-1)(m-2)-(m-1-n+1)/n!
= mCm-1|n
& Yun=m(1 + Cmyt + Cmetz + - ) =m(1 + )™ = m2™ " if (m-1) >-1orm > 0
2) Evaluate ¥ 0-wn>Cmpnx"
~n®=Ap+An+A;n(n-1) + Asn(n-1)(n-2)

|10 0O Ap=0 divl=>1n=n

110 11
|11]1 Ay=1  div2=3n(n-1)=3n%-3n
2| 02
113 A;=3 div3=1-n(n-1)(n-2)=n*-3n%+2n

~Asz;=1 addthem to getn?

4 P0500n>Cinnx” =
03 Crafnx™+ 1-MXY 156 Cin-1jn-1X" "+ 3m(m-1)x2Y 2-00Crme2pn-2X" >+ m(m-1) (mM-2)x3Cin-3jn-3x">
= mx(1+x)™" + 3m(m-1)x%(1+x)™ 2 + m(m-1)(m-2)x>(1+x)™>

= (m33 + m(3m - 1)x% + mx)(1 +x)™>
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We know that every ifrac of x can be expressed as an ifn and a proper ifrac and then

every proper ifrac can be expressed as partial fractions, YA(x - a)”. Therefore any
ifrac can be expressed as a series, some with ascending powers of x and some with
descending.

If we denote the elementary symmetric fns a+f and af as p,q then:

a’+ B =app™+ a;p™iq + - + ap" g+ [1]
(o™= ™1 /(a-B) = bopn+ byp™?q + -+ + bip"¥'q"+ -+ [2]

and both [1],[2] terminate. We can also verify

2-px .= _2-(a#B)x .=_1 .+_1 . [3]
1-px+gx* (1-ox)(1-Bx) l-ax  1-Bx

Now take x: px - qx? < 1 and we have by the Binomial Theorem

[3] = (2 - px)(1 - (px - gx*))"" = (letting px-qx*=T)
=@2-p(L+r+r+otre) [4]

Now take x: -a < X < « where a makes +px = qx” < 1 with signs used to make this a max
value. Then [4] can be expressed as a series of ascending powers of x:

[4] = (2 - px)(1 + X (p"+ Co112p"?q + Cnzizp™ g+ -+ + (-1) Coiep™ *'q"+ ~)x")  [5]
=2(1+ Y(as [5]) - px(1 + (as [5])) 6]

where coeff of x is
2(p" - Co1j1p”*q + (1) Cartep™ ' q" -+ (-1) (n(n-r-1) (n-1-2)-++ (n-2r+1) /r1-p™2'q"+-+-)

and this is

2+ % (p" n/1!-p"*q + n(n-3)/2!-p"q? - -
+ (-1)'(n(n-r-1)(n-r-2)--(n-2r+ 1)/rl-p™ ¥ +-) 7]

Or from

1/(1-0x) + 1/(1-Bx) = (1 + ox + o%%% + -+ + "™+ ) + (1 + Bx + B2x*+ -+ + B"x"+ )

=23 (o"+ X" [8]
which converges for x: mod ax, mod fx < 1. So by [3],[7],[8] -

o+ B = p™ n/1!-p"*q + n(n-3)/2!-p"*q% - -
+ (-1)"(n(n-r-1)(n-r-2)-(n-2r+1) /rl-p" ¥ q +--- [9]
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And if we express x/(1-px+qx?) in terms of a,8 then («™**- B*)/(a-B) =

p"- (n-1)/10p™q + (n-2)(n-3)/2p""q* - -
+ (-1)'(n-r)(n-r-1)-(n-2r+1) /rl-p"*'q" + --- [10]

Example
Required coeff of x" in expansion of (1-)()2/(1+X)3/2

If (1 +x)*? = 1 + Yanx" then (1-x)%/(1+x)** = (1 - 2x + x?)(1 + Yanx")
~ coeff = an - 2an-1 + an2

If we sub actual values of these ai this equals

(-1)"(16n?- 8n -1)(3-5-+(2n - 3))/(2-4---(2n))

To go deeper into this would take us into the bowels of combinatorics, wrt C, P, and H
and quickly to summing series like

1- (n-3)/2! + (n-4)(n-3)/3! - (n-5)(n-6)(n-7) /4! + -
which I leave to your curiosity. Let wisdom govern that curiosity. If combinatorics
makes you happy, go for it. But any oppressive or compulsive urge to pursue
something should be shaken off. Be governed by joy. If in joyfully following your
interests, you discover you need to go into this (or anything else) you can always

return to it with the right motive. Mathematics is an ocean you can easily drown in.
Better to sport like a dolphin.

If we have a;x + a;x*+ -+ + arX’, x,ai € R then if p < 1/(a+1) where a = max ai then p is
the lower limit of the least root of arx" + --- + a;x + 1 = 0. Then for YmeR, if x € (-p,p)

(1+ax+-+ax)"=1+YCms(asx + azx>+ - +arx’)’
Recall that Cms is the number of all the s-combs of the m a; -
Thm. 4.51. Vm, X€(-p,p), (1 + asx + ax* + -+ + arx' )" =

1+Y m(m-1)--(m-Yai + 1) a;"a,%a %"
a,la,!--ar!

with summation over all :i€N: 1o + 2a;, + -+ + ror = n. But don't panic. Here's an
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Example

Required coeff of X" in F = (1 + x + x* + -+ + X )"

F=((1-x"/(1-x))"
- (1 ~ Xr+1)m (1 _ X)»m
=(1-x"" (1 + XHmpnx")
s~ n<r+l coeff = Hmn = m(m+1)---(m+n-1) /n!

n = r+1 coeff = Hmjn - Cmj1tHmn-r-1 + CmjzHmpn-2r-2 - --- and now you can panic (or go back
and study your H's).

Exponential Series
In what follows, we are going to use a new shorthand where A = logea = In a where e is,
of course Euler's constant. If we assume a convergent expression of a* we can
determine the coeff of

Q"= Ag + Agx + Apx® + o+ Anx| + o [1]
By our previous methods

L (@™ a%)/h = Ay + 24, + -+ + DAX" "+ -

where RHS converges if [1] converges. Then

LHS = a*AL(e""-1)/Ah = Aa*
2 Aa" = 1AL + 2A,% + - + nAx"" + - [2]

And by [1],
A(1A; + 2A5% + - + nAX™" + ) = 1Ay + 285X + = + nAX"" + -+ [3]

Both series in [3] converge -

1A1 =24, 2A;=2AA; “+ An=2AAn1

Ay =Agh/1! Ay =AA%/2! -+ An=Ac)"/n! [4]
Letx=0and Ap=1 [5]

a“=1+Ax/1!+ (Ax)%/2! + - + (Ax)"/n! [6]

~ [6] and [2] converge for Vx. Let's deduce this another way using the Binomial
Theorem. Letz>1:

(1+1/2)"=1+2zx-1/z + (zx(zx-1)) /2!-1/2* + (zx(zx-1)-+-(zx-n+1))/n!-1/z" + -
=1+x+ (x*(1-1/2x))/2! + - + x"(1-1/2zx)-+(1- (n-1)/zx)/n! + Ra
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Let x be a given quantity, n€Z, then z can be taken as large as possible such that zx€N,
p>n then Rn terminates. -

Ro <x™/(n+1)! - (1 - (x/(n+2)) I3
(U 1/2) = L 2(11/p) /214 =+ (1) +(1- (1) )/l + R [4]

7250=p—>0 Limw(1 +1/2)* =1 +x+x%/2! + - +x"/n! + Rn = €* [5]

n—00=[3]-0 .. [5] without remainder = Lw(1 + 1/2)*

Note that [5] is used to give an upper limit to the residue of the series. We could use
this to calculate any approximate value of e. Going to n=12, e =2.718281829.

Now let's show e is incommensurable, irrational.
Proof
Else e =p/q€Qand e = Lw(1 + 1/2)*
~p/q=2+1/2l+--+1/q!+Rq

Rq < (q+2)/(q+1)%q!

q'Ra < (q+2)/(q+1)* < (q+2)/(q(q+2) + 1)
~ q!'Rq is a positive proper fraction
~ e is incommensurable, irrational, ... B

Let's look at e the way Cauchy did. We will take the sum of its infinite series f(x), x€C
f(x)=1+x+x%/2!+ - +x"/nl + -

This converges Vx - f(x) is a single-valued, finite, continuous fn of x
Vy€eC we have f(x)xf(y) =

1+ (x+y) + (x3/21+ xy/1110 + y2/21) + - + (/0! + X"y /(n-1)! + -+ y°/nl) + -
You should recall this next bit, in more general terms, from DME:
This has an nth term = (x"+ Cojix™'y + Capx"?y? + - + y")/n!
~ f(X)xf(y) = 1+ X (x+y)"/n! = f(x+y) [1]
FfY)(Z) = f(x+y)E(z) = f(x+y+2) =

Thm. 4.52. Addition Theorem for Exponential Series

fRfYf(z) - =flx+y+z+-) (2]

Proof

Let each of these vars equal unity and let there be n of them.

= (F(1))" = f(n) (3]

Or let each of the letters be p/q with q of them, p,gEN

« (f(p/a))" = f(p) (4]

= (f(p/a))* = (f(1))° (by [41.[3]) (5]

In[1],lety=-x

~ f(x)f(-x) = £(0) (6]

From [5],[6], we can sum the series for ¥x€Q, In [5], f(p/q) is the qth root of (f(1))".
Digital PDF copies released under Creative Commons 4.0-SA-BY-NC

Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



132
Butp/q >0, - f(p/q) €R* and

f(1)=1+1/11+1/2!+--=e€R"
~ f(p/q) is the real positive root of e” and equals e”;

1+ (p/Q)/1! + (p/q)?/2! + -~ = &1 7]
f(0) = 1. So from [6], f(-p/q) = 1/f(p/q) = 1/e” =™ -

e™I=1+(-p/q)/1 + (-p/@)*/2!+  [8]
Combining [7],[8]:

ex= 1 +X/1! +X2/2! + e +xn/n! PR
e=1+1/11+1/2!+-+1/nl+ -

And that's all I have to say about that. B

Bernoulli's Numbers

Thm. 4.53. Cauchy's Expansion of x/(1 - €™)

Proof and Statement Combined

x/(1-e=1/((1-e")/x)=1/(1-y) [1]
wherey =1/((1-e™)/x) [2]
axf(1-e™)=1+y+y?+ oty +- [3]

which is convergent for y € (-1,1) and from [2] and the Exponential Thm.
s y=x/2!-x%/3! +x3/4! - --- which is abs.cnv. for Vx

So we need p: p/2! + p?/3! + p3 /41 + - < 1 [A]
so that if we sub [4] into [3] it is abs.cnv.
But [A] = (e’- 1)/(p - 1). So we need p: €’ - 1 < 2p [5]

From the graphs of €* - 1 and 2x, [5] is true if p < unique pos. root of e*-1 = 2x
which is at (1,2) -~ x/(1 - ™) series is convergent for x € (-1,1). So sub y into [3]:
o x/(1-€™) = 1+ Yox + 1/6-x%/21 - 1/30-x3/4! + 1/42-x* /6! - - [6] W

If we use our method of determining coeffs Ai of equal series (which is quite involved
here) we arrive at a formula for calculating these coeffs (1/2, 1/6, ...). And what we
end up with are Bernoulli's Numbers Bi [1-n] where x/(1 - ™) =

1+ ¥x + Bix?/2! - Bax*/4! + Bax®/6! - -

You're going to love this. For odd n we calculate Bn with

Czne1j20Bn - Canetjzn-2Bn-t + -+ + (1) Cans12B1 = (-1)" (0 - %)
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and for even n

Czne2)20Bn - Cznezj2n2Bnct + -+ + (-1)"'Cznsz12B1 = (-1)"'n
Cor. 1. From (x(e*+ €™))/(e* e™) = x/(1 - € ™) - x/(1 - e*) we get

LHS = 1 + B1/2!-2%x? - B2/4!-2*x* + B3/6!-2%x° - .-
Cor. 2. From x/(1 + €™) = 2x/(1 - €2 - x/(1 - ¢™) we get

LHS = %(2%- 1)x + B1/2!1-(22- 1)x?- Bz/41-(2% 1)x* + -

Back in combinatorics, we had the sum of the first n rth powers Snir. Using the series
of (e™-1)/(1-e™) we have:

Thm. 4.54. Bernoulli's Theorem
Sar=n""/(r+1) + %n" + r/21-Bi""- r(r-1)(r-2) /4!-Ben" + r(r-1)-+(r-4) /6!-Bsn">- -
where last term even or odd is either (-1)*"?Bym or %5(-1)*CFrBy-1yn?
If we pursued this further, we would find
Thm. 4.55. We can always sum the infinite series
Ser(m)x’/n!

where @r(n) is an ifn of n r°
Cor. 1. We can generally sum

S @r(n)x"/n! (n+a)(n+b)--(n+k)
where a-k unequal €N and this would allow us to do things like sum

13/10x + (134 23) /202 + - + (13+ 23+ - + n%)/n!-x" + - which comes to 27e/4.

Logarithmic Series

Consider the expansion of In(1 + x). No f(x) where f(1) = o can be expanded into a
convergent series of ascending powers of x. But

Thm. 4.56. We can expand In(1 + x) if x<1 in ascending powers of x.

[proof follows]
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Proof
(1+x)*=1+z(In(1+x)) + z%(In(1+x))%/2! + - [1]
which is convergent Vz. And if x<1, by the Binomial Theorem
(1+x)=1+zx-2z(1-2z/1)x%/2 +z(1-z/1)(1-2/2)x3/3 + -
Recall our earlier Pum. As a double series, that last bit is

(1+x)*=1+2zx-(2x*/2 - 22x%/2) - ---
+(-1)""(zx" /1 - Pr1j1z%x"/n + Protjaz3%" /0 - -+ + (-1)" Pooyn-1nx"/n)

where Pn-1)ris sum of all r-products of 1/1, 1/2, ..., 1/(n-1) without repetition, in case
you forgot. By Cauchy's abs.cnv. theorem, the above will converge when z,x > 0. The

series with the Pnm sums to z(z+1)--(z+n-1)x"/n and goes to 0 when n—oo and the 1 +
zx series before it converges when x<1.

A+ =1((x/1-x*/2+%3/3- )z + -
Because an expansion in powers of z must be unique, this is equivalent to [1]
s In(l+x)=x/1-x%/2+%x3/3 - (-1)"%"/n

which is the logarithmic series convergent on (-1,1) ®

Cor. 1. (In(1+x))" = n!(Pa-tjn-1x"/10 - Pajn1x™"/(n+1) + Pretjnax™2/(n+2) - ---
Cor. 2. In(1-x) =-x/1-x?/2-x3/3 - -X"/n - ---

Cor. 3. In( (1+x)/(1-x) ) =2(x/1 +X3/3 + - + XZ"’l/(Zn—l) by subtraction of logs.

Thm. 4.57. The series with nth term @(n)x"/(n+a)(n+b)---(n+k) where n ifn of n and
a-k unequal €Z can be summed if series converges.Which would allow us to sum

Y2-wnx"/(n+1)(n+2). We already know, ifx > 0,
x-1<lnx<1-1/x [1]
Example
ShowInn/(m-1)>1/m+1/(m+1) + 1/(m+2) + - + 1/n>In (n+1)/m
Ifweputl-1/x=1/m=x=m/(m-1) in middle term of [1].

Then replace m successively with m+1, m+2, ... and we get

Inm-In(m-1)>1/m
In(m+1) -lnm > 1/(m+1)

Inn-In(n-1)>1/n [2]

By addition, Inn-In(m-1)>1/m+ 1/(m+1) + 1/(m+2) +--- + 1/n
Then in LHT [1] putx-1=1/m and Sym.

In(n+1)-Inm<1/m+1/(m+1) +1/(m+2) +--+1/n [3]

and result follows from [2],[3]
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Recurring Series
The next three chapters in Chrystal deal almost exclusively with complex-valued
series representing trigonometric forms of number. You have already seen the core of
this in the hyperbolic trig chapter of DME. I will save all these trig series for the
Second Circle of Trigonometry where these ideas will lead us into Complex Analysis.
But here at the end of these chapters are a couple of useful ideas apart from trig and
because they include ifracs, I have to share them with you. Ifracs as s6000 cool.
Vifrac, such as

(a+bx+cx?)/(1+px + qx* + rx°) [1]

can always be expanded, as we know, in ascending powers of x. If mod x < root with
the least modulus for the denom then the series for [1] has form:

Up + UsX + UpX® + o + UnX + - [2]
If we set [1] = [2] and multiply both side by the denom of [1], we get
a+bx+cx?=(Up+ UgX + Upx? + -+ + UnX" + ) (1 + px + gx? + rx%)

and be equating powers of x

Ug = a
U;+ pup = b
Uz+ puy + quo = C
Uz+ puz+ quq+rup= 0

Un + PUn-1 +qun-2 + Tun-3 = 0 [3]

Any power series where form [3] arises is a recurring power series (rec series) and
the explicit form that [3] takes is the series' scale and will have 1-r constants (here,
three of them: p,q,r) and the number of constants is the series' order. All the coeffs of
an rth order rec series can be derived from the r coeffs in its scale ([3]) A rec series of
rth order depends upon 2r constants: r in the scale and r more. So if the first 2r terms
are given, the series can be continued as a rec series of rth order in only one way. OR
as an (r+1)th order rec series this series becomes a two-fold infinity. OR two
conditions must be satisfied to continue our series as an (r-1)th order rec series, 4
conditions for (r-2)th order and so on.

Example
Show that x + 2x%+ 3x® + 4x* + --- has order 2. Let the scale be un + pun1 + qun2 -

3+2p+q=0 5+4p+3q=0
4+3p+2q=0 6+5p+4q=0

Soln of the first two is p = -2, q = 1 and these values solve the others

Digital PDF copies released under Creative Commons 4.0-SA-BY-NC
Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



136

Now think about [2] as being generated by [1]. Then [1] is the generating fn (gen fn)
of the series. The denom furnishes the scale and the coeffs are determined by the r
eqns leading up to [3]. So:

Thm. 4.58. Given the scale and the first r terms of a rec series we can determine the
gen fn of the series.

Proof

Pick an r, any r, say 3. From above (ug+(u;+po)x+(uz+pu;+que)x?/denom is the gen fn
of [2] with scale [3]. ®

Cor. 1. Every recurring power series, if mod x taken properly small, is the expansion
of an ifrac.

Cor. 2. The general term of a rec series can be found given the scale and r terms.

In other words, to find the gen fn of a rec series or a corresponding power series,
decompose the gen fn into partial fractions (yay!) in the form of A(x - a)®, expand
these into ascending powers of x, and collect the coeff of x" for the general term.

Example

Given scale un - 4un-1 + 5un-2 - 2un-3 and first three terms 1, + 0, - 5, find general term.
p=-4q=5r=-2
a=up=1 b=u;+pup=-4 c=uz+pus+que=0
s genfn = (1-4x)/(1-4x + 5x% 2x%)
=(1-4x)/(1-x)%(1-2x)
=2/(1-x) + 3/(1-x)* - 4/(1-2x)
=2(1+3XxM +3(1 + X (n+1)x") - 4(1 + ¥2"x")
=1+Y(3n+5-2"Hx"
~ generalterm=3n+5-2

n+2
If un is a fn of n satisfying

Un + pUn-1 + PUn-2 + I'tin-3
which is also

Un+3 + PUn+2 + qUn+1 + I'Un [1]

then given uo, uy, uz, [1] uniquely determines the fn un but here any other three ui
would suffice. So we determine un as f(uo,us,uz,n) where ug, uy, u; determined by

f(uo,ug,uz,a) = Ua
f(uo,u,uz,f) = ug
f(uo,uzuz,y) = uy

So our [1] is a linear difference eqn order 3 which has a unique soln given three values
of its linear argument. And so on for rth order...
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Example

Required un where the scale is un+3- 4un+2+ Sun+1- 2un and up,u,,u; = 1,0,-5
See last example.

We can sum a rec series to n+1 terms for finite n or to hell and gone if convergent.
Take on of order 3.

Sn=Ug + UgX + UzX? + UzX® + =+ + UnX"

1
PXSh = PUgX + pusx? + ++ + PUn-1X" + punX"

1 2
qx?*Sn = qUoX? + QU X3 + -+ + PUn2X" + PUn1X" " + PUnX"

1 2 3
rx3Sn = IUXS + -+ + MUn-3X" + FUn2X" + + IUn1X - + TUnX

Summing and recalling when scale equals zero we get

(denom)-Sn = ug + (Uy+ Pug)x + (Up+ Pus+ quo)x>+ (PUn+qun-1+run2)x™" +

2 3
(qunt run1)x™** + runx™

Then divide by the denom and we have the sum. Consider the case where x = a is a
root of the denom. Then Sn = 0/0 and we can, if we must, evaluate this by our earlier
methods for handling 0/0. Now if our above series converges then Luox" = 0 and the
last three terms just above go to zero.

o = (Ug + (Ug+ pug)x + (uz+ pus+ qug)x?)/(1 + px + gx* + rx°)

We have already dealt with such series:

Yn*%":  scale = un-3un1+3un2-un3=0
1+ Y(-1)""2nx" scale = un+ 2un1+ un2=0

We end our prolonged exploration of series with Euler's (obvious) Identity:
1-a;(1-az)+azaz(1-a3) + ajaz=-an(l - anv1) =1 - ajazaz--ans1  [1]

which, amazingly, is kind of obvious. So I must be getting smarter. If in [1] we sub:
a1=x/y a;=(x+p1)/(y+ps) - an1=(x+pn)/(y+pn)

~ L+ x/(y+p1) + X(x+p1)/(y+P1) (y+P2) + = + X(x+p1) -+ (x+pn-1) / (y+p1) -+ (y+Pn)
=y/y-x-x/yx - ((x+p1) (x+p2) - (x+pn)) /(Y +P1)- (y+Pn)) [2]

Let that final fraction factor be F, then Ln-F = 0 and then LHS, taken to oo, becomes
y/(y - %), and if in [2], y = 0:

Lo 1-%/p1 +X(Xx-p1)/p1pz -+ =0
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Thm. 4.59. If [T1-» (1 + x/pn) converges to a finite limit then
1+ Ytooo(x+p1) (X+P2)-+ (X + Pn-1)/P1p2--Pn

converges to the same limit.

Example

IfS =1 +x/y+p +x(x+p)/(y+p)(y+2p) + x(x+p)(x+2p)/(y+p) (y+2p) (y+3p) + --
when does S converge and to what limit?

S=y/y-x-x/y-x - Lew (x+p)(x+2p)---(x+np)/(y+p) (y+2p) - (y+np)

And this limit is [J1-«(1 + ((x-y)/np)/(1 + y/np) which diverges if (x-y)/np > 0 and
converges to zero if (x-y)/np < 0. So whether y >< x, this sums to y/y-x.
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5. Continued Fractions

I have a thing for continued fractions (CF). They are another example of everything
interesting arising from division. And they are just full of the GCM. So while we have
already met them in DME, I'm allowing myself the pleasure of taking them from the
top.

Simple Continued Fractions
In Chrystal, an everyday CF has the form:

a; + by
ap+ba
az+ - [1]

where bi is the antecedent and its consequent is everything below it. This consequent
is either finite = terminating (term) or infinite = non-terminating (nonterm). The
component fractions b,/a,, bz/as, ... can have pos. or neg. nums and denoms and need
express no law of recurrence. If they do fall under such a law, they are periodic =
recurring (RCF). Sometime, for clarities sake, we will use this notation:

a; +bs bs
a; + az + ..

with the + signs below to avoid confusion. We know from DME that if Vai,bi € Q and
the CF terminates then the CF reduces to some qeQ. We will begin with simple CF
(SCF) where Vbi = 1. This allows an even simpler notation:

aj: ay, as, ...

An SCF can represent either a proper or improper fraction. So a, is the integral part of
an improper fraction and is zero if proper.

Thm. 5.1. VreR expandable as an SCF which may or may not terminate.

Proof

(Let me point out that this proof is our algorithm or method of creating CF and will
reappear as it is expanded to work for non-simple CF.)

Let X be the reR, a; maxneEN <X =

X=a; +1/X, [1]

where X;> 1 €R. Leta, be maxneEN <X; =

Xi=a; +1/X; (2]
Sym. Xz=az+1/X3 [3]
[proof cont'd]
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Now if some Xn-1€Z, this all terminates with
Xn-1 = an

and our CF is aj: ay, as, ..., an. But if VXigN then our CF is non-terminating. Now
suppose there are two equal CF

a;:ag as, .. = a;taz,az’, .. = X

Vaiai' [2-n] where n€[2-c0) are positive integers. So any sum of any consecutive
sequence of them is a proper fraction

~ a; =a;' and for any sequence 1/am + -+ + 1/an=1/am" + --- + 1/an’

Else we would need an improper fraction arising somewhere to fix any inequality in
the sequences and all our fracs are proper. So all our sums are proper fracs. B

Cor. 1. It follows that if equality is maintained by adding Xn+1,yn+1ER" to our two
sequences, then we must have xn+1 = yn+1

We saw in DME that the proposition "Vq€eQ = A/B is a terminating CF" is equivalent to
"VqeQ = A/B is subject to Euclid's Algorithm."

Example
167/81 Take the GCM: 81)167 (2

162
~167/81=2:16,5 5)81(16

80

And 81/167 =0: 2, 16,5 1)5(5
Which shows you how to 5
place the elements of a proper 0

fraction into Euclid 7.1.

1/n (n-1)/n:

Any simple surd (A + Bp ™"+ sz/" +--+Kp )/n is expandable as a nontermCF.

Examples

1) V13 =3 +v13 - 3 where a,, as above, =3
=3+1/(1/(V13-3)) =3+ 1/((V13 + 3)/4)

Then a; = 1 from

(V13+3)/4=1+(13-1)/4=1+1/(4/(V13-1)) =1+ 1/((V13 + 1)/3)
And so on where V13 = 3:1111611116... which we will denote 3:1,1,1,1,6,...r

2) (V3-1)/2 =0+1/(2/(V3-1)) = 0+1/(¥3+1)
V3+1=2+v3-1=2+1/(1/(V3-1))=2+1/(3+1)/2)
and if you do the next step you can see that it will begin to repeat
~(W3-1)/2=0:2,1, .r
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What we are showing is that every number in R can take the form of a simple CF. Itis
only a convention that we generally consider the form 167/81 or its electro-
mechanical equivalent 2.06173 rather than 2:16, 5. My calculator can show 167/81 as
a 2 followed by thirteen digits. Does it terminate there? But our 2: 16, 5 terminates
with the 5.

For any i we can define xi =

ai+ 1 1

i+l + Qis2 + o0

as the ith complete quotient. where ai is the integral part of xi. Mostly we consider the
convergents pi/q; :

ap = a;/1 =pi/da
ai:a; =a; +1/a; =(ajaz + 1)/az =p2/q2
ajiazas = (ajazaz +aj +as)/(azaz +1) =p3/qs

and so on. Note that

Pi1=a; q:=1
p2 = ajaz+1 qz =az
p3 =ajazaz+a;+az (s = azaz+1

and so on and these pi/q; are the ith convergents. And if the CF terminates, the last
convergent is the CF itself. So as soon as we have two convergents, we can derive the
rest:

anPn-1 + Pn-2 [1]
an(n-1 + (n-2 2]

Pn
(n

And you can prove this by a simple induction calculation. Because an€N, we can see
that both the num and denom of our convergents are monotonically increasing
sequences of integers. And by division here and subbing n-1, n-2, ... for n we get:

Pp =an+ 1 1

Pn-1 an-1+an2+ - +ag
Go=an+ 1 1 1
(n-1 an-1+an-2+ -+ +Qa

Examples

1) The convergents of mare 3/1,22/7,333/106,355/113,103993/33102, ...
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2) Given a;: az, ag, az, a3, -.R
Show P2n = (2n+1 and P2n-1= a1q2n/az

By def. (justabove, with + signs)
P2n+1/q2n+1 = @1:33, ..o, A1
because every odd convergent will end in 1/a;. Also,
Pzn+1/P2n = a1: A, ..y A1
P2n+1/q2n+1 = Pan+1/P2n <+ Q2n+1 = P2n [3]

Then from pzn = azpan-1 + pan-2
Qzn+1 = @1q2n + q2n-1

We get  azpan-1+ pznz = aiqzn + Q2n-1 [4]
In [3], subn-1 forn - [4] gives us azpzn-1 = a;qzn and second result follows.

Thm. 5.2. From [1],[2] above we can derive: pngn1 - pnign = (-1)" (and this is an
important result).
Cor. 1. Convergents derived by the method of Thm. 5.1. are fractions in lowest terms.

Proof
If pn,qn have a common factor it must divide (-1)" exactly - p(pn,qn) - lowest terms. B
Cor. 2. pn/qn - pn1/qn1= (-1)"/qnQn-1
Cor.3.pn=a; + 1 .- _1.+-+_(-1)".

qn d192 9293 qn-1qn
Cor. 4. pugn-2 - pn2Qn = (-1)"an
Cor. 5. Pn/Qn - Pn-2/Qn-2 = ('1)n-1an/(]nqn-2
Cor. 6. The odd convergents monotonically increase. Even convergents monotonically
decrease. Veven convergent > Vodd convergent. Vodd/even convergent </> next
convergent.
Cor.7. Vp,q€Z:p(p,q) Ip'.q' €EN: pq' - p'q = +1
Proof
Let p'/q' be next to last convergent (last one is our p/q€Q) then pq' - p'q = 1 if partial
quotients are even and -1 if odd. And by letting the numerators not equal unity (i.e.
the CF need not be an SCF), we can have even or odd by choice. B

Thm. 5.3. Convergents of odd order are each less than the CF and those of even order
are each greater than the CF. Each convergent is closer in value to the CF than any
preceding convergent.

Cor. 1. Let the difference between the nth convergent and the CF be § =

an+2/qnqn+1 < & < 1/QnQn+1

Cor. 2. The odd/even convergents form an increasing/decreasing series of rational
fractions approaching the value of the CF.
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Cor. 3. Recall x; as the complete quotient. If pn/gn - X1 < 1/(qn(qn+qn-1)) where n is the
last index and n-1 penultimate and the SCF has an even number of convergents =
pn/qgn is a convergent of the SCF of x;. And if X4 - pn/qn < 1/(qn(qn+Qgn-1)) where CF has
an odd number of convergents the same holds.

It follows that a CF gives both a method of continually improving exactness in
approximation and a method of estimating that exactness at any point. Neither can be
said of positional decimal notation.

Chrystal points out that, arithmetically, we could calculate termCF in reverse. /n the
case of non-terminating CF, no such alternative course is, strictly speaking, open to us.
Indeed, the further difficulty arises that a priori we have no certainty that such a
continued fraction has any definite meaning at all. But the nontermCF € R-Q is the
expression of a law. It is the value of the limit of its two series. Or rather, one series
has for its last term the limit and the other approaches it ad infinitum. And you have
the tools to work out this law for yourself. Every simple continued fraction has a
definite finite limit.

Problem

To find the fraction whose denom by absolute value does not exceed some D € N
which shall most closely approximate, by excess or defect as designated, a given value.
Method

Lemma p/q,p'/q' € Q: pq' -p'q =1 = no fraction p"/q" can lie between them unless

q">max(q,q')

Proof

a/b:p/q>a/b>p'/q

~p/q-a/b<p/q-p'/q [1]
a/b-p'/q'<p/q-p'/q’ [2]

From [1] (pb-qa)/gqb<(pq'-p'q)/qq’ ~ (pb-qa)/qb<1/qq’
~ qb>qq'(pb-qa)

~b>(pb-qa)q

p/q-a/b>0 - pb-qa>0€N . b>q'

Sym. from [2]b>q &

Given any two convergents, we call the one with the larger denom more complex. It
follows from above that the nth convergent is a nearer approximation to its CF than
any fraction with a smaller or equal denom. Let x; be the final value and consider
these convergents:

Dn-2 Dn X1 pna1 andcallthis a ¢ x b
qn-2 Qn qn-1

We have shown that a such a fraction without a greater denom cannot exist on (a,b)
and (b,c). But what about (a,c)?
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Thm. 5.4. The series of fractions

Dn2 + DPn-2+ Pn-d + P2+ 2Pn-1 + -+ + Pn2 + (@n - 1)pn1 + pn (Which equals pn-2 + anpn-1)
gn-2  Qn2+(Qn1 Qn2+ 2(Qn1 gn2+ (@an-1)gn1  Qqn (n-2 + an(n-1

forms a monotonically increasing/decreasing series as n odd/even. Each element of
the series is in lowest terms. Each consecutive pair (P/Q,P'/Q") satisfies PQ' - P'Q = 1
so that no q€Q less complex than the most complex of the pair can lie between them.
Proof

To prove this to yourself, show
P/Q-P'/Q" = (pn2 + rpn-1)/(qnz + rqn-1) - (P2 + (r+1)pn-1)/(gn-2 + (r+1)qn1) = £1/QQ’

If we call pn2/qn2 and pn/qn here the principal convergents then the others are
intermediate convergents. At this point, a friendly suggestion. Take an SCF, calculate
its convergents, then take two principal convergents and calculate their intermediates.
This will prevent mental muddles.

Still with regard to our Problem, we can further show that since

P/Q - pn-1/Qn-1 = 2gn-1(gn-2 + rqn-1)
P/Q <>x1 <> pni/Qn1

then the intermediate convergent P/Q differs from the CF by less than 1/qn-1Q so by
less than 1/qn-1. The point here is that we have two series:

0/1,p1/91, P3/q3) -+ Pn/qn [1]
1/0, p2/qz, Pa/da, - Pr-1/qn-1 [2]

[1] monotonically increases and [2] monotonically decreases and you can't insert any
q in Q closer to x; that is less complex than the more complex of any two consecutive
elements of either series. So our Problem's soln is this:

If we want to approximate by defect, take pi/qi in [1] where qi is the max denom in the
series less than D, and if by excess then Sym. take this element from [2]. In the first
case gi may equal D. If the denom in [1] which is the max gi < D is an intermediate
convergent (I told you to do an example) then the corresponding qi in [2] in the
denom of a principal convergent. B

Recurring Continued Fractions

Every simple quadratic surd is a recurring continued fraction (RCF). Consider any
such surd. We can always do the following to it and these results are generally true.
We consider:

%(2-V(3/2)) = %(2-V6/2) = -4+6/-8 = (-16 +V96)/-32

And thus we arrive at our standard form of (P, - \/R)/Ql where P; =-16, Q; =-32, and
R =96. And in this form, it will always hold that R - P, divby Q4, here 96 - 256 =-160
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which is divby -32. Of course, there are proofs of these assertions and you know
where to find them. Given a surd brought to this state our same algorithm takes this
form:

X1=(P1+ ‘/R)/Ql =a;+1/x;
Xz = (P2 + ‘/R)/Qz az+1/x3

%n = (Pn+ VR)/Qn = an+1/%n1
where ai is max n€N etc. as before. We have

(Pa+VR)/Qn = an+ 1/((Pns1 + VR)/Qne1)

< ((Pn - anQn)Pn+1 - QuQnet + R) + (Pn - anQn + Pns1)VR =0
 (Pn-anQn)Pnst- QuQne1 + R=0 A Pn-anQn + Pre1 =0

“ Pns1=anQn-Pn [A]
Pret? + QuQne1= R = Po’ + QuiQn =R

Qanl =R- (anQn - Pn)z = Pnz + Qn-lQn - (anQn - Pn)z

2 Que1 = Qu1 + 2a0Pn - an°Qn = Qu-t + an(Pn - Pne1) [B]
[A],[B] let us calculate the series where we have
P2+ Q.Q: =R

Q2= (R-(a:Q:-P1)?)/Qs = (R-P1?)/Q: + 2a:P1-2,°Qy

And if you think about it, this shows that since by hypothesis (R - P?)/Q € Z then Vi, P;,
QEZ

If we begin with

P.+VR = Dn:1Xn + Pn-2 = Pn-1Pn + pn-2Qn + I_)n-l\/R [1]
Q. Qn-1Xn + Qn-2 = Gn-1Pn + qn2Qn + gn-1VR

we can derive
Qn-1Pn - qn-2Qn = Qpn-1 - P1qn1
and using P; from LHT and MT above
Qn-1Pn + qn2Qn = ((-1)"'Q1)/(gn-1%n + qn-2) + qn1VR

and continuing back from [1], we get to

(-1)™'Pn = Py (pn-1qn-2 + pr2qn-1) + (R - P12)/Q1 - gn-1Gn-2 - Q1Pn-1qn-2
(-1)"'Qu = -2pu1qu1Py + (R- P1?)/Q; - qut’ + Qupnt’

all of which gives us another way to calculate our series. Now, long story short, if you
drive all of this to the explicit formulae for Pn, Qn, VR - Pn and 2VR - Qn we can know
the following, all of which is proved by the derivation:
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Thm. 5.5. For some value of n = v and all n > v, Pn, Qu, VR - P and 2VR - Qu are all
positive and Pn < VR and Qn < 2VR.
Cor. 1. Pn,Qn € N .- after n = v, Pn cannot have more than VR different values and Qn
more than 2VR - xa = (Pn + VR)/Qn cannot have more than vR - 2VR = 2R values - the
cycle of recurrence has at most 2R steps and in this cycle Py, Qn are always positive.
Cor. 2. It follows that n>v = An < 2VR - none of the partial quotients in the cycle can
exceed the max integer in 2vVR.
Cor. 3. Ultimately, we have Pn + Qn > VR
Cor. 4. And ultimately Pn + Qne1 > VR
Cor. 5. VR > P = by Cor. 3, 4: Pm- Pn < Qn < Qn-1

Let's go the other way. Every RCF is a simple quadratic surd.

Consider a RCF with period a; - ar: X; =a;:ay, as, -, ar, ...R
Let p/q.p'/q' be the last two convergents before the value of a;: a,, as, -+, ar

xp=a; + 1 1 1 1 =pxz+p'
az+agt-c+artxy  gxi+q

ax1% + (q' - p)x1 - p' = 0 where x; is the positive root

X = (p-q +V((p-q)* +4pq))/2q = (L+VN)/M
Here, a;#0,p/q>1 =~ p>q> q and this surd cannot take the form vN/M.
Example

Evaluate 1:2,1, 1, ...

Last two convergentsto 1 +1/2 +1/1 are 3/2 and 4/3
= Xq = (4%1 + 3) /(31 + 2)

©3%:%-2%,-3=0 = xy = (1+v10)/3

Thm. 5.6. The Form of an RCF = VN/M
The square root of q€Q or \/(C/D) can be put in the form \/N/M where N =CD, M =D.
And its RCF with period ai [1-s] must take form:

X1 = Q! Ay, .., Ar, A, Uz, ..., As, ...R [1]
We can use our earlier RCF formula by letting P,1=0,r =N, Q; = M. Let P'/Q’, P/Q be

last two convergents before the quotient leading up to ar and p'/q’, p/q be the last two
before as. If we lety; = a4 ay, ..., as then

Xp=a+1 1 1=a+1 11 11
az+--+arty; Az t-rtart gt +As+yg
x1=Py; +P' = py; +p' [2]

Qv1+Q qyi+q'

[cont'd]
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Eliminate y and

(Qq'- Q'q)x:*- (Qp'- Q'p + Pq' - P'q)xy + (Pp' - P'p) = 0 [3]
If x; = VN/M we need

M?x,2-N=0 [4]

But for [3] and [4] to be true, we need

Qp'-Qp+Pq'-P'q=0 (5]
and

(Pp'-P'p)/(Qq' - Q'q) = -N/M? (6]
But LHS [6] =

P'p'/Q'q"- (P/P'-p/p")/(Q/Q - a/q) (71

where, if you work them out, the num and denom of the RHT = ar - as + some proper
fraction. So [6] cannot be satisfied. Therefore there can be only one partial quotient
in the acyclic part of [1].

S Xq = Al 0y, e O, .

=a+1 1 1 . [8]
ap+ - +as+1/(1/(x1-a))
~x1=(p/(x1-a) +p)/(q(x1-a) +q')
~qxi’-(p'+q'a-q)xi- (p-ap) =0 91

~x1=(p'+qa-q)/2q' + (V((p' +q'a-q)? +4(p-apq)/2q [10]

So for x; = VN/M RHT num = 0 [11]
and q'> N/M? = (p - ap')q ] [12]
Cor. 1.

By [11]p'/q'+a=q/q’

5220 0, vy Os-1 = Os? Ols-1, .oey 011

S0s=2a Os1= 01 Os2 = 02 ... O = Ols-1

\/N/M =a: a1, Az, ... 0s, A1, 23, A1, ...

Cor. 2. Also from [11] q'?N/M?=pq'-p'(q-p")
~q?N/M?=p?=pq'-p'q=2t1

with upper/lower sign for even/odd convergent
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So our results for (P - VR)/Q; apply here to VN/M:
a;=a  x1=(P1+VR)/Qi=(0+VN)/M

az=a; xz2=(Pz+VR)/Qz= (L1 +VN)/M1

as=az  x3=(P3+VR)/Qs = (L2 + VN)/M:

As = 0s-1 Xs = (Ps + \/R)/Qs = (Ls-l + \/N)/Msl

as+1 = 2a

ds+2 = 01

% Ln=an1Mn1-Ln1 and whenn=1L,=aM [1]
Ln? + Mn-1Mn = N [2]
L; + MM; =N

(-1)"Ln = (N/M)QnQn-1 - Mpnpn-1 [3]
(-1)"Mn = Mpa’ - (N/M)qn® [4]

It follows that no Li > VN and no partial quotient or Mi > 2v'N. We know VL;Mi > 0 and
the Li,Mi form cycles collateral with the cycle of partial and total quotients. The Mi are
reciprocal and the Li are too after the first term (i.e. elements eqD from ends are equal.)

S0 if Lm=Lns1 Mm=Mn om =0t

then Lm-1 = Lnv2 Mm-1 = Mn+1 Otm-1 = Q1

And if m = n this becomes Ln = Ln+1 - Ln-1 = Ln+2 Mn-1 = Mn+1 Qtn-1 = Qinet

So if two consecutive Li are equal they are the middle terms in an even cycle and the
partial quotient and Li corresponding to M1,M2 will be the middle terms of their
respective odd cycles. And if Mn = Mn+1 and an = an+1 they too are the middle terms of
even cycles and the Ln+1 is then the middle term of its odd cycle. All of which amounts
to the reduction of any calculation of these elements by half, right?

Example
V8463 = 2 +-78 +18463 = 2 + 1 .
39 39 (78 +V/8463) /61

RHT =2 +-44 + /8463 = 2 + 1 .

61 (44 +V8463)/107
RHT=1+-63 +V/8463 = 1+ 1 .

107 (63 +V8463)/42
RHT =2 +-63 +1/8463 = 3 + 1 .

42 (63 +V8463)/42
RHT=1+...
Partial Quotients: 21 3 1 2 4
Li (rational dividends): 78 44 63 63 44 78
Mi (divisors): 39 61 107 42 107 61

\/84—63/39 =2:2,1,3,1,2,4, .r
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Diophantine Problems

We consider eqns or systems of eqns which are indeterminate and we seek only solns
in N. For eqns 1° of x,y we need consider only

ax+tby=c
where p(a,b) because if a,b not prime to each other, there are no solns in N. So let's
find all the integral solns in ax - by = c and then sort out those which are in N. We can
find a particular soln € Z of

ax-by=c [1]

Because p(a,b), CF a/b has itself as last convergent. Let penultimate convergent be
p/q then

aq-pb=1+#1 [2]
a(xcq) -b(#cp)=c [3]
X=#*cq y=z*cpisasoln [4]

Let x,y be any such soln € Z then from [1]-[3]

a(x- (cq)) - b(t- (¥cp)) = 0

(x- (¥cq))/(v - (xcp)) =b/a (5]

It€Z: (x - (2cq) =bt) A (y - (xcp) = at)

x=*cq+bt y=+cp+atisgeneralsoln [6]
where sign is taken as in [2]. Ifa/b > p/q upper sign in [2] and

x=cq+bt y=cp+at [6']
So there are infinite solns € Z. To get solns € N,

-cp/asts+oo

So there are infinite solns in N. Ifa/b <p/q, Sym.x =-cq + btand y = -cp + at and again
there are infinite solns in N. For our next entertainment we have

ax+by=c [7]

and there's always a soln in Z, for with the same p/q we have
(*cq)a+ (Fcp)b=c [8]

and x = *+cq, y = Fcp is a soln € Z and Sym. to the above all solns in Z are
x=#*cq-bt y=Fcp+at

To get solns in N leta/b > p/q then cp/a < cq/b and then with cp/a < t < cq/b we have
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x=cq-bt y=-cp+at [9]

And Sym. if a/b < p/q then x = -cq - bt y =cp + at. Here the number of solns cannot
exceed 1 + mod(cq/b - cp/a) or as (aq - pb) = 1 the solns in N cannot exceed 1 + c/ab.

Example

Req. solns in N for 8x + 13y = 159

8/13=0:1,1, 1,1, 2 with penultimate convergent 3/5

~8:5-133=1

8(795) + 13(-477) =159 or (+159-5)8 + (-159-3)13 =159

~ general soln: x=795-13t y=-477 +8t

where 795/13 2t 2 477/8 or t can only be 60 or 61

~ all solns in N are (15,3) and (2,11)

And for an interesting bit of thinking, you can reconcile those solns to the idea of
geometric points. If you are curious, you will find that this method above can be used

for a single equation of more than two variables like 3x + 2y + 3z = 8. Now let's
consider systems like

ax+by+cz=d [1]
a'x+by+cz=d [2]

where all coeffs are in Z. This system is equivalent to

-(ca')x + (bc)y = (dc") [3]
ax+by+cz=d [4]

where (ca') is our old friend ca' - c'a. Let gcm((ac'),(bc")) = 8. Then if (dc") !divby &
there are no solns in Z. Else soln takes form

x=X"+(bc")t/§ y=y"+ (ca)t/8 [5]
Where (x")y") is any soln of [3] in Z and t = Vt€Z. Sub [5] = [4]
cz-c(ab)t/8=d-ax" - by" [6]
where the coeff of tis in Z. Ifthereisasolnof [6]inZ=>z=7,t=t
(z-z)/(t-t) = (ab’)/8
If € = gcm(8,(ab')) then
z=z'+(ab)u/e t=t+d8u/e [7]
where u = Yu€Z and now we have
x=X+(bc)u/e y=y'+(ca)u/e z=z'+(ab)u/e [8]
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where x' =x" + (bc')t'/§ y' =y" + (ca)t'/8. In [8] let u = 0 then x=x', y=y', z=z' and
(x'y",z") is soln in Z of system [1],[2]. So [8] gives all the solns in Z of [1],[2] where
(x'y',z") is any particular soln: € = gcm((bc"),(ca"),(ab")) and u = Vu€Z. To get solns in
N, you simply limit u.

Example

3x+4y + 27z =34

3x+5y+21z=29

(bc)=-51 (ca’)=18 (ab)=3 €=3

One solnis (1,1,1) - general soln:x=1-17u y=1+6u z=1+u

Only soln inNis (1,1,1)

Now we can consider second degree Diophantine equations. If pn/qn is nth convergent
and Mn = (n+1)th rational divisor in v(C/D) then

Dpn’ - Cqn” = (-1)Mn [1]

~in Dx? - Cy? = +H where C,D,H € N and if C/D not a perfect square there are infinite
solns of RHS and the same holds for Dx* - Cy? = -H. A useful case has D = 1

x%-Cy? = tH
where C,HEN and C not a perfect square. Then we need *H as a (-1)"Mx in the
development of VC as a SCF for infinite solns. It follows that x? - Cy? = 1 where C is

positive and not a perfect square has infinite solns. If quotients in the period of VC are
even = 2s then (-1)*Mzs = 1 and with t = VtEN

pmz -Cqais = +1
and all solns are
X=Ppas Y =Q2s [A]

If quotients are odd in number = 2s-1 then (-1)*?Mus2 and (-1)**Mss.4 both equal
unity and solns are

X = Pats2t Y = (ats-2t [B]

Sym. with an odd number of quotients in the development of VC then x? - Cy? =-1has
infinite solns. In

x?-Cy? = tH [1]

we can limit ourselves to p(xy) ~ p(xy,H) and if H < VC then all solns of [1] are
provided by the convergents of VC as above. This means that if (p,q) is a soln then p/q
is a convergent of VC. You should be able to show
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p/q-VC<1/(q?(p/qVC+1)) [2]

p/q-VC<1/2¢* 3]
So all solns of

x*-Cy*=1 [4]

come from penultimate convergents in successive or alternate periods of VC and if the
number of quotients in the period of VC is even then

x*-Cy*=-1 [5]

has no integral soln. If odd, then solns are from penultimate convergents of the
alternate periods of VC. If (p,q) first soln of [4], then the general soln is

x+yVC=(p+qVQ)" [6]
x-yvC = (p - qvQ)"

and for [5]

x+yVC=(p+qVO)*™! [7]
x- yVC=(p - qvCO)*™*

Example

Solns € Z for x* - 13y* =1
V13=3:1,1,1,1,6, ..r
Taking the 10th convergent where p'q-pq'=+1:x=649 y =180
649%-13-180%=1
- general soln: x = ¥%((649 + 180v13)" + (649 - 180V13)")
y = 15((649 + 180V13)" - (649 - 180vV13)")/V13

And now ask yourself where you have seen that form before.

Consider x? - Cy? = =H where C not a perfect square, H pos. and >VC. I will give an
example which you may be able to completely follow. If not, let your curiosity lead
you on. Itis at this point the the theory of these solns begins to get hairy.

Example

Req. solns of x? - 15y% = 61

Let (Ki* - 15)/61 = H1 where K is just an arbitrary integer thing < %H - < 30
~Ki?=15+61H

So we need a perfect square in 15+ 61(n):n€ (0,1, 2, ..): Ki* <302 =900
And the only one is 625 . K; =25 H; =10

Because H; > V15 we must repeat the process

(Kz%-15)/10 =H, whereK; <5 K,>=5:2K,=5 Hp=1

Digital PDF copies released under Creative Commons 4.0-SA-BY-NC
Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



153

This gives us x,% - 15y,2 =1 soln (4,1)
= general soln of x* - 15y% = 61 is

Xz = Y((4 +V15)" + (4 -V15)"
y2=1/2V15 - ((4 + V15)"- (4 -V15)")
=X = (5% F 15y2)/1 y1=(5y2 + x2)/1
~x=(25%, ¥ 15y41)/10 y=(25y; ¥ x4)/10
~x =14%, F 45y, y = +3x; + 14y,

Here's a reason to fill in any blanks you have in understanding that example. We can
make the soln of the general second degree equation

ax? + 2hxy + by® + 2gx + 2fy + c=0

depend upon an eqn in the form of x? - Cy? = H and bring all this to bear on conics and
geometry. [ leave this to your curiosity.

General Continued Fractions

Our SCF and RCF have only unity in their numerators and positive integers in their
denominators. Let's go back to the general form of continued fractions where the
nums and denoms of the descending fractions are any elements of Z and denote such
CF as GCF. For

a;+by
a+bs
ag + -

we have as before

X;=a;+by bs
ap+az+- - [1]

which we denote as
a;: by/az bs/as, ...
With nums and denoms in Z, we could have
1:1/1,1/-1,1/-1, .r [A]
where the 3d convergentis 1 + 1/(1-1). So we need a way to deal with such anomalies

as arise without throwing out the baby with the bath water. We have two varieties of
GCF which we can explore:

a;: by/a,, bs/as, ... first class GCF
a;: by/-az bs/-as, ... second class GCF
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and what follow regards the first class but by replacing bi with -bi it will all hold for
the second class.

Prop. 5.1. If p1/q., p2/q2 successive convergents of [1] then

Pn = anpPn-1 - bnpn-Z [2]
Qn = angn-1 + bagn-2 [3]

with initial conditions po =1 pi=a; q;=1 qz=a,. These definitions of ps, qn are
used in all cases, especially those like [A] above which present difficulties. They define
the sense of a GCF in all cases where sense exists.

Cor. 1. In a 1st class GCF where pn,gn > 0 and an 2 1 then pn,qn monotonically increase
with n. This holds for 2d class GCF where an = 1 + bn. From all this, it does not follow
that Lpn = oo or that Lgn = o which you can prove using

Pn - Pn-1 = (an -1)pn-1 + bnpn-2 [4]

Cor.2. pn = an+ _bn _bn1 bz [5]
Pn1 an1+anz2+ - +ag
Qn = an+ _bn _bni bz [6]
(n-1 an-1+an-2+ - +az

Prop. 5.2. From [2],[3] pngn-1 - pn1gn = (-1)" []bi [2-n] [1]

Cor. 1. Convergents by [2],[3] are not necessarily in lowest terms.

Cor.2. pn-pni1 = (-1)"[Ibi[2-n [2]
qn  Qn1 QnQn-1

Cor.3.pn=a;+b, bsbs (-1)" [Tbi [2-n] 3]
qn qi19z + q2q3 + -+ qn-1Qn

Cor. 4. pugn-2 - pn-2n = (-1)"" an[bi [2-(n-1)] [4]
Do-poz = (1)" [Tbi [2-(n-1)] 5]
qn  Qn2 QnQn-2

Cor.5. pn - Pn1 + Dol - Puz = -bugn2 = -bngna . [6]
gn  (Qn1 gn1  (Qn2 qn anQn-1 + bnQgn-2

Cor. 6. If 1st class GCF convergents are odd/even in number they are monotonically
increasing/decreasing. Every odd/even convergent is less/greater than all successive
convergents. A 2d class GCF where Vn, an 2 1 + bn the convergents are greater than
zero and create an increasing series.

Our pn, gn belong to a class of rational ifns in ai,bi. Our pn is determined by

P2 =azp1 + bapo
ps =azpz + baps

Pn =anpn-1 + bnpn-Z

where initial stateispo =1 p; =a; and gn are similarly determined by
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g3 =asqz + bzqy
Qs =249z + bsqa

Qn = angn-1 + bnqn-2

and initial state is q; =1 gz = a,. Now, keep in mind that we have just described
pi(a;,bk) and qi(aj,bk) as functions. Our gn is the same fn of ai [2-n] and bi [3-n] as pn is
of ai [1-n], bi [2-n]. Euler created a notation for this which, so far as Chrystal takes us,
is not a method of calculation but a convenience of stating relations. Euler's notation:

pn=K| by .. bn]| [3] qn=K| bz, ...,bn| [4]
| di, dz, .., dn | | dz, d3, ..., dn |
where the vertical bars "|" should be a single large parentheses. The pn in this

notation are called continuants of order n. When all numerators are unity we have a
simple continuant

pn=K(ay, .., an)

where in all this the K(), with its big parens, is a functional notation like f() or ¢().
Ifr<s,

K(r,s)=K | br, .., bs | [5]
| ar, ar+1, .., @s |
K(sr)=K | bs ..br1 | [5]

|as, as-1, . ar |
K(rr)=ar = K(L1)=pi=a1 po=qu=1=K(

Prop. 5.3. A continuant of order n is an ifn of n° of its constituents:
P

K(l,n) = anK(l,n-1) + bnK(Im n-2)
K(n-1) = an-1K(1,n-2) + bn-1K(1,n-3)

[7]
K(, 1+1) = a1K(L1) + bi:1K()
K@D =a
KO=1
The law here is
K(1,n) = anK(1,n-1) + bnK(1,n-2) [8]

If you care to pursue this, Hindenburg created an algorithm to produce continuants.
But for simplicity's sake, we will only look at Euler's rule:

Write down the first term which is [Ja: [1-n]. To get the rest, omit from this product in
every possible way (combinatorics!) one or more pair of successive a; always
replacing the second of the pair by a b; of the same order.

Oh, yeah. Simple. Perhaps an example is in order:
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Example

Terms of K(1,4) 1st term = a;azazas
Omit a;ay, azas, azas replacing each with by, bs, b, and we get byaszas, aibzas, a;azba.
Omit two pair for b,b,. And that's all, folks.

Back to our Prop. 5.3.
Cor. 1. Values of a continuant are not altered by reversing their order:

K| by ..,bn]| = K| bn .., bz2]
| as, az, ..y an | | an, an-1, ..., a1 |

or K(I,m) = K(m,1)
In this notation, [1],[2] of Prop. 2 become:

K(1,n)K(2,n-1) = K(1,n-1)K(2,n) = (-1)" [T1«biKOQK(
K(1,n)k(2,n-2) = K(1,n-2)K(2,n) = (-1)" [Tz--0K(OK(n,n)

And these fall under

Thm. Euler's Continuant Theorem
K(L,n)K(,m) - K(1,m)K(,n) = (-1)™"" [Tr-menK(1,1-2)K(m+2,n)

Round about here, without a bunch of exercises, we're getting in over our heads. Let's
look at a couple of uses for the above and then move on to shallower waters. From
Euler's Theorem, these follow

K(a1,...apai...a1)% = K(ai,.., ai)* + K(ai,..., ai-1)>
K(ay, az, .., ai1, aj, ai-1, .., a1) = K(ay, .., ar1) (K(ay, ..., ai) + K(a, .., ai-2)

which allow him to show that every prime p of form 4A + 1 is the sum of two integer
squares.

Example

13=34+1

13/1=13;13/2 = 6+1/2; 13/3 = 4+1/3; 13/4 = 3+1/4; 13/5 = 2:1,1,2; 13/6 = 2+1/6
=~ 13 = K(13) = K(6,2) = K(4,3) = K(3,4) = K(2,1,1,2) = K(2,6)

213 =K(21,1,2) =K(2,1)2 = K(2)? = 3% + 22

When K(1,n) = anK(1,n-1) + bnK(1,n-2) = pn = anpn-1 + bnpn-2 can be solved as a finite
difference equation, we can derive an expression for our GCF where we are actually
finding the general term of a series.
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Example

Required: the nth convergentto F=1:1,1,1,1,...
We must solve pn = pn-1 + pn-2 Where pg=1andp, =1

~K(1,n) = pa = ((1 +V5)"" - (1-V5)"")/2"'V5 [1]
~ po = K(Ln) = RHS [1] =% (1+/5)™! - (1-/5)"™!

an K(@2n) ((1+V5)"-(1-V5)"/)2"V5) (1+V5)"-(1-V5)"

Here we also see that the number of different terms in a continuant order n is also:
RHS [1] = 1/2" - (Cns1j1 + Cns1i3 + Cuetjs + -+ )

(Combinatorics!)

Convergence of Infinite Continued Fractions

Here we are talking about L»pn/qn which can converge or oscillate or diverge to +oo.
Our1:1/1,1/-1,1/-1, 1/-1, ... oscillates between 1, 0, -c0 and our 1: 1/1, 1/1, 1/1, ...
converges to -% + %V5 -~ 1. 1/-(-% + %V5), 1/-1, 1/-1, 1/-1, ... diverges to -oo.
Divergence of a GCF is different from divergence of a series. Here, if we dropped the
second term, this last GCF would converge. In this analysis, we retain our restriction
of examining the same two classes of GCF.

From what we know of the two sequences forms, a 1st class GCF cannot ber divergent.
Lpm/gqm = A Lpzn-1/qzn1 = B, AB finite with A=2B. If A = B the CGF converges, else
oscillates. Further, a 1st class GCF is convergent if

1) Y.an-1-an/bn converges; or

2) L an1 an/bn > 0; or

3) Lan/bn> 0 A Yan diverges; or
4) L ans1bn / an-1bns > 1.

Thm. 5.7. If a first class GCF is put in the form d;: dy, ds, ...

d1 =ai, d2 = az/bz, d3 = a3b2/b3, d4 = a4b3/b4bz, ey dn = anbn-lbn-3---/bnbn»2... =

it converges if one of the two following series converges and oscillates if they both do.
Ddz+ds+d;+-+ 2)dy+dy+dg+ -

Examples
1) 1:12/2,22/2,3%/2,...
+ dzne1 = 2(2n-1)?(2n-3)?---3%12
(2n)?(2n-2)*--4222
By Stirling's Thm, as n—00 dzns1 2= 2(2n!)/2*"(n)*
= 2((V(2m2n)(2n/e)*) /(2% (2mn) (n/€)*"))? = 2/mn
~ Y.dzn+1 comparable to };1/n . GCF converges

2) 0:1/2,2/3,3/4, ...
L an-1an/bn = L(n-1)n/(n+1) = oo .. GCF converges
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There is no comprehensive law for convergence of a 2d class GCF. But we do have:
Thm. 5.8. If an infinite GCF has form
F = 0:bz/-az, b3/-as, ..., bn/-an, ...:

Vn, an > bn + 1 = GCF converges to the finite limit F < 1. If an ever greater than bn + 1,
F<1. If Vn, an = bn + 1 then

F=1/(1+bz+b2bz + -+ + [Jo-nbi + -

so that F equals/is less than unity as that denom is div/cnv. Note by this form, ¥bi > 0.
Cor. 1. If the bi are any quantity whatever, then the denom =

0:1/1, bz/-by+1, bs/-bs+1, .., bu/-ba+1

And we get a theorem of Euler's, who was a very busy man, by letting ui = ith term of
thedenom. «~ 1+uj+Uz+ - +Un=

0:1/1, uy/-1+u4, uz/-u;+uy, UsUz/-Uz+Us, ..., Un-3Un-1/-Un-24Un-1, Un-2Un/-Un-1Un, ...

Let's look at a few more useful ideas concerning GCF before we dive into number
theory. Here are two theorems by Lagrange:

Thm. 5.9. Vi, a;, bi [1-n] € N = 0:b,/a,, bs/as, .., bn/an converges to r € R-Q if after
some n >V, (an > bn+1) A (an = bn+1 only a finite number of times).

Thm. 5.10. With same aj,bi then 0: b,/-a,, bs/-as, ..., bn/-an converges to some r € R-Q
if after some n > v, (an > ba+1) A (an = ba+1 only a finite number of times).

Finally, let's convert the series u; + uy + uz + -+ + un+ - into its equivalent GCF of the
second class:

0:b1/a1, by/-az, ..., bn/-an [1]

Def. A GCF is equivalent to a series when its nth convergent equals the sum of the first
n terms of the series.

Since the convergents are given, we can leave the denoms qi arbitrary and let qo = 1.
For [1] we have

pn/Qn - pn-l/(ln-l = Hl-nbi/Qn-lQn [2]

qi1=ay (2= azqz'bz *** (n=an(n-1- an]n-Z [3]

P1/d1=b1/d [4]

Pn/Qn=ug+uz+ - (5]
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From [2],[5]:

(6]
Un = Hl-nbi/(]n-l(]n
Un-1 = [[1-m-1)bi/qn-2Qn-1
uz =b1bz/q:1q;
u; =bs1/q;
From [6] using successive pairs
by = qquy, bz = q2Uz/Uy, ..., bn = galin/qn-2Un-1 [7]
From [3],[7]
a; = qq, Az = qz2(Us+ Uz)/qquy, ..., an = qn(Un-1+Un) /qn-1Un-1 [8]
& Sn=Y1alli = qiut QU /Uy QnUn/qn-2Un-1
41 - qz(us+uz)/qius - -+ - gn(un-1+un)/gn-1unt [9]

If you are clever, you can see that we can factor our all the qi here and we are left with

Su=0:u1/1, (uz/u1)/-((us+uz)/us), (us/uz)/-((uz+us)/uz), ... [10]
=W _Uuz Wi Un-2Un [11]
1 - urtuz - Uu2+U3- -+ - Un-1+Un

And again that was brought to you by Euler. By giving ui different forms we can do
this:

2
ViX+ VoX2 + o + VX' = ViX Vo2X Vn1'X
1 - vi+VyX -+ - Vp1+VnX
2
X/Vy + X2 Vg + o + X fVn= X vi°x v22x Va1’
Vi - ViX+Vy - VoX+Vz -+ - VniX+Vn

And with all this mightiness, let's square the circle like Brouncker did:

If XE(-1/4,m/4) = tan'x =X - x3/3 + x°/5 - X7 /7 + -~
=x 1% 3% 5%
1 + 3-x% + 5-3x% + 7-5x% + -
~/4=1:12/2,3%/2, 5%/2, ..

which will square your circle if you use four of them.
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6. Number Theory

We had a decent introduction to number theory from De Morgan in DME. But we've
seen that Chrystal's viewpoint is often very different from De Morgan's. So let's take it
from the top.

Prop. 6.1. M,N,p,qr € N If M = pm+r N = qm+r then M,N are congruent modulus m,
denoted M=N(mod m) or M=N if m understood.

Cor. 1. If M=N(mod m) then M,N differ by a multiple of m, i.e. M = N + pm, p€Z

Cor. 2. If M=N and one has a factor of some neN then so does the other

OR from the opposite viewpoint, p(M,n) < p(N,n)

Prop. 6.2. For VmeN all integers can be arranged in m groups mod m, i.e. mod
0,1,2,...m-1 OR consecutive integers divided by m produce remainders which are a
cyclic perm of n integers 0 - (m-1)

Example

A perfect cube has the form of either 7p or 7p+1 (p prime)
Proof
VneN has form 7m, 7m+1, 7m+2, or 7m+3 mod 7
Also (7m#r)® = (7m)?  3(7m)%r + 3(7m)r? +
= (7*m? £ 21m°r + 3mr?)7 + r?
=M7 £13
~ 4 cases:
N3 = (7m)? = (7°m?)7
N3 =(7m+1)*=M7+1
N3 =(7m#2)*=M7+8=(M21)721
N®=(7m#3)*=(M+4)7F1 m

If that seemed fun, I really encourage you to get a text like Chrystal's in PDF and check
out the exercises in number theory. If you will get the basic ideas here into your head,
the exercises are very satisfying and actually fun. And they reveal a great deal about
the form of number.

Thm. 6.1. f(x) = po + p1X + p2X? + -+ + pnX", X=r (mod m) = f(x)=f(r) (mod m)
Proof
X=qm+r
(qm +1)" = (qm)" + Coj1(qm)™"r + -+ + Copn1(qm)r™* + 1"
= (@"m""+ Cap @™ 'm"™%r + - + Canrqr™ Ym +
=Mam + 1"

Sym. (qm +r)"" = Mpam + "

AX=qm+r= f(X) = po+ par + par? + -+ + par" + (pyMy + -+ + pnMn)m
=f(r)+ Mm
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Cor. 1. To test divby of f(x) by m for Vx€Z we need only test f(x) for x€{0,1,..,m-1)
Example

When is f(x) = x(x+1)(2x+1) divby 67
f(0) = 0; f(1) = 6; f(2) = 30; f(3) = 84; f(4) = 180; f(5) =330
All divby 6 - f(x) always divby 6

Cor. 2. f(qf(r) + r) is always divby f(r) as f(qf(r) +r) = Mf(r) + f(r) = (M+1)f(r)
Note: it follows from this that no ifn can produce only prime numbers.

Example

Show x*-1 divby 5 & p(x,5)

z€Z = 0,+1,+2 (mod 5)

f(0) =-1; f(1) = 0; f(2) = 15

0,15 divby 5 -1 !divby 5 - thm follows

As a sidebar, note that we can also use a previous idea to test f(x) for divby.
Let fn(x) be an n® ifn of x. Then,

fa(x+1) - (%) = po + pa(x+1) + - + pua(x+1)"™ + pu(x+1)"
-Po - pix- - prax™! - pnx" [1]

So x" disappears and [1] is (n-1)°. If we divide by m, we have
(fa(x+1) - fu(x))/m = fo-1(x)/m

Then, by inspection, if RHS divby m, LHS divby m. And if fn(0) divby m then fi(1) is too.
And if nothing is obvious at this point, we can do with fi.1 what we did with f, and
wash, rinse, repeat until divby is laid bare to inspection.

Example

f5(x) = x5 - x is always divby 5

Proof

fs(x+1) - f(x) = (x+1)° - (x+1) - x% + x = 5x*+ 10x®+ 10x? + 5x = M5
f5(1) = 0 = £5(2) - f5(1) = Mo5 = fs(2) = Mo5

Sym. f5(3) - f5(2) = M;5 - f5(3) = (Mo+ M;)5andsoon W

We know from DME that any composite (non-prime) number has a factor not greater
than its square root. It follows that:
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Prop. 6.2. The divisors of N = a®b’c’--- must have form a“b®c"--- where the power of
any factor, say o' is an integer in [0,a]. So the divisors of N are the terms of

(1+a+a+--+a%
x(1+b+b2+-~~+bﬁ)
x(l+c+c2+-+c")
X (1]

Cor. 1. Each of these terms has the form (a* - 1)/(a-1). So the sum of the divisors is

(aa+1_1)(b8+1_1"(cy+1_1)
(@-1)(b-1)(c-1) -

Cor. 2. And if in [1], we let a,b,c,... = 1 each term in the product is unity and the sum
becomes the number of divisors. So the number of divisors is (a+1)(8+1)(y+1)---
Cor. 3. And the number of ways the N can be expressed as two factors is

% (1 + (a+1)(B+1)-+) or Y(a+1)(B+1)--

as N is or is not a perfect square.
Cor. 4. The number of ways N can have two factors prime to each other is 2" where n
is the number of prime factors of a“ b? ¢, ...

Def. We use ¢@(N) to denote the number of integers, including 1, which are less than,
and prime to NEN (or, I suppose, Z).

Thm. 6.2. Euler's ¢(N) Theorem

IfN = a1™a:%a3™-an™ then @(N) = N(1 - 1/a1)(1 - 1/a2)(1 - an)

Proof

Let's find all the numbers that do share factors with N.

The multiples of ai < N are 1aj, 2aj, --- (N/ai)ai - these are N/ai in number

Sym. those of aiaj < N are laiaj, 2aiaj, ---, (N/aiaj)aia; -- N/aiaj in number and so on.
So consider

N/a1 + N/az + e

-N/ajaz - N/ajaz - N/ajas - -

+ N/ajazas + N/ajazas + -

-N/ajazazas - -

F e [2]

There are Cnj1 terms in the first line, Cnj2 (combinatorics!) in the second line, and so on.
Now consider every multiple of r factors a;a,as---ar < N. This will appear in the first
line Crj1 times, in the second line Crj2 times and (again) so on. So it appears

Cri1-Cr2+ Cr3- 2 Cyra FCr =1-(1-1) =1 time in [2]

Then every number without repetition or omission which has a factor in common with
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N appears one time in [2]. So [2] can be written
N-N(1-1/a1)(1-1/a2)(1-1/az)-+(1-1/an) [3]

Therefore numbers which don't share factors with N, and we call these "prime to N"
are N-[3]:

@(N) =N(1-1/a;)(1 - 1/az)(1- 1/as)-(1-1/an) W
Example
@(100): 100 = 2252 .. ¢(100) = 2252(1 - 1/2)(1 - 1/5) = 40
Thm. 6.3. M =PQAp(P,Q) = ¢(M) = ¢(P)¢(Q)
Proof

Stand on your head and prove it yourself.
Cor. 1. P,QR,S,... prime to each other = @(PQRS...) = @(P)@(Q)@(R)®(S)...

Thm. 6.4. All divisors of N € {di} [1-?] = Y¢@di=N [1]
Proof
Each di is a term in the product of [1] in Prop. 6.2.
cdizar™ae n o(d) = @™ ) = (@™ )@(az?)-- as Vai are primes
2 %di= (1+@(an) + @) + - + @(an)™)
x (1+@(az) + @(a:”) + - + @(az) ™) x - 2]

ea=a,"(1-1-1/a;) =a," - a,""
- each term in [2] has form = 1 + (a; - 1) + (a; % a;) + - + (a;" - a1 ) = a
~[2]=a;"a2* =N ®m (And all that without any combinatorics!)

al

Def. Given any fraction a/b, I(a/b) is the integral part of a/b or 0 if a/b is a proper
fraction.

Thm. 6.5. The highest power of prime p which divides m! exactly is I(m/p) + I(m/p?%)
+1(m/p?) + - until p" is max n: p" < m.

Proof

The numbers in 1,2,3,..,m divby p are 1p, 2p, 3p, ... kp where k max int: kp < M.
Sok=1I(m/p) Sym. for p? p>, ... As p is prime, the thm holds. ®

Examples

1) Highest power of 7 dividing 1000! exactly.
Repeatedly dividing 1000 and its integral remainders by 7 we get 142, 20, 2.

140 + 20 + 2 = 164 -~ 7' required.
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2) Required prime factors of 25!

Primes < 25 are

2 3 5 7 11 13 17 19 23 and successive quotients are
128 53 2 1 1 1 1

6 2 1

3

1 and these sum to
2210 6 3
- 251 = 2%2315%7%...

3) Required: highest power of 5 dividing 27-28:29---100
Ans. 5'® (Finally, an exercise! Bon chance!)

Thm. 6.6. Iff+g+h+--<m=m!/figh! €N

Proof

This is nothing but perms in combinatorics(!). Or you can chase down a proof that
uses the last theorem. Or make your own using the last theorem. You're a free agent
here. Actlike one.

Cor.1. Iff+g+h+--<mAnoneoff, g h, ... equal m (like it would?) then m!/flg!h!---
is divby m if m is prime.

Cor. 2. The product of r successive integers is divby r!

Here is a bit of a teaser. Fermat challenged Wallis and the English mathematicians
with this problem which in Chrystal's graduated problem set is number 9 out of 21.
So you definitely have the mojo for it. Find a cube the sum of whose divisors is a
square. This shows Fermat's dominion over the form of number with respect to the
ideas we have so far seen in this chapter.

Thm. 6.7. Given the AP: k, k + a, k + 23, ..., k + (m-1)a and dividing each by m: p(a,m),
the least remainders are a perm 0f 0,1,2,3,...,(m-1)
Proof
All remainders are different. Else

k+ra=pm+p k+sa=p'm+p

(r-s)a=(u-pu)m

(r-s)a/m=p-p' 3 because p(a,m) r,s <m - only m possible remainders B
Cor. 1. If remainders of k,a wrt m = k',a' remainders occur as k', k'+a’, k'+2a’, ..., k'+ra’
which last equals or exceeds m and must be reduced by m and a' added again for the
remainders.

Example

k=11 a=25m=7 ~ Sa=11,36,61,86,111, 136,161
~K'=4 a'=4 . remainders 4,4+4-7=1,5,5+4-7=2 ..0r4,1,5,2,6,3,0

Cor. 2. Beyond m terms, remainders repeat in the same order.

Cor. 3. The number of terms in the series of remainders prime to m is ¢(m)

Cor. 4. In the series of remainders 0,1,2,...,(m-1), let those prime to m be ry, ry, ..., I'n
where n = ¢(m) = the numbers k + r;a, kK + r,a, ... are all prime to m, where k= 0 or is
a multiple of m and p(m,a). And their remainders divided by m are a perm of ri
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Thm. 6.8. As with last theorem but !p(m,a), gcm(am) = gt a = ga' m = gm' =
remainders of k, k + a, .., k + (m-1)a wrt m recur in a shorter cycle of m'

Example

k=11 a=25 m=15
Sn=11,36,61,..g=5 a'=5 m'=3
a"=2 k"=11 ga"=10 ~remaindersare 11,6,1,11,6,1, ...

Cor. 1. If gcm(a,m') = g divides k exactly or k = 0 then the remainders of k, k + a, ... are
0g, 1g, 2g, ..., (m' - 1)g in a constant perm.

And from all this we derive

Thm. 6.9. Fermat's Theorem

If m is prime, p(a,n) = (am'l- 1) divby m

Proof

The proof in the text is about 15 short lines long and uses the necessary form of a, 23,
., (m-1)a. Give it a try if you are enjoying number theory. Or look it up. Or skip it.
Do what you like -- I'm not your mom.

Fermat's theorem can be restated as m prime, p(a,m) = (@™ - a) divby m. Then Euler
generalizes it as a;meN, p(am) = a®®™- 1 divby m. Euler also defines allied numbers
as: abm € N, ab = 1 (mod m) and he develops this idea by showing that from
1,2,3,..,(m-1) we can exhaust 2,3,..,(m-2) by combining them into allied pairs. And
this leads to

Thm. Wilson's Theorem
m prime = ((m - 1)! + 1) divby m
Cor. 1. m !prime = ((m - 1)! + 1) !divby m

Then Lagrange makes Fermat and Wilson special cases of:

Thm. Lagrange's Theorem
pprime A (x + 1)(x + 2)(x + 3)-(x + p- 1) = X"+ A;x" 2+ - + Ap2x + Ap1 = VA divby p.
Proof (combinatorics!)
(x + P)(RHS) = (x + 1)((x+1)""+ Ar(x+1)"%+ - + Apa(x+1) + Ap-1)
o pXPHpAXT 24 -+ pApax + pAp1) = (x+1)° - x7) + Ay ((x+1)P - ") + o
= PA1 = Cpp2 + Cp-111A
pAz = Cpj3 + Cp-111A1 + Cp211A;

p prime - Cp-11, Cp-2j1, Cp-3)1, ... ! divby p

~ VAidivbyp m

Cor.1. x=1=2-3-p=1+(Ag+ - +Ap2) +Ap1
& Ap1+1=((p-1)! +1) divby p (Wilson)
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Cor. 2. x° - x = X(x+1)--(x+p-1) - (1 + Ap1)x - (Arx"" + -+ + Ap2x?)
LHS is p consecutive integers and divby p
p prime - 1 + Ap-1 divby p
= p prime = x” - x divby p
(If p(x,p) then Fermat)

What follows will complete our look into number theory. The following is, to my mind,
a pure abstract algebra, as continuants were another such algebra. These are algebras,
not of computations, but of relations which extend our understanding of their subject.
If you will play with either a bit using concrete examples, you will see that this is so.
You will recall De Morgan's short demonstration of the partition of an integer from
DME. We partition them in two classes.

Class Notation Part's Relation
1st P(n|p|q) parts equal or unequal
2d Pu(n|p|q) parts unequal
Examples
P(n|p|q) number n, p parts, max part = q
P(n|p|<q) number n, p parts, all parts < q
Pu(n|<p|*¥) number n, p or fewer unequal parts, parts of any size
Pu(n|p|odd) number n, p parts, each an odd integer

P(n|*|1,2,23,2%,...)  number n, any number of parts, each part a power of 2

If you pursue this, you will find that partition of integers relate to series as developed
by the ubiquitous Euler and to invariant theory as developed by Sylvester (not the cat).
To give you an idea of their usage consider these, which will be Greek to most of those
who do not take a LHS they have dominion over and figure out how it relates to the
RHS below:

(1+zx)(1+zx%)-+(1+2x") = 1 + Y Pu(n|p|2q)z’x"
(1+zx)(1+zx2)-+(1+2zxY) /(1-z) = 1 + ¥ Pu(n|<p|2q)z"x"
(1+x)(1+x3)-+-(1+x7) = 1 + Y Pu(n|*|2q)x"
(1+zx)(1+zx%)- = 1 + Y Pu(n|p*)z°x"

(1+x)(1+x3)- = 1 + Y Pu(n]*|*)x"

Chrystal's chapters on generalized trigonometric series (which I am holding back for
Second Circle of Trigonometry) contain many theorems which can be directly deduced
from the above and similar identities. We can develop a formula for enumerating
partitions of n into any number of parts less than q and create a table of P(n|*|<q):

1/(1-x)(1-x%)-++(1-xY) = 1 + Y P(n|*|2q)x"

Multiply both sides by (1-x%) .- (take a deep breath ...)

1+ XP(n|*|=(q-1))x" = 1+ X(P(n|*|<q) - P(n-q|*|<q))x" where P(0[*|<q) =1
= for nzq, P(n|*|<q) = P(n|*|<(q-1)) + P(n-q|*|<q)

and if n<q, P(n|*|<q) = P(n|*|<(q-1))
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And we get this table:

n C
6p 7.8 910111213 14 15 16 17 18 190 20

a1l a1 1 1L 11 1 1 ‘I'1 1 ¥ 189
4( 4[5 5 6 6 7 7 8 8 9 9 10 10 11

[
co
-

1
T
]

8 lOE_ll 16 19 21 24 27 80 383 37 40 44
9|11 15 18|23 27 34 39 47 54 64 72 84 04 108
0|18 18 23 30|37 47 57 70 B84 101 119 141 164 192
1114 20 26 85 44]58 71 90 110 136 163 199 235 282
15° 21 28 88 49 65|82 105 131 164 201 248 300 364
22 20 40 52 70 I?n‘] 116 146 186 230 288 352 434
. 30 41 B4 73 94 125|157 201 252 318 398 488
42 55 75 07 128 164|212 267 340 423 530
56 76 99 131 169 71_9|m 855 445 560
F
B |E a a

e N N -
. umm‘
. ON e 0O
c Na e o
o
¥ -3

[y

Let me just hint at this table's construction, leaving its full understanding to your
curiosity. The table is symmetrical. So row 4 col 5 =6 =row 5 col 4. The first row is
P(1]*|=1), P(2]*|<1), ... which are all ones. Then, unless you are going to code this and
generate it digitally, you use a piece of paper in the form of abcd as shown. So to get
the 23 in row 4 col 10, we add the 14 on ab at row 6 col 7 to the 9 on row 4 col 6. So in
row 9 the 156 is 146+11. To find, using this table, a value of P(n|p|*) we have:

1+ YP(n|p|¥)x"z" = 1/(1-zx)(1-zx?)- = 1+ ¥x 2P /(1-x)(1-x*)-+(1-x")
~ ZP(lp[*)x" = Xx*/(1-x)(1-x%)+(1-x") = LP(n[*|sp)x""™®

~ P(n|p|*) = P(n-p|*|<p)

Sym. Pu(n|p|*) = P(n-%2p(p+1)|*|<p)

Examples

1) P(20|5]*) = P(15[*|<5) = 84
2) Pu(20]5]%) = P(5[*|<5) = 7

It follows that P(n|*|q) = P(n|q|*). And from this we derive

P(n|=p|<q) = P(n|=q|<p)
P(n-p|g-1|<p) = P(n-q|p-1|=q)
P(n|p|q) = P(n|q|p)

And by letting p—oco

P(n|<p|*) = P(n|*|<p)
P(n|p[*) = P(n[*|p)

Our faces are turning blue. Let's come up for air. Here we come to the end of our look
into Chrystal's massive two-volume doorstop of an algebra text. Apart from holding
back the three chapters of trigonometric series for a later book, I have entirely
skipped two chapters -- Interest (money stuff) and Probability (mortality tables stuff)
-- as the metaphysics of death and money are of no interest to me, the latter being
combinatorics with a false motive and the former being an unpleasant tedium.
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7. Theory of Equations

Equations are expressions of laws and the theory of equations reasons upon these
laws. We've already seen quite a bit of equation theory both in DME and in Chrystal's
text. With computers sparing us the hell of Horner's method and Galois apparently
closing off solns by radicals for eqns of fifth degree and up, the theory of equations has
been superceded by numerical analysis and algebraic geometry. I'm not trying to start
a fight here. But, after thirty years of programming, computers interest me not at all
and algebraic geometry relies upon what Wittgenstein called "amorphous
mathematics." I've had my say about amorphism in Limits of Meaning in Mathematics
which I leave to your curiosity.

But I am a very morphous guy. If Galois (bless his heart and curse those now white-
washed sepulchres which caused his untimely despair and suicide) says we can't use
soln by radicals, I say, "Fine. What else ya got?" Well, we have the form of number
and its basis is law. The law understood will unlock the roots of all equations. That's
how mathematics works. Let's see how far the law was brought into our
understanding up to the early 20th century when the theory of equations fell from
ecclesiastical grace.

The Form of Rational Functions

Recall De Morgan's proof in DME that, given a fn of form [f], x can be so large as to
make the first term, x", infinitely larger than the remaining terms and so small as to
make the term containing x* larger than all the preceding terms. Murphy reasons
interestingly upon this.

Prop. 7.1. Positive values may be assigned to x such that, for n>m, x" is greater than
any fn @x of form [f] m°.

Proof

m>n, x = Ax"+ Bx™ 4+ Cx™ %+ - + Px + Q

M =max € (AB,C,...P)

A Mx™ = Ax™, Mx™! 2 Bx™, .. & Mx™+ Mx™ 4+ Mx + Q = @x
(Now recall our algebraic forms)

& M-(x™11)/(x-1) 2 @x

x>1 =~ M(x™)/(x-1) 2@x

(Here's an interesting part)

A X (MX™)/(x-1) =X M/ (x-1)

As (x-1)orx—> o0 =>M/(x-1)>0

AXT A S 0

~x"™1 > M/(x-1) ~ x"> @x and infinitely so. m
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Practically speaking (in actual use) if we want x"
1/(n-m)

m-1

> M/(x-1) we can let these be

equal and thenx=1+M and any x greater than this x makes x" > @x.

Example

x3>7x%+ 6x+5
M=7 nnm=1 ~x28

As we work our way through Murphy's A Treatise on the Theory of Algebraical
Equations, 1 may indicate that [ have skipped some of his ideas which do not fit my
idea of the current place of equation theory in mathematics. But I could be wrong
about these and you can let your curiosity pursue those as well as any proofs I
abbreviate or elide.

Prop. 7.2. Sym. to above, positive values can be assigned to x so small as to make, if
n<m, x" < V¢x m°.

Murphy's proof is Sym. to Prop 7.1. and you also have De Morgan's from DME.

Prop.7.3. ¢, @", @", .., " 1st, 2d, 3d, ..., nth derivatives of ¢(x) =
@(x+h) = @(a) + @'(a)h + @"(@)h?/2! + @™ (a)h?/3! + -+ + @"(a)h"/n!
Murphy doesn't mention Taylor but we already know this as the more common form

of Taylor's Series in usage. I'm adding a corollary which you may have noticed already.
If not, work out any simple Taylor Series.

Cor.1. V¢, n final derivative, ¢"(a)h"/n! = h"
Def. We will denote "C between A and B" as C:|-(A,B) or did I already mention that?

Prop. 7.4. Vqfn of x produces a series of values which are nearer each other as the
values of x approach each other.

This is the fundamental argument for continuity which we've seen more than once.
Murphy proves it by means of Prop. 7.1. used recursively to show that if any term of

@(a+h) vanishes, the remaining terms maintain the proposition because, by the last
corollary, they can't all vanish.

Cor. 1. For real values, @(a)-|-(¢(a+h)+@(a), ¢(a-h)-¢(a))

We have seen in Chrystal how the idea of an ifn's maxima and minima follow from this
idea. And this same idea implies the following:

Prop. 7.5. A<C, f(x) ifn of x, f(a) = A, f(y) = C = (B-|-(A,C) = 3B-|-(awy): f(B) = B
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Prop. 7.6. Vqfn f(x) of odd degree n has a real root.

Proof

Ix = X" > f(x) - X" where x" is first term of f(x) [ Prop. 7.1]
f(a) = A

x=-y ~ y">ay" - by" %+ >0 [Prop. 7.1]

s ay™ L by < 0

y=P : f(-p)=-B

o 3y |-(@P): f(y) = 0 A 0-]-(A-B) [Prop.7.5] m

Cor. 1. If q is the constant term here of f(x) then y has the opposite sign of q.

Prop. 7.7. Vqfn(x) of even degree with a negative constant term has two real roots, a,b:
a<0<b.

Prop. 7.8. Eqns where constant term is very small wrt other coeffs have real roots.
Proof

Given such a @x, divide by the coeffof x = @x = -k +x +ax* + - =0

k <1/4(M+1) where M again max coeff = Jreal root < 1/2(M+1), sign opp k

k<02 @0)=-k<0=>3Ix<1l:@x=0.-k+a-(Ma?)/(1-a)=0

Solving this quadratic: a=1/2(M+1)- (1 + k- V(1 + 2k + k? - 4k(M+1)))

(4x(M+1) <1) A (radical term > V(k?+2K) > k)

~a<1/2(M+1) A a€R

~f(a)>0 f(0)<0 ~ 3IxeR:x:|-(0,a) = x:|-(0,1/2(M+1))

Sym. x>0, 3root -|-(0,-1/2(M+1) m

Prop. 7.9. 3x: f(x) max or min = f'(x) = 0

Proof

Assume minimum at f(a) -~ f(a) < f(a+h) A f(a) < f(a-h). Express the RHTs as Taylor
Series and they must have the same sign - f'(a) = 0. Sym. for max. &

Cor. 1. It follows that f "(a) has the same sign as these same two series.

~ f'(a@) > 0 = f(a) minimum A f'(a) < 0 = f(a) maximum

Cor. 2. No gfn of odd degree can have an absolute max or min. They have only relative
or local max or min.

Note that in all these propositions, it is generally true that if the proposition relies on,
say, @'x, but @'x = 0, then the proposition will still hold using ¢"x or whichever further
@" remains in existence.

Example

@x = x* + 5x

P'x=2x+5

@"x=2>0 - @xhas min but no max

Min from@'=2x+5=0 ~ x=-5/2 .. min @ (-5/2,-25/4)
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Prop. 7.10. Vqfn even® has absolute min.

Proof

ex=x"+ax""+ bx"2+ -+ M = max value of abs. value of coeffs
Then no x can reduce @x below min of -Mn, -M((n-l)M)“'1

n even - for +x, x> X" - M - (remaining terms)
1Yx<1=1+x+x%+-+x""'<n =~ @x>xn-Mn

x">0 ~ x€[-1,1] = @x>-Mn

2)x>1= x> X" X" e s x> X -nMx™
Min RHS where RHS' =0 .~ minatx=0orx=(n-1)M
The 2d gives x"'(x - nM) = -Mx"" = -M((n-1)M)"*

~ X E (-00,-1) A (1,00) = @x > -M((n-1)M)"" m

1

Example
@ex=x*+ax @'x=2x+a @"x=2 . abs.(and only) minatx=-a/2 - @x=-a’/4=y

It follows in general that x? + ax =y = x? + ax - y = 0 can have no real roots. The next
proposition returns us to the GCM and you can prove it for yourself.

Prop. 7.11. Take @x, ¢'x, Vy. Divide @x - y by ¢'x. Use Euclid's Algorithm to reach a fn
ind. of x = F(y) = real roots of F(y) = 0 are the max and min values of @x.

Examples

1) px=x*+ax @'x=2x+a
2(px -y) = 2x? + 2ax - 2y
2x+a)2x* +2ax- 2y (x
2x* + ax
(xa) ax-2y)2ax+a®(2
2ax - 4y
a’?+4y=0 -~ y=-a’/4 (Butyouknew that.)

2) px=x>-3a’x+b
@'x=3(x*-a%
"X = 6X
GCM of x*-a® and x-y
x-y)x*-a?(x+vy
x%-yx
yx-a
VX - 2
y? - a? which has two real roots - @x has one min and one max

The next proposition can easily be proved by expanding ¢ and ¢' in Taylor Series and
collecting the real and unreal (as "unreal” is shorter than "imaginary” by quite a bit)
parts. It is interesting that Murphy brings an x€C into play in a real qfn. He does this
more than once and I had thought to skip them. But the law of ifns must include
complex values and we are unlikely to find this law without venturing onto the
complex plane.
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It occurs to me that some hopeful, if naive, readers might think I have found this law,
the Key to All Polynomial Roots, and am leading up to it. Dream on. I am looking for
this law by leaving no tone unsterned. So let me give you this proposition and an
example and we'll turn some stones.

Prop. 7.12. f(a) min of gfn f(x) = for small h)k, f(a + h + ik) < f(a) where sign of h +/-
as first derivative " # 0 for x = a has same/contrary sign as f*"'(x). Sym. for f(a) when
max of f(x)

What appeals to me about this proposition and example is that, from an age when the
phrase "small hk" usually meant "as small as you please" which aggravated
Weierstrass into conniptions, we will see exact]y how small an h and a k.

Example

Diminish x3 - 2x? + x - 2 below its min

@'=3x*-4x+1 @"=6x-4

'=0@1,Y% @"(1)=2 ¢"(*3)=-2 -~ @(1) min

~x=1+h+ik @(x)=-2+ (h+ik)? + (h+ik)3
=-2+h%+h3-Kk*-3hk? +i(2h + 3h? - k?)

unreal part vanishes when 2h + 3h? = k?

by above, h is positive in ¢ =-2 + h? + h®- (2h + 3h?)(1 + 3h)

=-2-2h-8h?-8h*<f(1)=-2

If you play with this next idea, you can prove the proposition for yourself.

Prop. 7.13. Vqfn f(x), x = a, f and m-1 successive derivatives vanish = (x - a)" is a
factor of f(x).

Example
f(x) = x> - 5x% + 8x - 4 f(2)=0
f(x)=3x*-10x+8 f(2)=0
£(x) = 6x - 10 £(2) = 2

« (x - 2)%is a factor of f(x)
We can extend Prop. 7.12:

Prop. 7.14. A monotonically decreasing series of values can be infinitely produced by
substituting a series of y + iz for x in a qfn of even®.
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Example

@=x*-4x+6
©=4(x>-1)=0@x=1.min@ (1,3)
x=y+iz=>@=P+iQ
P=y*-6y’z3+z*-4y+6 Q=1z(4y*-4yz*-4)=0
Q' =4z(3y* - z%)
z = 1 = the two values of y are almost equal. To find exact equality, take
gem(3y?-z2,3y%-3yz>-3) to arrive at an F(z)
F(z)=4z°-27=0forz=v3/>V2=13=a
Then q is divby (y-a)? and quotient equated to zero gives a different y by
which P is further diminished.
When z = 10 here then Q = 40(y® - 100y - 4) ory = 10
+P=-4(10)*- 40-6 = -4036 and so on -- to o and beyond.

Prop. 7.15. Any algebraic function, degree n, has exactly n roots.

Murphy in his proof here assumes Gauss without mentioning him. Did you go out and
find a nice proof of Gauss's like I told you to? One important thing to keep in mind
with these roots is that if a + bi is a root, then so is a - bi.

Roots

Sturm's Theorem was used to find the number and type -- real or unreal -- of an ifn's
roots. Now we can do this with a graphing calculator. But that adds nothing to our
understanding of the form of number and its laws. Sturm had an insight into the
function's derivatives and into Euclid's algorithm. Let's see what we can learn.

Prop. 7.16. Sturm's Theorem

Sturm required the ifn of x to have no multiple roots. But that was shown to be
unnecessary. Take any ifn and its first derivative. Then use Euclid's algorithm as if
you were finding their GCM but with this difference: change the sign of each
remainder before dividing. Let's do an example to refer to throughout:

f(x) =x>-3x*-4x+13=0

f; =f(x) =3x*- 6x-4

fi(x) [2-...] are the successive re-signed remainders denoted the auxiliary fns

{f, fi [2-...]} denoted Sturm's fns

f2(x)=2x-5

fa(x) =1

qi [1-...] = successive quotients. Now here is the heart of what Sturm shows us:

f(x) = q1f1(x) - f2(x)
f1(x) = qaf2(x) - f3(x)
f2(x) = qaf3(x) - fa(x)

fm-Z(X) = Qm-lfm-l(X) - fm(X)
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Use the example to follow these inferences:

1) The last fi is either independent of x and cannot vanish if f(x),f;(x) have a common
measure and therefore f(x) has equal roots.

2) Two consecutive auxiliary fns cannot vanish simultaneously unless there are equal
roots and then all the following fi vanish.

3) When any fi vanishes, its adjacent fns have opposite signs. In the series above you
can see that if f; vanishes, f, = -f,.

4) No alteration of any fi happens unless x passes through a root of that fi When x
passes through a root of f(x) one change of sign is lost in the fi and this cannot happen
when x passes through a root of some fi. You can fiddle with the example to see how
this works.

Expand f and f; as Taylor Series for f(c+h) and f(c-h) where c is a root of f(x). When x
= c-h and h small enough, f has contrary sign to f; but with c+h, same sign. So when x
goes through c, Sturm's functions lose one change of sign. If you really grasp how this
works, just looking at Fourier's Theorem, coming up next, will show you how it fails
where Sturm succeeds. By this same method, when some fi has a root, it shares a sign
with one neighbor and is contrary to the other, so passing through some c;, no change
of sign is lost. Back to our example.

Note that if any fi cannot vanish, it fits Sturm's criterion for being the last fi and you
can stop dividing. Now Sturm was used to find roots. Take our sequence in the
example and let x = 0,1,2,3 and record the resulting signs:

f f1 f2 f3
0 + - - +
1 + - - +
2 + - - +
3 + + + +

For x = 0,1,2, there are two changes of sign. There are none for x = 3. So there are two
positive roots between 2 and 3. You could find them to any degree of approximation
by using ever more fine grains of x. Verify that there is one change of sign between -2
and -3 and then plug f into your graphing calculator. We can also use *oo to get the
number of roots:

f f1 f, f3

-0 - + - +

+00 + + + +
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But it's not as simple as change of sign, is it? When x = +oo, there are m changes and n-
m continuities. Here we have 0 changes and 3 continuities. With -oo these flip. So
when the coeff of the first terms of Sturm's fns are not all positive (which would be
zero changes), the excess of changes of -co over +co is n-2m. So there are n-2m real
roots and 2m imaginary, as you can deduce (with a bit of thought) from our last table.

Prop. 7.17. Fourier's Theorem
Vifn of X, Va,b: a < b. Sub a then b into f, f', f', ... = there cannot be more real roots of
f(x) = 0 than the number of changes of signs found in the two substitutions.

A normal text would now go into an analysis of Fourier. But examining Fourier after
Sturm is like analysing the earlier square stone wheel that preceded the round one.
Let's just look at Fourier's own example and you can see why Sturm is "da man".

f(x) = x° - 3x* - 24x% + 95x%% - 46x- 101 =0
f'(x) = 5x* - 12x° - 72x* + 190x - 46

f'(x) = 20x> - 36x% - 144x + 190

B(x) = 60x? - 72x - 144

f*(x) = 120x - 72

5(x) =120

X changes of sign
-10 5

-1 4

0 3

1 3

10 0

Therefore, all real roots between -10 and 10. One between -10 and -1. One between -
1 and 0. None between 0,1. And at least one between 1 and 10. But Fourier can't say
anything about the last two. Are they between 1 and 10? Are they imaginary? Sturm
only knows.

What I learned, working through Murphy, is the importance of ¢, ¢' and ¢". If you
will pay close attention to the part these play, from Sturm on, your effort will be
surprisingly rewarding.

Prop. 7.18. If the real roots of ¢x = 0, in descending order of magnitude, are subbed
into @'x, they will alternately produce positive and negative results or, for equal roots,
cause @' to vanish.

You can figure this one out as a little exercise. Let ¢x have real roots ab,c in
descending order and some unreal ones. Then ¢x = (x-a)P. Derive ¢' where P' comes
from P and we have ¢'x = (x-a)P' + P. Then sub a,b,c into these factors.. We can note
that if all of ¢'s roots are real then so are all of (¢")'s.
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Recall our sigma notation and how it was used with that symmetrical fn stuff.

Let ai [1-n] be roots of an n° eqn. Let Si [1-n] be the sums of the powers of these roots.
Let ai [1-n] be the sums of the roots themselves as taken in sigma notation by ones, by
twos, ... by n of them. A pattern arises here if we use them to equal nothing.

S1=Ya; a;=Xa; ~ S;-a;=0

Sz = 20(12
Buta;-S; # Y a,? as it includes all terms of form a, a, appearing twice
o a1-Sy = Yo% = 2Y s, 2a, = 23040,

B Sz - alsl + 232 =0

Sym. S3-a;S; +a,5S1-3a3=0

Then if m < n, we find

Sm-a;Sm-1+ a,Sm2- -+ £ am1S; F mam =0
and ifm>n

Sm-a;Sm-1+aSm2 -+ *anSmn=0

And that was Newton's theorem of the sums of the powers of the roots of an ifn of n°.
He could use those to find the coeffs of the ifn if the sums of the powers of the roots
were given (which begs the question: Given by whom?) and vice versa. We can get the
sums of the powers of the roots in the following way and, amazingly, we might
actually want to do so or [ wouldn't go on about it.

Prop. 7.19. Vvrifn f(x) of n°. Divide it by its first (highest) term and we have it in the
form:
f(x)=1+P=0
where P has only negative powers of x. Take its natural log
In(1+P)=P-P?/2+P3/3- - +P"/m -
Select the coeff of the term with x™ and the coeff of as many of the preceding
containing x". Their sum is S. Then -S-m is the sum of the mth powers of the roots.
Sym. by dividing by the last term, we take the coeff of x™ to get the sum of the inverse
powers of X to the mth.
Proof
f(x) = (x-0t1) (x-02) -+ (x-0n)
f(x)/x"=1+P = (1-ay/x)(1-az/x*)-+(1-an/x")
In(1 + P) =In(1-04/x) + In(1-az/x?) + -+ + In(1-0n/x")
=-qy/x-1/2-a,?/x* - 1/3-0,3/x% - -+ - 1/m-o, " /X"
- 0p/X - 1/2-05%/x% - 1/3-053 /%3 -+ - 1/meag" /X - e
=-(S1/x +1/2:S5/x* + 1/3:S3/x> + -+ + 1/m-Sm/x" -+ )
~-Sm/m is the coeff of x™ in In(1+P)
Sym. divide f(x) by last term which is -[Jai
f(x)=1+Q=[](1-x/ai) [1-n]
Sa=Y1/ai[1-n]
S2=Y1/a’ [1-n]

Sm=Y1/a" [1-n]
4 In(1+Q) = -(Sax + 1/2:Sax? + -+ + 1/m-Smx™ + ++-)
~ Sm/m coeff of X" = Sm=-Sm/m--m W
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If we know the sums of the powers of the roots (or choose such), we can turn this all
around the other way:

Prop. 7.20. Expand

1-S;h+S,2/21'h?-5,3/31:h3 + -+ to n+1 terms

1-S,/2-h? +S,2/1-2-2% - h* - S,%/1-2:3-23 - h® + - to terms equal integer above n/2
1-S53/3-h® + S52/1-2-33-h® - S53/1-2-3-:3%-h? --- to terms equal integer above n/3

1-Sa/nh"

Then in our ifn, the coeff am of X" + a;x" '+ a,x" >+ --- is the sum of the coeffs of h™ above.
And because In(1 + a;/x + ay/x* + =+ + an/X") = -S1/x - ¥S,/x* - ¥5S5/x> - - we can let
h=1/x=1+ash+ash?+ - +aph" = e"S;h - er-%S,h? - e7-14S3h3--

Examples
1) From all these ideas, find an

a;=-S; a;=5,%/1-2-S,/2 az=-S,3/3!+S,S,/2 andsoon
2) Form an eqn with roots: Si [1-(n-1)] =0 Sn=c

In this case the first n-1 series above have no powers of h
~a;=0a;=0an1=0 an=-Sn/n=-c/n
~X"-c¢/n =0 required.

We can manipulate the heck out of an eqns roots. And these transformations should
act as a hint concerning the laws governing roots.

T1 (transformation one) Increasing or decreasing the roots by a constant.

In what follows, if k > 0, we have x - k is, of course, x - k and the roots are decreased by
k. If k < 0 we have x - k as x - (-k) or x + k and the roots are increased by k. Given f(x)
we want y = x-k and so the required eqn is f(k+y) = 0 which expands as

f(k) + yf (k) + y?/21-f"(K) + -+ +y"/nl-f'(k) = 0

S IFF(X) = pox™ + pax™ ! + pox™2 + - + PoaX + Pn [A]

= f(k+y) = poy" + (p1 + npok)y™" + (P2 + (n-1)psk + n(n-1)/2! pok®)y™” + -~
+ (pr+ (n-r+1)prak + -+ + n(n-1)-+(n-r+1)/rl-pok)y" " + - + f(k) = 0

The use of this is the removal of terms in a transformed fn to facilitate the soln by
radicals. Above, if (p; + npgk) = 0 or k = -p;/np, we lose the second term.

Example
Lose the second term of x>- 6x* + 4x +5=0

p0=1 p1:—6 s k=2
o (y+2)3 - 6(y+2)% + 4(y+2) +5=0
2y -8y-3=0
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By observing the signs of successive derivatives in this, we see that when a term is
removed from an eqn with all real roots, the adjacent terms have contrary signs and,
conversely, if a term is missing in a fn and the "adjacent” terms have same sign there is
a pair of imaginary roots.

Another view of this: f(x) = x" - ax"" + bx"?- .. Putx = y + a/n. Here a is the sum of
the roots. The value of x in the most comprehensive state in which it is capable of
algebraic expression, consists of a term free from radical and of other terms affected
by them, this simple expression being required to give all the roots, can only do this by
varying its radical parts according to the different values of the roots of unity; the part
unaffected by any radical is therefore the same in all the roots. So that part is this a/n,

for the radical parts in summation must destroy themselves. Ify = x - a/n then values

of y have one term fewer than the values of x and which consists essentially of radicals.

So this y gives our function a simpler form.

T2 Multiplying the roots by a constant factor

Given any f(x) we can transform it so that its roots are multiplied by a constant factor.
Lety = kx then x = y/k and f(y/k) = 0 has roots altered by a factor of k. If in [A] above,
we put x = y/k and multiply by k" all that is necessary for the coeffs to be integers is
that for each term in the eqn, pik'y"" every prime factor in the denom of pr must occur
in at least as high a power in k". So if f(x) has roots € Q, under this condition the
transformation has roots € Z.

T3 An inversion of powers

Recall reciprocal eqns. If we put x = 1/y and multiply by y" then if f(x) is missing the
mth term from the beginning, f(1/y) is missing the mth term from the other end. So
combined with T1, we can remove the reciprocal term from simple, quadratic, cubic, ...
eqns.

Now if y = 1/x, in a reciprocal eqn, if o,B,y are roots then so are 1/a,1/8,1/y. If roots
are odd in number, one root must be either its own reciprocal or +1 and can be
factored out. Then lety =x + 1/x and reduce the dimensions by half.

Example

6x* +35x> + 62x* +35x + 6= 0
5 6(x*+1/x%) +35(x+1/x) +62=0and nowletx + 1/x =y
~ 6(y?-2) + 35y + 62 =0 wheny =-5/2,-10/3
= from first value when x* + 5/2x+1=0orx=-2,-1/2
and then from second, x% + 10/3x+1=00rx=-3,-1/3

Usefulness in mathematics is nice, as we see in these examples. But stopping at
usefulness prevents the investigation of underlying law. Whatever we learn of
transformation of roots must be applied synergistically to the revelation of law.
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T4 Roots as mth powers of roots of given eqn
o,B,Y,... roots of f(x) = x" - ax"" + bx" 2+ . = 0. o”,B",Y",... transformed roots. S,,S,,...
sums of powers of roots of f and 64,05,... the same sums for the transformed eqn. Then
01 =Sm, 02 =Sam, O3 = S3m, .... Then if the transformed eqn is

f(y) =y" - Ay"" + By"* - Cy" + -

the A,B,C,... can be found by Newton's formula of sums of powers of roots above. Since
A = Sm and a real root of f(y) is the mth power of a root of f(x) and the second term
divided by n is the rational part of the general formula for the roots, then Sm/n is the
rational part of the mth power of any root. And this part is available to us in any eqn.
We can go at all this in reverse.

Examples

1) a + p* general root of x> -ax + b =0

Rational part of a + % = a, of (a+ p*)%=a? + B
Si=a S,=a?+2b

~a=a/2 a*+B=(a%2b)/2 . B=a%/4-b

2) o'+ 61/3 general root of x> + ax - b
If «'”? irreducible, so is a*/* - rational part of o'+ 61/3 is 2(0([3)1/3 ~ aff perfect cube
Sp=-2a ~ rational part=S,/3 -~ (0([3)1/3 =-a/3

Rational part of ( o3+ 61/3 )?is a+P since 30(2/331/3 = 3(0([3)1/30(1/3 €R-Qas (aB)1/3EQ
S3+aS;-3b=0 =~ S3=3b ~ a+ff=b

~af=-a%/27-a+B=b

So when (0([3]1/3 €EQapB=b/2+ V(b?/4 +a3/27) where a gets upper sign and 3 lower

TS5 Roots as fns of given fn's roots

Given f(x) with roots a,f,y,... and some fn F(x), we want f(y) with roots F(a),F(B),...
Eliminate x between eqns f(x) = 0 and y - F(x) = 0 using Euclid's Algorithm and the eqn
iny, independent of X, is the required eqn.

OR

Let F,F',F",... = 0 then for x = 0, F(x) = F(0) + F'(0)x + F"(0)x?/2! + ---

Then, again with the same Si and oi

o1 =nF(0) + F'(0)S; + F"(0)Sz/2! + -

02 =n(F(0))? + 2F(0)F'(0)Sy + ((F'(0))* + F(0)F'(0))Sz + -~

and we can use these with Prop. 7.20 to calculate the coeffs of the transformation.
Here if the original and the transformed eqns have the same coeff, they have the same
roots. So for every real root o there is a root F(a). And if degree is odd, one root is the
soln of F(a) - a = 0 found by Euclid's Algorithm on f(x), F(x) - x. Factor this out, letz =
F(x)+x and the transformed eqn's degree is reduced by half.
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T6 Roots as squares of differences of roots

Here's an idea that will come back to haunt us. Let's introduce it using a simple cubic
example. This can be done with eqns of any degree, which becomes geometrically
hairier as you jack up the degree. Let's transform

x®+qx+r=0 [1]

(note the missing 2d term) with roots a,b,c, into another eqn whose roots are the
squares of the differences of these. We know:

a+b+c=0 ab+bc+ca=q abc=-r -~ a?+b?+c*=-2q

The required roots are (a-b)?, (b-c)?, (c-a)?
(a-b)*=a?-2ab +b?
=a?+b%+c*-2ab-c?
=a%+b?+c?- 2abc/c - ¢
=-2q+2r/c-c? [2]
~wheny=1andx=c=y-=(a-b)? Sym. for (b-c)? (c-a)*
So we eliminate x in [1],[2]
“x3+qx+r=0
x}(2q+y)x-2r=0

(q+y)x-3r=0
~x=3r/(q+y) [3]
Sub [3] = [1] = y® + 6qy? + 9q%y + 27r* + 4q> = 0 [4]

% 27r* +4q®> 0= [4] has areal root > 0 .. [1] has two i-roots
27r? + 4q® = 0 = [4] has one root = 0 .- [1] has two equal roots

Now let's do the same thing with
B +px?+qx+r [5]
x=x'-p/3 = (x'-p/3)*+p(x'-p/3)* +q(x'-p/3) +r=0
Or, from T1,
x3+qx +r'=0 [6]
q'=q-p?/3 r'=2p°/27-pq/3+r
Each root of [2] exceeds the corresponding root of [5] by p/3
- the squares of the differences of the roots of [6] are the same as the squares of the
differences of the same in [1]. So by the first T6 example the required eqn is
y3+6q'y?+9q2y +27r'2+4q% =0
which is

v +2(3q-p?)y? + (3q-p*)y + [(2p>-9pq+27r)*+4(39-p*)®]/27 = 0 [7]
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If a,b,c are roots of [1], we have

(a-b)? + (b-c)? + (c-a)* = -2(3q - p?)
(a-b)?(b-c)* + (b-c)*(c-a)* + (c-a)*(a-b)* = (3q - p*)*
(a-b)*(b-c)*(c-a)® = -1/27 [(2p® - 9pq + 27r)* + 4(3q - p*)°]

Those last two (and assorted other bits) were from Todhunter's 7heory of Fquations
(1880). The Murphy text (1839) was Todhunter's go-to book for some of these ideas.
Todhunter also recommended, in a sly way, reading Hargreave, which we will get to
after Murphy. Murphy approaches this squares of diffs idea in a more general way.
Given [5] for an eqn of any degree, we are to provide the final constant term of its [7].

@x =0, n° with roots a,f,y,...
9% = (1B () + ((R-) )+ + (x-e) (x-B) (x-8)
~ @'(a) = (a-B) (a-y) (a-8)---

¢(B) = (B-a)(B-y)(B-8)-

and so on
2 @' (B)@' () = -1""2 (a-B)? (ay)2(B-y)*

and this is the required final term. This product is a sym. fn of the roots. So it can be
expressed by means of the coeffs of the given eqn and also by ¢'x in the following way:

Roots @'x are a4, B1, Y1, -

S @'X = n(X-00) (X-B1) (X-y1) -+

= @'('(B)e'(v)-+ = n"(a- ota) (B - x) (v - ca) (et - B1) (B - B1)(B - ya)--
(- ax)(B - o) (y - aa) = (-1)"(as)

(a-B)(B-BIB-v1)=-(-1)"¢(B1)

-+ which all leads to
@'(0)¢' (B (V) = n"@(a) (B P(y1)

Cubics and Quartics

We go now to cubics and quartics and see even more of how the form of number is
revealed by ¢' and ¢". In order that an eqn have two equal roots, a certain relation of
the coeffs is necessary. And this is that the last term in, for example, [1] above, that
the last term of [4] above equals 0 as Todhunter just told us.

So for ¢@x = 0 to have two equal roots, all roots being a,B,y,.., we must have
@' ()o'(B)@'(y)+- = 0. And if we call the roots of @'x = 0 a',8',y,..., this is the same as
@(a)o(B)@(Y):- = 0, which, for computation, has fewer factors. A quadratic example
of this is too easy, even for lazy people like me. Let's do a cubic so I won't be accused
of always being lazy.
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Example

Condition for a cubic to have two equal roots.

@x = x>+ ax*+ bx + ¢ @'x=3x*+2ax+b
or (x*+2a/3)(x +b/3) = (x- a')(x - B') as above

We must have

(' + aa’® + bat' + ¢)(B? +ap'2 + b’ +¢) = 0
- (xl3Bl3 + a(X'ZB'Z((X'+B') + balBl(a12+BlZ) + C((X'3+B'3) + aZaIZBIZ + ab(X'B'((X'+B') +
ac(a'?+B'?) + b2a'B' + be(a'+p') + ¢ =0

Putb/3 for a'B’, collect the terms that multiply the same sums of powers of a'f' =

(10b3/27 + a%h?/9 + ¢?) + (4ab2/9 + bc) (' +B') +
(b?/3 + ac)(a?+B") + c(a®+p"*) = 0 [5]

where o'+b' =-2a/3 a'?+f'? =4a%/9-2b/3 o’3+p"=-8a%/27 + 2ab/3
Sub these — [5] and the required condition is

c? + 2ac/27-(2a% - 9b) + b?/27-(4b-a%) =0 [6]

When c = 0, [4] = x(x* + ax + b) = 0 and then [6] = b?(4b - a?) = 0, the RHT being the
condition that a quadratic eqn has equal roots. (I slipped that in lazily.) And ifa =0
then [6] = c® + 4b?/27 = 0.

This idea we have been playing with provides a general method, using summation and
series of natural logs, to eliminate x between @x +y = 0 and F(x) when @,F ifns. Ileave
this to your curiosity because it is lengthy and if you were not curious, you couldn't
stand to read it anyway.

Murphy next treats of solns of cubic eqns. But this is really the study of solns by
radicals which only works for eqns of degree less than 5, as we all know by now. This
method of soln provide us with the cubic (and quartic) equivalent of

x = (-b £V(b? - 4ac)/2a

and if you wish to see these forms derived, knowing the method deadends at degree
four, go for it. Here let us see what this dead-ended method says about the form of
number. Back in DME, we learned that x*> - 1 = 0 is x> = 1 and its roots are the cubic
roots of unity: 1, ®, ?* (these being short-hand for the numerical values). Then VKeR,
if x3 = k, roots are 1-k"/?, wk'?, w2k"”* and this works for VneN, x" = k.

The soln by radicals used T1 above to remove the second term of a cubic. So all cubics
were reduced to x* + ax + b. Here x is no longer a simple cube root. it is the sum of
two cube roots or

X= p1/3 + q1/3
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And by looking at x in this way, we get

3= p+ 3p2/3q1/3 + 3p1/3q2/3 +q
= (p+a) +3(pa) "*(p"*+ ')
This also gives us
ax+b=b+a(p”*+q"?

(p+q+b)+(3(pa)*+a)(p*+q"*) =0

Here we have two variables p,q. So we can force a zero by requiring, as a second eqn
in this system, that

(pq)"°=-a/3

You get where that came from, right? So p and q can be determined by

p+tq= -b
pq =-a/27

This is equivalent to

p*+2pq+q*=b?
4pq =-4a%/27

and we end up with
p,q =b/2 +V(b?/4 + a®/27) where p has upper sign and q lower.

We can then use this p and q to say x = p1/3+ ql/3 and then get an arithmetical value.
And we compute on x from that, factor it out of the cubic to get a quadratic, which any
high-school student can solve. Due to our forcing fn, our three roots end up being:

X, = p1/3+ q1/3 Xz = u)pl/3+ 002q1/3 X3 = u)zpl/3+ u)ql/s [7]

Two things strike me as fortuitous in all this. One, that x happens to be the sum of two
cube roots, and two, that the forcing of the RHT to zero suffices to put us in a place
where we only need to put p+q = -b. "Fortuitous” is perhaps not the right word but, in
terms of solutions, it is close. Let's look closer. We determined above that

b?/4+a%/27=0
means that a cubic has two equal roots. So then
p=q=b/2=vV(a%/27) ~ x.=2V(-a/3) xz=x3=-V(a/3)
A few remarks. From [7] X1 + Xz + X3 = (1 + w + 0?) (P1/3+ q1/3)
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But RHS,LHT =0 ~ x; +X, +x3=0
By multiplying pairs of roots we derive:

X1Xz + X1X3 + XoX3 = 3(w + (1)2)]31/3(]1/3 = '3(pq)1/3

confirming (pq)l/3 =-a/3. Then

XiXzXa= p + (1+ 0 + 0} (p7°q "+ p*q”) +q=p+q

Thus far the form of number. Mathematicians being what the are have pushed all this
so far that for any x® + ax? + bx + ¢ you can get an actual x by plugging things into a
formula that fills four lines in a text like Murphy's. They've got one for quartics, too.
Very handy if you need an actual x. Not inherently interesting otherwise. Murphy's
examination of the quartic shows Simpson's and Euler's methods, which are in fact
algebraically interesting. But overall his exposition is confined to this dead-ended
soln by radicals and extends the above cubic observations of roots and such to the
quartic.

But for both cubics and quartics with equal roots, he has an approach to solution that
uses @ and ¢' which we should look at before we go on. We will look at the cubic
version which is more conducive to laziness. Let @x, 3° have two equal roots.

@=x>+ax’*+bx+c=0
@' =3x*+2ax+b=0

Eliminate x and arrange in powers of ¢, and we have, in his notation:
[@,@'] = c* + 2ac/27-(2a® - 9b) + b?/27(4b-a%) = 0

If we compare [¢,¢'] to the quantity under the Vin the elided long general soln of ¢,
the latter is “%[@,¢'] and you now have a reason to look into that tediously long
general soln. We will have quite a bit of investigation into the v which appears in
solutions. So do go look it up. Any algebra text but this one will do.

Now let ¢ have three equal roots. Then its constant term is a perfect cube and x = -a/3.

Here, everything under the big 3V in the general soln vanishes and the additional
necessary condition for three equal roots, ¢" being 6x + 2a, we have the condition of

[9.9"]=0as:
[@,@'] =c-ab/3 -2a%/27

where the highest power of c is unity. Here, that bit under the v is %[q,¢'] and what
we have in this case is

x=-a/3+ (%le.0"+ %ile.eN"* + (%le.e"] - Bl
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Further, if the roots are o,f,y, the existence of @ =0 A @' =0is ¢'(a)@'(B)¢'(y) =0 and
the coeff of ¢? = (aBy)? here is unity

[0.0'] =1/27 @' (o' (B)¢'(v)
[0.0"]=¢"(c)/6- ¢"(B)/6 - @"(v)/6

@'(a) = (a-B)(-y) and Sym. for the other two roots.

(@] =-1/27 [(a-B) (B-Y) (y-e)]*

Further @"(x)/6 =x+a/3 =x - (a+f+y)/3

[0.0"=1/27 (2a-B-v)(2B- a-Y)(2y-a-P)
Sym. for all this with a quadratic

@=x*+ax+b
@'=2x+a

Eliminate x so that the highest power of b is unity

[@.@']=b-a%/4
x=-a/2 +V-[@,¢']
[e@=@"(@/2-¢'(B)/2=-(B-)?

If any of this is suggestive to you, Murphy pursues all of these ideas for cubics into
quartics. The volume of algebraic computation increases by about a factor of three
when you go from cubic to quartic. So I leave these expansions to your curiosity and
we can be computationally grateful that soln by radicals is not applicable to quintics
and above. I doubt if a supercomputer could, if it were possible, solve much more than
a 19° eqn by radicals. Computation is clearly not the point in mathematics.

Roots of Unity

Prop. 7.21. With two binomial eqns x" = 1, yb = 1 and p(a,b) = Unity is the only
common root.

Proof

p(ab) > 3IABEZ:aA-bB=1%1
ca=1=x=1Ax=12x"=1

aA-bB
=1
~a=1"=1isthe only possible common root B

~ if a is common root = by division o
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Prop. 7.22. a1 is root of x"= 1, m prime, ¥p-|-(1,m) = o also root fo x"= 1
Proof
a"=1-.a""=1"=1 = a’isaroot
p.q <m = o, a’ roots
Elseg<spAoaP=a'=a"P=1
~ aroot of y*P= 1< because q<p - p(q,m) ®

Cor. 1. m-1 quantities o, a?, o, ..., o™ are roots of x™ = 1 and, with unity, these are all
the roots.

Cor. 2. m odd, unity the only real root; m even *1 only real roots

This is a good place to recall, from DME, that the roots of unity x™ = 1 are the points on
the plane around the origin forming a regular m-gon. This allows you to picture the
truth of Cor. 2.

Prop. 7.23. m prime and root of "= 1 = Vqfn of ¢a is reducible to form

A+Ba+Ca®+--+Pa™
Proof
1) If ifn terms of higher power than m-1, it is reducible, i.e. if a"= 1 = a™"'= a and so on.
2) If ¢ has form F(a)/@(a) where F,@ ifn this is equiv to

Fa)p(a)p(a))e@™") / e(1)e(a)e(a’)-¢@@"")

where denom is sym. fn of roots of ™= 1 and is numerical so it becomes an ifn
~ by part 1) it is reducible.
3) If ¢ qfn we can reduce to ifn. &

Note that the sum of the roots or their similar powers is always zero when index
!divby m and sum equals m if index divby m. Also, take the time to grasp the
significance of a fn being a sym. fn of the roots of an eqn. This idea will be built upon.

a+b+cte

Prop. 7.24. ab,c,... prime = roots of x =1 are terms of
(Lrara’s o+ @Y (LrBrps oo+ B (Layry™s oo 4y )

where a is a root of x’= 1 and so forth.
Cor. 1. This holds if a,b,c,... are powers of prime numbers.

If p(p,a) we know that "l 1is divby p from Fermat. Further (q < p-1) A (a"- 1 divby p)
= p - 1 divby q. Ifa causes no such numbers as q to exist then a is a primitive root of p.

P a=prim.root
3 2
5 2,3
7 3,5
11 2,6,7,8
and so on
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Thm. 7.1. a = primitive root of p = dividing a, a% a5, ..., a”? by p leaves different
remainders.
Proof
Else a™, a™ have same remainder (m > m’)
m m' 3.
~a -a divbyp
L a1 divby p and p(am',p) 3 because a is not some remainder=primitive root ®

Prop. 7.25. aroot of =1, « € C-R, p prime, o primitive root of p = all roots are

@@ @ @D
Proof

Let o be the index of any element in this series.

Divide o™ by p. Let this quotient be ¢, remainder r.

L a"=cptr

aa®M= (o) = o

By abover € {1,2,3,...,(p-1)} - series reordered is 1, a, az, . ot

= These are all the roots. B Note that here o’ = a.

With this form of prime numbers nailed down, Euler, Lagrange, and Gauss pursued
these ideas into functions. To follow them, we will actually need this next weird thing.

ar(p-2)
o

. -1 .
From x°= 1, we have its roots a, o ..., as above and from y" = 1, we have its

roots 1, w, w?, ..., "% where these are its roots of unity. And (weirdly, but you'll see
why in a minute) we want the sum of these terms' products:

V=la+wa+oa® o+ o 2o
Now V*'is a fn of «, a ..., which does not change if we swap a“ for a (or any similar
adjacent swap -- think substitution group). Sub a“ for « and V becomes V1. Then o =
oo™ . VP = VP So for any swap of adjacent terms we get this same kind of
result where V** = V", And if » should have a power greater than p-2, we can
depress it as w”'= 1, w’= w, and so on. So if V"! has form A1 + wAz + 0%A3 + - + @
ZAp—l then because VP! never changes, neither do the A..

If we express Ai in terms of o™

A(p-2
A1 =a1+bia + cia®+ - + pra® ®?

Sub a” for
ar(p-1)

"2
Ar=a1+bia" + ™ + - + prat

~bi=c,c1=dy, ..p1=bs
w Ar=ai+bi(a+ o+ a7+ e+ PP
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Here ai is independent of o and b1 is any coeff we choose. So these are known. And
l+a+a’++a” =0 ~ Ar=ai-b1 Arz=az-bz Az =... SoV""is completely known
and we can derive Vi. Because p-1 is not prime, we can use its factors to reduce the
roots of unity to get V1. Let's show this V stuff in use. For some prime p, we want all
the roots of x” = 1. Then

-1
1, w1, W2, ..., wp-2 are the roots of y*~ = 1

Vo=a+a®+a? + -+ a¥P?

A
2a2+

2 ahp2
Vi=a+wia® +wi‘a Lot

<o+ 017l

2 a2 -2 _a’p-2
Vz=a+ wza” + w2 o™ <+ -+ 02" “a® P

Vot = o + 0p20” + wp2°0™ 2 + - + p2” 2P
Vo =-1. V; and V; are derived from V; by subbing w, or w; for w;. And calculating V,
as above determines the others.

Vo+Vi+Vy+ -+ Vp2=(p-Da
Vo + 01"V + 01"V, + - + 01" 'Vpz = (p-1)a”

W) -2. -2 "2
Vo + 01"V + 017V, + -+ + 01" Vp2 = (p-1)a”

All of this leads to calculating the numerical value of roots. Applying it to x° = 1:
4a=-1+5 + W(-15+20i) + *V(-15-20i)

The rational part of the roots of an eqn is the coeff of the second term divided by the
degree. Here (x° - 1)/(x - 1) has roots o, o?, o, a* and for

X+ +xt+x+1=0

the rational part of the roots is -1/4. We can simplify the above, thanks to Lagrange
and we will go into his work in order to pursue this a little further. Because p is prime,
p-1is compound. Let p-1 equal c-b with ¢,b primes. Let w#1 be root of z°= 1 then w is
a root of yp'1= 1. Then V is composed of these next b terms where powers of w occur
in the same order:

UOZ(X‘F(XLX c+(xu 2c+“‘+au (b-1)c+1

a atc+l ar2c+l
U= +a +a ot

a2 (@2e | cat(bT)er2

Qe+ 2
"2
U,=a" "+

AQc-
1 0(2C1+”'

Ac- Ap-2
Uct=a+a“ "+« P

In this, V becomes Ug + wU; + w?Uy + -+ + ©“'Uc1 and V€ becomes our unchanging fn.
Let o' be a root of u® = 1 then we have

2 a"2c+

A - A(b-
U=a+u)'a“°+wo( .blaa(bl)c

+w
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and u® is like our earlier V! for getting values of q, "¢ and so on.
Example

xX'=1=x°-1=0
p-1=4 ~c=2,b=2 w,w roots of y? =1 (alsoy*=1)
The primitive root for 5 is 2 (you can always use the first one if there are more)
ais aroot of x* = 1.
s V=a+wd +o’c?? + 0’d®?
= (o +a*) + w(e® +a®)

=Up + wU;
V2 = (Ug? + Us?) + 20U U,
Up=a+a* Up?=a?+ad+2
Up=a?+a Ul=a*+a+2

2Up2+ U2 =4 +a+a®+a®+a*=3
UU; = +a+at+a?=-1
~V2=3-2w
Letw=-1
cVoza+ o+ +a??=-1=Up+ U,
Vi=a+wa?+ 0+ =v5=U,-U,
= 2Ug=-1+v5 2U; =-1-v5
Now we do the U = a + w'o*"? where ' = @ = -1
U2=(a+wa?)?=a?+w?d+2w
o? + o = Uy = %(-1-V5) 20' = -2
2 U2=1(-5V-5) « a-at=V(%(-5-V5)) a+at=%(-1+5)

That's the sort of thing Lagrange developed this for. Again, as with VP etc,, we have
an algebraic method for determining the numerical value of roots for x* = 1. This idea
is also used by Lagrange to find the roots of more general eqns. Here we are looking
at the form of number as Galois found it. Let xi [1-n] be root of an n° eqn and w be a

root of y" = 1 and

-1
V=X + WXy + 02Xz + - + 0" Xn

If we permute the roots -- in our earlier notation, (x1,X2,Xs,..,Xn) -- as a substitution

group, we have

-1
V'=Xo+ wX; + 0?Xp + -+ 0" Xn-1

where the Xi do not change under the substitutions. The values of V" under these

substitutions are

Vo=X1+Xp+Xg+ - +Xn
1
Vi=X1+ 0Xp + 02Xz + - + @ Xn

-2
Vo =X + 03X + 0¥z + - + 07 Xn

-1 -2
Vi1 =X + 0" Xp + 0" Xz + ++ + WXn
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V, is our fn's second coeff with the sign changed. If we add these, after multiplying
each by the power of the roots of unity supplementary to n regarding the root we are
going after, we have

nx; =Vo+Vy+Vy+ o + Vg
-1 -1
nx; =Vo+ 0" Vi + 0"V + - + 0Vna

-2: -4
nxz = Vo + 0" Vi + 0"V, + - + ©?Vna

-1
nxn = Vo + @V; + @?Vy + - + 0" Va1

1 n-2

I 3
Ifouregnisx™ -ax"“ +bx"" -

.-+ =0 then

a=V"+ V" + o+ Via"

b=V,"V,"+ V,"V3" + -+ + V2"Vt

Example

x3-Ax? +Bx+C roots Xq,X;,X3
V=X + WXy + 0?X3
V3 =X, + wX; + X,
Xo = %1% + %% + %32 + 6%1X,X3
X1 = 3(X1%X; + X22X5 + X32%4)
Xz = 3(X2%Xy + X32Xp + X1 %X3)
X1,X; are coeffs of a quadratic where X;+ X, and X;X; are sym. fns of its roots
S Vo=X1 +X3
Vi =X + 0Xp + 02X3
V, = X1 + 02X, + 0X3
These give the roots as V;* and V,* and are what V becomes when for unity we sub
1(-1+V-3).

The next method, originating with Bezout, is essentially the above with binomials and
usually fails with polynomials which are not bi. But let's view it as a glimpse of the
clockwork underlying eqns. We want the roots of an n° @x with coeff of x" = 1. An f(y)
is any n° eqn in y with roots yi [1-n] which are known quantities. Let x = F(y) where F
has n coeffs so that ¢x is the result in eliminating y in f(y) = 0 and x - F(y) = 0. So our
F(y) is (n-1)°. We have

(x-Flyl))(x - Fly2))(x - F(ys))-(x - F(yn)) = gx

~In(1-F(y1)/x) +In(1-F(yz)/x) + - In( 1 - F(yn)/x) =In (@x/x")
Let @x/x" = A1 /x + Ay /x* + Az/x> + - and

F(y1) + F(y2) + -+ F(yn) =S4

(Fya))? + (F(y2))? + - + (F(ym))* =S

o(Sa/X + VaSa/xP + YaS3 /X3 + ) = Ag/x + Mg /X% + Ag[x®

And doing our coeffs of equal series thing: S; =A; S;=-2A; S3=-3A3 .. Sh=-nAn
These are n eqns between n unknown coeff of F(y). Determine(good luck) these coeffs
and our roots are X; = F(y1), X2 = F(y2), -**, Xn = F(yn)
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Example

ex=x>+ax+b=0
fiy)=y*-1=0 roots 1, w, w?
x=qy +1y*
~ (x- (@) (x - (qw + r0?))(x - (qo* + rw)) =x> +ax +b
~In(1- (g+r)/x) +In(1 - (qo + rw?)/x)(1 - (qw? + rw)/x)
=In(1 + (a/x*+b/x®)) =a/x* + b/x? - Yha? /x* -
~(q+1)?+ (qu + rw?)? + (qw? + rw)? = -2a
(q+1)° + (qu + r0?)* + (qw? + rw)* = -3b
Thenas1+w?+w*=1,1+w®+w®=3, these are
3qr=-a
gd+ri=-b
and we solve for q and r.

More Solutions of Equations

With Murphy, we are on the cusp of Galois Theory, which we will not deal with in this
text beyond this next "long story (way too) short": For, say, a 4° eqn, we have the perm
of the roots (x1X,X3X4). If this forms the group G,, which can be reduced down through
Gs and G, to G;, we can solve by radicals. This is always possible for degrees up
through four. It breaks down on quintics and all the old attempts for a general soln
had to fail. Being human, we need another, even more radical solution than our by
radicals, approach. So let's look at a couple of approaches which were found to
sometimes work to see what we can see -- the other side of the mountain, if nothing
else.

Thm. 7.2. Denote x(x - h)(x - 2h)-+-(x - (n-1)h) as [x]". These n factors are in A.P. =

[x+y]" = [x]" + n[x]""[y] + n(n-1)/2! [x]"°[y)* + n(n-1)(n-2)/3! [x]"* [y]* + -~
where the special case of h = 0 gives us the Binomial Theorem.

I leave the proof to your curiosity and you should be curious. Let's see this in use.
Example

[x]*+ax=b or x(x-h)+ax=b

add [a/2]? to each side

~[x]* +ax + [a/2]* =b + [a/2]*

~[x+a/2]*=b + [a/2]* where LHT = (x + a/2)(x +a/2 - h)

..such in this case is the simple eqn to which the proposed quadratic is reducible.
Thus it will be seen that the soln of eqns in the algebraic sense consists in reducing
them to binomials of a particular form and that form has the advantage which
contains only pure powers of the unknown quantity; but the question admits of
extension to any form of fnn in which x may be regularly involved,

Remember that. Murphy, like Chrystal, also solves eqns by series. Let's look at his
method and his first and simplest example.
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Thm. 7.3. Take @x, arrange in ascending powers of x and make the coeff of x* equal
unity. Then take the In of the fn. Take the coeff of 1/x in each term and this infinite
sum with sign changed is a root of the fn.
Proof
ex=A(x-a)(x-B)(x-Yy) - where A is independent of x

= A'(x- @)(1-x/B)(1 - X/y)- where A" = A(-)(-y)-~
~ex/x=A(1-a/x)(1-B/X)(1-v/x)~
In px/x=InA"+In(1-a/x) +In(1-B/x) + -
s In(1-a/x) =-a/x- Y% o?/x* - Vs o3 /x5 + -
And the coeff of 1/x is -a which is the root with the sign changed ®

Example

Given x* + ax + b find root «
ex/x=a+x+b/x
In(px/x) =lna+In(1 + z) wherez=1/a(x + b/x)
w-a=coeffof 1/xinz-2z%/2 +23/3 +z* /4 + -
coeffof 1/xinz=b/a
in z3 = 3b?/a®
in x° = 10b%/a®
and so on and 1/x does not appear in even powers of z
~a=-(b/a+b?/a®+2b%/a® + 5b*/a” + -)

2n+1/22n+1

The general term z and its coeff of 1/x is

(2n-1)(2n-2)(2n-3)-(n+2)/n! - b™*/a>"*!

~a=-(b/a+b?/a®+4/2b3/a®+6:5/2:3b*/a” + )
If we consider x = -a/2 + V(a?/4 - b), the soln by radicals,

=-a/2 +a/2(1-1b/a?)"?

=a/2(1/2 4b/a® + 1-1/2-4 (4b/a?)? + 1-1-3/2-4-6 (4b/a%)® + --)
Let Sn be the nth term of either of these series. Then

Sn= (2n-1)(2n-2)(2n-3)--(n+2)/n! - b™ 72>

Sn-1 = (2n-2)(2n-3)(2n-4)-(n+1)/n! - b"/a*""

Sn=2n(2n-1)/(n+1)n - b/a?- Sn1
=(1-1/2n)/(1 +1/n) - 4b/a®- Sn1

n—oo, if 4b > a2, Sn > Sn-1 and series diverges - i-roots
Let's look at the roots a, (a < ) when series converges:

a+B=-a af=b
root = af}/a+B + o?B?/(a+b)® + 2033/ (a+B)° + -
aB/(B+e) = aB(B+e) " = a1 - a/B + o*/B* + o* /B + )

and this series converges.

End of Example
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Murphy uses all of these last few ideas to find an inverse fn of @x.
Letg(h)=x=>h= ¢ (x)
~ h=(x-¢(0)) -h/(e(h) - ¢(0))
Letx - ox =& and x(¢@(x) - @(0)) =f(x) ~ h=E&f(h)
=&f(h) +&%/2! (f(h)?)' + §/3! (f(h)*)" + -

h is assumed to be zero. Therefore:

@' () = (x-90) [x/(9x-90)] + (x-00)2/2![(x/ (@x-90)?]' +(x-00)*/3![(x/ (@x-00)]" -~
where x = 0 in the square brackets. x—0, @x — 0 and ¢ (x) =

xX[x/@x] +x2/2![(x/@x)?]" + X3 /31 [(x/@x)*]" + -
Example

@x = ax +bx? + cx® + dx* + -

x/@x = (a+bx+cx? + --~)'1 where const term is 1/a

(x/@x)? = (a + bx + cx? + )2 where coeff x is -2ba”

(x/@x)* = (a + bx + cx? + )™ where coeff x? is 1/2! [(x/9x)?]" = -3ca™ + 6b%a”
andsoon - ¢(x) =x/a-bx?/a®+ (2b%-ac)x3/a’ + -

Recurring Series

Murphy, and these mathematicians he draws upon, makes great use of recurring

series. A bit of this will be a review of Chrystal. But not much.

S=uy+Up+Ug+ - +Ux+-

where ux is the general term and is the sum of some number of preceding terms
multiplied by a constant. If m is the number of constants, then we need m arbitrary,
but often well-chosen, terms to build the recurring series or 2m quantities define a

recurring series. The simplest recurring series are in G.P.
Examples

1) One constant 3 and one term 2
$=2,6,18,54,162, ...

2) Two constants 1,3 and two terms 2,4
S=2,4,2-1+4-3,4-1+14-3,14-1+46:3, ...
=2,4,14,46,152, ...

3) Three constants -1,0,1 and three terms 1,2,3
$=1,2,3,-1:1+0-2+1-3, ...
=1,2,3,2,0,-3,-5,-5,-2, 3,8, 10, ... (We'll see this one again.)
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The sum of two recurring G.P. series is a recurring series with two constants of
relation. So these are ux with constant a and vx with constant . -

Wx = Ux + Vx

We eliminate X in ux+1 = Qux, Vx+1 = BV, W = Ux+Vx
Wix = Ux + Vx [1]

Wi+l = Uxe1+Vxe1 = QUxHPVx [2]

W2 = Ue2+Vie2 = = oPuxt B2vx [3]

Multiply [1] by A" and [2] by A" and equate the sum of these to [3]

& Wxs2 = A'Wx + A"Wxi1 where o ="+ A"aand B2 =2"+ "B

~a,Bareroots of z2 = A"+ A"z

~A =-afand A" = a+f

S Wiz = -affwx + (a+B)wiet

So we have two constants -aff and (a+f) and two terms u;+v;=w; and au,+8v; = wy.

Example
ui=3,6,12, 24,48, 96, ... a=2
vi=1,3,9,27,81,243, .. B=3

wi=ui+vi=4,9,21,51,129,339, ..
where constants are -2:3 =-6 and (2+3) =5
21=-64+59 51=-6-9+521 and so on.

Sym. with 3 G.P. series, constants a,f3,y get us wx+3 = X'wx + A"Wxs+1 + A""Xx+2 Where
A'=aBy, A" = (af + By + ya), A'" = o + B+ y. In general, with n G.P. series, we can build a
Sym. proof in this form. Let a’, a", a", ... be the constants, u', u", u'", ... be the series.
Then summing to series w:

wx=Ux+U'x+u"x+

non e

wxe1 =a'U'x+a"u"x+a"u"x + -

Wis2 = a'zu'x + a"zu"x + amzumx e

nnn mn i

Wy =au'x+a"Mu"x +a"u M+

Then take n arbitrary constants A', A", A'", ..., use them as above multiplying each line i
by A" sum the lines, equate sum to n+1 and

Wixen = A'Wx + A"Wxs1 + =+ + An)Wxsn-1
and we find that a',a",a",... are roots of
n_ 4 " m_2 (n),_n-1
Z =N +A"Z+A"Z5+ -+ Az

and the A’ are given us by the relations of roots to coeffs.
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So the G.P. of the sum of n G.P.s ha n a' constants and n terms:

wi=u'1+u'z+
won

wz=a'u't+a"u"z+ -

.n+lu. nn+1uu

Wn=a 1+a 2+ -

If m constants are the same, then there are n-m+1 constants in this result. Now here is
why we even care about all this. If you have a recurring series

Ug+Up+Ug+ -

and multiply it term by term with a given series
1+z+7%+ -

you get
Uy + UpZ + Ugz? + - [1]

and now we have a polynomial which is subject to these new tools. This [1] is the
expansion of an ifrac

-1
ag+a;z+az®+ - +ap1z"
1- }\.Zn - }\nzn-l el )\(n]Z

The coeffs of [1] are a recurring series

ap=u;

a; = up - A\ My,

az = us - A" Dy, - Ay,

as = uy - A"y, - A0 Dy, - Ay,

an1 = Un-A"Ug - A"y - - - A%Un

And we can turn this around and find the ifrac if given the polynomial or even just the
first bit of the polynomial.

Examples
1) Find the ifrac of 2 + 4z + 14z + 4623 + 152z* + ---
A=1A"=3 u;=2 u=4

Q=2 a;=4-6=-2
~(2-2x)/(1-2%-32)
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2) And for 1 + 2x + 3x% + 2x% - 3x%- 5x° - -
=1 u;=3 uz=3 A'=-1 A"=0 A"=1
ap=1 a;=2-1=1 az3=3-1-2=1
2(l+z+2Y)/(1+23-2)

And this leads us back to partial fractions. With our root eqn:
¢(z) = Clz- a)(z- o) (z- o)

where o are the n roots and C is independent of z. Let f(z) be
Ao+ A1z + Ayz? + -+ + Anaz™?

with n constants. Suppose we use a common denom to add

A/(z-a)+A"/(z-a") + -+ A" /(z- ™)

where the A primes are not the Ai's in f. The common denom becomes 1/C - ¢(z) and
the num is

A'z-a")(z-a™) - + A"(z-) (z-a") - +
and this is f(z), if we use n eqns to determine the A primes:
A+ A"+ + AP = Any

A'(a"+a'"+-) + A"(a'+ot"+ ) + - = -An2
A'(a"a™ + )+ A"(a'a™ +---) + - =An3  (These are sums Cn|2)

We know about equal roots here. Let's ignore them for now. And let's assume C = 1.
Then

f(2)/@(2) = A'/(z-a) + A"/ (z-a") + - + A® /(z-o™)
~ f(2)/ (z-a") (z-a") -+ =

A+ A"(z-a') [ (z-0") + A" (z-a)/(z-a") + -
and if we make z = o

fla')/ (o'~ (oo™ (o-a) = A
fl@)/@'(a) = A’

And Sym. A" =f(a")/@'(a") A" =f(a"")/@'(a") and so on. So we can easily calculate
our fractions and if C # 1, we can stick it back in. You may have picked all this up the
first time. But I'm repeating Chrystal, via Murphy, to emphasize the part played by ¢'".
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Examples

1) Decompose 1/(z-o)(z-B)

fz)=1 o@(z)=2>-(a+B)z+aB @'(z) =2z- (a+P)
f(z)/¢'(z) = 1/(2z - (a+B))

Put o, successively for z and we get the nums of our fractions: 1/(a-) 1/(B-a)
1/(z-a)(z-B) = 1/(a-B) - (1/(z-a) - 1/(z-b))
2) Decompose (2z + 1)/z(z+1)(z+2)
Sub roots of the denom (0, -1, -2) into f(z)/¢'(z) and the nums are 1/2,1,-3/2
Y(1/z+2/z+1 - 3/z+2)
If f(z) = @'(z) all the nums are unity:
@'(2)/e(z) =1/z-a' + 1/z-a" + 1/z-a'" + -+
Let's do a long example to see where this can lead. We'll decompose
/(" - 1) = €22 (M2 LM% = 1y ((22y /20y (/22 M7 ) 1y
By what we know of trig, if we make that last denom equal to zero, then for VmeZ,
z = (2mmi)/h
which gives z infinite values. Now make that denom our ¢(z) and
@(z) =2(h/2-z+ (h/2)%2z3/3! + (h/2)% z°/5! + --+)

@'(z) =h(1 + (h/2)?-22/2! + (h/2)*z* /4! + --)
=h/2 - (our numerator )

= 1/(e"-1)=1/h- ¢'(2)/9() - 1/2
=1/2+1/h(1/z + (z- 2mi/h) "+ (z - 4mi/h) " + - + (z + 2mi/h) '+ (z + 4mi/h) 4 -
If we take these terms and expand them in pairs as in
(z-2mi/h)™ + (z + 2mi/h) ™ = 2h(1/22n>hz - 1/2*n*h323 + )
then

1/(e"-1) = 1/hz- 1/2 + 2hz/m* (1/2% + 1/4% + 1/6% + )
+ 20323/t (1/2% + 1/4% + 1/6% + - ) + -

Warning: The B; which follow are not Bernoulli numbers.
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If
1/12+1/22 +1/3% + -+ = 2B,
1/1%+1/2% + 1/3* + -+ = 2%Byn?/3!
1/1°+1/2%+1/3% + --- = 2°Bsm®/5!
then

1/(¢"™1) = 1/h?- 1/2 + B;hz + B3h323/5! + Bsh®2%/5! + ---
To calculate these Bi:

@' (2)/9(z)=1/(e"-1)=1/2=1/z + Bz + B3z3/3! + ---
Ingz=Inz+In(1+(1/2%-2%/31+1/2*-z*/5!+--))

This logarithm is then
A1z% - Agz* + Agz® - -
which gives us
©'z/@z=1/7+ 2A,Z - 4A37> + 6AsZ® - -+
And using our equal series's coeff thingie, you should get:
B, =1/2%3 B;=1/2%35 and so on.
This leads to a restatement of our ¢'z/@z:
F(x) = f(x) - 1/2hf (x) + Bh?f"(x) - Bsh*/31-f¥(x) + Bsh®/51-{9(x) - ---
Then F(x+h) - F(x) = h-f'(x) and our "long example" ends.
Examples

1) F(x) =x* ~ F(x) =x*-hx+h?/6
« F(x+h) - F(x) = (2x+h)h - h? = 2xh = h-f(x)

And we can use this to sum a series:
F(x)=us+uz+us+ - +ux+--
F(x+1) =uq +uz + - + Ux + Uxs1

F(x+1) - F(x) = ux+1 = f'(x)

Then (f(x) + C)' = f'(x) as we know from the Calculus we saw in DME.
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2) F(x)=13+23 433+ +x3
Fx+1) =13+ 23+ 33 + - + x% + (x+1)3

fx)=(x+1)°3 (simply by subtraction)
f'(x) =3(x + 1)
f9x)=6

F(x)=C+1/4-(x+1)*-1/2-(x + 1)% + 1/4-(x+1)?
To determine C, let x = 1, the F(1) is the first term.

1=C+1/4(2*-2%+2%) ~ C=0
F(x) = (x+1)?((x+1)% - 2(x+1) + 1) = ((x(x+1)/2)?
PB+23+33+ - +x3=(1+2+3+ - +x)?

But you knew that. Let's now consider partial fractions in this way when the denom
has equal roots. Our proper ifrac this time is:

f(x)/((z- a)"(z- a")(z- «™)-(z - a™) )

9z=(z-o)"(z- ") (z- a")(z - «™)

1/pz=1/p'a"1/(z-a)+1/@'a"-1/(z- ") + -

f(2) = (f(2)-f(o)) + f(a') = (£(2) - f(a")) + f(a") = -+

f(2)/ 9z = 1/¢'«"(f(z)-f(a)/(z-a') + 1/¢'a"-(£(2) - (")) /(z-at") + -
+1/¢@'of(a)/(z-a') + 1/@'a"-f(a")/(z-") + -+

If we sub a'+h for o', we are led to
@z/z-a' - (z- a' -h) = @z(1-h/(z - a))?

Then f(z)/¢@z becomes f(x)/@z-(1 - h/(z—oc'))'1 and we can collect coeffs of say h™t
which coeff is

f(2)/((z - &)™ p2)

And this, after much expansion, is

fa'/@'a’ - 1/(z- )™ + (foa' /@'Y - 1/(z- &)™ + (fo' /@' )" - 1/2!(z - &)™ + -~
+fo" /(") ') - 1/(z - o) + fa /(- ) '™ - 1/ (z - o) + e

which you should compare to our earlier version by Chrystal.
Example

Decompose (2z° +7z° + 6z + 2)/(z* + 3z° + 2z%) Roots of denom: 0, 0, -2, -1
To get the nums of fractions with denoms z+2, z+1, let z = -2, -1 in fraction
~nums:-1/2,1

@z=(z+1)(z-a')(z+2) where ifa' = 0 then ¢'(a") = (a' + 1)(a' + 2)

f(a)/e' (@) =(2+6a' +7a'2 +2a'®)/(2+3c' +a'?)=1+3/2-a' +3/4-a" + -+
o' =1= fla)/@'(a) =1, (fa') /@' ()" = 3/2

. partial fractions: -1/2-1/(z+2), 1/(z+1), 1/2% 3/2-1/z
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Murphy gives his own unique approach in the following:
Thm. 7.4. P/Q proper ifrac of z where Q = (z - «)"Q1. Expand P/Q, in form
Ag+Ay(z- o)+ Ap(z- &) + - + Ani(z - &)™
Then Ao/(z - «)", Ay/(z - &)™, -, An1(z - o) are partial fractions. Let (z - a")” be
another factor of Q: (z - a")’Q, = Q. Expand again in same form. Repeat for all factors
of Q for all partial fractions.
Example
Decompose Z = (1/(z> - z))?
Z=1/2%(1-2)*=1/22+2/z + -
Z=1/(1-2%) - (1-(1-2))2=1/(1-2)% + 2/(1-2) + -
Z=1/z*+1/(1-2)*+2/z+ 1/(1-2)
Partial fractions of proper ifracs are all of the form
A/(a-z)"
which expand as

A/a"(1 +n-z/a+n(n+1)/2!-z%/a% + --+)

and this is a figurate series. Its coeffs of z/a are figurate numbers. The mth figurate
number of any order is the sum of m figurate numbers of the next inferior order. Here
the coeff of z™ are

1-2"=(1-2)"1-2)"
Since the expansion of a proper ifrac by powers of z is a recurring series, every
recurring series can be decomposed into a figurate series and if there are no equal

roots in the denom then these series are geometrical. Let Aa"/(a - z)" be a partial
fraction. The coeff of z* in the expansion is

A - n(n+1)(n+2)-(n+x-1)/x! - (1/a)* = A(x+1)(x+2)--(x+n-1)/(n-1)! - (1/a)"

and collecting the coeff of x from each partial fraction, the sum is the coeff of x in the
recurring series.
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Solution by Recurring Series

Let Ai be the constants of relation in a recurring series with the general term ux then
Usen = AqUx + ApUxs1 + AgUxs2 + +++ + AnUxen-1

Then uxz" is the general term in the expansion of
f(x)/(1 - Agz" - Apz"" - AgZ™? - - - Anz)

and if a,f,y,... roots of
y' = As+ Agy + Agy? + o+ Ay

then 1/a,1/B,1/y,... roots of the above denom, with factors, besides some constant C,
of (z- 1/a), and so on. Assume roots unequal. Then the fraction takes form:

f(z)/B(1 - az)(1 - Bz)-~
with partial fractions
Ci/(1-az) +Cp/(1-Pz) +-

The coeff of z" is found by expanding these. Therefore the general term of the
recurring series is

ux = C1a" + Cof™ + -

= Cra+ Co(B/a)™! + Caly/o)™ + -
u Cy1+ Co(B/a)* + Ca(y/a)* + -

Let the max root = a, then x—, a = L ux+1/ux when x = c0. To converge to the greatest
root of

V' = Ar+ Agy + Agy? + e+ Any™!

assume n arbitrary numbers for the first n terms with constants of relation being the
above Ai. Then our ux+1/ux converges to a.

Example

y?=-4+3y?
Assume terms 0,1,3 for Ai of -4,0,3 then series is

0139 2357 135 313 711 1593 3527 ..

The roots of this eqn are 2,2,-1 and this series converges to 2.
Asin9/3=3, .., 3527/1593 = 2.214
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We have here roots of a,8,y where a = 8. So our partial fraction takes form
C1/(1-az)?+Cy(1-0az) +Cs/(1-Bz) + Cyf/(1-yz) + -

ux = coeff of z° = (Cy(x+1) + Cx)a* + C3B" + -+
Uget = o (Cy(x+2) + Co) + Ca(B/a)*! + -
Ux (Co(x+1) + Cx) + C3(B/)* + -

and x—oo, this goesto a =1/1

If we have i-roots, let = a + bi = R(cos8 + i sin8)

Rcos@=a Rsin@=b . R*=a%+b?

By De Moivre from DME, " = R"(cos n@ + i sin n@)

-~ oo must be greater than R or a? greater than the product of the conjugate i-roots for
this method to converge to the greatest root. This method can also be used to find the
square roots of integers, using a method of Murphy's which I leave to your curiosity.

Fourier pursued this idea to the discovery of all roots of such a fn. But his method was
somewhat flawed. Murphy shows how it may be, in some cases, corrected. Let me
give you an example and you may pursue the theory if this tweaks your interest.

Example

x?=6x-10
Assume terms 1,2 for constant relations -10,6 then series is

1272 -8-68-328

Take the last four terms. From product of extremes, -656. Subtract product of the
means, 544, remainder is -1200. Using the penultimate 3 terms, from the product of
the extremes, -136, take the square of the mean, 64, remainder is -200. Divide the
former remainder by this: 6. This is the sum of the roots exactly and its half, 3, is the
real part of the i-roots. The product of the last two terms is 2624. From this, subtract
the square of -62 or 4624. Divide this remainder of -2000 by the former
corresponding remainder, -200. The quotient, 10, is the product of the i-roots.
Therefore the roots are 3 + i. If that doesn't tweak your interest, you need to take a
long hard look at yourself.

Newton's Method of Approximation

Let o be an approximate value of a root of ¢x = 0. Then a+h is the correct value with h
very small.

@(@) + @'(@h + @"(wh?/2! + - =0

As h is very small, we have, very nearly (and I find that phrase endearing)
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() +he'(0)=0 OR h=-@(a)/¢'(«)

But let this h be h;, wash, rinse, repeat, and the hi converge very rapidly. So we have
oa;=a-h; a=a;-h, andsoon

If we denote F(a) = a - @(a)/¢'(a) we have
oy =F(a) oz =F(a;) =FeF(a) a3 =FeFeF(a)

and this series of compound fns converges on the root. Conversely, if this converges
to a then

Fla)=a F"'(@)=a =~ F(a)=«
ButF(o) = a- @(a)/¢'(a) ~ @(a)/@'(a) = 0. So if the roots are xi [1-n] then

@'()/p(a) =1/o-Xq + 1/a-Xp + *++
s~ aisaroot

By Sturm's Theorem, one could find two limits, a,b, to a root. Then in Newton's
Method, h could begin as (a - b)/n where n divides [a,b] into a large number of parts.
This was developed into a method by which Fourier, by repeated application, could
determine a root of x* - 2x - 5 = 0 to be:

2.09455148154232659148238654057930

although what he gained here, beyond bragging rights, is more than I could tell you.
Simpson, who also had a great tolerance for tedium, further improved this method.
But a method of numerical approximation, human or digital, does not reveal the laws
governing those approximated roots. So again, I leave these methods to your curiosity,
Simpson is able to approximate, in his way, the products of i-roots, which gives you
something to be curious about. I should also mention that Fourier's method uses ¢x,
®'%x, @"x together with Euclid's Algorithm, but not in any new way that we haven't
seen.

Method of Continued Fractions

If gx = 0 is an algebraical eqn with real roots, we can use the following method to find
its positive roots and find the negative roots by making x = -y and then positive y's
give negative x roots. Divide @x by ¢@'x = V;. Change the sign of the remainder = V,.
Divide ¢'x by V, and change sign of remainder for V3. Divide V, by V3, wash, rinse,
repeat, until you get to a constant remainder = Vm. If we make x = 0 we reduce ¢x and
all Vi to last terms and note their sign. Then x = +oo and note the signs of the first
terms. Number of alternations of sign is number of positive real roots. Sub 1, 10, 100,
1000, ... for x until you have as few changes of sign as for the first terms. The number
of alternations lost in this are roots on [1,10], [10,100], and so on. Say there is a root
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on [10,100]. Repeat subbing x with 20, 30, .., 90. Say the root(s) are on [30,40].
Repeat with 31, 32, ..,, 39. In the end we have the integer parts of all the positive roots.
Let p be an integer here. The changes of sign on ¢ and Vi from p to p+1 give you how
many roots are here. Make x = p + 1/y and as ¢x is n° we have

oY+ @' (P + @"(p)/2! -y + -+ @™ (p)/nl =0

We want to approximate the values of y on (p,p+1). So y must be greater than 1. We
can find the integral parts of y, just as we did for x. Then we will have, for each y we
seek to approximate, a q and q+1 where y € [q,q+1]. To separate very close roots,
wash, rinse,repeat withy =q + 1/z,z=r+ 1/u, and so on.

We then, for each root, have a convergent continued fraction, p: q, 1, s, ... Lagrange
extends this method to a laborious one for i-roots. But, hey, this is all laborious. And
Murphy notes that, for approximation, the method of recurring series, with properly
chosen arbitrary terms, is the least laborious of any method for approximating roots.

For p, q, 1, s, .., we know, from Chrystal, that we can calculate these. Let the
convergents be

1/3 3/10 10/33 33/109 109/360 360/1189 --

If we represent the convergent value of this series as x and use it in the first
convergents, we have

x=1/(3+x) OR x* +3x=1
x=-3/2+(13/4)

But we can only use positive values -~ x = %(v13 - 3). Murphy works out three
examples of this long method if you are curious. At this point, Murphy considers
continued fractions, going over some of what Chrystal gave us with an earlier, more
awkward notation. He does show how to convert an algebraic expression into a CF.
Let me give you his first example. Following his thinking here is a rewarding
entertainment, in my opinion.

Example

Convert ((x + 1)/x)? into a CF: x > 2

Let x = 2y = 4y? contained once in 4y® + 4y + 1 as 2 > largest root of 4y + 4y -1 =0
LX=22 N 4y2>4y+1 8yz>4yz+4y+ 1

~ 11is the first quotient, remainder 4y + 1

4y + 1 is not contained y times in 4y?

Trying y-1 as quotient = positive remainder 3y + 1

3y + 1 contained once in 4y + 1, remainder y

y contained 3 times in 3y + 1, remainder 1 and this terminates the operation OR

[cont'd]
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4y?)ay? + 4y +1(1

4y?
4y+1)4y* (y-1
422-32-1
3y+1)4y+1(1
3y+1
y)3y+1(3
3y
Dy(y
0

~x=2y=((2y+1)/2y)*=1:y-1,1,3,y
But when x is odd this becomes (2y/(2y-1))? and by the same method:

4y -4y +1)4y* (1

4y* -4y +1
4y-1)4y*-4y+1(y-1
4y* -5y +1
y)4y-1(3
3y
y-1)y(1
y-1
1)y-1(y-1

0
~Qy/(2y-1)?=1:y-1,3,1,y-1

Murphy continues this by going over most of what Chrystal covered with CF. If you
are interested, you might enjoy seeing Murphy's viewpoint of these ideas as it differs
from Chrystal's. Let's follow him further into using CF to solve eqns.

Thm. 7.5. In soln by CF, the transformed eqns after the first few will have opposite
signs for first and last terms.

Proof

@(x) = 0 with A max int < root of @x

x=A+1/y = eqniny has as many pos. roots > 1 as there are values of x -|-(A,A+1)

It is possible that 2+ values of y are between some A' and A'+1

Then we make y = A" + 1/z with ¢(z) having its numbered roots symmetrically > 1

As we wash, rinse, repeat, we reach an eqn with only one root between any two
successive integers:

au™ +bu™ + cu™*+ . +k=1 [1]
Then, with u = s + 1/w, s being the nearest integer below one of [1]'s roots, F(w) can
have only one pos. root > 1 and then all the consecutive transformed eqns will be in

the same condition.

[proof cont'd]
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Take F(w) = 0, ] max int. below the only positive root > 1,and w =1+ 1/t. Then
F(1+1/t) = 1/t"(F(Dt™+ F'()t™ '+ F" (1) /214™% + - + F™(1)/m!) = 0

=~ 1st term F(I)t", last term F[m)(l)/m! must have opposite signs because

by hyp. 3!root of F(w) = 0 € (1,+)

~ F(1), F(+00) have opposite signs OR F(l + 1/t) has contrary signs for F(0), F(+o0)
~ t"F(1 + 1/t) = F™(1)/m! when t = 0 and this has a sign contrary to F(1)

This same reasoning holds for all succeeding transforms. |

I like Murphy's conversion of a CF to a series. Let pi/qi [1-n] be the convergents and
P/Q the value of the infinite series.

P2/9z - P1/d1 = (P291 - P192)/d19z2 = -1/d1qz2
P3/ds - P2/dz = 1/0d2q3
P4/da-P3/q3 =-1/q3q4

po/Gn - po-1/qn1 = (1) /qn-1qn
% Pn/Gn=P1/a1 - 1/Q1Qz + 1/0295 - -+ = (1™ /qu1qn
+ P/Q=p1/q1-1/q1q2 + 1/q2q3 - -

Because the terms monotonically diminish and alternate in sign the error of taking n
terms is less than the (n+1)th term. He adds "7n some cases, it is convenient to take
some of the partial denoms as negative." Isn't that interesting?

On Peculiar and Infinite Equations

We are on the last seven pages of Murphy's text. This last bit is interesting to me as it
draws together so many disparate ideas. This is the first time I have come across such
a thing and I suspect it reveals something of Murphy's individual interests. Let's
consider some "peculiar eqns” by forming an eqn whose roots are Vz € Z OR

Fn(x) = Cx(x - 1)(x - 2)-(x-n)(x + 1)(x + 2)--(x + n)
Fa(x+1)=C(x+ 1)x(x-1)(x-n+1)(x+2)(x+3)(x+n+1)
Fa(x+1) = (x+n+1)/(x-n) - Fa(x)

Let @x be the eqn soughtasn — c. Then (x +n+1)/(x-n) - -1
¢@(x+1)=-¢x

To solve this (recall from DME) let ¢x = Ce™

Csm . Smx —- _Cemx
eh=-1
m = *im, +3im, £5im, ...

This particular form, the sum which gives the general for of @x which coincides with
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the above eqn of differences are these:

Asinmx + Bcosmix
A'sin3mx + B'cos3mx
A"sin51tx + B"cos5mx

The choice to use an eqn of differences ensures that the roots of these fns are in A.P.
But we need our 0 value as well. And the sines of odd multiples of mx vanish for
fractional x, not just integer x. And we are here left with Asin(mx) = ¢x.

if we wanted @x to have roots 1/2,3/2,5/2, ..,-1/2,-3/2,-5/2, ...
then our @x = Acos(mx).

Now we want some ¢x with roots 1, 1/2,1/2%,1/23, .., 1/2" or

ox= (x-1)(x-1/2)(1-1/29)~((x - 1/2")

Sub 2x for x, separate numerical factors of x and

@(2x)/2™" = (x-1/2)(1 - 1/28)(x - 1/2")(x - 1/2™
(x- De(2x)/2"" = (x- 1/2" Y x [1]

So @x has form

+1 -1 -2
X o axX +aX’ -agX' o+ e

(x-1/2" N px = x™% (a1/2 + 1)x"™+ (ap/22 + a1/2)x" - (a3/2% + ap/22)x" "+ -
(p(ZX)/ZrHl: Xn+1_ a1/2~X" + a2/Zz.xn»l_ a3/23.xn»1
LHS [1] = x™%- (ar/2 + 1)x™"+ (ap/22 + a,/2)x" - (a3/23 + ap/22)x" "+ ---

Comparing the general coeff of both sides of [1]:

ap + (ap- 1)/2"" = ap/2° + ap-1/2"*

ap(2”- 1) = ap1(2 - 172"

a;=2-1/2" a,=(2-1/2"9/(2%-1) - a,

az=(2- 1/2"‘2)/(23 -1)-a; and soonand we have our @x.

Now let's form an eqn with roots -ay, -(a; + az), -(a; + oz + ®3), ..., -Y.0a [1-n]
We form the product

(x+oa)(x+oal +az) (X +0oy + 0z + -+ 0n)

and this takes the form

2 m

-1 g .
X+ AT AX T+ e + AmX T 4 e+ AnaX + An
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The general coeff here is Am being the sum of the products with m factors.
A; =na; + (n-1a, + (n-2)az + ==+ + 20an-1 + On

A, consists of products aiaj and pure powers like ai?, ;2. The general form of the first
class of terms is apaq and we need its coeff, which we denote (apaq). Let p<q and no
factor before (x + a; + ay + -+ + ap) need be considered. So we care about these factors:

X+ 0+ + Ap
X+ 0tg + Qp + Qp+1

X+ 0+ +ap+ -+ og*
X+ 0y + 0+ Op + o + Og + Olg+l

Now if ap+1 were placed at the *, the combs of ap with oq and aq+1 would be the same.
~ (apag) - (apotg+1) is the number of combs of one term at the * with the terms in the
column of o except that ap with the *.
. The number of terms in that column minus one will be n-p.
So let A denote the finite difference as q increases by unity
“ (op0q) = -(n - p)
~ (apaq) = (n - p)(C - q) where C is independent of q
If q = n then, observing the column of ap:

(opag) = (n-p)(n-q+1)

Denoting the coeffs of powers, say op” as (apz), they are not affected by zeroes, as in

o = 0oran=0.

~ (@p?) = (1 + ap)"P*! which algebraically means (n - p)(n - p + 1)/2!

o Ay =n(n-1)/2!04% + (n-1)(n-2)/2!-a2% + (n-2)(n-3) /21 a5? + -+ + (n-1) (n-1) a0, +
(n-1)(n-2)ya3 + (n-1)(n-3)as04 + -+ + (n-2)(n-2) 03 + (n-2)(n-3) o0, + - +
(n-3)(n-3)az0y + -+

and this can be Sym. pursued for all Ai if your curiosity maliciously compels you to

pursue it. Now let's consider what Murphy calls "infinite eqns".

Given 1 +x* + x® + --- = 0 its derivative can be considered as

1 +nz +n(n-1)z? + n(n-1)(n-2)z> + -+ =0

which is a finite eqn for n€N and is infinite if z = x/n as n—»co. Let z = 1/y and the
derivative becomes

y"+ny" +n(n-Dy" + n(n-D(n-2)y™ + - =0
Let LHS of this be u and its derivative u' then

u=y"+u'=0
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Let the real roots, if any, of u = 0 be o,8,y,... in descending magnitude. Ify = ain u' then
u' > 0 and y"<0 which if n is even is impossible and no real roots. But if n is odd, we
have real roots and o makes y"<0.
~ o and any other real roots are negative

But 8 makes u'<0 - y">0 .. y has one real root

If y = 0 in u, u equals its last term which is positive.

-1/2 -0)

Ify= -Vn, uis negative - y € (O,-\/n) «~ zZ€(-n
This series is 1/1-x which only vanishes for x = +oo.

Consider x - x3/3! +x°/5! - --- = 0 and its derivative
nz - n(n-1)(n-2)/3!-z% + n(n-1)(n-2)(n-3)(n-4)/5!z° - - = 0
which terminates for neN. Let x = nz and n—co. This eqn is
(1+iz)"-(1-iz)" OR ((1+iz)/(1-iz))"=1
Letz =tan® .. ((cosO + isin@)/(cosH - isinB))*=1 OR cos2nd +isin2nd = 1
~2n0 = (2n - 2)n for neN
Forz=0 #tan(m/n), +tan(2m/n), ... n—»co = x = 0 at zr for z€Z
Consider 1-x+x%/2!-x3/3!+ =0
Derivative 1 + nz + n(n-1)/2!'z? - n(n-1)(n-2)/3!z* +--=0 OR (1-2)"=0
whererootisz=1 . x=oo0and !3 finite root.
Murphy's last example is
1-x/1%+x%/(1%:2%) -x3/(1%22:3%9) + - =0
with derivative
1-n/1-(n-1)/1-z+n(n-1)/2! - (n+1)(n+2)/2! - 2% - =0
where all roots are real and positive. And all are on (0,1). The difference of two
separate roots is of the order 1/n. So the limits of all roots xi are found by x =n VneN
and by observing alternation of sign. When x < 1 all terms in parens are positive or

(1-x)+x%/2% (1-x/3%) +x*/(223%4%) (1 - x/5%) + -

so there is no root < 1. When x = 2, the first three terms vanish and the series
becomes

-2/3%(1-2/4%) - 23/(3%4%5%) (1- 2/6%) - - <0
So there is a real root on (1,2). When x = 3, the first five terms are negative and the

remainder, taken in pairs are negative. So there is no root on [2,3]. And the same for
x=4,5,6,78.
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If we call this fn and its derivative u and u’, then u' = u; with its u". And u" is u, and so
on. Then

m (m) _

Um- (-x)"u"’ =0 whereu

(m

)is the mth derivative

Or if m = 1 then u; +xu' = 0. The substitution of roots of u=0 in u' would produce a
series of alternating signs and as x > 0, this is true of all ui.. Murphy notes that the
definite integrals of u multiplied by other fns relate to the form electricity takes in
solid bodies. And there he ends.
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8. Resolution of Algebraic Equations

Let's locate ourselves in time and space. Galois's papers were published by Liouville
in 1846. Hargreave's 7he Resolution of Algebraic Fquations was published in 1866.
It was published by the Cambridge mathematician George Salmon. Salmon had read
the manuscript and disagreed with Hargreave about its substance. Hargreave, already
in ill health exacerbated by the effort of this book on top of his work as a judge,
rewrote it and died just after he gave Salmon the last of the appendices. Salmon, who
now agreed with the text, saw that it was published. Todhunter recommends the text
in his book on Equation Theory, although, to my mind, he is a tad sly about it. If you
look into what is known about Hargreave, most bios cite that he died while this book
was being written and are unaware of its existence.

On a personal note, I had read only Salmon's preface to Hargreave up until the point of
having written the first 190 pages of this manuscript. So any resemblance of my
thought to Hargreave's up to there is purely coincidental. And one more historical
thing: Todhunter thought that one could spend too much effort on Analytical
Geometry, which was Salmon's speciality. Salmon wrote several volumes on that topic,
each of which would keep a door open in a high wind. This might explain Todunter's
slyness. Now here comes Hargreave:

Introduction

"To resolve an equation” differs in a logical sense from all other problems in
mathematics. If we conform to the laws of the ground-truths -- of number and
operations -- the resolution proves itself. If x; and x, are roots of a quadratic, then

Y(Xq + Xz + V(%12 + X2 - 2X1X2)) [1]

identically represents the resolution of any quadratic to its roots. The existence of [1]
proves its truth. It matters not at all how we arrive at [1]. Our reasoning will be of an
a priori nature. Whatever steps lead us to [1] are legitimated by [1].

The same is true of eqns of degrees 3 and 4. Different human beings arrived at
different solutions for their three and four roots. There is obviously a practical limit to
this approach. All such methods so far have been our "solution by radicals” and all
have been shown to be equivalent. But there is a necessity of not assuming that all
modes of solution necessarily conduct to the same result, so far as relates to the form
of resolution.

It has been shown that for eqns of degree 5 and higher the existing form of soln by
radicals cannot possibly succeed.
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The only method left to us is to proceed by steps; that is, in effect so soon as we have
resolved the problem in any one case, say the lowest, to endeavour to make use of this
step, in order, if possible, to mount to the next step; and to do this, as far as possible,
upon some general principle, the applicability or non-applicability of which is shown
by the success or failure of the attempt to apply it

If it is true of some number m that an eqn of degree m-1 is algebraically resoluble
while one of degree m is not, it must be that the second eqn is not of the same species
as the first. So there must be some way of stating the first algebraically which cannot
be used to state the second.

Yet nothing of this kind has manifested itself in all the infinite researches which have
been made into this problem. The cases which have been resolved are known by that
fact to be resoluble, but not very clearly, in any other way. The cases which are not
resoluble are demonstrated to be irresoluable not by anything really peculiar to these
cases of such a nature as to distinguish them from the others, but by an elaborate
Inquiry into all the possible modes of algebraic expression, and an exhaustive proof
that no one of them can qualify itself to be the expression of the root.

Notation, Definitions, and Elementary Theorems

The general algebraic eqn is a quantic ¢n:

2 _
-cc*xnanix+an=0

X" - na;x"" + %an(n-1)ax"
(1p) is the resultant of @1 and ¢p from the subbing of a1 for x in ¢p and changing the
sign. If t = x - a1, the quantic takes form:

" (1D - %n(n-1)(12)t" - - - n(1(n-1)t - (In) = 0 [2]

(11)=0

(12) =a,%-a,

(13) =2a,%- 3aja, + a3

(14) = 3a,* - 6a,%a, + 4a;a; - a4

(15) = 4a,° - 10a,a, + 10a;,%a; - 5a;a, + as

Example
x?-2x+1=0 a;=1 a,

(12) = (x+1)? - 2(x+1) + 1 =x + 2x
(11)=0 (12)=a;?-a;=12-1=0

+1-2x-2+1=x?

So these (xy) are numbers and Hargreave uses them extensively. The (1p) comes
fromt=x-a; - (2p) comes fromt =x - a,. In the quantic, x is the argument (arg), ai
[1-n] are the coefficients (coeff), xi [1-n] are the roots. Transformed into [2], the arg is
t or x-a; and the coeffs (12) to (1n) are n-1 in number. This is a linear transformation
(lin.trans.) and (12) ... (1n) are sym. fns of (x1-a1), (X2-a1), ..., (Xn-a1).
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We could use other resultants, as in (23), the resultant of ¢, and 3.

Sp denotes a sym. fn of roots xi [1-n] of pth degree (n=p) -- also a gfn of ai [1-n].

Rp is a qfn of p® which may or may not be sym.

The discriminant (dscr) of a quantic as well as every combination of roots or coeffs

whose vanishing shows a condition of a system or systems of equations among the
roots can be expressed in terms of the n-1 quantities (12), (13), ..., (1n).

Discriminants

Quadratic (12)

Cubic 4(12)3 - (13)?

Quartic 81(12)*(14) - 54(12)3(13) + 18(12)?(14)* - 54(12)(13)*(14)
+27(13)* + (14)®

Quintic 3456(12)°(15)% + 11520(12)*(13)(14)(15) - 6400(12)*(14)3

-5120(12)3(13)3(15) + 3200(12)3(13)2(14)?

- 1440(12)3(14)(15)? + 2640(12)?(13)(15)?
+448(12)2(13)(14)2(15) - 2560(12)%(14)*
-10080(12)(13)3(14)(15) + 5760(12)(13)2(14)?
+120(12)(13)(15)° - 160(12)(14)2(15)? + 3456(13)5(15)
-2160(13)*(14)% + 360(13)2(14)(15)? + 640(13)(14)*(15)
-256(14)° + (15)*

Note that the quartic dscr can take form
27((12)% + (12)(14) - (13)%)%- (3(12)%- (14))®

which resembles the cubic. If the quantic can be algebraically resolved by lin.trans.
the rational part of the root is a; and the residue will be the n-1 fns (12), (13), ..., (1n).
This is only necessarily true if resolvable by our lin.trans. The xi are independent
roots or symbols, the ai independent coeffs or parameters. No relation between them
or character of them is assumed.

A transformation (trans.) applied to ¢n gives us one or more n° eqns with relations
between coeffs and/or roots. These will be eqns in z with coeffs bi. Each eqn is
denoted An and the resultant of A1 and A will be denoted (p1) to distinguish then from
(1p) for eqns in x. If we consider with @n a subsidiary eqn of lesser degree or
resolvent (rsvt), it will be a fn of y with resultants denoted (I-11), (I-I1), and so on.

Y. will be used as in our sigma notation from Chrystal of perms and the following sym.
fns of roots will be abbreviated by underlining and these can be expressed in terms of
Xi O ai:
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pg = (-DYEITEY - ny(xxY p#q
pp = (0-1)(X(x")?- 2nY(xx")
par = (n-1)(n-2)T)TEHTED - n2Y (xPx %) p,q,r different
ppg = (n-1)(n-2)(T(x)*X(xY - 2n’Y (x"x"x%) p#q
ppp = (n-1)(n-2)(T(x")? - 6n°F (x"x"x")

Consideration of Operations

We consider addition, multiplication, prime powers, and roots of same. Addition tells
us what is positive and what is negative. Multiplication tells us what is whole and
what is fractional. And powers tell us what is rational or irrational.

We will make the following important distinction. If p prime and P an expression
which cannot be obtained by raising any expression to the pth power then "VP is an
irrational or surd expression. We know that it has p values but they are
indistinguishable as all require the symbol Py, But if the p values of VP are
algebraically distinguishable then VP is not irrational but of the form VQ” where we
can write out the separate values of »'Q where ' is a root of unity. Here P is the
product of wQ, w?Q, ®3Q, .., w’Q. In the first case, no Q exists and using "VP in place
of Q merely maintains ambiguity.

It may well be supposed that this is merely a metaphysical distinction. Whether this
be so or not the distinction is a real one; and it constitutes probably the clearest mode
of distinguishing between two notions, a rational expression and an expression which
Is identically and necessarily surd.

Example

Given a cubic, we find a product of two qfn of the roots, each 3°, which is a perfect
cube of a sym. fn 2° of the same roots. We also know that the same proposition in the
same terms is applicable to two other cubics in which the 2° sym. fn is in the one case
o times and in the other w? times what is in the original. The important conclusion is
that each of the qfns whose product is a perfect cube is itself also a perfect cube. Also,
we could not otherwise divide each factor into three distinguishable subordinate
factors. More explicitly, let these two fns of the roots have the product (12)* which is
(x - a;)® and this product is unchanged by using w(12) and w?(12). Then each fn is a
perfect cube and therefore a perfect cube of a linear fn of the roots. This is the only
way we can have this o, w? substitutability. The only other way to compose this
product is with factors R;? R'; and Ry, R';% with subfactors of 3V(R,?R’;) which
remain indistinguishable. This principle of distinction will be further developed.
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Systems of Equalities, Critical Functions

Conditions among roots can be expressed by roots or coeffs. If we wish to impose the
linear condition

Ax1+Axxp + -+ Anxn =0

we multiply together the n! eqns which include this and all its changes by
transpositions of the roots. The result is a sym. fn of the roots expressed as a qfn in
terms if its coeffs. If the Ai are not all different, the degree of the condition is a
submultiple of n!.

Most importantly we consider the condition of two equal roots, expressed by equating
to zero the product of all xp - Xq which are n(n-1) in number. And this condition is a
perfect square. Expressed in coeffs, it is the resultant of ¢n-1 and @n, which is in turn
the dscr of @n. The condition of three equal roots are

1) 2 equal roots
2) @n' has two equal roots = ¢ and ¢" have a common root

In a cubic, the condition of two equal roots is

(23)=0 A (12)=0 OR (23)=0 A (13)=0
or,as (23) = (13)?- 4(12)®

(12)=0 A (13)=0

In a cubic, three equal roots can be expressed by linear relations among the roots. As
(23) is a perfect 6° square, the condition of 2 equal roots is expressible as a 3° fn. And
as (13) is 3°, we can, with suitable N, present both as

N(13) +V(23)=0
which expressed by the roots is a two-valued qfn. The value of N must ensure
(12)=0 A ((23)=0 v (13)=0)

By adding these, they are equivalent to (13) = 0. If N = 1, they are equivalent to

(12)3 = 0 which is (12) = 0 by multiplication. We have two gfns of xi [1-3] whose
product is a perfect cube of (12). So, as in our example above, each qfn is a perfect
cube of a linear fn of the roots. We then have three linear fns of the roots, each cubed
equaling (13) + \/(23) and three others, which cubed equal (13) - \/(23) and taking
one from each set and adding them together is a sym. fn of the roots. The only linear
fns which will work for this are

A(x1 + WXz + w?x3) and A(Xq + %X, + 0X3)

and also each of these multiplied by w and w?.
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So the condition of three equal roots in a cubic is
X1+ WX +W2X3=0 A X1+ 0 Xp + wX3=0

Now consider the quartic. Two equal roots needs (34) = 0 and three equal roots
requires

(34)=0 A (23)=0

(34) = 0 is a 12° fn of the roots and a perfect square. Its square root is homogeneous
with (23) = 0 or any other 6° condition.

(34)

27((12)° + (12)(14) - (13)%)? - (3(12)? - (14))°
= 27((23) - (12)(3(12)* - (14)))* - (3(12)* - (14))°

So for two equal roots we need two of the following conditions met:
3(12)*-(14)=0
(12)*+(12)(14) - (13)*=0
(34)=0
With suitable N, the two become
N((12)% + (12)(14) - (13)?) £ V(34)
Their sum is one condition and their product, if N= \/27, is the other condition. Sym.
with the cubic, the linear conditions of three equal roots where the R's are 2° gfns of xi

[1-4] are

R, + wR'; + w?R", A Ry + w?R', + wR",

The Quadratic
The simple application of the lin.trans. is the resolution of the quadratic (quad) of

(x-a1)*-(12)=0
. x=a; £V(12) [1]

which to determine x, and x; is equivalent to

Yo(x1 + Xz + V(X122 + X2 - 2X1X3))
The quad admits of no other transformation so [1] is the only form of the root. Its
rational part is a;. The irrational part is a fn of (12). The quad can undergo only one

change of system with respect to the roots. So there can be only one radical in its
roots and that one must be %V. Its soln is therefore unique.
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Recall our notation Sy for sym. fns of the roots. The roots of a quad can be expressed
as S; + VS, and therefore S, is a perfect square. So we must always be able to express
the two roots as distinguishable. If S, were not a perfect square, there would be no
possibility of algebraically distinguishing the two forms of expression. So here, the v
must go away. /i1 this consideration, we see the first step towards the views embodied
in Abel’s Theorem (regarding the expression of roots with respect to coeffs).

In our process, we have inverted the ordinary algebraic operation. If, in the quad, we
sub 2a,t for x, the quad becomes

t? - t=-ay/4a, = (say) v
(pt =V

So we need to solve t = q)'lv where ¢ is a fn only of t with no constant term, and t is a
multiple of x. OR

Given v = t?, what fn of v is t?

As a side note, before reading this, I had thought one could say everything about
quadratics in about ten pages of a text like DME. But Hargreave's viewpoint is so
original and expansive, I think another couple of pages would now be required to do
justice to quadratics.

The Cubic

Our view of the quad suggests that the rational part of the cubic's roots may be a; and
the irrational parts fns of (12) and (13). We would like to find fns of the cubic roots
which are the roots of a quad whose coeffs are rational expressions (qfns) of the
cubic's coeffs. These quads should have specific relations to the cubic's roots and
might aid in their resolution.

An algebraic expression of any quantic's roots should mirror changes caused in the
system by equal roots. So here any changes in the cubic system should be mirrored in
our desired quads. If a cubic has three equal roots, each is a; and the irrational part
vanishes. This causes any radicals to disappear. So our quads, as expressions of
irrational parts, would disappear. If the cubic has two equal roots, the irrational part
of its roots would change in form, where a quad would go from two roots to one. We
then need a quad whose coeffs are rational fns of the cubic's coeffs (12) and (13) and
whose dscr (discriminant, remember?) is the same as the cubic's.

A cubic's dscr is 6° in its roots and a quad's is 2°. If they are to be equal, the argument
of any quad in y must be 3° and its coeffs of degrees 0,3,6. The most general form of
this would be

y%- 2N (13)y + N2(12)% + N5(13)?=0

We can let N3 = 0 without loss of generality as it would vanish under a transform such
as y = t + N4(13) and such transform affects neither the rationality of coeffs nor the
dscr.
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So we have
y?- 2Ny (13)y + N5(12)3=0

We need, to a numerical factor, equal dscrs for cubic and quad. The quad's is
N;%(13)%- Ny(12)3

and the cubic's, from our table some pages back, is

4(12)3 - (13)?
~ N, = 4N,?

As N;'s value is immaterial, let it be unity. So our quad becomes
y2-2(13)y +4(12)3=0

Its soln gives two values of y in terms of (12),(13) and therefore of ai [1-3] which are
known. By subbing xi appropriately for (12),(13) or for ai the y's are sym. fns of xi:

yi= S3+\/Ss
y2= 53'\/56

which are rational, as Sg is the dscr of the cubic and therefore a perfect square in
terms of the roots. We see this rationality by comparing y expressed wrt y,,y, and wrt
X1,X2,X3. The former is

Yalyr+y2+ \/(Y12 - 2y1y1+y2%)
and the latter, in our Sigma notation, is
2/27(£x)% - 1/35x% (xx) + [1x + V(N(x17%2) (1-%5) (X2-%3))?)

where N is a known numerical factor.

~ y1+y2 and y1-y, can be expressed rationally in terms of xi
~ y; and y, are so expressible

~ eachyis a rational fn of x1-a4, Xz-a4, X3-a1

The product of the 2 y's is a perfect cube of a qfn of the coeffs
~ eachy is a perfect cube

~ eachy is the cube of a linear fn of xi - a; [1-3]

Y11/3 =Aq(x1-a1) + Az(Xz - 1) + Az(X3 - a1)
y2"* = B1(x1 - a1) + Ba(x; - a1) + Ba(xs - a1)

where the Ai,Bi come from our calculation by way of an extraction of the roots, which
we have proven possible. These, combined with

(x1-a1) + (x2-a;) + (x3-a;)=0
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determine the roots. We must be able to calculate y as a fn of ai and of xi. The ai give

3 The xi give us the A;,Bi. But here these could be inferred.

us y11/3 and y,
If we consider our success in finding the linear fns in (xi - a;), we still have not a
definite soln of the cubic. For our Yil/g, we have no guide to know which root of unity
is our numerical factor. We only know we must use the same root of unity in both.
We have no means of deciding on a root of unity by algebraic resolution unless we
descend into arithmetic. We must consider the characters of arbitrary symbols. If we
choose that the ai € R, we could determine the cases where one or more xi are real and
find our root of unity. But algebraic resolution requires our coeffs and roots to remain
arbitrary symbols without attributes or meaning.

Consider our quad in y where equality of dscrs makes it a resolvent of its cubic in x.
(12) appears only as (12)*. So the quad is the same if expressed as

(x-a1)%-3(12)(x-a1) - (13) =0 [1]
or (x-a1)*-3w(12)(x-a,1) - (13) =0 [2]
or (x-a1)®-3w?(12)(x-a,) - (13) =0 [3]

which however have no root in common. And here we lose all trace of which of these
we are solving. Our solns are the same, no matter which of this trio we are using.

But consider that the intersubstitution of (x - a;), w(x - a;), and w?(x - a;) changes any
of the three into one of the others. So the form of the root must allow this substitution.
In itself, y is not capable of this. There must be some fn of y that allows it. So we are
led to consider three systems which solve our three cubics:

}’11/3 =A((x1-a1) +w(xz-a1) + U)Z(Xs -a1))
y2'* = A((x1 - a1) + 0% (x2 - a1) + W(x3 - a1))

for [1]

Y11/3 = A(w(x1 - 1) + w?(Xz2 - a1) + (X3 - a1))
}’21/3 = A(w(x1 - a1) + (X2 - 1) + (X3 - 1))

for [2] and

}’11/3 = A(wz(x1 -a1) + (X2 -a1) + w(x3-a4))
y2'* = A(w?(x1 - 1) + (X2 - a1) + (x3 - a1))

for [3]. The ambiguity which remains can be resolved if we adhere to considering xi as
symbols only. If we had known of this ambiguity of the roots of unity, we would have
known that any quad resolvent of a cubic must have the dscr of the cubic. lfyll/3 and
y21/3 must be expressible as rational linear fns of x;, i.e. of (xi - a;), then so must be y;
and y,. And our
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y?-2N1(13)y + No(12)*= 0
will work here only if
N;2(13)?- N,(12)3

is a perfect square which gives us our equal dscrs. So N; and N, are bound by this
condition. Conversely, if the dscrs are equal, the roots of the quad have the qualities
that make it a resolvent, not only for its cubic, but for the conjugate cubics which in
resolution cannot be separated from it.

That our quad gfn with a dscr equal to that of a cubic is a resolvent is not apodictically
established. It appears as the result of a calculation. This identity of dscrs has the
following aspects: y is of 3° in the roots xi; coeffs of the quad are sym. fns of these
roots of an appropriate degree; when two xi are equal, the y are equal so that the
whole of the irrational part of the quad roots appears in the cubic's roots; and when
all xi are equal, the eqn in y vanishes along with the irrational part of the expression
for x.

Conversely, as S; and S¢ are fns of (xi - a;) [1-3], the irrational part of the cubic's roots
are fns of y; and y, exclusively, where their irrational part occurs in them unaltered.
Because we can't distinguish between y; and y,, they must enter into these fns
symmetrically. So the x's are sym. irrational fns of y; and y, exclusively, fns of one y
combined with the same irrational fn of the other.

This fn of y is unaltered by the intersubstitution of (x - a;), w(x - a1), and w?*(x - a;). At
the same time, there must be some f(y): when (x - a;) becomes w(x - a;), f(w(x - a;)) =
of(x - a,) and Sym. for 2 OR y = (/%)% = (wy"?)? = (wZy"/*)® OR y is a perfect cube
of some three-valued fn of the (x - a;)'s. Therefore, y is rational. This is seen in the
form of y as Sz V/Ss where S3,S¢ are fns only of the three values of (x - a;)®. From
algebraic considerations only where xi,ai are mere symbols, our soln of the cubic takes
the form

S1+3V(Ss +VSe) + 3V(S3 - VS)

which is a fn of xi [1-3] and is nine-valued and solves three distinct cubics, solns
differing by a cubic root of unity.

We see from the identity of the critical fns of both the cubic and quad that y must be
rational and a two-valued fn, each value a perfect cube of a linear fn. And the
resolvent in y resolves three related cubics. Because (12) is in the quad only as a cube,
the quad stands in the same relation to all three cubics, whose roots are different. And

/3 must be linear in the x's.

here again, y must be rational and the six values of y
Besides the lin.trans., only one other transformation maintains this form. This is the
Tschirnhausen transformation (T-trans) where (21) vanishes. This reduces the cubic
to a binomial form and gives the same form to the roots as above. Therefore the soln
of the cubic is unique in form.
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We can view the cubic as we did the quadratic, as a fn of t. The cubic has form
(x-2a1)®-3(12)(x-a1) - (13)=0
Let (x - a;) = V(3(12)) - t and the form is
t-t=(13)/(3(12))** = (say) v

Or @t = v and our cubic solnis ¢ int= @ 'v

The Quartic (First Method)

We infer from the lin.trans., that if the quartic is resolved by a lin.trans., the rational
part of the roots is a; and the irrational parts are fns of (12),(13),(14). We look for a
cubic with the same dscr (to a numerical factor) as the quartic. And we expect this
cubic to be a resolvent whose roots relate to the roots of the quartic.

The dscr of a quartic is 12° in its roots and a cubic's is 6°. The argument of a cubic iny
with the same dscr as a cubic in x must be 2° with coeffs of degrees 0,2,4,6. The most
complete form of this is

y® - 3N1(12)y? + 3(N2(12)* + N'2(14))y - (N5(12)*(14) + N'5(13)*) = 0

Given these constants, or rather, their ratios, we want to give them values so that this
cubic's dscr is that of the quartic. The dscr of this cubic is

4(1-11)3 - (1-111)?
where
(I-11) = (N4% - N2)(12)% - N';(14) OR C(12)*- N'(14)
(I-1I1) = (2N43 - 3N;N;)(12)3 - (3NN, - N3)(12)(14) + N'5(13)?
OR D(12)%- E(12)(14) + N'3(13)?

and the dscr of the quartic is given in our earlier table. Comparing the two

Dscr Cubic Dscr Quartic

(12)? 4C3 - D2 0

(12)%(14) 2DE - 12C2N, 81

(12)%(14)2 12CN',2 - E2 18

(14)° -4N',3 1

(12)3(13)2 -2DN', -54
(12)(13)2(14) 2EN'; -54

(13)* -N'5? 27
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From this we have

4C3-D?=0
108N'2-N';2=0

DN'; + 108N',% =0

EN'; - 108N';% =
6C2N',-DE-162N',3=0
12CN',2-E2+72N';2 =0

The first implies

N;=3/4-N,> OR C=%N,?

N'2=%C=1/12 - N;?
N's = (108N'5%)"/2 = %N, ?
E=3N;N';- N3 =%N;* - N;

But E must equal N5 or %4N;3 ~ N3 =0

We have to satisfy these six eqns above with only four constants. But this is possible,
no matter what value is given to N;. Let N; = 6 to avoid fractions and the cubiciny is

y3 - 18(12)y? + 3(27(12)2 + 3(14))y - 54(13)2=0

We can resolve this cubic expressing its three roots in y in terms of (12),(13),(14),
which is to say in terms of ai [1-4] and also in terms of the x's under radicals by
subbing for each coeff its corresponding value in x's. This form is

y= Sz + 3\/(55 + \/Slz) + 3\/(56 - \/512)
=52 +V(Ss + Re) + *V(Ss - Ro)

where VS, is the square root of the quartic expressed in terms of its roots and is
therefore reducible. At this point, we could expand S¢ * R¢ in terms of the x's and take
cube roots. Each value in y would be rational and a perfect square producing a linear
fn of the x's. But this is computation and we seek a general theory.

If we assume the coeffs of our cubic to be rational, all we need flows from the form of
its having the same dscr as the quartic. Even without this assumption, there must be
at least one common radical in the expression of the roots and this is a step toward
showing y€Q as S is a perfect square wrt the x's.

When the cubic has three equal roots, the dscr vanished and so do (I-1I),(I-III) and we
get

(14) - 3(12)2=0
(12)% + (12)(14) - (13)2=0
4(12)%- (13)2=0
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So this last, with vanishing dscr, gives us three equal roots in the quartic.

All conditions between coeffs which show multiplicity of roots in the cubic operate in
a similar manner in the quartic. So all the radicals in the cubic's roots must be
unaltered in the quartic's roots. The is the property, or definition, of a resolvent.

If we take
Rz + (.l)R’z + Ll)2R"z Rz + (DZR'Z + (l)R"z

and multiply each by w and w? the conditions of three equal roots in a quartic are
represented by the product of these six fns where the R's are 2° gfns of the quartic's
roots. Indirectly, this shows the y's are rational. But we need to establish this directly
from the relation of the cubic in y to the quartic in x and the fact that the product of
the cubic's roots is the square of a qfn of the quartic's coeffs.

From the dscrs, we know that yi [1-3] enter into the four (x - a;)'s, preserving their
irrational parts. So these (x - a;)'s are sym. wrt yi and must be irrational fns of them,
consisting of irrational fns of each yi separately or (same thing) combined in pairs.
And this product of the cubic roots is allied to another quartic in the same manner.
This connection, being identical, we can't tell which quartic our cubic comes from by
working backwards. So the cubic solves two quartics with distinct roots. In our cubic,
(13) appears only as (13)? and can come from either of these:

(x-a1)*-6(12)(x-a1)* F 4(13)(x-a1) - (14) =0

Therefore, y is a fn of the four values of (x - a;) only through the four values of (x - a;)*
Soy as a fn of (x - a;) cannot undergo any change when (x - a,) is changed into -(x - a,).
The root of the quartic must be expressed through some f(y) that admits of a change of
value in this substitution as the cubic must solve two quartics. So there must be some
fn y operating only on y which changes when (x - a;) becomes -(x - a;). But this
change is obliterated when we use LlJ'1 on Y(y). So 1|J'1 is squaring and Y is taking the
square root. And this requires y to be rational in terms of the x's. For if the cube roots
were irreducible surds, any root of a power or fn of y would also have that form and
would contain y only in the four values of (x - a;)% Because the three values of y are
rational and because their product is a perfect square then each of the y's is a perfect
square and a linear fn of the four values of (x - a;). And for the two quartics, one set of
y's is the negative of the other.

Now it need not be necessary that three quantities in Q are a square because their
product is one. They could have the form RR’, RR", R'R". And then (13)? would have
three factors, each repeated twice. But every factor, as we have just shown, can differ
by sign only. And with symmetry of roots of unity, we must have (using a; for
convenience only):

\/Y1 =+A((x1-a1) + (Xz-a1) + (X3 -a1) + (Xa - a1))
\/YZ = +A((x1-a1) - (Xz- 1) + (X3 -a1) - (X4 - a1))
\/Y3 =+A((x1-a1) - (Xz-a1) - (X3 -a1) + (Xa - a1))
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and these solve:

(x-a1)*- 6(12)(x - a1)? - 4(13)(x - a1) - (14) = 0
(x-a1)*- 6(12)(x - a1)? + 4(13)(x - a1) - (14) = 0

In computation, we must use the square root in one case so that y;y,y3 has the same
sign as (13) and in the other case, as -(13). The fn which expresses our solution by
this method is

S1+V(Sz +*V(Se + VS12) + *V(Ss - VS12))
+V(Sz + 0-3V(Se + VS12) + 023V(S6 - VS12))
+V(S2 + 0**V(S6 + VS12) + 0-*V(Ss - VS12))

Here we are unable to express the quartic problem in the form ¢t = v. That multiple of
(x - a;) we call tis not in our expression of the root a fn of any one symbol v. So at this
point, the root of a general quartic cannot be represented as a fn with a single
parameter. But we will return to this idea in the next section.

The Quartic (Second Method)

As arecap, for our a priori soln of cubic and quartic we have:

1) For each, we have an eqn of the next inferior degree whose coeffs are qfns of the
given eqn's coeffs and which has the same dscr as the given eqn.

2) The constant term of this lesser eqn, the product of its roots, is a perfect power of a
gfn of the given eqn's coeffs, the exponent of the power being the degree of the lesser
eqn's argument.

3) This gfn of the constant enters the lesser eqn only in that power of these arguments.

We also know that our process solves a set of eqns with distinct roots. The set has as
many elements as the power of the constant term in y. Both dscrs take the same form:
S? + NS'3. Our y must be not only rational in its x's but a power of a linear gfn of the x's.

The cubic, with its resultant, presented no problems. In the quartic, having to satisfy
six eqns with four ratios prevented us from knowing a priori that we could so satisfy
them. So we could not know that an a priori soln existed. This is important and at
least shows us that our soln was not the simplest and most natural.

A remedy would be to reduce the number of eqns to satisfy. To equate two general
12° fns of (12),(13),(14), we must satisfy six eqns, there being seven terms with coeffs.
In our comparison of cubic and quartic, if we strike out (12), we have two terms left
and the ratio of their coeffs can be determined without redundant eqns of other
inconsistency.
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A quartic with (12) = 0 has this form
3(Xz)*-8%(zz) =0

and has the conditional form

z* - 4b,z3 + 6b,%2% - 4b3z + b, =0
and has the same dscr as

y®+9(41)y-51(31)%=0
Resolving this, we get three values of y in terms of (41),(31) or b;,bsbs. But we
cannot express y uniquely in terms of z. We could sub %Yz — b4, %4Y,(zzz) — bs, and
21727324 — b, but the condition 3(3z)? = 8)(zz) admits infinite variation. So we need
a unique expression of y. And even then, we have no resolution of the general quartic

inXx.

Let's first consider transforming any quartic into our (12) = 0 quartic for which we use
the T-trans. We are given

x* - 4a;x> + 6a,x% - 4agx +a, =0
and we need to transform it into a quartic in z where z is some yx that makes (21) = 0.
(At this point, note that if the (21) seems a typo or you are unsure of its meaning, you
are not quite yet following the notation. I say this as [ had the same issue.) The
general form of our Y is

z=yx=hx®+kx* +1Ix

any higher power of x being reducible and any constant term absorbed by z. The
transformed eqn in z is therefore

z* - Z(Wx)z* + T(Wxyx)z? - R(xpxpx)z + [Texi [1-4]

and for (21) = 0, we need h)k1:
3(Z(Wx))? - 8(Z(WxPx)) = 0

or in our, now almost forgotten, underscore notation of sym. fns of the roots, this is:
33h?% + 232hk + 231hl + 22k? + 221kl + 111=0

We can satisfy this in two ways with three or two results. With three constants and
two conditions we can make h = 0 and determine k:1 by

22k* + 221kl + 111=0

and get two forms of { each with a quartic of form (12) = 0. This gives a set of two
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quartics and Sym. for k=0 and 1 = 0. Secondly, our condition takes form

(33h + 32k + 311)% + (33-22 - 32-32)k? + 2(33-21 - 32-31)kl + (33-11 - 31-31)12= 0

which is equivalent to two linear conditions

33h +32k+311=0
Ak + (B+V(B?-AQ))I=0

where AB,C are the three sym. fns above of degrees 10°,9°8° respectively. Any
convenient h gives k and 1 by a linear process and again z takes two forms, giving again
two quartics.

The reduction can also be made by exchanging 1 and 3, h and | in the above. In all
cases, a distinct form of irreducible irrational appears for each method of elimination.
The degrees of the new fns introduced are 14° and 18°. All methods appear to be
distinct. In every case, we get two quartics differing by the sign of the 2V which is in
every coeff. We consider now only the simplest of the above transforms where z is 2°
inx:

z=kx? +Ix = 11x% + (21 + V(21-21 + 22-11))x

OR

116+ 7= 3(a1? - ap)x* + (3(4a,3 - 5aqa, + a3) = V(9(4a,® - 5a,a, + a3)?
- 3(a1? - a2)(48a, - 72a;%a, + 9a,% + 16a3a3 - a4) )X

The radical last written down is the essential irrational form which will pervade the
whole of our future results. 1t is irreducible or, at least, we will treat it as such
regardless. With this z, b; = %Yz, b; = 14Y,(zzz), and b, = []zi [1-4] -- all expressible in
terms of ai [1-4], all containing this last radical but otherwise rational.

If this leads to a result, the irrationals in it will net be fns of (12),(13),(14); the rational
part with not be a;; and the sum of the roots will be 4a;. Our pair of conditioned
quartics with then be

z* - 4b,73 + 6b,%2% - 4b3z + b, =0

where z = kx* + Ix and where Lk, by, bs, b, are 2° irrational fns of ai [1-4] each being
two-valued, one for each quartic in the set according to the square roots of unity.
Consider this cubic of one of our conditioned quartics:

y®+9(41)y - 54(31)2=0

We can express (31) as bs - b;® and (41) as -(bs - bs*) + 4by(bs - b;*) which is all in
terms of ai [1-4] and each contains our big quadratic irrational (quad-irrational) which
we denote VIs. So we can express y completely in terms of a; [1-4] and therefore by
sym. fns of the x's or roots.
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In both cases, the irrational is of Hamilton's 3d order. And in both cases, in whatever
mode of transformation, the y's are now uniquely expressed.

Consider the relation of the quartic in z ({x) and the cubic in y. We ask if the latter is
the resolvent of the former. Both have the same dscr. So any expressible radical in
the y's will enter the root of the quartic which is

(z-b1)*-4(31)(z-bs) - (41) =0

With these two parameters, we cannot impose two conditions nor suppose three or
four equal roots without the cubic vanishing and the quartic being (z - b;)* = 0, So any
multiplicity in y is reflected in z (yx) and radicals in y enter the roots of the quartic
unaltered. These radicals are the three forms of

VB +V(ED* + (5 + VIBD®-V(BD* + (4(41)*)
and are uniquely expressible in X's or a's.

Although all this is not definitely expressible in z, we can definitely express the dscr, if
not uniquely, and it is a perfect square, which suffices for our theory. Properly
speaking, there is no fn of z as z is identically yix which is kx* + Ix. We do not attempt
to solve a conditioned quartic but only the complete quartic in x which takes form

(Wx-by)* - 4(31)(Wx - by) - (41) =0

When the cubic has three equal roots, it is y*> = 0 and (31),(41) vanish and both
radicals vanish from the roots. Then the quartic becomes

(z-b1)" = (Wx-by)*=0

with three equal roots, or considered in z, 4 equal roots. In x, three equal roots
reduces the quartic to Yx - b; and with four equal roots, x = a;. Our unchanging
radical of the cubic's and quartic's roots must be a fn of y; and Sym. the same of y, and
ys. The quad-irrational (31) appears only as (31)? in the cubic of y. So -(31) gives us
the conjugate quartic's resolvent and our original quartic being

(z-by)4-4(31)(z-by)-(41)=0
its conjugate is
(z-b1)*+4(31)(z-by) - (41)=0

where we sub -(kx? + Ix - by) for (kx? + Ix - b;). Soy remains the same but some fn of y
must change in this substitution. Again we have yl/2 changing but (yl/z)2 does not, as
in the first method. Here y, in terms of the x's, must be a gfn, not of the x's, but of the

expressions of z in terms of x. So y must be a linear fn of yxi [1-4].
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Then, except for our irreducible 2V radical, y is reducible to a 2° gfn of i [1-4] or

A;(PXq - by) + Az(Ux; - b1) + Az(xs - b)) + Ag(Px, - by) = Y11/2
B1 (x4 - b1) + Ba(Uxz - by) + B3(Wx3 - by) + Ba(Yxs - by) = }’21/2
Ca(Wxs - ba) + Co(Wx; - by) + C(ixs - by) + Ca(Uixs - by) = y5™/2

which combined with

(Ux1 - b1) + (Wxz - ba) + (Px3 - b1) + (UXa-b1) =0

determine yxi [1-4]. The A; Bi, and Ci are numerical constants which arise in the
computation. The yi [1-3] are the previously determined irrational fns of ai [1-4].
Because we have a set of two quartics, the above process can be repeated to obtain a
second set of solns Yxi [1-4]. We first determine

kxi2+1x;  kxp?+1lx,  kxg?+1xz kxa? +1xs

wherelis 21 + \/(ﬂ~ﬂ -22-11) then we determine kxi® + I'xi where I' is

21- \/(L~L -22-11). Any sym. fn of kx,? + Ix; and kx;% + 1'x is a fn of x; whose coeffs
are qfns of ai [1-4]. From this, by eliminating all powers of x; above the first, we
absolutely determine x;.

Example
Let our sym. fn be the sum of these which is
11x,% +21x, = Va

where Va is a known fn of ai [1-4]. Then we eliminate x,*, x,°, and x,? from these two
fns:

XY - 4a;x,° + 6a,x,% - 4azx, +a, =0
(a1% - az)x4% + (4a,% - 5aja, + a3)x, - Va= 0

Here, to extract the roots, we need only determine the double set of Vyi [1-3]. And the
irrational fns of ai [1-4] in one set appear in the other as our VI with the sign changed.

Our second method here is a new form of quartic soln where each term of it contains
only two elements. If our { had been hx; + 1%, the soln would take another form with
the irreducible radical \/Ig; if with hx® + kx?, a new form with \/110; if with the entire

hxs + kx* + Ix, yet another form with one of the other irreducible radicals of degrees

\/114 or \/118.

The first method's results could not have been anticipated a priori: that certain qfns
of the roots of the quartic were also roots of the cubic with coeffs of gfns of the
quartic's coeffs. This meant that there are qfns of four symbols with exactly three
values.
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With this second method, we have combinations, not of coeffs, but of a certain
irrationality of the form A + BvI where A,BEQ, I€Q but not necessarily a perfect
square. There are several distinct forms of the VI, each with its mode of soln. From
this method's fns of the roots containing our V1, we again find a three-valued fn of four
symbols, solving the quartic.

The two methods of soln are independent. If we had ignored the first method, we
would have no knowledge of the existence of a three-values qfn of four symbols. The
two methods show that any eqn insoluble by a process where the rational part of the
roots is a; and the irrational parts are fns of (12), (13), ... may be soluble by the
introduction of some irrational fn, an appropriate analog of our V1.

In considering our second method, it is significant that our A;B;,Ci were discoverable
through operations only without reference to the first method. Comparing the two
methods and knowing the eqn in z is a case of the general quartic, we find the A;B;,Ci
the same in each. In the second process, each root is expressed in terms of six
irrational fns of the coeffs, each of Hamilton's 4th order, besides the quasi-rational
part which is the sum of two values of bi Each root can be expressed less
symmetrically by fewer fns. We have not been solving the general quartic by means of
the reduced, conditioned, trinomial quartic. We have taken one of the solns of the
general quartic and imparted into it this limitation or condition.

The second method does involve one or the other of five quad-irrationals introduced
by the T-trans. No others would achieve a soln distinct from the first method. But
using this transformation, we lose, from the soln stated at the end of the first method,
the term S,. In that statement of soln, S, could only vanish if we had some relation
between coeffs and roots. In our search for generality, we admit no such relation of
condition. But here, by subbing some xx for x in the quartic, some one of S, S, S12
may vanish without affecting generality or introducing a relation or condition. The T-
trans affects S,.

Note that this transform, having removed S, by a process acting on the radicals,
cannot be undone by a process outside the radicals. Let the root be p. If we sub xx for
x in p, the result will be equivalent to, and reducible to, xp so long as the form of p is
not altered by the substitution. But if x produces alterations of form, the result cannot
take the form xp although it be arithmetically equivalent. This vanishing of S, is of
great theoretical importance. Algebraically, it presents the resolution in a different
form. Here, like the quad and cubic, the quartic is a fn of a single parameter --
(31)*/(41)2 -- which cannot be inferred from the first method.

We can introduce any lin.trans. into the original quartic before applying the T-trans.
And each lin.trans. changes our V1. These are not distinct results but merely linear
variations of the soln. But if we begin with the lin.trans. that causes the second term
of the quartic to vanish, we greatly simplify our work without loss of generality of
introduction of any condition. We make this our standard mode of transformation. It
is effected by subbing x - a; for x, making a; zero in all formulae, and then a,,az,a, are -
(12),(13),-(14). To show we are doing this, we denote a,,a3,a4 as c,c3,C4.

Digital PDF copies released under Creative Commons 4.0-SA-BY-NC
Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



230

We now have
Ux =k(x-a1)*+1(x-a,)
where k = -3c¢? and 1 = -3¢5 + V(3(9¢2® - cz¢4 + 3¢5%)). Then by = 9¢,% and

4b, = By (xxx) + 12kY (x*xx) + K23 (x*x%x) + k33 (x*x*x%)

or
bs = csl® + 3cac4l? + 54c,3csl - 27¢,° (4cs” - 3cacq)
which divided by
12 + 6¢31 - 3¢5(9¢2% - c4) = 0
gives
bs =81c,* - 513c,3c3? - 9cy2c4? + 162¢,05%c, - 108c3*
+(81c3c® - 21czc5¢4 + 36¢52)V]g
Sym.
by = cu(1* + 54¢,%1% - 108 co3csl + 81cy%cy)
=9¢,4(243¢,° - 36¢,%cy + 324c,3C5? + Co2Cq% - 24CyC3%Cy + 72¢3*
- (72¢33¢cs - 4cyescy + 24¢53)V]g)
These give

(31) =-729¢,° + 81cy*cy - 513c53cs? -9¢,%cy® + 162c,¢3%¢, - 108¢3
+ (81c3cs - 21C5¢5¢4 + 36¢,3)VIg
= (for reference) Bi, + B.;\/IG

Y5(41) = -6561c,® + 243¢,%c, - 6156¢,5c3% + 972¢,3c3%cy - 1296¢,%c5*
- 3cp3cs3 + 72c,03%c,% - 216¢5%cy
+12(81¢,5¢3 - 3¢5°¢3C4 + 36C,2¢53 - C¢54% + 6¢53ca) Vg
= (for reference) Big + B33\/16
from which we form
y =3CV(B1? + V(B + (%(41))%) + *V((31)* + V((31)* + (4(41))*)))
where (31)% = B1,? + Bolg + 2BoB1,VIs and (31)* + (45(41))° =

Bia* + 6B1,2Bo?lg + Bo*lg + Bis- + 3B16B13%ls
+ (4B12°Bs + 4B1,Bo%1s + 3B162B 13 + B1g®l6)VI
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Suppose the quartic to have two equal roots so that y has these values
6(31)** -3(31)** -331)*"*

Zi+Zp-Z3-Z4= 4(31)1/3
Zi+Zy+Z3-74= 2v-2 (31)1/3
2173 - 73 + 24 = 2V-2 (31)'
21+ Zp + Z3 + Zy = 3652

21 = 96,2 +3V(31) - (1 +V-2)
2= 9¢,% +3V(31) - (1-V-2)
23 = 9¢,% - 3V(31)
24 = 9¢,% - 3V(31)

where z = -3¢,(x - a1)% - (3¢3 - VIg)(x - a1)

If in (31) we change the sign of I, we have Sym. values for
-3¢,(x - a1)? - (3cs + VIe) (x - ar)

and summing these gives
-6¢,(x -a1)? - 6c3(x - a;) = Px

Let R = 3V(By2 + BoVlg) + 3V(B12 - BoVlg) and for our Yx we have

Px; = 18¢,% + (1 +V-2)R
Px, = 18c,% + (1-V-2)R
Pxs = 18c2-R
Ux, = 18c,% - R

The ordinary method would give equivalent arithmetical results but these cube root
radicals would not appear at all and the expression would have no surds. But (31)
shows its cube root cannot be algebraically taken as it contains no symbol of the first
degree.

Now if Is equalled zero, we would arrive at the first method's soln by the second
method. The dscr of the quartic in z (yx) contains the dscr of the quartic in x as a
factor. When the latter is zero, so is the former. But not conversely. When the former
is zero, either the quartic in x has two equal roots OR for some two values of the x's
(say x4,xz) that k(x; + x3) + 1= 0. We have four cases:

1) eqn in x has two equal roots = dscrs of both conditioned quartics vanish

2) k(x4 + x2) +1=0 = 1st conditioned quartic's dscr vanishes, 2d's does not

3) k(x4 + x2) +1' = 0 = 2d conditioned quartic's dscr vanishes, 1st's does not

4) I¢ = 0 = Neither dscr vanishes but the two conditioned quartics become only
one and z is an ifn of x: 3(a;% - a;)x? - 3(4a,> - 5a;a, + az)x and both methods
yield identical solns.
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In the second method, we operate on a resolvent cubic but not the resolvent of any
other method. It has been shown that the resolvents in Euler's and Simpson's
methods are essentially the same. Our new method, instead of a resolvent cubic,
actually has a resolvent sextic. And this is a qfn divisible into two cubics with quad-
irrational coeffs. Finally, we see the soln of a quartic is an ordinary algebraic inverse
operation. The general quartic has form

(z-by)*-4(31)(z-bs) - (41) =0
make z - by =3V(4(31) - t

t*-t=(41) /"*V(43B1)) =v
or @t = v and our resolution is ¢ 'v = t.

The T-trans is also used in the Tschirnhausen Solution of the quartic where a quartic
in x becomes a quartic in t under the condition (13) = 0 instead of our (12) = 0. This is
done by means of a cubic and the eqn in t is a quartic with only even powers of t and
solved by taking square roots of a quadratic whose coeffs in terms of ai [1-4] come
from the cubic. This leads to the same cubic resolvent as other methods. So our
second method is the only one distinct from all the other linear ones equivalent to the
first method.

The Quintic

If we could express the root of a quintic by the first method of lin.trans., the rational
part of it would be a; and the irrational part fns of (12),(13),(14),(15). We would need
a quartic whose coeffs are gfns of those four values with a dscr equal or a numeric
multiple of the quintic's. And its roots would be a fn of the five (x - a;)'s. Let us see
why this won't work.

In their roots, the dscr of a quintic is 20° and of a quartic, 12°. So no degree of
argument in a quartic will work. But lem(12,20) = 60 and if the argument of the
quartic is 5°, its dscr is then 60° and equal to the cube of the quintic's. Its coeffs will be
of degrees 0, 5, 10, 15, and 20. We could algebrate all of this the hard way. But there
is a valid, much lazier approach. We need the principal critical fns of both quartic and
quintic to share the condition of two equal roots. When the first derivative of the
quantic has three equal roots, its dscr is a perfect cube and the quartic has form

(y-D*+m=0

where the dscr is the cube of m. Recall the honking big dscr of the quintic from our
earlier table and lazily denote it A. Let m = N3A. Then the most general form of | is

N1(12)(130 + N5(15)

and our quartic becomes
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(v - (N2(12)(13) + N(15))* - N3A=0

Solving for y, its expression in terms of x's is irreducible. Its roots contain *vVA which
is V(VA). As A is a perfect square in the x's, the first v works just fine. But the square
root of A has the form Yxx*x*x* with half the terms negative and so is not a perfect
square. Our y here is not any fn of the (x - a;)'s. If *VA were reducible, we would have
a five-symboled fn possessing four values and that is algebraically impossible. So we
can see that our first method of lin.trans. cannot work.

So we need to proceed, if possible, by our second method, introducing irreducible
irrationals and avoiding lin.trans. We cannot find a four-valued gfn of five symbols.
But we may find irrational fns of known, specific irrationality of five symbols whose
multiplicity of values may solve the quintic. Note that although the y's are irrational,
they divide into two pairs whose products are rational wrt the roots:

y1yz = (N1(12)(13) + N2(15))% - V(N3A)
yaya = (N1(12)(13) + N2(15))% + V(N34)

And this relation should be kept in mind as we go forward. Let's first digress by
asking if there are conditioned quintics with *VA reducible. If A in terms of coeffs is a
square fn, then it could be a fourth power of the roots. If this occurs, our two products
above would not only be rational but would be sym. fns of the roots. So if in our
tabular A we make (13) = 0 and condition (12) vis a vis (14), we can make A a perfect
square where relations between coeffs have a simple character. Let (13) = 0 and then
let (14) - N(12)? = 0, then

A = (6400N> + 2560N* + 256N°)(12)*° + (1440N + 160N? + 3456)(12)°(15)° - (15)*
which is a perfect square of

N5 + 35N* + 475N% + 3105N? + 9720N + 11664 = 0

OR

(N+4)3(N+9)*=0
N=-4v9

and our quintics for these are

(z-b1)®-10(21)(z - by)® + 20(21)(z-bs) - (51) =0
(z-b1)®-10(21)(z - by)® + 45(21)%(z - by) - (51) = 0

These give y as

(51) = V((51)? - 128(21)%)?
(51) = *V((51)? - 1728(21)%)?
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Now

y1y2 = 128(21)° v 1728(21)°
yaya = 2(51)%-128(21)° v 2(51)%- 1728(21)°

where both are rational and symmetrically expressible. One is a perfect fifth power.
The (21) only appears as (21)°. So they solve quintics where (21) becomes w(21),
w?(21), w3(21), w*(21) OR where z - b, is multiplied by these roots of unity. And if
y1,y2 are qfns of the (z - by)'s, each is a fifth power, as their product is a fifth power, as
that alone allows soln of a set of five quintics. And if they were known to have the
irreducible form of

(51) £ V((51)% - N5(12)%)

they would have an extractable root of form R; * VR, as the y1,y2 must admit the
variation allowing soln of the entire set. In both cases yll/s and y21/s are rational and

wy: + oy, OR 0y, + (N(21))/wy: "
is a five-valued fn of the roots with values

1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
y1/+y2/.u)yl/+w4yz/.m2y1/+u)3y2/,w3y1/+wzyz/,m4y1/+u)yz/

The eqn in t with these roots is

t5-5N(21)t% + 5N?(21)%t- 2(51) = 0
where tis a fn of the (z - by)'s with five values. When N° = 128 the first eqn is

ts - 10-22°(21)t3 + 20-2*°(21)% - 2(51) = 0
Let t = 2'/°v and we have

v -10(21)v3 +20(21)*v - (51) =0
Herev=2"t= (y1/2)1/5+ (yz/Z)l/5 is equivalent to (z - b1) and this is its soln. The
eqn itself is now De Moivre's form. This y; and y, are rational and t is a linear fn of the
(z - by)'s with five values by permutations of the roots. For the second eqn, its form in
tis

ts - 10(54)/°(21)t3 + 20(54)*°(21)%t - 2(51) = 0

We cannot here conclude that this second eqn in z is reducible to the same form as the
first where t is a gfn of z with coeffs in terms of (21) and (51). In each of these eqns,
our expressions are not unique, but infinitely various. To compare them we need

unique expressions of these resolvents. We would here have to go back to the given
quintic of five parameters of which each eqn in z is a distinct transform.

Digital PDF copies released under Creative Commons 4.0-SA-BY-NC
Physical copies and all other media: all rights reserved - R. Earle Harris (c) 2019



235

What we have proved in this digression is that if the complete quintic in x were
reducible to the second form z = s, it would be reducible to the first form in t by a
further transform in which t was a qfn of z, say xz. Here the coeffs of { and x would be
expressible only in terms of coeffs of the general quintic in x and not in terms of (21)
and (51). Here our digression ends.

We will approach the quintic by the second method. Consider the dscr of the quintic
and cause (12) and (13) to vanish. In the cubic, the dscr was (13)? + N(12)3; in the
conditioned quartic, (14)® + N(13)*% in our proposed conditioned quintic, (15)* +
N(14)°. Nis always #(n - 1)"". With this dscr, we can fulfill a condition of resolubility:
any eqn in y where the constant term if a perfect fifth power of a qfn of the coeffs, i.e.
(41)5, and will not otherwise contain (41). We need to express (12) = 0 and (13) = 0
in terms of the roots. The proposed conditional quintic is

z% - 5byz* + 10b;?z° - 10b;32% + 5buz - bs = 0

and of (21), (31), (41), and (51) only (41) and (51) have significant value. The most
complete form of a quartic in y with coeffs as qfns of the quintic's is

y*- 4N (51)y® + 6N5(51)%y2 - 4N;3(51)3y + N,(41)°=0

In the last term, any multiple of (51) is omitted as it could vanish under a proper
lin.trans. We need the five N's to make the dscr of the quartic that of the quintic.

(I-11) = (N1% - N3)(51)* = C(51)?
(I-II) = (2N43 - 3N; N, + N3)(51)% = D(51)°
(I'IV) = (3Ny - 6N;2N, + 4N;N3)(51)* - N4 (41)° = E(51)* - N4(51)°
So by our dscr table, we have for our dscr:
(81C*E - 54C3D? + 18C2E? - 54CD?E + 27D* + E)(51)*2
- (81C*N, + 36C3N,E - 54CD2N, + 3E2N,)(51)8(41)°
+ (18C2N,2 + 3EN,?)(51)*(41)*° - (N,5)(41)*®
which must be compared with
((51)*-256(41))®
If we make the arbitrary N, = 256, we have three eqns:
6C*+E=1 [1]
27C*+12C%E-18CD? +E?=1 [2]
81C*E - 54C3D? + 18C%E? - 54CD?E + 27D*+ E®=1 [3]
From [1]? - [2]
9C*+18CD?=0
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OnesolnisC=0 .~ E=1,D=0 ~ N;=N,=N3z=1

(y-(51))*+256(41)°- (51)*=0
Here there are no redundant eqns or inconsistencies and C* + 2D? = 0 gives the same
result. So we can express y in terms of (41),(51) or by,bs,bs and therefore with the
three z's. But (12) = 0 and (13) = 0 are 2(¥x)? - 5¥xx = 0 and 2(¥x)* - 25(Xxxx) = 0
and allow infinite forms for y. We need a unique one that represents y as a fn of coeffs
or roots of a complete quintic in z by definite relation, i.e. by representing a complete

quintic by one containing, as with the quartic, only two parameters.

To achieve a quintic or system of quintics subject to (12) = 0 A (13) = 0, we use the
Tschirnhausen-Jerrard Transform (T]-trans). We take a complete quintic in x

%% - 5a;x* + 10a,%° - 10a3x? + 5a,x-as = 0

and transform it into a quintic in z where z = Yx. The fullest form for (12) = (13) =0 is
z = Px = hx* + kx® + 1x? + mx which gives us

2° - T(x)z" + T(Wxpx)z® - R(xpxpx)z? + T (xpxpxpx)z - Ypxi [1-5] = 0
For (21) = (31) = 0, we take h, k, I m:

4(Z(Yx))? - 10X (Wxpx) = 0
12(E(Wx)* - 150X (Wxpxipx) = 0

The first of these eqns conditions is
h%44 + 2hk43 + 2hl42 + 2hm41 + k?33 + 2kI32 + 2km31 + 1222 + 2Im21 + m?11 =0

By means of the disposable constant, this divides into two linear eqns. The condition
now has this form:

(-

|N
[\S}

-12-12)(m11 +112 + k13 + h14)?

((QQ 12-12)1 + (1123 -12:13)k + (11-24 - 12-14)h)?

+((11-22 - 1212)(11-33 - 13-13) - (11-23 - 12-13)?)k?

+2((11-22 - 1212)(11-34 - 13-14) - (11-23 - 12-13)(11-24 - 12-14))hk

+((11-22 - 12-12)(14-44 - 14-14) - (11-24 - 12-14))h2 =0

This can be made into two parts, using the disposable constants; the first two terms
made equal to zero; the last three made separately equal to zero. We then have a quad
in h,k with rational coeffs (the first quad) whose soln gives a linear relation between h
and k. The coeff of this relation is a 30° quad-irrational. Substituting for h in the eqn
of the sum of the two first terms made equal to zero gives another quad eqn with quad
-irrational coeffs (the second quad). Its soln gives a linear relation between m,Lk
whose coeff is a quad-quad-irrational. Substituting these in the cubic eqn of condition
which is
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h3444 + 3h%k443 + 30?1442 + 3h2m441
+ 3hk?433 + 6hkl432 + 6hkm431
+3h1%422 + 6hlm421
+3hm?411
+k?333  +3k%1332 +3k’m331
+3kI?322 + 6klm321
+3km?311
+13222  +312m221
+3Ilm2211

+m3111 =0

The result takes this form:
Aim® + 3A,m? + 3A;ml? + A2 =0

where the Ai are quad-quad-irrational fns of the ai [1-5]. Soln of this cubic gives the
relation of m and | as an irrational fn of the coeffs of the original quintic. This fn comes
from the resolution of a cubic with coeffs derived from the soln of a given quad with
coeffs of irrational fns from another quad with coeffs of qfns of ai [1-5]. This would
make it a cubic-quad-quad-irrational. With this, Yx is determined giving us b;,bs,bs by
subbing s into the sym. fns of the coeffs of the transformed eqn.

Now h in terms of k comes from Ash = k(A1s + V1Izo), the suffixes being the degree of
the known gfn of the latter. Subbing this for h in the cubic:

m3111A3%6 + 3m?1112A%16 + 3m?k(113A16 + 114A15 + 114v130)A%16
+3ml?122A%16 +6mlk(123A16 + 124A15 + 124V130)A%16
+3mk?(133A%16 + 134A%16A15 + 144A16(A%15 + Is0) + (134A%16
+ ZMAlaAls)\/ho) +12222A316 + 31°k(223A3%16 + 224A%16A15
+224A%16V130) + 31k?(233A%16 + 234A16A15 + 244A16(A%15 + [30)
+ (234A%6 + 2224A16A15)V130) + k3(333A%16 + 3334A%16A15
+ 3344A16(A%15 + I30) + 444(A%15 + 3A1sl30) + (3334A%16
+6344A16A15 + 444(3A% 5 + I30)V130)

Then k in terms of | comes from
11A16M +(12 + VAq)A1el + (A1613 + A1s14 +VI3014)k = 0
where Ag =-(11:22 - 12-12) and, making the denoms rational:

K((13A16 + 14A15)? - 14%I30) + A16(13A16 + 14A15 + 14V130) (11m + (12 + VAg)l) = 0

which is also

Aok + A16(13A16 + 14A15 + 14V130)(11m + (12 + VAg)) = 0
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Then the complete expression of the cubic is

m3(111A340 + 311A%40B41 + 3112A40B79 + 11°B117
+ (311A%40B26 + 311%A40Bsa + B102) Vl30)
+3m21(112A%0 + (12 + VAs)A%40Ba1 + 211A%10B12
+211(12 + VAg)A10B79 + 112A40Bso + 112(12 + VAg)B117
+ (A%40(12 + VAg)B2s + 211A%40B27 + 211(12 + VAg)AsoBes
+11%A40Bgs + 112(12 + VAg)B102)V130)
+3ml?(122A%0 + 2(12 + VAg)A%40Baz + 11A%40Bas
+ (12 + VAg)?A4oBr9 + 211(12 + VAg)AsoBso + 11(12 + VAg)?B117
+(2(12 + VAg)A%40B79 + 11A%40B2s + (12 + VAg)?As0Bes
+211(12 + VAg)A40Bas + 11(12 + VAg)*B10)VIs0)
+312(222A%0 + 3(12 + VA)A%40Bas + 3(12 + VAg)?A4oBso
+ (12 + VAg)®B117 + (3(12 + VAs)A%40B2s + 3(12 + VA)?AsoBes
+ (12 + VAg)?B102)VIz0)

where the B's are rational and not difficult to express. 1f we multiply this cubic by the
coeff of m?, using V130 for VIso, and make 1 equal to that rational product, we can
determine m in a whole form by solving the cubic. The coeffs of this cubic, with their
quad-quad-irrationality, subbed into the roots of a general cubic eqn gives us the kind
of irrational we consider from this point. We call it irreducible as we need not reduce
it and safely conjecture it to be in fact irreducible when expressed in terms of the x's.
Given m, there is no further difficulty in determining h and k. The result is that a
general quintic is equivalent to a system of twelve conditioned quintics of form

z% - 5byz* + 10b;?z° - 10b;%2% + 5buz - bs = 0

with the relation z = hx* + kx® + 1x? + mx where k:h, m:h, by, by, bs are cubic-quad-
quad-irrational fns of ai [1-5], all with the same kind of irrationality and all 12-valued
from the square- and cube-roots of unity we use to solve the eqns giving rise to the
irreducible fn.

The above method is the simplest approach. The two quad-irrationals are of degrees
6° and 30°; the highest degree in the cubic, 126°, which becomes 249° when an
extreme coeff is rationalized. Eliminating 1 and m for a cubic in h and k, the degrees
become 14, 50, 192, 384 respectively. There are six ways to vary the elimination, the
other four giving intermediate results of degree. Each method gives twelve
conditioned quintics and a relation between x and z.

Consider one of the conditioned quintics and its quartic in y with coeffs of qfns of the
quintic's and sharing its dscr. We have, by the quartic's resolution, a complete
expression in y in terms of ai [1-5] involving our special irrationality. Subbing the sym.
fns of x into the coeffs, we express y in terms of x and for each mode of transformation
this is unique.

Our quintic in z (Px) and the quartic in y have the same critical fns which here is only
the dscr as the quintic has only two parameters and therefore only one condition. By
this, if the quartic in y has two equal roots, it has four equal roots. The dscr of the
quintic in x is a factor of the one for the quintic in z and the latter vanishes when the
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former does. When the quintic in z has more than two equal roots, it takes this form:
(Ux - b1)® = 0 and the quartic is y* = 0. If we suppose such conditions to exist between
the coeffs of the original quintic as would be inconsistent with the form of the quartic
in z, the transformation would need to be modified or might even be nullified.

Regarding the rationality of the y's in the quartic, they differ from our earlier cases.
We required that the roots of a quantic be independent of each other. But in our
quartic in y, any two are linear expressions of the other two. If y;, y, are taken as
independent, then ys;, y, each take form N;y; + N,y,. So our argument as to the
rationality fo y fails us. As we have not four but two independent elements in the
resolvent, we conclude that if the roots are to be rational, it results in the form of a
quadratic.

Let A = (51)* - 256(41)° and we take the quartic's roots as:

y1=(51) + A
y2 = (51) - *VA

ys = (51) +i*VA
ya=(51) -i*VA

which are rational (but not sym.) fns of z and of y;-y,, y5-y4 their product is 256(41)°,
a fifth power rational and sym. fn of the z's. If we call these products Y; and Y,, they
are the roots of

Y2-2(51)%Y + 256(41)°= 0

Y1,Y, are gfns of the z's and Y;-Y, is a perfect fifth power of a rational fn -- (41) -- of
the z's. So Y is a perfect fifth power gfn of 2° of the z's as any other form is excluded.
Calculation of each Y gives two 10° expressions taking the form

Y(A:t?) + X (Bytt) = Y,/
Y(Ast?) + X (Batt) = Y, /°

where t = z - by = yx - by. These Yi are known fns of ai [1-5] and A;Bi arise in the
calculation. This gives us two unsymmetrical fns of 2° of t and shows the quartic
resoluble. These, resting on the perfect square of the dscr, must be rational fns of the
x's. This gives us these fns for one form of { and we may obtain Sym. the fns of the
other forms of Y i.e. Y212 comes from the second root of the cubic, first root of the
second quad, second root of the first quad. If we form the fns Y for suffixes 111, 211,
311 and combine them in any sym. manner, we get two fns corresponding to Y where
the cubic's irrationality is gone and these new fns, x, contain only the irrationality
from the two quads. Let these by x11, Sym. derive fns 21 and combining symmetrically,
we get fn A; with only the irrationality of the first quad. Sym. derive A, combine the
A's symmetrically and we have fns p which are gfns of the x's.
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If all our sym. combinations are simple sums, our two non-symmetric qfns of the roots
are

Y(A:(1x)? + X (B1pxpx) = (Y1 °)
N (Ax(1x)? + X (Bopxpx) = S(Y,)

We can lose any powers of x above four and eliminate some of the x's by means of the
above eqns. Then Yt =0, }:(tt) = 0, };(ttt) = 0. We can then derive the quintic's roots
without further radicals. These roots are completely determined and the only
extractions are the Y/*'s. All twenty-four of these are of the same form with different
combinations of square- and cube-roots of unity. Note that we can determine VA
without forming A as VA is the square root of the dscr multiplied by ten expressions,

one being
h(x,3+ X1 2%+ X1X22X5%) + K(X1%+ X1Xo+ Xp7) + 1(X1+ Xp) + M

Note also that we did not solve the general quintic from its trinomial form. We see
that the principle of soln is not that the roots of the resolvent are expressible as qfns
of the roots of the given quantic. 7he principle is, that of whatever order of
Irrationality (including rationality) the root of the resolvent is, when expressed in
terms of the roots of the quantic its prime-root will also be of the same order of
Irrationality, or rational, as the case may be.

If n is the degree of the quantic (n assumed prime), then value of y is of the form that
its nth root is expressible as n values of 1/"p, where P is of the same radical form as y
but each member to the 1/nth degree of that in y. In the cubic, y is rational and 3°,
therefore yl/3 is rational and linear. In the quintic, y takes form Ss + VRyo. Therefore
yl/5 has form Ry + VR, where S is symmetric and the R's are gfns of yx's. The quartic
resolvent is divisible into two quads, in each of which the fifth-root of the product of
its roots is rational as indicated above. And the product of two corresponding roots in
these quads is rational and symmetric in the same sense. Or we can say there is a
connection between the four values of yl/5 where they divide into two pairs, the
product of whose corresponding member is a qfn of the five values of yix or rather, a
gfn of the five x's equivalent to the same qfn of the Yyx's.

We denote by a De Moivrean Equation a quantic of prime p° with roots of form wP +
»”'Q, PQ being a symmetric, one-valued fn of the roots. Our resolution by one quad
resolvent is reduction to De Moivrean form. In the cubic roots are wP + ®?Q where PQ
is sym. in the roots and rational in the coeffs. In the first two quintics in our digression,
each root, or a qfn of each root, has form wP + ®*Q where PQis a qfn of the coeffs. The
peculiarity here is that wP + o"'Q is wP + S/wP, an expression of p values and must
therefore be a gfn of some one root.

In the general quintic, expressed in Y%, PQ is not sym. in the roots and not rational in
the coeffs. It is demi-symmetrical in the roots and involves a square-root radical
which expressed in the coeffs.
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If we make the five values of ooy11/5 + w4y21/5 the roots of the De Moivrean quintic
t°- 5At% + 5A%t-2(51) =0

Ais (ylyz)l/s, a two-valued gfn of the yx's in form P + VQ in the coeffs and doing the
same with y3,y,4 in

t5-5Bt® + 5B%t-2(51) =0

Bis (y3y4)1/5 with Sym. results. And each A of form P +VQ has a B as P - VQ with the
same P and Q in both. Then wy11/5+ m4y21/5 and my31/5+ ou4y41/5 are five-valued fns,

through a quad-radical and are of opposite sign. And the five values of our
(.‘)Y1l/S + w4Y21/5
are the roots of the De Moivrean quintic with coeffs as sym. fns of the z's:
t5-5.256°(41)t% + 5-(256"/°)2(41)%t - 2(51)% = 0

This system of Y might not completely determine the roots. But if we consider every

possible value of wPy1*+ wly2"/°
These are y11/5+ yzl/5 and this multiplied by each fifth-root of unity. Sym. for ys,ys. We

arrive at five systems of two eqns, using t = Yx - by:

, there are five and they are linear fns of the z's.

1%+ y2"%) = X (AY)
(ys"*+y4'"%) = £(BY)
w(yr*+y2'"%) = ¥ (AY)
w*(ys*+ya'*) = ¥(BY)
w?(yr"*+y2'"%) = R (AD)
w3(ys"*+ys'’%) = ¥ (BY)
w3(yr" +y2'"%) = ¥ (AD)
w?(ys" +ys'’%) = ¥ (BY)
w1 +y2'%) = L (A)
w(ys+ys’%) = ¥ (Bt)

Repeat this system for each of the twelve forms of t =ix - b; with the corresponding
forms of y an we have 120 eqns, combinable symmetrically in twelve to produce these
systems:

S(y:") +S(y2"%) = T(AXx)
S(ys"*) + S(v4""*) = X(BAx)

and the four derived by multiplying these by each fifth-root of unity. Here Ax is a 4°
qfn of ai [1-5] as coeffs. We cannot algebraically determine which system goes with a
given quintic as these solve a set of five conjugate quintics. But here, Y and y
determine the roots.
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Remarks

The number of values a complete fn of the roots of an n° quantic has is n! and this is
the number of elements in its soln. In a cubic, we have 2-3 eqns, each with one radical.
In our first method for the quartic, we had 2-3 eqns each with two radicals for 12
elements. In the second complete method, 2-2-3 eqns, each with two radicals and 24 =
4! elements. In the quintic, 2-5 eqns containing 2-2-3 radicals for 120 elements.

In each case we use a resolvent whose roots enter into the algebraic expression of the
roots of the quantic. In the cubic, the resolvent is a quadratic with rational coeffs. In
the quartic, the first method uses a 3° qfn, the second, a 6° qfn divisible into two cubics
with quad-irrational coeffs. In the quintic, it is a 24° gfn divisible into 12 quads with
our special irrational in the coeffs. In every case, the final term of the resolvent is of
the same power as the quantic itself, a qfn of that quantic's coeffs. From this we can
infer the solubility of the conjugates.

Abel’s Theorem If a root is expressible as an irreducible irrational fn of the coeffs,
every radical which enters into the composition of the fn is expressible as a gfnn of the
roots and this qfnn has the same multiplicity of value by transposition of the roots, as
the irrational has by reason of the different roots of unity which are implied in its
radicals.

Although this remains true of fns soluable by the first method using linear
transformation, it is a subset of the truth when the second method is considered.
Entering this more deeply, Hargreave considers this theorem, at bottom, to be a mere
truism, a circuitous definition of resolution. Hamilton's theorem that all methods of
quartic soln are substantially the same also remains true for those where the first
method is applicable. Hargreave expands on the relation of his proven theory with
respect to these and other theorems. I leave this to your curiosity. It goes (almost)
without saying that Hargreave's theory must stand in a particular relation to Galois
Theory. Under Hargreave's theory, as I grasp it, if a quintic is algebraically resoluble it
has a quadratic resolvent where if the general quintic can be transformed into a
quintic with two parameters -- (41), (51) -- and whose discriminant, roots, and coeffs
are susceptible of 12 values, then its resolution becomes possible. I leave Hargreave's
relation to Galois to more capable hands. I have studied three texts of Galois Theory
and my response so far is that of the French mathematician who said, in effect, of
Group Theory, "I see what you are doing. ButI don't see why."

In an appendix, Hargreave notes that a quintic can also be solved through a cubic
resolvent. The dscr of the quintic here can be represented as the sum of a fifth and a
third power. If (12) = (14) = 0 we have as the dscr

(15)((15)° - 3456(13)%)

and because (15) only vanishes in extreme cases, the condition of our having two
equal roots can be

(15)%-3456(13)°=0
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With the TJ-trans, the general quintic has a form with only (13) and (15). As the eqn s
conditioned, we write for this (31) and (51) setting (12) = (14) = 0. We divide the
condition of (21) into two parts as we did earlier, and substituting the values in (41) =
0, we have

4444h* + 4443h%k + -

Solving this quartic gives us h, k, I, and m. We find from this that we now need 16
forms of Yx instead of 12. This gives 16 quintics of form:

(Ux-by)°-10(31)(Px-by)?-(51)=0
and our cubic resolvents for these have form
y* - 3N1(51)y® + 3N2(51)%y - N5(31) = 0

By the same method as earlier but equating the dscr of the cubic to the square of the
quintic's, we have

N1=Ny=1 N3=3456 = (y-(51))% + (51)° - 34546(31)°= 0
OR
y = (51) + 3V(3456(31)° - (51)3)

which has all the qualifications of a resolvent. Its last term is a fifth power of a sym.
gfn of the (Yx - by)'s which fn only enters as a fifth power. So the eqn in y applies to
the sent of quintics determined with (31), w(31), w?(31), w?(31), and w*(31) as coeffs
of the middle term. So y*’° is capable of extraction in the form R, if y is rational. Else
it is of form Ry + 3VRj if the cubic in y is irreducible.

Hargreave summarizes his ideas as follows.

1) The method of proceeding by steps, based on the idea that the algebraic expression
of the root of a complete eqn must contain the roots of an eqn of lower degree, all
being qfns of the roots of the complete eqn is the foundation of this theory. The soln
of a complete eqn involving the soln of all eqns of lower degree implies the necessity
of a resolvent whose critical fns are those of the complete eqn.

2) This resolvent applies to a set of quantics including the given complete eqn. And
this set has no common roots. The root of the resolvent expressed in terms of the
given quantic is a perfect power of another expression similar in rationality, the
exponent of the power being the number of elements in the set it must apply to. If this
power is p, the pth root of the root of the resolvent must be the same form as the root
itself, subbing for each sym. fn of the roots of the quantic of degree mp, a gqfn of the
same roots of m°.
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3) The quantic is transformed in such a way that the form of the root is altered but the
root still applies to the original quantic in its complete, unaltered form. This property
produces the uniqueness in the expression of the root of the resolvent when
expressed in terms of the roots of the quantic itself. We cannot use the resolvent
unless we can express its roots in a perfectly unique manner and this is only possible
in terms of roots or coeffs of an eqn between whose roots or coeffs no special relation
exists. For this we must go back to the complete quantic in x.

4) Our transformations diminish the parameters while maintaining a general soln.
Given @(u,v,w,..) = 0, we find u = J(v,w,...) so that of u = @v we can find ¢ in v
equivalent to (p'lu and not qualify its scope. This is applicable to eqns up to fifth
degree. Beyond this point we cannot go in this direction; for we have arrived at the
place where there is necessarily a fundamental change is the very statements and
conditions of the problem. This I conceive is the real barrier to algebraic resolution:
the impossibility of inventing any problem of two parameters, or any problem of
simple inversion, which shall be an adequate representative of a complete algebraic
equation of the sixth of higher degrees. 1 take this to mean, given what follows, that as
of his writing no adequate transform comparable to the T-trans and TJ-trans was
available.

Hargreave emphasizes that his method must apply to the complete and general eqn of
each degree. In the case of the quintic, the De Moivrean form allows us to do this. We
do not conclude that x* - 5a,x - as = 0 is reducible to the De Moivrean Equation. What
we have proven is that if in a trinomial form of (z - b;)* + 5(41)(z - by) - (51) = 0, its by,
(41), (51) are fns of the five parameters of the general quintic in x, then the quintic in z
is a transformation of, and an equivalence to, the general quintic in x. Then we can
find its De Moivrean form with roots adequate to our purpose. The distinction is that
a simple transformation to trinomial form has no inverse. In the quartic, a
transformation to z* - 4(31)z + (41) = 0 has two parameters and we can express (31)
and (41) in terms of ai [1-4]. But we cannot do this with z* - 4b3z + b, = 0 and reach a
general quartic with four parameters. In this method, everything we do must retain
the necessary relations of the given complete equation's roots, the roots of the
transformed equation, and the roots of the resolvent. In this is bound up our
requirement of uniqueness. The general quintic being reducible to Jerrard's form is
also reducible to the De Moivrean. But Jerrard's form alone is not reducible to the De
Moivrean.

Let us examine the general case of the trinomial, where for n prime
(z-b41)" + nbn1(z - by) - bn =0

Its dscr is
ba™ (n-1)""bn-1"

and we can use this to write down the De Moivrean quantic with the same
discriminant. If we take the quad in Y with roots

-1)/2 -1 -1 1
(bl D22 V/(b™ - (n-1)"bna™) )"
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and then form the De Moivrean eqn whose roots are the n values of wY1 + m"'le, we
then have a De Moivrean in t. And we might suppose it to be reducible. But it is not. If
we tried to form the values of Y, which should be gfns of the quantic in z - b; of degree
(n-1)/2, we must first find Y" expressible in terms of bn.1 and bn. But what of the
corresponding expressions of bn-1 and bn in terms of the roots? The n-2 conditions
among the roots turn every expression of them into an n-fold infinity of expression
and preclude uniqueness. We cannot then uniquely relate Y or t to the z's.

But if the trinomial quantic in z - b, is a proper transform of and therefore equivalent
to our n° complete quantic in x with n independent parameters ai [1-n], then we can
express Y; and Y, in terms of the coeffs in a completely unique manner. The square
root radical in this Y is a priori reducible and the nth root would be extractable in fns
of ((n-1)/2)° of the fn of x which we denote by z. We could then form the De Moivrean
in t. And if this did not absolutely lead to resolution, it would determine non-
symmetric fns of the roots presumably leading to resolution.

In point of theory, the general quantic is reducible to trinomial form by
Tschirnhausen's process although the practical limits of this process are rather limited.

But we are not entitled to conclude this makes such quantics irresoluable.

Now what if our quantic in trinomial form is not complete but conditioned? We must
still bring it from any form of

(z-b1)® +5by(z-by) -bs=0
to the proper form of

(z-b1)° +5(41)(z-b1) - (51) = 0
where (41),(51) are fns of the five parameters of the general quintic in x. The one
form is rational and single-valued. The other has coeffs with cubic-quad-quad
irrationals and is twelve-valued. The only form soluble without transformation is the

De Moivrean which is in itself a universal resolvent.

Algebraically considered, the general quantic is reducible to trinomial form. Suppose
it reduced to

(z-b)"+ (-1 (n-11)(z-by)-(n1)=0
where z is
hx" + kx™2 + 1K™ + - 4 Ax
and hk),...A and (n-1 1),(n 1) are uniquely and exclusively expressed in terms of xi

[1-n] which are the roots. Theoretically, these have (n-2)! values, practically
considered, twice that many. The resolventiny is

(-1 - 1)+ 0m-1)""(n-11)"=0
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and its roots divisible into (n-1)/2 pairs of form
(n1) £ 102MA
whose nth roots have form
Ry £ 102 "Ry
multiplied by all the nth-roots of unity. Let

v, V2= Ri' £ @ " VRnt'
Vs V4=Ri"+ 0 "VRnt"

Vo2, Yt = R, (MU/2 4 (D20l (12
and for each of these we take all values of
n-1
Wy2p-1+ W Y2p

for the n values of w, we have n? values of which exactly n are linear gfns of the z's.
These are yzp-1+ y2p multiplied by the roots of unity. We then have n systems of eqns
each with (n-1)/2 elements

ya ey, = 3 (A0
ys/"+ya " = X (BY)

Yn-Zl/n*' yn-11/“ =Y (Lt)

and each multiplied by the nth-roots of unity. We repeat this for all forms of t which is
Px - by and this gives us (1,2,..,n) eqns. We combine them as before, solving our
quantic and the n-1 other conjugate quantics.

This requirement that a quantic, to be resoluble, need be reduced to a particular
trinomial form is connected to the work of Harley and Boole as to the binomial form of
differential eqns resulting from trinomials. For a trinomial quantic, the problem is to
find its inversion, finding t in terms of v from v = ¢t. In quantics of composite degree,
the eqn in y still holds when one term is given the opposite sign when n is even. The
trinomial form has really only one parameter. Multiplying this parameter by the roots
of unity gives the same result. No other multinomial of more parameters has this
property. A De Moivrean Equation of prime degree n has this property. And this
suggests that the trinomial form and the De Moivrean form have some conjugate
relation between them, as suggested in part by Jerrard.

I should add that all of this last chapter, apart from a few remarks, is solely Hargreave.
All the credit of these ideas goes to him.
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